
Luca Di Gaspero
Paola Festa
Amir Nakib
Mario Pavone (Eds.)

LN
CS

 1
38

38

Metaheuristics
14th International Conference, MIC 2022
Syracuse, Italy, July 11–14, 2022
Proceedings

Lecture Notes in Computer Science 13838
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Luca Di Gaspero · Paola Festa · Amir Nakib ·
Mario Pavone
Editors

Metaheuristics
14th International Conference, MIC 2022
Syracuse, Italy, July 11–14, 2022
Proceedings

Editors
Luca Di Gaspero
University of Udine
Udine, Italy

Amir Nakib
University of Paris Est
Paris, France

Paola Festa
University of Napoli - Federico II
Napoli, Italy

Mario Pavone
University of Catania
Catania, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-26503-7 ISBN 978-3-031-26504-4 (eBook)
https://doi.org/10.1007/978-3-031-26504-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023, corrected publication 2023
Chapter “Evaluating the Effects of Chaos in Variable Neighbourhood Search” is licensed under the terms of
the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0299-6086
https://orcid.org/0000-0001-9620-9324
https://orcid.org/0000-0003-3421-3293
https://doi.org/10.1007/978-3-031-26504-4

Preface

The Metaheuristics international conference – MIC – is nowadays the biennial main
event focusing on progress in the area of Metaheuristics and their applications, whose
first edition was established in 1995. MIC 2022 is therefore the 14th edition of a long
series, and tookplace at theDepartment ofArchitecture of theUniversity ofCatania, Italy.
As the community may know, the MIC conference is traditionally held in odd years, and
this means that this edition should have taken place in 2021. However, due to the COVID
19 pandemic situation and given that the main feature of MIC is to provide a friendly
environment for discussion of on new ideas, collaborations and meeting old and new
friends, in accord with the Steering Committee we decided to postpone the conference
to 2022 with the hope – and the bet – that it could be held mostly in person. We won our
bet, and we were really pleased to welcome a large number of enthusiastic participants!
MIC 2022 continues, then, its mission in playing a unique role as an information- and
knowledge-sharing forum in the metaheuristics area, enabling attendees to learn and
network across the broad range of its offerings.

MIC 2022 was held from July 11–14, 2022 in beautiful Ortigia, the historical island
of the city of Syracuse, Sicily, Italy. By hosting the event, the city of Syracuse gave the
participants the opportunity to enjoy the riches of its historical and cultural atmosphere,
its traditions, and the beauties of its natural resources, such as the sea, the Roman
Amphitheatre, the Greek Theatre, and the Ear of Dionysius, which is a limestone cave
in the shape of a human ear. Syracuse is also the city where the great mathematician
Archimedes was born.

In this edition, we wanted to give greater prominence to issues concerning the inte-
gration between metaheuristics and machine learning, proposing reputable Plenary talks
by leading scientists who provided a broad view on the state of the art and on the future
of this growing and emerging topic. Keynote speakers have always been one of the most
important parts of MIC, and our six speakers this year were the following:

– Christian Blum, Spanish National Research Council, Spain
– Kalyanmoy Deb, Michigan State University, USA
– Fred Glover, Entanglement, Inc., USA
– Salvatore Greco, University of Catania, Italy
– Holger H. Hoos, Leiden University, The Netherlands
– Gary Kochenberger, Entanglement, Inc., USA
– El-Ghazali Talbi, University of Lille 1, CNRS, INRIA, France

Around 125 of valid submissions were received of which 72 papers were selected.
Among those overall accepted submissions, 34 were of regular papers, 23 of short
papers and 15 consisted of oral presentations of recently published works. The best
48 manuscripts, among short and regular papers, were included in this Volume. Each
paper was reviewed by a team of 102 PCmembers and reviewers that we deeply thank for
their contribution to MIC 2022’s success. As organizers, we are very happy and proud
to have had 150 participants overall of whom more than 110 were present. In total,

vi Preface

MIC 2022 offered to the participants 8 parallel sessions of oral presentations, whose
topics ranged from the foundation of metaheuristic techniques to their application in the
solution of combinatorial problems arising in many real-world domains. A number of
satellite social events also took place, with the purpose of giving the conference delegates
the opportunity to finally interact in person after this long pandemic time.

Finally, we would like to thank and recognize the enormous efforts of all members of
the organizing committee, included the local members, whomadeMIC 2022 possible by
donating their time, expertise, and enthusiasm. Without their hard work and dedication,
a successful event like MIC 2022 would not have been possible. Of course, we would
not have been able to organize an event on such a high scientific level without the
excellent work done by all program committee members, the financial manager and
conference secretariat, aswell as the distinguished plenary speakers, towhomwe express
and confirm our great appreciation. The main thanks are addressed to all authors who
supported MIC 2022 by sending their important and excellent contributions. A last
special thanks we would like to address to the steering committee members for their
helpful advice and support, andmainly for trusting us to organize thiswonderful scientific
event. Thanks to the success of MIC 2022, the Metaheuristics International Conference
still continues to be the premier event for science and technology in metaheuristics,
where scientists from all over the world meet to exchange ideas and sharpen their skills.

July 2022 Luca Di Gaspero
Paola Festa
Amir Nakib

Mario Pavone

Organization

Organizing Committee

General Chairs

Luca Di Gaspero University of Udine, Italy
Paola Festa University of Naples “Federico II”, Italy
Amir Nakib Université Paris Est Créteil, France
Mario Pavone University of Catania, Italy

Local Organization

Vincenzo Cutello University of Catania, Italy
Andrea Schaerf University of Udine, Italy
Raffaele Cerulli University of Salerno, Italy
Angelo Cavallaro University of Catania, Italy
Carolina Crespi University of Catania, Italy
Attilio Di Natale University of Catania, Italy
Georgia Fargetta University of Catania, Italy
Rocco A. Scollo University of Catania, Italy
Francesco Zito University of Catania, Italy

MIC Steering Committee

Fred Glover Entanglement, Inc., USA
Celso Ribeiro Universidade Federal Fluminense, Brazil
Éric Taillard University of Applied Sciences of Western

Switzerland
Stefan Voss University of Hamburg, Germany

viii Organization

Keynote Speakers

Christian Blum Spanish National Research Council, Spain
Kalyanmoy Deb Michigan State University, USA
Fred Glover Entanglement, Inc., USA
Salvatore Greco University of Catania, Italy
Holger H. Hoos Leiden University, The Netherlands
Gary Kochenberger Entanglement, Inc., USA
El-Ghazali Talbi University of Lille 1, CNRS, INRIA, France

Contents

Application of CMSA to the Electric Vehicle Routing Problem with Time
Windows, Simultaneous Pickup and Deliveries, and Partial Vehicle
Charging . 1

Mehmet Anıl Akbay, Can Berk Kalayci, and Christian Blum

A BRKGA with Implicit Path-Relinking for the Vehicle Routing Problem
with Occasional Drivers and Time Windows . 17

Paola Festa, Francesca Guerriero, Mauricio G. C. Resende,
and Edoardo Scalzo

Metaheuristic Algorithms for UAV Trajectory Optimization in Mobile
Networks . 30

Valentina Cacchiani, Sara Ceschia, Silvia Mignardi, and Chiara Buratti

New Neighborhood Strategies for the Bi-objective Vehicle Routing
Problem with Time Windows . 45

Clément Legrand, Diego Cattaruzza, Laetitia Jourdan,
and Marie-Eléonore Kessaci

Tabu Search with Multiple Decision Levels for Solving Heterogeneous
Fleet Pollution Routing Problem . 61

Bryan F. Salcedo-Moncada, Daniel Morillo-Torres, and Gustavo Gatica

A Learning Metaheuristic Algorithm for a Scheduling Application 76
Nazgol Niroumandrad, Nadia Lahrichi, and Andrea Lodi

MineReduce-Based Metaheuristic for the Minimum Latency Problem 88
Marcelo Rodrigues de Holanda Maia, Ítalo Santana, Isabel Rosseti,
Uéverton dos Santos Souza, and Alexandre Plastino

Optimizing Multi-variable Time Series Forecasting Using Metaheuristics 103
Francesco Zito, Vincenzo Cutello, and Mario Pavone

Unsupervised Machine Learning for the Quadratic Assignment Problem 118
Thé Van Luong and Éric D. Taillard

On Optimizing the Structure of Neural Networks Through a Compact
Codification of Their Architecture . 133

Marcos Lupión, N. C. Cruz, B. Paechter, and P. M. Ortigosa

x Contents

Neural Architecture Search Using Differential Evolution in MAML
Framework for Few-Shot Classification Problems . 143

Ayla Gülcü and Zeki Kuş

Neural Architecture Search Using Metaheuristics for Automated Cell
Segmentation . 158

Zeki Kuş, Musa Aydın, Berna Kiraz, and Burhanettin Can

Analytical Methods to Separately Evaluate Convergence and Diversity
for Multi-objective Optimization . 172

Takato Kinoshita, Naoki Masuyama, Yusuke Nojima, and Hisao Ishibuchi

How a Different Ant Behavior Affects on the Performance of the Whole
Colony . 187

Carolina Crespi, Rocco A. Scollo, Georgia Fargetta, and Mario Pavone

Evaluating the Effects of Chaos in Variable Neighbourhood Search 200
Sergio Consoli and José Andrés Moreno Pérez

Investigating Fractal Decomposition Based Algorithm
on Low-Dimensional Continuous Optimization Problems 215

Arcadi Llanza, Nadiya Shvai, and Amir Nakib

A Comparative Analysis of Different Multilevel Approaches
for Community Detection . 230

Guido Bordonaro, Rocco A. Scollo, Vincenzo Cutello, and Mario Pavone

Tchebycheff Fractal Decomposition Algorithm for Bi-objective
Optimization Problems . 246

N. Aslimani, E-G. Talbi, and R. Ellaia

Local Search for Integrated Predictive Maintenance and Scheduling
in Flow-Shop . 260

Andrea Ecoretti, Sara Ceschia, and Andrea Schaerf

An Investigation of Hyper-Heuristic Approaches for Teeth Scheduling 274
Felix Winter and Nysret Musliu

A Mixed-Integer Programming Formulation and Heuristics
for an Integrated Production Planning and Scheduling Problem 290

D. M. Silva and G. R. Mateus

Construct, Merge, Solve and Adapt Applied to the Maximum Disjoint
Dominating Sets Problem . 306

Roberto Maria Rosati, Salim Bouamama, and Christian Blum

Contents xi

Fixed Set Search Applied to the Territory Design Problem 322
Tobias Cors, Tobias Vlćek, Stefan Voß, and Raka Jovanovic

The P-Next Center Problem with Capacity and Coverage Radius
Constraints: Model and Heuristics . 335

Mariana A. Londe, Luciana S. Pessoa, and Carlos E. Andrade

Automatic Configuration of Metaheuristics for Solving the Quadratic
Three-Dimensional Assignment Problem Using Irace . 350

Imène Ait Abderrahim and Thomas Stützle

Hyper-parameter Optimization Using Continuation Algorithms 365
Jairo Rojas-Delgado, J. A. Jiménez, Rafael Bello, and J. A. Lozano

Selecting the Parameters of an Evolutionary Algorithm for the Generation
of Phenotypically Accurate Fractal Patterns . 378

Habiba Akter, Rupert Young, Phil Birch, Chris Chatwin,
and John Woodward

Addressing Sustainability in Precision Agriculture via Multi-Objective
Factored Evolutionary Algorithms . 391

Amy Peerlinck and John Sheppard

Modeling and Solving the K-Track Assignment Problem . 406
Jakob Preininger, Felix Winter, and Nysret Musliu

Instance Space Analysis for the Generalized Assignment Problem 421
Tobias Geibinger, Lucas Kletzander, and Nysret Musliu

Decision Support for Agri-Food Supply Chains in the E-Commerce Era:
The Inbound Inventory Routing Problem with Perishable Products 436

D. Cuellar-Usaquén, C. Gomez, M. Ulmer, and D. Álvarez-Martínez

A Multi-objective Biased Random-Key Genetic Algorithm for the Siting
of Emergency Vehicles . 449

Francesca Da Ros, Luca Di Gaspero, David La Barbera,
Vincenzo Della Mea, Kevin Roitero, Laura Deroma, Sabrina Licata,
and Francesca Valent

Simulated Annealing for a Complex Industrial Scheduling Problem 457
Quentin Perrachon, Alexandru-Liviu Olteanu, and Marc Sevaux

A Matheuristic for Multi-Depot Multi-Trip Vehicle Routing Problems 464
Tiziana Calamoneri, Federico Corò, and Simona Mancini

xii Contents

Comparing QUBO Models of the Magic Square Problem for Quantum
Annealing . 470

Philippe Codognet

Self-adaptive Publish/Subscribe Network Design . 478
Vittorio Maniezzo, Marco A. Boschetti, and Pietro Manzoni

An Efficient Fixed Set Search for the Covering Location
with Interconnected Facilities Problem . 485

Isaac Lozano-Osorio, Jesús Sánchez-Oro, Anna Martínez-Gavara,
Ana D. López-Sánchez, and Abraham Duarte

Hybrid PSO/GA+solver Approaches for a Bilevel Optimization Model
to Optimize Electricity Dynamic Tariffs . 491

Maria João Alves, Carlos Henggeler Antunes, and Inês Soares

An Agent-Based Model of Follow-the-leader Search Using Multiple
Leaders . 499

Martha Garzón, Lindsay Álvarez-Pomar, and Sergio Rojas-Galeano

A Scatter Search Approach for the Parallel Row Ordering Problem 506
Raul Martín-Santamaría, Jose Manuel Colmenar, and Abraham Duarte

A Multi-Population BRKGA for Energy-Efficient Job Shop Scheduling
with Speed Adjustable Machines . 513

S. Mahdi Homayouni, Dalila B. M. M. Fontes,
and Fernando A. C. C. Fontes

An Evolutionary Algorithm Applied to the Bi-Objective Travelling
Salesman Problem . 519

Luis Henrique Pauleti Mendes, Fábio Luiz Usberti,
and Mário César San Felice

Hybrid Metaheuristic Approaches for Makespan Minimization on a Batch
Processing Machine . 525

Juan Carlos Rivera and Ana María Cortes

Variable Neighborhood Descent for Software Quality Optimization 531
Javier Yuste, Eduardo G. Pardo, and Abraham Duarte

Iterated Local Search with Genetic Algorithms for the Photo Slideshow
Problem . 537

Labeat Arbneshi and Kadri Sylejmani

Contents xiii

A Tabu Search Matheuristic for the Generalized Quadratic Assignment
Problem . 544

Peter Greistorfer, Rostislav Staněk, and Vittorio Maniezzo

A Fast Metaheuristic for Finding the Minimum Dominating Set in Graphs 554
Alejandra Casado, Sergio Bermudo, Ana Dolores López-Sánchez,
and Jesús Sánchez-Oro

Scheduling Jobs in Flexible Flow Shops with s-batching Machines Using
Metaheuristics . 560

Jens Rocholl and Lars Mönch

Correction to: Evaluating the Effects of Chaos in Variable Neighbourhood
Search . C1

Sergio Consoli and José Andrés Moreno Pérez

Author Index . 569

Application of CMSA to the Electric Vehicle
Routing Problem with Time Windows,

Simultaneous Pickup and Deliveries, and Partial
Vehicle Charging

Mehmet Anıl Akbay1(B) , Can Berk Kalayci2 , and Christian Blum1

1 Artificial Intelligence Research Institute (IIIA-CSIC), Campus UAB, Bellaterra, Spain
makbay@iiia.csic.es, christian.blum@csic.es

2 Department of Industrial Engineering, Pamukkale University, Denizli, Turkey
cbkalayci@pau.edu.tr

Abstract. As a consequence of the growing importance of environmental
issues, partially due to a negative impact of transportation activities, the use of
environmentally-friendly vehicles in logistics has become one of the prominent
concepts in recent years. In this line, this paper addresses a variant of the vehi-
cle routing problem, the electric vehicle routing problem with time windows
and simultaneous pickup and deliveries, which are two essential real-life con-
straints. Moreover, we consider partial recharging of electric vehicles at charging
stations. A recent self-adaptive variant of the matheuristic “Construct, Merge,
Solve & Adapt” (CMSA) is applied to solve the tackled problem. CMSA com-
bines heuristic elements, such as the probabilistic generation of solutions, with
an exact solver that is iteratively applied to sub-instances of the original prob-
lem instances. Two constructive heuristics, a Clark & Wright Savings algorithm
and a sequential insertion heuristic, are probabilistically applied to generate solu-
tions which are then subsequently merged to form a sub-instance. The numerical
results show that CMSA outperforms CPLEX in the context of small problem
instances. Moreover, it is shown that CMSA outperforms the heuristic algorithms
when large problem instances are concerned.

Keywords: Electric vehicle routing · Time windows · Simultaneous pickup
and delivery · Partial recharging · Construct · Merge · Solve & adapt

1 Introduction

In spite of the remarkable advancements in exact solution techniques such as dynamic
programming and mathematical programming—think of popular, high-performing
tools such as CPLEX1 and Gurobi2—solving complex combinatorial optimization
problems using pure exact techniques still may require overly long computation times,
especially when considering large-sized problem instances. In those cases in which

1 https://www.ibm.com/analytics/cplex-optimizer.
2 http://www.gurobi.com/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 1–16, 2023.
https://doi.org/10.1007/978-3-031-26504-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_1&domain=pdf
http://orcid.org/0000-0001-7376-7008
http://orcid.org/0000-0003-2355-7015
http://orcid.org/0000-0002-1736-3559
https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com/
https://doi.org/10.1007/978-3-031-26504-4_1

2 M. A. Akbay et al.

exact techniques and solvers fail to deliver good-enough solutions within a reasonable
computation time, approximate techniques are used to obtain such solutions in much
lower computation times. In order to take advantage of exact solvers also in the context
of large-sized problem instances, recent years have seen a sharp increase in the number
of hybrid algorithms that combine approximate techniques and exact methods and tools.
The resulting algorithms are often called hybrid metaheuristics or matheuristics [18].
A broad overview on these methods can be found in [6,7]. One of the recent hybrid
algorithms in this direction is “Construct, Merge, Solve & Adapt” (CMSA) [5]. CMSA
is based on applying an exact solver iteratively to sub-instances of the original problem
instance. In other words, the search space is reduced before the exact solver is applied.
Search space reduction is achieved in a bottom-up manner by, first, probabilistically
generating solutions to the tackled problem and, second, by merging these solutions in
order to obtain a sub-instance. The literature provides successful applications of CMSA
to a range of combinatorial optimization problems such as the maximum happy ver-
tices problem [25], the route planning for cooperative air-ground robots [3], refueling
and maintenance planning of nuclear power plants [13], the prioritized pairwise test data
generation problem in software product lines [17] and the minimum positive influence
dominating set problem [1].

1.1 Our Contribution

A recent variant of CMSA—called Adapt-CMSA [2]—was introduced in order to
reduce the parameter-sensitivity of CMSA. The authors of [2] were able to show that
Adapt-CMSA, in contrast to standard CMSA, does not need to be tuned separately
for different problem sizes, respectively types. In this paper we propose the applica-
tion of Adapt-CMSA to a variant of the classical vehicle routing problem (VRP): the
electric vehicle routing problem with time windows and simultaneous pickup and deliv-
eries (EVRP-TW-SPD). Classical vehicle routing problems aims to find optimal routing
plans for a fleet of vehicles distributing goods from depots to customers, respectively
demand points. The objective is generally to minimize the number of vehicles, the total
distance traveled, or both, considering the limited capacity of vehicles. However, using
electric vehicles instead of those with internal combustion engines requires to consider
restrictions such as a limited driving range and en-route battery charging. The problem
addressed in this study also considers two important real-life constraints, namely, time
windows (TW) and simultaneous pickup and deliveries (SPD). TW constraints force
vehicles to visit a customer within a predefined time interval. Moreover, when SPD
constraints are considered, each customer has two different demands: (1) the goods to
be delivered to the demand point (delivery demand), and (2) the goods to be collected
from the demand point (pickup demand). So, once a vehicle visits a certain customer,
both demands must be met simultaneously. This approach usually arises as a reverse
logistics practice [11,35]. However, despite the importance of reverse logistics in terms
of sustainable operations, to the best of our knowledge SPD has not yet been consid-
ered within the scope of electric vehicle routing problems [24]. Finally, while—in the
classical EVRP—batteries of electric vehicles are always completely charged when a
vehicle makes use of a charging station, in this study we allow partial recharging. Note
that this scenario is much more realistic than the one with full charging.

Application of CMSA to the Electric Vehicle Routing Problem 3

1.2 Organization of the Paper

The remaining part of this paper is organized as follows. Related literature is provided
in Sect. 2. Section 3 presents the technical description of the problem together with the
mathematical model. Section 4 describes the application of the proposed algorithm to
the EVRP-TW-SPD. An experimental evaluation together with computational results
are given in Sect. 5. Finally, concluding remarks and outlook to future lines of research
are presented in Sect. 6.

2 Related Literature

Since it was first introduced to the literature in [10], the VRP and its variations have
become one of the most popular research topics in combinatorial optimization and
logistics. Many researchers and practitioners have introduced new, every time more
realistic models as well as efficient problem-solving strategies. Toth and Vigo [34] and
Golden et al. [19] present a range of extensions of vehicle routing problems as well as
recent advances and challenges. Moreover, Montoya et al. [29] provide a broad taxon-
omy and a classification of publications from the VRP literature. Apart from introducing
new problem variations, researchers also focused on developing solution methodolo-
gies to efficiently solve existing problem variants. A taxonomic review of metaheuristic
solution approaches for VRPs is presented in [14].

Due to the growing interest in the use of alternative fuel technologies in transporta-
tion, new VRP variants that take advantage of electric vehicles considering their limited
driving range and en-route charging necessities have been introduced to the literature.
These studies are either presented under the name of EVRP or, more generally, as green
vehicle routing problems. Asghari and Al-e-Hashem [4] and Moghdani et al. [27] pro-
vide a systematic review and categorization of green vehicle routing problems. The
route optimization of rechargeable vehicles was first considered by Conrad and Fil-
iozzi [9]. They presented a mathematical formulation of the problem, aiming to mini-
mize the number of vehicles and the total cost related to the traveled distance, the service
time, and the vehicle recharging cost. After this pioneering work, several researchers
presented EVRP variations together with different algorithmic solutions. Erdoğan et
al. [15] formulated a green vehicle routing problem in terms of a mixed-integer pro-
gramming model and proposed two contraction heuristics along with a customized
improvement technique to solve large-sized problem instances. Schneider et al. [33]
extended the EVRP by including time window constraints into the model. Moreover,
they proposed a metaheuristic algorithm based on variable neighborhood search (VNS)
and tabu search (TS). Felipe et al. [16] extended the green vehicle routing problem
introduced by [15], considering several real-life assumptions such as partial recharg-
ing and multiple charging technologies with different charging speeds and costs. They
developed a mathematical model and proposed several heuristic solution methods for
problem instances of realistic size. In addition, Keskin and Çatay [21] introduced an
EVRP with TWs and partial recharging. They proposed an adaptive large neighbor-
hood search (ALNS) based solution approach and analyzed if the partial recharging of
batteries improved the obtained solutions when compared to the full charging option.

4 M. A. Akbay et al.

Furthermore, they also considered a fast charging option in [22] and proposed two dif-
ferent mathematical models as well as a matheuristic. Moreover, Montoya et al. [28]
introduced a new model that takes into account the non-linear charging time of batter-
ies. They reported that the time spent for charging batteries is non-linear, and ignor-
ing this fact may cause the generation of infeasible and/or costly solutions. Keskin et
al. [23] considered also the fact that an electric vehicle might have to wait in a queue
when visiting a charging station. They proposed a two-stage simulation-based heuristic
using a large neighborhood search algorithm. Sadati and Çatay [31] recently introduced
a multi-depot green vehicle routing problem and developed a mixed-integer linear pro-
gramming model. They proposed a solution method based on VNS and TS and reported
on the computational properties of the algorithm. Duman et al. [12] proposed exact
and heuristic algorithms based on branch-and-price-and-cut and on column generation
to solve the EVRP with TWs. Huerta-Rojo et al. [20] proposed an algorithm named
ACOLS, a combination of ant colony optimization and local search, for the EVRP with
TWs and partial recharging.

3 Problem Description

In the following, we present a technical description together with a MILP model of
the EVRP-TW-SPD under the partial recharging assumption. Our model is based on
the model for the EVRP-TW proposed in [33] and modified by [21] for allowing par-
tial recharging of vehicle batteries. We have extended this model by adding SPD con-
straints. In order to preserve the comprehensibility, we use the same notation as in the
works cited above. Let V = {1, ...,N} refer to the set of N customers and F to the set
of charging stations, respectively. Based on F , a set of dummy charging stations F

′
is

defined that contains multiple copies of each charging station from F in order to allow
for multiple visits to any of the charging station. Both 0 and N + 1 refer to a single
depot. Each route starts from 0 and ends at N+1. Set V

′
= V ∪F

′
includes all cus-

tomers and dummy charging stations. Henceforth, when a set is marked by a sub-index
0, N+ 1 or both, it means that the set includes the respective instance(s) of the depot.
Based on this, the following sets can be defined: F

′
0 = F

′ ∪ {0},V ′
0 =V

′ ∪ {0},V ′
N+1 =

V
′ ∪{N+1},V ′

0,N+1 =V
′ ∪{0}∪{N+1}. In accordance with the defined sets and nota-

tions, the EVRP-TW-SPD can be defined on a complete, directed graph G(V
′
0,N+1,A)

with the set of arcs A = {(i, j)|i, j ∈ V
′
0,N+1, i �= j}. Each arc is associated with a dis-

tance di j and travelling time ti j. The constant h represents the battery consumption rate
of an electric vehicle per unit distance traveled. Each customer with a delivery demand
qi > 0 or a pickup demand pi > 0 (or both) must be served by an electric vehicle from
a homogeneous fleet of vehicles that all have the same loading capacity C and battery
capacity Q. Moreover, each vertex i ∈V

′
0,N+1 has a time window [ei, li] that denotes the

earliest and latest possible visiting times allowed. Additionally, each customer i∈V has
a service time si, which refers to the time necessary for the visit. If a charging station is
visited, the electric vehicle’s battery is charged with a constant charging rate of g> 0.

The problem can be modeled by means of a MILP as follows. First, the model
contains a binary decision variable xi j that takes value 1 if arc (i, j) is traversed and 0
otherwise. Next, decision variables τi keep track of the service starting time at customer

Application of CMSA to the Electric Vehicle Routing Problem 5

i∈V . Moreover, decision variables yi andYi record the battery state of charge on arrival,
respectively departure, at (from) vertex i ∈ V

′
0,N+1. Furthermore, for each arc (i, j) ∈

A, variable ui j denotes the remaining cargo to be delivered to customers of the route,
while vi j denotes the amount of cargo already collected (picked up) at already visited
customers. Note that each customers must be visited exactly once. The MILP model
can then be stated as follows.

Min ∑
i∈V ′

0 , j∈V
′
N+1

di j ∗ xi j+ ∑
j∈V ′

N+1

x0 j ∗M (1)

s.t. ∑
j∈V ′

N+1,i �= j

xi j = 1 ∀i ∈V (2)

∑
j∈V ′

N+1,i �= j

xi j ≤ 1 ∀i ∈ F
′

(3)

∑
i∈V ′

0 ,i �= j

xi j − ∑
i∈V ′

N+1,i �= j

x ji = 0 ∀ j ∈V
′

(4)

τi+(ti j+ si)xi j − l0(1− xi j) ≤ τ j ∀i ∈V0, j ∈V
′
N+1, i �= j (5)

τi+ ti jxi j+g(Yi − yi)− (l0+gQ)(1− xi j) ≤ τ j ∀i ∈ F
′
,∀ j ∈V

′
N+1, i �= j (6)

e j ≤ τ j ≤ l j ∀ j ∈V
′
0,N+1 (7)

0 ≤ u0 j ≤C ∀ j ∈V
′
N+1 (8)

v0 j = 0 ∀ j ∈V
′
N+1 (9)

∑
i∈V ′

0 ,i �= j

ui j − ∑
i∈V ′

N+1,i �= j

u ji = q j ∀ j ∈V
′
(10)

∑
i∈V ′

N+1,i �= j

v ji − ∑
i∈V ′

0 ,i �= j

vi j = p j ∀ j ∈V
′
(11)

ui j+ vi j ≤Cxi j ∀i ∈V
′
0, j ∈V

′
N+1, i �= j (12)

0 ≤ y j ≤ yi − (hdi j)xi j+Q(1− xi j) ∀i ∈V,∀ j ∈V
′
N+1, i �= j (13)

0 ≤ y j ≤ Yi − (hdi j)xi j+Q(1− xi j) ∀i ∈ F
′
0,∀ j ∈V

′
N+1, i �= j (14)

yi ≤ Yi ≤ Q ∀i ∈ F
′
0 (15)

xi j ∈ 0,1 ∀i ∈V
′
0, j ∈V

′
N+1, i �= j (16)

In this study, solutions using fewer vehicles—that is, with fewer routes—are preferred
over others, even if the total distance traveled is higher than in other routes. Therefore
the purely distance-based objective function from [21] is extended by adding an extra
costM > 0 for each vehicle used. Note, in this context, that the number of vehicles used
in a solution is equal to the variables on outgoing arcs of the depot (0) that have value
1. The objective is to minimize the objective function from (1). Constraints (2) and (3)
control the connectivity of customers and charging stations. More precisely, constraints
(2) enforce that each customer must be visited by an electric vehicle. Constraints (3),

6 M. A. Akbay et al.

on the other side, allow a charging station to be used, or not. Constraints (4) guarantee
the balance of flow. Constraints (5) and (6) calculate arrival and departure times con-
sidering service and battery charging times. Constraints (7) enforce that each node can
only be visited within the allowed time windows. Sub-tours are also eliminated by con-
straints (5)–(7). Constraints (8)–(12) guarantee that the delivery and pickup demands of
customers are satisfied simultaneously. Finally, constraints (13)–(15) are battery state
constraints.

4 Adapt-CMSA for the EVRP-TW-SPD

In this section we will describe the Adapt-CMSA algorithm that we designed for the
application to the EVRP-TW-SPD. However, before describing the algorithm we first
explain the solution representation in detail.

4.1 Solution Representation

Any solution S produced produced by the algorithm is kept in the form of a binary,
square matrix with |V ′

0,N+1| rows and columns. Position (i, j) of S, denoted by si j, is
hereby defined as follows:

si j :=

{
1 if the edge (i, j) is a part of the solution
0 otherwise

∀i, j ∈V
′
0,N+1 (17)

Note that if the arc (i, j) is a part of a solution S, one of the vehicles used in S has passed
from node i to node j.

Example. Let vector I contain the complete set of node indexes of an example problem
instance with 3 charging stations and 5 customers. Note that indexes 0 and 9 represent
the depot.

I=
(
0,︸︷︷︸

depot

1, 2, 3,︸ ︷︷ ︸
charging stations

4, 5, 6, 7, 8,︸ ︷︷ ︸
customers

9︸︷︷︸
depot

)

A solution Swith two vehicles that take routes T1 and T2 (where T1 =<0-7-6-1-8-9>
and T2 =<0-3-4-5-2-9>) is represented as follows:

S=

⎡
⎢⎢⎢⎣
s00 s01 . . . s09
s10 s11 . . . s19
...

...
. . .

...
s90 s91 . . . s99

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Application of CMSA to the Electric Vehicle Routing Problem 7

Algorithm 1. Pseudo-code of Adapt-CMSA for the EVRP-TW-SPD
1: input 1: values for CMSA parameters tprop, tILP
2: input 2: values for solution construction parameters αLB, αUB, αred, drate, hrate
3: Sbsf := GenerateGreedySolution()
4: αbsf := αUB

5: Initialize(na, lsize,γ)
6: while CPU time limit not reached do
7: C := Sbsf

8: for i := 1, . . . ,na do
9: S := ProbabilisticSolutionConstruction(Sbsf, αbsf, lsize, drate, hrate)
10: C :=Merge(C,S)
11: end for
12: AddRandomEdges(C, γ)
13: (Scplex, tsolve) := SolveSubinstance(C, tILP) {This function returns two objects: (1) the

obtained solution (Scplex), (2) the required computation time (tsolve)}
14: if tsolve < tprop · tILP and αbsf > αLB then αbsf := αbsf −αred end if
15: if f (Scplex)< f (Sbsf) then
16: Sbsf := Scplex

17: Initialize(na, lsize,γ)
18: else
19: if f (Scplex)> f (Sbsf) then
20: if na = ninit then αbsf :=min{αbsf+

αred
10 ,αUB} else Initialize(na, lsize,γ) end if

21: else
22: Increment(na, lsize,γ)
23: end if
24: end if
25: end while
26: output: Sbsf

4.2 The Adapt-CMSA Algorithm

Algorithm 1 shows the pseudo-code of our Adapt-CMSA algorithm for the EVRP-TW-
SPD. First, function GenerateGreedySolution() initializes the best-so-far solution Sbsf

to a feasible solution obtained utilizing an insertion heuristic (as explained in detail
below). Then, parameters αbsf, na, lsize and γ are initialized in lines 4 and 5. The han-
dling of these parameters will also be outlined in detail below.

At each iteration, Adapt-CMSA builds a sub-instance C of the original problem
instance. Just like a solution, a sub-instance C is a two-dimensional matrix whose ele-
ments are binary variables ci j for all i, j ∈ V

′
0,N+1. Hereby, variable ci j refers to arc

(i, j). C is initialized at each iteration to the best-so-far solution Sbsf, that is, ci j := sbsfi j

for all i, j ∈ V
′
0,N+1. Then, a number of na solutions are probabilistically constructed

in lines 8–11. The function for the construction of a solution, ProbabilisticSolution-
Construction(Sbsf, αbsf, lsize, drate, hrate), receives—apart from the best-so-far-solution
Sbsf—four parameters as input. Hereby, parameter αbsf (where 0 ≤ αbsf < 1) is used
to bias the construction of new solutions towards the best-so-far solution Sbsf. More
specifically, the similarity between the constructed solutions and Sbsf will increase with
a growing value of αbsf. Parameter lsize controls the number of considered options at

8 M. A. Akbay et al.

each solution construction step. A higher value of lsize results in more diverse solutions
which, in turn, leads to a larger sub-instance. Next, 0 ≤ hrate ≤ 1 is the probability to
choose the C&W savings heuristic as solution construction mechanism. Otherwise, the
mechanism of the insertion heuristic is used. Finally, 0 ≤ drate ≤ 1 is the probability of
performing a step during solution construction deterministically.

After the construction of a solution S (line 9), the so-called merge step is performed
in function Merge(C,S). In particular, ci j := si j for all i, j ∈ V

′
0,N+1 with si j = 1, that

is, every edge that is either used in Sbsf or in any of the solutions constructed in the
current iteration is an option in the sub-instance. After probabilistically constructing
na solutions and merging them to form the sub-instance C, the algorithm calls func-
tion AddRandomEdges(C, γ) to randomly add 	γ · |V ′

0,N+1|
 additional edges/options
to the current sub-instance. This mechanism augments the size of the sub-instance
and increases the possibility of obtaining high-quality solutions when solving the sub-
instance with CPLEX, which is precisely done in function SolveSubinstance(C, tILP);
see line 13. Hereby, tILP is the CPU time limit for the application of CPLEX, which is
applied to the ILP model from Sect. 3 after adding the following constraints:

xi j = 0 iff ci j = 0 ∀i, j ∈V
′
0,N+1 (18)

That is, the available edges in the model are reduced to the ones present in sub-instance
C. Note that, the more such constraints are added to the original ILP, the smaller is
the search space of the resulting ILP model and, as a consequence, the easier it is for
CPLEX to derive an optimal solution to the corresponding sub-instance. Note also that
the output Scplex of function SolveSubinstance(C, tILP) is—due to the computation time
limit—not necessarily an optimal solution to the sub-instance.

The self-adaptive aspect of Adapt-CMSA is to be found in the dynamic change of
parameters αbsf, na, lsize and γ . In the first place, we will describe the adaptation of
parameter αbsf. First of all, Adapt-CMSA requires a lower bound αLB and an upper
bound αUB for the value of αbsf as input. In addition, the step size αred for the reduction
of αbsf must also be given as input. Adapt-CMSA starts by setting αbsf to the highest
possible value αUB; see line 4.3 In case the resulting ILP can be solved in a computa-
tion time tsolve which is below a proportion tprop of the maximally possible computation
time tILP, the value of αbsf is reduced by αred; see line 14. The rationale behind this step
is the following one. In case the resulting ILP can easily be solved to optimality, the
search space is too small, caused by a rather low number of free variables. In order to
have more free variables in the ILP, the solutions constructed in ProbabilisticSolution-
Construction(Sbsf, αbsf, lsize, drate, hrate) should be more different to Sbsf, which can be
achieved by reducing the value of αbsf.

The adaptation of parameters na, lsize and γ is done in a similar way and with a
similar purpose. These three parameters are set to their initial values, that is, na := ninit,
lsize = linitsize and γ = 0.1 in function Initialize(na, lsize,γ), which may be called at three
different occasions: (1) at the start of the algorithm (line 5), (2) whenever solution Scplex

is strictly better than Sbsf (line 16), and (3) whenever solution Scplex is strictly worse than
Sbsf and, at the same time, na > ninit (line 20). On the other side, in those cases in which

3 Remember that solutions constructed with a high value of αbsf will be rather similar to Sbsf.

Application of CMSA to the Electric Vehicle Routing Problem 9

Scplex and Sbsf are of the same quality, the algorithm can afford to generate larger sub-
instances and therefore, the values of the three parameters are incremented in function
Increment(na, lsize,γ). More specifically, na in incremented by 1, lsize is incremented by
lincsize, and γ is incremented by 0.1.

4.3 Solution Construction

When function ProbabilisticSolutionConstruction(Sbsf, αbsf, lsize, drate, hrate) is called,
first, a decision about the solution construction mechanism is made. In particular, a
random number r1 ∈ [0,1] is drawn uniformly at random. In case r1 ≤ hrate, our ver-
sion of the C&W savings algorithm [8] is executed. Otherwise, our insertion algorithm
is applied. Second, a decision is made about the algorithm variant. Both in the case
of the C&W savings algorithm and in the case of the insertion algorithm, we have
implemented two algorithm variants. The first one allows for battery and time window
infeasibilities by simply accepting infeasible solution construction steps, while the sec-
ond variant exclusively generates feasible solutions. The decision about the algorithm
variant is made by drawing a second random number r2 ∈ [0,1] uniformly at random.
In case r2 ≤ infrate, the first (infeasibility accepting) algorithm variant is executed. Oth-
erwise, the variant that generates feasible solutions is applied. In the following both
construction algorithms and their variants are described in detail.

Probabilistic Clark &Wright (C&W) Savings Algorithm. Our probabilistic version
of the C&W savings algorithm starts by creating a set of direct routes R = {(0− i−
(N+1)) | i ∈V}. Subsequently, a savings list L that contains all possible pairs (i, j) of
nodes (customers and charging stations) together with their respective savings value σi j

is generated. Hereby, σi j is calculated as follows:

σi j := d0i+d0 j −λdi j+μ |d0i −d0 j| (19)

The so-called route shape parameter λ adjusts the selection priority based on the dis-
tance between nodes i and j [36], while μ is used to scale the asymmetry between
nodes i and j [30]. Note that well-working values for these parameters are obtained by
parameter tuning which is presented in Sect. 5. Note also that the savings list L will, at
all times, only contain entries (i, j) such that (1) node i and node j belong to different
routes, and (2) both i and j are directly connected to the depot in the route to which they
belong. For executing the C&W savings algorithm, the following list of steps is iterated
until the savings list L is empty.

1. First, based on the current savings values of the entries in L, a new value qi j is
calculated for each entry (i, j) ∈ L as follows:

qi j :=

{
(σi j+1) ·αbsf if sbsfi j = 1

(σi j+1) · (1−αbsf) otherwise
(20)

The savings list L is then sorted according to non-increasing values of qi j. Finally, a
reduced saving list Lr that contains the first (maximally) lsize elements of the whole
savings list is created.

10 M. A. Akbay et al.

2. Next, an entry (i, j) is chosen from Lr as follows. First, a random number r ∈ [0,1] is
chosen uniformly at random. If r ≤ drate, the first entry is chosen from Lr. Otherwise,
en entry is chosen according to the following probabilities:

p(i j) :=
qi j

∑(i′, j′) ∈Lr qi′ j′
∀ (i, j) ∈ Lr (21)

Note that, the higher the value of parameter αbsf ∈ [0,1], the stronger is the bias
towards choosing edges that appear in the best-so-far solution Sbsf.

3. Then, the two routes corresponding to nodes i and j are merged. The four possible
cases for merging two routes are as follows:

Case1 : T1 :< 0-i-...-N+1> T2 :< 0-j-...-N+1> rev(T1)−T2 Tm :< 0-...-i-j...-N+1>
Case2 : T1 :< 0-i-...-N+1> T2 :< 0-...-j-N+1> rev(T1)− rev(T2) Tm :< 0-...-i-j...-N+1>
Case3 : T1 :< 0-...-i-N+1> T2 :< 0-j-...-N+1> T1 −T2 Tm :< 0-...-i-j...-N+1>
Case4 : T1 :< 0-...-i-N+1> T2 :< 0-...-j-N+1> T1 − rev(T2) Tm :< 0-...-i-j...-N+1>

Based on the way in which nodes i and j are directly connected to the depot, one
or both of the routes must be reversed in order to be able to connect nodes i and j.
In this context, note that the reversed version of a route T1 is denoted by rev(T1).
If the merged route Tm is infeasible in terms of vehicle capacity, the merged route
is eliminated and the respective pair of nodes are removed from the savings list. A
new candidate is selected following the procedure in the previous step. The variant
of our C&W savings algorithms that allows for unfeasible solutions now proceeds
with the next step. The other variant, however, first checks for possible time win-
dow infeasiblities in Tm. If such an infeasibility is detected, Tm is eliminated, and
the respective pair of nodes are removed from the savings list. A new candidate is
selected following the procedure in the previous step. If the merged route is battery
infeasible, a charging station is inserted into the infeasible route. The corresponding
procedure determines the first customer in the route at which the vehicle arrives with
negative battery level and inserts the charging station between this customer and the
previous customer. For this purpose, the charging station which least increases the
route distance is selected and inserted between the respective nodes. If this insertion
is not feasible, then the previous arcs are attempted in the same manner. In those
cases in which the route is still infeasible after charging station insertion, it is elim-
inated, and the respective pair of nodes are removed from the savings list. A new
candidate is selected following the procedure described in the previous step. This
procedure is repeated while the savings list is not empty. After merging, some of the
charging stations that were previously added to the routes may become redundant.
Those charging stations are removed from the merged route.

4. The savings list L must be updated as described above.

Finally, the obtained set of routes is transformed into a solution S in matrix form.

Probabilistic Insertion Algorithm. This algorithm constructs a solution by sequen-
tially inserting each customer into the available routes until no unvisited customer
remains. The first route is initialized by inserting either the customer with the high-
est distance to the depot or the customer with the earliest deadline. Then, a costs list
formed by each unvisited customer and all possible insertion positions together with

Application of CMSA to the Electric Vehicle Routing Problem 11

their respective cost values is generated. The insertion cost of customer i between nodes
j and k is calculated using the following equation:

c(j, i,k) = d ji+dik −d jk (22)

Then, a uniform random number r ∈ [0,1] is generated. If r ≤ drate, the customer with
the minimum insertion cost is inserted into the respective insertion position. Otherwise,
a random customer is selected from the first lsize elements of the cost list and inserted
into the respective position if the vehicle capacity allows for this. The version of the
insertion algorithm that only generates feasible solutions also checks for time window
and battery infeasibilities. That is, insertions are only allows if they result in feasible
tours regarding the time windows. Moreover, in case of battery infeasibility, a charging
station is inserted into the route as explained above in the description of the C&W
savings algorithm. If the insertion leads to infeasibility in terms of vehicle load capacity,
a new tour is initialized with the respective customer. Finally, the obtained set of routes
is transformed into a solution S in matrix form.

5 Experimental Evaluation

All experiments were performed on a cluster of machines with Intel R© Xeon R© 5670
CPUs with 12 cores of 2.933GHz and a minimum of 32 GB RAM. CPLEX version
20.1 was used in one-threaded mode within Adapt-CMSA for solving the respective
sub-instances.

Problem Instances. The EVRP-TW problem instances introduced by [33] were used
to test the performance of the proposed algorithm. These problem instances include
36 small-sized instances with 5, 10, and 15 customers and 56 large-sized instances
with 100 customers and 21 charging stations. Each group includes three main classes
of instances based on the distribution of customer locations. Instance name prefixes
“c”, “r” and “rc” indicate that the locations of customers in the respective instance are
clustered, randomly distributed or random-clustered, respectively. Moreover, each class
contains two sub-classes, namely, type 1 and type 2 instances which separate instances
in terms of the length of the time windows, vehicle load, and battery capacities. Since
the original problem instances only come with delivery demands, we had to modify
them by adding pickup demands. For this purpose, the delivery demand of each cus-
tomer was separated into a delivery and a pickup demand by using the approach from
[32]. Based on this approach, we first calculate a ratio ρi = min{ xi

yi
, yixi } for each cus-

tomer i ∈ V . Hereby, (xi,yi) is the location of customer i. Then, multiplying this ratio
with the original demand δi, we calculate the delivery demand of the respective cus-
tomer, qi = δi ∗ ρi. Finally, subtracting the delivery demand from the original demand,
we obtain the pickup demand, pi = δi −qi.

Parameter Tuning. In order to find well-working parameter values for Adapt-CMSA we
utilized the scientific tuning software irace [26]. Instances r107, r205, rc101, rc104,
rc105, and rc205 were used for the tuning process. Note that in the case of numerical
parameters, the precision of irace was fixed to two positions behind the comma. irace
was applied with a budget of 3.500 algorithm applications. The time limit for each

12 M. A. Akbay et al.

Table 1. Parameters, their domains, and the values as determined by irace.

Parameter Domain Value Description

λ [1,2] 1.77 Route shape parameter (C&W algorithm)

μ [0,1] 0.56 Asymmetry scaling (C&W algorithm)

drate [0,1] 0.17 Determinism rate for solution construction

linitsize {10,15,20,50,100,200} 100 Initial list size value

lincsize {10,15,20,50,100,200} 20 List size increment

ninit {1,2,3,4,5} 1 Initial nr. of constructed solutions

tILP {5,7,10,15,20,25,30,35,40} 20 CPLEX time limit (seconds)

αLB [0.6,0.99] 0.62 Lower bound for αbsf

αUB [0.6,0.99] 0.76 Upper bound for αbsf

αred [0.01,0.1] 0.06 Step size reduction for αbsf

tprop [0.1,0.8] 0.44 Control parameter for bias reduction

hrate [0,1] 0.2 Probability to choose a heuristic

infrate [0,1] 0.22 Probability to choose infeasible construction

problem instance was set to 900 CPU seconds. A summary of the parameters, their
domains, and values selected for the final experiments are provided in Table 1.

5.1 Computational Results

Due to space reasons we limit the experimental evaluation to the 12 small problem
instances with 15 customers (see Table 2) and the 17 large clustered problem instances
(see Table 3). In the context of the small problem instances we compare the perfor-
mance of Adapt-CMSA with the standalone application of CPLEX. As CPLEX is not
applicable in a standalone manner to the large-size problem instances, we compare
Adapt-CMSA with our probabilistic C&W savings algorithm (pC&W) and our prob-
abilistic sequential insertion algorithm (pSI). The parameters of both algorithms were
set in the same way as for their application within Adapt-CMSA. Moreover, the same
computation time limit was used as for Adapt-CMSA, that is, both algorithms were
repeatedly applied until a computation time limit of 150 CPU seconds (small prob-
lem instances), respectively 900 CPU seconds (large problem instances), was reached.
Moreover, Adapt-CMSA, pC&W and pSI were applied 10 times to each problem
instance. Finally, note that we determined the cost of each vehicle used in a solution
as 1000—that is,M = 1000—for the calculation of the objective function values.

The structure of the result tables is as follows. Instance names are given in the
first column. Columns ‘m’ provide the number of vehicles utilized by the respective
solutions. In the case of Adapt-CMSA, pC&W and pSI these numbers refer to the best
solution found within 10 independent runs. In the case of Adapt-CMSA, pC&W, and
pSI, columns ‘best’ show the objective function values of the best solutions found in
10 runs, while additional columns with heading ‘avg.’ provide the average objective
function values of the best solutions of each of the 10 runs. Next, columns with heading
‘time’ show the computation time (in seconds) of CPLEX and the average computation
times of Adapt-CMSA to find the best solutions in each run. Note that the time limit for
CPLEX was set to two hours. Finally, columns ‘gap(%)’ provide the gap (in percent)

Application of CMSA to the Electric Vehicle Routing Problem 13

Table 2. Computational results for small-sized instances with 15 customers.

Instances name CPLEX Adapt-CMSA

m Best Time Gap (%) m Best Avg. Time

c103C15 3 3348.46 7183.45 7.3 3 3348.46 3362.06 91.46

c106C15 3 3275.13 1.28 0 3 3275.13 3275.13 43.15

c202C15 2 2383.62 62.26 0 2 2383.62 2383.73 53.13

c208C15 2 2300.55 4.62 0 2 2300.55 2300.55 8.80

r102C15 5 5412.78 7183.67 20.6 5 5412.78 5412.78 23.94

r105C15 4 4336.15 7.60 0 4 4336.15 4336.15 1.77

r202C15 2 2358.00 1723.55 0 2 2358.00 2373.41 118.00

r209C15 1 1313.24 4396.03 0 1 1313.24 1313.95 112.08

rc103C15 4 4397.67 349.61 0 4 4397.67 4398.04 76.43

rc108C15 3 3370.25 1170.76 0 3 3370.25 3373.31 69.70

rc202C15 2 2394.39 859.43 0 2 2394.39 2394.39 59.51

rc204C15 1 1403.38 7183.65 28.7 1 1402.61 1420.50 104.07

average – 3024.47 2510.49 – 3024.40 3028.67 63.50

between the best found solutions and the best lower bounds found by CPLEX. Note
that, in case the gap value is zero, CPLEX has found an optimal solution.

The following observations can be made. First, CPLEX was able to solve 9 small-
sized problem instances to optimality and provided feasible solutions for the remain-
ing 3 instances without being able to prove optimality within the computation time
limit. For all small instances, Adapt-CMSA was able to find the optimal solutions pro-
vided by CPLEX. In the case of the rc201C10 instance, Adapt-CMSA was even able to
improve the solution obtained by CPLEX. Moreover, Adapt-CMSA showed this perfor-
mance using considerably less computation time than CPLEX. More specficially, while
CPLEX found its best solutions on average in 2510 s, Adapt-CMSA was able to do so
in just 63.5 s.

Concerning the large-sized instances, Adapt-CMSA significantly outperforms both
pC&W and pSI, both in terms of best-performance and average performance. The
results also show that the average computation time of Adapt-CMSA is higher than
the one of pC&W and pSI. This is because pC&W and pSI are, at some point, not able
to improve their best-found solutions anymore, while Adapt-CMSA is still able to do
so. Moreover, we would also like to stress that Adapt-CMSA, in 15 out of 17 cases,
found solutions using fewer vehicles than the solutions identified by pC&W and pSI. In
summary, we can say that Adapt-CMSA shows a very satisfactory performance both in
the context of small and large problem instances.

14 M. A. Akbay et al.

Table 3. Computational results for large-sized clustered instances.

Instances name pC&W pSI Adapt-CMSA

m Best Avg. Time m Best Avg. Time m Best Avg. Time

c101 21 22854.30 23028.50 406.70 13 14788.00 15574.68 513.05 12 13044.40 13067.22 720.99

c102 19 20764.20 21008.31 350.05 13 14664.70 15366.11 397.20 12 13058.00 13549.74 832.64

c103 16 17548.30 17622.53 483.74 12 13641.10 14363.90 491.02 11 12312.20 13398.36 822.92

c104 13 14388.30 14428.41 500.50 11 12404.70 13195.66 415.63 11 12126.70 12254.73 710.92

c105 19 20679.90 21608.72 588.59 13 14622.90 14928.32 346.88 11 12067.20 12931.48 732.89

c106 18 19797.20 20626.70 386.43 13 14713.90 14770.94 349.02 11 12037.30 12934.44 790.80

c107 18 19842.00 20594.06 459.03 12 13685.10 14631.25 339.14 11 12059.20 12836.45 699.06

c108 16 17589.20 18105.10 402.57 13 14617.00 14693.32 472.70 12 13029.70 13055.02 831.32

c109 14 15520.10 16415.00 454.81 12 13534.10 13628.65 353.78 11 12155.10 13065.85 850.50

c201 10 11333.60 12051.53 448.41 5 6081.90 6184.08 506.19 4 4629.95 4630.33 505.19

c202 8 9256.17 9509.34 490.70 5 6136.20 6232.74 526.69 4 4659.58 5396.94 837.39

c203 7 8188.19 8245.88 308.89 5 6247.22 6352.57 573.05 4 5217.73 5906.27 839.30

c204 5 6159.23 6200.12 416.22 4 5314.79 5354.18 556.74 4 5087.33 5146.24 787.12

c205 8 9209.37 9472.50 412.12 5 6161.46 6277.49 527.66 4 4629.95 4641.96 770.57

c206 6 7234.69 7989.99 460.46 5 6269.37 6305.64 405.68 4 4633.12 5450.54 847.01

c207 7 8062.15 8134.61 397.72 5 6278.60 6329.67 486.32 4 4679.33 5752.92 836.27

c208 6 7167.66 7674.06 341.68 5 6225.26 6282.06 458.79 4 4656.78 5295.45 854.43

average – 13858.50 14277.37 429.92 – 10316.84 10615.96 454.09 8828.45 9371.41 780.55

6 Conclusion and Outlook

This study described the application of a self-adaptive version of a recent hybrid meta-
heuristics, Adapt-CMSA, for the electric vehicle routing problem with time windows,
simultaneous pickup and deliveries, and partial recharging. At each iteration, the algo-
rithm first creates a sub-instance of the tackled problem by merging the best-so-far
solution with a number of solutions probabilistially generated using two different solu-
tion construction mechanisms, a C&W savings heuristic and an insertion heuristic.
The resulting sub-instance is then solved by the application of the ILP solver CPLEX.
Adapt-CMSA makes use of a self-adaptive mechanism to adjust some of the param-
eter values so that a specific tuning of those parameters for different types of prob-
lem instances is not necessary. This mechanism handles the dynamic control of the
size of the sub-instances and prevents that sub-instances are too large to be solved by
CPLEX. Computational experiments were performed on 12 small-sized and 17 large-
sized benchmark instances. The proposed approach was evaluated and compared to
CPLEX on the small-sized problem instances and to probabilistic versions of the C&W
savings heuristic and the insertion heuristic on large-sized problem instances. Numeri-
cal results indicated that Adapt-CMSA exhibits a superior performance on both small
and large-sized problem instances.

In future work, we aim to develop alternative ways to represent solution components
and form the sub-instance in a different way. Thus, the problem can be formulated as,
i.e., a set covering-based model and solved efficiently. We believe that this approach
may make a significant improvement in the performance of CMSA for VRPs.

Application of CMSA to the Electric Vehicle Routing Problem 15

Acknowledgements. This paper was supported by grants PID2019-104156GB-I00 and
TED2021-129319B-I00 funded by MCIN/AEI/10.13039 /501100011033. Moreover, M.A.
Akbay and C.B. Kalayci acknowledge support from the Technological Research Council of
Turkey (TUBITAK) under grant number 119M236. The corresponding author was funded by
the Ministry of National Education, Turkey (Scholarship program: YLYS-2019).

References

1. Akbay, M.A., Blum, C.: Application of CMSA to the minimum positive influence dominat-
ing set problem. In: Artificial Intelligence Research and Development, pp. 17–26. IOS Press
(2021)

2. Akbay, M.A., López Serrano, A., Blum, C.: A self-adaptive variant of CMSA: application to
the minimum positive influence dominating set problem. Int. J. Comput. Intell. Syst. 15(1),
1–13 (2022). Springer

3. Arora, D., Maini, P., Pinacho-Davidson, P., Blum, C.: Route planning for cooperative air-
ground robots with fuel constraints: an approach based on CMSA. In: Proceedings of
GECCO 2019 - Genetic and Evolutionary Computation Conference, pp. 207–214. Asso-
ciation for Computing Machinery, New York (2019)

4. Asghari, M., Al-e Hashem, S.M.J.M.: Green vehicle routing problem: a state-of-the-art
review. Int. J. Prod. Econ. 231, 107899 (2021)

5. Blum, C., Pinacho Davidson, P., López-Ibáñez, M., Lozano, J.A.: Construct, merge, solve
& adapt: a new general algorithm for combinatorial optimization. Comput. Oper. Res. 68,
75–88 (2016)

6. Blum, C., Raidl, G.R.: Hybrid Metaheuristics - Powerful Tools for Optimization. Artificial
Intelligence: Foundations, Theory, and Algorithms, Springer, Switzerland (2016). https://doi.
org/10.1007/978-3-319-30883-8

7. Boschetti, M.A., Maniezzo, V., Roffilli, M., Bolufé Röhler, A.: Matheuristics: optimization,
simulation and control. In: Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M.,
Schaerf, A. (eds.) HM 2009. LNCS, vol. 5818, pp. 171–177. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04918-7 13

8. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery
points. Oper. Res. 12(4), 568–581 (1964)

9. Conrad, R.G., Figliozzi, M.A.: The recharging vehicle routing problem. In: Proceedings of
the 2011 Industrial Engineering Research Conference, p. 8. IISE Norcross, GA (2011)

10. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1), 80–91
(1959)

11. Dethloff, J.: Vehicle routing and reverse logistics: the vehicle routing probleam with simul-
taneous delivery and pick-up. OR-Spektr. 23(1), 79–96 (2001)

12. Duman, E.N., Taş, D., Çatay, B.: Branch-and-price-and-cut methods for the electric vehicle
routing problem with time windows. Int. J. Prod. Res. 60(17), 5332–5353 (2022). Taylor &
Francis

13. Dupin, N., Talbi, E.G.: Matheuristics to optimize refueling and maintenance planning of
nuclear power plants. J. Heurist. 27(1), 63–105 (2021)

14. Elshaer, R., Awad, H.: A taxonomic review of metaheuristic algorithms for solving the vehi-
cle routing problem and its variants. Comput. Industr. Eng. 140, 106242 (2020)

15. Erdoğan, S., Miller-Hooks, E.: A green vehicle routing problem. Transp. Res. Part E: Logist.
Transp. Rev. 48(1), 100–114 (2012)

16. Felipe, Á., Ortuño, M.T., Righini, G., Tirado, G.: A heuristic approach for the green vehicle
routing problemwith multiple technologies and partial recharges. Transp. Res. Part E: Logist.
Transp. Rev. 71, 111–128 (2014)

https://doi.org/10.1007/978-3-319-30883-8
https://doi.org/10.1007/978-3-319-30883-8
https://doi.org/10.1007/978-3-642-04918-7_13

16 M. A. Akbay et al.

17. Ferrer, J., Chicano, F., Ortega-Toro, J.A.: CMSA algorithm for solving the prioritized pair-
wise test data generation problem in software product lines. J. Heurist. 27(1), 229–249 (2021)

18. Fischetti, M., Fischetti, M.: Matheuristics, pp. 121–153. Springer, Heidelberg (2018)
19. Golden, B.L., Raghavan, S., Wasil, E.A.: The Vehicle Routing Problem: Latest Advances

and New Challenges, vol. 43. Springer, New York (2008). https://doi.org/10.1007/978-0-
387-77778-8

20. Huerta-Rojo, A., Montero, E., Rojas-Morales, N.: An ant-based approach to solve the electric
vehicle routing problem with time windows and partial recharges. In: 2021 40th International
Conference of the Chilean Computer Science Society (SCCC), pp. 1–8. IEEE (2021)

21. Keskin, M., Çatay, B.: Partial recharge strategies for the electric vehicle routing problem
with time windows. Transp. Res. Part C: Emerg. Technol. 65, 111–127 (2016)

22. Keskin, M., Çatay, B.: A matheuristic method for the electric vehicle routing problem with
time windows and fast chargers. Comput. Oper. Res. 100, 172–188 (2018)

23. Keskin, M., Çatay, B., Laporte, G.: A simulation-based heuristic for the electric vehicle rout-
ing problem with time windows and stochastic waiting times at recharging stations. Comput.
Oper. Res. 125, 105060 (2021)

24. Koç, Ç., Laporte, G., Tükenmez, İ: A review of vehicle routing with simultaneous pickup
and delivery. Comput. Oper. Res. 122, 104987 (2020)

25. Lewis, R., Thiruvady, D., Morgan, K.: Finding happiness: an analysis of the maximum happy
vertices problem. Comput. Oper. Res. 103, 265–276 (2019)

26. López-Ibánez, M., et al.: The irace package: iterated racing for automatic algorithm config-
uration. Oper. Res. Perspect. 3, 43–58 (2016)

27. Moghdani, R., Salimifard, K., Demir, E., Benyettou, A.: The green vehicle routing problem:
a systematic literature review. J. Clean. Prod. 279, 123691 (2021)

28. Montoya, A., Guéret, C., Mendoza, J.E., Villegas, J.G.: The electric vehicle routing problem
with nonlinear charging function. Transp. Res. Part B: Methodol. 103, 87–110 (2017)

29. Montoya-Torres, J.R., Franco, J.L., Isaza, S.N., Jiménez, H.F., Herazo-Padilla, N.: A litera-
ture review on the vehicle routing problem with multiple depots. Comput. Industr. Eng. 79,
115–129 (2015)

30. Paessens, H.: The savings algorithm for the vehicle routing problem. Eur. J. Oper. Res. 34(3),
336–344 (1988)

31. Sadati, M.E.H., Çatay, B.: A hybrid variable neighborhood search approach for the multi-
depot green vehicle routing problem. Transp. Res. Part E: Logist. Transp. Rev. 149, 102293
(2021)

32. Salhi, S., Nagy, G.: A cluster insertion heuristic for single and multiple depot vehicle routing
problems with backhauling. J. Oper. Res. Soc. 50(10), 1034–1042 (1999)

33. Schneider, M., Stenger, A., Goeke, D.: The electric vehicle-routing problem with time win-
dows and recharging stations. Transp. Sci. 48(4), 500–520 (2014)

34. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. SIAM (2014)
35. Wassan, N.A., Wassan, A.H., Nagy, G.: A reactive tabu search algorithm for the vehicle

routing problem with simultaneous pickups and deliveries. J. Comb. Optim. 15(4), 368–386
(2008)

36. Yellow, P.: A computational modification to the savings method of vehicle scheduling. J.
Oper. Res. Soc. 21(2), 281–283 (1970)

https://doi.org/10.1007/978-0-387-77778-8
https://doi.org/10.1007/978-0-387-77778-8

A BRKGA with Implicit Path-Relinking
for the Vehicle Routing Problem
with Occasional Drivers and Time

Windows

Paola Festa1, Francesca Guerriero2, Mauricio G. C. Resende3,4,
and Edoardo Scalzo2(B)

1 Department of Mathematics and Applications, University of Napoli Federico II,
80138 Napoli, Italy

paola.festa@unina.it
2 Department of Mechanical, Energy and Management Engineering,

University of Calabria, 87036 Rende, CS, Italy
{francesca.guerriero,edoardo.scalzo}@unical.it

3 Amazon.com, Inc., 333 108th Ave NE, Bellevue, WA 98004, USA
4 University of Washington, 3900 E Stevens Way NE, Seattle, WA 98195, USA

mgcr@berkeley.edu

Abstract. This paper describes a biased random-key genetic algorithm
(BRKGA) with implicit path-relinking for the Vehicle Routing Prob-
lem with Occasional Drivers (VRPOD). After a review of the relevant
literature, the paper describes a proposed decoder and how BRKGA
parameters are set. Experimental results show the efficacy of the pro-
posed approach.

Keywords: Occasional drivers · Vehicle routing problem · Biased
random-key genetic algorithm · Restart strategy

1 Introduction

The various benefits of online transactions and the increased use of the web
are contributing to a growth in online shopping around the world. As a result,
e-commerce is increasingly becoming a fundamental and necessary element of
retail sales. Delivering products to customers at a low cost and with high speed,
at a convenient time and place, is crucial to being competitive and at the same
time it is becoming very challenging. In addition, urban development and great
pressure on delivery efficiency, caused by the competitiveness of the market,
have encouraged big retailers to explore innovative and unconventional last-mile
delivery systems to offer fast delivery services (same-day delivery) with total cost
savings.

Crowd-shipping is one of those innovative solutions. It is part of the sharing
economy, in which unused or underused resources are exploited. This concept
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 17–29, 2023.
https://doi.org/10.1007/978-3-031-26504-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_2

18 P. Festa et al.

arises in various sectors of the modern economy, including that of retail distri-
bution. The main concept of crowd-shipping is to delegate the deliveries of some
orders to ordinary people, named occasional drivers (ODs), who are willing to
make some detours from their own path and have some compensation in return.
By registering on a dedicated crowd-shipping online application, these people
can accept and carry out delivery requests and receive compensation. Therefore,
they are willing to share three logistic assets: transport capacity, smartphone and
free time. Through the app the e-retailers share with the ODs the information
necessary to make deliveries directly to a home or to any place indicated by cus-
tomer. In addition to the ODs, customers can also log into the app and indicate
a time window of availability in which to receive the delivery. With these con-
ditions, a crowd-shipping solution is a variant of the capacitated vehicle routing
problem with time windows.

The remainder of this paper is structured as follows. In Sect. 2, we describe
the state of the art of the problem treated, i.e. the Vehicle Routing Problem with
Occasional Drivers (VRPOD), and of the genetic solution approach proposed to
solve it, i.e. the Biased Random-Key Genetic Algorithm (BRKGA). In Sect. 3,
we describe a mathematical programming model of the problem, while in Sect. 4
we give details about the considered genetic algorithm. In Sect. 5 we report
the computational results and in Sect. 6 summarize our conclusions and outline
possible future work along this research line.

2 State of the Art

In the literature, there are many interesting papers that describe the benefits and
advantages of crowd-shipping. Archetti et al. (2016) were first to consider occa-
sional drivers (ODs) in the context of the vehicle routing problem. To solve the
problem, the authors presented a hybrid Variable Neighborhood Search (VNS)
and Tabu Search. The authors emphasized the importance and challenges asso-
ciated with defining appropriate compensation schemes. Macrina et al. (2017)
extended the work of Archetti et al. (2016) by introducing time windows for
customers and ODs and also considered a system with multiple deliveries for
ODs, referring to this variant as VRPODTWmd. In addition, the authors also
considered a system with a split delivery policy. They showed the benefits of
crowd-shipping in various scenarios.

To solve the VRPODTWmd, Macrina et al. (2020a) proposed a VNS app-
roach and tested the effectiveness of their heuristic on numerous benchmark
instances of Solomon (1987). Macrina et al. (2020b) introduced transshipment
nodes in the VRPODTWmd. These nodes are intermediate points, closer to
the delivery area than the central depot, supplied by traditional drivers. The
authors showed the advantages of transshipment nodes formulating the problem
as a particular instance of a two-echelon VRP.

Di Puglia Pugliese et al. (2021) extended the previous work introducing a
new scenario in which the intermediate points are activated as occasional depots
and therefore the owners are compensated only in case of need. Furthermore,

A BRKGA with Path-Relinking for the VRPODTW 19

the authors classified the ODs in two sets according to the activities performed
and policy compensation. They proposed a mixed-integer programming model
and showed the benefits of this scenario.

Other variants of the VRPOD also consider electric vehicles (see, e.g., Mac-
rina and Guerriero (2018) and Macrina et al. (2020c)) or consider information not
necessarily available in advance, and for this reason are called stochastic/online
variants (see Archetti et al. (2021)).

The difficulty of optimally solving the VRP has led researchers, more and
more, to use metaheuristic methods and to elaborate new variants. Genetic algo-
rithm, based on the fundamentals of natural selection, is one of these metaheuris-
tic methods. Among the numerous variants of genetic algorithm, we focused our
attention on Biased Random-Key Genetic Algorithms (BRKGA) which has been
used with high-quality performance in several optimization problems (see, e.g.,
Gonçalves et al. (2011) and Resende et al. (2011)) and also successfully used for
the VRP (see, e.g., Andrade et al. (2013) and Lopes et al. (2016)). The process
behind the BRKGA is first introduced by Bean (1994) as Random-Key Genetic
Algorithms (RKGA). A representation of random keys encodes solutions using
random numbers, usually belonging to the interval (0, 1] and with representation,
the solution process is independent of the problem to be solved. Gonçalves et al.
(2011) introduced bias in RKGA and defined a formal and detailed framework
for BRKGA. They describe numerous applications of BRKGA. Lucena et al.
(2014) introduced two variants of the BRKGA, one of which is the multi-parent
version (BRKGA-MP). The authors considered more than two parents to gener-
ate offspring for the next generation and showed by computational results that
this variant outperforms the standard two-parent variant. Andrade et al. (2021)
extend the work of Lucena et al. (2014) developing a BRKGA with implicit
path relinking procedures (BRKGA-MP-IPR). They showed the benefits of this
variant in some real-world problems.

In this paper, we developed a BRKGA with implicit path relinking to solve
the VRPOD with time windows and capacity constraints. In particular, we
exploited two important strategies to enforce the standard procedure of the
genetic algorithm. The first one is the bidirectional permutation-based implicit
path-relinking (IPR-Per); the second strategy used is a restart procedure: if
during a certain point of the evolution the algorithm is stuck and apparently
does not move towards a better solution, we try to move to another zone of the
solution space using a new seed for the random-keys generator.

3 The VRPODTW Description

In this section we report the mathematical programming model of the
VRPODTW proposed by Macrina et al. (2017). Let C be the set of customers,
let D be the set of company drivers, s their origin and t their destination node.
Let K be the set of available occasional drivers and V the set of their destination
nodes. We define the node set as N := C ∪ V ∪ {s, t}. Each node pair (i, j) has
a positive cost cij and a travel time tij , which satisfy the triangle inequality.

20 P. Festa et al.

Each customer has a request di. Each company driver and occasional driver k
has a maximum transport capacity Q and Qk respectively. Each i ∈ C ∪ D ∪ K
has a time window [ei, li]. Let xij be a binary variable equal to 1 if and only if
a company driver traverses the arc (i, j), and let rk

ij be a binary variable equal
to 1 if and only if occasional driver k traverses the arc (i, j). Let yi and wk

i be
the available capacities of company driver and occasional driver, after delivering
to i ∈ C respectively. Let si and fk

i be the arrival times of a company driver
and the occasional driver k at customer i respectively. The problem that aims
at minimizing the total cost can be formulated as follows:

min
∑

i∈C∪{s}

∑

j∈C∪{t}
cijxij +

∑

k∈K

ρ
(∑

i∈C∪{s}

∑

j∈C

cijr
k
ij − csvkr

k
sj

)
(1)

s.t.
∑

j∈C∪{t}
xij −

∑

j∈C∪{s}
xji = 0 ∀i ∈ C (2)

∑

j∈C

xsj −
∑

j∈C

xjt = 0 (3)

yj ≥ yi + djxij − Q(1 − xij) ∀i ∈ C ∪ {s}, j ∈ C ∪ {t} (4)
ys ≤ Q (5)
sj ≥ si + tijxij − M(1 − xij) ∀i, j ∈ C (6)
ei ≤ si ≤ li ∀i ∈ C (7)
∑

j∈C

xsj ≤ |D| (8)

∑

j∈C∪{vk}
r
k
ij −

∑

j∈C∪{s}
r
k
ji = 0 ∀i ∈ C, k ∈ K (9)

∑

j∈C∪{vk}
r
k
sj −

∑

j∈C∪{s}
r
k
jvk

= 0 ∀k ∈ K (10)

∑

k∈K

∑

j∈C∪{vk}
r
k
sj ≤ |K| (11)

∑

j∈C

r
k
sj ≤ 1 ∀k ∈ K (12)

w
k
j ≥ w

k
i + dir

k
ij − Qk(1 − r

k
ij) ∀i ∈ C ∪ {s}, j ∈ C ∪ {vk}, k ∈ K (13)

w
k
s ≤ Qk ∀k ∈ K (14)

f
k
i + tijr

k
ij − M(1 − r

k
ij) ≤ f

k
j ∀i ∈ C, k ∈ K, j ∈ C ∪ {vk} (15)

f
k
i ≥ evk

+ tsi ∀i ∈ C, k ∈ K (16)
f
k
vk

≤ lvk ∀k ∈ K (17)

ei ≤ f
k
i ≤ li ∀i ∈ C (18)

∑

j∈C∪{t}
xij +

∑

j∈C∪{vk}

∑

k∈K

r
k
ij = 1 ∀i ∈ C (19)

xij ∈ {0, 1} ∀i, j ∈ N (20)
r
k
ij ∈ {0, 1} ∀i, j ∈ N, k ∈ K (21)

yi ∈ [0, Q] ∀i ∈ C ∪ {s, t} (22)
w

k
i ∈ [0, Qk] ∀i ∈ C ∪ {s, vk}, k ∈ K (23)

f
k
i ≥ 0 ∀i ∈ C ∪ {s, vk}, k ∈ K (24)

A BRKGA with Path-Relinking for the VRPODTW 21

The objective function minimizes the total cost which consists of the routing cost
of the company drivers and compensation cost of ODs. We describe two distinct
sets of constraints. Equations (2)–(8) represent constraints of classical capaci-
tated vehicle routing problem with time windows, while (9)–(19) manage the
presence of ODs in the delivery system. In particular, constraints (2), (3) ensure
flow conservation. Equations (4)–(5) are the capacity constraints. Constraints
(6), (7) manage the arrival time and time windows constraints, respectively,
where M is a large number. The last constraints (8) of the first set establish a
maximum limit of available company vehicles. In the second set of constraints,
Eqs. (9) and (10) represent flow conservation of the ODs. Constraints (11) estab-
lish a maximum limit of available ODs, while (12) ensure that each OD leaves
their origin node at most once. Equations (13) and (14) are capacity constraints.
Finally, constraints (15)–(18) manage the time windows of all nodes. In particu-
lar, constraints (15) compute the arrival time at node j, while constraints (16)–
(18) ensure that each customer is visited and each OD makes deliveries within
their own time windows. Constraints (19) ensure that each customer is served
exactly once. Equations (20)–(24) define the domains of the variables.

4 Solution Approach Using BRKGA

In this paper we used the multi-parent biased random-key genetic algorithm with
implicit path-relinking (Andrade et al. 2021), a variant of BRKGA, to solve the
VRPODTW. In addition to the meta-intensification strategy IPR, we consider
an evolution restart strategy.

The framework considered in our variant is as follows. Since the structure
of the problem is articulated in two sets, the set of customers C and the set
of drivers D, then we consider each chromosome as a vector consisting of n :=
|C| + |D| random-keys. Following the process of the BRKGA the procedure
starts by creating the first generation of the evolutionary process, i.e. a set of
random-key vectors, which is also called the initial population.

For each chromosome of the current generation, our decoder builds the solu-
tion and computes its fitness, that is the total solution cost to carry out all deliv-
eries. The decoder in a BRKGA is the only part of the procedure which depends
on the particular problem being analyzed. Our decoder sorts the random-keys
in non-decreasing order and starts a customer processing phase. This way, each
chromosome is divided into two rearranged sections: a customer and a driver
sub-chromosome. Following the new ordering of genes, customers are processed
by verifying, in terms of time windows, travel time and vehicle capacity, the
feasibility of inserting the detour to make the delivery to customer in the path
of the first available driver in the driver sub-chromosome. The phase for each
customer stops as soon as a driver compatible with the customer is found or if no
driver is able to deliver to the customer and in this case the solution is rejected
because it is infeasible.

To make the decoder more effective we considered another parameter: prob-
ability of delivery (prDel). If the time and capacity checks are not violated, the

22 P. Festa et al.

procedure includes the customer at the end of the paths of a driver with a certain
probability that depends on prDel. After obtaining the fitness of all chromosomes
the permutation-based IPR is performed to try to improve the best solution. It
receives as input two random-key vectors and returns a pair formed by a vector
representing a new solution and its fitness value. For more details of this IPR
see Andrade et al. (2021). If we suppose we have a generation in which the stop
and restart strategy criteria are not reached, then the next step is to create a
new generation as described below and the process is repeated by decoding a
new population.

The size of a single population is calculated as p := α · n, where α ≥ 1 is
called population size factor; the elite population is defined as pe := p·pcte, where
pcte ∈ [0.1, 0.25] is the elite percentage parameter; finally, the size of the mutant
population is pm := p · pctm, where pctm ∈ [0.1, 0.3] is the mutant percentage.
After each decoding the population of the current generation is divided into two
parts according to fitness: the elite population pe containing the chromosome
with the best fitness and the non-elite population pne which contains the rest of
the chromosomes.

The next generation is produced by three operators. The first operator is
the copy repeat, i.e. all elite chromosomes of the previous generation are copied
to the populations of the next generation. With the mutant operator new ran-
dom chromosomes are introduced in each iteration. The remaining part of the
population, p(1 − pcte − pctm), is generated by the multi-parent crossover. For
this crossover it is necessary to choose three parameters, the number of the total
of parents (πt) and elite parents (πe) to be selected; the probability that each
parent has of passing genes on to their child. The probability is calculated tak-
ing into account the bias of the parent, which is defined by a pre-determined,
non-increasing weighting bias function (φ) over its rank r. This operator allows
to draw genes from a combination of different chromosomes. More details on
this type of crossover and on the bias function was described in Andrade et al.
(2021).

If after h iterations, the best solution has not been improved, then the pro-
cedure performs the restart of evolution, that is all chromosomes are discarded,
except the best one, and a new seed is chosen for the random-keys generator.
Finally, the whole procedure stops if it reaches a time limit or a number of con-
secutive iterations without improvement (wi). Table 1 summarizes the parame-
ters of the proposed BRKGA, grouped into three sets: Operator; Path-relinking;
Others. The last set includes the restart parameter h, population size factor and
two parameters that refer to the VRPODTW, i.e. the compensation factor for
occasional drivers and the probability of delivery.

5 Computational Study

In this section, we summarize the results of our computational experiments.
The genetic algorithm described in this paper was implemented in C++. The
computational tests were conducted using a 2.6 GHz Intel Core i7-3720QM pro-
cessor and 8 GB 1600 MHz DDR3 of RAM running macOs Catalina 10.15.7. We

A BRKGA with Path-Relinking for the VRPODTW 23

Table 1. Summary of the parameters grouped in three sets. In the first and second
sets there are the operator parameters and the path-relinking parameters, respectively.
The set Others describes the remaining parameters.

Operator Path-relinking

pcte Percentage of elite chromosomes sel Individual selection

pctm Percentage of mutant chromosomes md Minimum distance among chromosomes

πt Numbers of parents in the crossover typ Path-relinking type

πe Numbers of elite parents in the crossover pctp Percentage of path size

φ Bias function

Others

h Number of iterations without improvements until restart

α Population size factor

ρ Compensation factor

prDel Probability of delivery

performed some tuning phases before the experiments using the irace package
(see (López-Ibáñez et al. 2016)). To evaluate the effectiveness of the BRKGA
applied to VRPODTW we compared the results obtained by the proposed app-
roach to the results found by the exact mathematical model for several small-size
instances and results obtained with a VNS approach described in Macrina et al.
(2020a) for other large-size instances. The exact mathematical model was coded
in Java and solved to optimality using CPLEX 12.10 while the VNS was coded
in C++.

5.1 Instances and Parameter Setting

We tested the effectiveness of the BRKGA to solve the VRPODTW, perform-
ing numerous computational experiments. We considered the clustered-type,
random-type and mixed-type instances (see the Table 4) generated in Macrina
et al. (2020a) and we divided them into four classes based on size. The first class
(Test) is composed of 36 instances with 5, 10 and 15 customers, each of the other
three classes consists of 15 instances with 25, 50 and 100 customers respectively
(Small, Medium and Large). In the instances, the number of occasional drivers
is chosen in the set {3, 5, 10, 15, 30}, while the number of company drivers in
the set {3, 5, 8, 10}.

For the VNS, the only parameter to be set is the one associated with the
stop criterion, that is the maximum number of iterations. It was set according
to the size of the instances, in particular it was set to 4 · 104 for the class Small,
104 for the Medium and 5 · 103 for the Large.

For the BRKGA, we carried out some tuning phases using irace software for
the following parameters: α, prDel, Operator and Path-relinking parameters. For
all phases we grouped the classes of instances into two sets, the first one (T&S)
includes classes Test and Small, while the second one includes Medium and Large
and parameter tuning was done using ten random instances of each of the two
sets. We set the compensation factor of the occasional drivers ρ to 0.6 for all
experiments and we set wi according to the size of the population of evolution.

24 P. Festa et al.

Instead, for the setting of the restart parameter h we analyzed the run time
distribution in terms of iterations considering h ∈ A := {0, 100, 300, 500} and
we chose the best values. For each class, we randomly chose three instances and
we studied the run time distribution, summed over the instances, considering
the target values obtained from a test phase and stopping the algorithm when
a solution at least as good as the target is found. We performed 30 independent
runs on each instance, see Resende and Ribeiro (2011)) for more details on
analyzing run time distribution. With this parameter the overview of the tuning
phase was concluded and a summary of the tuned parameters is shown in Table 2.

Table 2. Tuned algorithm parameters.

Parameters Operator Path-relinking Others

pcte pctm πt πe φ sel md typ pctp α prDel h

T&S 0.16 0.02 4 2 1
r2 rand. perm. 0.20 0.70 7 20 100

Medium 0.22 0.20 7 2 1
r2 rand. perm. 0.25 0.96 3 273 300

Large 0.22 0.20 7 2 1
r2 rand. perm. 0.25 0.96 3 273 100

5.2 Numerical Results

In Tables 3, 4, 5 and 6 in the CostB and TimeB columns there are the values
of objective function and run time obtained with the genetic algorithm. While
in the CostC , TimeC , CostV and TimeV columns there are the results and
run time obtained with CPLEX and VNS respectively. We would like to clarify
that all times shown in the tables are measured in seconds and all results of
the two heuristics are the averages obtained over 30 independent runs. In the
Gap% column there are the values of the average gap on cost. As regards the
first class, the values of the last column refer to the optimal gaps, while for
the other three classes they refer to the gaps of the genetic algorithm with
respect to the VNS. In the AV G row we report the averages of the values in the
column. To evaluate the effectiveness of the BRKGA variant proposed applied
to VRPODTW we made a comparison of the solutions found in two phases
of experiments. We performed a first phase of experiments only on the class
Test solving the instances to the optimum with CPLEX and with our genetic
algorithm proposed and Table 3 shows the average results of this first phase.
We set wi to 100, 1500, and 2500 for instances with 5, 10, and 15 customers
respectively. The BRKGA is effective, in fact it found the optimal solution in all
instances with 5 and 10 customers and in 9 (75%) instances with 15 customers
with an average gap value of 0.81%. As regards run time, it is competitive on
instances with 15 customers. In the second phase of experiments we studied
the Small, Medium and Large classes. We set wi to 2500, 1500, and 1000 for
instances with 25, 50, and 100 customers respectively. We decided to compare
the results of these classes obtained from our genetic algorithm with those of the
VNS since CPLEX is not able to solve the instances within one hour. As for the

A BRKGA with Path-Relinking for the VRPODTW 25

Table 3. Average results obtained for the class Test.

|C| CostC TimeC CostB TimeB Gap%

5 136.45 0.06 136.45 0.92 0.00%

10 223.13 0.61 223.13 31.22 0.00%

15 280.92 114.59 283.61 122.01 0.81%

quality of the solutions, the first important fact to observe is that the BRKGA
is the most effective, on average, in fact all the three average Gap% of classes are
less than zero (see Tables 4, 5 and 6). Looking at the gaps in detail, we observed
a different trend among the classes. In the class Small the BRKGA found better
solutions than VNS in 12 (80%) instances and the value of the overall gap is
about −4%. It is more effective than VNS in all clustered-type and mixed-type
instances. In the best case, the gap value is about −15%, while in the worst case
there is a positive gap of 10.66%. Furthermore, the best solutions, on average,
are obtained on clustered-type instances, while the worst solutions are obtained
on random-type instances. So, in conclusion, in this class the genetic algorithm
is most effective, but not in all types of instances, in fact it is not more effective
than the other two classes in the random-type instances. In the class Medium the
quality of the BRKGA solutions is slightly lower than the previous one, in fact it
found better solutions in 10 (67%) instances and the gap value is about −3.5%. In
this class there is the instance (C105C50) with the best solution quality among
all classes, with a gap value of about −21%. Furthermore, as in the previous
class there is a difference between the types of instances. When customers are
clustered the BRKGA almost always finds better solutions than the VNS with
a high solution quality. Followed by the set of mixed-type instances and finally
randomly-type instances. Although the size of the instances belonging to the
class Large is greater than that of the others, an improvement in the quality
of the solution has been observed in the random-type instances and as regard
mixed-type instances, the BRKGA is more effective in this class than in the class
Medium. Furthermore, there is more balance of effectiveness between the various
types of instances. Also in this class, as in the first one, the genetic algorithm
found better solutions in 12 (80%) instances, while the value of the overall gap
is about −2%. Instead, the best case is a mixed-type instance with a gap value
of about −7.5%.

In the two heuristics a single iteration performs different operations and this
affects the overall execution times. Moreover, since the stopping criteria of both
algorithms involve iterations, we decided to use a time-to-target test. So, in order
to investigate the efficiency of the two approaches we performed multiple time-
to-target plots (mttt-plots) described in Reyes and Ribeiro (2018). This tool is
useful for studying the convergence speed of algorithms to given values. For each
class we have considered 9 (60%) randomly instances and we performed for each
algorithm 60 independent runs, until a solution at least as good as the fixed
target was found. The Fig. 1 shows the mttt-plots for BRKGA versus VNS built
using 6 · 104 points and summing the run time of the instances. On average, in

26 P. Festa et al.

Table 4. Results obtained for the class Small. The letter “C” in the test name stands
for clustered-type instance; “R” for random-type and “RC” for mixed-type.

Test CostV TimeV CostB TimeB Gap%

C101C25 291.85 202.62 258.16 415.40 −11.54%

C102C25 330.28 169.51 280.37 375.56 −15.11%

C103C25 291.34 185.19 262.09 433.05 −10.04%

C104C25 291.61 205.37 257.30 386.79 −11.77%

C105C25 333.43 140.16 288.57 476.53 −13.45%

R101C25 336.46 159.06 335.03 337.09 −0.43%

R102C25 301.41 212.10 333.55 305.81 10.66%

R103C25 313.04 211.60 338.33 331.75 8.08%

R104C25 308.32 224.90 334.88 370.98 8.61%

R105C25 327.37 203.60 317.72 420.67 −2.95%

RC101C25 492.55 135.10 459.10 442.15 −6.79%

RC102C25 513.84 141.70 473.19 451.32 −7.91%

RC103C25 461.30 221.80 449.21 433.89 −2.62%

RC104C25 456.62 143.60 445.77 432.43 −2.38%

RC105C25 551.46 160.10 537.15 369.77 −2.60%

AVG 373.39 181.09 358.03 398.88 −4.01%

Table 5. Results obtained for the class Medium.

Test CostV TimeV CostB TimeB Gap%

C101C50 486.13 214.69 407.06 485.89 −16.27%

C102C50 431.06 239.58 418.70 455.05 −2.87%

C103C50 443.85 256.72 458.83 381.86 3.37%

C104C50 429.44 253.22 381.15 537.35 −11.24%

C105C50 480.54 217.42 378.71 500.48 −21.19%

R101C50 754.06 150.13 680.16 379.81 −9.80%

R102C50 657.77 281.44 629.02 398.74 −4.37%

R103C50 554.83 284.57 567.55 301.15 2.29%

R104C50 501.46 289.13 590.90 483.83 17.84%

R105C50 661.90 255.30 625.66 557.50 −5.48%

RC101C50 537.43 233.95 601.74 467.42 11.97%

RC102C50 521.87 263.06 584.02 476.36 11.91%

RC103C50 559.17 278.16 545.29 547.35 −2.48%

RC104C50 621.92 238.68 535.62 428.10 −13.88%

RC105C50 624.69 243.74 559.77 511.20 −10.39%

AVG 551.07 246.65 530.95 460.81 −3.37%

A BRKGA with Path-Relinking for the VRPODTW 27

Table 6. Results obtained for the class Large.

Test CostV TimeV CostB TimeB Gap%

C101C100 1342.44 582.47 1265.58 736.18 −5.73%

C102C100 1240.08 675.70 1244.17 522.76 0.33%

C103C100 1197.58 667.10 1162.51 864.12 −2.93%

C104C100 1153.11 445.13 1128.94 704.22 −2.10%

C105C100 1336.12 475.66 1246.46 495.77 −6.71%

R101C100 1365.08 388.50 1273.47 802.34 −6.71%

R102C100 1272.33 421.55 1231.16 685.67 −3.24%

R103C100 1159.27 468.39 1144.23 664.41 −1.30%

R104C100 934.45 718.17 1082.31 514.60 15.82%

R105C100 1276.13 608.64 1184.51 708.55 −7.18%

RC101C100 1335.31 531.61 1241.41 784.90 −7.03%

RC102C100 1375.12 642.24 1274.27 716.03 −7.33%

RC103C100 1114.25 737.39 1156.43 502.74 3.79%

RC104C100 1152.15 746.65 1127.42 900.00 −2.15%

RC105C100 1244.29 648.46 1236.53 883.79 −0.62%

AVG 1233.18 583.84 1199.96 699.07 −2.21%

about 250 s the probability of reaching the target value in a single instance for
the VNS is about 0%, while in the same time the probability of the BRKGA
reaches even 90%. Also, to be sure of finding targets for all instances, expect a
total run time of about 10730 s for the VNS and 8900 s for the BRKGA. We may
conclude that, on average, the time taken by BRKGA to find solutions at least
as good as the targets is less than the time required by VNS.

Fig. 1. Multiple time-to-target plots for BRKGA versus VNS for 9 instances for each
class obtained by simulation with 6 · 104 points each.

28 P. Festa et al.

6 Conclusions

In this paper we presented for the first time an application of the BRKGA-MP-
IPR with a restart strategy on the VRPODTW. Since in the variant of VRP
studied there are time windows for both customers and drivers and the BRKGA
is based on random-keys to solve the problem, we built a decoder function to
convert the chromosomes into driver paths starting from a check on the com-
patibility of time windows and travel times. To evaluate the performance of the
proposed approach an extensive computational study was conducted considering
instances of increasing size. A comparison with a VNS approach was also carried
out using also the mttt-plots as a support tool. The results showed that the pro-
posed BRKGA is more effective and efficient than the VNS in the three classes
of instances considered. For future work we intend to develop a new variant of
BRKGA, considering a variable mutant operator and a new decoder to improve
the results of random-type of instances. Furthermore, we intend to implement a
local search and extend the experimental tests and analyzes.

Acknowledgement. This work is supported by the Italian Ministry of University
Education and Research (MIUR), project: “Innovative approaches for distribution
logistics” - Code DOT1305451 - CUP H28D20000020006.

References

Andrade, C.E., Miyazawa, F.K., Resende, M.G.C.: Evolutionary algorithm for the k-
interconnected multi-depot multi-traveling salesmen problem. In: Proceedings of the
15th Annual Conference on Genetic and Evolutionary Computation, GECCO 2013,
New York, NY, USA, pp. 463–470 (2013)

Andrade, C.E., Toso, R.F., Gonçalves, J.F., Resende, M.G.C.: The multi-parent biased
random-key genetic algorithm with implicit path-relinking and its real-world appli-
cations. Eur. J. Oper. Res. 289(1), 17–30 (2021)

Archetti, C., Savelsbergh, M., Speranza, M.G.: The vehicle routing problem with occa-
sional drivers. Eur. J. Oper. Res. 254(2), 472–480 (2016)

Archetti, C., Guerriero, F., Macrina, G.: The online vehicle routing problem with occa-
sional drivers. Comput. Oper. Res. 127, 105144 (2021)

Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
INFORMS J. Comput. 6(2), 154–160 (1994)

Di Puglia Pugliese, L., Guerriero, F., Macrina, G., Scalzo, E.: Crowd-shipping and
occasional depots in the last mile delivery. In: Cerulli, R., Dell’Amico, M., Guerriero,
F., Pacciarelli, D., Sforza, A. (eds.) Optimization and Decision Science. ASS, vol. 7,
pp. 213–225. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86841-3 18

Gonçalves, J.F., Resende, M.G.C., Mendes, J.J.M.: A biased random-key genetic algo-
rithm with forward-backward improvement for the resource constrained project
scheduling problem. J. Heurist. 17(5), 467–486 (2011)

Lopes, M.C., Andrade, C.E., Queiroz, T.A., Resende, M.G.C., Miyazawa, F.K.: Heuris-
tics for a hub location-routing problem. Networks 68(1), 54–90 (2016)

Lucena, M.L., Andrade, C.E., Resende, M.G.C., Miyazawa, F.K.: Some extensions of
biased random-key genetic algorithms. In Proceedings of the Forty-Sixth Brazilian
Symposium of Operational Research, pp. 2469–2480 (2014)

https://doi.org/10.1007/978-3-030-86841-3_18

A BRKGA with Path-Relinking for the VRPODTW 29

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The
irace package: iterated racing for automatic algorithm configuration. Oper. Res. Per-
spect. 3, 43–58 (2016)

Macrina, G., Guerriero, F.: The green vehicle routing problem with occasional drivers.
In: Daniele, P., Scrimali, L. (eds.) New Trends in Emerging Complex Real Life
Problems. ASS, vol. 1, pp. 357–366. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00473-6 38

Macrina, G., Di Puglia Pugliese, L., Guerriero, F., Laganà, D.: The vehicle routing
problem with occasional drivers and time windows. In: Sforza, A., Sterle, C. (eds.)
ODS 2017. SPMS, vol. 217, pp. 577–587. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-67308-0 58

Macrina, G., Di Puglia Pugliese, L., Guerriero, F.: A variable neighborhood search
for the vehicle routing problem with occasional drivers and time windows. In: Pro-
ceedings of the 9th International Conference on Operations Research and Enterprise
Systems, vol. 1, pp. 270–277 (2020a)

Macrina, G., Di Puglia Pugliese, L., Guerriero, F., Laporte, G.: Crowd-shipping with
time windows and transshipment nodes. Comput. Oper. Res. 113, 104806 (2020b)

Macrina, G., Di Puglia Pugliese, L., Guerriero, F.: Crowd-shipping: a new efficient
and eco-friendly delivery strategy. Proc. Manuf. 42, 483–487 (2020c). International
Conference on Industry 4.0 and Smart Manufacturing (ISM 2019)

Resende, M.G.C., Ribeiro, C.C.: Restart strategies for grasp with path-relinking heuris-
tics. Optim. Lett. 5, 467–478 (2011)

Resende, M.G.C., Toso, R.F., Gonçalves, J.F., Silva, R.M.: A biased random-key
genetic algorithm for the Steiner triple covering problem. Optim. Lett. 6, 605–619
(2011)

Reyes, A., Ribeiro, C.C.: Extending time-to-target plots to multiple instances. Int.
Trans. Oper. Res. 25, 1515–1536 (2018)

Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time
window constraints. Oper. Res. 35, 254–265 (1987)

https://doi.org/10.1007/978-3-030-00473-6_38
https://doi.org/10.1007/978-3-030-00473-6_38
https://doi.org/10.1007/978-3-319-67308-0_58
https://doi.org/10.1007/978-3-319-67308-0_58

Metaheuristic Algorithms for UAV
Trajectory Optimization in Mobile

Networks

Valentina Cacchiani1 , Sara Ceschia2(B) , Silvia Mignardi1 ,
and Chiara Buratti1

1 DEI, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
{valentina.cacchiani,silvia.mignardi,c.buratti}@unibo.it

2 DPIA, University of Udine, via delle Scienze 206, 33100 Udine, Italy
sara.ceschia@uniud.it

Abstract. We consider a mobile network in which traditional static ter-
restrial base stations are not capable of completely serving the existing
user demand, due to the huge number of connected devices. In this set-
ting, an equipped Unmanned Aerial Vehicle (UAV) can be employed to
provide network connection where needed in a flexible way, thereby act-
ing as an unmanned aerial base station. The goal is to determine the
best UAV trajectory in order to serve as many users as possible. The
UAV can move at different speeds and can serve users within its com-
munication range, although the data rate depends on the positions of
UAV and users. In addition, each user has a demand (e.g., the number
of bits the user wants to download/upload from/to the network) and
a time window during which requires the service. We propose a Biased
Random-Key Genetic Algorithm (BRKGA) and a Simulated Annealing
Algorithm (SAA), and compare them on realistic instances with more
than 500 users in different settings.

Keywords: Unmanned aerial vehicles · Mobile networks · Genetic
algorithm · Local search · Simulated annealing

1 Introduction

The continuous and rapid increase of the number of connected Internet of Things
(IoT) devices, such as digital control systems, infrastructure sensors, monitoring
systems, home appliances, voice controllers, as well as user devices such as smart-
phones and wearables, causes extremely high traffic demand and requires more
and more flexibility in the mobile network to cope with demand peaks. In recent
years, the use of Unmanned Aerial Vehicles (UAVs) as unmanned aerial base sta-
tions (i.e., mobile stations mounted on UAVs) has remarkably attracted interest
due to their movement flexibility and low cost, allowing to serve traffic demand
where and when needed. As reported in the recent survey [17], UAVs are utilized
in many civil applications ranging from package delivery to infrastructure moni-
toring, precision agriculture, telecommunications, security and entertainment. In
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 30–44, 2023.
https://doi.org/10.1007/978-3-031-26504-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_3&domain=pdf
http://orcid.org/0000-0002-6269-7136
http://orcid.org/0000-0003-1191-1929
http://orcid.org/0000-0003-1460-5046
http://orcid.org/0000-0003-4802-9585
https://doi.org/10.1007/978-3-031-26504-4_3

Trajectory Optimization for UAVs in Mobile Network 31

the field of telecommunications, drones (UAVs) can be used to establish connectiv-
ity with mobile devices that fall within their communication range, when accept-
able levels of signal-to-noise ratio are guaranteed. According to the classification
of [17], three main categories of applications that employ UAVs for mobile connec-
tions are identified: (i) UAVs assigned to stationary locations to act as intermedi-
aries to connect mobile devices to base stations, (ii) UAVs flying along a trajec-
tory, and (iii) drone-to-drone transmissions where mobile devices are connected
one another via drones. Our study belongs to the second category, as we aim to
optimize the UAV flying trajectory in order to maximize the number of served
users. In the same category we find works that minimize the total energy used for
the mobility of the UAVs to serve the IoT devices [14,23], evaluate the impact of
the NarrowBand-IoT protocol on UAV-aided networks [13], maximize the mini-
mum throughput over all ground users [22,24] or the average achievable rate for
all users [16] or the number of served devices [12,19]. Most of the works from the
literature propose heuristic approaches to solve this class of problems.

A recent tutorial on applications that employ UAVs for Wireless Networks is
presented in [15]: it reports a comprehensive overview on how UAVs can be used
as flying wireless base stations in different scenarios, such as providing coverage
and capacity enhancement of beyond 5G networks, guaranteeing connectivity in
natural disasters, allowing for wireless connectivity among a massive number of
IoT devices. In [15], state-of-the-art methods and key research challenges are
outlined, among which UAV trajectory optimization is listed. As specified in
[15], several elements, such as air-to-ground channel model, channel variation
due to the drone mobility, speed constraints, energy and battery consumption,
user demands, have to be taken into account when determining the best UAV
trajectory. For an overview of the most relevant air-to-ground channel models
used in works on UAV placement and trajectory optimization, we refer the reader
to the up-to-date survey [21].

In this work, we tackle the problem of UAV trajectory optimization in mobile
networks, aiming at providing connectivity to the maximum number of IoT and
user devices that cannot be served by static terrestrial base stations. Our con-
tribution is twofold. First, we developed two metaheuristic algorithms to solve
the problem: a Biased Random-Key Genetic Algorithm (BRKGA) and a Simu-
lated Annealing Algorithm (SAA), that include many real-life features required
in the studied application, such as the air-to-ground channel model and the cor-
responding data rate provided to the devices, the user demands and activation
time windows, the different speeds of the UAV and its available battery. Second,
we tested and compared the two algorithms on realistic instances with more
than 500 users in different settings, showing the effectiveness of both methods
and the superiority of SAA in terms of number of served users.

The remainder of this paper is organized as follows. In Sect. 2, the problem
and its features are described. Section 3 presents the two metaheuristic algo-
rithms that we propose as solution methods. Section 4 describes how the param-
eters used in BRKGA and SAA were tuned, and reports the results obtained by
applying BRKGA and SAA on a set of realistic instances. Finally, the paper is
concluded in Sect. 5.

32 V. Cacchiani et al.

2 Problem Description

We consider a set N of devices that cannot be connected through static terrestrial
base stations. In the following, we simply call users all kinds of these devices.
Each user u ∈ N has a position (xu, yu) expressed by its coordinates, a demand
du representing the number of bits the user wants to download/upload from/to
the network, and an activation time window [su, eu] in which the user requires
the connection service.

A UAV is present at a given position (xUAV , yUAV) (where charging takes
place, also called depot), and has an available battery level TB expressed as its
allowed flight time. The UAV must start from its depot and end its route again
there. It can move in any direction and for any amount of time, thus allowing for
infinitely many alternative routes. We consider the altitude of the UAV as fixed,
hence it has not to be optimized, and we only have to consider 2D movements.
In addition, the UAV can fly at different speeds: we assume a discrete set DS
of speeds including the zero speed, which represents that the UAV is flying at
its fixed altitude without moving in any direction (i.e., it is waiting). If the
UAV cannot reach the depot even at maximum speed from an user u due to its
activation time window and to the UAV battery level, then u does not need to
be considered in the problem, because it would be impossible to serve it. Hence,
these unreachable users are removed from N through a pre-processing step.

We have to determine a UAV route, described as a sequence of positions
(x, y) of the area, and the corresponding sequence of speeds in DS, used by
the UAV to move between these positions. The movement of the UAV from one
position to another one is called arc and a UAV position is called node in the
following. Note that (x, y) does not necessarily correspond to a position where a
user is located: indeed, a user can be served even if the UAV does not reach its
location, although the distance between UAV and user affects the connection.
In particular, based on the respective UAV-user positions, we can compute the
data rate that the UAV provides to the user.

The value of the data rate is determined by computing the link budget
between the user and the UAV. This strongly depends on the link attenuation
(hence, respective UAV-user positions) and on the channel model. We consider
the air-to-ground channel model derived from [1] given by the 3GPP telecommu-
nications standardization body for high frequency links and more recent tech-
nologies (see Sect. 4.2 for more details).

We assume that the data rate provided by the UAV when it travels along an
arc connecting two consecutive positions is constant, and compute it according
to the UAV final position of the arc. To compute the amount of demand that the
UAV can satisfy for each user, the data rate is then multiplied by the minimum
between the arc duration (that depends on the UAV speed) and a parameter
Trate. In order to satisfy a user demand, it is possible to partially serve it more
than once. A user is considered to be served only if its demand is fully satisfied
within its time window. The goal is to determine the UAV route and the cor-
responding speeds in order to fully serve as many users as possible before the
UAV battery expires.

Trajectory Optimization for UAVs in Mobile Network 33

We call this problem the Drone Trajectory Optimization (DTO) problem.
It is an NP -hard problem as it extends the Orienteering Problem with Time-
Windows (OPTW, [9]). The OPTW, given a directed graph, in which each user
has a non-negative score, and each arc has a non-negative travel time, calls for
determining a route that visits a subset of the users, each at most once and within
a given time-window, to maximize the total collected score, while satisfying a
maximum route duration constraint. The DTO extends the OPTW by allowing
more users to be served simultaneously (and based on the distance between the
drone and the user), considering several drone speeds, permitting that a user is
visited more than once and is served without exactly reaching its position.

3 Solution Methods

In this section, we describe the search methods developed in our study, namely
BRKGA (Sect. 3.1) and SAA (Sect. 3.2).

3.1 Biased Random-Key Genetic Algorithm

The BRKGA [8] has been successfully applied to a wide range of combinatorial
optimization problems that arise in real world situations [3]. In a BRKGA, each
chromosome is represented as a vector of randomly generated real numbers in
the interval [0, 1]. A problem dependent deterministic function, called decoder,
associates to each chromosome a solution and its corresponding fitness value.
Once the decoder has been defined, the BRKGA can be used as a black-box tool
that evolves an initial population by applying mutation and crossover opera-
tors until a given number of generations is reached. More precisely, the initial
population is composed by p chromosomes whose m alleles are independently
generated at random with a uniform distribution. BRKGA implements an eli-
tist strategy such that, at each generation, individuals are sorted according to
their fitness values, and the best pe ones are preserved for the next generation
(with pe < p − pe). Conversely, diversification is ensured by two mechanisms:
mutation and crossover. At each generation pm mutant individuals are randomly
generated and introduced into the population. The remainder of the population
p−pe−pm is completed through the process of mating: BRKGA randomly selects
one parent from the elite list and the other from the non-elite list by employing
a parametrized uniform crossover operator to generate offspring. In detail, each
allele of the offspring is inherited from the elite element with probability ρe or
from the non-elite element with probability 1− ρe. The population evolves for a
fixed number of generations K.

BRKGA indirectly explores the solution space of the specific problem by
searching the continuous m-dimensional unit hypercube, using the decoder to
map chromosomes into solutions of the problem. As a consequence, we have
to define the problem-dependent elements of the framework, i.e., the solution
encoding and the chromosome decoder.

34 V. Cacchiani et al.

Solution Encoding. The BRKGA requires as input parameter the number m
of alleles in each chromosome. In DTO, a solution is defined by a UAV route and
the corresponding speeds to be used by the UAV along the arcs in the route. To
encode a DTO solution in BRKGA we have to define a-priori the number of arcs
in the UAV route. Thus, we assume that the UAV must fly maintaining the same
direction (i.e., along its arc) for a fixed time step τ , and define the number of
arcs ν of the route as the ratio between the maximum end time among all users’
time windows and τ (recall that we removed from N users with an activation
time that does not allow the UAV to reach the depot at the end of its route
due to battery limitation). Each solution is encoded as a vector χ of random
keys of length m = 3ν, where the first 2ν keys are used to define the direction
of the UAV movements in its route (since the UAV altitude is fixed, we only
need to specify the 2D movement), and the last ν its speed along each arc of
the route. In particular, each arc a is assigned two attributes, namely direction
and speed, that are encoded in alleles h = νk + a, with k = {0, 1, 2}. The zero
speed allows to represent the UAV waiting at a position (it is flying at its fixed
altitude without moving in any direction). We observe that, compared to the
general DTO problem setting, in BRKGA we limit the search space by fixing
the number of arcs in a UAV route.

Chromosome Decoder. Each arc of the route represents a movement from
the current UAV position to the next one. Each route starts and ends at the
depot. The arc is identified by a direction expressed as an angle, and by a speed
to be used along the arc. Since we fixed the time step, once the angle and the
speed have been defined, the next position of the UAV can be deterministically
computed. Therefore, when we have a chromosome χ with random values in
interval [0, 1], we define the UAV route and its speeds as follows. For each arc a,
the cosine of the corresponding angle θa can be obtained as cos θa = 2χ[a] − 1
and the sine as sin θa = 2χ[a + ν] − 1. Then the angle can be rebuilt using
conveniently the inverse functions arc sine and arc cosine. The last ν keys of χ
are used to select the speed vθa

∈ DS for each arc. In detail, given |DS| different
speeds, the j-th speed value is selected for arc a if

j − 1
|DS| < χ[a + 2ν] ≤ j

|DS| j ∈ {1, . . . , |DS|}.

The initial position of the UAV is (xUAV , yUAV), while the coordinates of the
following position can be obtained applying to its current position the following
movement Δ decomposed in (x, y) components: Δx = vθa

τ cos θa and Δy =
vθa

τ sin θa. The last arc of the route forces the UAV to go back to the depot
with the maximum speed. The fitness value of a chromosome corresponds to the
number of served users computed according to the corresponding UAV route.

3.2 Simulated Annealing Algorithm

Our second solution method SAA is based on applying local search (LS) in a
Simulated Annealing framework. In the following, we describe the fundamental

Trajectory Optimization for UAVs in Mobile Network 35

elements of SAA, namely: (i) the search space and the initial solution strat-
egy, (ii) the neighborhood relations, and (iii) the metaheuristic that guides the
search.

Search Space and Initial Solution. The search space is composed by an
integer-valued matrix and two integer-values arrays:

– the direction matrix stores, for each node of the route, two integer values that
represent the 2D components of the move from node i − 1 to i;

– the speed vector stores the speed value from node i − 1 to i;
– the waiting time vector stores the possible waiting time for each node except

for the final depot.

These structures are complemented by redundant data structures that help
us in accelerating the computation of the objective function value and the local
changes between neighborhood states provoked by the moves. In particular, we
maintain an integer-valued position matrix that stores the (x, y) coordinates of
the nodes representing the UAV route.

The main difference between the solution encoding of BRKGA and that of
SAA is that, in the latter, the length of the route does not have to be fixed
a-priori, while in the former the number of arcs is set to ν. Indeed, in SAA,
the initial solution starts with only two nodes corresponding to the (initial and
final) depot, then a constructive procedure adds new nodes to the route as long
as the battery is not finished and there is still an active user to be served. The
procedure adds one node i at the time by determining speed and direction from
the current node i − 1. In particular, the speed value to fly from i − 1 to i
is randomly selected in the DS set with uniform distribution. For the move
direction, a user is randomly selected among those that are currently active
(and not yet fully served), and the (x, y) components to move the UAV from
its current position i − 1 towards that user are computed. All waiting times are
initially set to zero. In addition, depending on the earliest user activation time
window, the departure of the UAV from the depot can be delayed, if necessary.

In this way, the UAV route length is not fixed a-priori and is determined by
construction. This allows an additional degree of freedom effectively exploited
by SAA. During the neighborhood search, the cost function is composed by the
number of served users and the distance to feasibility: indeed, we allow states
that have a route duration longer than the UAV battery TB, but this violation
is strongly penalized in the cost function with a suitable, fixed high weight.

Neighborhood Relations. We defined four atomic neighborhood relations:

– Change (C): The move C〈i, x, y, v〉 changes the position of node i by replacing
its current coordinates with (x, y). In addition the speed value to fly from
node i − 1 to i is set to v.
Preconditions: The node i is not the depot. The new position for node i is
different from the old one or the new speed value is different from the old
one.

36 V. Cacchiani et al.

– Add (A): The move A〈i, x, y, v〉 adds a new i-th node to the route with (x, y)
coordinates. The speed value to fly from node i − 1 to i is set to v.
Preconditions: The old position of node i is different from the new one or the
new speed value is different from the old one.

– Remove (R): The move R〈i〉 removes node i from the route.
Preconditions: The node i is not the depot.

– Wait (W): The move W〈i, t〉 sets the waiting time for node i equal to
t.Preconditions: The node i is not the final depot.

Neighborhood Selection. We implemented a composite neighborhood which
is the union of the four atomic relations described above: C ∪ A ∪ R ∪ W. To
draw a random move from it, we first select one of the basic neighborhoods and
then the specific attributes (e.g., position, speed) of the selected move. For the
neighborhood selection we use fixed probabilities pC, pR and pA, which represent
the probability to draw a Change, Add and Remove move, respectively. Obviously,
the probability of a Wait move is 1−pC−pR−pA. Inside the single neighborhood,
the values of the attributes are selected uniformly.

Simulated Annealing Strategy. The local search process is guided by Sim-
ulated Annealing (SA), which is an old-fashioned, but still very effective meta-
heuristic technique [11]. SA is the state-of-the-art method for various combi-
natorial optimization problems (see, e.g., [5]). For an up-to-date comprehensive
presentation of different variants of SA and their current performances see [7].

The SA procedure starts from an initial solution generated as described
above, and draws, at each iteration, a random move. As customary for SA, we
introduce the notion of temperature T0, such that a move is always accepted if it
is improving or sideways (i.e., same cost), whereas worsening ones are accepted
based on the time-decreasing exponential distribution e−Δ/T , where Δ is the
difference of cost between the new and the current solution and T is the tem-
perature.

The temperature is decreased after a fixed number of samples Ns is drawn
according to the geometric cooling scheme, where α (with 0 < α < 1) is the
cooling rate. In addition, in order to speed up the early stages of the search, we
use the cut-off mechanism: to this aim we add a new parameter Na, representing
the maximum number of accepted moves at each temperature. The temperature
is, thus, decreased as soon as one of the following two conditions occurs: (i) the
number of sampled moves reaches Ns, (ii) the number of accepted moves reaches
Na. This allows us to save computational time in early stages, and exploit it later
during the search.

To facilitate the tuning of the cut-off, we introduced the parameter ρ =
Na/Ns (with 0 < ρ < 1) which is the fraction of accepted moves with respect to
the total number of moves sampled at each temperature.

The search is stopped when a total number of iterations I has been per-
formed, which guarantees that the running time is equal for all configurations of

Trajectory Optimization for UAVs in Mobile Network 37

the parameters. In order to keep the I fixed, we computed for each temperature
T the number of sampled solutions Ns using the following formula:

Ns = I
/(

log (Tf/T0)
logα

)

where T0 and Tf are the initial and final temperature, respectively.

4 Experimental Analysis

Our code is implemented in C++ and compiled using g++ v. 9.3.0. For BRKGA
we used the brkgaAPI framework [18], while for SAA the EasyLocal++ frame-
work [6]. The algorithm parameters were tuned, as described in Sect. 4.3, using
the tool json2run [20] that implements the F-Race procedure [4]. All experi-
ments ran on an Ubuntu Linux 20.04.2 LTS machine with 64 GB of RAM and
32 AMD Ryzen Threadripper PRO 3975WX (3.50GHz) physical cores, hyper-
threaded to 64 virtual cores. A single virtual core was dedicated to each experi-
ment.

In Sect. 4.1 we describe the realistic case study (similar to the one used in
[12]) from which we derived the tested instances, and in Sect. 4.2 we present the
air-to-ground channel model. Section 4.3 reports the tuning method and the final
parameter values. Finally, in Sect. 4.4, we present the comparison of BRKGA and
SAA in different settings, i.e., different timeouts and different speeds.

4.1 Reference Scenario

We consider an area of size 1 km × 1 km in which 537 users are spread as rep-
resented in Fig. 1. These are the users that cannot be served by the available
terrestrial base stations, which justifies the particular positions of the users.
Each user has an associated demand (expressed in Mbit) represented as an inte-
ger number between 1 and 5. Each user time-window has a starting time between
0 and 1740 (in seconds), and duration 20 s. The UAV depot is placed in the mid-
dle of the area (black square). The UAV can use two speeds, i.e., 10 m/s and 20
m/s, and the zero speed. The available battery duration is equal to 1800 s. The
value of Trate is 5 s.

From this reference scenario, we derived 10 instances by varying the activa-
tion time of the users: in particular, su is generated with uniform distribution
in [0, 1740] (u ∈ N).

4.2 Channel Model

As mentioned in Sect. 2, we consider the air-to-ground channel model derived
from [1]. In particular, to properly formulate our problem, we assume that (i)
links undergo non-line-of-sight propagation (i.e., the worst case, where commu-
nications obstacles between the UAV and the user may reduce the connection

38 V. Cacchiani et al.

Fig. 1. Reference scenario.

quality), but (ii) no channel fluctuations affect the communication to avoid model
randomicity. Then, the attenuation or path loss L becomes:

L = L∗ + η

L∗ =

⎧⎪⎨
⎪⎩

28+22 log10(d3D) + 20 log10(fc) if 10 ≤ d2D ≤ dBP

28+40 log10(d3D) + 20 log10(fc)

− 9 log10(d
2
BP + (h − hut)2) otherwise

where d3D and d2D are, respectively, the UAV-user distance in 3D and the dis-
tance projected on the 2D plane, h = 100 m and hut = 1 m are, respectively,
the heights of UAV and user, fc = 27 GHz is the carrier frequency, dBP is the
distance breakpoint given in [1], and η = 20 dB is an additional penetration
loss. Finally, the data rate r, given the previously computed path loss L, and a
bandwidth portion Bch = 1.44 MHz, is:

r = Bch log2(1 + 10
γ(L)
10),

where it holds γ(L) = [Ptx + Gtx + Grx − L] − Pnoise. In particular, Ptx = 23
dBm is the UAV transmit power, Gtx = 16 dB and Grx = 0 dB are, respectively,
the transmitter and receiver gains, and Pnoise = −116.4 dBm is the noise power.
Loss L and data rate r are then computed for each UAV-user link. Parameter γ
corresponds to the Signal-to-Noise Ratio (SNR) that indicates the link quality
by denoting a poor or strong connection. If the value of γ is below a connectivity
threshold γthr, it means the communication cannot be established correctly and
the user cannot be served. Therefore, higher values of γthr denote more strict
link quality requirements, and consequently a smaller area of communication
coverage for the UAV. On the contrary, if γthr is lower, the UAV coverage area

Trajectory Optimization for UAVs in Mobile Network 39

gets larger. The minimum accepted SNR value γthr, that determines the exten-
sion of the UAV coverage radius, can take the following values: −10, −5, 0, 5
and 10 in dB units. This range of values was set in accordance with [2]. The
described channel model is used by BRKGA and SAA to compute, during the
search process, the value of the data rate and, hence, the number of served users.

4.3 Automatic Parameter Tuning

We defined the initial ranges for the selection of the best configuration for
BRKGA following the recommendation of Gonçalves and Resende [8, Table 1].
For the BRKGA total number of generations is set to 103, while the total number
of iterations for SA is 3.4 · 106, which corresponds to an average computational
time of about 1000 s seconds on our machine. For BRKGA, we fix the time step
τ = Trate. For SA the ranges have been set according to preliminary experi-
ments. In addition, experiments reveled that SA is not sensible to changes of the
cooling rate, thus we fixed it to 0.99.

Table 1. Parameters and range of values for BRKGA and SA.

Description Symbol Range Best value

BRKGA
Size of population p 100–550 532
Size of the elite population pe 0.1p–0.25p 0.107p

Size of the mutant population pm 0.1p–0.3p 0.14p

Elite allele inheritance probability ρe 0.5–0.8 0.73
SAA
Initial temperature T0 0.5–2 0.969
Final temperature Tf 0.001–0.5 0.186
Accepted moves ratio ρ 0.001–0.05 0.011
Probability of Change moves pC 0.5–0.7 0.69
Probability of Add moves pA 0.1–0.3 0.25
Probability of Remove moves pR 0.01–0.05 0.05

For each of two methods, we tested 50 different configurations extracted
according to the Hammersley point set [10] on the testbed derived from the
reference scenario. We compared the results using the F-Race procedure [4],
which is based on the Friedman test to prove statistical significance, using the
threshold of confidence set to 95% (p-value = 0.05). The best configurations are
shown in Table 1. All of the following experiments were performed using these
configurations for BRKGA and SAA.

40 V. Cacchiani et al.

4.4 Computational Results

We first compare BRKGA and SAA by setting the number of generations of
BRKGA and the number of iterations of SAA so that they require comparable
computing times. We consider in DS the zero speed and 20 m/s. Then, we
report the results obtained when imposing several time limits and when allowing
different speeds. Each algorithm is executed on each instance 10 times for each
γthr value.

Comparative Results Between BRKGA and SAA. Table 2 reports the
comparison between BRKGA and SAA with comparable computing times in
seconds. In particular, for each instance and γthr value, we display the minimum,
average and maximum number of served users obtained by BRKGA and SAA,
respectively. As can be seen, SAA achieves better results than BRKGA both
for the average and the maximum values, as expected since the search space of
SAA is larger than that of BRKGA. In particular, we can see that SAA obtains
significantly higher numbers of served users when γthr ≥ 5. It is evident that
smaller γthr values allow for serving more users, as expected. Finally, we can
observe that the difference between the average and the maximum values are,
for both algorithms, rather small, hence independent of the specific run.

Results with Different Timeouts. We investigate how shorter time limits
impact on the results both for BRKGA and SAA. We set time limits from 10
s up to 640 s. In particular, very short time limits can be useful if the user
positions and time windows are revealed in real-time. The average results on all
instances for different γthr values are reported in Table 3. As expected, in most
cases, longer time limits allow for finding better solutions for both algorithms,
although reasonable numbers of users are served even within 10 secs of computing
time. We can also observe that the improvement is more evident with shorter
time limits (e.g., going from 10 to 20 s): indeed, the algorithms need some time
for appropriately searching the solution space. Overall, SAA turns out to achieve
the best performance also when short time limits are imposed.

Results with Different Speed Values. We evaluate whether allowing the
UAV to use different speeds is useful to serve more users. In particular, we
always consider the zero speed, and then include in DS speed 10 m/s, or both
10 and 20 m/s. The results obtained by SAA with these speeds are compared
in Table 4 with those obtained by considering 20 m/s. As we can observe, in
most cases it is better to only use 20 m/s for the tested instances. This can
be due to the relatively low demand values and high time-window variability:
indeed, usually the UAV does not require long time to satisfy a user demand,
and quickly moves to serve another user. The rather short activation time of the
users (20 s) requires the UAV to move to different zones of the area in order to
satisfy the demands. However, we can also see that when both 10 and 20 m/s

Trajectory Optimization for UAVs in Mobile Network 41

Table 2. Computation results of BRKGA and SAA.

Inst. γthr BRKGA SAA

Min Avg Max Time [s] Min Avg Max Time [s]

Test1 −10 392 399.8 406 1002.3 200 511.1 526 931.2

−5 365 372.5 384 981.0 484 506.2 514 943.0

0 214 222.8 237 992.3 344 362.6 371 1010.9

5 132 136.1 143 996.6 241 249.4 258 990.8

10 71 77.7 83 998.3 175 184.5 193 943.6

Test2 −10 379 390.7 397 1000.1 508 516.8 521 981.5

−5 362 367.5 373 980.3 497 504.5 510 964.3

0 218 222.9 236 994.8 289 332.0 366 991.4

5 130 135.1 145 995.7 248 260.4 270 1002.8

10 66 73.5 79 997.5 169 186.7 200 958.5

Test3 −10 385 391.8 397 999.4 506 512.2 516 976.5

−5 367 372.8 380 978.3 178 485.5 502 943.0

0 218 224.2 233 994.1 349 359.5 366 1012.1

5 133 142.6 158 995.6 246 257.9 268 973.9

10 71 80.7 94 995.1 173 184.7 197 946.7

Test4 −10 386 395.3 408 1002.5 377 507.2 519 970.7

−5 369 372.7 378 980.1 328 490.7 503 966.0

0 214 224.0 234 997.4 294 358.2 369 1012.5

5 136 137.8 141 997.8 242 257.3 263 973.4

10 72 79.4 85 997.6 169 183.2 194 939.2

Test5 −10 382 390.5 399 997.1 510 514.1 518 995.8

−5 362 366.9 376 977.0 496 500.7 505 977.9

0 219 224.2 227 991.9 349 364.1 376 1023.5

5 131 135.5 144 997.3 91 255.9 272 982.8

10 70 75.7 80 990.8 172 185.0 197 943.2

Test6 −10 389 395.5 402 1004.8 470 504.2 512 971.5

−5 363 372.4 382 985.2 461 493.6 500 954.6

0 223 229.5 238 999.0 307 336.4 362 995.6

5 128 135.7 143 997.6 243 257.4 269 981.6

10 65 77.8 82 1002.1 177 188.1 199 927.9

Test7 −10 384 391.2 403 1042.1 497 510.1 515 982.4

−5 360 366.4 373 1020.1 493 498.3 504 967.1

0 217 226.8 237 1032.3 353 365.6 376 1018.8

5 130 134.6 142 1034.6 254 264.0 272 993.9

10 68 73.6 81 1033.2 174 189.4 199 941.2

Test8 −10 379 390.5 399 1002.2 509 514.7 520 984.4

−5 356 367.7 384 977.6 496 501.5 508 976.2

0 218 224.5 231 991.9 109 349.0 377 995.9

5 127 135.8 147 994.8 251 264.5 276 1004.1

10 72 77.8 83 995.6 170 185.6 196 952.6

Test9 −10 376 388.8 401 1003.4 508 513.3 517 985.0

−5 361 367.4 372 980.1 495 500.7 506 970.6

0 215 220.8 230 992.6 332 352.5 373 1020.5

5 127 135.5 145 995.1 243 255.9 265 1002.2

10 70 77.5 83 990.8 171 183.2 198 961.7

Test10 −10 387 394.7 401 1042.1 143 504.3 520 949.4

−5 365 370.9 376 1019.9 493 501.3 507 964.4

0 224 226.9 229 1036.7 245 343.0 366 1005.2

5 128 136.0 144 1040.0 238 261.1 276 1002.5

10 72 76.3 84 1041.2 176 186.9 197 947.3

Avg 233.0 240.2 248.2 1001.7 312.9 361.1 372.1 976.2

42 V. Cacchiani et al.

Table 3. Results obtained by BRKGA (B) and SAA (S) with different timeouts.

γthr

secs
−10 −5 0 5 10

B S B S B S B S B S

10 328.3 402.8 305.6 384.4 168.4 249.9 89.2 164.7 41.1 113.6
20 333.0 435.1 312.0 415.9 172.3 279.9 91.4 187.5 43.4 127.2
40 340.4 465.3 317.7 445.2 177.8 293.8 95.5 207.1 45.4 140.2
80 353.8 482.4 331.6 457.5 188.6 315.9 102.5 223.2 48.3 154.0

160 378.9 498.5 354.0 477.0 211.6 327.6 122.1 233.6 57.5 165.2
320 387.4 503.1 364.4 487.7 220.1 339.9 133.6 245.7 70.6 174.8
640 390.6 503.6 367.0 496.0 222.5 348.8 134.6 255.4 76.4 182.9

Table 4. Results obtained by SAA with different speed values in [m/s].

Inst. γthr 10 [m/s] 10–20 [m/s] 20 [m/s] Inst. γthr 10 [m/s] 10–20 [m/s] 20 [m/s]
Avg Avg Avg Avg Avg Avg

Test1 −10 449.1 512.1 511.1 Test6 −10 418.2 492.4 504.2
−5 401.9 495.0 506.2 −5 372.3 453.3 493.6
0 269.1 348.7 362.6 0 260.2 318.2 336.4
5 178.7 237.7 249.4 5 180.5 249.4 257.4
10 120.1 174.6 184.5 10 124.3 182.6 188.1

Test2 −10 395.3 512.9 516.8 Test7 −10 423.7 504.7 510.1
−5 386.4 492.1 504.5 −5 430.0 490.3 498.3
0 270.3 312.7 332.0 0 277.7 356.1 365.6
5 184.8 247.6 260.4 5 183.6 252.0 264.0
10 118.7 179.3 186.7 10 123.5 181.9 189.4

Test3 −10 449.6 506.3 512.2 Test8 −10 452.4 509.1 514.7
−5 418.8 489.1 485.5 −5 429.7 492.0 501.5
0 217.5 341.6 359.5 0 282.6 357.9 349.0
5 182.4 249.7 257.9 5 175.3 251.5 264.5
10 124.0 179.4 184.7 10 118.2 177.7 185.6

Test4 −10 456.4 506.1 507.2 Test9 −10 457.7 508.6 513.3
−5 428.0 479.4 490.7 −5 431.1 492.9 500.7
0 214.6 329.9 358.2 0 269.9 343.8 352.5
5 181.9 249.4 257.3 5 177.0 245.0 255.9
10 124.7 177.7 183.2 10 118.3 178.7 183.2

Test5 −10 450.0 508.3 514.1 Test10 −10 451.8 509.5 504.3
−5 426.6 459.4 500.7 −5 429.1 490.8 501.3
0 276.1 352.7 364.1 0 251.5 310.7 343.0
5 185.5 253.6 255.9 5 171.6 249.1 261.1
10 123.2 174.9 185.0 10 116.8 178.0 186.9

Trajectory Optimization for UAVs in Mobile Network 43

are possible, the results are similar to the best ones, and this feature can become
relevant for other kinds of scenarios or when the UAV energy consumption is
highly dependent on the its speed.

5 Conclusions

We studied a Drone Trajectory Optimization problem, in which a UAV is used as
an unmanned aerial base station to provide connectivity to a set of users spread
over an area. We proposed two metaheuristic algorithms to solve the problem: a
Biased Random Key Genetic Algorithm (BRKGA) and a Simulated Annealing
Algorithm (SAA). Both algorithms were tested on realistic instances with more
than 500 users, and different time limits and UAV speeds. The SAA achieved
the best performance, being able of serving about 400 users even with very short
time limits when the connectivity threshold is low, and about 500 users with
longer time limits.

Future research directions include (i) considering more UAVs to increase the
covered demand, while imposing that they must fly with non-conflicting tra-
jectories, (ii) dealing with an online problem in which the users’ activation is
unknown, (iii) handling the UAV energy consumption as a function of the speed.

Acknowledgements. Valentina Cacchiani acknowledges the support by the Air Force
Office of Scientific Research under award number FA8655-20-1-7019.

References

1. Technical Specification Group Radio Access Network; Study on channel model for
frequencies from 0.5 to 100 GHz (2019). 3GPP TR 38.901 version 16.1.0, Release
16

2. Technical Specification Group Radio Access Network; General aspects for Base
Station (BS) Radio Frequency (RF) for NR (2020). 3GPP TS 38.817-02 version
15.9.0, Release 15

3. Andrade, C.E., Toso, R.F., Gonçalves, J.F., Resende, M.G.: The multi-parent
biased random-key genetic algorithm with implicit path-relinking and its real-world
applications. Eur. J. Oper. Res. 289(1), 17–30 (2021)

4. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and Iterated F-Race:
an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M.
(eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp.
311–336. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02538-
9_13

5. Ceschia, S., Di Gaspero, L., Rosati, R.M., Schaerf, A.: Multi-neighborhood sim-
ulated annealing for the minimum interference frequency assignment problem.
EURO J. Comput. Optim. 1–32 (2021). https://doi.org/10.1016/j.ejco.2021.100024

6. Di Gaspero, L., Schaerf, A.: EasyLocal++: an object-oriented framework for flex-
ible design of local search algorithms. Softw. – Pract. Exp. 33(8), 733–765 (2003)

7. Franzin, A., Stützle, T.: Revisiting simulated annealing: a component-based anal-
ysis. Comput. Oper. Res. 104, 191 (2019)

https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1016/j.ejco.2021.100024

44 V. Cacchiani et al.

8. Gonçalves, J.F., Resende, M.G.: Biased random-key genetic algorithms for combi-
natorial optimization. J. Heurist. 17(5), 487–525 (2011)

9. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of
recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2),
315–332 (2016)

10. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Chapman and Hall,
London (1964)

11. Kirkpatrick, S., Gelatt, D., Vecchi, M.: Optimization by simulated annealing. Sci-
ence 220, 671–680 (1983)

12. Mignardi, S., Buratti, C., Cacchiani, V., Verdone, R.: Path optimization for
unmanned aerial base stations with limited radio resources. In: 2018 IEEE 29th
Annual International Symposium on Personal, Indoor and Mobile Radio Commu-
nications (PIMRC), pp. 328–332. IEEE (2018)

13. Mignardi, S., Mikhaylov, K., Cacchiani, V., Verdone, R., Buratti, C.: Unmanned
aerial base stations for NB-IoT: trajectory design and performance analysis. In:
2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile
Radio Communications, pp. 1–6. IEEE (2020)

14. Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Mobile unmanned aerial vehi-
cles (UAVs) for energy-efficient internet of things communications. IEEE Trans.
Wireless Commun. 16(11), 7574–7589 (2017)

15. Mozaffari, M., Saad, W., Bennis, M., Nam, Y.H., Debbah, M.: A tutorial on UAVs
for wireless networks: applications, challenges, and open problems. IEEE Commun.
Surv. Tutor. 21(3), 2334–2360 (2019)

16. Na, Z., Wang, J., Liu, C., Guan, M., Gao, Z.: Join trajectory optimization and com-
munication design for UAV-enabled OFDM networks. Ad Hoc Netw. 98, 102031
(2020)

17. Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E.: Optimization approaches
for civil applications of Unmanned Aerial Vehicles (UAVs) or aerial drones: a survey.
Networks 72(4), 411–458 (2018)

18. Toso, R.F., Resende, M.G.: A C++ application programming interface for biased
random-key genetic algorithms. Optim. Methods Softw. 30(1), 81–93 (2015)

19. Tran, D.H., Nguyen, V.D., Chatzinotas, S., Vu, T.X., Ottersten, B.: UAV relay-
assisted emergency communications in IoT networks: resource allocation and tra-
jectory optimization. IEEE Trans. Wireless Commun. 21(3), 1621–1637 (2021)

20. Urli, T.: Json2run: a tool for experiment design & analysis. CoRR abs/1305.1112
(2013)

21. Won, J., Kim, D.Y., Park, Y.I., Lee, J.W.: A survey on UAV placement and tra-
jectory optimization in communication networks: from the perspective of air-to-
ground channel models. ICT Express, 1–13 (2022, in press). https://doi.org/10.
1016/j.icte.2022.01.015

22. Wu, Q., Zeng, Y., Zhang, R.: Joint trajectory and communication design for multi-
UAV enabled wireless networks. IEEE Trans. Wireless Commun. 17(3), 2109–2121
(2018)

23. Zeng, Y., Zhang, R.: Energy-efficient UAV communication with trajectory opti-
mization. IEEE Trans. Wireless Commun. 16(6), 3747–3760 (2017)

24. Zeng, Y., Zhang, R., Lim, T.J.: Throughput maximization for UAV-enabled mobile
relaying systems. IEEE Trans. Commun. 64(12), 4983–4996 (2016)

https://doi.org/10.1016/j.icte.2022.01.015
https://doi.org/10.1016/j.icte.2022.01.015

New Neighborhood Strategies
for the Bi-objective Vehicle Routing

Problem with Time Windows

Clément Legrand1(B), Diego Cattaruzza2, Laetitia Jourdan1,
and Marie-Eléonore Kessaci1

1 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
{clement.legrand4.etu,laetitia.jourdan,
marie-eleonore.kessaci}@univ-lille.fr

2 Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
diego.cattaruzza@centralelille.fr

Abstract. Local search (LS) algorithms are efficient metaheuristics to
solve vehicle routing problems (VRP). They are often used either individ-
ually or integrated into evolutionary algorithms. For example, the Multi-
Objective Evolutionary Algorithm based on Decomposition (MOEA/D)
can be enhanced with a local search replacing the mutation step based
on a single move operator traditionally. LS are based on an efficient
exploration of the neighborhoods of solutions. Many methods have been
developed over the years to improve the efficiency of LS. In particular, the
exploration strategy of the neighborhood and the pruning of irrelevant
neighborhoods are important concepts that are frequently considered
when designing a LS. In this paper, we focus on a bi-objective vehicle
routing problem with time windows (bVRPTW) where the total travel-
ing cost and the total waiting time have to be minimized. We propose
two neighborhood strategies to improve an existing LS, efficient on the
single-objective VRPTW. First, we propose a new strategy to explore
the neighborhood of a solution. Second, we propose a new strategy for
pruning the solution neighborhood that takes into account the second
criterion of our bVRPTW namely the waiting time between customers.
Experiments on Solomon’s instances show that using LS with our neigh-
borhood strategies in the MOEA/D gives better performance. Moreover,
we can achieve some best-known solutions considering the traveling cost
minimization only.

Keywords: VRP · Multi-objective optimization · MOEA/D · Local
search

1 Introduction

Local search (LS) are known to be powerful algorithms used in evolutionary
algorithms to improve their performance [7]. Indeed, LS are able to intensify
the search by focusing on a specific region of the space. LS are based on neigh-
borhood operators that link solution together and a neighborhood exploration
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 45–60, 2023.
https://doi.org/10.1007/978-3-031-26504-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_4&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_4

46 C. Legrand et al.

strategy define how the neighbors are explored and when the exploration is
stopped. Here, we are mainly interested in the Vehicle Routing Problem with
Time Windows (VRPTW). It is a routing problem where time is considered as
an important resource and where customers must be served within a fixed time
interval. Some LS have been developed for this problem and consequently many
neighborhoods are available. For our study, we consider the same neighborhood
as defined in [16]. The operators are: relocate, swap and 2-opt∗. These opera-
tors are commonly used in routing problems, since they are simple operators
and they are able to produce a large neighborhood. However the LS steps are
time-consuming, that is why different strategies exist to speed-up the search
and reduce the time allocated to the neighborhood exploration. First LS can
be applied following a probability, that is a parameter of the final algorithm.
Indeed, not applying the LS may have a positive impact since it brings more
diversity to the solutions. Second, the exploration of the neighborhood can be
done entirely with strategy best, or partially with strategy first. For the strategy
best, all neighbors are considered and the best one is selected. For the strategy
first, the neighbor are evaluated one by one and the exploration is stopped as
soon as an improving neighbor is found and selected. Since routing problems
produce large neighborhood pruning techniques have been designed to avoid
irrelevant moves. The most common one is probably the granular search [18].
It is based on the idea that two distant clients have a low chance to produce a
relevant arc.

In this paper, we study a Bi-objective VRPTW (bVRPTW), that is a Multi-
objective Combinatorial Optimization Problems (MoCOPs) [5]. Such problems
are frequent in the industry where decision-makers are interested in optimizing
several conflicting objectives at the same time. The objectives considered are
the total traveling cost (a classical objective in routing problems), and the total
waiting time incurred when drivers arrive before the opening of the time window.
Although this objective has not received much attention in the literature [4,25],
it is relevant when considering the transportation of people or medical goods.
Indeed, when a patient has a medical appointment, we do not want that he waits
too much. Note that, here we only consider the minimum possible waiting time
incurred by time windows. Moreover, in real problems, there is more than one
way to link two customers considering the traveled distance, and the traveling
time. However in the Solomon’s instances, that are used for our experiments,
the traveling time between two customers corresponds to the distance between
them, which is a strong hypothesis.

To solve this problem, we use MOEA/D, a Multi-Objective Evolutionary
Algorithm based on Decomposition [24] where the mutation step is replaced by a
local search. The contribution of the paper is to present neighborhood strategies
that are better adapted to the bVRPTW. First, we present a new strategy to
explore the neighborhood of bVRPTW solutions inspired from state of the art
for permutation flowshop. Second, we propose a pruning technique that considers
not only the distance between the clients, but also their respective time window.

The remaining of the paper is structured as follows. After a brief presentation
of multi-objective problems, the bVRPTW studied is described in Sect. 2, as well

New Neighborhood Strategies for the bVRPTW 47

as related works. Section 3 first focuses on the MOEA/D based framework used
for this study, and then presents the different mechanisms proposed to improve
the local search step. Section 4 describes the benchmark and how the algorithms
were tuned. Then our experimental protocol is presented. Section 5 compares the
results obtained for each combination of the mechanisms for the local search.
Section 6 compares the results obtained with the best variant from Sect. 5, and
the results obtained with state of the art algorithms for the VRPTW. Finally,
Sect. 7 concludes and presents perspectives for this work.

2 Bi-objective Routing Problem with Time Windows

2.1 Multi-objective Optimization

In the following we formalize Multi-objective Combinatorial Optimization Prob-
lems (MoCOPs) [5]:

(MoCOP) =
{

Optimize F (x) = (f1(x), f2(x), . . . , fn(x))
s.t. x ∈ D,

(1)

where n is the number of objectives (n ≥ 2), x is the vector of decision variables,
D is the (discrete) set of feasible solutions and each objective function fi(x) has
to be optimized (i.e. minimized or maximized). In multi-objective optimization
the objective function F defines a so-called objective space denoted by Z. For
each solution x ∈ D there exists a point in Z defined by F (x).

A dominance criterion is defined to compare solutions together: a solution
x dominates a solution y, in a minimization context, if and only if for all i ∈
[1 . . . n], fi(x) ≤ fi(y) and there exists j ∈ [1 . . . n] such that fj(x) < fj(y). A
partial order is defined on the solutions by x < y if and only if x dominates y.

Then a set of non dominated solutions is called a Pareto front. A feasible
solution x∗ ∈ D is called Pareto optimal if and only if there is no solution x ∈ D
such that x dominates x∗. Resolving a MoCOP involves finding all the Pareto
optimal solutions which form the Pareto optimal set. The true Pareto front of
the problem is the image of the Pareto optimal set by the objective function.

Over the years, many metaheuristics based on local search techniques or
using evolutionary algorithms [3] have been designed to solve multi-objective
problems. Moreover, many tools [14] have been developed to assess and com-
pare the performance of multi-objective algorithms. In this paper, we use the
unary hypervolume (HV) [26], which is a metric defined relatively to a reference
point Zref . This indicator evaluates accuracy, diversity, and cardinality of the
front, and it is the only indicator with this capability. Moreover, it can be used
without knowing the true Pareto front of the problem. It reflects the volume
covered by the members of a non dominated set of solutions. Thus, the larger
the hypervolume, the better the set of solutions.

48 C. Legrand et al.

2.2 bVRPTW and Related Works

The bVRPTW [19] considered in this work is defined on a graph G = (V,E),
where V = {0, 1, . . . , N} is the set of vertices and E = {(i, j) | i, j ∈ V } is the
set of arcs. It is possible to travel from i to j, incurring in a travel cost cij and a
travel time tij . Vertex 0 represents the depot where a fleet of K identical vehicles
with limited capacity Q is based. Vertices 1, . . . , N represent the customers to be
served, each one having a demand qi, a time window [ai, bi] during which service
must occur, and a service time si estimating the required time to perform the
delivery. Vehicles may arrive before ai. In that case, the driver has to wait until
ai to accomplish service incurring in a waiting time. Arriving later than bi is not
allowed. It is assumed that all inputs are nonnegative integers. We recall that a
route r is an elementary cycle on G that contains the depot (that is vertex 0)
and can be expressed as a sequence of vertexes r = (v0, v1, . . . , vR, vR+1) where
v0 = vR+1 = 0 and vertexes v1, . . . , vR are all different. The cost cr of a route r is
then given as the sum of traveling costs on arcs used to visit subsequent vertexes,
that is

∑R
i=0 cvi,vi+1. A solution x can be represented as a set of (possibly empty)

K routes, that is x = {r1, . . . , rK}, and its cost is expressed as:

f1(x) =
K∑

k=1

crk (2)

The waiting time Wi at a customer i is given as the maximum between 0 and
difference between the opening of the TW ai and the arrival time Ti at location
i, that is Wi = max{0, ai − Ti}. Note that each route r = (v0, v1, . . . , vR, vR+1)
can be associated with a feasible (i.e., consistent with traveling times and TWs)
arrival time vector Tr = (Tv0 , Tv1 , . . . , TvR

, TvR+1) and the total waiting time
Wr(Tr) on route r, with respect to Tr is given by Wr(Tr) =

∑R
i=1 Wvi

. Thus
the total waiting time of a solution x = {r1, . . . , rK} on a graph G, given a time
arrival vector for each route in the solution, i.e. Tx = (Tr1 , . . . , TrK), is given by
the following formula:

f2(x, Tx) =
K∑

k=1

Wrk(Trk) (3)

The bVRPTW calls for the determination of at most K routes such that the
traveling cost and waiting time are simultaneously minimized and the following
conditions are satisfied: (a) each route starts and ends at the depot, (b) each
customer is visited by exactly one route, (c) the sum of the demands of the
customers in any route does not exceed Q, (d) time windows are respected.
Note that a solution is represented as a permutation of the customers, and it is
evaluated with the split algorithm detailed in [12].

The VRPTW, where only the traveling cost is minimized, received many
interests in the literature. Nowadays, all Solomon’s instances (of size 100) can be
optimally solved using an exact algorithm [11], however the computational cost
grows exponentially with the size of the instances (e.g. it takes 64105 s to solve
the instance R208). In practice meta-heuristic algorithms can obtain a “good

New Neighborhood Strategies for the bVRPTW 49

enough” solution in a short time and have the capacity to solve the large-scale
complex problems, which is more suitable for applications. The NBD algorithm
from Nagata et al. [10] is considered as a state of the art metaheuristic for
the problem. Moreover, Schneider et al. [16] proposed different granular neigh-
borhoods to improve an existing local search. Considering the multi-objective
approaches the literature is more sparse. The second objective often minimized
in the literature is the number of vehicles. Qi et al. [13] proposed a memetic
algorithm based on MOEA/D to solve a bi-objective VRPTW. More recently,
Moradi [9] integrated a learnable evolutionary model into a pareto evolutionary
algorithm. The integration of learning mechanisms is known to be successful
in both single-objective [1] and multi-objective algorithms [8]. In the following,
we assume that the learning mechanism proposed is relevant for the studied
problem, according to previous works [8].

3 Neighborhood Strategies

3.1 The Baseline MOEA/D

The MOEA/D [24] is a genetic algorithm that approximates the Pareto front by
decomposing the multi-objective problem into several scalar objective subprob-
lems, as illustrated in Fig. 1. MOEA/D is a simple algorithm that has already
been studied a lot in the literature [23], making it a good candidate for our
study. More precisely, the objective function of the i-th subproblem is defined
with a weight vector wi = (wi

1, w
i
2), such that wi

1 + wi
2 = 1, and is expressed as:

gi = wi
1 ·f1 +wi

2 ·f2, with f1 and f2 being the two objectives defined in Sect. 2.2.
In the following we consider a uniform distribution on the weight vectors, and
we assume that is enough to obtain diverse subproblems. Moreover an external
archive stores nondominated solutions found during the search. These solutions
are returned once the termination criteria is reached.

However, we do not use the basic MOEA/D, but a variant where learning is
integrated. We will refer to this algorithm as A. This algorithm contains four
major mechanisms. Two of them belong to the genetic aspect (crossover and
mutation), while the two others belong to the learning aspect (injection and
extraction).

The crossover is a Partially Mapped Crossover (PMX) [21], that occurs with
probability pcro. It is performed between two solutions taken from close subprob-
lems. Among the two solutions produced only one solution is randomly selected
to undergo the injection step, which is a costly step.

The mutation, replaced here by the LS, is applied following a probability
pmut. Three neighborhood operators are applied: Relocate, Swap and 2-opt∗,
generating the same neighborhood as described in [16]. The operators are shuffled
before applying them, so that they are not always applied in the same order.
Two possible strategies are considered to explore the neighborhoods and will be
described in Sect. 3.2. To perform an efficient exploration of the neighbors, we
use sequences as defined in [22]. Once a local optimum has been reached for an
operator, the next one is applied and so on, until all have been applied.

50 C. Legrand et al.

In order to present the extraction and injection steps, we have to briefly
present the integrated learning mechanism. We refer to [8] for a complete descrip-
tion of the mechanism. The learning mechanism uses learning groups, noted Gi.
The learning group Gi is associated to the subproblem with weight vector wi.
Each group gathers knowledge that is relevant for its associated subproblem.

The learning groups are updated when the extraction step occurs. However,
to ensure that knowledge is extracted from local optima only, the extraction
can occur only when the local search has been applied during the iteration. In
addition to that, the extraction occurs with probability pext. The extraction
step is quite similar to the one performed in PILS [1]. Given one solution x =
{r1, . . . , rK}, patterns can be extracted from routes r1, . . . , rK . These patterns
are sequences of consecutive customers (not including the depot). The patterns
have a size between 2 and MaxSize, which is a parameter of the algorithm.

Finally the injection step, following a probability pinj , uses the knowledge
stored in the groups to diversify the solutions. More precisely, any solution that
undergoes the injection step will receive at most NInjected patterns from one
learning group randomly chosen. A pattern is kept only if it improves the solu-
tion. Each pattern is selected as follows. First the size of the pattern is randomly
chosen, and then it is selected among the NFrequent most frequent patterns of
the same size in the corresponding group. Figure 2 illustrates how the injection
is performed. First the pattern is formed by deleting adjacent vertices, and then
the pieces of route created are put together to form the best possible solution.

Algorithm 1 presents the framework of A. Initially the external archive is
empty as well as the learning groups. The initial population is randomly gener-
ated, and undergo the LS (still with its own probability). Then, until the termi-
nation criteria is reached, subproblems are solved one at a time. The crossover is
the first operator applied, followed by the injection and the LS. The extraction
is performed only if the LS occurred. Then neighboring subproblems have their
solutions updated if necessary, as well as the archive.

aggregation

unknown front

solution

Objective 1

Objective 2

Fig. 1. A bi-objective problem decom-
posed into five scalar problems with
MOEA/D.

Size 2

Size 3

...

Learning
Group

Injection

Fig. 2. Injection of a frequent pattern of
size 3 in a VRPTW solution.

New Neighborhood Strategies for the bVRPTW 51

Algorithm 1: The A framework.
Input: M weight vectors w1, . . . , wM and the size m of each neighborhood.
Output: The external archive A
/* Initialisation */

1 A ← ∅
2 P ← random initial population (xi for the i-th subproblem)
3 for i ∈ {1, . . . , M} do
4 N (i) ← indexes of the m closest weight vectors to wi

5 xi ← LS(xi)

6 Obji ← F (xi)
7 Gi ← ∅

/* Core of the algorithm */

8 while not stopping criteria satisfied do
9 for i ∈ {1, . . . , M} do

10 (k, l) ← select randomly two indexes from N (i)

11 xc ← Crossover(xk, xl)
12 xinj ← Injection(s, xc)
13 x′ ← LS(xinj)
14 if LS applied then
15 K ← Extraction(x′)
16 G1, . . . , GM ← update with K
17 for j ∈ N (i) do
18 if gj(x

′) ≤ gj(x
j) then

19 xj ← x′

20 Objj ← F (x′)

21 A ← Update(A, x′)

22 return A

3.2 Strategy of Exploration

In this section we give more details about the two exploration strategies consid-
ered in the local search. In routing problems, the most commonly used neigh-
borhood exploration strategy is the classical best strategy, where the best move
found by the operator is applied. That is why, we consider this strategy as the
reference. Although this exploration allows a fast convergence towards a local
optimum it requires an entire exploration of the neighborhoods before applying
a single move, that is time consuming.

Here we propose a first-best strategy, which is inspired from [15]. This method
is commonly used to solve flowshop problems. Algorithm 2 gives the pseudo-code
of the first-best procedure. The procedure requires a neighborhood operator (e.g.
Swap, Relocate or 2-opt∗), and the solution x which undergoes the LS. For the
given operator we try to insert each customer to its best location, considering
the possible moves allowed by the operator. These moves are given through the

52 C. Legrand et al.

procedure generate moves (l.7 of Algorithm 2). We repeat the process until no
more improving moves are found for any customer.

The two strategies considered, best and first-best, lead to two variants of the
algorithm A, that are respectively Abest and Afirst−best.

Algorithm 2: The First − Best procedure.
Input: A solution x and a neighborhood operator N
Output: A local optimum

1 improve ← True
2 while improve do
3 improve ← False
4 indexes ← shuffle([1 . . . N])
5 for customer ∈ indexes do
6 x′ ← remove customer from x
7 moves ← generate moves(customer, N)
8 x′ ← best solution obtained by applying a move from moves
9 if g(x′) < g(x) then

10 x ← x′

11 improve ← True

12 return x

3.3 Granularity and Pruning of Neighborhoods

In routing problems, many moves of a neighborhood operator can be a priori
classified as irrelevant, and thus should not be considered during the neighbor-
hood exploration. Most of the time these moves consider customers that are “far”
distant. Having a method that restricts the neighborhood to relevant moves is
interesting to spare time and resources during the LS. However, such a method
requires a way to quantify the closeness between customers. In [18], the closeness
between two customers is evaluated according to the distance between them. If
it is enough for single-objective problems, it might not be adapted for multi-
objective problems. In particular for our bi-objective VRPTW, close customers
can incur a big waiting time if they are visited in the same route. Once a metric
between customers is defined, a natural way to prune the neighborhood is to
consider moves including the δ nearest customers for the metric defined.

For our study we compare two different metrics. The first metric, called d1,
is the classical metric used in single-objective routing problems: the distance
between two customers is simply the euclidean distance between them. The
second metric, d2, is an aggregation of both objectives. More precisely, each
subproblem generated in MOEA/D, with weight vector w = (w1, w2), has its
own metric that is defined as: dw2 (u, v) = w1 · distance(u, v) + w2 · WT (u, v).
The value WT (u, v) is the waiting time incurred by going to v from u. If [au, bu]
(resp. [av, bv]) is the time window of customer u (resp. v), su the service time

New Neighborhood Strategies for the bVRPTW 53

of customer u and tuv the traveling time from u to v, then WT is expressed as
follows: WT (u, v) = max(0, av − (au + su + tuv)).

The strategies presented in this section lead to four variants of A following
the exploration strategy and the distance metrics used by the neighborhood
operators: Abest

d1
, Afirst−best

d1
, Abest

d2
, and Afirst−best

d2
.

4 Experimental Setup

4.1 The Solomon’s Benchmark

We use the Solomon’s instances [17] to evaluate the performance of the four
variants presented in Sect. 3. The set contains 56 instances divided into three
categories according to the type of generation used, either R (random), C (clus-
tered) or RC (random-clustered). The generation R randomly places customers
in the grid, while the generation C tends to create clusters of customers. The
generation RC mixes both generations. Each category is itself divided into two
classes, either 1XX or 2XX, according to the width of time windows. Instances
of class 1XX have wider time windows than instances of class 2XX, meaning
that instances 2XX are more constrained. All 56 instances exist in three sizes:
25, 50 and 100. However, instances of size 25 and 50 are restrictions of instances
of size 100. For our experiments instances of size 25 are discarded, since they are
too small. Although this set was originally created to evaluate single-objective
algorithms, it is used in the literature to evaluate the performance of multi-
objective algorithms [6,9,13].

4.2 Setup and Tuning

We recall that the four variants compared are: Abest
d1

, Afirst−best
d1

, Abest
d2

and
Afirst−best

d2
. Note that the algorithm Abest

d1
will be our referent algorithm during

the experiments, since it uses state of the art mechanisms.
Each algorithm is tuned to find a good setting of the parameters. To perform

the tuning, we generated 96 new instances of sizes 50 and 100, by using the
method described by Uchoa et al. [20] to mimic the Solomon’s instances.

Each variant uses 10 parameters: M , the number of subproblems considered
and m the size of the neighborhood of each subproblem. The four probabilities
associated to each mechanism: pcro, pinj , pmut, pext. The granularity parameter
δ used to prune the neighborhood during LS. The maximal size MaxSize of the
patterns extracted, and the number NInjected of patterns injected, chosen among
the NFrequent most frequent patterns. The parameters obtained after tuning are
reported in Table 1.

The experiments are performed on two computers “Intel(R) Xeon(R) CPU
E5-2687W v4 @ 3.00 GHz”, with 24 cores each, in parallel (with slurm). The
variants have been implemented using the jMetalPy framework [2].

54 C. Legrand et al.

Table 1. The configurations returned by irace for each variant and for both sizes of
instance.

Parameters Abest
d1 Afirst−best

d1
Abest

d2 Afirst−best
d2

50 100 50 100 50 100 50 100

M 13 68 31 50 42 15 29 15

m 4 26 8 15 6 4 11 4

δ 21 51 25 75 16 19 36 31

pcro 0.94 0.30 0.88 0.86 0.93 0.35 0.94 0.67

pmut 0.06 0.05 0.42 0.55 0.05 0.06 0.11 0.21

pext 0.50 0.96 0.48 0.60 0.55 0.90 0.86 0.83

MaxSize 2 3 5 5 2 4 2 5

pinj 0.70 0.88 0.83 0.93 0.89 0.59 0.86 0.70

NFrequent 73 165 74 135 52 175 66 115

NInjected 33 80 17 74 10 63 18 31

4.3 Experimental Protocol

In our experimentation, we investigate the efficiency of the mechanisms proposed,
and their impact on the quality of the solutions returned.

To that aim, all the variants use a same termination criteria, being the max-
imum running time allowed. It is fixed to N × 6 s, where N is the size of the
instance. Each variant is executed 30 times on each instance of the Solomon’s
benchmark (56 instances of size 50, and 56 instances of size 100). For each
algorithm, the k-th run of an instance is executed with the same seed being
10 × (k − 1). To compare the results obtained, we use the hypervolume metric,
since we do not know the true Pareto fronts of the instances. Note that, for the
experiments we use the same values to normalize the objectives of the solutions
returned by all variants. These values are simply the best and worst values for
each objective, obtained among all the executions.

To complete the results obtained, the gap between the best-known and the
best solution found by each algorithm is given, as well as the average gap over
the 30 runs. The optimal solutions are available on CVRPlib.

Finally we compare our best variant, considering the results obtained, to state
of the art single-objective algorithms: the TStw from Schneider et al. [16] and
NBD from Nagata et al. [10], but also to competitive multi-objective algorithms:
the M-MOEAD from Qi et al. [13] and the MODLEM from Moradi [9].

http://vrp.galgos.inf.puc-rio.br/index.php/en/

New Neighborhood Strategies for the bVRPTW 55

5 Analysis of Neighborhood Strategies

The Table 2 regroups the average hypervolume obtained on all classes of instance
for all the variants. One can see that two variants stand out from the others:
Afirst−best

d1
and Afirst−best

d2
. Meaning that the exploration strategy has a positive

impact on the performance of the algorithm, and thus it is better than the strat-
egy best. However the variant Afirst−best

d1
returns slightly higher hypervolumes

than Afirst−best
d2

on most instances, and clearly outperforms Afirst−best
d2

on few
instances (e.g. RC1 of size 50 and C1 of size 100). Indeed, the subproblems which
mainly focus on the waiting time will “forget” the distance between customers.
That can worsen the hypervolume since we would like to obtain the minimal
cost with the minimal possible waiting time in our Pareto front. Knowing that,
the d2 metric can be improved.

Now we analyze the gaps between the best solutions returned for the total
cost objective and the best-knowns. The gaps obtained on instances of size 100
are reported in Table 3 (R instances), Table 4 (RC instances) and Table 5 (C
instances). For each variant, the first column is the gap between the best-known
and the best solution returned, while the second column is the average gap
considering the solutions returned on all 30 runs. One can notice that the variants
Afirst−best

d1
and Afirst−best

d2
still outperform the two other variants. However, this

is the variant Afirst−best
d2

which returns the best results on most instances.

Table 2. Average hypervolume obtained with the four variants on all classes of instance
of both sizes.

Class Size Abest
d1 Afirst−best

d1
Abest

d2 Afirst−best
d2

R1 50 0.716 0.768 0.729 0.783

R2 50 0.666 0.747 0.690 0.743

R1 100 0.773 0.842 0.720 0.833

R2 100 0.626 0.760 0.615 0.747

RC1 50 0.604 0.760 0.611 0.689

RC2 50 0.637 0.682 0.647 0.692

RC1 100 0.682 0.758 0.631 0.739

RC2 100 0.658 0.766 0.662 0.769

C1 50 0.519 0.574 0.523 0.550

C2 50 0.404 0.408 0.414 0.403

C1 100 0.881 0.945 0.846 0.882

C2 100 0.899 0.967 0.858 0.954

56 C. Legrand et al.

Table 3. Gaps (%) obtained for the total cost objective, relatively to the best-known
on instances of class R. For each algorithm, the first column gives the gap with the
best solution found. The second column contains the average gap over the 30 runs.

Instance Size Reference Abest
d1 Afirst−best

d1
Abest

d2 Afirst−best
d2

R101 100 1637.7 0.2 0.9 0.1 0.2 0.1 0.8 0.1 0.2

R102 100 1466.6 0.7 2.0 0.5 1.0 0.4 2.0 0.0 1.0

R103 100 1208.7 2.2 4.6 1.5 3.6 2.3 4.7 1.9 3.4

R104 100 971.5 4.7 8.4 4.8 7.5 5.3 9.2 3.6 7.2

R105 100 1355.3 0.6 2.2 0.4 1.4 0.4 2.4 0.4 1.4

R106 100 1234.6 0.9 4.1 2.3 3.6 2.6 4.2 1.3 3.4

R107 100 1064.6 1.9 6.2 2.5 6.0 4.2 7.2 3.4 5.3

R108 100 932.1 4.1 8.3 5.1 7.2 5.0 9.3 4.8 7.4

R109 100 1146.9 2.7 5.7 1.6 3.1 2.1 6.2 0.9 3.6

R110 100 1068.0 4.7 7.5 3.7 5.7 6.0 9.2 3.9 6.3

R111 100 1048.7 3.7 7.3 3.1 5.6 5.1 7.5 2.5 5.8

R112 100 948.6 4.0 8.6 4.0 7.7 4.6 10.6 3.5 8.1

Mean gap 2.5 5.5 2.5 4.4 3.2 6.1 2.2 4.4

R201 100 1143.2 4.2 9.5 2.2 5.1 3.3 6.9 2.9 4.9

R202 100 1029.6 6.2 9.6 3.8 6.5 1.5 8.6 3.1 6.0

R203 100 870.8 6.0 11.4 3.4 6.3 3.6 9.0 1.7 6.4

R204 100 731.3 3.3 9.6 3.0 5.9 1.9 9.0 3.4 5.6

R205 100 949.8 3.4 7.1 0.9 4.9 3.5 7.2 0.8 4.0

R206 100 875.9 3.4 6.8 2.6 5.3 2.7 6.9 2.3 6.2

R207 100 794.0 5.0 8.9 3.7 6.0 2.7 9.2 1.8 5.9

R208 100 701.0 4.8 8.4 3.0 6.2 3.7 8.4 2.3 6.2

R209 100 854.8 2.8 7.0 2.2 4.9 3.8 6.8 1.7 4.6

R210 100 900.5 6.1 9.6 4.1 6.6 4.2 8.4 3.0 6.7

R211 100 746.7 5.5 8.6 2.4 5.2 5.4 9.9 2.5 5.9

Mean gap 4.6 8.8 2.8 5.7 3.3 8.2 2.3 5.7

6 Comparison with State of the Art Algorithms

Considering the results obtained in the former section, we decide to compare
the variant Afirst−best

d2
to the other state of the art algorithms. Table 6 compares

the average value of the best traveling cost obtained by different algorithms on
each class of instance of size 100. We recall that, there are two single-objective
algorithms: TStw [16] and NBD [10], and two multi-objective algorithms: M-
MOEA/D [13] and MODLEM [9]. Note that MODLEM integrates a learning

New Neighborhood Strategies for the bVRPTW 57

Table 4. Gaps (%) obtained for the total cost objective, relatively to the best-known
on instances of class RC. For each algorithm, the first column gives the gap with the
best solution found. The second column contains the average gap over the 30 runs.

Instance Size Reference Abest
d1 Afirst−best

d1
Abest

d2 Afirst−best
d2

RC101 100 1619.8 2.4 4.0 1.5 3.2 1.3 4.2 1.6 3.2

RC102 100 1457.4 2.5 4.8 2.4 3.5 2.1 5.2 2.3 4.2

RC103 100 1258.0 7.2 10.3 7.6 9.5 7.5 11.0 7.3 9.2

RC104 100 1132.3 2.7 8.9 4.9 8.9 6.6 10.5 5.5 9.1

RC105 100 1513.7 4.6 7.0 3.4 5.5 3.3 6.7 2.4 5.3

RC106 100 1372.7 5.4 8.2 3.2 5.6 4.2 7.9 3.7 6.2

RC107 100 1207.8 6.9 11.0 5.6 10.0 8.0 12.1 4.8 10.4

RC108 100 1114.2 5.9 10.3 4.3 10.0 4.8 12.8 5.5 10.7

Mean gap 4.7 8.1 4.1 7.0 4.7 8.8 4.1 7.3

RC201 100 1261.8 2.0 7.5 2.0 4.2 2.3 6.8 1.2 3.9

RC202 100 1092.3 2.4 8.7 2.0 4.0 1.6 7.7 1.4 3.8

RC203 100 923.7 5.5 11.4 2.5 5.7 4.8 9.3 2.1 5.5

RC204 100 783.5 4.1 8.3 1.3 5.0 2.1 7.0 1.5 4.3

RC205 100 1154.0 4.9 10.7 2.3 5.7 2.6 7.6 0.5 4.6

RC206 100 1051.1 3.8 8.0 2.5 5.3 2.9 7.0 2.0 4.7

RC207 100 962.9 1.3 6.9 1.0 5.2 3.5 6.7 2.9 5.0

RC208 100 776.1 4.5 7.8 2.5 5.3 5.0 8.4 0.8 5.3

Mean gap 3.6 8.7 2.0 5.0 3.1 7.6 1.5 4.6

mechanism, that is a learnable evolution model based on decision trees. More-
over the algorithms that solve the VRPTW in a single-objective context, first
minimize the number of vehicles and then the traveled distance. To be fair,
we add in brackets the average number of vehicles contained in the solutions
returned by our algorithm.

Since our algorithm did not focus on the number of vehicles, it seems normal
that the average number of vehicles used in the solutions returned is much higher
than the one found by other algorithms. However, our algorithm is able to reach
competitive results on C instances.

58 C. Legrand et al.

Table 5. Gaps (%) obtained for the total cost objective, relatively to the best-known
on instances of class C. For each algorithm, the first column gives the gap with the
best solution found. The second column contains the average gap over the 30 runs.

Instance Size Reference Abest
d1 Afirst−best

d1
Abest

d2 Afirst−best
d2

C101 100 827.3 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0

C102 100 827.3 0.0 1.7 0.0 0.2 0.0 0.6 0.0 1.0

C103 100 826.3 0.0 7.3 0.1 5.1 0.0 12.0 0.0 9.3

C104 100 822.9 0.1 10.5 1.6 12.4 0.9 16.7 0.4 12.1

C105 100 827.3 0.0 2.3 0.0 0.0 0.0 0.9 0.0 1.0

C106 100 827.3 0.0 1.4 0.0 0.0 0.0 1.0 0.0 1.4

C107 100 827.3 0.0 2.2 0.0 0.2 0.0 3.0 0.0 2.4

C108 100 827.3 0.0 1.7 0.0 0.6 0.0 5.5 0.0 2.7

C109 100 827.3 0.0 2.7 0.0 1.5 0.0 5.8 0.0 4.4

Mean gap 0.0 3.4 0.2 2.2 0.1 5.1 0.0 3.8

C201 100 589.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C202 100 589.1 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0

C203 100 588.7 0.0 1.4 0.0 0.8 0.0 1.9 0.0 1.4

C204 100 588.1 0.6 5.2 0.0 2.1 1.1 7.2 0.0 2.5

C205 100 586.4 0.0 0.7 0.0 0.1 0.0 0.4 0.0 0.1

C206 100 586.0 0.0 0.2 0.0 0.0 0.0 0.5 0.0 0.0

C207 100 585.8 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0

C208 100 585.8 0.0 0.2 0.0 0.0 0.0 0.5 0.0 0.0

Mean gap 0.1 1.0 0.0 0.4 0.1 1.4 0.0 0.5

Table 6. Comparison of the average of the best traveling cost obtained on instances
of size 100 between four state of the art algorithms and our algorithm Afirst−best

d2
. The

corresponding average number of vehicles used is given in brackets.

Class NBD [10] TStw [16] M-MOEA/D [13] MODLEM [9] Afirst−best
d2

R1 1210.34 (11.9) 1220.83 (11.9) 1216.73 (12.4) 1210.40 (11.9) 1196.22 (13.8)

R2 951.03 (2.7) 959.86 (2.7) 924.18 (3.1) 916.95 (4.6) 892.85 (5.0)

RC1 1384.16 (11.5) 1392.54 (11.5) 1390.35 (11.9) 1384.17 (11.5) 1387.11 (13.8)

RC2 1119.24 (3.3) 1140.13 (3.3) 1119.93 (3.4) 1074.67 (4.0) 1015.76 (5.8)

C1 828.38 (10.0) 828.38 (10.0) 828.38 (10.0) 828.38 (10.0) 827.02 (10.0)

C2 589.86 (3.0) 589.86 (3.0) 589.86 (3.0) 589.86 (3.0) 587.38 (3.0)

7 Conclusion

LS are commonly used in evolutionary algorithms to improve the performance.
In this paper we considered a LS from [16], adapted to the VRPTW, that uses
a best strategy for exploration. That strategy has been compared to a first-best
strategy inspired from ones used for other combinatorial problems like flowshops.

New Neighborhood Strategies for the bVRPTW 59

Through our experiments, conducted on the Solomon’s instances, we showed
that the adapted first-best strategy performs better than the best strategy, on
the bVRPTW. We also investigated a new method for pruning the solution
neighborhood taking into account the second criterion of our bVRPTW, being
the waiting times. Our pruning method is able to reach similar results than the
original one, but with smaller neighborhoods. The experimental results show also
the benefit of our pruning method to reach better solutions when considering the
first criterion only. The performance compared to state-of-the-art algorithms for
both single- and bi-objective VRPTW show the interest of our new neighborhood
strategies. Future works will investigate the neighborhood exploration strategy
for other variants of routing problems. Moreover, we will analyze the impact of
the weights of our pruning method on the Pareto front.

References

1. Arnold, F., Santana, Í., Sörensen, K., Vidal, T.: PILS: exploring high-order neigh-
borhoods by pattern mining and injection. Pattern Recognit. 116, 107957 (2021)

2. Benitez-Hidalgo, A., Nebro, A.J., Garcia-Nieto, J., Oregi, I., Del Ser, J.: jMetalPy:
a python framework for multi-objective optimization with metaheuristics. Swarm
Evol. Comput. 51, 100598 (2019)

3. Blot, A., Kessaci, M.É., Jourdan, L.: Survey and unification of local search tech-
niques in metaheuristics for multi-objective combinatorial optimisation. J. Heurist.
24(6), 853–877 (2018). https://doi.org/10.1007/s10732-018-9381-1

4. Castro-Gutierrez, J., Landa-Silva, D., Pérez, J.M.: Nature of real-world multi-
objective vehicle routing with evolutionary algorithms. In: 2011 IEEE International
Conference on Systems, Man, and Cybernetics. IEEE (2011)

5. Coello, C.A.C., Dhaenens, C., Jourdan, L.: Multi-objective combinatorial optimiza-
tion: problematic and context. In: Coello Coello, C.A., Dhaenens, C., Jourdan, L.
(eds.) Advances in Multi-Objective Nature Inspired Computing. Studies in Com-
putational Intelligence, vol. 272, pp. 1–21. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11218-8 1

6. Ghoseiri, K., Ghannadpour, S.F.: Multi-objective vehicle routing problem with
time windows using goal programming and genetic algorithm. Appl. Soft Comput.
10(4), 1096–1107 (2010)

7. Knowles, J.D.: Local-search and hybrid evolutionary algorithms for Pareto opti-
mization. Ph.D. thesis, University of Reading Reading (2002)

8. Legrand, C., Cattaruzza, D., Jourdan, L., Kessaci, M.-E.: Enhancing MOEA/D
with learning: application to routing problems with time windows. In: Proceedings
of the GECCO Companion (2022)

9. Moradi, B.: The new optimization algorithm for the vehicle routing problem with
time windows using multi-objective discrete learnable evolution model. Soft. Com-
put. 24(9), 6741–6769 (2020)

10. Nagata, Y., Bräysy, O., Dullaert, W.: A penalty-based edge assembly memetic
algorithm for the vehicle routing problem with time windows. Comput. Oper. Res.
37(4), 724–737 (2010)

11. Pecin, D., Contardo, C., Desaulniers, G., Uchoa, E.: New enhancements for the
exact solution of the vehicle routing problem with time windows. INFORMS J.
Comput. 29(3), 489–502 (2017)

https://doi.org/10.1007/s10732-018-9381-1
https://doi.org/10.1007/978-3-642-11218-8_1
https://doi.org/10.1007/978-3-642-11218-8_1

60 C. Legrand et al.

12. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing
problem. Comput. Oper. Res. 31(12), 1985–2002 (2004)

13. Qi, Y., Hou, Z., Li, H., Huang, J., Li, X.: A decomposition based memetic algorithm
for multi-objective vehicle routing problem with time windows. Comput. Oper. Res.
62, 61–77 (2015)

14. Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective
optimization. In: 2015 Latin American computing conference (CLEI), pp. 1–11.
IEEE (2015)

15. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049
(2007)

16. Schneider, M., Schwahn, F., Vigo, D.: Designing granular solution methods for
routing problems with time windows. Eur. J. Oper. Res. 263(2), 493–509 (2017)

17. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987)

18. Toth, P., Vigo, D.: The granular tabu search and its application to the vehicle-
routing problem. INFORMS J. Comput. 15(4), 333–346 (2003)

19. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. SIAM
(2014)

20. Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A.: New
benchmark instances for the capacitated vehicle routing problem. Eur. J. Oper.
Res. 257(3), 845–858 (2017)

21. Varun Kumar, S., Panneerselvam, R.: A study of crossover operators for genetic
algorithms to solve VRP and its variants and new sinusoidal motion crossover
operator. Int. J. Comput. Intell. Res. 13(7), 1717–1733 (2017)

22. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with
adaptive diversity management for a large class of vehicle routing problems with
time-windows. Comput. Oper. Res. 40, 1 (2013)

23. Xu, Q., Xu, Z., Ma, T.: A survey of multiobjective evolutionary algorithms based on
decomposition: variants, challenges and future directions. IEEE Access 8, 41588–
41614 (2020)

24. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11, 6 (2007)

25. Zhou, Y., Wang, J.: A local search-based multiobjective optimization algorithm
for multiobjective vehicle routing problem with time windows. IEEE Syst. J. 9(3),
1100–1113 (2014)

26. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Per-
formance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

Tabu Search with Multiple Decision
Levels for Solving Heterogeneous Fleet

Pollution Routing Problem

Bryan F. Salcedo-Moncada1,2 , Daniel Morillo-Torres2(B) ,
and Gustavo Gatica3

1 Universidad Pontificia Bolivariana, Palmira, Colombia
bryan.salcedo@upb.edu.co

2 Pontificia Universidad Javeriana Cali, Cali, Colombia
{bryansalcedo,daniel.morillo}@javerianacali.edu.co

3 Universidad Andres Bello, Santiago, Chile
ggatica@unab.cl

Abstract. Organizations, in order to gain a competitive advantage,
must improve their logistics performance along with the planning and
distribution of their goods. Thus, they face significant challenges in man-
aging their orders to be delivered on time. However, transportation is
responsible for 79% of the CO2 emissions of the total polluting gases
in the atmosphere. Therefore, there is a growing interest to investigate
methods to optimize logistics and to consider environmental aspects.
However, the literature only considers realistic system characteristics
such as: different vehicles and speeds, time windows and route incli-
nation. For this reason, the focus is on the solution of an extension
with a heterogeneous fleet and discrete speeds of the Vehicle Routing
Pollution Problem (PRP), whose objective is the reduction of green-
house gases (GHG). Based on the MEET model, the main polluting
gases with the greatest impact on health are measured: carbon diox-
ide (CO2), nitrogen dioxide (NOX) and carbon monoxide (CO). For its
solution, a Tabu Search metaheuristic is proposed with different decision
levels: node sequence, assigned speeds and vehicles used, from different
neighborhood structures. Finally, the balance between exploration and
exploitation is achieved by incorporating favorable attributes to the cre-
ated solutions. The proposed metaheuristic achieves efficient results both
in total logistic cost and in emissions released to the environment.

Keywords: Pollution Routing Problem · Heterogeneous fleet · Tabu
search

1 Introduction

Transportation is one of the main ways of generating damaging impacts on the
environment from greenhouse gases (GHG). These gases, particularly carbon

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 61–75, 2023.
https://doi.org/10.1007/978-3-031-26504-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_5&domain=pdf
http://orcid.org/0000-0003-4240-8971
http://orcid.org/0000-0001-7731-1104
http://orcid.org/0000-0002-1816-6856
https://doi.org/10.1007/978-3-031-26504-4_5

62 B. F. Salcedo-Moncada et al.

dioxide (CO2), generate high volumes of pollution, affecting human health and
negatively impacting the ozone layer [5]. The United States Environmental Pro-
tection Agency (EPA), through its inventory of greenhouse gas emissions and
sinks in the USA, places transportation as the sector with the highest energy
consumption in 2020. Because it releases 1 565 million metric tons (MMT) of
CO2 into the atmosphere, which represents 79% of the total GHG released [32].

The damage caused by the effects of transportation on the environment calls
for the evolution of green supply chain management, logistics and green trans-
portation. It is receiving increasing attention from companies, academia and
governments [14]. Consequently, the literature starts from the central problems
of logistics, such as the Vehicle Routing Problem (VRP), which usually focuses
on the minimization of distances or route costs, to incorporate environmental
components. Thus, the Pollution Routing Problem (PRP) is defined, which is
the environmental evolution of the VRP [14]. By reducing the distance, it may
be thought that fuel consumption is also being minimized and, likewise, the
emission of polluting gases. However, this is not really the case, as there are sev-
eral contributing factors, such as the type of vehicle, the relationship between
its capacity and the load transported, the slopes of the roads, the speed of the
vehicle during the trip, among others [24].

There is concern about the environmental consequences of the greenhouse
effect in the world, and deterrent measures must be implemented [2]. The
challenge for Colombia is great, there are several fronts that can lead to cli-
mate change mitigation and help a sustainable environment; among them is the
improvement of the transportation sector to reduce GHG emissions. According
to the Colombian Ministry of Mines and Energy, in 2017, transportation is the
sector with the highest energy consumption in Colombia, its consumption is
39.8% with respect to the total of sectors. It represents 11 812 kt/year (kilotons
of oil equivalent).

As a result, between 1990–2012, the country’s emissions increased by 15%,
with the industry, mining and energy, and transportation sectors showing the
greatest increase according to [7,15]. On the other hand, Colombia is interested
not only in improving its logistics processes, but also in implementing strategies
to reduce pollution. According to Colombia’s National Planning Department,
at least half of the companies develop green logistics actions, with emissions
reduction being the fourth most important [6].

The literature presents high-precision models that involve some of the prob-
lems mentioned above. There are few works that incorporate several realistic
characteristics simultaneously. For example, discretized speed between routes
(low, medium and high speed), time windows for receiving customer orders,
the gradient between routes (the slope of the tracks) and the load transported
between nodes. For this reason, this research addresses a heterogeneous exten-
sion of the PRP that includes all the aforementioned characteristics. For its
solution, a Tabu Search metaheuristic is proposed, with the intention of reduc-
ing the costs associated with the use of different vehicles, the payment to drivers
and the costs related not only to the emission of carbon dioxide (CO2), but

Tabu Search with Multiple Decision Levels for HPRP 63

also Carbon Monoxide (CO) and nitrogen dioxide (NOX). These are the most
harmful pollutants emitted mainly by vehicle exhaust gases [21].

The rest of this document is organized as follows. Section 2 describes the
problem addressed. Section 3 contains the most relevant background informa-
tion, followed by Sect. 4 where the proposed metaheuristic is detailed. Section 5
presents the computational results and finally the conclusions in Sect. 6.

2 Problem Description

One of the central problems in logistics is the VRP. In general, this consists
of finding routes (Hamiltonian cycles) for a subset of nodes for each available
vehicle with a defined capacity. Thus, all customers are visited and returned to
the starting point (known as depot). The total distance traveled is minimized.
Due to its complexity, the VRP has demonstrated as part of the NP-hard [18]
set. One of the extensions of this problem is the one that considers not only the
distance as an objective to be minimized, but also considers the reduction of
elements that contribute to pollution. Generally, these elements are greenhouse
gases. This problem is the known as PRP, a detailed description of which will
be given in this section.

Formally, the PRP addressed in this research can be defined by a vehicle
circulation network represented by the graph G = (N,A), with a set N =
{0, · · · , n, · · · , n′} of vertices and with a set A = {(i, j) ∈ N2, i �= j} of arcs.
N includes both nodes (customers) and the depots (n = 0). Each arc (i, j) ∈ A
has an associated travel distance Dij [km], and a track gradient, called road
gradient Gij [%]. A value of 0% indicates a flat road and a value of 10% indicates
a maximum slope. The sign of the parameter indicates whether the slope is
ascending or descending. In addition, the slope is considered symmetric, i.e., if
the Gab = %, then Gba = −%.

The use of a heterogeneous fleet K = {1, 2, 3} with different capacities Qk

[kg] is considered, not only to make the problem more realistic but also because
the use of a heterogeneous fleet can help in the overall reduction of emissions [4].
It will also be taken into account that each customer has a time constraint for
his visit with a non-negative demand Demj [kg] for a single product. Thus, each
customer j has a time window [Tminj , Tmaxj] in seconds, where Tminj and
Tmaxj represent the earliest and latest delivery time. Customers must be served
exclusively in this time window, where waiting time is allowed. In addition, each
customer has an associated service time Tsj [s].

Each of these vehicles, on each arc (i, j) ∈ A can choose the speed that it
will travel on that arc. The speed V elv, v ∈ V = {1, 2, 3} is discretized in three
levels: slow, medium and fast. According to the regulations in Colombia these
speeds are: 30, 55 and 80 [km/h]. [22]. Finally, each vehicle will generate CO2,
NOX and CO pollutant emissions, depending on the chosen speed, the gradient
of the road and the current load on that stretch.

The objective of the problem is to find the route for each type of vehicle,
with its respective speed allocation in each arc and the sequence of customers

64 B. F. Salcedo-Moncada et al.

(nodes) to visit to satisfy the demand and time windows. Thus, reducing the
costs of the use of the different vehicles, the payment of the drivers and the costs
of signal emissions. As an example, Fig. 1 shows the best solution for a set of
10 nodes according to the above characteristics; the data correspond to instance
PB-UK10 01-B. The instances are described in Sect. 5.

Depot

Fig. 1. A optimal solution for PB-UK10 01-B instance.

3 Literature Review

In recent years, research in the area of logistics has focused on global environ-
mental concerns [34]. Consequently, research associated with vehicle routing,
such as VRP, which seeks only the minimization of total transportation costs,
evolves through an environmental approach, these problems are known as Green-
Vehicule Routing Problem (GVRP).

There are three categories of GVRP: PRP, Green-VRP (GVRP), and reverse
logistics VRP. All categories coincide in the minimization of economic and envi-
ronmental costs [19]. To distinguish between the first two, the PRP focuses on

Tabu Search with Multiple Decision Levels for HPRP 65

minimizing greenhouse gas emissions and the GVRP on minimizing the total dis-
tance of alternative fuel vehicles instead of conventional vehicles, usually with
charging stations.

Naderipour and Alinaghian in 2016 seek to solve the Open Time Dependent
Vehicle Routing Problem (OTDVRP) using an improved Particle Swarm Opti-
mization Algorithm (PSO) algorithm. In this model, despite not considering a
heterogeneous fleet, the authors propose an emission measurement model based
on the Methodologies for Estimating Emissions of Air Pollutants from Transport
(MEET). [13]. Where vehicle speed, load and road gradient are the main factors
affecting pollutant emissions [25].

For their part, Ren et al. in 2020 consider that GHG production damages the
environment, threatens human life and health. Therefore, he studies the Ecolog-
ical VRP with mixed vehicles also based on the MEET model to simultaneously
calculate five types of pollutants: CO, CO2, COV , NOX and PM . However, it
does not consider the slope of the roads, as they are relatively flat in the appli-
cation area of their research [30]. Liu et al. in 2020, in contrast, focuses solely on
the MEET model to calculate carbon emissions and fuel consumption of vehicles
[20].

Thus, they propose a model that addresses the Time Dependent Vehi-
cle Routing Problem With Time Windows (TDVRPTW). It considers time-
dependent vehicle speeds, vehicle capacity and customer time constraints. It
seeks to minimize driver costs, fuel consumption and carbon emissions using
Ant Colony Optimization (ACO). Moryadee et al. in 2019 adds to the approach
(TDVRP, Time Dependent Vehicle Routing Problem) in the city of Bangkok and
propose, for CO2 emission reduction, a comprehensive emissions model based on
[5], where GHG emissions are directly converted from fuel consumption [24].

For these reasons, various strategies for the solution can be approached and
classified according to the characteristics of PRP. In principle as exact methods
that guarantee the optimality of the problem such as Integer-Mixed Linear Pro-
gramming [8,12,14]. Secondly, with the use of heuristics, as methods of limited
exploration of the search space for the generation of solutions with reasonable
computational times [3,29]. Finally, through metaheuristics, which perform a
robust search in the solution space escaping local optima [20,25].

Several authors share heuristic and metaheuristic algorithms for different
extensions of the PRP, who sacrifice accuracy for computational efficiency to
achieve results. TS and VNS stand out for solution in real cases [26]. A summary
of the main investigations is presented in Table 1, where Ho: homogeneous fleet,
He: heterogeneous fleet, Sing: single depot, Mult: multiple depot, V: velocity, C:
capacity, TD: time dependence, and TW: time window.

Based on this review, despite the growth of research in recent years, there
are few who address the PRP with a heterogeneous fleet (HPRP) extension with
discrete velocities, time windows, the gradient of the tracks and with a reservoir.
For this reason, this work has as main contributions: first, characterizing the
PRP with the characteristics described above, and second the development of a
novel Tabu search with multiple decision levels for its solution.

66 B. F. Salcedo-Moncada et al.

Table 1. Main research related to PRP.

Paper Fleet Depot V C TD TW Solution approach

Ho. He. Sing. Mult.

[5] � � � � � MILP - Branch-and-Cut

[8] � � � MILP - CW - CBCA

[26] � � � � TS

[25] � � � � � PSO - IPSO

[10] � � � � � MINLP - Disjunctive convex programming

[14] � � � � MILP - GA

[28] � � � MCDA - TVa-PSOGMO

[24] � � � � � � GA - TS

[33] � � � � � MINLP - NSGA-II

[23] � � � � MILP - VNS - TS

[20] � � � � � � ACO

[30] � � � � � VNS

[12] � � � � � MILP

4 Proposed Solution Methodology

This section describes the methodology proposed to solve the HPRP, the objec-
tive is to reduce the costs of the use of the different vehicles, the cost of the
driver and the environmental costs incurred in the emission of CO, CO2 and
NOX , and thus reduce their emission. Initially, the method for measuring and
quantifying emissions is defined, based on the MEET adapted from [25]. Then,
the variant that includes a heterogeneous fleet with three different types of vehi-
cles is detailed, based on [14], and discretized velocity and time windows, taking
the study of [12]. Subsequently, the generation of the initial solution, the coding
and decoding used, and the design of the Tabu Search are described.

4.1 Measurement of Emissions

The MEET pollutant measurement model is used [25]. Where vehicle speed, load
and road slope are the main factors affecting pollutant emissions. This model
is used to measure carbon dioxide (CO2), carbon monoxide (CO) and nitrogen
dioxide (NOX). The model is selected for its adaptability in on-road measure-
ments and for being suitable for vehicle types of less than 7.5 tons [20]. The
Eq. (1) represents the total emissions (E) of CO2, NOX and CO [g] generated
on a route. Where ei is the emission factor type i [g/km] and D is the distance
traveled [km] by vehicles on a route.

E =
3∑

i=1

ei · D (1)

Tabu Search with Multiple Decision Levels for HPRP 67

Equations (2), (3) and (4) express the relationship between the emission fac-
tors of CO2, NOX and CO, respectively. Where GCi represents the road gradi-
ent correction coefficient (Eqs. (5), (6) and (7)) and LCi represents the vehicle
load coefficient correction between nodes (Eqs. (8), (9) and (10)). On the other
hand, v indicates the vehicle speed [km/h], γ the gradient of the road [%], finally
x ∈ [0, 1] the ratio between the vehicle load and its capacity between nodes.

e1 =
(

110 + 0.000375v3 +
8702

v

)
· GC1 · LC1 (2)

e2 =
(

0.508 + 3.87−6v3 +
92.5
v

− 77.3
v2

)
· GC2 · LC2 (3)

e3 =
(

1.5 − 0.0595v + 0.001119v2 − 6.16−6v3 +
58.8
v

)
· GC3 · LC3 (4)

GC1 = e((0.0059v2−0.0775v+11.936)γ) (5)

GC2 = e((0.0062v2−0.0427v+11.301)γ) (6)

GC3 = e((0.001v2−0.0442v+6.1207)γ) (7)

LC1 = (0.27)x + 1 + 0.0614γx − 0.0011γ3x − 0.00235vx −
(

1.33
v

)
x (8)

LC2 = (0.26)x + 1 + 0.0672γx − 0.00117γ3x − 1.90−5v2x −
(

1.6
v

)
x (9)

LC3 = (0.09)x + 1 + 0.037γx − 5.29−4γ3x − 1.52−7v3x (10)

Parameters used are based on [13] y [30]. The monetary cost of the three
pollutants is calculated based on [5], where one gram of emission is equivalent
to 0.000027 dollars. The rate is used since Colombia does not have a procedure
for this calculation [12].

4.2 Heterogeneous Fleet

This paper extends the heterogeneous fleet variant with limited vehicles, taking
into account the fixed costs [CFk] in dollars for using k vehicles according to
their Qk capacity. The payment to drivers is considered, according to a standard
[Pt] payment of 3 [$UDS/hour] [25]. If a vehicle leaves the depot at time t1 and
returns to the depot at time t2 the worker’s pay will be equal to Pt · (t2 − t1).
The fleet characteristics are detailed in Table 2.

68 B. F. Salcedo-Moncada et al.

Table 2. Heterogeneous fleet available.

Vehicle k Empty weight [kg] Capacity Qk [kg] Fixed cost CFk [$] Variable cost Pt $/h

1 4 100 2 218 60 3

2 5 200 2 986 81 3

3 7 500 4 782 129 3

4.3 Initial Solution

The initial routing solution is based on the idea of the Nearest Neighbor Algo-
rithm (NNA) [9], used extensively in other research to construct the initial solu-
tion of the problem [16,27,31]. In this case, the NNA adapts the Least Pollution
Neighbor (LPN) taking into account the distance and gradient variables. The
less distance traveled and the less gradient the road has, the less pollution the
vehicle will generate. The inputs to perform the VMC are the matrix of distances
and gradients, travel time, service time and customer time windows.

Initially, it takes into account the number of available vehicles and performs
a random assignment of their departure from the depot. Then the least polluting
neighbor is assigned with respect to the previous node with a random speed, once
a new assignment cannot be made due to capacity limitation or non-compliance
with time sales, another vehicle is taken randomly. To find the nearest neighbor,
the expression (11) must be calculated which normalizes the respective distance
and gradient. Where Dij represents the distance between nodes i and j, Dmax

is the maximum distance between all the nodes, γij is the road gradient between
nodes i and j, and γmax is the maximum gradient. A weighting of 50% was used.

V MCij =
Dij

Dmax
· 0.5 +

γij

γmax
· 0.5 (11)

4.4 Coding and Decoding

The coding consists of three vectors: one for the routing priority between clients
vCus, the second refers to the speed vSpeed used in each arc of vCus, and the
third represents the type of vehicles available vV ehi. It is important to emphasize
that vV ehi should not correspond to the size of vCus, but to the number of
available vehicles. In Fig. 2, the three-vector encoding scheme is shown.

The decoding starts with the selection of a vehicle of the type that stores
vV ehi, then starts building the route with the corresponding vSpeed and vCus
sequence, until the vehicle capacity is covered or else the impossibility to visit
more customers due to time windows. Upon completion of a route, the distances
and emissions of each component are calculated for the route, according to the
methodology detailed in Sect. 4.1. Then the next vV ehi vehicle is chosen and the
process is repeated. At the end, the total distances and emissions of the solution,
and the logistic cost (cost of using the vehicles, drivers’ pay and environmental
cost) are calculated. If there are not enough vehicle types available, they are
chosen randomly.

Tabu Search with Multiple Decision Levels for HPRP 69

Customer sequence

Speed sequence

Vehicle sequence

Direction

Depot

Fig. 2. Solution coding.

4.5 Tabu Search Proposed

Among the metaheuristics proposed for the PRP, Tabu Search (TS) has been
shown to be very effective, because of its relationship between solution quality
and computational time [26]. As such, Tabu Search is expected to be effective
for the present PRP variant. Tabu Search proposed by Glover in 1989, basically
performs a local search by generating neighborhood structures under a greedy
criterion, the main feature is the use of short and long term memory to avoid
converging only to local optima [11].

The main differential of the developed TS is the use of three decision lev-
els, built to find the best possible combinations. Thus, three Tabu Lists (TL)
that interact with the search simultaneously are also defined. One list for each
neighborhood structure (kmax = 3). The first level considers the sequence of
nodes to be visited by the vehicles, related to vCus; for this level it is proposed,
with the intention of reducing the computational effort, to store the attributes
of the movements performed as the nodes involved and their initial positions
in the routes before moving to the next solution. The second level, considers
the assigned speeds, level related to vSpeed, and the third level, takes care of
the search among the assigned vehicles, related to vV ehi. For the last two, the
final sequence is stored for each solution. To measure its performance, fitness is
defined as the sum of the costs of using the different types of vehicles, the costs
of the drivers and the emissions released to the environment.

The TS explores in each iteration the neighboring solutions of a current
solution S since they share a meaningful S structure. The neighbors are obtained
by applying the different types of moves defined in the three decision levels Nk.
Then, the solution representing the best neighbor for each decision level is found.
The best solution will be chosen as the new current solution. The order of the
neighborhoods does not matter, as all must be performed and compared to each
other a total of iterations. Neighborhood structures adapted to the coding are
described below:

– Nk=1: the first neighborhood structure, corresponding to the first decision
level, contemplates the sequence of nodes to be visited by the vehicles. Each
neighbor is found by means of the Exchange [1] movement. The basic idea
is to randomly select two nodes from the sequence vector and exchange the
position between them. An existing path can be modified or created. An
example of this operator is shown in figure Fig. 3.

70 B. F. Salcedo-Moncada et al.

Fig. 3. Example of the exchange operator on the sequence of nodes.

– Nk=2: This second neighborhood structure is intended to alter the speeds
on the routes. This is achieved by generating a perturbation movement in
the assigned speeds, a 30% of the total number of customers in a current S
solution is considered randomly. The perturbation consists of changing the
speed of the affected node to a different one. Three speeds are available and,
always, the random change happens on the two available speeds. The 30%
random change is performed with the intention of generating new neighbors,
but they must contain characteristics of the corresponding current solution.

– Nk=3: the third structure corresponds to the level related to the type of
vehicle used. The operator uses a perturbation movement on the vehicles
randomly, over a percentage equal to the previous structure to generate new
neighbors. When generating the change of vehicles, it takes into account those
available vehicles that have not been previously used in the solution and also,
it considers the case of not having available vehicles of a specific type.

To prevent the search from returning to previously visited solutions and to
direct the search to regions of the solution space not yet explored, the attributes
of the perturbations generated from the three decision structures are declared as
tabu and remain in the corresponding LT. Their permanence, called tabu tenure,
is five occurrences unless the aspiration criterion is met. That is, if a tabu move,
in any of the structures, improves the best solution found up to that point, the
forbidden move must be accepted. Tabu Tenure (list length) is selected due to
the successful work of several studies, among them [26].

Thus, a more efficient intensification search is generated, which succeeds in
exploring areas of the solution space through a cycle of small periods. Algo-
rithm1, depicted the proposed pseudocode of the metaheuristic.

Tabu Search with Multiple Decision Levels for HPRP 71

Algorithm 1. Proposed Tabu search pseudocode.
Input: Initial solution (S0)
Output: Best solution (Sbest)

1: procedure TS
2: Initiation of LTs, Sbest = S0
3: while i ≤ Iteramax do
4: for k = 0, k ≤ 3, k + + do
5: Neighborhoodk = Nk (decision level k)
6: SN∗

k = best of Neighborhoodk
7: Update Taboo lists
8: SA = maxk∈K SN∗

k

9: end for
10: if SA >= Sbest then
11: Sbest = SA
12: end if
13: end while
14: return Sbest

15: end procedure

Finally, as a stopping rule based on computational experimentation runtimes,
an iteration counter is set and the limit Iteramax is defined at 1 000 repetitions.

5 Results

To evaluate the proposed Tabu Search for solving the HPRP and discrete veloc-
ities, we adapt the instances proposed by [12] derived in turn from the instances
of [17] (available at https://github.com/dmorill/HPRP instnaces). In total there
are 360 original instances, divided into 18 sets of 20 instances each. Because of
the complexity of the model, this paper addresses 100 instances composed of the
10, 20, 50, 75, and 100 customer sets (each with 20 instances).

The proposed algorithm has been implemented in C++ language under Win-
dows 10 pro. The computational tests are run on a computer with Intel Core i5
(2.30 GHz) processor with 8 GB of RAM. The results are summarized in Table 3,
where each row represents a set of 20 instances with a defined number of clients
and type of time windows. Each reported value represents the average found
among the 20 instances in each set.

Table 3 shows that the proposed TS manages to obtain the total costs of
the routes, composed of the costs of using the different types of vehicles, the
payment to the drivers, and the total emissions with a minimum of 7 s for the
smallest instances and 42 min in those instances of 100 nodes. While the time is
acceptable, the performance of the operators in considering all possible neigh-
bors makes the scaling of the algorithm not so attractive. To the best of our
knowledge, no other methods applied to this specific problem, as presented in
Table 1, have been found in the literature. Therefore, this would be the first
approach that solves it according to the characteristics described in Sect. 2.

https://github.com/dmorill/HPRP_instnaces

72 B. F. Salcedo-Moncada et al.

Table 3. Computational results of the TS in the selected set of instances.

Number of

customers

Rute

cost

[$]

Total

distance

[km]

Emission factors [g/km] Total

emission [t]

Used vehicles Execution

time [s]

CO2 NOx CO 1 2 3

10 298,3 715,1 5 179,5 48,4 23,9 1.1 4 2 1 7,4

20 552,9 1 315,6 10 249,3 96,3 47,2 2.4 4 3 0 36,66

50 1 276,1 2 656,6 22 607,7 211,1 111,7 4.5 7 6 2 373,7

75 2 009,9 4 228,5 31 217,5 288,5 163,3 6.6 10 9 3 1 126,7

100 2 682,3 5 444,6 42 458,7 391,9 221,2 8.7 12 12 7 2545,1

Also evident is the ratio of kilograms of GHG type per kilometer traveled.
The CO2 stands out, reaching 98.6% of the total gases measured. On the other
hand, it can be seen that the use of 1 type vehicles is much higher in relation to
the other types. The cause may be that they do not need to use all their capacity,
given the restriction of the time windows, and must return to the depot.

On the other hand, the percentage of improvement with respect to the solu-
tion found by the Sbest TS and the initial S0 solution was quantified. For all
sets of instances, an improvement from 85% to 152% was found. As for the total
emissions [t], it is reduced on average for all instances by 249%. At the same
time, it is possible to indicate that the number of vehicles used decreases signif-
icantly compared to the initial solution, as the number of customers increases.
This is because the larger the customer sequence list, the greater the possible
combinations that achieve the routing while decreasing the number of vehicles.

Likewise, it was observed among all the iterations performed, which ones
found in higher proportion the best neighbor for each instance size. It was
found that, as the number of clients increases, the neighborhood structure N1

(Exchange movement) presents most of the best solutions found. For sizes of 100
customers, it achieves 98.9% of the best solutions. On the other hand, the neigh-
borhood structure N2 (Speed disturbance), manages to obtain better solutions
only for cases of 10 and 20 nodes, with percentages of 23% and 2% respectively.
As for the perturbation on vehicles (N3), it presents at best 20% of the best
solutions in small instances (10). The above behaviour is comparable with the
execution times of each of the structures as N1 takes much longer as the number
of clients grows.

Finally, to compare the solution of the problem with a different approach, the
reduction of distance instead of pollutants emitted is targeted. From this, it can
be determined how the distance is reduced, on average for all instances, by 16%.
However, CO2, NOX and CO suffer a considerable increase. Total emissions [t]
increase up to four times more because of using vehicles with higher load and
capacity, which manage to include a larger number of customers in their route
and thus return to the depot using a shorter distance. This results in higher
emissions of pollutants released.

Tabu Search with Multiple Decision Levels for HPRP 73

6 Conclusions

In recent years, the VRP has evolved in many ways, thus requiring the inclusion
of more and more realistic models. In this way, it contributes to respond to the
need for actions that positively impact the preservation and sustainability of the
environment in the distribution of goods in realistic environments. Thus, a novel
approach to PRP is proposed, where the heterogeneous fleet, discrete speeds and
time windows are considered in order to reduce the costs associated with the use
of vehicles and the pollutant emissions released into the atmosphere; the latter
calculated from the MEET methodology in the gases CO2, NOX and CO.

In terms of the resolution methodology, a Tabu Search metaheuristic is pro-
posed that performs exploration over multiple neighborhood structures. These
are used to improve both routing and assignment of vehicles and their speeds.
The selection of neighborhoods is dynamically adjusted by several Tabu lists
throughout the search to maintain the balance between exploration and exploita-
tion, thus, incorporating good attributes to the created solutions. For validation,
the set of instances referenced in the literature was used, in all cases the efficiency
of the algorithm is appreciated in reference to pollution, logistic costs and vehicle
usage. The results contribute to provide a solution that requires fewer vehicles to
efficiently perform the same amount of work. This is important in urban logistics
systems, as it contributes to reducing the presence of vehicles on city streets and,
therefore, their negative impact on congestion and the environment.

In short, the improvement of the performance of the transportation logistics
operation with an environmental approach needs further research and devel-
opment. Therefore, it is proposed as future work to improve the algorithm by
incorporating other neighborhood structures in the proposed decision levels to
achieve more efficient results or to incorporate different metaheuristic layers cre-
ating hybrid algorithms, which have shown high performance in other routing
problems. Also, to continue contributing to the organizations in the path of
competitiveness and environmental responsibility.

References

1. Aarts, E., Lenstra, J. (eds.): Local Search in Combinatorial Optimization. Wiley-
Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience
(1997)

2. Abdi, A., Abdi, A., Akbarpour, N., Amiri, A.S., Hajiaghaei-Keshteli, M.: Innova-
tive approaches to design and address green supply chain network with simulta-
neous pick-up and split delivery. J. Clean. Prod. 250, 119437 (2020). https://doi.
org/10.1016/j.jclepro.2019.119437

3. Arboleda Zúñiga, J., Gaviria-Gómez, J.A., Álvarez-Romero, J.A.: Propuesta de
ruteo de veh́ıculos con flota heterogénea y ventanas de tiempo (HFVRPTW) apli-
cada a una comercializadora pyme de la ciudad de Cali. Revista de Investigación
11(1), 39–55 (2018). https://doi.org/10.29097/2011-639x.178

4. Behnke, M., Kirschstein, T.: The impact of path selection on GHG emissions in city
logistics. Transp. Res. Part E: Logist. Transp. Rev. 106, 320–336 (2017). https://
doi.org/10.1016/j.tre.2017.08.011

https://doi.org/10.1016/j.jclepro.2019.119437
https://doi.org/10.1016/j.jclepro.2019.119437
https://doi.org/10.29097/2011-639x.178
https://doi.org/10.1016/j.tre.2017.08.011
https://doi.org/10.1016/j.tre.2017.08.011

74 B. F. Salcedo-Moncada et al.

5. Bektaş, T., Laporte, G.: The pollution-routing problem. Transp. Res. Part B:
Methodol. 45(8), 1232–1250 (2011). https://doi.org/10.1016/j.trb.2011.02.004

6. El Departamento Nacional de Planeación (DNP), Colombia: Encuesta Nacional
Loǵıstica. Technical report (2020)

7. Ministerio de minas y enerǵıa, C.: Informe de gestión 2016–2017. Technical report
(2017)

8. Erdogan, S., Miller-Hooks, E.: A green vehicle routing problem. Transp. Res. Part
E: Logist. Transp. Rev. 48(1), 100–114 (2012). https://doi.org/10.1016/j.tre.2011.
08.001

9. Flood, M.M.: The traveling-salesman problem. Oper. Res. 4(1), 61–75 (1956).
https://EconPapers.repec.org/RePEc:inm:oropre:v:4:y:1956:i:1:p:61-75

10. Fukasawa, R., He, Q., Song, Y.: A disjunctive convex programming approach to
the pollution-routing problem. Transp. Res. Part B: Methodol. 94, 61–79 (2016).
https://doi.org/10.1016/j.trb.2016.09.006

11. Glover, F.: Tabu search-part I. ORSA J. Comput. 1(3), 190–206 (1989). https://
doi.org/10.1287/ijoc.1.3.190

12. Gutiérrez-Padilla, M.V., Morillo-Torres, D., Gatica, G.: A novel mathematical
model for a discrete speed pollution routing problem with time windows in a
Colombian context. IFAC-PapersOnLine 54(1), 229–235 (2021). https://doi.org/
10.1016/j.ifacol.2021.08.027

13. Hitckman: Project Report Se/491/98 Methodology for Calculating Transport
Emissions (1999)

14. Hsueh, C.F.: A vehicle routing problem with consideration of green transportation.
J. Manag. Sustain. 7(4), 89 (2017). https://doi.org/10.5539/jms.v7n4p89

15. Instituto de Hidroloǵıa, Meteoroloǵıa y Estudios Ambientales (IDEAM) de Colom-
bia: Tercera comunicación nacional de Colombia - A la convención marco de las
Naciones Unidas sobre el cambio climático. Technical report (2017)

16. Karakostas, P., Sifaleras, A., Georgiadis, M.C.: Adaptive variable neighborhood
search solution methods for the fleet size and mix pollution location-inventory-
routing problem. Expert Syst. Appl. 153 (2020). https://doi.org/10.1016/j.eswa.
2020.113444

17. Kramer, R., Subramanian, A., Vidal, T., Cabral, L.D.A.F.: A matheuristic app-
roach for the pollution-routing problem. Eur. J. Oper. Res. 243(2), 523–539 (2015).
https://doi.org/10.1016/j.ejor.2014.12.009

18. Lenstra, J.K., Kan, A.H.G.R.: Complexity of vehicle routing and scheduling prob-
lems. Networks 11(2), 221–227 (1981). https://doi.org/10.1002/net.3230110211

19. Lin, C., Choy, K., Ho, G., Chung, S., Lam, H.: Survey of green vehi-
cle routing problem: past and future trends. Expert Syst. Appl. 41(4, Part
1), 1118–1138 (2014). https://doi.org/10.1016/j.eswa.2013.07.107. https://www.
sciencedirect.com/science/article/pii/S095741741300609X

20. Liu, C., Kou, G., Zhou, X., Peng, Y., Sheng, H., Alsaadi, F.E.: Time-dependent
vehicle routing problem with time windows of city logistics with a congestion avoid-
ance approach. Knowl.-Based Syst. 188 (2021) (2020). https://doi.org/10.1016/j.
knosys.2019.06.021

21. Matsumoto, R., Umezawa, N., Karaushi, M., Yonemochi, S.I., Sakamoto, K.: Com-
parison of ammonium deposition flux at roadside and at an agricultural area for
long-term monitoring: emission of ammonia from vehicles. Water Air Soil Pollut.
173(1–4), 355–371 (2006). https://doi.org/10.1007/s11270-006-9088-z

22. Ministero de Transporte de Colombia: Ley 1239 (2008)

https://doi.org/10.1016/j.trb.2011.02.004
https://doi.org/10.1016/j.tre.2011.08.001
https://doi.org/10.1016/j.tre.2011.08.001
https://EconPapers.repec.org/RePEc:inm:oropre:v:4:y:1956:i:1:p:61-75
https://doi.org/10.1016/j.trb.2016.09.006
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1016/j.ifacol.2021.08.027
https://doi.org/10.1016/j.ifacol.2021.08.027
https://doi.org/10.5539/jms.v7n4p89
https://doi.org/10.1016/j.eswa.2020.113444
https://doi.org/10.1016/j.eswa.2020.113444
https://doi.org/10.1016/j.ejor.2014.12.009
https://doi.org/10.1002/net.3230110211
https://doi.org/10.1016/j.eswa.2013.07.107
https://www.sciencedirect.com/science/article/pii/S095741741300609X
https://www.sciencedirect.com/science/article/pii/S095741741300609X
https://doi.org/10.1016/j.knosys.2019.06.021
https://doi.org/10.1016/j.knosys.2019.06.021
https://doi.org/10.1007/s11270-006-9088-z

Tabu Search with Multiple Decision Levels for HPRP 75

23. Molina, J.C., Salmeron, J.L., Eguia, I., Racero, J.: The heterogeneous vehicle rout-
ing problem with time windows and a limited number of resources. Eng. Appl.
Artif. Intell. 94, 103745 (2020). https://doi.org/10.1016/j.engappai.2020.103745

24. Moryadee, C., Aunyawong, W., Shaharudin, M.R.: Congestion and pollution, vehi-
cle routing problem of a logistics provider in Thailand. Open Transp. J. 13(1),
203–212 (2019). https://doi.org/10.2174/1874447801913010203

25. Naderipour, M., Alinaghian, M.: Measurement, evaluation and minimization of
CO2, NOx, and CO emissions in the open time dependent vehicle routing problem.
Measur.: J. Int. Measur. Confederation 90(x), 443–452 (2016). https://doi.org/10.
1016/j.measurement.2016.04.043

26. Nguyen, P.K., Crainic, T.G., Toulouse, M.: A tabu search for time-dependent multi-
zone multi-trip vehicle routing problem with time windows. Eur. J. Oper. Res.
231(1), 43–56 (2013). https://doi.org/10.1016/j.ejor.2013.05.026

27. Normasari, N.M.E., Yu, V.F., Bachtiyar, C., Sukoyo: A simulated annealing heuris-
tic for the capacitated green vehicle routing problem. Math. Probl. Eng. 2019
(2019). https://doi.org/10.1155/2019/2358258

28. Poonthalir, G., Nadarajan, R.: A fuel efficient green vehicle routing problem with
varying speed constraint (F-GVRP). Expert Syst. Appl. 100, 131–144 (2018).
https://doi.org/10.1016/j.eswa.2018.01.052

29. Puenayán, D.E., Londoño, J.C., Escobar, J.W., Linfati, R.: Un algoritmo basado en
búsqueda tabú granular para la solución de un problema de ruteo de veh́ıculos con-
siderando flota heterogénea. Revista Ingenieŕıas Universidad de Medelĺın 13(25),
81–98 (2014). https://doi.org/10.22395/rium.v13n25a6

30. Ren, X., Huang, H., Feng, S., Liang, G.: An improved variable neighborhood search
for bi-objective mixed-energy fleet vehicle routing problem. J. Clean. Prod. 275,
124155 (2020). https://doi.org/10.1016/j.jclepro.2020.124155

31. Toth, P., Vigo, D.: Vehicle Routing Probelms, Methods, and Applications (2014)
32. United States Environmental Protection Agency (EPA): Inventory of U.S. Greenh-

puse Gas Emissions and Sinks: 1990–2020. Technical report (2022)
33. Xu, Z., Elomri, A., Pokharel, S., Mutlu, F.: A model for capacitated green vehi-

cle routing problem with the time-varying vehicle speed and soft time windows.
Comput. Ind. Eng. 137, 106011 (2019). https://doi.org/10.1016/j.cie.2019.106011

34. Zhang, W., Gajpal, Y., Appadoo, S.S., Wei, Q.: Multi-depot green vehicle routing
problem to minimize carbon emissions. Sustainability (Switzerland) 12(8), 1–19
(2020). https://doi.org/10.3390/SU12083500

https://doi.org/10.1016/j.engappai.2020.103745
https://doi.org/10.2174/1874447801913010203
https://doi.org/10.1016/j.measurement.2016.04.043
https://doi.org/10.1016/j.measurement.2016.04.043
https://doi.org/10.1016/j.ejor.2013.05.026
https://doi.org/10.1155/2019/2358258
https://doi.org/10.1016/j.eswa.2018.01.052
https://doi.org/10.22395/rium.v13n25a6
https://doi.org/10.1016/j.jclepro.2020.124155
https://doi.org/10.1016/j.cie.2019.106011
https://doi.org/10.3390/SU12083500

A Learning Metaheuristic Algorithm
for a Scheduling Application

Nazgol Niroumandrad(B), Nadia Lahrichi, and Andrea Lodi

CIRRELT and Department of Mathematics and Industrial Engineering,
Polytechnique Montréal, CP6079 Succursale Centre-ville, Montréal,

QC H3C 3A7, Canada

nazgol.niroumandrad@polymtl.ca

Abstract. Tabu Search is among one of the metaheuristic algorithms
that are widely recognized as efficient approaches to solve many combi-
natorial problems. Studies to improve the performance of metaheuristics
have increasingly relied on the use of various methods, either combining
different metaheuristics or originating outside of the metaheuristic field.
This paper presents a learning algorithm to improve the performance
of tabu search by reducing its search space and the evaluation effort.
We study its performance using classification methods in an attempt to
select moves through the search space more intelligently. The experimen-
tal results demonstrate the benefit of using a learning mechanism under
deterministic environment and with uncertainty conditions.

Keywords: Learning tabu search · Combinatorial problems · Logistic
regression

1 Introduction

Metaheuristics are popular and demanded optimization methods for many hard
optimization problems because they are flexible and can be adapted to complex
applications. These algorithms were first introduced by [1] and refer to approxi-
mate algorithms that obtain near optimal solutions for combinatorial or integer
programming problems.

Metaheuristics generate a lot of dynamic data during the iterative search pro-
cess. However, they do not use explicit knowledge discovered during the search.
The main idea of this paper revolves around using the data generated during the
search process to show that metaheuristics, and more specifically tabu search,
can behave more intelligently and efficiently. Using advanced machine learning
(ML) models can be helpful to extract valuable knowledge that will guide and
enhance the search performance to move smarter through the search space. Hav-
ing a better exploration of the search space and exploring solutions that might
not be reachable without these learning algorithms leads to optimizing compu-
tation time in complex problems.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 76–87, 2023.
https://doi.org/10.1007/978-3-031-26504-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_6&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_6

A Learning Metaheuristic Algorithm for a Scheduling Application 77

Since tabu search (TS) has been successful in solving many hard optimization
problems, we chose to study the effects of learning methods on the performance
of a tabu search algorithm. We are proposing a novel learning tabu search algo-
rithm using logistic regression in the context of a physician scheduling problem.
To the best of our knowledge, there is no comprehensive study on integrating ML
techniques into TS to explore the search space. Most studies on learning meta-
heuristics evolve in the context of clustering or intensification and diversification
strategies.

Although there are a number of studies on improving the performance of
TS, the literature lacks a comprehensive study on how ML techniques can be
integrated into TS to enhance its search procedure. This paper provides an
intensive study on the use of ML techniques in the design of TS, which does not
rely on a simple diversification/intensification strategy to improve the search
procedure. We believe this paper is beneficial for both academic and industry
experts engaged in solving hard combinatorial problems. Our proposed method
is used to study a scheduling problem, and our results are compared with those
of [2]. Since the original tabu search presented in [2] proved to be very efficient
and optimized under deterministic conditions, this paper focuses on improving,
by learning, the performance of the TS with uncertainty conditions.

The rest of the paper is organized as follows. In Sect. 2, we review the related
studies. In Sect. 3, we explain the problem along with the proposed method in
detail. We describe the instance generation and present the results in Sect. 4. A
discussion on the results and different testing strategies is presented in Sect. 5
and Sect. 6 provides concluding remarks.

2 Related Literature

The study of learning within metaheuristics has not been given the attention it
deserves. However, benefiting from machine learning (ML) techniques to solve
combinatorial problems received a lot of attention recently. More precisely, [3]
and [4] demonstrated that employing ML during the search process can improve
the performance of heuristic algorithms. [5] described algorithms that improve
the search performance by learning an evaluation function that predicts the
outcome of a local search algorithm from features of states visited during the
search. Other studies on learning evaluation functions are presented in [6,7] and
[8]. Along the same subject, [9] is another example of a recent study on learning
metaheuristics. This study proposed a learning variable neighborhood search
(LVNS) that identifies quality features simultaneously. This information is then
used to guide the search towards promising areas of the solution space. The
LVNS learning mechanism relies on a set of trails, where the algorithm measures
the quality of the solutions.

ML was also employed to prune the search space of large-scale optimization
problems by developing pre-processing techniques [10,11]. Some other studies
used ML-based methods to directly predict a high-quality solution [12,13]. More-
over, [14] and [15] provided a review of studies where metaheuristic algorithms
benefited from ML and the potential future work.

78 N. Niroumandrad et al.

Building upon these previous studies, we propose a learning tabu search algo-
rithm enhanced with a logistic regression method to guide the search through
the solution space of hard combinatorial problems. We observe that the empha-
sis on adaptive memory within tabu search represents the nature of its learning
mechanism. However, most previous works focused on clustering [1] or intensifi-
cation/diversification [16] strategies. In metaheuristics, intensification and diver-
sification strategies play important roles in the quality of solutions. In a recent
study, [17] presented a relaxation-adaptive memory programming algorithm on
a resource-constrained scheduling problem. In that approach, primal-dual rela-
tionships help to effectively explore the interplay between intensification, diver-
sification, and learning (IDL). The algorithm is designed to integrate the current
most effective Lagrangian-based heuristic with a simple tabu search. The authors
aimed to present a study on the IDL relationship when dual information is added
to the search. In [18], the authors presented a learning tabu search algorithm for
a truck-allocation problem in which they considered a trail system (in the ant
colony optimization, a trail system is inspired from the pheromone trails of ants
to mark a path) for the combination of important characteristics. In this study, a
diversification mechanism is introduced to help visit new solution space regions.
The authors proposed diversifying the search by performing “good” moves that
were not often performed in the previous cycles.

There are also numerous studies found in the literature on improving
the performance of tabu search. In particular, [19] emphasized selecting par-
ticular attributes of solutions and determining conditions that help to find
the prohibited moves, in order to produce high-quality solutions. Following
that work, [20] and [21] employed a balance among more commonly used
attributes. The presented computational experiments showed that considering
these attributes can significantly outperform all other methods. These outcomes
underpin researchers’ ongoing strategy of identifying attributes that lead to more
effective methods. However, to the best of our knowledge, our study in favor of
learning the characteristics of the search space during the tabu search algo-
rithm’s search procedure is a novel contribution to the literature. We aim to use
a classification model to fill this gap. Our contribution focuses on how ML helps
to learn the best neighborhoods to build or change a solution during the search
process.

3 Problem Statement and Proposed Learning Algorithm

In a nutshell, tabu search [22] is an iterative procedure that starts from an ini-
tial solution x0 (possibly infeasible). From each current solution x (x = x0 at
the beginning of the procedure), it moves to a neighbor solution x′. The neigh-
borhood is defined by all solutions that can be reached from x ∈ X, where X
is the solution space, after applying a specific move. Let us denote this neigh-
borhood by N(x). The next solution x′ is the best non-tabu solution in the
neighborhood N(x) (an exception is made if a move is tabu but it improves
upon the current best solution x∗, i.e., through the so-called aspiration criteria).

A Learning Metaheuristic Algorithm for a Scheduling Application 79

The function f(x) is defined to evaluate each solution. To prevent cycling, a
tabu list (Tlist) containing attributes of recently visited solutions (or attributes
of moves) is maintained. The associated solutions cannot be revisited for a spe-
cific number of iterations. Various strategies can be applied to search the neigh-
borhood solutions. The moves and strategies to search the solution space are
the main ingredients of tabu search methods. Hence, the adequate combination
and sequence have a great impact on the quality of the results. Tabu search is
used in multiple applications and is adapted to handle uncertainty. This is com-
monly done by considering several scenarios, typically generated using historical
data or a probability distribution. Instead of moving to the best solution in the
neighborhood (deterministic environment), the best solution in average (with
uncertainty conditions) is preferred.

A näıve approach to choose a solution x′ is to evaluate and analyze all possi-
bilities, which would be computationally expensive. Instead, we can characterize
the neighborhood using experiments. In particular, the guiding principle of our
investigation is that using a learning method can help us find good solutions
faster. ML techniques allow us to extract knowledge from good solutions and
use it to generate even better solutions. This knowledge can be in the form of
a set of rules or patterns [23]. Table 1 shows how applying a learning method
during the search process to reduce the space in a metaheuristic algorithm has
computational impact. This table presents an example where we have |P | num-
ber of physicians, |M | number of patients and |K| number of time blocks in a
physician scheduling problem. However, this can be generalized to other prob-
lems.

Table 1. Examples of computational impact of reduction of search space

Size of the problem Complexity of the problem

without learning

Predicting element Complexity of the problem

with learning

|P | × |M| × |K| O(n3) p ∈ P O(n2)

p ∈ P & m ∈ M O(n)

p ∈ P & m ∈ M & k ∈ K O(1)

We studied the impact of deploying a learning procedure to answer this
situation. We chose logistic regression for this purpose, as it is one of the most
important models that can be applied to analyze categorical data. The learning
procedure is employed in two phases of training and application.

– Training phase: this phase is divided in stages T1 and T2. In T1, the original TS
collects data related to the structure of the search space. Once enough data
is collected, training begins with the logistic regression model for a specific
number of iterations (T2). Training starts at iteration Ist and ends at Iend;

– Application phase: in this phase, an action will be taken based on the pre-
diction of the trained model and after validating the elements of a tabu list
(Tlist).

80 N. Niroumandrad et al.

The learning methods are very sensitive to the input information. Thus,
extracting the features that have the greatest impact on the solution space is the
first and most important step. These features represent important characteristics
of the solutions space and moves. Table 2 presents these features in different
categories.

Table 2. Input/output features for the training model

Input Output

Category Features Format Label

Cost improvement Δx

Δx > 0
R

B

Observed Output

Tabu xi ∈ Tlist

|ti| = Tlist(x)
Freq−ID

B

Z

Z

Solution x
D∗

D′

MZ

MB

MB

Move Attractiveness
Trail of the moves

Q

MQ

Let x be the current solution, x∗ the best known solution, and x′ the next
solution. Each solution is represented as a matrix of integers. In the category
of cost improvement, we are first considering the improvement in cost, which is
presented as Δx = f(x′) − f(x). The first feature is the value of Δx and the
second reflects if the solution is improved (Δx > 0 in the context of maximizing).
In the tabu category, we have a binary variable that determines if the accepted
move belongs to the Tlist and whether it has already been visited along with
the tabu value for the move, meaning when it will be free and can be considered
again. The frequency of the move is also considered, which indicates how many
times the move has been visited so far. The next category represents the char-
acteristics of solution. First, the solution x itself. A binary matrix (D∗) denotes
the difference between the obtained solution and the last best known solution. A
value 1 indicates if the corresponding entry is equal, 0 otherwise. Also, a binary
matrix (D′) denotes the difference between the obtained solution and the previ-
ous solution, with the same meaning for 1’s and 0’s. The final category is related
to the move characteristics, i.e., the attractiveness of the move and a trail matrix
of the moves. These features were inspired by the recent work of [9]. Here, a trail
system influences the decisions made by the ants in the Ant Algorithms, and the
notion of move attractiveness shows that moves with high attractiveness values
have a higher chance to be performed.

As tabu search can be used in situations with uncertainty conditions, the set
of input features under these conditions is modified by considering the average of
f(x) over all scenarios at each iteration. In other words, we need to find the move

A Learning Metaheuristic Algorithm for a Scheduling Application 81

that is the best in average over all the scenarios. Thus, our objective is to find
the solution x′ ∈ Nv(x) that minimizes the average solution over all scenarios(

∑
w fw(x′

w)

|W |

)
.

The learning tabu search (L-TS) model differs from the original TS mostly
in the search space. We seek to reduce the number of evaluations in the search
process. Thus, we predict the subset of promising moves and evaluate only those
neighbors instead of evaluating every possible neighbor of N(x).

The L-TS algorithm starts with the original TS to collect the necessary data
for IDst iterations. We train the learning method for a specific number of iterations
(stage T2), evaluate the result of the learning algorithm, and update the set of
input features to encourage the method to search more promising regions. In the
application phase, we use the last trained model at iteration IDend − 1 to identify
(by prediction) promising moves to build N ′(x) ⊂ N(x) (note that superscript
D stands for deterministic and S will be used for the case with uncertainty
conditions). The total procedure ends when the stopping criterion (Stopmax) is
reached. Our criterion is 1h of CPU time. Details of the parameter initialization
step are documented in Sect. 4.

4 Experiments

In this section, we show the advantage of using a learning algorithm during the
TS procedure for both deterministic environment and with uncertainty condi-
tions.

We compare the results with a benchmark previously published in [2] for
both deterministic environment and an environment with uncertainty in which
the performance was compared with CPLEX. We refer to this previous work as
“original TS” in the remainder of the paper. In [2], the authors studied a tabu
search algorithm in a physician scheduling problem. The goal is to find a weekly
cyclic schedule for physicians in a radiotherapy department and to assign the
arriving patients to the best possible available specialist for their cancer type.
In most radiotherapy centers, the physician schedule is task based. Each day is
divided into one or multiple periods, and each period is dedicated to a single task.
The goal is to minimize the duration of the pre-treatment phase for patients.
This is defined as the time from the patient’s arrival day to the day the final
task is finished before the treatment starts. Taking inspiration from this work,
we use 21 generated pseudo-real instances where we vary the number of new
patients arriving each week and the number of available physicians. The number
of physicians varies from 6 to 10 and the number of patients from 7 to 60, ranging
from small instances to real-world applications. Each instance is labeled pr − (#
of physicians, # of patients). In the deterministic case, we select one scenario to
obtain a typical schedule, and in the situation with uncertainty, we consider a
subset of W for different scenarios. We refer the readers to [2] for more details
on instance generation.

We report and analyze results in deterministic and uncertain environments.
All results were compared and evaluated with respect to the original TS method

82 N. Niroumandrad et al.

and a random approach (in which N ′(x) ⊂ N(x) was randomly chosen) to test
the performance of the L-TS method. Comparing these three approaches helps
us to see the performance of each and confirm the advantage of choosing TS
over the random approach and of choosing L-TS over TS. It shows that we are
learning during the process, and the results are not achieved by chance.

First, we wish to validate our L-TS algorithm and determine the value of the
parameters, i.e., the size of the Tlist, the number of iterations in each neighbor-
hood, and the iteration to start the training phase and application phase. The
values tested are all related to the size of the instances (i.e., number of patients,
number of physicians, and number of time blocks). For the deterministic case, we
use ID1 = 1, ID2 = 2|J |+|I|+|5n|, ID3 = 1, IDst = 3

√|J | × |I| × |D|, IDend = 2|IDst |,
Stopmax = 1h, and we set θD = 2|J | + |I| + |D|.

To evaluate the solution obtained from the learning tabu search algorithm
under uncertainty conditions, we proceed as follows:

– Generate a set A of scenarios (up to 50 different scenarios);
– For each instance (i.e., pr-(6,7) to pr-(10,60)), run the algorithm using 10 or

50 scenarios from set A (using one scenario is equivalent to the deterministic
case).

To evaluate the performance of the learning algorithm with uncertainty con-
ditions, the values of the parameters IS1 , IS3 and θS are the same, except that
IS2 is now equal to |J |, the number of patients, ISst =

√|J | × |I| × |D|, and
Stopmax = 5h.

Table 3. Comparing the performance of different methods

Tests Deterministic case Uncertainty case

GAP - Best (%) GAP - Avg (%) GAP - Best (%) GAP - Avg (%)

10 Scenarios 50 Scenarios 10 Scenarios 50 Scenarios

Random L-TS Random L-TS Random L-TS Random L-TS Random L-TS Random L-TS

Small pr-(6,7) 0.5 −1.0 2.3 −0.7 1.3 −0.3 1.0 −0.7 1.1 0.2 0.9 −1.1

pr-(6,9) 1.0 0.8 1.7 −1.4 0.8 0.0 1.5 0.3 0.9 −1.2 0.5 −2.2

pr-(6,11) 2.4 0.3 2.1 −0.2 2.2 −0.3 1.1 −1.3 1.0 −1.1 2.6 −2.6

pr-(6,12) 2.9 0.5 3.1 0.3 0.8 −1.4 0.8 −1.6 0.3 −1.3 1.6 1.3

pr-(8,7) 2.7 −0.7 2.4 −0.1 1.3 −0.5 −0.4 −1.1 0.4 −1.0 2.1 −1.3

pr-(8,9) 2.2 −0.4 2.5 −0.2 1.7 −0.4 1.4 −0.4 1.6 −0.6 0.7 −1.4

pr-(10,7) 1.5 0.1 2.3 0.1 1.0 −0.7 1.0 0.1 1.3 −0.4 0.7 −0.9

Medium pr-(6,20) 1.2 0.9 3.6 1.3 0.7 −1.3 2.7 0.6 1.6 −1.4 0.5 0.6

pr-(8,11) 3.0 0.6 2.9 0.4 1.0 −0.6 0.9 −0.6 1.3 −1.3 0.3 −1.6

pr-(8,12) 1.5 0.0 2.3 0.0 1.2 −0.8 0.0 −1.5 0.6 −0.8 0.0 −2.0

pr-(8,20) 3.3 0.8 3.7 −0.1 2.4 −0.7 1.8 −0.4 −1.3 −1.4 1.7 −2.1

pr-(10,9) 2.3 0.3 2.1 0.1 1.5 −0.1 1.0 −0.4 1.5 −0.4 0.3 −1.6

pr-(10,11) 1.7 −0.3 2.2 0.2 0.4 −1.0 0.9 0.3 1.5 −1.0 −0.4 −1.9

pr-(10,12) 1.5 0.1 3.0 0.4 1.3 −0.3 0.4 −0.4 1.2 −0.3 0.1 −2.2

Large pr-(6,40) 2.6 −4.0 4.5 −0.4 5.2 4.6 −1.3 −3.5 2.2 1.9 4.3 −0.8

pr-(6,60) 9.4 −0.7 5.8 −3.6 −10.7 −25.0 3.8 −1.5 16.3 −44.7 0.1 −3.2

pr-(8,40) 2.3 −0.5 4.4 1.7 1.3 −0.6 0.8 0.0 2.8 −0.4 0.5 −2.4

pr-(8,60) 8.2 1.3 8.5 3.3 0.0 −3.2 1.7 −0.3 3.3 −4.8 0.1 −3.5

pr-(10,20) 3.9 0.2 4.1 0.4 1.1 −0.7 1.5 0.0 1.2 −1.0 0.2 −4.6

pr-(10,40) 3.4 0.5 4.4 0.1 0.2 −2.1 0.9 −0.4 0.4 −1.0 0.1 −1.5

pr-(10,60) 1.5 0.4 6.2 2.2 2.0 0.3 0.9 0.4 1.5 4.3 2.8 −1.9

Average: 2.81 −0.03 3.53 0.18 0.79 −1.67 1.07 −0.59 1.93 −2.75 0.94 −1.75

A Learning Metaheuristic Algorithm for a Scheduling Application 83

Table 3 compares the cost (same definition as in [2]) values of different meth-
ods and the gap columns show improvements with respect to the original TS. In
this table, “GAP - Best” compares the best solution obtained from ten different
runs of each method and represents the improvements from the best solution
obtained from the original TS. Conversely, “GAP - Avg” represents the average
values from ten different runs. A negative value in the GAP columns indicates
that the learning tabu search has improved the solution on average. It can be
observed that logistic regression succeeded in slightly improving the cost, by
0.03% on average. We see more improvement in large instances where the algo-
rithm has more flexibility.

It can be observed that the learning method improved tabu search in uncer-
tainty case globally. We can see the most improvement in cases using 10 scenarios,
with −1.67% on average for L-TS.

The value of the cost function alone cannot represent the advantage of using
each approach. Hence, we measured the primal integral value for all methods
to compare the progress of the primal bound’s convergence towards the best-
known solution over the entire solving time. Figure 1 illustrates this measure for
all instances.

Fig. 1. Comparing the convergence speed for different methods in the deterministic
case

The idea of the primal integral [24] is that the smaller the primal integral
value is, the better the expected quality of the solution will be if we stop the
solver at an arbitrary point in time. It can be observed from Fig. 1 that the logis-
tic regression method has better primal integral values than the other methods
for all instances. Again, this figure shows that the learning method, presented
by the green line, performs better than the original TS and Random algorithms.
Figure 2 compares the number of evaluations at each iteration, the total number
of evaluations, and the total number of iterations until we reach the stopping
criterion for different methods. It clearly shows a decrease in the number of cal-
culations in the L-TS. We can also observe that the random method performs
same number of evaluations but requires more iterations (compared with L-TS)
to find the solution, due to its poor performance. This behavior was expected

84 N. Niroumandrad et al.

from the random approach since it is evaluating N ′(x), a subset of N(x), ran-
domly.

Fig. 2. Comparing computing performance for all methods in the deterministic case

All of these illustrations, including the improvement in the objective value
presented in Table 3, show the advantage of employing the learning TS idea.
More precisely, given the similar computing time and number of iterations to
reach the best solution, as well as the improvement in the cost value, the logistic
regression method demonstrates superior performance.

The performance of the learning algorithm in an uncertain environment was
also evaluated based on its computing time. Figure 3 compares the time per
iteration by method for 10 and 50 scenarios. It is clear that increasing the number
of scenarios increases the computing time.

We observe that with 10 scenarios, the average gap improved by 1.67% with
the logistic regression model. Also, with 50 scenarios, we have 0.59% improve-
ments in average gap for L-TS model.

5 Discussion

The proposed L-TS algorithm show improvements in both deterministic and
uncertain environments. The performance of this algorithm was evaluated with
extensive number of experiments and this paper presents part of these experi-
ments to demonstrate the advantage of employing a learning mechanism within
TS.

This study was initially started by applying more sophisticated methods,
such as classification, decision trees and neural networks, to predict the promis-
ing neighbors. However, the methods were time consuming and might not be
applicable to large combinatorial and real case problems. Sometimes, a simpler

A Learning Metaheuristic Algorithm for a Scheduling Application 85

(a) 10 Scenarios

(b) 50 Scenarios

Fig. 3. Comparing computing time per iteration for all methods with uncertainty

method is able to achieve same results with less computational efforts. The per-
formance of these methods was also evaluated through different configurations;
in most cases, the logistic regression model outperforms the other ones.

Additionally, in the case with uncertainty conditions, we performed tests
where we varied the number of scenarios from 10 to 50. We observed no significant
impact with 30 scenarios. We also performed a sensitivity analysis to set the
parameters, e.g. Stopmax = 2.5, 5, 7.5 and 10 h.

6 Conclusion

In this paper, we proposed a learning tabu search method and studied its per-
formance on a physician scheduling problem. The performance of the proposed
algorithm was evaluated using the benchmark instances.

We evaluated the new method in both deterministic and uncertain environ-
ments. We showed that our method is very efficient compared with the original
tabu search and a random method, especially in the case with uncertainty con-
ditions where there is more space to learn. Over 21 instances, the average gap
improved by 1.67% with logistic regression in the case with 10 scenarios. The
learning method obtained best solutions faster than the original TS and ran-
dom methods over the computing time. Although we studied the application of
this method in a scheduling problem, tabu search has already been used to solve
pretty much all optimization problems. Thus, the learning tabu search algorithm
can be adapted to other applications. Future work could employ learning tabu
search to solve other optimization problems by generalizing several ingredients
for which we gave special attention to our specific application.

86 N. Niroumandrad et al.

References

1. Glover, F.: Heuristics for integer programming using surrogate constraints. Decis.
Sci. 8(1), 156–166 (1977)

2. Niroumandrad, N., Lahrichi, N.: A stochastic tabu search algorithm to align physi-
cian schedule with patient flow. Health Care Manag. Sci. 21(2), 244–258 (2018)

3. Battiti, R., Brunato, M.: The lion way. Machine Learning plus Intelligent Opti-
mization. LIONlab, University of Trento, Italy, 94 (2014)

4. Hafiz, F., Abdennour, A.: Particle swarm algorithm variants for the quadratic
assignment problems-a probabilistic learning approach. Expert Syst. Appl. 44,
413–431 (2016)

5. Boyan, J., Moore, A.W.: Learning evaluation functions to improve optimization
by local search. J. Mach. Learn. Res. 1, 77–112 (2000)

6. Baluja, S., et al.: Statistical machine learning for large-scale optimization (2000)
7. Boyan, J., Moore, A.W.: Learning evaluation functions for global optimization and

Boolean satisfiability. In: AAAI/IAAI, pp. 3–10 (1998)
8. Bongiovanni, C., Kaspi, M., Cordeau, J.-F., Geroliminis, N.: A predictive large

neighborhood search for the dynamic electric autonomous dial-a-ride problem.
Technical report (2020)

9. Thevenin, S., Zufferey, N.: Learning variable neighborhood search for a scheduling
problem with time windows and rejections. Discret. Appl. Math. 261, 344–353
(2019)

10. Sun, Y., Li, X., Ernst, A.: Using statistical measures and machine learning for
graph reduction to solve maximum weight clique problems. IEEE Trans. Pattern
Anal. Mach. Intell. 43, 1746–1760 (2019)

11. Lauri, J., Dutta, S.: Fine-grained search space classification for hard enumeration
variants of subset problems. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 2314–2321 (2019)

12. Abbasi, B., Babaei, T., Hosseinifard, Z., Smith-Miles, K., Dehghani, M.: Predicting
solutions of large-scale optimization problems via machine learning: a case study
in blood supply chain management. Comput. Oper. Res. 119, 104941 (2020)

13. Fischetti, M., Fraccaro, M.: Machine learning meets mathematical optimization to
predict the optimal production of offshore wind parks. Comput. Oper. Res. 106,
289–297 (2019)

14. Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M.,
Talbi, E.-G.: Machine learning at the service of meta-heuristics for solving combi-
natorial optimization problems: a state-of-the-art. Eur. J. Oper. Res. 296, 393–422
(2021)

15. Talbi, E.-G.: Machine learning into metaheuristics: a survey and taxonomy of data-
driven metaheuristics (2020)

16. Glover, F., Hao, J.-K.: Diversification-based learning in computing and optimiza-
tion. J. Heuristics 25(4–5), 521–537 (2019)

17. Christopher, R., Riley, L., Rego, C.: Intensification, diversification, and learning via
relaxation adaptive memory programming: a case study on resource constrained
project scheduling. J. Heuristics 25(4–5), 793–807 (2019)

18. Schindl, D., Zufferey, N.: A learning tabu search for a truck allocation problem
with linear and nonlinear cost components. Nav. Res. Logist. (NRL) 62(1), 32–45
(2015)

19. Glover, F., Laguna, M.: Tabu Search. Wiley, Hoboken (1993)

A Learning Metaheuristic Algorithm for a Scheduling Application 87

20. Wang, Y., Qinghua, W., Glover, F.: Effective metaheuristic algorithms for the min-
imum differential dispersion problem. Eur. J. Oper. Res. 258(3), 829–843 (2017)

21. Wu, Q., Wang, Y., Glover, F.: Advanced algorithms for bipartite Boolean quadratic
programs guided by tabu search, strategic oscillation and path relinking (2017)

22. Glover, F.: Tabu search: a tutorial. Interfaces 20(4), 74–94 (1990)
23. Arnold, F., Santana, Í., Sörensen, K., Vidal, T.: PILS: exploring high-order neigh-

borhoods by pattern mining and injection. Pattern Recogn. 116, 107957 (2021)
24. Berthold, T.: Measuring the impact of primal heuristics. Oper. Res. Lett. 41(6),

611–614 (2013)

MineReduce-Based Metaheuristic
for the Minimum Latency Problem

Marcelo Rodrigues de Holanda Maia1,2(B) , Ítalo Santana3 ,
Isabel Rosseti1 , Uéverton dos Santos Souza1 , and Alexandre Plastino1

1 Instituto de Computação, Universidade Federal Fluminense, Niterói, RJ, Brazil
{mmaia,rosseti,ueverton,plastino}@ic.uff.br

2 Instituto Brasileiro de Geografia e Estat́ıstica, Rio de Janeiro, RJ, Brazil
marcelo.h.maia@ibge.gov.br

3 Departamento de Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro,
Rio de Janeiro, RJ, Brazil
isantana@inf.puc-rio.br

Abstract. The minimum latency problem is a variant of the well-known
travelling salesperson problem where the objective is to minimize the sum
of arrival times at vertices. Recently, a proposal that incorporates data
mining into a state-of-the-art metaheuristic by injecting patterns from
high-quality solutions has consistently led to improved results in terms of
solution quality and running time for this problem. This paper extends
that proposal by leveraging data mining to contract portions of the prob-
lem frequently found in high-quality solutions. Our proposal aims at mit-
igating the burden of searching for improving solutions by periodically
solving a reduced version of the original problem. Computational exper-
iments conducted on a well-diversified set of instances demonstrate that
our proposal improved solution quality without increasing computational
time, introducing 11 new best solutions to the literature.

Keywords: Metaheuristics · Data mining · Size reduction · MLP

1 Introduction

The minimum latency problem (MLP) is a variant of the well-known travelling
salesperson problem where the objective is to minimize the sum of arrival times
at vertices in a Hamiltonian cycle. It can model several real-world applications
like distribution logistics, machine scheduling and disaster relief [3,5,7].

This work was supported by Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico (CNPq, Brazil) [grants 310444/2018-7, 310624/2018-5, 309832/2020-9],
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
(FAPERJ, Brazil) [grant E-26/201.344/2021], Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior (CAPES, Brazil) [grant 88887.646206/2021-00], and Instituto
Brasileiro de Geografia e Estat́ıstica (IBGE, Brazil).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 88–102, 2023.
https://doi.org/10.1007/978-3-031-26504-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_7&domain=pdf
http://orcid.org/0000-0002-7207-1698
http://orcid.org/0000-0002-2424-5382
http://orcid.org/0000-0001-8560-5313
http://orcid.org/0000-0002-5320-9209
http://orcid.org/0000-0003-4039-0915
https://doi.org/10.1007/978-3-031-26504-4_7

MineReduce-Based Metaheuristic for the Minimum Latency Problem 89

Recently, a hybrid metaheuristic named MDM-GILS-RVND [18] has
appeared as a high-performance algorithm for the MLP. This hybrid algo-
rithm was a result of combining the Multi Data Mining (MDM) approach [14]
and GILS-RVND [19], a state-of-the-art hybrid metaheuristic for the MLP
that combines components of Greedy Randomized Adaptive Search Procedures
(GRASP) [6], Iterated Local Search (ILS) [10], and Random Variable Neighbor-
hood Descent (RVND) [20]. The combination with MDM, which relies on data
mining to extract patterns from high-quality solutions followed by their insertion
into initial solutions, made GILS-RVND significantly improve its state-of-the-art
solution quality and computational time results.

In this paper, we propose another improvement through the application of
the MineReduce approach, which has achieved promising results for variants of
vehicle routing [12] and vertex cover [11] problems.

In the MineReduce approach, the patterns mined from an elite set of solutions
are used to perform problem size reduction. A problem instance is reduced to a
smaller-size version by contracting or deleting elements that appear in a mined
pattern – as they are assumed to be part of a solution for the original instance.
Then, the reduced instance is solved, and the solution found is expanded to
become a solution for the original instance.

The results of our computational experiments, reported in this paper, show
that the proposed MineReduce-based metaheuristic for the MLP, named MR-
GILS-RVND, overcomes MDM-GILS-RVND, achieving higher solution quality
without increasing CPU running time, particularly for larger instances. It found
new best solutions for 11 out of 56 benchmark instances.

The remainder of this paper is organized as follows. Section 2 defines the
problem and lists relevant methods from the literature to solve it. Section 3
describes the MDM-GILS-RVND metaheuristic for the MLP proposed in [18].
The MineReduce-based metaheuristic for the MLP proposed in this work is intro-
duced in Sect. 4. Section 5 reports our experimental results. Finally, conclusions
and directions for future work are presented in Sect. 6.

2 The Minimum Latency Problem

The MLP, described as follows, is a variant of the well-known travelling sales-
person problem (TSP) and NP-hard as well [3]. Let G = (V,A) be a directed
graph, where V = {0, 1, ..., n} is a set composed of n+1 vertices and A = {(i, j) :
i, j ∈ V, i �= j} is the set of arcs. Vertex 0 is the depot from where the salesperson
departs, whereas the set V ′ = V \{0} consists of the remaining vertices represent-
ing the n customers. For each arc (i, j) ∈ A, there is an associated travel time tij .
The aim is to find a Hamiltonian cycle (i0, i1, ..., in+1) in G, where i0 = in+1 = 0
(i.e., the cycle starts and ends at the depot), that minimizes the sum of arrival
times, given by

∑n+1
k=1 l(ik), where l(ik) =

∑k−1
m=0 timim+1 represents the latency

of vertex ik (i.e., the total travel time to reach ik).
We present a toy example in Fig. 1 to illustrate an MLP solution and the

computation of its cost. That is, we show a sequence of customer visits that

90 M. R. H. Maia et al.

forms a Hamiltonian cycle S (Fig. 1a) and its associated cost (Fig. 1b), or f(S),
which is 164. One can note that MLP is more challenging than TSP since minor
changes in the ordering of customers in S can impact drastically f(S) due to
the sum of all cumulative costs of each customer, while a TSP solution cost is
obtained by a simple sum of all traversed arcs.

4

3

0

4

2
7

1

6 4

7

5

9

6

6

(a) A Hamiltonian cycle for MLP

0 5 3 4 2 1 6 0

l(i)

S =

(b) f(S) = 164

Fig. 1. Example of an MLP solution

In the literature, several exact algorithms were proposed for the MLP [1,2,4,
7,16]. Thanks to these methods, existing instances with up to 200 customers can
be solved optimally at the cost of significant computational time. In contrast,
heuristics and metaheuristics are alternative methods that consistently find high-
quality solutions in controllable running time. The best-performing ones are
usually able to efficiently solve instances with up to 1000 customers [5,7,13,17–
19]. In particular, GILS-RVND [19] has achieved state-of-the-art results for MLP
and was further improved with data mining as MDM-GILS-RVND [18].

3 The MDM-GILS-RVND Metaheuristic

The MDM-GILS-RVND metaheuristic [18] is an algorithm resulting from the
incorporation of data mining into GILS-RVND [19], a state-of-the-art hybrid
metaheuristic for the MLP that combines components of GRASP, ILS and
RVND. This hybrid algorithm applies an approach known as Multi Data Mining
(MDM), which uses frequent patterns extracted from good solutions by a data
mining process to guide the search, initially proposed for a hybrid version of the
GRASP metaheuristic (MDM-GRASP) [14].

In MDM, an elite set E keeps the d best solutions found during the execu-
tion of the metaheuristic, and a data mining method is periodically executed to
extract a set of patterns P from E. These mined patterns are then used in the

MineReduce-Based Metaheuristic for the Minimum Latency Problem 91

solution initialization process. The data mining method is based on the FPmax∗

algorithm [8], which mines maximal frequent itemsets. An itemset is considered
frequent if it achieves a given minimum support value, i.e., if it is present in at
least a given minimum number of the elite set solutions. Hence, mined patterns
are composed of items that frequently appear together in the sub-optimal solu-
tions of the elite set. Intuitively, it is assumed that these items should likely be
part of the best solutions to the problem and, thus, they can favour the overall
searching process when included in initial solutions. In MDM-GILS-RVND, the
set of items representing each solution used for mining refers to the set of all
arcs in the solution. Therefore, the mined patterns are sets of frequent paths
between customers in the elite solutions.

Usually, in the MDM approach, the data mining method is invoked when-
ever E is considered stable (unchanged for a number of consecutive multi-start
iterations). However, the stabilization criterion was not used in MDM-GILS-
RVND because the number of multi-start iterations performed by the GILS-
RVND metaheuristic is too small (only ten). Instead, it invokes the data mining
method once half of the multi-start iterations are completed and, afterwards,
whenever the elite set has been updated in the previous multi-start iteration.

The high-level structure of MDM-GILS-RVND is shown in Algorithm 1,
where f(s) denotes the cost of a solution s.

Algorithm 1. MDM-GILS-RVND

1: f(s∗) ← ∞
2: for i ← 1, . . . , IMax/2 do
3: s ← ConstructiveProc()
4: s′ ← ILS(s)
5: if f(s′) < f(s∗) then
6: s∗ ← s′

7: for i ← 1, . . . , IMax/2 do
8: if i = 1 or E was updated in iteration i − 1 then
9: P ← Mine(E, supmin, MaxP)

10: s ← HybridConstructiveProc(p ∈ P)
11: s′ ← ILS(s)
12: if f(s′) < f(s∗) then
13: s∗ ← s′

14: return s∗

In the first half of the multi-start iterations (lines 2–6), the algorithm’s struc-
ture is the same as GILS-RVND, where each iteration builds an initial solution s
using a GRASP-like constructive process, which depends on a parameter α that
controls the balance between greediness and randomness (line 3). Then, it runs
an ILS component to obtain a locally optimum solution s′ (line 4) and updates
the best solution s∗ in case of improvement (line 6). In this first half of itera-
tions, the elite set E is updated whenever a new eligible solution is found within
the ILS component. A new solution is inserted into E if it is different from all

92 M. R. H. Maia et al.

solutions in E and cheaper than the worst of them. In the second half (lines 7–
13), the data mining method is invoked at the first iteration and whenever E
has been updated in the previous iteration, returning a set P containing the
largest MaxP patterns with a relative minimum support value supmin (line 9).
An initial solution s is built by a hybrid constructive process based on one of the
mined patterns selected from P (line 10), which starts by inserting all pattern
elements in the partial solution and completes it using the original constructive
method strategies. The remaining steps are the same as in the first half itera-
tions, including the insertion of new solutions into E whenever all requirements
are met. Once all multi-start iterations are finished, the algorithm returns the
best solution found (line 14).

One key aspect of MDM-GILS-RVND is a move evaluation procedure inher-
ited from GILS-RVND. It consists of a framework that uses preprocessed data
structures to compute costs of neighbor solutions in constant amortized time
operations [9,22]. In practice, three data structures are used to store the par-
tial costs of each subsequence of vertices of a local minimum solution, where
the cost of every neighbor solution is reached by computing their partial costs
on a “by concatenation” fashion. We describe these data structures and how
concatenation is performed as follows:

– The duration T (σ) of a sequence σ, which is the total travel time to perform
the visits in the sequence.

– The cost C(σ) to perform a sequence σ, when starting at time 0.
– The delay W (σ) associated with a sequence σ, which is the number of cus-

tomers visited in the sequence.

Let T (i), C(i) and W (i) denote the values of the re-optimization data struc-
tures corresponding to a subsequence with only a single vertex i. In this case:
T (i) = 0 and C(i) = 0 since there is no travel time; and W (i) = 1 if i is
a customer, otherwise W (i) = 0. These values can be computed on larger
subsequences by induction on the concatenation operator ⊕ as follows. Let
σ = (σu, . . . , σv) and σ′ = (σ′

w, . . . , σ′
x) be two subsequences. The subsequence

σ ⊕ σ′ = (σu, . . . , σv, σ′
w, . . . , σ′

x) is characterized by the following values:

– T (σ ⊕ σ′) = T (σ) + tσvσ′
w

+ T (σ′)
– C(σ ⊕ σ′) = C(σ) + max(W (σ′), 1)(T (σ) + tσvσ′

w
) + C(σ′)

– W (σ ⊕ σ′) = W (σ) + W (σ′).

4 MineReduce-Based Metaheuristic for the MLP

4.1 The MineReduce Approach

The MineReduce approach builds upon the ideas introduced by previous
approaches for incorporating data mining into metaheuristics, like the MDM
approach [14]. Since the mined patterns are assumed to likely be part of the
best solutions to a problem instance, they are well-suited for reducing its size.

MineReduce-Based Metaheuristic for the Minimum Latency Problem 93

For example, the items in a pattern (temporarily fixed in the solution) can be
deleted from the instance or merged in a condensed representation.

MineReduce’s first steps are to build an elite set of solutions and to mine
patterns from this set. These steps should be carried out like in the MDM app-
roach, i.e., the best solutions found are stored in the elite set until the data min-
ing method is invoked. The subsequent steps compose a problem size reduction
(PSR) process intended to replace a multi-start metaheuristic’s initial solution
generation method. The Reduce step uses a pattern p to transform a problem
instance I into a reduced-size instance I ′. The Optimize step is accomplished
through the application of the metaheuristic’s original optimization procedures
to I ′. The Expand step transforms the solution to I ′ into a solution to I, which
concludes the MineReduce-based generation of an initial solution.

MineReduce has been successfully applied in metaheuristics for problems
such as vehicle routing and vertex cover variants, with considerable improve-
ments in solution quality and computational time, especially compared with
MDM-based metaheuristics [11,12].

According to Talbi’s taxonomy for metaheuristics that incorporate machine
learning (ML) in their design [21], MineReduce-based methods are primarily
classified as problem-level ML-supported metaheuristics since this approach uses
data mining for hierarchical problem decomposition (defining and solving smaller
subproblems). In addition, they can also be classified as low-level ML-supported
metaheuristics given that data mining is used in a process that drives the ini-
tialization of solutions. Finally, regarding the learning time criteria, they are
classified as online ML-supported metaheuristics since they gather knowledge
during the search while solving the problem.

4.2 MineReduce-Based GILS-RVND

The reduction process adopted for this problem is similar to that adopted for a
vehicle routing problem [12]. In this case, a mined pattern is a set of subsequences
of customers. These subsequences can be contracted by replacing all vertices in
a subsequence with a single vertex.

Let G = (V,A) be a directed graph associated with an MLP instance
and p a pattern consisting of a set of subsequences of customer vertices in
that instance. Let G∗ = (V ∗, A∗) be a directed graph associated with the
corresponding reduced instance based on p. Such a reduced version can be
obtained as follows. Initially, G∗ is defined as a copy of G. For each subsequence
σ = (i1, i2, ..., i|σ|) ∈ p selected to be contracted, each of the customers in σ is
removed from G∗ – that is, the vertex corresponding to the customer is removed
from V ∗ and the arcs that connect that vertex to the others are removed from
A∗. Then, a customer vertex iσ corresponding to the subsequence is added to V ∗

and arcs connecting iσ to the other vertices in V ∗ are added to A∗. The travel
time from each vertex i∗ ∈ V ∗ to iσ is given by ti∗iσ

= ti∗i1 , that is, the travel
time from i∗ to i1 (the first customer in σ). The travel time from iσ to each
vertex i∗ ∈ V ∗ is given by tiσi∗ = ti|σ|i∗ , that is, the travel time from i|σ| (the
last customer in σ) to i∗.

94 M. R. H. Maia et al.

The values in the “by concatenation” framework structures for a subsequence
with only the single vertex iσ are defined as T (iσ) = T (σ), C(iσ) = C(σ) and
W (iσ) = W (σ). Note that the need to adapt the “by concatenation” framework
structures to work seamlessly with reduced instances made this application of
MineReduce challenging even though the approach had previously been applied
to another routing problem.

The structure of the MineReduce-based version of GILS-RVND, called MR-
GILS-RVND, is depicted in Algorithm 2. The difference to Algorithm 1 is the use
of a MineReduce-based constructive process instead of the hybrid constructive
process from MDM-GILS-RVND in the last β iterations (line 13).

Algorithm 2. MR-GILS-RVND

1: f(s∗) ← ∞
2: for i ← 1, . . . , IMax/2 do
3: s ← ConstructiveProc()
4: s′ ← ILS(s)
5: if f(s′) < f(s∗) then
6: s∗ ← s′

7: for i ← 1, . . . , IMax/2 do
8: if i = 1 or E was updated in iteration i − 1 then
9: P ← Mine(E, supmin, MaxP)

10: if i ≤ (IMax/2) − β then
11: s ← HybridConstructiveProc(p ∈ P)
12: else
13: s ← MR-ConstructiveProc(p ∈ P)

14: s′ ← ILS(s)
15: if f(s′) < f(s∗) then
16: s∗ ← s′

17: return s∗

The MineReduce-based constructive process, presented in Algorithm 3, is a
PSR process based on a pattern, as defined by the MineReduce approach.

Algorithm 3. MR-ConstructiveProc(p)

1: ReduceInstance(p, γ)
2: s ← ConstructiveProc()
3: s′ ← ILS(s)
4: s0 ← ExpandSolution(s′)
5: return s0

In this implementation, we sort all subsequences in a pattern in decreasing
size (number of traversed arcs) order. Then, we contract subsequences from the
largest to the smallest until we have used a portion γ of all pattern’s arcs. The

MineReduce-Based Metaheuristic for the Minimum Latency Problem 95

adoption of this strategy was motivated by preliminary tests showing that the
mined patterns contained too many arcs, producing reduced instances that were
too small. Hence, after expanding solutions found for the reduced instances, a
considerable effort was still necessary for the local search on the original instance.
Using only a portion of the arcs in a pattern adds control to the reduction factor.
Finally, we chose to favour larger subsequences because they are less likely to
occur than small subsequences given the same minimum support. Therefore,
they represent more robust and relevant portions of the patterns.

In Algorithm 3, the instance is reduced based on the provided pattern p
(line 1). Then, a solution for the reduced instance is obtained by applying the
original constructive and ILS methods from GILS-RVND (lines 2–3). Finally,
the solution found is expanded, producing a solution for the original instance
(line 4), which is returned (line 5).

Figure 2 illustrates the application of MineReduce’s PSR process to an MLP
instance. Let S1 and S2 be two solutions composing an elite set (Fig. 2a and
Fig. 2b, respectively) and supmin = 100%. The mined pattern is depicted in
dashed lines in Fig. 2c. The largest subsequences in these patterns – (8, 6, 1)
and (10, 4, 5) – are contracted into vertices a and b, respectively, resulting in
the reduced instance I ′ shown in Fig. 2d. Then, a solution for I ′ (Fig. 2e) is
obtained using the original construction and search methods from GILS-RVND
and expanded to become a solution for the original instance (Fig. 2f).

5 Computational Results

We have assessed the performance of our proposed method, MR-GILS-RVND, by
running computational experiments comparing it to the original state-of-the-art
MDM-GILS-RVND metaheuristic [18]. We have built MR-GILS-RVND upon the
original MDM-GILS-RVND source code. Both were implemented in C++ and
compiled with g++ 4.4.7. The experiments were run in a single thread on an
Intel R© CoreTM i7-5500U 2.40 GHz CPU.

In these experiments, we used a set composed of 56 benchmark instances
with 120 to 1379 customers from TSPLIB [15], which was also used to compare
MDM-GILS-RVND and GILS-RVND in [18]. We ran both algorithms on ten
tests using different random seeds for each instance.

The configuration of the MDM-GILS-RVND parameters adopted in [18]
was used for both methods in our experiments: IMax = 10 (the number of
multi-start iterations); IILS = min(100, n) (the number of ILS iterations);
R = {0.00, 0.01, . . . , 0.25} (the possible values for α, a value that controls the
greediness level of the constructive process, randomly chosen for each multi-start
iteration); supmin = 70% (the relative minimum support of the mined patterns);
d = 10 (the capacity of the elite set); and MaxP = 5 (the maximum number of
patterns returned by the data mining process).

The parameters introduced in MR-GILS-RVND – β (the number of multi-
start iterations applying the MineReduce-based constructive process) and γ, the
portion of all arcs in a pattern that are used for contraction – had their values

96 M. R. H. Maia et al.

Fig. 2. MineReduce’s PSR applied to an MLP instance

tuned based on the best trade-off between solution quality and computational
time found in tests run on a sample with 12 out of the 56 benchmark instances
(with 262 to 1291 customers). We refer to these 12 instances as the training set.
The following values were considered for tuning the parameters: {1, 2, . . . , 5}
for β, and {60%, 2/3, 70%, 80%} for γ. The best values found were β = 4 and
γ = 2/3. Hence, we used these values in the experiments on the remaining

MineReduce-Based Metaheuristic for the Minimum Latency Problem 97

44 instances – the validation set. MR-GILS-RVND, with this best parameter
configuration, found new best solutions for 6 out of the 12 instances in the
training set, which are reported in Table 1.

Table 1. New best solutions found by MR-GILS-RVND for training instances

Instance Solution Instance Solution Instance Solution

gil262 285,043 rd400 2,762,336 gr431 21,154,740

si535 12,246,046 gr666 63,454,259 vm1084 94,608,098

Table 2 summarizes the results obtained in the experiments using the
instances in the validation set. MDM-GILS-RVND and MR-GILS-RVND are
compared regarding the wins in best cost, average cost and average CPU run-
ning time, the number of new best solutions found, and the summed number of
best known solutions (BKS) and new best solutions found.

Table 2. Results summary (all validation instances)

MDM-GILS-RVND MR-GILS-RVND

Wins best cost 4 6

Wins avg. cost 12 18

Wins avg. time 25 19

New best – 5

Nb BKS + new best 37 39

The comparison on all 44 benchmark instances shows that MR-GILS-RVND
overcomes MDM-GILS-RVND regarding solution quality, obtaining better solu-
tions for most instances. Furthermore, MR-GILS-RVND found new best solu-
tions for five instances in this set.

On the other hand, MDM-GILS-RVND obtained more wins in average time.
This can be explained by the fact that all 15 instances with n ≤ 195 are in
the validation set. These small instances are easier than the others, and they all
have been solved optimally by exact methods. The original MDM-GILS-RVND
finds their optimal solutions in a few seconds. Thus, the slight computational
overhead introduced by applying the size reduction process in MR-GILS-RVND
is not compensated by a convergence speedup as usual since the solutions cannot
be further improved.

Therefore, a separate comparison is presented in Table 3 considering only the
instances with n > 195 (the 29 largest instances). For these larger instances, both
methods are technically tied regarding average computational time, whereas the
superiority of MR-GILS-RVND regarding solution quality is further evidenced,

98 M. R. H. Maia et al.

with about twice the number of wins of MDM-GILS-RVND in average cost.
Hence, these results show that the MineReduce approach, applied in MR-GILS-
RVND, improved solution quality without increasing computational time over
MDM-GILS-RVND.

Table 3. Results summary (n > 195)

MDM-GILS-RVND MR-GILS-RVND

Wins best cost 4 6

Wins avg. cost 9 17

Wins avg. time 15 14

New best – 5

Nb BKS + new best 22 25

Table 4 presents the detailed solution cost comparison results for the vali-
dation set. For each instance, we report the BKS cost from the literature and
the best and average costs obtained by each method over the ten runs. Win-
ning values in the comparison are in bold, solution costs matching the BKS are
presented in italics, and new best solution costs are underlined.

Table 5 presents the detailed running time comparison results for the vali-
dation set. We report the average CPU running time in seconds obtained by
each method over the ten runs for each instance. Again, winning values in the
comparison are presented in bold. As it can be noticed, the overhead in terms
of running time generated by the application of the MineReduce approach is
almost negligible. The most expensive process in this approach is the mining of
maximal frequent itemsets, which is NP-hard [23]. However, this step is already
present in MDM-GILS-RVND. Besides, its combinatorial explosion is kept under
control since the input is a dataset with only ten transactions (the solutions in
the elite set). The instance reduction step is performed in O(n2) since its most
costly operation is the reconstruction of the travel time matrix, and the solu-
tion expansion in O(n) since it simply replaces the contracted vertices with the
corresponding subsequences. These steps are performed only once for each of
the last β iterations. Hence, their computational cost becomes irrelevant when
compared to the search process. Finally, the problem decomposition provided
by the reduction process makes the search more efficient in harder instances,
compensating for the slight overhead.

MineReduce-Based Metaheuristic for the Minimum Latency Problem 99

Table 4. Solution cost comparison

Instance BKS MDM-GILS-RVND MR-GILS-RVND

Best cost Avg. cost Best cost Avg. cost

gr120 363,454a,b 363,454 363,454.0 363,454 363,700.3

pr124 3,154,346a,b 3,154,346 3,154,346.0 3,154,346 3,154,346.0

bier127 4,545,005a,b 4,545,005 4,545,691.9 4,545,005 4,545,005.0

ch130 349,874a,b 349,874 349,903.5 349,874 349,903.5

pr136 6,199,268a,b 6,199,268 6,200,041.6 6,199,268 6,200,360.9

gr137 4,061,498a,b 4,061,498 4,061,498.0 4,061,498 4,061,498.0

pr144 3,846,137a,b 3,846,137 3,846,137.0 3,846,137 3,846,137.0

ch150 444,424a,b 444,424 444,424.0 444,424 444,424.0

kroA150 1,825,769a,c 1,825,769 1,825,769.0 1,825,769 1,825,769.0

kroB150 1,786,546a,c 1,786,546 1,786,546.0 1,786,546 1,786,546.0

pr152 5,064,566a,b 5,064,566 5,064,566.0 5,064,566 5,064,566.0

u159 2,972,030a,c 2,972,030 2,972,204.2 2,972,030 2,972,204.2

si175 1,808,532a,c 1,808,532 1,808,532.0 1,808,532 1,808,532.0

brg180 174,750a,c 174,750 174,750.0 174,750 174,750.0

rat195 218,632a,c 218,632 218,736.6 218,632 218,771.3

d198 1,186,049c 1,186,049 1,186,273.3 1,186,049 1,186,049.0

kroA200 2,672,437c 2,672,437 2,672,444.2 2,672,437 2,672,437.0

kroB200 2,669,515c 2,669,515 2,675,993.6 2,669,515 2,676,444.9

gr202 2,909,247d 2,909,247 2,913,368.4 2,909,247 2,913,957.8

ts225 13,240,046d 13,240,046 13,240,046.0 13,240,046 13,240,533.0

tsp225 402,783d 402,783 402,933.3 402,783 402,925.4

pr226 7,196,869d 7,196,869 7,196,869.0 7,196,869 7,196,869.0

gr229 10,725,914d 10,725,914 10,731,249.9 10,725,914 10,729,841.4

pr264 5,471,615d 5,471,615 5,471,615.0 5,471,615 5,471,615.0

a280 346,989d 346,989 347,106.9 346,989 347,098.9

pr299 6,556,628d 6,556,628 6,559,030.8 6,556,628 6,559,653.7

lin318 5,619,810d 5,619,810 5,630,590.5 5,619,810 5,630,590.5

fl417 1,874,242d 1,874,242 1,874,242.0 1,874,242 1,874,246.0

pr439 17,829,541d 17,829,541 17,868,632.7 17,829,541 17,866,993.1

pcb442 10,301,705d 10,301,705 10,321,465.7 10,301,705 10,321,299.8

d493 6,677,458d 6,677,458 6,687,268.2 6,680,576 6,685,445.4

ali535 31,860,679d 31,860,679 31,910,477.9 31,860,679 31,907,551.1

pa561 658,870d 660,590 661,790.6 660,127 661,757.9

p654 7,827,273d 7,827,273 7,827,867.8 7,827,273 7,827,953.4

d657 14,112,540d 14,112,540 14,195,797.6 14,112,540 14,194,627.6

u724 13,504,408d 13,504,408 13,537,514.7 13,491,599 13,543,353.9

dsj1000 7,642,715,113d 7,642,715,113 7,664,531,851.2 7,642,418,952 7,662,310,139.5

dsj1000ceil 7,646,395,679d 7,646,395,679 7,676,973,751.4 7,632,965,540 7,674,650,570.0

si1032 46,896,355d 46,896,355 46,896,783.6 46,896,355 46,897,212.2

u1060 102,508,056d 102,539,819 102,759,493.6 102,436,120 102,681,878.9

pcb1173 30,890,385d 30,890,385 30,957,008.7 30,891,243 30,945,301.5

rl1304 144,592,447d 144,592,447 145,398,549.2 144,585,587 145,320,131.5

rl1323 155,697,857d 155,719,283 156,273,365.5 155,762,567 156,229,029.1

nrw1379 35,291,795d 35,291,795 35,456,093.0 35,329,106 35,461,487.4

Wins 4 12 6 18

Wins (n > 195) 4 9 6 17
aOptimality proven.
bFrom [16].
cFrom [4].
dFrom [18].

100 M. R. H. Maia et al.

Table 5. Average running time comparison

Instance MDM-GILS-RVND MR-GILS-RVND

gr120 10.73 10.88

pr124 6.83 7.14

bier127 10.31 10.65

ch130 11.99 12.90

pr136 19.30 17.29

gr137 9.25 9.79

pr144 11.31 11.43

ch150 14.19 14.69

kroA150 20.77 20.42

kroB150 19.41 18.68

pr152 13.13 14.09

u159 16.59 16.70

si175 19.04 20.98

brg180 23.84 23.29

rat195 45.90 45.39

d198 42.79 38.52

kroA200 45.14 43.15

kroB200 49.30 44.68

gr202 39.28 38.36

ts225 35.15 47.88

tsp225 56.59 56.65

pr226 37.91 39.55

gr229 53.37 53.63

pr264 51.31 52.99

a280 117.64 107.57

pr299 104.23 106.88

lin318 129.40 133.96

fl417 469.94 499.70

pr439 405.55 399.02

pcb442 604.91 601.88

d493 1,034.42 883.64

ali535 1,345.69 1,361.16

pa561 1,649.07 1,728.66

p654 1,825.05 1,742.79

d657 2,571.72 2,508.68

u724 4,209.10 4,430.35

dsj1000 17,630.28 17,792.34

dsj1000ceil 17,185.99 17,033.65

si1032 2,794.02 2,661.32

u1060 13,336.35 14,128.16

pcb1173 19,192.65 19,024.96

rl1304 17,636.57 18,013.06

rl1323 22,081.21 21,322.80

nrw1379 45,325.74 48,402.52

Wins 25 19

Wins (n > 195) 15 14

MineReduce-Based Metaheuristic for the Minimum Latency Problem 101

6 Conclusion

This paper proposes a hybrid metaheuristic for the MLP based on the MineRe-
duce approach, which uses patterns extracted from an elite set of solutions using
data mining to reduce the size of problem instances.

The proposed method, named MR-GILS-RVND, was built through the appli-
cation of the MineReduce approach on MDM-GILS-RVND [18], a state-of-the-
art algorithm that applies another approach for incorporating data mining into
metaheuristics, which consists in inserting mined patterns in initial solutions.

We conducted computational experiments with 56 benchmark instances from
TSPLIB to compare MDM-GILS-RVND and MR-GILS-RVND. The reported
results evidence that our proposed MR-GILS-RVND overcomes MDM-GILS-
RVND, achieving better solutions for most instances without increasing compu-
tational time. Furthermore, the results show a more evident superiority of the
MineReduce-based method in more challenging instances (with n > 195).

These results reinforce the potential of the MineReduce approach for improv-
ing the performance of metaheuristics within a framework already applied to
other combinatorial optimization problems. We shall extend this work with addi-
tional experiments run on a larger number of different problem instances to draw
more general conclusions. Also, in future work, further investigation on the cur-
rent application can be made to other challenging problem variants (e.g., time
windows) that may require specialized design in the “by concatenation” frame-
work. Finally, we expect that the contributions made in this work lead to a
better comprehension of challenges involving problem size reduction for hard
combinatorial optimization problems.

References

1. Abeledo, H., Fukasawa, R., Pessoa, A., Uchoa, E.: The time dependent traveling
salesman problem: polyhedra and algorithm. Math. Program. Comput. 5, 27–55
(2013). https://doi.org/10.1007/s12532-012-0047-y

2. Angel-Bello, F., Alvarez, A., Garćıa, I.: Two improved formulations for the mini-
mum latency problem. Appl. Math. Model. 37(4), 2257–2266 (2013). https://doi.
org/10.1016/j.apm.2012.05.026

3. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan,
M.: The minimum latency problem. In: Proceedings of the Twenty-Sixth Annual
ACM Symposium on Theory of Computing, STOC 1994, pp. 163–171. Associa-
tion for Computing Machinery, New York (1994). https://doi.org/10.1145/195058.
195125

4. Bulhões, T., Sadykov, R., Uchoa, E.: A branch-and-price algorithm for the mini-
mum latency problem. Comput. Oper. Res. 93, 66–78 (2018). https://doi.org/10.
1016/j.cor.2018.01.016

5. Campbell, A.M., Vandenbussche, D., Hermann, W.: Routing for relief efforts.
Transp. Sci. 42(2), 127–145 (2008). https://doi.org/10.1287/trsc.1070.0209

6. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J.
Global Optim. 6(2), 109–133 (1995). https://doi.org/10.1007/BF01096763

https://doi.org/10.1007/s12532-012-0047-y
https://doi.org/10.1016/j.apm.2012.05.026
https://doi.org/10.1016/j.apm.2012.05.026
https://doi.org/10.1145/195058.195125
https://doi.org/10.1145/195058.195125
https://doi.org/10.1016/j.cor.2018.01.016
https://doi.org/10.1016/j.cor.2018.01.016
https://doi.org/10.1287/trsc.1070.0209
https://doi.org/10.1007/BF01096763

102 M. R. H. Maia et al.

7. Fischetti, M., Laporte, G., Martello, S.: The delivery man problem and cumulative
matroids. Oper. Res. 41(6), 1055–1064 (1993). https://doi.org/10.1287/opre.41.6.
1055

8. Grahne, G., Zhu, J.: Efficiently using prefix-trees in mining frequent itemsets.
In: Goethals, B., Zaki, M.J. (eds.) Proceedings of the IEEE ICDM Workshop on
Frequent Itemset Mining Implementations (2003)

9. Kindervater, G.A.P., Savelsbergh, M.W.P.: Vehicle routing: handling edge
exchanges, pp. 337–360. Princeton University Press (2018). https://doi.org/10.
1515/9780691187563-013

10. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated Local Search, pp. 320–353.
Springer, Boston (2003). https://doi.org/10.1007/0-306-48056-5 11

11. Maia, M.R.H., Plastino, A., Souza, U.S.: MineReduce for the minimum weight ver-
tex cover problem. In: Proceedings of the International Conference on Optimization
and Learning (OLA 2020), pp. 11–22 (2020)

12. Maia, M.R.H., Plastino, A., Penna, P.H.V.: MineReduce: an approach based on
data mining for problem size reduction. Comput. Oper. Res. 122, 104995 (2020).
https://doi.org/10.1016/j.cor.2020.104995

13. Mladenović, N., Urošević, D., Goos, P., Hanafi, S.: Variable neighborhood search
for the travelling deliveryman problem. 4OR 11, 57–73 (2013). https://doi.org/10.
1007/s10288-012-0212-1

14. Plastino, A., Barbalho, H., Santos, L.F.M., Fuchshuber, R., Martins, S.L.: Adaptive
and multi-mining versions of the DM-GRASP hybrid metaheuristic. J. Heurist. 20,
1899–1911 (2014). https://doi.org/10.1007/s10732-013-9231-0

15. Reinelt, G.: TSPLIB-a traveling salesman problem library. ORSA J. Comput. 3(4),
376–384 (1991). https://doi.org/10.1287/ijoc.3.4.376

16. Roberti, R., Mingozzi, A.: Dynamic ng-path relaxation for the delivery man prob-
lem. Transp. Sci. 48(3), 413–424 (2014). https://doi.org/10.1287/trsc.2013.0474

17. Salehipour, A., Sörensen, K., Goos, P., Bräysy, O.: Efficient GRASP+VND and
GRASP+VNS metaheuristics for the traveling repairman problem. 4OR 9(2), 189–
209 (2011). https://doi.org/10.1007/s10288-011-0153-0

18. Santana, I., Plastino, A., Rosseti, I.: Improving a state-of-the-art heuristic for the
minimum latency problem with data mining. Int. Trans. Oper. Res. 29(2), 959–986
(2022). https://doi.org/10.1111/itor.12774

19. Silva, M.M., Subramanian, A., Vidal, T., Ochi, L.S.: A simple and effective meta-
heuristic for the minimum latency problem. Eur. J. Oper. Res. 221(3), 513–520
(2012). https://doi.org/10.1016/j.ejor.2012.03.044

20. Subramanian, A., Drummond, L., Bentes, C., Ochi, L., Farias, R.: A parallel heuris-
tic for the vehicle routing problem with simultaneous pickup and delivery. Comput.
Oper. Res. 37(11), 1899–1911 (2010). https://doi.org/10.1016/j.cor.2009.10.011

21. Talbi, E.G.: Machine learning into metaheuristics: a survey and taxonomy. ACM
Comput. Surv. 54(6), 1–32 (2021). https://doi.org/10.1145/3459664

22. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unifying view on timing
problems and algorithms. Technical report, CIRRELT (2011)

23. Yang, G.: The complexity of mining maximal frequent itemsets and maximal
frequent patterns. In: Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2004, pp. 344–353.
Association for Computing Machinery, New York (2004). https://doi.org/10.1145/
1014052.1014091

https://doi.org/10.1287/opre.41.6.1055
https://doi.org/10.1287/opre.41.6.1055
https://doi.org/10.1515/9780691187563-013
https://doi.org/10.1515/9780691187563-013
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1016/j.cor.2020.104995
https://doi.org/10.1007/s10288-012-0212-1
https://doi.org/10.1007/s10288-012-0212-1
https://doi.org/10.1007/s10732-013-9231-0
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1287/trsc.2013.0474
https://doi.org/10.1007/s10288-011-0153-0
https://doi.org/10.1111/itor.12774
https://doi.org/10.1016/j.ejor.2012.03.044
https://doi.org/10.1016/j.cor.2009.10.011
https://doi.org/10.1145/3459664
https://doi.org/10.1145/1014052.1014091
https://doi.org/10.1145/1014052.1014091

Optimizing Multi-variable Time Series
Forecasting Using Metaheuristics

Francesco Zito(B), Vincenzo Cutello, and Mario Pavone

Department of Mathematics and Computer Science, University of Catania,
v.le Andrea Doria 6, 95125 Catania, Italy

francesco.zito@phd.unict.it, cutello@unict.it, mpavone@dmi.unict.it

Abstract. Multi-variable time series forecasting is one of several appli-
cations of machine learning. Creating an artificial environment capable
of replicating real-world behavior is useful for understanding the intrin-
sic relationship between variables. However, selecting a predictor that
ensures good performance for variables of different natures is not always
a simple process. An algorithmic approach based on metaheuristics could
be a good alternative to find the best predictive model for variables. Each
predictor is optimized for forecasting a particular variable in a multi-
agent artificial environment to improve the overall performance. The
resulting environment is compared with other solutions that use only
the same type of predictor for each variable. Finally, we can assert that
using a multi-agent environment can improve the performance, accuracy,
and generalization of our model.

Keywords: Metaheuristic · Optimization · Machine learning ·
Multi-variable time series prediction · Neural network · Artificial
forecasting

1 Introduction

Metaheuristics are nowadays widely used methodologies in combinatorial opti-
mization to solve hard and complex problems [6,12,13,17,18]. Their ability to
find good approximate solutions in reasonable times makes them an excellent
alternative to traditional techniques [4,9]. The wide range of metaheuristic meth-
ods published in literature has allowed researchers to revise classical problems
by adapting metaheuristic methods as needed [21]. However, in recent years, the
use of the metaheuristics, and their applications, has changed. Indeed, with the
advent and expansion of artificial intelligence technologies in various application
domains, several research works have been conducted and published that inte-
grate metaheuristics with these new techniques to provide more accurate solu-
tions. For instance, many research proposals that integrate metaheuristics and
machine learning have been made. On the one hand, machine learning models
are incorporated into metaheuristics to analyze and extract useful information
from the many data generated by metaheuristics with the aim of guiding and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 103–117, 2023.
https://doi.org/10.1007/978-3-031-26504-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_8&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_8

104 F. Zito et al.

enhancing their performance [3,11]. It is known, indeed, that metaheuristics do
not take properly advantage of the many knowledge discovered during the search
process, therefore the use of machine learning into the metaheuristics allows to
exploit all information collected during the search process to guide the algorithm
toward optimal solutions faster [20] On the other hand, the metaheuristics incor-
porated into machine learning are useful to this last [1] to design more efficient
and reliable Deep Learning techniques and architectures [19], as well as to adjust
hyperparameters and improve then prediction accuracy [5].

In this research work, a metaheuristic is presented to automatically set the
machine learning configurations with the aim to increase the prediction accu-
racy. To achieve this, an optimization technique is applied to a multi-variable
time series forecasting problem to validate the proposed algorithm. Consider-
ing that the variables in real-life evolve based on unknown functions, the ideal
predictor must be able to accurately replicate real-world behavior using only
real-world observations as training data [8]. The predictor forecasts a time series
of values for each variable. This type of problem is often used to understand
the relationship between variables and how they relate and interact to each
other [15]. An example is the genetic inference problem where a gene regulatory
network is constructed based on the observations of the real environment that
reveals the relationships between genes [10,22].

Fig. 1. The target time series. It is obtained from the average of all SOS DNA Repair
experiments.

For validating the goodness and efficiency of the proposed approach a gene
expression dataset was considered, which is obtained by observing the change in
concentration of genes in a specific time window, as reported in [7]. Specifically,
the SOS DNA repair reported in [14] was used, which consists of four experi-
ments, each of which was recorded with fifty observations of eight genes, every

Optimizing Multi-variable Time Series Forecasting Using Metaheuristics 105

six minutes. Considering that SOS DNA Repair dataset contains four experi-
ments with significantly different values, due to measurement noise, the first two
experiments were considered as training set, whilst the third one as validation
set. The outcomes presented in this research paper were evaluated considering
the average of all four experiments. Figure 1 displays the target time series of
all SOS DNA Repair experiments. From the several experiments performed and
from the analysis of the outcomes obtained, which were evaluated using the
Cosine Similarity and Pearson Correlation, appears how the proposed approach
significantly improves the prediction quality that in most cases coincides with
the target one.

2 Method, Model and Optimization

In this section, a method for generating an artificial environment with the highest
similarity index is presented. The description of the method is divided into three
parts. The first part describes our model; in the second part, a method for
creating an environment with the appropriate configuration is explained; and
finally in the last part, an optimization algorithm is presented to determine the
best configuration of the environment to improve performance.

2.1 Model

Developing a methodology to predict the behavior of a real environment, based
solely on observations, is one of the most interesting challenges in computer
science. Basically, a real environment consists of several entities, also called vari-
ables, that change over time. Figure 2 represents the environment schema under
consideration.

Fig. 2. Environment architecture

Definition 1 (State of the environment). Let E be an environment with k
variables, the state of the environment at time t, denoted by s(t), is defined as

106 F. Zito et al.

a k-vector in which the generic element s
(t)
i is the value of the i-th variable at

time t:
s(t) =

(
s
(t)
1 , . . . , s

(t)
k

)
. (1)

Let therefore s(t) =
[
s
(t)
1 , s

(t)
2 , . . . , s

(t)
k

]
be the current state of the environment;

the subsequent state of environment is then computed as follows:

s(t+1) = fE

(
s(t)

)
, (2)

where fE is the state transaction function and defines the behavior of the envi-
ronment E. The state of the environment evolves throughout time. Considering
that each variable in the proposed model is predicted by a single predictor, also
called agent, the Eq. 2 can be decomposed into k components, one for each vari-
able, each of which is responsible for predicting the value of a single variable,
given the state of the environment at the previous time:

fE = (fE1 . . . , fEk) (3)

with fEi the agent function that returns the i-th component of the state at time
t+1, given the environment’s state at time t. According to Eq. 3, it follows that
Eq. 2 can be rewritten as follows:

s(t+1) =
(
fE1

(
s(t)

)
, . . . , fEk

(
s(t)

))
(4)

Each agent in the environment can be considered as a black-box function with
its own architecture. They are in fact autonomous in terms of architecture, even
though they influence each other through the state of the environment. Basically,
the problem of environment prediction is to create an artificial environment Ê to
replicate the behavior of the real environment. From a mathematical perspective,
a function fÊ that best approximates the hypothesis function fE must be found.
The resulting model is evaluated using similarity measures. As demonstrated
in [2], similarity is an excellent way to determine whether the prediction of
the artificial environment is correct. Therefore, Cosine Similarity (Definition 2)
and Pearson Correlation (Definition 3) have been considered to calculate the
environment score and to show the accuracy of the proposed model [16].

Definition 2 (Cosine Similarity). Given two vectors, x and x̂, the cosine
similarity, Scosine(x, x̂), measures the angle between two vectors represented in
a multidimensional space, and is defined as:

Scosine(x, x̂) =

∑n
j=1 xj x̂j√∑n

j=1 x2
j

√∑n
j=1 x̂2

j

, (5)

where xj and x̂j are components of vector x and x̂ respectively, while n is the
size of vectors. The smaller the angle between the vectors, the higher the cosine
similarity scores.

Optimizing Multi-variable Time Series Forecasting Using Metaheuristics 107

Definition 3 (Pearson Correlation). Given two vectors, x and x̂, the Pear-
son correlation, Spearson(x, x̂), measures the linear relationship between the two
vectors and is computed as:

Spearson(x, x̂) =

∑n
j=1 (xj − μx) (x̂j − μx̂)√∑n

j=1 (xj − μx)2
√∑n

j=1 (x̂j − μx̂)2
(6)

where xj and x̂j are components of the vector x and x̂, respectively; μx and μx̂

are the average of the vectors x and x̂; and n is the size of the vectors.

Supposing that X̂ ∈ R
k×n represents the time series data predicted from

an artificial environment Ê and X ∈ R
k×n the time series data from the real

environment E, the artificial environment score is defined as follows:

R
(
E, Ê

)
=

k∑
i=1

∣∣∣S(Xi, X̂i)
∣∣∣ , (7)

where k is the number of variables; X̂i is a n-vector representing the time course
of the i-th variable estimated by the artificial environment; Xi is a n-vector
indicating the time course of the i-th variable in the real world; and S(Xi, X̂i) is
one of the similarity metrics stated above. As can be seen from Eq. 7, the score of
the environment ranges between 0 an k. The quality of the environment will be
expressed in percentage terms, as specified below, to facilitate its interpretation.

Definition 4 (Similarity Index). Let Ê be an artificial environment that
approximate the real environment E. The similarity index of Ê is a percent-
age value that expresses how similar the artificial and real environments are,
and it is calculated as follows:

R%(E, Ê) =
R

(
E, Ê

)

k
100. (8)

2.2 Configuration

As described above, an environment is composed of a given number of agents,
each of which able to predict the value of a variable over time. To achieve this,
a possible collection of agents capable of accurately simulating the behavior of
these variables must be identified. Agents with different architectures can coexist
in the same environment. Each agent is formed according to the configuration
selected when the environment was created. Different types of predictors have
been used to explore different possible configurations of the artificial environ-
ment. In Table 1 are reported the available configurations for each predictor,
and specifically:

– Predictor Name: that indicates the type of predictor used to predict the
variable. A predictor can be a neural network or another predictor model,
such as a linear regression model;

108 F. Zito et al.

Table 1. Agent configurations for each type of predictor

Predictor name Machine learning
task

Agent prediction
schema

Training
parameters

Fully Connected
Neural Network
(FCNN)

Classification
(L)/Regression

Simple/Delta
Prediction

Epochs, Mini
Batch Size,
Learning Rate

Recurrent Neural
Network
(RNN-LSTM)

Classification
(L)/Regression

Simple/Delta
Prediction

Epochs, Mini
Batch Size,
Learning Rate

Convolutional
Neural Network
(CNN)

Regression Simple/Delta
Prediction

Epochs, Mini
Batch Size,
Learning Rate

Simple Linear
Regression (SLR)

Regression Simple/Delta
Prediction

– Machine Learning Tasks: as it is well known, there are two types of
machine learning tasks, such as regression and classification. In the regression
task, the predictor forecasts a real value; otherwise, it predicts a class. Con-
versely, in the classification task, the training data must be prepared before
training to divide the dataset into classes. The number of classes that must
be used is specified by the parameter L;

– Agent Prediction Schema: in this proposed model two different types of
prediction schemes are provided. In the first scheme, an agent predicts a value
directly, which is called Simple Prediction, while in the second one, an agent
predicts the offset between the subsequent and current values, and it is called
Delta Prediction;

– Training Parameters: to train a model certain training parameters must be
specified. For instance, to train a neural network it must specify the number
of epochs, the minimum stack size, the learning rate, and so on.

Figure 3 depicts an example of an environment with three distinct agents, each
with their own configuration and the responsibility of estimating the correspond-
ing variable.

2.3 Optimization

In this section, the proposed metaheuristic is presented with the main goal of
determining the optimal configuration of the environment from one or more ini-
tial configurations. In particular, a local-search algorithm (LS) was developed to
improve the initial solution and create an artificial environment with the highest
similarity index. At each iteration of the algorithm, new feasible solutions are
discovered and only the highest scoring solutions are promoted to the next itera-
tion. The solutions discovered in one iteration are used to create feasible solutions
for the next iteration through the following operators, each of these performed

Optimizing Multi-variable Time Series Forecasting Using Metaheuristics 109

Fig. 3. State update process. The state vector is updated using the outputs of all
agents. Each agent predicts the value of the corresponding variable based on the state
of the environment at the previous time.

with a given probability: mutation, generation, propagation, and combination.
Only a limited number of solutions pass to the next iteration. The parameters
of the algorithm are listed in Table 2. For simplicity, the current interaction is
denoted by i and the set of feasible solutions explored in the i-th iteration by
Ui.

Table 2. Parameters considered for the proposed metaheuristic

Name Description Value

ρ The probability that a feasible solution will be mutated 0.5

α The probability that a new feasible solution will be
generated at random during the current iteration

0.4

γ The probability that a candidate will be propagated at
the new iteration

0.8

β The probability that two or more feasible solution will
be merged each other

0.7

ν Maximum number of interactions that can be performed 4

η The number of feasible solutions that can be passed to
the next iteration

10

Mutation: the mutation operator is applied to a feasible solution subset Ûi−1 ⊆
Ui−1 in order to generate new solutions in Ui. A feasible solution in Ûi−1 can be
mutated with a probability of ρ. The mutation affects only agents who earned

110 F. Zito et al.

a low rating during the evaluation (Sect. 2.1). According to Eq. 7, the rating of
the agent Ah with h = 1, 2, . . . , k can be calculated as follows:

R (Ah) = |S(x̂hj , xhj)| . (9)

Knowing that an agent is defined by some specific properties, as shown in Table 1,
the mutation process randomly changes the value of these properties. Because of
the mutation, a new agent is created to replace the old one in the artificial envi-
ronment. When an environment is mutated, only the agents that have changed
need to be trained. This operation allows exploration of new environment config-
urations that are identical to the parent one except for a few agents. In addition,
the mutation operator can create more than one mutated solution from the same
solution in Ui.

Creation: with the probability α, a new artificial environment can be created
at each iteration and added to Ui. The environment configuration thus obtained
is created simply by randomly selecting values for the agents’ properties.

Combination: during iteration, two or more solutions in Ui−1 can be merged
together with probability β to create an artificial environment containing the
best agents for each variable. Equation 9 is used to calculate the score of all agents
that refer to the same variable but are in different environment configurations.
For each variable, the best agent with the highest score is selected and assigned
to a new environment. The resulting environment is then inserted into Ui.

Propagation: in propagation, the best solutions from the current iteration i−1
are promoted to the following iteration i. A solution contained in Ui−1 is inserted
into Ui with a probability γ. To prevent Ui from growing to infinity, all solutions
with a low score are discarded at the end of each iteration.

3 Results

In this section, we present the results obtained by applying the method described
in Sect. 2 to the dataset, shown in Fig. 1. As mentioned earlier, a collection of
initial solutions must be defined for the optimization algorithm, and therefore
four environment configurations were used as initial solutions and are listed in
the Table 3. As shown in the table, it is assumed that all agents in an artificial
environment initially have the same architecture. Using the optimization algo-
rithms presented in Sect. 2.3, it was possible to improve the initial configurations
and identify the appropriate artificial environment with the highest similarity
index.

Figure 4 shows how the optimization algorithm explores the search space iter-
ation by iteration, starting from the initial configurations described in Table 3
(nodes 1 to 4) and ending with the best environment (node 90) whose final con-
figuration is reported in Table 4. Each node in the search graph represents a
potential environment configuration and thus a possible solution for the algo-
rithm. Each node contains the following attribute: (1) similarity index (or fit-
ness); (2) environment configuration; (3) identifier; (4) parent identifiers; and

Optimizing Multi-variable Time Series Forecasting Using Metaheuristics 111

Table 3. Initial environment configurations

Configuration name Predictor name Machine learning task Agent prediction schema

Type 1 CNN Regression Simple Prediction

Type 2 FCNN Classification (100) Simple Prediction

Type 3 RNN-LSTM Classification (100) Simple Prediction

Type 4 SLR Regression Simple Prediction

Fig. 4. Solutions discovered during the search process. Red nodes represent the initial
solutions. The color of a node represents the number of iterations through which the
algorithm explores that node. All nodes with the same color were visited in the same
iteration. The label on the edge of the graph indicates the type of operation by which
the node was created: Mutation (M), Propagation (P), Combination (U). The red
mark indicates the best solution. (Color figure online)

Table 4. Configuration of the best artificial environment founded by the optimization
algorithmic

Variable Predictor name Machine learning task Agent prediction schema

uvrD FCNN Classification (100) Simple Prediction

lexA CNN Regression Simple Prediction

umuDC CNN Regression Simple Prediction

recA FCNN Classification (150) Delta Prediction

uvrA CNN Regression Simple Prediction

uvrY RNN Regression Delta Prediction

ruvA FCNN Regression Delta Prediction

polB FCNN Classification (100) Simple Prediction

(5) number of iterations. The metaheuristic operators, such as mutation, prop-
agation, or combination, are used to move from one node in the search space
to another one. Nodes can be visited during each iteration in two ways: using

112 F. Zito et al.

Table 5. Performance comparison of the best artificial environment with the initial
environments using both cosine similarity (5a) and person correlation (5b).

(a) Cosine Similarity

Variable Type 1 (CNN) Type 2 (FCNN) Type 3 (RNN) Type 4 (SLR) Optimized

uvrD 0.906836 0.955288 0.907892 0.839389 0.945584

lexA 0.979805 0.994548 0.848259 0.633996 0.984051

umuDC 0.882852 0.874044 0.785110 0.710735 0.991632

recA 0.959850 0.986910 0.868888 0.729974 0.991369

uvrA 0.990824 0.995476 0.939292 0.616042 0.983343

uvrY 0.723409 0.832653 0.891370 0.806082 0.946544

ruvA 0.671901 0.712845 0.625257 0.680062 0.846692

polB 0.813158 0.938896 0.903303 0.794426 0.956507

Similarity Index 86.61% 91.13% 84.62% 72.63% 95.57%

(b) Pearson Correlation

Variable Type 1 (CNN) Type 2 (FCNN) Type 3 (RNN) Type 4 (SLR) Optimized

uvrD 0.840166 0.891629 0.596472 0.025073 0.831584

lexA 0.982959 0.991858 0.865443 0.027845 0.976797

umuDC 0.777615 0.686630 0.349825 0.148003 0.980669

recA 0.962543 0.969059 0.785229 0.134906 0.987008

uvrA 0.988535 0.993400 0.960460 0.249609 0.994350

uvrY 0.641409 0.569276 0.524529 0.038941 0.891394

ruvA 0.555691 0.628533 0.223569 0.066942 0.725781

polB 0.547234 0.786681 0.647060 0.068000 0.879271

Similarity Index 78.70% 81.46% 61.91% 9.49% 90.84%

the metaheuristic operations described above, or randomly to expand the search
space and explore thus more solutions. As can be seen analyzing the Fig. 4, the
best solution is node 90 (red marked), which is created by combining the parent
nodes, which are mutations or combinations of their parent nodes. Reading this
graph, the bottom to the top, it is possible to see that node 90 is a permutation
of the agents in the initial solution with some mutations. Furthermore, inspect-
ing Table 4 is possible to note that the Delta Prediction scheme was preferred
over the Simple Prediction one for a subset of variables.

In Table 5 is reported the similarity score calculated for each variable given
the configurations listed in Table 3 and the best configuration reported in Table 4.
Note that the Eq. 9 was used to calculate the similarity score for each variable.
From the inspection of this table, it is possible to see that the proposed opti-
mization process increases the similarity index of the environment by about five
percentage points. In fact, a similarity index of about 95% (or 90% when using
Pearson correlation) is obtained. However, it is worth to also point out that if an
environment where all agents are FCNN is considered, a similarity index of 91%
is obtained, which is higher than all other initial configurations. Then, from the
overall investigation of both Tables 4 and 5 is possible to assert as outcome of
this research paper that using multiple agent architectures allows the creation
of artificial environments capable of accurately replicating real-world behavior.
However, it is also possible to note the score of most agents in the best config-
uration is higher than their score in the initial solutions, except for uvrD, lexA,

Optimizing Multi-variable Time Series Forecasting Using Metaheuristics 113

Fig. 5. The prediction results of 8 genes in SOS DNA Repair. The blue line represents
the real gene expression data, while the other lines represent the forecasting results from
the artificial environments. The orange line denotes the best environment identified by
the optimization algorithm. (Color figure online)

114 F. Zito et al.

Fig. 6. Correlation comparison between the target and predict values. The x-axis dis-
plays the predicted values, while the y-axis displays the actual values. The red diagonal
line represents the ideal values where the cosine similarity is equal to 1. (Color figure
online)

Optimizing Multi-variable Time Series Forecasting Using Metaheuristics 115

and uvrA. Indeed, the score of the agents in the best solution is slightly lower for
these agents. One reason for explaining this behavior is that the agent score is
computed considering the shared state of the environment, as seen in Eq. 4. As a
result, an agent with poor performance but high correlation with other variables
may impact on all other agents.

Figures 5 and 6 compare the performance of the best environment with the
target value. In particular, Fig. 5 shows the prediction results of the 8 genes
in SOS DNA Repair, where appears evident how the curve of the optimized
approach is almost always coincident with the target one in all variables, whilst
in Fig. 6 is displayed the correlation comparison between the target and predict
values. In these plots, the red diagonal line represents the ideal values where
the cosine similarity is equal to 1. Also, these plots confirm the good prediction
quality of the proposed approach since the predicted values almost always fall
on the diagonal line of the ideal values.

4 Conclusions and Future Works

The integration of machine learning and metaheuristics is a new area of computer
science that needs to be further explored by researchers. In this paper, a meta-
heuristic local search was developed for determining the optimal configuration
of the artificial environment considered starting from one or more initial con-
figurations. For assessing the goodness and reliability of the presented method,
the Cosine Similarity and Pearson Correlation considered, from which is also
possible to estimate the accuracy of the method. From the inspection of all out-
comes presented, appears how the proposed optimization method significantly
increases the similarity indices, and consequently, allows to create artificial envi-
ronments able to accurately replicate real-world behavior. This proposed opti-
mization method shows, and primarily proves, how metaheuristics and machine
learning can be used together to improve the overall performance on this type
of problem.

As future research works, the proposed metaheuristics will be applied to
design a neural network fully automatically, such as, for instance, selecting its
basic architecture; appropriate activation functions; layer parameters (such as
the output size in fully connected layers or the probability of dropping out input
elements in the dropout layers); and so on.

References

1. Akay, B., Karaboga, D., Akay, R.: A comprehensive survey on optimizing deep
learning models by metaheuristics. Artif. Intell. Rev. 55(2), 829–894 (2022).
https://doi.org/10.1007/s10462-021-09992-0

2. Almu, A., Bello, Z.: An experimental study on the accuracy and efficiency of
some similarity measures for collaborative filtering recommender systems (2021).
https://oer.udusok.edu.ng/xmlui/handle/123456789/948

https://doi.org/10.1007/s10462-021-09992-0
https://oer.udusok.edu.ng/xmlui/handle/123456789/948

116 F. Zito et al.

3. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial opti-
mization: a methodological tour d’Horizon. Eur. J. Oper. Res. 290(2), 405–
421 (2021). https://doi.org/10.1016/j.ejor.2020.07.063. https://www.sciencedirect.
com/science/article/pii/S0377221720306895

4. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on meta-
heuristics for stochastic combinatorial optimization. Nat. Comput. 8(2), 239–287
(2009). https://doi.org/10.1007/s11047-008-9098-4

5. Bibaeva, V.: Using metaheuristics for hyper-parameter optimization of convolu-
tional neural networks. In: 2018 IEEE 28th International Workshop on Machine
Learning for Signal Processing (MLSP), pp. 1–6 (2018). https://doi.org/10.1109/
MLSP.2018.8516989

6. Cutello, V., Fargetta, G., Pavone, M., Scollo, R.A.: Optimization algorithms for
detection of social interactions. Algorithms 13(6) (2020). https://doi.org/10.3390/
a13060139. https://www.mdpi.com/1999-4893/13/6/139

7. Gebert, J., Radde, N., Weber, G.W.: Modeling gene regulatory net-
works with piecewise linear differential equations. Eur. J. Oper. Res.
181(3), 1148–1165 (2007). https://doi.org/10.1016/j.ejor.2005.11.044. https://
www.sciencedirect.com/science/article/pii/S0377221706001512

8. Ghahremaninahr, J., Nozari, H., Sadeghi, M.E.: Artificial intelligence and machine
learning for real-world problems (a survey). Int. J. Innov. Eng. 1(3), 38–47 (2021).
https://ijie.ir/index.php/ijie/article/view/27

9. Greco, S., Pavone, M.F., Talbi, E.-G., Vigo, D. (eds.): MESS 2018. AISC, vol. 1332,
p. XI, 57. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68520-1

10. Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., Guthke, R.: Gene regula-
tory network inference: data integration in dynamic models-a review. Biosystems
96(1), 86–103 (2009). https://doi.org/10.1016/j.biosystems.2008.12.004. https://
www.sciencedirect.com/science/article/pii/S0303264708002608

11. Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M.,
Talbi, E.G.: Machine learning at the service of meta-heuristics for solving combi-
natorial optimization problems: a state-of-the-art. Eur. J. Oper. Res. 296(2), 393–
422 (2022). https://doi.org/10.1016/j.ejor.2021.04.032. https://www.sciencedirect.
com/science/article/pii/S0377221721003623

12. Plebe, A., Cutello, V., Pavone, M.: Optimizing costs and quality of interior lighting
by genetic algorithm. In: Sabourin, C., Merelo, J.J., Madani, K., Warwick, K. (eds.)
IJCCI 2017. SCI, vol. 829, pp. 19–39. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-16469-0 2

13. Plebe, A., Pavone, M.: Multi-objective genetic algorithm for interior lighting
design. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R. (eds.) MOD 2017.
LNCS, vol. 10710, pp. 222–233. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-72926-8 19

14. Raza, K., Alam, M.: Recurrent neural network based hybrid model for recon-
structing gene regulatory network. Comput. Biol. Chem. 64, 322–334 (2016).
https://doi.org/10.1016/j.compbiolchem.2016.08.002. https://www.sciencedirect.
com/science/article/pii/S1476927116300147

15. Sarker, I.H.: Machine learning: algorithms, real-world applications and research
directions. SN Comput. Sci. 2(3), 160 (2021). https://doi.org/10.1007/s42979-021-
00592-x

16. Schober, P., Boer, C., Schwarte, L.A.: Correlation coefficients: appropriate use
and interpretation. Anesth. Analg. 126(5) (2018). https://journals.lww.com/
anesthesia-analgesia/Fulltext/2018/05000/Correlation Coefficients Appropriate
Use and.50.aspx

https://doi.org/10.1016/j.ejor.2020.07.063
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1109/MLSP.2018.8516989
https://doi.org/10.1109/MLSP.2018.8516989
https://doi.org/10.3390/a13060139
https://doi.org/10.3390/a13060139
https://www.mdpi.com/1999-4893/13/6/139
https://doi.org/10.1016/j.ejor.2005.11.044
https://www.sciencedirect.com/science/article/pii/S0377221706001512
https://www.sciencedirect.com/science/article/pii/S0377221706001512
https://ijie.ir/index.php/ijie/article/view/27
https://doi.org/10.1007/978-3-030-68520-1
https://doi.org/10.1016/j.biosystems.2008.12.004
https://www.sciencedirect.com/science/article/pii/S0303264708002608
https://www.sciencedirect.com/science/article/pii/S0303264708002608
https://doi.org/10.1016/j.ejor.2021.04.032
https://www.sciencedirect.com/science/article/pii/S0377221721003623
https://www.sciencedirect.com/science/article/pii/S0377221721003623
https://doi.org/10.1007/978-3-030-16469-0_2
https://doi.org/10.1007/978-3-030-16469-0_2
https://doi.org/10.1007/978-3-319-72926-8_19
https://doi.org/10.1007/978-3-319-72926-8_19
https://doi.org/10.1016/j.compbiolchem.2016.08.002
https://www.sciencedirect.com/science/article/pii/S1476927116300147
https://www.sciencedirect.com/science/article/pii/S1476927116300147
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s42979-021-00592-x
https://journals.lww.com/anesthesia-analgesia/Fulltext/2018/05000/Correlation_Coefficients_Appropriate_Use_and.50.aspx
https://journals.lww.com/anesthesia-analgesia/Fulltext/2018/05000/Correlation_Coefficients_Appropriate_Use_and.50.aspx
https://journals.lww.com/anesthesia-analgesia/Fulltext/2018/05000/Correlation_Coefficients_Appropriate_Use_and.50.aspx

Optimizing Multi-variable Time Series Forecasting Using Metaheuristics 117

17. Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken
(2008)

18. Talbi, E.G.: Combining metaheuristics with mathematical programming, con-
straint programming and machine learning. Ann. Oper. Res. 240(1), 171–215
(2016). https://doi.org/10.1007/s10479-015-2034-y

19. Talbi, E.G.: Automated design of deep neural networks: a survey and unified tax-
onomy. ACM Comput. Surv. (CSUR) 54(2), 1–37 (2021)

20. Talbi, E.G.: Machine learning into metaheuristics: a survey and taxonomy. ACM
Comput. Surv. 54(6) (2021). https://doi.org/10.1145/3459664

21. Wong, W., Ming, C.I.: A review on metaheuristic algorithms: recent trends, bench-
marking and applications. In: 2019 7th International Conference on Smart Comput-
ing Communications (ICSCC), pp. 1–5 (2019). https://doi.org/10.1109/ICSCC.
2019.8843624

22. Zito, F., Cutello, V., Pavone, M.: A novel reverse engineering approach for gene
regulatory networks. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C.,
Miccichè, S. (eds.) COMPLEX NETWORKS 2022. SCI, vol. 1077, pp. 310–321.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-21127-0 26

https://doi.org/10.1007/s10479-015-2034-y
https://doi.org/10.1145/3459664
https://doi.org/10.1109/ICSCC.2019.8843624
https://doi.org/10.1109/ICSCC.2019.8843624
https://doi.org/10.1007/978-3-031-21127-0_26

Unsupervised Machine Learning
for the Quadratic Assignment Problem

Thé Van Luong1 and Éric D. Taillard2(B)

1 University of Lausanne, Service de la recherche, Bâtiment Amphipôle, CH-1015
Lausanne, Switzerland

The-Van.Luong@unil.ch
2 University of Applied Sciences and Arts of Western Switzerland, HEIG-VD,

Department of Information and Communication Technologies, Route de Cheseaux 1,
CH-1401 Yverdon-les-Bains, Switzerland

eric.taillard@heig-vd.ch

Abstract. An unsupervised machine learning method based on asso-
ciation rule is studied for the Quadratic Assignment Problem. Parallel
extraction of itemsets and local search algorithms are proposed. The
extraction of frequent itemsets in the context of local search is shown
to produce good results for a few problem instances. Negative results of
the proposed learning mechanism are reported for other instances. This
result contrasts with other hard optimization problems for which efficient
learning processes are known in the context of local search.

Keywords: Machine learning · Big data · Metaheuristics · Quadratic
assignment

1 Introduction

In the past few years, big data has captured the attention of analysts and
researchers since there is a strong demand to analyze large data collected from
monitoring systems to understand behaviors and identify hidden trends. Science,
business, industry, government and society have already undergone a change
with the influence of big data. In [27], the authors are exposing opportunities
and challenges that represent big data analytics.

On the one hand, with the increase of computational power, machine learning
has emerged as the leading research field in artificial intelligence for dealing with
big data and more generally with data science [13]. Machine learning techniques
have given rise to huge societal impacts in a wide range of applications such as
computer vision, natural language understanding and health.

On the other hand, metaheuristics such as genetic algorithms or local search
are iterative methods in operations research that have been successfully applied
to solve hard combinatorial optimization problems in the past. One of their main
goals is to support decision-making processes in complex scenarios and provide
near-optimal solutions to industrial problems.

The hybridization of metaheuristics with machine learning techniques is a
promising research field for the operations research community [4]. The major
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 118–132, 2023.
https://doi.org/10.1007/978-3-031-26504-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_9

Unsupervised Machine Learning for the Quadratic Assignment Problem 119

interest in using machine learning techniques is to extract useful knowledge from
the history of the search in order to improve the efficiency and the effectiveness
of a metaheuristic [7].

This paper focuses on the association rule learning, which is an unsupervised
machine learning method for discovering interesting relations between variables
in very large databases [3]. Agrawal et al. [1] proposed frequent itemset mining
for discovering similarities between products in a large-scale transaction data for
supermarket chain stores. Initially designed for data mining, finding association
rules is now widely generalized in many fields including web research, intrusion
detection and bioinformatics.

We propose to incorporate the extraction of frequent itemsets in the context
of local search metaheuristics. A similar work comes from Ribeiro et Al. in
[19] to improve a GRASP metaheuristic where the learning process consists of
extracting different patterns (i.e. subsets of frequent itemsets) from an elite set
of 10 solutions and takes few seconds to provide a new generation.

The motivation of our work goes further, and its application is more appropri-
ate to a big data context with gigabytes of data. The goal is to investigate if one
can learn anything from the execution of thousands of local search algorithms to
generate new sets of improved solutions. Hence, we propose reproducible strate-
gies based on the extraction of millions frequent itemsets, i.e. extending the
training phase to last one day and considering thousands of solutions performed
in parallel across many generations.

The quadratic assignment problem (QAP) is considered in this study. This
problem is hard to solve, even for instances of moderate size (less than 100
elements). This contrasts, for instance, with the travelling salesman problem
(TSP) for which fairly large instances can be solved optimally. For the TSP,
the set of edges composed by the union of a few locally optimal solutions of
moderate quality may contain a very large proportion of the edges of the best
solution known [24,25]. A goal of this paper is to evaluate if learning with locally
optimal solutions is as successful for the QAP as it is for the TSP.

The objective values of solutions obtained by machine learning techniques
for hard optimization problems are generally far from the values that can be
obtained by direct heuristic algorithms. For the QAP, the reader is referred
to [26] for a comparison of different methods based on neural graph machine
network.

The remaining of this paper is organized as follows. Section 2 describes some
technical background to understand the traditional local search algorithm, the
quadratic assignment problem used for the experiments and frequent itemsets
in associative rule learning. Section 3 introduces the extraction of frequent item-
sets and its parallelization for local search algorithms. The experimental results
are reported in Sect. 4. Finally, Sect. 5 concludes and proposes future research
avenues.

120 T. V. Luong and É. D. Taillard

2 Technical Background

2.1 The Quadratic Assignment Problem

To put in practice the different learning mechanisms proposed in this paper, the
popular quadratic assignment problem (QAP) [12] has been investigated.

The QAP [5] arises in many applications such as facility location or data
analysis. Let A = (aij) and B = (bij) be n × n matrices of positive integers.
In the context of local search, the most convenient solution representation is by
a permutation: The objective of the QAP is to find a permutation π of the set
{1, 2, . . . , n} that minimizes the function:

z(π) =
n∑

i=1

n∑

j=1

aijbπ(i)π(j)

The evaluation function has a O(n2) time complexity where n is the instance
size. A neighborhood based on exchanging 2 elements (n×(n−1)

2 neighbors) has
been considered. Hence, for each iteration of a local search, (n−2)×(n−3)

2 neighbors
can be evaluated in O(1) and 2n−3 can be evaluated in O(n). The condition for
an efficient neighborhood evaluation is to store all Δ differences of values between
neighbor solutions at each iteration of the local search. This requires a memory
space that increases quadratically with the size of the examples. Evaluating all
the Δ for the first time takes an effort in O(n3) but an effort only in O(n2) for
each of the next local search iteration [21].

A complete review of the most successful algorithms to solve the QAP is
proposed in [15].

2.2 Frequent Itemsets in Associative Rule Learning

In associate rule learning, the existence of very large databases requires deter-
mining groups of items that frequently appear together in transactions, called
itemsets [2]. From any itemset, one can determine an association rule that pre-
dicts how frequently an itemset is likely to occur in a transaction.

For example, a retail organization provides thousands of products and ser-
vices [1]. The number of possible combinations of these products and services is
potentially huge. The enumeration of all possible combinations is impractical,
and methods are needed to concentrate efforts on those itemsets that are recog-
nized as important to an organization. The most used measure of an itemset is
its support, which is calculated as the percentage of all transactions that contain
the itemset. Itemsets that meet a minimum support threshold are referred to as
frequent itemsets.

An itemset which contains k items is a k-itemset. So, it can be said that an
itemset is frequent if the corresponding support count is greater than a minimum
support count.

Unsupervised Machine Learning for the Quadratic Assignment Problem 121

Fig. 1. Extraction of one frequent itemset of size 3. In all solutions, elements 8, 7 and
1 appear at positions 1, 2 and 4.

3 Frequent Itemsets for Local Search Algorithms

The motivation of this research work is to investigate if one can learn anything
from the solutions found in local search algorithms. One observation is that
some elements from local optima may be found at the exact same positions of
the global optimum, meaning that elements that frequently appear at particu-
lar positions may also be discovered in good solutions. Unlike other works on
machine learning for combinatorial optimization, we do not consider the value
of the objective function in the learning mechanism. We only want to see if it is
possible to learn something from the structure of locally optimal solutions.

One tool to achieve this is to extract all the frequent itemsets from a set of
solutions. In the context of combinatorial optimization, each itemset can be rep-
resented by pairs of one element associated with one position. Figure 1 illustrates
an extraction for a 3-itemset.

Once all frequent itemsets are known, a new generation of solutions can be
constructed from these itemsets.

3.1 Extraction and Combination of Frequent Itemsets

The global process used in this paper can be divided into two phases: the extrac-
tion of frequent itemsets and their combination to generate new solutions. Algo-
rithm1 gives an insight of how this global process works.

The initial set of solutions is obtained from the execution of multi-start local
search algorithms (lines 1 to 4). For each local search, the initial solution is
randomly generated and the selection of a better neighbor is done according to
the best improvement strategy (steepest descent).

In the main loop, the first phase consists in extracting all frequent itemsets
from the current set of solutions (line 6) with Apriori algorithm [2]. Since the
worst-case time complexity of Apriori algorithm is exponential according to the
number of items, min sup and itemsets limit are user-defined parameters to
control the number of candidate itemsets to retain in practice. The second phase
is a procedure that combines these itemsets to construct new solutions that can
be improved afterwards by the same local search algorithm (lines 7 to 10). The
process is repeated for a given number of generations.

122 T. V. Luong and É. D. Taillard

Algorithm 1. Extraction and combination of frequent itemsets
Require: instance data, nb solutions, nb generations, min sup and itemsets limit
1: for i ← 1, . . . , nb solutions do
2: solutions[i] ← random initialization()
3: solutions[i] ← local search(instance data, solutions[i])
4: end for
5: for generation ← 1, . . . , nb generations do
6: all itemsets ← extract itemsets(solutions,min sup, itemsets limit)
7: for i ← 1, . . . , nb solutions do
8: solutions[i] ← combine itemsets(all itemsets)
9: solutions[i] ← local search(instance data, solutions[i])

10: end for
11: end for
Ensure: solutions

3.2 Apriori Algorithm for Extracting Itemsets from a Set
of Solutions

The Apriori algorithm is used in this paper to extract all frequent itemsets from
a set of solutions. It was originally designed to operate on databases containing
transactions [2]. Basically, Apriori performs a bottom-up approach where fre-
quent subsets are extended one item at a time (groups of candidates) and tested
with the data. The algorithm finishes when no further successful extensions can
be discovered.

Even if it is not the fastest method to directly extract k-itemsets in compar-
ison with other approaches [11,18], its application seems the most appropriate
since all frequent itemsets of any size are required here. More important, Apriori
does not make any assumption of the size of the dataset and it perfectly fits in
the context of big data algorithms.

Algorithm 2. Apriori algorithm for the extraction of frequent itemsets
Require: solutions, min sup and itemsets limit
1: k ← 1
2: Ck ← generate itemsets(solutions, ∅, ∅)
3: Lk ← filter itemsets(Ck,min sup, ∅)
4: all itemsets ← Lk

5: while Lk �= ∅ do
6: Ck+1 ← generate itemsets(solutions, Lk, L1)
7: Lk+1 ← filter itemsets(Ck+1,min sup, itemsets limit)
8: all itemsets ← all itemsets ∪ Lk+1

9: k ← k + 1
10: end while
Ensure: all itemsets

Algorithm 2 describes the major steps of Apriori used in the extract itemsets
procedure of Algorithm 1. The first step consists in generating the list of all can-

Unsupervised Machine Learning for the Quadratic Assignment Problem 123

didate itemsets of size 1 (lines 1 and 2). In the case of combinatorial optimization,
a 1-itemset is exactly a pair of one element associated with one position. The
candidate list is then pruned according to the minimum support (i.e. minimum
number of times that an itemset must appear in all solutions) defined by the
user (line 3). From the resulting filtered list of 1-itemsets, all candidate itemsets
of size 2 are investigated (line 6) where a 2-itemset represents two pairs of one
element associated with one position. A list of k + 1-itemsets is produced by
extending the filtered list of k-itemsets with the 1-itemsets in all possible ways.
The process is repeated until a candidate list cannot be constructed.

At each generation, all extracted k-itemsets are conserved in a list (lines 4
and 8) that will be later used to construct new solutions in the combine itemsets
procedure of Algorithm 1.

Limiting the number of retained itemsets (e.g. keeping one million itemsets
that are among the most frequent ones) is necessary to reduce the computational
and space complexities when generating new candidates for further generations.

3.3 Combining Itemsets for Creating a New Set of Solutions

The goal of the combine phase is to create a new set of solutions from all the
frequent itemsets extracted during the previous generation.

Each solution is constructed by exploring all frequent itemsets. In this paper,
two main strategies are taken into account regarding how itemsets are explored:

1. Random exploration of all frequent itemsets (REFI). In this strategy, every
retained itemset has the same probability to be applied during the construc-
tion of a new solution.

2. Exploration based on sorted frequent itemsets (ESFI). All itemsets are sorted
according to their support in decreasing order. The probability of applying
an itemset to a solution (i.e. fixing elements at different positions) depends
on the itemset support. For instance, a 2-itemset (e.g. element 5 at position
10 and element 1 at position 7) that appears in 2% of all previous solutions
has also a probability of 2% to be in a new solution.

If the current solution cannot be completely constructed from the exploration
of all itemsets, all unassigned elements will be randomly added at unassigned
positions.

4 Performance Evaluation

The amount of computing required for machine learning is extremely high. Tradi-
tionally, neural networks use GPUs with thousands of processors. In the context
of this study, where the type of calculation is very different (local search), we have
observed in other works [16] that the use of GPUs offers only moderate speed-
ups. This is why we parallelized the calculations on the CPU. By using dynamic
scheduling to perform independent local searches and by storing intermediate

124 T. V. Luong and É. D. Taillard

files that serve as buffers, we were able to limit computation time and RAM
requirements. Indeed, the candidate itemsets for one generation representing up
to a dozen of gigabytes of data, they are written in a file and a buffer storing
10,000 candidate itemsets is reused accordingly. This allowed us to achieve sat-
isfactory speedups. However, the computation time to get a generation is close
to one day. The processing of a problem instance can therefore be counted in
weeks.

The computational results presented in this section have been obtained on a
PC running on Linux and equipped with an AMD Ryzen Threadripper 1950X
3.4Ghz (16 cores/32 threads). The algorithms introduced in Sect. 2 have been
implemented in C++ using the OpenMP Library for the parallelization. This
parallelization approach results in very good speed-ups (from 12× to 15× accord-
ing to the number of candidate itemsets).

4.1 QAP Instances

The QAPLIB repository [6] contains 136 instances and has been enriched by hun-
dreds other ones freely available on http://mistic.heig-vd.ch/taillard/problemes.
dir/qap.dir/qap.html. Since it was not practically possible to conduct our numer-
ical experiments for all instances, only 12 QAP instances have been carefully
selected. All selected instances are widely studied in the literature [15].

The selected instances cover a large panel of the flows/distances matrices
structures that can be found in the literature. Their size (n between 45 and 64)
is large enough so that an exact method cannot solve most of them on modern
computers. When possible, we selected 2 or 3 examples of the same type but of
slightly different size. This was done in order to verify a certain consistency in the
results presented. Much larger numerical experiments would have been necessary
to confirm the results in an unambiguous way. On the one hand, the volume of
calculation required would be prohibitive and on the other hand, the results
obtained on the selected examples show a very high volatility in the quality
of the solutions. As we will see later, it seems therefore that our unsupervised
learning approach is not usable for all types of problems.

The first 3 instances are from Skorin-Kapov [20] (sko49, sko56 and sko64). No
optimal solution has been proven yet for these instances. The distances are Man-
hattan on a rectangular grid, and the flows are pseudo-random numbers. These
instances are similar to Nugent et al. [17] ones, but larger. Due to symmetries
in the distance matrix, multiples of 4 or 8 optimal solutions exists.

Then, 3 asymmetrical instances from Li and Pardalos (lipa50a, lipa60a and
lipa50b) were selected. These instances were generated so that the optimal solu-
tions are known [14].

Then, 2 symmetrical instances with flows and distances randomly, uniformly
generated have been selected (tai50a and tai60a) [21]. These instances are similar
to Roucairol’s ones, but larger.

Then, 2 asymmetrical instances non-uniformly generated (tai50b and tai60b)
comes from [22]. An instance for generating grey patterns (tai64c) proposed in

http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html
http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html

Unsupervised Machine Learning for the Quadratic Assignment Problem 125

the same article has also been selected. This instance is not specially hard, but
has a very large number of optimal solutions, spread all over the solutions’ space.

Finally, a symmetrical and structured instance (tai45e01) proposed in [9] was
selected. This instance was generated in such a way that a number of local search
based methods have difficulties to find a moderately good solution.

4.2 Parameters for the Experiments

The algorithms of this paper rely on extracting most frequent itemsets from all
solutions then combining them to create a new set of solutions.

In Algorithm 1 the number of generations is set to 8 and 10,000 local searches
are executed per generation.

Regarding the combining phase, the first set of experiments are based on the
random exploration of frequent itemsets (REFI) whereas the second one is on
the exploration on sorted frequent itemsets (ESFI). A multi-start with 90, 000
local search algorithms from random solutions is also considered. Even if the
execution time differs, it is used as an indicator of comparison where no learning
process is implemented. Disregarding the time needed for selecting the itemsets
and building starting solutions, all the methods are indeed performing 90, 000
local searches.

The default minimum support for the extraction of itemsets is set to 0.1%
(i.e. keep itemsets which appear in 10 out of 10,000 solutions). The itemsets
limit is set to one million for each k-itemset. These parameters have been tuned
in such a way that each generation does not exceed one day of calculation.

4.3 Quality of Solutions

For optimization problems, the main criteria to be evaluated is the quality of the
solutions. The last is measured relative to the value of the best solution known
to date (bvk), which is optimal for a few instances (lipa, tai64c and tai45e01)
or believed to be optimal for the other ones. The distribution of the quality of
the solutions is visualized with the proportion of runs having reached a solution
below a given percentage above best known.

The quality of the solutions for the instances are graphically illustrated in
Fig. 2. All the solutions compared to the bvk are represented for the 90, 000 solu-
tions found by the multi-start algorithm (dash-dotted line) and the 8 generations
of REFI (plain line) and ESFI (dotted line) learning methods.

For the instance sko49, the distribution reveals that most solutions produced
by REFI and ESFI algorithms are, respectively, about 0.5% and 1% above the
bvk whereas multi-start produces solutions with a normal spread around 3%
above the bvk. A similar observation can be made for the instance sko56. The
phenomenon is more pronounced for the instance sko64 where the REFI algo-
rithm was able to produce solutions very close to the bvk.

The benefits of the learning phase are also prominent for the lipa50a instance,
where the multi-start from random solutions was unable to find the optimum.

126 T. V. Luong and É. D. Taillard

Fig. 2. Multi-start, ESFI and REFI distribution of solutions quality for lipa50a,
lipa60a, lipa50b (asymmetric with known optimal solutions), sko49, sko56, sko64 (Man-
hattan distances on a square grid), tai50a, tai60a (uniformly generated), tai50b, tai60b
(asymmetric and randomly generated), tai64c, tai45e01 (structured).

A similar behavior stands for the lipa60a instance, except that REFI is the only
algorithm able to reach the known optimum.

Regarding the lipa50b instance, the difference of quality is very important
since most REFI and ESFI solutions are optimal whereas multi-start solutions
are between 15 and 20% above the bvk. For the 11 selected instances, this is the
only one for which learning with itemsets is highly successful.

For the tai50a instance, there is a moderate trend indicating that most of
the REFI and ESFI runs are able to learn something. Unsurprisingly, the learn-
ing is less pronounced for randomly, uniformly generated instances. A similar
observation can be made for the tai60a instance.

Unsupervised Machine Learning for the Quadratic Assignment Problem 127

Regarding the instance tai50b, most ESFI and REFI solutions are between
0.5 and 1% above the bvk. The multi-start algorithm produces solutions that
are spread 7.3% above the bvk with a standard deviation of 3.3%.

A similar observation can be made for the instance tai60b. The multi-start
algorithm solutions are spread 8% above the bvk with a standard deviation of
3.4%. For this type of instances, learning with itemsets is possible, but not as
successful as it is for lipa..b instances.

Regarding the structured instance tai45e01, the ESFI and REFI algorithms
are completely unable to learn something interesting. These algorithms are just
focusing on solutions that are very far from the optimal one. The learning tech-
niques based on the frequent itemsets seem to be inefficient for dealing with such
structured instances. The population of solutions just converges too early. We
were rather surprised by this result, since various metaheuristics combining a
local search with a learning mechanism are perfectly able to reach the optimum,
for instance GRASP with path relinking, late acceptance local search, genetic
hybrids or ant systems [9].

For tai64c, most solutions being below 1% above the bvk, it is not clear that
a learning algorithm outperforms a simple multi-start. It might be explained by
the fact that the instance has multiple global optima, and it is easy to solve it
optimally [8].

4.4 Additional Information for the Positions of Solutions

Another criterion to assess is the similarity of the solutions produced by the algo-
rithms with a target solution with bvk. The similarity can be measured by the
number of elements in that are at the same position. These results are reported
in Table 1. The third column provides the mean and the standard deviation of
the number of positions identical to the target solution. The next two columns
are the percentage of solutions under 5% above the bvk including those sharing
at least 10% of common positions with the target. The next column provides
the percentage of different solutions. This proportion gives an indication of the
population diversity. Finally, the number of itemsets revealing all the patterns
discovered during the exploration phase is reported.

Table 1 shows for the sko49 instance that the number of positions identical
to the target is almost non-existent for all algorithms (between 1 and 2 on the
average). It is an easy instance since more than 98% of solutions are under 5%
above the bvk, including the simple multi-start from random solutions. As shown
in Fig. 2, the learning mechanism helps to improve the last percentages above
the bvk.

A similar observation can be made for sko56. The main difference is that
among all the solutions that are under 5% above the bvk, there is a significant
percentage of solutions (61.88% for REFI and 24.61% for ESFI) that share more
than 10% of common positions with the target. The same remark occurs for the
instance sko64 but the diversity of REFI solutions is pretty low (3.04%).

Regarding lipa50a and lipa60a instances (asymmetric with known optimal
solutions), the number of shared positions of REFI and ESFI with the target is

128 T. V. Luong and É. D. Taillard

Table 1. Additional results for the positions of produced solutions for sko49, sko56,
sko64, lipa50a, lipa60a, lipa50b tai50a, tai60a, tai50b, tai60b, tai45e01 and tai64c
instances: number of positions that are identical (mean and standard deviation) to
a target solution, percentage of solutions under 5% above the best value known (bvk)
and, for those that share at least 10% of common positions with the target, percentage
of different solutions and total number of itemsets discovered.

Instance Algorithm # positions

identical to

the target

% solutions under

5% above the bvk

% different

solutions

itemsets

all pos > 10%

sko49 REFI 1.31.5 99.80% 3.85% 51.35% 66.8 × 106

ESFI 1.11.4 99.74% 2.69% 69.78% 58.9 × 106

multi-start 1.81.7 98.32% 7.20% 100.00% –

sko56 REFI 7.64.9 99.92% 61.88% 46.13% 83.1 × 106

ESFI 4.12.2 99.93% 24.61% 83.80% 58.9 × 106

multi-start 2.02.0 99.27% 6.01% 100.00% –

sko64 REFI 7.47.2 100.00% 49.74% 3.04% 136.4 × 106

ESFI 4.62.3 99.99% 17.16% 67.41% 84.3 × 106

multi-start 2.22.0 99.94% 3.55% 100.00% –

lipa50a REFI 30.321.1 100.00% 71.57% 45.46% 79.9 × 106

ESFI 22.416.9 100.00% 70.06% 59.93% 101.4 × 106

multi-start 1.31.5 100.00% 1.87% 100.00% –

lipa60a REFI 32.727.0 100.00% 66.31% 50.06% 176.7 × 106

ESFI 10.18.2 100.00% 53.88% 77.09% 63.8 × 106

multi-start 1.21.4 100.00% 0.61% 100.00% –

lipa50b REFI 50.00.0 100.00% 100.00% 0.00% 37.6 × 106

ESFI 49.16.2 98.03% 98.03% 1.97% 23.0 × 106

multi-start 1.93.7 0.41% 0.41% 99.59% –

tai50a REFI 1.91.4 79.93% 0.71% 88.39% 20.5 × 106

ESFI 1.61.3 76.29% 0.64% 100.00% 40.2 × 106

multi-start 1.11.2 48.76% 0.25% 100.00% –

tai60a REFI 1.81.4 88.77% 0.49% 99.99% 33.0 × 106

ESFI 1.61.3 85.50% 0.26% 100.00% 24.2 × 106

multi-start 1.21.2 66.41% 0.09% 100.00% –

tai50b REFI 22.911.4 87.58% 78.93% 12.86% 106.0 × 106

ESFI 1.21.7 86.11% 1.56% 38.59% 108.2 × 106

multi-start 2.12.6 26.70% 4.28% 100.00% –

tai60b REFI 1.83.5 97.67% 3.70% 24.40% 123.4 × 106

ESFI 2.52.0 94.27% 1.88% 25.53% 226.9 × 106

multi-start 3.13.1 21.91% 6.89% 100.00% –

tai45e01 REFI 0.93.6 0.02% 0.02% 10.68% 33.2 × 106

ESFI 0.53.1 0.03% 0.03% 9.48% 109.4 × 106

multi-start 3.35.0 0.01% 0.01% 96.76% –

tai64c REFI 30.015.1 99.98% 55.01% 100.00% 71.6 × 106

ESFI 22.817.3 99.98% 33.73% 94.41% 45.1 × 106

multi-start 10.413.7 99.98% 6.14% 100.00% –

Unsupervised Machine Learning for the Quadratic Assignment Problem 129

prominent (around 10 and 30). But it is not a difficult instance since 100% of
solutions are under 5% above the bvk. The learning phase is also determinant
for improving the last percentages above the bvk.

The lipa50b case (high values for matrix entries) is interesting since only
0.41% of multi-start solutions are under 5% above the bvk. The benefits of
learning mechanisms are meaningful for this instance since most REFI and ESFI
solutions converge to the target.

For tai50a and tai60a instances, Table 1 shows that the number of positions
identical to the target is also almost non-existent. Indeed, the produced solutions
that share 10% of common positions with the target and that are under 5% above
the bvk is less than 1%. The number of itemsets (patterns) discovered for both
tai50a and tai60a is lower than the other instances.

Things are quite different for the tai50b (asymmetric and randomly gener-
ated) where the percentage of different solutions is rather low (less than 40%),
meaning that many solutions converge to the same local optima. On the one
hand, the solutions produced by REFI share an important number of common
positions with the target (22.9 in average). On the other hand, ESFI has very
little in common with the target. In both cases, the number of discovered item-
sets is rather high (more than 100 millions) and 85% solutions are under 5%
above the bvk. It is really significant in comparison with a multi-start where
only 26.7% solutions are within the same quality.

A similar observation can be made for the tai60b instance. Even if the number
of positions shared with the target is pretty low (less than 2.5), more than 94% of
produced solutions by a learning algorithm are under 5% above the bvk, whereas
a simple multi-start has only 21.91% under this level. Interestingly this instance
has generated the highest number of different patterns.

Regarding the instance tai45e01, the diversity of the population of solutions is
also significantly low. It represents less than 11% of different solutions even if the
number of itemsets is significant. The number of positions identical to the target
is even lower than a multi-start with 90, 000 random solutions. The number of
solutions under 5% above the bvk is close to 0%. It seems that the learning
mechanisms studied in this article are not really efficient for such a structured
instance. The itemsets produced are just focusing on bad quality local optima,
very far from the global optimum. It can be noticed that both REFI and SEFI
got the optimal solution at the first generation, but this solution was lost for the
remaining generations.

The structured tai64c is easy to solve since 12, 715 different global optima
were found during the different runs. Since global optima are spread all over the
solutions’ space, it is not clear whether something can be learned with itemsets
or not. Anyway, since 99.98% solutions are under 5% above the bvk for all
algorithms, the benefits of a learning process are not really meaningful in the
context of optimization.

130 T. V. Luong and É. D. Taillard

5 Conclusions

The main interest in combining the unsupervised association rule learning with
metaheuristics is to discover useful knowledge about the history of the search in
order to enhance the produced solutions.

In this paper, we proposed to incorporate the extraction of frequent itemsets
for parallel local search algorithms in a big data context. The global process can
be iterated through two phases: the extraction of millions frequent itemsets and
their combination for generating new solutions.

For QAP, learning mechanisms using association rules produce very contrast-
ing results depending on the problem examples. For some, we observe a very good
convergence towards the best known solutions. For other examples, the technique
can focus on a restricted space of very bad solutions. The ESFI method, which
biases the selection of itemsets based on their frequency of occurrence, is not
as good as the REFI method, which selects them in a uniform manner. In the
context of metaheuristics, this paper shows that, for QAP, it is very important
to direct the search by taking into account a fitness function and to use it to
filter the solution patterns.

This contrasts with works on other optimization problems like the travel-
ling salesman. Indeed, for this problem, a few dozen of a very fast randomized
local search is able to extract most of the components of target solutions. Since
learning techniques can be very efficient for this optimization problem, it would
be interesting to study its behavior for other problems where a permutation is
sought, such as the flowshop scheduling problem.

In contrast with metaheuristics dedicated to a specific optimization prob-
lem, the advantage of these learning techniques is that they are rather simple
to design and do not require a priori knowledge of the problem at hand. The
drawback is that they take a full day on a single machine to train one genera-
tion of solutions. In comparison, the dedicated robust taboo search [21], genetic
hybrid [22] or the fast ant systems [23] will find better solutions in just a few
minutes. The results obtained in this study can be seen as an a posteriori justifi-
cation of certain strategies used by these methods. Indeed, the pheromone traces
of the artificial ant colonies are statistics collected on 1-itemsets (frequency of
occurrence of an item at a position, weighted by the fitness of the solution). The
taboo list prohibits returning to solutions with certain 2-itemsets. The diversifi-
cation mechanism of Ro-TS forces the presence of 1-itemsets whose frequency of
occurrence is low. Finally, the crossover operator of a genetic algorithm copies
the largest itemset present in 2 solutions and randomly selects 1-itemsets present
in these solutions.

Let us mention that, in the context of big data, one day of calculation on a sin-
gle machine is still reasonable regarding usual machine and deep learning train-
ings that may take a couple of weeks on a cluster of GPU-based machines [10].

A research avenue could be a finer tuning of parameters (i.e. minimum sup-
port, itemsets limit and number of solutions) to see how they can influence the
search process and to control the duration of the execution according to the sce-
nario. For example, a low minimum support allows limiting the training phase

Unsupervised Machine Learning for the Quadratic Assignment Problem 131

to couple minutes, while a higher number of solutions will make it last a week.
Another perspective could be to investigate how machine learning can enhance
state-of-the-art metaheuristics for the QAP. It would also be necessary to study
supervised learning mechanisms, in particular by taking into account the fitness
of the solutions.

The general conclusion of this paper is that the quality of the solution pro-
duced with these learning techniques is not competitive compared to state-of-
the-art metaheuristics and that there is still a long way till general learning
techniques will surpass more direct optimization techniques for the QAP.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pp. 207–216 (1993)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Interna-
tional Conference on Very Large Databases (VLDB), pp. 487–499 (1994)

3. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2020)
4. Birattari, M., Kacprzyk, J.: Tuning Metaheuristics: A Machine Learning Perspec-

tive, vol. 197. Springer, Heidelberg (2009)
5. Burkard, R.E., Çela, E., Rote, G., Woeginger, G.J.: The quadratic assignment

problem with a monotone anti-Monge and a symmetric Toeplitz matrix: easy and
hard cases. Math. Program. 82, 125–158 (1998)

6. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB-a quadratic assignment problem
library. J. Glob. Optim. 10(4), 391–403 (1997). https://coral.ise.lehigh.edu/data-
sets/qaplib/

7. Calvet, L., de Armas, J., Masip, D., Juan, A.A.: Learnheuristics: hybridizing
metaheuristics with machine learning for optimization with dynamic inputs. Open
Math. 15(1), 261–280 (2017)

8. Drezner, Z.: Finding a cluster of points and the grey pattern quadratic assignment
problem. OR Spectr. 28(3), 417–436 (2006). https://doi.org/10.1007/s00291-005-
0010-7

9. Drezner, Z., Hahn, P.M., Taillard, É.D.: Recent advances for the quadratic
assignment problem with special emphasis on instances that are difficult for
meta-heuristic methods. Ann. OR 139(1), 65–94 (2005). https://doi.org/10.1007/
s10479-005-3444-z

10. Erhan, D., Courville, A., Bengio, Y., Vincent, P.: Why does unsupervised pre-
training help deep learning? In: Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, pp. 201–208 (2010)

11. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In:
Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, SIGMOD 2000, pp. 1–12. Association for Computing Machinery, New
York (2000). https://doi.org/10.1145/342009.335372

12. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of eco-
nomic activities. Econometrica 25(1), 53–76 (1957). https://www.jstor.org/stable/
1907742

13. L’heureux, A., Grolinger, K., Elyamany, H.F., Capretz, M.A.: Machine learning
with big data: challenges and approaches. IEEE Access 5, 7776–7797 (2017)

https://coral.ise.lehigh.edu/data-sets/qaplib/
https://coral.ise.lehigh.edu/data-sets/qaplib/
https://doi.org/10.1007/s00291-005-0010-7
https://doi.org/10.1007/s00291-005-0010-7
https://doi.org/10.1007/s10479-005-3444-z
https://doi.org/10.1007/s10479-005-3444-z
https://doi.org/10.1145/342009.335372
https://www.jstor.org/stable/1907742
https://www.jstor.org/stable/1907742

132 T. V. Luong and É. D. Taillard

14. Li, Y., Pardalos, P.M.: Generating quadratic assignment test problems with known
optimal permutations. Comput. Optim. Appl. 1(2), 163–184 (1992)

15. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A
survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690
(2007)

16. Luong, T.V., Melab, N., Taillard, É.D., Talbi, E.G.: Parallelization strategies for
hybrid metaheuristics using a single GPU and multi-core resources. In: 12th Inter-
national Conference on Parallel Problem Solving From Nature (PPSN) Proceedings
(2012). http://mistic.heig-vd.ch/taillard/articles.dir/LuongMTT2012.pdf. Only
preprint technical report available

17. Nugent, C.E., Vollmann, T.E., Ruml, J.: An experimental comparison of techniques
for the assignment of facilities to locations. Oper. Res. 16(1), 150–173 (1968).
https://doi.org/10.1287/opre.16.1.150

18. Park, J.S., Chen, M.S., Yu, P.S.: An effective hash-based algorithm for mining
association rules. ACM SIGMOD Rec. 24(2), 175–186 (1995)

19. Ribeiro, M., Plastino, A., Martins, S.: Hybridization of grasp metaheuristic with
data mining techniques. J. Math. Model. Algorithms 5, 23–41 (2006)

20. Skorin-Kapov, J.: Tabu search applied to the quadratic assignment problem. ORSA
J. Comput. 2(1), 33–45 (1990)

21. Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel
Comput. 17(4–5), 443–455 (1991)

22. Taillard, É.D.: Comparison of iterative searches for the quadratic assignment prob-
lem. Location Sci. 3(2), 87–105 (1995). https://www.sciencedirect.com/science/
article/pii/0966834995000086

23. Taillard, É.D.: Fant: Fast ant system. Technical report. IDSIA-46-98, Istituto Dalle
Molle Di Studi sull’Intelligenza Artificiale (1998)

24. Taillard, É.D.: A linearithmic heuristic for the travelling salesman problem. EURO
J. Oper. Res. 297(2), 442–450 (2022). https://doi.org/10.1016/j.ejor.2021.05.034.
Available online June 2021

25. Taillard, É.D., Heslgaun, K.: POPMUSIC for the travelling salesman problem.
EURO J. Oper. Res. 272(2), 420–429 (2019). https://doi.org/10.1016/j.ejor.2018.
06.039

26. Wang, R., Yan, J., Yang, X.: Neural graph matching network: learning Lawler’s
quadratic assignment problem with extension to hypergraph and multiple-graph
matching (2020)

27. Zhou, Z.H., Chawla, N.V., Jin, Y., Williams, G.J.: Big data opportunities and
challenges: Discussions from data analytics perspectives [discussion forum]. IEEE
Comput. Intell. Mag. 9(4), 62–74 (2014)

http://mistic.heig-vd.ch/taillard/articles.dir/LuongMTT2012.pdf
https://doi.org/10.1287/opre.16.1.150
https://www.sciencedirect.com/science/article/pii/0966834995000086
https://www.sciencedirect.com/science/article/pii/0966834995000086
https://doi.org/10.1016/j.ejor.2021.05.034
https://doi.org/10.1016/j.ejor.2018.06.039
https://doi.org/10.1016/j.ejor.2018.06.039

On Optimizing the Structure of Neural
Networks Through a Compact

Codification of Their Architecture

Marcos Lupión1(B), N. C. Cruz2 , B. Paechter3 , and P. M. Ortigosa1

1 Department of Informatics, University of Almería, ceiA3 Excellence Agri-food
Campus, Almería, Spain

{marcoslupion,ortigosa}@ual.es
2 Department of Computer Architecture and Technology-CITIC,

University of Granada, Granada, Spain
ncalvocruz@ugr.es

3 School of Computing, Edinburgh Napier University, Edinburgh, Scotland, UK
B.Paechter@napier.ac.uk

Abstract. Neural networks stand out in Artificial Intelligence for their
capacity of being applied to multiple challenging tasks such as image
classification. However, designing a neural network to address a partic-
ular problem is also a demanding task that requires expertise and time-
consuming trial-and-error stages. The design of methods to automate
the designing of neural networks define a research field that generally
relies on different optimization algorithms, such as population meta-
heuristics. This work studies utilizing Teaching-Learning-based Opti-
mization (TLBO), which had not been used before for this purpose up
to the authors’ knowledge. It is widespread and does not have specific
parameters. Besides, it would be compatible with deep neural network
design, i.e., architectures with many layers, due to its conception as a
large-scale optimizer. A new encoding scheme has been proposed to make
this continuous optimizer compatible with neural network design. This
method, which is of general application, i.e., not linked to TLBO, can rep-
resent different network architectures with a plain vector of real values.
A compatible objective function that links the optimizer and the repre-
sentation of solutions has also been developed. The performance of this
framework has been studied by addressing the design of an image clas-
sification neural network based on the CIFAR-10 dataset. The achieved
result outperforms the initial solutions designed by humans after letting
them evolve.

Keywords: Artificial intelligence · Neural network architecture
optimization · Meta-heuristics · Teaching-Learning-based optimization

1 Introduction

Deep neural networks simulate the behavior of the human brain to perform
different tasks, such as image classification, object recognition, language pro-

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 133–142, 2023.
https://doi.org/10.1007/978-3-031-26504-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_10&domain=pdf
http://orcid.org/0000-0002-5839-9451
http://orcid.org/0000-0002-4841-0805
http://orcid.org/0000-0001-6514-6543
https://doi.org/10.1007/978-3-031-26504-4_10

134 M. Lupión et al.

cessing, and anomaly detection [13]. There exist multiple kinds of fundamental
neural networks (e.g., recurrent, convolutional, and fully connected), and they
are known to stand out in different tasks. However, designing a neural network
to address a particular problem is not trivial. It is not only necessary to select
the type of network but also its configuration or architecture, which requires
expertise and takes multiple attempts.

There have been proposed neural networks developed throughout the years
specially designed for particular problems. For instance, Yolo [12] aims at object
detection, ResNet [5] and VGG [15] have been conceived for image processing,
while Pix2Pix [6] focuses on image domain conversion. Regardless, pre-arranged
designs do not always fit well with the working dataset. There is usually room for
improvement in the architecture of neural networks tailored for real applications.
It might even be a necessity to achieve competitive results. Therefore, finding
the most appropriate neural network architecture remains an open problem. It
results in an active research field known as Neural Architecture Search (NAS)
[8], in which Google was a pioneer in designing algorithms for this purpose [20].

In this context, population-based algorithms are widely used to address
the underlying optimization problem [8,11]. Since these methods are meta-
heuristics, the computational effort will be significant, and the results might be
sub-optimal. Nevertheless, their exploration capabilities significantly outperform
human designers, whose search process will be tedious and potentially biased.
Besides, the gain increases with the problem size, as the options to try rapidly
become overwhelming for human beings.

Population-based algorithms work with sets of candidate solutions and treat
them as individuals that evolve by interacting with each other. Each solution
represents a feasible network architecture and has an associated value represent-
ing its quality or performance (fitness). Hence, it is necessary to define how to
encode all the relevant properties of network architectures. The representation of
solutions and the particular optimizer ultimately determine how the evolution
of individuals is simulated. More specifically, the encoding of every layer [14]
and block (set of layers) [2] is critical. So far, most strategies propose fixing the
network size [9,18], limiting the attainable configurations. Nevertheless, some
proposals also let the size of candidate networks vary during the search [16],
which allows exploring more options automatically. Regarding the population-
based methods considered, it is possible to mention Particle-Swarm Optimiza-
tion (PSO) [16] and Ant-Colony Optimization (ACO) [1], which find designs
comparable to those defined by human experts.

This work proposes using Teaching-Learning-based Optimization (TLBO), a
population-based meta-heuristic, for neural network architecture optimization.
This algorithm was designed for large-scale problems, i.e., with many variables.
In contrast, the performance of methods such as PSO and ACO decreases with
the number of variables [17]. Furthermore, it is virtually parameter-less since
the optimizer only expects the population size and cycles to run. Hence, TLBO
is more suitable than other population-based strategies to design deep neural
networks. Coupled with TLBO, this work presents a compact representation

Structure Optimization of Neural Networks 135

of candidate network architectures. It encodes any possible configuration as a
real vector with two components per layer. The first one represents the class of
layer, which can be of any type, while the second one is mapped to the virtual
space of parameters. A convolutional neural network for image classification has
been designed to assess the effectiveness of these proposals. As another novelty,
batch normalization and dropout layers, which attenuate network over-fitting,
are considered. Hence, to summarize, this work tries TLBO for a NAS problem
for the first time up to our knowledge, presents a new neural network architecture
encoding scheme, and assesses them in a widespread benchmark problem.

The rest of the paper is structured as follows: Sect. 2 describes the optimiza-
tion algorithm, the proposed solution encoding method, and the fundamentals
of an appropriate objective function linking both. Section 3 presents the prob-
lem addressed in this work to assess the effectiveness of the proposals. Section 4
shows the experimentation carried out. Finally, Sect. 5 draws conclusions and
states future work.

2 Proposed Methodology

This section outlines the optimizer suggested for neural network architecture
optimization, the solution encoding proposed, and the objective function con-
necting the optimization algorithm with the solution encoding, and the main
aspects of their assessment.

2.1 Teaching-Learning-Based Optimization (TLBO)

Teaching-Learning-based Optimization is a population-based meta-heuristic pro-
posed in [10] for large-scale and derivative-free continuous optimization. This
method is widely used due to its simplicity of implementation, configuration,
and high performance [4]. It simulates a class of students that improve their
skills through academic interaction. In practical terms, each solution is a candi-
date solution to the problem at hand. As introduced, this method lacks specific
parameters and only expects the population size and number of cycles to run.
Based on this information, TLBO creates and evaluates as many solutions as
allowed. They will generally be random feasible points in the search space, yet
some promising solutions can be injected to orientate the seek. Once it has an
initial population, TLBO executes its main loop in as many cycles as requested.
It consists of two consecutive stages, the teacher and the learner.

The teacher stage simulates how students learn from their professor. The best
candidate solution is taken as the teacher, T , and the other solutions, i.e., points
in the search space, are shifted towards it. More specifically, after identifying
T , TLBO computes a vector M containing the mean for each component in
the population. Then, for each solution S, the optimizer computes a modified
version, S′. It applies Eq. (1), which is expressed in terms of each component or
problem dimension, i. TF is a random integer that can be either 1 or 2, and ri is
a random real number in the range [0, 1]. Both, ri and TF are fixed until the next

136 M. Lupión et al.

iteration. At the end of this stage, all the modified solutions that outperform
their original versions replace them.

S′
i = Si + ri (Ti − TFMi) (1)

The learner stage models how students learn from each other. For this pur-
pose, TBLO pairs every candidate solution, S, with another partner, PS , to
create a modified version of it, S′, according to Eq. (2). It is also expressed
in vectorial terms, so ri is a real random number in the range [0, 1] for the
component i. Again, these stage-specific random factors are fixed until being
recomputed at the next iteration. As can be seen, this stage attempts a local
shift for every S in the (improving) direction that it defines with its pair. At the
end of this stage, the altered solutions that outperform their original versions
replace them.

S′
i =

{
Si + ri (Si − PSi

) if S better than PS

Si + ri (PSi
− Si) otherwise

(2)

After having executed all the iterations allowed, TLBO returns the best solu-
tion in its population.

2.2 Solution Encoding

TLBO is a method for continuous optimization, which implies that its candidate
solutions must be vectors in R

N , being N the number of dimensions of the
search space. Accordingly, as explained in the next section, the objective or cost
function that measures the fitness of solutions must be a function f : RN → R.

Every candidate solution must represent a particular network architecture to
be ranked. For this purpose, and considering the previous requirements, they are
encoded as real vectors. One can think of a network architecture definition as a
sequence of layers. Each layer is a set of artificial neurons of a particular type
and configuration. Hence, there are two main pieces of data to encode: the type
of layer and its internal configuration. The proposed encoding represents this
information using a single real value per layer, i. The integer part, Ii, defines the
type, and the decimal part, Di, is mapped to its corresponding space of possible
configurations. The user must define the number of layers, and it ultimately
defines the dimension of the optimization problem for TLBO, i.e., N .

Assigning any Ii to a particular type of layer is straightforward. For instance,
if there are 3 types of layers, the encoded value will correspond to the first,
second or third type depending of if the real value is in the range [0, 1), [1, 2), or
[2, 3), respectively. As can be seen, the type is ultimately defined by the integer
part of the layer since the decimal part will always be between 0 and 0.9999....
The types available must be defined by the user, depending on the application.
However, it is advisable to reserve a type for disabled layers. This way makes the
search more flexible, and the optimizer might find simpler architectures, i.e., with
fewer layers. Hence, the number of layers, N , is an upper bound in reality. This

Structure Optimization of Neural Networks 137

strategy overcomes the fixed conception of the number of dimensions of most
optimization algorithms, like TLBO. A similar approach is followed in [3], where
the authors look for the optimal configuration of a set of solar trackers. They
assign the value 0 to those to be deactivated so that the number of dimensions
is fixed from the optimization perspective.

The interpretation of the decimal part linked to any Ii, Di is more sophis-
ticated than the previous one. It encodes the configuration of the type of layer
defined by Ii, but the number of parameters (and ranges) significantly vary
from one type of layer to another. The proposed strategy for mapping the space
of parameters to a single decimal part is based on how N-dimensional arrays
can be represented in a single-dimensional vector in Computer Science. In that
situation, the vector has a certain number of positions (length) resulting from
multiplying the size of each dimension. The referred length can be ultimately
scaled in the range [0, 1]. Undoing the conversion (re-scaling) requires rounding
values. Thus, near decimal values will have the same interpretation or decoding.
Nevertheless, like PSO and ACO, TLBO is a derivative-free optimizer, so it is
not affected by occasional and reduced plateaus in the search space.

For example, let us think of a specific type of layer that expects two different
integer parameters. The first one is the activation function and has 4 possible
values. The second one is the number of neurons used, taking 500 different values.
In this situation, the space of configurations can be seen as a 4 × 500 matrix
(interpretation matrix). The resulting vector would have 2000 positions, from 0
to 1999, as usually considered in Computer Science. Figure 1 contains a graphical
representation of this example and the interpretation of 0.85 as a sample decimal
part. Since the integer part would have selected the type of layer, it is known
that there are up to 2000 virtual positions in this case. Thus, decoding starts
by re-scaling the decimal part from the real range [0, 1.0) ∈ R to [0, 1999] ∈ Z,
which is a virtual vector containing a component per possible value. Finally,
the latter is known to come from a two-dimensional vector for this layer, so
the one-dimensional index is mapped to a matrix of 4 rows (possible activation
function) and 500 columns (number of neurons). The row results from dividing
the one-dimensional index by the number of columns, and the column is equal
to the modulus of that division.

2.3 Cost Function

As previously mentioned, the cost or objective function must be of the form
f : RN → R and evaluate the quality of a given solution. Before defining this
function, it is first necessary to determine if feasible and infeasible neural network
architectures exist. If every architecture is feasible, the objective function can
be the average quality of the resulting network with a validation dataset after
being trained with a training one.

If not every architecture is feasible, feasible architectures can be evaluated as
described above. However, it is also necessary to define a way to assign them a
value that tags them as infeasible (i.e., not desired), yet it must also distinguish
between those that are better than the others. This way of treating infeasibility

138 M. Lupión et al.

Fig. 1. Example of interpretation of decimal part as a neural network architecture.

is the recommended approach to handle constraints with population-based meta-
heuristics [19].

3 Application Example

As introduced, the proposed architecture optimization strategy has been applied
to an image classification problem addressed with convolutional neural networks.
The CIFAR-10 dataset [7] has been used. It contains 60 000 images, 50 000 for
training, and 10 000 for validation. In this context, 6 kinds of layers have been
considered. Table 1 shows them and their associate parameters. The maximum
number of layers allowed, i.e., N in terms of problem dimensionality, is 10, and
each dimension is defined in the range [0, 6).

For this problem, not all combinations of layers are possible. For instance,
after 3 convolutional layers, the size of the resulting images is 5 × 5. In this
situation, trying to apply another convolutional layer with filter size 7 would not
be feasible since the remaining dimensions would not be greater than 0. More
specifically, the following constraints are considered:

– The first layer must be convolutional.
– A convolutional layer cannot follow a fully-connected layer.
– As a feed-forward network, any layer must be compatible with its preceding

one.

As previously explained, these constraints will be handled by gradually penal-
izing the fitness of the associated individuals. Besides, some of the initial solu-

Structure Optimization of Neural Networks 139

Table 1. Types of layers and parameters for the application example.

ID Layer type Configurations
Name Parameter ranges

0 Disabled – No parameters

1 Convolutional Number of filters [1–512]
Filter X coordinate [1–8]
Filter Y coordinate [1–8]
Strides X coordinate [1–4]
Strides Y coordinate [1–4]
Activation Function [ReLu, Tanh, Sigmoid, LeakyReLu]

2 Pooling Type of Pooling [MaxPooling, AveragePooling]
Strides X coordinate [2–4]
Strides Y coordinate [2–4]

3 Dropout % of Hidden units [1–90]

4 Batch Normalization – No parameters

5 Fully Connected Number of neurons [1–500]
Activation Function [ReLu, Tanh, Sigmoid, LeakyReLu]

tions created by TLBO are explicitly modified to be feasible. Otherwise, the
optimizer would need significantly larger populations and many more iterations.

Regarding the objective function, feasible candidate architectures to evaluate
are trained using backpropagation and the Adam optimizer with a batch size
of 64 and a learning rate of 0.0004. The stopping criterion is not fixed to a
given number of iterations or epochs. Instead, training stops when the neural
network is not able to reduce its error with the validation dataset after two
consecutive epochs. This strategy is implicitly self-adapted to the quality of each
candidate’s solution. It is also well aligned with the current trends in training
neural networks, which try to avoid overfitting. Therefore, the value of feasible
solutions, i.e., the standard objective function to minimize, can be expressed as
follows:

cost = CrossEntropy + 10−6params (3)

where Cross_Entropy is the error of the studied (and trained) network with
the validation dataset, and params is the number of parameters to train in the
network. By adding this appendix to the plain error, simpler architectures are
prioritized since they are harder to train and more computationally demanding
at deployment. The factor of 106 wights the relevance of this aspect, and it can
be adapted depending on the range of values and the relevance of simplicity. In
several cases such as the development of deep learning models to be embedded
in Internet of Things devices, the size of the model is a key factor, due to the
limitations of memory and processor. Therefore, lightweight architectures have
to be produced.

Concerning infeasible architectures, their value is 999 minus the number of
layers not violating any constraints.

140 M. Lupión et al.

4 Experimentation and Results

The experiments have been run in the cluster of the University of Almería. In
this cluster, a node with 2 NVIDIA TESLA V10 GPUs was used. It features 2
x AMD EPYC 7302 16-Core Processor with 512 GB of DDR4 (3200MHz MHz)
RAM. CUDA 11.0.2 and TensorFlow 2.4.1 have been used under CentOS 8.2
(OpenHPC 2) as the operating system.

After preliminary experimentation, TLBO has been configured to work with a
population of 200 individuals and execute 400 cycles. This configuration resulted
in 160 000 function evaluations approximately, which took 80 h. The best archi-
tecture found is shown in Table 2.

Table 2. Best design found at network architecture optimization.

Layer type Configuration

conv Filters = 61, FilterX = 5, FilterY = 5
StridesX = 1, StridesY = 1, Activation = Tanh

Pooling Type = Avg, StridesX = 4, StridesY = 2
Pooling Type = Avg, StridesX = 2, StridesY = 4
Dropout Hidden = 55
BatchNorm –
Fully Connected Neurons = 61, Activation = ReLu
Fully Connected Neurons = 10, Activation = Softmax

The resulting neural network architecture has 7 layers and 96 897 parameters.
The value of the associate individual in terms of the objective function is 1.134.
Its accuracy rate with images of the evaluation dataset is 64%. One of the initial
solutions solution manually created for the problem at hand and loaded into
the optimizer was a LeNet-CNN with 9 layers and 63 386 parameters, and it
achieved an accuracy rate of 55% with the validation dataset. Another one was
a VGG net with 9 layers and 124 330 parameters featuring an accuracy rate
of 61% in this same context. Therefore, the proposed method has evolved its
initial population of candidate architectures until outperforming them in terms
of performance (and with less complexity, if compared to the VGG).

It is also necessary to highlight the impact of the cost function. If the number
of parameters was ignored, the resulting neural networks could achieve higher
accuracy, but the number of parameters would be significantly larger. For exam-
ple, the following architecture was obtained in a preliminary experiment that
did not penalize the number of parameters: Conv - Conv - BatchNorm - Conv
- Dropout - BatchNorm - FullyConnected - FullyConnected. Its accuracy was
71% but at the expense of consisting of 4 365 253 parameters. However, there
exist networks featuring 95% of accuracy in this dataset with that number of
parameters.

Structure Optimization of Neural Networks 141

5 Conclusions

This work has proposed and studied the use of TLBO, a widespread population-
based optimizer, to optimize the architecture of neural networks for particular
applications. Since the algorithm is for continuous optimization, a new encoding
mechanism for network architectures has been developed. The method is based
on how N-dimensional arrays can be represented in a single-dimensional vector
in Computer Science. It can represent any architecture with a single vector of
real values and a component per layer. The number of layers and their associ-
ated parameters can be extended as needed. Thus, the encoding mechanism is
of general interest and can be coupled with any other continuous optimizer and
used for any problem. The price to pay is the occasional noise or instability at
decoding: Some different encoding might ultimately result in the same architec-
ture and value. Nevertheless, small plateaus in the search space do not affect
population-based meta-heuristics. Besides, the possibility of benefiting from the
vast set of meta-heuristic optimizers for continuous problems compensates for
this drawback.

The proposal has been studied by optimizing a convolutional neural network
for image classification based on the CIFAR-10 dataset. There have been found
neural network architectures that outperform expert-based configurations for
this dataset. These results support the proposal and let us think about the
possibility of replacing tedious architecture design stages by human experts with
automated optimizers.

For future work, the objective function will be further studied. Namely, dif-
ferent stopping criteria will be compared. Similarly, reducing the training dataset
to speedup evaluations will be considered. Additionally, the possibility of directly
working with blocks of layers will be analyzed.

Acknowledgements. This research has been funded by the R+D+i project RTI2018-
095993-B-I00, financed by MCIN/AEI/10.13039/501100011033/ and ERDF “A way to
make Europe”; by the Junta de Andalucá with reference P18-RT-1193; by the University
of Almería with reference UAL18-TIC-A020-B and by the Department of Informatics
of the University of Almería. M. Lupión is supported by FPU program of the Spanish
Ministry of Education (FPU19/02756). N.C. Cruz is supported by the Ministry of
Economic Transformation, Industry, Knowledge and Universities from the Andalusian
government.

References

1. Byla, E., Pang, W.: DeepSwarm: optimising convolutional neural networks using
swarm intelligence. In: Ju, Z., Yang, L., Yang, C., Gegov, A., Zhou, D. (eds.)
UKCI 2019. AISC, vol. 1043, pp. 119–130. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-29933-0_10

2. Chen, Z., Zhou, Y., Huang, Z.: Auto-creation of effective neural network architec-
ture by evolutionary algorithm and resnet for image classification. In: 2019 IEEE
International Conference on Systems, Man and Cybernetics (SMC), pp. 3895–3900
(2019)

https://doi.org/10.1007/978-3-030-29933-0_10
https://doi.org/10.1007/978-3-030-29933-0_10

142 M. Lupión et al.

3. Cruz, N.C., Álvarez, J.D., Redondo, J.L., Berenguel, M., Ortigosa, P.M.: A two-
layered solution for automatic heliostat aiming. Eng. Appl. Artif. Intell. 72, 253–
266 (2018)

4. Cruz, N.C., Marín, M., Redondo, J.L., Ortigosa, E.M., Ortigosa, P.M.: A compar-
ative study of stochastic optimizers for fitting neuron models. Application to the
cerebellar granule cell. Informatica 32(3), 477–498 (2021)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

6. Isola, P., Zhu, J.Ya., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1125–1134 (2017)

7. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

8. Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G., Tan, K.: A survey on evolutionary
neural architecture search. IEEE Trans. Neural Netw. Learn. Syst. PP, 1–21 (2021)

9. Lu, Z., et al.: NSGA-Net: neural architecture search using multi-objective genetic
algorithm. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pp. 419–427 (2019)

10. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization:
an optimization method for continuous non-linear large scale problems. Inf. Sci.
183(1), 1–15 (2012)

11. Real, E., et al.: Large-scale evolution of image classifiers. In: International Confer-
ence on Machine Learning, pp. 2902–2911. PMLR (2017)

12. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

13. Sharma, N., Sharma, R., Jindal, N.: Machine learning and deep learning applica-
tions - a vision. Glob. Transit. Proc. 2(1), 24–28 (2021)

14. Shu, H., Wang, Y.: Automatically searching for u-net image translator architecture
(2020)

15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2014)

16. Wang, B., Sun, Y., Xue, B., Zhang, M.: Evolving deep convolutional neural net-
works by variable-length particle swarm optimization for image classification. In:
2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)

17. Yang, Z., Li, K., Guo, Y., Ma, H., Zheng, M.: Compact real-valued teaching-
learning based optimization with the applications to neural network training.
Knowl.-Based Syst. 159, 51–62 (2018)

18. Ye, F.: Particle swarm optimization-based automatic parameter selection for deep
neural networks and its applications in large-scale and high-dimensional data. PLoS
ONE 12(12), e0188746 (2017)

19. Yeniay, Ö.: Penalty function methods for constrained optimization with genetic
algorithms. Math. Comput. Appl. 10(1), 45–56 (2005)

20. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning (2016)

Neural Architecture Search Using
Differential Evolution in MAML

Framework for Few-Shot Classification
Problems

Ayla Gülcü1(B) and Zeki Kuş2

1 Department of Software Engineering, Bahçeşehir University, Istanbul, Turkey
ayla.gulcu@eng.bau.edu.tr

2 Department of Computer Engineering, Fatih Sultan Mehmet Vaqif University,
Istanbul, Turkey

zkus@fsm.edu.tr

Abstract. Model-Agnostic Meta-Learning (MAML) algorithm is an
optimization based meta-learning algorithm which aims to find a good
initial state of the neural network that can then be adapted to any novel
task using a few optimization steps. In this study, we take MAML with
a simple four-block convolution architecture as our baseline, and try to
improve its few-shot classification performance by using an architecture
generated automatically through the neural architecture search process.
We use differential evolution algorithm as the search strategy for search-
ing over cells within a predefined search space. We have performed our
experiments using two well-known few-shot classification datasets, mini-
ImageNet and FC100 dataset. For each of those datasets, the perfor-
mance of the original MAML is compared to the performance of our
MAML-NAS model under both 1-shot 5-way and 5-shot 5-way settings.
The results reveal that MAML-NAS results in better or at least com-
parable accuracy values for both of the datasets in all settings. More
importantly, this performance is achieved by much simpler architectures,
that is architectures requiring less floating-point operations.

Keywords: Meta-learning · Neural architecture search · Differential
evolution

1 Introduction

Convolutional Neural Networks (CNNs) are known to achieve excellent results
for a wide variety of computer vision tasks provided that (i) proper architecture
search and hyper-parameter tuning is performed, and (ii) there is abundant data.

Performing architecture engineering and hyper-parameter tuning manually
can be a solution for the first problem; however, this process can become

This work was supported by the Scientific and Technological Research Council of
Turkey (TÜBİTAK) under grant number 121E240.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 143–157, 2023.
https://doi.org/10.1007/978-3-031-26504-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_11&domain=pdf
http://orcid.org/0000-0003-3258-8681
http://orcid.org/0000-0001-8762-7233
https://doi.org/10.1007/978-3-031-26504-4_11

144 A. Gülcü and Z. Kuş

computationally infeasible as the architectures get deeper and more complex.
This also requires involvement of an expert from the domain because, deciding
on the architectural structure and the hyper-parameters to tune, and defining
value domains for each of those elements require meticulous design and experi-
ment processes. Neural Architecture Search (NAS) which is a subfield of AutoML
aims to automate the tedious architecture design process. It is often confused
with Hyper-parameter Optimization (HPO) which is another subfield of AutoML.
HPO basically takes an architecture as given and tries to optimize its param-
eters like the learning rate, activation function and the batch size. In contrast,
NAS focuses on optimizing architecture-related parameters like the number of
layers, number of units and also connection types among those units. In NAS
studies, in order to reduce the computational burden, the search space is defined
over small building blocks, called cells, instead of the whole architecture. These
cells are then stacked on top of each other to form the final architecture. The
computation procedure for an architecture of a single cell is represented as a
directed acyclic graph in which nodes represent the connections and the edges
represent the operations between the nodes. The search space is then defined
by the maximum number of nodes and edges and the types of operations in a
single cell. This freedom of connections among different units may result in bet-
ter performing architectures than following the traditional convolutional blocks
patterns in CNNs.

The performance of CNNs drop significantly under limited data regime
because, they require a huge amount of labeled data in order to be able to
generalize well. However, in some circumstances finding labeled data can be a
problem by itself. The type of problems for which there are only a few training
examples available is referred to as Few-Shot Learning (FSL) problems [8,11,12],
and these problems have led the development of new specialized methods such
as meta-learning. Machine learning approaches that aim to make learning more
generalizable with the help of meta-knowledge obtained from previous tasks, so
that new tasks can be learned very quickly, are known as learning to learn or
meta-learning [1,20]. Lu et al. [15] suggest that FSL research can be roughly
divided into two periods, the first one being the period of methods without deep
learning (from 2000 to 2015) and the second one being the period of methods
with deep learning (from 2015 to now). In [5], meta-learning architectures for
FSL are categorized into three main classes: memory-based methods, metric-
based methods and optimization-based methods. In memory-based methods, a
meta-learner is trained with memory to learn novel concept whereas in metric-
based methods a meta-learner learns a deep representation with a metric in
feature space. Model-Agnostic Meta-Learning (MAML) algorithm [9] that we
use in this paper is an optimization-based algorithm which aims to find a good
initial state of the neural network that can then be adapted to any novel task
using a few optimization steps.

MAML [9] uses a four-block CNN architecture as its backbone. The archi-
tecture consists of four convolution blocks each comprising a 64-filter 3 × 3 con-
volution, a batch normalization layer, a ReLU nonlinearity and a 2 × 2 max-
pooling layer. We take MAML with simple four-block architecture as our baseline

NAS with DE in MAML 145

method, and try to improve its classification performance by using an architec-
ture generated automatically through Neural Architecture Search (NAS) process
as its backbone.

We use Differential Evolution (DE) algorithm which is an Evolutionary Algo-
rithm (EA) as the search strategy in NAS. The use of DE in NAS for optimizing
deep neural networks architecture is not new; however, using this method as
a search strategy in NAS for optimizing the architecture in a meta-learning
algorithm is new. Since the training and evaluation of meta-learning algorithms
is different, we believe this study provide useful insights to the researchers in
this area. It is also important to note that a fair performance comparison with
respect to the accuracy values can only be performed between the two models if
the complexity of them which is best measured in terms of floating-point oper-
ations per second (FLOPs) are similar. Although the number of FLOPs is not
taken as a constraint or as a second objective during NAS; the results state that
the complexity of the architectures generated by NAS is simpler than that of the
four-block CNN architecture. Moreover, these architectures result in the same
or even better accuracy values in some settings.

2 Neural Architecture Search in MAML

In this section, we first provide a brief discussion on NAS methods, then explain
the MAML framework on which NAS will be performed. Finally, we discuss DE
which defines the NAS search strategy in this study.

2.1 Neural Architecture Search

Due to the increasing interest for the topic, several NAS methods have been
introduced in the literature. These methods differ from each other in terms
of the adopted search space, selected search strategy and performance predic-
tion strategy [7]. The search strategy aims to find a good architecture within a
the predefined search space subject to a computational budget. The prediction
strategy returns the predicted performance of a new architecture for the search
strategy (for a comprehensive survey on NAS please see [22]).

Earliest studies in the field use Reinforcement Learning (RL) based
approaches. Although the work of Zoph and Le [28] achieved excellent results
using RL in the image classification domain, their work is impossible to repli-
cate due to its computational requirements. Searching for an architecture for
CIFAR-10 dataset [10] required 800 GPUs for 28 days. Zoph et al. [29] propose
searching over neural building blocks instead of whole architectures with the
hope of reducing required computational resources. They propose a new search
space, NASNet, consisting of small building blocks, called cells. Following Nas-
Net, Liu et al. propose another cell-based search space called DARTS. Following
these, several NAS benchmarks like NAS-Bench-101 [27], NAS-Bench-201 [6] and
NAS-Bench-301 [23] have been introduced with the aim of enabling a fair com-
parison among different NAS algorithms and also reducing the computational
burden of the process.

146 A. Gülcü and Z. Kuş

Evolutionary Algorithms (EA)-based methods are among the successful
methods for NAS. Real et al. [21] used Regularized Evolution (RE), and
showed for the first time that the architectures generated by EAs surpass hand-
engineered architectures on the NASNet search space. They achieved comparable
results with much fewer parameters when compared to the work in [29]. It is also
shown [27] that RE yields in excellent performance for NAS-Bench-101. It is later
shown in [3] that another EA-based method, Differential Evolution (DE), yields
in better solutions than RE for several benchmarks. It is later shown in [23] that
DE also had remarkable search performance. Interested readers may refer to [14]
for a survey on Evolutionary NAS methods.

There is also another line of work focusing on predictor-based NAS algorithms
which aim to estimate the performance of a previously unseen architecture to
a high accuracy. As there is no benchmark available for meta-learning in k-shot
setting and therefore we will not be searching on a standard search space, we
will try to estimate the performance of an architecture by running it for a small
number of iterations.

Fig. 1. Representation of a meta-dataset with a meta-training and a meta-testing
datasets consisting of several small datasets, Di, each of which is also called a task.
Source: [20]

2.2 MAML Framework

Model-Agnostic Meta-Learning (MAML) algorithm is a model-agnostic algo-
rithm in the sense that it can be applied to any model trained with gradient
descent [9], and can be used to solve any problem like classification, regression
and reinforcement learning problems.

A generic notion of a learning task can be described as follows [20]: In typical
machine learning setting, a dataset D is usually splitted as Dtrain and Dtest. In
meta-learning, there is a meta-dataset D consisting of a training meta-dataset,
Dtrain, and a test meta-dataset Dtest which is used to evaluate the generalization
performance of the meta-model. Each meta-dataset consists of multiple datasets,
Di, each of which is known as a task which is shown in Fig. 1. Each task is

NAS with DE in MAML 147

further splitted into a training and a test set known as a support and a query
set, respectively. During MAML training, the meta-model with parameters θ
is adapted with a number of gradient descent updates on the support set of a
given task Ti, and the model’s parameters become θ

′
i. This model is tested on the

query set of the same task, and the loss is recorded. For each task, adaptation
starts with the same initial model parameters θ and those parameters are only
updated during the meta-optimization stage which starts after all tasks in a given
batch are complete. Meta-model parameters are updated using the loss computed
using the temporary model parameters. In meta-testing phase, the ability of the
meta-learner to learn new tasks of novel classes is evaluated by training it on
only a few images in the support set and testing on the query set. Usually, this
process is repeated for several tasks, and the average test performance with 95%
confidence interval is reported. In this default version of MAML, meta-update
requires computing a gradient through a gradient. The authors also proposed
a variant called first-order MAML, in which the second gradient computation
is ignored. Although some gradient information is lost, it is also shown in the
study that the first-order MAML works nearly as well as MAML and thus will
be used in this study. There are also several variants of MAML algorithm in the
literature. Nichol and Schulman [16] propose an algorithm called Reptile which
is a variant of first-order MAML. Raghu et al. [19] introduce ANIL (Almost No
Inner Loop) algorithm which is a simplification of MAML.

MAML [9] basically use a four-block CNN architecture given in [26] as its
backbone. The architecture consists of four blocks each comprising a 64-filter
3 × 3 convolution, a batch normalization layer, a ReLU nonlinearity and a 2 × 2
max-pooling layer. The last layer is then fed into a softmax layer. This simple
architecture is also used in another meta-learning algorithms, namely, Prototyp-
ical networks [24]. More complex backbones like Conv-6, Resnet-10, Resnet-18
and Resnet-34 are also used in other studies as the backbone; however, it is
clearly shown in [4] that the performance gap among different meta-learning
methods drastically reduces as the backbone gets deeper. As the performance
difference of the algorithms can best be observed when a simple backbone model
is used, a good architecture should help the meta-learning algorithm to achieve
high accuracy without increasing the complexity.

2.3 Differential Evolution

Differential Evolution (DE) algorithm [18] is an evolutionary algorithm which
consists of a population of solutions that evolve via several operators like selec-
tion, crossover and mutation. Each individual in a DE population represents a
candidate solution which is usually encoded as a D-dimensional real-valued vec-
tor. For example, an individual i ∈ {1, 2, .., NP} at generation 0 is represented
by xi,0 = (x1

i,0, .., x
D
i,0), where NP is the size of the population which remains

constant from iteration to iteration.
In general, the initial population consists of randomly initialized individuals.

For each dimension in a given individual, a random value within the predefined
range of that dimension is selected. A new generation is generated from the

148 A. Gülcü and Z. Kuş

current population with the help of crossover, mutation and selection operations.
At a generation g, each individual xi,g is a target vector, and a mutant vector,
vi,g is created for each of those target vectors via the selected mutation method.
There are many mutation strategies in the literature, and the most frequently-
used ones are listed below:

DE/rand/1 : vi,g = xr1,g + F (̇xr2,g − xr3,g) (1)

DE/best/1 : vi,g = xbest,g + F (̇xr1,g − xr2,g) (2)

DE/current-to-best/1 : vi,g = xi,g + F (̇xbest,g − xi,g) + F (̇xr1,g − xr2,g) (3)

DE/rand/2 : vi,g = xr1,g + F (̇xr2,g − xr3,g) + F (̇xr4,g − xr5,g) (4)

DE/best/2 : vi,g = xbest,g + F (̇xr1,g − xr2,g) + F (̇xr3,g − xr4,g) (5)

In the shorthand notation in Eqs. 1–5, the first term after “DE” specifies
the strategy to select the target vector, and the next term specifies the num-
ber of vector differences contributing to the differential. F is a positive control
parameter used to scale the difference vector, and ri is a random integer selected
from [1, NP]. In a given mutation method, all these random integers should be
unique.

At a generation g, each target vector is subjected to a crossover operation
with its corresponding mutant vector to generate a trial vector, ui,g. The bino-
mial crossover operation which is the most widely used one is given in Eq. 6,
where CR is the crossover rate parameter ∈ [0, 1). For each dimension, a ran-
dom number rand ∈ [0, 1] is compared to CR, and if it is less than CR, trial
inherits that dimension value from the mutant; otherwise it inherits from the tar-
get. It is also ensured that at least one dimension is inherited from the mutant
using nj which is also a random number ∈ {1, ..D}.

uj
i,g =

{
vj
i,g, if rand ≤ CR or j = nj

xj
i,g, otherwise

, for j = {1, ..D} (6)

After the mutation and crossover operations, the resultant trial vectors
should be checked for feasibility. A boundary check mechanism should be applied
in order to restore feasibility of each trial vector. The encoding scheme and the
other DE-related parameters will be given in detail in Sect. 3.4.

3 Experimental Setting

3.1 Datasets

MiniImageNet Dataset [26] is a common benchmark for few-shot learning
algorithms. It contains 100 classes randomly sampled from the very large-scale
ImageNet dataset. Each class contains 600 images of size 84 × 84. There are two
different kinds of splits for this dataset and we use the splits from Ravi et al.
[20] in this work. According to this split, the dataset is divided into 3 parts
as train, validation, and test sets each of which contains 64, 16 and 20 classes,
respectively.

NAS with DE in MAML 149

Fewshot-CIFAR100 Dataset which is also known as FC100 was introduced
by Oreshkin et al. [17] based on CIFAR100 for few-shot learning. The original
CIFAR100 dataset consists of 32 × 32 color images belonging to 100 different
classes, and each class contains 600 images. The 100 classes are further grouped
into 20 superclasses in order to minimize the information overlap. The train split
contains 60 classes belonging to 12 superclasses, the validation and test splits
contain 20 classes belonging to 5 superclasses each. This dataset presents a more
challenging few-shot learning problem than miniImageNet due to the reduced
image size in addition to having less information overlap between train and test
datasets.

3.2 Training and Evaluation

MAML requires several hyper-parameters like the number of inner and outer
iterations, batch size and the learning rate to be tuned. As miniImageNet dataset
has already been used by Finn et al. [9] in their MAML paper, we adopt the
same hyper-parameters while evaluating the performance of MAML with a given
architecture. The following hyper-parameters are used for training and testing
the MAML algorithm:

– meta batch size = 4 for 1-shot, 2 for 5-shot
– meta learning rate and optimizer = 0.001 and Adam
– fast learning rate α = 0.01
– train adaptation steps = 5
– test adaptation steps = 10
– number of train iterations = 60000

MAML algorithm with a given model is trained for 60000 iterations (meta-
training phase) using Adam optimizer with a meta learning rate of 0.001. At
each iteration, the model is trained for 5 gradient steps (train adaptation steps)
with step size α of 0.01 (fast learning rate). The number of tasks is selected as
4 and 2 for the 1-shot 5-way and 5-shot 5-way setting, respectively. During the
test time, the number of test adaptation steps is selected as 10; and the test
results on each query set which contains 5 examples per class is recorded. 600
test episodes each of which contains a batch of tasks are created. The average
accuracy with 95% confidence interval over these test episodes are reported. In
our evaluation, we have used the same number of examples per class for both the
support and the query set. Except this, all the hyper-parameters are the same
as in [9].

In [9], MAML hyper-parameter values were tuned considering the CNN4
backbone. We use the same values for our MAML-NAS algorithm whose back-
bone is generated by NAS with the hope of performing a fair comparison. More-
over, we believe that the effect of using a backbone generated by NAS in MAML
can be best evaluated if the other MAML hyper-parameters are kept constant
even if this is a disadvantage for us.

During the execution of DE, the performance of a newly generated architec-
ture needs to be evaluated so that it can be compared to another architecture.

150 A. Gülcü and Z. Kuş

The simplest approach is training the new model for 60000 iterations, testing it
on 600 episodes, and then taking the average accuracy as the objective function
value of that model. Although being reliable, a complete training of a model
is computationally infeasible because hundreds of models need to be evaluated
during a single DE run. We followed the most basic function approximation
approach of training for smaller iterations. This pessimistic estimation does not
effect the evolution of the good models, since our aim is be able to perform a
fair comparison between different models rather than to obtain their actual accu-
racy values during the execution of DE. Thus, instead of 60000 iterations, we
used 1000 iterations during meta-training. The average accuracy obtained over
16 tasks selected from the validation set is recorded as the objective function
value of that model. We also used 5 test adaptation steps instead of 10 during
test time. For FC100 Dataset, we used the same MAML hyper-parameters as
in miniImageNet. After DE is complete, we have selected top 3 models with
the best estimation performance and subjected each one them for a complete
training. Then, the test performance of the best model is reported.

3.3 Search Space for MAML

Instead of the four-block architecture stated in Sect. 2.2, we use the architecture
generated automatically using NAS for MAML. Following Zoph et al. [29] and
Real et al. [21], we propose searching over neural building blocks called cells
instead of the whole architectures.

The computation procedure for an architecture of a single cell is represented
as a directed acyclic graph in which edges represent the connections and the
nodes represent the operations between the nodes. In our study, we have adopted
a new cell search space which is created considering the search spaces of both
the DARTS [13] and NAS-Bench-101 [27]. The number of nodes are limited to
seven including one input and one output nodes. These nodes can be connected
with a maximum of nine edges with the following nine operations:

– Two separable convolution operations: 3 × 3 sep conv, 5 × 5 sep conv
– Two dilated separable convolution operations: 3 × 3 dil conv, 5 × 5 dil conv
– Four convolution operations: 1×1 conv 2d, 3×3 conv 2d, 5×5 conv 2d, 7×7

conv 2d
– Skip connection operation: skip connect

In NAS-Bench-101 [27] benchmark, each cell is stacked three times which is
followed by a downsampling layer. This pattern is then repeated three times in
order to generate the final architecture. In order to keep the complexity of the
resultant architecture at a reasonable level, we allowed only one cell in a stack
which is followed by downsampling, and this pattern is repeated three times
as shown in Fig. 2 (left). On the right, the inner representation of a cell which
consists of all possible connections between the nodes is illustrated.

NAS with DE in MAML 151

Fig. 2. Solution representation

3.4 Architecture Encoding and DE Parameters

In our study, we adopt a continuous search space as in [3] with the hope of
maintaining diversity. Each solution xi, where i ∈ {1, 2, .., NP}, is represented
by a 26 -dimensional real-valued vector that takes on continuous values in [0, 1]
as illustrated in Fig. 3. As the mutation strategy, rand1 mutation shown in Eq. 1
which was also used in both [3,23] is employed. After the mutation, projection to
boundary method is applied on each dimension in order to bring the dimension
value value into [0, 1]. We used the binomial crossover given in Eq. 6.

In Fig. 3, the first 21 dimensions represent the possible connections between
each pair of nodes. As there are 7 nodes, there can be at most 21 edges in a
given architecture. An upper triangular square matrix representation for the
connected nodes is also given in the same figure. Each continuous value in these
dimensions should be mapped to a discrete value with 1 denoting a connection
and 0 denoting a no-connection, but these discretized copies of the individuals are
only created for evaluation purposes. For a given ith individual xi = (x1

i , .., x
D
i),

discretized copy x copyj
i = 1 if xj

i ≥ 0.5, and x copyj
i = 0, otherwise, for each

j ∈ {1, ..D}.
The operations on the intermediary nodes starting from node 2 up to node

6 in the order are represented by the remaining 5 dimensions. 9 equal-sized bins
are created within [0, 1] in order to map these continuous values into 9 discrete
values, for 9 different operations. For j ∈ {1, ..D}, if x copyj

i is ∈ [0, 0.11) then
skip connect; else if it is ∈ [0.11, 0.22) then 1× 1 conv 2d; else if it is ∈ [0.22, 0.33)
then 3× 3 conv 2d; else if it is ∈ [0.33, 0.44) then 5× 5 conv 2d; else if it is
∈ [0.44, 0.55) then 7× 7 conv 2d; else if it is ∈ [0.55, 0.66) then 3× 3 sep conv;
else if it is ∈ [0.66, 0.77) then 5× 5 sep conv; else if it is ∈ [0.77, 0.88) then 3× 3
dil conv; otherwise ∈ [0.88, 1) then 5× 5 dil conv is applied.

Although there are 21 possible edges in a given architecture, edge constraint
ensures that the total number of edges does not exceed 9. Our encoding scheme

152 A. Gülcü and Z. Kuş

does not prevent infeasible solutions to be created; therefore, a feasibility control
mechanism is applied. A solution is discarded if it contains more than 9 edges.
In addition, a solution is deemed infeasible if there is a node that cannot be
reached from the input node or that cannot reach to the output node. In this
case, the feasibility is attempted to be restored by deleting that node.

Fig. 3. DE encoding

In a given DE generation g, each target individual xi,g competes with its
corresponding trial vector ui,g for being included in the next generation. If the
objective value of xi,g is better than the objective value of ui,g, then xi,g is
selected as a parent for the next generation; otherwise, trial vector replaces the
target vector. The number of generations can be used as the stopping criterion,
but we prefer to use the total number of feasible solutions generated as the
stopping criterion due to our computational budget. We set the population size,
NP , to 20, and DE stops as soon as 200 feasible solutions are generated. DE
also requires F and CR parameters to be defined. According to Storn et al. [25],
DE is much more sensitive to the choice of F than it is to the choice of CR, and
the suggested value ranges for F are [0.5, 1]. In our experiments, we use a value
of 0.5 for both the F and CR.

NAS with DE in MAML 153

4 Results and Discussion

We have performed our experiments using two well-known few-shot classification
datasets, miniImageNet and FC100 datasets. Taking the MAML implementation
in learn2learn (l2l) PyTorch meta-learning library [2] as our basis, we have imple-
mented our MAML-NAS using DE algorithm in Python programming language.
All the experiments have been carried out using a single 24 GB RTX 3090 GPU.

Table 1. Results on miniImageNet and FC100 datasets

Accuracy∗ FLOPs

MAML-NAS MAML∗∗ MAML-NAS MAML

miniImageNet 1-shot 51.32% ± 0.01 45.23% ± 1.84 320M 488.86M

5-shot 63.42% ± 0.01 61.52% ± 0.98 378M 488.86M

FC100 1-shot 35.21% ± 0.01 38.30% ± 1.88 9.96 M 71.22 M

5-shot 46.60% ± 0.01 46.29% ± 0.96 46.58 M 71.22 M
∗ Average accuracy over 600 test episodes with 95% confidence interval
∗∗ Results obtained by re-running MAML in l2l

For each few-shot setting, 1-shot and 5-shot, we have first executed MAML
using l2l implementation with the original hyper-parameters stated in Sect. 3.2.
Although these hyper-parameters were tuned in [9] for MAML, and thus may
not be the best fit for our MAML-NAS, we decided not to modify them in order
to best reveal the effect of the backbone modification.

DE is executed for each dataset and for each few-shot setting separately.
During a DE execution, each candidate backbone architecture represented by a
DE individual is used as the backbone in MAML and this model, MAML-NAS,
is trained and evaluated exactly the same way as MAML. Although the hyper-
parameters and the task settings are the same, we trained each MAML-NAS
using only a small number of iterations because of the computational burden
of a complete training process. After the DE execution, top three MAML-NAS
models are selected and each of them is subjected to a complete training. These
models are then tested on 600 test episodes, and the average accuracy along
with the 95% confidence interval for each dataset under each few-shot setting is
reported.

154 A. Gülcü and Z. Kuş

Fig. 4. The best MAML-NAS models generated for different data sets by DE.

An illustration of the architecture of the best MAML-NAS models for each
of the datasets is given in Fig. 2. It can be seen in the figure that the resul-
tant architectures are quite simple. Even these cells are repeated three times by
stacking them vertically, the complexity of the whole architecture with respect
to the FLOPs is still way smaller than the complexity of the backbone used
in MAML as stated in Table 1. For the miniImageNet dataset, there is signifi-
cant performance improvement in MAML-NAS over MAML. The improvement
in 5-shot setting is less, though. For the FC100 dataset, a similar effect on the
accuracy is present only in 5-shot setting. There is a slight accuracy improvement
over MAML, but this slight improvement has been achieved by a much simpler
MAML-NAS model. In 1-shot setting, MAML-NAS performs worse than MAML
in terms of accuracy; however, the number of FLOPs in MAML-NAS model is
less than one seventh of the FLOPs in MAML.

Table 2. Results on FC100 under 1-shot setting with different training iterations

2000 5000 8000

Batch size 4 38.04 ± 0.01 (64M) 37.80 ± 0.01 (456 M) 37.31 ± 0.010 (403 M)

FC100 dataset is more difficult than miniImageNet dataset, and especially
1-shot setting makes the problem even harder. For 1-shot setting, the best model
found in DE does not yield in the best accuracy after a complete training. We
suspect that evaluating the performance of the models during DE based on a
small number of training iterations may not provide a good estimate for the
actual performance of those models. When we increase the number of training
iterations from 1000 to 2000, we were able to find a MAML-NAS model that
achieves the same accuracy as MAML model, again with fewer parameters. How-
ever, increasing training iterations even more did not yield in models with better
accuracy values as shown in Table 2.

NAS with DE in MAML 155

Fig. 5. Training steps

We believe that this is due to the task definitions used in training meta-
learning models. As illustrated in Fig. 5, meta-learning algorithms learn slowly,
because their aim is not to specialize in a given task; rather to find a good
initial state so that they can be adapted to any novel task using a few opti-
mization steps. The search performance of DE algorithm may be further eval-
uated by applying different mutation strategies and using different population
sizes. In addition, we believe it would help to improve performance using hyper-
parameters especially tuned for MAML-NAS. It should also be noted that these
results are obtained by the MAML-NAS models generated within a limited
search space due to our limited computational resources. Extending the search
space might help to increase the probability of obtaining better models.

5 Conclusion

In this study, we try to improve the few-shot classification performance of the one
of the most well-known optimization based meta-learning algorithms, namely,
Model-Agnostic Meta-Learning (MAML), with the help of the neural architec-
ture search. The original four-block convolution architecture is replaced with
the architectures automatically generated through the neural architecture search
process with the aim of improved performance. Differential evolution algorithm
is adopted as the search strategy for searching over cells within a predefined
search space. We have performed our experiments using two well-known few-
shot classification datasets, miniImageNet and FC100 dataset. For each of those
datasets, the performance of the original MAML is compared to the performance
of our MAML-NAS model under both 1-shot 5-way and 5-shot 5-way settings.
It is also important to note that a fair performance comparison with respect
to the accuracy values can only be performed between the two models if the
complexity of them which is best measured in terms of floating-point operations
per second are similar. The results reveal that MAML-NAS results in better or

156 A. Gülcü and Z. Kuş

at least comparable accuracy values for both of the datasets in all settings. More
importantly, this performance is achieved by much simpler architectures.

Although the use of differential evolution for neural architecture search is
not new; using a meta-heuristic method as the search strategy for optimizing
the architecture in a meta-learning algorithm is new. Since the training and
evaluation of meta-learning algorithms is different than traditional training pro-
cess, we believe this study provide useful insights to the researchers in this area.
Evaluating the search performance of DE with different mutation strategies and
within extended search spaces are among our future studies.

References

1. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent.
Adv. Neural Inf. Process. Syst. 29 (2016)

2. Arnold, S.M.R., Mahajan, P., Datta, D., Bunner, I., Zarkias, K.S.: learn2learn: a
library for meta-learning research. arXiv preprint arXiv:2008.12284 (2020)

3. Awad, N., Mallik, N., Hutter, F.: Differential evolution for neural architecture
search. arXiv preprint arXiv:2012.06400 (2020)

4. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at
few-shot classification. arXiv preprint arXiv:1904.04232 (2019)

5. Chen, Y., Wang, X., Liu, Z., Xu, H., Darrell, T.: A new meta-baseline for few-shot
learning (2020)

6. Dong, X., Yang, Y.: NAS-Bench-201: extending the scope of reproducible neural
architecture search. arXiv preprint arXiv:2001.00326 (2020)

7. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach.
Learn. Res. 20(1), 1997–2017 (2019)

8. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE
Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: International Conference on Machine Learning, pp. 1126–
1135. PMLR (2017)

10. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

11. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple
visual concepts. In: Proceedings of the Annual Meeting of the Cognitive Science
Society, vol. 33 (2011)

12. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning
through probabilistic program induction. Science 350(6266), 1332–1338 (2015)

13. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. arXiv
preprint arXiv:1806.09055 (2018)

14. Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G.G., Tan, K.C.: A survey on evolu-
tionary neural architecture search. IEEE Trans. Neural Netw. Learn. Syst. (2021)

15. Lu, J., Gong, P., Ye, J., Zhang, C.: Learning from very few samples: a survey.
arXiv preprint arXiv:2009.02653 (2020)

16. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999 (2018)

17. Oreshkin, B., Rodŕıguez López, P., Lacoste, A.: TADAM: task dependent adaptive
metric for improved few-shot learning. Adv. Neural Inf. Process. Syst. 31 (2018)

http://arxiv.org/abs/2008.12284
http://arxiv.org/abs/2012.06400
http://arxiv.org/abs/1904.04232
http://arxiv.org/abs/2001.00326
http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/2009.02653
http://arxiv.org/abs/1803.02999

NAS with DE in MAML 157

18. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution. NCS, Springer,
Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0

19. Raghu, A., Raghu, M., Bengio, S., Vinyals, O.: Rapid learning or feature
reuse? Towards understanding the effectiveness of MAML. arXiv preprint
arXiv:1909.09157 (2019)

20. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: 5th
International Conference on Learning Representations (2017)

21. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 4780–4789 (2019)

22. Ren, P., et al.: A comprehensive survey of neural architecture search: challenges
and solutions. ACM Comput. Surv. 54(4), 1–34 (2021)

23. Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., Hutter, F.: NAS-Bench-
301 and the case for surrogate benchmarks for neural architecture search. arXiv
preprint arXiv:2008.09777 (2020)

24. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. Adv.
Neural Inf. Process. Syst. 30 (2017)

25. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

26. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for
one shot learning. Adv. Neural Inf. Process. Syst. 29 (2016)

27. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-Bench-
101: towards reproducible neural architecture search. In: International Conference
on Machine Learning, pp. 7105–7114. PMLR (2019)

28. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578 (2016)

29. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 8697–8710 (2018)

https://doi.org/10.1007/3-540-31306-0
http://arxiv.org/abs/1909.09157
http://arxiv.org/abs/2008.09777
http://arxiv.org/abs/1611.01578

Neural Architecture Search Using
Metaheuristics for Automated Cell

Segmentation

Zeki Kuş(B), Musa Aydın, Berna Kiraz, and Burhanettin Can

Department of Computer Engineering, Fatih Sultan Mehmet Vakif University,
Istanbul, Turkey

{zkus,maydin,bkiraz,bcan}@fsm.edu.tr

Abstract. Deep neural networks give successful results for segmenta-
tion of medical images. The need for optimizing many hyper-parameters
presents itself as a significant limitation hampering the effectiveness of
deep neural network based segmentation task. Manual selection of these
hyper-parameters is not feasible as the search space increases. At the
same time, these generated networks are problem-specific. Recently, stud-
ies that perform segmentation of medical images using Neural Architec-
ture Search (NAS) have been proposed. However, these studies signif-
icantly limit the possible network structures and search space. In this
study, we proposed a structure called UNAS-Net that brings together
the advantages of successful NAS studies and is more flexible in terms of
the networks that can be created. The UNAS-Net structure has been
optimized using metaheuristics including Differential Evolution (DE)
and Local Search (LS), and the generated networks have been tested
on Optofil and Cell Nuclei data sets. When the results are examined,
it is seen that the networks produced by the heuristic methods improve
the performance of the U-Net structure in terms of both segmentation
performance and computational complexity. As a result, the proposed
structure can be used when the automatic generation of neural networks
that provide fast inference as well as successful segmentation performance
is desired.

Keywords: Neural architecture search · Cell segmentation ·
Metaheuristics · Deep learning

1 Introduction

Cell is the basic structural, functional, and biological unit in all living organ-
isms. Imaging cells and collecting information from them are important for var-
ious scientific fields [5] such as image cytometry, flow cytometry, cell sorters and
time-lapse cytometers. More precise imaging of cells and subcellular parts has
become possible because of recent improvements in high-resolution fluorescence
microscopy [32]. Increasing computational capability of computers and devel-
opments in the field of deep learning have accelerated the studies in medical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 158–171, 2023.
https://doi.org/10.1007/978-3-031-26504-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_12&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_12

NAS Using Metaheuristics for Automated Cell Segmentation 159

imaging [8]. Automatic analysis of cellular images provides cell counting and
segmentation with higher accuracy, efficiency and reproducible information. On
the other hand, manual segmentation performed by human experts is more time-
consuming and is prone to more error due to subjective interpretations.

In previous studies, different image-processing techniques have been proposed
for segmentation of cells in 2D images [8,18]. For example, watershed-based
image segmentation [28,33] and level set methods [10,20] have been used to
separate the overlapping cells. Besides, active contour models and Snake’s algo-
rithm [34] are among the traditional image processing techniques used in image
segmentation.

In addition to traditional image processing techniques, machine learning
approaches are used for pixel-based classification and segmentation of cells in
bright field and phase contrast images [31,39]. Recently, deep learning networks
have been used in different problems such as segmentation and classification of
biomedical images [13,14,19]. In the study proposed by Song et al. [30], a convo-
lutional neural network-based deep learning approach has been proposed for the
segmentation of cell images. However, the clustered cells could not be separated
clearly in this study. Delgado-Ortet et al. [7] propose another method based on
the convolutional neural network (CNN) which is used for segmentation of red
blood cell images. They use a deep neural network and a convolutional neu-
ral network together, which they called “Segmentation Neural Network” for the
classification of blood cells. When these studies are examined, it is seen that the
U-Net model is preferred more than other CNN architectures due to its overall
superior performance in segmentation of biomedical images.

U-Net models have many hyper-parameters that need to be optimized. On the
other hand, many optimization techniques are focused at finding network archi-
tectures that should be efficient in terms of both segmentation performance and
computational complexity. These techniques, called Neural Architecture Search
(NAS), have been applied to various biomedical imaging problems such as tumor
segmentation and vessel segmentation [4,36].

This study presents a NAS technique for automated cell segmentation using
two metaheuristics including Differential Evolution (DE) and Local Search (LS).
Optimizing the architectures of deep neural networks with DE and LS in NAS
studies is not novel; however, optimizing U-Net architecture with these methods
in NAS for cell segmentation is novel. NAS is used for the optimization of the
U-Net backbone which is a well-known convolutional neural network for medical
image segmentation. To the best of our knowledge, this is the one of initial
applications of NAS using metaheuristics for cell segmentation. The proposed
approach combines the advantages of different NAS techniques proposed in [16,
40] to maintain diversity in the search space. We use the cell structure which
is represented as a directed acyclic graph (DAG) consisting of N intermediate,
one input, and one output vertice. Parameter settings presented in the NAS-
Bench-101 [40] is used to develop the cell structures. In addition, we consider
the operations in the cell proposed in the Differentiable Architecture Search
(DARTS) algorithm [16]. Gaussian Error Linear Unit (GELU) has been used as

160 Z. Kuş et al.

the activation function in all operations instead of Rectified Linear Unit (ReLU)
[17]. Two different cell segmentation data sets (see Sect. 3.1) have been used
to evaluate the performance of different U-Net architectures. The results reveal
that DE performs better than LS for both data sets.

2 Methodologies

Neural Architecture Search (NAS) is one of the most basic and common tech-
niques in the field of Automated Machine Learning [11]. In this field, several
approaches have been developed in recent years, most of them based on graphs.
Graphs are used to represent each part, which is called cell. Network architec-
tures are created by combining multiple cells. Each cell can contain a different
graph structure, or the same graph structure, usually called repeated cell, which
can be used to reduce the search space [40]. Unlike state-of-the-art CNNs, cells
with widely different structures are formed since there is no repeated pattern
rule between operations in the cell.

Evolutionary Algorithms (EAs) are commonly used approaches in most NAS
studies [2,24,35]. In these algorithms, each individual represents an architecture.
New architectures are created using evolutionary operators such as crossover,
mutation, and population converges towards the best architectures. One of the
first studies in the field of NAS with evolutionary algorithms is the EvoNAS
study [25]. Genetic algorithm is used to find the best CNN architecture in
this study and the proposed method is evaluated on CIFAR10 and CIFAR100
datasets.

Real et al. [24] showed that architectures generated by Evolutionary Algo-
rithms outperform hand-crafted architectures. They used Regularized Evolution
for the NAS-Bench-101 benchmark data set and, obtained competitive results
with fewer parameters compared to the NASNet-A [42] method. The tournament
selection method is used and two mutation methods named hidden state muta-
tion and op mutation are proposed. One of the connections between the states is
randomly selected and mutated, i.e. add or remove a connection, in the hidden
state mutation method. Similarly, one of the existing operations is randomly
selected and replaced by another operation in the op mutation method.

Qiang et al. [23] proposed a Particle Swarm Optimization based NAS method.
They presented NAS framework on the deep belief network for unsupervised
learning. Variable mutation rate is used for better exploitation and exploration
in this study. High mutation rates are selected in the early stages of this mutation
process, whereas lower mutation rates are selected in the later stages.

In another study, Awad et al. [2] focused on Differential Evolution (DE)
method and showed that this method yields state-of-the-art performance for
different NAS benchmarks. DE achieved better and more robust results for 4
NAS benchmarks: NAS-Bench-101 [40], NAS-Bench-1Shot1 [41], NAS-Bench-
201 [9], and NAS-HPO [15]. They used binomial crossover and rand1 mutation
operation for DE steps.

NAS Using Metaheuristics for Automated Cell Segmentation 161

In this study, we propose a Neural Architecture Search approach, referred
to as UNAS-Net, for the optimization of the U-Net backbone. UNAS-Net con-
sists of two main parts: metaheuristics and search space. As metaheuristics, we
select Differential Evolution and Local Search metaheuristics. We present the
detail of employed metaheuristics and search space configuration in the following
subsections.

2.1 Search Space

As in the U-Net structure, UNAS-Net consists of consecutive encoder and
decoder blocks. Encoder blocks are used for feature extraction and reducing
the spatial dimensions. A lower-dimensional representation of the input image is
learned through the encoder blocks. On the other hand, decoder blocks are used
for reconstruction and increasing the spatial dimension. Image is reconstructed
with the learned features in the decoder blocks. In this study, all of these blocks
are called encoder and decoder cells. Each cell is represented by a directed acyclic
graph (DAG) containing V vertices and E edges. Encoder cell takes the 2D Cell
image as input and applies a series of operations inside the encoder cell to this
image.

Encoder cells are followed by the max pooling operation with stride 2, which
is used for reducing the spatial dimensions and called down sampling. After the
consecutive encoder cells and down sampling operations, the bottleneck layer is
used. At the next step, images are reconstructed with decoder cells using the
extracted features. In the decoder cell, the transpose convolution is applied for
the up sampling of the images. Finally, the sigmoid activation function is applied
to the output from the decoder cell in the last layer, resulting in a binary image.
Figure 1 shows the general structure of UNAS-Net. Each vertex, v ∈ V , has one
l ∈ L (Table 1) label which indicates the operation. On the other hand, each
edge, e ∈ E, represents the connection between two vertices. The first and last
vertices in the cell are fixed and are called INPUT and OUTPUT , respectively.
The search space grows exponentially as the size of V and the size of E increase.
Therefore, we limit the total number of vertices and edges. We consider the
following parameter settings used in [40]:

• 11 different operations presented in Table 1 (|L| = 11),
• The maximum size of E is set to 9 (|E| ≤ 9), and
• The maximum size of V is set to 7 (|V | ≤ 7)

There are two parameters that directly affect to depth and performance of
the network in NAS: the number of cells (Nc ∈ {2, 3, 4, 5}) [4] and the number
of feature maps of the first cell (N init

f ∈ {8, 16, 32}) [4]. The number of feature
maps is doubled after each down sampling operation.

162 Z. Kuş et al.

Fig. 1. The general structure of UNAS-Net. (a) The structure of cells that can be
created. Each cell can have a maximum of 5 intermediate vertices and 9 edges. Each
operation can be linked to the operations that come after it. (b) the UNAS-Net struc-
ture, which is consists of several encoder and decoder cells. The same type of cell
structure is used in each encoder and decoder cell.

2.2 Architecture Encoding

Graphs can be represented in several ways. Binary matrices are one of the most
commonly used representation for graph encoding. In this study, we use matrix
encoding to represent the DAGs within each cell. We consider a 7× 7 binary
upper triangular matrix to encode the connections between the vertices since
the maximum number of operations is set to 7. The labels of 5 intermediate
vertices, without including the input and output vertices, are represented by a
list of 5 elements. 337 billion distinct graphs can be produced using the proposed
encoding method (221 ∗ 115 = 337B). However, this number will decrease due to
the maximum edge limit, isomorphic networks, and infeasible graphs in which
there is no path from input to output [40].

Table 1. Possible operations that can be selected for cell. Operations are selected
based on the DARTS [16]

Operation name

• 1× 1 2D convolution (1×1 conv)

• 3× 3 2D convolution (3×3 conv)

• 5× 5 2D convolution (5×5 conv)

• 7× 7 2D convolution (7×7 conv)

• 3× 3 2D depthwise separable convolution (3×3 depconv)

• 5× 5 2D depthwise separable convolution (5×5 depconv)

• 7× 7 2D depthwise separable convolution (7×7 depconv)

• 3× 3 2D dilated convolution (3×3 dilconv)

• 5× 5 2D dilated convolution (5×5 dilconv)

• 7× 7 2D dilated convolution (7×7 dilconv)

• Skip-connection (skip)

NAS Using Metaheuristics for Automated Cell Segmentation 163

Discrete and continuous search spaces have been used in the literature for
NAS. Based on the results, it is clear that using a continuous search space
achieves better results [2]. Therefore, in this study, solutions are represented in
continuous space (except the local search) to better investigate the search space.
We use a vector of length 28 to represent the solutions. The first 21 items in
this vector indicate the connections of the vertices; the next 5 elements indicate
the selected operations, and the last two elements indicate the number of cells
(nc) and the number of feature maps of the first cell (ninit

f), respectively. All of
these values in the vector are scaled to [0, 1]. These vectors can not be used to
create a network architecture. Therefore, a mapping between continuous values
and network architecture is required [2].

At the mapping phase, the continuous values are divided into bins that are
equal to the number of values that can be selected [2]. The first 21 items in
this vector represented the connections of the vertices. These values can only be
binary: if the value is 1, there is a connection between two vertices; otherwise,
there is no connection. For the discrete values {0, 1}, each interval corresponds
to one state; i.e. the values in [0, 0.5) is decoded as 0, and the values in [0.5, 1) is
decoded as 1. Mapping is performed similarly for operations. For discrete values
L ∈ {1 × 1 conv, 3 × 3 conv, 7 × 7 conv, 3 × 3 depconv, 5 × 5 depconv, 7 ×
7 depconv, 3×3 dilconv, 5×5 dilconv, 7×7 dilconv, skip}, the interval [0, 1/11)
corresponds to 1×1 conv, [1/11, 2/11) to 3×3 conv, [2/11, 3/11) to 7×7 conv,
and so on. Figure 2 shows the architecture encoding from the candidate solution
to UNAS-Net.

2.3 Metaheuristics

Differential Evolution (DE) and Steepest Descent Local Search (LS) are two
metaheuristics used in this study to build distinct neural networks. DE, which is
categorized as population-based evolutionary algorithm, has achieved successful
results in NAS studies especially in continuous space [2]. Therefore, we consider
DE algorithm in this study. We consider the following parameter settings of DE
recommended in [2,6]: Population size = 20; Mutation factor = 0.5; Crossover
probability = 0.5; Mutation method = rand1; Crossover method = Binomial;
Boundary handling method = Random. The implementation of DE which is
publicly available1 is adapted for cell segmentation.

Local Search (LS) is used as a basis approach in NAS studies [21,27,37].
Therefore, we consider LS as the second metaheuristic. The steps of the LS algo-
rithm used in this study are as follows: (1) Generate 10 random solutions. Initial
solutions consist of continuous values. At the mapping phase, these solutions,
which consist of continuous values, are mapped to discrete values and their per-
formance is evaluated. (2) Choose the best among these solutions, called incum-
bent. (3) Generate neighbors of the incumbent. All neighbors of the incumbent
that are within one hamming distance are generated. (4) If any of the neighbors
of this solution is better than the incumbent solution, use this solution in the

1 https://github.com/automl/DE-NAS.

https://github.com/automl/DE-NAS

164 Z. Kuş et al.

Fig. 2. Architecture encoding from solution vector to UNAS-Net. Circles from 1 to 6
indicate the sequence of operations. The following steps are applied sequentially while
creating an architecture from a generated solution vector: 1) The adjacency matrix
is generated; 2) The selected operations are determined; 3) The number of cell is
determined; 4) The number of feature maps is defined; 5) The graph is generated with
a adjacency matrix and operations, and it is used in each cell; 6) UNAS-Net is created
with the parameters obtained in the previous steps.

next step as incumbent and repeat the same steps until the termination con-
dition is satisfied. (5) The open source software2 is used and developed for the
implementation of Local Search.

3 Experimental Setup

To assess the performance of the proposed methods, we conduct experiments on
two different data sets in this study. Selected data sets are presented in Sect. 3.1.
For experimental studies, the tests are performed on the computer with the
following configurations: Ryzen 5600X processor, 12 GB RTX 3060 GPU, 16
GB RAM. The Pytorch library is used to create different UNAS-Net models
and the following hyper-parameters are chosen for all models: Optimizer: Adam,
Loss Function: Dice loss, Evaluation Metrics: F1-Score and Intersection over
Union (IoU) [4], Learning Rate: 0.001 and Batch Size: 8.

2 https://github.com/naszilla/naszilla.

https://github.com/naszilla/naszilla

NAS Using Metaheuristics for Automated Cell Segmentation 165

Each generated solution should be trained over long training epochs with the
whole training data set, and its quality should be evaluated on the validation
data set. However, applying these steps for every solution is inefficient. There-
fore, half of the training and validation sets are used to train and evaluate the
networks produced by the metaheuristics [12]. The images in the test set are
never used during the training steps. The test set is only used to measure the
actual performance of the best solutions obtained at the end of the metaheuris-
tic. Moreover, the Early Stopping method is used to evaluate more solutions.
Each solution is trained with half of the training set during the maximum of 36
training epochs [40]. The training is interrupted in the corresponding epoch if the
validation loss value obtained during the training epochs does not improve for
three consecutive epoch (Early Stopping). The best validation F1-Score value
obtained by the trained solution at the end of the training epochs is used to
evaluate the quality of that solution. Both metaheuristics are terminated when
500 solutions are trained. The best 3 models obtained at the end of the runs are
trained with the whole training data set over long training epochs (200 epochs)
and tested with the whole test set. The results acquired for the test set are used
as the actual performance of the model.

3.1 Data Set

The segmentation performance of the architectures is evaluated using two differ-
ent cell data sets in this study: Optofil and Cell Nuclei [3]. This section describes
these data sets. In this study, we do not apply data augmentation for both data
sets.

Optofil Data set: This data set consists of A2780 cell culture images obtained
using a commercial brightfield automated cell counting device (Quantacell,
Optofil). The data set contains 4914 grayscale images with a size of 128 × 128.
We divide the data set into three parts: train, test, and validation. These parts
contain the following number of images respectively: 3539, 982, and 393. The
ground truth images (segmented images) are created through FiJi software [26].
The original and ground truth image pairs for five exemplary images of A2780
cells are presented in Fig. 3.

Cell Nuclei Data set: Cell Nuclei data set contains segmented nuclei images.
The images are obtained under various conditions [1]. There are 670 colored
images in this data set, which is publicly available. Also, it contains segmented
images corresponding to each colored image, and these images are named ground
truths. We need to apply pre-processing step since each image is a different size
and data set contains the segmented masks of each nucleus. Therefore, we use
the pre-processed data set created in [3]. We divide the data set into three parts:
train, test, and validation. These parts contain the following number of images
respectively: 483, 134, and 53. Figure 4 shows a set of image pairs that include
both original and segmented images.

166 Z. Kuş et al.

Fig. 3. Original and ground truth image pairs from the Optofil data set.

Fig. 4. Original and ground truth image pairs from the Cell Nuclei data set.

4 Results and Discussion

In this section, the results of experimental studies are reported and discussed.
Two metaheuristics, namely DE and LS, are utilized in NAS for the optimiza-
tion of the U-Net backbone. When biomedical image segmentation studies are
examined, it is clear that the U-Net model which is state-of-the-art for the
biomedical image segmentation outperforms alternative CNN designs in terms
of overall performance [29] Therefore, we chose U-Net as the basis and compared
our approaches to U-Net with the ResNet-34 Encoder (URes34-Net) proposed
in [22,38].

The models developed for the biomedical image segmentation problem should
have high segmentation performance and short inference time. Therefore, it’s
important to compare the models in terms of segmentation performance and
computational complexity. In this study, the performance of all algorithms are
compared in terms of two performance metrics, namely F1-Score and IoU, and
the number of floating point operations (FLOPs).

Table 2 shows the average F1-score, IoU, and FLOPs values obtained for
five different seed values. The results show that LS provides the best F1-Score
value for the Optofil data set. However, in terms of the IoU metric, DE gives
the best results and produces model with the least computational complexity.

NAS Using Metaheuristics for Automated Cell Segmentation 167

Table 2. Comparison of different methods in terms of segmentation performance and
computational complexity (measured in GigaFLOPs)

Method Optofil (Mean ± Stdev) Cell nuclei (Mean ± Stdev)

F1 score IoU FLOPs (G) F1 score IoU FLOPs (G)

LS 83.22 ± 0.91 70.57 ± 0.90 22.80 91.16 ± 0.15 83.95 ± 0.27 82.99

DE 83.08 ± 0.41 70.93 ± 0.77 4.18 91.53 ± 0.12 84.48 ± 0.20 35.03

URes34-Net 82.69 ± 0.29 70.01 ± 0.14 30.85 91.11 ± 0.25 83.83 ± 0.37 62.51

DE has 0.14 worse F1-Score than LS while 5.45 times better in computational
complexity. The metaheuristics outperform URes34-Net in terms of both seg-
mentation performance and computational complexity for the Optofil data set.
Considering this result, we can conclude that metaheuristics improve the seg-
mentation performance of U-Net with less computational complexity. Based on
the results obtained for the Cell Nuclei data set, it is seen that DE is better
than the other two methods in terms of both segmentation performance and
computational complexity. Besides, there is no significant difference between the
different methods in terms of F1-Score and IoU values. However, in terms of
computational complexity, DE is 2.37 times better than LS; 1.78 times better
than URes34-Net.

Fig. 5. Segmented images obtained for different cell images as a result of experiments
with three different methods. The red squares represent regions where the segmentation
is incorrect. (Color figure online)

168 Z. Kuş et al.

Three exemplary images for each data set are used to illustrate the perfor-
mance of our approaches and URes34-Net. Figure 5 shows the segmented images
obtained by three algorithms as well as the ground truths for these six exemplary
images. Networks produced by metaheuristics perform more accurate segmen-
tation. Red boxes shown in Fig. 5 indicate the false positive samples for Optofil
data set. DE yields good segmentation performance for these three images.

Figure 6 illustrates the best UNAS-Net models obtained by each metaheuris-
tic for each data set. When the best models are examined, it is seen that oper-
ations with bigger filter size are generally selected. The initial filter numbers
are usually 8 and 16, and the cell numbers are usually 2 and 3. Moreover, it is
observed that most produced models have a maximum of 8 connections.

Based on the results, DE outperforms the other methods in terms of IoU
metric and the number of FLOPs. This is somewhat expected, since DE is a
population-based approach that maintains diversity via genetic operators during
the search. However, LS is a single-point search method. In this study, a new
solution with Hamming distance 1 is generated from the current one. Therefore,
LS could get stuck in local optima. To escape the local optimum, Iterated Local
Search can be used in NAS.

Fig. 6. The best UNAS-Net models generated by metaheuristics for two data sets.

5 Conclusion

In this study, two metaheuristics (Differential Evolution and Local Search) are
utilized in NAS for automated cell segmentation. We consider U-Net architecture
that is a successful and well-known convolutional neural network (CNN) for med-
ical image segmentation in NAS. The performances of metaheuristic approaches

NAS Using Metaheuristics for Automated Cell Segmentation 169

addressed in this study are compared with URes34-Net. We conduct the exper-
iments on two data sets, namely Optofil and Cell Nuclei. The results reveal
that DE both improves the segmentation performance of U-Net and reduces the
computational complexity for both data sets.

As the future works, the search algorithm will be extended with estimators.
We aim to spend less GPU time this way. Parameter tuning can be performed for
parameters that are kept constant in order to improve the segmentation perfor-
mance. Study can be addressed as a bi-objective optimization problem with the
following objective functions: segmentation performance vs complexity. Another
future work can be utilizing the UNAS-Net structure, which gives successful
results for cell segmentation, for 3D vessel segmentation problem.

References

1. 2018 data science bowl. https://www.kaggle.com/c/data-science-bowl-2018/data
2. Awad, N.H., Mallik, N., Hutter, F.: Differential evolution for neural architecture

search. arXiv preprint arXiv:2012.06400 (2020)
3. Aydın, M., et al.: A deep learning model for automated segmentation of fluores-

cence cell images. J. Phys: Conf. Ser. 2191(1), 012003 (2022)
4. Baldeon Calisto, M., Lai-Yuen, S.K.: EMONAS-Net: efficient multiobjective neural

architecture search using surrogate-assisted evolutionary algorithm for 3D medical
image segmentation. Artif. Intell. Med. 119, 102154 (2021)

5. Chaffer, C.L., Weinberg, R.A.: A perspective on cancer cell metastasis. Science
331(6024), 1559–1564 (2011)

6. de-la Cruz-Mart́ınez, S.J., Mezura-Montes, E.: Boundary constraint-handling
methods in differential evolution for mechanical design optimization. In: 2020 IEEE
Congress on Evolutionary Computation (CEC), pp. 1–8 (2020)

7. Delgado-Ortet, M., Molina, A., Alférez, S., Rodellar, J., Merino, A.: A deep learn-
ing approach for segmentation of red blood cell images and malaria detection.
Entropy 22(6), 657 (2020)

8. Deshmukh, B.S., Mankar, V.H.: Segmentation of microscopic images: a survey.
In: 2014 International Conference on Electronic Systems, Signal Processing and
Computing Technologies, pp. 362–364 (2014)

9. Dong, X., Yang, Y.: NAS-Bench-201: extending the scope of reproducible neural
architecture search. arXiv preprint arXiv:2001.00326 (2020)

10. Dzyubachyk, O., van Cappellen, W.A., Essers, J., Niessen, W.J., Meijering, E.:
Advanced level-set-based cell tracking in time-lapse fluorescence microscopy. IEEE
Trans. Med. Imaging 29(3), 852–867 (2010)

11. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach.
Learn. Res. 20(1), 1997–2017 (2019)

12. Gülcü, A., Kuş, Z.: Hyper-parameter selection in convolutional neural networks
using microcanonical optimization algorithm. IEEE Access 8, 52528–52540 (2020)

13. Habibzadeh, M., Jannesari, M., Rezaei, Z., Baharvand, H., Totonchi, M.: Auto-
matic white blood cell classification using pre-trained deep learning models: ResNet
and Inception. In: Verikas, A., Radeva, P., Nikolaev, D., Zhou, J. (eds.) Tenth
International Conference on Machine Vision (ICMV 2017), vol. 10696, pp. 274–
281. International Society for Optics and Photonics, SPIE (2018)

14. Hollandi, R., et al.: nucleAizer: a parameter-free deep learning framework for
nucleus segmentation using image style transfer. Cell Syst. 10(5), 453-458.e6 (2020)

https://www.kaggle.com/c/data-science-bowl-2018/data
http://arxiv.org/abs/2012.06400
http://arxiv.org/abs/2001.00326

170 Z. Kuş et al.

15. Klein, A., Hutter, F.: Tabular benchmarks for joint architecture and hyperparam-
eter optimization. arXiv preprint arXiv:1905.04970 (2019)

16. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search (2019)
17. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for

the 2020s. arXiv preprint arXiv:2201.03545 (2022)
18. Meijering, E.: Cell segmentation: 50 years down the road [life sciences]. IEEE Signal

Process. Mag. 29(5), 140–145 (2012)
19. Mookiah, M.R.K., et al.: A review of machine learning methods for retinal blood

vessel segmentation and artery/vein classification. Med. Image Anal. 68, 101905
(2021)

20. Nath, S.K., Palaniappan, K., Bunyak, F.: Cell segmentation using coupled level sets
and graph-vertex coloring. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI
2006. LNCS, vol. 4190, pp. 101–108. Springer, Heidelberg (2006). https://doi.org/
10.1007/11866565 13

21. Den Ottelander, T., Dushatskiy, A., Virgolin, M., Bosman, P.A.N.: Local search
is a remarkably strong baseline for neural architecture search. In: Ishibuchi, H.,
et al. (eds.) EMO 2021. LNCS, vol. 12654, pp. 465–479. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-72062-9 37

22. Pi, J., et al.: FS-UNet: mass segmentation in mammograms using an encoder-
decoder architecture with feature strengthening. Comput. Biol. Med. 137, 104800
(2021)

23. Qiang, N., Ge, B., Dong, Q., Ge, F., Liu, T.: Neural architecture search for opti-
mizing deep belief network models of fMRI data. In: Li, Q., Leahy, R., Dong, B.,
Li, X. (eds.) MMMI 2019. LNCS, vol. 11977, pp. 26–34. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-37969-8 4

24. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 4780–4789 (2019)

25. Real, E., et al.: Large-scale evolution of image classifiers. In: International Confer-
ence on Machine Learning, pp. 2902–2911. PMLR (2017)

26. Schindelin, J., et al.: Fiji: an open-source platform for biological-image analysis.
Nat. Methods 9(7), 676–682 (2012)

27. Schneider, L., Pfisterer, F., Binder, M., Bischl, B.: Mutation is all you need. arXiv
preprint arXiv:2107.07343 (2021)

28. Sharif, J.M., Miswan, M.F., Ngadi, M.A., Salam, M.S.H., bin Abdul Jamil, M.M.:
Red blood cell segmentation using masking and watershed algorithm: a preliminary
study. In: 2012 International Conference on Biomedical Engineering (ICoBE), pp.
258–262 (2012)

29. Siddique, N., Paheding, S., Elkin, C.P., Devabhaktuni, V.: U-net and its variants
for medical image segmentation: a review of theory and applications. IEEE Access
9, 82031–82057 (2021)

30. Song, Y., et al.: A deep learning based framework for accurate segmentation of
cervical cytoplasm and nuclei. In: 2014 36th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, pp. 2903–2906 (2014)

31. Su, H., Yin, Z., Huh, S., Kanade, T.: Cell segmentation in phase contrast
microscopy images via semi-supervised classification over optics-related features.
Med. Image Anal. 17(7), 746–765 (2013). Special Issue on the 2012 Conference on
Medical Image Computing and Computer Assisted Intervention

32. Vonesch, C., Aguet, F., Vonesch, J.L., Unser, M.: The colored revolution of
bioimaging. IEEE Signal Process. Mag. 23(3), 20–31 (2006)

http://arxiv.org/abs/1905.04970
http://arxiv.org/abs/2201.03545
https://doi.org/10.1007/11866565_13
https://doi.org/10.1007/11866565_13
https://doi.org/10.1007/978-3-030-72062-9_37
https://doi.org/10.1007/978-3-030-37969-8_4
http://arxiv.org/abs/2107.07343

NAS Using Metaheuristics for Automated Cell Segmentation 171

33. Wang, M., Zhou, X., Li, F., Huckins, J., King, R.W., Wong, S.T.: Novel cell segmen-
tation and online SVM for cell cycle phase identification in automated microscopy.
Bioinformatics 24(1), 94–101 (2007)

34. Wang, X., He, W., Metaxas, D., Mathew, R., White, E.: Cell segmentation and
tracking using texture-adaptive snakes. In: 2007 4th IEEE International Sympo-
sium on Biomedical Imaging: From Nano to Macro, pp. 101–104 (2007)

35. Wei, C., Niu, C., Tang, Y., Wang, Y., Hu, H., Liang, J.: NPENAS: neural predic-
tor guided evolution for neural architecture search. IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–15 (2022)

36. Weng, Y., Zhou, T., Li, Y., Qiu, X.: NAS-Unet: Neural architecture search for
medical image segmentation. IEEE Access 7, 44247–44257 (2019)

37. White, C., Nolen, S., Savani, Y.: Exploring the loss landscape in neural archi-
tecture search. In: de Campos, C., Maathuis, M.H. (eds.) Proceedings of the
Thirty-Seventh Conference on Uncertainty in Artificial Intelligence. Proceedings
of Machine Learning Research, vol. 161, pp. 654–664. PMLR (2021)

38. Yakubovskiy, P.: Segmentation models pytorch (2020). https://github.com/
qubvel/segmentation models.pytorch

39. Yin, Z., Bise, R., Chen, M., Kanade, T.: Cell segmentation in microscopy imagery
using a bag of local Bayesian classifiers. In: 2010 IEEE International Symposium
on Biomedical Imaging: From Nano to Macro, pp. 125–128 (2010)

40. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-Bench-
101: towards reproducible neural architecture search. In: Chaudhuri, K., Salakhut-
dinov, R. (eds.) Proceedings of the 36th International Conference on Machine
Learning, vol. 97, pp. 7105–7114. PMLR (2019)

41. Zela, A., Siems, J., Hutter, F.: NAS-Bench-1shot1: benchmarking and dissecting
one-shot neural architecture search. arXiv preprint arXiv:2001.10422 (2020)

42. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 8697–8710 (2018)

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
http://arxiv.org/abs/2001.10422

Analytical Methods to Separately
Evaluate Convergence and Diversity
for Multi-objective Optimization

Takato Kinoshita1 , Naoki Masuyama2(B) , Yusuke Nojima2 ,
and Hisao Ishibuchi3

1 Graduate School of Engineering, Osaka Prefecture University,
1-1 Gakuen-cho Naka-ku, Sakai-Shi, Osaka 599-8531, Japan

sbb01065@st.osakafu-u.ac.jp
2 Graduate School of Informatics, Osaka Metropolitan University,

1-1 Gakuen-cho Naka-ku, Sakai-Shi, Osaka 599-8531, Japan
{masuyama,nojima}@omu.ac.jp

3 Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,
Department of Computer Science and Engineering, Southern University of Science

and Technology, Shenzhen 518055, China
hisao@sustech.edu.cn

Abstract. This paper proposes two analytical methods which com-
pletely separate the search performance of multi-objective evolutionary
algorithms (MOEAs) into convergence and diversity for quantitatively
comparing MOEAs. Specifically, Convergence-Diversity Pair (C-D Pair)
is proposed to statistically compare the convergence and diversity of
two MOEAs. C-D Pair provides analytical information on the overall
experimental results. In addition, Convergence-Diversity Diagram (C-D
Diagram) is also proposed to visualize a pair of convergence and diver-
sity of a solution set as a single point in a two-dimensional space. C-D
Diagram enables a detailed and intuitive comparison of the search per-
formance trends of multiple MOEAs. Moreover, this paper introduces
two diversity indicators. These indicators are designed to evaluate only
the diversity of the population in an MOEA by completely eliminating
the effect of the convergence. Computational experiments demonstrate
the analytical capability and validity of the proposed analytical methods
by using various test problems.

Keywords: Multiobjective optimization · Performance analysis ·
Visualization

This work was supported by Japan Society for the Promotion of Science (JSPS) KAK-
ENHI Grant Number JP19K20358 and 22H03664. National Natural Science Founda-
tion of China (Grant No. 61876075), Guangdong Provincial Key Laboratory (Grant
No. 2020B121201001), the Program for Guangdong Introducing Innovative and Enter-
preneurial Teams (Grant No. 2017ZT07X386), The Stable Support Plan Program of
Shenzhen Natural Science Fund (Grant No. 20200925174447003), Shenzhen Science
and Technology Program (Grant No. KQTD2016112514355531).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 172–186, 2023.
https://doi.org/10.1007/978-3-031-26504-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_13&domain=pdf
http://orcid.org/0000-0003-1556-8259
http://orcid.org/0000-0002-2886-1588
http://orcid.org/0000-0003-4853-1305
http://orcid.org/0000-0001-9186-6472
https://doi.org/10.1007/978-3-031-26504-4_13

Analysis to Separately Evaluate Convergence and Diversity for MOO 173

1 Introduction

In many real-world situations, one task has multiple objectives to be optimized
simultaneously. Such optimization problems are called Multi-objective Opti-
mization Problems (MOPs). Since the objective functions usually have tradeoff
relationships, MOPs have the Pareto-optimal solution set (PS) and the Pareto
optimal front (PF) which is the image of the PS in the objective space. One
popular approach is the use of population-based search algorithms like Mul-
tiobjective Evolutionary Algorithms (MOEAs) which can obtain a number of
non-dominated solutions approximating the PF in a single run. The search per-
formance of each MOEA is examined with respect to the convergence of the
population toward the PF and the population diversity over the entire PF.

To simultaneously evaluate both convergence and diversity, Hypervolume
(HV) [23] and Inverted Generational Distance (IGD) [5] have been popularly
used as performance indicators. Because HV and IGD aggregate the informa-
tion of one solution set into a single scalar value, we can quantitatively evaluate
the overall search performance of MOEAs. Meanwhile, it is difficult to analyze
factors that contribute to the improvement of the search performance of MOEAs
from the HV and IGD values. Therefore, we have often qualitatively discussed
convergence and diversity based on comparisons of visualized information, such
as scatter plots and parallel coordinates of solution sets. If users can interpret
the actual states of the solution sets from the visualized information, the visu-
alized information gives a more intuitive analysis than performance indicators
that separately evaluate convergence or diversity, such as Generational Distance
(GD) [19] and Spread (Δ) [8].

MOPs with four or more objectives are called Many-objective Optimization
Problems (MaOPs) and have attracted much attention in recent years due to
their difficulty in search and analysis [10]. Although it is possible to directly
visualize the solution set by visualization methods such as scatter plot matrices
and parallel coordinates, the larger the number of objectives, the more compli-
cated the visualized information. Therefore, it is not easy to interpret the actual
states of the solution sets for MaOPs from the visualized information. To ana-
lyze the search performance of MOEAs on MaOPs, a quantitative and intuitive
analytical method that ensures interpretability is desired.

One approach to address these issues is to devise performance indicators
that separately evaluate convergence or diversity and integrate these indica-
tor values. In this paper, we propose Convergence-Diversity Pair (C-D Pair)
and Convergence-Diversity Diagram (C-D Diagram) as analytical methods for
simultaneously comparing convergence and diversity indicator values of multiple
algorithms. C-D Pair statistically compares two series of indicator values for two
MOEAs. C-D Diagram visualizes a pair of two indicator values as a point on a
two-dimensional space. In addition, we introduce two diversity indicators and a
single convergence indicator.

The remainder of this paper is organized as follows. In Sect. 2, we review
conventional performance indicators. In Sect. 3, we explain two diversity indica-
tors, C-D Pair, and C-D Diagram. Then, in Sect. 4, we verify the validity and

174 T. Kinoshita et al.

analytical capability of the proposed analytical methods through computational
experiments using solution sets obtained by some MOEAs. Finally, this paper is
concluded in Sect. 5 where some future topics are also suggested.

2 Conventional Performance Indicators

In this section, we explain the three conventional performance indicators: HV,
IGD, and GD. They have several undesirable characteristics, which may cause
difficulties in practicality, fairness, or interpretability.

At first, we give here the preliminaries in this paper: We can generally for-
mulate an MOP as follows:

Minimize f(x) = (f1(x), . . . , fm(x), . . . , fM (x)),

subject to x ∈ S ⊂ RD,
(1)

where x is a D-dimensional decision vector in the search space S, fm is the mth
objective function (m = 1, . . . , M), and M is the number of objectives.

In addition, the solution set X = {x1,x2, . . . } ⊂ RD denotes a non-
dominated solution set obtained from the search of an MOEA, and the solution
distribution Y = f [X] = {f (x1) ,f (x2) , . . . } ⊂ RM denotes the image of the
solution set X under an objective function vector f . Moreover, q ∈ RM denotes
the reference point used in HV, and R ⊂ RM denotes the reference point set on
the PF used in IGD and GD.

2.1 Hypervolume

Hypervolume (HV) [23] is a Pareto-compliant performance indicator [21]. In
addition, in contrast to the reference point set of IGD and GD, HV needs only
one reference point. Therefore, HV is one of the most used performance indi-
cators [17]. The HV value for the solution set X is defined by the measure of
the area in the objective space that is dominated by the objective vectors in the
solution distribution Y and dominates the reference point q as follows:

HV(X) = L
⎛
⎝ ⋃

y∈Y

(
M∏

m=1

(ym, qm]

)⎞
⎠ , (2)

where L(·) denotes the Lebesgue measure. Larger HV values indicate that Y
more closely approximates PF in terms of both convergence and diversity.

While HV has excellent characteristics, it also has two practical drawbacks.
One is the enormous computational complexity, which increases exponentially
with the number of objectives [2]. For this reason, it is considered difficult to
apply HV to MaOPs with more than ten objectives [16]. The other is the diffi-
culty of appropriately setting a reference point in MaOPs, where the reference
point setting significantly affects the solution distribution to optimize HV [11].
Therefore, depending on the PF shapes and reference point settings, HV may
overestimate or underestimate the quality of solution distributions, preventing
a fair comparison of the search performance of MOEAs.

Analysis to Separately Evaluate Convergence and Diversity for MOO 175

2.2 Inverted Generational Distance

Inverted Generational Distance (IGD) [5], like HV, evaluates the search perfor-
mance of MOEAs in terms of both convergence and diversity. The advantages
of IGD over HV are its low computational complexity and easy interpretation
due to its simple definition [12]. IGD value for the solution set X is defined by
the average of the minimum distance from each reference point r ∈ R to the
solution distribution Y as follows:

IGD(X) =
1

|R|

(∑
r∈R

min
y∈Y

{d (y, r)}
)

, (3)

where d (y, r) denotes the distance between vector y and vector r. In this paper,
we use the Euclidean distance. Intuitively, IGD evaluates the degree of approx-
imation of the solution distribution to the reference point set by the average
distance. Therefore, when |X| = |R|, clearly the solution set X with solution
distribution Y = R is optimal in terms of IGD.

Fair comparisons of the search performance of MOEAs using IGD require
R consisting of a large number of reference points uniformly distributed over
the entire PF [12]. Therefore, the true PF must be known. Moreover, when
|X| � |R|, it is pointed out that the solution distribution Y , which is much less
diverse than the true PF, optimizes IGD, even if the ideal reference point set R
is given [12]. Considering this issue and that the solution distribution becomes
sparser in the objective space as the number of objectives increases, it is possible
to obtain counterintuitive evaluations from IGD for MaOPs.

2.3 Generational Distance

Unlike HV and IGD, Generational Distance (GD) [19] evaluates only conver-
gence. Intuitively, using reference point set R, the GD value for the solution set
X is defined by the average of the approximate distances from the objective
vectors in Y to the PF as follows:

GD(X) =
1

|Y |

⎛
⎝∑

y∈Y

min
r∈R

{d (y, r)}
⎞
⎠ . (4)

Comparing (4) with (3), we can understand the similarity between GD and
IGD. Therefore, GD can be easily interpreted as IGD. The computational com-
plexity is also equivalent.

While HV and IGD are difficult to analyze theoretically [12,16], GD is rela-
tively easy. The approximate distance to the PF given by GD is always larger
than or equal to the true distance. That is, GD may underestimate but never
overestimate the closeness of any solutions to the PF. This characteristic is
described as follows:

∀R,∀y, 0 ≤ δ (y) ≤ δ̃R (y) = min
r∈R

{d (y, r)} , (5)

176 T. Kinoshita et al.

where δ (y) denotes the true distance from objective vector y to the PF, and
δ̃R (y) denotes the distance from objective vector y to the approximate PF by
the reference point set R. The accuracy of the approximate distances given by
GD increases monotonically for the inclusion relation among reference point sets.
That is, for any extended reference point set R′ ⊃ R, the following holds,

∀y, 0 ≤ δ (y) ≤ δ̃R′ (y) ≤ δ̃R (y) . (6)

From (5), conservation of solution optimality holds for the inclusion relation of
the reference point set. That is, providing that δ̃R (y) = 0 holds, the following
holds,

0 = δ (y) = δ̃R′ (y) = δ̃R (y) . (7)

From these characteristics, we can say that the reference point set of GD allows
for as many additional reference points as possible, providing that the inclusion
relationship is conserved.

For a simple understanding of this discussion, consider an extreme example
in Fig. 1. First, let |X| = |R| and assume that R is uniformly distributed over
the entire PF, as shown in Fig. 1a. Such a distribution of R provides a fair
comparison for GD as well as IGD because approximation accuracy for distance
is uniform on average. In this case, as with IGD, the solution set X is optimal
for GD such that the solution distribution Y holds Y = R.

Fig. 1. Example of uniform reference point set R and unevenly extended reference
point set R′ ⊃ R

Then, let R′ ⊃ R be the unevenly extended reference point set by adding
countless reference points to a local region of the PF, as in Fig. 1b. From R′ ⊃ R,
considering the rightmost “≤” of (6), the inequality holds in the region where the
reference points are added and in its neighborhood, while equality holds in other

Analysis to Separately Evaluate Convergence and Diversity for MOO 177

regions. Thus, the effect of each reference point on the approximation accuracy
is limited within its neighborhood. Also, when the reference point set is set to R′

and the accuracy of the approximation is checked on average, it is uneven, as is
the distribution. Therefore, the bias in the distribution of the reference point set
can be interpreted as a bias in the approximation accuracy. On the other hand,
from (7), the optimality of the solution distribution Y = R is conserved even if
the reference point set is R′. In this respect, GD differs significantly from IGD. If
the reference point set is R′, the solution distribution that optimizes IGD value
should be concentrated in the region where the reference points are added.

From the above, GD is considered easier to handle and interpret as a per-
formance indicator compared to HV and IGD. Therefore, we use GD as the
convergence indicator in this paper.

3 Proposed Analytical Methods

3.1 Diversity Indicators

Currently, as far as we know, there is no promising indicator to evaluate diversity
only. Therefore, this paper proposes two indicators that aim to evaluate only
diversity.

Ratio of Missing PFs. Some MOPs have disconnected PF shapes, i.e., the
PF is composed of several sub-regions. In such MOPs, a necessary condition for
diversity of MOEAs is to obtain at least one solution in each sub-region of the
PF. The first proposed diversity indicator is the ratio of sub-regions of the PF
that the used MOEA fails to obtain at least one solution. We call this indicator
Ratio of Missing PFs.

In this paper, we define it for MaF7 [4] (DTLZ7 [9]). The objective function
of MaF7 is defined as follows:

min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1(x) = x1

f2(x) = x2

. . .
fM−1(x) = xM−1

fM (x) = h (f1, . . . , fM−1, g) (1 + g (xM))

, (8)

where f1, . . . , fM−1 are positional functions, and fM is a distance function. MaF7
has 2M−1 sub-regions of the PF. Thus, it would be quite difficult for MOEAs to
obtain all sub-regions for MaOPs with more than ten objectives. The proposed
indicator compares the obtained solution distribution Y with the reference point
set R by the positional functions f1, . . . , fM−1 and calculates the ratio of sub-
regions that no solution exists nearby them.

The specific procedure is as follows:

1. For the reference point set R, generate labels by applying k-means++ [1] to
R|1,...,M−1.

178 T. Kinoshita et al.

2. For the reference point set R, construct a classifier using R|1,...,M−1 and the
labels obtained in step 1. In this paper, we use k-nearest neighbor method as
the classifier.

3. For the solution distribution Y , classify Y |1,...,M−1 using the classifier
obtained in step 2.

Here, R|1,...,M−1 and Y |1,...,M−1 are restricted sets of objective vectors defined
as follows:

R|1,...,M−1 = {r|1,...,M−1 = (r1, . . . , rM−1) : r ∈ R} ⊂ RM−1, (9)

Y |1,...,M−1 = {y|1,...,M−1 = (y1, . . . , yM−1) : y ∈ Y } ⊂ RM−1. (10)

For k-means++ in step 1, parameter k is set to 2M−1, and for k-nearest neighbor
method in step 2, k is set to 1.

Hypervolume of Pareto-Optimal Solutions. The second diversity indicator
depends on the structure of the test problems. In DTLZ test suite [9], many test
problems are separated into positional variables and distance variables. For those
problems, the optimal value is known for each distance variable. Therefore, by
specifying the distance variables of the obtained solution set X as the optimal
values, we can obtain a Pareto optimal solution set XP∗ that preserves the
solution distribution of the solution set X on the PF.

To eliminate the influence of convergence and obtain the pure diversity eval-
uation for the solution set X, we propose to evaluate this optimized solution
set XP∗ with an existing performance indicator such as HV and IGD. In this
paper, we use HV and call this indicator Hypervolume of Pareto-optimal Solu-
tions (HVP∗).

3.2 Proposed Methods for Comparison and Visualization

In the case of performance indicators that simultaneously evaluate convergence
and diversity, such as HV and IGD, comparisons of the search performance of
MOEAs are based on comparisons of large and small. Because MOEA is based
on stochastic search, different results are obtained for each run. Therefore, in
general, we compare representative values such as the mean or median, consid-
ering differences among runs. In addition, significant differences in representative
values are confirmed by hypothesis testing.

In this paper, we evaluate the search performance of MOEAs using two
indicators. When comparing convergence and diversity individually, we can use
the conventional performance comparison method described above. However,
to compare convergence and diversity simultaneously, it is required to use a
performance comparison method that combines the two evaluation values. The
following two approaches can be used to achieve this:

Convergence-Diversity Pair (C-D Pair)
A pair of statistical test results in terms of convergence and diversity indicator
values for each problem is listed in a table together with the conventional

Analysis to Separately Evaluate Convergence and Diversity for MOO 179

indicator value like HV or IGD. C-D Pair gives us the additional information
of the conventional indicator value.

Convergence-Diversity Diagram (C-D Diagram)
For each run, two indicator values are combined as a pair and visualized in
a scatter plot on a two-dimensional space. In addition, to aid in understand-
ing, the marginal distribution for each indicator estimated by kernel density
estimation are displayed outside the axes of C-D Diagram.

C-D Pair can provide a clear overview of comparisons for the performance of
MOEAs, and C-D Diagram can provide a visual information that help us to
intuitively understand the features for the performance of MOEAs.

4 Computational Experiments

4.1 Analysis for Many-Objective MaF7 Problems

First, we focus on the MaF7 problem with various specifications on the number
of objectives. The MOEAs used in the experiments are RVEA-CA [14], RVEA-
iGNG [15], and RVEA [3]. RVEA is one of the representative decomposition-
based MOEAs and is the base algorithm for the others. RVEA-iGNG is an
adaptive decomposition-based MOEA that adjusts the distribution of the refer-
ence vector set using GNG, a clustering algorithm. It is a promising MOEA for
MaOP and shows higher search performance than other methods on various test
problems. In addition, RVEA-CA is an improved version of RVEA-iGNG. All
the algorithms and problems are implemented on the PlatEMO1 platform [18].

In this experiment, we evaluate the experimental results using HV together
with GD and Ratio of Missing PFs proposed in Sect. 3.1. Then, we analyze these
indicator values with C-D Pair and C-D Diagram, respectively.

Parameter Settings. We use 5-, 8-, and 10-objective MaF7 problems. The
population size and the number of evaluations are set to 210, 240, and 230 and
50,190, 80,160, and 100,050, for each number of objectives, respectively. For
RVEA-CA, λ is set to 100. For RVEA-iGNG, we set parameters as εb = 0.2,
εn = 0.006, α = 0.5, αmax = 50, d = 0.995, λ = 50, fr = 0.1. For RVEA, α is
set to 2, and fr is set to 0.1.

In this experiment, we use Simulated Binary Crossover (SBX) [6] and Poly-
nomial Mutation (PM) [7]. For SBX, the distribution index ηc is set to 20, and
the crossover probability pc is set to 1. For PM, the distribution index ηm is set
to 20, and the mutation probability pm is set to 1

D , where D is the number of
dimensions of the decision space.

For the HV calculation, considering the number of objectives, the reference
point q is set to (1.5, . . . , 1.5)T.

For GD and Ratio of Missing PFs, we use the reference point set provided
by PlatEMO. The sizes of the reference point set are set to 5 × 106 for GD and
1 × 105 for Ratio of Missing PFs.
1 https://github.com/BIMK/PlatEMO.

https://github.com/BIMK/PlatEMO

180 T. Kinoshita et al.

Table 1. Median HV value and its standard deviation of 31 runs on many-objective
MaF7 problems and C-D Pair

ProblemM
RVEA-CA RVEA-iGNG RVEA

Median (SD) Median (SD) (C, D) Median (SD) (C, D)

MaF7

5 3.7163e+0 (1.00e−1)4.5843e+0 (3.25e−2) − (−, −) 4.2465e+0 (1.75e−2) − (+, −)

8 1.4810e+1 (1.53e−1)1.4850e+1 (1.24e−1) ≈ (−, ≈) 1.2813e+1 (1.77e−1) + (+, +)

10 3.1804e+1 (1.84e−1) 3.1307e+1 (2.25e−1) + (−, +) 2.6096e+1 (7.26e−1) + (+, +)

+/≈/− 1/1/1 (0/0/3, 1/1/1) 2/0/1 (3/0/0, 2/0/1)

The algorithm with the best median value for each row is highlighted.

The result of statistical comparison with RVEA-CA at a 0.05 level by Wilcoxon’s rank-sum test is shown

on the right end of each left column in each row except for RVEA-CA.

“+”, “≈”, and “−” mean that RVEA-CA performs significantly better than, non-significantly better/

worse than, and significantly worse than each algorithm, respectively.

For k-means++, the number of reassignments of the initial cluster center of
gravity is set to 1,000, and the maximum number of iterations is set to 1× 1018.

Experimental Results and Analysis for MaF7. Table 1 and Fig. 2 show
the HV values with C-D Pair and C-D Diagram, respectively. Each column in
Table 1 represents each algorithm, and each row in Table 1 represents each test
instance. Each right column in Table 1 except for RVEA-CA shows the results
of the comparison by C-D Pair.

Table 1 shows that RVEA-iGNG is the best in terms of the HV value for
5- and 8-objective MaF7 problems, while RVEA-CA outperforms the others on
10-objective MaF7 problem.

From Fig. 2, it can be seen that the convergence trends are very different
between RVEA and the others. In addition, Table 1 also shows that RVEA-CA
significantly outperforms RVEA in terms of convergence, i.e., the GD value on
5-, 8-, and 10-objective MaF7 problems. The reference vector adaptations based
on clustering algorithms in RVEA-CA and RVEA-iGNG may contribute to this
trend by concentrating the reference vectors in local regions in the PF.

Table 1 shows that RVEA-CA is outperformed by both RVEA-iGNG and
RVEA in terms of the HV values on the 5-objective MaF7 problem. From Fig. 2a,
the reason for this result may be that RVEA-CA misses many sub-regions of the
PF on the 5-objective MaF7 problem.

When we focus on the comparison between RVEA-CA and RVEA-iGNG
for 8- and 10-objective problems, Table 1 shows that no significant difference in
terms of the HV value is observed for the 8-objective problem, while RVEA-
CA outperforms RVEA-CA for the 10-objective with a significant difference in
terms of the HV value. The results for diversity of C-D Pair in Table 1 show the
same pattern, and we can observe the detailed distributions for diversity that
support these comparison results in Fig. 2b and Fig. 2c. Therefore, the difference

Analysis to Separately Evaluate Convergence and Diversity for MOO 181

Fig. 2. Comparisons by C-D Diagrams on many-objective MaF7 problems

in diversity seems to be the reason for the results that RVEA-CA outperforms
the others on the 10-objective MaF7 problem.

We can easily extend the conventional summary of experimental results with
the additional information from C-D Pair and briefly check the features of the
search performance for the whole experiment from C-D Pair. In addition, we can
understand detailed trends for a test instance from C-D Diagram. C-D Pair and
C-D Diagram provide us complementary information to understand the features
of MOEAs.

4.2 Analysis for a Three-Objective DTLZ Test Suite

In this section, we focus on the three-objective DTLZ test suite. The MOEAs
used in the experiments are NSGA-II [8], MOEA/D [20], and IBEA [22]. They are
a representive dominance-, decomposition-, and indicator-based MOEA, respec-
tively.

In this experiment, we evaluate the experimental results using HV together
with GD and HVP∗ proposed in Sect. 3.1. Then, we analyze these indicator
values with C-D Pair and C-D Diagram, respectively.

182 T. Kinoshita et al.

Table 2. Median HV value and its standard deviation of 31 runs on three-objective
DTLZ test suite and C-D Pair

ProblemM
NSGA-II MOEA/D IBEA

Median (SD) Median (SD) (C, D) Median (SD) (C, D)

DTLZ1 3 1.1567e+0 (4.52e−3) 1.1729e+0 (4.03e−3) − (≈, −) 8.6323e−1 (5.02e−2) + (−, +)

DTLZ2 3 8.6959e−1 (4.07e−3)8.9661e−1 (6.55e−5) − (−, −) 8.9378e−1 (1.25e−3) − (−, −)

DTLZ3 3 6.4609e−1 (3.00e−1) 3.6906e−1 (3.92e−1) + (+, −) 4.7963e−1 (1.64e−1) + (−, +)

DTLZ4 3 8.5062e−1 (1.15e−1)6.5875e−1 (2.32e−1) ≈ (−, ≈) 8.9377e−1 (1.23e−3) − (−, −)

DTLZ5 3 4.0002e−1 (2.19e−4) 3.8073e−1 (4.49e−5) + (+, +) 3.9975e−1 (2.29e−4) + (−, +)

DTLZ6 3 4.0042e−1 (1.59e−4) 3.8065e−1 (6.18e−5) + (+, +) 3.9657e−1 (8.80e−4) + (−, +)

DTLZ7 3 4.7863e−1 (1.00e−2) 4.6921e−1 (1.71e−3) + (+, +) 4.8812e−1 (1.61e−2) − (−, −)

+/≈/− 4/1/2 (4/1/2, 3/1/3) 4/0/3 (0/0/4, 4/0/3)

The algorithm with the best median value for each row is highlighted.

The result of statistical comparison with NSGA-II at a 0.05 level by Wilcoxon’s rank-sum test is shown on the

right end of each left column in each row except for NSGA-II.

“+”, “≈”, and “−” mean that NSGA-II performs significantly better than, non-significantly better/worse than,

and significantly worse than each algorithm, respectively.

Parameter Settings. We use three-objective DTLZ test suite. The population
size and the number of evaluations are set to 120 and 30,000, respectively.

In this experiment, we use SBX and PM with the same settings as Sect. 4.1.
For the HV and HVP∗ calculation, the reference point q is set to

(1.1, . . . , 1.1)T.

Experimental Results and Analysis for DTLZ Test Suite. Table 2 and
Fig. 3 show the HV values with C-D Pair and C-D Diagram, respectively. Each
column in Table 2 represents each algorithm, and each row in Table 2 represents
each test instance. Each right column in Table 2 except for NSGA-II shows the
results of the comparison by C-D Pair.

Since HVP∗ is an HV-based indicator, the direction of optimization is max-
imization. Thus, for visual consistency, the vertical axis is set in the opposite
direction (i.e., smaller at the top).

Table 2 shows that MOEA/D outperforms the others in terms of the HV
value on DTLZ1 and DTLZ2 problems, and C-D Pair in Table 2 also shows
that MOEA/D almost outperforms NSGA-II in terms of both convergence and
diversity on these test problems. In addition, Fig. 3a and Fig. 3b support these
results, and we can observe that the variance of MOEA/D per run is small from
Fig. 3a and Fig. 3b. Since DTLZ1 and DTLZ2 have the PFs that cover the entire
objective space, MOEA/D seems to achieve the high search performance and
robustness of the search performance as shown in Fig. 3a and Fig. 3b.

Figure 3e and Fig. 3f show that MOEA/D is outperformed by the others in
terms of both convergence and diversity on DTLZ5 and DTLZ6 test problems.
MOEA/D is a conventional decomposition-based MOEA and uses the reference

Analysis to Separately Evaluate Convergence and Diversity for MOO 183

Fig. 3. Comparisons by C-D Diagrams on 3-objective DTLZ test suite

184 T. Kinoshita et al.

vector set uniformly distributed over the entire objective space, and DTLZ5
and DTLZ6 have the degenerated PF shapes. Conventional decomposition-based
MOEAs are known to deteriorate their search performance on degenerated PFs
because many uniformly distributed reference vector sets do not intersect with
the PFs [15].

In addition, C-D Pair in Table 2 shows that NSGA-II outperforms IBEA in
terms of diversity on DTLZ5 and DTLZ6 test problems. Since NSGA-II employs
Crowding Distance for the second criterion to rank solutions, NSGA-II empha-
sizes diversity over convergence at the end stage of the search process when solu-
tions in the population become non-dominated each other. As a result, NSGA-II
outperforms the others on DTLZ5 and DTLZ6 that have degenerated PF shapes.

Moreover, C-D Pair in Table 2 shows that IBEA outperforms NSGA-II in
terms of convergence on all test instances, and the overview of Fig. 3 supports
its remarkable convergence. These results are consistent with [13].

The above shows that the analysis using C-D Diagram does not contradict
our intuition or the results of previous studies.

5 Conclusion

In this paper, we gave theoretical discussions for GD as a convergence indicator
and proposed two diversity indicators. Moreover, for comparisons on the search
performance of multiple algorithms, we also proposed two analytical methods,
C-D Pair and C-D diagram using a pair of convergence and diversity indicator
values.

In computational experiments, we demonstrated the analytical capability and
the validity of the analysis results of the proposed analytical methods.

Future research issues are as follows:

1. A generic diversity indicator: The two diversity indicators proposed in
this paper depend on the structure of test problems. An independent diver-
sity indicator from the problem structure is desirable. One promising way to
achieve this is to eliminate the influence of convergence from a given solution
set by approximating the corresponding position on the PF for each solution.

2. Further theoretical analysis of GD: This paper showed in Sect. 2.3 the
relationship between the distribution of the reference point set in GD and
the approximation accuracy for the distance from each objective vector to
the PF. The bias for the distribution of the reference point set seems to cause
the unfairness among GD values. We expect to estimate the lower bound of
approximation accuracy for the distance from an objective vector to the PF
by utilizing the geometrical properties of the dominance relationship on the
PF. The discussion of this estimation is considered an important topic for
practical use, such as when the PF is unknown.

Analysis to Separately Evaluate Convergence and Diversity for MOO 185

References

1. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2007, pp. 1027–1035. Society for Industrial and Applied Mathemat-
ics, USA (2007)

2. Bringmann, K., Friedrich, T.: Approximating the volume of unions and intersec-
tions of high-dimensional geometric objects. In: Hong, S.-H., Nagamochi, H., Fuku-
naga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 436–447. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-92182-0 40

3. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolution-
ary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5),
773–791 (2016). https://doi.org/10.1109/TEVC.2016.2519378

4. Cheng, R., et al.: A benchmark test suite for evolutionary many-objective optimiza-
tion. Complex Intell. Syst. 3(1), 67–81 (2017). https://doi.org/10.1007/s40747-
017-0039-7

5. Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization problems using
an artificial immune system. Genet. Program Evolvable Mach. 6(2), 163–190
(2005). https://doi.org/10.1007/s10710-005-6164-x

6. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Syst. 9(2), 115–148 (1995)

7. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering
design. Comput. Sci. Inform. 26, 30–45 (1996)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
https://doi.org/10.1109/4235.996017

9. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.)
Evolutionary Multiobjective Optimization. Advanced Information and Knowl-
edge Processing, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/
1-84628-137-7 6

10. Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-objective optimization: an engi-
neering design perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler,
E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 14–32. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31880-4 2

11. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: How to specify a reference
point in hypervolume calculation for fair performance comparison. Evol. Comput.
26(3), 411–440 (2018). https://doi.org/10.1162/evco a 00226

12. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Reference point specification in
inverted generational distance for triangular linear Pareto front. IEEE Trans. Evol.
Comput. 22(6), 961–975 (2018). https://doi.org/10.1109/TEVC.2017.2776226

13. Ishikawa, T., Fukumoto, H., Oyama, A., Nishida, H.: Improved binary additive
epsilon indicator for obtaining uniformly distributed solutions in multi-objective
optimization. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, GECCO 2019, pp. 209–210 (2019). https://doi.org/10.1145/
3319619.3322025

14. Kinoshita, T., Masuyama, N., Liu, Y., Nojima, Y., Ishibuchi, H.: Reference vector
adaptation and mating selection strategy via adaptive resonance theory-based clus-
tering for many-objective optimization (2022). https://doi.org/10.48550/ARXIV.
2204.10756

https://doi.org/10.1007/978-3-540-92182-0_40
https://doi.org/10.1109/TEVC.2016.2519378
https://doi.org/10.1007/s40747-017-0039-7
https://doi.org/10.1007/s40747-017-0039-7
https://doi.org/10.1007/s10710-005-6164-x
https://doi.org/10.1109/4235.996017
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/978-3-540-31880-4_2
https://doi.org/10.1162/evco_a_00226
https://doi.org/10.1109/TEVC.2017.2776226
https://doi.org/10.1145/3319619.3322025
https://doi.org/10.1145/3319619.3322025
https://doi.org/10.48550/ARXIV.2204.10756
https://doi.org/10.48550/ARXIV.2204.10756

186 T. Kinoshita et al.

15. Liu, Q., Jin, Y., Heiderich, M., Rodemann, T., Yu, G.: An adaptive reference
vector-guided evolutionary algorithm using growing neural gas for many-objective
optimization of irregular problems. IEEE Trans. Cybern. 52(5), 2698–2711 (2022).
https://doi.org/10.1109/TCYB.2020.3020630

16. Shang, K., Ishibuchi, H., He, L., Pang, L.M.: A survey on the hypervolume indicator
in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 25(1), 1–
20 (2021). https://doi.org/10.1109/TEVC.2020.3013290

17. Tanabe, R., Ishibuchi, H.: An analysis of quality indicators using approximated
optimal distributions in a 3-D objective space. IEEE Trans. Evol. Comput. 24(5),
853–867 (2020). https://doi.org/10.1109/TEVC.2020.2966014

18. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evo-
lutionary multi-objective optimization. IEEE Comput. Intell. Mag. 12(4), 73–87
(2017). https://doi.org/10.1109/MCI.2017.2742868

19. Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, anal-
yses, and new innovations. Ph.D. thesis, USA (1999). aAI9928483

20. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007). https://doi.
org/10.1109/TEVC.2007.892759

21. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on
the design of pareto-compliant indicators via weighted integration. In: Obayashi,
S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol.
4403, pp. 862–876. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-70928-2 64

22. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30217-9 84

23. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999). https://doi.org/10.1109/4235.797969

https://doi.org/10.1109/TCYB.2020.3020630
https://doi.org/10.1109/TEVC.2020.3013290
https://doi.org/10.1109/TEVC.2020.2966014
https://doi.org/10.1109/MCI.2017.2742868
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1007/978-3-540-70928-2_64
https://doi.org/10.1007/978-3-540-70928-2_64
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1109/4235.797969

How a Different Ant Behavior Affects
on the Performance of the Whole Colony

Carolina Crespi(B), Rocco A. Scollo , Georgia Fargetta ,
and Mario Pavone

Department of Mathematics and Computer Science, University of Catania,
Viale A. Doria 6, 95125 Catania, Italy

{carolina.crespi,rocco.scollo,georgia.fargetta}@phd.unict.it,
mpavone@dmi.unict.it

Abstract. This paper presents an experimental analysis of how dif-
ferent behavior performed by a group of ants affects the optimization
efficiency of the entire colony. Two different interaction ways of the ants
with each other and with the environment, that is a weighted network,
have been considered: (i) Low Performing Ants (LPA), which destroy
nodes and links of the network making it then dynamic; and (ii) High
Performing Ants (HPA), which, instead, repair the destroyed nodes or
links encountered on their way. The purpose of both ant types is simply
to find the exit of the network, starting from a given entrance, whilst,
due to the uncertainty and dynamism of the network, the main goal of
the entire colony is maximize the number of ants that reach the exit, and
minimize the path cost and the resolution time. From the analysis of the
experimental outcomes, it is clear that the presence of the LPAs is advan-
tageous for the entire colony in improving its performances, and then in
carrying out a better and more careful optimization of the environment.

Keywords: Ant Colony Optimization · Metaheuristic · Optimization ·
Dynamic networks · Uncertain optimization environments

1 Introduction

Ant Colony Optimization (ACO) is a well-known optimization procedure and
represents nowadays the most representative methodology into the Swarm Intel-
ligence family as it was successfully applied in many hard combinatorial opti-
mization problems [4,8]. ACO is a metaheuristic that takes inspiration from
observing foraging behavior of natural ant colonies since they can find exactly
the shortest path from their nest to source of food, and they communicate with
each other through chemical signals called pheromones. Thanks to these proper-
ties, it has become powerful optimization techniques for solving different kinds
of complex combinatorial optimization problems [14], such as scheduling and
routing problems [7,10], coloring [3,9], the robot path planning to patrol areas
where humans cannot get there [1,2,16], transportation problems [11], and fea-
ture selection [13]. Ant colonies are also recognized to be the best organized and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 187–199, 2023.
https://doi.org/10.1007/978-3-031-26504-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_14&domain=pdf
http://orcid.org/0000-0002-6211-8675
http://orcid.org/0000-0002-6444-1564
http://orcid.org/0000-0003-3421-3293
https://doi.org/10.1007/978-3-031-26504-4_14

188 C. Crespi et al.

cooperative system, able to make its community work at its best, and able to
perform complex tasks [12]: any action of each ant is related only to its local
environment, local interactions with other ants, simple social rules, and in the
total absence of centralized decisions. It is known that it is not the single ant
that finds the best solution but its cooperation and interaction with the environ-
ment and the rest of the colony that produces the desired result. These features
have been implemented in ACO algorithms to solve not only the previously
mentioned problems but also to evaluate how they affect the efficiency of the
algorithm [6] and to investigate and analyze crowds’ behavior [5]. This research
paper proposes an analysis of what happens if in an ACO algorithm some ants
act in a different way from the rest of the colony. In particular, the presented
study consists of analyse two different kinds of ants, which act in different way:
Low Performing Ants (LPAs) that can accidentally destroy some nodes or links
of the network, therefore making them not crossable; and High Performing Ants
(HPAs) that instead repair them. These different actions performed by the ants
make the network dynamics in the sense that both actions (destroy or repair)
change instantaneously the environment, modifying consequently the network
topology. This means that a node or a link can be not crossable in the timestep
t, but becoming crossable just after (t + 1). Both kinds of ants must find the
exit point of the network, starting from a given entrance, with the overall goal to
maximize the number of ants that reach the exit, and minimize the path cost and
the resolution time. The problem studied is a general path problem, however, the
shortest path, in this case, is not a good evaluation metric due to the dynamism
of the network. Moreover, thinking about a possible application of this study in
the field of swarm robotics, it is desirable that if there are some robots exploring
unknown environments, the same robots will be able to come out from them in
the maximum possible number. Two different complex networks have been con-
sidered to analyze how the presence of LPA affects the performance of the entire
colony at different levels of available information: high trace, i.e. high amount of
pheromone released, and low trace, low amount of pheromone released. Analyz-
ing the investigation conducted on entire colony from an optimization point of
view, emerges that the presence of a group of LPA helps and stimulates the rest
of the colony to work better, especially when the amount of trace shared is high.
Indeed, the disturbing actions performed by LPAs force the rest of the colony
to change its behavior, and, consequently, to explore new paths.

2 The Model

The presented model has been realized using the software NetLogo [15], and the
environment in which the ants move is a weighted network defined mathemat-
ically as a graph G = (V,E,w), where V is the set of vertices, E is the set
of edges and w : V × V → R

+ is the weighted function that assigns a positive
cost to each edge of the graph. The weight indicates how difficult is crossing a
particular edge. The starting point is a node randomly chosen in one side of the
graph (e.g. left side), whilst the exit point is another node randomly chosen in

How Different Ant Behavior Affects the Performance of Whole Colony 189

the opposite side to the starting one (e.g. right side). Every link is crossable in
both directions. The colony is composed of two kinds of ants:

– Low Performing Ants (LPAs): they are always low performing in the sense
that they do not work properly and so they can destroy, with a certain proba-
bility 0 ≤ ρe ≤ 1, some edges of the network or, with a probability 0 ≤ ρv ≤ 1
some nodes of the network. They do not leave any amount of pheromone after
crossing an edge (i, j) of their path;

– High Performing Ants (HPAs): they always are high performing, in fact, if
they find they find a destroyed node they can repair it with a probability 0 ≤
ρv ≤ 1 and, if they find a destroyed edge they can repair it with a probability
0 ≤ ρe ≤ 1. Moreover, they release two different kinds of information about
the path: the classic pheromone information after they have crossed ad edge
(i, j), and a more sophisticate information named ηij(t) = 1/wij(t), where
wij(t) is the weight of the edge (i, j) at a time t and so ηij(t) indicate to the
rest of the colony how difficult is that path.

It is important to highlight that the action of destroy an edge or a node means
that this becomes impracticable, i.e. uncrossable. Instead, repair an edge or
a node means that it is practicable again. Both actions, therefore, make the
network dynamic. The number of HPAs in the colony is determined by the
performing factor pf ∈ [0, 1], and therefore, once it is set, the remaining ants
(i.e. 1 − pf) will be LPAs. Note that when pf = 1, i.e. all ants are HPA, the
ACO classical version is obtained.

Let be Ai = {j ∈ V : (i, j) ∈ E} the set of vertices adjacent to vertex i and
πk(t) = (π1, π2, . . . , πt) the set of vertices visited by an ant k at a certain time
t, where (πi, πi+1) ∈ E for i = 1, . . . , t − 1. Due to the action of the HPAs that
can repair damaged nodes and/or links, the path πk(t) is not just a simple path,
because an ant can visit again a vertex due to a back-tracking operation. The
probability pk

ij(t) with which an ant k placed on a vertex i chooses as destination
one of its neighbor vertices j at the time t is defined according to the Ant Colony
Optimization proportional transition rule:

pk
ij(t) =

⎧
⎨

⎩

τij(t)
α·ηβ

ij
∑

l∈Jk
i

τil(t)α·ηβ
il

if j ∈ Jk
i

0 otherwise,
(1)

where Jk
i = Ai\{πk

t } are all the possible displacements of the ant k from vertex i,
τij(t) is the pheromone intensity on the edge (i, j) and ηij(t) is the desirability of
the edge (i, j) at a given time t, while α and β are two parameters that determine
the importance of pheromone intensity with respect to the desirability of an edge.
For contextualization reasons with the environment/scenario tackled, from now
on the term pheromone will be replaced with the term trace. The amount of
trace released by the k ant after crossing an edge (i, j) at a time t is constant
and it is defined as:

Δτk
ij(t) = K. (2)

190 C. Crespi et al.

The desirability ηij(t) at a given time t, establish how much an edge (i, j) is
promising. In particular and it is defined as ηji(t) = 1

wij(t)
. This information is

released by each ant as the trace, however it does not depend on the ant itself,
but only on the edge (i, j). Each link is updated asynchronously with two kinds
of updating rules based on the ticks T of the software used for the simulations1.
A local updating rule that updates the trace levels at the end of each tour of the
winning ant, according to the follow rule:

τij(t + 1) = τij(t) + K, (3)

where K represents the trace that every ant leave after crossing an edge (i, j)
and τij(t) is the amount of trace on the link at time t. A global updating rule
that update the amount of trace on all the links of the network every T ticks:

τij(t + 1) = (1 − ρ) · τij(t), (4)

where τij(t) is the amount of trace on the edge (i, j) at a time t and ρ is the
evaporation decay parameter. The aim of the ants is to explore the graph and
find in the shortest time, the cheapest path from the starting point to the end
point, orienting themselves using the amount of trace on the paths and the
information exchanged about their desirability. At the same time, they must
maximize their number at the end point, that is the exit. Mathematically, this
means the one have to optimize three different objective functions: minimize the
path cost function and the time cost function, and maximize the exit function
that represent how many ants have reached the end point. Since the path cost
function and the time cost function must both be minimized, they have been
put together into the following unified objective function:

min
t−1∑

i=1

w(πk
i , πk

i+1) + |πk|. (5)

It represents both the minimization of the cost of the path and the resolution
time, where the first term represents the path made by an ant k, while the second
term represents the number of steps made by the same ant k. It can be used as
a time term because each unit of time corresponds to an ant displacement, i.e.
the number of the nodes visited by an ant corresponds to the resolution time.

Finally, the exit function is defined as:

max
∑

g∈G

∑

k∈N

kg. (6)

It represents the maximization of the number of ants that must reach the exit,
where G is the total number of groups, g is the index of the group to which the
ant k belongs, kg is the ant k that belongs to g group and N is the set of ants.

1 Each tick correspond to an ant displacement and movement.

How Different Ant Behavior Affects the Performance of Whole Colony 191

3 Experiments and Results

The simulations have been realized using two different kinds of scenarios, that
correspond to different networks with increasing complexity. Within each sce-
nario, two parameters of the model have been varied. In particular, the amount
K of trace deposited by each ant on the links and the value of the parameter
β that measures the importance of the information with respect to the amount
of trace itself. This choice was meant to study and understand if and how the
values of the model affect the performances of the colony when it is composed
of two different kinds of ants.

The two scenarios are:

– Scenario B1: a network with |V | = 225 nodes and |E| = 348 links.
– Scenario B2: a network with |V | = 225 nodes but |E| = 495 links.

The general experimental setup is the following. For each scenario, N = 1000
ants divided into G = 10 groups have been considered. This means that each
group is composed of Ng = 100 ants that start their journey from the starting
point at regular intervals computed multiplying the values of rows and columns,
so Tl = 225 ticks. As said previously, the colony is composed of two different
kinds of ants: high performing ants (HPAs) that always work at their best, and
low performing ants (LPAs) that may destroy some nodes or links of their path.
The number of HPAs and LPAs is regulated by a performing factor pf that
establishes the fraction of the first respect to the second. It goes from pf = 0.0
(that defines a colony of just LPAs) to pf = 1.0 (that defines a colony of just
HPAs and correspond to the ACO classic version) with steps of pf = 0.10. For
instance, in a colony of 100 ants a value of pf = 0.30 means that 30 ants are
HPAs while the other 70 are LPAs.

Due to limited time resources, the ants must find the exit in a maximum
time, which depends on the number of groups and the complexity of the net-
work. This time is set to Tmax = 2 × G × Tl, where G is the number of groups,
Tl is the launch interval and 2 is just a corrective factor. The initial trace inten-
sity on the links is set to 1.0 and it decreases over time according to the trace
evaporation interval, Td = 50 (i.e. every 50 ticks the amount of trace evaporate
with the evaporation rate ρ = 0.10). For the scenarios defined as High Trace,
the parameters α and β are both set to 1 and the amount of trace deposited
by each ant on the links of its path is set to K = 0.1. For the scenarios defined
as Low Trace, the parameter α is set to 1, the parameter β is set to 0.5 and
the amount of trace deposited by each ant on the links of its path is set to
K = 0.001. Since the parameter β regulates the influence of the information
with respect to the amount of trace, one can expects that decreasing both β
and K the colony will act taking more into account the information acquired
about the path and less the information released with the trace. Finally, the edge
destruction-repair probability and vertex destruction-repair probability are for
both configurations ρe = 0.02 and ρv = 0.02. With these configurations of the
parameters, 10 independent simulations have been performed, starting from the

192 C. Crespi et al.

value pf = 0.0 of the performing factor to f = 1.0, with steps of 0.1. Two dif-
ferent kinds of analysis have been done: (i) a group analysis to understand how
many ants have reached the exit, considering both the value of the performing
factor and the number of groups; and (ii) an overall analysis considering the (1)
path cost found by the colony, (2) how much time the ants have used to find
it, and (3) how many of them have reached the exit in time. In the following
results, the label High Trace refers to a value of K = 0.1 and a value of β = 1.0,
while the label Low Trace refers to a value of K = 0.001 and a value of β = 0.5.
It is worth emphasizing once again that, due to the dynamism of the network
produced by the actions of the two types of ants, it is not possible to consider
the shortest path as evaluation metric, and therefore the number of ants that
reach the exit (to be maximized), the cost of the paths and the resolution time
(both to be minimized) were considered as the investigation measure.

3.1 Group Analysis

As said, in this first kind of analysis both the performing factor and the number
of groups have been considered to evaluate the number of ants that have reached
the exit. A heat map has been used to plot the results and by looking at the
legend on the right of each plot one can easily understand that the lighter the
blue is, the higher the value of the number of ants is. On the contrary, the darker
the blue is, the lower the same number is. The absence of color implies that no
ants have reached the exit for that value of the performing factor or for that
value of the group. In Fig. 1 are shown the results obtained for the simulation
performed in scenario B1 and in particular in Fig. 1a are plotted the number
of ants that have reached the exit per ticks when there is a high-level trace. In
Fig. 1b is plotted the same quantity but when there is a low-level trace.

Comparing Fig. 1a and Fig. 1b one can easily see that the best results, that
is the maximum number of ants that reach the exit, are obtained not only for
different values of the performing factor, but also for different values of the
groups. In particular, when there is a high-level trace the best performances of
the colony are obtained by the last groups and when the performing factor is
round pf = 0.9. On the contrary, comparing these results with the ones obtained
in the same scenario with a low-level trace, one can see that in this case, the best
results are obtained from the last groups not only when the performing factor in
equal to pf = 0.9 but also when it is equal to pf = 1.0. This indicates that the
presence of LPAs is much more important when the trace level is high. In fact,
it is noted that the number of ants per ticks exiting is greater for values of the
performing factor equal to f = 0.9 or, a little bit lower, at f = 0.8. This behavior
is similar for all the groups as the performing factor varies. These results are
justified by the fact that when the trace is high, the ants are mistakenly affected
and tend to follow incorrect paths. Furthermore, from the plots in Fig. 1 it is
observed that in the case in which there is a high-level trace, the number of
ants that reach the exit is higher respect to the one obtained when there is a
low-level trace. This indicates that the action of the LPAs is crucial to maximize
the ants when there is a high-level trace, since for pf = 1.0 the performances of

How Different Ant Behavior Affects the Performance of Whole Colony 193

Fig. 1. Heat map representing the number of ants that have reached the exit per ticks
in scenario B1. The performances of the colony change depending on the amount of
the trace released by the ants: in (a) one can see that they reach their best for the last
group g = 10 and when the performing factor is equal to pf = 0.9, if there is a high
level trace. The trend is similar in (b), that is when there is a low level trace released
by the ants even if in this case the good performances continue to the value of the
performing factor pf = 1.0

Fig. 2. Heat map representing the number of ants that have reached the exit per ticks
in scenario B2. In (a) one can see that the colony reaches its best for the first groups
and when the performing factor is round pf = 0.5, if there is a high level trace. On the
contrary, when there is a low level trace released, as in (b), the best performances are
obtained for higher values of the performing factor, grater then pf > 0.7 and for more
groups following the firsts.

the colony are worst. Figure 2 shows the same analysis carried out for scenario
B2. The trend is similar to the one presented in the previous heat maps for
scenario B1, but with some differences. In this case, when there is a high-level

194 C. Crespi et al.

trace, as presented in Fig. 2a, in general the number of ants that reach the exit
is lower than the one obtained for the same configuration but in scenario B1.
Moreover, the best results are achieved by the first groups of the colony when the
performing factor is round pf = 0.5 that is, when it is composed of some LPAs.
On the contrary, when there is a low-level trace, as in Fig. 2b, the optimum is
achieved by the first group and when the colony is composed by mainly HPAs,
that is when the performing factor is equal to pf = 1.0. This makes stronger
the thesis of this paper, for which a high trace confuses the colony and so, at
the same time, a small percentage of LPAs stimulates the rest of the group to
change its behavior.

3.2 Overall Analysis

This second kind of analysis evaluates the performances of the whole colony
considering only how they vary with respect to the performing factor, not con-
sidering the number of groups in which are divided the ants. The analysis is
carried out considering, as in the Sect. 3.1, the different performances of the
colony when there is a high-level trace and a low-level trace. The quantities ana-
lyzed are the number of ants that have reached the exit, the path cost, and the
resolution time. The aim of the experiments was to maximize the number of ants
and minimize the path cost and the resolution time. Figure 3 shows how many
ants have reached the exit in scenario B1. In particular, Fig. 3a represents the
results obtained for high-level trace, while Fig. 3b represents the ones obtained
for low-level trace. As one can see, the actions of the LPAs are more powerful
and useful when there is an excess of trace released by all the ants, since the
colony reaches better results when there is a small percentage of LPAs within it,
as is clear from Fig. 3a for which the best value is obtained when the performing
factor pf = 0.9. On the other hand, the presence of LPAs seems to not boost the
performances of the colony when there is a low-level trace. Figure 3b shows that
the number of ants that reached the exit is approximately the same for pf = 0.9
and pf = 1.0, indicating that the presence of LPAs does not affect positively the
colony.

The same considerations can be done for scenario B2, whose results are shown
in Fig. 4. In particular, Fig. 4a shows how many ants have reached the exit when
there is a high-level trace. In this case, the maximum number of ants is obtained
when the performing factor is pf = 0.5. Figure 4b, on the other hand, shows the
same quantity when there is a low-level trace, and here the best performances
of the colony are obtained when the performing factor is pf = 1.0. As in the
previous case, the presence of LPAs seems to be more important and helpful
when there is an excess of trace release along the path since in this case, the
colony has better performances when it is not composed of just HPAs. A note of
interest is that scenario B2 has been obtained lower average values of the number
of ants with respect to the ones obtained for scenario B1. This may depend on
the complexity of the network: the higher it is the worst the performances of the
colony will be.

How Different Ant Behavior Affects the Performance of Whole Colony 195

Fig. 3. Overall number of ants that have reached the exit in scenario B1. In (a) the
values obtained for a high level trace; in (b) the ones obtained for a low level trace. The
presence of LPAs is much more important and useful when there is a high-level trace,
leading the colony to better performances. The best values are obtained for pf = 0.9
when there is a high-level trace and for pf = 1.0 when there is a low-level trace.

Fig. 4. Overall number of ants that have reached the exit in scenario B1. In (a) the
values obtained for a high level trace; in (b) the ones obtained for a low level trace. As
in Fig. 3, the presence of LPAs is much more helpful when there is a high-level trace.
The best values are obtained for pf = 0.5 when there is a high-level trace and for
pf = 1.0 when there is a low-level trace.

The path cost and the resolution time are both quantities to be minimized
so they have been put together in the same plot. In particular, the principal
plot represents the resolution time, the inset one the path cost. This has been
done both for scenario B1, in Fig. 5, and for scenario B2, in Fig. 6. In particular,
Fig. 5a represents how the resolution time and path cost vary with respect to the
performing factor in scenario B1 with high-level trace; Fig. 5b shows the same
quantities in the same scenario with a high-level trace. In this case, the best
values are the lowest ones because they correspond to the best performances of
the colony. Comparing these results with the ones regarding the number of ants
in Fig. 3a, one can realize that in scenario B1, when there is a high-level trace,

196 C. Crespi et al.

the colony has better performances when it is composed of a small fraction of
LPAs because the maximum number of ants that reaches the exit, the minimum
value of the resolution time and the minimum of the path cost is obtained for
a value of the performing factor equal to pf = 0.9. Doing the same with Fig. 5b
and Fig. 3b, one can see that when there is a low-level trace the presence of
LPAs not only does not affect positively the number of ants that reach the exit
but neither on the resolution time and on the path cost find by the colony. In
this case, indeed, the best values are obtained when the colony is composed of
just HPAs, reinforcing the hypothesis for which the presence of LPAs is useful
to regulate the actions when there is an excess of trace.

Fig. 5. Overall resolution time (principal plot) and path cost (inset plot) of the colony
for scenario B1. In (a) the values obtained for a high-level trace; in (b) the ones obtained
for a low level trace. As in Fig. 3, the presence of LPAs is much more helpful when there
is a high-level trace. The best values are obtained for pf = 0.9 when there is a high-level
trace and for pf = 1.0 when there is a low-level trace.

It is not surprising that the same results have been obtained also for scenario
B2, as represented in Fig. 6. In this case, the importance of the presence of LPAs
is clear especially looking at the values obtained when there is a high-level trace.
Indeed, there is a lot of difference between the path cost found by the colony
(in the inset plot) when the performing factor is equal to pf = 1.0 and the one
obtained when the performing factor is equal to pf = 0.9. The second value is
much better than the first and it is obvious that the same worst performances
are present also considering the resolution time in the principal plot, and the
number of ants, as shown in Fig. 4a. On the contrary, but as previously shown,
when there is a low-level trace, the presence of LPAs does not help the colony
to boost its performances, which are better when it is composed of just HPAs.
Figure 6, indeed shows that the best values of the resolution time and the path
cost are obtained when the performing factor is equal to pf = 1.0.

How Different Ant Behavior Affects the Performance of Whole Colony 197

Fig. 6. Overall resolution time (principal plot) and path cost (inset plot) of the colony
for scenario B1. In (a) the values obtained for a high-level trace; in (b) the ones obtained
for a low level trace. As in Fig. 4, the presence of LPAs is much more helpful when there
is a high-level trace. When there is a high-level trace, the best value of the resolution
time is for pf = 0.6 and the one for the path cost is for pf = 0.5. When there is a
low-level trace the same bests are obtained for pf = 1.0.

4 Conclusions

This paper aims to investigate how different behaviors of the ants in the Ant
Colony Optimization algorithm affect the global performances of the colony. To
do this, two different kinds of ants have been considered: (1) low performing
ants (LPAs), which can damage with certain probability nodes and links of their
paths, and which do not help the rest of the colony sharing their information
about the cost of each link; and (2) high performing ants (HPAs) which, on the
contrary, may repair with a certain probability the damaged nodes and links and
share their information about the cost of the links. The model has been tested on
two networks with increasing complexity and has been investigated if and how
the presence of LPA affects the performances of the group when different levels
of information are present. Two different kinds of analysis have been carried out:
(i) a group analysis, to analyze how the number of ants that reach the endpoint
of the network varies with respect to the performing factor and the group of
the colony considered; and (ii) an overall analysis to analyze how the number of
ants of the colony, the path cost find by it and its resolution time of the network
vary taking into account only the performing factor. Both kinds of analysis have
been realized naming High Trace the configuration for which the amount of
pheromone released by the ants is K = 0.1 and the parameter β = 1.0 (i.e. more
information available), and Low Trace the configuration for which the amount of
pheromone release by the ants is K = 0.001 and the parameter β = 0.5 (i.e. less
information available). From the group analysis, emerges that the presence of
LPA helps the rest of the colony especially when there is a condition of high-level
trace because the disturbing actions performed by the LPAs stimulate the others
to search for other paths and to share their information among the other groups
of the colony. This seems to be true even for the overall analysis which considers

198 C. Crespi et al.

the objective functions. The presence of LPAs is crucial when the amount of
trace shared by the ants, and so present in the environment, is too high. An
excess of information is self-defeating for the group because, since their actions
are calibrated according to this quantity, it does not allow the ants to explore
the rest of the network, letting them choose the same path over and over. In
this sense, the presence of LPAs is helpful for the rest of the group because their
actions force the rest of the colony to change its behavior in order to search for
more fruitful paths.

References

1. Akka, K., Khaber, F.: Mobile robot path planning using an improved ant colony
optimization. Int. J. Adv. Robot. Syst. 15(3) (2018). https://doi.org/10.1177/
1729881418774673

2. Brand, M., Masuda, M., Wehner, N., Yu, X.: Ant colony optimization algorithm for
robot path planning. In: 2010 International Conference On Computer Design and
Applications, vol. 3, pp. V3-436–V3-440 (2010). https://doi.org/10.1109/ICCDA.
2010.5541300

3. Consoli, P., Collerà, A., Pavone, M.: Swarm intelligence heuristics for graph color-
ing problem. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1909–1916
(2013). https://doi.org/10.1109/CEC.2013.6557792

4. Consoli, P., Pavone, M.: O-BEE-COL: optimal BEEs for COLoring graphs. In:
Legrand, P., Corsini, M.-M., Hao, J.-K., Monmarché, N., Lutton, E., Schoenauer,
M. (eds.) EA 2013. LNCS, vol. 8752, pp. 243–255. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11683-9_19

5. Crespi, C., Fargetta, G., Pavone, M., Scollo, R.A., Scrimali, L.: A game theory app-
roach for crowd evacuation modelling. In: Filipič, B., Minisci, E., Vasile, M. (eds.)
BIOMA 2020. LNCS, vol. 12438, pp. 228–239. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-63710-1_18

6. Crespi, C., Scollo, R.A., Pavone, M.: Effects of different dynamics in an ant colony
optimization algorithm. In: 2020 7th International Conference on Soft Comput-
ing Machine Intelligence (ISCMI2020), pp. 8–11. IEEE (2020). https://doi.org/10.
1109/ISCMI51676.2020.9311553

7. Deng, W., Xu, J., Zhao, H.: An improved ant colony optimization algorithm based
on hybrid strategies for scheduling problem. IEEE Access 7, 20281–20292 (2019).
https://doi.org/10.1109/ACCESS.2019.2897580

8. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances.
In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS,
vol. 272, pp. 311–351. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-
91086-4_10

9. Fidanova, S., Pop, P.: An improved hybrid ant-local search algorithm for the parti-
tion graph coloring problem. J. Comput. Appl. Math. 293, 55–61 (2016). https://
doi.org/10.1016/j.cam.2015.04.030

10. Jia, Y.H., Mei, Y., Zhang, M.: A bilevel ant colony optimization algorithm for
capacitated electric vehicle routing problem. IEEE Trans. Cybern. 1–14 (2021).
https://doi.org/10.1109/TCYB.2021.3069942

11. Jovanovic, R., Tuba, M., Voß, S.: An efficient ant colony optimization algorithm for
the blocks relocation problem. Eur. J. Oper. Res. 274(1), 78–90 (2019). https://
doi.org/10.1016/j.ejor.2018.09.038

https://doi.org/10.1177/1729881418774673
https://doi.org/10.1177/1729881418774673
https://doi.org/10.1109/ICCDA.2010.5541300
https://doi.org/10.1109/ICCDA.2010.5541300
https://doi.org/10.1109/CEC.2013.6557792
https://doi.org/10.1007/978-3-319-11683-9_19
https://doi.org/10.1007/978-3-319-11683-9_19
https://doi.org/10.1007/978-3-030-63710-1_18
https://doi.org/10.1007/978-3-030-63710-1_18
https://doi.org/10.1109/ISCMI51676.2020.9311553
https://doi.org/10.1109/ISCMI51676.2020.9311553
https://doi.org/10.1109/ACCESS.2019.2897580
https://doi.org/10.1007/978-3-319-91086-4_10
https://doi.org/10.1007/978-3-319-91086-4_10
https://doi.org/10.1016/j.cam.2015.04.030
https://doi.org/10.1016/j.cam.2015.04.030
https://doi.org/10.1109/TCYB.2021.3069942
https://doi.org/10.1016/j.ejor.2018.09.038
https://doi.org/10.1016/j.ejor.2018.09.038

How Different Ant Behavior Affects the Performance of Whole Colony 199

12. O’Shea-Wheller, T., Sendova-Franks, A., Franks, N.: Differentiated anti-predation
responses in a superorganism. PLoS One 10(11), e0141012 (2015). https://doi.org/
10.1371/journal.pone.0141012

13. Peng, H., Ying, C., Tan, S., Hu, B., Sun, Z.: An improved feature selection algo-
rithm based on ant colony optimization. IEEE Access 6, 69203–69209 (2018).
https://doi.org/10.1109/ACCESS.2018.2879583

14. Pintea, C.-M., Matei, O., Ramadan, R.A., Pavone, M., Niazi, M., Azar, A.T.: A
fuzzy approach of sensitivity for multiple colonies on ant colony optimization. In:
Balas, V.E., Jain, L.C., Balas, M.M. (eds.) SOFA 2016. AISC, vol. 634, pp. 87–95.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62524-9_8

15. Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based Mod-
eling, Northwestern University, Evanston, IL (1999). http://ccl.northwestern.edu/
netlogo/

16. Zhang, D., You, X., Liu, S., Pan, H.: Dynamic multi-role adaptive collaborative
ant colony optimization for robot path planning. IEEE Access 8, 129958–129974
(2020). https://doi.org/10.1109/ACCESS.2020.3009399

https://doi.org/10.1371/journal.pone.0141012
https://doi.org/10.1371/journal.pone.0141012
https://doi.org/10.1109/ACCESS.2018.2879583
https://doi.org/10.1007/978-3-319-62524-9_8
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
https://doi.org/10.1109/ACCESS.2020.3009399

Evaluating the Effects of Chaos
in Variable Neighbourhood Search

Sergio Consoli1(B) and José Andrés Moreno Pérez2

1 European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
sergio.consoli@ec.europa.eu

2 Instituto Universitario de Desarrollo Regional, Universidad de La Laguna,
Tenerife, Spain

jamoreno@ull.edu.es

Abstract. Metaheuristics are problem-solving methods which try to
find near-optimal solutions to very hard optimization problems within an
acceptable computational timeframe, where classical approaches usually
fail, or cannot even been applied. Random mechanisms are an integral
part of metaheuristics, given randomness has a role in dealing with algo-
rithmic issues such as parameters tuning, adaptation, and combination
of existing optimization techniques. In this paper, it is explored whether
deterministic chaos can be suitably used instead of random processes
within Variable Neighbourhood Search (VNS), a popular metaheuristic
for combinatorial optimization. As a use case, in particular, the paper
focuses on labelling graph problems, where VNS has been already used
with success. These problems are formulated on an undirected labelled
graph and consist on selecting the subset of labels such that the subgraph
generated by these labels has, respectively, an optimal spanning tree or
forest. The effects of using chaotic sequences in the VNS metaheuristic
are investigated during several numerical tests. Different one-dimensional
chaotic maps are applied to VNS in order to compare the performance of
each map in finding the best solutions for this class of graph problems.

Keywords: Deterministic chaos · Metaheuristics · Variable
neighbourhood search · Labelling graph problems · Algorithm dynamics

1 Introduction

The term “chaos” covers a rather broad class of phenomena showing random-like
behaviors at a first glance, even if they are generated by deterministic systems.
This kind of processes is used to denote phenomena which are of a purely stochas-
tic nature, such as the behavior of a waft of smoke or ocean turbulence, or the
dynamic of molecules inside a vessel filled with gas, among many others [25].
However, chaotic system behaviors are easily mistaken for random noises given
they share the property of long term unpredictable irregular behavior and broad
band spectrum.

The original version of this chapter was previously published without open access. The
correction to this chapter is available at https://doi.org/10.1007/978-3-031-26504-4 49

c© The Author(s) 2023, corrected publication 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 200–214, 2023.
https://doi.org/10.1007/978-3-031-26504-4 15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_15&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_15
https://doi.org/10.1007/978-3-031-26504-4_49
https://doi.org/10.1007/978-3-031-26504-4_49

Evaluating the Effects of Chaos in VNS 201

A classical topic in studying real world phenomena is to distinguish then
between chaotic and random dynamics [18]. Deterministic chaotic systems are
necessarily nonlinear, and conventional statistical procedures are insufficient for
their analysis [39]. If the output of a deterministic chaotic system is analysed
with these approaches, it will be erroneously recognised as the result of a ran-
dom process. Therefore, characterizing the irregular behavior that can be caused
either by deterministic chaos or by randon processes is challenging because of
the surprising similarity that deterministic chaotic and random signals often
show. Thus, it is still an open problem to distinguish among these two types of
phenomena [25].

Deterministic chaos and its applications can be observed in control theory,
computer science, physics, biology, and many other fields [18]. The interest in
studying chaotic systems arises indeed when the theme of chaos reaches a high
interdisciplinary level involving not only mathematicians, physicians and engi-
neers but also biologists, economists and scientists from different areas. Several
research works have shown that order could arise from disorder in various fields,
from biological systems to condensed matter, from neuroscience to artificial neu-
ral networks [1]. In these cases, disorder often indicates both non-organized pat-
terns and irregular behavior, whereas order is the result of self-organization and
evolution, and often arises from a disorder condition or from the presence of dis-
symmetries. Gros [19] discusses the origin of self-organization where, leveraging
from various key points from evolutionary theory and biology, it emphasizes the
idea that life exists at the edge of chaos. Other examples in which the concept
of stochastic driven procedures leads to ordered results are, e.g., Monte Carlo
and evolutionary optimization [39], together with stochastic resonance in which
the presence of noise improves the transmission of information [14].

The discovery of the phenomenon of deterministic chaos has brought about
the need to identify manifestations of this phenomenon also in experimental data.
Research on this line has focused so far on exploring the properties of cause and
effect of chaotic phenomena, and also on using deterministic chaotic processes
as instruments to improve other systems. This article focuses on the latter, and
in particular on exploiting chaos for the improvement of heuristic optimization
[32]. The goal consists on evaluating to performance between chaotic and ran-
dom dynamics within a metaheuristic algorithm, showing the use of chaos in the
inner optimization process, and focussing the attention on how chaos supports
the birth of order from disorder also in this field [38]. This means to investi-
gate the effects of the introduction of either deterministic chaotic or random
sequences in a complex optimization routine. For this purpose, in particular, in
this work we focus on Variable Neighbourhood Search (VNS), a popular explo-
rative metaheuristic for combinatorial optimization problems based on dynamic
changes of the neighbourhood structure in the solution space during the search
process [21]. To compare the performance between a VNS procedure that runs
using chaotic signals and that of a traditional random-based VNS, we consider
as use case a set of labelling graph problems, i.e. the labelled spanning tree
and forest problems. These problems are formulated on an undirected labelled

202 S. Consoli and J. A. M. Pérez

graph, and consist on selecting the subset of labels such that the subgraph gen-
erated by these labels has an optimal spanning tree or forest. This family of
problems has many real-world applications in different fields, such as in data
compression, telecommunications network design, and multimodal transporta-
tion systems [9,10,12,13]. For example, in multimodal transportation systems
there are often circumstances where it is needed to guarantee a complete service
between the terminal nodes of the network by using the minimum number of
provider companies. This situation can be modelled as a labelling graph prob-
lem, where each edge of the input graph is assigned a label, denoting a different
company managing that link, and one wants to obtain a spanning tree of the
network using the minimum number of labels. This spanning tree will reduce
the construction cost and the overall complexity of the network.

The effects of using chaos in VNS on this family of combinatiorial optimiza-
tion problems are evaluated, aiming at disentangling the improvement in the
optimization power due to the inclusion of a deterministic chaotic map within
the VNS approach, one of the most popular metaheuristic used for tackling
this class of problems. For the task, as it will be shown next, different popular
one-dimensional chaotic maps are considered. The rest of the paper is struc-
tured as follows. Section 2 provides an overview of the background literature,
while Sect. 3 presents the considered labelling graph problems used as test-
bench. Section 4 describes the VNS methodology implemented for this family
of problems. Section 5 describes how we used chaos in VNS and the determin-
istic chaotic maps considered in our experiments. Section 6 shows the obtained
empirical results and findings, while in Sect. 7 we provide our main conclusions.

2 Related Work

The active use of chaos has been recently widely investigated in the literature
[18,25]. The link between chaos and randomness has been largely investigated in
several works (see e.g. [20,26,31] among others). Particularly interesting results
have arisen in computer systems and algorithms, where chaos has been observed
in the dynamics of algorithmic routines [24] and evolutionary algorithms [38,39].
The latter is a topic of great interest, linked to the work presented in this paper.
Chaos indeed has been used to substitute pseudo-random number generators in
a variety of heuristic optimization procedures. The use of chaos inside evolution-
ary optimization is discussed in [27,38], where it is thoroughly evaluated whether
pure chaotic sequences improve the performance of evolutionary strategies. Dav-
endra et al. [15] use with success a chaos driven evolutionary algorithm for PID
control, while El-Shorbagy et al. [17] propose a chaos-based evolutionary algo-
rithm for nonlinear programming problems. Hong et al. [22] propose a chaotic
Genetic Algorithm for cyclic electric load forecasting; for the same problem,
Dong et al. [16] introduce a hybrid seasonal approach using a chaotic Cuckoo
Search algorithm together with a Support Vector Regression model. Another
example on the use of chaos in a Genetic Algorithm is present in [28], with an
application for the solution of a chip mapping problem. Senkerik et al. [33,34]

Evaluating the Effects of Chaos in VNS 203

discuss the impact of chaos on Differential Evolution, powering the algorithm
by a multi-chaotic framework used for parent selection and population diver-
sity. Pluhacek et al. [29,30] has widely explored the use of deterministic chaos
inside Particle Swarm Optimization. Hong et al. [23] introduce a novel chaotic
Bat Algorithm for forecasting complex motion of floating platforms. Chen et
al. [6] propose a Whale Optimization Algorithm with a chaos-based mechanism
relying on quasi-opposition for global optimization problems. In [40], instead,
an improved Artificial Fish Swarm Algorithm based on chaotic search and feed-
back strategy has been described. Wang et al. [36] recently present an improved
Grasshopper Optimization Algorithm using an adaptive chaotic strategy to fur-
ther improve the comprehensive ability of grasshopper swarms in the early explo-
ration and later development, and apply the algorithm to pattern synthesis of
linear array in RF antenna design.

We do not attempt to hide the fact that, in certain ways, the field has been
progressing in a way that seems to us less useful, and sometimes even harmful,
to the development of the field in general. For example, many of the contribu-
tions that appear in the new literature, in our opinion do appear rather marginal
additions to a list of relevant and widely accepted metaheuristics [35]. Never-
theless, it can be stated that, based on the listed and further other research
papers in the literature, several contributions have shown the value that chaos
appears to provide as an additional tool for heuristic optimization routines. It is
evident the increasingly rising attention of the research community towards the
hybridization of modern optimization algorithms and chaotic dynamics.

To the best of our knowledge, however, no attempts have been made on the
use of chaos within the Variable Neighbourhood Search algorithm. We want to
fill this gap, and, therefore, in this paper we use chaos to try to improve the VNS
metaheuristic, testing it through different chaotic functions. As shown next, we
evaluate the performance of the impact of a chaotic version of VNS on a set
of labelling graph problems, used as testbench, to a non-chaotic version of the
same algorithm.

3 The Labelled Spanning Tree and Forest Problems

In this paper we scratch a chaotic version of VNS, aimed to achieve further
improvements to a classic, random-based VNS implementation tackling two clas-
sical labelling graph problems, namely the Minimum Labelling Spanning Tree
(MLST) [4] and the k-Labelled Spanning Forest (kLSF) [3] problems. Variants
exist (see e.g. [8,10]), but these two problems are maybe the most prominent and
general of this family. They are defined on a labelled graph, that is an undirected
graph, G = (V,E,L), where V is its set of nodes and E is the set of edges that
are labelled on the set L of labels.

The MLST problem [4] consists on, given a labelled input graph G =
(V,E,L), getting a spanning tree with the minimum number of labels; i.e., the
aim is to find the labelled spanning tree T ∗ = (V,E∗, L∗) of the input graph
that minimizes the size of label set |L∗|.

204 S. Consoli and J. A. M. Pérez

Instead, the kLSF problem [3] is defined as follows. Given a labelled input
graph G = (V,E,L) and an integer positive value k̄, find a labelled spanning
forest F ∗ = (V,E∗, L∗) of the input graph having the minimum number of
connected components with the upper bound k̄ for the number of labels to use,
i.e. min|Comp(G∗)| with |L∗| ≤ k̄.

Therefore in both problems, the matter is to find an optimal set of labels
L∗. Since a solution to the MLST problem would be a solution also to the
kLSF problem if the obtained solution tree would not violate the limit k̄ on
the used number of labels, it is easily deductable that the two problems are
deeply correlated. Given the subset of labels L∗ ⊆ L, the labelled subgraph
G∗ = (V,E∗, L∗) may contain cycles, but each of them can be arbitrarily break
by eliminating edges in polynomial time until a forest, or a tree, is obtained.

The NP-hardness of the MLST and kLSF problems has been proved in [4]
and in [3], respectively. Therefore any practical solution approach to both prob-
lems requires heuristics. Several optimization algorithms to the MLST problem
have been approached in the literature [2,37], showing in several cases the par-
ticular suitability of the VNS heuristic [9,11,12]. For the kLSF problem, in [3] a
Genetic Algorithm and the Pilot Method metaheuristics have been proposed. In
particular, in [7,13], some metaheuristics based on Greedy Randomized Adap-
tive Search Procedure and Variable Neighbourhood Search have been designed,
obtaining high-quality results in most cases and showing the effectivenes of the
VNS approach [13]. Given VNS has demonstrated to be a promising strategy for
this class of problems, we have chosen it as a benchmark for testing the use of
chaos inside the VNS metaheuristic. Nevertheless, note that the approach can be
easily adapted and generalised to other optimization problems where the solu-
tion space consists of subsets of a reference set, such as feature subset selection
problems or a variety of location problems.

4 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is an explorative metaheuristic for combi-
natorial optimization problems based on dynamic changes of the neighbourhood
structure of the solution space during the search process [21]. The guiding prin-
ciple of VNS is that a local optimum with respect to a given neighbourhood
may not be locally optimal with respect to another neighbourhood. Therefore
VNS looks for new solutions in increasingly distant neighbourhoods of the cur-
rent solution, jumping only if a better solution than the current best solution
is found [21]. The process of changing neighbourhoods when no improvement
occurs is aimed at producing a progressive diversification.

Given a labelled graph G = (V,E,L) with n vertices, m edges, and � labels,
each solution is encoded by a binary string [9], i.e. C = (c1, c2, . . . , c�) where

ci =
{

1 if label i is in solution C
0 otherwise (∀i = 1, . . . , �). (1)

Evaluating the Effects of Chaos in VNS 205

Denote with Nk(C) the neighbourhood space of the solution C, and with
kmax the maximum size of the neighbourhood space. In order to impose a neigh-
bourhood structure on the solution space S, comprising all possible solutions, the
distance considered between any two such solutions C1, C2 ∈ S, is the Hamming
distance [9,12]:

ρ(C1, C2) = |C1 − C2| =
�∑

i=1

λi (2)

where λi = 1 if label i is included in one of the solutions but not in the other,
and 0 otherwise, ∀i = 1, ..., �. Then, given a solution C, its kth neighbourhood,
Nk(C), is considered as all the different sets having a Hamming distance from C
equal to k labels, where k = 1, 2, . . . , kmax, and kmax is the maximum dimension
of the shaking. In a more formal way, the kth neighbourhood of a solution C is
defined as Nk(C) = {S ⊂ L : ρ(C,S) = k}, where k = 1, ..., kmax.

Algorithm 1: Variable Neighbourhood Search for the MLST problem
Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices,

m edges, � labels;
Output: A spanning tree T ;
Initialisation:
- Let C ← ∅ be the global set of used labels;
- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels
in C, where E(C) = {e ∈ E : L(e) ∈ C};

- Let C′ be a set of labels;
- Let H ′ = (V, E(C′)) be the subgraph of G restricted to V and edges with
labels in C′, where E(C′) = {e ∈ E : L(e) ∈ C′};

- Let Comp(C′) be the number of connected components of H ′ = (V, E(C′));
begin

C ←Generate-Initial-Solution();
repeat

Set k ← 1 and kmax ← (|C| + |C|/3);
while k < kmax do

C′ ←Shaking phase(C, k);
Local search(C′);
if |C′| < |C| then

Move C ← C′;
Restart with the first neighbour: k ← 1;

else
Increase the size of the neighbourhood structure: k ← k + 1;

end

end

until termination conditions;
Update H = (V, E(C));
⇒ Take any arbitrary spanning tree T of H = (V, E(C)).

end

206 S. Consoli and J. A. M. Pérez

Algorithm 2: Shaking phase procedure
Procedure Shaking phase(C, k):
Set C′ ← C;
for i ← 1 to k do

Select at random a number between 0 and 1: rnd ← random[0, 1];
if rnd ≤ 0.5 then

Delete at random a label c′ ∈ C′ from C′, i.e. C′ ← C′ − {c′} ;
else

Add at random a label c′ ∈ (L − C) to C′, i.e. C′ ← C′ ∪ {c′};
end
Update H ′ = (V, E(C′)) and Comp(C′);

end

For illustrative purpose and a better comprehension, in Algorithm 1 is
described the VNS implementation for the MLST problem [9,12]. The VNS
solution approach for the kLSF problem is very akin [7,13] and only differ from
the fact that an upper bound k̄ for the number of labels has to be imposed,
and that a forest instead of a spanning tree has to be considered for halting
the algorithm. Note that given a subset of labels L∗ ⊆ L, the labelled subgraph
G∗ = (V,E∗, L∗) may contain cycles, but they can arbitrarily break each of them
by eliminating edges in polynomial time until a forest or a tree is obtained.

Algorithm 1 starts from an initial feasible solution C generated at random
and lets parameter k vary during the execution. In the successive shaking phase
(Shaking phase(Nk(C)) procedure, see Algorithm 2) a random solution C ′ is
selected within the neighbourhood Nk(C) of the current solution C. This is
done by randomly adding further labels to C, or removing labels from C, until
the resulting solution has a Hamming distance equal to k with respect to C [9].
Addition and deletion of labels at this stage have the same probability of being
chosen. For this purpose, a random number is selected between 0 and 1 (rnd ←
random[0, 1]). If this number is smaller than 0.5, the algorithm proceeds with
the deletion of a label from C. Otherwise, an additional label is included at
random in C from the set of unused labels (L − C). The procedure is iterated
until the number of addition/deletion operations is exactly equal to k [12].

The successive local search (Local search(C ′) procedure, see Algorithm 3)
consists of two steps [9]. In the first step, since deletion of labels often gives an
infeasible incomplete solution, additional labels may be added in order to restore
feasibility. In this case, addition of labels follows the criterion of adding the label
with the minimum number of connected components. Note that in case of ties
in the minimum number of connected components, a label not yet included in
the partial solution is chosen at random within the set of labels producing the
minimum number of components (i.e. u ∈ S where S = {� ∈ (L − C′) : min
Comp(C ′ ∪{�})}). Then, the second step of the local search tries to delete labels
one by one from the specific solution, whilst maintaining feasibility [9,12].

Evaluating the Effects of Chaos in VNS 207

Algorithm 3: Local search procedure
Procedure Local search(C′):
while Comp(C′) > 1 do

Let S be the set of unused labels which minimize the number of connected
components, i.e. S = {� ∈ (L − C′) : min Comp(C′ ∪ {�})};

Select at random a label u ∈ S;
Add label u to the set of used labels: C′ ← C′ ∪ {u};
Update H ′ = (V, E(C′)) and Comp(C′);

end
for i ← 1 to |C′| do

Delete label i from the set C′, i.e. C′ ← C′ − {i};
Update H ′ = (V, E(C′)) and Comp(C′);
if Comp(C′) > 1 then

Add label i to the set C′, i.e. C′ ← C′ ∪ {i};
end
Update H ′ = (V, E(C′)) and Comp(C′);

end

After the local search phase, if no improvements are obtained (|C ′| ≥ |C|),
the neighbourhood structure is increased (k ← k +1) giving a progressive diver-
sification (|N1(C)| < |N2(C)| < ... < |Nkmax(C)|), where kmax ← (|C| + |C|/3)
from [9,12]. Otherwise, the algorithm moves to the improved solution (C ← C ′)
and sets the first neighbourhood structure (k ← 1). Then the procedure restarts
with the shaking and local search phases, continuing iteratively until the user
termination conditions are met.

5 Using Chaos in VNS

Chaos is a non-periodic, long-term behavior in a deterministic system that
exhibits sensitive dependence on initial conditions, and is a common nonlinear
phenomenon in our lives [25]. The dynamic properties of chaos can be sum-
marised as following [40]:

1. “Sensitive dependence to Initial Conditions (SIC)”: Chaos is highly sensitive
to the initial value.

2. “Certainty”: Chaos is produced by a certain iterative formula.
3. “Ergodicity”: Chaos can go through all states in certain ranges without rep-

etition.

In general, the most important defining property of chaotic variables is the first
one, which requires that trajectories originating from very nearly identical initial
conditions diverge at an exponential rate [28]. Pseudorandomness and ergodicity
are other important dynamic characteristics of a chaotic structure, which ensure
that the track of a chaotic variable can travel ergodically over the whole space
of interest.

208 S. Consoli and J. A. M. Pérez

Chaos is similar to randomness. The variation of the chaotic variable has
indeed an inherent property in spite of the fact that it looks like a disorder.
Edward Lorenz irregularity in a toy model of the weather displayed first chaotic
or strange attractor in 1963. It was mathematically defined as randomness gen-
erated by simple deterministic systems. A deterministic structure can have no
stochastic (probabilistic) parameters. Therefore chaotic systems are not at all
equal to noisy systems driven by random processes. The irregular behavior of
the chaotic systems arises from intrinsic nonlinearities rather than noise [25].

Several experimental studies have shown already the benefits of using chaotic
signals rather than random signals [18], although a general rule can not be drawn
yet [32]. Chaos has been used as a novel addition to optimization techniques to
help escaping from local optima, and chaos-based searching algorithms have
aroused intense interests [32,39].

As from the second property of chaos just listed above, one-dimensional non-
invertible maps are the simplest systems with capability of generating chaotic
dynamics. They are capable of providing simple deterministic chaotic signals,
that we can use inside our VNS procedure (Algorithm 1) in place of the pseudo-
random number generation occurring in the shaking phase (Algorithm 2). Here
the chaotic mapping of a shaking Nk(·) to an incumbent solution, C, includes
the following major steps:

1. Variable C in the solution space is mapped to the chaotic space, by using a
deterministic chaotic map chosen by the user.

2. Using the selected chaotic dynamics, select the kth chaotic variable from the
generating map.

3. The chaotic variable is then mapped back to the solution space, producing
the next solution C ′.

Please note that after this step, in case of an infeasible incomplete solution
is obtained, additional labels may be added in order to restore feasibility, fol-
lowing the criterion of adding the label with the minimum number of connected
components with respect to the incumber solution C ′.

In the following we briefly depict some well-known one-dimensional chaotic
maps that we employ in our experiments. For more in-depth descriptions, the
reader in referred to [5,32].

Logistic map

The logistic map is a chaotic polynomial map. It is often cited as an exam-
ple of how complex behavior can arise from a very simple nonlinear dynamical
equation. This map is defined by:

xn+1 = f(μ, xn) = μxn(1 − xn), 0 < μ ≤ 4 (3)

in which μ is a control parameter, and x is the variable. Since Eq. (3) represents
a deterministic dynamic system, it seems that its long-term behavior can be
predicted.

Evaluating the Effects of Chaos in VNS 209

Tent Map

In mathematics, the tent map is an iterated function, in the shape of a tent,
forming a discrete-time dynamical system. It takes a point xn on the real line
and maps it to another point, according to:

xn+1 =

{
μxn if xn < 1/2
μ(1 − xn) otherwise,

(4)

where μ is a positive real constant. The tent map and the logistic map are
topologically conjugate, and thus the behavior of the two maps is in this sense
identical under iteration.

Bernoulli Shift Map

The Bernoulli shift (Bshift) map belongs to class of piecewise linear maps which
consist of a number of piecewise linear segments. This map is a particularly
simple example, consisting of two linear segments to model the active and passive
states of the source. It is defined as follows:

xn+1 =

⎧⎨
⎩

xn

1 − λ
if 0 < xn < (1 − λ)

xn − (1 − λ)
λ

otherwise.
(5)

Sine Map

The sine map is described by the following equation:

xn+1 =
α

4
sin (πxn), (6)

where 0 < α ≤ 4. This map has qualitatively the same shape as the logistic map.
Such maps are also called unimodal chaotic maps.

Circle map

The circle map [22] is represented by

xn+1 = xn + b − a

2π
sin (2πxn), (7)

where a can be interpreted as a strength of nonlinearity, and b as an externally
applied frequency. The circle map exhibits very unexpected behavior as a func-
tion of these parameters; with a = 0.5 and b = 0.2, it generates chaotic sequences
in (0, 1).

Iterative Chaotic Map with Infinite Collapses

The iterative chaotic map with infinite collapses (ICMIC) is defined by:

xn+1 = sin(α/xn), (8)

where α ∈ (0,∞) is an adjustable parameter.

210 S. Consoli and J. A. M. Pérez

6 Experimental Results

We show here our computational experience on the use of chaos within the VNS
methodology for the considered labelling graph problems. We examine the VNS
implementation using pseudo-random number generation in the shaking phase
(Rand), and the same VNS model including the different deterministic chaotic
maps in the shaking step, denoted respectively with: Logistic, Tent, Bshift, Sine,
Circle, and ICMIC. To test the performance and the efficiency of the algorithms,
we run an experimental evaluation on a set of labelled graphs having numbers
of vertices |V | = 100, 200, 300, 400, 500, 1000, labels |L| = 0.25V |, 0.5V |, |V |,
1.25V |, and edges |E| = (|V | − 1)/|V |. These are the well-known benchmark
instances in the literature taken from [9,11,12] for the MLST literature, and
from [7,13] for the kLSF problem. All the considered instances are available
upon request from the authors. For each combination of |V | and |L|, ten different
problem instances are generated; the parameter k̄ for the kLSF is determined
experimentally as �|V |/2j�, where j is the smallest value such that the generated
instances do not report a single connected solution when solved with maximum
vertex covering [3]. The algorithms have been implemented in C++ under the
Microsoft Visual Studio 2015 framework, and all the computations run on an
Intel Quad-Core i7 64-bit microprocessor at 2.30 GHz with 32 GB RAM.

For each dataset, solution quality is evaluated as the average objective func-
tion value (i.e. the number of labels of the solution for the MLST problem, or the
number of connected components for the kLSF problem) among the 10 problem
instances. As in [9,12,13], a maximum allowed CPU time of 1 hour has been
chosen as stopping condition for all the VNS algorithms. Selection of the maxi-
mum allowed CPU time as the stopping criterion is made in order to have a fair
and direct comparison between the different VNS implementations with respect
to the quality of their solutions. All the algorithms run until the maximum CPU
time is reached and, in each case, the best solution is recorded, along with the
total number of iterations required to obtain such best solution.

We show in Fig. 1 the bar chart of the sum of the objective function values
obtained by the different VNS variants for the MLST problem instances (left)
and for the kLSF problem instances (right). The results show that the determin-
istic chaotic maps perform well in the considered instances for both problems,
with the exception of Sine and Circle that appear to not bring a real improve-
ment over that classical VNS with pseudo-random number generation. The best
results are obtained when using the ICMIC map, reaching the best solutions in
both problems. Fine results are also reached, respectively, by the Tent, Logistic,
and Bshift maps, which follow immediately after ICMIC and clearly outperform
Rand.

We also compare the total number of iterations at which the best solutions
are obtained when executing VNS with each of the discussed chaotic maps, and
show the relative bar chart in Fig. 2. We see a consistent drop with respect to the
number of iterations required by all the VNS variants using the chaotic maps,
meaning that they are able to converge earlier with respect to Rand. Looking
at the figure, the best performance in terms of total number of iterations is

Evaluating the Effects of Chaos in VNS 211

Fig. 1. Bar chart of the objective function values obtained by the different VNS variants
for solving the MLST problem instances (left) and the kLSF problem instances (right).

Fig. 2. Bar chart of the total number of iterations required by the different VNS
variants for solving the MLST problem instances (left) and the kLSF problem instances
(right).

obtained by Sine for both problems, immediately followed by the ICMIC map,
and by the Logistic and Tent maps, afterwards. However, although Sine is faster
than the other chaotic maps, it does not show top performance with respect to
the objective function values (Fig. 1), meaning it is more prone to get stuck into
local optima. Instead, looking at Bshift and Circle, they appear to be sometimes
slower than the other employed maps. Nevertheless, summarizing, as seen already
with respect to solution quality, it is again evident the value of using the chaotic
maps in VNS, given all the chaotic VNS variants always outperform Rand with
respect to the required number of iterations.

7 Conclusions

This paper introduces the novel idea of combining the two concepts of chaotic
sequences and Variable Neighbourhood Search (VNS). Different popular one-
dimensional chaotic maps have been considered, and they have been injected
into the shaking phase of the VNS algorithm in place of classical pseudo-random
number generation. The chaotic VNS variants have been tested on a family
of labelling graph problems, namely the Minimum Labelling Spanning Tree
(MLST) problem and the k-Labelled Spanning Forest (kLSF) problem. In order
to evaluate the effectiveness of the chaotic maps in reaching the best solution for
the considered problems, objective function values and total number of iterations
required by the different VNS implementations have been computed upon a set of

212 S. Consoli and J. A. M. Pérez

problem instances commonly used in the literature. Simulation results on this set
of benchmarks indicate that searching efficiency of the VNS algorithm improves
when using the one-dimensional chaotic maps within the shaking phase. The
proposed chaotic variants work quite better than the classical VNS algorithms
using randomness for the two problems introduced in previous works.

Summarizing, although preliminary, the obtained results look encouraging,
showing an overall validity of the employed methodology. The achieved VNS opti-
mization strategy using chaos seems to be highly promising for both labelling
graph problems. The experiments carried out confirm the efficiency, lower num-
ber of iterations, and scalability of the chaotic VNS implementations. Ongoing
investigation will consist in performing a thorough statistical analysis of the
resulting chaotic VNS strategies against the best algorithms in the literature
for these problems, in order to better quantify and qualify the improvements
obtained. Further investigation will deal also with the application of chaotic
variants of VNS to other optimization problems.

References

1. Abel, D., Trevors, J.: Self-organization vs. self-ordering events in life-origin models.
Phys. Life Rev. 3(4), 211–228 (2006)

2. Cerulli, R., Fink, A., Gentili, M., Voß, S.: Metaheuristics comparison for the mini-
mum labelling spanning tree problem. In: Golden, B.L., Raghavan, S., Wasil, E.A.
(eds.) The Next Wave on Computing. Optimization, and Decision Technologies, pp.
93–106. Springer-Verlag, New York (2005). https://doi.org/10.1007/0-387-23529-
9 7

3. Cerulli, R., Fink, A., Gentili, M., Raiconi, A.: The k-labeled spanning forest prob-
lem. Procedia. Soc. Behav. Sci. 108, 153–163 (2014)

4. Chang, R.S., Leu, S.J.: The minimum labelling spanning trees. Inf. Process. Lett.
63(5), 277–282 (1997)

5. Chen, G., Huang, Y.: Chaotic maps: dynamics, fractals, and rapid fluctuations
(synthesis lectures on mathematics and statistics). Morgan Claypool Publishers
(2011). https://doi.org/10.2200/S00373ED1V01Y201107MAS011

6. Chen, H., Li, W., Yang, X.: A whale optimization algorithm with chaos mechanism
based on quasi-opposition for global optimization problems. Expert Syst. Appl.
158, 113612 (2020)

7. Consoli, S., Moreno-Pérez, J.A.: Variable neighbourhood search for the k-labelled
spanning forest problem. Electr. Notes Discrete Math. 47, 29–36 (2015)

8. Consoli, S., Moreno-Pérez, J.A., Darby-Dowman, K., Mladenović, N.: Discrete
particle swarm optimization for the minimum labelling Steiner tree problem. In:
Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Nature Inspired Cooper-
ative Strategies for Optimization. Studies in Computational Intelligence, vol. 129,
pp. 313–322. Springer-Verlag, New York (2008). https://doi.org/10.1007/s11047-
009-9137-9

9. Consoli, S., Darby-Dowman, K., Mladenović, N., Moreno-Pérez, J.A.: Greedy ran-
domized adaptive search and variable neighbourhood search for the minimum
labelling spanning tree problem. Eur. J. Oper. Res. 196(2), 440–449 (2009)

10. Consoli, S., Darby-Dowman, K., Mladenović, N., Moreno-Pérez, J.A.: Variable
neighbourhood search for the minimum labelling Steiner tree problem. Ann. Oper.
Res. Accepted Publ. 172(1), 71–96 (2009)

https://doi.org/10.1007/0-387-23529-9_7
https://doi.org/10.1007/0-387-23529-9_7
https://doi.org/10.2200/S00373ED1V01Y201107MAS011

Evaluating the Effects of Chaos in VNS 213

11. Consoli, S., Moreno-Pérez, J.A., Mladenović, N.: Intelligent variable neighbour-
hood search for the minimum labelling spanning tree problem. Electron. Notes
Discrete Math. 41, 399–406 (2013)

12. Consoli, S., Mladenović, N., Moreno-Pérez, J.A.: Solving the minimum labelling
spanning tree problem by intelligent optimization. Appl. Soft Comput. 28, 440–452
(2015)

13. Consoli, S., Moreno-Pérez, J.A., Mladenović, N.: Comparison of metaheuristics
for the k-labeled spanning forest problem. Int. Trans. Oper. Res. 24(3), 559–582
(2017)

14. Cui, L., Yang, J., Wang, L., Liu, H.: Theory and application of weak signal detec-
tion based on stochastic resonance mechanism. Secur. Commun. Netw. 2021,
5553490 (2021)

15. Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for
the task of PID control. Comput. Math. Appl. 60(4), 1088–1104 (2010)

16. Dong, Y., Zhang, Z., Hong, W.-C.: A hybrid seasonal mechanism with a chaotic
cuckoo search algorithm with a support vector regression model for electric load
forecasting. Energies 11(4), 1009 (2018)

17. El-Shorbagy, M., Mousa, A., Nasr, S.: A chaos-based evolutionary algorithm for
general nonlinear programming problems. Chaos, Solitons Fractals 85, 8–21 (2016)

18. Etkin, D.: 5 - disasters and complexity. In: Etkin, D. (ed.) Disaster Theory, pp.
151–192. Butterworth-Heinemann, Boston (2016)

19. Gros, C.: Complex and Adaptive Dynamical Systems: A Primer. Springer, Cham
(2008). https://doi.org/10.1007/978-3-642-04706-0

20. Hamza, R.: A novel pseudo random sequence generator for image-cryptographic
applications. J. Inf. Secur. Appl. 35, 119–127 (2017)

21. Hansen, P., Mladenović, N., Moreno-Pérez, J.A.: Variable neighbourhood search:
methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010). https://doi.
org/10.1007/s10479-009-0657-6

22. Hong, W.-C., Dong, Y., Zhang, W., Chen, L.-Y., Panigrahi, B.K.: Cyclic electric
load forecasting by seasonal SVR with chaotic genetic algorithm. Int. J. Electr.
Power Energy Syst. 44(1), 604–614 (2013)

23. Hong, W.-C., Li, M.-W., Geng, J., Zhang, Y.: Novel chaotic bat algorithm for
forecasting complex motion of floating platforms. Appl. Math. Model. 72, 425–443
(2019)

24. Hoyle, A., Bowers, R., White, A.: Evolutionary behaviour, trade-offs and cyclic and
chaotic population dynamics. Bull. Math. Biol. 73(5), 1154–1169 (2011). https://
doi.org/10.1007/s11538-010-9567-7

25. Jørgensen, S.: Chaos. In: Jørgensen, S.E., Fath, B.D. (eds.) Encyclopedia of Ecol-
ogy, pp. 550–551. Academic Press, Oxford (2008)

26. Lozi, R.: Emergence of randomness from chaos. Int. J. Bifurcat. Chaos 22(2),
1250021 (2012)

27. Lu, Y., Zhoun, J., Qin, H., Wang, Y., Zhang, Y.: Chaotic differential evolution
methods for dynamic economic dispatch with valve-point effects. Eng. Appl. Artif.
Intell. 24(2), 378–387 (2011)

28. Moein-darbari, F., Khademzadeh, A., Gharooni-fard, G.: Evaluating the perfor-
mance of a chaos genetic algorithm for solving the network on chip mapping prob-
lem. In: Proceedings - 12th IEEE International Conference on Computational Sci-
ence and Engineering, CSE 2009, vol. 2, pp. 366–373 (2009)

29. Pluhacek, M., Senkerik, R., Zelinka, I.: Particle swarm optimization algorithm
driven by multichaotic number generator. Soft. Comput. 18(4), 631–639 (2014).
https://doi.org/10.1007/s00500-014-1222-z

https://doi.org/10.1007/s11047-009-9137-9
https://doi.org/10.1007/s11047-009-9137-9
https://doi.org/10.1007/978-3-642-04706-0
https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1007/s11538-010-9567-7
https://doi.org/10.1007/s11538-010-9567-7

214 S. Consoli and J. A. M. Pérez

30. Pluhacek, M., Senkerik, R., Viktorin, A., Kadavy, T.: Chaos-enhanced multiple-
choice strategy for particle swarm optimisation. Int. J. Parallel Emergent Distrib.
Syst. 35(6), 603–616 (2020)

31. Sahari, M., Boukemara, I.: A pseudo-random numbers generator based on a novel
3d chaotic map with an application to color image encryption. Nonlinear Dyn.
94(1), 723–744 (2018). https://doi.org/10.1007/s11071-018-4390-z

32. Salcedo-Sanz, S.: Modern meta-heuristics based on nonlinear physics processes: A
review of models and design procedures. Phys. Rep. 655, 1–70 (2016)

33. Senkerik, R., Viktorin, A., Pluhacek, M., Kadavy, T.: On the population diver-
sity for the chaotic differential evolution. In 2018 IEEE Congress on Evolutionary
Computation, CEC 2018 - Proceedings, 8477741 (2018)

34. Senkerik, R., et al.: Differential evolution and deterministic chaotic series: a detailed
study. Mendel 24(2), 61–68 (2018)

35. Sörensen, K., Sevaux, M., Glover, F.: A history of metaheuristics. In: Mart́ı, R.,
Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Heuristics, pp. 791–808.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-07124-4 4

36. Wang, H., Kang, Y., Li, B.: Synthesis for sidelobe suppression of linear array based
on improved grasshopper optimization algorithm with adaptive chaotic strategy.
Int. J. RF Microwave Comput. Aided Eng. 32(4), e23048 (2022)

37. Xiong, Y., Golden, B., Wasil, E.: Improved heuristics for the minimum labelling
spanning tree problem. IEEE Trans. Evol. Comput. 10(6), 700–703 (2006)

38. Zelinka, I.: A survey on evolutionary algorithms dynamics and its complexity -
mutual relations, past, present and future. Swarm Evol. Comput. 25, 2–14 (2015)

39. Zelinka, I., et al.: Impact of chaotic dynamics on the performance of metaheuristic
optimization algorithms: An experimental analysis. Inf. Sci. 587, 692–719 (2022)

40. Zhu, K., Jiang, M.: An improved artificial fish swarm algorithm based on chaotic
search and feedback strategy. In: Proceedings - 2009 International Conference on
Computational Intelligence and Software Engineering, CiSE’09, p. 5366958 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s00500-014-1222-z
https://doi.org/10.1007/s11071-018-4390-z
https://doi.org/10.1007/978-3-319-07124-4_4

Investigating Fractal Decomposition
Based Algorithm on Low-Dimensional
Continuous Optimization Problems

Arcadi Llanza1,2(B) , Nadiya Shvai1 , and Amir Nakib1,2

1 Cyclope.ai, Paris, France
{arcadi.llanza,nadiya.shvai}@cyclope.ai

2 University Paris Est Créteil, Laboratoire LISSI, 94400 Vitry sur Seine, France
nakib@u-pec.fr

Abstract. This paper analyzes the performance of the Fractal Decom-
position Algorithm (FDA) metaheuristic applied to low-dimensional con-
tinuous optimization problems. This algorithm was originally developed
specifically to deal efficiently with high-dimensional continuous optimiza-
tion problems by building a fractal-based search tree with a branching
factor linearly proportional to the number of dimensions. Here, we aim to
answer the question of whether FDA could be equally effective for low-
dimensional problems. For this purpose, we evaluate the performance of
FDA on the Black Box Optimization Benchmark (BBOB) for dimensions
2, 3, 5, 10, 20, and 40. The experimental results show that overall the
FDA in its current form does not perform well enough. Among different
function groups, FDA shows its best performance on Misc. moderate and
Weak structure functions.

Keywords: Continuous optimization · Metaheuristics · Fractal
decomposition · Black Box Optimization Benchmark

1 Introduction

The general form of an optimization problem considered in this paper is defined
by Eq. 1:

Minf(x), s.t.Bl ≤ x ≤ Bu (1)

where f(x) denotes the function to be minimize. It is assumed to be continuous.
x = (x1, x2, ..., xD) is the variable vector in R

D. Here, x is a given parameter.
Moreover, the function is constrained by Bl = (Bl1, Bl2, ..., BlD) as the lower
boundary and Bu = (Bu1, Bu2, ..., BuD) as the upper boundary.

The Fractal Decomposition Algorithm (FDA) is a deterministic metaheuristic
method that has been shown to solve large scale (50 up to 1000 dimensions)
continuous optimization problems with high-performance [11,12]. This research
aims to benchmark, for the first time, FDA in a low-dimensional (5 up to 40
dimensions) constrained continuous optimization problem such as Black Box
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 215–229, 2023.
https://doi.org/10.1007/978-3-031-26504-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_16&domain=pdf
http://orcid.org/0000-0001-5928-3189
http://orcid.org/0000-0001-8194-6196
http://orcid.org/0000-0001-9620-9324
https://doi.org/10.1007/978-3-031-26504-4_16

216 A. Llanza et al.

Optimization Benchmark (BBOB) [6]. In this paper, the Black Box optimization
refers to the design and analysis of algorithms for problems where the structure
of the objective function is unknown and unexploitable. The rest of the paper
is organized as follows. First, Sect. 2 reviews the related work. Then, Sect. 3
examines the foundations of the proposed method DFDA. Afterwards, Sect. 4
describes the used benchmark. Section 5 presents the experiments and results.
Finally, in Sect. 6 the conclusion and further research directions are presented.

2 Related Work

To our knowledge, no other study has been previously done on FDA perfor-
mance for low-dimensional continuous optimization problems. In the original
FDA paper [11], the benchmark considered was SOCO2011. The problem dimen-
sion was set to a range of values from 50 to 1000. FDA ranked first for each
considered.

An overview of state-of-the-art (SOTA) methods for the BBOB benchmark is
provided. The methods are reported in order of their average performance from
best to worst. In the case of noiseless BBOB, generally, it is Evolutionary Algo-
rithms (EAs) that perform better. Nevertheless, Local Searches (LS) and other
hybrid methods are competitive as well. Hansen et al. proposed in [5] a multistart
BI-population CMA-ES with equal budgets for two interlaced restart strate-
gies, one with increasing population size and one with varying small population
sizes. In [2], Bosman et al. introduced the Adapted Maximum-Likelihood Gaus-
sian Model Iterated Density-Estimation Evolutionary Algorithm (AMaLGaM-
IDEA). AMaLGaM-IDEA is a parameter-free algorithm with incremental model
building (iaMaLGaM IDEA). MA-LS-Chain [10] was proposed by Molina et al..
It uses a memetic algorithm with continuous local search. The Variable Neigh-
bourhood Search (VNS) was suggested by Garcia et al. in [3]. IPOP-SEP-CMA-
ES [15] is an algorithm with a multistart strategy with increasing population
size introduced by Ros et al.

The Age-Layered Population Structure (ALPS) Evolutionary Algorithm
(EA) is a method presented by Hornby et al. in [7]. ALPS claims to avoid pre-
mature convergence than other EAs methods.

The Prototype Optimization with Evolved Improvement Steps (POEMS) was
introduced by Kubalik et al. in [9]. POEMS is a stochastic local search-based
algorithm.

The restarted estimation of distribution algorithm (EDA) with Cauchy distri-
bution (Cauchy-EDA) probabilistic model was suggested by Povsik et al. in [13].
Cauchy-EDA claims to be usable for many fitness landscapes. On the contrary,
EDA with Gaussian distribution tends to converge prematurely.

The Differential Ant-Stigmergy Algorithm (DASA) was presented in [8] by
Korovsec et al. DASA is a stigmergy-based algorithm for solving optimization
problems with continuous variables.

Hansen et al. analysed the Nelder-Mead downhill simplex method [5]. Nelder-
Mead is a multistart strategy applied on local and global levels. On the one hand,

Benchmarking FDA on Low-Dimensional Problems 217

at the local level, ten restarts are conducted with a small number of iterations
and reshaped simplex. On other hand, at the global level, independent restarts
are launched until 105D function evaluations are exceeded.

3 The Fractal Decomposition Based Algorithm

Nakib et al. introduced a fractal decomposition [11] based on hyperspheres to
solve high dimensional continuous optimization problems with low complexity.
FDA [11] uses two components to find the optima in the landscape: the First
component, called fractal decomposition, is used as an exploration technique.
Then, the second component, called Intensive Local Search (ILS), is used as
the exploitation technique to search in the local regions previously identified
as promising regions. The basic pattern used in the fractal decomposition is a
hypersphere because when scaled into a high dimensional space, its computa-
tional complexity is low. FDA covers the space with few hyperspheres allowing
it to obtain a good performance in its exploratory phase. An inflation procedure
is applied to the hyperspheres (see Fig. 1) to ensure that all space is covered.

Fig. 1. Hypersphere fractal decomposition at 4 levels of depth [11].

The following subsection is dedicated to the different FDA components.

3.1 Exploration Component

At this phase, promising regions are searched for by conveniently subdividing
the search space into smaller regions that might contain a good solution. The
partition of space is modeled after a form of a hypersphere. This shape is a
suitable representation that allows FDA to be extremely competitive in large-
scale spaces.

218 A. Llanza et al.

Given a center Ck of a hypersphere with radius r the centers of its decom-
position can be obtained as in Eq. 2:

Ci
k+1 = Ck + (−1)i · ((r − r′)e[i+1

2]) (2)

Then, the quality of each generated hypersphere is evaluated based on two
points −→s1 and −→s2 originated based on Eq. 3.

−→s1 =
−→
C l + α

rl√
D

× −→e d, for d = 1, 2, . . . ,D

−→s2 =
−→
C l − α

rl√
D

× −→e d, for d = 1, 2, . . . ,D (3)

Subsequently, for the aforementioned positions (−→s1 , −→s2) and the center of
the hypersphere

−→
Cl, their fitnesses, f1, f2, and fc, respectively, are evaluated.

Furthermore, the distances to the best position found so far (BSF) are also
computed via the L2 − norm.

During this process, it is important to point out that the best solutions and
their coordinates are saved. At this point, the slope g1, g2, and gc is calculated
on the three positions’ fitness (f1, f2, and fc) based on the L2 norm distance to
BSF as in Eq. 4.

g1 =
f (−→s1)

‖−→s1 − BSF‖ , g2 =
f (−→s2)

‖−→s2 − BSF‖ and gc =
f

(−→
Cl

)
∥∥∥−→
Cl − BSF

∥∥∥
(4)

The quality of the hypersphere will be defined by the highest ratio among
g1, g2, and gc, denoted by q as in Eq. 5:

q = max {g1, g2, gc} (5)

As an important remark, each level of hyperspheres that has not yet been
decomposed, is stored in a list and sorted by its quality score. Therefore, when
all the hyperspheres in a level have been explored, the next level of hyperspheres
unlocks until the stopping criterion is reached. By default the stopping criterion
is defined on one of the following conditions:

– The maximum number of evaluations given by the benchmark is reached.
– The maximum decomposition level k is reached.

3.2 Exploitation Component

In the intensification phase, ILS is used for its simplicity and efficiency to find a
local/global optimum at the end of its execution.

Benchmarking FDA on Low-Dimensional Problems 219

This technique uses two candidate solutions (xs1 and xs2) that are evalu-
ated per dimension. Each candidate is located one step size (ω) in the opposite
directions w.r.t. the current solution xs based on Eq. 6:

xs1 = xs + ω × ei

xs2 = xs − ω × ei (6)

where ei is the unit vector in which the i-th element is set to 1 and the other
elements to 0.

Then the best solution among xs, xs1 , and xs2 is selected to be the next
current solution xs. The factor ω is halved whenever ILS cannot find a better
solution in any of the dimensions until a stopping criterium is reached. This can
happen in any of the following cases:

– The maximum number of evaluations given by the benchmark is reached.
– ω keeps decreasing until a given value ωmin that denotes the tolerance or the

minimum precision needed by the benchmark.

4 Benchmark

BBOB is a continuous optimization problem with mixed-integer domains which
consists of a set of 6 suits (bbob, bbob-noisy, bbob-biobj, bbob-largescale, bbob-
mixint, bbob-biobj-mixint). In this study, we analyze the bbob suit that consists of
a set of functions (f1 - f24) divided into five groups (Separable, Misc. moderate,
Ill-conditioned, Multi-modal, and Weak structure) which are scalable to the
dimension. The functions are defined within the hypercube [−5, 5]D, where D
is the dimensionality of the search space. Furthermore, each function has 15
instances to ensure results are statistically significant when reported. Generally,
the difficulty in BBOB increases from the first to the last group. Groups are
used to aggregate the obtained results, into more meaningful reports on the
performance of functions with particular characteristics.

To compare real-parameter global optimizers, we used the Comparing Con-
tinuous Optimizers (COCO) framework [4]. COCO provides benchmark function
testbeds, easy-to-parallelize experimentation templates, and tools for processing
and visualization tools for data generated by one or more optimizers.

4.1 Performance Metrics

Average execution time (aRT) was introduced in [14] under the name as ENES
and afterwards referred to in [1,5] as success performance and ERT correspond-
ingly. This metric estimates the expected execution time of the restart algorithm.
Typically, the average over all the trials is taken by varying only the reference
instantiation parameters θi.

220 A. Llanza et al.

The execution time of the restart algorithm is given in Eq. 7. Here, we imply
that the instance of the optimization problem p = (n, fθ, θi) is given by triple of
search space dimension, function, and instantiation parameters. The subscripts
us and s denote unsuccessful and successful trials, ΔI is the precision, and
J ∼ BN(1, 1 − ps) is a random variable with negative binomial distribution that
models the number of unsuccessful runs until a success is observed given ps > 0
the success probability of the algorithm.

RT(n, fθ,ΔI) =
J∑

j=1

RTus
j (n, fθ,ΔI) + RTs(n, fθ,ΔI) (7)

Therefore, the expected runtime of the restart algorithm is represented in
Eq. 8:

E(RT)& = &E(RTs) +
1 − ps

ps
E(RTus). (8)

Given a dataset that succeeds at least once (ns ≥ 1) with runtimes RTs
i , and

nus unsuccessful runs with RTus
j evaluations, the average runtime is expressed

as in Eq. 9:

aRT =
1
ns

∑
i

RTs
i +

1 − ps
ps

1
nus

∑
j

RTus
j

=

∑
i RTs

i +
∑

j RTus
j

ns

=
#FEs

ns
, (9)

where #FEs denotes the total number of function evaluations made in all trials
before reaching the target precision.

5 Experiments and Discussion

In the following subsections, the results of the 24 BBOB functions are analyzed.
FDA has been benchmarked on the dimensions D = 2, 3, 5, 10, 20, 40. The maxi-
mum number of function evaluations (maximum budget) is chosen as 1000 × D.
Experimental results show that FDA performs best on the separable functions.
However, it works also quite well on Misc. moderate functions with lower dimen-
sions. On the other hand, the algorithm fails to solve optimization problems with
functions based on a multi-modal structure. The summary of FDA performance
comparing to benchmark SOTA is provided in Fig. 2.

Benchmarking FDA on Low-Dimensional Problems 221

(a) 2 dimensions (b) 3 dimensions

(c) 5 dimensions (d) 10 dimensions

(e) 20 dimensions (f) 40 dimensions

Fig. 2. Comparison of 12 SOTA methods per dimensions 2, 3, 5, 10, 20, and 40. The
x-axis represents a particular budget in time (evaluations). The y-axis represents the
performance of the 24 bbob functions that the given method has managed to solve (the
higher the value the better). Each function is represented by 15 instances.

The rest of the experiments section is organized as follows. First, function
results are broken down by dimension and function group to better under-
stand FDA performance. Then, an aggregated graph is offered to summarize
the previously mentioned information and expand the view of the dimensions.

222 A. Llanza et al.

Afterward, target precision details based on FDA evaluation consumption are
supplied. Finally, a comparison with other methods mentioned in previous sec-
tions is provided.

5.1 Runtime Distributions (ECDFs) Summary and Function
Groups

FDA performance by function groups can be observed in Fig. 3. Each column
represents a different dimension complexity. FDA has been tested in dimensions
2, 3, 5, 10, 20, and 40. However, only dimensions 5, 10, and 40 have been chosen
to be shown in this graph. Each column depicts the group of functions available
in BBOB (separable, misc. moderate, ill-conditioned, multi-modal, and weak
structure functions). Overall, FDA does not perform well on the benchmark. In
particular, often it does not succeed finding the optima. FDA performs better
in the Misc. moderate and Weak structure functions. Nevertheless, it does not
reach a minimum performance standard in this low-dimensional problem.

In Fig. 4 the aforementioned summary including all the dimensions where
FDA was benchmarked is provided. Each graph compares a set of functions per
dimension. The higher the dimension the more complex the problem becomes.
As it can be observed, in many cases FDA does not reach the global optimum.

5.2 Scaling of Runtime with Problem Dimension

In Fig. 5 the expected runtime 8 per target function precision w.r.t. dimension is
presented. The values obtained are plotted in a logarithmic scale. The symbol +
represents the median run time of successful runs to complete the hardest goal
that was completed at least once (but not always). The symbol × characterizes
the maximum number of function evaluations in a trial. The FDA attempted to
adjust only once per instance function due to its deterministic nature.

5.3 Discussion

We find that the FDA is not adapting well to the current problem. Nonetheless,
the FDA has a promising start in exploring the search space with its fractal-based
technique that subdivides space into promising smaller regions. On the contrary,
ILS turns out to be too slow in the intensification phase harming the good initial
performance. In particular, the main disadvantage of the FDA intensification
step is not being able to abandon an unpromising solution trajectory.

Benchmarking FDA on Low-Dimensional Problems 223

5 dimensions 20 dimensions 40 dimensions

Fig. 3. In this illustration the 24 BBOB functions are represented. Each row refers
respectively to separable, misc. moderate, ill-conditioned, multi-modal, and weak struc-
ture functions. Moreover, each column refers to the functions computed on 5, 20, and
40 dimensions. Particularly, the y-axis denotes the percentage of times a function has
located the optimal target (Every independent function being run 15 times). The x-axis
represents the number of evaluations divided by the problem dimension.

224 A. Llanza et al.

(a) Separable (f1 - f5) (b) Misc. moderate (f6 - f9)

(c) Ill-conditioned (f10 - f14) (d) Multi-modal (f15 - f19)

(e) Weak structure (f20 - f24) (f) All (f1 - f24)

Fig. 4. Summary of function groups per dimension. The y-axis denotes the percentage
of times a function has located the optimal target (Every independent function being
run 15 times). The x-axis represents the number of evaluations divided by the problem
dimension.

Benchmarking FDA on Low-Dimensional Problems 225

Fig. 5. In this figure the 24 BBOB functions are displayed at different target precision.
The diamond shape in the graphs presents the best method in 2009 at the most complex
target (red line). The y-axis denotes the expected runtime (ERT; the lower the better).
The x-axis shows the problem dimension. Finally, as a legend is used the ERT for fixed
target precision values of 10k. (Color figure online)

226 A. Llanza et al.

Fig. 5. (continued)

Benchmarking FDA on Low-Dimensional Problems 227

Fig. 5. (continued)

228 A. Llanza et al.

6 Conclusions

In this paper, we applied the FDA metaheuristic to the BBOB benchmark of
low-dimensional continuous optimization problems. In particular, we tested on
bbob suit for dimensions 2, 3, 5, 10, 20, and 40.

The results show that although FDA performs well on high-dimensional opti-
mization problems, it performs poorly on the selected problem, except for Misc.
moderate and Weak structure functions. One possible explanation is the FDA
design which specifically targets the curse of dimensionality. It is important to
highlight that FDA often exhibits a leading performance at the beginning of any
function type. However, while evaluations are being consumed, FDA loses its
advantage presumably due to its basic ILS implementation. In future works, we
consider the adaptation of the FDA to low-dimensional problems. Moreover, in
the exploration phase, we consider the possibility of further analyzing the hyper-
sphere decomposition techniques. Also, at the intensification stage, we intend to
improve the ILS method to ensure that the convergence is done more efficiently.

References

1. Auger, A., Hansen, N.: Performance evaluation of an advanced local search evolu-
tionary algorithm. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2,
pp. 1777–1784. IEEE (2005)

2. Bosman, P.A., Grahl, J., Thierens, D.: Amalgam ideas in noiseless black-box opti-
mization benchmarking. In: Proceedings of the 11th Annual Conference Compan-
ion on Genetic and Evolutionary Computation Conference: Late Breaking Papers,
pp. 2247–2254 (2009)

3. Garćıa-Mart́ınez, C., Lozano, M.: A continuous variable neighbourhood search
based on specialised EAs: application to the noiseless BBO-benchmark 2009. In:
Proceedings of the 11th Annual Conference Companion on Genetic and Evolution-
ary Computation Conference: Late Breaking Papers, pp. 2287–2294 (2009)

4. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a
platform for comparing continuous optimizers in a black-box setting. Optim. Meth-
ods Softw. 36, 114–144 (2021). https://doi.org/10.1080/10556788.2020.1808977

5. Hansen, N.: Benchmarking a bi-population CMA-ES on the BBOB-2009 function
testbed. In: Proceedings of the 11th annual conference companion on genetic and
evolutionary computation conference: late breaking papers, pp. 2389–2396 (2009)

6. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization
benchmarking 2009: Noiseless functions definitions. Ph.D. thesis, INRIA (2009)

7. Hornby, G.S.: Steady-state alps for real-valued problems. In: Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation, pp. 795–802
(2009)

8. Korošec, P., Šilc, J.: A stigmergy-based algorithm for black-box optimization: noise-
less function testbed. In: Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference: Late Breaking Papers, pp.
2295–2302 (2009)

9. Kubalik, J.: Black-box optimization benchmarking of prototype optimization with
evolved improvement steps for noiseless function testbed. In: Proceedings of the
11th Annual Conference Companion on Genetic and Evolutionary Computation
Conference: Late Breaking Papers, pp. 2303–2308 (2009)

https://doi.org/10.1080/10556788.2020.1808977

Benchmarking FDA on Low-Dimensional Problems 229

10. Molina, D., Lozano, M., Herrera, F.: A memetic algorithm using local search chain-
ing for black-box optimization benchmarking 2009 for noisy functions. In: Pro-
ceedings of the 11th Annual Conference Companion on Genetic and Evolutionary
Computation Conference: Late Breaking Papers, pp. 2359–2366 (2009)

11. Nakib, A., Ouchraa, S., Shvai, N., Souquet, L., Talbi, E.G.: Deterministic meta-
heuristic based on fractal decomposition for large-scale optimization. Appl. Soft
Comput. 61, 468–485 (2017)

12. Nakib, A., Souquet, L., Talbi, E.G.: Parallel fractal decomposition based algorithm
for big continuous optimization problems. J. Parallel Distrib. Comput. 133, 297–
306 (2019)

13. Poš́ık, P.: Bbob-benchmarking a simple estimation of distribution algorithm with
cauchy distribution. In: Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference: Late Breaking Papers, pp.
2309–2314 (2009)

14. Price, K.V.: Differential evolution vs. the functions of the 2/sup nd/ICEO. In:
Proceedings of 1997 IEEE International Conference on Evolutionary Computation
(ICEC’97), pp. 153–157. IEEE (1997)

15. Ros, R.: Benchmarking sep-CMA-ES on the BBOB-2009 function testbed. In: Pro-
ceedings of the 11th Annual Conference Companion on Genetic and Evolutionary
Computation Conference: Late Breaking Papers, pp. 2435–2440 (2009)

A Comparative Analysis of Different
Multilevel Approaches for Community

Detection

Guido Bordonaro, Rocco A. Scollo(B) , Vincenzo Cutello ,
and Mario Pavone

Department of Mathematics and Computer Science, University of Catania,
v.le A. Doria 6, 95125 Catania, Italy

rocco.scollo@phd.unict.it, cutello@unict.it, mpavone@dmi.unict.it

Abstract. Community Detection is one of the most investigated prob-
lems as it finds application in many real-life areas. However, detecting
communities and analysing community structure are very computation-
ally expensive tasks, especially on large networks. In light of this, to
better manage large networks, two new Multi-Level models are proposed
in order to reduced and simplify the original graph via aggregation of
groups of nodes. Both models have been applied on two variants of an
immune-inspired algorithm, the first one based on a fully random-search
process, and the second based on a hybrid approach. From the exper-
imental analysis it clearly appears that the two proposed models help
the random-search and the hybrid immune-inspired algorithms to signif-
icantly improve their performances from both computational and quality
of found solutions point of view. In particular, the hybrid variant appears
to be very competitive and efficient.

Keywords: Community detection · Multi-level search ·
Metaheuristics · Hybrid metaheuristics · Immune-inspired
computation · Random search

1 Introduction

Community detection is one of the most important and relevant problems in
network sciences and graph analysis as it finds application in many industrial
and research areas, as a consequence many approaches to the problem have been
developed in the last years. The ability to discover communities in a complex
network allows to gain crucial and important information, such as, for instance:
identify the interactions between different entities; reveal social relationships
among people; detect proteins that have same specific function within a cell;
identify different web pages dealing with the same or related topics; and many
others. From these simple examples, we can see that community detection plays
a key role in many research and application areas, such as biology, medicine,
economics, social sciences, engineering, ecology, etc. Informally, a community
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 230–245, 2023.
https://doi.org/10.1007/978-3-031-26504-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_17&domain=pdf
http://orcid.org/0000-0002-6211-8675
http://orcid.org/0000-0002-7521-3516
http://orcid.org/0000-0003-3421-3293
https://doi.org/10.1007/978-3-031-26504-4_17

Analysis of Multi-level Approaches for Community Detection 231

(or cluster) is defined as a set of network’s elements that are strongly connected
inside the community but weakly linked with all other ones. In a nutshell, each
community represents a set of vertices (or entities) that share common prop-
erties, or play similar roles, or show similar interests within the network. For
all these reasons, therefore, the study of community structures inspires intense
research activities to visualize and understand the dynamics of a network at
different scales [10,14,16].

As a consequence, several iterative and exact search algorithms for clustering
problems have been proposed, and they have been proved to be robust in finding
as cohesive as possible communities in complex networks [18,19]. However, dis-
covering communities and analysing their structure on large complex networks
(with thousands and/or millions of nodes) is very hard and extremely compu-
tationally expensive, which makes most of the algorithms proposed in literature
unsuitable to be applied. Thus, to efficiently handle large networks and find reli-
able partitions it is usually useful to apply multi-level approaches, in which the
main optimization algorithm is applied to the reduced graph obtained from the
best partition found up to that point, where nodes represent communities, and
the edges the connections between them. This iterative process allows for a more
exhaustive exploration of the search space.

In this research work, we present some multi-level approaches and we study
how they affect the performances of two different immune algorithms (IA): a first
algorithm based on a fully random-search [7,25], and a second based on a hybrid
approach [7]. The goal of the developed multi-level approaches is therefore to help
the two versions of IA in efficiently handling large networks to detect community
structures. The two main multi-level approaches proposed have been designed,
and then adapted to the two variants of IA, as they explore the search space
in different way. The first approach uses a backtracking technique to previous
levels if the aggregations made so far do not lead to improvements for a given
number of levels. The second one, on the other hand, introduces a quality-based
aggregation, which simply merges those nodes in the same community having
a high ratio between internal degree and total degree (see Eq. 4, Sect. 4.1). The
obtained outcomes show the usefulness of the proposed multi-level approaches,
proving their remarkably good influence in improving the quality of the found
solutions for both variants, particularly on larger networks.

2 The Modularity as Evaluation Metric

As we already said, a community in a network is defined as a set of elements that
are highly linked within it but weakly outside. The goal of community detection
is to divide (or partition) the network nodes into groups, so that the connections
are strong inside and weak outside. In a nutshell, the aim of community detection
is to identify the modules or communities in networks and their hierarchical
organization.

To assess the quality of the detected communities, the modularity function is
certainly the most used quality metric [20]. Modularity is based on the idea that

232 G. Bordonaro et al.

a random network is not expected to have a community structure, therefore the
possible existence of communities can be revealed by the difference of density
between vertices of the network and vertices of a random network having the
same size and degree distribution. Formally it can be defined as follow: given an
undirected graph G = (V,E), with V the set of vertices (|V | = N), and E the
set of edges (|E| = M), the modularity Q of a community is given by

Q =
1

2M

[
N∑

i=1

N∑
j=1

(
Aij − didj

2M

)
δ(i, j)

]
, (1)

where Aij is the adjacency matrix of G, di and dj are the degrees of nodes i and
j respectively, and δ(i, j) = 1 if i, j belong to the same community, 0 otherwise.
As asserted in [3], the modularity value for unweighted and undirected graphs
lies in the range [−0.5, 1]. Hence, low Q values reflect a bad nodes partitioning
and imply the absence of real communities; high values instead identify good
partitions and imply then the presence of highly cohesive communities. How-
ever, although modularity is the most used evaluation metric, it fails to reveal
relatively small communities as it tends to produce larger communities [11]. Con-
sidering the modularity as objective function the community detection can be
tackled as a combinatorial optimization problem where the goal becomes to find
a clustering that maximize Q. In view of this, we must consider the fact that
community detection has been proven to be a NP-complete problem [3].

3 Immune Metaheuristics

Immune Algorithms (IA), which are one of the most successfully population-
based metaheuristics in search and optimization tasks, are based on the princi-
ples and dynamics through which the immune system protects a living organism
[5]. What makes the immune system a source of inspiration is its ability to detect,
distinguish, learn and remember all foreign entities to the body (called Antigens
- Ag) [12], defending consequently the organism from potential, dangerous dis-
eases. There are several ways for the immune system to fastly recognize and
attack foreign entities. One of these is the clonal selection principle that works
in the following way: all cells that recognize the antigen start a cloning phase
of themselves, i.e. duplication, and the number of copies is proportional to their
recognition quality. Afterwards, each clone undergoes a hypermutation process,
and the number of mutations (greater than one) is inversely proportional way
to its recognition quality. From a computational point of view, the antigen is
the problem to be solved, while the cells belonging to the organism represent
the solutions to the problem. All those algorithms that simulate this principle
belong to the special class Clonal Selection Algorithms (CSA) [6,8,22], and have
in the (i) cloning, (ii) hypermutation and (iii) aging operators their strength.
The two immune algorithms proposed in this research work, Random-IA and
Hybrid-IA, are both based on this principle.

As in all population-based metaheuristics, both algorithms maintain a pop-
ulation of d candidate solutions at each time step t. In this work, each solution

Analysis of Multi-level Approaches for Community Detection 233

is a subdivision of the vertices of the graph G = (V,E) in communities; specif-
ically, a solution x is an integers sequence of N = |V | integers belonging to
the range [1, N], where xi = j indicates that the vertex i has been added to the
cluster j. For the initial population, at time step t = 0, each vertex i is randomly
assigned to a j. Once initial population is generated, and, in general, just after
a new offspring population is created, the procedure ComputeFitness(P (∗)) is
called to compute the fitness function (Eq. 1), that is to evaluate the quality
(poor or good) of each solution. Finally, the algorithms will stop once a given
termination criterion is reached, which, in this work, is the maximum number
of allowed generations (MaxGen). The pseudo-code and main parameters are
reported in Algorithm 1, where the boolean variable LS enables (or not) the
Local Search procedure [24]. Thus, when LS = true, we will have Hybrid-IA,
otherwise Random-IA.

Algorithm 1. Pseudo-code of Random-IA and Hybrid-IA.
1: procedure ImmuneAlgorithm(d, dup, ρ, τB , LS)
2: t ← 0
3: P (t) ← InitializePopulation(d)

4: ComputeFitness(P (t))
5: while ¬StopCriterion do
6: P (clo) ← Cloning(P (t), dup)

7: P (hyp) ← Hypermutation(P (clo), ρ)

8: ComputeFitness(P (hyp))

9: (P
(t)
a , P

(hyp)
a) ← Aging(P (t), P (hyp), τB)

10: P (select) ← (μ + λ)−Selection(P
(t)
a , P

(hyp)
a)

11: if (LS) then

12: P (t+1) ← LocalSearch(P (select))

13: ComputeFitness(P (t+1))
14: else
15: P (t+1) ← P (select)

16: end if
17: t ← t + 1;
18: end while
19: end procedure

After the phase of fitness computation (line 4), the cloning procedure takes
place (line 6), each solution is copied dup times, producing an intermediate
population P (clo) of size d×dup. Inside the cloning operator, an age is assigned to
each clone, which represents the number of generations each clone has been in the
population. Thus, the range from the assigned age to the maximum age allowed
(user-defined parameter τB) represents how long the solution can live/remain
in the population. Such a lifespan affects the efficiency of the exploration of
the search space, as well as on the exploitation phase. Specifically, a random
age chosen in the range [0 : 2

3τB] is assigned to each clone, so to guarantee
to the solution a minimal number of generations (13τB in the worst case). It is
worth emphasizing that age assignment together with the aging operator play
a crucial role on the performance of the algorithm as their combination helps

234 G. Bordonaro et al.

the algorithms to avoid to get trapped into local optima thanks to a proper
solutions’ diversity produced [9].

The hypermutation operator (line 7) aims at carefully exploring the neigh-
borhood of each solution so to find better solutions iteration by iteration. A
predetermined number of mutations - more than one - are carried out on each
solution, whose mutation rate is inversely proportional to its fitness value, i.e. the
higher the fitness value of the element, the smaller its mutation rate. Specifically,
let x be a solution, the mutation rate α = e−ρf̂(x) is defined as the probability
to move a node from one community to another, where ρ (user-defined parame-
ter) determines the shape of the mutation rate, and f̂(x) is the fitness function
normalized in the range [0, 1]. Formally, for each element in the population we
randomly select two different communities ci and cj (ci �= cj) such that ci is
chosen among all existing ones, and the second one in the range [1, N]. Then,
all vertices in ci are moved to cj with probability given by α. However, since cj

is chosen randomly in the range [1, N], it can happen that it doesn’t match any
existing one; in such a case, a new community cj is created and added to the
existing ones. This approach allows to create and discover new communities by
moving a variable percentage of nodes from existing communities, and, further,
in Hybrid-IA version, it balances the effects of local search by allowing the
algorithm to avoid premature convergences towards local optima.

Once the fitness values are computed for all the elements in the population
(line 8) the Static aging operator (line 9) is applied in both versions, and it
removes older elements from both populations P (t) and P (hyp). Let τB

1 the
maximum number of generations allowed within which the solution can stay
into the population; then, starting from the age assigned in the cloning operator,
which is increased by one at each iteration, as soon as the solution exceeds the τB

age (i.e. age = τB+1), it is removed from the population, regardless of its fitness
value. Only an exception occurs for the overall best current solution, which is
instead kept even if its age is older than τB . Such a variant is called elitist static
aging operator. The best d survivors from both populations P

(t)
a and P

(hyp)
a are

selected for the new (temporary) population P (select) (line 10), on which the
local search (line 12) is carried out if LS is true. For this selection, we developed
the (μ + λ)-Selection operator, where μ = d and λ = (d × dup), which ensures
monotonicity in the evolution dynamics.

The main and most important difference between Random-IA and Hybrid-
IA versions is the use of the Local Search (LS) in the last. Local Search aims
at properly speeding up the convergence of the algorithm, driving it towards
more promising regions [24]. The Move Vertex approach (MV) [17] was used for
intensifying the exploration of the neighborhood of each solution. The LS basic
idea is to assess deterministically if a node can be moved from its community
to another one. MV approach considers the move gain that is the variation
in modularity produced when a node is moved from a community to another.
However, before formally defining the move gain, it is important to point out
that the modularity Q (Eq. 1) can be rewritten as:

1 A user-defined parameter.

Analysis of Multi-level Approaches for Community Detection 235

Q(c) =
k∑

i=1

[
�i

M
−

(
di

2M

)2
]

, (2)

where k is the number of communities detected; c = {c1, . . . , ci, . . . ck} is the
set of communities; li and di are, respectively, the number of links inside the
community i, and the sum of the degrees of vertices belonging to the community
i. Let u a vertex of the community ci; the move gain is, therefore, defined as the
modularity variation produced by moving u from ci to cj . Formally:

ΔQu(ci, cj) =
lcj (u) − lci(u)

M
+ dV (u)

[
dci − dV (u) − dcj

2M2

]
, (3)

where lci(u) and lcj (u) are respectively the number of links of u with nodes
in ci and cj , while dV (u) is the degree of u when considering all vertices in
V . If ΔQu(ci, cj) > 0 then moving u from ci to cj produces an increment in
modularity, and then a possible improvement. It follows, that the goal of MV
is then finding a node u to move so to maximize maxv∈Adj(u) ΔQu(i, j), where
u ∈ Ci, v ∈ Cj and Adj(u) is the adjacency list of node u. For each solution in
P (select), the Local Search begins by sorting the communities in increasing order
with respect to the ratio between the sum of inside links and the sum of the node
degrees in the community. In this way, poorly formed communities are identified.
After that, MV acts on each community of the solution, starting from nodes that
lie on the border of the community, that is those that have at least an outgoing
link. Also for communities, the nodes are sorted with respect to the ratio between
the links inside and node degree. The key idea behind LS is to deterministically
repair the solutions which were produced by the hypermutation operator, by
discovering then new partitions with higher modularity value. Equation 3 can
be calculated efficiently because M and dV (u) are constants, the terms lci and
dci can be stored and updated using appropriate data structures, while the
terms lci(u) can be calculated during the exploration of all adjacent nodes of u.
Therefore, the complexity of the move vertex operator is linear on the dimension
of the neighborhood of node u.

4 Multi-level Approaches

The multi-level approach is an optimization technique used to improve a commu-
nity detection algorithm, both in terms of objective function and computational
cost. This approach consists in creating a new graph in which the nodes are the
communities of the partial solution found by the base algorithm, while edges
between communities are merged together with a weight given by the sum of
the edges between nodes in the corresponding two communities. Edges between
nodes in the same community are translated in self-loops in the new graph.
In this way the modularity value for the partition does not change in the new
graph [1]. In Fig. 1 is shown the creation of a new level starting from the par-
tition found on the current graph. The reduced graph is then passed as input

236 G. Bordonaro et al.

Fig. 1. Creation of the community network by the multi-level optimization. Communi-
ties will be translated in nodes in the next level, while edges are merged together with
a weight that is the number of edges that those communities share. Self-loops identify
internal edges.

to the base algorithm to compute the next solution. These steps are repeated
until no further improvement can be achieved or for a certain amount of time.
At each iteration the size of the reduced graph decreases and consequently the
efficiency of the base algorithm is greatly improved.

In a metaheuristic algorithm, the implementation of multi-level optimization
could lead to wrong solutions, because some parts of the solution would be
locked and any further improvement to the solution would be done only by fusing
together the remaining nodes. After few iterations, the graph will be reduced to a
small number of nodes where any combination between them would not result in
a modularity improvement, but the solution would remain of low quality. In light
of this, in the following sections we propose two multi-level approaches: the first
one uses a backtracking mechanism to give the underlying base metaheuristic
algorithm a chance to improve specific parts of the global solution; the second
one uses a heuristic to merge nodes together.

4.1 Random and Smart Explosion

The first approach proposed consists of the classical multi-level optimization
with a backtracking mechanism that brings the algorithm back to a previous
level when there is no improvement of the modularity value for a certain num-
ber of levels. Then to the base algorithm we provide the graph of the level
with the best partition found in which some nodes, that represent communi-
ties, are disaggregated to the original graph. This allows to free nodes that had
been blocked in an earlier wrong solution trying to repair communities not well-
formed. The communities which explode are randomly selected from those in the
best partition and the number is given by a user-defined parameter Ne. Usu-
ally the number of communities to disaggregate is kept low in order to avoid
degrading too much the current solution and letting the underlying base algo-
rithm to focus mainly on those nodes that are now free. After the roll-back to a
previous level, the multi-level approach continue in the classical way until a new
stagnation of the modularity value occurs. Then the back-tracking mechanism is

Analysis of Multi-level Approaches for Community Detection 237

applied again and this process is repeated for a certain number of times. Finally,
the algorithm stops and returns the best solution found.

A complete disaggregation of one or more communities affects the perfor-
mance of the base algorithm, disrupting correct parts of the current solution
and increasing the number of nodes to evaluate. A further improvement of this
approach consists in a smart explosion of the communities, in which only a sub-
set of nodes is disaggregated. In this way the method only critical nodes, that is
the nodes that lie on the boundary of the community, are disaggregated. Critical
nodes are identified using the internal-total degree ratio:

kint
i (C)

ki
< Te (4)

where kint
i (C) is the sum of the weights of edges that node i shares with other

nodes belonging to the same community C, ki is the sum of weights of all inci-
dent edges of node i and Te is a user-defined threshold. In Fig. 2 is shown the
application of the smart explosion approach.

Fig. 2. Example of smart explosion approach. In this case nodes 5 and 6 have an
internal-total degree ratio less or equal than 0.5 and the method disaggregates them
from their own community in order to let the base algorithm relocate them to a better
community.

4.2 Smart Merge

A naive multi-level approach, that blindly merges all nodes in their respective
supposed communities, could lead to wrong associations node-community, as
described before. The second proposed approach modifies the multi-level opti-
mization introducing a quality-based aggregation. In particular during the aggre-
gation phase, only those nodes belonging to the same community and with a
high internal-total degree ratio (Eq. 4) will be merged together. In this way, the
nodes that are supposed to be already associated with the correct community
and that will not change in subsequent iterations, will be merged together, reduc-
ing the size of the graph and the complexity of the base algorithm. On the other
hand, critical nodes are kept free and can be moved to the correct community
by the underlying base algorithm. In Fig. 3 is shown how the multi-level with
smart merge mechanism works. This approach is useful and efficient with a base

238 G. Bordonaro et al.

Fig. 3. Creation of the network of the next level by the multi-level optimization with
smart merge mechanism. In this case nodes 5 and 6 are kept free because they share a
number of links with other communities greater than or equal to those they share with
their own community.

algorithm that finds good partition in a relatively small time. Algorithms that
tend to converge slowly starting from low quality solutions, do not receive a sig-
nificant improvement by this approach because the aggregation heuristic used
in the smart merge (that depends on the threshold Tm) decreases the graph size
slowly, affecting the overall computational time.

Fig. 4. Communities detected by the smart merge approach (left plot), and by the
smart merge considering the connected components (right plots).

However, although this approach allows to reach high values of modularity,
by inspecting the graphical representation of the detected communities (left plot
in Fig. 4), it is possible to note how a single community is composed by elements
disconnected from each other (see inset plot in Fig. 4). This happens because
these disconnections are disregarded by smart merge approach, as it asserts

Analysis of Multi-level Approaches for Community Detection 239

the goodness of a vertex by checking only if its links are inside or outside. In
light of this, to overcome this limitation, it was enough to add a control on the
communities detected by the basic version of the algorithm (Hybrid-IA), which
divides the clusters into their connected components. Through this simple check,
the detected communities appear to be more compact graphically (right plot in
Fig. 4), as well as reaching higher modularity values (see Table 3, Sect. 5). This
variant is called smart-merge+check-connect.

5 Experimental Results

To assess the robustness and efficiency of the proposed multilevel approaches,
three well-known benchmark networks were used, which are reported in Table 1.
Obviously, the comparison with the relative basic versions is also presented in
this section so to check the improvements produced by the proposed approaches.
In particular, Random-IA has been considered as the basic algorithm for the
random and smart explosion approaches due to its stochastic nature; in this way,
it can repair a small region of the network disaggregated by the explosion mecha-
nism. On the other hand, as described in Sect. 4.2, Hybrid-IA has been used as
basic underlying metaheuristic for the smart merge approach, because this algo-
rithm reaches in just few iterations solutions with high modularity value. Conse-
quently, the backtracking approaches developed in random and smart explosion,
if applied on Hybrid-IA should disaggregate a high number of communities at
each stagnation of modularity, and then correct/repair all communities, increas-
ing however the network size, and therefore considerably slowing down the con-
vergence of the entire algorithm.

For all the experiments, both versions use the same parameter configurations,
and specifically a population of d = 100 solutions; a duplication factor dup = 2;
τB = 20 as the maximum age allowed; and a mutation shape ρ = 1.0. Due
to the different algorithmic structure of the two versions, a different number
of iterations MaxGen was considered. In particular, for Random-IA we set
MaxGen = 1000 for each level, while in Hybrid-IA the number of iterations
is related to the size of the network: MaxGen starts from 50 iterations and
progressively decreases proportionally to the size of the network, to a minimum
of 10 iterations.

Table 1. The benchmark networks used in the experiments.

Name Description |V | |E|
E-mail [15] University e-mail network 1133 5451

Yeast [4] Protein-protein interaction network in budding yeast 2284 6646

Power [26] Topology of the Western States Power Grid of the US 4941 6594

For the multi-level optimization process, the random explosion reverts just
Ne = 1 community to the original network, while the smart explosion approach

240 G. Bordonaro et al.

disaggregate Ne = 2 communities using a threshold Te = 0.5. The multi-level
optimization with the smart merge mechanism instead uses a Tm = 0.5 to con-
struct the network for the next level. Although multi-level optimization can stop
its execution when it detects a modularity stagnation, for an easier comparison
all algorithms were run 30 times for each instance and for a prefixed CPU time.
In particular, in random explosion and smart explosion, which use Random-IA
as basic algorithm, the CPU time limit was fixed, respectively, to 1200 s for
E-mail, 2400 s for Yeast and 3600 s for Power. In smart merge approach, which
uses Hybrid-IA as underlying basic algorithm, the CPU time limit was fixed to
120 s for E-mail, 900 s for Yeast and 3600 s for Power.

Fig. 5. Convergence analysis over time of Random-IA; Random-IA with random
explosion; and Random-IA with smart explosion, on the benchmark networks Email
(top left), Yeast (top right) and Power (bottom).

The first analysis of this research work focused on investigating the impact
that the two random and smart explosion approaches have on the basic ver-
sion (Random-IA), and how much they positively affect its overall perfor-
mances. Figure 5 therefore shows the convergence behaviour of the proposed
multi-level approaches compared with Random-IA. In particular, the three con-
vergence curves of (1) Random-IA, (2) Random-IA with random explosion,
and (3) Random-IA with smart explosion are displayed, from which it is pos-
sible to analyze how much improvement the two proposed multi-level approaches
produce compared to the basic version. With regard to the larger benchmark

Analysis of Multi-level Approaches for Community Detection 241

networks, it can be clearly seen how the improvements produced by the two multi-
level approaches are remarkably reaching significantly higher modularity values.
Inspecting only the comparison between the two multi-level approaches it is pos-
sible to assert: (a) on the Email network the random explosion shows an ini-
tially slower convergence than smart explosion, whilst, afterwards, the two curves
join showing the same convergence behaviour. However, towards the end of the
run, random explosion is able to improve and reach slightly higher modularity
value than smart explosion; (b) on the Yeast and Power networks, instead, smart
explosion clearly outperforms random explosion, especially on the larger network
(Power), where the distance between the curves is quite significant and clear in
favour of smart explosion.

Table 2. Random and Smart Explosion versus basic algorithm (Random-IA). Best
modularity found, mean and standard deviation (σ) as comparison measures.

Email Yeast Power

best mean ± σ best mean ± σ best mean ± σ

Random-IA 0.3841 0.3465± 0.0186 0.4411 0.4089± 0.0171 0.1260 0.1200± 0.0026

Random-IA+RE 0.5627 0.5416± 0.0142 0.5388 0.5210± 0.0091 0.5791 0.5568± 0.0124

Random-IA+SE 0.5539 0.5282± 0.0160 0.5538 0.5404± 0.0092 0.7532 0.7364± 0.0093

In Table 2 we can see, respectively, the best modularity found, the mean of
the best, and the standard deviation (mean ± σ), for all three benchmark net-
works considered. The outcomes showed in the table confirm what asserted from
the convergence plots, that the random explosion works better on the smaller
networks (i.e. Email), whilst smart explosion on the other two. With regard to
the Power network, which is the larger and then the most significant from the
multi-level approach perspective, the modularity value found by smart explosion
is way better than the others, especially with respect to the basic version that
instead finds low values of modularity (0.1260). This points out, then, how multi-
level approach designed in smart explosion helps the random-search algorithm
(Random-IA) in revealing good community structures.

The same analysis was conducted to understand how the smart merge app-
roach affects the performance of Hybrid-IA, that is the basic version on which
it is applied. In Fig. 6 is therefore shown the convergence behaviour of the multi-
level approach compared to the basic one. By inspecting the three plots, it can
be seen how smart merge and the smart-merge+check-connect variant are sim-
ilar on the Email network, whilst in the Yeast one the connected-components
version is shown to be slightly better than the smart merge version alone. It is
important to point out that both multi-level versions improve in any case the
performance of the basic algorithm, although such improvements are moder-
ate. The improvements produced by the smart merge and smart-merge+check-
connect approaches are best seen on the larger network Power, where the gap

242 G. Bordonaro et al.

Fig. 6. Convergence analysis over time of Hybrid-IA; Hybrid-IA with smart merge;
and Hybrid-IA with smart merge and check connection, on the benchmark networks
Email (top left), Yeast (top right) and Power (bottom).

between the three curves is clear and marked. In particular the variant smart-
merge+check-connect produces sharply best performance, reaching considerably
higher modularity values to the basic version, and the smart merge one.

Table 3. Smart Merge versus basic algorithm (Hybrid-IA). Best modularity found,
mean and standard deviation (σ) as comparison measures.

Email Yeast Power

best mean ± σ best mean ± σ best mean ± σ

Hybrid-IA 0.5782 0.5690 ± 0.0049 0.5858 0.5710 ± 0.0057 0.7202 0.7065 ± 0.0063

Hybrid-IA+SM 0.5824 0.5801 ± 0.0018 0.5929 0.5845 ± 0.0045 0.8125 0.7964 ± 0.0099

Hybrid-IA+SM+C 0.5813 0.5782 ± 0.0019 0.5998 0.5940 ± 0.0033 0.9321 0.9294 ± 0.0015

These improvements are also confirmed by the results reported in Table 3,
both in term of best modularity value found, and in the mean. Indeed, by inspect-
ing the table, it clearly appears that, due to the high quality solutions produced
by Hybrid-IA on networks not excessively large, the effects and improvements
produced by the multi-level approach are limited, while instead on the large one,
where the basic algorithm struggles to reach high modularity values, the improve-
ment contribution given by the multi-level approach is notable and mainly rele-
vant (0.7202 vs 0.9321).

Analysis of Multi-level Approaches for Community Detection 243

Table 4. Comparison with state-of-the-art algorithms.

Network MSG-VM SS+ML Louvain CNTS CNTS-ML Hybrid-IA+SM+C

Email 0.5746 0.5813 0.5758 0.5820 0.5815 0.5813

Yeast 0.5948 0.6068 0.5962 0.6053 0.6055 0.5998

Power 0.9381 0.9392 0.9371 0.9380 0.9392 0.9321

Finally, Table 4 reports the comparisons between the smart-merge+check-
connect variant (being the best approach) and the state-of-the-art: SS+ML, a
multi-level algorithm based on a single-step greedy coarsening and fast greedy
refinement [21]; MSG-VM, a multistep greedy algorithm with vertex mover [23];
Louvain, a fast multi-level greedy algorithm [2]; CNTS, a combined neighborhood
tabu search [13]; and CNTS-ML, the multi-level version of the CNTS algorithm
[13]. It is possible to see how the proposed multilevel approach is competitive
with the community detection state-of-the-art on the first two benchmark net-
works, a little less on the Power one. However, on this last network, the results
obtained by Hybrid-IA with smart-merge+check-connect are not so far from
the compared ones.

6 Conclusions and Future Work

The multi-level models we propose for community detection on quite large net-
works and which are based on two variants of an immune-inspired algorithm,
were experimentally shown to be very competitive and efficient. Yet, still trail-
ing some state of the art methodologies, especially on extremely large networks.
Given such promising initial results, as future work we plan to tackle even larger
networks, in particular biological and online social networks. We will focus our
research direction on implementing mechanisms, such as reinforcement and prob-
abilistic learning, to better guide the level construction phase of the multi-level
approaches to further improve both the objective function and convergence.

References

1. Arenas, A., Duch, J., Fernández, A., Gómez, S.: Size reduction of complex net-
works preserving modularity. New J. Phys. 9(6), 176–176 (2007). https://doi.org/
10.1088/1367-2630/9/6/176

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 10, 10008–10019 (2008).
https://doi.org/10.1088/1742-5468/2008/10/P10008

3. Brandes, U., et al.: On modularity clustering. IEEE Trans. Knowl. Data Eng.
20(2), 172–188 (2008). https://doi.org/10.1109/TKDE.2007.190689

4. Bu, D., et al.: Topological structure analysis of the protein-protein interaction
network in budding yeast. Nucleic Acids Res. 31(9), 2443–2450 (2003). https://
doi.org/10.1093/nar/gkg340

https://doi.org/10.1088/1367-2630/9/6/176
https://doi.org/10.1088/1367-2630/9/6/176
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1093/nar/gkg340
https://doi.org/10.1093/nar/gkg340

244 G. Bordonaro et al.

5. Coello Coello, C.A., Cutello, V., Lee, D., Pavone, M.: Recent advances in immuno-
logical inspired computation. Eng. Appl. Artif. Intell. 62, 302–303 (2017)

6. Cutello, V., Oliva, M., Pavone, M., Scollo, R.A.: An immune metaheuristics for
large instances of the weighted feedback vertex set problem. In: 2019 IEEE Sympo-
sium Series on Computational Intelligence (SSCI), pp. 1928–1936 (2019).https://
doi.org/10.1109/SSCI44817.2019.9002988

7. Cutello, V., Fargetta, G., Pavone, M., Scollo, R.A.: Optimization algorithms for
detection of social interactions. Algorithms 13(6), 139–153 (2020). https://doi.org/
10.3390/a13060139

8. Cutello, V., Nicosia, G., Pavone, M., Stracquadanio, G.: An information-theoretic
approach for clonal selection algorithms. In: Hart, E., McEwan, C., Timmis, J.,
Hone, A. (eds.) Artificial Immune Systems, pp. 144–157. Springer, Berlin (2010).
https://doi.org/10.1007/978-3-642-14547-6

9. Di Stefano, A., Vitale, A., Cutello, V., Pavone, M.: How long should offspring
lifespan be in order to obtain a proper exploration? In: 2016 IEEE Symposium
Series on Computational Intelligence (SSCI), pp. 1–8 (2016). https://doi.org/10.
1109/SSCI.2016.7850270

10. Didimo, W., Montecchiani, F.: Fast layout computation of clustered networks:
algorithmic advances and experimental analysis. Inf. Sci. 260, 185–199 (2014).
https://doi.org/10.1016/j.ins.2013.09.048

11. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc.
Natl. Acad. Sci. 104(1), 36–41 (2007). https://doi.org/10.1073/pnas.0605965104

12. Fouladvand, S., Osareh, A., Shadgar, B., Pavone, M., Sharafi, S.: DENSA: an
effective negative selection algorithm with flexible boundaries for self-space and
dynamic number of detectors. Eng. Appl. Artif. Intell. 62, 359–372 (2017). https://
doi.org/10.1016/j.engappai.2016.08.014

13. Gach, O., Hao, J.K.: Combined neighborhood tabu search for community detection
in complex networks. RAIRO-Oper. Res. 50(2), 269–283 (2016). https://doi.org/
10.1051/ro/2015046

14. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/
pnas.122653799

15. Guimerà, R., Danon, L., Dı́az-Guilera, A., Giralt, F., Arenas, A.: Self-similar com-
munity structure in a network of human interactions. Phys. Rev. E 68, 065103
(2003). https://doi.org/10.1103/PhysRevE.68.065103

16. Gulbahce, N., Lehmann, S.: The art of community detection. BioEssays 30(10),
934–938 (2008). https://doi.org/10.1002/bies.20820

17. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49(2), 291–307 (1970). https://doi.org/10.1002/j.1538-7305.
1970.tb01770.x

18. Newman, M.E.J.: Fast algorithm for detecting community structure in networks.
Phys. Rev. E 69, 066133 (2004). https://doi.org/10.1103/PhysRevE.69.066133

19. Newman, M.E.J.: Finding community structure in networks using the eigenvectors
of matrices. Phys. Rev. E 74, 036104 (2006). https://doi.org/10.1103/PhysRevE.
74.036104

20. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69, 026113 (2004). https://doi.org/10.1103/PhysRevE.69.
026113

21. Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering. In: Vahren-
hold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 257–268. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02011-7 24

https://doi.org/10.1109/SSCI44817.2019.9002988
https://doi.org/10.1109/SSCI44817.2019.9002988
https://doi.org/10.3390/a13060139
https://doi.org/10.3390/a13060139
https://doi.org/10.1007/978-3-642-14547-6
https://doi.org/10.1109/SSCI.2016.7850270
https://doi.org/10.1109/SSCI.2016.7850270
https://doi.org/10.1016/j.ins.2013.09.048
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1016/j.engappai.2016.08.014
https://doi.org/10.1016/j.engappai.2016.08.014
https://doi.org/10.1051/ro/2015046
https://doi.org/10.1051/ro/2015046
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1103/PhysRevE.68.065103
https://doi.org/10.1002/bies.20820
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1007/978-3-642-02011-7_24

Analysis of Multi-level Approaches for Community Detection 245

22. Pavone, M., Narzisi, G., Nicosia, G.: Clonal selection: an immunological algorithm
for global optimization over continuous spaces. J. Global Optim. 53, 769–808
(2012). https://doi.org/10.1007/s10898-011-9736-8

23. Schuetz, P., Caflisch, A.: Efficient modularity optimization by multistep greedy
algorithm and vertex mover refinement. Phys. Rev. E 77, 046112 (2008). https://
doi.org/10.1103/PhysRevE.77.046112

24. Scollo, R.A., Cutello, V., Pavone, M.: Where the local search affects best in an
immune algorithm. In: Baldoni, M., Bandini, S. (eds.) AIxIA 2020. LNCS (LNAI),
vol. 12414, pp. 99–114. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77091-4 7

25. Spampinato, A.G., Scollo, R.A., Cavallaro, S., Pavone, M., Cutello, V.: An
immunological algorithm for graph modularity optimization. In: Ju, Z., Yang, L.,
Yang, C., Gegov, A., Zhou, D. (eds.) UKCI 2019. AISC, vol. 1043, pp. 235–247.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29933-0 20

26. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature
393(6684), 440–442 (1998). https://doi.org/10.1038/30918

https://doi.org/10.1007/s10898-011-9736-8
https://doi.org/10.1103/PhysRevE.77.046112
https://doi.org/10.1103/PhysRevE.77.046112
https://doi.org/10.1007/978-3-030-77091-4_7
https://doi.org/10.1007/978-3-030-77091-4_7
https://doi.org/10.1007/978-3-030-29933-0_20
https://doi.org/10.1038/30918

Tchebycheff Fractal Decomposition
Algorithm for Bi-objective Optimization

Problems

N. Aslimani1(B) , E-G. Talbi1 , and R. Ellaia2

1 University of Lille, Lille, France
n.aslimani@yahoo.fr, el-ghazali.talbi@univ-lille.fr

2 LERMA EMI, Mohammed V University in Rabat, Rabat, Morocco
ellaia@emi.ac.ma

Abstract. In most of the existing multi-objective metaheuristics based
on decomposition, the reference points and the subspaces are statically
defined. In this paper, a new adaptive strategy based on Tchebycheff frac-
tals is proposed. A fractal decomposition of the objective space based on
Tchebycheff functions, and adaptive strategies for updating the refer-
ence points are performed. The proposed algorithm outperforms popular
multi-objective evolutionary algorithms both in terms of the quality of
the obtained Pareto fronts (convergence, cardinality, diversity) and the
search time.

Keywords: Bi-objective optimization · Fractal decomposition ·
Tchebycheff scalarization · Adaptive reference points

1 Introduction

Many real world problems require optimizing multiple conflicting objectives.
Pareto optimality is generally used in the context of multi-objective optimization
problems (MOPs). Indeed, while single objective optimization problems involves
a unique optimal solution, MOPs present a set of compromised solutions, known
as the Pareto optimal set [12]. These solutions are optimal in the sense that no
single objective can be improved without decreasing at least one of the others1.
We consider a MOP of the form:

min
X∈S

F(X) = (f1(X), · · · , fm(X))T (1)

where: fk : Rn −→ R, for k ∈ {1, · · · ,m}, denotes the objective functions, S is

the decision space: S =
n∏

i=1

[li, ui], X is the decision vector with n decision vari-

ables: X = (x1, · · · , xn) ∈ R
n,. Let X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn)

1 Without loss of generality, we assume that all objectives are to be minimized.

The ELSAT2020 project is co-financed by the European Union with the European
Regional Development Fund, the French state and the Hauts de France Region Council.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 246–259, 2023.
https://doi.org/10.1007/978-3-031-26504-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_18&domain=pdf
http://orcid.org/0000-0001-9501-9596
http://orcid.org/0000-0003-4549-1010
http://orcid.org/0000-0003-0372-1666
https://doi.org/10.1007/978-3-031-26504-4_18

Tchebycheff Fractal Decomposition Algorithm 247

be decision vectors (solutions). Solution X is said to dominate solution Y ,
denoted as X � Y , if and only if:

∀i ∈ [1,m] : fi(X) ≤ fi(Y)) ∧ (∃j ∈ [1,m] : fj(X) < fj(Y) (2)

A solution X is Pareto optimal if it is not dominated by any other solution
which means there is no other solution Y ∈ S such that Y � X. The set
of all Pareto optimal solutions is called Pareto set (PS). The corresponding
set of Pareto optimal objective vectors is called Pareto front (PF). The main
goal in solving MOPs is to find a “good” approximation of the Pareto front in
terms of convergence, cardinality and diversity. In the last two decades many
metaheuristics (e.g. evolutionary algorithms, swarm intelligence, local search)
have been designed for solving MOPs [19,25]. Multi-objective metaheuristics
can be classified in three main categories:

– Dominance-based approaches: dominance-based approaches2 use the con-
cept of dominance and Pareto optimality to guide the search process. The
main differences between the various proposed approaches arise in the follow-
ing search components: fitness assignment, diversity management, and elitism
[8].

– Indicator-based-based approaches: Those approaches optimize a multi-
objective performance indicator (e.g. hypervolume in IBEA [27]). The quality
of a solution is measured according to its contribution to the performance
indicator.

– Decomposition-based approaches: the objective space is decomposed into
subspaces [23]. Independent or cooperative search is carried out in those sub-
spaces.

In this paper, we propose a new decomposition approach based on adap-
tive reference points and Tchebycheff fractal decomposition of the objective
space for solving bi-objective optimization problems. Compared to existing
decomposition-based multi-objective metaheuristics, the main characteristics of
the proposed algorithm are the following:

– Fast and accurate convergence: in most of multi-objective metaheuristics
(e.g. evolutionary algorithms, swarm intelligence), the initial solutions are
generated randomly which are generally of poor quality [15]. Based on the
anchor points, our approach starts from a couple of Pareto reference points.

– Parallel independent decomposition of the objective space: in most
of the proposed decompositions strategies of the literature (e.g. MOEA/D
[23]), the generated sub-problems are not independent, and correspond to sin-
gle objective optimization problems using some scalarization strategies (e.g.
weighted metrics, Tchebycheff) [12,17]. There is a need of cooperation in solv-
ing the sub-problems. In our approach, all the generated sub-problems are
independent. A parallel scalable implementation of the approach is straight-
forward. Moreover, our fractal decomposition procedure can be used as an
intensification for any approximation found by a metaheuristic.

2 Also named Pareto approaches.

248 N. Aslimani et al.

– No need to manage diversity during search: diversity management in
multi-objective search is handled by complex procedures based on density
estimation procedures (e.g. kernel methods such as fitness sharing, nearest-
neighbor techniques such as crowding, and histograms) [18]. In our approach,
diversity is ensured by the fractal decomposition step. We never generate
solutions in the same region of the objective space.

– Suitability for interactive optimization: preferences in interactive opti-
mization are generally defined in the objective space [1,11]. Our approach can
handle efficiently those preferences to focus the search into a reduced part of
the objective space.

The paper is organized as follows. Section 2 presents our positioning in rela-
tion to the literature concerning decomposition-based metaheuristics for multi-
objective optimization. In Sect. 3 we detail the main components of our algo-
rithm. In Sect. 4, the experimental settings and computational results against
competing methods are detailed and analyzed. Finally, the Sect. 5 enumerates
some perspectives for the proposed approach.

2 Reference Points in Decomposition-Based Algorithms

A general framework for decomposition-based multi-objective optimization con-
sists in partitioning the objective space into a number of single objective prob-
lems ((e.g. MOEA/D [23]). Using some predefined weights and/or reference
points, various scalarization strategies may be applied (e.g. weighted sum,
Tchebycheff, Penalty-based boundary intersection) [7]. Each sub-problem cor-
responds to a multi-objective weight vector and reference point, and each sub-
problem optimal solution is a Pareto solution. The Tcheybycheff function intro-
duces the concept of ideal point or reference point z∗

i as follows [13]:

Minimize max
i=1,...,k

[ωi(fi(x) − z∗
i)]

Subject to x ∈ X
(3)

where z∗ = (z∗
1 , ..., z∗

k) is the reference point, and ω = (ω1, ..., ωk) is the weight
vector.

There have been numerous studies of decomposition approaches to use differ-
ent types of reference points for providing evolutionary search directions. Accord-
ing to the position of reference point relative to the true PF in the objective space
(Fig. 1).

Tchebycheff Fractal Decomposition Algorithm 249

Fig. 1. Illustration of Tchebycheff decomposition according to the selection of the
reference points.

The generation of reference points has a great impact on the distribution of
the obtained Pareto solutions. In a static generation, the reference points might
not be well distributed given that the geometric shape of the PF is unknown apri-
ori. Indeed, uniform reference points do not result in evenly distributed Pareto
optimal solutions, especially, on irregular PFs due to the constraints and non-
linear objective functions (e.g. disconnected, concave). Hence, Static generation
of reference points can lead to the loss of diversity of the obtained PF and waste of
computing efforts. In adaptive strategies, the reference points are ajusted dynam-
ically according to the shape of the PF. Based on the search knowledge used,
adaptive strategies can be classified into:

– Global knowledge: is based on knowledge on all subproblems. It consists to
approximate the whole PF geometric shape, where periodically interpolate/fit
the PF shape and then uniformly samples a set of points on the estimated PF
for the generation of subproblems. Various interplolation methods have been
investigated to approximated the PF using current non-dominated solutions:
piecewise linear interpolation [6], cubic spline interpolation [14] (limited to
bi-objective), piecewise hyperplane [5], Gaussian process [21], self-organizing
mapping (SOM) network [4].

– Local knowledge: instead of using global information (e.g. population or
archive), this class of strategy use local information to update the reference
points [9,10,20,22,24,26]. For instance, a region with few non-dominated solu-
tions is decomposed into multiple ones by adding new search directions [20].

250 N. Aslimani et al.

In [16], the weight vectors in the dense regions are removed and new weight
vectors are generate in the sparse regions.

3 The Fractal Tchebycheff Algorithm

The fractal Tchebycheff algorithm (TFA) operates recursively on the two anchor
points (or any other pair of Pareto solutions) by introducing a geometric fractal
decomposition composed of several levels. The initial level seeks to find a given
number of solutions between the two anchor solutions by relying on Tchebycheff
scalarization approach that consider the two axes connecting the anchor points
to the utopia point. For the next level, the algorithm operates recursively on
the set of pairs of solutions from the previous level and consider instead of the
utopia point a secondary utopia point resulting from the intersection of the two
local vertical and horizontal axes generated from the pair of solutions as shown
in Fig. 2.

Fig. 2. Illustration of the Tchebycheff fractal algorithm (TFA) with three levels

3.1 Regularisation of the Tchebycheff Fractal

In order to be suitably adapted to the geometry of the PF, we are considering
an alternative scheme which aim to regularize the distribution of the solutions
generated by the different fractal levels. The idea is to deform the various utopian
axes by transforming them into sides of an equilateral triangle whose basis is
formed by the segment connecting the two solutions treated.

Tchebycheff Fractal Decomposition Algorithm 251

Fig. 3. Illustration of the regularized Tchebycheff fractal (RTFA) algorithm.

To obtain the positions of the different modified utopian points, we use the
following complex transformations:

ω = a + (b − a) · r exp(iθ) = b + (a − b) · r exp(−iθ) (4)

Fig. 4. Illustration of the isocele triangle based on the pair solutions {A, B}.

where a and b denotes the affix of the pair of solutions, and ω denotes the affix
of the modified utopia point associated to the solutions A,B such that ABΩ is
isosceles. Thus the radius r is related to the angle θ through the equation:

a + (b − a) · r exp(iθ) = b + (a − b) · r exp(−iθ) (5)

252 N. Aslimani et al.

which lead to:
r

θ
=

1
exp(iθ) + exp(−iθ)

=
1

2 cos(θ)
(6)

By transforming Eq. (4) to cartesian coordinates, we obtain:

xω = xA + (xB − xA)r
θ
cos(θ) − (yB − yA)r

θ
sin(θ) (7)

yω = yA + (xB − xA)r
θ
sin(θ) + (yB − yA)r

θ
cos(θ) (8)

In fact, we will reduce progressively the angle θ through the fractal levels:
θ0 > θ1 > θ2.

Fig. 5. Generation of solutions using regular reference points on the triangular utopian
axis.

We generates in a uniform way along these triangular utopian axis Nt targets
points (Ti)1�i�Nt

, (see Fig. 5) defined as:

Ti = Ω + αi(A − Ω) + βi(B − Ω), (9)

such as:

αi =

⎧
⎪⎨

⎪⎩

max(1 + n − i, 0)

2 + n
, if Nt = 2

max(1 + n − i, 0)

1 + n
, otherwise

βi =

⎧
⎪⎨

⎪⎩

max(i + n − Nt, 0)

2 + n
, if Nt = 2

max(i + n − Nt, 0)

1 + n
, otherwise

,

with: n = 	Nt/2

Tchebycheff Fractal Decomposition Algorithm 253

3.2 Dynamic Management of the Fractal Distribution

Since each fractal has its own subspace, the generation of a static number of
solutions for each fractal will induce an irregularity in the final distribution of
the solutions on the PF. An alternative consists in generating a dynamic number
of solutions in each fractal in order to adapt to changes in scope induced by the
local geometry of the PF. To adapt the number of solutions in each fractal, the
following steps are carried out:

– Firstly we compute the spacing between each pair of the Nf solutions gener-
ated by the fundamental fractal (level j = 0). We note Sj the spacing vector
at the jth level (j = 1, 2).

– We compute the minimal and the maximal spacing in the set:

αj = min Sj , βj = max Sj

– Set the reference spacing: dx = 	 βj

Nf

– Then we reduce the spacing vector by α: Sj = Sj/αj

– Finally we get the number of solutions for the pth fractal (corresponding to
the pth pair of solutions) at the jth fractal level (j = 1, 2) using the formula:

Nj(p) =

⎧
⎨

⎩
	Sj(p)

dx

, if dx > 0

	Sj(p)
 − j + 1, otherwise
(10)

The algorithm will not consider the fractals without any points.

4 Computational Experiments

In order to evaluate the performance of the proposed TFA algorithm, seven test
problems are selected from the literature: Zdt1, Zdt2, Zdt3, Zdt4, Zdt6, Pol and
Kur. These problems are covering different type of difficulties and are selected to
illustrate the capacity of the algorithm to handle diverse type of Pareto fronts.
In fact, all these test problems have different levels of complexity in terms of
convexity and continuity. For instance, the test problems Kur and Zdt3 have
disconnected Pareto fronts; Zdt4 has too many local optimal Pareto solutions,
whereas Zdt6 has non convex Pareto optimal front with low density of solutions
near Pareto front.

Three performance measures were adopted in this study: the generational
distance (GD) to evaluate the convergence, the Spacing (S) and the Spread (Δ)
to evaluate the diversity and cardinality. The convergence metric (GD) measure
the extent of convergence to the true Pareto front. It is defined as:

GD =
1
N

N∑

i=1

di, (11)

254 N. Aslimani et al.

where N is the number of solutions found and di is the Euclidean distance
between each solution and its nearest point in the true Pareto front. The Spread
Δ, beside measuring the regularity of the obtained solutions, also quantifies the
extent of spread in relation to the true Pareto front. The Spread is defined as:

Δ =
df + dl +

N∑

i=1

|di − d|
df + dl + di + (N − 1)d

. (12)

where di is the Euclidean distance between two consecutive solutions in the
obtained set, df and dl denotes the distance between the boundary solutions of
the true Pareto front and the extreme solutions in the set of obtained solutions,
d denotes the average of all distances di, i = 1, 2, · · · , N −1 under assumption of
N obtained non-dominated solutions. The Spacing metric S indicates how the
solutions of an obtained Pareto front are spaced with respect to each other. It
is defined as:

S =

√
√
√
√ 1

N

N∑

i=1

(di − d)2 (13)

4.1 Numerical Results

The proposed two algorithms FTA and RTFA (including with regularisation
of the Tchebycheff fractal) are compared with three popular evolutionary
algorithms: a decomposition-based evolutionary algorithm MOEA/D [23], and
two Pareto-based evolutionary algorithms: NSGA-II [3] and PESA-II [2]3 The
obtained computational results are summarized in Table 1 in term of the mean
and the standard deviation (Std) of the used metrics (GD,S,Δ) for 10 inde-
pendent experiments, the average number of Pareto solutions found (NS), the
average number of function evaluations (FEs), the average execution time in
seconds (Time).

By analyzing the obtained results of Table 1, it is clear that the RTFA algo-
rithm has the best performance in terms of convergence to the front as well
as a better distribution of solutions. Moreover, we observe that for the same
number of evaluation functions our approach is able to generate a much larger
number of solutions compared to the other approaches. The reason is that evo-
lutionary algorithms imposes in general a restriction on the size of the archive of
non-dominated points (here 100 points) since the procedure of archiving is very
expensive at each iteration of the algorithm. The capture of the front by the

3 MATLAB implementation obtained for the yarpiz library available at www.
yarpiz.com.

https://yarpiz.com/
https://yarpiz.com/

Tchebycheff Fractal Decomposition Algorithm 255

RTFA algorithm is continuous and precise, as illustrated by the Fig. 6. In addi-
tion, the RTFA algorithm is much faster (less expensive in CPU time) compared
to other algorithms.

Table 1. Comparison of MOEA/D, NSGA-II, PESA-II and RFTA for some considered
test problems.

Problem Method GD S Δ NS CPU(s)

Mean Std Mean Std Mean Std

MOEA/D 2,81E−02 2,92E−02 2,42E−02 6,83E−03 9,95E−01 7,98E−02 100 86,67

Zdt1 NSGA-II 9,17E−02 1,03E−02 2,17E−02 1,56E−03 7,95E−01 2,86E−02 100 105,08

PESA-II 5,38E−02 5,31E−03 3,73E−01 2,68E−02 8,82E−01 6,01E−02 100 40,97

RFTA 2,91E−03 5,66E−11 7,27E−03 1,04E−10 7,09E−01 1,04E−10 37 38,72

MOEA/D 1,32E−01 4,55E−02 2,66E−02 3,87E−03 1,13E+00 8,99E−03 100 61,61

Zdt2 NSGA-II 1,49E−01 1,74E−02 1,65E−02 2,31E−03 9,10E−01 1,69E−02 100 113,18

PESA-II 9,04E−02 3,42E−03 5,40E−01 4,61E−02 8,32E−01 2,73E−02 100 32,82

RFTA 2,15E−03 5,69E−11 8,30E−03 3,97E−10 7,14E−01 3,97E−10 39 40,29

MOEA/D 2,08E−02 8,00E−03 6,01E−02 1,52E−02 1,19E+00 3,43E−02 100 82,50

Zdt3 NSGA-II 6,27E−02 4,74E−03 3,75E−02 1,23E−02 8,25E−01 2,12E−02 100 112,91

PESA-II 4,45E−02 3,42E−03 3,54E−01 3,22E−02 8,48E−01 1,04E−01 100 33,98

RFTA 3,20E−03 1,09E−03 6,53E−02 2,73E−03 9,10E−01 2,73E−03 42 53,90

MOEA/D 8,28E−01 5,75E−01 1,70E−01 1,45E−01 1,09E+00 5,77E−02 100 62,65

Zdt4 NSGA-II 4,46E−01 1,33E−01 3,03E−01 1,79E−01 8,85E−01 9,56E−02 100 129,75

PESA-II 1,12E+01 5,16E−01 2,72E+01 4,86E+00 1,11E+00 5,16E−02 100 18,00

RFTA 2,90E−03 1,74E−04 8,31E−03 2,67E−03 7,12E−01 2,67E−03 37 54,54

MOEA/D 5,40E−01 1,08E−01 1,35E+00 1,01E+00 1,25E+00 1,54E−01 100 91,11

Pol NSGA-II 2,48E+00 5,84E−02 1,75E+00 2,09E−03 9,72E−01 3,55E−03 100 123,86

PESA-II 1,52E+01 6,02E+00 1,01E+01 1,16E+00 9,77E−01 9,85E−02 100 45,64

RFTA 1,25E−02 8,17E−04 4,28E+00 5,59E−02 9,00E−01 5,59E−02 15 26,19

MOEA/D 4,22E−01 1,18E−01 4,63E−02 2,02E−02 1,09E+00 5,98E−02 100 57,86

Zdt6 NSGA-II 3,08E−01 2,38E−02 1,57E−01 4,15E−02 8,73E−01 2,93E−02 100 121,89

PESA-II 4,42E−01 4,69E−03 2,00E+00 6,31E−01 1,03E+00 4,97E−02 100 29,170

RFTA 1,38E−02 2,32E−03 1,06E−01 2,63E−02 9,25E−01 2,63E−02 54 57,94

MOEA/D 5,51E−03 5,51E−03 6,76E−01 4,35E−01 1,42E+00 1,80E−01 100 80,83

Kur NSGA-II 5,31E−04 2,64E−05 1,22E−01 4,15E−03 4,10E−01 3,10E−02 100 117,86

PESA-II 1,78E−01 1,28E−02 4,15E+00 4,86E−01 9,04E−01 5,75E−02 100 33,76

RFTA 1,25E−03 1,53E−05 4,06E−01 2,54E−02 8,45E−01 2,54E−02 37 53,59

256 N. Aslimani et al.

Fig. 6. PF captured by RFTA for Zdt1, Zdt2, Zdt3, Kur and Msc problems

Tchebycheff Fractal Decomposition Algorithm 257

Fig. 6. (continued)

5 Conclusion and Perspectives

In this paper, we have successfully developed the RFTA algorithm which is based
on the Tchebycheff fractal decomposition of the objective space, and adaptive
multiple reference points. The proposed algorithm was tested on various bench-
mark problems with different features and complexity levels. The results obtained
show that the approach is efficient in converging to the true Pareto fronts and
finding a diverse set of solutions along the Pareto front. Our approach outper-
forms some popular evolutionary algorithms such as MOEA/D, NSGA-II, and

258 N. Aslimani et al.

PESA-II in terms of the convergence, cardinality and diversity of the obtained
Pareto fronts. The algorithm is characterized by its fast and accurate convergence,
very low complexity of archiving, parallel independent decomposition of the objec-
tive space, suitability for interactive optimization, and the no need for diversity
management.

We are extending our approach for many objective problems. Moreover, dif-
ferent fractal decompositions will be investigated such as spherical ones. The
propose approach is intrinsically parallel. Its parallel implementation on large
scale heterogeneous architectures composed of dozens of multi-cores and thou-
sands of GPU cores will be carried out. Finally, some real-life applications will
be used to assess the performance of the proposed methodology.

References

1. Branke, J., Deb, K., Miettinen, K., Slowiń, R.: Multiobjective Optimization: Inter-
active and Evolutionary Approaches, vol. 5252. Springer Science & Business Media,
Berlin (2008)

2. Corne, D., Jerram, N., Knowles, J., Oates, M.: Pesa-II: Region-based selection
in evolutionary multiobjective optimization. In: Proceedings of the 3rd Annual
Conference on Genetic and Evolutionary Computation, pp. 283–290 (2001)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

4. Gu, F., Cheung, Y.M.: Self-organizing map-based weight design for decomposition-
based many-objective evolutionary algorithm. IEEE Trans. Evol. Comput. 22(2),
211–225 (2017)

5. Gu, F., Liu, H.L., Tan, K.C.: A multiobjective evolutionary algorithm using
dynamic weight design method. Int. J. Innovative Comput. Inf. Control 8(5(B)),
3677–3688 (2012)

6. Gu, F.Q., Liu, H.L.: A novel weight design in multi-objective evolutionary algo-
rithm. In: International Conference on Computational Intelligence and Security,
pp. 137–141 (2010)

7. Jiang, S., Yang, S., Wang, Y., Liu, X.: Scalarizing functions in decomposition-
based multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 22(2),
296–313 (2017)

8. Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.-G.: ParadisEO-MOEO: a frame-
work for evolutionary multi-objective optimization. In: Obayashi, S., Deb, K.,
Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 386–
400. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2 31

9. Liu, H.L., Chen, L., Zhang, Q., Deb, K.: An evolutionary many-objective opti-
misation algorithm with adaptive region decomposition. In: IEEE Congress on
Evolutionary Computation (CEC), pp. 4763–4769 (2016)

10. Liu, H.L., Chen, L., Zhang, Q., Deb, K.: Adaptively allocating search effort in
challenging many-objective optimization problems. IEEE Trans. Evol. Comput.
22(3), 433–448 (2017)

11. Luque, M., Ruiz, F., Miettinen, K.: Global formulation for interactive multiob-
jective optimization. OR Spectr. 33(1), 27–48 (2011). https://doi.org/10.1007/
s00291-008-0154-3

12. Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer Science &
Business Media, Berlin (2012)

https://doi.org/10.1007/978-3-540-70928-2_31
https://doi.org/10.1007/s00291-008-0154-3
https://doi.org/10.1007/s00291-008-0154-3

Tchebycheff Fractal Decomposition Algorithm 259

13. Miettinen, K., Mäkelä, M.: On scalarizing functions in multiobjective optimization.
OR Spectr. 24(2), 193–213 (2002). https://doi.org/10.1007/s00291-001-0092-9

14. Pilát, M., Neruda, R.: General tuning of weights in MOEA/D. In: IEEE Congress
on Evolutionary Computation (CEC), pp. 965–972 (2016)

15. Poles, S., Fu, Y., Rigoni, E.: The effect of initial population sampling on the con-
vergence of multi-objective genetic algorithms. In: Barichard, V., Ehrgott, M.,
Gandibleux, X., T’Kindt, V. (eds.) Multiobjective Programming and Goal Pro-
gramming, pp. 123–133. Springer, Berlin (2009). https://doi.org/10.1007/978-3-
540-85646-7 12

16. Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., Wu, J.: MOEA/D with adaptive weight
adjustment. Evol. Comput. 22(2), 231–264 (2014)

17. Santiago, A., et al.: A survey of decomposition methods for multi-objective opti-
mization. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds.) Recent
Advances on Hybrid Approaches for Designing Intelligent Systems. SCI, vol. 547,
pp. 453–465. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05170-
3 31

18. Silverman, B.W.: Density Estimation for Statistics and Data Analysis, vol. 26.
CRC Press, Boca Raton (2018)

19. Talbi, E.G.: Metaheuristics: from Design to Implementation, vol. 74. John Wiley
& Sons, Hoboken (2009)

20. Wang, M., Wang, Y., Wang, X.: A space division multiobjective evolutionary algo-
rithm based on adaptive multiple fitness functions. Int. J. Pattern Recogn. Artif.
Intell. 30(03), 1659005 (2016)

21. Wu, M., Kwong, S., Jia, Y., Li, K., Zhang, Q.: Adaptive weights generation for
decomposition-based multi-objective optimization using gaussian process regres-
sion. In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 641–648 (2017)

22. Xiang, Y., Zhou, Y., Li, M., Chen, Z.: A vector angle-based evolutionary algorithm
for unconstrained many-objective optimization. IEEE Trans. Evol. Comput. 21(1),
131–152 (2016)

23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

24. Zhao, H., Zhang, C., Zhang, B., Duan, P., Yang, Y.: Decomposition-based sub-
problem optimal solution updating direction-guided evolutionary many-objective
algorithm. Inf. Sci. 448, 91–111 (2018)

25. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P., Zhang, Q.: Multiobjective
evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput.
1(1), 32–49 (2011)

26. Zhou, C., Dai, G., Zhang, C., Li, X., Ma, K.: Entropy based evolutionary algorithm
with adaptive reference points for many-objective optimization problems. Inf. Sci.
465, 232–247 (2018)

27. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X. (ed.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30217-9 84

https://doi.org/10.1007/s00291-001-0092-9
https://doi.org/10.1007/978-3-540-85646-7_12
https://doi.org/10.1007/978-3-540-85646-7_12
https://doi.org/10.1007/978-3-319-05170-3_31
https://doi.org/10.1007/978-3-319-05170-3_31
https://doi.org/10.1007/978-3-540-30217-9_84

Local Search for Integrated Predictive
Maintenance and Scheduling

in Flow-Shop

Andrea Ecoretti, Sara Ceschia , and Andrea Schaerf(B)

DPIA, University of Udine, via delle Scienze 206, 33100 Udine, Italy
ecoretti.andrea@spes.uniud.it, {sara.ceschia,andrea.schaerf}@uniud.it

Abstract. We address the Permutation Flow-Shop Scheduling Problem
with Predictive Maintenance presented by Varnier and Zerhouni (2012),
that consists in finding the integrated schedule for production and main-
tenance tasks such that the total production time and the advance of
maintenance services are minimized. Predictive maintenance services are
scheduled based on a prognostics system that is able to provide the
remaining useful life of a machine. To solve this problem, we propose a
local search method with neighborhoods specifically tailored for mainte-
nance interventions. Computational experiments performed on generated
benchmarks demonstrate the effectiveness and scalability of our method
with respect to an exact technique based on the mathematical model
proposed by Varnier and Zerhouni (2012).

Keywords: Predictive maintenance · Local search · Flow-shop ·
Scheduling

1 Introduction

In manufacturing, production scheduling and maintenance planning are strongly
correlated. The former consists in sequencing and assigning jobs to machines
in order to maximize productivity, while the latter concerns the scheduling of
maintenance services necessary to retain the machines in operating conditions.
These two activities are naturally in trade-off because a maintenance service
makes the machine unavailable for production, however an excessive delay may
cause a failure, requiring then longer and expensive maintenance interventions to
repair or replace the broken machine. As a consequence, an integrated planning
of these two activities could improve both the reliability and the productivity of
a manufacturing system [16].

We can generally distinguish three policies for maintenance scheduling [20]:
corrective maintenance, preventive maintenance and predictive maintenance.
The corrective maintenance (run-to-break) allows a machine to run until the
failure of the system, so that the maintenance is done after the breakdown.
Preventive maintenance consists in interventions planned to keep machines in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 260–273, 2023.
https://doi.org/10.1007/978-3-031-26504-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_19&domain=pdf
http://orcid.org/0000-0003-1191-1929
http://orcid.org/0000-0001-6965-0536
https://doi.org/10.1007/978-3-031-26504-4_19

Local Search for Predictive Maintenance and Scheduling 261

a specified condition. It includes periodic inspections, critical item replacement,
calibration, and lubrication. Predictive maintenance requires a monitoring sys-
tem (sensors, vibration analysis, infrared scanning, . . .) able to estimate the
time before the failure of the machine such that maintenance is performed only
when it is needed. Both preventive and predictive maintenance schedule inter-
ventions in advance to prevent unexpected system breakdowns, however in the
first case, decisions are made using reliability theory and historical data about
failures of similar machines, while for the predictive policy, they are dependent
on the current health state of the machine detected by monitoring devices.

Given its wide range of real applications in industries, the joint optimiza-
tion of scheduling production and maintenance has attracted the interest also
of the research community in the last decades. Ma et al. [17] provide a review
of the most recent results on scheduling problems with deterministic availabil-
ity constraints motivated by preventive maintenance. However, for this class of
problems maintenance periods are fixed in advance, such that they are not part
of the decision process.

Lee et al. [14] studied the problem of processing a set of jobs on parallel
machines where each machine requires maintenance once during the planning
period; the final objective is to minimize the total weighted completion time of
jobs. For this problem, the authors give some theoretic results about optimality
and complexity, and then propose a Column Generation approach able to solve
instances up to 40 jobs and 8 machines. The parallel machine scheduling prob-
lem has been tackled with a multi-objective perspective by Berrichi et al. [2],
that propose a Multi-Objective Ant Colony Optimization approach. In this case,
the aim is to simultaneously minimize the makespan and the unavailability of
machines, which is estimated through reliability models using a time increasing
function dependent on the failure rate.

More recently, many papers have addressed the integrated production and
maintenance scheduling problem for the single machine case [5,9,13,19].

We tackle the Permutation Flow-Shop Scheduling Problem with Predictive
Maintenance (PFSP-PM) defined in the work by Varnier and Zerhouni [24] where
the production system is modeled as a permutation flow-shop and a predictive
maintenance policy is adopted. The authors assume that machines are contin-
uously monitored and a data-driven prognostic system is able to evaluate the
Remaining Useful Life (RUL) for each machine, such that a maintenance service
must be planned within the RUL [18]. In addition, each machine can run in
two modes: the nominal mode (the default one) and the degraded mode with
longer processing times for jobs (the machine runs slower), but RUL greater
than the nominal one. The aim of the PFSP-PM is to define the joint schedul-
ing for production and maintenance, such that the makespan and the advance
of maintenance services are minimized. The authors developed a mixed inte-
ger linear programming model which was tested on random generated instances.
Subsequently, the problem has been extended with probabilistic values for RULs
and degradation levels that are modeled through fuzzy logic [10]. The authors
present a heuristic solution method based on Variable Neighborhood Search that

262 A. Ecoretti et al.

employs three neighborhood structures: swap jobs, insert job, maintenance move
and report comparative results between different variants of the method on some
Taillard benchmarks [22], conveniently completed by the maintenance data. The
same problem has been solved also using a Genetic Algorithm [12].

Ladj et al. [11] studied the PFSP-PM with various RULs and degradation
values for each machine depending on the job being processed. For the solution
of this problem, they implemented a Genetic Algorithm, which was tested on the
same dataset used in the work by Ladj et al. [10] with instances up to 200 × 20
(n × m) size.

Finally, other examples of integration of maintenance and production
scheduling in multi-product process plant are presented by Biondi et al. [3] and
Aguirre et al. [1].

The paper is organized as follows. Section 2 introduces the problem. Section 3
provides the mathematical model. The proposed search method is described in
Sect. 4. Section 5 presents the experimental analysis. Finally, conclusions and
future work are outlined in Sect. 6.

2 Problem Definition

The problem consists in n jobs that must be scheduled on m machines, as each
one is split into exactly m tasks that need to be performed in the same order,
i.e. the i−th task must be executed on the i−th machine. Each machine can
perform a single task at a time, and no preemption is allowed.

It is assumed that there is a prognostic system that estimates the RUL of each
machine i ∈ M = {1, . . . , m} for the nominal running mode (RULn

i) and for the
degraded running mode (RULd

i), where a machine reduces its processing power so
as to avoid early failures and increase its RUL. For each job j ∈ J = {1, . . . , n},
pij denotes its processing time when machine i runs in nominal mode, while p′

ij

when it is set in degraded mode.
Throughout the planning period, each machine i can be exposed to at most

one maintenance service of duration di that must be scheduled before its RULi.
At the beginning of the planning period, a machine is set in a running mode
(nominal or degraded) and it can change its status only if a maintenance is
performed, after which the machine will always run in nominal mode.

The problem consists in defining a feasible schedule for jobs and maintenance
services that minimizes the weighted sum of two objectives: (i) the makespan;
(ii) the earliness of maintenance services. The two weights, called α and β respec-
tively, can be set independently for each instance.

The Permutation Flowshop Scheduling Problem has been proved to be NP-
hard for more than two machines [15], thus also the PFSP-PM is NP-hard.

Figure 1 shows a file containing a small exemplary instance written in OPL,
the IBM ILOG Optimization Programming Language [7]. The matrices P n and
P d contain the processing times of jobs on machines running in nominal and
degraded mode, respectively. The vector d stores the duration of the maintenance
service on each of the two machines; finally, the two RUL vectors represent the

Local Search for Predictive Maintenance and Scheduling 263

Fig. 1. Example of input file in OPL format.

remaining useful life of each machine in nominal and degraded mode. A visual
representation of the corresponding optimal solution is reported in Fig. 2 as a
Gantt chart. The figure represents the actual processing times of tasks and the
machine modes selected: m1 runs in nominal mode whereas m2 in degraded. The
jobs sequence is [3 2 1 5 4]. The maintenance tasks start exactly at the respective
RULs so that there is no penalty for earliness. As a consequence, for this solution
the value of the objective function is 220, corresponding to the makespan (22)
multiplied by its weight α = 10.

Fig. 2. An optimal solution of the input file in Fig. 1 represented as a Gantt chart.

3 Mathematical Model

As proposed by Varnier and Zerhouni [24], the problem can be formulated as a
multi-objective mixed integer linear programming model. We present here our
model, which is based on the one by Varnier and Zerhouni [24], correcting some
minor inaccuracies and revising the objective function.

The formulation relies on three main decision variables: (i) the completion
time cij of job j on machine i, i.e. the completion time of the i−th task of job

264 A. Ecoretti et al.

j, (ii) the completion time cmi of the maintenance service on machine i, (iii)
a binary variable Zi taking value 1 if machine i runs in degraded mode at the
beginning of the planning period. All the decision variables used in the model
are reported on Table 1.

Table 1. Decision variables

Decision variables

cij Completion time of job j ∈ J on machine i ∈ M
cmi Completion time of the maintenance service on machine i ∈ M
Zi 1 If machine i ∈ M runs in degraded mode at the beginning of the

planning period, 0 if it is set in nominal mode

Pij Actual processing time of job j on machine i, depending on the running
mode of the machine

Xjk 1 if job j ∈ J precedes job k ∈ J in the schedule, 0 otherwise

Yij 1 if the maintenance service on machine i ∈ M is planned before job
j ∈ J , 0 otherwise

CMAX Makespan

ei Earliness of completion time of maintenance service on machine i ∈ M

min z = α CMAX + β
∑

i∈M
ei (1)

The objective function (1) embodies a weighted sum of two components to
minimize: the first is the classical goal for flow shop scheduling problems that
is the makespan (total processing time); the second takes into account the costs
of performing maintenance services in advance with respect to the RUL of the
machine. The problem is subject to the following constraints: subject to the
following constraints:

Pij = pij(1 − Zi) +
[
pijYij + p′

ij(1 − Yij)
]
Zi ∀i ∈ M, j ∈ J (2)

ci+1,j − Pi+1,j ≥ cij ∀i ∈ 1, . . . , m − 1, ∀j ∈ J (3)
c1j ≥ P1j ∀j ∈ J (4)

cij ≥ cik + Pij − MXjk ∀j ∈ 1, . . . , n − 1, ∀i ∈ 1, . . . , m

∀k ∈ j + 1, . . . , n

cik ≥ cij + Pik − M(1 − Xjk) ∀j ∈ 1, . . . , n − 1, ∀i ∈ 1, . . . , m

∀k ∈ j + 1, . . . , n (5)
cij ≤ cmi − di + MYij ∀i ∈ M, ∀j ∈ J

cmi ≤ cij − Pij + M(1 − Yij) ∀i ∈ M, ∀j ∈ J
cmi ≥ di ∀i ∈ M (6)

Local Search for Predictive Maintenance and Scheduling 265

cmi − di ≤ RULn
i (1 − Zi) + RULd

i Zi ∀i ∈ M (7)
cmj ≤ CMAX ∀j ∈ J (8)

ei ≥ RULn
i (1 − Zi) + RULd

i Zi − (cmi − di) ∀i ∈ M (9)

cij ≥ 0 ∀i ∈ M,∀j ∈ J
cmi ≥ 0 ∀i ∈ M

Zi ∈ {0, 1} ∀i ∈ M
Xjk ∈ {0, 1} ∀j ∈ J ,∀k ∈ J
Yij ∈ {0, 1} ∀i ∈ M,∀k ∈ J
Zij ∈ {0, 1} ∀i ∈ M,∀k ∈ J

e1 ≥ 0 ∀i ∈ M
CMAX ≥ 0

Constraints (2) set the actual processing time for jobs considering three pos-
sible situations: (i) the machine runs in nominal mode from the beginning of
the planning period, so that Pij = pij ; (ii) the machine runs in degraded mode
from the beginning of the planning period and job j is scheduled before the
maintenance service on machine i, so that Pij = p′

ij ; (ii) the machine runs in
degraded mode at the beginning of the planning period but job j is scheduled
after the maintenance service on machine i, so that Pij = pij . Equations (2) can
be linearized introducing the binary variables Zij = YijZi as follows:

Pij = pij + (p′
ij − pij)Zi + (pij − p′

ij)Zij ∀i ∈ M, j ∈ J
Zij ≤ Yij ∀i ∈ M, j ∈ J
Zij ≤ Zi ∀i ∈ M, j ∈ J

1 − Yij − Zi + Zij ≥ 0 ∀i ∈ M, j ∈ J (10)

Constraints (3–4) ensure that each task of a job is performed in the correct
order that represents the flow on the production line. Constraints (5) guarantee
that only one task can be assigned to a machine simultaneously (M is a big
number). Similarly, Constraints (6) indicate that a maintenance service cannot
be performed when the machine is already occupied by a production task. Con-
straints (7) impose that the maintenance service starts before the RUL of the
machine. Constraints (8) define the makespan as the total production time. Con-
straints (9) calculate the advanced time of a maintenance service with respect
to the machine RUL. The latter is different from the model of Varnier and Zer-
houni [24] where the earliness is computed respect to the completion time of the
maintenance service. Indeed, we believe that considering the RUL as the time

266 A. Ecoretti et al.

in which the maintenance must be started, rather than ended, is more intuitive
and independent of the duration of the maintenance task.

4 Solution Method

The implementation with IBM ILOG CPLEX of the MIP model described in
Sect. 3 is able to optimally resolve only small instances (see comparative results
on Sect. 5.3), thus for the solution of the PFSP-PM we resort to a metaheuristic
approach, in particular we developed a local search method guided by a Simu-
lated Annealing (SA) procedure.

4.1 Local Search

In order to implement our local search method, we need to define the search
space, the initial solution, the cost function, and the neighborhood relations.

A solution is coded by three main data structures:

– an integer-valued vector S = [j1, . . . , jn] (jk ∈ J) that represents the jobs’
permutation, such that job jk is the k-th job to be executed on each machine;

– an integer-valued vector P = [p1, . . . , pm] (pk ∈ {1, . . . , n+1}) that stores for
each machine the position of the maintenance task in the machine sequence;

– a boolean-valued vector O = [o1, . . . , om] such that if ok = 1 machine k runs
in degraded mode from the beginning of the planning period, otherwise it
runs in nominal mode.

For example, for the instance shown in Fig. 1, the optimal solution of Fig. 2 is
encoded as S = [3 2 1 5 4], P = [3 2] and O = [0 1].

Notice that there are n + 1 potential different positions of the maintenance
task, as it can also be done before the first job or after the last one.

The actual schedule is deterministically obtained from the above mentioned
data structures in the following way: first, we schedule the tasks in chronological
order one machine at a time at the earliest time and we compute the makespan.
At this point, in order to minimize the earliness of the maintenance interventions,
all tasks are processed in reverse order and rescheduled at the latest time, keeping
the makespan fixed and respecting the RUL.

The initial solution is generated totally at random: first a random permuta-
tion of jobs is created, then the position of the maintenance service is randomly
selected between 1 and n + 1, finally the run mode is drawn. This means that
Constraints (7) imposing that the maintenance intervention must be executed
before the RUL of the machine can be violated. The cost function is thus the
weighted sum of the two objectives (makespan and earliness) and the violation
of the Constraints (7) multiplied by a suitable hard weight, such that a single
violation of a hard constraint is never preferred to the objectives.

The typical neighborhood relations in permutation flow shop scheduling are
based on swap and insert moves:

Local Search for Predictive Maintenance and Scheduling 267

SwapJobs (SJ) Given two positions k1 and k2 (with k1 �= k2) in the job sequence
S, the move SJ〈k1, k2〉 swaps the corresponding jobs jk1 and jk2 .

InsertJob (IJ) The move IJ〈k1, k2〉 (with k1 �= k2) removes job jk1 from its
current position k1 in S and relocates it at position k2, shifting the jobs
inbetween accordingly (either forward or backward).

In addition, we devised two new neighborhood relations tailored for managing
maintenance tasks:

FlipMode (FM) The move FM〈ok〉 changes the current run mode of machine k
from degraded to nominal (if ok = 1) or vice versa (if ok = 0).

ShiftMaintenance (SM) The move SM〈m, k〉 shifts the maintenance task of
machine m from its current position pm to position k. This means that the
maintenance task is executed on machine m before job jk in the sequence S.

The local search method uses a neighborhood composed of the union of these
four atomic neighborhoods: SJ, IJ, FM, and SM.

4.2 Simulated Annealing

We use Simulated Annealing [8] to guide the local search. For a review of the
different variants of SA, we refer the interested reader to the work by Franzin
and Stützle [6].

The SA procedure starts from the initial solution built as described in
Sect. 4.1 and then, at each iteration, randomly selects a move in the compos-
ite neighborhood SJ∪IJ∪FM∪SM.

The selection of the move works as follows. First we select the atomic neigh-
borhood and then we draw the specific move inside it. The neighborhood selec-
tion is based on fixed probabilities: We add three real-valued parameters called
σIJ, σFM and σSM, such that at each step neighborhoods IJ, FM, and SM are
selected with probability σIJ, σFM and σSM. Consequently, the SJ probability is
equal to 1 − σIJ − σFM − σSM. Within the single neighborhood, the specific move
is selected uniformly.

The move is always accepted if the difference of cost Δ induced is null or
negative (i.e. the value of the objective function improves o remains equal),
whereas if Δ > 0 it is accepted with probability exp−Δ/T , where T is a control
parameter called temperature. Indeed, SA starts with an initial temperature T0,
which is decreased according to the standard geometric cooling scheme (Ti =
c · Ti−1) after a fixed number of samples ns. To the basic SA procedure, we add
the cut-off mechanism such that the temperature decreases also if a maximum
number of moves has been accepted. This is expressed as a fraction ρ of the
number of iterations ns (with 0 ≤ ρ ≤ 1). In order to guarantee the same
running time to all configurations of SA, we use the total number of iterations I
as stop criterion. To keep I fixed, we recompute ns from ns = I

/(
log(Tf/T0)

log c

)
,

where Tf is the final temperature.

268 A. Ecoretti et al.

5 Experimental Analysis

The code implementing the SA algorithm is written in C++ and compiled using
GNU g++ v. 9.3.0. We implemented the mathematical model in IBM ILOG
CPLEX (v. 12.10) [7], using its C++ interface CONCERT. All experiments ran
on an Ubuntu Linux 20.04.2 LTS machine with 64 GB of RAM and 32 AMD
Ryzen Threadripper PRO 3975WX processors (3.50 GHz), hyper-threaded to 64
virtual cores. A single virtual core has been dedicated to each SA experiment,
whereas no limits have been imposed to the use of multiple CPUs or memory
for CPLEX.

5.1 Instance Generator

No instances have been made available for this problem. Therefore, partly follow-
ing [24] (see Sect. IV.B), we implemented a parametrized instance generator able
to create instances of any size, providing as input n and m. The processing time
pij is randomly selected from a uniform distribution U [20; 50]; if the machine
runs in degraded mode, its processing time is computed as p′

ij = pij · γ, with
γ ∈ U [1; 1.5]. The duration of a maintenance service is generated from U [10; 30].

Finally the RULn
i for a machine running in nominal mode is drawn from

a distribution U [ϑ, ϑ +
∑

j∈J pij], where ϑ = 0 for the first machine, while
ϑ =

∑i
k=1

∑
j∈J pi−1,j

/
n for i = {2, . . . , m}. The corresponding RULd

i is set as
RULn

i · λ with λ ∈ U [1.5; 2].
The generation of RUL is different from Varnier and Zerhouni [24], because

their method that uses the distribution U [0,
∑

pi,j] does not take into account
the fact that the last machines are inevitably idle in the initial part of the
schedule. As a consequence, the last machines end up starting always with the
maintenance task. In order to create more realistic situations, we propose a dif-
ferent procedure, where the RUL of a machine is extracted from the distribution
described above. Thereby the starting time is the sum of the average time spent
on all previous machines, that is when we expect that the machine starts to
work.

We decided to set the weights α and β for all instances to 10 and 1 respec-
tively, in order to give priority to the minimization of the makespan upon the
earliness of the maintenance.

We generated three datasets of instances depending on the size n × m, as
summarized in Table 2. The sizes of the Small instances are the ones used by
Varnier and Zerhouni [24], and the Medium ones are their extension. The Large
instances follow the size of the classical benchmarks of Taillard for flow-shop
scheduling [22].

In addition to these instances, we generated a training dataset composed by
60 instances of large type to be used for the tuning of the SA parameters and
the neighborhood rates.

The name of each instance reported on Tables 4 and 5 follows this pattern:
fspm-D-m-n, where D is the dataset, m is the number of machines and n the

Local Search for Predictive Maintenance and Scheduling 269

Table 2. Datasets.

Name #instances n m

Small 28 {4, 6, 8, 10} 3–9

Medium 35 {15, 20, 25, 30, 35} 3–9

Large 12 {20, 50, 100, 200} {5, 10, 20}

number of jobs. All validation instances and their best solutions are available for
inspection and future comparisons at https://bitbucket.org/satt/pfsp-pm-data.

5.2 Parameter Tuning

The parameters of SA and the move probabilities σ∗ have been tuned using the
tool json2run [23] that implements the F-Race procedure [4]. The cooling rate
c has been fixed to 0.99 given that results are not sensitive to its variations. The
tuning process has been performed on the training dataset in two stages: a first
stage dedicated to SA parameters and a second stage for move probabilities.
In the first stage, all move probabilities have been set according to preliminary
experiments.

Table 3. Parameter settings.

Name Description Value Range

T0 Initial temperature 450 100–500

Tf Final temperature 1.06 0.5–1.5

ρ Accepted moves ratio 0.19 0.1–0.2

σIJ Probability of a IJ move 0.42 0.0–0.7

σFM Probability of a FM move 0.17 0.0–0.2

σSM Probability of a SM move 0.09 0.0–0.1

The resulting best configuration is shown in Table 3, which reports also the
initial ranges. The maximum number of iterations I was fixed to 107.

5.3 Experimental Results

For the validation experiments, we impose a time limit of one or two hours for
the MIP solver and I = 108 for SA which corresponds on average to about 300
and 600 s for Medium and Large instances, respectively.

Experiments on the Small dataset have not been reported since both the MIP
solver and SA are able to find consistently the optimal solution for all instances
in short computational times (from milliseconds to 240 s for MIP and an average
time of about 18 s for SA).

https://bitbucket.org/satt/pfsp-pm-data

270 A. Ecoretti et al.

Table 4. Comparative results on the Medium dataset.

Instance SA MIP(1 h) Δ

min avg max stdev time z

fspm-M-3-15 5840 5840.0 5840 0.00 138.2 5840 0.00%

fspm-M-3-20 7670 7670.0 7670 0.00 151.8 7670 0.00%

fspm-M-3-25 9930 9930.0 9930 0.00 175.6 9930 0.00%

fspm-M-3-30 11800 11800.0 11800 0.00 201.2 – –

fspm-M-3-35 13185 13186.2 13206 4.63 225.4 13204 −0.13%

fspm-M-4-15 6423 6426.1 6431 3.88 160.5 6467 −0.63%

fspm-M-4-20 8896 8896.0 8896 0.00 210.8 8896 0.00%

fspm-M-4-25 9524 9524.0 9524 0.00 220.1 9597 −0.76%

fspm-M-4-30 11778 11778.0 11778 0.00 243.3 11815 −0.31%

fspm-M-4-35 14530 14530.0 14530 0.00 299.4 14531 −0.01%

fspm-M-5-15 6878 6878.0 6878 0.00 188.6 6878 0.00%

fspm-M-5-20 9091 9097.1 9114 10.34 222.1 9123 −0.28%

fspm-M-5-25 11100 11100.0 11100 0.00 257.6 11106 −0.05%

fspm-M-5-30 12220 12220.0 12220 0.00 280.0 12357 −1.11%

fspm-M-5-35 13680 13690.4 13700 8.10 330.5 13922 −1.66%

fspm-M-6-15 7294 7294.7 7316 4.02 203.1 7294 0.01%

fspm-M-6-20 9080 9088.1 9107 10.18 252.8 9369 −3.00%

fspm-M-6-25 10995 11009.3 11011 4.50 280.2 11125 −1.04%

fspm-M-6-30 12521 12562.7 12650 36.91 322.1 12770 −1.62%

fspm-M-6-35 14120 14120.3 14130 1.83 399.4 14250 −0.91%

fspm-M-7-15 7950 7953.5 8003 13.45 238.6 8077 −1.53%

fspm-M-7-20 9562 9586.1 9847 50.81 274.7 9715 −1.33%

fspm-M-7-25 11570 11575.9 11620 14.35 322.5 11684 −0.92%

fspm-M-7-30 12584 12584.0 12584 0.00 364.8 12875 −2.26%

fspm-M-7-35 14440 14513.4 14579 42.96 426.3 14842 −2.21%

fspm-M-8-15 8351 8369.5 8451 27.53 262.3 8402 −0.39%

fspm-M-8-20 10086 10105.3 10220 30.81 311.5 10318 −2.06%

fspm-M-8-25 11903 11912.0 12044 27.56 363.6 12022 −0.91%

fspm-M-8-30 13630 13636.1 13683 13.79 413.5 13927 −2.09%

fspm-M-8-35 14893 14894.2 14899 2.17 474.4 15530 −4.09%

fspm-M-9-15 8739 8747.2 8780 16.68 289.8 8787 −0.45%

fspm-M-9-20 10198 10239.7 10257 21.90 338.6 10423 −1.76%

fspm-M-9-25 11704 11730.4 11829 26.00 394.5 12239 −4.16%

fspm-M-9-30 13710 13777.1 14570 168.23 436.7 14003 −1.61%

fspm-M-9-35 15795 15859.3 16485 121.92 532.7 16850 −5.88%

Avg. 10904.9 10917.9 10990.9 18.93 291.6 11054.1 −1.27%

Local Search for Predictive Maintenance and Scheduling 271

Table 5. Results on the Large dataset.

Instance SA MIP(2 h)

min avg max stdev time z

fspm-L-5-20 9116 9129.4 9130 2.56 78.1 9130

fspm-L-5-50 18780 18780.0 18780 0.00 164.1 19360

fspm-L-5-100 37010 37010.0 37010 0.00 301.5 1038740

fspm-L-5-200 72590 72590.0 72590 0.00 627.5 −
fspm-L-10-20 10835 10862.3 11026 62.15 134.6 10931

fspm-L-10-50 21201 21246.3 21300 33.40 296.4 22840

fspm-L-10-100 39690 39769.4 40079 120.51 567.8 50980

fspm-L-10-200 74180 74798.8 75630 692.34 1105.2 −
fspm-L-20-20 14814 14968.8 15342 113.39 255.4 15283

fspm-L-20-50 25548 25695.1 26200 169.10 579.1 28625

fspm-L-20-100 42784 43159.9 44511 465.86 1076.5 −
fspm-L-20-200 77900 79939.8 84818 2402.04 2155.1 −
Avg. 37037.3 37329.1 38034.7 338.44 611.8

Table 4 presents the results obtained by SA in comparison with the MIP
solver on the Medium dataset. For SA we show the average running times in
seconds. The MIP was not able to find any proven optimal solution within the
timeout of one hour. The last column reports the gap between SA and MIP,
computed as Δ = (avgSA − zMIP)/zMIP. The MIP solver produced a memory
error for instance fspm-M-3-30, thus no value is available for this instance.

We also experimented a warm start approach, where first SA is run for 106

iterations (about 3 s) and then the MIP solver is invoked for the remaining time
up to one hour, using as initial solution the one found by SA in the first stage.
However, the outcome is that MIP is not able to improve the initial solution for
the 75% of the cases, and for the remaining ones the average improvement is
only 0.23%. We thus decided to not report these experimental results.

We see that SA is able to outperform the MIP solver in most instances, being
equal on all the others, with an average improvement of 1.27%. This result is
obtained using much shorter time (about 300 s on average) and on a single core,
whereas the MIP solver is allowed to use all cores and 1 h of computational time.

For the Large dataset (Table 5), we decided to grant the MIP solver two
hours, in order to give it more possibilities to find a solution. Unsurprisingly, it
has not been able to find a feasible solution for the largest instances. We also
notice a particularly high value on instance fspm-L-5-100; this is probably due to
the timeout that evidently stopped the MIP solver in a very early stage of the
search. Generally, the average value of the SA solver is constantly better than
the result of the MIP solver.

Looking at the values reported on Table 5, we can conclude that the SA
results are rather stable, and actually for three out of four small (five machines)

272 A. Ecoretti et al.

instances the standard deviation is null. Finally, it can be seen that the compu-
tational time increases significantly with the size of the instance.

6 Conclusions

We proposed a multi-neighborhood SA approach for a integrated predictive
maintenance and flow shop scheduling problem introduced in the literature by
Varnier and Zerhouni [24]. We also formulated and implemented a MIP model
so as to assess the quality of the solution produced by our SA. The solver turned
out to be able to find always the proven optimal solution for the small instances,
and to outperform the MIP solver for the medium and large ones. The perfor-
mances on the Large dataset exhibit good scalability and robustness, although
with longer running times. In order to reduce the computational time, we are
going to investigate the use of massively parallel computing using GPUs.

The future work includes the extension of the problem formulation to the
case of different RULs dependent on the job sequence being processed for each
machine. We will also test our solution method on the well known benchmarks
from Taillard [22], which however would need to be completed with suitable
maintenance data. Finally, we plan to explore different solution techniques, for
example by adapting the iterated greedy algorithm by Ruiz and Stützle [21]
designed for the basic flow shop scheduling problem.

Acknowledgement. We thank Hildarahi Luz Orihuela Lino for developing the pre-
liminary version of the mathematical model.

This work has been co-funded by the ERDF-ROP (2014–2020), Friuli Venezia Giu-
lia (Italy), Axis 1, Action 1.3.

References

1. Aguirre, A.M., Papageorgiou, L.G.: Medium-term optimization-based approach
for the integration of production planning, scheduling and maintenance. Comput.
Chem. Eng. 116, 191–211 (2018)

2. Berrichi, A., Yalaoui, F., Amodeo, L., Mezghiche, M.: Bi-objective ant colony opti-
mization approach to optimize production and maintenance scheduling. Comput.
Oper. Res. 37(9), 1584–1596 (2010)

3. Biondi, M., Sand, G., Harjunkoski, I.: Optimization of multipurpose process plant
operations: a multi-time-scale maintenance and production scheduling approach.
Comput. Chem. Eng. 99, 325–339 (2017)

4. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race:
an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M.
(eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp.
311–336. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02538-
9 13

5. Bougacha, O., Varnier, C., Zerhouni, N., Hajri-Gabouj, S.: Integrated produc-
tion and predictive maintenance planning based on prognostic information. In:
2019 International Conference on Advanced Systems and Emergent Technologies
(IC ASET), pp. 363–368. IEEE (2019)

https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1007/978-3-642-02538-9_13

Local Search for Predictive Maintenance and Scheduling 273

6. Franzin, A., Stützle, T.: Revisiting simulated annealing: a component-based anal-
ysis. Comput. Oper. Res. 104, 191–206 (2019)

7. ILOG: CPLEX Optimizer (2019). https://www.ibm.com/products/ilog-cplex-
optimization-studio, v. 12.10

8. Kirkpatrick, S., Gelatt, D., Vecchi, M.: Optimization by simulated annealing. Sci-
ence 220, 671–680 (1983)

9. Ladj, A., Varnier, C., Tayeb, F.B.S.: IPro-GA: an integrated prognostic based GA
for scheduling jobs and predictive maintenance in a single multifunctional machine.
IFAC-PapersOnLine 49(12), 1821–1826 (2016)

10. Ladj, A., Benbouzid-Si Tayeb, F., Varnier, C., Dridi, A.A., Selmane, N.: A hybrid
of variable neighbor search and fuzzy logic for the permutation flowshop scheduling
problem with predictive maintenance. Procedia Comput. Sci. 112, 663–672 (2017)

11. Ladj, A., Tayeb, F.B.S., Varnier, C.: Tailored genetic algorithm for scheduling jobs
and predictive maintenance in a permutation flowshop. In: 2018 IEEE 23rd Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1, pp. 524–531. IEEE (2018)

12. Ladj, A., Tayeb, F.B.S., Varnier, C.: Hybrid of metaheuristic approaches and fuzzy
logic for the integrated flowshop scheduling with predictive maintenance problem
under uncertainties. Eur. J. Ind. Eng. 15(5), 675–710 (2021)

13. Ladj, A., Varnier, C., Tayeb, F.B.S., Zerhouni, N.: Exact and heuristic algorithms
for post prognostic decision in a single multifunctional machine. Int. J. Prognostics
Health Manag. 8(2) (2017)

14. Lee, C.Y., Chen, Z.L.: Scheduling jobs and maintenance activities on parallel
machines. Nav. Res. Logist. (NRL) 47(2), 145–165 (2000)

15. Lenstra, J.K., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems.
In: Annals of Discrete Mathematics, vol. 1, pp. 343–362. Elsevier (1977)

16. Liu, Q., Dong, M., Chen, F., Lv, W., Ye, C.: Single-machine-based joint opti-
mization of predictive maintenance planning and production scheduling. Robot.
Comput.-Integr. Manuf. 55, 173–182 (2019)

17. Ma, Y., Chu, C., Zuo, C.: A survey of scheduling with deterministic machine avail-
ability constraints. Comput. Ind. Eng. 58(2), 199–211 (2010)

18. Medjaher, K., Zerhouni, N., Gouriveau, R.: From Prognostics and Health Systems
Management to Predictive Maintenance 1: Monitoring and Prognostics. Wiley,
Hoboken (2016)

19. Pan, E., Liao, W., Xi, L.: A joint model of production scheduling and predictive
maintenance for minimizing job tardiness. Int. J. Adv. Manuf. Technol. 60(9),
1049–1061 (2012)

20. Paz, N.M., Leigh, W.: Maintenance scheduling: issues, results and research needs.
Int. J. Oper. Prod. Manag. 14, 47–69 (1994)

21. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049
(2007)

22. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

23. Urli, T.: Json2run: a tool for experiment design & analysis. CoRR abs/1305.1112
(2013)

24. Varnier, C., Zerhouni, N.: Scheduling predictive maintenance in flow-shop. In: Pro-
ceedings of the IEEE 2012 Prognostics and System Health Management Conference
(PHM-2012 Beijing), pp. 1–6. IEEE (2012)

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

An Investigation of Hyper-Heuristic
Approaches for Teeth Scheduling

Felix Winter(B) and Nysret Musliu

Christian Doppler Laboratory for Artificial Intelligence and Optimization
for Planning and Scheduling, DBAI, TU Wien, Vienna, Austria

{winter,musliu}@dbai.tuwien.ac.at

Abstract. Modern day production sites for teeth manufacturing often
utilize a high-level of automation and sophisticated machinery. Finding
efficient machine schedules in such a production environment is a chal-
lenging task, as complex constraints need to be fulfilled and multiple cost
objectives should be minimized.

This paper investigates a hyper-heuristic solution approach for the
artificial teeth scheduling problem which originates from real-life produc-
tion sites of the teeth manufacturing industry. We propose a collection of
innovative low-level heuristic strategies which can be utilized by state-of-
the-art selection-based hyper-heuristic strategies to efficiently solve prac-
tical problem instances. Furthermore, the paper introduces eight novel
large-scale scheduling scenarios from the industry, which are included in
the experimental evaluation of the proposed techniques.

An extensive set of experiments with well-known hyper-heuristics on
benchmark instances shows that our methods improve state-of-the-art
results for the large majority of the instances.

Keywords: Hyper-heuristics · Scheduling · Metaheuristics · Low-level
heuristics

1 Introduction

In the artificial teeth manufacturing industry a large magnitude of synthetic
teeth is produced daily by utilizing a high-level of automation. Thereby, vari-
ous different shapes and colors are processed using automated machinery that
is able to manufacture many products simultaneously. Due to the large quan-
tities of teeth that need to be produced each day, efficient scheduling methods
are required that consider all the complex constraints raised by the automated
environment and aim to minimize several cost factors.

Recently, we introduced the artificial teeth scheduling problem (ATSP)
in [17], which captures the requirements and aims of real-life production envi-
ronments in the teeth manufacturing area. Besides the formal specification of
the problem, a collection of real-life benchmark instances was provided to eval-
uate exact and heuristic solution approaches. In [17] we further proposed an
exact constraint-modeling approach that achieved optimal results for some small
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 274–289, 2023.
https://doi.org/10.1007/978-3-031-26504-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_20&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_20

An Investigation of Hyper-Heuristic Approaches for Teeth Scheduling 275

problem instances but could not produce feasible solutions for practically-sized
instances within reasonable runtime. Therefore, a construction heuristic as well
as a metaheuristic approach using local search were proposed that could success-
fully provide upper bounds to all real-life instances. However, optimal solutions
are still unknown for realistically-sized instances and thus there is still a potential
to improve the quality of solutions.

The existing local search based approach for the ATSP belongs to the cate-
gory of traditional metaheuristics that efficiently utilize domain-specific search
neighborhoods and thereby are capable of producing good solutions also to large-
scale instances. In this paper, we investigate a novel hyper-heuristic approach for
the ATSP which is able to automatically utilize and integrate several heuristics
including the existing metaheuristic to achieve high-quality solutions.

The main aim of hyper-heuristics is to develop heuristic techniques that gen-
eralize well on different problem domains. Over the recent decade this topic
has been the subject of intensive study and a large amount of work has been
reviewed in surveys (e.g. [4,6]). Furthermore, several frameworks that allow
researchers to compare and evaluate hyper-heuristic approaches have been pro-
posed (e.g. [2,14,15,19]). A group of techniques from this area, known under
the term selection-based hyper-heuristics, defines problem-independent meth-
ods that utilize a set of low-level heuristics. Such low-level operators consist of
domain specific strategies which are applied by a hyper-heuristic in an iterative
search process.

One of the main advantages of a hyper-heuristic approach is that strategies
that have been successful on related problems can be efficiently reused on novel
problem domains such as the ATSP. Selection-based hyper-heuristics were used
to efficiently tackle several large realistic scheduling problems in the literature
(e.g. [3,10,12]). Thus, there is a potential to utilize successful strategies from this
area also as an effective approach for teeth scheduling. However, using selection-
based hyper-heuristics requires carefully designed low-level operators, which to
the best of our knowledge have not been proposed for teeth scheduling previously.

This paper proposes a set of innovative low-level heuristics including
mutational- and local search operators as well as a crossover operator for the
ATSP. We experimentally show that these operators can be efficiently used with
hyper-heuristic strategies from the literature, like e.g. the winner of a popular
hyper-heuristic competition [14], to solve large-scale instances. The work pro-
vides an extensive experimental evaluation of these hyper-heuristics and the
proposed methods on publicly available benchmark instances. Furthermore, we
introduce 8 novel real-life instances that we gathered from our industry part-
ners and include them in our evaluation. The results show that a hyper-heuristic
approach for the ATSP can produce competitive results compared to the state-
of-the-art solution methods. Using the innovative low-level heuristics together
with the hyper-heuristic approaches we achieve several novel upper bounds and
improve results compared to the existing approaches for the large majority of
the realistic instances.

This work is an extended full paper version of a recently published poster [18].
Besides many more details on the hyper-heuristic approach and the empirical

276 F. Winter and N. Musliu

evaluation, this work includes an additional crossover operator, 8 novel real-
life instances, and additional experiments that are not included in the poster
submission. Further, we draw new conclusions based on the extended results.

The remainder is structured as follows: First, we review the specification of
the ATSP in Sect. 2. Afterwards, we propose the low-level heuristics used in
the hyper-heuristic approach in Sect. 3. In Sect. 4, we describe the new realis-
tic instances and report experimental results. At the end of the paper we give
concluding remarks and mention possible future work.

2 The Artificial Teeth Scheduling Problem

In teeth manufacturing, large quantities of teeth are usually processed in batches,
where each job in the schedule uses multiple moulds to produce teeth. Further-
more, each mould is used for a certain tooth shape which is associated to a
product line. A job can consist of moulds that belong to different lines and
determines the color that should be applied to each mould. Thus, the final prod-
uct type produced in each mould is given by its product line and color. Each
job is further configured by a length- and program parameter, where the length
defines the number of the job’s production cycles and thereby determines the
total number of produced teeth. The program parameter determines how many
moulds are simultaneously processed by the job, which mould types are com-
patible, and the processing time of a single cycle. As every program requires
a fixed amount of moulds to be processed per cycle, it can happen that more
teeth than necessary are produced. Usually this cannot be completely avoided,
and therefore one of the problem’s goals is to minimize the amount of waste
caused by excessive teeth. Consecutively scheduled jobs may either use differ-
ent programs or share the same program with a different set of mould- and or
color assignments. In any case a setup time is required between jobs, however if
different programs are used a longer setup time is required.

Finally, the aim of the ATSP is to create a schedule fulfilling all customer
demands in a way that makespan, total tardiness, and waste are minimized.
The ATSP can be viewed as a single machine batch scheduling problem variant
which has several unique properties and constraints compared to other machine
scheduling variants. For example, while traditional machine scheduling problems
usually provide a predetermined set of jobs as part of the input, instances of the
ATSP include customer demands but do not specify any job information. Thus,
solution methods which are able to create and schedule efficient jobs are needed
to solve the ATSP.

Figure 1 visualizes a schedule with three jobs for an example instance.
The figure shows three jobs J1–J3 being scheduled on the horizontal time line.

Time points t1, t3, and t5 indicate the starting times of each job, whereas t2, t4,
and t6 denote the job end times. J1 and J2 both use the production program P1,
whereas J3 uses P2. Note that the setup time between J1 and J2 (visualized by
the horizontal space between jobs) is much smaller than it is between J2 and J3,
as J1 and J2 both use program P1, but J3 uses P2. Furthermore, the horizontal
length of the jobs indicates the number of assigned production cycles.

An Investigation of Hyper-Heuristic Approaches for Teeth Scheduling 277

M1 × 5, L1

M2 × 2, L1

M3 × 3, L2

J1: P1

M1 × 4, L1

M2 × 2, L1

M3 × 4, L2

J2: P1

M4 × 4, L3

M4 × 4, L3

M5 × 4, L4

J3: P2

t1 t2 t3 t4 t5 t6

Fig. 1. A small example schedule for the ATSP (see also [17])

Table 1. Input parameters of the ATSP

Description Parameter
Set of colors C

Set of programs P

Set of mould types M

Set of product lines L

Set of demands D

Setup time between identical programs sj ∈ N

Setup time between different programs sp ∈ N

Max product types per job w ∈ N>0

Min cycles per job cmin ∈ N>0

Max cycles per job cmax ∈ N>0

Number of available moulds per type am ∈ N ∀m ∈ M

Number of mould slots per program amp ∈ N ∀p ∈ P

Cycle time per program tp ∈ N>0 ∀p ∈ P

Admissible program per mould type pm ∈ P ∀m ∈ M

Product line of each mould type lm ∈ L ∀m ∈ M

Requested mould type per demand dmd ∈ M ∀d ∈ D

Requested mould quantity per demand dqd ∈ N>0 ∀d ∈ D

Due date of each demand ddd ∈ N ∀d ∈ D

Requested color for each demand dcd ∈ C ∀d ∈ D

Set of compatible colors per color compc ∈ 2C ∀c ∈ C

As the program defines the total number of assigned moulds, we see in Fig. 1
that J1 and J2 both use 10 moulds, whereas J3 uses 12 moulds. Mould types
M1, M2, and M3 are compatible only with program P1, and mould types M4
and M5 are associated to P2. We can further see in the figure, that each mould
type is associated to a certain product line (e.g. M3 corresponds to line L2), and
that the same mould type may be used with different colorings within the same
job. Note that any two colors may only be used within the same job if they are
compatible (color compatibility is given as part of the instance parameters).

Using the instance parameters shown in Table 1 and the variables shown in
Table 2 the constraints of the ATSP are defined as follows:1

1 We make use of the Iverson bracket notation: [P] = 1, if P = true and [P] = 0 if
P = false.

278 F. Winter and N. Musliu

Table 2. Variables of the ATSP

Description Variables

Number of assigned jobs j ∈ N J = {1, . . . , j}
Program assigned to each job jpi ∈ P ∀i ∈ J

Length of each job (i.e. the number of cycles) jli ∈ N>0 ∀i ∈ J

The number of mould types (with color) assigned to each job jmi,m,c ∈ N ∀i ∈ J, m ∈ M, c ∈ C

The total number of mould types (with color) produced by each job totaljmi,m,c = jmi,m,c · jli ∀i ∈ J, m ∈ M, c ∈ C

The processing time for each job jti ∈ N>0 ∀i ∈ J

The finishing time for each job jei ∈ N>0 ∀i ∈ J

The finishing job for each demand (after completion the demand is fulfilled) djd ∈ J ∀d ∈ D

– The number of assigned moulds to each job must be equal to the number of
mould slots of the job’s program:

∑

m∈M

∑

c∈C

jmi,m,c = am(jpi) ∀i ∈ J

– The number of scheduled moulds per job must not exceed mould availability:
∑

c∈C

jmi,m,c ≤ am ∀i ∈ J,m ∈ M

– The number of different product types within a single job must be less than
or equal to the allowed maximum:

∑

c∈C

∑

l∈L

∑

m∈M

([lm = l] · [jmi,m,c > 0]) ≤ w ∀i ∈ J

– All demands need to be fulfilled:
∑

d∈D

[dmd = m ∧ dcd = c] · dqd ≤
∑

i∈J

totaljmi,m,c ∀m ∈ M, c ∈ C

– Job moulds must be compatible with the job’s program:
∑

c∈C

jmi,m,c · [jpi �= pm] = 0 ∀i ∈ J,m ∈ M

– A single job must not use incompatible colors:
[

∑

m∈M

jmi,m,c1 > 0

]
≤

[
∑

m∈M

jmi,m,c2 = 0

]

∀i ∈ J, c1 ∈ C, c2 ∈ (C \ compc1)

– Set the job processing times: jti = jli · t(jpi) ∀i ∈ J
– Set job finishing times:

jei = jt1 +
i∑

k=2

(jtk + sj + [jpk �= jpk−1] · (sp − sj)) ∀i ∈ J

An Investigation of Hyper-Heuristic Approaches for Teeth Scheduling 279

– Set demand finishing jobs:

djd∑

i=1

totaljmi,m,c ≥
∑

d′∈D′
dqd′ ∀d ∈ D where m = dmd,

c = dcd,D
′ = {d′ ∈ D|ddd′ ≤ ddd ∧ dmd′ = m ∧ dcd′ = c}

The objective function of the ATSP aims to minimize three solution objectives:

1. Minimize the total makespan of the schedule: ms = jej
2. Waste (i.e. the number of excessively produced moulds) should be minimized:

waste =
∑

i∈J

∑

m∈M

∑

c∈C

totaljmi,m,c −
∑

d∈D

dqd

3. The total tardiness of all demands in the schedule should be mimized:

tard =
∑

d∈D

max(0, je(djd) − ddd)

The objectives are aggregated in a normalized weighted sum where objectives
marked with * denote the costs of a given reference solution:

minimize
ms

ms∗ +
waste

waste∗ +
tard

tard∗
This particular normalization scheme was chosen together with expert prac-

titioners from the industry to capture the most important aims in the real-life
environment. For all instances we evaluate, reference costs are generated using
the construction heuristic from [17], which serves as a baseline approach.

Previously, we proposed seven local search neighborhood operators for the
ATSP in [17]. As some of the low-level heuristics in this paper build upon these
operators, we shortly review them here:

1. Swap two jobs: Swaps the positions of two existing jobs.
2. Increment length: Increments the cycles of a job by 1.
3. Decrement length: Decrements the cycles of a job by 1.
4. Change single mould assignment: Changes a single assigned mould type

and/or color to a different mould type and/or color within the same job.
5. Delete last job: Deletes the last job in the schedule.
6. Append new job: Appends a new job at the end of the current schedule.

Move parameters define the job program, as well as the mould quantities that
should be used in the newly created job.

7. Swap mould assignments between two jobs: Swaps a single mould type
and/or color assignment from a job with a single mould and/or color assign-
ment from another job.

3 Low-Level Heuristics for the ATSP

In this section we propose several low-level heuristics for the ATSP, which we
categorize into mutational, local search, and crossover operators.

280 F. Winter and N. Musliu

Mutational Heuristics: The idea behind the mutational low-level heuristics is
to perform small perturbative changes to the components of a candidate solution.

We thus propose 7 mutation moves corresponding to the search neighbor-
hoods which were described earlier: Swap Two Jobs, Increment Job Length,
Decrement Job Length, Change Single Mould Assignment, Delete Last Job,
Append new Job, Swap Two Mould Assignments. The mutational low-level oper-
ator works as follows for all 7 move types: Given is a candidate solution that is
mutated by iteratively applying uniformly random selected moves of the selected
move type.

For example, a mutation low-level heuristic which uses the Swap Two Jobs
move, randomly selects one out of all possible swap moves for the given can-
didate solution. This move is then performed to modify the solution, and the
process continues for a number of iterations which can be controlled by setting
a parameter α that lies within [0.0, 1.0] and a parameter k that defines the max-
imum number of iterations. The iteration limit is then 	α · k
 so that k moves
will be performed in any mutational low-level heuristic move if α = 1.0.

Local Search Heuristics: In the following we propose several local search
based low-level heuristics for the ATSP. These low-level operators conduct a
local search for a number of iterations to find improved solutions. The iteration
limit for all local search operators is configured by a parameter β that lies within
[0.0, 1.0].

Stochastic Hill Climber: The first local search heuristic we propose randomly gen-
erates moves in each search iteration in a similar way as it has been described for
the simulated annealing [7] based approach from [17]. After a move has been ran-
domly selected, this heuristic evaluates the change in solution costs that would
be caused by the move. Then, an acceptance function is used to decide whether
the move should be accepted depending on a potential cost improvement and
a given temperature parameter τ . Note that for this heuristic the temperature
value that is given as a parameter will not change but is fixed.

The iteration limit for this low-level heuristic is determined by 	β · k
, where
k is another given integer parameter. Additionally, a temperature parameter τ
and a time limit t configure the fixed temperature value and a timeout. The
heuristic stops if the iteration limit or time limit is reached.

This low-level heuristic can end on solutions of reduced quality. However, the
heuristic always returns the overall best solution found (if no improvement was
found, the operator simply returns the initial solution).

Simulated Annealing: We propose another low-level local search operator that
directly implements a simulated annealing approach.

Similarly as with the stochastic hill climber operator, the initial temperature
is given as parameter τ , but here we use an additional cooling rate parameter γ
to configure the geometrical cooling schedule. Again we determine the iteration
limit as 	β · k
 with another integer parameter k, and the time limit for the
simulated annealing low-level heuristic is set by parameter t.

Full Neighborhood Move Heuristics: In addition to the stochastic hill climber
and simulated annealing operators that both generate random moves in each

An Investigation of Hyper-Heuristic Approaches for Teeth Scheduling 281

Algorithm 1: Crossover Low-Level Heuristic for the ATSP
fn Crossover (S1, S2)

randomJob1Position = random(1, length(S1))
result = new empty job sequence
for i = 1 to (randomJob1Position − 1) do

result.append(S1[i])

bestJob2Position = null
bestNumProducts = −1
for i = 1 to length(S2) do

numProducts = CountProducts(result, S2[i])
if numProducts > bestNumProducts then

bestNumProducts = numProducts
bestJob2Position = i

result.append(S2[bestJob2Position]
for i = (randomJob1Position + 1) to length(S1) do

result.append(S1[i])

return result

search iteration, we further propose a set of local search low-level heuristics that
consider the full search neighborhood for particular move operators.

For example, a full neighborhood move heuristic for the Swap Two Jobs
move type generates moves for all possible pairs of jobs in the current candidate
solution. Afterwards, the change in solution quality for all generated moves is
evaluated and the full neighborhood move heuristic applies the move leading to
the best solution quality (ties are broken by the order of the generated moves). In
case none of the generated moves leads to an improvement no move is performed.

Based on this idea, we propose four full neighborhood move heuristics:

1. Full Change Mould Neighborhood: Considers all possible instantiations of the
Change Single Mould Assignment neighborhood operator on the given can-
didate solution.

2. Full Job Length Neighborhood: Considers all length modifying neighborhood
operators (i.e. Increment/Decrement Job Length) for all jobs in the given
candidate solution.

3. Full Swap Job Neighborhood: Considers Swap Two Jobs moves for all possible
job pairs in the given candidate solution.

4. Full Swap Mould Neighborhood: Selects the best of all possible Swap Two
Mould Assignments moves.

Crossover Heuristic: We now propose a crossover low-level heuristic that com-
bines two given candidate solutions for the ATSP. The main idea behind this
operator is to exchange a single job between two given candidate solutions S1

and S2. To achieve this, first a random job is selected from S1. Then, the heuris-
tic exchanges this job with a job from S2 by deleting the original job in S1

and injecting the new job at the same position. To select a job from S2 that is
a good replacement for the original job, the algorithm calculates for each job
in S2 the effect on the number of fulfilled demands in S1 that would occur if
this job was chosen to replace the randomly selected job from S1. Thereby, the

282 F. Winter and N. Musliu

heuristic selects the job which produces the most moulds that can be used to
satisfy demands in the resulting solution. The main idea behind this strategy
is to inject efficiently designed jobs from other solutions into a good candidate
solution, without causing a lot of overproduction or many unfulfilled demand
violations. Algorithm1 describes the detailed procedure where S1 and S2 are
the given candidate solutions.

The algorithm starts by randomly selecting a job position from S1. After-
wards, a partial solution result is built by copying all jobs that are scheduled
before the selected job position from S1 to result. Then, the algorithm iter-
ates over the jobs from S2 to determine the number of demanded products that
could be fulfilled if any single job was appended at the end of the current partial
solution result (the function CountProducts represents the calculation of this
number in the pseudocode). Finally, after the best fitting job is added to the
resulting solution, the remaining jobs from S1 are appended.

4 Experimental Evaluation

We evaluated the proposed hyper-heuristic approach on the benchmark instances
from [17] which consist of 6 small instances (I1–I6) that were created by shrinking
realistic scheduling scenarios as well as 6 large real-life instances (I7–I12). In this
paper, we further introduce 8 additional large real-life instances (I13–I20) that
we received from our industry partners. All newly introduced real-life benchmark
instances are publicly available online.2

Evaluated Hyper-Heuristics. For the evaluation of the proposed techniques
we implemented the low-level heuristics within the latest version of the HyFlex
framework [14]), as it is a popular and widely used selection-based hyperheuris-
tic framework which was also used in two hyper-heuristic competitions. In addi-
tion to the proposed methods, we also implemented the construction heuristic
from [17] within framework so that the evaluated hyper-heuristics can select it to
generate initial solutions. We further contacted the author that achieved the first
place of the CHeSC competition [14] and received an up-to-date implementation
of GIHH [13] which was the winning algorithm. Additionally, we evaluated an
improved ‘lean’ version of GIHH called Lean-GIHH (LGIHH) from [1] and fur-
ther received an implementation of the HAHA hyper-heuristic [9] which scored
sixth place in the competition.

Besides the algorithms that participated in CHeSC, we evaluated a recent
hyper-heuristic approach from [5] (CHU) as well as two hyper-heuristics based
on self-adaptive large neighborhood search strategies from [8] (ALNS) and [16]
(ALNS2) and were shown to deliver high-quality results on scheduling prob-
lems. These three approaches have recently been adapted and implemented for
use within the HyFlex framework by [11], and we thus included them in our
evaluation.

2 https://cdlab-artis.dbai.tuwien.ac.at/papers/atsp_mic/.

https://cdlab-artis.dbai.tuwien.ac.at/papers/atsp_mic/

An Investigation of Hyper-Heuristic Approaches for Teeth Scheduling 283

Table 3. Overview on overall best results per instance.

Inst. SA GIHH LGIHH HAHA ALNS ALNS2 CHU
I 1 2.53 2.95 2.53 2.53 2.53 2.54 2.53
I 2 1.96 1.95 1.94 1.94 1.95 1.95 1.94
I 3 2.23 2.23 2.23 2.23 2.23 2.23 2.23
I 4 2.54 2.54 2.54 2.54 2.54 2.54 2.54
I 5 2.13 2.12 2.11 2.12 2.11 2.13 2.12
I 6 3 3 3 3 3 3 3
I 7 2.95 2.85 2.85 2.85 2.91 2.87 2.9
I 8 2.38 2.45 2.45 2.47 2.52 2.45 2.49
I 9 2.99 2.86 2.86 2.85 2.91 2.91 2.89
I 10 2.67 2.66 2.64 2.66 2.74 2.67 2.68
I 11 2.76 2.77 2.77 2.78 2.81 2.79 2.8
I 12 2.97 2.90 2.95 2.91 2.95 2.96 2.91
I 13 2.97 2.83 2.81 2.85 2.89 2.88 2.87
I 14 2.99 2.83 2.83 2.84 2.93 2.91 2.88
I 15 2.99 2.81 2.81 2.81 2.88 2.89 2.84
I 16 2.98 2.66 2.69 2.67 2.82 2.73 2.77
I 17 2.94 2.79 2.79 2.79 2.83 2.79 2.79
I 18 2.98 2.72 2.72 2.72 2.85 2.72 2.77
I 19 2.94 2.7 2.7 2.7 2.72 2.71 2.7
I 20 2.98 2.78 2.78 2.78 2.84 2.82 2.82

Experimental Environment. All experiments were run on a cluster with 10
identical nodes, each having 24 cores, an Intel(R) Xeon(R) CPU E5–2650 v4 @
2.20GHz and 252 GB RAM. In addition to the hyper-heuristic approach pro-
posed in this paper, we reevaluated the state-of-the-art metaheuristic for the
ATSP (i.e. simulated annealing (SA) starting from an initial solution produced
by a construction heuristic) to allow a direct comparison to the hyper-heuristic
results. We received the source code and parameter configuration of these meth-
ods from the authors of [17].

Based on manual tuning trials we further set the parameters of the low-level
heuristics as follows: For the mutational operators, we set the iteration limit
k = 100. Additionally, we set the default intensity of mutation to α = 0.1.
However, note that this is only the initial value of α and this parameter can be
controlled dynamically during search by each individual hyper-heuristic.

For the Stochastic Hill Climber heuristic we set the time limit t to 60 s. Fur-
ther, we determine the iteration limit k dependent on instance size parameters by
calculating the product of the number of colors, the number of mould types, the
number of demands, and the total number of demanded moulds. Additionally,
we set the temperature τ = 0.01 and set the default depth of search β = 0.1

For the Simulated Annealing heuristic, we use the same parameters as for
the Stochastic Hill Climber heuristic, except for τ , which we set to 0.4735. Fur-
ther, we set the cooling rate parameter to 0.9274. These two parameter values
correspond to the simulated annealing configuration that was determined in [17].

284 F. Winter and N. Musliu

Table 4. Overview on mean objective costs per instance.

Inst. SA GIHH LGIHH HAHA ALNS ALNS2 CHU
I 1 2.62 2.95 2.91 2.62 2.74 2.92 2.7
I 2 2.02 1.99 1.97 1.96 2 2.25 1.99
I 3 2.23 2.23 2.23 2.23 2.23 2.23 2.23
I 4 2.54 2.54 2.54 2.54 2.54 2.54 2.54
I 5 2.2 2.27 2.20 2.14 2.2 2.36 2.26
I 6 3 3 3 3 3 3 3
I 7 2.99 2.87 2.86 2.86 2.95 2.92 2.92
I 8 2.42 2.48 2.48 2.49 2.56 2.63 2.52
I 9 3 2.89 2.89 2.89 2.95 2.94 2.92
I 10 2.83 2.69 2.69 2.7 2.78 2.75 2.74
I 11 2.77 2.78 2.78 2.78 2.84 2.85 2.81
I 12 2.99 2.93 2.95 2.95 2.96 2.96 2.95
I 13 2.99 2.84 2.83 2.85 2.94 2.93 2.9
I 14 3 2.86 2.87 2.87 2.97 2.96 2.92
I 15 3 2.82 2.82 2.82 2.93 2.96 2.87
I 16 3 2.72 2.72 2.71 2.9 2.87 2.84
I 17 2.99 2.79 2.79 2.79 2.87 2.9 2.85
I 18 2.99 2.79 2.74 2.73 2.9 2.89 2.82
I 19 2.98 2.7 2.7 2.7 2.76 2.85 2.74
I 20 3 2.78 2.78 2.78 2.91 2.95 2.85

As some full neighborhood move heuristics can require a large processing
time when computing all possible moves, we additionally imposed a maximum
runtime limit of 10min to each low-level heuristics in this category. Using this
parameter configuration we performed 10 repeated runs for each instance and
evaluated approach, where every single run was given a time limit of 1 h.

Computational Results: The best results over 10 runs for each instance and
approach are shown in Table 3. Columns 2–8 display the best solution quality
per instance produced with SA and the evaluated hyper-heuristic approaches.
Note that we rounded all results to two digits after the decimal point and that
best results for each line are formatted in boldface. For the remainder of this
section, we apply a similar formatting to all tables unless stated otherwise. The
results displayed in Table 3 show that LGIHH is able to produce the best costs
for 15 of the 20 instances and therefore seems to be the overall best performing
method in this comparison. However, GIHH and HAHA come close as these
approaches produced best results for 12 out of 20 instances. Furthermore, we
note that for instances 8, 11 SA produced slightly better results than GIHH,
LGIHH and HAHA.

Table 4 shows the mean objective costs over 10 repeated runs per instance.
This time, we see that HAHA seems to be the overall best performing approach
as it produced the best mean objective costs for 14 out of 20 instances, whereas
GIHH and LGIHH produced best mean objective costs for 11 out of 20 instances.

An Investigation of Hyper-Heuristic Approaches for Teeth Scheduling 285

Fig. 2. Relative mean cost results pro-
duced by all evaluated approaches.

Fig. 3. Results produced without and
with full neighborhood operators.

Therefore, the results indicate that HAHA produced robust results over the 10
repeated runs more often than the other evaluated approaches. However, we
note that for instances 8, and 10–14 SA, GIHH and LGIHH reached better
mean objective costs than HAHA. The standard deviation of the objective costs
is not shown in the table, but it was close to 0 for most approaches and instances
with only a few exceptions. This indicates that all evaluated approaches are able
to produce reasonably robust results regarding different random seeds.

Figure 2 further provides a visual comparison of the relative mean cost results
over all instances in form of box plots. To calculate the relative mean cost result
for each instance, we divide the actual mean cost result for each instance by the
lowest mean cost result achieved for that instance considering all methods which
are included in the plot. Thus, a value of 1.0 denotes the best mean cost for an
instance regarding the plotted methods. All boxplots in the remainder of this
section visualize the relative mean cost results in this way.

We see in Fig. 2 that results produced by HAHA lead to the lowest median
and lowest inter-quartile range, indicating that it performed best over all evalu-
ated instances. However, GIHH and LGIHH produce a median value of similar
quality.

As the full neighborhood search heuristics may need large amounts of exe-
cution time, the evaluation of the full neighborhood can require up to several
minutes for a single low-level heuristic call for large instances, we conducted a
second set of experiments without using the full neighborhood search heuristics
to investigate whether this has a negative effect on the overall performance of
the hyper-heuristics. To mark results produced without the full neighborhood
low-level heuristics, we add a * after the identifiers of the evaluated methods.

Figure 3 summarizes the overall mean cost results for all evaluated hyper-
heuristic strategies without and with the full neighborhood low-level operators.
We can see in the results shown in Fig. 3 that for GIHH, LGIHH and HAHA,
the inclusion of the full neighborhood operators leads to improved results. On
the other hand, for ALNS, ALNS2 and CHU, results are improved without these
low-level heuristics. This indicates that not all hyper-heuristic approaches benefit
from the computationally costly full exploration of the neighborhoods. However,
if these operators are utilized efficiently they actually produce the best mean
cost results in our experiments together with GIHH, LGIHH, and HAHA.

286 F. Winter and N. Musliu

Fig. 4. Results for GIHH without and
with the crossover low-level heuristic.

Fig. 5. Results for LGIHH without and
with the crossover low-level heuristic.

Table 5. Comparison of results achieved
with SA and HAHA.

Inst. SA SA SA σ HAHA HAHA HAHA σ

I 1 2.53 2.62 0.17 2.53 2.62 0.18
I 2 1.96 2.02 0.08 1.94 1.96 0.01
I 3 2.23 2.23 0 2.23 2.23 0
I 4 2.54 2.54 0 2.54 2.54 0
I 5 2.13 2.2 0.12 2.12 2.14 0.01
I 6 3 3 0 3 3 0
I 7 2.95 2.99 0.01 2.85 2.86 0.01
I 8 2.38 2.42 0.02 2.47 2.49 0.01
I 9 2.99 3 0 2.85 2.89 0.01
I 10 2.67 2.83 0.09 2.66 2.7 0.01
I 11 2.76 2.77 0.01 2.78 2.78 0
I 12 2.97 2.99 0.01 2.91 2.95 0.01
I 13 2.97 2.99 0.01 2.85 2.85 0
I 14 2.99 3 0 2.84 2.87 0.02
I 15 2.99 3 0 2.81 2.82 0.01
I 16 2.98 3 0.01 2.67 2.71 0.02
I 17 2.94 2.99 0.02 2.79 2.79 0
I 18 2.98 2.99 0.01 2.72 2.73 0.01
I 19 2.94 2.98 0.02 2.7 2.7 0
I 20 2.98 3 0.01 2.78 2.78 0

Table 6. The best bounds achieved by
exact methods, SA, and HAHA.

Inst. LB Exact SA HAHA

I 1 2.08 2.53 2.53 2.53
I 2 1.25 1.96 1.94 1.94
I 3 2.23 2.23 2.23 2.23
I 4 2.54 2.54 2.54 2.54
I 5 1.63 2.1 2.13 2.12
I 6 3 3 3 3
I 7 0.5 – 2.95 2.85
I 8 0.15 – 2.38 2.47
I 9 0.59 – 2.97 2.85
I 10 0.53 – 2.67 2.66
I 11 0.34 – 2.76 2.78
I 12 1.02 – 2.89 2.91
I 13 0.60 – 2.97 2.85
I 14 0.46 – 2.99 2.84
I 15 0.56 – 2.99 2.81
I 16 0.37 – 2.98 2.67
I 17 0.20 – 2.94 2.79
I 18 0.39 – 2.98 2.72
I 19 0.18 – 2.94 2.7
I 20 0.18 – 2.98 2.78

We conclude that the inclusion of the full neighborhood low-level heuristics
has a positive impact on the performance of the hyper-heuristics and thereby can
improve results. A possible explanation could be that hyper-heuristic strategies
such as GIHH and HAHA perform an online selection and performance evalua-
tion of the given low-level heuristics allowing them to automatically detect and
remove inefficient heuristics during the search process.

To investigate the crossover heuristic, we ran additional experiments with
LGIHH and GIHH using all low-level operators except the crossover operator
(the other evaluated hyper-heuristics do not support crossover low-level heuris-

An Investigation of Hyper-Heuristic Approaches for Teeth Scheduling 287

tics). Figures 4 and 5 compare relative mean cost results achieved without and
with the crossover operator (a + indicates that no crossover operator was used).

We can see in both figures that the median and inter-quartile range is closer
to the value 1.0 when the crossover heuristic was included. This indicates that
the operator can lead to improved results, especially with LGIHH where a signed
wilcoxon signed-rank test showed a statistical significant improvement. Further,
the results displayed in Table 3 show that the overall best results for most of
the largest instances (I12–I120) could be reached with GIHH and LGIHH. This
indicates that the utilization of the crossover operator can improve results for
large-scale instances, even though HAHA (which does not support crossover
operators) produces the best mean cost results for most instances in Table 4.

In Table 5, we further present a detailed comparison between the results from
HAHA, which produced the best mean costs in our experiments and SA, which is
the state-of-the-art heuristic for large instances. The table displays the best cost,
mean cost, and standard deviation over all 10 individual runs per instance for
SA and HAHA. Best mean cost results per instance are formatted in boldface.

Looking at the mean cost results shown in Table 5, we see that HAHA
improves results for instances 2, 5, 7, 9, 10, 12–20 compared to SA and a wilcoxon
signed-rank test shows an overall statistical significant cost improvement with
HAHA. However, the SA approach reaches better mean costs for instances 8,
and 11. Comparing the best cost results per instance, we further see that HAHA
is able to reach equal or better results than SA for all instances except instance 8
and 11. The standard deviation is for both approaches reasonable low regarding
all instances. These results show that the hyper-heuristic approach can improve
results for the large majority of the benchmark instances compared to SA.

Finally, Table 6 summarizes the best bounds achieved by the state-of-the-art
exact methods, SA and HAHA. The table includes the currently best known
upper bounds for each instance regarding the SA approach and thus combines
the best results given in [17] together with the best results achieved in the
reevaluation of the SA approach conducted in this work. Furthermore, we ran
experiments with the exact approach from [17] to find lower bounds for instances
13–20, however, no bound could be produced within 1 h (indicated by a -).

Table 6 displays in Columns 2–5 from left to right, the best lower bounds
achieved by exact methods (LB) followed by the best upper bounds achieved
by exact methods (Exact), SA, and HAHA. The results show that the hyper-
heuristic approach produced the best solutions for the large majority of the
instances. Only for instances 5, 8, and 11–12 exact methods or SA found better
bounds.

5 Conclusion

This work provides a hyper-heuristic approach for the ATSP, by proposing a set
of innovative low-level operators for selection-based hyper-heuristics.

In an extensive experimental evaluation using publicly available instances
and newly introduced real-life instances, we demonstrated that the proposed

288 F. Winter and N. Musliu

methods can be used as an efficient solution approach with hyper-heuristics such
as GIHH and HAHA. Computational results show that such an approach could
produce high-quality solutions for all instances and improves results obtained
by the state-of-the-art heuristic on the majority of the instances. The proposed
methods further provide improved upper bounds for many realistic instances.

Future work could extend the collection of low-level operators with a destroy-
and-repair method by utilizing exact methods as a repair mechanism.

Acknowledgments. The financial support by the Austrian Federal Ministry for Digi-
tal and Economic Affairs, the National Foundation for Research, Technology and Devel-
opment and the Christian Doppler Research Association is gratefully acknowledged.

References

1. Adriaensen, S., Now’e, A.: Case study: an analysis of accidental complexity in a
state-of-the-art hyper-heuristic for hyflex. In: 2016 IEEE Congress on Evolutionary
Computation (CEC). IEEE (2016)

2. Asta, S., Özcan, E., Parkes, A.J.: Batched mode hyper-heuristics. In: Nicosia, G.,
Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 404–409. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-44973-4_43

3. Bouazza, W., Sallez, Y., Trentesaux, D.: Dynamic scheduling of manufacturing
systems: a product-driven approach using hyper-heuristics. Int. J. Comput. Integr.
Manuf. 34(6), 641–665 (2021)

4. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res.
Soc. 64(12), 1695–1724 (2013)

5. Chuang, C.: Combining multiple heuristics: studies on neighborhood-base heuris-
tics and sampling-based heuristics. Thesis, Carnegie Mellon University (2020)

6. Drake, J.H., Kheiri, A., Özcan, E., Burke, E.K.: Recent advances in selection hyper-
heuristics. Eur. J. Oper. Res. 285(2), 405–428 (2020)

7. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

8. Laborie, P., Godard, D.: Self-adapting Large Neighborhood Search: Application to
Single-Mode Scheduling Problems (2007)

9. Lehrbaum, A., Musliu, N.: A new hyperheuristic algorithm for cross-domain search
problems. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 437–442.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_41

10. Li, W., Özcan, E., John, R.: Multi-objective evolutionary algorithms and hyper-
heuristics for wind farm layout optimisation. Renew. Energy 105, 473–482 (2017)

11. Mischek, F., Musliu, N.: A collection of hyper-heuristics for the hyflex framework.
Technical report, TU Wien, CD-TR, 2021/2 (2021)

12. Mısır, M., Smet, P., Vanden Berghe, G.: An analysis of generalised heuristics for
vehicle routing and personnel rostering problems. J. Oper. Res. Soc. 66(5), 858–870
(2015)

13. Mısır, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: An intelligent
hyper-heuristic framework for CHeSC 2011. In: Hamadi, Y., Schoenauer, M. (eds.)
LION 2012. LNCS, pp. 461–466. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34413-8_45

https://doi.org/10.1007/978-3-642-44973-4_43
https://doi.org/10.1007/978-3-642-34413-8_41
https://doi.org/10.1007/978-3-642-34413-8_45
https://doi.org/10.1007/978-3-642-34413-8_45

An Investigation of Hyper-Heuristic Approaches for Teeth Scheduling 289

14. Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic
search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp.
136–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29124-
1_12

15. Pillay, N., Beckedahl, D.: EvoHyp - a Java toolkit for evolutionary algorithm hyper-
heuristics. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2706–
2713 (2017)

16. Thomas, C., Schaus, P.: Revisiting the self-adaptive large neighborhood search. In:
van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 557–566. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_40

17. Winter, F., Mrkvicka, C., Musliu, N., Preininger, J.: Automated production
scheduling for artificial teeth manufacturing. In: Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 31, pp. 500–508 (2021)

18. Winter, F., Musliu, N.: A hyper-heuristic approach for artificial teeth schedul-
ing. In: Genetic and Evolutionary Computation Conference, Companion Volume,
GECCO 2022, Boston, MA, USA, 9–13 July 2022. ACM (2022)

19. Zhang, Y., Bai, R., Qu, R., Tu, C., Jin, J.: A deep reinforcement learning based
hyper-heuristic for combinatorial optimisation with uncertainties. Eur. J. Oper.
Res. 300, 418–427 (2021)

https://doi.org/10.1007/978-3-642-29124-1_12
https://doi.org/10.1007/978-3-642-29124-1_12
https://doi.org/10.1007/978-3-319-93031-2_40

A Mixed-Integer Programming
Formulation and Heuristics

for an Integrated Production Planning
and Scheduling Problem

D. M. Silva1(B) and G. R. Mateus2

1 Instituto Federal de Minas Gerais (IFMG), Formiga, MG, Brazil
diego.silva@ifmg.edu.br

2 Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil

mateus@dcc.ufmg.br

Abstract. This paper proposes a new mixed-integer programming for-
mulation for an integrated multiproduct, multiperiod, and multistage
capacitated lot sizing with hybrid flow shop problem (CLSP-HFS).
Heuristics that combine relax-and-fix with fix-and-optimize are also pro-
posed to solve it, using strategies for decomposing the set of variables by
product, period and stage. A relax-and-fix heuristic takes an initial feasi-
ble solution, and a fix-and-optimize heuristic tries to improve it. In order
to evaluate the performance of the combined strategy, some experiments
were done considering seven datasets as a benchmark, each one com-
posed of ten randomly generated instances with 5, 10, 15, 20, 25, 30, and
40 products. They are processed in parallel machines during three stages
along a planning horizon of eight periods. Experimental results suggest
that period-based strategies achieve a percentage deviation close to zero
from the optimum, while product-based strategies offer a compromise
between solution quality and computational time.

Keywords: CLSP · HFS · RFO-heuristic

1 Introduction

Production planning consists of defining how much to produce and store in each
period of a planning horizon to meet customer demand with minimal production
and inventory costs. It is related to the acquisition of resources and raw materials
and the production activities necessary to transform them into finished products
as economically or efficiently as possible [15,20]. Transformation occurs by exe-
cuting a set of jobs on one or more machines, in one or more stages, to be
sequenced to meet customer demand and previously established constraints and
objectives. Scheduling determines the most suitable time to execute each planned
operation and on which machine, taking into account conditions such as order

Supported by Fapemig and CNPq Brazil.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 290–305, 2023.
https://doi.org/10.1007/978-3-031-26504-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_21&domain=pdf
http://orcid.org/0000-0001-8600-5598
http://orcid.org/0000-0002-7238-0714
https://doi.org/10.1007/978-3-031-26504-4_21

A MIP and Heuristics for an Integrated Prod. Planning and Sched. Problem 291

delivery date, minimum makespan, balanced use of machines, etc., in order to
increase production productivity [8]. Although some practical techniques can be
used as a scheduling procedure, they do not guarantee that the finished prod-
uct batches will be delivered on time [5]. In addition, scheduling results also
affect production planning when capacity limits restrict lot sizing and schedul-
ing from being treated hierarchically and separately [4]. An integrated approach
can overcome these drawbacks.

Scheduling problems, in general, are highly complex and depend on environ-
mental characteristics, process constraints, objectives, or performance criteria.
Some classic variants are well known in the literature, such as the job shop and
the flow shop problems [17]. These can also follow extensions like permutational
and hybrid. Some exploit a single machine or several, in series or parallel, identi-
cal, uniform, or unrelated. More specifically, the hybrid flowshop (HFS) consists
of a series of stages, each with a set of parallel machines and a set of tasks to be
processed in series passing through each stage [14]. Therefore, the problem is to
determine, for each task, on which machine of each stage it should be processed
and at what time. In this paper, we propose an integrated procedure considering
multiproducts, multiperiods, and multistages, in a combination and variants of
two classic problems called capacitated lot sizing (CLSP) [11] and hybrid flow
shop (HFS). To the best of our knowledge, few works in the literature on pro-
duction planning and scheduling address the integration of the two problems.
We also present a mixed-integer programming formulation and heuristics used
to relax-and-fix and fix-and-optimize techniques to solve the proposed problem.

This paper is organized as follows. In the Sect. 2 we present some recent
works on the integration of production planning and scheduling, with a focus on
those who approach the problem through the use of MIP-heuristics relax-and-fix
and fix-and-optimize. Then, in Sect. 3 we present a mixed-integer programming
formulation to solve the integration of capacitated lot sizing problem with hybrid
flow shop (CLSP-HFS). The Sect. 4 provides the main features of the relax-and-
fix and fix-and-optimize algorithms, and the Sect. 5 describes the decomposi-
tion strategies adopted to solve the CLSP-HFS using the proposed formulation.
Next, Sect. 6 presents a comparative performance analysis of the decomposition
strategies implemented considering the percentage deviation from the optimum
(or best-known solution) and runtime for seven sets of instances of the inte-
grated problem. Finally, Sect. 7 discusses the final remarks and the future of this
research.

2 Related Works

In the general case, both the capacitated lot sizing and the hybrid flow shop prob-
lems are NP-Hard [2,14]. Consequently, most works in the literature propose to
solve real-world instances or considered difficult to solve, using matheuristics
and hybridization with metaheuristics. This section presents a brief review of
works that employed relax-and-fix (RF) and fix-and-optimize (FO) decomposi-
tion heuristics [1,20] to solve similar problems, integrated or not. In common,
they share the choice to decompose binary variables related to decisions about

292 D. M. Silva and G. R. Mateus

the setup of a machine, carryover of setup between periods, or both. Some of
these problems address the integration of production planning and scheduling,
but none resemble CLSP-HFS. RF and FO methods solve a MIP problem heuris-
tically by iteratively decomposing it into smaller MIP subproblems whose integer
and binary variables must sometimes be continuous (relaxed), sometimes fixed,
and sometimes discrete. At each iteration, a subproblem is solved by keeping
decisions done in past iterations fixed, optimizing the decisions that belong to
the current iteration, and relaxing future decisions. When combined, RF con-
structs a feasible solution, and FO improves it.

One of the first works that applied these techniques to solve production
planning problems heuristically was presented by [20]. Since then, many works
have applied RF, FO, or combined relax-and-fix-and-optimize (RFO). Fix-and-
optimize heuristic solved the multilevel capacitated lot sizing problem with multi-
period setup carryover (MLCLSP-L) and variants decomposing the original prob-
lem using combinations of machines, processes and products to split setup and
carryover decision variables per product and period [9,22]. The capacitated lot
sizing with sequence-dependent setups and substitution (CLSD-S) was solved by
[12] using relax-and-fix, fix-and-optimize, and relax-and-fix-and-optimize meth-
ods to split variables per period, product and substitute. In [25] the authors used
a rolling horizon window strategy to solve MLCLSP and a real-world production
scheduling problem decomposing variables per period, product, or both.

Integration of production planning and scheduling was also approached using
these decomposition techniques. For example, in [18] we found a relax-and-fix
method to solve a lot sizing problem with permutation flow shop and setups
dependent on the sequence. In [10] the parallel machine capacitated lot sizing and
scheduling with sequence-dependent setup (CLSD-PM) was solved using MIP-
based search with neighborhood heuristics, that includes combining relax-and-
fix with other improvement heuristics or local search techniques. It decomposes
integer variables of the model per period with re-optimization of part of them.

Hybridization is also used with decomposition techniques. In [6] a hybrid
method using fix-and-optimize and bees algorithm (BA) solved amultilevel capac-
itated lot sizing problem with carryover by substituting the well-defined partition-
ing in [22] by a bee algorithm to decompose setup and carryover variables. The
CLSP with carryover was solved in [7] using a hybridization of fix-and-optimize
and genetic algorithm. Finally, [13] used fix-and-optimize with variable neighbor-
hood search (VNS) based on k-degree connection neighborhood to solve a stochas-
tic multiproduct capacitated lot sizing with setup, backlogging, and carryover (S-
MICLSP-L) decomposing variables per product, period, resource and demand.

Recently, more complex decomposition strategies have emerged. An enhanced
relax-and-fix and RFO were presented in [24] to solve a two-stage multiprod-
uct lot sizing and scheduling problem with parallel machines using six different
strategies that combine machines, stages, products and periods. A generalized lot
sizing and scheduling (GLSP) variant that uses a process configuration selection
is solved using four different variations of relax-and-fix: forward, backward, with
overlapping and minimizing backlog. In [1] the authors proposed new decompo-

A MIP and Heuristics for an Integrated Prod. Planning and Sched. Problem 293

sition strategies that use information about the chronological order of periods,
demands per product and period, flexibility to produce products, the discrep-
ancy of production times, and efficiency and criticality of machines to decompose
setup variables. Finally, [4] explores the hybridization of relax-and-fix and fix-
and-optimize with intensification metaheuristics path-relinking (PR) and kernel
search (KS) using decomposition per period with re-optimization of part of the
variables in an integrated lot sizing and scheduling problem on parallel machines
with non-triangular sequence-dependent setup costs and times with carryover
(ILSSP-NT).

3 Mixed-Integer Programming Formulation

This section describes a mixed-integer program (MIP) formulation to integrate
the capacitated lot sizing problem with the hybrid flow shop (CLSP-HFS). Sets,
parameters, and decision variables are present as follows. In this integrated prob-
lem, we decide the lot sizing of |P | products along a planning horizon divided in
|T | periods. To produce them are available a set of machines Mk that operates
in |K| different stages of production. Subscripts p, t, m and k refers, respectively,
to products, periods, machines and stages. It is allowed to produce more than
a product per period but with no preemption (i.e., if the production of p starts
in the period t, it must be finished within t without interruption). To produce a
product p in a given period t and stage k are available |Mk| machines in parallel,
each one with capacity given by wmk

pt units of time and a processing time emk
p ,

where êk
p = maxm∈Mk

{
emk

p

}
denotes the worst processing time to produce p on

stage k. The schedule to produce p is feasible if it fits within this capacity. A
setup time to produce p is required to prepare machines between different prod-
ucts and stages and takes esmk

p units of time before starting processing a new
batch of a product if reconfiguration is required. Each period also have a total
capacity of wmk

t units of time, and must be greater than all wmk
pt that belong

the same period t. The production of a product p in a stage k only starts after
the production of p be finished in the stage (k − 1). Products may be stored to
meet future demands with a inventory cost cspt, and must respect the capacity
limit of warehousing St. The initial inventory level is given by Sp

0 . Producing
a product p in the period t costs cfpt per unit of product plus a setup cost of
cum

p per unit of time to prepare the machine, so the final setup cost is given
by

(
cum

p · esmk
p

)
. The total costs involve production, inventory, and setup costs

and must be minimized. Let the decision variables be xpt, integer, which decides
how many units of a product p must be produced in the period t; spt, integer,
which decides the number of products p that must be stored in the warehouse
on period t; hk

pt, continuous, that decides the start time of processing of a lot
for the product p in the stage k of the period t; rmk

pt , binary, that assumes value
1 if the machine m of stage k is assigned to produce product p on the period t,
and 0 otherwise; and qmk

pp′t that assumes 1 if the product p is scheduled before
que product p′ on machine m of stage k on the period t, and 0 otherwise.

This work is based on the CLSP formulation of [16], whose model embed-
ding capacity information due to scheduling constraints in a classical lot sizing

294 D. M. Silva and G. R. Mateus

model, and the HFS multistage formulation of [23] that uses precedence vari-
ables to model scheduling and sequencing between stages of a unique period.
Furthermore, it extends these works by proposing a multiperiod, multiproduct,
and multistage formulation for integrated lot sizing and scheduling with setup
costs whose scheduling decisions directly impact the total cost. Finally, inte-
grating both problems is also interesting because it permits generating feasible
lot sizing respecting the factory floor constraints. The CLSP-HFS problem is
formulated as follows:

min
∑

p

∑

t

cfptxpt + csptspt +
∑

p

∑

t

∑

k

∑

m

rmk
pt · esmk

p · cum
p (1)

s.t.

sp(t−1) − spt + xpt = dpt ∀p, t

(2)
sp0 = Sp

0 ∀p
(3)

∑

p∈P

spt ≤ St ∀t (4)

êk
p · xpt −

∑

m

wmk
pt · rmk

pt ≤ 0 ∀p, t, k (5)

∑

p

(
wmk

pt + esmk
p

)
· rmk

pt ≤ wmk
t ∀t, m, k (6)

∑

m

rmk
pt ≤ 1 ∀p, t, k (7)

(
2 − rmk

pt − rmk
p′t

)
· N +

(
1 − qmk

pp′t

)
· N+

hk
p′t − hk

pt − emk
p xpt ≥ esmk

p′ ∀p, p′, p < p′, t, m, k (8)
(

2 − rmk
pt − rmk

p′t

)
· N + qmk

pp′t · N+

hk
pt − hk

p′t − emk
p′ xp′t ≥ esmk

p ∀p, p′, p < p′, t, m, k (9)
(

2 − rmk
pt − r

m′(k−1)
pt

)
· N+

hk
pt − h

(k−1)
pt − em′(k−1)

p xpt ≥ esmk
p ∀p, t, k > 1, m ∈ Mk, m′ ∈ M (k−1)

(10)

h
|K|
pt + em|K|

p · xpt ≤ w
m|K|
t +

(
1 − r

m|K|
pt

)
· N ∀p, t, m ∈ M |K|

(11)
xpt, spt ∈ N ∀p, t (12)

A MIP and Heuristics for an Integrated Prod. Planning and Sched. Problem 295

hk
pt ≥ 0 ∀p, t, k (13)

rmk
pt , qmk

pp′t ∈ {0, 1} ∀p, p′, p < p′, t, m, k (14)

Objective function (1) minimizes the sum of production, inventory and setup
costs. Constraints (2) deals with balance among production, inventory and
demand per product p and period t. Constraints (3) define the initial inven-
tory level for each product p, and constraints (4) impose warehousing capacity
limits for all products p on a given period t. Constraints (5) limit the amount
of items to be produced in a lot of product p according to the machine capacity
available to produce them on stage k and period t. These constraints integrate
both production planning and scheduling problems because they define that if
a non-zero quantity of product is decided to be produced in the corresponding
period t and stage k, this production must be allocated on some machine of the
stage only if there is enough capacity available in this machine; otherwise rmk

pt

will be zero and no product p will be produced in period t. Constraints (6) ensure
that the processing time needed to produce the planned quantity of all products
including setup times must fit in the total capacity available on period t for the
machine m of the stage k. Constraints (7) allow to allocate a product p on at
most one machine per stage k and period t. Constraints (8) and (9) are disjunc-
tive and impose the precedence relation between two products p and p′ when
allocated in the same machine m and stage k of period t: or product p is produced
before p′, or p′ is produced before p. Constraints (10) ensure that a production
of p in the stage k only starts after be finished in the stage (k − 1). Constraints
(11) determine that a production of a complete lot of products p must the sched-
uled within the total time available for the period t. As consequence all hk

pt are
relative per period, i.e., must fit between 0 and the total capacity wmk

t . Finally,
constraints (12), (13) and (14) define non-negativity, integrality, and domain for
the decision variables associates with production, assignment and scheduling.

4 MIP Heuristics for CLSP-HFS Problem

This section presents the basic structure of both relax-and-fix and fix-and-
optimize methods that solve the CLSP-HFS problem by decomposing the origi-
nal MIP into subproblems that are easiest to solve.

4.1 Relax-and-Fix (RF)

One of the first mentions of this method appears on [20] as a construction
heuristic for production planning problems. The central idea is to partition 0–1
variables into Ω disjoint sets Q1, . . . , QΩ used to generate Ω different mixed-
integer smaller subproblems that are sequentially solved to find a heuristic solu-
tion to the original problem. For the CLSP-HFS problem the RF method was
adapted to handle the binary variables r and q that are related, respectively, to
machine assignment and sequencing. It changes their domain along the iterations

296 D. M. Silva and G. R. Mateus

according the subset these variables belong. In the ω-th iteration RF solves the
subproblem SUBMIP(ω)

RF generated as follow: variables r, q ∈ Qω are restricted
to be binary; variables r, q ∈ (

Q(ω+1) ∪ · · · ∪ QΩ
)

are relaxed; and variables
r, q ∈ (

Q1 ∪ · · · ∪ Q(ω−1)
)

are assumed be fixed with their corresponding values
computed from iteration 1 to (ω − 1). Figure 1 presents a diagram that illus-
trates how variables r and q behave in a partition with Ω = 4 disjoint sets along
iteration ω ∈ {1, 2, 3, 4} for a hypothetical example. The main steps of the RF-
heuristic are illustrated in Algorithm 1. It receives as input the instance to be
solved, a decomposition function that splits r and q in Ω disjoint subsets, and a
time budget inspired by the Computational Budget Allocation Scheme (CBAS)
of [12] that limits the computation of each subproblem.

Fig. 1. Example of a RF-heuristic for the CLSP-HFS problem with Ω = 4 subsets. Each
line shows how the SUBMIP

(ω)
RF must be constructed on the ω-th iteration indicating

which variables must be fixed (white-gray), optimized (gray), or relaxed (white). Here,
r̂ and q̂ refer to the value assumed for the variables r and q in the imcumbent solution
calculated in the past iterations that must be fixed in the current iteration.

The algorithm works as follows. In line 1 the decomposition function is
applied to divide variables r and q in Ω subsets (see Sect. 5 for strategies).
It is assumed that the total budget available for solving the original problem is
equally distributed among the Ω subproblems (lines 2–3). Because RF-heuristic
is constructive, line 4 defines the initial incumbent solution as unknown. The
loop from lines 5–16 is the core of the method. It runs Ω times; at iteration ω

it creates a smaller mixed-integer subproblem SUBMIP(ω)
RF fixing the variables

r, q ∈ (
Q1 ∪· · ·∪Q(ω−1)

)
, keeping the variables r, q ∈ Qω as binary, and relaxing

the integrality of variables r, q ∈ (
Q(ω+1) ∪ · · · ∪ QΩ

)
(line 6). SUBMIP(ω)

RF is
solved using a commercial solver upon the time budget allocated for it (line 7).
Depending on the decisions made in past iterations and values assumed as fixed
on the decision variables r, q ∈ (

Q1 ∪ · · · ∪ Q(ω−1)
)

the computed solution may
be feasible or not. If feasible, the partial incumbent solution is updated (line
9), and the procedure continues; otherwise, the algorithm stops with no valid
solution found and returns (line 11). The available time is recalculated using the
elapsed time to solve SUBMIP(ω)

RF , distributing the remaining time uniformly

A MIP and Heuristics for an Integrated Prod. Planning and Sched. Problem 297

Algorithm 1. Relax-And-Fix(instance, decomp-fn, Ω, budget)
1: Q1, Q2, . . . , QΩ ← decomp-fn(instance, Ω)

2: available-time ← budget

3: rf-budget ← available-time / Ω
4: incumbent ← ∅

5: for (ω ← 1 to Ω) do

6: Creates SUBMIP
(ω)
RF using Q1, Q2, . . . , QΩ for iteration ω as described

7: new-solution ← solve-subproblem(SUBMIP
(ω)
RF , rf-budget)

8: if new-solution is feasible then
9: incumbent ← new-solution

10: else
11: return ∅

12: end if
13: Computes the elapsed time to solve SUBMIP

(ω)
RF

14: Update available-time ← (available-time - elapsed)
15: Recompute rf-budget ← available-time / (Ω − ω)
16: end for
17: return incumbent

among the subproblems SUBMIP(ω+1)
RF to SUBMIP(Ω)

RF (lines 13–15). After solv-
ing all subproblems, the procedure stops and returns the constructed solution
(line 17).

4.2 Fix-and-Optimize (FO)

The fix-and-optimize heuristic is a procedure that starts from an initial feasible
solution (e.g., computed by RF-heuristic) and tries to improve it by systemati-
cally re-optimizing smaller mixed-integer subproblems. Similar to RF-heuristic,
it splits the binary variables r and q in Ω disjoint subsets Q1, . . . , QΩ . However,
it differs from RF-heuristic in the way the variables are fixed, using values from
both initial and incumbent solutions. There is no relaxation of binary variables.
Let ṙ and q̇ be the values of the variables r and q from the initial solution, and
let r̂ and q̂ be the values of r and q from the incumbent solution computed by
the FO-heuristic. In a given iteration ω, SUBMIP(ω)

FO is generated setting vari-
ables r, q ∈ Qω as binaries, while r, q ∈ ⋃Ω

i=1 Qi \ Qk are kept fixed using the
values assumed for ṙ and q̇ case r, q ∈ (

Q(ω+1) ∪ · · · ∪ QΩ
)
, or using the val-

ues assumed for r̂ and q̂ case r, q ∈ (
Q1 ∪ · · · ∪ Q(ω−1)

)
. Figure 2 illustrate this

procedure for Ω = 4, highlighting the subsets that must be fixed or optimized
along the Ω iterations to construct SUBMIP(ω)

FO. Because the procedure is similar
to RF-heuristic, no algorithm is described, but two observations must be done
about the process. Because the FO-heuristic is an improvement procedure, the
initial feasible solution is assigned to the incumbent when the procedure starts.
Along the iterations of FO, the incumbent solution is updated whenever a par-
tial solution computed from SUBMIP(ω)

FO has better objective function. When
the procedure finishes, the incumbent solution is returned.

298 D. M. Silva and G. R. Mateus

Fig. 2. Execution of FO-heuristic for CLSP-HFS problem within Ω = 4 subsets. Here,
ṙ and q̇ denote the values assumed for the variables r and q from the initial solution,
while r̂ and q̂ denote the values assumed for r and q from incumbent solution computed
in past iterations of the FO-heuristic.

4.3 Relax-and-Fix-and-Optimize (RFO)

RFO-heuristic is the combination of RF-heuristic to construct an initial feasible
solution to CLSP-HFS with FO-heuristic to improve it. Because this operation
is direct, it will not be discussed here.

5 Decomposition Strategies

In this section, we present some problem-dependent strategies from literature
used in this work to decompose the binary variables r and q into disjoint sets
considering dimensions related to products, periods, and stages. Product-based
strategies separate the binary variables r and q in Ω = |P | disjoint sets according
to rules related to products and demands associates to them. Three product-
based strategies were considered: Prod.P, MstProd.P, and LstProd.P. Period-
based strategies uses the period as a criterion to decompose r and q variables
in Ω = |T | disjoint sets. Two period-based strategies were used: Per.Fwd.T and
MstPer.T. Finally, decomposition by stage separates variables r and q in Ω = |K|
disjoint sets. Variables that refer to different machines that belong to each stage
are placed together in the same disjoint set. Since CLSP-HFS is multistage, one
strategy was proposed and implemented: Stage.K. A brief description of these
strategies is given above:

– Prod.P (or lexicographical [1,9,12,13,22,24]): variables are sorted in increas-
ing lexicographical order of the subscript p ∈ P ;

– MstProd.P (or most demanded product first [1,13]): variables are sorted in
decreasing order of products demands dp =

∑
t∈T dpt;

– LstProd.P (or less demanded product first [1]): similar to MstProd.P, but
sort variables in increasing order of products demands dp =

∑
t∈T dpt.

– Per.Fwd.T (or chronological [1,3,4,7,10,12,13,20,24]): variables are sorted
in increasing order of the subscript t of periods, with t = {1, . . . , |T |};

A MIP and Heuristics for an Integrated Prod. Planning and Sched. Problem 299

– MstPer.T (or periods with larger demand first [1]): variables are sorted in
decreasing order of overall demand δt =

∑
p∈P dpt.

– Stage.K (or ascending): optimizing the more advanced stages first can out-
comes unfeasible solutions depending on the availability of machines in the
preceding stages, so the ascending order is followed: first consider stage one,
after the second stage, and so on.

6 Numerical Experiments

In this section, some experiments were done to compare the performance of the
described decomposition strategies applied to the proposed formulation. A time
budget of 3600 s was available to solve each instance using the MIP model and
the same budget for the combined RFO-heuristic (25% of this budget for RF
and 75% for FO). The experiments were carried out in an Intel i7-8565U 1.8 GHz
machine with 8 Gb of RAM. Both algorithms and formulation were implemented
in Python 3 using commercial solver Gurobi 9.0.1 for Windows with default
parameters set (except TimeLimit=3600, Threads=4 and MipGap=0.0000001).
Statistic tests were done using R Project for Statistical Computing 3.4.4.

The tested benchmark is composed by seven datasets, named A-5, B-10,
C-15, D-20, E-25, F-30 and G-40, each one containing 10 randomly generated
instances that share the same structural characteristics. The fixed parameters
are |P | ∈ {5, 10, 15, 20, 25, 30, 40}, |T | = 8, |K| = 3 and |Mk| = 3. The initial
inventory level is Sp

0 = 0, and the capacities available per product and per period
are given, respectively, by wmk

pt = 200 and wmk
t =

(|P | · 200
)
. The parameters

that varies are presented in Table 1. They were chosen based on the works [16,23]
because they have already been used in the generation of instances involving
planning, scheduling or both. The demands were computed per product and
period according the capacity wmk

pt and the worst processing time among all
machines of the k-th stage, denoted by êk

p = maxm∈Mk

{
emk

p

}
, using dpt =

�wmk
pt /

∑
k êk

p�.

Table 1. Parameters and ranges, based on [16,23], used to generate costs, times and
inventory capacities for instances in datasets A-5, B-10, C-15, D-20, E-25, F-30,G-40.

Name Parameter Distribution Value range

Production costs cfpt Continuous Uniform U(10, 20)

Inventory costs cspt Continuous Uniform U(1, 5)

Setup costs cum
p Continuous Uniform U(100, 200)

Setup times esmk
p Continuous Uniform U(10, 50)

Processing times emk
p Continuous Uniform U(1, 10)

Inventory capacities St Discrete Uniform U [10, 15]

The experiments were done as follows. First, the instances from each dataset
were solved to optimality (or until the time budget expires) using the Gurobi

300 D. M. Silva and G. R. Mateus

solver and the MIP formulation. After, the combined RFO-heuristic was used to
construct and improve solutions for the same instances applying the discussed
strategies. The production, inventory, and setup costs for the solution computed
using RFO were used to calculate a percentage deviation to the optimal solu-
tion (or to the best-known solution) Dev = (f(RFO) − f(MIP))/f(MIP), a
performance measure that shows how far the solution computed by the RFO is
from the optimum (or the best solution found). The execution of both solver and
RFO on each dataset provided a sample with ten observations used to (i) plot
the confidence interval for the mean value of percentage deviations, (ii) statis-
tically determine if there were significant differences in the outcomes generated
for these strategies, and (iii) identify which pairs of strategies are different or
similar in terms of performance at a 95% confidence level.

The plot presented in Fig. 3 contains the confidence interval for the mean
value of percentage deviation estimated using non-parametric Bootstrap for each
strategy and dataset. The resulting intervals suggest that some strategies dif-
fer from others in terms of performance. In special, the period-based strategies
achieved total cost for planning and scheduling closest to the optimum with near-
zero percentage deviation, a tighter confidence interval, and minor variation in
the expected percentage deviation than those based on product and stage.

Although the plot suggests that the period-based strategies are more suitable
for solving the CLSP-HFS formulation using RFO, statistical tests were used to
reinforce it. Because assumptions for an ANOVA test were not met (e.g., nor-
mality of residuals), the non-parametric Kruskal-Wallis test [19,21] was used to
check if there was a statistically significant difference in terms of percentage devi-
ation among all strategies. It was found that, for all datasets, the corresponding
p-value was on the order of 10−8, concluding that the strategies are statistically
different because p-value < α = 0.05.

Therefore, a non-parametric Pairwise Wilcoxon Rank Sum Test with Bon-
ferroni’s correction for α was used to identify whose differs two by two at a 95%
confidence level. Table 2 presents a matrix per dataset containing the Bonfer-
roni’s adjusted p-values resulting from the test for the datasets with |P | ≥ 25
products. A p-value < α indicates a statistically significant difference between a
pair of strategies. The cases where such a difference exists are highlighted with
an asterisk character (∗). These results shows that, for most cases, there is no
significant difference between strategies MstPer.T and Per.Fwd.T, and among
LstProf.P, MstProd.P and Prod.P, while Stage.K differs from both period-
based and product-based strategies. Together with the plot of Fig. 3, these results
also reinforce the suggestion that the best choices of strategies to run the RFO-
heuristic considering solution quality as a criterion are MstPer.T and Per.Fwd.T
because they return near-zero percentage deviation, and the corresponding sub-
problems are smaller than the original, in such a way that they are solved using
potentially less time that is required to run the entire MIP formulation. Although
the results of the test were not reported for all datasets, the behavior observed
in Table 2 holds for all.

A MIP and Heuristics for an Integrated Prod. Planning and Sched. Problem 301

Fig. 3. Confidence intervals for the mean of the percentage deviation f(RFO)−f(MIP)
f(MIP)

resulting from execution of the RFO-heuristic using six different decomposition strate-
gies based on period, products and stages over seven sets of instances.

302 D. M. Silva and G. R. Mateus

Table 2. Comparison matrix containing p-values resulting from Pairwise Wilcoxon
comparison test (two by two) of six decomposition strategies tested with RFO-heuristic
in three sets of instances. Pairs marked with an (∗) are statistically different in terms
of percentage deviation.

Dataset LstProd.P MstPer.T MstProd.P Per.Fwd.T Prod.P

E-25 MstPer.T 0.00270* – – – –

MstProd.P 1.00000 0.00270* – – –

Per.Fwd.T 0.00270* 1.00000 0.00270* – –

Prod.P 1.00000 0.00270* 1.00000 0.00270* –

Stage.K 0.00490* 0.00270* 0.00110* 0.00270* 0.0019*

F-30 MstPer.T 0.01360* – – – –

MstProd.P 1.00000 0.00924* – – –

Per.Fwd.T 0.01360* 1.00000 0.00924* – –

Prod.P 1.00000 0.00924* 1.00000 0.00924* –

Stage.K 0.00123* 0.00924* 0.00062* 0.00924* 0.00062*

G-40 MstPer.T 0.00069* – – – –

MstProd.P 1.00000 0.00016* – – –

Per.Fwd.T 0.00069* 1.00000 0.00016* – –

Prod.P 1.00000 0.00032* 0.04482* 0.00032* –

Stage.K 0.00123* 0.00032* 0.00032* 0.00032* 0.00062*

To complete the analysis, Table 3 presents the median of runtime to solve
CLSP-HFS using all strategies. It shows that Stage.K is the more time-
consuming strategy among them because their subproblems contain more binary
variables to optimize than others due to the fact that, in general, the cardinality
of K is much smaller than that of T or P . Considering the percentage devi-
ation it returns (Fig. 3) it seems not to offer a good trade-off. Analyzing the
percentage deviation and runtime for MstPer.T and Per.Fwd.T we verify that,
although they achieved near-zero percentage deviation, they are also costly in
terms of computing effort if compared to the product-based strategies (for exam-
ple, the median runtime of Per.Fwd.T is about 22 times greater than the runtime
of LstProd.P for dataset G-40). Therefore, product-based strategies seem to be
more suitable for computing a feasible production planning for real-world cases of
CLSP-HFS when they demand response as soon as possible, while period-based
strategies may be used to find high-quality solutions when more computing time
is available.

A MIP and Heuristics for an Integrated Prod. Planning and Sched. Problem 303

Table 3. Median of the runtime, in seconds, for different decomposition strategies used
with RFO-heuristic on the tested datasets.

Dataset LstProd.P MstProd.P Prod.P Stage.K MstPer.T Per.Fwd.T

A-5 0.7117 0.5590 0.4997 1.7826 1.6672 1.6867

B-10 5.4010 5.4438 6.5524 85.3615 25.8521 27.5315

C-15 15.7831 11.1758 19.4317 254.7276 41.8867 46.6300

D-20 42,1319 42.4018 55.8263 310.6666 121.2430 120.1972

E-25 59.9986 47.2720 74.8139 312.0385 246.2482 263.7773

F-30 38.3576 32.2592 53.2724 310.7535 257.8930 266.3645

G-40 79.6631 82.9692 114.8287 322.0453 1766.1646 1779.9138

7 Conclusions

This paper proposed a new mixed-integer programming formulation for a multi-
product, multiperiod, and multistage integrated lot sizing and scheduling prob-
lem with setup costs and solved it heuristically using a combined relax-and-fix
and fix-and-optimize heuristic. Some experiments were done to evaluate the per-
formance of the combined strategy considering six different decompositions of
variables based on products, periods, and stages. They were tested in a bench-
mark containing seven datasets, each one with ten randomly generated instances.
They were solved using a commercial solver, and the percentage deviation from
the optimal solution (or to the best solution found in 3600 s) and runtime
were collected for analysis. Experimental results show that period-based strate-
gies achieved near-zero percentage deviation in most cases, while product-based
strategies obtained a trade-off between solution quality and time.

For future works, we suggest to test a new decomposition criterion that
merges information from stages and machines. In the current implementation,
the machines that belong to the same stage are optimized together, so it is not
possible to differentiate whom decision variables related to these machines are
more interesting to optimize first because there is no trade-off between produc-
tion and setup costs, machine capacity, and processing and setup times. There-
fore, we hypothesize that separating them per machine and stage may offer a
more effective and competitive decomposition. We also suggest extending the
mixed-integer formulation to consider sequence-dependent setup, turning the
problem more interesting in real-world cases and applications.

References

1. Araujo, K., Birgin, E., Kawamura, M., Ronconi, D.: Relax-and-fix heuristics
applied to a real-world lot-sizing and scheduling problem in the personal care
consumer goods industry. arXiv preprint arXiv:2107.10738 (2021)

2. Bitran, G.R., Yanasse, H.H.: Computational complexity of the capacitated lot size
problem. Manag. Sci. 28(10), 1174–1186 (1982)

http://arxiv.org/abs/2107.10738

304 D. M. Silva and G. R. Mateus

3. Boas, B.E.V., Camargo, V.C., Morabito, R.: Modeling and MIP-heuristics for
the general lotsizing and scheduling problem with process configuration selection.
Pesquisa Operacional 41 (2021)

4. Carvalho, D.M., Nascimento, M.C.: Hybrid matheuristics to solve the integrated
lot sizing and scheduling problem on parallel machines with sequence-dependent
and non-triangular setup. Eur. J. Oper. Res. 296(1), 158–173 (2022)

5. Dauzère-Péres, S., Lasserre, J.B.: An Integrated Approach in Production Planning
and Scheduling, vol. 411. Springer, Heidelberg (2012)

6. Furlan, M.M., Santos, M.O.: BFO: a hybrid bees algorithm for the multi-level
capacitated lot-sizing problem. J. Intell. Manuf. 28(4), 929–944 (2017)

7. Gören, H.G., Tunalı, S.: Solving the capacitated lot sizing problem with setup
carryover using a new sequential hybrid approach. Appl. Intell. 42(4), 805–816
(2015)

8. Guo, Y., Li, W.D., Mileham, A.R., Owen, G.W.: Applications of particle swarm
optimisation in integrated process planning and scheduling. Robot. Comput.-
Integr. Manuf. 25(2), 280–288 (2009)

9. Helber, S., Sahling, F.: A fix-and-optimize approach for the multi-level capacitated
lot sizing problem. Int. J. Prod. Econ. 123(2), 247–256 (2010)

10. James, R.J., Almada-Lobo, B.: Single and parallel machine capacitated lotsizing
and scheduling: New iterative MIP-based neighborhood search heuristics. Comput.
Oper. Res. 38(12), 1816–1825 (2011)

11. Karimi, B., Ghomi, S.F., Wilson, J.: The capacitated lot sizing problem: a review
of models and algorithms. Omega 31(5), 365–378 (2003)

12. Lang, J.C., Shen, Z.J.M.: Fix-and-optimize heuristics for capacitated lot-sizing
with sequence-dependent setups and substitutions. Eur. J. Oper. Res. 214(3), 595–
605 (2011)

13. Li, L., Song, S., Wu, C., Wang, R.: Fix-and-optimize and variable neighborhood
search approaches for stochastic multi-item capacitated lot-sizing problems. Math.
Probl. Eng. 2017 (2017)

14. Linn, R., Zhang, W.: Hybrid flow shop scheduling: a survey. Comput. Ind. Eng.
37(1–2), 57–61 (1999)

15. Maravelias, C.T., Sung, C.: Integration of production planning and scheduling:
overview, challenges and opportunities. Comput. Chem. Eng. 33(12), 1919–1930
(2009)

16. Mateus, G.R., Ravetti, M.G., de Souza, M.C., Valeriano, T.M.: Capacitated lot
sizing and sequence dependent setup scheduling: an iterative approach for integra-
tion. J. Sched. 13(3), 245–259 (2010)

17. Michael, L.P.: Scheduling: Theory, Algorithms, and Systems. Springer, Heidelberg
(2008)

18. Mohammadi, M., Fatemi, G.S.: Relax and fix heuristics for simultaneous lot sizing
and sequencing the permutation flow shops with sequence-dependent setups. Int.
J. Ind. Eng. Prod. Res. 21(3), 147–153 (2010)

19. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers.
Wiley, Hoboken (2010)

20. Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming.
Springer, Heidelberg (2006)

21. Ross, S.M.: Introduction to Probability and Statistics for Engineers and Scientists.
Elsevier (2004)

22. Sahling, F., Buschkühl, L., Tempelmeier, H., Helber, S.: Solving a multi-level capac-
itated lot sizing problem with multi-period setup carry-over via a fix-and-optimize
heuristic. Comput. Oper. Res. 36(9), 2546–2553 (2009)

A MIP and Heuristics for an Integrated Prod. Planning and Sched. Problem 305

23. Saravia, K.L.L.: Modelos e algoritmos para o flowshop h́ıbrido com tempos de
preparação dependentes da sequência e da máquina. Master’s thesis, Universidade
Federal de Minas Gerais (2016)

24. Schimidt, T.M.P., Tadeu, S.C., Loch, G.V., Schenekemberg, C.M.: Heuristic
approaches to solve a two-stage lot sizing and scheduling problem. IEEE Lat. Am.
Trans. 17(03), 434–443 (2019)

25. Toledo, C.F.M., da Silva Arantes, M., Hossomi, M.Y.B., França, P.M., Akartunalı,
K.: A relax-and-fix with fix-and-optimize heuristic applied to multi-level lot-sizing
problems. J. Heuristics 21(5), 687–717 (2015)

Construct, Merge, Solve and Adapt
Applied to the Maximum Disjoint

Dominating Sets Problem

Roberto Maria Rosati1,2(B) , Salim Bouamama3 , and Christian Blum2

1 DPIA, University of Udine, via delle Scienze 206, 33100 Udine, Italy
robertomaria.rosati@uniud.it

2 Artificial Intelligence Research Institute (IIIA-CSIC) Campus of the UAB,
Bellaterra, Spain

christian.blum@iiia.csic.es
3 Department of Computer Science, Mechatronics Laboratory (LMETR), Ferhat

Abbas University, Sétif 1, 19000 Sétif, Algeria

salim.bouamama@univ-setif.dz

Abstract. We propose a “construct, merge, solve and adapt” (CMSA)
approach for the maximum disjoint dominating sets problem (MDDSP),
which is a complex variant of the classical minimum dominating set prob-
lem in undirected graphs. The problem requires to find as many vertex-
disjoint dominating sets of a given graph as possible. CMSA is a recent
metaheuristic approach based on the idea of problem instance reduction.
At each iteration of the algorithm, sub-instances of the original problem
instance are solved by an exact solver. These sub-instances are obtained
by merging the solution components of probabilistically generated solu-
tions. CMSA is the first metaheuristic proposed for solving the MDDSP.
The obtained results show that CMSA outperforms all existing greedy
heuristics.

Keywords: Maximum disjoint dominating sets problem · Domatic
partition problem · CMSA · Wireless sensor networks

1 Introduction

The identification of small dominating sets in graphs and networks is one of
the classical combinatorial optimization problems in graph theory, with numer-
ous applications ranging from biology to communication networks [14]. Given
a simple, undirected graph G = (V,E), a set of vertices D ⊆ V is called a
dominating set of G if every vertex v ∈ V \ D is adjacent to at least one ver-
tex v′ ∈ D. The NP-hard minimum dominating set (MDS) problem requires to
find a smallest dominating set in a given graph. The so-called maximum disjoint
dominating sets problem (MDDSP) is a variation of the MDS problem in which
a valid solution S = {D1, . . . , Dk} consists of a collection of disjoint dominating
sets Di (i = 1, . . . , k) of G such that Di ∩ Dj = ∅ for all i �= j ∈ {1, . . . , k}.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 306–321, 2023.
https://doi.org/10.1007/978-3-031-26504-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_22&domain=pdf
http://orcid.org/0000-0001-9560-6301
http://orcid.org/0000-0002-5842-2850
http://orcid.org/0000-0002-1736-3559
https://doi.org/10.1007/978-3-031-26504-4_22

CMSA Applied to the MDDS Problem 307

The objective function value f(S) of a valid solution S is the number of disjoint
dominating sets in S, that is, f(S) := |S|. The goal is to find a valid solution S∗

that maximizes f .
Note that a highly related optimization problem is the domatic partition

problem (DPP). Given a simple, undirected graph G = (V,E) the DPP problem
requires to partition the set of vertices V into the maximal number of disjoint
dominating sets. In other words, a valid solution S = {D1, . . . , Dk} to the DPP
problem not only requires that all pairs of dominating sets Di �= Dj ∈ S are
disjoint (i, j = 1, . . . , k), but also that

⋃k
i=1 Di = V . Nevertheless, observe that

any solution S to the MDDSP can easily be transformed into a solution S ′ to the
DPP by adding all vertices from V \⋃|S|

i=1 Di to any of the disjoint dominating sets
of S. Note that, by adding further vertices to a dominating set D, set D does not
lose its property of being a dominating set. This implies that an optimal solution
to the MDDSP can easily be transformed into an optimal solution to the DPP.
The value of an optimal solution to the DPP in graph G, denoted by γ(G), is also
called the domatic number of G. In this context, the term “domatic” was created
as a composition of “dominating” and “chromatic” [8]. In the related literature,
one can also find numerous references to the so-called domatic number problem
(DNP) [8]. However, this problem only refers to finding the domatic number
γ(G) of a graph G. In other words, algorithmic approaches for solving the DNP
try to identify γ(G) without necessarily generating a corresponding solution.
Therefore, by solving the DPP we simultaneously solve the DNP, but not vice
versa. Finally, a special case of the DPP is the k-domatic partition problem
that seeks to find a partition of a given graph into k disjoint dominating sets.
Correspondingly, the k-domatic number problem asks whether a given graph can
be partitioned into k dominating sets.

As mentioned above, in this work we attempt to solve the MDDSP in general
graphs. Practical applications of this problem can be found especially in the con-
text of heterogeneous multi-agent systems [18] and in wireless sensor networks
(WSN), which are studied for their applications in the fields of healthcare, envi-
ronmental monitoring, emergency operations and security surveillance [1]. Note
that WSNs are networks composed of a rather large number of small devices
called sensor nodes. These sensor nodes capture information from the environ-
ment and they are also responsible for transmitting the captured data to a base
station. The power supply of sensor nodes is generally provided through batter-
ies, which implies that their lifetime is limited. For the purpose of energy conser-
vation, sensor nodes may change from their normal, active mode to another mode
called low-energy, respectively sleep, mode. Hereby, the active mode allows cap-
turing information and transmitting data, for example. The difference of energy
consumption between the sleep and the active mode is considerable and may
reach about two orders of magnitude [6,7]. When grouped into disjoint domi-
nating sets, at any moment in time only the sensor nodes belonging to exactly
one of these dominating sets are in active mode. All the others remain in sleep
mode. Moreover, when the currently active sensor nodes reach a critical battery
level they are put into sleep mode and the sensor nodes of the next dominating

308 R. M. Rosati et al.

set are activated. This is repeated until all disjoint dominating sets have been
used. Thus, the expected lifetime of the network is determined by the number of
disjoint dominating sets times the average lifetime of a sensor in the active state.
Therefore, the higher the number of dominating sets, the longer is the lifetime
of the WSN.

For solving the MDDSP we propose a “construct, merge, solve and adapt”
(CMSA) algorithm [3], which is a recent metaheuristic technique belonging to
the field of matheuristics [12]. CMSA has shown to be suitable for other hard
combinatorial optimization problems such as the minimum capacitated dominat-
ing sets problem [21], graph coloring applied to social networking [16], and the
test data generation for software product lines [11]. The choice of CMSA is moti-
vated by the fact that the algorithm relies on the availability of fast and effective
greedy heuristics. In fact, most of the work on algorithms for the MDDSP and
the DPP has focused on greedy heuristics so far (see Sect. 2). Another reason
for selecting CMSA is that the complex structure of solutions to the problem
make the application of algorithms based on local search rather hard. Finally,
note that—even though the MDDSP and DPP problems have been studied since
many years—to the best of our knowledge no metaheuristic or matheuristic tech-
nique for solving the problem has been proposed so far.

The remainder of the paper is organized as follows. Section 2 introduces the
related work that can be found in the literature. Section 3 provides graphical
examples of problem instances and solutions. Section 4 describes in detail our
CMSA approach, while the experimental methodology and results are discussed
in Sect. 5. Finally, Sect. 6 is dedicated to the conclusions and future work.

2 Related Work

The DPP was first introduced in [9]. In the same paper, the authors showed that
the problem has an upper bound of δ(G) + 1, where δ(G) is the minimum degree
of all vertices in G. In other words, an optimal solution to the DPP can never
have more disjoint dominating sets than δ(G) + 1. Furthermore, the problem was
shown to belong to the class of NP-hard problems on general graphs [13]. In fact,
it remains NP-hard for co-bipartite graphs [22]. Moreover, it was shown that—
unless P=NP—the MDDSP has no polynomial-time α-approximation algorithm
for any constant α smaller than 1.5 [7]. Existing polynomial-time approximation
schemes can be found in [10]. In addition to the above, the NP-completeness of
the 3-domatic partition problem was proved for general graphs [7] and still holds
when restricted to planar bipartite graphs [22] and planar unit disk graphs [19].

As mentioned before, research on the DNP1 deals with deriving the domatic
number of a given graph without the need for deriving the corresponding collec-
tion of disjoint dominating sets. A literature review yields several studies related
to the DNP. Most of these studies are primarily interested in dealing with the
DNP in certain families of graphs. Although not many exact approaches can be

1 Remember that DNP stands for “domatic number problem”.

CMSA Applied to the MDDS Problem 309

found in the literature for DPP-like problems, being mainly due to their com-
plexity, some exact approaches have been designed for finding optimal solutions
to the DNP. In particular, the first exact deterministic exponential-time algo-
rithm for the 3-DNP was designed in [23]. The algorithm has a running time
of O(2.9416n) and uses polynomial space, which is in contrast to a naive app-
roach that runs in O(3n) of time. This time complexity was later improved to
O(2.695n) in [24]. Combining the two main techniques typically used for the
design of exact exponential-time algorithms—inclusion & exclusion, respectively
measure & conquer—the work in [25] provided a fast polynomial-space algorithm
that computes the domatic number in O(2.7139n) time.

A natural way to build a feasible solution to the MDDSP is to greedily
construct dominating sets of preferably small cardinality with the ultimate goal
to maximize the number of disjoint dominating sets that can be generated.2

A vertex-coloring heuristic (COLOR-DDS) working in two phases and with
a time complexity of O(n3), where n is the number of vertices of the graph,
was proposed in [7]. First, all vertices are colored using a sequential coloring
algorithm similar to the well-known Welsh-Powell algorithm in order to construct
independent sets. In this context, an independent set is a subset of vertices in
a graph, no two of which are connected by an edge. Vertices belonging to the
same independent set then receive the same color. Subsequently, a heuristic is
employed to construct disjoint dominating sets based on these independent sets.

Three other greedy heuristics, called progressive maximum degree disjoint
dominating sets (P-MAX), progressive minimum degree disjoint dominating sets
(PMIN) and random lowest ID disjoint dominating sets (RLID), were introduced
in [19]. Their performance was evaluated and compared against COLOR-DDS
both in terms of the number of disjoint dominating sets and the computation
time. Note that all three greedy heuristics follow the same underlying mechanism.

An improved version of the P-MAX greedy heuristic which, in this paper,
is denoted as IAM (the acronym is composed of the initials of the authors’
surnames) was presented in [15]. In particular, while constructing a dominating
set they consider both “white vertices” (that is, vertices not yet chosen and
not yet covered) and “gray vertices” (that is, vertices not yet chosen but already
covered) as possible extensions of the current dominating set. Ties concerning the
employed greedy function are broken by choosing a vertex with the minimum
number of neighbors (including itself) already added to one of the generated
dominating sets. If the tie is still unresolved, the vertex with the smallest ID is
chosen.

The currently best greedy algorithm (called MDDS-GH) for the MDDSP
was more recently proposed in [2]. This algorithm can be seen as an extension
of the one from [15] in a way that both enhances its performance and avoids
its drawbacks. Moreover, MDDS-GH is able to solve a weighted variant of the
MDDSP labeled the maximum weighted disjoint dominating sets problem, and it

2 Remember that any solution to the MDDSP can be trivially transformed to a solution
to the DPP by adding those vertices that do not belong to any of the disjoint
dominating sets to one of the dominating sets of the MDDSP-solution.

310 R. M. Rosati et al.

v0

v1

v2

v3 v4

v5

v6 v7

v8

v9 v10

Fig. 1. A graph with 11 vertices and 17 edges. The upper bound for the domatic number
is δ(G) + 1 = 3. Moreover, there exists an optimal solution with 3 disjoint dominating
sets (as indicated by the vertices with a background color different to white). (Color
figure online)

is among the main components of a metaheuristic proposed for the same problem
variant in [4].

To the best of our knowledge, no metaheuristic approach has been proposed
so far to solve the MDDSP. As outlined above, existing studies focus on devel-
oping exact, approximation or greedy heuristic algorithms.

3 Graphical Problem Illustration

An example graph, together with an optimal solution, is shown for illustration
purposes in Fig. 1. Let G = (V,E), with |V | = 11 and |E| = 17, be the undi-
rected graph shown in this graphic. Vertices are labeled v0, . . . , v10, while edges
are unlabeled. Moreover, the graphic shows an optimal solution with three dom-
inating sets (as indicated by the background colors of the vertices). The sets are,
respectively, D1 = {v0, v3, v5, v7}, D2 = {v1, v4, v9}, and D3 = {v2, v6, v8}. From
the graphic it is easy to see that all these sets are indeed dominating sets of G.
Considering, for instance, the case of set D1, the following can be observed:

1. v0 dominates the adjacent vertices v1 and v2
2. v3 dominates v1, v2 and v4
3. v5 dominates v4, v9 and v0
4. v7 dominates v6, v9 and v10

In addition, D1 ∩ D2 = ∅, D1 ∩ D3 = ∅, and D2 ∩ D3 = ∅, which means that
the three dominating sets are pairwise disjoint. Hence, S = {D1,D2,D3} is a
solution to the MDDSP in graph G, with objective function value f(S) = 3. Note
that a solution to the DPP is obtained by adding v10, which does not belong to
any dominating set of the considered solution, to one of the three dominating
sets.

A useful property of the MDDSP, that we exploit in our algorithm (details are
given in Sect. 4), is the following one. As already mentioned in Sect. 2, δ(G) + 1—
where δ(G) is the minimum degree of all vertices in graph G—is a proven upper

CMSA Applied to the MDDS Problem 311

v0

v1

v2

v3 v4

v5

v6 v7

v8

v9 v10

Fig. 2. A graph with 11 vertices and 16 edges. The upper bound for the domatic number
is δ(G) + 1 = 3, but an optimal solution has only 2 disjoint dominating sets. One of the
possible optimal solutions is indicated by blue and purple vertices. Uncolored vertices
do not belong to any dominating set of the displayed solution. (Color figure online)

bound for the number of disjoint dominating sets in G [9]. This upper bound
is actually rather easy to be verified. Given a solution S = {D1, . . . , Dk} to
the MDDSP in graph G, any vertex vk ∈ V must be dominated by a different
vertex in all Di ∈ S. However, note that a vertex vk ∈ V with degree deg(vk)
can only be dominated by itself or by any of its neighbors, that is, by at most
deg(vk) + 1 different vertices. Therefore, there can be at most δ(G) + 1 disjoint
dominating sets in G. Nevertheless, this value, which is very easy to calculate
and very useful when solving the problem in practice, does not imply that a
solution with δ(G) + 1 disjoint dominating sets exists. That is to say, if we
have a solution with value δ(G) + 1 we can be sure that it is optimal, but
the opposite does not hold. Compare, for example, the two graphs from Figs. 1
and 2. They are identical except for the fact that the graph from Fig. 2 does
not have an edge connecting vertices v1 and v2. For both graphs it holds that
δ(G) + 1 = 2+1 = 3, because—in both cases—the vertex with the lowest degree
has a degree of 2. However, while it is possible to find an optimal solution of
value 3 for the graph in Fig. 1, an optimal solution for the graph in Fig. 2 has a
value of 2.

Finally, it is worth to mention that every graph admits at least one feasible
solution to the MDDSP, as V is a dominating set of G = (V,E). Moreover,
every graph without isolated vertices contains at least two disjoint dominating
sets (see [20]). This implies that there are no infeasible problem instances.

4 The CMSA Approach to the MDDSP

In this section we describe the “construct, merge, solve and adapt” (CMSA) algo-
rithm [3] that we designed for solving the MDDSP. CMSA is a recent matheuris-
tic that roughly works as follows. At each iteration, the algorithm first generates
a number of solutions in a probabilistic way. Second, the solution components
found in these solutions are added to an initially empty sub-instance of the
tackled problem instance. Third, an independent algorithm—typically an exact

312 R. M. Rosati et al.

solver—is applied to the current sub-instance, that is, this algorithm is used to
find the (possibly) best solution to the original problem instance that only con-
tains solution components currently present in the sub-instance. Finally, based
on the result of the independent algorithm when applied to the sub-instance, the
current sub-instance is adapted.

In the context of the application to the MDDSP, we make use of a prob-
abilistic version of the greedy algorithm proposed in [2] for the construction
of solutions at each CMSA iteration. Moreover, the disjoint dominating sets
found in the constructed solutions are regarded as the solution components. We
make use of the integer linear programming (ILP) solver CPLEX (version 20.1)
for solving sub-instances by means of a set packing ILP formulation. All these
aspects are outlined in detail in the following. First, however, we will describe the
lexicographic objective function that we designed in order to deal with plateaus
in the search space.

4.1 Lexicographic Objective Function

As mentioned already before, given a solution S = {D1, . . . , Dk} to the MDDPS,
the objective function value is simply f(S) := |S|, that is, it counts the number
of disjoint dominating sets in S. For this reason, many solutions have the same
objective function value. As a consequence, the corresponding search landscape
has large plateaus [26].

Consider, for example, the solution displayed in Fig. 1. D2 = {v1, v4, v9}
can be replaced by D′

2 = {v1, v4, v10}, obtained by swapping vertex v9 with
vertex v10, or by D′′

2 = {v1, v4, v9, v10}, obtained by adding vertex v10. Solutions
S = {D1,D2,D3}, S ′ = {D1,D

′
2,D3}, and S ′′ = {D1,D

′′
2 ,D3} are all different,

though, they all have the same value f(S) = f(S ′) = f(S ′′) = 3.
The problem that such an objective function presents for (meta-)heuristic

search processes is that—due to the lack of a suitable guidance—an algorithm
may get lost on plateaus. A possible way to deal with plateaus is to use a
lexicographic objective function f lex()—as done, for example, in [5]—that uses
the original objective function as a first criterion for comparing two solutions.
Only when the two solutions to be compared have the same original objective
function value, a second criterion is used to differentiate between them. More
precisely, given two solutions S1 and S2, S1 is said to be lexicographically better
than S2—that is, f lex(S1) > f lex(S2)—if and only if

1. f(S1) > f(S2) or
2. f(S1) = f(S2) and r(S1) > r(S2)

Hereby, the second criterion, r(), is a residual coverage function. Given a solution
S = {D1, . . . , Dk}, the idea of the residual coverage function r(S) is to calculate
the fraction of the input graph G that can be covered with the remaining vertices
V ′ := V \ ⋃k

i=1 Di which are not assigned to any of the disjoint dominating sets
of S. More specifically, r(S) is defined as follows:

r(S) :=
|V ′| +

∣
∣
(⋃

v∈V ′ N(v)
) \ V ′∣∣

|V | , (1)

CMSA Applied to the MDDS Problem 313

where N(v) is the set of neighbors of v in G. In other words, r(S) is the fractional
size of the “residual dominating set” that can be built from vertices in V ′. Note
that, in general, the value of r() may range between 0 and 1. The extreme case
of r(S) = 0 is obtained if

⋃
D⊂S D = V . The other extreme case of r(S) = 1

is obtained when at least one more dominating set can be constructed from the
vertices in V ′. In all the other cases it holds that 0 < r(S) < 1. Thanks to this
lexicographic objective function, when comparing two solutions that have the
same original objective function value, in CMSA we prefer the one in which the
remaining/unused vertices are closer to form an additional dominating set. The
adoption of this technique eventually helps to guide the search from a solution S
with objective function value |S| to a solution S ′ with objective function value
|S| + 1.

4.2 The CMSA Algorithm

Our CMSA algorithm for the MDDPS is based on the following main idea. Given
an input graph G, let C be the collection of all possible dominating sets of G. If
C could be generated in an efficient way, the MDDPS could be solved by solving
the following set packing ILP formulation with an ILP solver such as CPLEX.

max
∑

D∈C
xD (2)

s.t.
∑

{D∈C|v∈D}
xD ≤ 1 ∀ v ∈ V (3)

xD ∈ {0, 1} ∀ D ∈ C (4)

This ILP model is based on a binary variable xD for each dominating set D ∈ C,
whereby a value of xD = 1 means that D is chosen to be part of the solution.
Moreover, Constraints (3) ensure that each vertex of G may be present in at
most one of the chosen dominating sets. In this way, the chosen dominating sets
will be pairwise disjoint.

Unfortunately, there is no efficient way for enumerating all dominating sets
of a graph. And even if there was one, the size of C would probably be much
too large to solve the above ILP model efficiently. Nevertheless, by regarding all
possible dominating sets of an input graph G as the solution components of the
problem, a CMSA algorithm can be designed—as shown in the following—that
makes use of the above ILP model for solving sub-instances C′ ⊂ C by means of
the application of an ILP solver such as CPLEX.

Algorithm 1 provides the pseudo-code of our CMSA algorithm for the
MDDSP. Apart from the graph G, our algorithm takes as input the values for
the following five parameters. Note that these values will be determined through
a statistically-principled tuning procedure, as discussed in Sect. 5.2. The param-
eters are:

– nsols, which fixes the number of solutions to be probabilistically generated by
the construction procedure at each CMSA iteration.

314 R. M. Rosati et al.

Algorithm 1. CMSA for the MDDSP
1: input: a graph G(V, E), values for nsols, drate, clist, agelimit, Cplextime

2: Sbsf ← ∅; C′ ← ∅
3: while f(Sbsf) < δ(G) + 1 and CPU time limit not reached do
4: for i ← 1,...,nsols do
5: Scur ← ProbabilisticGenerateSolution(G)
6: if f lex(Scur) > f lex(Sbsf) then Sbsf ← Scur end if
7: for all D ∈ Scur, D /∈ C′ do
8: age[D] ← 0
9: Add D to C′

10: end for
11: end for
12: Sexc ← ApplyExactSolver(C′, Cplextime)
13: while r(Sexc) = 1 do
14: Sexc ← ApplyRepairProcedure(Sexc)
15: end while
16: if f lex(Sexc) > f lex(Sbsf) then
17: Sbsf ← Sexc

18: end if
19: Adapt(C′, Sexc, agelimit)
20: end while
21: output: Sbsf

– drate and clist, which guide, respectively, the determinism rate in the solution
construction procedure and the length of the candidate list for those steps in
which non-deterministic construction is performed.

– agelimit, which limits the number of iterations a solution component can
remain in the subinstance C′ without being chosen by the exact solver for the
best solution to the sub-instance. Note that the age of a solution component
(dominating set) D is maintained in a variable age[D].

– Cplextime (in seconds), which is the time limit for the application of CPLEX
at each iteration of CMSA.

CMSA starts by the initialization of the best solution found so far, Sbsf , to
an empty solution with objective function value equal to zero. Moreover, the
sub-instance C ′ is initialized to an empty set. The main loop of CMSA starts in
line 3 of Algorithm 1. At each CMSA iteration, the construct and merge steps are
repeated until nsols are generated; see lines 4–10. The construction procedure,
specifically, is called at line 5. It performs a probabilistic version of the greedy
heuristic from [2] for generating a solution Scur. This greedy heuristic builds one
disjoint dominating set after the other. Hereby, each disjoint dominating set is
generated by adding exactly one vertex to the current partial dominating set
at each construction step. This vertex is chosen from the ones that are not yet
assigned to any of the dominating sets in the current partial solution. For this
choice, the greedy heuristic makes use of a greedy function for evaluating all the
options. For a comprehensive explanation of the procedure, we refer the inter-
ested reader to [2]. For its use in CMSA, this greedy heuristic was adapted as

CMSA Applied to the MDDS Problem 315

follows. Instead of choosing, at each construction step, the vertex with the best
greedy function value, first, a random number d is drawn uniformly at random
from [0, 1). Then, if d < drate, the choice of the next vertex is done determinis-
tically. Otherwise, a candidate list of length clist, containing the maximally clist
best candidates according to their greedy function values, is built, and a vertex
is drawn uniformly at random from this list.

After the construction of a solution (line 5), the corresponding merge step
is performed in lines 7–10, that is, all those dominating sets D ∈ Scur that
are not yet present in sub-instance C′ are added to C′. Moreover, the age value
age[D] of each such dominating set D is initialized to zero. After generating and
merging nsols solutions in this way, the CMSA algorithm enters into the solve
phase; see line 12. More specifically, the ILP solver CPLEX is applied in func-
tion ApplyExactSolver(C′, Cplextime) with a computation time limit of Cplextime

CPU seconds for solving the sub-instance C′. This is done by solving the ILP
model stated at the beginning of this section after replacing all occurrences of
C with C′. The output of this function (Sexc) is the best solution that can be
found by CPLEX within the given CPU time.

Occasionally it may happen that r(Sexc) = 1,3 which means that from the
vertices not included in any dominating set of Sexc at least one additional dom-
inating set can be generated. This may happen for two possible reasons: (1) C′

does not include such a dominating set, or (2) the time limit of Cplextime CPU
seconds did not allow CPLEX to find an optimal solution to C′. When this case
is detected, a repair procedure is activated (lines 13–15) that iteratively gener-
ates additional (disjoint) dominating sets until r(Sexc) < 1. Note that the reason
for only applying this procedure to solutions generated by CPLEX is that the
greedy procedure always builds dominating sets until no additional ones can be
built.

Finally, in line 19, the sub-instance is adapted. This adaptation comprises the
following steps. First, dominating sets from Sexc that may have been generated
by the repair procedure and that are not already included in the sub-instance
C′ are merged with C′ in the same way as shown in lines 7–10. Second, the age
values of all dominating sets from Sexc are re-set to zero. Third, the age values
of all remaining dominating sets from C′ are incremented by one. Finally, all
dominating sets D ∈ C′ with age[D] > agelimit are removed from C′.

5 Experimental Evaluation

In this section we present the comparison of CMSA with the six greedy algo-
rithms from the literature, namely, MDDS-GH from [2], IAM from [15], P-MAX,
PMIN, RLID from [19], and COLOR DDS from [7]. CMSA and the six greedy
algorithms were implemented in C++ and compiled with GNU g++, version
9.4.0, on Ubuntu 20.04.4 LTS. All the experiments presented in this section,
both for CMSA and for the greedy algorithms, were run on a machine equipped
with AMD Ryzen Threadripper PRO 3975WX processor with 32 cores, with
3 See Sect. 4.1 for the definition of function r().

316 R. M. Rosati et al.

Table 1. CMSA parameters, the considered domains for parameter tuning, and the
finally determined parameter values.

RGs RGGs

Parameter Domain Value Domain Value

nsols {2, 3, ..., 200} 191 {2, 3, ..., 30} 20

drate [0.60, 1.00] 0.93 [0.60, 1.00] 0.69

clist {2, 3, ..., 50} 20 {2, 3, ..., 30} 22

agelimit {2, 3, ..., 50} 5 {2, 3, ..., 30} 16

Cplextime {3, 4, ..., 20} 7 {3, 4, ..., 100} 81

base clock frequency of 3.5 GHz, and 64 GB of RAM. One core was used for
each experiment.

5.1 Problem Instances

We tested our algorithm on two categories of graphs, namely: random graphs
(RGs) and random geometric graphs (RGGs). Hereby, the term “random” is
employed because the instances were generated using a random generator. Ran-
dom graphs are general graphs, characterized by two features: (1) the number
of vertices, |V |, and (2) the average vertex degree, μdeg. In these graphs, any
pair of vertices may be potentially connected. RGGs, on the other hand, are
characterized by |V | and a radius rmax < 1. |V | vertices are placed at random
coordinates (x, y) on the [0, 1]2 square. Then, every pair of vertices vi �= vj with
an Euclidean distance d(vi, vj) < rmax are connected by an edge. These graphs
are also known as planar unit disk graphs. RGGs, furthermore, are typically
used as a graph model for wireless sensor networks mentioned in Sect. 1.

In total, we tested our algorithm on 34 different combinations of |V | and
μdeg (see Table 2), respectively 21 combinations of |V | and rmax (see Table 3).
For each of these 55 graph parameter combinations we generated 20 graphs,
which makes a total of 1100 graphs. All the instances are available online for
future comparison at https://bitbucket.org/maximum-disjoint-dominating-sets-
problem/maximumdisjointdominatingsets-instances, together with an instance
and solution validator.

5.2 Parameters Tuning

The tuning procedure was realized through irace, a package for automatic algo-
rithm configuration based on iterated racing [17]. We tuned independently the
parameters for random graphs and random geometric graphs. This choice is
motivated by the notable difference in graph size and density between the two
considered graph categories. The computation time limit given to CMSA for each
application was |V | CPU seconds, that is, the allowed computation time depends
linearly on the graph size. Table 1 summarizes the parameters involved in the

https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances

CMSA Applied to the MDDS Problem 317

tuning, the allowed parameter value domains, and the outcome, for the two cat-
egories of graphs. All parameters have domains of natural numbers, except for
drate, which takes real numbers with a precision of two digits behind the comma.
We allowed quite large domains for the parameters values for the application to
random graphs, while we deliberately restricted the domains of nsols, csols, and
agelimit for the application to RGG instances. This is because our RGGs are
larger, which leads to the fact that CMSA generates larger ILP models that
cause a high memory consumption. Accordingly, we allow a larger range for
Cplextime for RGGs, as, in general, CPLEX may require longer running times
to solve larger ILP models.

5.3 Results

Both CMSA and the six greedy algorithms were applied exactly once to each one
of the 1060 graphs. As in the case of parameter tuning, the computation time of
CMSA was limited to |V | CPU seconds per run. The obtained results are shown
in Tables 2 and 3. These tables report the values of the best solutions found
by CMSA and the six greedy heuristics, averaged over the 20 graphs per graph
parameter combination. The computation times indicate, in all cases, the total
execution times. Note, in this context, that CMSA can only have an execution
time lower than the permitted CPU time limit if solutions are found whose
objective function value coincides with the upper bound δ(G) + 1.

The numerical results allow making the following observations. First of all,
CMSA yields better results than all six greedy approaches for all 34 RG types
and for all 21 RGG types. Hereby, the advantage of CMSA over the greedy
heuristics increases both with a growing graph size and with a growing graph
density. In the context of the largest and densest RGs (|V | = 250, μdeg = 140)
CMSA finds, on average, 5.7 disjoint dominating sets more than the best greedy
heuristic (MDDS-GH), which is quite a significant improvement. The same can
be observed for RGGs. In particular, CMSA finds 4.2 disjoint dominating sets
more than the best greedy heuristic (P-MAX) for RGGs with |V | = 5000 and
rmax = 0.3. Such improvements might translate into quite significant gains in
the context of practical applications. Concerning computation times, clearly the
advantage of the greedy heuristics in comparison to CMSA is their low com-
putation time. Nevertheless, the before-mentioned applications of the MDDSP
are not time critical, that is, there is no significant disadvantage for algorithms
with a computation time of minutes (or even an hour) when compared to greedy
heuristics with running times of seconds.

Concerning the comparison of the greedy heuristics among each other, the fol-
lowing can be observed. While MDDS-GH is clearly the best-performing greedy
heuristic for the application to RGs, this is not anymore the case for RGGs.
In particular, P-MAX, RLID, and COLOR DDS generally outperform MDDS-
GH especially with a growing graph density. This is especially interesting in
the case of RLID and COLOR DDS, because their execution time is about one
order of magnitude lower than the one of MDDS-GH, which makes them a good

318 R. M. Rosati et al.

Table 2. Numerical results obtained for RGs.

Instances CMSA MDDS-GH IAM P-MAX PMIN RLID COLOR DDS

|V | μdeg obj t(s) obj t(s) obj t(s) obj t(s) obj t(s) obj t(s) obj t(s)

50 15 8.05 28 6.75 0.000 5.95 0.001 5.70 0.000 4.80 0.000 5.00 0.000 5.40 0.000

20 11.30 48 9.00 0.000 8.20 0.001 7.60 0.000 6.35 0.000 6.80 0.000 7.05 0.000

25 13.75 50 11.75 0.000 10.95 0.002 9.50 0.000 8.00 0.000 8.60 0.000 9.45 0.000

30 16.30 50 14.50 0.000 13.55 0.002 12.00 0.000 10.30 0.000 11.05 0.000 11.40 0.001

35 18.55 50 17.25 0.001 16.50 0.002 14.40 0.000 12.30 0.000 13.25 0.000 13.50 0.001

100 20 9.65 91 8.45 0.001 7.55 0.008 6.60 0.000 5.45 0.001 6.10 0.000 6.25 0.001

30 14.70 100 12.70 0.001 11.80 0.006 10.05 0.001 8.15 0.001 9.05 0.000 9.40 0.001

40 19.50 100 17.00 0.002 16.00 0.007 13.40 0.001 10.85 0.001 11.90 0.001 12.25 0.001

50 24.80 100 21.50 0.002 20.65 0.008 16.95 0.001 13.95 0.001 15.45 0.001 15.70 0.001

60 30.55 100 26.30 0.002 25.35 0.007 20.65 0.001 17.20 0.001 19.25 0.001 19.20 0.002

150 30 13.05 143 12.00 0.003 11.00 0.012 9.55 0.001 7.75 0.001 8.70 0.001 8.70 0.001

40 17.35 150 16.15 0.004 15.25 0.013 12.35 0.001 10.05 0.001 11.35 0.001 11.15 0.002

50 22.15 150 20.00 0.004 19.05 0.013 15.65 0.002 12.55 0.002 13.80 0.001 14.20 0.002

60 26.90 150 24.00 0.005 23.05 0.013 18.40 0.002 15.15 0.002 16.65 0.001 17.10 0.002

70 31.50 150 28.10 0.006 27.15 0.015 21.50 0.002 17.75 0.002 19.30 0.001 20.00 0.003

80 36.95 150 33.00 0.006 32.00 0.015 25.35 0.002 20.60 0.002 22.75 0.001 23.30 0.003

90 40.30 150 36.50 0.007 35.55 0.015 28.85 0.002 24.05 0.003 26.30 0.001 26.90 0.004

200 40 16.85 200 15.50 0.006 14.55 0.022 12.35 0.002 9.80 0.002 10.85 0.001 11.10 0.002

50 20.35 200 18.90 0.007 18.05 0.021 14.45 0.002 12.00 0.003 13.45 0.001 13.50 0.002

60 24.10 200 23.30 0.008 22.35 0.022 17.60 0.003 14.10 0.003 15.65 0.002 16.00 0.003

70 28.05 200 26.80 0.008 25.80 0.024 20.30 0.003 16.45 0.003 18.40 0.002 18.60 0.003

80 32.80 200 30.65 0.009 29.70 0.025 23.35 0.003 18.90 0.004 21.05 0.002 21.25 0.004

90 38.40 200 34.80 0.010 33.80 0.026 26.40 0.004 21.25 0.004 23.75 0.002 24.10 0.004

100 43.20 200 38.50 0.010 37.60 0.026 29.55 0.004 24.15 0.004 26.75 0.002 27.20 0.005

250 50 20.10 250 19.00 0.006 18.00 0.035 14.30 0.003 11.35 0.004 12.85 0.002 13.00 0.003

60 23.75 250 22.65 0.011 21.65 0.035 16.95 0.003 13.70 0.004 15.40 0.002 15.50 0.003

70 27.10 250 26.10 0.012 25.20 0.035 19.75 0.004 15.95 0.005 17.60 0.003 18.15 0.004

80 30.95 250 29.45 0.012 28.55 0.036 22.30 0.005 18.10 0.005 20.00 0.003 20.45 0.005

90 34.75 250 33.50 0.013 32.50 0.038 24.80 0.005 20.45 0.005 22.60 0.003 22.80 0.005

100 38.85 250 37.15 0.014 36.20 0.040 28.05 0.005 22.70 0.006 25.00 0.003 25.25 0.006

120 48.05 250 45.05 0.015 44.05 0.043 33.75 0.006 27.55 0.007 30.70 0.003 30.90 0.008

140 59.30 250 53.60 0.017 52.70 0.045 40.40 0.007 32.95 0.007 36.75 0.004 37.25 0.009

candidate for replacing MDDS-GH for the probabilistic solution construction in
CMSA in the context of rather large and dense RGGs in future work.

Finally, the execution times of CMSA that are presented in both tables indi-
cate if CMSA was able to obtain solutions whose objective function values coin-
cide with the upper bound δ(G) + 1. For RGs, for example, the execution times
are nearly always equal to the computation time limits. Exceptions are the RGs
with |V | = 50 and μdeg = 15 (9 graphs solved to proven optimality), |V | = 50
and μdeg = 20 (1 graph solved to optimality), |V | = 100 and μdeg = 20 (2
graphs solved to optimality), and |V | = 150 and μdeg = 30 (1 graph solved to
optimality). Assuming that CMSA is often able to provide optimal solutions, this
indicates that the upper bound δ(G) + 1 is often not tight for the RG instances.
This seems to be different for the RGGs. Figure 3 presents two graphics rela-
tive to the results obtained on RGGs. The first one shows—for each radius—the

CMSA Applied to the MDDS Problem 319

Table 3. Numerical results obtained for RGGs.

Instances CMSA MDDS-GH IAM P-MAX PMIN RLID COLOR DDS

|V | rmax obj t(s) obj t(s) obj t(s) obj t(s) obj t(s) obj t(s) obj t(s)

1000 0.1 7.90 80 7.30 0.04 6.30 0.33 7.30 0.02 6.75 0.12 7.15 0.01 7.35 0.01

0.2 30.55 50 29.30 0.12 28.30 0.47 29.95 0.05 27.25 0.12 29.40 0.02 29.35 0.04

0.3 71.45 605 67.00 0.25 66.00 0.84 68.55 0.13 64.20 0.28 68.95 0.03 69.20 0.10

1500 0.1 12.60 77 11.65 0.21 10.65 0.94 11.75 0.17 10.60 0.28 11.40 0.18 11.40 0.12

0.2 48.00 298 45.95 0.57 44.95 1.67 45.75 0.27 43.05 0.54 45.85 0.17 46.00 0.20

0.3 105.50 520 101.25 1.62 100.25 2.34 102.55 0.81 95.40 1.08 102.20 0.19 102.70 0.38

2000 0.1 16.90 302 15.90 0.27 14.90 1.69 15.95 0.16 14.20 0.27 15.80 0.05 16.00 0.04

0.2 62.55 566 60.25 4.78 59.25 10.09 60.85 1.66 56.55 4.44 60.25 0.08 60.85 0.19

0.3 141.75 1047 135.45 15.21 134.45 23.40 137.35 4.53 128.65 11.19 137.80 0.15 137.90 0.69

2500 0.1 21.00 178 20.20 0.79 19.20 3.07 19.85 0.55 18.35 0.77 19.55 0.36 19.85 0.38

0.2 79.85 930 76.70 3.26 75.70 5.63 76.75 1.50 71.40 2.48 76.40 0.42 77.00 0.60

0.3 177.30 1376 169.70 6.51 168.70 9.81 173.45 2.38 160.15 4.57 171.45 0.50 172.80 1.25

3000 0.1 23.15 3 22.45 3.38 21.45 9.55 22.35 1.02 20.90 1.92 22.55 0.11 22.55 0.08

0.2 93.70 1383 90.85 31.96 89.85 29.99 89.75 5.09 84.05 15.49 90.70 0.20 91.15 0.51

0.3 215.30 1540 208.05 48.93 207.05 44.92 211.80 14.75 194.85 29.34 208.00 0.27 210.05 2.41

4000 0.1 33.50 731 31.35 20.63 30.35 24.59 31.55 4.83 28.90 9.30 31.35 0.22 31.55 0.17

0.2 129.45 1781 125.15 45.65 124.15 48.52 125.70 16.56 117.10 31.75 125.25 0.30 126.30 1.46

0.3 283.65 3282 273.45 63.11 272.45 74.15 279.90 33.42 257.75 45.87 276.65 0.59 278.75 4.80

5000 0.1 41.30 730 39.50 31.25 38.50 38.73 39.15 7.40 35.90 19.43 38.80 0.28 39.30 0.31

0.2 158.25 2825 153.65 59.61 152.65 67.34 154.25 23.09 143.50 37.35 153.95 0.56 154.85 2.51

0.3 354.55 4379 342.75 78.34 341.75 98.84 350.35 47.84 321.55 59.36 345.05 0.80 348.20 7.02

Fig. 3. Evolution of the optimality rate (left) and execution time (right) depending on
the size of the RGG instance, for the three considered radii.

evolution of the optimality rate depending on the instance size. The second one
displays the evolution of the average execution times. Clearly, optimal solutions
to these instances coincide much more often with the upper bound. In cases
(|V | = 1500, rmax = 0.1) and (|V | = 3000, rmax = 0.1), for example, all 20
graphs were solved to proven optimality by CMSA. The algorithm was able to
achieve this on average in 77, respectively 3, CPU seconds. The graphics also
show that with a growing graph density—a growing value of rmax—the values
of optimal solutions seem to coincide every time less with the upper bound.

320 R. M. Rosati et al.

6 Conclusions

In this work we proposed a “construct, merge, solve and adapt” algorithm for
the maximum disjoint dominating sets problem, which is a complex variant of
the classical minimum dominating set problem in networks and graphs. The
difficulty of applying standard metaheuristics to this problem is shown by the
fact that, so far, only greedy heuristics, approximation algorithms, and exact
techniques for special cases have been proposed in the literature. We were able
to show that our algorithm clearly outperforms all existing greedy heuristics for
the problem. Furthermore, it is the first matheuristic and metaheuristic approach
for the maximum disjoint dominating sets problem.

Future work will deal especially with the improvement of our algorithm for
even larger problem instances. As mentioned before, we noticed in the context of
the application to large random geometric graphs that the greedy heuristic we
use for the probabilistic construction of solutions may not be the best option. In
fact, some of the other available greedy heuristics are faster and better for this
case. The idea is, therefore, to adapt the choice of a suitable greedy heuristic
within CMSA depending on the tackled problem instance.

Acknowledgments. This research was partially supported by TAILOR, a project
funded by EU Horizon 2020 research and innovation programme under GA No 952215.
Furthermore, this work was supported by grant PID2019-104156GB-I00 funded by
MCIN/AEI/10.13039 /501100011033.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Comput. Netw. 38(4), 393–422 (2002)

2. Balbal, S., Bouamama, S., Blum, C.: A greedy heuristic for maximizing the lifetime
of wireless sensor networks based on disjoint weighted dominating sets. Algorithms
14(6), 170 (2021)

3. Blum, C., Pinacho, P., López-Ibáñez, M., Lozano, J.A.: Construct, merge, solve
& adapt a new general algorithm for combinatorial optimization. Comput. Oper.
Res. 68, 75–88 (2016)

4. Bouamama, S., Blum, C., Pinacho-Davidson, P.: A population-based iterated
greedy algorithm for maximizing sensor network lifetime. Sensors 22(5), 1804
(2022)

5. Bruglieri, M., Cordone, R.: Metaheuristics for the minimum gap graph partitioning
problem. Comput. Oper. Res. 132, 105301 (2021)

6. Cardei, M., Du, D.Z.: Improving wireless sensor network lifetime through power
aware organization. Wireless Netw. 11(3), 333–340 (2005). https://doi.org/10.
1007/s11276-005-6615-6

7. Cardei, M., et al.: Wireless sensor networks with energy efficient organization. J.
Interconnection Netw. 3(03n04), 213–229 (2002)

8. Chang, G.J.: The domatic number problem. Discret. Math. 125(1–3), 115–122
(1994)

9. Cockayne, E.J., Hedetniemi, S.T.: Towards a theory of domination in graphs. Net-
works 7(3), 247–261 (1977)

https://doi.org/10.1007/s11276-005-6615-6
https://doi.org/10.1007/s11276-005-6615-6

CMSA Applied to the MDDS Problem 321

10. Feige, U., Halldórsson, M.M., Kortsarz, G., Srinivasan, A.: Approximating the
domatic number. SIAM J. Comput. 32(1), 172–195 (2002)

11. Ferrer, J., Chicano, F., Ortega-Toro, J.A.: CMSA algorithm for solving the priori-
tized pairwise test data generation problem in software product lines. J. Heuristics
27(1), 229–249 (2021). https://doi.org/10.1007/s10732-020-09462-w

12. Fischetti, M., Fischetti, M.: Matheuristics: Handbook of Heuristics, pp. 121–153.
Springer, Cham (2018)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

14. Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
CRC Press, Boca Raton (2013)

15. Islam, K., Akl, S.G., Meijer, H.: Maximizing the lifetime of wireless sensor networks
through domatic partition. In: 2009 IEEE 34th Conference on Local Computer
Networks, pp. 436–442. IEEE (2009)

16. Lewis, R., Thiruvady, D., Morgan, K.: Finding happiness: an analysis of the max-
imum happy vertices problem. Comput. Oper. Res. 103, 265–276 (2019)

17. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The
iRace package: iterated racing for automatic algorithm configuration. Oper. Res.
Perspect. 3, 43–58 (2016)

18. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks.
Princeton University Press, Princeton (2010)

19. Nguyen, T.N., Huynh, D.T.: Extending sensor networks lifetime through energy
efficient organization. In: International Conference on Wireless Algorithms, Sys-
tems and Applications (WASA 2007), pp. 205–212. IEEE (2007)

20. Ore, O.: Theory of graphs (1962)
21. Pinacho-Davidson, P., Bouamama, S., Blum, C.: Application of CMSA to the min-

imum capacitated dominating set problem. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 321–328 (2019)

22. Poon, S.-H., Yen, W.C.-K., Ung, C.-T.: Domatic partition on several classes of
graphs. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 245–256. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31770-5 22

23. Riege, T., Rothe, J.: An Exact 2.9416n algorithm for the three domatic number
problem. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618,
pp. 733–744. Springer, Heidelberg (2005). https://doi.org/10.1007/11549345 63

24. Riege, T., Rothe, J., Spakowski, H., Yamamoto, M.: An improved exact algorithm
for the domatic number problem. Inf. Process. Lett. 101(3), 101–106 (2007)

25. Rooij, J.M.M.: Polynomial space algorithms for counting dominating sets and the
domatic number. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078,
pp. 73–84. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13073-
1 8

26. Watson, J.P.: An introduction to fitness landscape analysis and cost models for
local search. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics.
International Series in Operations Research & Management Science, vol. 146, pp.
599–623. Springer, Boston (2010)

https://doi.org/10.1007/s10732-020-09462-w
https://doi.org/10.1007/978-3-642-31770-5_22
https://doi.org/10.1007/11549345_63
https://doi.org/10.1007/978-3-642-13073-1_8
https://doi.org/10.1007/978-3-642-13073-1_8

Fixed Set Search Applied to the Territory
Design Problem

Tobias Cors1 , Tobias Vlćek2 , Stefan Voß3(B) , and Raka Jovanovic4

1 Institute of Operations Management, University of Hamburg,
Moorweidenstraße 18, 20148 Hamburg, Germany

tobias.cors@uni-hamburg.de
2 Institute of Logistics, Transport and Production, University of Hamburg,

Moorweidenstraße 18, 20148 Hamburg, Germany
tobias.vlcek@uni-hamburg.de

3 Institute of Information Systems, University of Hamburg, Von-Melle-Park 5,
20146 Hamburg, Germany

stefan.voss@uni-hamburg.de
4 Qatar Environment and Energy Research Institute, Hamad bin Khalifa University,

PO Box 5825, Doha, Qatar

rjovanovic@hbku.edu.qa

Abstract. In this paper, we apply the novel fixed set search (FSS)
metaheuristic in combination with mixed-integer programming to solve
the Territory Design Problem (TDP). In this matheuristic approach, we
select the territory centers with an extended greedy randomised adap-
tive search procedure (GRASP) while optimising the subproblem of the
territory-center allocation with a standard mixed-integer programming
solver. The FSS adds a learning procedure to GRASP and helps us to
narrow down the most common territory centers in the solution popula-
tion in order to fix them. This improves the speed of the optimisation and
helps to find high-quality solutions on all instances of our computational
study at least once within a small number of runs.

Keywords: Fixed set search · Matheuristic · Territory design problem

1 Introduction

The territory design problem (TDP) arises in the context of different domains -
ranging from commercial over social to political cases; see, e.g., [26]. The problem
consists of determining a partition of a set of units located in a territory meeting
certain criteria.

Any problem that seeks to find optimal solutions for large instances may
face demanding computations. Thus, there has been a continuous effort in the
development of methods for finding near-optimal or close-to-optimal solutions
in the space of greedy algorithms and metaheuristics. In this line of research, a
variety of approaches have been developed, extended and hybridised in order to
reduce the computational burden while increasing the solution quality. For the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 322–334, 2023.
https://doi.org/10.1007/978-3-031-26504-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_23&domain=pdf
http://orcid.org/0000-0002-6569-2250
http://orcid.org/0000-0001-7942-7426
http://orcid.org/0000-0003-1296-4221
http://orcid.org/0000-0001-8167-1516
https://doi.org/10.1007/978-3-031-26504-4_23

Fixed Set Search Applied to the Territory Design Problem 323

TDP, many approaches incorporate a local search procedure or use a variant of
the greedy randomised adaptive search procedure (GRASP) [19].

Within recent research on simple but yet effective metaheuristics, the novel
fixed set search (FSS) method was proposed by [15] adding a simple learning
mechanism to the GRASP, directing the computational effort to promising areas
of a solution space. In our study, we combine FSS with mixed integer program-
ming in a matheuristic fashion and apply the resulting approach to the TDP.

The paper is organised as follows. Section 2 gives a brief overview over related
research. In Sect. 3 we explain the TDP model our matheuristic is based on and
in Sect. 4 we specify the heuristic itself. In Sect. 5 we present the structure and
the results of our computational study. The implications are discussed in Sect.
6, which also concludes the paper.

2 Related Research

The problem considered in our study is a variant of the Territory Design Problem
originating from the field of discrete optimisation [26]. The objective is to cluster
small geographic areas, referred to as basic areas (BA), into districts by means of
predefined planning criteria [31]. The TDP finds applications in a wide range of
domains, such as the design of commercial, social, political or service territories
[19]. Most TDP contributions are tailored to specific applications. In [18], they
are consolidated and unified in a compendium as a basis for further research.

In terms of the computation time for solving the TDP, researchers face two
problems. First, this concerns granularity. The choice of the size of the BAs rep-
resents a tradeoff between the accuracy of the solution and the associated com-
putation time [22]. Second, by the nature of the problem, most models are based
on the general graph-partitioning problem known to be NP-hard [7]. Thus, there
has been an ongoing effort in the development of methods for finding optimal
or near-optimal solutions in the space of greedy algorithms and metaheuristics.
For a compilation of applications and heuristics regarding the TDP the reader
is referred to [19].

Since the introduction of the GRASP algorithm by [3] as well as the ear-
lier ideas of semi-greedy heuristics of [10], it has been advanced, hybridised and
applied to many areas; see, e.g., [4–6,25]. [27] developed the first GRASP imple-
mentation for a specific TDP. They extended the GRASP to be reactive in terms
of the acceptance criteria for quality solutions from the restricted candidate list.
Afterwards they benchmarked the heuristic in a computational study with 500
BAs. The observed results were reported to be robust regarding high quality
solutions.

In the aligning research of GRASP aiming at performance improvements, a
novel Fixed Set Search (FSS) metaheuristic has been proposed by [13]. The FSS
extends the GRASP algorithm by a simple learning mechanism leading the local
search by elements that appear frequently in high quality solutions [15]. It was suc-
cessfully applied to the traveling salesman problem [13], the minimum weighted
vertex cover problem [15], the power dominating set problem [14] and the paral-
lel machine scheduling problem [17]. The reported computational results attested

324 T. Cors et al.

the FSS a high competitiveness in the quality of found solutions compared with
state-of-the-art methods, motivating our application to the TDP. An extension to
a multi-objective minimum weighted vertex cover problem is proposed in [12].

The intuition for the FSS comes from the observation that often high-quality
solutions, for a specific problem instance, have quite a few overlapping elements.
The method relies on the idea to generate new solutions that contain such ele-
ments. That is, these elements, the fixed set, are used for the solutions that will
be generated and the computational effort is dedicated to extend partial solu-
tions towards feasibility. Using elements that frequently occur in high-quality
solutions can also be based on earlier notions of adaptive memory programming
and tabu search. As mentioned by [13] the idea of fixed sets is also leveraged
in the construct, merge, solve & adapt (CMSA) matheuristic, which they inter-
preted as a specific implementation of the POPMUSIC paradigm [28]. CMSA
uses an ageing mechanism for fixing solution components of repeated probabilis-
tic solution constructions and applies an integer linear programming (ILP) solver
to these generated sub-instances [1]. As the age of a component is reset to zero
after each occurrence, the maximum age indirectly controls the size of the fixed
set. [1] show that the hybridisation with an ILP optimisation profits from the
effectiveness of the solver in the reduced sub-instances of hard problems.

From an overview for such approaches (e.g. [29]), it is concluded that it
is beneficial to combine the complementary advantages of metaheuristics and
mathematical programming, relating them to efficiency and effectiveness. Mostly,
this is devoted towards the notion of matheuristics as they had been formulated
by Maniezzo and Voß connected to model-based metaheuristics (see, e.g., [21]).

In [16], a matheuristic was developed for the 2-connected dominating set
problem based on GRASP for the global search at low and a mixed-integer
program (MIP) for the local search at high computational cost. Following the
outlined promising directions of research, we focus on developing a matheuristic
combining GRASP, MIP and FSS for the TDP. The idea of solving a simplified
(or even relaxed) problem may be derived, e.g., from the use of the same math-
ematical model for a smaller instance obtained by fixing some of the variables;
in [11] we even find the notion of an equi-model for such a proceeding.

3 Model

We define the following sets and parameters:

J : set of BAs, indexed by j and v,

I : set of potential locations (I ⊆ J), indexed by i,

Aj : sets of BAs adjacent to BA j (Aj ⊆ J ,)
p : number of locations,

aij : Euclidean distance between the centroid of BA i and the centroid of BA j

dij : driving time between the centroid of BA i and the centroid of BA j

wj : weight of the BA j.

Fixed Set Search Applied to the Territory Design Problem 325

We define the following decision variables:

xij = 1, if BA j is assigned to district center BA i (otherwise xij = 0)

The design of territories can follow multiple objectives [19]. For our settings, we
focus on a basic case: minimising the weighted driving time between territory
centers and their assigned BAs.

min
∑

i∈I

∑

j∈J
dij · wj · xij (1)

subject to:
∑

i∈I
xij = 1 ∀j ∈ J (2)

∑

i∈I
xii = p (3)

xij ≤ xii ∀i ∈ I,∀j ∈ J (4)

xij ≤
∑

v∈Nij

xiv ∀i ∈ I,∀j ∈ J \ Ai (5)

xij ∈ {0, 1} ∀i ∈ I,∀j ∈ J (6)

Objective function (1) minimises the weighted driving time over the covered area.
Equation (2) secures that each BA is allocated to one district center. Constraint
(3) ensures the allocation of p district centers while (4) guarantees that each
BA is only allocated to realised district centers. (5) is the contiguity constraint;
the idea behind it was first introduced by [31]. The constraints ensure that the
resulting territories are contiguous, as each BA j allocated to i has to have at
least one adjacent BA v with a closer distance aiv < aij allocated to the same
center. This relation is expressed in

Nij = {v ∈ Aj |aiv < aij} ∀i ∈ I,∀j ∈ J .

Combined with hexagonal BAs, this enforces a connected path between each BA
j allocated to BA i. Constraints (6) define the variable’s domains.

Unfortunately, it is often difficult to obtain optimal solutions to the problem,
as our problem formulation is a variation of the NP-hard p-median problem on
a general graph [20]. The number of combinatorial possibilities, after neglecting
the contiguity constraint, is

(|I|
p

) · p|J |−p. Moreover, the computational effort
in TDPs increases due to the contiguity constraint [24]. Thus, we propose a
metaheuristic to solve the problem as indicated in the next section.

4 Heuristic

Our heuristic is based on the novel fixed set search metaheuristic. Before we
present our approach, we define the following additional sets:

326 T. Cors et al.

H : set of potential locations (H ⊆ I),
S : set of feasible locations (S ⊆ I),
F : set of fixed locations (F ⊆ I),
B : base solution (B ⊆ I),
P : population of solutions,

Pn/Pm : population of n / m best solutions,
Sizes : set for FSS with size ∈ Sizes.

Our version of FSS combines a greedy approach with MIP optimisations on
small problem instances, as shown in Algorithm 1 which displays one iteration
of our GRASP implementation. We start with an empty fixed set F and generate
an initial population of N solutions with GRASP as shown in lines 1 and 2 of
Algorithm 2. Our greedy approach fills a set of potential locations H until |H| = p̂
with p̂ > p. Afterwards, we solve the relaxed MIP and check whether the solution
S is a feasible location set without relaxation. If it is feasible, we start our local
search as shown in Algorithm 3.

Algorithm 1: Pseudocode GRASP (F , p, p̂)
1 S = ∅;
2 while S = ∅ do
3 H = F ∪ ∅;
4 while |H| < p̂ do
5 Randomly assign a location from I to H;
6 end
7 solve the relaxed MIP with H as set of potential locations;
8 S = {i ∈ H : wii = 1};
9 z = value of the objective function;

10 if S is a feasible location set for the MIP then
11 S = LS(S, z, ẑ, p);
12 else
13 S = ∅;
14 end

15 end

In LS, we redefine H as S united with all adjacent BAs of the locations in S.
We then solve the MIP and replace S with the solution. We repeat this process,
until we are stuck in a local minimum (the objective function is stagnant). If
the solution from the greedy approach S in Algorithm 2, line 11 is infeasible, we
start again to find a different solution. This allows to find good initial solutions,
but the calculation time of each iteration depends on the size of I, J , p and p̂.

After we have generated an initial population, we initialise the set Sizes and
start the FSS as described in the pseudocode of Algorithm 2. The procedure is

Fixed Set Search Applied to the Territory Design Problem 327

Algorithm 2: Pseudocode FSS
1 F = ∅;
2 Generate initial population P containing N sets using GRASP (F , p, p̂);
3 Initialise Sizes;
4 Size = Sizes.Next;
5 while Sizes �= ∅ do
6 Set Skn to k random elements of Pn;
7 Set B to a random solution in Pm;
8 F = Fix(B,Skn, Size);
9 S = GRASP (F);

10 P = P ∪ {S};
11 if Stagnant Best Solution and F ∈ S then
12 if (Stagnant Candidates) then
13 Remove Size from Sizes;
14 end

15 end

16 end
17 H = {i ∈ I|∃Pn : i ∈ S};
18 solve the MIP with H as set of potential locations;
19 S = {i ∈ H : wii = 1};
20 S = LS(S, z, ẑ, p);

Algorithm 3: Pseudocode LS(S, z, ẑ, p)
1 while z < ẑ do
2 ẑ = z;
3 H = S ∪ {i ∈ I|∃s ∈ S : i ∈ As};
4 solve the MIP with H as set of potential locations;
5 S = {i ∈ H : wii = 1};
6 z = value of the objective function;

7 end

described in more detail by [13]. Our key adjustment is the addition of a MIP
optimisation based on the population of the best solutions Pn after the FSS
terminates.

5 Computational Study

We applied the optimisation as well as the heuristic on three different problem
instances with (a) |J | = 510, (b) |J | = 1008 and (c) |J | = 1508 hexagonal basic
units with I = J . The number of locations p was varied from 2 to 10 locations. To
benchmark the heuristic on a realistic setting, our problem instances represented
the same map section of the northern half of Hamburg, Germany, with a varying
number of basic units. The weight wj is an approximation of the population
number in each BA j and represents the number of street-intersections in j,

328 T. Cors et al.

while the driving time dij was calculated on the underlying road network from
OpenStreet Map [9] from the centroids of the BAs with Dijkstra’s shortest path
Algorithm [2].

As our GRASP approach for the initial population set P is combined with
mixed-integer optimisations, our initial population already consists of good-
quality solutions after the first iteration. We thus used a small number of solu-
tions N = 11 in the initial population P. The number of greedy-drawn locations
for the relaxed MIP was p̂ = 10 · p. During FSS, we always drew k = 3 elements
from the best 11 solutions Pn for Skn. The set Pm was the subset of Pn\Skn. Our
set Sizes contained |Sizes| = p

2 + 1 elements starting with 1 and the parameter
Stagnant was set to 3. All our calculations (the full optimisation model and our
heuristic) were computed on a 6 Core AMD-4650 G CPU with 16 GB of RAM
with GAMS and CPLEX. We repeated all computations five times to account
for the built-in randomness of our approach.

Figure 1 displays the duration of the approach for all variations of |J | over
the five runs of each problem instance. We clearly see that the calculation time
increased approximately in a linear fashion with the number of locations p and
the size of |J | (and thus |I|). This was due to the additional time needed for
the FSS as well as due to the larger set H during the MIP optimisations of the
approach. Nonetheless, the problem always remained solvable with our approach
within 1 h. The RAM usage never exceeded 2.5 GB, even with |J | = 1508.

The duration of the full optimisation of our model in Sect. 3 for all five runs
with a solution gap of 0.00% is displayed in Fig. 2. Note, that our computer could
not solve the problem instances with |J | = 1508 due to insufficient RAM.1 If we
compare the calculation time between the optimisation and the heuristic, we see
that the instances with a low p benefit the most, as they could be solved faster
up to p = 5 with |J | = 510 and up to p = 10 (the largest p in our instances)
with |J | = 1008.

The solution gap between the optimal solution and the solution values of the
five runs of our heuristic is shown in Fig. 3 for |J | = 510 and |J | = 1008. We
see, that the gap never exceeds 0.8%. The average gap with 510 BAs is 0.05%
and with 1008 BAs 0.11%. Overall, we have found the optimal solution in all
five runs of the instances with known optimal solutions at least once. Moreover,
the figure shows that the gap was on average smaller if p was low.

In Fig. 4 we display the value of the best heuristic solution for |J | = 1508.
The determined values are all quite close to each other. In fact, despite two
exceptions, the gap between the best and worst solution of all five runs was
always lower than 0.69%.

1 Note added in proof: Switching to the latest version of a different solver, this picture
changed but this is not reported here.

Fixed Set Search Applied to the Territory Design Problem 329

Fig. 1. Duration of the approach

330 T. Cors et al.

Fig. 2. Duration of the full optimisation

Fixed Set Search Applied to the Territory Design Problem 331

Fig. 3. Gap between optimal solution and heuristic

Fig. 4. Objective value of the best heuristic solution with |J | = 1508

332 T. Cors et al.

6 Conclusions

In this paper, we have applied the novel fixed seat search approach in a
matheuristic fashion towards the territory design problem. The results of our
heuristic are promising, as the average gap with 510 basic units was 0.06% and
the average gap with 1008 basic units was 0.11%. Known optimal solutions were
found at least once within five runs of our heuristic. For comparison, the average
gap with 500 basic units on the best test instance in a computational study of
the GRASP on a TDP by [27] was 2.29%. In addition, our heuristic did not
require the resources of a full problem optimisation. The RAM usage topped
out with 2.5 GB on the instance with 1508 BAs while more than 2 cores for the
relaxed MIP and MIP optimisations in our heuristic did not pose any benefit to
the speed of CPLEX.

In modifying our approach, we might be able to solve larger instances where a
slight adaption could take advantage of the lower resource requirements through
introducing parallelisation. Further studies are required to compare the results
of our approach with other (meta-)heuristics and to evaluate, to which extent
the FSS poses any generic benefits especially over other GRASP implemen-
tations. Future research should also investigate the idea of replication studies
as successfully applied for an integrated vehicle and crew scheduling problem
in [8]. Using earlier ideas from [23,30], we might encounter drastic improve-
ments regarding the exact solvability of the problem, especially if we consider
the expected enhancements of standard solvers.

References

1. Blum, C., Pinacho, P., López-Ibáñez, M., Lozano, J.A.: Construct, merge, solve
& adapt A new general algorithm for combinatorial optimization. Comput. Oper.
Res. 68, 75–88 (2016). https://doi.org/10.1016/j.cor.2015.10.014

2. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959). https://doi.org/10.1007/BF01386390

3. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J.
Global Optim. 6(2), 109–133 (1995). https://doi.org/10.1007/bf01096763

4. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP - part I: algo-
rithms. Int. Trans. Oper. Res. 16(1), 1–24 (2009). https://doi.org/10.1111/j.1475-
3995.2009.00663.x

5. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP - part II: appli-
cations. Int. Trans. Oper. Res. 16(2), 131–172 (2009). https://doi.org/10.1111/j.
1475-3995.2009.00664.x

6. Festa, P., Resende, M.G.C.: Hybridizations of GRASP with path-relinking. In:
Talbi, E.G. (ed.) Hybrid Metaheuristics. Studies in Computational Intelligence,
vol. 434, pp. 135–155. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-30671-6 5

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY (1979)

8. Ge, L., Kliewer, N., Nourmohammadzadeh, A., Voß, S., Xie, L.: Revisiting the
richness of integrated vehicle and crew scheduling. Public Transp. (2022). https://
doi.org/10.1007/s12469-022-00292-6

https://doi.org/10.1016/j.cor.2015.10.014
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/bf01096763
https://doi.org/10.1111/j.1475-3995.2009.00663.x
https://doi.org/10.1111/j.1475-3995.2009.00663.x
https://doi.org/10.1111/j.1475-3995.2009.00664.x
https://doi.org/10.1111/j.1475-3995.2009.00664.x
https://doi.org/10.1007/978-3-642-30671-6_5
https://doi.org/10.1007/978-3-642-30671-6_5
https://doi.org/10.1007/s12469-022-00292-6
https://doi.org/10.1007/s12469-022-00292-6

Fixed Set Search Applied to the Territory Design Problem 333

9. Geofabrik GmbH and OpenStreetMap Contributors: OpenStreetMap Data Ham-
burg (2020). https://download.geofabrik.de/europe/germany/hamburg.html

10. Hart, J.P., Shogan, A.W.: Semi-greedy heuristics: an empirical study. Oper. Res.
Lett. 6(3), 107–114 (1987). https://doi.org/10.1016/0167-6377(87)90021-6

11. Hill, A., Voß, S.: An equi-model matheuristic for the multi-depot ring star problem.
Networks 67(3), 222–237 (2016). https://doi.org/10.1002/net.21674

12. Jovanovic, R., Sanfilippo, A.P., Voß, S.: Fixed set search applied to the multi-
objective minimum weighted vertex cover problem. J. Heuristics 28, 481–508
(2022). https://doi.org/10.1007/s10732-022-09499-z

13. Jovanovic, R., Tuba, M., Voß, S.: Fixed set search applied to the traveling salesman
problem. Lect. Notes Comput. Sci. 11299, 63–77 (2019). https://doi.org/10.1007/
978-3-030-05983-5 5

14. Jovanovic, R., Voss, S.: The fixed set search applied to the power dominating set
problem. Expert. Syst. 37(6), e12559 (2020). https://doi.org/10.1111/exsy.12559

15. Jovanovic, R., Voß, S.: Fixed set search applied to the minimum weighted vertex
cover problem. Lect. Notes Comput. Sci. 11544, 490–504 (2019). https://doi.org/
10.1007/978-3-030-34029-2 31

16. Jovanovic, R., Voß, S.: A matheuristic approach for solving the 2-connected dom-
inating set problem. Appl. Anal. Discrete Math. 14(3), 775–799 (2020). https://
doi.org/10.2298/aadm190227052j

17. Jovanovic, R., Voß, S.: Fixed set search application for minimizing the makespan
on unrelated parallel machines with sequence-dependent setup times. Appl. Soft
Comput. 110, 107521 (2021). https://doi.org/10.1016/j.asoc.2021.107521

18. Kalcsics, J., Nickel, S., Schröder, M.: Towards a unified territorial design approach
– applications, algorithms and GIS integration. TOP 13(1), 1–56 (2005). https://
doi.org/10.1007/BF02578982

19. Kalcsics, J., Ŕıos-Mercado, R.Z.: Districting problems. In: Laporte, G., Nickel, S.,
Saldanha da Gama, F. (eds.) Location Sci., pp. 705–743. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-32177-2 25

20. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems.
II: the p-medians. SIAM J. Appl. Math. 37(3), 539–560 (1979). https://doi.org/
10.2307/2100911

21. Maniezzo, V., Stützle, T., Voß, S. (eds.): Matheuristics: hybridizing metaheuristics
and mathematical programming. Springer, Cham (2009). https://doi.org/10.1007/
978-1-4419-1306-7

22. Mitchell, P.S.: Optimal selection of police patrol beats. J. Crim. Law Criminol.
Police Sci. 63(4), 577 (1972). https://doi.org/10.2307/1141814

23. Mittelmann, H.D.: Benchmarking optimization software - a (Hi)story. SN Oper.
Res. Forum 1(1), 1–6 (2020). https://doi.org/10.1007/s43069-020-0002-0

24. Önal, H., Wang, Y., Dissanayake, S.T., Westervelt, J.D.: Optimal design of com-
pact and functionally contiguous conservation management areas. Eur. J. Oper.
Res. 251(3), 957–968 (2016). https://doi.org/10.1016/j.ejor.2015.12.005

25. Resende, M.G., Ribeiro, C.C.: Greedy randomized adaptive search procedures:
advances, hybridizations, and applications. In: Gendreau, M., Potvin, J.Y. (eds.)
Handbook of Metaheuristics. International Series in Operations Research & Man-
agement Science, vol. 146, pp. 283–319. Springer, Boston (2010). https://doi.org/
10.1007/978-1-4419-1665-5 10

26. Ŕıos-Mercado, R.Z.: Research trends in optimization of districting systems. In:
Ŕıos-Mercado, R.Z. (ed.) Optimal Districting and Territory Design. ISORMS, vol.
284, pp. 3–8. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34312-
5 1

https://download.geofabrik.de/europe/germany/hamburg.html
https://doi.org/10.1016/0167-6377(87)90021-6
https://doi.org/10.1002/net.21674
https://doi.org/10.1007/s10732-022-09499-z
https://doi.org/10.1007/978-3-030-05983-5_5
https://doi.org/10.1007/978-3-030-05983-5_5
https://doi.org/10.1111/exsy.12559
https://doi.org/10.1007/978-3-030-34029-2_31
https://doi.org/10.1007/978-3-030-34029-2_31
https://doi.org/10.2298/aadm190227052j
https://doi.org/10.2298/aadm190227052j
https://doi.org/10.1016/j.asoc.2021.107521
https://doi.org/10.1007/BF02578982
https://doi.org/10.1007/BF02578982
https://doi.org/10.1007/978-3-030-32177-2_25
https://doi.org/10.2307/2100911
https://doi.org/10.2307/2100911
https://doi.org/10.1007/978-1-4419-1306-7
https://doi.org/10.1007/978-1-4419-1306-7
https://doi.org/10.2307/1141814
https://doi.org/10.1007/s43069-020-0002-0
https://doi.org/10.1016/j.ejor.2015.12.005
https://doi.org/10.1007/978-1-4419-1665-5_10
https://doi.org/10.1007/978-1-4419-1665-5_10
https://doi.org/10.1007/978-3-030-34312-5_1
https://doi.org/10.1007/978-3-030-34312-5_1

334 T. Cors et al.

27. Ŕıos-Mercado, R.Z., Fernández, E.: A reactive GRASP for a commercial territory
design problem with multiple balancing requirements. Comput. Oper. Res. 36(3),
755–776 (2009). https://doi.org/10.1016/j.cor.2007.10.024

28. Taillard, E.D., Voß, S.: Popmusic—partial optimization metaheuristic under special
intensification conditions. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in
Metaheuristics. Operations Research/Computer Science Interfaces Series, vol. 15,
pp. 613–629. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-1507-
4 27

29. Talbi, E.-G.: Combining metaheuristics with mathematical programming, con-
straint programming and machine learning. Ann. Oper. Res. 240(1), 171–215
(2015). https://doi.org/10.1007/s10479-015-2034-y

30. Voß, S., Lalla-Ruiz, E.: A set partitioning reformulation for the multiple-choice
multidimensional knapsack problem. Eng. Optim. 48(5), 831–850 (2016). https://
doi.org/10.1080/0305215X.2015.1062094

31. Zoltners, A.A., Sinha, P.: Sales territory alignment: a review and model. Manage.
Sci. 29, 1237–1256 (1983). https://doi.org/10.1287/mnsc.29.11.1237

https://doi.org/10.1016/j.cor.2007.10.024
https://doi.org/10.1007/978-1-4615-1507-4_27
https://doi.org/10.1007/978-1-4615-1507-4_27
https://doi.org/10.1007/s10479-015-2034-y
https://doi.org/10.1080/0305215X.2015.1062094
https://doi.org/10.1080/0305215X.2015.1062094
https://doi.org/10.1287/mnsc.29.11.1237

The P-Next Center Problem
with Capacity and Coverage Radius
Constraints: Model and Heuristics

Mariana A. Londe1(B), Luciana S. Pessoa1, and Carlos E. Andrade2

1 Department of Industrial Engineering, PUC-Rio, Rua Marquês de São Vicente,
225, Gávea, Rio de Janeiro, RJ 22453-900, Brazil

mlonde@aluno.puc-rio.br, lucianapessoa@puc-rio.br
2 AT&T Labs Research, 200 South Laurel Avenue, Middletown, NJ 07748, USA

cea@research.att.com

Abstract. This paper introduces a novel problem of facility location,
called the p-next center problem with capacity and coverage radius
constraints. We formulate a mixed integer programming model for this
problem, and compare the results found by CPLEX with three Biased
Random-Key Genetic Algorithms variants. We also propose several
instances for this problem, based on existing ones for the p-next center
problem. Additionally, we analyze the effect of the radius and demand on
instance difficulty. We also observe the performance gains with a relaxed
capacity and demand constraint, i.e., permitting demand to be unmet
by the model. Results point that the BRKGA variants had significantly
better performance than CPLEX, and similar performances among them-
selves. Of those, BRKGA-FI was shown to have slightly better results than
the other variants.

Keywords: Facility location · Biased random-key genetic algorithm ·
Metaheuristics

1 Introduction

The p-center problem is a classical location problem that consists of choosing p
centers among n nodes in a network in order to minimize the maximum distance
from any node to its closest facility [24].

The p-next center problem (pNCP) is an extension of the previous one that
considers the possibility of a user arriving at a facility and discovering a disrup-
tion in its operation. In this scenario, the user must move to a backup point,
defined as its nearest facility. The objective of the pNCP is to minimize the
maximal distance a user must travel, which is composed by the distance from
a point to its closest existing facility plus the distance from this facility to its
backup. This problem was introduced in the context of humanitarian logistics
by [1], since during an emergency there is a possibility of disruption in facilities
such as shelters and hospitals. The authors also present several formulations,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 335–349, 2023.
https://doi.org/10.1007/978-3-031-26504-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_24&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_24

336 M. A. Londe et al.

instances and the proof of its NP-Hardness. The first heuristic method to solve
this problem was described by [19], based on the Greedy Randomized Adaptive
Search Procedure (GRASP) [10] and Variable Neighborhood Search (VNS) [14].
Later, [17] presented a Biased Random Key Genetic Algorithm (BRKGA) [13]
for the pNCP, alongside several new benchmarks.

The pNCP does not consider that a user may be unable to travel extensive
distances during an emergency, nor the possible consequences of lack of capacity
on the centers. For example, consider the case of a snake attack victim. The
patient must quickly reach the closest treatment center, which may be located
on the same neighborhood as the attack or on a close one. The speed of transport
to the treatment facility is crucial for the patient‘s prospects, as the elapsed time
between injury and care is a factor in severeness and lethality of the wound [6].
In fact, venom of some species of snake demand an elapsed time below a specific
threshold. If there is enough anti-venom at the facility, then the patient will be
efficiently treated and the emergency is resolved. However, the center may lack
the medicine. There are two possible routes for treatment if this happens: (1) the
patient is transferred to a supplied facility, and (2) the medicine is transported
to them. On both cases the elapsed time between injury and therapy increases,
and may lead to avoidable after-effects and/or death if higher then the time
threshold.

Thus, the network of treatment centers must consider the maximum time
elapsed between a possible attack and the closest care facility alongside the
possible transference/transport time, which deal directly with the victim‘s per-
spective. The elapsed time must be below a specific threshold, otherwise the
patient may have severe side-effects or death. It must also deal with a limited
anti-venom capacity among all facilities, so that a center may be able to treat
the highest possible number of patients without needing to bring medicine from
other centers in the network. An unmet demand on a center, after all, is indica-
tive of a probable death. Lastly, this network must deal with a demand for
anti-venom that may be considered static, but distributed among many cities
and/or neighborhoods.

This scenario has motivated us to present an extension of the pNCP, the
p-next center problem with capacity and coverage radius constraints, referred as
pNCPCR. We assume that the user does not know whether there is enough
capacity in a center before arriving, which forces the user to go to a backup cen-
ter. We also consider that there is a maximum distance between the beginning of
the user’s journey and the arrival at the backup center, to simulate the elapsed
time between injury and treatment. Thus, this problem unifies the pNCP with
a single-source capacitated facility location problem [11] and a maximum cover-
age location problem [22]. The pNCPCR, thus, is an attempt at increasing the
effectiveness of locating and allocating facilities in emergency situations, such as
the snake attack mentioned previously.

The pNCPCR focus on minimizing the maximal distance traveled by the
users which exceeds the coverage radius and the amount of unmet demand on
the centers. We propose a mathematical model to represent it and, due to its

An Extension of the P-Next Center Problem 337

difficulty in finding good solutions, a Biased Random-Key Genetic Algorithm
(BRKGA) was customized for this problem. Additionally, we propose several
instances to evaluate the algorithms performance, and observe the effects of the
coverage radius and the center capacity on the results.

The remainder of this paper is organized as follows. Section 2 brings the
problem formulation together with the description of related works. The pro-
posed method is described in Sect. 3. Experimental results are reported in Sect. 4.
Section 5 closes the paper with concluding remarks.

2 Related Work and Problem Formulation

2.1 Related Work

The p-center problem has frequently been used for the assignment and location
of emergency services and facilities, specially in the last decade. Huang et al. [15]
studies a version of the p-center problem in which a facility cannot assume the
demand of its own location, and thus needs to be allocated to another center.
This situation is frequent in disaster situations, and is solved with dynamic pro-
gramming. Morgan et al. [21] focus on properly allocating emergency service
facilities during Islamic pilgrimages, in which excessive crowds are a concern.
The authors point that, in regards to distance, coverage, and cover inequality,
a genetic algorithm appears to have good balance between quality and com-
putational time. Lastly, Yu et al. [28] considers that damages to the transport
network can affect accessibility of emergency facilities, and thus introduces a
multi-objective model that tries to guarantee minimum reachability of the facil-
ities. Reachability is defined as a function of the level of damage on a given tra-
jectory. The authors use a p-center problem to try to avoid the bi-level structure
of the model, and test the approach on the Sioux Falls transportation network.

The capacitated facility location problem considers the presence of demand
and capacity constraints on the facilities, something that interferes with the
allocation of users to centers [11,26]. Among the works focused on this prob-
lem, Biajoli et al. [5] uses a BRKGA to solve the two-stage capacitated facility
location problem. The same problem is the focus of Souto et al. [23], who use a
hybrid matheuristic, composed by clustering search, adaptive large neighborhood
search, and local branching techniques. Mauri et al. [20] studies a multi-product
version of the previous problem. The authors use a BRKGA to solve it, and
prove that it outperforms a clustering search approach.

Meanwhile, the maximal covering location problem focus on the coverage
radius, i.e., the maximal distance between user and center allocation [9,22]. In
this category, the study of Taiwo et al. [25] use a maximal covering location prob-
lem to identify potential locations for Covid-19 testing in Nigeria. The author
tests several potential coverage radius, and observes their impact in the resulting
network. Yang et al. [27] presents a continuous version of the maximal coverage
location problem, with the aim of dynamically optimizing the organization of
rescue in natural disasters. Amarilies et al. [2] uses greedy heuristics to solve the

338 M. A. Londe et al.

maximal coverage problem in the context of trashcan location. The results of
this study were implemented on a village in Indonesia.

Several works unify the cited location problems, with the aim of increasing
realism and modelling real-life-based situations appropriately. Karatas et al. [16]
proposes a multi-objective facility location problem, with elements from both
p-median, p-center, and maximum coverage. The authors focus on the design of
a public emergency service network, and use a combination of branch-and-bound
and iterative goal programming techniques to solve it. The study of Chauhan et
al. [7] mixes the capacitated facility location problem with the maximal coverage
problem. This was done in the context of drone launching sites. This study is
extended in Chauhan et al. [8], where the uncertainty in battery consumption is
also considered.

2.2 Problem Formulation

The formulation of the pNCPCR is based on the two-indexed formulation intro-
duced by [1]. In this formulation, there are nodes named {1, · · · , n} inside a
network. Those nodes represent locations such as neighborhoods or cities, with
the related distance between them. If a facility is located on one node, then it is
responsible for the demand of both that point and of the closest locations with-
out facilities. One should note that we use indexes i, j, and k to refer either to
facility or non-facility nodes, which may also be referred as users. The parameters
and variables of this model are presented in Table 1.

Table 1. Parameters and decision variables definitions.

Parameters

C ∈ N Maximal capacity of the nodes
Ni ∈ N Demand of node i

dij ∈ N Distance between nodes i and j

R ∈ N Maximal distance between user and backup center
p ∈ N Number of facilities to be assigned

Decision variables

yj ∈ {0, 1} yj = 1 if a facility is opened on node j

xij ∈ {0, 1} xij = 1 if center j is the closest to node i

wkj ∈ {0, 1} wkj = 1 if center k is the closest to center j

z ∈ N Maximal traveled distance
tkj ∈ N Capacity transported from center k to center j

uj ∈ N Used capacity in center j

κj ∈ N Unmet demand in center j

δ ∈ N Exceeded traveled distance

An Extension of the P-Next Center Problem 339

min δ
2
+

n∑

i=1

κ
2
i (1a)

s.t.

n∑

j=1

yj = p (1b)

n∑

j=1
j �=i

xij = 1 ∀i ∈ {1, . . . , n} (1c)

xij ≤ yj ∀i,j∈{1,...,n}
i�=j (1d)

yj +
n∑

k=1
dik>dij

xik ≤ 1 ∀i,j∈{1,...,n}
i�=j (1e)

z ≥
n∑

k=1
k �=j

djk · xjk ∀j ∈ {1, . . . , n} (1f)

z ≥ dij · (xij − yi) +

n∑

k=1
k �=j

djk · xjk ∀i,j∈{1,...,n}
i�=j (1g)

z ≤ R + δ (1h)
wjk ≤ xkj ∀j,k∈{1,...,n}

j �=k (1i)
wjk ≤ yk ∀j,k∈{1,...,n}

j �=k (1j)
tjk ≤ M · wjk ∀j,k∈{1,...,n}

j �=k (1k)

C · yj ≥ uj +

n∑

k=1
k �=j

tjk ∀j ∈ {1, . . . , n} (1l)

n∑

i=1
j �=i

(xij − wij) · Ni +
n∑

k=1
k �=j

tjk + Nj · yj − κj ≤ uj +
n∑

k=1
k �=j

tkj ∀j ∈ {1, . . . , n} (1m)

κj ≤ M · yj ∀j ∈ {1, . . . , n} (1n)

One must note that variable xij has different meanings that depend on i being
a user or a facility. In the former case, the variable indicates the assignment of
a facility to a user. In the latter, j is the backup center of an existing facility.
Related to this, variable wji only exists if both indexes belong to facilities, and
always corresponds to the assignment of j as the backup of another. In this
formulation, Objective Function (1a) focuses on minimizing the total assignment
cost of the network. This cost has two components. The first component is the
squared excess of the maximal distance between a user and its backup center,
when compared with the coverage radius. This is done to simulate the higher
chance of death due to an elapsed time between injury and treatment higher
than the threshold for after-effects and death. The second component is the sum
of the squared value of unmet demands of each center. In a situation such as a
snake attack, an unmet demand would mean an avoidable death.

Constraint (1b) guarantees that only p centers exist. Constraints (1c)
and (1d) assign a reference center for each node alongside preventing self-
assignment of user nodes. Constraint (1e) imposes a minimal distance when
allocating a user to a reference center. Constraints (1f) and (1g) ensure the cor-

340 M. A. Londe et al.

rect value of the highest distance between a user and its backup center. This
value is either the distance between a reference center and its corresponding
backup, or the sum of the distances between a user and its reference center,
and between that center and its backup. The value of the exceeded travelling
distance in relation to the coverage radius is obtained in Constraint (1h).

Constraints (1i) and (1j) guarantee that the variable wji only exists if both
indexes belong to facilities, and if j is the backup center of i. The existence
of this variable permits the transport of capacity between the centers, as Con-
straint (1k) indicates. As an example, this transferred capacity could be the
transport of medicine between facilities. Constraint (1l) ensures that the used
and transported capacities do not exceed the total available capacity of the cen-
ter. Finally, Constraints (1m) and (1n) regulate the flow of demand and capacity
in a given center, alongside the existence of unmet demands. The sum of the
demands of the users allocated to a center, of the capacity transported to other
centers, and of the demand in the center should not exceed the sum of the capac-
ity used in it and of the capacity transported to it. If this equilibrium is violated
there is an amount of unmet demand in the center, which is then penalized in
the objective function.

3 Customizing the BRKGA for the pNCPCR

We developed an algorithm based on the Multi-Parent Biased Random-Key
Genetic Algorithm with Implicit Path-Relinking (BRKGA-MP-IPR [4]), which is
a multi-parent variant of the standard BRKGA [13]. This algorithm was chosen
due to its good performance in capacitated location problems [5,20]. In addition,
BRKGA is the state-of-the-art algorithm for the pNCP [17].

3.1 Evolutionary Process

The Biased Random-Key Genetic Algorithm (BRKGA) begins by creating p
populations composed by |P| individuals, which are called chromosomes. Each
gene of a chromosome is a real-value number in the interval [0, 1].

The decoder procedure associates a solution and the corresponding fitness
value with a chromosome. The individuals are then ranked by their fitness values.
The solutions with highest quality belong to the elite set Pe, while the remaining
are in the non-elite set.

On each generation three procedures are performed to obtain new popu-
lations. The Reproduction procedure copies all chromosomes in the elite set.
Mutants generation deletes |Pm| individuals from the non-elite set and ran-
domly creates the same amount of individuals. The remaining |P| − |Pe| − |Pm|
chromosomes are generated with Crossover.

For the Multi-Parent BRKGA, πt parents are selected for the Crossover
procedure. From those, πe belong to the elite set. The parents’ fitness values are
ranked and associated with probabilities by the bias function Φ(r). Then, each
gene is taken from a parent according to its rank, defined by the comparison of its

An Extension of the P-Next Center Problem 341

fitness value among all parents. The steps of reproduction, mutants generation,
and crossover procedures are repeated until a stopping criterion is met. If there
is an improvement in the best solution on a given generation, the local search
procedure detailed in Sect. 3.2 is performed on the new best solution.

An intensification strategy for BRKGA used in this study is the Implicit Path
Relinking (IPR) procedure. Path-relinking explores the neighborhood obtained
in the path between two distinct solutions [12]. IPR is considered implicit due
to being performed on the chromosomes of the BRKGA solution space, not on
the decoded solution [4]. After path-relinking, the algorithm may migrate some
elite solutions between different populations, if g iterations have passed without
improvement in the best solution. Likewise, if Is generations have passed without
improvement, then the shaking procedure presented in Sect. 3.2 may be called.
Finally, if Is · Rm iterations passed without improvement, then a full reset is
performed.

3.2 Chromosome Representation and Decoder

For the pNCPCR, the chromosome is a vector with n genes, with n being the
number of nodes in the network. The decoder procedure may be divided in four
phases. The first phase is the selection of centers. In it, the chromosome is sorted
and the first p nodes are chosen as reference centers. The second phase corre-
sponds to the allocation of user nodes to the closest centers, and the computation
of used capacity in each center.

In the third and fourth phases, we allocate backup centers to the reference
centers. However, in the third phase the backup center is only chosen if it has
enough extra capacity to comport the excess demand of the reference center. If
there are no candidate backup centers that obey this constraint, the center is
allocated its closest center as backup in the fourth phase, and the unmet demand
of the center is recorded.

The fitness value of the solutions is obtained as such: the highest value from
the distance to backup center among all nodes is compared with the coverage
radius. If higher, the excess distance is penalized with its squared value. The
squared value of the unmet demand is then added to the squared excess distance.

Warm-Start Solution. The introduction of good solutions in the initial popula-
tion is noted to increase performance of the algorithm. For the pNCPCR, the
constructive heuristic starts by selecting the first node as a center. The remain-
ing are selected from the p − 1 closest nodes to the first node. The decoding
procedure is then performed to the resulting set of centers and non-centers.

Exploitation Strategies. We consider three exploitation strategies apart from
IPR on our approach. The local search procedure, the shaking procedure, and
the reset procedure are noted to lead to better algorithm performance. The local
search observes the solutions found by swapping a user and a center node. It
may use the first improvement or the best improvement strategies. The shak-
ing procedure randomly exchanges an amount of user and center nodes on the

342 M. A. Londe et al.

elite chromosomes, and the random restart of the non-elite solutions. The reset
procedure is the random restart of all individuals.

4 Experimental Results

4.1 Instances

We generated 1,652 instances derived from pNCP instances. There are four
instance groups, whose differences lie in individual center capacity and cover-
age radius. The instances were based on the 132 proposed by [1] and the 281
proposed by [17].

The process of generating instances for the pNCPCR has three phases. The
first is the definition of demand for each node, which was randomly obtained
from the interval [10, 50]. The second phase is the calculus of the individual
center capacity C = (

∑n
i=1 Di)/(p · DC). The parameter “DC” in this equation

refers to the demand/capacity equilibrium of a given instance. If the instance is
in category “high demand”, then the sum of demands is 85% of the total capacity.
If it belongs to “low demand”, then this percentage is equal to 40%.

The third phase of the instance generation process is the selection of the cov-
erage radius. As the original instance solution values have a median of approx-
imately 95, and a minimum of about 45, the “high radius” category has its
distance limit randomly chosen in the interval [45, 95]. It is expected that, due
to the capacity and demand of the nodes, the maximal distances will increase in
relation to the original instances. The “low radius” category has values randomly
chosen in the interval [15, 30], i.e. at one-third of the previous category.

Each instance name refers to its number of nodes, number of centers,
demand category, and radius category, in that order. As an example, instance
pmed1_10_5_h_l has 10 nodes and 5 centers, and belongs to the “high demand”
and “low radius” categories.

4.2 Computational Environment and Parameter Settings

The computational experiments were performed in a cluster of identical machines
with an Intel Xeon E5530 CPU at 2.40GHz and 120 GB of RAM running CentOS
Linux. The formulation proposed in Sect. 2 was solved with IBM ILOG CPLEX
20.1 solver. Heuristics proposed in this paper were implemented in C++ lan-
guage using the BRKGA-MP-IPR framework [4]. All BRKGA variants use four
threads, and all runs are limited to 30 wall-clock minutes or 1,000 generations
without improvement on the best solution.

We run CPLEX with three different setups. In the first, CPLEX uses four
threads and stops either when it finds an optimal integer solution, or it reaches
the maximum time of 30 min (CPLEX-30min). This setup is meant to achieve
direct comparison with the other methods proposed in this paper. In the second
setup, we run CPLEX for one day, using 24 threads (CPLEX-1d). Such config-
uration looks to find optimal solutions or, at least, compute the best possible

An Extension of the P-Next Center Problem 343

bounds. Since this configuration uses far more time and computer power per
run than the other configuration, we use the results only for reporting. The
third setup removes the parameter κi from the formulation, which turns con-
straint (1m) into a non-relaxed version (CPLEX-ST). In practice, this means that
it is forbidden to have unmet demands on the centers. This configuration was
meant to observe the effect of the relaxation of the constraint, and its results
portrait a more realistic approach.

We named the BRKGA variants as follows: BRKGA-NLS for the variant with-
out local search (pure BRKGA evolution); BRKGA-FI for the variant with first-
improvement local search; and BRKGA-BI for the variant with best-improvement
local search. We performed 30 independent runs of each BRKGA variation for
each instance. The parameters used for the BRKGA variations were suggested
by the irace package [18], and may be seen in Table 2.

4.3 Mathematical Model Results

Our first task is to find optimal solutions or as-best-as-possible solutions for the
1,652 instances.

Note that Model (1) admits at least one feasible solution for each instance.
However, this is not true for CPLEX-ST due to the use of the hard demand
constraint, for which there are instances without feasible solutions.

Table 3 shows the performance of the three CPLEX variants. CPLEX-1d had
the least amount of instances without any solution found, at 722 (44%), with
a significantly smaller average Gap%. This is expected, as it has considerably
more computational power and available time to explore the different solutions.
Following it is CPLEX-30min, with 1,169 (70%) infeasible instances, and, lastly,
CPLEX-ST, with 1,258 (76%). Again, this scenario is not unexpected, as the use
of a hard constraint would diminish the pool of feasible solutions.

Now the effect of the radius and demand category is explored in regards
to instance feasibility and non-optimum runs. One should note that several
instances considered infeasible by CPLEX-30min, with the higher computational
time from CPLEX-1d, were considered feasible and, on some cases, an optimum
solution was found. This means that, in this case, we may consider an infeasible
instance as a non-optimal one, and need to combine the results of those two
categories in the analysis. Table 4 presents the percentage of instances without
an optimal solution for the three CPLEX variants regarding their demand and

Table 2. Best parameter configurations suggested by irace for BRKGA variations.

BRKGA IPR Shaking LS%
|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm

BRKGA-BI 4085 0.22 0.22 5,10 r−2 2 0.27 RE 0.23 226 60 1.86 0.96
BRKGA-FI 3912 0.28 0.46 5,10 r−2 3 0.05 RE 0.63 471 100 1.77 –
BRKGA-NLS 4075 0.20 0.12 5,10 r−2 1 0.08 RE 0.83 206 96 1.71 –

344 M. A. Londe et al.

Table 3. Model performance on all instances. Columns “Dem.” and “Rad.” detail the
demand and radius categories, respectively. Column “# Opt” presents the number
of instances with optimum found. Column “# NoSol” shows the amount of instances
considered infeasible by the respective algorithm, i.e. the configuration found no feasible
solutions for the instance. Column “# Fea” has the number of instances in which feasible
and non-optimal solutions were found. “Avg. Gap%” is the average percentage of gap
for non-optimal and non-infeasible instances. The fifth line in each section presents the
summary of results for all instances, independently of demand and radius categories.

Dem. Rad. # Opt # NoSol # Fea Avg. gap%

CPLEX-30min High High 43 78 292 84
High Low 45 77 291 63
Low High 87 290 36 93
Low Low 81 296 36 80
Both Both 256 1,169 227 78

CPLEX-1d High High 120 164 120 89
High Low 108 193 108 64
Low High 36 173 36 75
Low Low 35 192 35 63
Both Both 299 722 299 75

CPLEX-ST High High 41 337 41 94
High Low 43 333 43 82
Low High 31 295 31 84
Low Low 38 293 38 74
Both Both 153 1,258 153 84

radius categories. Note that for all cases, CPLEX has more difficulty in find-
ing feasible solutions on the high demand category. In fact, the effect of the
demand is more severe than that of the radius – something reasonable consider-
ing Model (1). The effect of the radius category is more subtle, and becomes more
apparent with the longer running time and computational power of CPLEX-1d.

4.4 BRKGA Results

To compare the algorithms, we analyze the results regarding the solution quality
and computational effort. For solution quality, we compute the classical Relative
Percentage Deviation (RPD) and associated averages as defined in [3], with a
small modification to prevent division by zero. Let I be a set of instances. Let A
be the set of algorithms, and assume that set RA enumerates the independent
runs for algorithm A ∈ A (as defined in Sect. 4.2, 30 runs for the heuristics
and one run for CPLEX-30min). We defined CA

ir as the total cost obtained by
algorithm A in instance i on run r, and Cbest

i as the best total cost found across
all algorithms for instance i. In order to deal with the possibility of having a

An Extension of the P-Next Center Problem 345

Table 4. CPLEX results in regards to categories and percentage of infeasible and non-
optimal instances. The percentages presented refer to the amount of non-optimal and
infeasible instances in relation to the total.

High rad. (%) Low rad. (%)

CPLEX-30min High Dem. 90 89
Low Dem. 79 80

CPLEX-1d. High Dem 69 73
Low Dem. 50 55

CPLEX-ST. High Dem 91 91
Low Dem. 79 80

best known solution equal to zero, which happens on 11 instances, we introduce
the constant c∗ > 0 on the computation. This is done to prevent the division by
zero that would happen on those cases. The RPD from the best solution i is,
thus, defined as

RPDA
ir =

CA
ir − Cbest

i + c∗

Cbest
i + c∗ × 100, ∀A ∈ A, i ∈ I, and r ∈ RA. (2)

The BRKGA variants did not have the same difficulties as CPLEX-30min
with infeasible solutions, finding at least one feasible solutions for all instances.
Figure 1 presents a boxplot with RDP distributions for each algorithm. Note that
the y-axis is plotted on a log scale to enhance the visualization. The reason is that
most of the algorithms found optimal solutions frequently, skewing the display on
a linear scale. In fact, the median of the RPD distributions of the three BRKGA
variants was zero, which indicates that at least half of the instances reached the
best or optimal solution.

However, all three algorithms had runs with considerably high RPDs, some-
thing that skews the results. In fact, the mean of all distributions was higher
than the value of the 0.75 percentile, and the maximal RPD for BRKGA-BI
and BRKGA-FI variants was 15,132. BRKGA-NLS had a maximal RPD of 15,902.
BRKGA-NLS presented slight better results than its counterparts, with 1, 486 ±
2, 952%; BRKGA-FI produced 1, 475 ± 2, 937%; and BRKGA-BI had an average
of 1, 480± 2, 943%. Since those results are too close to call, we applied the pair-
wise Wilcoxon rank-sum test with Bonferroni p-value adjustment method among
all algorithms. With a confidence interval of 95%, we cannot affirm there is a
significant difference on the results of the three BRKGA variations.

Table 5 presents the results in regards to the instances with optimal and non-
optimal found by CPLEX-30min. One may note the BRKGA variants had a poor
performance on the instances with known optima, finding the optimal solution
on only 5% of instances and on circa 5% of runs. The performance of all three
BRKGA variants was considerably similar for those instances. For instances with
unknown optima, BRKGA performance was considerably better. In fact, all three
variants found the best known solution for those instances in, in average, 80% of

346 M. A. Londe et al.

Fig. 1. Distribution of relative percentage deviations for each algorithm. Note that,
since the data is plotted in log scale, zero deviations are not shown, although the
algorithms have reached them.

Table 5. Algorithm performance on all instances.

Algorithm Known optima (256 instances) Unknown optima (1340 instances)
Opt % Opt % Run # Best % Best % Run

BRKGA-BI 13 5.08 5.01 1106 79.23 71.91
BRKGA-FI 13 5.08 5.08 1146 82.09 74.35
BRKGA-NLS 13 5.08 5.07 1143 81.88 73.03

instances. This was done on at least 70% of runs. One may note that BRKGA-FI
had the best performance among the algorithms, with higher percentages on all
criteria. BRKGA-BI had the worst performance of the algorithms.

Finally, Fig. 2 presents the cumulative probability of finding the best or opti-
mal solution in relation to running time of the algorithms. Note that all BRKGA
variants had better performances than CPLEX-30min on 1,800 s. In addition,
BRKGA-FI is shown to be better than the other variants, with higher chance of
finding the best solution on lower times. Note also that all three BRKGA variants
tended to finish before the maximum permitted time. This means the BRKGA
is reaching the upper limit on the number of iterations without improving the
best solution, which indicates quick convergence.

When considering all results presented in this section, there are many conclu-
sions that may be observed. The first is that BRKGA was shown to have a better
performance than that of CPLEX-30min, when considering feasible solutions and
cumulative probability of finding the best solution. The second consideration is
that BRKGA-FI performed better than the other BRKGA variants, even if we
cannot affirm the presence of a difference between the RPD distributions of the
three algorithms. The last conclusion is that the BRKGA variants converged

An Extension of the P-Next Center Problem 347

Seconds to reach a best solution

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

BRKGA−BI
BRKGA−FI

BRKGA−NLS
CPLEX

0 200 500 800 1100 1400 1700

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Fig. 2. Running time empirical distributions to the best solution values for all
instances. The identification marks correspond to 2% of the points plotted for each
algorithm.

quickly, and tends to find the optimal solutions, as shown by the medians of the
RPD distributions being zero.

5 Conclusions

In this work, we presented the p-next center problem with capacity and coverage
radius constraints, referred as pNCPCR. This is an extension of the p-next center
problem introduced by [1], itself an extension of the classical p-center problem.
The novel pNCPCR was inspired on a situation of a snake attack, in which
the victim cannot be treated on the closest facility due to a lack of medicine.
We formulate a mathematical model for the pNCPCR, and develop a Biased
Random-Key Genetic Algorithm (BRKGA) to solve this problem.

In order to observe the effectiveness of our proposed approach, we generated
1,652 instances based on the ones used in [17], and divided in four categories. To
find optimal solutions to those instances, we used three CPLEX configurations.
Of those, CPLEX-30min is used in the comparison with BRKGA. We also observed
the effects of the flow constraint in the proposed model, by running CPLEX-ST
with a harder version of this constraint.

CPLEX-30min results were compared with BRKGA variants, which differ in
local search approaches. One may node that all three BRKGA variants had bet-
ter performances than CPLEX-30min, and that the performances of those algo-
rithms was very similar, with BRKGA-FI being slightly better than the other
variants.

There are several possible future works based on this research. One may
consider non-uniform facility capacities, something that the model and instances
proposed in this paper do not. In addition, the problem could also be formulated
as a two-stage problem with stochastic demand.

348 M. A. Londe et al.

Acknowledgements. This study was financed in part by CNPq, PUC–Rio, FAPERJ
(Project Numbers E-26/211.086/2019, E-26/211.389/2019, and E-26/211.588/2021),
and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil
(CAPES) – Finance Code 001.

References

1. Albareda-Sambola, M., Hinojosa, Y., Marín, A., Puerto, J.: When centers can fail:
a close second opportunity. Comput. Oper. Res. 62, 145–156 (2015). https://doi.
org/10.1016/j.cor.2015.01.002

2. Amarilies, H.S., Redi, A.P., Mufidah, I., Nadlifatin, R.: Greedy heuristics for the
maximum covering location problem: a case study of optimal trashcan location
in kampung Cipare-Tenjo-West java. In: IOP Conference Series: Materials Science
and Engineering, vol. 847, p. 012007. IOP Publishing (2020)

3. Andrade, C.E., Silva, T., Pessoa, L.S.: Minimizing flowtime in a flowshop schedul-
ing problem with a biased random-key genetic algorithm. Expert Syst. Appl. 128,
67–80 (2019). https://doi.org/10.1016/j.eswa.2019.03.007

4. Andrade, C.E., Toso, R.F., Gonçalves, J.F., Resende, M.G.C.: The multi-parent
biased random-key genetic algorithm with implicit path-relinking and its real-world
applications. Eur. J. Oper. Res. 289(1), 17–30 (2021). https://doi.org/10.1016/j.
ejor.2019.11.037

5. Biajoli, F.L., Chaves, A.A., Lorena, L.A.N.: A biased random-key genetic algorithm
for the two-stage capacitated facility location problem. Expert Syst. Appl. 115,
418–426 (2019). https://doi.org/10.1016/j.eswa.2018.08.024

6. Bochner, R., Fiszon, J.T., Machado, C., et al.: A profile of snake bites in brazil, 2001
to 2012. Clinical Toxicology (2014). https://doi.org/10.4172/2161-0495.1000194

7. Chauhan, D., Unnikrishnan, A., Figliozzi, M.: Maximum coverage capacitated facil-
ity location problem with range constrained drones. Transp. Res. Part C: Emerg.
Technol. 99, 1–18 (2019). https://doi.org/10.1016/j.trc.2018.12.001

8. Chauhan, D.R., Unnikrishnan, A., Figliozzi, M., Boyles, S.D.: Robust maximum
coverage facility location problem with drones considering uncertainties in battery
availability and consumption. Transp. Res. Rec. 2675(2), 25–39 (2021)

9. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. Springer
Science & Business Media, Cham (2004)

10. Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J.
Global Optim. 6(2), 109–133 (1995). https://doi.org/10.1007/BF01096763

11. Filippi, C., Guastaroba, G., Speranza, M.G.: On single-source capacitated facility
location with cost and fairness objectives. Eur. J. Oper. Res. 289(3), 959–974
(2021). https://doi.org/10.1016/j.ejor.2019.07.045

12. Glover, F.: Tabu search and adaptive memory programming—advances, appli-
cations and challenges. In: Barr, R.S., Helgason, R.V., Kennington, J.L.
(eds.) Interfaces in Computer Science and Operations Research. Operations
Research/Computer Science Interfaces Series, vol. 7, pp. 1–75. Springer, Boston
(1997). https://doi.org/10.1007/978-1-4615-4102-8_1

13. Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for com-
binatorial optimization. J. Heuristics 17(5), 487–525 (2011). https://doi.org/10.
1007/s10732-010-9143-1

14. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Burke, E.K.,
Kendall, G. (eds.) Search Methodologies, pp. 211–238. Springer, Boston (2005).
https://doi.org/10.1007/0-387-28356-0_8

https://doi.org/10.1016/j.cor.2015.01.002
https://doi.org/10.1016/j.cor.2015.01.002
https://doi.org/10.1016/j.eswa.2019.03.007
https://doi.org/10.1016/j.ejor.2019.11.037
https://doi.org/10.1016/j.ejor.2019.11.037
https://doi.org/10.1016/j.eswa.2018.08.024
https://doi.org/10.4172/2161-0495.1000194
https://doi.org/10.1016/j.trc.2018.12.001
https://doi.org/10.1007/BF01096763
https://doi.org/10.1016/j.ejor.2019.07.045
https://doi.org/10.1007/978-1-4615-4102-8_1
https://doi.org/10.1007/s10732-010-9143-1
https://doi.org/10.1007/s10732-010-9143-1
https://doi.org/10.1007/0-387-28356-0_8

An Extension of the P-Next Center Problem 349

15. Huang, R., Kim, S., Menezes, M.B.: Facility location for large-scale emergen-
cies. Ann. Oper. Res. 181(1), 271–286 (2010). https://doi.org/10.1007/s10479-
010-0736-8

16. Karatas, M., Yakıcı, E.: An iterative solution approach to a multi-objective facility
location problem. Appl. Soft Comput. 62, 272–287 (2018)

17. Londe, M.A., Andrade, C.E., Pessoa, L.S.: An evolutionary approach for the p-next
center problem. Expert Syst. Appl. 175, 114728 (2021). https://doi.org/10.1016/
j.eswa.2021.114728

18. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002

19. López-Sánchez, A.D., Sánchez-Oro, J., Hernández-Díaz, A.G.: GRASP and VNS
for solving the p-next center problem. Comput. Oper. Res. 104, 295–303 (2019).
https://doi.org/10.1016/j.cor.2018.12.017

20. Mauri, G.R., Biajoli, F.L., Rabello, R.L., Chaves, A.A., Ribeiro, G.M., Lorena,
L.A.N.: Hybrid metaheuristics to solve a multiproduct two-stage capacitated facil-
ity location problem. Int. Trans. Oper. Res. 28(6), 3069–3093 (2021). https://doi.
org/10.1111/itor.12930

21. Morgan, A.A., Khayyat, K.M.J.: Improving emergency services efficiency during
iIlamic pilgrimage through optimal allocation of facilities. Int. Trans. Oper. Res.
29(1), 259–300 (2022). https://doi.org/10.1111/itor.13026

22. Murray, A.T.: Maximal coverage location problem: impacts, significance, and
evolution. Int. Reg. Sci. Rev. 39(1), 5–27 (2016). https://doi.org/10.1177/
0160017615600222

23. Souto, G., Morais, I., Mauri, G.R., Ribeiro, G.M., González, P.H.: A hybrid
matheuristic for the two-stage capacitated facility location problem. Expert Syst.
Appl. 185, 115501 (2021)

24. Suzuki, A., Drezner, Z.: The p-center location problem in an area. Locat. Sci.
4(1–2), 69–82 (1996). https://doi.org/10.1016/S0966-8349(96)00012-5

25. Taiwo, O.J.: Maximal covering location problem (MCLP) for the identification
of potential optimal COVID-19 testing facility sites in nigeria. Afr. Geogr. Rev.
40(4), 395–411 (2021)

26. Wu, L.Y., Zhang, X.S., Zhang, J.L.: Capacitated facility location problem with
general setup cost. Comput. Oper. Res. 33(5), 1226–1241 (2006). https://doi.org/
10.1016/j.cor.2004.09.012

27. Yang, P., Xiao, Y., Zhang, Y., Zhou, S., Yang, J., Xu, Y.: The continuous maximal
covering location problem in large-scale natural disaster rescue scenes. Comput.
Ind. Eng. 146, 106608 (2020)

28. Yu, W.: Reachability guarantee based model for pre-positioning of emergency facil-
ities under uncertain disaster damages. Int. J. Disaster Risk Reduction 42, 101335
(2020). https://doi.org/10.1016/j.ijdrr.2019.101335

https://doi.org/10.1007/s10479-010-0736-8
https://doi.org/10.1007/s10479-010-0736-8
https://doi.org/10.1016/j.eswa.2021.114728
https://doi.org/10.1016/j.eswa.2021.114728
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.cor.2018.12.017
https://doi.org/10.1111/itor.12930
https://doi.org/10.1111/itor.12930
https://doi.org/10.1111/itor.13026
https://doi.org/10.1177/0160017615600222
https://doi.org/10.1177/0160017615600222
https://doi.org/10.1016/S0966-8349(96)00012-5
https://doi.org/10.1016/j.cor.2004.09.012
https://doi.org/10.1016/j.cor.2004.09.012
https://doi.org/10.1016/j.ijdrr.2019.101335

Automatic Configuration of Metaheuristics
for Solving the Quadratic

Three-Dimensional Assignment Problem
Using Irace

Imène Ait Abderrahim1(B) and Thomas Stützle2

1 Khemis Miliana University, Khemis Miliana, Algeria
i.aitabderrahim@univ-dbkm.dz

2 Université libre de Bruxelles (ULB), Bruxelles, Belgium
Thomas.Stuetzle@ulb.be

Abstract. Metaheuristic algorithms are traditionally designed follow-
ing a manual and iterative algorithm development process. The perfor-
mance of these algorithms is, however, strongly dependent on their cor-
rect tuning, including their configuration and parametrization. This is
labour-intensive, error-prone, difficult to reproduce and explores only a
limited number of design alternatives. To overcome manual tuning, the
automatic configuration of algorithms is a technique that has shown its
efficiency in finding performance-optimizing settings of parameters. This
paper contributes to overcoming the challenge of automatically config-
ured metaheuristics using the iterated racing for automatic algorithm
configuration irace applied to the quadratic three-dimensional assign-
ment problem. In particular, we use particle swarm optimization (PSO),
a tabu search (TS), an iterated local search (ILS) and two hybrid algo-
rithms PSO-TS and PSO-ILS. Of these algorithms, the tabu search algo-
rithm and the PSO-ILS worked the best. The results show that the algo-
rithm automatic configuration enables identifying an ideal tuning of the
parameters and reaching better results when compared to a manual con-
figuration, in similar execution time.

1 Introduction

Permutations are used in many combinatorial optimization problems to represent
a candidate solution. Such problems are known as permutation-based problems
in the literature and can be found in many theoretical and real domains such
as scheduling, routing and assignment. One is the quadratic three-dimensional
assignment problem (Q3AP), which is known to be NP-hard [12]. It is an exten-
sion of the quadratic assignment problem (QAP) and as such known to be dif-
ficult for the exact solution. In fact, we can not solve large-size instances using
exact methods, because the size of the search space for an instance of size n from
Q3AP is n!2, much more than the already quite difficult QAP [12,25].

Metaheuristics have proved their efficiency to solve large and difficult opti-
mization problems and they get optimal solutions or very good approximate
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 350–364, 2023.
https://doi.org/10.1007/978-3-031-26504-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_25&domain=pdf
http://orcid.org/0000-0002-5654-2058
http://orcid.org/0000-0002-5820-0473
https://doi.org/10.1007/978-3-031-26504-4_25

Automatic Configuration of Metaheuristics 351

solutions with respect to the optimal. Yet, the performance of optimization algo-
rithms requires a considerable amount of computational effort and expert knowl-
edge [28]. Several elements can influence on algorithm’s performance like the
characteristics of the algorithm, the problem being solved and the environment
in which the execution will be performed. To guide the configuration process,
there are several automatic algorithm configuration tools, also called configura-
tors, proposed in the literature. Some of the methods of these are ParamILS [16],
SMAC [15], GGA [3] and irace [19]. These configuration tools have obtained very
good settings for different types of algorithms and improved their performance
in many cases [14,27].

In this paper, we propose to solve the problem of the Q3AP using automati-
cally configured metaheuristic algorithms, where we configure some parameters
of the metaheuristics and try to find the best settings for these parameters that
improve the performance of these algorithms. We believe that a well-performed
configuration procedure can significantly improve the performance of the meta-
heuristics for solving a complex problem and that by automatically setting the
parameters of the metaheuristics we show how this kind of approach of algorithm
configurations is used.

The remainder of the paper is organized as follows. In Sect. 2 we define the
Q3AP and review methods to solve the Q3AP. Then, in Sect. 3, we describe the
different algorithms used in this paper to solve the Q3AP. In Sect. 4, we define
the automatic configuration of algorithms. Section 5 reports the experimental
results; Sect. 6 concludes the work.

2 The Q3AP

The Q3AP can be seen as an assignment problem where the objective is to
optimize a quadratic function over a three-dimensional assignment polytope.
Therefore, one formulation of the Q3AP is representing the objective function
as a quadratic expression [12]. Mostly, this quadratic formulation is used for the
case of exact algorithms, using the reformulation linearization technique (RLT-
1). However, for the case of metaheuristics which rely on underlying iterative
improvement algorithms, another permutation-based formulation of the Q3AP
can be represented by two permutations π and ψ of the numbers in the set
{1, 2, · · · n} [12]. This formulation is derived from that of the QAP [13], where

min

⎧
⎨

⎩
f(π, ψ) =

n∑

i=1

n∑

j=1

Ciπ(i)π(j)jψ(i)ψ(j) +
n∑

i=1

biπ(i)ψ(i)

⎫
⎬

⎭
(1)

where: π and ψ are permutations over the set {1, · · · , n}. With this formulation,
one can see that that the size of the search space is equal to n! × n!.

Iterative improvement algorithms for the Q3AP typically make use of a dou-
ble 2-exchange neighbourhood relation, in which a double two solutions are

352 I. Ait Abderrahim and T. Stützle

neighbored if their permutations differ in exactly two positions. That are, the
neighborhoods N(π) and N(ψ) of permutations π and ψ, respectively.

As such, the Q3AP was first introduced by William P. Pierskalla in 1967 [26]
and then revisited by Peter Hahn et al. [12] as the first work for solving the Q3AP
problem. They implemented a sequential branch-and-bound algorithm based on
Lagrangian relaxation to extend the development and implementation of effective
lower bounds. From another side they also proposed metaheuristics approaches,
where they adapted four approximate methods, known for being very successful
on solving the QAP, for solving the Q3AP. These methods are the simulated
annealing (SA) algorithm of Conolly [8], a tabu search (TS) algorithm, the fast
ant (FANT) algorithm [30] and the iterated local search (ILS) [29]. The ILS was
considered the best-performing one of the four metaheuristics.

Other approaches were proposed in the literature for solving the Q3AP prob-
lem. In the exact approaches, we could find the work of Galea et al. [9], Mezmaz
et al. [24]. The best performing exact algorithm is due to Mittelmann and Sal-
vagnin [25] where they addressed a challenging Q3AP instance REAL-16 and
reached the optimum of this instance for the first time using exact methods.

Metaheuristics are another class of approaches that have been explored to
solve the Q3AP problem. Next to the four approaches proposed by Hahn [12],
we find also the work presented by Luong et al. [22], where they proposed a
GPU-based parallel iterative tabu search algorithm where the steps of TS are
executed on the CPU, but the generation and evaluation of the large size neigh-
borhood are executed on GPU. Wu et al. [31] were investigating the modulation
diversity(MoDiv) design problem for HARQ in CoMP-MIMO system aiming
to minimize the bit error rate (BER) upper bound where they formulated the
MoDiv design into a Q3AP. They presented an iterated local search (ILS) algo-
rithm. The rest of the contributions are from the hybrid population-based algo-
rithms family. In the work of Loukil et al. [20], they proposed a two-level parallel
hybrid evolutionary algorithm (EA) with a simulated annealing algorithm. Lip-
inski [18] suggests a hybrid algorithm that combines an EA with a local search
method. In Mehdi et al. [23], they proposed a new cooperative hybrid scheme
that combines an evolutionary algorithm and a branch-and-bound method to
solve large benchmarks of permutation-based problems. Another work is under-
taken by Abderrahim et al. [1] where they propose a particle swarm optimiza-
tion (PSO) algorithm hybridized with an iterated local search embedding a tabu
search. Gmys et al. [11] propose a comparative study of high productivity and
high-performance programming languages for parallel metaheuristics where they
tested their algorithms by solving the Q3AP. They implemented an ILS algo-
rithm and a genetic algorithm (GA) hybridized with a local search (LS).

3 Metaheuristics for the Q3AP

We perform experiments to compare the performance of the parameters when
using the metaheuristics: PSO, TS and ILS for solving the Q3AP [2]. Some
modifications have been considered on the parameters of the metaheuristics,

Automatic Configuration of Metaheuristics 353

where we have included new parameters for the configuration design process.
This includes in TS and in ILS, the number and the type of perturbations and
the acceptance criteria, as well as we have fixed a few parameters such as the
constants c1 and c2 for PSO and the max run-time for the algorithms. As a result,
we have four algorithms to tune namely TS and ILS, PSO-TS, and PSO-ILS.
Since we also included the PSO algorithm, we start with that one.

3.1 Particle Swarm Optimization for Q3AP

Particle swarm optimization (PSO) was inspired by nature behaviours [17]. It is
a method for optimizing continuous functions that exploits the interaction of the
simple behaviours of individuals in a swarm to form an organized and coherent,
collective behaviour. In this section, we describe the adapted discrete PSO for
Q3AP of Abderrahim et al. [2].

In PSO, each particle is represented by its position vector xi and its velocity
vector vi and moves through the search space by updating the values of the
xi and vi vectors at every iteration. As the solution of the Q3AP is the double
permutation of size n, for each particle, the position of a particle is represented as
a double vector xi = (x1

i , x
2
i) and the velocity is represented by one vector vi only.

For a given particle i, its velocity vi(t+1) and its position xi(t+1) at iteration
(t + 1), for that, some parameters are needed, where the parameters r1 and r2
are random numbers in [0, 1]. c1 and c2 are positive constants called coefficient
of the self-recognition and coefficient of the social component respectively. The
variable ω is the inertia factor in which value is typically set up to vary linearly
from 1 to near 0 during the iterated process and it is a parameter to control
the impact of the previous velocities on the current velocity. The adapted PSO
method for Q3AP is illustrated in Algorithm 1. Since the PSO is a continuous
method, we have to adapt it to discrete problems by a supplementary procedure
that can allow this kind of configuration. There are many methods that meet the
above-mentioned mapping condition such as the great value priority (GVP) rule
[7]. The GPV was used because it showed that it does not break the structure of
the permutation. This rule of GVP notes the search space of n dimension as Ωn,
and the space of the Q3AP, whose scale is n, it is labelled Φn. This g corresponds
to the rule of mapping of Ω → Φ, namely: g : Ωn → Φn and g must meet the
following terms. (1) For each vector X in Ωn you can find a unique corresponding
permutation p, and it is noted g(X) = p. (2) A certain permutation order from
X must be found by g so that it can reflect the priority order relation in the
permutation. Namely if i > j then by using g it means that xi > xj , where “>”
expresses the array relation between the elements. For details on the GVP see
Algorithm 2.

It can be given a concrete example of Algorithm 2, suppose the vector (0.3,
0.4, 0.1, 0.7) then after sort operation, we get the ordered set {0.7, 0.4, 0.3, 0.1},
finally, we get the permutation {4, 2, 1, 3}.

354 I. Ait Abderrahim and T. Stützle

Algorithm 1. PSO for Q3AP [2]
1: initialise parameters of PSO: NP , c1 = 2, c2 = 2, r1, r2, ω;
2: initialise the position and velocity vectors of particles randomly;
3: for each particle i = 1 to NP do
4: pbestid = xid; // initialise the best local positions with the initial positions
5: end for
6: Evaluate f(xid) of each particle;
7: Evaluate gbestd; // best value among all pbestid;
8: repeat
9: for i to 1 to NP do

10: Update velocity
11: Update position
12: find sequence using GVP rule
13: evaluate the fitness of each particle
14: if f(xid) < f(pbestid) then; // Evaluation
15: pbestid = xid ;// Update pbestid

16: end if
17: if f(pbestid) < f(gbestd) then; // Evaluation
18: gbestd = pbestid; // Update gbestd
19: end if
20: end for
21: until (iteration < Max_PSO_iteration and elapsed_time < MaxTime)
22: Print the best solution found

3.2 TS for Q3AP

The tabu search (TS) technique was developed by Glover [10]. TS is based on the
neighbourhood search. TS uses memory to direct the search and to escape local
optima, typically by forbidding certain solutions or solution components to avoid
reversing moves and revisiting solutions. In our TS algorithm, we start by setting
the parameters and initialising the initial solution. Once the initialisation step is
finished, we apply the main iterations of the TS algorithm. We first find the best
non-tabu neighbour and after that, we update the tabu list. A new feature that is
introduced by our TS is that a perturbation is done either to a single permutation
or to the double permutation of the solution. At this level, we call a parameter
Swap ∈ (Single,Both) that decides whether the perturbation will be applied to
a single permutation or to both of them. The number of perturbations is taken
based on a random number, where the number of perturbations is between 2 and
n and is decided by a parameter NbrPrt. After the perturbation step, we get a
new solution s. The stopping criterion is based on the run-time (MaxTime) where
the algorithm stops when the time is out. The value of MaxTime is computed
from the size of the instance and the value of the parameter timeLL where
MaxTime = timeLL × n. The algorithm can be seen in Algorithm 3.

Automatic Configuration of Metaheuristics 355

Algorithm 2. GVP Rule [7]
1: Input: X = (x1, x2, · · · , xn); xi ∈ R
2: Output: p = (p1, p2, · · · , pn); pi ∈ {1, 2, · · · , n}
3: k = 0
4: for i = 1 to n do
5: k=1
6: for j=1 to n and j �= i do
7: if (xj > xi) then
8: k = k +1
9: end if

10: end for
11: p[k] = i
12: end for
13: Return p

3.3 ILS for Q3AP

The iterated local search (ILS) is a simple and powerful stochastic local search
method [21]. The ILS algorithm explores the search space of local optima. It
starts from an initial solution s and returns a local optimum. It then applies a
perturbation to go from the space of local optima to the intermediate space of all
solutions. Then, a local search is applied again and we reach hopefully different
local optima. If this passes an acceptance test, it becomes the next element of the
walk in the local optima space [21]. As a local search, we used the TS method.

In our ILS algorithm, we start by setting the parameters and do the initiali-
sation of the initial solution. We are considering in this algorithm the following
parameters: alpha, Swap, nSwap, AccpCrt, timeLL and Tconst when needed.
Once the initialisation step is finished, we apply one iteration of the TS algo-
rithm as mentioned in the previous section. At the level of acceptance criteria,
for the ILS, three types of acceptance criteria have been used in our algorithm,
namely 0, 1 and 2. Acceptance criteria 0 takes the last solution, type 1 takes
the best of the two solutions and acceptance criteria 2 means that we are using
the Metropolis criteria from the Simulated Annealing style for acceptance. The
ILS method process consists in a loop over the TS method, where the stopping
criterion of ILS is based on the run-time (MaxTime). The value of MaxTime is
computed from the size of the instance and the value of the parameter timeLL
where MaxTime = timeLL × n and the TS stopping criteria is based on the
number of iterations defined as MaxIters = kk × n. The ILS can be seen in the
Algorithm 4.

3.4 PSO-TS and PSO-ILS for Q3AP

Two hybrid algorithms have been implemented to solve the Q3AP problem,
they are the PSO-TS and PSO-ILS. In our hybrid algorithm, we start by setting
all the necessary parameters. Then we begin the PSO algorithm until the PSO
stopping criteria is reached, as described in Algorithm 1. After that, the mapping

356 I. Ait Abderrahim and T. Stützle

Algorithm 3. TS for Q3AP
1: Set parameters: alpha, Swap, nSwap, timeLL = 10s
2: elapsed_time = 0
3: s ← s0 // Create a random solution
4: sbest = s
5: Eval(s) // Evaluate the solution ;
6: Initialise Tabu list
7: repeat
8: Find the best non-tabu neighbour of s
9: Update Tabu list

10: if (Swap =′′ Both′′) then
11: s ← PermuteBoth(s′)
12: else
13: s ← PermuteSingle(s′)
14: end if
15: if f(s) < f(sbest) then
16: sbest ← s
17: end if
18: until (elapsed_time >= MaxTime)
19: Print the best solution found

rule GV P is applied to the best particle obtained so far by the PSO algorithm
in order to map it to a permutation with discrete values. This permutation is
given as starting solution to the TS algorithm, which is then executed. When
the TS algorithm reaches its stopping criteria, which is the number of iterations
in this case (MaxIters), it gives back the best solution found so far. At this time,
the hybrid algorithm keeps always the best solution found so far in memory
before repeating the process. The process stops when the time of execution is
exhausted, which is the global stopping criteria MaxTime. The hybrid algorithm
is given in Algorithm 5. Note that the same execution is applied for the second
hybrid algorithm, PSO-ILS.

4 Automated Algorithm Configuration

4.1 The Automatic Configuration of Algorithms

Algorithm configuration is the process of finding a set of values for the algo-
rithm parameters that ideally expose high empirical performance for instances
of a particular class of problem [4,16]. For algorithm configuration we need a
configuration scenario that contains a parameter search space, a set of training
and test instances, and a budget of configuration [14,19]. Roughly, the parame-
ters can be classified into two types. Firstly, these are the parameters that define
the categorical side of the algorithmic components (e.g. the crossover operator
for an evolutionary algorithm, or the branching strategy for an exact algorithm).
Secondly, there are the parameters that are in charge of the control of the selec-
tion of the components of an algorithm (e.g. the length of a tabu list, or the size

Automatic Configuration of Metaheuristics 357

Algorithm 4. ILS for Q3AP
1: Get parameters: alpha, Swap, nSwap, AccpCrt, kk, timeLL = 10
2: elapsed_time = 0
3: s ← s0 ; // Create a random solution;
4: s = TabuSearch()
5: sbest ← s
6: Eval(s) ;// Evaluate the solution ;
7: repeat
8: if (Swap =′′ Both′′) then
9: s ← PermuteBoth(s′) ;

10: else
11: s ← PermuteSingle(s′) ;
12: end if
13: Initialise Tabu list;
14: s′ = TabuSearch()
15: s ← AcceptanceCriterion(s, s′, T const)
16: until (elapsed_time >= MaxTime)
17: Print the best solution found

Algorithm 5. Hybrid PSO with TS to solve Q3AP
1: Set parameters: alpha, Swap, nSwap, AccpCrt, timeLL = 10, c1 = c2 = 2
2: f∗ = +∞ //initialisation of best cost
3: repeat
4: Gbest ← PSO()
5: s ← GVP(Gbest)
6: s′ ← TS(s)
7: if (Eval(s′) < f∗) then
8: s∗ = s′; f∗ = Eval(s′)
9: end if

10: until elapsed_time >= MaxTime

11: Print the best solution found

of a perturbation). Their domain commonly corresponds to numbers of integer
or continuous parameters [6]. Generally, it is represented by categorical or ordi-
nal variables in the first case, while in the second case as numerical ones, that
is, integer or real-valued ones. Further, a parameter can have dependencies rela-
tions with the values of other parameters. The configuration of algorithms can
be used for optimizing different measures of performance, which are generally
the average solution quality or the time of execution [14,19].

The irace package [19] is a configurator of algorithms that implements con-
figuration procedures based on iterated racing and we use it here as the tool for
automatic algorithm configuration [6]. This tool is a general-purpose configura-
tor that requires defining a scenario of the configuration as described above. The
supported parameter types are categorical, ordinal, integer and real parameters.
irace applies a racing procedure. In such a procedure several configurations are
evaluated on bigger subsets of the training instance set and statistical tests are

358 I. Ait Abderrahim and T. Stützle

established to identify the algorithm configurations that get worse performance
than the others. If the statistical tests speak against configurations these will be
eliminated from the race and the further execution will continue with those that
survived. This holds since either only one or a set of configurations survive or the
termination criterion is accomplished. After one iteration new configurations are
then generated from a probabilistic model. It is updated to be centred around
the best configurations and simultaneously this model is decreased in a variance
of the previous one. In this way, the irace convergence gets a high-performing
areas of the parameter search space, while increasing the performance estimation
by increasing the number of instances in which elite configurations are evaluated.

4.2 Parameters Configuration

In the automatic configuration, for each target parameter, an interval or set of
values must be defined according to the type of the parameter. There is no limit
to the size of the set or the length of the interval, but keep in mind that larger
ranges could increase the difficulty of the tuning task. For simplification, the
description for the parameter space is given as a table. Each line of the table
defines a configurable parameter < name > < label > < type > < domain >
[|condition] [19] where each field is defined as follows.

< name >: The name of the parameter as an unquoted alpha-numeric string.
< label >: A label for this parameter. This is a string that will be passed together

with the parameter.
< type >: The type of the parameter, either integer, real, ordinal or categorical

given as a single letter: ‘i’, ‘r’, ‘o’ or ‘c’.
< range >: The range or set of values of the parameter delimited by parentheses;

for example, (0,1) for a real parameter in the range [0, 1] or a categorical
parameter with item a, b, c, and d.

[|condition] : An optional condition that determines whether the parameter is
enabled or disabled, thus making the parameter the condition evaluates to
false, then no value is assigned to this parameter, and neither the parameter
value nor the corresponding label are passed to the TargetRunner.

The experiments presented in this paper configure different parameters of the
algorithms to a set of different algorithm benchmarks for the Q3AP problem.
The experiments presented in this paper configure different parameters of the
algorithms to a set of different algorithm benchmarks for the Q3AP problem.
Here, please note that the algorithms could only be improved further, but we
expect that the algorithms would in their improved version be rather similar.
The total number of the tuned parameters is six plus three fixed parameters
for the completion. The goal of the configuration process is to find the best
parameter settings that improve the quality of the solution. The optimization
algorithm parameters are the following:

alpha: It is a parameter used to compute the size of the tabu list, which takes
real values from the interval]0.0, 0.5]. The formula used in this case is tabu.size =
�α × neighborhood_size�.

Automatic Configuration of Metaheuristics 359

Swap: This is a categorical parameter, which defines the kind of perturbations
to be applied to the solution (Single,Both). Single means that the perturbation
is applied in one of the permutations, whereas Both means that the perturbation
is applied in both permutations of the current solution.

nSwap: Abbreviation of “number of Swaps”. This parameter is used in the for-
mula NbrPrt = 2 + �nSwap × n − 1�, where the value of NbrPrt defines the
number of perturbations to be applied to the permutation. The values of nSwap
are real values from the interval [0.0, 1.0].

kk: This parameter is an integer and is used to set the number of the iterations
for the local search algorithms (the tabu search in ILS) depending on the instance
size. It holds that maxIters = kk × n where kk ∈ [1, 200].

AccpCrt: This parameter is categorical. It is used to set an acceptance criteria
on the current solution compared to the previous one. This parameter takes one
of the three following values (0, 1, 2) where

– 0: is using a selection of the last solution.
– 1: it is using the method better. It consists on selecting the best solution

between the current solution and the previous one.
– 2: it consists of using the system as in the method of simulated annealing

Metropolis by accepting some different solution with a condition of a small
error. In this case, the value of the temperature T is computed using the next
parameter Tconst. The probability error p of acceptance of the new solution
is computed by p = −(Eval(s′) − Eval(s))/T , where T = Tconst × Eval(s′)
and Eval(s′) and Eval(s) are the fitness of s and s′, the best solution so far
and the current solution, respectively.

Tconst: It is a conditional parameter of type real. It is related to the accep-
tance criteria (2), where we need to compute the temperature T as in simulated
annealing Metropolis. Thus, the formula is like following T = Tconst×Eval(s′),
where Tconst ∈ [0.0, 0.1] and Eval(s′) is the fitness of the current solution.

The last parameters timeLL, c1 and c2 are all fixed through the whole con-
figuration. The parameter timeLL is used to compute the run-time for the algo-
rithms according to MaxTime = timeLL × n, where timeLL = 10, in our case.
The parameters c1 and c2 represents the acceleration coefficients for the particles
in PSO algorithm, where c1 = c2 = 2.

The configuration of the parameters is declared in a parameter file for tun-
ing the algorithms, as shown in Table 1. The first column is the name of the
parameter; the second column is the label, typically the command-line switch
that controls this parameter, which irace will concatenate to the parameter value
when invoking the target algorithm; the third column gives the parameter type
(either integer, real, ordinal or categorical); the fourth column gives the domain.

360 I. Ait Abderrahim and T. Stützle

Table 1. Structure of parameters file

Name Switch Type Values

swap “–swap” c (single, both)
alpha “–alpha” r (0.00, 0.50)
nSwap “–nSwap” r (0.0, 1.0)
kk “–kk” i (1, 200)
AccpCrt “–AccpCrt” c (0, 1, 2)
Tconst “–Tconst” r (0.0, 0.1)

5 Experimental Evaluation

5.1 Experimental Setup

Our experiments consist on applying irace, a tool for automatic algorithm config-
uration, to the different proposed algorithms in order to find the best algorithm
configuration and parameter setting, given a set of training problem instances
and a tuning budget. The tuning budget is defined as the maximum number
of runs of the algorithm. The best configuration found by irace is then applied
to a set of test instances, different from the training set in order to assess its
performance.

For the training process, we have generated 30 instances of size n, where
n = 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. The instances are divided into 3 groups
a, b and c. Instances from category ‘a’ are matrices where values are in (0,5),
instances from category ‘b’ take the values from the interval (0,10) and ‘c’ cat-
egory values are in the interval (0,20), where we generated them in such a way
that they would look like the Nugent instances from QAPLIB [5]. In the test pro-
cess, we used 6 instances from the Nugent family on QAPLIB [5]: nug8, nug12,
nug13, nug15, nug20 and nug30. We have chosen these specific instances for the
test because they are the most cited in the literature. The algorithms are run
with different random seeds on the test instances. The tuning budget considered
here for one run of irace is 5000 runs of an algorithm. At the end of the run,
irace prints the best configurations as a table and as command-line parameters.

The goal was to test if the performance of the candidate configurations cor-
responds to the execution of the optimization algorithms parameters. The tests
were run under Cluster Rocks 6.2, which is based on CentOS 6.2. The machine
used was 2 AMD Opteron (2GHz), 8 cores, 12 MB cache and 16 GB RAM.

5.2 Experimental Results

The experiments were run for the same execution time for the same instance in
all the different algorithms, where MaxTime = timeLL × n.

The Table 2 shows the values of the best configurations given by irace for
each algorithm. From the experiments, we saw that in most configurations, the
parameter “swap” is set to “both”, which seems to increase the quality of the

Automatic Configuration of Metaheuristics 361

Table 2. Results of the parameters

Algorithm swap alpha nSwap kk AccptCrt Tconst

TS Single 0.0051 0.9904 – 0 –
ILS Both 0.1386 0.0495 196 0 –
PSO-TS Both 0.2576 0.5054 – 0 –
PSO-ILS Both 0.1946 0.9727 194 0 –

Table 3. Solution costs for the PSO and TS algorithms based on the same computation
time.

PSO TS
Inst. Best Avg Best Avg

nug8 504 809.2 134 134

nug12 2072 2786.6 580 682.6

nug13 3656 5066.8 1974 2057.6

nug15 4804 7501.2 2230 2605.6

nug20 34832 38293.8 25792 26279.6

nug30 109698 114590.8 72450 73581.8

solution. Anyway, the TS prefers to use a swap in one permutation. For the
calculation of tabu list size, the value of the parameter “alpha” is average, this
means that the tabu list influences more on the algorithm performance; the
only exception is again the TS where the values of this parameter are small
close to zero, which is translated that the tabu list is small. The parameter
“nSwap” has large values in most configurations, which means that the more
you can permute the better are our results. What is maybe surprising is that
the acceptance criteria “AccpCrt” is always a random selection, that is 0. This
means it doesn’t focus only on the best solution neighbors but tries to find other
better solutions in the search space. Finally, we have always the kk at a high
value. This parameter influences on the number of iterations of the local searches
in ILS algorithms.

We first use the PSO algorithm alone and compare it to the TS algorithm
on the same smaller computation time. This is the observation of whether a
population algorithm alone is able to be similar to a local search algorithm.
The results in Table 3 do say it is not the case. In fact, without needing a null
hypothesis test, it is clear that the PSO algorithm alone can not get close to the
performance of, for example, the TS.

We go now to compare the fitness of the four algorithms based on the best
values and averages given by irace. As it is clear in Table 4, the fitness averages
in TS, ILS, PSO-TS and PSO-ILS algorithms are significantly promising. While
comparing the results given by these four algorithms we realised that the TS
algorithm beats the others in terms of quality of solution where the success in
the tested instances is 100% for the instances nug8, nug12 and nug15 and very
close to the best known values for the rest of the instances.

362 I. Ait Abderrahim and T. Stützle

Table 4. Solution costs obtained by the different algorithms on the test instances

TS PSO-TS ILS PSO-ILS
Inst. Best Avg Best Avg Best Avg Best Avg

nug8 134 134.0 134 134.0 134 134.0 134 134.6

nug12 580 580.0 580 588.0 580 588.5 580 594.4

nug13 1912 2022.2 1912 1962.0 1912 1965.3 1912 1962.7

nug15 2230 2230.0 2230 2256.7 2230 2449.7 2230 2324.4

nug20 25590 25889.0 26024 26349.8 25590 26120.8 26084 26443.2

nug30 71680 72210.2 72652 73769.2 72830 74268.8 72714 73513.0

From the experimental results given by the test process, the TS is outperform-
ing the other algorithms on instances nug20 and nug30 based on a Wilcoxon-rank
sum test on the instances. There can be different reasons for this. One, can be
that the run-time is not high enough. This may be also the reason that for the
instance that was found to be difficult, the nug13 instance, also the TS was
somehow worse performing than the other algorithms. Yet, another reason may
be that the generated training instances are not good for highlighting the algo-
rithms. This was the case in our test instances, where the best-so-far on the
training instance (algorithm PSO-ILS) was on the test instances outperformed
by the TS algorithm.

Finally, we report about the run time of experiments in irace, where irace
takes timeLL×n = 200s for the biggest instances. This allows us also to compare
roughly the times on the nug12 and nug13 instances, which in our case are 120
and 130 s on a single core of the 2GHz AMD Opteron, to the average time it
took for a single core 440MHz of an HPJ5000 machine, which were for the ILS
2162.2 and 7519.2 s [12].

6 Conclusion

In this paper, we propose to exploit the available knowledge on algorithmic
components and parameter setting strategies for metaheuristics in the form of
automatically configurable algorithms for solving the problem of Q3AP. Overall,
we had four metaheuristics: the tabu search (TS), iterated local search (ILS)
and two hybrid ones, where, the PSO with the tabu search algorithm (PSO-TS)
and the iterated local search variant (PSO-ILS). irace could find settings that
significantly improve over the default settings of the algorithms. However, what
is striking is that the PSO-ILS was the best on the training instances, but on
the test instances it was the TS algorithm which was best performing. Hence,
this is something we have to test in the future.

Other directions for future work can be considered for the extension. First,
it would be interesting to extend the experimental part by allowing the PSO
parameters to undergo the tuning. We could re-consider the great value priority
rule to let by the tuning decide whether it still is chosen. Anyway, the param-
eters of the PSO and also some additional parameters of the TS and the ILS

Automatic Configuration of Metaheuristics 363

would be interesting for the tuning. A second direction is to extend our work
by investigating other single-based and population-based SLS algorithms for the
quadratic three-dimensional assignment problem. Ideally, these extensions would
allow us to compare the automatically designed algorithms in this paper against
other automatically designed metaheuristics, to study the impact of the auto-
matic configuration on the different metaheuristics and to understand how and
which algorithms can be combined.

References

1. Abderrahim, I.A., Loukil, L.: Hybrid PSO-TS approach for solving the quadratic
three-dimensional assignment problem. In: 2017 First International Conference on
Embedded and Distributed Systems (EDiS), pp. 1–5 (2017)

2. Abderrahim, I.A., Loukil, L.: Hybrid approach for solving the Q3AP. Int. J. Swarm
Intell. Res. (IJSIR) 12, 98–114 (2021)

3. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04244-7_14

4. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Proceedings of GECCO 2002, pp. 11–18. Morgan
Kaufmann Publishers (2002)

5. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB-a quadratic assignment problem
library. J. Glob. Optim. 10(4), 391–403 (1997)

6. Pérez Cáceres, L., Pagnozzi, F., Franzin, A., Stützle, T.: Automatic configuration
of GCC using irace. In: Lutton, E., Legrand, P., Parrend, P., Monmarché, N., Schoe-
nauer, M. (eds.) EA 2017. LNCS, vol. 10764, pp. 202–216. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78133-4_15

7. Congying, L., Huanping, Z., Xinfeng, Y.: Particle swarm optimization algorithm for
quadratic assignment problem. In: Proceedings of 2011 International Conference
on Computer Science and Network Technology, vol. 3, pp. 1728–1731 (2011)

8. Connolly, D.T.: An improved annealing scheme for the QAP. Eur. J. Oper. Res.
46(1), 93–100 (1990)

9. Galea, F., Hahn, P.M., LeCun., B.: A parallel implementation of the quadratic
three-dimensional assignment problem using the bob++ framework. In: 21st Con-
ference of the European Chapter on Combinatorial Optimization (ECCO XXI)
(2008)

10. Glover, F.: Tabu search - part I. ORSA J. Comput. 1(3), 190–206 (1989)
11. Gmys, J., Carneiro, T., Melab, N., Talbi, E.G., Tuyttens, D.: A comparative study

of high-productivity high-performance programming languages for parallel meta-
heuristics. Swarm Evol. Comput. 57, 100720 (2020)

12. Hahn, P.M., et al.: The quadratic three-dimensional assignment problem: exact
and approximate solution methods. Eur. J. Oper. Res. 184(2), 416–428 (2008)

13. Hillier, F.S., Connors, M.M.: Quadratic assignment problem algorithms and the
location of indivisible facilities. Manag. Sci. 13(1), 42–57 (1966)

14. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Hamadi,
Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-21434-9_3

https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-319-78133-4_15
https://doi.org/10.1007/978-3-642-21434-9_3

364 I. Ait Abderrahim and T. Stützle

15. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3_40

16. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948
(1995)

18. Lipinski, P.: A hybrid evolutionary algorithm to quadratic three-dimensional
assignment problem with local search for many-core graphics processors. In: Fyfe,
C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds.) IDEAL 2010. LNCS,
vol. 6283, pp. 344–351. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15381-5_42

19. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

20. Loukil, L., Mehdi, M., Melab, N., Talbi, E.G., Bouvry, P.: Parallel hybrid genetic
algorithms for solving Q3AP on computational grid. Int. J. Found. Comput. Sci.
23(02), 483–500 (2012)

21. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated Local Search, pp. 320–353.
Springer, Boston (2003)

22. Luong, T.V., Loukil, L., Melab, N., Talbi, E.G.: A GPU-based iterated tabu search
for solving the quadratic 3-dimensional assignment problem. In: ACS/IEEE Inter-
national Conference on Computer Systems and Applications - AICCSA 2010, pp.
1–8 (2010)

23. Mehdi, M., Charr, J.C., Melab, N., Talbi, E.G., Bouvry, P.: A cooperative tree-
based hybrid GA-B&B approach for solving challenging permutation-based prob-
lems. In: Proceedings of GECCO 2011, pp. 513–520. Association for Computing
Machinery, New York (2011)

24. Mezmaz, M., Mehdi, M., Bouvry, P., Melab, N., Talbi, E.G., Tuyttens, D.: Solv-
ing the three dimensional quadratic assignment problem on a computational grid.
Cluster Comput. 17, 205–217 (2014)

25. Mittelmann, H.D., Salvagnin, D.: On solving a hard quadratic 3-dimensional
assignment problem. Math. Program. Comput. 7(2), 219–234 (2015). https://doi.
org/10.1007/s12532-015-0077-3

26. Pierskalla, W.P.: The multidimensional assignment problem. Oper. Res. 16(2),
422–431 (1968)

27. Stützle, T., López-Ibáñez, M.: Automatic (offline) configuration of algorithms. In:
GECCO (Companion), pp. 681–702. ACM Press, New York (2015)

28. Stützle, T., López-Ibáñez, M.: Automated design of metaheuristic algorithms. In:
Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272,
pp. 541–579. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-
4_17

29. Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J.
Oper. Res. 174(3), 1519–1539 (2006)

30. Taillard, E.D.: Fant: Fast ant system. Technical report, Istituto Dalle Molle Di
Studi Sull Intelligenza Artificiale (1998)

31. Wu, W., Mittelmann, H., Ding, Z.: Modulation design for mimo-comp harq. IEEE
Commun. Lett. 21(2), 290–293 (2017)

https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-15381-5_42
https://doi.org/10.1007/978-3-642-15381-5_42
https://doi.org/10.1007/s12532-015-0077-3
https://doi.org/10.1007/s12532-015-0077-3
https://doi.org/10.1007/978-3-319-91086-4_17
https://doi.org/10.1007/978-3-319-91086-4_17

Hyper-parameter Optimization Using
Continuation Algorithms

Jairo Rojas-Delgado1(B) , J. A. Jiménez2 , Rafael Bello3 ,
and J. A. Lozano1,4

1 Basque Center for Applied Mathematics, Bilbao, Spain
{jrojasdelgado,jlozano}@bcamath.org

2 Universidad de las Ciencias Informáticas, Havana, Cuba
ja.jimenez@uci.cu

3 Universidad Central de Las Villas, Santa Clara, Cuba
rbellop@uclv.edu.cu

4 Intelligent Systems Group, University of the Basque Country
UPV/EHU, Donostia, Spain

ja.lozano@ehu.eus

Abstract. Hyper-parameter optimization is a common task in many
application areas and a challenging optimization problem. In this paper,
we introduce an approach to search for hyper-parameters based on con-
tinuation algorithms that can be coupled with existing hyper-parameter
optimization methods. Our continuation approach can be seen as a
heuristic to obtain lower fidelity surrogates of the fitness function. In our
experiments, we conduct hyper-parameter optimization of neural net-
works trained using a benchmark set of forecasting regression problems,
where generalization from unseen data is required. Our results show a
small but statistically significant improvement in accuracy with respect
to the state-of-the-art without negatively affecting the execution time.

Keywords: Hyper-parameter · Optimization · Continuation ·
Machine learning

1 Introduction

Hyper-parameters appear in many application areas such as scientific simulation
studies, material design, drug discovery and especially in machine learning appli-
cations. Hyper-parameters affect the execution time, memory consumption and,
even more importantly, the ability to generalize from unseen data [7]. A hyper-
parameter can be of categorical, discrete or continuous nature and influences the
performance of a given algorithm.

Hyper-parameters can represent many concepts and behaviours. For exam-
ple, when considering the k nearest neighbourhood algorithm, the value of the
nearest points k can be considered a discrete hyper-parameter. Similarly, the
number of centroids of the k-means algorithm, the maximum depth of a deci-
sion tree and the number of layers of a multi-layer neural network are examples
of discrete hyper-parameters. Hyper-parameters can be of categorical nature,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 365–377, 2023.
https://doi.org/10.1007/978-3-031-26504-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_26&domain=pdf
http://orcid.org/0000-0003-1017-703X
http://orcid.org/0000-0001-9586-5354
http://orcid.org/0000-0001-5567-2638
http://orcid.org/0000-0002-4683-8111
https://doi.org/10.1007/978-3-031-26504-4_26

366 J. Rojas-Delgado et al.

for example: when we select one among several types of activation functions or
training algorithms for a neural network, or the type of kernel for a support
vector machine. In addition, there are also many examples of continuous hyper-
parameters such as the learning rate of Stochastic Gradient Descent (SGD).
Further references to these algorithms and their hyper-parameters can be found
in any of the available textbooks [2,7,13].

There are two main approaches to hyper-parameter optimization: manual and
automatic methods. The manual approach assumes that there is an understand-
ing of how the hyper-parameters affect the algorithm, hence, by selecting such
hyper-parameters directly1, no optimization is conducted. On the other hand,
the automatic approaches use an optimization method to find hyper-parameters.
The use of automatic hyper-parameter optimization greatly reduces the need for
this understanding, but its use comes at the expense of costlier computation.

In the last few years there has been an increase in the efforts to address
automatic hyper-parameter optimization [4,11,14,18,20]. In the literature, sev-
eral important algorithms have been introduced for this task, mostly based on
Gaussian Processes and Bayesian Optimization, for example, Sequential Model-
based Algorithm Configuration (SMAC) [8] and Tree Parzen Estimators (TPE)
[4].

In the optimization field, the term continuation method refers to the general
approach of starting to solve a surrogate of the true fitness function and trans-
forming it progressively during the course of iterations to the true fitness function
[19]. The way the surrogate fitness function is transformed to the true fitness
function is usually done via homotopy [1]. Informally, two continuous functions
are called homotopic if one can be continuously deformed into the other.

We introduce a simple approach to perform automatic hyper-parameter opti-
mization based on continuation algorithms. We assume that the fitness of a
hyper-parameter can be calculated using an iterative approach. The main con-
tribution of our work is that we show that, using a simple increase of the budget
for hyper-parameter optimization and not a given fixed budget, the accuracy of
optimization can be improved without affecting the execution time. Our contin-
uation approach can be seen as a heuristic to obtain lower fidelity surrogates
of the fitness function. Further experimental work suggests that our approach
outperforms similar state-of-the-art hyper-parameter optimization algorithms.
In addition, we link our approach and other similar algorithms to continuation
methods, which could become an area of future theoretical analysis.

The organization of this paper is as follows. Section 2 examines related work,
Sect. 3 presents continuation algorithms and Sect. 4 describes our approach to
perform hyper-parameter optimization via continuation. In Sect. 5 we provide
details on the hyper-parameter optimization problem of neural networks. We
present the results of comparing our continuation approach for hyper-parameter
optimization with several state-of-the-art hyper-parameter optimization algo-
rithms. Finally, some conclusions and recommendations are given.

1 For example, based on the researcher experience or based on some heuristics collected
from results of previous works.

Hyper-parameter Optimization Using Continuation Algorithms 367

2 Related Work

Continuation is a general approach for building several lower fidelity surrogates
of the fitness function of an optimization problem. The key ideas of continuation
can be summarized in two points: first the surrogates range from lower fidelity to
higher fidelity during the course of the optimization process and secondly, infor-
mation from the exploration/exploitation process of the lower fidelity surrogates
is used to enhance the search when the higher fidelity surrogates are used. In
the next section, we provide a more formal definition of continuation.

Using surrogates for optimization can be traced back to Tovey [21] in which
the author introduces an approach called surrogate function swindle. Surrogates
have evolved to consider statistical models that learn the fitness function during
optimization in a form of a general meta-model for the surrogate-based opti-
mization framework [17]. Meta-model surrogates are similar to continuation as
their accuracy increases during the course of iterations, therefore, the surrogates
increase their fidelity during optimization. In the area of hyper-parameter opti-
mization, the use of surrogates have inspired the development of methods such
as the Sequential Model-Based Optimization (SMBO), Tree Parzen Estimators
(TPE) introduced by Bergstra et al. [5] and Sequential Model-Based Optimiza-
tion for General Algorithm Configuration (SMAC) [8].

The adaptive resource allocation framework is another line of work related
to building surrogates. The general idea is to allocate an increasing amount
of resources to hyper-parameter values that are promising and prune under-
performing hyper-parameter values. Resources can be iterations, examples of the
learning data set or the execution time. Two recent examples of such algorithms
are the Successive Halving (SH) algorithm [10] and its successor the Hyperband
(HB) algorithm [15]. However, the information from the previous evaluations of
the surrogates is not used to explore the hyper-parameter search space. Instead,
hyper-parameters are all sampled from a random search in the first step and
then under-performing hyper-parameters are discarded using SH. More recently,
Falkner et al. [6] introduced an approach that hybridizes Bayesian Optimization
with HB algorithm (BOHB) using previous surrogate evaluations to guide the
search as devised by the original authors of HB.

Basically, the work by Falkner et al. [6] relies on HB to determine how many
configurations to evaluate with which budget, but, it replaces the random selec-
tion of configurations at the beginning of each HB iteration with a model-based
search. The relationship of the resource allocation methods with continuation
comes from the assumption that as more resources are allocated to promising
hyper-parameter sets, the fitness function converges to an optimum [10]. A sim-
ilar area of interest is multi-fidelity optimization. Wu et al. [22] suggest the
use of a machine learning model to learn which hyper-parameters evaluate with
which budget. Generally speaking, methods that can choose their fidelity are very
appealing and more powerful than the conceptually simpler resource allocation
methods previously discussed. However, given a small budget, it is reasonable to
raise concerns about the convergence of such multi-fidelity approaches, especially
when the model has a small number of fitness evaluations to learn [9].

368 J. Rojas-Delgado et al.

Our continuation based approach aims to use lower-to-higher fidelity surro-
gates similar to the work by Falkner et al. [6]. However, our proposal uses an
approach different to performing successive halving on a set of predefined hyper-
parameter values, whether or not they are sampled using a model. Our approach
can be combined with a model-search algorithm such as TPE. Moreover, we agree
on the hypothesis discussed by [9] that a simpler heuristic to achieve lower-to-
higher fidelity surrogate evaluations can make better use of fixed schedules than
using a model, such as in the multi-fidelity approach.

3 Hyper-parameter Optimization via Continuation

In supervised machine learning, we train models to fit data. Usually, when we say
data we are referring to a set of examples to learn from, that is E = {e1, ...,ep}
where ei = (x1, ..., xd, y1, ..., yt), x = (x1, ..., xd) ∈ X and y = (y1, ..., yt) ∈ Y .
Often, xi is referred as the input feature and yj is known as the output feature
or ground-truth. We denote X̂ = {x1, ...,xp} as the set that contains only the
input features of each example and Ŷ = {y1, ...,yp} as the set that contains only
the output features of each example. Here, we will not distinguish whether xi or
yj are continuous, discrete, ordinal, nominal or a combination.

Let f̂ : X ×Ω×W → Y be a model estimated from a set of examples E using
hyper-parameters ω = (ω1, ..., ωh) ∈ Ω and learning parameters w ∈ W . Again,
we will not distinguish whether ωi are continuous, discrete, ordinal, nominal or
a combination of the previous. Considering a loss function L(., .) that measures
the error between the ground-truth and the model estimation, we can formally
define the hyper-parameter optimization problem as follows:

ω = argmin
ω∈Ω

L(Ŷ , {f̂(x,ω, w(ω)) : x ∈ X̂}) (1)

where w : Ω → W is the result of minimizing the given loss considering a
specific set of hyper-parameters as defined in the following lines. Usually, hyper-
parameter optimization involves two nested cycles of optimization when search-
ing hyper-parameters in machine learning settings. This is because, in order to
calculate the loss function, first, we must perform an elementary-cycle of opti-
mization to find the model learning parameters w(ω). That is, with a given set
of hyper-parameters, solve:

w(ω) = argmin
w∈W

L(Ŷ , {f̂(x,ω,w) : x ∈ X̂}) (2)

In practice, we use two different identically distributed and independent sets
of examples to solve Eq. (1) and to solve Eq. (2). This is to reduce the bias
induced during hyper-parameter optimization. These are the so-called validation
set and training set respectively.

Hyper-parameter optimization is a class of challenging optimization prob-
lems, whose objective function tends to be non-smooth, discontinuous, unpre-
dictably varying in computational cost and includes continuous, nominal and/or

Hyper-parameter Optimization Using Continuation Algorithms 369

discrete variables [12]. We call parent-algorithm to the optimization algorithm
that deals with choosing the hyper-parameters related to the model estimation
by solving Eq. (1). Moreover, we refer to the optimization algorithm that solves
Eq. (2) as the base-algorithm.

Continuation, embedding or homotopy methods have long served as useful
tools in modern mathematics. For a complete and formal definition of contin-
uation, please refer to [1]. For the sake of our discussion, considering the func-
tion w : Ω → W , we call homotopy or continuation of w to the deformation
H : Ω × [0, 1] → W such that:

H(ω, 0) = g(ω),H(ω, 1) = w(ω) (3)

where ω ∈ Ω and g : Ω → W is a surrogate function of w(.) but less costly to
evaluate, ideally but not necessarily, smooth and convex. Actually, all H(ω, j)
with j ∈ [0, 1) are surrogates of w(.) with an increased degree of fidelity.

We do not consider the exact solution of Eq. (2), instead, we consider the
solution of such an optimization problem after being solved using an iterative
approach. Let w(ω, i) denote the solution of solving Eq. (2) for a number of
i iterations. The somehow vague term iteration may refer to the number of
iterations of SGD, a total wall-clock time or a total number of training examples.

We assume there is a maximum budget M for the number of iterations that
can be allocated to a single evaluation of a given set of hyper-parameters, usually
given by some practical limitation such as a maximum wall-clock time or a
maximum number of examples in a training set. Therefore, we set H(ω, i/M) =
w(ω, i) for 0 ≤ i ≤ M as our continuation transformation. The main assumption
of our work is that w(ω, i) is a consistent estimator of w(ω), that is: Pr[||w(ω, i)−
w(ω)|| > ε] → 0 when i → ∞, which is referred to as weak consistency [7].

4 Our Continuation Approach for Hyper-parameter
Optimization

Our proposal for hyper-parameter optimization uses w(ω, i) as a surrogate of
the fitness function in Eq. (2). Considering the practical limitations, practition-
ers usually have a limited number of iterations M used to evaluate each hyper-
parameter set. Therefore, even without using explicitly continuation, they do
not use the true fitness function, but, a surrogate determined by w(ω,M). Con-
sidering a sequence of t surrogates given by w(ω,m1), ..., w(ω,mt), we define a
continuation transformation by making m1 < ... < mt = M on the basis of the
consistency assumption.

We denote the number of iterations of the parent-algorithm as n1, ..., nt such
that each surrogate w(ω,mi) is used for a number ni iterations of the parent
algorithm. The general idea is to accumulate the search experience of the surro-
gates at the beginning of the exploration of the hyper-parameter space and after
some iterations of the parent-algorithm become more aggressive using higher
fidelity surrogates. Figure 1 shows a graphical illustration of our continuation

370 J. Rojas-Delgado et al.

0 1 2 3 4

0

2

4

w(ω, M)
w(ω, m1)

ω

1. Perform n1 iterations of parent

0 1 2 3 4

0

2

4

w(ω, M)
w(ω, m2)

ω

2. Perform n2 iterations of parent

0 1 2 3 4

0

2

4

w(ω, M)
w(ω, m3)

ω

3. Perform n3 iterations of parent

Fig. 1. Representation of optimization by continuation over the course of iterations
of the parent-algorithm. Here, we use t = 3 surrogates and, for simplicity, only one
hyper-parameter.

approach applied to the hyper-parameter optimization problem with t = 3 sur-
rogates and a single hyper-parameter denoted as ω. In the horizontal axis, we
represent the hyper-parameter values and in the vertical axis, we represent the
loss value obtained after solving Eq. (2).

Considering Fig. 1, in the first n1 iterations of the parent-algorithm, we use
the surrogate w(ω,m1) which is correlated to w(ω,M) but is not exactly the
same. This allows the parent-algorithm to recognize promising regions of the
search space and focus on such regions in future iterations. This way, the parent-
algorithm uses the information gathered up to this point to continue the search in
the following n2 iterations. Notice that when using the last surrogate, m3 = M ,
however, in the continuation case w(ω,m3) it is only used for n3 iterations of
the parent-algorithm.

Algorithm 1 describes our continuation approach to hyper-parameter opti-
mization. The input of our algorithm is a total budget B, the maximum number
of iterations of the base-algorithm given by M and a number of surrogates t.
The total budget B is the number of base-algorithm iterations used during the
entire hyper-parameter optimization process and M is the maximum number
of iterations of the base-algorithm that can be allocated to a single surrogate
evaluation. Our algorithm takes this maximum budget and sets the number of
iterations assigned to each surrogate (mi) and the number of iterations of the
parent-algorithm used for each surrogate (ni) as follows:

– Each surrogate is associated with a predefined number of base-algorithm iter-
ations, such as, while using the i-th surrogate, the base-algorithm runs with
a budget of mi = �M · i/t� optimization steps. As mi ≤ M , the i-th surro-
gate does not use the maximum budget, obtaining a surplus of qi = M − mi

iterations each time the parent algorithm uses such surrogate to evaluate a
hyper-parameter set. The surplus can be used to perform an additional num-
ber of iterations of the parent-algorithm.

– In our algorithm, we use the surplus of the i-th surrogate to perform addi-
tional parent-algorithm iterations of the (t − i)-th surrogate. This way, the

Hyper-parameter Optimization Using Continuation Algorithms 371

Algorithm 1: Continuation hyper-parameter optimization.
input : Total budget: B.
input : Maximum number of base-algorithm iterations per surrogate: M .
input : Number of surrogates: t
output: Best set of hyper-parameters.

1 Initialize: L := [] ; // List of hyper-parameters

2 for i := 1 to t do
3 Set: mi := �M · i/t�;
4 Set: ni using Equation(4);

5 for j := 1 to ni do
6 H:= EvaluateNext(L, mi);
7 L := L ∪ H;

8 end

9 end

10 return GetBest(L);

maximum surplus gets assigned to additional parent-algorithm iterations of
the surrogate with the largest base-algorithm budget, the second maximum
surplus gets assigned to additional parent-algorithm iterations of the surro-
gate with the second largest base-algorithm budget and so on. Therefore, the
number of iterations of the parent-algorithm when using the i-th surrogate is
given by the following expression:

ni =

⎧
⎨

⎩

�n�, if i < t − i
�n + nqi/mi�, if i = t − i
�n + nqi/mi + nqt−i/mi�, otherwise

(4)

where n = B/tM is an initial predefined number of parent-algorithm itera-
tions. In total, our algorithm distributes approximately B optimization steps
of the base-algorithm consuming the specified total budget.

In line 1 of Algorithm 1, we initialize the list of hyper-parameters found so
far as an empty list. We set the number of iterations for the base-algorithm and
for the parent-algorithm in line 3–4. In lines 5–7, the parent-algorithm performs
ni iterations and this is where the actual hyper-parameter space exploration
occurs. In our case, we consider that the parent-algorithm observes a previous
history of hyper-parameter evaluations L and generates a new hyper-parameter
set evaluated using a budget of mi iterations. The previous behaviour is encoded
in the procedure EvaluateNext(., .) in line 6. This is similar to Bayesian
Optimization methods widely used for hyper-parameter optimization, and in our
work, we use the TPE algorithm to perform this step. The best hyper-parameter
set is returned in line 10 using the procedure GetBest(.) which simply returns
the hyper-parameter set in L with the lowest loss value.

372 J. Rojas-Delgado et al.

5 Results and Discussion

In this section, we present the empirical results of comparing our continua-
tion hyper-parameter optimization approach with state-of-the-art methods in
the literature. First, we present a benchmark of similar methods and describe
additional experimental settings used in this work. Latter, we present a com-
parison of the accuracy of the different studied approaches and compare the
meta-parameters of our continuation approach, i.e., the number of surrogates
compared to the successive halving meta-parameter of HB and BOHB.

Similar Methods. In our study, we compare several hyper-parameter optimiza-
tion approaches. We consider the following algorithms:

– TPE: Tree Parzen Estimators algorithm [4].
– HB: Hyperband algorithm with random search [15].
– BOHB: HB with Bayesian Optimization [6].
– CTPE: TPE algorithm where the evaluation budget is given by our continu-

ation approach. This is the approach introduced in this work.

Code and Data Sets. The source code and data used in the experimental study
is available at https://github.com/ml-opt/continuation-hpo. Furthermore, we
use a benchmark set of forecasting regression problems from the UCI Machine
Learning Repository [16]. We include a detailed specification of the transfor-
mations performed to such data sets in the publicly available code repository.
Table 1 presents a list of the data sets considered in this work.

Table 1. List of benchmark forecasting regression problems used in the optimization
of neural networks hyper-parameters.

Type Examples Features

Facebook Metrics (FM) Regression 495 17

Forest Fires (FF) Regression 517 10

Aquatic Toxicity (AT) Regression 545 8

Fish Toxicity (FT) Regression 907 6

Airfoil Noise (AN) Regression 1502 5

Concrete Strength (CS) Regression 1029 8

Hyper-parameter Settings. Through our experiments, we use a fixed artifi-
cial neural network architecture consisting of a two-layer perceptron and ReLU
activation function. Furthermore, we use a fixed maximum budget of M = 100
epochs of SGD per artificial neural network. This is a maximum budget but either
our continuation approach CTPE, HB or BOHB can allocate smaller budgets
during optimization.

Hyper-parameters such as the SGD learning-rate (Lr) and momentum (M),
the size of the mini-batches (Sb) and the number of neurons in each layer of

https://github.com/ml-opt/continuation-hpo

Hyper-parameter Optimization Using Continuation Algorithms 373

Table 2. Detailed description of artificial neural network hyper-parameters optimized
by the different algorithms.

Type Min Max Description

Lr Real 0.001 0.1 SGD learning rate

M Real 0.8 0.999 SGD momentum

Sb Int 40 200 Number of examples in each mini-batch

H1 Int 1 40 Number of neurons in the first hidden layer

H2 Int 1 40 Number of neurons in the second hidden layer

the two-layer perceptron (H1, H2) are fine-tuned using the automatic hyper-
parameter optimization approaches studied in this work. Table 2 shows a detailed
specification of such hyper-parameters.

Additional Settings. To ensure a fair comparison, we allocate an equal total
budget to the different methods, i.e., B = 10000 epochs. For example, given that
we set a maximum budget for each surrogate of M = 100 epochs, we perform
100 iterations of the TPE algorithm accounting for a total budget of B = 10000
epochs. Similarly, we set an initial predefined number of iterations n = 100
of CTPE with a maximum budget per surrogate of M = 100 epochs, which
ensures a distribution of a total budget of B = 10000 epochs. Moreover, for HB
and BOHB we perform 100/(�logη(M)�+1) iterations, where η is the successive
halving hyper-parameter, accounting for the specified total budget.

Statistical Validation. In our experiments, we split the examples into three
disjoint subsets for training (60%), validation (20%) and test (20%). For each
hyperparameter optimization method, we repeat the experiments ten times in
order to perform meaningful statistical comparisons. We further conduct sta-
tistical pairwise comparisons of our continuation approach for hyper-parameter
optimization using a Bayesian hierarchical correlated t-test [3].

5.1 Accuracy Analysis

We study the performance of the different hyperparameter optimization meth-
ods. The split parameter of HB and BOHB and the number of surrogates of the
CTPE algorithm are chosen after conducting a grid search. The next section pro-
vides further details and a careful empirical analysis of such meta-parameters.
Table 3 shows the mean squared error of the neural networks using unseen exam-
ples during training. In the first column, we show the name of the forecasting
problem. We report the mean of ten measurements truncated to two decimal
places while highlighting in bold the lowest value found.

We further conduct statistical pairwise comparisons between the different
hyper-parameter optimization methods using a Bayesian hierarchical correlated
t-test. Figure 2 plots 50 thousand Monte Carlo samples of the probabilities of
one method fitness value being larger than the other in barycentric coordinates.

374 J. Rojas-Delgado et al.

Table 3. Mean Squared Error of hyper-parameter optimization algorithms while con-
figuring neural networks hyper-parameters in a benchmark set of regression problems.

TPE HB BOHB CTPE

FM 2.50E–03 1.16E–03 8.62E–04 1.69E–03

FF 5.28E–02 4.66E–02 4.65E–02 4.27E–02

AT 2.48E–02 1.88E–02 1.88E–02 1.63E–02

FT 1.22E–02 1.16E–02 1.10E–02 1.01E–02

AN 1.51E–02 1.53E–02 1.33E–02 1.19E–02

CS 1.50E–02 1.74E–02 1.47E–02 1.51E–02

The three vertices are denoted as M1, R, M2 and represent the probability of
method M1 finding worse solutions than method M2, practical equivalence and
vice-versa respectively. Here, Pr[R] is the probability of |M1 − M2| < 1.0E-03
which stands for practical equivalence.

Fig. 2. Pairwise comparisons between hyper-parameter optimization methods config-
uring neural networks hyper-parameters in a benchmark set of forecasting problems.

In this scenario, the probability of the method CTPE being worse than any
other method is small according to our statistical validation framework. Here, it
is important to consider that we define practical equivalence when the difference
between the two methods is smaller than 1.0E-03, which may be different for
other application domains. Nevertheless, the results show that our continuation
approach for hyper-parameter optimization does not introduce overfitting in the
hyper-parameter optimization process and is able to find hyper-parameters that
lead to better generalization.

In addition, HB and BOHB methods require the optimization of the base-
algorithm to be paused when performing successive halving. After successive
halving, HB and BOHB resume the optimization of the base-algorithm. This
step introduces a difficulty for applications with numerous parameters, such as
complex simulations or training large neural networks, that need to save and
restore their current state. Conversely, our approach delivers improved accuracy
without having to save and restore the base-optimization state.

Hyper-parameter Optimization Using Continuation Algorithms 375

5.2 Additional Meta-parameters

We qualitatively analyze the difficulty of configuring the additional meta-
parameters of our continuation approach and HB. Our continuation approach
requires specifying the number of surrogates (t) used to assign different bud-
gets during optimization. Conversely, HB requires specifying the split parameter
(η) used during successive halving. Such discrete meta-parameters affect the
accuracy and/or the execution time of the algorithms and in practice require
allocating further training budget in order to find their values.

Figure 3 shows the accuracy of our continuation approach (in blue violin
plots) and HB (in yellow violin plots) using different values of t and η (in the
horizontal axis). The plot shows the mean squared error of ten trials.

1 2 3 4

0.002

0.004

0.006

Facebook metrics

1 2 3 4
0.04

0.06

0.08

0.10

Forest fires

1 2 3 4

0.015

0.020

0.025

0.030

0.035

Aquatic toxicity

1 2 3 4

0.010

0.015

0.020

0.025

Fish toxicity

1 2 3 4

0.010

0.015

0.020

0.025

0.030

Airfoil noise

1 2 3 4
0.01

0.02

0.03

0.04

0.05

0.06
Concrete strength

Fig. 3. Comparison between our continuation approach for hyper-parameter optimiza-
tion (in blue) and HB (in yellow). The horizontal axis represents different values for
t and η. The vertical axis represents the Mean Squared Error using unseen examples.
(Color figure online)

Considering Fig. 3, the selection of the values of t and η is closely related to
the forecasting regression problem at hand. With the exception of the problem
Facebook metrics, in general, the selection of the hyper-parameter η in the case
of HB is more sensitive than the selection of t used by our continuation app-
roach. This can be seen in the higher variance and higher errors obtained when
considering different values of η if compared with the different values of t. This
suggests that, in the scenario of selecting an arbitrary default value for t or η,
chances are that our continuation approach will outperform the accuracy of HB.
A similar comparison can be conducted between CTPE and BOHB. However,
BOHB has even more meta-parameters than HB, making the comparison more
challenging. In our work, we used the default meta-parameters of BOHB2.
2 Available at: https://automl.github.io/HpBandSter.

https://automl.github.io/HpBandSter

376 J. Rojas-Delgado et al.

6 Conclusions

In this paper, we presented a continuation approach for hyper-parameter opti-
mization that can be coupled with existing algorithms designed for this task.
We observe an improvement in the accuracy compared with regular Bayesian
algorithms such as TPE and similar resources allocation methods, such as HB
and BOHB, without affecting the execution time. We expect that continuation
algorithms can become a suitable theoretical framework to explain why many
of the newly introduced hyper-parameter optimization methods based on trans-
formations of the fitness function or transformation of the search operator are
expected to work properly.

Acknowledgements. This research has been partially supported by the Spanish Min-
istry of Sciences, Innovation and Universities through BCAM Severo Ochoa accredita-
tion SEV-2017–0718; by the Basque Government through the program BERC 2022–
2025; and by Elkartek Project KK.2021/00091.

References

1. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction, vol.
13. Springer, Cham (2012)

2. Alpaydin, E.: Introduction to Machine Learning. MIT press, Cambridge (2020)
3. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial

for comparing multiple classifiers through Bayesian analysis. J. Mach. Learn. Res.
18(77), 1–36 (2017). http://jmlr.org/papers/v18/16-305.html

4. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperpa-
rameter optimization in hundreds of dimensions for vision architectures. In: Das-
gupta, S., McAllester, D. (eds.) Proceedings of the 30th International Confer-
ence on Machine Learning. Proceedings of Machine Learning Research, vol. 28,
pp. 115–123. PMLR, Atlanta, Georgia (2013). http://proceedings.mlr.press/v28/
bergstra13.html

5. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Wein-
berger, K.Q. (eds.) Advances in Neural Information Processing Systems 24,
pp. 2546–2554. Curran Associates, Inc. (2011). http://papers.nips.cc/paper/4443-
algorithms-for-hyper-parameter-optimization.pdf

6. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter opti-
mization at scale. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International
Conference on Machine Learning. Proceedings of Machine Learning Research, vol.
80, pp. 1437–1446. PMLR, Stockholmsmässan, Stockholm Sweden (2018). http://
proceedings.mlr.press/v80/falkner18a.html

7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge
(2016)

8. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. LION 5, 507–523 (2011)

9. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning. Springer
(2019). https://doi.org/10.1007/978-3-030-05318-5

http://jmlr.org/papers/v18/16-305.html
http://proceedings.mlr.press/v28/bergstra13.html
http://proceedings.mlr.press/v28/bergstra13.html
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
https://doi.org/10.1007/978-3-030-05318-5

Hyper-parameter Optimization Using Continuation Algorithms 377

10. Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and hyperpa-
rameter optimization. In: Gretton, A., Robert, C.C. (eds.) Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics. Proceedings of
Machine Learning Research, 09–11 May 2016, vol. 51, pp. 240–248. PMLR, Spain
(2016). http://proceedings.mlr.press/v51/jamieson16.html

11. Klein, A., Falkner, S., Springenberg, J.T., Hutter, F.: Learning curve prediction
with Bayesian neural networks. In: International Conference On Learning Rep-
resentation (ICLR), vol. 51, pp. 240–248 (2017). https://openreview.net/forum?
id=S11KBYclx¬eId=r15rc0-Eg

12. Koch, P., Golovidov, O., Gardner, S., Wujek, B., Griffin, J., Xu, Y.: Autotune:
a derivative-free optimization framework for hyperparameter tuning. In: Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, KDD 18, Association for Computing Machinery, New York,
pp. 443–452 (2018). https://doi.org/10.1145/3219819.3219837, https://doi.org/10.
1145/3219819.3219837

13. Kubat, M.: An introduction to machine learning. Springer (2017). https://doi.org/
10.1007/978-3-319-63913-0

14. Law, H.C., Zhao, P., Chan, L.S., Huang, J., Sejdinovic, D.: Hyperparameter learn-
ing via distributional transfer. In: Wallach, H., Larochelle, H., Beygelzimer, A., d
Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems 32, pp. 6804–6815. Curran Associates, Inc. (2019). http://papers.
nips.cc/paper/8905-hyperparameter-learning-via-distributional-transfer.pdf

15. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn.
Res. 18(1), 6765–6816 (2017)

16. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

17. Lukšič, Ž, Tanevski, J., Džeroski, S., Todorovski, L.: General meta-model frame-
work for surrogate-based numerical optimization. In: Yamamoto, A., Kida, T., Uno,
T., Kuboyama, T. (eds.) DS 2017. LNCS (LNAI), vol. 10558, pp. 51–66. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67786-6 4

18. Maclaurin, D., Duvenaud, D., Adams, R.P.: Gradient-based hyperparameter
optimization through reversible learning. In: Proceedings of the 32Nd Inter-
national Conference on International Conference on Machine Learning, ICML
2015, JMLR.org, vol. 37, pp. 2113–2122 (2015). http://dl.acm.org/citation.cfm?
id=3045118.3045343

19. Mobahi, H., Fisher, J.W.: A theoretical analysis of optimization by gaussian con-
tinuation. In: AAAI, pp. 1205–1211 (2015)

20. Probst, P., Boulesteix, A.L., Bischl, B.: Tunability: importance of hyperparameters
of machine learning algorithms. J. Mach. Learn. Res. 20(53), 1–32 (2019). http://
jmlr.org/papers/v20/18-444.html

21. Tovey, C.A.: Simulated simulated annealing. Am. J. Math. Manag. Sci. 8(3–4),
389–407 (1988). https://doi.org/10.1080/01966324.1988.10737246

22. Wu, J., Toscano-Palmerin, S., Frazier, P.I., Wilson, A.G.: Practical multi-fidelity
Bayesian optimization for hyperparameter tuning. In: Adams, R.P., Gogate, V.
(eds.) Proceedings of The 35th Uncertainty in Artificial Intelligence Conference.
Proceedings of Machine Learning Research, vol. 115, pp. 788–798. PMLR (2020).
http://proceedings.mlr.press/v115/wu20a.html

http://proceedings.mlr.press/v51/jamieson16.html
https://openreview.net/forum?id=S11KBYclx¬eId=r15rc0-Eg
https://openreview.net/forum?id=S11KBYclx¬eId=r15rc0-Eg
https://doi.org/10.1145/3219819.3219837
https://doi.org/10.1145/3219819.3219837
https://doi.org/10.1145/3219819.3219837
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1007/978-3-319-63913-0
http://papers.nips.cc/paper/8905-hyperparameter-learning-via-distributional-transfer.pdf
http://papers.nips.cc/paper/8905-hyperparameter-learning-via-distributional-transfer.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-319-67786-6_4
http://dl.acm.org/citation.cfm?id=3045118.3045343
http://dl.acm.org/citation.cfm?id=3045118.3045343
http://jmlr.org/papers/v20/18-444.html
http://jmlr.org/papers/v20/18-444.html
https://doi.org/10.1080/01966324.1988.10737246
http://proceedings.mlr.press/v115/wu20a.html

Selecting the Parameters
of an Evolutionary Algorithm

for the Generation of Phenotypically
Accurate Fractal Patterns

Habiba Akter1(B) , Rupert Young1 , Phil Birch1 , Chris Chatwin1 ,
and John Woodward2

1 Department of Engineering and Design, School of Engineering and Informatics,
University of Sussex, Brighton, UK

{h.akter,r.c.d.young,p.m.birch,c.r.chatwin}@sussex.ac.uk
2 School of Electronic Engineering and Computer Science,

Queen Mary University of London, London, UK
j.woodward@qmul.ac.uk

Abstract. This paper describes the selection of parameters of an Evolu-
tionary Algorithm (EA) suitable for optimising the genotype of a fractal
model of phenotypically realistic structures. To achieve the proposed
goal an EA is implemented as a metaheuristic search tool to find the
coefficients of the transformation matrices of an Iterated Function Sys-
tem (IFS) which then generates regular fractal patterns. Fractal patterns
occur throughout nature, a striking example being the fern patterns mod-
elled by Barnsley. Thus the algorithm is evaluated using the IFS for the
fern fractal using the EA-evolved parameters.

Keywords: Metaheuristic search algorithm · Evolutionary algorithm ·
Fractal structure · Iterated function system · Optimisation

1 Introduction

Classic geometry is not adequate to explain the more complex patterns often
observed in nature [14]. Some good examples of these are the roughness of
a coastline, the leaf structures of ferns and maple leaves, the silhouette of a
tree in winter, and the branching of mammalian lungs. Benôıt Mandelbrot first
introduced the idea of a “fractal” to categorise complex chaotic patterns [7,24].
Mainly, fractals can be of two types [4]: (i) geometric or regular fractals (self-
similar objects i.e., if the object is zoomed in, it will still look similar to the
original shape) and (ii) non-geometric or irregular (unlike the geometric frac-
tals, they do not have the self-similarity property).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 378–390, 2023.
https://doi.org/10.1007/978-3-031-26504-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_27&domain=pdf
http://orcid.org/0000-0002-6873-7549
http://orcid.org/0000-0002-1669-2393
http://orcid.org/0000-0002-7740-9379
http://orcid.org/0000-0001-9371-8502
http://orcid.org/0000-0002-2093-8990
https://doi.org/10.1007/978-3-031-26504-4_27

Parameters Selection for a Biologically Accurate EA 379

The continued improvement of computers has facilitated the ability of the
researchers, who are interested in studying fractals to compute the structures and
plot them as images [6,25]. One of the initial examples of a computer-generated
fractal is the Mandelbrot’s set [23]. Later, the generation of complex pheno-
typic structures, common in biological organisms, particularly plants, has been
explored in the pioneering work of Barnsley [1–3]. He has shown how Iterated
Functions Systems (IFS) can generate computer images that have remarkable
likeness with biological phenotypes. In the IFS, for each fractal structure, a lim-
ited number of parameters control the final output image which could be deter-
mined by conducting a thorough analysis of the images. In this paper the use of
an EA as a metaheuristic search algorithm is explained to effectively determine
the near-optimal parameters.

Evolutionary computation has a wide range of applications as a metaheuris-
tic search technique in different fields. In the area of engineering, researchers
have the liberty to select the values for the EA parameters to drive the search
successfully. In the task of generating a phenotype that mimics biological organ-
isms, the parameters need to be selected carefully. The parameters of an EA
are selected that can efficiently find an optimal solution in the search space con-
taining the parameters to generate a complex phenotype observed in the real
world.

1.1 Overview of the Paper

Section 2 specifies the optimisation problem to generate the selected fractal of
the Barnsley Fern taken as a example for the paper. It also includes a brief
description of the parameters of the GA that need to be selected.

Section 3 evaluates the algorithm. For different sets of GA-parameters, the
algorithm evolves the coefficients of the IFS to generate Barnsley Fern.

Section 4 concludes the paper and states the future scope.

2 Problem Specification

2.1 Selected Fractal: The Barnsley Fern

As mentioned in Sect. 1, the computer-generated image of the fractal structure
of the Barnsley fern is the target phenotype. The generation of a fern structure
using an IFS was first described by Barnsley [3]. This fractal mimics the structure
of a natural Black Spleenwort fern which demonstrates a self-similar fractal.
Depending on the target image, an IFS needs tens of thousands of iterations
[2,5].

The IFS for the Barnsley fern is stochastic as it has four transformation func-
tions each of which is selected with a certain probability. Equation 1 represents
four affine transformations f1 to f4 of an IFS generating any self-similar fractal:

380 H. Akter et al.

[
xn+1

yn+1

]
=

[
a b
c d

] [
xn

yn

]
+

[
k
l

]
(1)

These four functions are responsible for generating different parts of the fern.
Each of them yields a new attractor and is selected with a certain probability,
p. a through d, k and l are the coefficients. The values of a to d control the
generation of the final patterns. xi and yj are the locations of the points plotted
in the image of the target fractal.

60000 iterations of an IFS using Eqs. 2, 3, 4 and 5 generate the fern shown
in Fig. 1 [3,5]. Table 1 includes the probability of selecting each of the transfor-
mation functions and the portion it generates.

xn+1 = 0
yn+1 = 0.16yn

(2)

xn+1 = 0.85 × xn + 0.04 × yn

yn+1 = −0.04 × xn + 0.85 × yn + 1.6
(3)

xn+1 = 0.2 × xn − 0.26 × yn

yn+1 = 0.23 × xn + 0.22 × yn + 1.6
(4)

xn+1 = −0.15 × xn + 0.28 × yn

yn+1 = 0.26 × xn + 0.24 × yn + 0.44
(5)

Fig. 1. A fern generated from IFS with parameter values given by Barnsley

Table 1. Probability of selecting each transformation function to generate the image
of fern shown in Fig. 1

Equations Functions Probability Portion generated

Eqn. 2 f1 p1 = 1% Stem

Eqn. 3 f2 p2 = 85% Smaller leaflet

Eqn. 4 f3 p3 = 7% Largest left-hand leaflet

Eqn. 5 f4 p4 = 7% Largest right-hand leaflet

Parameters Selection for a Biologically Accurate EA 381

The coefficients of Eqs. 2 to 5 above generate the attractors which control the
fractal. An attractor is a set of numerical values the IFS evolves towards. Instead
of using the pre-selected values, this is the point at which EA is implemented.
After thorough research, a Genetic Algorithm (GA) is used to evolve the values
automatically to successfully generate the phenotype of a Barnsley fern. It is one
of the oldest and most frequently used EAs [20,28].

The GA searches and evolves 3 different sets of the coefficient values of the
matrices a to d for f2, f3 and f4. f1 simply represents the fern stem [2].

2.2 GA Parameters

– Initialisation: An initial population set, P is randomly generated after eval-
uating with different sizes, N and paying attention so that it does not cost
too much memory and time [16,17,22]. Each chromosome in P is a set of 12
variables, w0 to w11. The first four, w0 to w3 are used as the coefficients of
the 2nd transformation, w4 to w7 for the 3rd affine transformation and w8 to
w11 for the 4th affine transformation.
The upper range and lower range of wn, denoted with wmax and wmin, also
need to be selected carefully which is shown later in the results of Sect. 3.

– Evaluation: To evaluate each set of the weight matrix (a to d), fractal dimen-
sion is proposed as the fitness function. Fractal dimension is one of the main
concepts for studying fractals as it provides information related to the com-
plexity of the structures [11–13,19]. Amongst the different types of fractal
dimensions, the box-counting dimension (BCD) or grid method has been
selected to be used as the fitness function for the evaluation of the popu-
lation.
As explained earlier, the set of values of x and y are the points to be plotted
for generating a fractal image. The graph containing the x and y points is
divided into a number of foursquare boxes of a pre-selected size. Assuming
n as the number of boxes covering the points in the graph and ε as the size
or side length of boxes, Eq. 6 calculates the dimension D, which equates to
fitness, F :

F = lim
ε→0

log n

log 1
ε

(6)

If n versus ε is plotted, a straight line with least square method is obtained
and the absolute value of the slope is the final value of BCD i.e., the fitness
value, optimised in the GA. To calculate the BCD of any particular set of
parameters, different values of ε, are used within a scale of εmin and εmax.
A higher fractal dimension means a better and more complex fractal pattern
[13,26]. Hence, a higher value of F results in a fitter chromosome i.e., the GA
is solving a “maximisation” problem. It is important to note that the value
of the BCD depends on the size of the box.
It should be emphasised that the objective function is designed in a way
that it does not rely on the final output image to calculate the box-counting

382 H. Akter et al.

dimension. Rather, from the GA-output (i.e. the values of the coefficients w),
the locations of the points (x and y) are obtained which are then used in the
box-counting calculation.

– Mating Selection: The chromosomes of P are sorted in the descending order
of F and the size of the mating pool, Nmp is selected as 80% of the population
size, N i.e.,

Nmp =
80% × N

100
(7)

This high value is chosen to keep some of the low fitness-valued chromosomes
as well to ensure the diversity [9,21,27].

– Reproduction: At te stage of reproduction, the Single-point crossover is
implemented on the selected parents. Here the parameter values to be deter-
mined are crossover probability, ρc and crossover rate, rc.
Similarly, for mutation, the values of the parameters, mutation probability,
ρm and mutation rate, rc are to be selected. This is the most crucial part
requiring hundreds of trials to determine a near-optimal solution. However,
research shows that in biology, the crossover probability varies from 50% to
80% and the mutation probability is relatively low [8,15,18]. [10,29] suggest
that a higher probability of crossover and lower probability of mutation makes
the GA more efficient.

– Environmental Selection: Similar to the mating selection, at this stage,
Eq. 6 is used to select the coefficients based on their fractal dimension. Here,
the offspring are merged with the best chromosome from the current iteration.
It makes sure that the best set of genes is never lost.

– Terminating condition: The GA terminates when it reaches the maximum
number of iterations. After some test runs, it is set as 40 since after that the
fitness does not improve.

Table 2 summarises the parameters of the GA which need to be selected.

Table 2. Parameters for the algorithm to generate Fern

Parameters Notations

Population size N

Upper limit of the variables wmax

Lower limit of the variables wmin

Crossover probability ρc

Mutation probability ρm

Crossover rate rc

Mutation rate rm

Terminating condition imax

Parameters Selection for a Biologically Accurate EA 383

3 Results and Evaluation

This section includes the results of the algorithm using different set of param-
eters. For a clear overview, the parameters chosen for different scenarios are
shown in Table 3. Equation 6 is used to calculate the fitness value of the popula-
tion setting the scale of the boxes within the range εmin = −0.4 and εmax = 0.9.

Table 3. Parameter values for the algorithm to generate the Black Spleenwort fern

Parameters Set 1 Set 2 Set 3 Set 4 Set 5

N 80 80 80 80 80

F BCD BCD BCD BCD BCD

εmin −0.4 −0.4 −0.4 −0.4 −0.4

εmax 0.9 0.9 0.9 0.9 0.9

wmax 1 0.75 0.75 0.50 0.40

wmin −1 −0.75 −0.75 0.50 −0.40

ρc 60% 60% 50% 60% 60%

ρm 10% 10% 40% 10% 10%

rc 0.06 0.06 0.05 0.06 0.06

rm 0.002 0.002 0.02 0.002 0.002

imax 40 40 40 40 40

To begin with, an initial population of size 80 is randomly generated keeping
the variables within the range of wmin = −1 to wmax = 1. For a crossover
probability of 60% and a mutation probability of 20%, the fitter chromosomes
undergo the reproduction process, where the values after crossover and mutation
are also within the range stated. The algorithm is run for 40 iterations. Figure 2
shows the two images after the 10th and the 20th iterations.

Figure 3 shows the images generated using the GA-output after the iterations
30 and 40.

384 H. Akter et al.

Fig. 2. Computer images generated using Set 1 parameters in Table 3

Fig. 3. Computer images generated using Set 1 parameters in Table 3

The BCD for 2a, 2b, 3a and 3b are calculated as 0.875, 0.8934, 0.931 and
0.941 (using the method explained in Sect. 2.2). It is observed from Fig. 2 and 3
that the images do not resemble the Black Spleenwort Fern.

For the next test, the range of the variables is changed and replace with
wmin = −0.75 and wmax = 0.75, keeping the other parameters the same. Note
that, the scale of the box size, ε is the same for all tests to make a proper
comparison of the fitness values.

From the images generated, a slight improvement can be seen after the 30th

iteration (Fig. 4c) as compared to Fig. 3a. It is also clear that after the 40th

iteration, the fern shown in Fig. 4d starts taking on a more realistic shape. The
fitness value of this image is 1.235.
Since the range of w, wmin = −0.75 and wmax = 0.75 is giving better results
with a better BCD value, the next set of results are generated keeping them the
same. But the crossover probability is changed from 60% to 50% and mutation
probability is altered to 40%. The crossover and mutation rate, rc and rm are
set as 0.05 and 0.02 for this test.

Figure 5 includes the results for these values.

Parameters Selection for a Biologically Accurate EA 385

Fig. 4. Computer images generated using Set 2 parameters in Table 3

Fig. 5. Computer images generated using Set 3 parameters in Table 3

The fitness value of the image shown in Fig. 5d is 1.221. However, it is clear
from Fig. 5 and the fitness values that lowering the values of the parameters rhoc

and increasing rhom do not improve the results.

386 H. Akter et al.

Hence, for the next set of tests, the crossover probability and the mutation
probability are set as 60% and 20%. The range of the variables is also changed
and restricted from −0.50 to 0.50. Figure 6 shows the images generated using
the IFS-parameters obtained from 10th, 20th, 30th and 40th iteration of the GA.

Fig. 6. Computer images generated using Set 4 parameters in Table 3

Compared with Figs. 3b and 4d, the phenotype presented in Fig. 6d shows
better result. The box-counting dimension of this fern is also improved to 1.621.

At this point, it is clear that the range of the variables has a significant
effect on the final image. So for the next set of tests the initial population of
80 chromosomes is generated where each gene is restricted to upper and lower
limits within the range −0.40 to 0.40. Figure 7 shows the resulting images from
each 10th iteration.

The fitness measurement of the parameters generating the fern in Fig. 7d is
calculated as 1.755. After all the above tests and evaluations, it is evident that
a lower range for wmin and wmax helps the parameters evolve more efficiently.
Also the generated computer images are better for rhoc = 60% and rhom = 20%.
Hence, for the final run, the GA parameters are set as shown in Table 4.

Parameters Selection for a Biologically Accurate EA 387

Fig. 7. Computer images generated using Set 5 parameters in Table 3

Table 4. Final set of GA parameters

GA-Parameters Values

N 80

wmax 0.35

wmin −0.35

F 1.87

ρc 70%

ρm 20%

rc 0.06

rm 0.002

imax 40

Figure 8 shows the final phenotype generated by using the values which are
evolved after 40 iterations of the GA.

388 H. Akter et al.

Fig. 8. Barnsley fern generated with the parameters shown in Table 4

The fitness value, i.e. the box-counting dimension of the fern pattern shown
in Fig. 8, has a value of 1.86991, calculated using Eq. 6.

To obtain a Black Spleenwort fern of a good box-counting dimension, the
IFS needs to iterate for 60000 times even after using the hand-picked parameter
values. Using the same fitness function for the results above, the BCD of Fig. 1
is also calculated and it is 1.7381.

Table 5 summarises the box-counting dimension of the final outputs for GA-
tuned and hand-picked parameters.

Table 5. Box-counting dimensions of the fractals

Images BCD values

Figure 3b 0.941

Figure 4d 1.221

Figure 5d 1.235

Figure 6d 1.621

Figure 7d 1.755

Figure 8 1.869

Figure 1 1.7381

This is evidence that the evolved variable sets of GA can generate more
complex fractal patterns.

4 Conclusions and Future Work

This paper has demonstrated that a Genetic Algorithm (GA) can successfully
explore the search space to find a near-optimal set of parameters of an Iter-
ated Function System (IFS). Thus, the GA can be used to generate natural
fractal-based biological organisms. This work has used the Barnsley fern as the
target phenotype. The contribution of this work is in using a GA to select the
parameters of an IFS, rather than tuning these parameters by hand. Using the

Parameters Selection for a Biologically Accurate EA 389

box-counting dimension as a fitness measure it is concluded that the parameters
can successfully generate complex realistic fractals. Another contribution of this
work is the calculation of box-counting dimension from the set of the parameter
values generated and subsequently evolved by the GA. This is in contrast with
the traditional method in which the box counting takes the image directly as
input, making the GA faster and more accurate.

The algorithm is expected to work for other self-similar fractals. Future work
will involve searching parameters for other self-similar fractal structures observed
in nature, e.g. the Maple leaf and Romanesco Broccoli. A further investigation
will also be conducted to implement a GA suitable for generating irregular frac-
tals.

Acknowledgement. This work was funded by the Leverhulme Trust Research
Project Grant RPG- 2019-269 which the authors gratefully acknowledge.

References

1. Barnsley, M., Hutchinson, J.E., Stenflo, Ö.: V-variable fractals and superfractals.
arXiv: preprint math/0312314 (2003)

2. Barnsley, M.F.: Fractals Everywhere. Academic press, Boston (2014)
3. Barnsley, M.F., Demko, S.: Iterated function systems and the global construction

of fractals. Proc. Roy. Soc. London. A. Math. Phys. Sci. 399(1817), 243–275 (1985)
4. Bayırlı, M., Selvi, S., Çakılcıoğlu, U.: Determining different plant leaves’ fractal

dimensions: a new approach to taxonomical study of plants (2014)
5. Bourke, P.: Macintosh IFS manual. Retrieved from Paul Bourke: http://

paulbourke.net/fractals/ifs (1990)
6. Bunde, A., Havlin, S.: Fractals in Science. Springer, Cham (2013)
7. Campbell, P., Abhyankar, S.: Fractals, Form, Chance and Dimension (1978)
8. Chiu, C.S.: A genetic algorithm for multiobjective path optimisation problem. In:

2010 Sixth International Conference on Natural Computation, vol. 5, pp. 2217–
2222. IEEE (2010)

9. Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Polar ifs+ parisian genetic
programming= efficient ifs inverse problem solving. Genet. Program Evolvable
Mach. 1(4), 339–361 (2000)

10. Supervised by Dr Chris Phillips, H.A.: PhD Thesis: AS Domain Tunnelling for
User-Selectable Loose Source Routing. PhD thesis, Queen Mary Univesity of Lon-
don (2020)

11. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John
Wiley, Hoboken (2004)

12. Fernández-Mart́ınez, M., Sánchez-Granero, M.: Fractal dimension for fractal struc-
tures: a hausdorff approach revisited. J. Math. Anal. Appl. 409(1), 321–330 (2014)

13. Fernández-Mart́ınez, M., Sánchez-Granero, M.: Fractal dimension for fractal struc-
tures. Topology Appl. 163, 93–111 (2014)

14. Frame, M., Urry, A.: Fractal Worlds: Grown, built, and Imagined. Yale University
Press, New Heaven and London (2016)

15. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in
genetic algorithms. In: Foundations of Genetic Algorithms, vol. 1, pp. 69–93. Else-
vier (1991)

http://arxiv.org/abs/preprint
http://paulbourke.net/fractals/ifs
http://paulbourke.net/fractals/ifs

390 H. Akter et al.

16. Goldberg, D.E., Deb, K., Clark, J.H., et al.: Genetic algorithms, noise, and the
sizing of populations. Complex Syst. 6, 333–333 (1992)

17. Harik, G., Cantú-Paz, E., Goldberg, D.E., Miller, B.L.: The gambler’s ruin prob-
lem, genetic algorithms, and the sizing of populations. Evol. Comput. 7(3), 231–253
(1999)

18. Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas, E., Hammouri, A.,
Prasath, V.: Choosing mutation and crossover ratios for genetic algorithms-a
review with a new dynamic approach. Information 10(12), 390 (2019)

19. Husain, A., Reddy, J., Bisht, D., Sajid, M.: Fractal dimension of coastline of Aus-
tralia. Sci. Rep. 11(1), 1–10 (2021)

20. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past,
present, and future. Multimed. Tools Appl. 80(5), 8091–8126 (2021)

21. Liu, F., Tang, X., Yang, Z.: An encoding algorithm based on the shortest path
problem. In: 2018 14th International Conference on Computational Intelligence
and Security (CIS), pp. 35–39. IEEE (2018)

22. Macready, W.G., Wolpert, D.H.: Bandit problems and the exploration/ exploita-
tion tradeoff. IEEE Trans. Evol. Comput. 2(1), 2–22 (1998)

23. Mandelbrot, B.B., Evertsz, C.J., Gutzwiller, M.C.: Fractals and Chaos: The Man-
delbrot Set and Beyond, vol. 3. Springer, Cham (2004)

24. Mandelbrot, B.B., Mandelbrot, B.B.: The Fractal Geometry of Nature, vol. 1. WH
freeman and Co., New York (1982)

25. Mandelbrot, B.B., Passoja, D.E., Paullay, A.J.: Fractal character of fracture sur-
faces of metals. Nature 308(5961), 721–722 (1984)

26. Pedro, S.S.: Fractal dimensions of leaf shapes. https://www.math.tamu.edu/
mpilant/math614/StudentFinalProjects/SanPedro Final.pdf (2009)

27. Schrijver, A.: Combinatorial optimization: polyhedra and efficiency (algorithms
and combinatorics). J.-Oper. Res. Soc. 55(9), 1018–1018 (2004)

28. Slowik, A., Kwasnicka, H.: Evolutionary algorithms and their applications to engi-
neering problems. Neural Comput. Appl. 32(16), 12363–12379 (2020). https://doi.
org/10.1007/s00521-020-04832-8

29. Véhel, J.L., Lutton, E.: Optimization of fractal: function using genetic algorithms.
Ph.D. thesis, INRIA (1993)

https://www.math.tamu.edu/mpilant/math614/StudentFinalProjects/SanPedro_Final.pdf
https://www.math.tamu.edu/mpilant/math614/StudentFinalProjects/SanPedro_Final.pdf
https://doi.org/10.1007/s00521-020-04832-8
https://doi.org/10.1007/s00521-020-04832-8

Addressing Sustainability in Precision
Agriculture via Multi-Objective Factored

Evolutionary Algorithms

Amy Peerlinck(B) and John Sheppard

Montana State University, Bozeman, MT, USA
{amy.peerlinck,john.sheppard}@montana.edu

Abstract. Precision agriculture is a research area that uses technology
from engineering and computer science to improve all aspects of agricul-
ture, including but not limited to crop health, irrigation, and fertilizer
application. In agriculture, questions of sustainability often arise: How do
we minimize environmental impact while simultaneously helping farm-
ers maximize their net return? In this paper, we present a method to
optimize crop yield production in winter wheat, with the goal of seeking
to increase farmers’ production. However, only focusing on optimizing
production can lead to poor sustainability if an unnecessary amount of
fertilizer is applied or farming equipment is put under undo stress. We
therefore seek to address these impacts on sustainability by including
objectives that directly address these concerns. Our method utilizes a
new approach to solve multi-objective optimization that uses overlap-
ping subpopulations, known as a Multi-Objective Factored Evolutionary
Algorithm. Our results indicate that including overlapping subpopula-
tions in the multi-objective optimization context is beneficial for explo-
ration of the objective space. Our results also indicate that including
these sustainability-driven objectives does not significantly impact net
return or yield.

1 Introduction

Sustainable Agriculture has been defined by the U.S. Congress in the 1990 Farm
Bill as “an integrated system of plant and animal production practices having
a site-specific application that will, over the long term: Satisfy human food and
fiber needs; Enhance environmental quality and the natural resource base upon
which the agricultural economy depends; Make the most efficient use of non-
renewable resources and on-farm resources and integrate, where appropriate,
natural biological cycles and controls; Sustain the economic viability of farm
operations; Enhance the quality of life for farmers and society as a whole [30].”
Based on this definition, we investigate the effect of adding two sustainability-
focused objectives to the problem of optimizing net return for winter wheat
production, creating a multi-objective optimization (MOO) problem.

Supported by NSF grant 1658971 and USDA Grant NR213A750013G021.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 391–405, 2023.
https://doi.org/10.1007/978-3-031-26504-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_28&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_28

392 A. Peerlinck and J. Sheppard

In our work, we focus on defining “prescription maps” that dictate levels
of nitrogen fertilizer to be applied on a field planted with winter wheat. We
address two problems: first is generating the experimental prescription maps,
which are used to gather data on the field to determine the nitrogen response
of the crop, and second is generating prescription maps based on estimating
crop response to determine how much fertilizer to apply to maximize net return.
Each problem has a unique objective: maximizing stratification and maximizing
net return. However, they both have potential sustainability issues, which we
address by considering two additional objectives: minimizing overall fertilizer
applied to mitigate environmental impact, and minimizing jumps in variable rate
application to reduce the economic impacts that can result from undue strain
on equipment. Due to the resulting multi-objective nature of these problems,
meta-heuristic approaches are often employed to explore possible solutions along
the different objective axes [15]. This results in searching for a set of “non-
dominated” solutions, i.e., solutions where no other options exist that improves
the result for one objective without deteriorating another objective. [26].

In this paper, we consider three different MOO algorithms. First we apply
the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [8] and the Co-
operative Co-evolutionary NSGA (CC-NSGA-II) [19] to validate our approach.
Then we extend the Factored Evolutionary Algorithm (FEA) [27] to create a
multi-objective implementation which we call MO-FEA [21], where the specific
implementation using NSGA-II is denoted F-NSGA-II. Then we apply all three
approaches to the two problems in Precision Agriculture (PA): experimental and
optimal prescription map generation.

2 Background

2.1 Prescription Maps

As discussed previously, our interesting in this paper is in developing prescription
maps (experimental and optimal—Fig. 1) that optimize objectives balancing net
return and sustainability. Experimental prescription maps aim to spread pre-
defined fertilizer rates evenly across a field to determine crop response based
on different input (e.g., nitrogen) levels [22]. Possible fertilizer rates are pre-
defined to ensure that the different levels are represented evenly across the field.
In our experiments, we focus on stratifying the rates based on previous years’
yield information. In other words, we look at which parts of the field had high,
medium, and low yield the year before and distribute the fertilizer across these
3 levels, where the specific objective function is based on the work in [22].

Optimal prescription maps specify fertilizer rates to apply based on crop
response and economic models to maximize expected net return. These maps
depend upon the ability to predict based on the prescribed inputs, general field
information, and satellite data such as the normalized difference vegetation index
(NDVI). The classic way to approach yield prediction is to use linear regression;
however, this approach is limited in its ability to represent the yield response
curves. As a result, machine learning approaches such as Random Forests [16]

Sustainability and Factored Multi-Objective Optimization 393

Fig. 1. Example of an actual experimental prescription map (left) and an actual opti-
mal prescription map (right) for field Sec35Mid. Colors indicate fertilizer rates where
red-to-green indicates increasing rates. (Color figure online)

and Deep Learning [31] have become more popular. We use these models to
predict the yield and use the result to determine the expected net return (NR):

NR = Y × P − AA × CA − FC, (1)

where Y is the expected crop yield, P is the crop selling price, AA is the “as-
applied” fertilizer rate, CA is the fertilizer cost, and FC reflects any fixed costs
associated with production.

2.2 Multi-Objective Optimization

Multi-Objective Optimization is the process of optimizing multiple objective
functions simultaneously [15]. Formally and without loss of generality, assume
we wish to minimize k objectives. Then MOO consists of solving

min
x∈X

f(x) = {f1(x), f2(x), . . . , fk(x)},

with k ≥ 2 objective functions fi : Rn → R that have conflicting goals and x =
[x1, x2, . . . , xn]� denotes the decision variables. Then for fi ∈ F k, F k represents
the objective space, and X ∈ R

n represents the solution space.
One of the most approachable ways to perform MOO is to transform the set

of objectives into a single objective [6]. The weighted sum approach does this by
assigning weights to each objective function, where the weights sum to 1. The
ε-constraint method transforms all objectives except one into constraints which
are bound by a value Rε. Then single-objective methods can be applied directly.

Such transformation approaches are limited by the fact that a user needs
to decide which objective is more important. Alternatively, if a set of solu-
tions is desired, the problem needs to be solved multiple times with different
weights. To avoid such pitfalls, meta-heuristic approaches are often employed.

394 A. Peerlinck and J. Sheppard

There are two different general classes of meta-heuristic approaches: local search
and population-based search [9]. These meta-heuristics use the concept of Pareto
optimality to return a set of potential solutions spread across the objective space.

When exploring algorithms that are generalized for any MOO problem,
Pareto-based solutions are often favored [33]. More specifically, metaheuristic
methods track the Pareto front of possible solutions along the different dimen-
sions in the solution space [26]. Pareto dominance is used to determine solution
quality. Formally, a point x∗ ∈ X is Pareto-dominant if ∀fi ∈ f ,∀x ∈ X ,x �=
x∗, fi(x∗) ≤ fi(x), and ∃fj ∈ f , fj(x∗) < fj(x). where x ≺ y denotes that x
dominates y. Then the Pareto optimal front (PF ∗) is the set of points mapped
from the set of Pareto optimal solutions onto the objective space F k to form the
boundary of the set of non-dominated solutions.

The Non-Dominated Sorting Genetic Algorithm (NSGA) was introduced by
Srinivas et al. in 1994 [26], and improved in 2002 by Deb et al. to create NSGA-
II [8]. It was then adjusted further to address MOO problems with more than
three objectives to create NSGA-III [7]. However, we chose NSGA-II since it
has been shown to be the better choice on 3-objective problems [13]. NSGA-II
is an elitist GA that finds Pareto non-dominated solutions and uses a crowding
distance measure to maintain diversity in subsequent generations. The parent
population Pt and the offspring population Qt are combined into one population
Rt = Pt∪Qt. Rt is sorted based on the non-domination principle, and individuals
are assigned to different non-domination sets based on how good the solution is.
If an set of non-dominated solutions is larger than the remaining slots for the
next population, a second elimination is performed based on crowding distance.

Cooperative co-evolutionary algorithms (CCEAs) were introduced by Potter
and De Jong [23]. CCEAs are based on symbiotic relationships found in nature,
where different species live together and improve each others’ standard of life.
To mimic this, a problem is divided into smaller components, each represented
by a different population. In the first version of CCEA, single-objective problems
with n dimensions are decomposed into n 1-dimensional subproblems, each with
their own subpopulation. These subpopulations are then evolved separately and
periodically recombined to form a complete solution. An individual’s fitness is
based, not only on how well it solves its own part of the problem, but also on
its ability to cooperate with other partial solutions. CCEA is applied frequently
to MOO, and the resulting algorithms are called co-operative co-evolutionary
multi-objective optimisation algorithms (CCMOEA) [19]. Several studies found
that a co-operative approach can be beneficial for finding a well spread out
Pareto front when compared to the single population MOEA [12,19].

3 Related Work

The question of sustainability in agriculture has existed since the start of pre-
cision agriculture as an area of study [2]. But addressing these sustainability
issues in practice has proven more difficult. Variable Rate Application (VRA)
involves technology that allows farmers to apply different input rates to differ-
ent parts of the field to control their production and reduce cost more precisely

Sustainability and Factored Multi-Objective Optimization 395

[25]. By using VRA, farmers are able to apply less fertilizer overall than if they
were to apply a uniform rate across an entire field, thus also improving their
sustainability practice [2].

Several studies have shown that VRA can help with sustainability [5,32];
however, this is not always the case. Some studies found that using VRA
increases the cost for the farmer [28]. To the best of our knowledge, three stud-
ies have applied MOO algorithms to VRA prescription maps to provide a set
of potential prescriptions. In [22], a simple weighted-sum approach is applied to
maximize stratification for experimental prescriptions while trying to minimize
jumps in input levels between consecutive cells. Zheng et al. applied a multi-
objective fireworks optimization algorithm for variable-rate fertilization [34] with
the goal of finding the optimal fertilization for oil crops based on three objec-
tives: yield, energy consumption, and spatial effects. An additional study used
an economic optimization model to determine the fitness of fertilizer prescrip-
tion maps and irrigation strategies for optimal crop yield in western Switzerland
[18]. The authors integrated climate change into a genetic algorithm model and
found that climate change increases income risk for farmers.

4 Optimizing Prescriptions with MO-FEA and NSGA-II

Classic CCEA only creates subpopulations that have distinct variables, i.e., there
is no overlap between subpopulations. Strasser et al. proposed including overlap
in subpopulations to create the Factored Evolutionary Algorithm (FEA). FEA
defines a factor architecture (FA) to decompose the set of variables into groups, in
a way that permits overlap. As such, FEA includes CCEA as a special case [27].
Due to the possibility of overlap, FEA combines principles from both cooperative
and competitive co-evolution, and FEA with overlapping FA’s has been shown
to perform well on combinatorial optimization problems such as NK-landscapes
[27] and Bayesian network abductive inference [11]. We extended FEA to handle
MOO based problems in a way that still supports existing single-population
MOO algorithms to work within the framework [21].

In MO-FEA, in addition to maintaining an archive of non-dominated solu-
tions N , we keep a set of global solutions G that are non-dominated for that gen-
eration, i.e., G is replaced each generation based on the non-dominated solutions
found by the current subpopulations. Initially, each subpopulation is assigned
the same global solution g ∈ G for evaluating the fitness of its individuals. As
the algorithm progresses, a random global solution gr ∈ G is chosen for each
subpopulation without replacement to ensure that as many of the found non-
dominated solutions are represented across the subpopulations.

In this work, we assume a field is divided into m cells, each of which will
receive a prescription of the amount of nitrogen to apply. To create an exper-
imental prescription we use a set of fertilizer levels to apply to the field (e.g.,
F = {0, 20, 40, 60, 80, 120}). This means we are solving a combinatorial optimiza-
tion problem. On the other hand, the optimized prescription specify fertilizer rate
on a continuum with a lower and upper bound. Thus we are solving a continuous

396 A. Peerlinck and J. Sheppard

Algorithm 1: Factored NSGA-II
input : number of cells m, fertilizer values F , FEA generations itFEA,

population size n, NSGA-II iterations itNSGA

initialize: individual X ← {x0, . . . , xm};xi ∈ F , global solution set X ← {X},
subpopulations ← {sj ⊂ X}, non-dominated archive N ← {}

1 while FEA generations < itFEA do
2 for each sj ∈ subpopulations do
3 N ′′

sj ← NSGA-II(s, n, itNSGA, X)

4 end
5 N ′ ← {}
6 for each variable xi do
7 X ← random(X)
8 for each sj where xi ∈ sj do
9 n′′ ← arg mincrowding-distance(N

′′
sj)

10 N ′ ← N ′ ∪ n′′

11 X(i) ← n′′
i

12 N ′ ← N ′ ∪ X

13 end

14 end
15 N ′ ← non-dominated(N ′)
16 X ← N ′

17 N ← N ∪ N ′

18 for each sj ∈ subpopulations do
19 X ← random(X)
20 sj(X) ← X
21 arg maxcrowding-distance({p0, . . . , pm} ∈ sj) ← X

22 end
23 N ← non-dominated(N)

24 end
25 return N

optimization problem. In our experiments, we set the lower and upper limit of
the fertilizer rate to F = {0, . . . , 150}, since the farmers we work with impose
an upper limit of 150 lbs nitrogen/acre.

Algorithm 1 shows the basic operation of F-NSGA-II, which is our imple-
mentation of MO-FEA where each subpopulation is optimized using NSGA-II
[8]. During the “Compete” step (lines 5–17), overlapping subpopulations use
the non-dominated solution in N ′′ with the best crowding distance to represent
the current decision variable. Each potential solution for every decision variable
is then saved in a temporary solution set N ′. In addition, a randomly cho-
sen non-dominated solution from the subpopulation is added to N ′ to increase
exploration. N ′ is evaluated for non-dominance, only keeping Pareto optimal
solutions, and the resulting N ′ forms the new set of global solutions G. Then
N ′ is added to N , which is re-evaluated for non-dominance. Then G is shared
across the subpopulations, where the worst solution in the subpopulation is

Sustainability and Factored Multi-Objective Optimization 397

replaced by the chosen g. The fitness scores are then updated, completing the
“Share” step (lines 18–22). This constitutes one iteration of MO-FEA.

5 General Experimental Approach

We pose the following hypothesis: Including sustainability-focused objectives
to minimize overall fertilizer rate and reduce impact on farm equipment does
not significantly degrade Montana winter wheat harvest profit. To evaluate our
hypothesis we examine the cropping of winter wheat using both experimental
and optimal prescription maps as applied to Montana fields using three MOO-
algorithms, denoted NSGA-II (single population), CC-NSGA-II (cooperative co-
evolutionary), and F-NSGA-II (factored).

5.1 Factor Architecture

The factor architecture for MO-FEA and CCMOEA is based on the length of
a single strip, i.e., one group includes the cells from one end of the field to the
opposite end where the applicator has to turn around. This gives us the distinct
groupings as used in CCMOEA. To introduce overlap, we calculate a number p
by multiplying the number of cells in each strip by 0.2 and rounding the resulting
number upward such that p ≤ 1. A new group is then created by combining the
last p cells of a strip and the first p cells of the subsequent strip.

5.2 Objective Functions

To generate nitrogen prescriptions, we optimize the following objectives:

1. Maximize net return or stratification (see Sect. 2.1)
2. Minimize application level changes between adjacent cells
3. Minimize overall fertilizer rate

For the second objective, large jumps in fertilizer rate between consecutive cells
puts strain on the farming equipment, increasing wear and tear. In turn, this
leads to the farmer having to repair or replace equipment more frequently,
increasing cost and waste, which has negative ecological impacts. To address
this, we adjust the jump score presented in [22] to handle continuous fertilizer
rates as follows: Fitnjumps =

∑c−1
i=1 |F (mapi) − F (mapi+1)|, where F (mapi) is

the fertilizer rate for the ith cell on the field. The jump score now sums over the
absolute difference in applied fertilizer between adjacent cells determined by an
“as-applied” map.

Lastly, we want to mitigate the effect fertilizer, such as synthetic nitrogen, has
on the environment by reducing the overall amount of fertilizer applied to a field.
This reduces pollution of the atmosphere by limiting greenhouse gas emission and
can help avoid polluting waterways [17], which can result in a loss of drinkable
water and the death of aquatic life. The overall fertilizer application is calculated
by summing the fertilizer prescribed in each cell: Fitnfert =

∑c
i=1 F (mapi).

398 A. Peerlinck and J. Sheppard

5.3 Evaluation Metrics

The hypervolume indicator (HV) is one of the most commonly used evaluation
metrics in MOO [3]. Its popularity is partially because the only information
needed to calculate the HV of a Pareto Front approximation is a reference point.
This is in contrast to measures such as Generational Distance, which requires the
true Pareto Front to be known. Since we do not know the true Pareto Front for
our problems, the HV is a natural choice to gain insight in the size of the covered
objective space [35]. In these experiments, we min-max normalize the objective
scores and use a negative net return to support minimization. Given this, we
know the worst possible solution in the objective space is {1, 1, 1}, which we use
for computing HV . To assess the diversity of the Pareto Front approximations,
we use the spread indicator SI [14], corresponding to the sum of the width for
each objective, indicating how wide the solutions are spread across the objective
space. For each algorithm, the average HV and SI were calculated across 5 runs.
An ANOVA test with α = 0.05 was performed to assess statistical significance
across the algorithms, followed by a pairwise t-test with p = 0.005.

Finally, to compare two Pareto fronts, denoted as X′ and X′′, we use the
coverage C of the fronts as presented in [36]. We define the total non-dominated
set, or union front, X∗ to be the result of combining the fronts from the three
algorithms’ representative runs g as

X∗ = nondom

(
g⋃

i

X′
i

)

.

X∗ can then be used to calculate what percentage of the original non-dominated
set is included in X∗: AC(X′,X∗). We then find the relative coverage of the
non-dominated sets when compared to the union front, calculated as

AC(X′,X∗) =
|{x′ ∈ X′ : ∃x∗ ∈ X∗ : x∗ � x′}|

|X∗| .

The union front’s HV and SI are also calculated and compared.

5.4 Prescription Evaluation

For both experiments, we choose four different non-dominated solutions from the
approximate Pareto Front created by each algorithm for each of the five runs
of the algorithms. These solutions are based on the three extreme points in the
Pareto Optimal set: minimum jump score, maximum net return, and minimum
fertilizer rate. The centroid for these three solutions, xc, is found as follows,

xj
c =

1
3

3∑

i=1

xj
i , ∀j ∈ k,

where k represents the objectives. The non-dominated solution closest to this
centroid (based on the Lebesgue measure [4]), is used as the fourth solution.
We compare the four different types of prescription maps using an ANOVA test
(α = 0.05) to evaluate the impact of different objectives on net return.

Sustainability and Factored Multi-Objective Optimization 399

6 Experimental Prescription Results

6.1 Parameters and Data

For the experimental prescriptions, each of the algorithms was set to termi-
nate after the non-dominated archive did not change for 5 iterations. We chose
this approach since farmers are able to generate their own experimental trials,
and they often create these trials shortly before they need to fertilize. Thus, we
wanted to mimic the shortened runtime desired by the farmers. Mutation rate
and crossover rate were set to 0.1 and 0.9 respectively, based on results from [22].
Note that we used swap mutation, and the parents for crossover are selected using
tournament selection with tournament size 5. The remaining parameters are the
population sizes for all three algorithms and the number of iterations NSGA-II
needs to be run on the subpopulations for F-NSGA-II and CC-NSGA-II. To
determine these parameters, a grid search was performed. Four different pop-
ulation sizes were considered, {100, 200, 500, 800}, and three different iteration
limits, {50, 100, 200}. Based on the results of the grid search, a population size
of 500 was chosen for all algorithms, and an iteration limit of 100 was chosen for
both CC-NSGA-II and F-NSGA-II.

For our experimental maps, we collected data on three fields from two farms.
We use the farmer designations for these fields (i.e., Henrys, Sec35Mid, and
Sec35West). Previously, we trained a convolutional neural network (CNN) based
on prior experiments to predict yield from the wheat harvested on these fields [1].
We use this CNN to predict yield based on the fertilizer applied. We create an
initial, random prescription based on the field boundary. The farmer provides
information on the width of their fertilizer application equipment and which
fertilizer rates to apply across the field. For our experiments, the cell sizes for
the fields are 120 ft by 300 ft. For all prescriptions, six different fertilizer rates
were specified in pounds per acre: F = {20, 40, 60, 80, 100, 120}. Once the initial
grid was created, the cells were ordered based on the “as-applied” route the
farmer takes across the field to apply fertilizer.

6.2 Results and Discussion

We found significant differences (α = 0.05) between yield predicted for each of
the fields, as well as the different algorithms for each field. However, no significant
difference was found between the results for different objectives, confirming our
hypothesis that ethical objectives do not impact yield. For each field, the yield
predictions for a specific prescription are averaged to create Fig. 2. A summary
for each field of the hypervolume, spread indicator, and adjust coverage for each
algorithm’s non-dominated sets averaged over 5 runs, as well as the unionized
non-dominated set, are given in Table 1. Adjusted coverage uses a randomly
selected run for each algorithm to avoid bias. This is repeated five times and the
five separate calculations are averaged to get the final adjusted coverage score.

The prescription maps across all three algorithms, as well as the union front,
produce consistent yield predictions with small fluctuations between the different

400 A. Peerlinck and J. Sheppard

Fig. 2. Yield prediction results averaged across the entire field.

Table 1. Experimental prescriptions: Hypervolume (HV), spread (SI), and adjusted
coverage (AC) results for each algorithm and the union front.

NSGA-II CC-NSGA-II F-NSGA-II Union Front

Henry’s HV 0.463 0.387 0.498 0.589

SI 0.467 0.329 0.856 1.112

AC 38.9% 11.3% 49.8% 100%

Sec35Mid HV 0.465 0.397 0.504 0.593

SI 0.440 0.289 0.824 1.011

AC 30.2% 9.5% 60.3% 100%

Sec35West HV 0.469 0.396 0.474 0.578

SI 0.615 0.468 1.184 1.619

AC 27.7% 26.2% 46.1% 100%

objectives, as can be seen in Fig. 2. The statistical results confirm what can be
assessed visually: there is no significant difference between the predicted yield
values across the different objectives, including those for the union front.

When looking at coverage between algorithms (Table 1), we can see that F-
NSGA-II seems to cover more non-dominated solutions in the objective space
than the other algorithms since it contributes the largest percentage of solu-
tions to the union front. NSGA-II also makes large contributions to the union
front, while CC-NSGA-II has the smallest contribution for all results. This could
potentially be explained by the use of disjoint subpopulations in CCEA, since its
disjoint nature means that a part of the solution space may be left unexplored.
On the other hand, FEA uses the overlap to find more diverse solutions across
the subpopulations, not only by saving a non-dominated solution from each
subpopulation, but through the replacement of single variables in the global
solution as well. The hypervolume and spread indicator results further confirm
our hypothesis that F-NSGA-II explores more of the objective space. Across all
fields, F-NSGA-II has the largest spread and HV for its approximate Pareto
front. According to a pairwise t-test, the HV results were found to be signifi-
cantly different for all three fields; however, no significant difference was found
for the spread indicator results for Henrys and Sec35Mid between F-NSGA-II

Sustainability and Factored Multi-Objective Optimization 401

and NSGA-II. When comparing the algorithms’ results to the union front, we
see that the union front HV and spread are not much larger than those found
by F-NSGA-II, which is in line with the aforementioned coverage results.

7 Optimal Prescription Results

7.1 Parameters and Data

As in our previous experiments, mutation rate and crossover rate were set to
0.1 and 0.9 respectively. Swap mutation was used, and the parents for crossover
were selected using tournament selection with tournament size 5. The remaining
parameters are the population sizes for all three algorithms and the number
of iterations NSGA-II needs to be run on the subpopulations for F-NSGA-II
and CC-NSGA-II. For these experiments, our stopping criterion is the number
of fitness evaluations. This approach leads to an increase in runtime; however,
since farmers are not yet able to create their own optimal prescription maps, we
can generate these maps beforehand, negating the need for a reduced runtime.
To achieve this, we set the number of generations and population size such that
each algorithm has approximately the same number of function evaluations.
For NSGA-II, this resulted in setting a population size of 500 and running the
algorithm for 500 iterations, yielding 500 × 500 = 250, 000 FEs. Our instance of
CC-NSGA-II has 24 groups, rounded up to 25 for ease of calculation, resulting
in CC-NSGA-II being run 10 times where each subpopulation is of size 50,
and NSGA-II is run for 20 generations on each subpopulation: 10 × 20 × 50 ×
25 = 250, 000. We used the same logic for F-NSGA-II, where population size is
decreased to 25 to accommodate the increase in the number of subpopulations.

For this experiment, we look at field Sec35Mid since it is a more complex
field and time constraints prevented us from finishing our experiments on the
other two fields. The cell sizes are adjusted to be smaller (120 by 240 feet) to
provide more refined optimal fertilizer rates. Based on the provided field data,
we trained a regression model for yield prediction, where yield is reported in
number of bushels per acre. We used the trained model to predict yield for the
prescribed fertilizer; the predicted yield can then be substituted into Eq. 1. We
used economic data provided by the US Department of Agriculture to determine
crop price and fertilizer cost [29].

We used a Random Forest (RF) as a regression model to predict yield. The
RF model [16] was implemented via Scikit Learn [20] and evaluated via 10-fold
cross-validation on the available data set. The RF yielded a root mean squared
error of 2.97. Note that we were not able to use the neural network applied with
the experimental maps since those maps could be evaluated offline while these
needed direct interfacing between the optimizer and the network. Currently, that
interface is still under construction.

7.2 Results and Discussion

Applying an ANOVA test to the net return results for the different types of
prescription maps confirms that there is no significant difference in net return.

402 A. Peerlinck and J. Sheppard

Fig. 3. Net return for the four different prescription maps.

Table 2. Experimental prescriptions: Hypervolume (HV), spread (SI), and adjusted
coverage (AC) results for each algorithm and the union front on Sec35Mid.

NSGA-II CC-NSGA-II F-NSGA-II Union Front

HV 0.52 0.32 0.42 0.53

SI 1.67 1.65 1.68 1.68

AC 75% 0% 25% 100%

When we visually inspect the net return values in Fig. 3, we can see that the
difference in net return when focusing on different objectives is minimal for each
algorithm. Interestingly, the lowest net return is found consistently when focusing
on minimizing jumps. Currently, the net return calculation does not include the
cost of wear on equipment. If farmers could gather data on how large jump rates
impact them economically, we could refine our net return calculation.

When evaluating the algorithms’ performance, we find there is no significant
difference between the SI, but there is a significant difference for the HV (p =
0.05). Overall, NSGA-II performed better than F-NSGA-II and CC-NSGA-II for
HV and coverage. F-NSGA-II, however, did consistently find solutions having a
higher net return, indicating it explored a different part of the search space than
the other two algorithms, which is reflected in the higher SI score (Table 2).

Overall, single population NSGA-II performs better on the optimal prescrip-
tion map problem; however, this could be due to the use of FE’s as a stopping
criterion. In [10], results indicate that using FE’s may result in an unfair stop-
ping condition. This idea is supported by our experimental map results, where
we use convergence of the non-dominated archive as the stopping criterion. In
this scenario, F-NSGA-II performs better; we believe this is because NSGA-II
may be converging early on, before moving out of initial optima.

8 Conclusion

Multi-Objective Optimization provides a way for sustainability issues to be
addressed when optimizing fertilizer prescriptions in precision agriculture. In

Sustainability and Factored Multi-Objective Optimization 403

this paper, we investigated adding two sustainability-focused objectives to exist-
ing precision agriculture problems, that of creating experimental and optimal
fertilizer prescription maps. For both problems three competing objectives were
optimized: the base objective, stratification or net return maximization respec-
tively, and two sustainability objectives, fertilizer rate jump minimization, and
overall fertilizer rate minimization. We applied three different MOO algorithms,
NSGA-II, CC-NSGA-II, and F-NSGA-II, of which the latter is an adaptation
of the Factored Evolutionary Algorithm in which overlapping subpopulations
are used to find an approximate Pareto front. We found that all three MOO
algorithms could find optimized prescription maps successfully, and that includ-
ing these sustainability objectives had minimal impact on yield and net return.
Based on these results, we confirmed our hypothesis that focusing on sustain-
ability need not significantly influence net return, thus indicating a strong justi-
fication for modifying farming practices to incorporate such objectives, thereby
reducing environmental impact. Furthermore, our results indicate that using
overlapping subpopulations increases exploration of the objective space when
compared to the single population and disjoint subpopulation alternatives.

9 Future Work

As next steps, we plan to investigate adding temporal objectives, such as min-
imizing variation in net return across several years, and including the impact
climate change might have on crop response [18]. Another goal is to investi-
gate the effect of different yield prediction approaches when creating optimized
prescription maps. In other words, how much influence does accurate yield pre-
diction have on prescribing the correct fertilizer rate? Or is it more important
to use a model that accurately describes the shape of the yield response curve?

Results found by Strasser et al. indicate that the factor architecture could
impact optimization [27]. However, work by Pryor et al. shows that the spe-
cific factor architecture may not matter as long as the overlap ensures that all
variables are connected [24]. Based on these differing results, we plan to explore
different factor architectures and their influence, not only regarding the prob-
lem of optimizing prescription maps, but by looking at different multi-objective
benchmark problems such as DTLZ and the multi-objective knapsack problem.

Lastly, we would like to note that using function evaluations as a stopping
criterion could impact results in an unfair way [10]. To this end, we intend to
explore different ways to evaluate how long an algorithm should run, for example,
based on the amount of change in the non-dominated archive as was done in the
experimental design, or a lack of change in hypervolume. We would then evaluate
the influence of different stopping criteria on runtime to enable a transition to
farmers creating their own optimal prescription maps.

References

1. Anonymous, A.: Reduced-cost hyperspectral convolutional neural networks. J.
Appl. Remote Sens. 14(3), 036519–036519 (2020)

404 A. Peerlinck and J. Sheppard

2. Bongiovanni, R., Lowenberg-Deboer, J.: Precision agriculture and sustainability.
Precis. Agric. 5(4), 359–387 (2004)

3. Bringmann, K., Friedrich, T.: Approximation quality of the hypervolume indicator.
Artif. Intell. 195, 265–290 (2013)

4. Burk, F.: Lebesgue Measure and Integration: An Introduction. John Wiley, Hobo-
ken (2011)

5. De Koeijer, T., Wossink, G., Verhees, F.: Environmental and economic effects of
spatial variability in cropping: nitrogen fertilization and site-specific management.
In: The Economics of Agro-Chemicals, pp. 187–200 (2018)

6. Deb, K.: Multi-objective optimization. In: Burke, E., Kendall, G. (eds.) Search
Methodologies, pp. 403–449. Springer, Boston (2014). https://doi.org/10.1007/
978-1-4614-6940-7 15

7. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems
with box constraints. IEEE Trans. Evol. Comp. 18(4), 577–601 (2013)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comp. 6(2), 182–197 (2002)

9. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjec-
tive combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000)

10. Engelbrecht, A.P.: Fitness function evaluations: a fair stopping condition? In: 2014
IEEE Symposium on Swarm Intelligence, pp. 1–8 (2014)

11. Fortier, N., Sheppard, J., Strasser, S.: Abductive inference in Bayesian networks
using distributed overlapping swarm intelligence. Soft. Comput. 19(4), 981–1001
(2015)

12. Goh, C., Tan, K., Liu, D., Chiam, S.: A competitive and cooperative co-
evolutionary approach to multi-objective particle swarm optimization algorithm
design. Eur. J. Oper. Res. 202, 42–54 (2010)

13. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Performance comparison of
NSGA-II and NSGA-III on various many-objective test problems. In: 2016 IEEE
Congress on Evolutionary Computation (CEC), pp. 3045–3052. IEEE (2016)

14. Ishibuchi, H., Shibata, Y.: Mating scheme for controlling the diversity-convergence
balance for multiobjective optimization. In: GECCO, pp. 1259–1271 (2004)

15. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: a short review. In: IEEE CEC, pp. 2419–2426 (2008)

16. Jeong, J.H., et al.: Random forests for global and regional crop yield predictions.
Public Libr. Sci. 11(6), e0156571 (2016)

17. Kim, S., Dale, B.E.: Effects of nitrogen fertilizer application on greenhouse gas
emissions and economics of corn production. Environ. Sci. Technol. 42(16), 6028–
6033 (2008)

18. Lehmann, N., Finger, R.: Optimizing whole-farm management considering price
and climate risks. In: 123rd European Association of Agricultural Economists Sem-
inar (2012)

19. Maneeratana, K., Boonlong, K., Chaiyaratana, N.: Multi-objective optimisation by
co-operative co-evolution. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp.
772–781. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-
9 78

20. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

21. Peerlinck, A., Sheppard, J., Maxwell, B.: Using deep learning in yield and protein
prediction of winter wheat based on fertilization prescriptions in precision agricul-
ture. In: International Conference on Precision Agriculture (2018)

https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-3-540-30217-9_78
https://doi.org/10.1007/978-3-540-30217-9_78

Sustainability and Factored Multi-Objective Optimization 405

22. Peerlinck, A., Sheppard, J., Pastorino, J., Maxwell, B.: Optimal design of exper-
iments for precision agriculture using a genetic algorithm. In: IEEE CEC, pp.
1838–1845 (2019)

23. Potter, M.A., Jong, K.A.D.: Cooperative coevolution: an architecture for evolving
coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

24. Pryor, E., Peerlinck, A., Sheppard, J.: A study in overlapping factor decomposition
for cooperative co-evolution. In: 2021 IEEE Symposium Series on Computational
Intelligence (SSCI), pp. 01–08. IEEE (2021)

25. Raun, W.R., et al.: Improving nitrogen use efficiency in cereal grain production
with optical sensing and variable rate application. Agron. J. 94(4), 815–820 (2002)

26. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

27. Strasser, S., Sheppard, J., Fortier, N., Goodman, R.: Factored evolutionary algo-
rithms. IEEE Trans. Evol. Comp. 21(2), 281–293 (2017)

28. Thrikawala, S., Weersink, A., Fox, G., Kachanoski, G.: Economic feasibility of
variable-rate technology for nitrogen on corn. Am. J. Agric. Econ. 81(4), 914–927
(1999)

29. United States Department of Agriculture: Agricultural prices (2022). https://usda.
library.cornell.edu/concern/publications/c821gj76b?locale=en

30. U.S. Congress: Agricultural research, extension, and teaching. In: U.S. Code Title
7, chap. 64. No. 3103, U.S. Government Publishing Office, Washington, DC, USA
(2011). https://www.gpo.gov/

31. Van Klompenburg, T., Kassahun, A., Catal, C.: Crop yield prediction using
machine learning: a systematic literature review. Comput. Electron. Agric. 177,
105709 (2020)

32. Whitley, K.M., Davenport, J.R., Manley, S.R.: Differences in nitrate leaching under
variable and conventional nitrogen fertilizer management in irrigated potato sys-
tems. In: Robert, P.C., Rust, R.H., Larson, W.E. (eds.) Proceedings of the 5th
International Conference on Precision Agriculture, pp. 1–9. American Society of
Agronomy, Madison (2000)

33. Yu, X., et al.: Set-based discrete particle swarm optimization based on decompo-
sition for permutation-based multiobjective combinatorial optimization problems.
IEEE Trans. Cybern. 48(7), 2139–2153 (2017)

34. Zheng, Y.J., Song, Q., Chen, S.Y.: Multiobjective fireworks optimization for
variable-rate fertilization in oil crop production. Appl. Soft Comput. 13(11), 4253–
4263 (2013)

35. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications. Ph.D. thesis, Swiss Federal Institute of Technology (1999)

36. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comp. 8(2), 173–195 (2000)

https://usda.library.cornell.edu/concern/publications/c821gj76b?locale=en
https://usda.library.cornell.edu/concern/publications/c821gj76b?locale=en
https://www.gpo.gov/

Modeling and Solving the K-Track
Assignment Problem

Jakob Preininger, Felix Winter(B), and Nysret Musliu

Christian Doppler Laboratory for Artificial Intelligence and Optimization for
Planning and Scheduling, DBAI, TU Wien, Karlsplatz 13, 1040 Vienna, Austria

{preininger,winter,musliu}@dbai.tuwien.ac.at

Abstract. In the industrial production of cleaning supplies, larger pro-
duction quantities are stored in storage boilers and from there they are
filled into household-sized bottles. An interesting problem arises in the
planning of this process in which production orders have to be assigned
to these storage boilers at predetermined times. It turns out that this
problem corresponds to a variant of the problem known in the literature
as the k-track assignment problem or operational fixed job scheduling
problem (OFJSP), which is a classical NP-hard optimization problem.
In this paper we investigate and compare different modeling approaches
including a CP model, a direct ILP model, a network flow based refor-
mulation as well as a simulated annealing approach. We evaluate these
methods on a large set of instances for this problem and on benchmark
instances for a related problem. We show that the simulated anneal-
ing approach provides very good solutions and outperforms other known
solution approaches for larger instances. Our methods have been applied
in real-life scenarios, where they have been able to obtain optimal solu-
tions in a short time.

Keywords: K-track assignment · Fixed job scheduling · Exact
methods · Simulated annealing · Real-life application

1 Introduction

In the production planning of industrial manufacturing of cleaning supplies after
producing the following problem arises during bottling. After scheduling jobs for
filling at certain times considering the prior process of production, one has to
make an assignment of these jobs to storage boilers taking into account that
these boilers are only suitable for certain jobs and are only available at certain
times. This assignment should be done in such a way that a maximum number
of jobs can be assigned to the storage boilers such that a minimum number of
adjustments are necessary for the production plan.

Reframing these boilers as machines at which the jobs are processed this
becomes the following problem, which is known as the generalized k-track assign-
ment problem or operational fixed job scheduling problem (OFJSP). We are
given a set M = {1, . . . , k} of machines and a set J = {1, . . . , n} of jobs. Every
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 406–420, 2023.
https://doi.org/10.1007/978-3-031-26504-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_29&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_29

Modeling and Solving the K-Track Assignment Problem 407

job j has given start time startj and end time endj and a subset of eligible
machines Mj ⊆ M . The goal is to maximize the number of jobs scheduled such
that on every machine no two jobs are running simultaneously. In other words
to find a biggest subset of jobs J0 with assignments xj ∈ Mj for j ∈ J0 such
that if the jobs j, k ∈ J0 overlap then xj �= xk.

Arkin and Silverberg [2] showed that this problem is NP-complete w.r.t. the
number of machines k, which makes the problem interesting from a computa-
tional point of view. Therefore this and similar problems have been extensively
studied in the past. A survey of methods and results can be found in [10]. Con-
tributions in recent years include e.g. [1,7,13,14].

An exact algorithm was proposed by Brucker and Nordmann [4]. They solved
the problem using a direct dynamic programming algorithm, which works well
for small instances with a small number of machines. For a larger number of
machines though the algorithm has no reasonable runtime since it is of order
O(nkk!kk) for n jobs and k machines and additionally runs into memory storage
problems since O(kk) states have to be stored in memory during the compu-
tations. Reformulating the problem as an integer linear program (ILP) turns
out to be a better approach for exactly solving the problem, when the problem
instances are bigger (with k ≥ 5 machines). However, since the problem remains
to be of exponential runtime w.r.t. the number of machines exactly solving the
k-track assignment problem is still not feasible for large instances.

In this paper using MiniZinc [12], a solver-independent constraint modeling
language, we compare various modelings including a direct ILP formulation, a
CP formulation as well as a new network flow reformulation that is an improved
variation of the approach presented in [3], which turns out to give good upper
bounds for the solution when exactly solving the problem takes too much time.
We introduce a simulated-annealing scheme which achieves good solutions for
larger instances, where exact methods cannot provide solutions in a reasonable
time. Finally, to show the robustness of our method, we compare with a state-
of-the-art metaheuristic approach [13] on a slightly more general problem (the
OFJSP with spread time constraints) that was investigated in that paper. Our
simulated annealing approach gives competitive results and outperforms this
approach for large instances. Further, the metaheuristic approach has been suc-
cessfully deployed for solving real life boiler assignment problems and is currently
used in practice.

2 Solver-Independent Modeling Approaches
for the K-Track Assignment Problem

Using the MiniZinc constraint modeling language we investigated three model-
ing approaches for our problem. The advantage of solver-independent MiniZinc
formulations is that they can be used by different solvers including MIP and CP
solvers.

408 J. Preininger et al.

2.1 Constraint Programming Model

The constraint programming model for the generalized k-track assignment prob-
lem uses the following input parameters:

Input Parameters

– A set of k machines M .
– A set of n Jobs J .
– A set Mj ⊆ M of eligible machines for each job j ∈ J .
– A set O ⊆ J × J of all pairs (j, k) where j �= k are overlapping jobs.

We handle the requirement that two jobs with overlapping time intervals
cannot be run on the same machine by introducing constraints for each pair
of overlapping jobs on their joint eligible machines. By not including start and
end times in our model but instead computing all pairs of overlapping jobs in
a preprocessing phase we can save valuable model compilation time. Therefore,
start and end times are not explicitly mentioned in the input parameters of our
model.

Decision Variables. The following decision variables are used to model the
machine assignments for each job j (a value null indicates that the job is not
assigned to any machine):

– xj ∈ Mj ∪ {null} ∀j ∈ J

Note that we implicitly model the requirement that each job can only be assigned
to its set of eligible machines by restricting the variable domains accordingly.

Constraints. The set of constraints that forbids the assignment of overlapping
jobs to the same machine is specified as follows:

(xj = xk = null) ∨ (xj �= xk) ∀(j, k) ∈ O (1)

Cost Function. The cost function counts the number of jobs assigned to any
machine:1

maximize
∑

j∈J

[xj �= null] (2)

2.2 Integer Linear Programming Model

In addition to the constraint programming model we provide an integer linear
programming model for the k-track assignment problem as follows:

1 Here [·] denotes the Iverson bracket (i.e. [A] = 1 if A is true and [A] = 0 otherwise).

Modeling and Solving the K-Track Assignment Problem 409

Input Parameters

– A set of k machines M
– A set of n Jobs J
– A set Mj ⊆ M of eligible machines for each job j ∈ J
– A set T of triples (j, k,m) ∈ J ×J ×M where j, k is a pair of jobs that overlap

and are both eligible on machine m

For the input parameters of the linear model we calculate in a preprocessing
step a set of triples (j, k,m) ∈ J ×J ×M where j, k is a pair of jobs that overlap
and are both eligible on machine m. Based on the resulting set T we then define
a set of linear constraints for each triple that implements the conditions for
non-overlapping job assignments on a single machine.

Decision Variables. The set of decision variables defines a Boolean variable
for each pair of job and machine, where a value of 1 indicates corresponding job
assignment:

– xj,m ∈ {0, 1} ∀j ∈ J,m ∈ M

Constraints. The first set of constraints in the linear model ensures that each
job is assigned to at most one machine:

∑

m∈M

xj,m ≤ 1 ∀j ∈ J (3)

The second set of constraints models the requirement that jobs can only be
assigned to eligible machines:

xj,m = 0 ∀j ∈ J,m ∈ M \ Mj (4)

The third set of constraints forbids overlapping job assignments on the same
machine:

xj,m + xk,m ≤ 1 ∀(j, k,m) ∈ T (5)

Cost Function. The cost function of the linear model counts all job assign-
ments:

maximize
∑

(j,m)∈J×M

xj,m (6)

2.3 Network Flow Reformulation

In this section we further propose a network flow reformulation of the k-
assignment problem which is related to the model proposed in [3], but has a
variation regarding assignments of jobs to different machines. The main idea
behind this formulation is to model the job assignments by creating an individ-
ual flow network for each machine. Vertices in a graph are modeling the jobs that

410 J. Preininger et al.

Algorithm 1: Generating a network for a given machine of the k-track
assignment problem.

Function CreateNetworkForMachine(m)
Jm = {j ∈ J : m ∈ Mj}
Vm = {sm, tm} ∪ Jm

Am = {}
L = []
L.append([sm])
� sort jobs by earliest start (break ties by earliest end)
L.append(sort([j ∈ Jm]))
L.append([tm])
for i ∈ {1, . . . , |L| − 1} do

v = L[i]
w = tm
for j ∈ {i + 1, . . . , |L| − 1} do

if start(L[j]) ≥ endv then
w = L[j]
break

Av = (v, w)
if w �= tm then

Av = Av ∪ {(v, x) : x ∈ Jm ∧ startx ∈ [startw, endw]}
Am = Am ∪ Av

return Gm = (Vm, Am)

are eligible on the respective machine, and the decisions about the selected flow
path through a network determine the jobs assigned to the machine. In contrast
to the model in [3] our model uses additional Boolean variables for each job and
machine pair that are set to 1 if and only if the job is assigned to the respective
machine. Thus, the number of variables needed for the maximization objective
is highly reduced. Furthermore, we significantly reduce the number of arcs in the
network by omitting redundant paths and hence reduce the number of variables
in the model. This can be helpful for the evaluation of larger instances and to
find good upper bounds fast.

Computing the Machine Networks. Algorithm 1 describes how a network
Gm = (Vm, Am) for each machine m ∈ M consisting of a set of vertices Vm and
a set of directed arcs Am is created for an instance of the k-track assignment
problem.

The procedure shown in Algorithm 1 first selects the set of relevant jobs
(i.e. the jobs that are eligible for the given machine) and then creates the set
of vertices Vm by creating a vertex for each relevant job in addition to a single
source- sm and sink vertex tm. To create the set of directed arcs, the algorithm
then creates an ordered list L of all vertices as follows: The list starts with the
source vertex and is followed by all job vertices ordered increasingly by the job’s
start time (if multiple jobs have identical start times, jobs with earlier end times
are selected first). Finally, the list includes the sink vertex at the last position.

Then the procedure creates outgoing arcs Av for each vertex v ∈ Vm by first
determining the next non-overlapping successor vertex w from list L, which is
determined by iterating through the remaining list and selecting the first job

Modeling and Solving the K-Track Assignment Problem 411

Fig. 1. A simple example k-track assignment problem instance consisting of five jobs
and two machines.

Fig. 2. Network graph for machine 1 of the example instance from Fig. 1

vertex which has a start time that is larger or equal to the end time of the job
related to v (i.e. the first non-overlapping job). In case no such job vertex exists,
the sink vertex is selected as successor w. If w is not the sink, the set of Av

further includes an arc v, w plus additional arcs to each job vertex where the job
times are overlapping with the job related to w. Finally, the set of all network
arcs Am unifies the arc sets created for all vertices.

Machine Networks Example. We now illustrate networks created for a simple
instance using two machines as an example. Figure 1 visualizes the jobs of an
example instance consisting of 5 jobs and 2 machines using a gantt chart.

In this example job 1 and job 2 are eligible on machine 1 as well as machine
2 and their scheduled processing times range from 0–1 and and 1–2 respectively.
Job 3 is only eligible on machine 1 and processed in the time from 0–2, whereas
jobs 4 and 5 are only eligible on machine 2 and scheduled from 1–3 and 3–4
respectively.

Figures 2 and 3 illustrate the networks created with Algorithm 1 for both
machines in this example.

In Fig. 2 we can see that the network for machine 1 only includes vertices
representing jobs 1, 2, and 3 but does not include jobs 4 and 5 as they are
not eligible on these machines (jobs 4 and 5 are drawn with a dashed line to
indiciate their absence). Furthermore, the figure shows two outgoing arcs a1 and
a4 from the source vertex, creating paths from the source to either job 1 or
job 3. Vertices appearing on separated paths in the network indicate that their
related jobs cannot be assigned at the same time to this machine as they are
overlapping, whereas jobs on the same path are non overlapping (like e.g. job 1
and job 2 in this example). Figure 3 illustrates the network for machine 2 in a
similar way.

412 J. Preininger et al.

Fig. 3. Network graph for machine 2 of the example instance from Fig. 1

Network Flow Model. Using the machine networks we introduced in the pre-
vious section, we can formally define the model of the network flow reformulation
as follows:

Input Parameters

– Set of k machines M
– Set of n jobs J
– Gm: The network graph for each machine m ∈ M . The set of nodes is Vm =

{sm, tm} ∪ {nm,j : j ∈ J} where sm, tm are the source and sink nodes, and
nm,j are nodes representing each of the jobs. The set of directed arcs is given
as Am. Let further δ+(i) and δ−(i) denote the set of ingoing and outgoing
arcs for a node i.

Decision Variables

– ji ∈ {0, 1} ∀i ∈ J : Boolean variables which are set to 1 iff the associated
job is assigned to any machine.

– fi,j ∈ {0, 1} ∀i ∈ M, j ∈ Ai: Boolean variables, that are set to 1 iff arc j is
part of the selected path in the network of machine i .

Constraints

– Flow conservation constraints for job nodes:
∑

a∈δ−(nm,j)

fi,a −
∑

b∈δ+(nm,j)

fi,b = 0 ∀i ∈ M, j ∈ J (7)

– Flow conservation constraints for source nodes:
∑

a∈δ−(sm)

fi,a − 0 = 1 ∀i ∈ M (8)

– Flow conservation constraints for sink nodes:

0 −
∑

b∈δ+(tm)

fi,b = −1 ∀i ∈ M (9)

– Constraints to channel the values of the job selection variables to the arc
selection variables:

ji ≤
∑

m∈M,a∈δ+(nm,i)

fm,a ∀i ∈ J (10)

Modeling and Solving the K-Track Assignment Problem 413

Algorithm 2: Simulated Annealing
Function Simulated Annealing(Tinit, Tfinal, tlimit)

� Initialize temperature and cooling rate
T ← Tinit

c ← 1
� Initialize empty solution
xj ← null ∀j ∈ J
z ← x
while telapsed < tlimit ∧ T > Tfinal do

� Generate random neighbor
yj ← xj ∀j ∈ J
j ← Random(J)
m ← Random(Mj ∪ {null})
yj ← m
if Accept(y, T) then

x ← y
if Cost(x) < Cost(z) then

z ← x

� Update Cooling rate based on elapsed time
c ← UpdateCoolRate(T, Tfinal, tlimit, telapsed)
� Update temperature
T ← cT

return (x)

Objective Function

maximize
∑

i∈J

ji (11)

3 A Simulated Annealing Approach

Additionally to the exact modeling approaches above we propose a local search
approach based on simulated annealing [9] for solving the k-track assignment
problem. The pseudo code of the simulated annealing approach that we apply
for our problem is presented in Algorithm 2.

We use an empty solution where no jobs are assigned as an initial solution
and randomly generate a single local search move in each iteration that assigns
a random job to a random machine (including the null machine). We accept a
move based on a geometrical cooling scheme, where moves are always accepted if
they improve the solution and accepted if they do not improve the solution with
probability e−δ/T , where δ is the delta cost of the move and T is the current
temperature. After every move the temperature is adjusted by a cooling rate c
which is recalculated at every step based on the current and final temperature
and on the time remaining in the algorithm, assuming that future moves are
applied at approximately the same speed as previous ones. So the temperature
starts at a given starting temperature Tinit and is approximately geometrically
cooled down to the final temperature Tfinal at the end of the given time limit
of the algorithm.

Note that this version of the simulated annealing approach only needs two
parameter inputs apart from the instance itself, namely the initial temperature

414 J. Preininger et al.

Tinit and Tfinal which makes this approach rather flexible for different runtimes
and sizes of instances as long as the average delta costs of moves remains the
same.

Furthermore, for the evaluation of candidate solutions we extend the objec-
tive function as follows:

minimze
∑

j∈J

[xj = null] + M
∑

j,k∈O

[xj = xk �= null] (12)

Here M is a number bigger than the total number of jobs, i.e. we penalize
violations of the overlapping jobs requirement in the objective function so that
a single violation is more costly than any other cost.

Additionally we included the possibility to adjust the objective to include
weights for each job and a spread time constraint. I.e.

min
∑

j∈J

[xj = null] ∗ wj + M
∑

j,k∈O∪S

[xj = xk �= null] (13)

where wj is a given weight for every job and S ⊆ J × J is the set of all pairs
(j, k) where j �= k are jobs which violate the following spread time constraint
(cf. [13])

endj − startk > St ∨ endk − startj > St (14)

where St is a given spread time parameter.
We note that for the k-track assignment problem we consider in this paper,

the weight of the jobs are normalized to 1, while in the spread time problems
these weights can vary. This adjustment enables us to compare our approach
with the state-of the art approach for the spread time variant of the k-track
assignment problem [13].

4 Computational Results

We conducted all of our experiments on a computing cluster with 10 identical
nodes, each having 24 cores, an Intel(R) Xeon(R) CPU E5–2650 v4 @ 2.20 GHz
and 252 GB RAM.

4.1 Generation of Instances

Although the k-track assignment problem has been studied for a long time, to
the best of our knowledge large instances for this problem are not available.
The instances used in [4] include at most 5 machines and 100 jobs and are
very small. For the related problem called operational fixed job scheduling with
spread-time constraints [13] there exists a larger set of instances and we compare

Modeling and Solving the K-Track Assignment Problem 415

on these instances in the next section. However, we also generated additional
large instances for the problem we investigate in this paper to compare the
performance of our approaches.

We developed a random instance generator that generates a given number
of machines and jobs such that the jobs have a uniformly distributed random
length up to 1/10 of the total length of the scheduling horizon which we set
to 10000. We further select uniformly random distributed start times for each
job so that all jobs fit into the time horizon. To randomly select the eligible
machines we put each machine to the set of eligible machines for each job with a
probability of 1/2. Using our random instance generator, we generated a set of
10 groups of instances with 10 samples with different configurations regarding
the number of jobs and machines. Out of these 100 instances we selected the
two first instances of each group to compare the approaches. The different size
parameters of the instances are shown in Columns 2–3 of Table 1, where each
row represents a single instance. All instances will be made publicly available.

4.2 Comparison of Results

We used the MIP-solvers Gurobi [8] and Cplex [6] as well as CP solver Chuffed [5]
to solve the instances using our models presented in Sect. 2 within a runtime limit
of 1 h. Our initial experiments showed that the ILP and the network flow models
obtained best results and therefore in this paper we present only the results of
these models. As our models use a large number of variables and constraints
for both the linear model and the network flow model we configured Cplex and
Gurobi to use the barrier algorithm to solve the root linear relaxation instead of
the standard simplex algorithm.

For the evaluation of our simulated annealing approach we conducted ten
repeated experiments (as it is a stochastic approach) for each instance under a
time limit of 1 h.

Table 1 summarizes the best solution costs achieved by the evaluated solution
approaches. Columns 2–3 display the size parameters for each instance, whereas
Columns 4–11 show from left to right: The best solution cost achieved by Cplex
with the linear model (cplex lin), Cplex with the network flow model (cplex net),
Cplex with the network flow model from [3] (cplex bc), Gurobi with the linear
model (gurobi lin), Gurobi with the network flow model (gurobi net), Gurobi
with the network flow model from [3], the average solution costs achieved over
the 10 repeated runs with simulated annealing (SA avg), and the overall best
solution cost achieved with simulated annealing (SA best).

We can see in the results shown in Table 1 that Cplex is able to solve larger
instances than Gurobi and the linear model produces better results for some
of the larger problems than the network flow model. However, for the largest
instances (Instances 11–12, Instances 17–20) both Cplex and Gurobi fail to find
a solution in the given time or only find solutions far away from the best bounds
produced with SA. In these cases the simulated annealing approach produced
the best results. However, simulated annealing could not produce competitive
results for smaller instances compared to exact results. Furthermore, we see that

416 J. Preininger et al.

Table 1. Summary of the best solution costs for evaluated approaches

Instance Jobs Machines cplex lin cplex net cplex bc gurobi lin gurobi net gurobi bc SA avg SA best

Instance 1 100 20 100 100 100 100 100 100 100 100

Instance 2 100 20 100 100 100 100 100 100 100 100

Instance 3 500 20 379 379 379 379 379 379 370.5 372

Instance 4 500 20 382 382 382 382 382 382 374.0 375

Instance 5 1000 20 410 410 297 410 410 410 392.9 395

Instance 6 1000 20 408 408 408 408 408 408 393.4 397

Instance 7 2000 20 802 688 802 735 768.0 772

Instance 8 2000 20 799 302 799 738 772.8 778

Instance 9 5000 20 1242 358 296 1179.5 1185

Instance 10 5000 20 1272 346 278 1200.7 1212

Instance 11 10000 20 384 305 1673.5 1679

Instance 12 10000 20 350 301 1662.2 1670

Instance 13 1000 50 909 519 846 909 818 781 885.5 888

Instance 14 1000 50 926 511 857 926 817 900.4 905

Instance 15 2000 50 1279 650 430 1235.9 1239

Instance 16 2000 50 1210 675 460 1272.2 1277

Instance 17 5000 50 786 570 1991.8 1996

Instance 18 5000 50 814 541 1986.8 1997

Instance 19 10000 50 2735.6 2743

Instance 20 10000 50 578 2758.3 2771

results produced by the network flow formulation from [3] can be improved by
the network flow reformulation in this paper for the large majority of the larger
instances. Actually, for instances 11–12, 17–18, and instance 20 the new network
flow model was the only exact technique that was able to produce valid solutions
within the runtime.

Table 2 further provides a summary of the best upper bounds achieved by the
evaluated MIP solvers. Columns 4–9 show from left to right: The best bound
achieved by Cplex with the linear model (cplex lin), Cplex with the network
flow model (cplex net), Cplex with the network flow model from [3] (cplex bc),
Gurobi with the linear model (gurobi lin), Gurobi with the network flow model
(gurobi net), and Gurobi with the network flow model from [3] (gurobi bc).
Additionally, Columns 10–12 in Table 2 display the bound achieved by solving
the initial linear programming relaxation using the linear model (relax lp), the
network flow model (relax net lp), and the network flow model from [3] (relax
bc lp).

The results displayed in Table 2 show that although solving the LP-relaxation
of the direct linear model only gives a trivial bound for all instances, the final
bound produced with this model within the runtime limit of 1 h can provide
good results for many instances and sometimes even better bounds than the
network flow model. The LP-relaxation bound produced with the network flow
model on the other hand seems to be providing an optimal bound for instances
1–8. For instances 9–10 and 13–16 the LP-relaxation of the network flow model
also provided the best bound results although we could not verify that the LP-
bound is optimal. These results indicate that our network flow model can be
very useful to provide strong bounds for this problem, especially as solving the

Modeling and Solving the K-Track Assignment Problem 417

Table 2. Summary of the best upper bounds achieved by the evaluated integer linear
programming approaches.

Instance Jobs Machines cplex lin cplex net cplex bc gurobi lin gurobi net gurobi bc relax lp relax net lp relax bc lp

Instance 1 100 20 100 100 100 100 100 100 100 100 100

Instance 2 100 20 100 100 100 100 100 100 100 100 100

Instance 3 500 20 379 379 379 379 379 379 500 379 379

Instance 4 500 20 382 382 382 382 382 382 500 382 382

Instance 5 1000 20 410 410 410 410 410 410 1000 410 410

Instance 6 1000 20 408 408 408 408 408 408 1000 408 408

Instance 7 2000 20 802 802 802 802 802 802 2000 802 802

Instance 8 2000 20 799 799 799 799 2000 799 799

Instance 9 5000 20 1242 5000 2004 1242 5000 1242

Instance 10 5000 20 1272 5000 2053 1272 5000 1272

Instance 11 10000 20 10000 10000 10000 10000 10000

Instance 12 10000 20 10000 10000 10000 10000 10000

Instance 13 1000 50 909 909 909 909 909 909 1000 909 909

Instance 14 1000 50 926 926 926 926 926 926 1000 926 926

Instance 15 2000 50 1279 2000 1974 1279 2000 1279

Instance 16 2000 50 1320 2000 1975 1320 2000 1320

Instance 17 5000 50 5000 5000 5000 2108 5000

Instance 18 5000 50 5000 5000 5000 5000 5000

Instance 19 10000 50 10000 10000 10000 10000 10000

Instance 20 10000 50 10000 10000 10000 10000 10000

Table 3. Summary of the best solutions and upper bounds found.

Instance |J| |M | best ub

Instance 1 100 20 100 100

Instance 2 100 20 100 100

Instance 3 500 20 379 379

Instance 4 500 20 382 382

Instance 5 1000 20 410 410

Instance 6 1000 20 408 408

Instance 7 2000 20 802 802

Instance 8 2000 20 799 799

Instance 9 5000 20 1242 1242

Instance 10 5000 20 1272 1272

Instance |J| |M | best ub

Instance 11 10000 20 1679 1784

Instance 12 10000 20 1670 1780

Instance 13 1000 50 909 909

Instance 14 1000 50 926 926

Instance 15 2000 50 1279 1279

Instance 16 2000 50 1277 1320

Instance 17 5000 50 1996 2108

Instance 18 5000 50 1997 2086

Instance 19 10000 50 2743 2893

Instance 20 10000 50 2771 2948

LP-relaxation is a tractable problem. We further see that the new network flow
reformulation is able to provide good LP-relaxation bounds within 1 h for four
additional instances compared to the existing network flow model from [3].

In Table 3 we summarize our overall best solutions found for each instance. To
find upper bounds for the large instances (Instances 11–12 and 17–20) we gave
the solver for the LP-relaxation more time. Upper bounds for these solutions
could be found within 10 h.

4.3 Comparison to the Literature

To compare our simulated annealing approach with the state of the art in the
literature, we used the benchmark instances provided by [13] and compared with

418 J. Preininger et al.

their results. To the best of our knowledge this paper reports best existing results
for this problem. Rossi et al. [13] consider the spread time variant of the k-track
assignment problem (operational fixed job scheduling problem) which is a more
general problem. As described in Sect. 3 we adapted our simulated annealing
model to incorporate violations of the spread time constraint with a M penalty
similar to the violation of the overlapping constraint. Therefore, our simulated
annealing approach can be used both for the k-track assignment problem and
the operational fixed job scheduling problem [13].

The approach of [13] features a greedy algorithm as well as a hybrid grouping
genetic algorithm (GGA) as a metaheuristic which starts with the solution of
the greedy algorithm.

Table 4 illustrates the results for the different large sized instances from [13].
In Table 4 n refers to the number of jobs, m to the number of machines and
r, p, w are parameters that change the distributions of job start- and endtimes
as well as job weights and are given in detail in [13]. The results in “GGA
average” are taken directly from [13] while the results in “SA average” were
computed via our simulated annealing approach with a time limit of 30 s. In
contrast the results of GGA reported in [13] are obtained using no time limit,
but the algorithm is stopped when no further improvements can be made, which
for their larger instances with 500 jobs is reached after approximately 2 min. To
evaluate the metaheuristic approach for these new instances we further have to
configure the initial and final temperature as the parameters of our algorithm.
Based on some manual tuning attempts we selected a Tinit value of 103 and
a Tfinal value of 10−3. Starting from these default values, we further used the
state-of-the-art parameter tuning software SMAC [11] to automatically tune all
of the parameters (Parameter value ranges were restricted to Tinit ∈ [1, 106] and
Tfinal ∈ [10−5, 1]. The tuning process was then started with the metaheuristic
and all large instances from [13] as the training set. We set the runtime limit for
each individual run to 2 min and set the overall wallclock time limit to 2 days.
The resulting parameter configuration which we used for our final experiments
is as follows: Tinit = 102.4477457159156693 and Tfinal = 10−0.16850206022148662.

While for smaller instances with only 250 jobs and 20 machines, the GGA
gives slightly better results on average than the simulated annealing approach,
SA starts to give better results for larger instances (500 jobs and/or 50 machines)
and as we can see from Table 4 SA gives better results than GGA for 23 large
instances, whereas GGA gives better results for 13 large instances. In general
we can conclude our SA gives very good results for large instances compared to
the existing state-of-the-art approach.

4.4 The Deployment of Our Method on Real-Life Scenarios

In the industrial manufacturing of cleaning supplies the production planning
process includes scheduling jobs for producing the material as well as jobs for
filling this material into household-sized bottles. During the time the latter jobs
are running the material has to be stored in storage boilers. At any given time
there are only a certain number of these boilers available and certain boilers are

Modeling and Solving the K-Track Assignment Problem 419

Table 4. Comparing GGA with SA on instances with spread time constraint

n m r p w GGA average SA average

250 10 1 1 1 3901.65 3634.7

250 10 1 1 2 6069.25 5859.05

250 10 1 1 3 30889.9 29872.75

250 10 1 2 1 5251.2 4748.95

250 10 1 2 2 4665.9 4452.3

250 10 1 2 3 26557.15 25348.8

250 10 2 1 1 4467.85 4173.45

250 10 2 1 2 6066.9 5865.3

250 10 2 1 3 33414.65 32282.3

250 10 2 2 1 5217.5 4743.75

250 10 2 2 2 5015.5 4771.05

250 10 2 2 3 27082.8 25927.5

500 10 1 1 1 5185.8 5624.95

500 10 1 1 2 9962.85 7706.65

500 10 1 1 3 52538.7 42943.85

500 10 1 2 1 5556.85 8606

500 10 1 2 2 6366.85 6752.1

500 10 1 2 3 35916.55 37915.9

500 10 2 1 1 4596.2 5994.8

500 10 2 1 2 8432.65 7043.65

500 10 2 1 3 41272.75 38324

500 10 2 2 1 5576.35 7203.4

500 10 2 2 2 5847.8 6006.85

500 10 2 2 3 33418.4 33222.15

n m r p w GGA average SA average

250 20 1 1 1 5922.1 2523.15

250 20 1 1 2 7856.45 13827.05

250 20 1 1 3 43476.3 77100.65

250 20 1 2 1 9224.45 4724.25

250 20 1 2 2 6972.55 11987.5

250 20 1 2 3 38962.55 61233.15

250 20 2 1 1 6236.7 2533.7

250 20 2 1 2 7224.25 13989.6

250 20 2 1 3 39236.35 77821.35

250 20 2 2 1 7833.75 3833.1

250 20 2 2 2 6244.25 10143.75

250 20 2 2 3 34657.9 56183.85

500 20 1 1 1 10013.95 3588.05

500 20 1 1 2 10663.75 16672.15

500 20 1 1 3 68481.3 88965

500 20 1 2 1 11006.3 8579.35

500 20 1 2 2 10170.95 13134.45

500 20 1 2 3 60385.65 76302.8

500 20 2 1 1 9040.75 3440.35

500 20 2 1 2 13153.05 15856.7

500 20 2 1 3 66183.85 84577.05

500 20 2 2 1 10548.75 7798.7

500 20 2 2 2 8741.1 13110.25

500 20 2 2 3 51625.95 68031.75

only suitable for certain materials. Hence in a subsequent planning step these
scheduled jobs with given start and end times then have to be assigned to these
storage boilers. This assignment problem can then be reformulated as the k-track
assignment problem we studied in this paper.

Our simulated annealing approach has been adopted by our industry partners
and is now used in their production planning process. SA has been already
used very successfully in several real-life scenarios that include 24–66 jobs and
22 machines (these instances will also be made publicly available), where it
could provide optimal solutions in less than a second. Moreover, the simulated
annealing approach is very flexible in practice as it guarantees to give a solution
after any given running time and adapts easily to new instances of different sizes.

5 Conclusion

We investigated the real-life problem of assigning already scheduled jobs to fill
bottles with cleaning supplies to storage boilers and identified it as a variant of
the well studied problem of k-track assignment or operational fixed job schedul-
ing (OFJSP). We compared results of state-of-the-art solvers for the ILP for-
mulation as well as a new network flow formulation of the problem for gener-
ated instances and illustrated that the proposed network flow model is useful

420 J. Preininger et al.

to calculate upper bounds for larger instances. In addition we proposed a simu-
lated annealing approach which gives good results when the instances cannot be
solved in reasonable time by exact methods. Our simulated annealing was also
compared with the state-of-the-art approach from the literature on the existing
instances for the operational fixed job scheduling problem. It turns out that the
simulated annealing approach improves this state-of-the-art approach on bigger
instances and is very flexible and therefore suitable to be used in practice.

A further investigation of instances with various further parameter configu-
rations and investigation of hybrid methods remains as an interesting research
topic for the future.

Acknowledgments. The financial support by the Austrian Federal Ministry for Digi-
tal and Economic Affairs, the National Foundation for Research, Technology and Devel-
opment and the Christian Doppler Research Association is gratefully acknowledged.

References

1. Angelelli, E., Bianchessi, N., Filippi, C.: Optimal interval scheduling with a
resource constraint. Comput. Oper. Res. 51, 268–281 (2014)

2. Arkin, E.M., Silverberg, E.B.: Scheduling jobs with fixed start and end times.
Discret. Appl. Math. 18, 1–8 (1987)

3. Barcia, P., Cerdeira, J.O.: The k-track assignment problem on partial orders. J.
Sched. 8, 135–143 (2005)

4. Brucker, P., Nordmann, L.: The k-track assignment problem. Computing 52, 97–
122 (1993)

5. Chu, G.: Improving combinatorial optimization. Ph.D. thesis, University of Mel-
bourne, Australia (2011). http://hdl.handle.net/11343/36679

6. IBM Corporation: IBM ILOG CPLEX 12.10 User’s Manual (2019)
7. Eliiyi, D., Azizoglu, M.: Heuristics for operational fixed job scheduling problems

with working and spread time constraints. Int. J. Prod. Econ. 132, 107–121 (2011)
8. Gurobi Optimization: Gurobi Optimizer Reference Manual (2020). http://www.

gurobi.com
9. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.

Science 220(4598), 671–680 (1983)
10. Kovalyov, M., Ng, C., Cheng, T.: Fixed interval scheduling: models, applications,

computational complexity and algorithms. Eur. J. Oper. Res. 178, 331–342 (2007)
11. Lindauer, M., Eggensperger, K., Feurer, M., Falkner, S., Biedenkapp, A., Hutter,

F.: SMAC v3: Algorithm Configuration in Python. GitHub (2017)
12. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:

towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

13. Rossi, A., Singh, A., Sevaux, M.: A metaheuristic for the fixed job scheduling
problem under spread time constraints. Comput. Oper. Res. 37(6), 1045–1054
(2010)

14. Zhou, H., Bai, G., Deng, S.: Optimal interval scheduling with nonidentical
given machines. Clust. Comput. 22(3), 1007–1015 (2019). https://doi.org/10.1007/
s10586-018-02892-z

http://hdl.handle.net/11343/36679
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/s10586-018-02892-z
https://doi.org/10.1007/s10586-018-02892-z

Instance Space Analysis
for the Generalized Assignment Problem

Tobias Geibinger2(B) , Lucas Kletzander1,2 , and Nysret Musliu1,2

1 Christian Doppler Laboratory for Artificial Intelligence and Optimization
for Planning and Scheduling, TU Wien, Vienna, Austria

2 Databases and Artificial Intelligence Group, Institute for Logic and Computation,
TU Wien, Vienna, Austria

{tgeibing,lkletzan,musliu}@dbai.tuwien.ac.at

Abstract. In this work, we consider the well-studied Generalized
Assignment Problem and investigate the performance of several meta-
heuristic methods. To obtain insights on strengths and weaknesses of
these solution approaches, we perform Instance Space Analysis on the
existing instance types and propose a set of features describing the hard-
ness of an instance. This is of interest since the existing benchmark set is
dated and rather limited and the known instance generators might not
be fully representative. Our analysis for metaheuristic methods reveals
that this is indeed the case and finds several gaps, which we fill with
newly generated instances thus adding diversity and providing a new
benchmark instance set. Furthermore, we analyze the impact of problem
features on the performance of the methods used and identify the most
important ones.

1 Introduction

The goal of the Generalized Assignment Problem (GAP) [24] is to find an assign-
ment of n tasks to m agents such that each task is assigned, no agent exceeds
their capacity, and the overall cost is minimal. The GAP is an important problem
that arises in several domains including scheduling, telecommunication, facility
location and transportation.

This problem has been extensively investigated in the literature and differ-
ent exact and heuristic approaches have been proposed (see reviews of existing
methods [20,34]). The existing approaches have been evaluated mainly on the
small set of existing benchmark instances. Although various methods exist for
this problem, optimal solutions are still not known for all instances and there is
no extensive study that analyses the strengths and weaknesses of methods on a
larger set of instances. Therefore, there is a need for a deep investigation of the
performance of various state-of-the-art solving paradigms and a critical study
that would enable the generation of a large set of instances with a sufficient
diversity. This is very important to get insights on strengths and weaknesses of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 421–435, 2023.
https://doi.org/10.1007/978-3-031-26504-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_30&domain=pdf
http://orcid.org/0000-0002-0856-7162
http://orcid.org/0000-0002-2100-7733
http://orcid.org/0000-0002-3992-8637
https://doi.org/10.1007/978-3-031-26504-4_30

422 T. Geibinger et al.

various solution approaches. Moreover, the identification of features that char-
acterize this problem well and have an impact on the performance of solution
methods has not been investigated before.

The main contributions of this paper are:

– We implement and compare various metaheuristic approaches based on Sim-
ulated Annealing, Tabu Search and Min-Conflicts heuristics.

– We propose for the first time an extensive set of features to characterize GAP
instances.

– Based on initial Instance Space Analysis, we generate more than 1700 new
instances to better cover the instance space for this problem.

– We perform a deep Instance Space Analysis, and based on new instances
and features, we investigate the performance of solvers in different regions
of the instance space. Our analysis gives interesting insights regarding the
importance of features, and strengths and weaknesses of solvers in the instance
space.

2 Problem Definition

Formally, the GAP is given by the following MIP formulation [31,33]:

min
m∑

i=1

n∑

j=1

cijxij (1)

n∑

j=1

aijxij ≤ bi 1 ≤ i ≤ m (2)

m∑

i=1

xij = 1 1 ≤ j ≤ n (3)

xij ∈ {0, 1} 1 ≤ i ≤ m, 1 ≤ j ≤ n (4)

Here cij is the cost of assigning task j to agent i, aij is the capacity used when
agent i performs task j, and bi is the capacity of agent i. For each combination of
task and agent, we have a Boolean decision variable xij indicating that task j is
assigned to agent i. Furthermore, B =

∑
1≤i≤m bi denotes the total capacity of

an instance. Constraint (2) enforces that for each agent, the sum of the usages of
all assigned tasks is less or equal than their capacity. Furthermore, it is ensured
by constraint (3) that each task is assigned to exactly one agent. The objective
(1) states that we want to minimise the sum of all costs, where the cost of the
task is determined by the agent it is assigned to. The GAP is known to be
NP-hard [7].

3 Related Work

The Generalized Assignment Problem (GAP) has been studied extensively since
it was first proposed [31]. The survey paper [20] and book chapter [34] are excel-
lent introductions to algorithms for the GAP. Besides MIP formulations, the

Instance Space Analysis for the Generalized Assignment Problem 423

most commonly found solution approaches for the GAP are either branch and
bound [2,12], column generation [25], MIP relaxation methods [6], or metaheuris-
tics and hybrid techniques [3,21,33,35].

The best known results were achieved with exact methods, for the hardest
instances most of the best bounds where found by Avella et al. [1] using a
cutting plane method. For the remaining instances, Posta et al. [22] achieved
the best known results using a reformulation of the problem into a sequence of
decision problems. Furthermore, this leaves only 12 instances from the standard
benchmark set where the optimal solution is not known. However, these upper
bounds are reached using very long computation times of up to 24 h per instance.
One upper bound is also improved by a hybrid heuristic [30] where the GPU is
used for parallelism, but still computing for more than one hour.

Instance Space Analysis (ISA) [28] is a recent methodology proposed by Smith-
Miles and co-workers [26] that offers a more objective assessment of the relative
power of algorithms by projecting the instances of a problem into a 2D plane, the
instance space, revealing relationships between properties of the instances (fea-
tures) and the performance of the algorithms, and identifying regions of good algo-
rithm performance, called footprints [29]. The method is an extension to Rice’s
algorithm selection framework [23]. Applications include blackbox optimization
[15,16], machine learning [5,17], personnel scheduling [11], course timetabling [4],
job shop scheduling [32], multi-objective optimization [37], and methods to gen-
erate new instances based on the results of the instance space analysis [14,27].

4 Algorithms

In this section, we present the solution approaches used in our evaluation. All
implementations, instances, logs, and random seeds are available online.1,2

We implemented Simulated Annealing (SA), Tabu Search (TS) and Min Con-
flicts (MC) for the GAP. SA [10], TS [8] and MC [13] are well-known metaheuris-
tics, which work by repeatedly applying small changes (moves) to a candidate
solution.

Our implementations are written in Rust 1.54.03 and employ two types of
moves. One is called shift and operates by selecting a task in the current solu-
tion and moves it to another agent. The other type of move is called swap and
exchanges the assignment of two tasks in the current solution which are not
assigned to the same agent. Whereas SA always selects a move at random, TS
explores both neighborhoods exhaustively and applies the best non-tabu move.
MC in turn selects a task at random and then performs the best move involving
this task out of the two neighborhoods.

In SA, improvements are always accepted, while worsening moves are
accepted with a certain probability that depends on the difference in the objec-
tive function and a parameter called temperature. Higher temperatures lead to
higher acceptance probabilities. Over the course of the search, the temperature
1 https://dbai.tuwien.ac.at/user/tgeibing/gap/mic22.zip.
2 https://dbai.tuwien.ac.at/user/tgeibing/gap/instances/.
3 https://www.rust-lang.org/.

https://dbai.tuwien.ac.at/user/tgeibing/gap/mic22.zip
https://dbai.tuwien.ac.at/user/tgeibing/gap/instances/
https://www.rust-lang.org/

424 T. Geibinger et al.

is slowly decreased. In order to penalize an infeasible assignment, we calculate
its overspill, which is the total amount of exceeded agent capacity. The weighted
overspill is then added to the objective value of the candidate solution. Further
parameters of SA are

– the initial and minimum temperature,
– the cooling rate, i.e., the factor with which the temperature is multiplied after

each iteration,
– shift/swap probability, i.e., the probability that shift is selected instead of

swap at each iteration,
– the overspill weight, and
– the cooling mode, which is either

• standard : From the initial temperature the cooling rate is applied until
the minimum temperature is reached,

• reheating : the temperature is reset whenever the minimum is hit, or
• dynamic: the cooling rate is determined dynamically such that the mini-

mum is reached at the end of the runtime.

As stated TS includes the concept of tabu moves, which denote moves that
are not allowed to be performed. To faciliate this the metaheuristic keeps a FIFO
list of a given length of those moves and as long as they are in the list they are
tabu. In our case, whenever a move gets performed, we include the reversing
move in the tabu list. The length of the tabu list is set as with tabu list length.

In order to escape local optima in MC, it is often combined with random
walks. Our implementation includes a parameter rw prob, which indicates the
probability that instead of the current MC move, a random walk, i.e., a com-
pletely random move, is performed.

The concrete values used for each parameter are given as follows. For SA
we set the initial temperature to 1, 000, 000, the initial temperature to 0.5, the
shift/swap probability to 20%, overspill weight was 850, 000 and dynamic was
chosen as the cooling mode. The tabu list length in TS was set to 49, 974 and rw
prob for MC was 1%. Note that the chosen tabu list length is quite large. This
is most likely the case because TS performs best on small to medium instances,
where millions of moves are performed in each run of the algorithm. Furthermore,
as stated above, we only add the directly reversing moves to the tabu list.

To configure the parameters, we considered the automated algorithm tuner
SMAC4 [9] and additional experiments with several parameter settings. SMAC
was run for several days (1, 000 target algorithm runs) on the same hardware as
was used in the evaluation and on a tuning set of 680 instances of types A–F (c.f.
Sect. 5). The runtime for each configuration was 15 min. The parameters for TS
and MC are the result of this tuning. However, it turned out that the parameter
configuration suggested by SMAC for SA performed worse than the manually
set values given above.

Our variant of SA for the GAP differs from the one given in [21] in sev-
eral ways. The first difference is that we allow moves which make the current
4 https://github.com/automl/SMAC3.

https://github.com/automl/SMAC3

Instance Space Analysis for the Generalized Assignment Problem 425

incumbent solution infeasible. Furthermore, we do not start from a feasible ini-
tial solution, but rather from a random assignment and we apply simple moves.
Similarly, in difference to the generalized swap moves described by Osman et
al. [21], our TS variant only utilizes simple shifts and swaps. We also do not
utilize ejection chains like the ones used by Yagiura et al. [35].

5 Instances

A widely used [33,35,36] set of benchmark instances for the GAP can be found
online5. Those instances have five types depending on how they were generated.
The first four types were introduced in [3] and are defined as follows:

Type A: The usages aij and costs cij are integers taken uniformly from
[5, 25] and [10, 50] respectively, and the capacity of any agent is 0.6 n

m15 + 0.4r,
where r = max 1≤i≤m

∑
1≤j≤n,σ(j)=i aij and σ(j) = min({1 ≤ i ≤ m | cij =

min({clj | 1 ≤ l ≤ m})}) for any task j.
Type B: The usages aij and costs cij are the same as for type A and the

capacity of each agent is 70% of the value given for type A.
Type C: The usages aij and costs cij are the same as for type A and the

capacity of an agent i is bi = 0.8
∑

1≤j≤n aij/m.
Type D: The usages aij are taken uniformly from [1, 100], cij = 111−aij +e

where e is an integer taken uniformly from [−10, 10], and the agent capacities
are defined as in type C.

In [36] the authors introduced a new instance type E.
Type E: aij = 1 − 10 · ln(e1) where e1 is taken uniformly from (0, 1], cij =

1000/aij − 10e2 where e2 is taken uniformly from [0, 1], and the agent capacities
are defined as in type C.

5.1 Results on Existing Instances

All our algorithms were evaluated on a cluster with 13 nodes, each having 2 Intel
Xeon CPUs E5-2650 v4 (max. 2.90 GHz, 12 physical cores, no hyperthreading),
with a memory limit 20 GB. Since the metaheuristics are not deterministic, we
ran them on each instance 3 times and chose the average of those results.

The original instance set is comprised by 57 instances in five different types as
described above. First, this is a very low number of instances, which might lead
to conclusions that depend on some specifics of the given instances. Second, our
initial tests showed that all given instances were rather easy for MIP methods
to obtain high quality solutions in a short time, which might not be the case
for instances outside of ranges imposed by the given types. To the best of our
knowledge, the best bounds for the open instances from the literature are given
by Avella et al. [1], Posta et al. [22], and Souza et al [30]. In difference to our
focus, those works aim to obtain new bounds and thus consider much longer
timeouts than we do (up to 24 h). Furthermore, the technique by Posta et al. [22]

5 http://www.al.cm.is.nagoya-u.ac.jp/∼yagiura/gap/.

http://www.al.cm.is.nagoya-u.ac.jp/~yagiura/gap/

426 T. Geibinger et al.

is not designed to obtain good solutions fast, but rather to prove new optimal
solutions. Furthermore, to the best of our knowledge these implementations are
also not publicly available.

Based on our initial experiments, we concluded that for a deep analysis of the
performance of our methods a much larger and more diverse set of instances is
needed, as the comparison of methods only on the existing set can give misleading
conclusions about the performance. Therefore, we initially extended the original
set with new instances and in the later phase we generated additional instances
based on ISA.

5.2 Extended Instance Set

At this stage, two extensions were initially made:
Type F: The usages aij and costs cij are integers taken uniformly from

[50, 500] and [10, 1000] respectively, and the capacity of an agent i is bi =
e
∑

1≤j≤n aij/m where e is taken uniformly from [0.15, 0.3]. The intention behind
this type F is to make the capacities of the agents as tight as possible such that
finding a feasible solution is already hard.

In order to increase the number of instances, we used the 57 existing instances
of types A, B, C, D and E. Furthermore, we created 570 new instances with the
same types and sizes, as well as 154 instances of type F with between 80 and
200 agents and 900 and 5000 tasks. In total, our first extended benchmark set
contains 781 instances.

6 Instance Space Analysis

To gain more insights on the distribution of the instances and the detailed
behaviour of the algorithms we use Instance Space Analysis (ISA) [28]. This
analysis was used to generate additional instances to ensure that we cover dif-
ferent regions of the instance space.

6.1 Concept and Methodology

Figure 1 shows the underlying framework of ISA. The problem space P contains
all instances of the GAP, from which we have a subset of instances I.

For these instances, we obtain meta-data in two forms. First, each instance
x ∈ I is represented by the feature vector fx ∈ F in the feature space F . Second,
a performance measure yα,x ∈ Y is obtained for each combination of an instance
x and an algorithm α ∈ A, where A is the algorithm space, representing the set of
algorithms that we use to solve the GAP. Y is the performance space measuring
the performance of algorithms.

While this could be used to directly learn a selection mapping S, ISA uses
the meta-data to compute a mapping from the feature space to a 2D instance
space, representing each instance by a point z ∈ R

2 in a way to maximize linearly
observable trends across the instance space. This step provides several benefits,

Instance Space Analysis for the Generalized Assignment Problem 427

Fig. 1. Summary of the ISA framework [28].

including the potential to assess the adequacy of the given instances and fea-
tures, allowing insights regarding which parts of the problem space P should be
explored with new problem instances. A selection mapping S can be computed
from the instance space with the additional benefit of a clear visualisation. Algo-
rithm performance can be evaluated in detail by computing footprints ϕ(yα,I),
which are regions of strong algorithm performance. The selected features and
their distribution can be investigated to gain insights into instance hardness and
diversity. The footprints can further be used to infer algorithm performance even
for unseen parts of the problem space.

The general methodology of ISA consists of six steps:

1. Collect feature values F and performance metrics Y for the set of instances
I run on the algorithm portfolio A.

2. Construct an instance space using a feature selection process on F and Y.
3. Generate machine learning predictions for automated algorithm selection.
4. Generate algorithm footprints and metrics.
5. Analyze the instance space.
6. If needed, generate additional meta-data and go to step 2.

The steps 2 to 4 are done using the Instance Space Analysis toolkit [18] avail-
able on Github6. Step 2 is performed using four main tasks: A binary measure of
good performance, bounding and scaling are applied first. Then a relevant sub-
set of features that explain algorithm difficulty and eliminate redundancies is
chosen. Next a projection to the 2D instance space that maximizes linear trends
in features and algorithms is computed. Finally, bounds for the instance space
can be computed.

6 https://github.com/andremun/InstanceSpace.

https://github.com/andremun/InstanceSpace

428 T. Geibinger et al.

Step 3 uses Support Vector Machines trained for each algorithm that take
the coordinates of an instance in the instance space and map them to either good
or bad performance. Step 4 aims at finding clusters of high density with good
instances for each algorithm using a method called Triangulation with Removal
of Areas with Contradicting Evidence (TRACE).

6.2 Performance Measure

As stated in the previous section, an integral part of ISA is the performance
space which requires a measurement of performance for each algorithm on each
instance. A natural choice for this measurement in our case would be the cost
of the found solution. However, the metric is does not take the evolution of the
solution quality over the running time into account. The area score which is
used in the MiniZinc Challenge7 to break ties, gives exactly this information.
Our (slightly modified) definition of the area score is given as follows

area(a, i) = 0.25 · solTime(a, i, 1)

+ 0.5 ·
∑

1≤j≤n+1 solCost(a, i, j − 1) · (solTime(a, i, j) − solTime(a, i, j − 1))
UB(i) − LB(i) + 1

+ 0.25 · totalTime(a, i),

where

– n is the number of solutions found by algorithm a on instance i,
– solTime(a, i, j) denotes the time when a found the j-th solution on i

(solTime(a, i, n + 1) = totalTime),
– solCost(a, i, j) is the cost of the j-th solution (solCost(a, i, 0) = UB(i)),
– totalTime(a, i) is total time needed by algorithm a on i,
– UB(i) and LB(i) denote the maximum and minimum cost of any solution

found by any algorithm for i.

Since a minimal area score does not always imply minimal cost, we need to
combine both notions for our measurement. To achieve this we first introduce
some additional notation. By minCost(i) and maxArea(i), we denote the best
cost and respectively worst area score of any algorithm for instance i. The cost of
algorithm a on instance i is in turn given by cost(a, i). Now, combing both cost
and area score we obtain absScore(a, i) = cost(a, i) − minCost(i) + area(a,i)

maxArea(i) ,
where any improvement in cost weights higher than the area score. In order to ease
comparison of different instances with costs of varying magnitude, we additionally
scale the score from zero to one using the following exponential function

relScore(a, i) =

{
1.001−absScore(a,i) if a found at least one solution
0 otherwise.

Note that this also takes care of the cases where an algorithm did not produce
any solution. In our analysis, we consider the performance of an algorithm a on
instance i “good” if relScore(a, i) > 0.999.
7 https://www.minizinc.org/challenge.html.

https://www.minizinc.org/challenge.html

Instance Space Analysis for the Generalized Assignment Problem 429

6.3 Features

To apply Instance Space Analysis, we need to define features which in turn need
to be able to explain the hardness of instances and the different performances
of algorithms to obtain useful results from the analysis. While a subset of six
features is eventually used for the instance space, we define a larger set of 78
potentially useful features, using three categories.

Direct Instance Features. The following 15 features can be directly obtained
from the parameters of an instance.

– Number of tasks n.
– Number of agents m.
– The number of possible assignments n × m.
– The minimum, maximum, median and average task cost.
– The minimum, maximum, median and average task usage.
– The minimum, maximum, median and average agent capacity.

Advanced Instance Features. Based on a closer observation of potential hard
instances, we identified 56 further features.

– The ratio of agents to tasks given by n
m .

– The variance and interquartile range of all agent capacities, task costs and
task usages.

– The minimum, maximum, median, average, variance and interquartile range
of the relative capacities, i.e., of the set {bi/

∑
1≤j≤m bj | 1 ≤ i ≤ m}.

– The minimum, maximum, median, average, variance and interquartile range
of the relative task usages, i.e., of the set {aij/bi | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

– The min, max, median, average, variance and interquartile range of
minTaskCostUsageRatio, maxTaskCostUsageRatio, medTaskCostUsageRatio
and avgTaskCostUsageRatio, which for a task j are given by the minimum,
maximum, median and average of {cij/aij | 1 ≤ i ≤ m} respectively.

For the remaining advanced features, we are going to make use of the lower
bound assignment of an instance. This assignment is obtained by assigning each
task an agent where it has minimal cost ignoring capacities (ties are broken by
taking the smaller agent) and its cost is a lower bound for the optimal cost
for the instance. Let yij represent such a lower bound assignment. Then for an
agent i, we define its overusage as oi = max{∑

1≤j≤n aijyij − bi, 0} and its slack
as si = max{∑

1≤j≤n bi − aijyij , 0}. Based on those notions, we can define the
following additional features.

– The relative amount of overusage in the lower bound assignment
relLbOverusage =

∑
1≤i≤m oi / B.

– The relative amount of slack in the lower bound assignment
relLbSlack =

∑
1≤i≤m si / B.

– The min, max, median, average, variance and interquartile range of
relLbAgentOverusage which for an agent i is given by oi/bi.

– The min, max, median, average, variance and interquartile range of v
relLbAgentSlack which for an agent i is given by si/bi.

430 T. Geibinger et al.

Fig. 2. Type and feature distribution for the extended instance set on metaheuristics

Model Features. We use MIP and CP formulations of GAP in MiniZinc [19]
to obtain further features from the FlatZinc conversion:

– Number of Boolean and integer CP variables,
– Number of Boolean CP constraints,
– Number of evaluated reified CP constraints,
– Number of MIP integer variables and constraints.

6.4 Initial Instance Space Analysis

The initial Instance Space Analysis was performed on the extended set of 781
instances belonging to the types A to F, using fifteen minutes per run. Parame-
ters were mostly set to the defaults, except that we do not bound outliers in the
data and utilize MATLAB’s own SVM implementation. Furthermore, we restrict
the feature selection to six features.

The ISA gives the following projection (the prime indicates the normalized
values of the features):

(
z1
z2

)
=

⎛
⎜⎜⎜⎜⎜⎝

−0.635 1.5615
−0.6347 0.0499
0.606 −0.18

−0.0216 −0.6918
−0.6509 −0.3889
0.1744 0.2453

⎞
⎟⎟⎟⎟⎟⎠

ᵀ

·

⎛
⎜⎜⎜⎜⎜⎝

maxTaskCost ′

maxRelTaskUsage′

avgCapacity′

medRelCapacity′

avgMaxTaskCostUsage′

minRelLbAgentOverusage′

⎞
⎟⎟⎟⎟⎟⎠

(5)

Instance Space Analysis for the Generalized Assignment Problem 431

Figure 2 shows the results of the initial analysis regarding the selection of fea-
tures and the resulting distribution of the instances in the instance space. Types
A, B, C again form a combined cluster that is however somewhat interwoven
with D. E and F are again rather clearly separated from the rest. The effect
of the new instances clustering together can again be observed as well as the
features mostly focusing on separating the types.

The portfolio footprint is again very segmented even though SA is chosen for
most types.

6.5 New Instance Generator

According to the problems revealed by the initial ISA, we propose a new instance
generator that increases diversity by filling the gaps in the instance space and
filling the boundary regions between the types to get a more precise picture
of the algorithm behaviour. This is done by mixing the different construction
approaches and unifying different selection boundaries:

– Usage aij : Random choice of either integers taken uniformly from
[umin, umax] where umin is randomly chosen in [1, 50] and umax randomly
in [max{25, umin + 10}, 500] (subtype A covering A, B, C, D, F), or the dis-
tribution from type E (subtype E)

– Cost cij : Random choice of either integers taken uniformly from [10, cmax]
where cmax is randomly chosen in [50, 1000] (subtype A covering A, B, C, F),
or cij = max{1, umax − aij + e} where e is an integer taken uniformly from
[−10, 10] (subtype D), or the distribution from type E (subtype E)

– Capacity bi: Random choice of either the capacity function from type A
multiplied with a factor uniformly chosen from [0.7, 1] (subtype A cover-
ing A, B), or the capacity function from type F where e is uniformly chosen
from [cmin, cmax] with cmin uniformly chosen from [0.15, 0.8] and cmax from
[max{0.3, cmin}, 0.8] (subtype C covering C, D, E, F)

An instance is now generated as follows:

– Randomly choose a subtype for usage, cost, and capacity, leading to one of
the 12 subtypes AAA, AAC, ADA, ADC, AEA, AEC, EAA, EAC, EDA,
EDC, EEA, EEC.

– Randomly choose boundaries for the whole instance based on the subtypes.
– Randomly choose the individual values for agents and tasks within the pre-

viously selected boundaries.

Both the extended instance set using the types A to F and the set of 1011
new instances as well as the new generator are publicly available online (See
footnote 2).

6.6 Instance Space Analysis for the Full Instance Set

This section describes the analysis on the total set of instances, combining the
new instance set with 1011 instances and the extended old set with 781 instances.

432 T. Geibinger et al.

Fig. 3. Type and feature distribution and portfolio footprint of the metaheuristics for
the full instance set

The ISA produced the following projection and set of features for our meta-
heuristic approaches:

(
z1
z2

)
=

⎛
⎜⎜⎜⎜⎜⎝

−0.2883 −0.7266
−0.2031 −0.3703
−0.0443 −0.3273
0.378 −0.2846

−0.652 −0.1612
−1.0177 0.185

⎞
⎟⎟⎟⎟⎟⎠

ᵀ

·

⎛
⎜⎜⎜⎜⎜⎝

maxRelTaskUsage′

capacityVariance′

maxRelCapacity′

medMinTaskCostUsageRatio′

minAgentLbRelOverusage′

nrCpIntVars′

⎞
⎟⎟⎟⎟⎟⎠

(6)

Figure 3 shows the distribution of instances and features as well as the foot-
prints of the metaheuristic portfolio in the new instance space. Note that the
projection is now again different, but the instance space is still nicely covered.
SA also still performs well for most of the instances, but its footprint is now
completely connected. The footprint of TS now also covers a large part of the
top of the instance space, which consists completely of instances created by the
new generator. However, between the TS and SA footprints there is an area that
is either covered by no footprint or by MC but in a very segmented way.

Regarding the selected features, again there is one main axis using a size
measure, this time the number of CP integer variables, and the max relative
capacity. This axis corresponds to the one using the number of tasks and the
median relative capacity for the exact methods. Present again, but more closely
aligned with the first main axis this time, is the median minTaskCostUsageRatio.

Instance Space Analysis for the Generalized Assignment Problem 433

The median relative task usage is replaced by the max, which forms an axis
together with the capacity variance (instead of the IQR) with lower values on
the top to top right, and higher values on the bottom to bottom left (even
though the highest values for capacity variance are more distributed). This axis
also corresponds the most to the differences in the algorithm portfolio. Finally,
min relLbAgentOverusage is distributed along the z1 axis.

The analysis shows that despite the different set of methods, five out of six
chosen features are very similar between the two analyses, strengthening the
impression that versions of these selected features are important to explain the
performance of different methods and the hardness of certain instances.

7 Conclusion

In conclusion, we presented a comparison of various metaheuristics for the Gen-
eral Assignment Problem, showing that we can provide high quality solutions
for the existing instance set in short time. However, the small size and low diver-
sity make it difficult to draw insightful conclusions regarding the performance of
various approaches. Therefore, we extended the dated benchmark instance set
in various ways, using Instance Space Analysis to guide the development of a
diverse new set of instances that is not clustered into distinct individual classes
with very similar properties. For this purpose, we proposed several new instance
features with the aim to describe instance hardness. We identified several fea-
tures that are important for algorithm performance, In particular, our experi-
ments have shown that features describing the distribution of agent capacities
and task costs, as well the ratio between cost and usage, correlate well with the
hardness of an instance. While our experiments have shown that most methods
have their regions of strengths and weaknesses and that Simulated Annealing
gives best results among metaheuristic approaches.

As the main aim of this paper was to generate new instances and identify
important features, we focused on meta-heuristic solution methods that obtain
good results in a short time. For future work, it would be interesting to investi-
gate and compare more advanced exact approaches on the new set of instances.

Acknowledgments. This work has been funded by the Austrian security research
programme KIRAS of the Federal Ministry of Agriculture, Regions and Tourism
(BMLRT). Furthermore, the financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for Research, Technology and
Development and the Christian Doppler Research Association is gratefully acknowl-
edged.

References

1. Avella, P., Boccia, M., Vasilyev, I.: A computational study of exact knapsack sep-
aration for the generalized assignment problem. Comput. Optim. Appl. 45(3),
543–555 (2010)

434 T. Geibinger et al.

2. Cattrysse, D., Degraeve, Z., Tistaert, J.: Solving the generalised assignment prob-
lem using polyhedral results. Eur. J. Oper. Res. 108(3), 618–628 (1998)

3. Chu, P.C., Beasley, J.E.: A genetic algorithm for the generalised assignment prob-
lem. Comput. Oper. Res. 24(1), 17–23 (1997)

4. De Coster, A., Musliu, N., Schaerf, A., Schoisswohl, J., Smith-Miles, K.: Algorithm
selection and instance space analysis for curriculum-based course timetabling. J.
Sched. 1–24 (2021)

5. Fernandes, L.H.d.S., Lorena, A.C., Smith-Miles, K.: Towards understanding clus-
tering problems and algorithms: an instance space analysis. Algorithms 14(3), 95
(2021)

6. Fisher, M.L.: The lagrangian relaxation method for solving integer programming
problems. Manag. Sci. 50(12 supplement), 1861–1871 (2004)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

8. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Comput. Oper. Res. 13(5), 533–549 (1986)

9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

11. Kletzander, L., Musliu, N., Smith-Miles, K.: Instance space analysis for a personnel
scheduling problem. Ann. Math. Artif. Intell. 89(7), 617–637 (2021)

12. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, Hoboken (1990)

13. Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Solving large-scale constraint-
satisfaction and scheduling problems using a heuristic repair method. In: Proceed-
ings of the 8th National Conference on Artificial Intelligence (AAAI 1990), pp.
17–24. AAAI Press/The MIT Press (1990)

14. Muñoz, M.A., Smith-Miles, K.: Generating custom classification datasets by tar-
geting the instance space. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion, pp. 1582–1588 (2017)

15. Muñoz, M.A., Smith-Miles, K.: Generating new space-filling test instances for con-
tinuous black-box optimization. Evol. Comput. 28(3), 379–404 (2020)

16. Muñoz, M.A., Smith-Miles, K.A.: Performance analysis of continuous black-box
optimization algorithms via footprints in instance space. Evol. Comput. 25(4),
529–554 (2017)

17. Muñoz, M.A., Villanova, L., Baatar, D., Smith-Miles, K.: Instance spaces for
machine learning classification. Mach. Learn. 107(1), 109–147 (2018)

18. Muñoz, M.A., Smith-Miles, K.: Instance space analysis: a toolkit for the assessment
of algorithmic power (2020)

19. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

20. Öncan, T.: A survey of the generalized assignment problem and its applications.
INFOR: Inf. Syst. Oper. Res. 45(3), 123–141 (2007)

21. Osman, I.H.: Heuristics for the generalized assignment problem: simulated anneal-
ing and tabu search approaches. OR Spektrum 17, 211–255 (1995)

https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38

Instance Space Analysis for the Generalized Assignment Problem 435

22. Posta, M., Ferland, J.A., Michelon, P.: An exact method with variable fixing for
solving the generalized assignment problem. Comput. Optim. Appl. 52(3), 629–644
(2012)

23. Rice, J.: The algorithm selection problem. In: Advances in Computers, vol. 15, pp.
65–118. Elsevier (1976)

24. Ross, G.T., Soland, R.M.: A branch and bound algorithm for the generalized assign-
ment problem. Math. Program. 8(1), 91–103 (1975)

25. Savelsbergh, M.: A branch-and-price algorithm for the generalized assignment
problem. Oper. Res. 45(6), 831–841 (1997)

26. Smith-Miles, K., Baatar, D., Wreford, B., Lewis, R.: Towards objective measures
of algorithm performance across instance space. Comput. Oper. Res. 45, 12–24
(2014)

27. Smith-Miles, K., Bowly, S.: Generating new test instances by evolving in instance
space. Comput. Oper. Res. 63, 102–113 (2015)

28. Smith-Miles, K., Muñoz, M.A.: Instance space analysis for algorithm testing:
methodology and software tools (2021)

29. Smith-Miles, K., Tan, T.T.: Measuring algorithm footprints in instance space. In:
2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)

30. Souza, D.S., Santos, H.G., Coelho, I.M.: A hybrid heuristic in GPU-CPU based
on scatter search for the generalized assignment problem. Procedia Comput. Sci.
108, 1404–1413 (2017)

31. Srinivasan, V., Thompson, G.L.: An algorithm for assigning uses to sources in a
special class of transportation problems. Oper. Res. 21(1), 284–295 (1973)

32. Strassl, S., Musliu, N.: Instance space analysis and algorithm selection for the job
shop scheduling problem. Comput. Oper. Res. 141, 105661 (2022)

33. Woodcock, A.J., Wilson, J.M.: A hybrid tabu search/branch & bound approach to
solving the generalized assignment problem. Eur. J. Oper. Res. 207(2), 566–578
(2010)

34. Wu, W., Yagiura, M., Ibaraki, T.: Generalized assignment problem. In: Hand-
book of Approximation Algorithms and Metaheuristics, Second Edition, Volume
1: Methologies and Traditional Applications, pp. 713–736. Chapman and Hall/CRC
(2018)

35. Yagiura, M., Ibaraki, T.: Recent metaheuristic algorithms for the generalized
assignment problem. In: Proceedings of the International Conference on Informat-
ics Research for Development of Knowledge Society Infrastructure (ICKS 2004),
pp. 229–237 (2004)

36. Yagiura, M., Yamaguchi, T., Ibaraki, T.: A variable depth search algorithm with
branching search for the generalized assignment problem. Optim. Methods Softw.
10(2), 419–441 (1998)

37. Yap, E., Munoz, M.A., Smith-Miles, K., Liefooghe, A.: Instance space analysis of
combinatorial multi-objective optimization problems. In: 2020 IEEE Congress on
Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

Decision Support for Agri-Food Supply
Chains in the E-Commerce Era: The
Inbound Inventory Routing Problem

with Perishable Products

D. Cuellar-Usaquén1, C. Gomez1, M. Ulmer2, and D. Álvarez-Mart́ınez1(B)

1 Universidad de Los Andes, Bogotá D.C., Colombia
{dh.cuellar,gomez.ch,d.alvarezm}@uniandes.edu.co

2 Otto-von-guericke universität magdeburg, Magdeburg, Germany
marlin.ulmer@ovgu.de

Abstract. We consider an integrated planning problem that combines
purchasing, inventory, and inbound transportation decisions in an agri-
food supply chain where several suppliers (farmers) offer a subset of
products with different selling prices and available quantities. We pro-
vide a mixed-integer programming formulation of the problem and a
matheuristic decomposition that divides the problem into two stages.
First, the purchasing and inventory problem is solved. Second, the capac-
itated vehicle routing problem is solved using a split CVRP procedure.
Computational experiments on a set of generated test instances show
that the matheuristic can solve instances of large size within reasonably
short computational times, providing better solutions than its MIP coun-
terpart. In future work, it is proposed to develop heuristic approaches to
validate the performance of the presented matheuristic and to try other
routing cost approximations.

Keywords: Agri-food supply chain · Inbound transportation ·
Inventory routing problem · Perishable products

1 Introduction

The spread of online shopping through e-commerce platforms has disrupted not
only traditional business models but also the supply chains that support them,
with a growth of 7 to 10% in European countries in recent years [1]. Consumers
now can access a global supply of products that can be delivered to any location
within short times. In turn, producers (even small ones) can access competitive
markets that were previously attainable only for large corporations with expen-
sive infrastructure for distribution and marketing. These technology-based trade
relationships have increased democratization in access to markets and provided
efficiencies and convenience for both consumers and producers.

The agriculture sector has especially benefited from these technology-based
business models, as small farmers can move away from intermediaries which
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 436–448, 2023.
https://doi.org/10.1007/978-3-031-26504-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_31&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_31

Decision Support for Agri-Food Supply Chains in the E-Commerce Era 437

traditionally provided distribution channels but take a large share of the revenue
of the end-markets [2]. E-commerce platforms, although intermediaries as well,
provide more transparent relationships with final customers, such as restaurants
or hotels demanding unique characteristics from specific producers (e.g., organic,
fair-trade) at competitive prices. These advantages contribute to sustainability
in global commerce by closing historical gaps in competitiveness between small
and large players [3].

The shift towards a market based on several small producers implies coordi-
nating a two-echelon supply chain with a network of participants (rather than
a single provider). First, there is an echelon in which products are collected
from suppliers and taken to a distribution center where inventories are managed
(first mile). Then, there is an echelon in which products are distributed to end
customers (last mile). The design and operation of efficient supply chains is cru-
cial to enabling more competitive markets, in contrast to traditional structures
characterized by a concentration of large agricultural companies [4].

The supply chains induced by e-commerce in the agricultural sector have spe-
cial features whose treatment is incipient in the literature. The joint treatment
of procurement logistics and inventory management (i.e., first mile logistics) has
been little studied. Often, problems assume there is a supplier that guarantees
the provision of products under a direct delivery, instead of addressing the logis-
tics of picking up products from distributed suppliers with changing prices and
availability. Moreover, the fact that such procurement strategy must respond
to a dynamic demand of perishable products is a challenging realistic feature
that has not been considered in the literature. In practice, companies struggle
to coordinate procurement strategies with inventory management of fresh agri-
cultural products. For example, perishable food waste in 2017 reached losses of
47 billion USD per year in China and 218 billion USD in the United States [5].
Therefore, solving such integrated problem efficiently is paramount to achieve
the benefits associated to e-commerce.

The objective of this research is to develop and test algorithms that can
efficiently support first mile logistics decisions as part of a decision support sys-
tem for agri-food supply chains in the context of e-commerce. At this stage,
we present a two-stage matheuristic scheme that integrates decisions about
the quantities to purchase of each products, the inventory levels to satisfy the
demand of perishable products, as well as the selection of suppliers and routing
of vehicles to replenish products at a warehouse. Section 2 provides an overview
of the literature on this problem, while Sects. 3 and 4 detail the characteristics
of the problem and the solution approach, respectively. Section 5 provides a set
of computational experiments and analysis, and Sect. 6 concludes.

2 Literature Review

The majority of the research that considers integrated inventory management
and routing decisions focuses on outbound routing problem, which is most com-
monly referred to as the Inventory Routing Problem (IRP). The most studied

438 D. Cuellar-Usaquén et al.

variant of the IRP is known as the Vendor Managed Inventory (VMI) problem,
in which customers transfer the responsibility of inventory management to a
vendor. The vendor knows the stock levels of their customers and must plan a
distribution scheme to maintain adequate levels for all products of all customers.
A general review of the IRP is presented in [6] and [7].

Few authors address the first mile problem with inbound transportation and
inventory decisions, as most problems assume that ordered products simply
arrive at the warehouse, disregarding the selection of suppliers and the logis-
tics of collecting products from them. [8] and [9] consider a multiperiod, multi-
supplier, many-to-one supply chain structure problem with a single assembly
plant in which each supplier provides a distinct part type. In both cases, the
problem is deterministic, and the solution approach is approximate optimiza-
tion. In [10], a decomposition matheuristic is developed to solve an assembly,
production, inventory routing problem with inbound transportation. The prob-
lem consists in selecting the suppliers to visit, their order, and the inventory level
at the supplier and the plant, considering only one type of product. Later, in
[11], the authors solve the same problem considering different products available
by means of a branch and cut (B&C) algorithm.

In this work, suppliers are allowed to have different prices and availability
for each product in each period, responding to the nature of distributed markets
in the context of e-commerce. The supplier’s inventory is considered an exoge-
nous factor that cannot be managed. The work that most closely resembles such
setting is presented in [12]. The authors propose a non-linear model, test its per-
formance on a single test instance, and consider price discounts in the suppliers.
There is work that considers product perishability, inventory management, and
routing decisions together [13] and [14], but the authors assume direct shipment
from suppliers to the warehouse and do not consider varying selling prices.

In the first mile problem proposed in this research, the company must plan
the procurement logistics (i.e., which suppliers to visit, in which order, and how
much to buy of each product from each supplier) based on the estimated demands
from customers, the current inventory levels, and the supplier characteristics
(location, as well as product prices and availability). The Multi-Vehicle Travel-
ing Purchaser Problem (MV-TPP) addresses the portion of the stated problem
regarding purchase and routing decisions (See [15]), but does not consider inven-
tory management. MV-TPPs, can be classified according to the following four
categories referring to the available supply, demand, vehicle capacity, and pur-
chasing policy, as discussed in [16]. Table 1 presents a comparison between the
different MV-TPP variants relative to this work.

The focus of this paper is on the inbound transportation corresponding a
restricted, capacitated, general Multi Vehicle Traveling Purchaser Problem with
non-split purchases plus inventory management of perishable products at the
warehouse.

Decision Support for Agri-Food Supply Chains in the E-Commerce Era 439

Table 1. MVTPP variants comparison

Non-split Non-split Split Split

Unrestricted [16,17,19–21,24,25] Invalid Capacited

Unrestricted [18] Invalid Uncapacited

Restrcited Invalid Our work Invalid [19,22] Capacited

Restricted Invalid [23] Invalid [18] Uncapacited

Unitary General Unitary General

3 Problem Definition and Mathematical Formulation

The inbound inventory routing problem with perishable products (IB-IRP-PP)
addressed in this work consists of a many-to-one system composed of a set of
M suppliers and a single warehouse. Over the discrete periods t a planning
horizon T , the warehouse satisfies a deterministic demand, dkt, of the k products
in set K. The products are purchased and collected from the geographically
dispersed suppliers using a homogeneous fleet F of vehicles v located at the
warehouse, each with capacity Q. The suppliers must be visited by only one
vehicle, and the total quantities purchased in any supplier must not exceed the
vehicle capacity (i.e., non-split constraints are considered). At period t, product
k can be purchased from a subset of suppliers Mkt ⊆ M ; each supplier i has
their own selling price pikt and available quantity qikt of each product. At each
period, the warehouse can purchase more than demanded of any product and
store the remaining units in inventory to supply future demand. This encourages
a holding cost hkt. The warehouse has unlimited storage capacity. Each product
has a perishable nature represented by the subset Ok that contains the periods
that the product can remain in inventory before perishing. We define the problem
on a complete undirected graph with nodes set N = M ∪ {0}, where 0 represent
the warehouse, and a set of edges E = {(i, j) : i, j ∈ N, i < j}.

The decisions to make are: the quantity to be purchased of each product at
each supplier and each period; the quantity to maintain in inventory of each
product at the end of each period; the selection of suppliers to be visited; and
the order in which each vehicle visits suppliers in each period (i.e., the routes).
The warehouse needs to simultaneously minimize the purchasing, inventory, and
transportation costs for the entire planning horizon. It is easy to show that the
(IB-IRP-PP) is NP-hard since the Multi-Vehicle Traveling Purchaser Problem
(TPP) is a special case of it for each period. The problem can be formulated as
the following mixed-integer program:
Variables

– Ikto: inventory level of product k of age o at the end of period t (o = 0
indicates the product is fresh, whereas o = |Ok| is the latest age acceptable
for product k)

– rkt: quantity of product k to be replenished at period t

440 D. Cuellar-Usaquén et al.

– ykto: quantity of product k of age o to be shipped at period t

– xijtv =
{

1 if arc (i,j) is traversed by vehicle v at period t
0 otherwise

}

– witv =
{

1 if supplier i is visited by vehicle v at period t
0 otherwise

}

– ziktv: quantity of product k purchased at the supplier i at period t by vehicle
v.

Objective function

min
∑
t∈T

⎛
⎝∑

v∈F

⎛
⎝ ∑

(i,j)∈E

cijxijtv +
∑
k∈K

∑
i∈Mk

piktziktv

⎞
⎠ +

∑
k∈K

∑
o∈Ok

hktIkto

⎞
⎠ (1)

Subject to

Ik1o = Ik0o − yk1o, ∀k ∈ K, ∀o ∈ Ok|o > 0 (2)

Ikt0 = rkt − ykt0, ∀k ∈ K, ∀t ∈ T (3)

Ikto = Ikt−1o−1 − ykto, ∀k ∈ K, ∀t ∈ T |t > 1, ∀o ∈ Ok|o > 0 (4)

∑

o∈Ok

ykto = dkt, ∀k ∈ K, ∀t ∈ T (5)

∑

v∈F

∑

i∈Mkt

ziktv = rkt, ∀k ∈ K, ∀t ∈ T (6)

∑

v∈F

ziktv ≤ qikt, ∀k ∈ K, ∀t ∈ T, ∀i ∈ Mkt (7)

ziktv ≤ qiktwitv, ∀k ∈ K, ∀t ∈ T, ∀i ∈ Mkt, ∀v ∈ F (8)

∑

k∈K

∑

i∈Mkt

ziktv ≤ Q, ∀t ∈ T, ∀v ∈ F (9)

∑

v∈F

witv ≤ 1, ∀t ∈ T, ∀i ∈ M (10)

∑

(i,j)∈δ+({m})
xijtv =

∑

(i,j)∈δ−({m})
xijtv = wmtv, ∀v ∈ F, ∀t ∈ T, ∀m ∈ M (11)

uitv − ujtv + |N |xijtv ≤ |N | − 1, ∀t ∈ T, ∀v ∈ F, ∀i ∈ M, ∀j ∈ M (12)

Decision Support for Agri-Food Supply Chains in the E-Commerce Era 441

Ikto ≥ 0, ∀k ∈ K, ∀t ∈ T, ∀o ∈ Ok (13)

rkt ≥ 0, ∀k ∈ K, ∀t ∈ T (14)

ykto ≥ 0, ∀k ∈ K, ∀t ∈ T,∀o ∈ Ok (15)

xijtv ∈ {0, 1}, ∀(i, j) ∈ E, ∀t ∈ T,∀v ∈ F (16)

witv ∈ {0, 1}, ∀i ∈ M, ∀t ∈ T, ∀v ∈ F (17)

ziktv ≥ 0, ∀i ∈ Mk,t, ∀k ∈ K, ∀t ∈ T, ∀v ∈ F (18)

The objective function (1) minimizes the total purchasing, inventory, and
transportation costs. The holding cost is only considered in the warehouse. Ini-
tialization and inventory flow balance for the products of different ages is imposed
through constraints (2)–(4). Constraint (5) guarantees demand satisfaction. Con-
straints (6) and (7) ensure to buy the quantity to be replenished and respect the
quantities available from each supplier. Constraint (8) limits the quantity to be
purchased at a supplier depending on the capacity of the vehicle that visits them.
Constraints (9) and (10) limit not purchase more than vehicle capacity and the
supplier just to be visited only by one vehicle. These are the non-split constraints.
Constraints (11) and (12) rule the visiting tour feasibility. Equations (11) impose
that, for each visited supplier, exactly one arc must enter and leave the relative
node, where, for any subset N ′ of nodes, δ+(N ′) := {(i, j) ∈ E : i ∈ V ′, j �∈ V ′}
and δ−(N ′) := {(i, j) ∈ E : i �∈ V ′, j ∈ V ′}. Inequalities (12) are connectivity
constraints that prevent the creation of sub-tours by controlling the order of vis-
its of the suppliers. Miller-Tucker-Zemlin (MTZ) formulation is used [26]. The
constraints (13)–(18) correspond to the domain of the variables.

4 A Two-Stage Matheuristic Decomposition

Algorithm 1. Two-stage matheuristic decomposition
Output: Solution incumbent;

1: Initialize ← ĉit

2: while termination condition not satisfied do
3: zikt, Ikto, wit ← SolvePurchaseAndInventory(T,M,K,Ok, pikt, qikt, hkt, ĉit;Q)
4: R ← GenerateRoutes(T,M, cij , zikt, wit;Q)
5: CurrentSolution ← assembleSolution(R, zikt, wit, Ikto)
6: ĉit ← updatedRoutingEstimation(Routes, cij)
7: Update Incumbent if CurrentSolution is better
8: end while
9: return Incumbent

442 D. Cuellar-Usaquén et al.

In this section, we present a two-stage matheuristic decomposition for the IB-
IRP-PP. Our algorithm decomposes the problem into two separate subprob-
lems. The first sub-problem determines for each period the inventory levels and
the quantity of each product to be purchased from each supplier, taking into
account the perishability of the products. An approximate transportation cost
(ĉit) is used to estimate the actual cost of visiting supplier i at period t. This
approximation is made as routing decisions are not considered at this stage.
The second subproblem solves, for each period t, a separate Capacitated Vehi-
cle Routing Problem (CVRP) using the purchasing decisions found in the first
stage. The solutions to the routing subproblems are then used to update the
approximate transportation cost (ĉit) of the first stage to obtain different pur-
chase and inventory levels in the next iteration. This procedure is repeated for
a number of iterations to reach a local optimum or until a stopping condition is
met. Algorithm 1 presents an overview of the matheuristic.

4.1 Stage 1 - Solving Purchasing and Inventory Decisions

The first subproblem aims to generate a good replenishment and inventory plan
by solving a simplified problem in which we use an approximate transportation
cost based on the estimation of the actual cost of visiting supplier i at period t.
The objective function presented in (1) is reformulated as follows:

min
∑
t∈T

(∑
i∈M

ĉitwit +
∑
k∈K

∑
i∈Mk

piktzikt +
∑
k∈K

∑
o∈Ok

hktIkto

)
(19)

We define the first stage model with the objective function (19) subject to
constraints (2)–(9), omitting the index v ∈ F corresponding to the fleet of vehi-
cles. Solving this model (line 3 - Algorithm 1) results in a (sub-optimal) pur-
chasing (zikt) and inventory (Ikto) plan that respects perishability.

4.2 Stage 2 - Routing Decisions

The second stage solves, for each period t, a Capacitated Vehicle Routing Prob-
lem using the purchasing decisions found in the first stage (line 4 - Algorithm 1).
The routing procedure is presented in Algorithm 2. We fix the values of variables
w̄it, z̄ikt. First, with the values of w̄it, a Nearest Neighbour Algorithm is run to
obtain the order in which selected suppliers will be visited (line 2 - Algorithm
2) as presented in [27]. Then, with this general tour and the quantities to be
purchased at each supplier, z̄ikt, a split C-VRP procedure is developed to obtain
the vehicle routes that respect vehicle capacities [28]. The augmented graph is
built (line 3 - Algorithm 2) and the shortest path problem is solved using the
Bellman-Ford algorithm [29] (line 4 - Algorithm 2). The solution is assembled
(line 6 - Algorithm 1) with the routes and the values of zikt, wit and Ikto, and if
the solution is better than the incumbent, it is updated (line 7 - Algorithm 2).

Decision Support for Agri-Food Supply Chains in the E-Commerce Era 443

4.3 Connection Between Stages

The information flow between the two stages is through parameter ĉit, which
must be updated at each iteration. At iteration 0 (iter = 0), in line 1 (Algorithm
1) this parameter is initialized with the direct shipping cost (i.e., ĉit

iter = c0i +
ci0,∀i ∈ M , ∀t ∈ T). At the end of each iteration, the cost ĉit

iter is updated
after vehicles’ routes have been obtained for each period t (line 7). There are two
ways of updating this parameter. First, if supplier i is part of a route at period
t, the cost of visiting them in the next iteration (iter = iter+1) will be ĉit

iter =
(ĉititer−1+cipi+ciis −cipis)/2, where ip and is are the predecessor and successor
nodes of supplier i in their current route in that period, respectively. Second,
if node i is not visited in any of the routes, then we set ĉit

iter = (ĉititer−1 +
cinsertion)/2, where cinsertion is equal to the cost of the cheapest insertion into
an existing route in that period. This is based on the assumption that when a
supplier i is eliminated from their route, an acceptable route can be obtained
by connecting the predecessor and successor suppliers. Similarly, when inserting
supplier i, an acceptable route can be obtained with the best insertion among
all the routes in a specific period. The two stages are executed until the stopping
criterion is reached (line 2).

Algorithm 2. GenerateRoutes
Input: List T , M , List cij : transportation cost between nodes i and j, zikt, wit;Q
Output: Routes R : Routes of period t;

1: for t = 1 To |T | do
2: Tour ← NearestNeighbourAlgorithm(M,wit, cij)
3: Graph ← GenerateAugmentedGraphCV RP (M,wit, cij , T our,Q)
4: Rt ← BellmanFordShortestPathAlgorithm(Graph)
5: end for
6: return R

5 Computational Experiments

The MIP and the decomposition matheuristic were implemented in Python 3.7,
with Gurobi 9.1.1 as a solver for exact models. All computational experiments
were performed on a 2.11 GHz processor with 16 GB of RAM.

5.1 Data Sets

We built a data set of 240 instances, taking into account the inventory charac-
teristics of [8] and supplier characteristics of [15]. The number of suppliers, prod-
ucts, and periods were set as M ∈ {10, 25, 50, 100, 150}, K ∈ {10, 25, 50, 100}
and T ∈ {5, 10, 21}. The supplier locations were generated in a [0, 1000] ×
[0, 1000] square according to a uniform distribution and routing costs cij as
truncated Euclidean distances. Each product k at period t is associated with
|Mkt| randomly selected suppliers, where |Mkt| is uniformly generated number
in [1, |N | − 1].

444 D. Cuellar-Usaquén et al.

Parameter qikt of offered quantities is randomly taken in [1, 15]. Parameter
λ is used to control the number of suppliers in a feasible solution through the
product demand dkt := [λ maxi∈Mkt

qikt + (1 − λ)
∑

i∈Mkt
qikt],∀k ∈ K,∀t ∈ T ,

with 0 < λ < 1. The lower the value of λ, the higher the number of suppliers
in a solution. This parameter was set as λ ∈ {0.5, 0.9}. The selling price pikt,
and the holding cost hkt were uniformly generated in [1, 500]. The latest age
acceptable for product k was uniformly generated in [1, |T |]. To find a feasible
vehicle capacity Q, we solve a model with objective function min z = Q subject
to (2)–(10), omitting the index v ∈ F corresponding to the fleet of vehicles.
The result of this model is a feasible capacity value, which is multiplied by 1.2
and rounded up to avoid a hard constraint. The number of vehicles v ∈ F in
the fleet is obtained by |F | =

⌈∑
t∈T

∑
k∈K dk,t/Q

⌉
. Finally, two replicates were

generated for each combination of M , K, T y λ.

5.2 Stopping Condition

In order to measure the impact of the stopping criterion on the quality of solu-
tions and computational time, we execute 500 iterations of the matheuristic pro-
cedure (line 2 - Algorithm 1). In 83% of the instances, the incumbent is updated
no more than 50 consecutive iterations. We proceed to evaluate the stopping cri-
terion as the maximum number of consecutive iterations without the incumbent
solution being improved. We evaluated three values for the stopping criterion
(10, 25 and 50 iterations without improvement). Figure 1 shows the computa-
tional time for the matheuristic for the proposed values. Larger values of the
stopping criterion lead to larger times on average and higher variability.

Fig. 1. Computational time for different stopping criteria

Decision Support for Agri-Food Supply Chains in the E-Commerce Era 445

As expected, the quality of solutions increases as the stopping criterion
increases, with the value of 50 maximum iterations without improvement achiev-
ing the best results for all instances. However, a value of 25 in the stopping
criterion achieves the best solution for an 88% of the instances, while using only
a 49% of the computational time (on average). Similarly, the value of 10 for
the stopping criterion achieves the best solutions for 77% of the instances, while
taking 23% of the computational time (on average). We adopt the stopping
criterion of 25 iterations without incumbent improvement in order to balance
computational time and quality of solutions.

5.3 Results

A time-limit of 3600 s was set to test the performance of the MIP with respect
to the matheuristic with the selected stopping criteria. Table 2 presents the
results obtained by the MIP and the proposed matheuristic decomposition.
Instances that do not appear in the table cannot be compared because the
model did not find an integer solution within 3600 s or the computer mem-

Table 2. Comparison MIP and Matheuristic

M K T λ ID MIP Matheuristic (MH)

OF Time (s) BestBound GapB&B OF Time (s) ΔMIP−MH

10 10 5 0.5 1 179999 3601 174089.73 3.28 180835 0.89 0.46

10 10 5 0.5 2 173967 3603 167315.63 3.82 174396 0.83 0.25

10 10 5 0.9 1 152601 3603 148486.29 2.7 153044 0.91 0.29

10 10 5 0.9 2 168418 3602 164659.47 2.23 170265 0.95 1.1

10 10 10 0.5 1 351791 3606 310593.85 11.71 350653 2.17 −0.32

10 10 10 0.5 2 334332 3605 301934.26 9.69 336872 2.33 0.76

10 10 10 0.9 1 287696 3605 264497.63 8.06 286580 2.95 −0.39

10 10 10 0.9 2 255647 3604 248834.19 2.66 257094 1.39 0.57

10 25 5 0.5 1 336682 3603 328169.4 2.53 341168 1.13 1.33

10 25 5 0.5 2 338057 3602 321125.79 5.01 341580 1.22 1.04

10 25 5 0.9 1 290924 3602 282531.74 2.88 293026 1.2 0.72

10 25 5 0.9 2 281152 3602 266002.45 5.39 284913 0.95 1.34

10 25 10 0.5 1 651117 3606 598765.96 8.04 655208 3.11 0.63

10 25 10 0.5 2 699029 3607 654945.61 6.31 707306 2.97 1.18

10 25 10 0.9 1 613872 3608 575706.69 6.22 615916 2.77 0.33

10 25 10 0.9 2 646987 3606 612270.47 5.37 650546 3.16 0.55

25 10 5 0.5 1 313066 3617 167515.35 46.49 318562 3.25 1.55

25 10 5 0.5 2 285319 3617 215350.49 24.52 286671 6.76 0.47

25 10 5 0.9 1 155489 3611 125146.56 19.51 159081 4.33 2.31

25 10 5 0.9 2 215384 3617 103543.67 51.93 214455 7 −0.43

25 10 10 0.5 1 616183 3669 375955.31 38.99 569111 12.54 −7.64

25 10 10 0.9 1 333216 3701 189534.13 43.12 329694 11.91 −1.06

25 10 10 0.9 2 320842 3649 219608.05 31.55 321824 10.12 0.31

25 25 5 0.5 1 548035 3620 463297.97 15.46 553392 4.05 0.98

25 25 5 0.5 2 555895 3619 429518 22.73 564814 3.95 1.6

25 25 5 0.9 1 373487 3622 242635.23 35.04 370630 5.36 −0.76

25 25 5 0.9 2 343751 3621 236583.57 31.18 338638 10.01 −1.49

446 D. Cuellar-Usaquén et al.

Fig. 2. Computational time depending on the increase in problem size

ory was not sufficient. As the MIP model could not find an optimum solution
in 3600 s for any instances, the results presented in the MIP columns are the
best integer solution found. Also, the Bestbound and the gap calculated by
Gurobi (GAPB&B) are reported. The column ΔMIP−MH is the percentage dif-
ference between the solutions obtained for both approaches, and is calculated as
ΔMIP−MH = ((BKSMIP − BKSMH)/BKSMIP) ∗ 100.

Table 2 shows that when the size of the instance increases, the GAPB&B of the
model also increases due to the limited capacity of the exact model to solve large
instances. On the other hand, when the size of the instance increases, the pro-
posed matheuristic finds better solutions than the MIP with significantly lower
CPU time required. These results provide a preliminary confirmation about the
potential of the proposed methodology. Currently, adjustments on the proposed
strategies and more comprehensive experiments are being developed in order to
determine, with better statistical significance, which variations of instances and
strategies lead to better results.

Figure 2 shows the increase in computational time depending on the increase
in problem size. The largest increase in time occurs as the number of periods
increases, followed by the increase in the number of suppliers.

Decision Support for Agri-Food Supply Chains in the E-Commerce Era 447

6 Conclusions

We presented a matheuristic decomposition approach for the inbound inventory
routing problem with perishable products, responding to challenges of the agri-
food supply chain in the context of e-commerce. The key contribution is the
integration of inventory decisions to satisfy a demand of perishable products
with procurement decisions, including a selection of supplier for each product
(with varying locations and product availability and price) and routing decisions.
As a first step, the proposed matheuristic approach obtains good quality solu-
tions within reasonable computation times, given the limitations of the exact
model. Current results provide an initial confirmation on the potential of the
proposed approach. However, ongoing work is devoted to the execution of a
more comprehensive set of computational experiments that allow to reach more
solid conclusions regarding the variants of the approach that are better suited
for each type of instance. The next step of the research is the incorporation of
stochasticity in the demand and product prices and availability at the supplier,
as well as the possibility to update decisions dynamically, as usually allowed in
e-commerce platforms.

References

1. Viu-Roig, M., Alvarez-Palau, E.J.: The impact of E-Commerce-related last-mile
logistics on cities: a systematic literature review. Sustainability 12(16), 6492 (2020)

2. Gu, W., Archetti, C., Cattaruzza, D., Ogier, M., Semet, F., Speranza, M.G.:
A sequential approach for a multi-commodity two-echelon distribution problem.
Comput. Industr. Eng. 163, 107793 (2022)

3. Prajapati, D., Chan, F.T., Daultani, Y., Pratap, S.: Sustainable vehicle routing
of agro-food grains in the e-commerce industry. Int. J. Prod. Res. 60, 7319–7344
(2022)

4. Majluf-Manzur, Á.M., González-Ramirez, R.G., Velasco-Paredes, R.A., Villalobos,
J.R.: An operational planning model to support first mile logistics for small fresh-
produce growers. In: Rossit, D.A., Tohmé, F., Mej́ıa Delgadillo, G. (eds.) ICPR-
Americas 2020. CCIS, vol. 1408, pp. 205–219. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-76310-7 17

5. Ji, Y., Du, J., Han, X., Wu, X., Huang, R., Wang, S., Liu, Z.: A mixed integer
robust programming model for two-echelon inventory routing problem of perishable
products. Phys. A 548, 124481 (2020)

6. Andersson, H., Hoff, A., Christiansen, M., Hasle, G., Løkketangen, A.: Industrial
aspects and literature survey: combined inventory management and routing. Com-
put. Oper. Res. 37(9), 1515–1536 (2010)

7. Coelho, L.C., Cordeau, J.F., Laporte, G.: Thirty years of inventory routing. Transp.
Sci. 48(1), 1–19 (2014)

8. Moin, N.H., Salhi, S., Aziz, N.A.B.: An efficient hybrid genetic algorithm for the
multi-product multi-period inventory routing problem. Int. J. Prod. Econ. 133(1),
334–343 (2011)

9. Mjirda, A., Jarboui, B., Macedo, R., Hanafi, S., Mladenović, N.: A two phase
variable neighborhood search for the multi-product inventory routing problem.
Comput. Oper. Res. 52, 291–299 (2014)

https://doi.org/10.1007/978-3-030-76310-7_17
https://doi.org/10.1007/978-3-030-76310-7_17

448 D. Cuellar-Usaquén et al.

10. Chitsaz, M., Cordeau, J.F., Jans, R.: A unified decomposition matheuristic for
assembly, production, and inventory routing. INFORMS J. Comput. 31(1), 134–
152 (2019)

11. Chitsaz, M., Cordeau, J.F., Jans, R.: A branch-and-cut algorithm for an assembly
routing problem. Eur. J. Oper. Res. 282(3), 896–910 (2020)

12. Çabuk, S., Erol, R.: Modeling and analysis of multiple-supplier selection problem
with price discounts and routing decisions. Appl. Sci. 9(17), 3480 (2019)

13. Rohmer, S.U.K., Claassen, G.D.H., Laporte, G.: A two-echelon inventory routing
problem for perishable products. Comput. Oper. Res. 107, 156–172 (2019)

14. Wei, M., Guan, H., Liu, Y., Gao, B., Zhang, C.: Production, replenishment and
inventory policies for perishable products in a two-echelon distribution network.
Sustainability 12(11), 4735 (2020)

15. Manerba, D., Mansini, R., Riera-Ledesma, J.: The traveling purchaser problem
and its variants. Eur. J. Oper. Res. 259(1), 1–18 (2017)

16. Bianchessi, N., Irnich, S., Tilk, C.: A branch-price-and-cut algorithm for the capac-
itated multiple vehicle traveling purchaser problem with unitary demand. Discret.
Appl. Math. 288, 152–170 (2021)

17. Baldacci, R., Dell’Amico, M., González, J.S.: The capacitated m-ring-star problem.
Oper. Res. 55(6), 1147–1162 (2007)

18. Bianchessi, N., Mansini, R., Speranza, M.G.: The distance constrained multiple
vehicle traveling purchaser problem. Eur. J. Oper. Res. 235(1), 73–87 (2014)

19. Choi, M.J., Lee, S.H.: The multiple traveling purchaser problem. In: Proceedings
of the Fortieth International Conference on Computers and Industrial Engineering
(CIE), pp. 1–5 (2010)

20. Gendreau, M., Manerba, D., Mansini, R.: The multi-vehicle traveling purchaser
problem with pairwise incompatibility constraints and unitary demands: a branch-
and-price approach. Eur. J. Oper. Res. 248(1), 59–71 (2016)

21. Hoshino, E.A., De Souza, C.C.: A branch-and-cut-and-price approach for the
capacitated m-ring-star problem. Discret. Appl. Math. 160(18), 2728–2741 (2012)

22. Manerba, D., Mansini, R.: A branch-and-cut algorithm for the multi-vehicle travel-
ing purchaser problem with pairwise incompatibility constraints. Networks 65(2),
139–154 (2015)

23. Manerba, D., Mansini, R.: The nurse routing problem with workload constraints
and incompatible services. IFAC-PapersOnLine 49(12), 1192–1197 (2016)

24. Riera-Ledesma, J., Salazar-González, J.J.: Solving school bus routing using the
multiple vehicle traveling purchaser problem: a branch-and-cut approach. Comput.
Oper. Res. 39(2), 391–404 (2012)

25. Riera-Ledesma, J., Salazar-González, J.J.: A column generation approach for a
school bus routing problem with resource constraints. Comput. Oper. Res. 40(2),
566–583 (2013)

26. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of
traveling salesman problems. J. ACM (JACM) 7(4), 326–329 (1960)

27. Cuellar-Usaquén, D., Gomez, C., Álvarez-Mart́ınez, D.: A GRASP/Path-Relinking
algorithm for the traveling purchaser problem. Int. Trans. Oper. Res. 30(2), 831–
857 (2021)

28. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing
problem. Comput. Oper. Res. 31(12), 1985–2002 (2004)

29. Magzhan, K., Jani, H.M.: A review and evaluations of shortest path algorithms.
Int. J. Sci. Technol. Res. 2(6), 99–104 (2013)

A Multi-objective Biased Random-Key
Genetic Algorithm for the Siting

of Emergency Vehicles

Francesca Da Ros1,2(B), Luca Di Gaspero1, David La Barbera3,
Vincenzo Della Mea3, Kevin Roitero3, Laura Deroma4, Sabrina Licata2,

and Francesca Valent5

1 Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, via
delle Scienze 208, 33100 Udine, Italy

daros.francesca001@spes.uniud.it, luca.digaspero@uniud.it
2 SOC Istituto di Igiene ed Epidemiologia Clinica, Azienda Sanitaria Universitaria

Friuli Centrale, p.zzale SM della Misericordia 15, 33100 Udine, Italy
sabrina.licata@uniud.it

3 Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine,
via delle Scienze 208, 33100 Udine, Italy

labarbera.david@spes.uniud.it, {vincenzo.dellamea,kevin.roitero}@uniud.it
4 SOC Igiene e Sanità Pubblica, Azienda Sanitaria Universitaria Friuli Centrale,

p.zzale SM della Misericordia 15, 33100 Udine, Italy
laura.deroma@asufc.sanita.fvg.it

5 Servizio Epidemiologia Clinica Valutativa, Azienda Provinciale per i Servizi
Sanitari di Trento, via Alcide Degasperi 79, 38123 Trento, Italy

francesca.valent@apss.tn.it

Abstract. We propose the development and application of a multi-
objective biased random-key genetic algorithm to identify sets of ambu-
lance locations in a rural-mountainous area. The algorithm involves a
discrete event simulator to estimate the objective functions, thus we
want to minimize the response time while maximizing the area served
within the standard time. It is applied to the case of the mountainous
area of the Italian region of Friuli Venezia Giulia. Preliminary results are
encouraging, as the best case for each objective shows that the average
response time decreases of 28.9%, the 90th percentile for the response
time decreases of 43.0%, the number of municipalities served within the
standard time increases of 8 units during the day, and of 26 units during
the night.

Keywords: BRKGA · Multi-objective optimization · Emergency
medical service

1 Introduction

In this paper, we address the location of emergency vehicles (i.e., ambulances) in
a sparsely populated rural-mountainous area. Emergency medical service (EMS)

Supported by EASY-NET project (NET 2016-02364191).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 449–456, 2023.
https://doi.org/10.1007/978-3-031-26504-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_32&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_32

450 F. Da Ros et al.

includes ambulance, paramedic, and pre-hospital services. Its primary goal is to
provide timely first medical aid to patients involved in emergency situations.
The response time indicates the time incurred from when the emergency call is
received to the moment in which an ambulance arrives at the emergency loca-
tion [8]. It depends on several factors including ambulance location, dispatching
policies, busy fractions (i.e., the closest ambulance is already serving another
emergency), etc. To achieve high-performing services, accurate EMS planning
is strategically, tactically, and operationally crucial: improving EMS enables a
higher probability of patient survival [20], therefore these systems should be
designed to minimize response times and maximize the number of emergency
calls served within a given time limit [21]. Several authors discuss the associ-
ation between EMS and patient priority: as the response time should always
be the lowest possible, priority queues should be in place as real case scenarios
are characterized by resource limitations, payoff of the treatments, and duration
of the service [10]. Ball et al. [2] measured the association between ambulance
dispatch priorities and patient conditions, highlighting different time standards
based on different priority levels. Fargetta et al. [5] considered patient selection
for treatment examining their priorities on three levels.

The ambulance location problem has been tackled by many researchers dur-
ing the last four decades, therefore several models have been proposed. Extensive
reviews on the evolution of the modeling approaches are offered in [1,12,14,16].
However, the majority of the solutions focus on highly populated urban areas and
are unsuitable for rural zones as they tend to consider demographic inputs (e.g.,
inhabitants, density, etc.). In fact, maximizing the covered demand in this sense
may result in low-density areas remaining uncovered [16], leading to an unfair
EMS, as part of the population will systematically receive inefficient treatment
(i.e., the standard service time is not respected).

This work deals with the location of ambulance stations in a sparsely popu-
lated rural-mountainous area. The goal of our study is to understand if a new
geographical distribution of the existing ambulances, that considers both the
covered area and the past emergency calls, may result in reducing inequities in
accessing emergency services (i.e., emergencies in the entire area should be effi-
ciently served). We propose the development and application of a multi-objective
biased random-key genetic algorithm (BRKGA) that identifies sets of ambulance
locations. The algorithm involves a discrete event simulator (DES) to estimate
the objective functions, thus it tries to minimize the response time while max-
imizing the area served within the standard time (i.e., 18 min in the current
practice). To achieve the objective, we aim to answer the following research
questions: (i) does a more geographically sparse distribution of ambulance sites
account for a more efficient service in a rural-mountainous area? If so, to what
extent? (ii) To what extent does an optimization-simulation loop improve the
results of the ambulance locations? The current study contributes to the lit-
erature on the ambulance location problem as follows: (i) to the best of our
knowledge, BRKGA has never been applied to this topic; (ii) it extends the
literature on the topic related to rural areas. The rest of this paper is organized

A Multi-objective BRKGA for the Siting of Emergency Vehicles 451

as follows. Section 2 characterizes the case study providing a solid description
of the study area; it further argues on the formulation of the BRKGA, mainly
examining the encoding and decoding system. Section 3 exposes and discusses
the preliminary results, whereas Sect. 4 reports some conclusions.

2 Methods

2.1 Study Area

The area of study is the mountainous area (i.e., municipalities with an altitude
equal to or greater than 450 m above mean sea level) of the Italian region Friuli
Venezia Giulia (FVG). This area extends over 4,322 km2 (54.49% of FVG area),
counts 83 municipalities (39% of FVG municipalities), and has approximately
167,500 inhabitants (14% of FVG population) [9]. Thus, despite being geograph-
ically extended, the area is scarcely populated. We focus on data collected in the
context of the Emergency Health Service and Medical Emergency of the FVG
region in the time interval from January 2018 to December 2020. Emergencies in
the mountainous area occurred as follows: in 2018 11.5% of the FVG emergencies
occurred in the interested zone, in 2019 11.69%, and in 2020 12.39%. A prelim-
inary analysis of this data (not reported for space constraints) has highlighted
that emergencies occur sparsely during the week (i.e., it is likely to have long
periods with no emergencies). Furthermore, an increase in the number of emer-
gencies per capita is registered in the months from December to March, which
are characterized by a high presence of tourists [18]. The FVG EMS consists of:
(i) a regional dispatch center, that receives and evaluates emergency calls, and
consequently dispatches the most appropriate vehicle; (ii) the rescue units that
provide first medical aid to patients involved in emergencies. Particularly, the
Italian system works in a Franco-German style, meaning that the rescue unit
is allowed to treat the patient directly on the emergency site. FVG emergency
vehicle fleet includes advanced life support (ALS) and basic life support (BLS)
ambulances, medical cars, and medical helicopters. Additionally, each vehicle is
categorized by its shift, namely a vehicle can operate during a daily shift (8:00–
20:00), a night shift (20:00–8:00), or a 24 h shift that includes both. We do not
consider medical helicopters, therefore, the emergencies served by them are not
taken into account in the investigation. Providing a location for the medical cars
is out of the scope of this paper since they need to operate in presence of a doctor
and are located at hospital sites [6]. However, their usage is accounted for in the
simulations. Particularly, they are considered as per their current location and
shift.

2.2 Biased Random-Key Genetic Algorithm

The biased random-key genetic algorithm (BRKGA) was firstly proposed in [7]
and is based on the random-key genetic algorithm (RKGA) introduced in [3]. In
such algorithms, chromosomes are presented as vectors of random real numbers

452 F. Da Ros et al.

within the interval [0, 1). Eventually, thanks to a decoder, chromosomes are
transformed into solutions for the optimization problem at hand. The initial
population consists of p chromosomes of random value within the interval [0, 1).
The population of random keys evolves a certain number of times (generations).
At each generation, the decoder calculates the fitness of all individuals. Based on
this value, individuals are divided into two groups: those who have the best fitness
(i.e., elite population) (pe) and the remaining ones. The following generation is
made up as follows: (i) all the elite population is copied into the new generation,
(ii) a given number of chromosomes is randomly generated (i.e., mutants) (pm),
(iii) a given number of chromosomes is produced as the result of the mating of
the previous generation (Fig. 1).

BRKGA is said to be biased because of the way parents are selected for
mating: one parent is selected at random from the elite population and one
from the remaining population. Furthermore, the offspring inherits the vector
component of the elite parent with a probability ρe ≥ 0.5. Consequently, the
evolution between generations highlights that the only problem-dependent part
of the BRKGA is how the decoding of the chromosomes into a proper solution
is made (Fig. 2).

Fig. 1. Generation of a new population in BRKGA [11]

Encoding to a Vector of Random Keys. A solution is encoded as a vector
V = (v0, ..., vn−1) of size n =

∑
i∈{0,1}

∑
j∈{0,1,2} Nij where vx is a random

number in the interval [0, 1) and Nij indicates the number of ambulances of type
i working toward the shift j. In particular, i = 0 indicates an ALS ambulance,
and i = 1 indicates a BLS ambulance, while j = 0 indicates the daily shift, j = 1
indicates the night shift, and j = 2 indicates the 24 h shift.

A Multi-objective BRKGA for the Siting of Emergency Vehicles 453

Decoding from a Vector of Random Keys. The decoding process of a
chromosome is based on the fact that each gene represents the municipality
where an ambulance of a specific type operating in a specific shift is located.
Specifically, given m municipalities ranging from 0 to m − 1, municipality s is
decoded when the random key r respects Eq. (1):

s

m
≤ r <

s + 1
m

(1)

A set of constraints checks if a decoded solution is feasible or not; in particular,
a municipality cannot host more than one ambulance during the 8:00–20:00 time
slot (this includes ambulances working toward the daily shift and the 24 h shift)
and during the 20:00–8:00 time slot (this includes ambulances working toward
the night shift and the 24 h shift).

Fig. 2. Flowchart of a BRKGA [7]

Figure 3 provides a complete encoding and decoding example of a feasible solu-
tion that accounts for seven municipalities (m = 7), and considers a total of 9
ambulances, organized as N00 = 3, N10 = 1, N01 = 2, N11 = 2, N02 = 1, and
N12 = 0. For instance, v0 = 0.100 respects Eq. 1 when municipality 0 (s = 0)
is picked. Eventually, no municipality hosts more than one ambulance per time
slot; in fact, during the 8:00–20:00 time slot, ambulances are located in munic-
ipalities 0, 2, 3, 4, and 6, whereas during the 20:00–8:00 time slot, ambulances
are located in municipalities 1, 2, 3, 4, and 6.

To calculate the fitness of a solution, a simulation is run with the ambulance
locations proposed by the decoder and considering 10 weeks randomly selected
from the historical data. The objective functions consider the following aspects:

454 F. Da Ros et al.

(i) minimizing the average response time, (ii) minimizing the 90th percentile
for response time, (iii) maximizing the number of municipalities covered within
the standard time during the day, (iv) maximizing the number of municipalities
covered within the standard time during the night. Considering the last two
objectives, the BRKGA acts as a multi-objective Maximal Covering Location
Problem with unitary demands [21].

Fig. 3. Example of decoding of a feasible solution.

Implementation Details. The algorithm described in this paper is imple-
mented using Pymoo [4], a Python-based optimization framework. The DES
is implemented in C++ language and makes use of osrm-backend [15], a rout-
ing engine written in C++ designed to run on OpenStreetMap data [17], and
SimCpp20 [19], which is a discrete-event simulation framework for C++. A sim-
ulation run for 10 weeks of emergencies randomly selected from the historical
data takes approximately 10 s.

Parameter Setting. The problem-independent part of the BRKGA involves
parameters that need to be set. Gonçalves et al. [7] suggested experimental
ranges to determine them. To tune the appropriate values for these parame-
ters, we used SMAC3 [13], a tool for algorithm configuration to optimize the
parameters of arbitrary algorithms. The best configuration found is as follows:
257 generations, a population (p) of 107 individuals, an elite population (pe) of
0.13p, a mutant population (pm) of 0.11p, and a probability for the offspring to
inherit the allele of the elite parent (ρe) of 0.74.

3 Preliminary Results

Comparisons are made with a simulation run on the current stations. The
BRKGA considers the same number of ambulances of the current situation and
preserves their types and working shifts. Therefore, it locates 16 ambulances con-
sidering 83 municipalities. A municipality is covered if it can be served within
18 min. Preliminary results (cf. Table 1) show that the solutions provided by the

A Multi-objective BRKGA for the Siting of Emergency Vehicles 455

BRKGA outperform the current one. The sparse distribution of the ambulances
is guaranteed by the constraints, as a solution is feasible only if during the same
shift a maximum of one ambulance is located in a municipality. As the current
distribution includes more than one ambulance per municipality, the results sug-
gest that a sparse location helps in reducing the response times. Furthermore,
the 90th percentile for the response time can decrease of 43.0%, which suggests
a substantial improvement for the worst cases.

Table 1. Comparison between a set of solutions provided by the BRKGA and the
current distribution.

Indicator Current situation BRKGA (1) BRKGA (2) BRKGA (3)

Municipalities covered during the day (#) 71 79 76 73

Municipalities covered during the night (#) 43 69 68 64

Average response time (s) 788.64 650.83 619.81 560.85

90th percentile for response time (s) 1,905.00 1,175.00 1,085.90 1,117.1

4 Conclusion

This work addresses the location of ambulances in a sparsely populated rural-
mountainous area using a multi-objective BRKGA alongside a DES. The case
study is performed on the Italian region of FVG. Preliminary results show that
using a meta-heuristic approach together with simulation decreases the response
time indicators as well as maximizes the covered zone. Further research involves
the following areas: (i) BRKGA further specification: additional objectives that
consider an estimated survival rate, and different patient priorities, the consid-
eration of a more precise decoder, and the use of a local search to enhance the
BRKGA results. (ii) DES further specification: the consideration of different
emergency scenarios (e.g., disasters), the addition of details so that it better
adheres to reality. (iii) Additional testing: consideration for the entire region
setting (i.e., urban, rural, and maritime areas).

References

1. Aringhieri, R., Bruni, M.E., Khodaparasti, S., van Essen, J.T.: Emergency medical
services and beyond: addressing new challenges through a wide literature review.
Comput. Oper. Res. 78, 349–368 (2017)

2. Ball, S.J., et al.: Association between ambulance dispatch priority and patient
condition. Emerg. Med. Australas. 28, 716–724 (2016)

3. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA J. Comput. 6(2), 154–160 (1994). https://doi.org/10.1287/ijoc.6.2.154

4. Blank, J., Deb, K.: Pymoo: Multi-objective optimization in Python. IEEE Access
8, 89497–89509 (2020)

https://doi.org/10.1287/ijoc.6.2.154

456 F. Da Ros et al.

5. Fargetta, G., Scrimali, L.: A multi-stage integer linear programming problem for
personnel and patient scheduling for a therapy centre. In: Proceedings of the
11th International Conference on Operations Research and Enterprise Systems
- ICORES, pp. 354–361 (2022). https://doi.org/10.5220/0010902500003117

6. Giunta Regionale Regione Autonoma Friuli Venezia Giulia: Allegato a DGR FVG
n. 2039 del 16 ottobre 2015 ‘LR 17/2014, Art. 37 - Piano dell’emergenza urgenza
della regione Friuli Venezia Giulia: approvazione definitiva’ (2015)

7. Gonçalves, J., Resende, M.: Biased random-key genetic algorithms for combina-
torial optimization. J. Heuristics 17, 487–525 (2011). https://doi.org/10.1007/
s10732-010-9143-1

8. Hammami, S., Jebali, A.: Designing modular capacitated emergency medical ser-
vice using information on ambulance trip. Oper. Res. Int. J. 21(3), 1723–1742
(2019). https://doi.org/10.1007/s12351-019-00458-4

9. Istituto Nazionale di Statistica (ISTAT): Confini delle unità amministrative a fini
statistici al 1◦ gennaio 2022 (2022). https://www.istat.it/it/archivio/222527

10. Jacobson, E.U., Argon, N.T., Ziya, S.: Priority assignment in emergency response.
Oper. Res. 60(4), 813–832 (2012)

11. Júnior, B., Costa, R., Pinheiro, P., Luiz, J., Araújo, L., Grichshenko, A.: A
biased random-key genetic algorithm using dotted board model for solving two-
dimensional irregular strip packing problems. In: 2020 IEEE Congress on Evo-
lutionary Computation (CEC) (2020). https://doi.org/10.1109/CEC48606.2020.
9185794

12. Li, X., Zhao, Z., Zhu, X., Wyatt, T.: Covering models and optimization techniques
for emergency response facility location and planning: a review. Math. Methods
Oper. Res. 74, 281–310 (2011)

13. Lindauer, M., et al.: SMAC3: A versatile Bayesian optimization package for hyper-
parameter optimization (2021)

14. Liu, Y., Yuan, Y., Shen, J., Gao, W.: Emergency response facility location in trans-
portation networks: a literature review. J. Traffic Transp. Eng. (English Edition)
8, 153–169 (2021)

15. Luxen, D., Vetter, C.: Real-time routing with OpenStreetMap data. In: Proceed-
ings of the 19th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, GIS 2011, pp. 513–516. ACM, New York (2011).
https://doi.org/10.1145/2093973.2094062

16. Neira-Rodado, D., Escobar-Velasquez, J., McClean, S.: Ambulances deployment
problems: categorization, evolution and dynamic problems review. ISPRS Int. J.
Geoinf. 11, 1–37 (2022). https://doi.org/10.3390/ijgi11020109

17. OpenStreetMap: OpenStreetMap (2022). https://www.openstreetmap.org
18. Regione Autonoma Friuli Venezia Giulia: Regione in cifre 2021 (2021). https://

www.regione.fvg.it/rafvg/cms/RAFVG/GEN/statistica/FOGLIA3/FOGLIA74/
19. Schütz, F.: SimCpp20 (2021). https://github.com/fschuetz04/simcpp20.git
20. Sudtachat, K.: Strategies to improve the efficiency of Emergency Medical Service

(EMS) systems under more realistic conditions (2014). https://tigerprints.clemson.
edu/all dissertations/1359

21. Yin, P., Mu, L.: Modular capacited maximal covering location problem for the
optimal siting of emergency vehicles. J. Appl. Geogr. 34, 247–254 (2012)

https://doi.org/10.5220/0010902500003117
https://doi.org/10.1007/s10732-010-9143-1
https://doi.org/10.1007/s10732-010-9143-1
https://doi.org/10.1007/s12351-019-00458-4
https://www.istat.it/it/archivio/222527
https://doi.org/10.1109/CEC48606.2020.9185794
https://doi.org/10.1109/CEC48606.2020.9185794
https://doi.org/10.1145/2093973.2094062
https://doi.org/10.3390/ijgi11020109
https://www.openstreetmap.org
https://www.regione.fvg.it/rafvg/cms/RAFVG/GEN/statistica/FOGLIA3/FOGLIA74/
https://www.regione.fvg.it/rafvg/cms/RAFVG/GEN/statistica/FOGLIA3/FOGLIA74/
https://github.com/fschuetz04/simcpp20.git
https://tigerprints.clemson.edu/all_dissertations/1359
https://tigerprints.clemson.edu/all_dissertations/1359

Simulated Annealing for a Complex
Industrial Scheduling Problem

Quentin Perrachon1,2(B), Alexandru-Liviu Olteanu1, and Marc Sevaux1

1 Lab-STICC, UMR 6285, CNRS, Université Bretagne Sud, Lorient, France
quentin.perrachon@univ-ubs.fr

2 HERAKLES, Vannes, France

1 Introduction

We focus on a complex industrial problem extending the job shop scheduling
problem (JSSP). We consider multiple jobs consisting of operations to be sched-
uled and assigned to a set of available resources. Each operation may require
multiples necessary resources to be processed and each of its necessary resources
must be selected from a corresponding subset of resources. Our goal is to take
into account constraints often seen in an industrial context to produce solutions
that are easier to exploit directly. For this purpose, the extensions of the classical
job shop scheduling problem that we tackle are as follows:

Flexibility: resources must be selected from a subset of compatible resources;
Multi-resource: each operation may require more than one resource;
Unavailability: each resource may be unavailable during certain time periods.

Operations interrupted by unavailabilities must be restarted;
Partially necessary resources: some resources may not be required for the

entire duration of an operation;
Non-linear routing: precedence constraints between operations of a same job

are not necessarily linear.

Finding a solution to our problem corresponds to finding a valid assignment
for all necessary resources of all operations and finding sequences of operations
on each resource while satisfying all constraints of our problem. In this paper,
we will focus on jobs with due dates and our main optimization criterion will be
the minimisation of the total lateness (

∑
Lj in the classical α|β|γ notation [9]).

Job shop scheduling problems have seen extensive research due to their many
real-life applications. The flexibility extensions of the problem (Flexible Job Shop
Scheduling Problem) has also been a popular topic [2]. The other extensions
studied here are less popular and, most often, only deal with the minimization
of the makespan criterion, which generally is not the most pertinent criterion
in an industrial context. Dauzère-Pérès and Pavageau [4] proposed an approach
to a similar problem, extending previous works [3,5] on an integrated neighbor-
hood structure for job shop scheduling problems using disjunctive graph rep-
resentation. Mauguière et al. [8] presented a job shop scheduling problem with

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 457–463, 2023.
https://doi.org/10.1007/978-3-031-26504-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_33&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_33

458 Q. Perrachon et al.

unavailabilities also using the disjunctive graph representation. To our knowl-
edge, no work on scheduling problems involving multi-resource, flexibility and
unavailabilities has so far been published.

2 Description of the Problem

We consider a set of n operations O = {oi | ∀i ∈ 1..n} that need to be scheduled
on m resources M = {mr | ∀r = 1..m}. Each operation oi is associated to one
of g jobs J = {Jj | ∀j ∈ 1..g}, with job(oi) ∈ J indicating this association. Each
job has a due date denoted with dj .

We divide each operation oi into q(i) consecutive stages oi = {ois | ∀s =
1..q(i)}. Each stage corresponds to a different phase of the operation where a
set of resources different from neighboring stages is required. Each operation
oi requires m(i) resources to be processed. For each kth necessary resource of
operation oi the subset Mk

i ⊂ M denotes the compatible resources. We denote
with Sg(i, k) the stages during which the kth resource of operation oi is required.
An example of the separation of an operation into stages is shown in Fig. 1.

oi
oi1 oi2 oi3

setup processing cleanup

k = 1

k = 2

k = 3

Sg(i, 1) = {1}
Sg(i, 2) = {1, 2, 3}
Sg(i, 3) = {3}

Fig. 1. Operation oi with m(i) = 3 and q(i) = 3

Routing constraints are defined by PR(i), the set of operations preceding
operation oi and SR(i), the set of operations succeeding operation oi. These
notations are extended to stages such that PR(i, s) is the set of stages preceding
ois and SR(i, s) the set of stages succeeding ois.

Resources may be unavailable during certain time periods. Let Ur =
{[sur

l , cu
r
l] | ∀ l = 1..lr} be the set of unavailabilities for each resource mr,

where lr is the number of unavailability intervals of resource r. An unavailability
is a time interval [sur

l , cu
r
l] within which resource mr is unavailable. Operations

interrupted by an unavailability require to be restarted from their first stage.
The processing time of an operation may be divided according to its stages

and assigned resources. We define ptirs as the processing time of operation oi on
resource r during stage s. The real processing time of each stage correspond the
maximum processing time of each resource required during that stage.

We will represent solutions of our problem by a solution graph [7] inspired
by the disjunctive graph representation. A solution graph is a directed acyclic

Simulated Annealing for a Complex Industrial Scheduling Problem 459

graph G = (O,R,S). O is the set of all vertices, one for each stage of each
operation. To maintain consistency, we will denote Ois as the vertex associated
with stage ois. Two fictitious vertices, the source O0 and the sink O∗ are also
added, representing the start and end of the whole schedule respectively. R is the
set of routing edges corresponding to the routing constraints PR and SR. S is
the set of all sequence edges, which correspond to the solution of our problem. An
edge between two stages Ois and Oi′s′ , either non consecutive or from different
operations, exists only if ois is the direct predecessors of oi′s′ on a shared resource.
We will note pi(i, k) (resp. pk(i, k)) the index of the operation (resp. the index
of the corresponding necessary resource) that precedes operation oi on its kth

necessary resource. Respectively, we will note si(i, k) and sk(i, k) the index of
the operation succeeding oi on its kth necessary resource. Stages that do not
have a predecessor on one of their necessary resources have an incoming edge
from O0 and, respectively, stages that do not have a successor on one of their
necessary resources have an outgoing edge to O∗. All edges have a weight equal
to the maximum processing time ptirs of any resource r assigned to oi during
the stage ois corresponding the source of the edge Ois. Edges outgoing from the
source O0 have a weight of 0.

Computing the starting and completion times of all operations can then be
done by a traversal of each vertex in their topological order, with potential
backtracking if an operation is interrupted by an unavailability.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

O1,1 O2,1 O2,2 O2,3

O3,1

O4,1

O5,1 O5,2

O6,1 O6,2 O6,3

O7,1 O8,1 O8,2 O8,3

*

Fig. 2. Solution representations (Gantt chart - Graph representation)

An example of a solution for a problem with 8 operations (oi) and 6 resources
(mr) is given as a Gantt chart and as its corresponding graph representation
(Fig. 2), routing edges are grey and dotted and sequence edges are coloured
according to their corresponding resource.

460 Q. Perrachon et al.

3 Neighbourhood-Based Resolution Approach

The partner company, HERAKLES, has stressed the importance of the resolu-
tion of this problem in a short time frame. As a first step, we have decided to
develop a simulated annealing approach for its flexibility.

3.1 Neighbourhoods Based on the Graph Representation

We focus on a neighbourhood structure based on a movement adapted from and
inspired by [4,5]. The basic idea of this movement is the removal and reinsertion
of an operation in the solution graph. We have adapted the movement to our
different graph structure to handle our constraints. The move is defined as follows
(illustrated in Fig. 3):

1. Select an operation oi and one of its necessary resources k
2. Remove the incoming edge (Ou,maxSg(u,ku) −→ Oi,minSg(i,k)) with u =

pi(i, k) and ku = pk(i, k)
3. Remove the outgoing edge (Oi,maxSg(i,k) −→ Ov,minSg(v,kv)) with v = si(i, k)

and kv = sk(i, k)
4. Add the edge (Ou,maxSg(u,ku) −→ Ov,minSg(v,kv)) to S
5. Select and remove an edge (Ou′,maxSg(u′,ku′) −→ Ov′,minSg(v′,kv′)) from S
6. Add the edge (Ou′,maxSg(u′,ku′) −→ Oi,minSg(i,k)) to S
7. Add the edge (Oi,maxSg(i,k) −→ Ov′,minSg(v′,kv′)) to S

Fig. 3. Reinsertion of Oi between Ou′ and Ov′

The movement itself is not complicated but maintaining its feasibility is the
clever part of our neighborhood. This movement may correspond to a reassign-
ment of the kth necessary resource of oi or a re-sequencing of oi on its kth nec-
essary resource depending on where it is reinserted. Such a movement is feasible
if and only if the assignment constraints are respected and the resulting solu-
tion graph stays acyclic. This movement is designed to involve a single resource,
however it may be required for some operations to do this movement on multiple
necessary resources at once otherwise no feasible solution may be reached due
to multiple parallel edges between two vertices. We thus extend the definition of
our movement to take into account this case.

Simulated Annealing for a Complex Industrial Scheduling Problem 461

We define a neighbourhood N1 as the set of feasible solutions reachable
from such a movement. Feasibility can be checked efficiently through a set of
sufficient conditions involving the original solution graph. Unfortunately this
neighbourhood may be rather large. We can reduce the size of this neighbourhood
using the critical path theory by computing a critical path for each job finishing
later than its due date. Any improving movements of N1 involve operations
appearing on these paths. We can thus define a neighbourhood N2 as the set of
feasible solutions reachable from the reinsertion of an operation appearing in at
least one of the critical paths of each job.

There have been a few works on the efficient evaluation of a movement with-
out any graph traversal, based on timings, head, tails and critical path theory,
thus providing significant gains with respect to computational time. Unfortu-
nately, unavailability constraints invalidate most of these properties and make
evaluation without graph traversal not precise enough to be useful. A proper
evaluation of a movement requires graph traversal and thus a significant compu-
tation time. This is currently the main factor limiting our resolution approach.

3.2 Simulated Annealing

We have implemented a straight forward version of the simulated annealing [6]
using our neighbourhood structure N2. A simulated annealing was chosen due to
it’s capability to escape local optimum without having to explore the neighbour-
hood structure fully. We start the simulated annealing from an initial solution
generated using a constructive algorithm providing semi-active schedules. At
each iteration, a random neighbour solution from N2 is selected and evaluated.
It is accepted if either this new solution is better than the previous one, or based
on a certain probability depending on the annealing schedule used.

The simulated annealing parameters heavily depend on the size of our
instances and a set time limit and thus parameter tuning was required for each
instance. The initial temperature T0 is set such that most of the neighbours of
the initial solutions are accepted. The cooling scheme is a geometric one, using
an α such that Ti+1 = α × Ti. α is set such that the solutions converge within a
given time limit, i.e. our stopping criterion. The acceptance criterion is the same
as the original SA formulation, i.e. Paccept = exp(−Δ(s′, s)/T).

4 Experiments and Results

To our knowledge, there is no existing benchmark corresponding to our problem.
Consequently, we generated our own test instances, extending instances from a
well known existing benchmark set for the flexible job shop problem [1]. As
requested by the partner company, we use a fixed time limit of 5 min as the
stopping criterion, mimicking a more realistic industrial context, even if the
computational time of an iteration can largely vary with the size of the instance.

Table 1 illustrates average results following the execution of the proposed
approach 30 times on each of the 15 considered extended problem instances.

462 Q. Perrachon et al.

For each instance, we report its name, the number of resources, the number of
operations, the total lateness of the initial solution (obtained by a heuristic not
described here), the average total lateness and the best objective function value
obtained over the 30 runs of the SA. The last column measures the improvement
of the best solution over the initial solution.

Table 1. Average results on the extended problem instances

Instances m n Init. sol. Av.
∑

Lj Best
∑

Lj Imp. %

Mk+1 9 55 179.7 132.71 99.52 44.62%

Mk+2 9 58 176.6 69.14 35.33 79.99%

Mk+3 12 150 2188.15 1689.8 1421.07 35.06%

Mk+4 12 90 822.71 448.64 374.25 54.51%

Mk+5 6 106 3265.68 2347.64 2213.98 32.2%

Mk+6 15 150 281.25 148.35 72.7 74.15%

Mk+7 8 100 3706.55 2731.98 2423.1 34.63%

Mk+8 15 225 10042.28 9114.74 8762.24 12.75%

Mk+9 15 240 6703.84 6268.78 6146.06 8.32%

Mk+10 23 240 2967.8 2766.39 2638.26 11.1%

Mk+11 8 179 25173.5 23479.62 22598.15 10.23%

Mk+12 15 193 19029.67 18094.75 17201.3 9.61%

Mk+13 15 231 17297.17 15695.58 15125.23 12.56%

Mk+14 23 277 18306.55 17176.16 16807.75 8.19%

Mk+15 23 284 12190.56 11460.81 10905.68 10.54%

For the small size instances, the initial solution does not seem to be good since
it is easily improved by SA. As the size of the instances grows, the computational
time for each iteration is larger (due to the neighborhood structure) and SA
has not enough time to improve the initial solution. At this stage, we require
more experiments and a fair comparison with other approaches to validate the
computational experiments.

5 Conclusion

Dealing with an industrial problem is a real challenge, especially when the prob-
lem contains a set of difficult constraints such as multi-resources, unavailabili-
ties, partially necessary resources or non-linear routing, all together. This paper
presents a first metaheuristic, namely a simulated annealing based on a power-
ful neighborhood. This neighborhood manages to maintain the feasibility of the
new solution. Our approach proposes also to reduce the size of the neighborhood
to avoid unnecessary computations. Despite our efforts, the results still lack in
performance and also in a fair comparison with competing methods.

Simulated Annealing for a Complex Industrial Scheduling Problem 463

We are currently working to improve the neighborhood structure in order
to further reduce the required computational time. We are also considering a
different metaheuristic framework in order to intensify the search procedure. A
preliminary MILP model was also constructed for comparison.

References

1. Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu search. Ann.
Oper. Res. 41(3), 157–183 (1993)

2. Chaudhry, I.A., Khan, A.A.: A research survey: review of flexible job shop scheduling
techniques. Int. Trans. Oper. Res. 23(3), 551–591 (2016)

3. Dauzère-Pérès, S., Paulli, J.: An integrated approach for modeling and solving the
general multiprocessor job-shop scheduling problem using tabu search. Ann. Oper.
Res. 70, 281–306 (1997)

4. Dauzère-Pérès, S., Pavageau, C.: Extensions of an integrated approach for multi-
resource shop scheduling. IEEE Trans. Syst. Man Cybern. Part C 33(2), 207–213
(2003)

5. Dauzère-Pérès, S., Roux, W., Lasserre, J.B.: Multi-resource shop scheduling with
resource flexibility. Eur. J. Oper. Res. 107(2), 289–305 (1998)

6. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

7. Mastrolilli, M., Gambardella, L.M.: Effective neighbourhood functions for the flex-
ible job shop problem. J. Sched. 3(1), 3–20 (2000)

8. Mauguiere, P., Billaut, J.C., Bouquard, J.L.: New single machine and job-shop
scheduling problems with availability constraints. J. Sched. 8(3), 211–231 (2005)

9. Pinedo, M.L.: Scheduling, vol. 29. Springer, New York (2012). https://doi.org/10.
1007/978-1-4614-2361-4

https://doi.org/10.1007/978-1-4614-2361-4
https://doi.org/10.1007/978-1-4614-2361-4

A Matheuristic for Multi-Depot
Multi-Trip Vehicle Routing Problems

Tiziana Calamoneri1 , Federico Corò2(B) , and Simona Mancini3,4

1 Sapienza University of Rome, Rome, Italy
calamo@di.uniroma1.it

2 Missouri University of Science and Technology, Rolla, USA
federico.coro@mst.edu

3 University of Palermo, Palermo, Italy
simona.mancini@unipa.it

4 University of Klagenfurt, Klagenfurt am Wörthersee, Austria
simona.mancini@aau.at

Abstract. Starting from a real-life application, in this short paper, we
propose the original Multi-Depot Multi-Trip Vehicle Routing Problem
with Total Completion Times minimization (MDMT-VRP-TCT). For it,
we propose a mathematical formulation as a MILP, design a matheuristic
framework to quickly solve it, and experimentally test its performance.

It is worth noting that this problem is original as in the literature its
characteristics (i.e., multi-depot, multi-trip and total completion time)
can be found separately, but never all together. Moreover, regardless of
the application, our solution works in any case in which a multi-depot
multi-trip vehicle routing problem must be solved.

Keywords: Matheuristic · Multi-trip · Multi-depot · Vehicle routing
problems · Total completion time minimization

1 Introduction

In this short paper, we study the Multi-Depot Multi-Trip Vehicle Routing Prob-
lem with Total Completion Times minimization (MDMT-VRP-TCT). This prob-
lem arises from a Search & Rescue application: immediately after a natural disas-
ter, a fleet of unmanned aerial vehicles (UAVs) helps rescue teams to individuate
people needing help inside an affected area. In this context, typically diverse civil
defence rescue teams rush from the vicinity to the most affected area, so they
give rise to multiple depots. Moreover, UAVs return to depots to substitute their
batteries and leave for a new tour, so introducing a multi-trip scenario. Finally,
to save as many lives as possible, the most important goal is to get the job done
in the shortest possible time, so we aim at minimizing the total completion time.

The resulting optimization problem is original, as in the literature these three
characteristics can be found separately, but never all together. Indeed, many

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 464–469, 2023.
https://doi.org/10.1007/978-3-031-26504-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_34&domain=pdf
http://orcid.org/0000-0002-4099-1836
http://orcid.org/0000-0002-7321-3467
http://orcid.org/0000-0001-5287-2255
https://doi.org/10.1007/978-3-031-26504-4_34

A Matheuristic for MDMT-VRP-TCT 465

problems having similarities with ours can be found, but they also have essential
differences with respect to ours.

In this short paper we only refer to [2] as a survey paper on Multi-Trip
Vehicle Routing Problems (MTVRP) (where there is a single depot), to [3] for
the description of Multiple Traveling Repairperson Problem (mTRP) (that could
appear similar to ours but the latency is minimized instead of the completion
time), to [1] for the Multiple Traveling Salesperson Problem (mTSP) (where
there are no battery constraints i.e., a single trip for each vehicle), and to [4] for
a description of the Rooted Min-Max Cycle Cover Problem (RMMCCP) (with
single depot).

The rest of this short paper is organized as follows: in Sect. 2, we model
MDMT-VRP-TCT as a MILP; in Sect. 3 we propose a matheuristic framework
to face reasonably large instances and, in Sect. 4, we experimentally test it.

2 Mathematical Formulation

In this section, we present a mathematical formulation for MDMT-VRP-TCT.
Assume to have an area of interest (e.g. the one affected by a natural disaster)

with a set I of target nodes to monitor (e.g. all the damaged buildings). Around
the area, there is a set D of depots where a set U of vehicles start from (e.g. the
places where some rescue teams settle down their bases, each one with a sub-fleet
of UAVs); in general, each vehicle u is characterized by a different budget bu and
then it has to come back to the depot it is uniquely associated to (e.g. each UAV
has a battery; when it runs down, it is necessary to substitute it with a charged
one, and this can be done only at its own depot).

The traveling distance between each pair of nodes i, j ∈ I ∪D is known. Each
node i ∈ I, has an associated service time si (e.g. the needed time to overfly it).

A sequence is any ordered set k of target nodes; the duration of sequence k is
computed as the sum of all traveling distances between consecutive target nodes
in k plus the service times of all the target nodes in k.

The aim of our problem consists in assigning to each vehicle u ∈ D an ordered
set of sequences such that, from its depot, u is able to reach the first target of
any of the sequences assigned to it, serve all its target nodes, come back to ou,
and start again. A sequence k with the addition of the depot of u is called a trip
and its duration, tku is given by the duration of k plus the traveling distances
between the depot associated to u and the two extremes of k.

A sequence k is compatible with a vehicle u if its duration is upper bounded
by bu. A compatibility index, Φku is defined equal to 1 if sequence k is compatible
with vehicle u and equal to 0 otherwise. Of course, k can be assigned to u only if
it is compatible with it (i.e. if Φku = 1). A sequence k is considered feasible if it
is compatible with at least one vehicle. Only feasible sequences are considered.

A solution for our problem consists in selecting a set of sequences K whose
union covers I and in assigning them to compatible vehicles. We define the total
completion time of a solution the maximum over all times required by each UAV
to fly over all the trips assigned to it by that solution.

466 T. Calamoneri et al.

Then, we introduce the following decision variables:

– Xk ∈ {0, 1}, k ∈ K, is a binary variable assuming value equal to 1 if sequence
k is selected and 0 otherwise;

– Yku ∈ {0, 1}, k ∈ K and u ∈ U , is a binary variable assuming value equal to
1 if sequence k is executed by vehicle u;

– Tu is the completion time of vehicle u;
– τ is a non-negative variable representing the total completion time.

The mixed integer programming formulation is reported in the following

min τ (of)
∑

k∈Ωi

Xk = 1 ∀i ∈ I (C1)

∑

u∈U

Yku = Xk ∀k ∈ K (C2)

Yku ≤ Φku ∀k ∈ K,∀u ∈ U (C3)

Tu =
∑

k∈K

tkuYku ∀u ∈ U (C4)

τ ≥ Tu ∀u ∈ U (C5)

The objective function consisting into the minimization of the total com-
pletion time, as reported in (of). Constraints (C1) ensure that each target is
covered by exactly one sequence. If a sequence is selected, it must be assigned
to exactly one vehicle, chosen among those compatible with it, (constraints (C2)
and (C3)). The cumulative working time for each vehicle is computed by means of
constraints (C3). The total completion time must be larger than the cumulative
working time of each vehicle, as stated in (C4). This formulation distinguishes
from the trip based standard one in the objective function.

We conclude this section highlighting that the novelty of our approach lies
in considering sequences that can be assigned to vehicles located in different
depots (in fact to all vehicles whose depot position makes them compatible with
them) instead of constructing closed trips (as for example in [5]), that are inher-
ently partitioned among the vehicles. Moreover, regardless of the application, our
modeling approach works in any case in which a multi-depot multi-trip vehicle
routing problem must be solved, whichever is the objective function to be opti-
mized. Therefore, it can be applied also in cases in which the goal is to minimize
the total covered distance, as common in logistics applications.

3 A Model Based Matheuristic Framework

The main idea under the above presented mathematical model consists into
generating all possible feasible sequences and associating them to the set of their
compatible vehicles. When the number of feasible trips is too large to be handled,
the mathematical model becomes intractable. If, for instance, target nodes are

A Matheuristic for MDMT-VRP-TCT 467

very near among each other, or batteries are very large, so that several target
nodes can be visited in a single sequence, even small instances may become
difficult to handle exactly.

To overcome this issue, and be able to address larger instances, we derive
from our model a heuristic approach, in which we generate only a subset of the
feasible sequences, K̃, to be passed to the model. It is clear that the choice of
the sequences can dramatically change the performance of the heuristic. There-
fore, the problem of determining which sequences to generate assumes a crucial
importance.

In the following, after giving some operative definitions, we describe how we
generate promising sequences to be passed to the mathematical model.

A sequence k is dominated (strictly dominated) by another one, k′, if they
have the same extremes and contain exactly the same target nodes (possibly in
a different order), but k′ has a lower or equal (strictly lower) duration than k.

We initially generate all the sequences containing only one target node and
directly insert them in the set of sequences to be passed to the model, K̃. We
also insert them in a temporary set of sequences Ktmp which contains sequences
to be expanded. All the sequences included in Ktmp are then processed. Nc child
sequences are generated from each sequence k adding after the last target node
in the sequence, lk, the jth nearest node to lk among those not already included
in k, with j varying in {1, Nc}. For each child sequence kc, we apply a first feasi-
bility check: if the duration sequence kc is larger than the maximum autonomy
of a vehicle, Bmax = maxu∈U bu, then the sequence is immediately discarded.
Otherwise, we pass the corresponding trip to a second feasibility check, in order
to verify that the sequence is neither strictly dominated by nor it strictly dom-
inates another sequence already belonging to K̃. If a domination occurs, the
dominated sequence is discarded otherwise it is kept in K̃. At this point, we set,
for all the vehicles u compatible with k, Φku = 1, and for all the others Φku = 0.

Once all the child sequences of a sequence k have been analyzed, k is removed
from Ktmp. The procedure terminates when Ktmp is empty or when a maximum
allowed number of sequences, Kmax have been added to k̃.

Kmax is a parameter of the algorithm and it plays a crucial role in the per-
formance of the algorithm. A larger value of Kmax would yield to a better global
solution but would increase the computational time required by the heuristic.
To obtain an effective and efficient algorithm, this parameter must be carefully
tuned in order to achieve a good balance between solutions quality and compu-
tational times. The maximum number of children generated by each trip, Nc,
also plays an important role. The larger the value of Nc, the larger the number of
sequences containing a specific number of target nodes. Note that keeping fixed
the value of the maximum number of sequences to generate Kmax, lower values
of Nc allow us to generate sequences containing more target nodes, which could
be promising; on the other hand, in those sequences only nodes which are very
close to each others are visited sequentially, and this would imply that isolated
targets would appear in very few sequences. Instead, with very large values of
Nc, even targets which are not very close to each others can be visited, but

468 T. Calamoneri et al.

in this case each sequence have several children, and so the maximum allowed
number of sequence is reached already considering sequences containing a small
number of targets, longer sequences are not generated, and this could negatively
affect the solution quality.

After the sequence generation process is finished, the set of sequences K̃ is
given in input to the mathematical model ((of)–(C4)).

4 Computational Results and Discussion

In this section, we study the performance of our matheuristic, comparing it with
the exact model on small instances) and varying some parameters of the problem.

In this short paper we selected only some experiments, shown in Fig. 1.
In all charts, on the x axis, 3, 4, 5 and 6 represent the used values of Nc.

The y coordinates of the dots correspond to an average computed on 20 random
instances on the same number of nodes: every column of charts corresponds to a
different value of n (increasing going from left to right). The red lines represent
the benchmark values achieved by the model. It is worth to note that when n
is small (n ≤ 30), there are results corresponding to the model; when n = 40,
the model terminates only in 11 cases out of 20, and computational times varied
between 101.38 and 30559.5 s; probably the corresponding instances are partic-
ularly easy to solve (e.g., without clustered target nodes) and for this reason we
decided not to report the average value of the optimal solution. Instead, when
n = 50, the model is not able to terminate in any case.

The experiments perfectly confirm the expectations. Indeed:

– The first three charts in the first row show the percentage gap from the
optimum completion time, that is the main objective function of our problem;
it is clear that it tends to 0 as Nc grows up and, when Nc = 6, it is very close
to 0, showing that our matheuristic works very well. We can also observe that
also with Nc = 3 the gap is very small for instances with 10 nodes, while it
tends to increase for larger instances. The last two charts of the first row,
instead, show the percentage gap w.r.t. the case Nc = 3; since large values of
Nc lead to better solutions, clearly, these gaps are negative.

– The second row of charts corresponds to the number of trips generated in
order to individuate the solution. As expected, the matheuristic dramatically
decreases the number of trips, that is higher and higher when Nc increases
but anyway reasonable. Just this reduction makes the matheuristic tractable
even for large instances.

– The third row of charts corresponds to the time necessary for running the
model and the matheuristic. Clearly, the computational time of the model is
much higher and, for what concerns the matheuristic, it grows up when Nc

is increased.

The novelty of the approach, consists into generating (open) sequences of
nodes, that can be assigned to different vehicles at different costs, instead of
generating complete routes including the depot. This way, the problem can be

A Matheuristic for MDMT-VRP-TCT 469

Percentage improvement w.r.t. Nc = 3

3 4 5 6

0

0.2

0.4

0.6

0.8
%

ga
p

3 4 5 6

1

2

3 4 5 6

1

2

3

4

3 4 5 6

−2

−1

0

3 4 5 6

−2

−1

0

3 4 5 6

200

300

#
tr
ip
s

3 4 5 6
0

2,000

4,000

3 4 5 6

0

1

2

·104

3 4 5 6

2,000

4,000

3 4 5 6

2,000

4,000

6,000

8,000

3 4 5 6

6 · 10−2

8 · 10−2

0.1

n = 10

ti
m
e
(s
ec
on

ds
)

3 4 5 6

0

1

2

n = 20
3 4 5 6

0

50

100

150

n = 30
3 4 5 6

0.5

1

n = 40
3 4 5 6

1

2

n = 50

Fig. 1. Experimental results. On the x axis, 3,4,5,6 represent the used values of Nc; the
red lines represent the benchmark values achieved by the model. (Color figure online)

modeled as a multiple choice knapsack, with knapsack-dependent items weight
and maximum knapsack occupancy minimization. Such approach is not only
valid for this specific problem, but can be used for a wide class of multi-depot
multi-trip problems, including those having different objective functions, such as
the classical total travel distance minimization, the minimization of the number
of vehicles used, or the minimization of total cost given by vehicles purchasing
costs plus travel costs. Furthermore, this matheuristic framework can be used
whichever is the method exploited to generate promising sequences. In partic-
ular, it can be combined with well known solutions generation algorithms such
as the Greedy randomized adaptive search (GRASP). However, we believe our
method is more suitable for problems with heterogeneous fleet, since we generate
sequences of increasing length, among which, the smaller ones are compatible
also with vehicles with a limited autonomy (or capacity). Conversely, GRASP
is designed for problems with homogeneous fleet and tend to generate sequences
which exploit the whole capacity/autonomy of the vehicle.

References

1. Bektas, T.: The multiple traveling salesman problem: an overview of formulations
and solution procedures. Omega 34(3), 209–219 (2006)

2. Cattaruzza, D., Absi, N., Feillet, D.: Vehicle routing problems with multiple trips.
4OR 14(3), 223–259 (2016). https://doi.org/10.1007/s10288-016-0306-2

3. Méndez-Dı́az, I., Zabala, P., Lucena, A.: A new formulation for the traveling deliv-
eryman problem. Discret. Appl. Math. 156(17), 3223–3237 (2008)

4. Nagarajan, V., Ravi, R.: Approximation algorithms for distance constrained vehicle
routing problems. Networks 59, 209–214 (2012)

5. Paradiso, R., Roberti, R., Laganà, D., Dullaert, W.: An exact solution framework for
multitrip vehicle-routing problems with time windows. Oper. Res. 68(1), 180–198
(2020)

https://doi.org/10.1007/s10288-016-0306-2

Comparing QUBO Models of the Magic
Square Problem for Quantum Annealing

Philippe Codognet(B)

JFLI, CNRS/Sorbonne University/University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan

codognet@is.s.u-tokyo.ac.jp

Abstract. QUBO (Quadratic Unconstrained Binary Optimization) has
become the modeling language for quantum annealing and quantum-
inspired annealing solvers. We present different modeling in QUBO of the
Magic Square problem, which can be modeled by linear equations and a
permutation constraint over integer variables. Different ways of encod-
ing integers by Booleans in QUBO amounts to models that have very
different performance. Experiments performed on the Fixstars Amplify
Annealer Engine, a quantum-inspired annealing solver, show that using
unary encoding for integers performs much better than using the classical
one-hot encoding.

1 Introduction

Quantum Annealing (QA) [8,10] has become in the recent years an interesting
approach for solving combinatorial problems, in particular with the development
of quantum hardware such as D-Wave computers [2] and quantum-inspired dedi-
cated hardware such as Fujitsu’s Digital Annealer Engine [1]. From a metaheuris-
tic viewpoint, QA can be seen as a variant of simulated annealing where escape
from local minima is done by the physical phenomenon of quantum tunneling,
allowing to traverse energy barriers in the energy landscape as long as they are
not too large. In the QA paradigm, combinatorial optimization problems can
be described in the Ising model, a mathematical model of ferromagnetism in
statistical mechanics, and converted to Ising Hamiltonians, the ground states
of which correspond to the minimal solutions of the original problem, see for
instance [12]. These ground states can be computed by quantum devices using
adiabatic quantum evolution, an example of which being quantum annealing
[15].

In the field of combinatorial optimization, Quadratic Unconstrained Binary
Optimization (QUBO) has been proposed as a simple but powerful modeling
language for a variety of problems, see [9,11] for a detailed presentation and
examples. Interestingly, there is a straightforward transformation to convert Ising
models to QUBO and vice-versa, and thus QUBO has become the standard input
language for quantum and quantum-inspired annealing hardware.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 470–477, 2023.
https://doi.org/10.1007/978-3-031-26504-4_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_35&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_35

Comparing QUBO Models of the Magic Square Problem 471

Consider n Boolean variables x1, ..., xn, a QUBO problem consists in mini-
mizing an objective function defined by a quadratic expression over x1, ..., xn:

∑

i≤j

qijxixj

It is therefore usual to represent a QUBO problem by a vector x of n binary
decision variables and a square n × n matrix Q with coefficients qij , and the
problem can be written as: minimize y = xtQx, where xt is the transpose of x.

Although the “U” in QUBO stands for “Unconstrained”, constraint expres-
sions can be introduced in QUBO models as penalties in the objective function
to minimize, that is, as quadratic expressions whose value is minimal when the
constraint is satisfied. An easy way to formulate such a penalty is to create a
quadratic expression which has value 0 if the constraint is satisfied and a pos-
itive value if the constraint is not satisfied, representing somehow the degree
of violation of the constraint, see [9] for a set of penalty expressions for basic
constraints on a few Boolean variables.

This opens to the idea of modeling complex constraint satisfaction prob-
lems or constrained optimization problems in QUBO in order to solve them by
quantum annealing. We would like in this paper to consider the magic square
problem as such an example and detail its modeling in QUBO. We will consider
two different QUBO models with different encoding of integers by Booleans and
therefore different set of penalties to represent the constraints. The two models
indeed have different performance, and we will report preliminary performance
evaluation.

This paper is organized as follows. Section 2 describes how to model the magic
square problem with constraints. Then Sect. 3 details the first QUBO encod-
ing using one-hot encoding for integers, while Sect. 4 presents another QUBO
encoding using unary/domain-wall encoding for integers. Experiments and per-
formance evaluation on quantum-inspired hardware are then presented in Sect. 5.
A short conclusion ends the paper.

2 The Magic Square Problem

The well-known magic square problem consists in placing on a n × n square all
the numbers in {1, . . . , n2} such as the sum of the numbers in all rows, columns
and the two main diagonals are the same. It is usually modeled by considering
n2 integer variables xij with domains {1, . . . , n2} and the following constraints:

– a permutation constraint stating that all variables have a different value:
all-different (xij , ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , n}))

– 2n + 2 linear equations for the sums on the rows, columns and the two main
diagonals:

• ∀i ∈ {1, · · · , n},∑n
j=1 xij = m,

• ∀j ∈ {1, · · · , n},∑n
i=1 xij = m,

• ∑n
i=1 xii = m,

∑n
i=1 xn+1−i,i = m.

472 P. Codognet

The value m that should be the sum of all rows, columns and the two diag-
onals can be easily computed to be n

2 (n2 + 1).
[7] presents different modeling of the magic square problem and compares

its solving by different methods: Constraint Satisfaction Techniques (Microsoft
Solver Foundation), linear programming (CPLEX), variable neighborhood local
search, and genetic algorithms. As expected, metaheuristics methods are more
efficient, in particular because they can implement the permutation constraint
more efficiently. Large instances of the magic square problem (e.g. 100 × 100)
can indeed be solved in a few seconds by iterated local search [3].

For modeling this problem in QUBO, we first need to encode integer vari-
ables by Booleans. There are mainly two schemes currently used in the QA
community: the classical one-hot encoding and the unary/domain-wall encod-
ing. We can encode each integer variable in {1, . . . , n2}by n2 Booleans with
one-hot encoding and by n2 −1 Booleans with unary/domain-wall encoding. We
then need to transform the permutation constraint and linear equations over
integers into quadratic penalties over Booleans, as described previously, and the
penalties corresponding to the constraints depend on the encoding, as will be
detailed in the following sections. Observe that when several constraints ci are
to be modeled in the QUBO problem, the corresponding penalties should be
added to the objective function with a penalty coefficient pi for each penalty
in order to make it compatible with the original objective function to optimize.
The penalties coefficient corresponding to the constraint should be large enough
to make such constraints “hard”, whereas the objective function is considered
“soft”.

3 One-Hot Encoding

The natural way to encode integers with Booleans variables in QUBO is the
so-called one-hot encoding: an integer variable x ∈ {1, . . . , n} can be represented
by n Boolean variables xk that have value 1 if the original variable x has value k
and value 0 otherwise. Such a model has been proposed in [6] and we will briefly
recall it in this section.

To model the Magic Square problem, we will need a total of n4 Boolean
variables xk

ij , ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , n},∀k ∈ {1, . . . , n2} for representing
the integer variables xij corresponding to a cell (i, j). A Boolean variable xk

ij has
value 1 if the number in the cell (i, j) has value k and 0 otherwise.

To enforce that each variable as only one value we need the constraint∑n2

k=1 x
k
ij = 1. Remarking that

∑n2

k=1 x
k
ij = 1 ⇐⇒ (

∑n2

k=1 x
k
ij − 1)2 = 0, we

can develop this quadratic expression and remove the constant term to obtain
the penalty expression Pone-hot(xij) for each original integer variable xij , to be
added to the QUBO objective function:

Pone-hot(xij) = −
n2∑

k=1

xk
ij + 2

∑

k<k′
xk
ijx

k′
ij

Comparing QUBO Models of the Magic Square Problem 473

For the Magic Square problem, we also need to enforce the fact that each
value k ∈ {1, . . . , n2} is assigned exactly once, therefore enforcing a permutation
constraint, also known as two-way one-hot in the QA literature and used for
instance to model in QUBO the TSP or the QAP [13]. We can encode such a
permutation constraint in QUBO by 2 × n2 pseudo-Boolean constraints repre-
senting one-hot constraints: one corresponding to each of the n2 variables xij

stating that it can have only one value k (i.e., one-hot encoding) and one for
each of the n2 values k stating that it can be assigned to only one variable xk

ij .
Adding all penalty expressions together and simplifying the quadratic expression
gives the following penalty for the permutation constraint:

Pperm-1hot =
n∑

i=1,j=1

∑

{k<k′}
xk
ijx

k′
ij +

n∑

k=1

∑

{n∗i+j<n∗i′+j′}
xk
ijx

k
i′j′ −

n∑

i=1,j=1,k=1

xk
ij

Let us now define the penalties corresponding to the linear constraints on
the rows, columns and two diagonals of the magic square. Consider m integer
variables y1, . . . , ym in {1, . . . , n} and a linear constraint

∑m
i=1 aiyi = b, with

each yi being one-hot encoded by Boolean variables yi,1, . . . , yi,n.
As yi =

∑n
j=1 j ∗yij , the linear constraint over variables yi can be re-written:

m∑

i=1

ai(
n∑

j=1

j ∗ xij) = b ⇐⇒
∑

i∈{1,...,m}
j∈{1,...,n}

ai ∗ j ∗ yij = b

We now have a pseudo-Boolean linear constraint to which we can apply the
transformation #1 from [9] in order to obtain the penalty Plin-1hot corresponding
to the linear constraint over integer variables:

Plin-1hot =
∑

i∈{1,...,m}
j∈{1,...,n}

aij(aij − 2b)yij + 2
∑

i∗m+j<i′∗m+j′
aiai′jj

′yijyi′j′

In the Magic Square model, a constraint on column j,
∑n

i=1 xij = n
2 (n2 + 1)

is thus equivalent to
∑n

i=1(
∑n2

k=1 kx
k
ij) = n

2 (n2 + 1), and will lead to a penalty:

Pcolumn-j-1hot =
∑

i

k(k − n(n2 + 1))xk
ij + 2

∑

n∗i+k<n∗i′+k′
kk′xk

ijx
k′
i′j

Linear constraints on lines and the two diagonals are treated similarly.

4 Unary/Domain-Wall Encoding

An alternative to the one-hot encoding, called domain-wall encoding, has been
proposed in [4] and developed in [5] in an Ising model setting. When transposed

474 P. Codognet

to a Boolean setting, it amounts to the well-known unary encoding on a fixed
number of bits: a number n is encoded by n bits set to 1, followed by zeros. Let
us give a new definition for this format, adapted for defining penalties in QUBO.

A vector of n−1 booleans x0 · · ·xn−2 is a unary/domain-wall encoding of an
integer x ∈ {0, . . . , n − 1} if and only if the following properties holds:

1. ∀i ∈ {0, . . . , n − 3}, xi ≥ xi+1

2. x =
∑n−2

i=0 xi

This means that if xi = 1 then, for all indexes j < i, xj = 1, or equivalently
if xi = 0 then, for all indexes j > i, xj = 0. For instance, 1100 is a valid
unary/domain-wall encoding and represents the integer value 2, while 1101 and
0100 are not valid unary/domain-wall encodings. Observe that it is easier in this
encoding to refer to integer values between {0, . . . , n − 1} rather than between
{1, . . . , n}, and these values can be coded by using n − 1 Booleans rather than
n Booleans with one-hot encoding.

As described in [9], a Boolean constraint x ≥ y can be represented in QUBO
by the penalty y − xy, therefore the constraint for a valid unary/domain-wall
encoding corresponds to the penalty Punary:

Punary =
n−3∑

i=0

(xi+1 − xi xi+1)

To model the Magic Square problem, we need a total of n2(n2 − 1) Boolean
variables xk

ij , ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , n},∀k ∈ {1, . . . , n2 − 1} for repre-

senting the integer variables xij corresponding to a cell (i, j), with x0
ij · · ·xn2−1

ij

representing the unary/domain-wall encoding of xij with corresponding penalty
Punary.

Let us now define the permutation constraint in its general form. Consider n
integer variables x0, . . . , xn−1 with values in the domain {0, . . . , n − 1} and n ×
(n− 1) Booleans xij such that xi,0 . . . xi,n−2 is the unary/domain-wall encoding
of xi. We can remark that (x0, . . . , xn−1) is a permutation of (0, . . . , n − 1) if
and only if:

∀j ∈ {0, n − 2}
n−1∑

i=0

xij = (n − 1) − j

We can now sum up all the penalties corresponding to these n− 1 equations
and obtain the penalty Pperm-u corresponding to a permutation constraint on
x0, . . . , xn−1 with each xi being unary/domain-wall encoded by n − 1 Boolean
xij :

Pperm-u =
n−2∑

j=0

((2(j − n) + 3)
n−1∑

i=0

xij + 2
∑

i<k

xijxkj)

Let us now define the penalties corresponding to the linear equations over
integers encoded with unary/domain-wall encoding.

Comparing QUBO Models of the Magic Square Problem 475

Consider an equation
∑m

i=1 aixi = b with m integer variables x0, . . . , xm−1

in {0, . . . , n− 1}, with each xi unary/domain-wall encoded by Boolean variables
xi,0, . . . , xi,n−2. As xi =

∑n−1
j=1 xij , the original linear constraint over integer

variables xi can be re-written as:

m−1∑

i=0

ai(
n−2∑

j=0

xij) = b ⇐⇒
∑

i∈{0,...,m−1}
j∈{0,...,n−2}

aixij = b

We can then apply as in Sect. 3 the transformation #1 from [9] to this pseudo-
Boolean linear equation and obtain the penalty Plin-u:

Plin-u =
∑

i∈{0,...,m−1}
j∈{0,...,n−2}

ai(ai − 2b)xij + 2
∑

i∗m+j<i′∗m+j′
aiai′xijxi′j′

We thus have penalties that are slightly simpler than for one-hot encoding,
and we can use this transformation for all the linear equations representing the
constraints on the rows, columns and diagonals of the magic square.

5 Experiments with Fixstars Amplify Digital Annealer

Our original aim was to implement these two QUBO models on the D-Wave
quantum computer. However, due to the architecture of the D-Wave Advantage
system and in particular to the fact that the Pegasus architecture do not imple-
ment the complete connection graph between qubits, these machines are very
limited in the size of the instances that can be solved. Indeed, we cannot find a
solution satisfying all constraints for n > 3.

We therefore looked at quantum-inspired annealing (a.k.a. digital annealing)
systems that use QUBO as an input language and simulate the behavior of quan-
tum annealers on classical electronics, either on dedicated CMOS hardware such
as the Fujitsu Digital Annealing Unit [1], or on clusters of parallel hardware, such
as Fixstars Amplify Annealing Engine (AE) [14]. We implemented the QUBO
models on the Fixstars Amplify AE, a digital annealer running on a cluster of
Graphics Processing Units (GPUs), with a capacity of 65,536 bits connected by
a complete graph. It can run more complex models than D-Wave because it has
a complete connection graph topology between bits (i.e. QUBO variables), but
it is based on classical (non-quantum) electronics, hence bits and not qubits.

The performance evaluation of both QUBO encodings on the Fixstars
Amplify Annealer Engine is shown in Table 1 below (timings are in seconds).
Unary/domain-wall encoding is clearly more efficient than one-hot encoding,
being up to two orders of magnitude faster. Unary/Domain-wall encodings also
have slightly less variables (e.g. 5,832 for a 9 × 9 magic square versus 6,561 for
one-hot encoding) and the encoding of constraints is very different.

476 P. Codognet

Table 1. Performance of different QUBO models on Magic Square

Size One-hot Unary/Domain-wall

Success rate
(timeout = 1 mn)

Time to
solution

Success rate Time to solution
(timeout = 1 mn)

4× 4 100% 0.162 100% 0.064

5× 5 100% 2.435 100% 0.087

6× 6 100% 19.80 100% 0.209

7× 7 40% 42.70 100% 0.598

8× 8 0% - 100% 1.775

9× 9 0% - 100% 25.13

6 Conclusion

We have detailed two QUBO models for the Magic Square problem as an exper-
iment to implement complex combinatorial problems with various types of con-
straints in QUBO. Magic Square is modeled by linear equations and a permu-
tation constraint over integer variables that are then encoded in QUBO with
two different encodings for integers: one-hot encoding and unary/domain-wall.
As quantum computers such as D-Wave systems cannot solve instance of this
problem larger than n = 3, we have also implemented those QUBO models on
a quantum-inspired annealer based on a cluster of GPUs, the Fixstars Amplify
Annealer Engine. The performance evaluation shows that the unary/domain-
wall encoding is more efficient than the classical one-hot encoding, being about
two orders of magnitude faster. This shows the importance of investigating dif-
ferent types of modeling techniques in QUBO, including alternative codes for
integers.

References

1. Aramon, M., Rosenberg, G., Valiante, E., Miyazawa, T., Tamura, H., Katzgraber,
H.G.: Physics-inspired optimization for quadratic unconstrained problems using a
digital annealer. Front. Phys. 7, 48 (2019)

2. Bunyk, P.I., et al.: Architectural considerations in the design of a superconducting
quantum annealing processor. IEEE Trans. Appl. Supercond. 24(4), 1–10 (2014)

3. Caniou, Y., Codognet, P., Richoux, F., Diaz, D., Abreu, S.: Large-scale parallelism
for constraint-based local search: the costas array case study. Constraints 20(1),
30–56 (2016)

4. Chancellor, N.: Domain wall encoding of discrete variables for quantum annealing
and QAOA. Quantum Sci. Technol. 4, 045004 (2019)

5. Chen, J., Stollenwerk, T., Chancellor, N.: Performance of domain-wall encoding
for quantum annealing (2021). arXiv:2102.12224v2 (quant-ph)

6. Codognet, P.: Constraint solving by quantum annealing. In: ICPP Workshops 2021:
50th International Conference on Parallel Processing, August 2021. ACM (2021)

http://arxiv.org/abs/2102.12224v2

Comparing QUBO Models of the Magic Square Problem 477

7. Denic, A.: Application of exact and heuristic methods to magic square problem.
Math. Balkanica 25(5), 491–498 (2011)

8. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A
quantum adiabatic evolution algorithm applied to random instances of an NP-
complete problem. Science 292(5516), 472–475 (2001)

9. Glover, F.W., Kochenberger, G.A., Du, Y.: Quantum bridge analytics I: a tutorial
on formulating and using QUBO models. 4OR 17(4), 335–371 (2019)

10. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model.
Phys. Rev. E 58, 5355–5363 (1998)

11. Kochenberger, G., et al.: The unconstrained binary quadratic programming prob-
lem: a survey. J. Comb. Optim. 28(1), 58–81 (2014). https://doi.org/10.1007/
s10878-014-9734-0

12. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)
13. Matsubara, S., et al.: Digital annealer for high-speed solving of combinatorial opti-

mization problems and its applications. In: 25th Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 667–672 (2020)

14. Matsuda, Y.: Research and development of common software platform for ising
machines. In: 2020 IEICE General Conference (2020). https://amplify.fixstars.
com/docs/ static/paper.pdf

15. McGeoch, C.C.: Adiabatic Quantum Computation and Quantum Annealing: The-
ory and Practice. Morgan & Claypool, San Rafael (2014)

https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/s10878-014-9734-0
https://amplify.fixstars.com/docs/_static/paper.pdf
https://amplify.fixstars.com/docs/_static/paper.pdf

Self-adaptive Publish/Subscribe Network
Design

Vittorio Maniezzo1(B), Marco A. Boschetti2 , and Pietro Manzoni3

1 Department of Computer Science, Università di Bologna, Cesena, Italy
vittorio.maniezzo@unibo.it

2 Department of Mathematics, Università di Bologna, Cesena, Italy
marco.boschetti@unibo.it

3 Universitat Politécnica de Valéncia, Valencia, Spain

pmanzoni@disca.upv.es

Abstract. The pub/sub pattern is gaining momentum in IoT architec-
tures, thanks to its robustness and since it offers many-to-many com-
munication. Efficient network management is needed when only scarce
and unreliable resources are available as network infrastructure. More-
over, any form of centralized control should be avoided so as not to limit
the application potential. This short paper presents preliminary results
of a research line casting pub/sub communication as a dynamic network
design problem and supporting optimized adaptive routing via a fully
distributed Lagrangian matheuristic applied to an extension of the inte-
ger multicommodity flow problem.

Keywords: Publish/subscribe pattern · Matheuristics · Network
design

1 The Publish/Subscribe Pattern

The Internet of Things (IoT), renownedly a global network of connected devices,
people, and processes, is expanding at an exponential pace. It transfers and
shares collected data over the internet, having a huge impact on both the social
and the digital world. The information generated by IoT devices is typically
sent to servers hosted in the cloud that can be far away. The average round-
trip time from various geographically distributed points to their hosts can be
relatively high, and to this transfer time we should add the possible temporary
connection failures, a major problem for time-critical applications. To face this
challenge, “edge” and “fog” computing have been proposed to denote multilevel
hierarchies of nodes spanning from the cloud to IoT devices, permitting to bring
IoT solutions in areas where connectivity is scarce and, in general, resources are
limited, for example, in rural or remote areas.

A transition from a centralized, cloud-based architecture to an interoperable
and decentralized dynamic IoT architecture is in progress. A current research

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 478–484, 2023.
https://doi.org/10.1007/978-3-031-26504-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_36&domain=pdf
http://orcid.org/0000-0002-8712-115X
http://orcid.org/0000-0003-3753-0403
https://doi.org/10.1007/978-3-031-26504-4_36

Self-adaptive Publish/Subscribe Network Design 479

challenge is how to include fog computing features in current infrastructures,
ensuring the easy-to-use and high availability of network resources.

The publish/subscribe pattern (or simply pub/sub) provides an alternative to
traditional client-server architectures along with this request. It decouples the
client that sends a message (the publisher) from the clients, possibly more than
one, that receive the messages (the subscribers). The publishers and subscribers
never contact each other directly, in fact, they are not even aware that the
other exists. The connection between them is handled by a third component
(the broker), that filters all incoming messages and distributes them based on
topic contents to relevant subscribers.

The Message Queue Telemetry Transport (MQTT), is an OASIS (Organi-
zation for the Advancement of Structured Information Standards) protocol for
messaging between IoT devices that follows the Pub/Sub paradigm. MQTT per-
mits to transport messages between devices requiring a small code footprint and
limited network bandwidth. An MQTT client is any device, from a microcon-
troller to a server, that connects to an MQTT broker to exchange messages. The
communication follows the topic-based publish/subscribe pattern with brokers
acting as message dispatchers. The combination of the protocol simplicity at the
client side and of the support for reliability and quality of service (QoS), makes
MQTT effective for resource-constrained applications.

The centralized structure of MQTT, but more in general of Pub/Sub systems,
has anyway drawbacks, and new solutions are currently being tested to deal
with them. Choosing the proper infrastructure for broker messaging is crucial;
otherwise, scaling can be hindered, and reliability issues may appear.

This work describes the first attempt of mathematical optimization of a dis-
tributed MQTT broker system. The problem is cast as a network design prob-
lem, whose goal is to find the network configuration that maximizes the number
of messages relayed to subscribers, and is resilient to network topology varia-
tions. Moreover, we are focusing on the situation where links among brokers are
bandwidth limited, for example, due to LPWAN technologies like LoRa used as
network infrastructure [1].

2 The Lagrangian Matheuristic

We consider a scenario where several sensors are distributed in an area producing
data tagged according to their content. End nodes behave either as publishers
or subscribers, internal nodes are brokers. Clients accessing the network can
connect to one or many of the actual brokers and, through them, publish and
receive data. Data, as well as the associated tags (topics), are characterized by
the bandwidth required for their transmission in the network.

All existing connections in the network have limited bandwidth, as is the case
for example of LPWAN links. The application layer protocol used by the network
components to communicate with each other is assumed to be the MQTT pro-
tocol. Clients are not limited to connecting to only one broker but can choose to
connect to any of the visible ones, changing these links dynamically based on the

480 V. Maniezzo et al.

Fig. 1. A simple example showing
the connections among publishers
(hexagons) clients (squares) and bro-
kers (circles)

Fig. 2. Network model (named tinyIn-
stace) of the case of Fig. 1

load of connections a broker is subjected to. A simple example is shown in Fig. 1,
where two publishers (hexagons) can connect wirelessly to any broker (circle)
within their range. Brokers are connected among themselves and with the single
subscriber (square) by cables. If one of the brokers became saturated, a client
might decide to switch the connection to another of the brokers it has access to.
The network can also change dynamically, with the possibility of nodes disap-
pearing or new ones appearing, just as connections between nodes can appear
or disappear.

Brokers do not store data but only its tags. They are responsible for forward-
ing data compatible with the requests. Dynamic paths between data producers
and consumers have to be identified.

Summing up, the problem is a network design problem, whose goal is to find
the network configuration that minimizes the number of requests that are not
satisfied by the network. We denote this problem as Publish/subscribe network
design Problem, P/SP for short. P/SP is an extension of a standard max-flow
min-cost multicommodity flow problem, whose graph can be described using the
following elements:

– K is the set of commodities transmitted by the network, where the commodi-
ties correspond to the topics made available by the system.

– S is the set of source nodes, the clients that publish data. Each commodity
k originates in a single client.

– T is the set of destination nodes, the subscribers to the different topics. Each
commodity k can be requested by a set of clients T k ⊆ T .

– B is the set of intermediate nodes, the brokers present in the network.
– A is the set of directed arcs present in the graph, edges are represented by

pairs of arcs. A bandwidth constraints limits the sum of data flows in both
directions, in case of pairs of opposing arcs.

The P/SP problem cannot be directly modeled as a multicommodity net-
work design problem because the commodities generated by the sources could

Self-adaptive Publish/Subscribe Network Design 481

be requested by multiple destinations, and duplicated by the brokers met along
the paths. Thus, the data flow exiting from the sources is not equal to the sum
of the flows reaching the destinations, but possibly much smaller.

In our formulation, we further postulate that commodity flows cannot be
split and recombined at destination, and that sources and sinks are not brokers
for their respective commodity, though sinks can be brokers for commodities
they do not request. Figure 2 presents the very simple graph model of the pub-
lish/subscribe network of Fig. 1 that will be optimized as the instance named
tinyInstance. Based on the elements so far introduced, a first integer linear for-
mulation for problem P/SP is the following one. We define:

– xk
ij as the integer variable that denotes how many data paths connect the

publisher of k and single subscribers going through arc (i, j).
– ξk

ij as the binary variable that takes value 1 if commodity k ∈ K is transmitted
along arc (i, j). We also introduced artificial variable to manage the case in
which some subscribers cannot receive the commodity.

– capij as the capacity of edge {i, j}, accounting both for arc (i, j) and (j, i).
– finally, cij as the penalty that is paid if the arc (i, j) is used.

The mathematical formulation, denoted as F1 is as follows:

min zF1 =
∑

k∈K

∑

i∈N

∑

j∈Γ−1
i

cjix
k
ji (1)

subject to
∑

j∈Γ−1
t

xk
jt = 1 t ∈ T k, k ∈ K (2)

∑

j∈Γ−1
i

xk
ji =

∑

j∈Γi

xk
ij i ∈ B, k ∈ K (3)

|T k|ξk
ij ≥ xk

ij (i, j) ∈ A, k ∈ K (4)
∑

k∈K

ak(ξk
ij + ξk

ji) ≤ capij i ∈ N, j ∈ Γi (5)

xk
ij ∈ Z+

0 (i, j) ∈ A, k ∈ K (6)

ξk
ij ∈ {0, 1} (i, j) ∈ A, k ∈ K (7)

where N = S ∪ B ∪ T .
Formulation F1 can be decomposed on the contribution of every single node

and the whole problem can thus be optimized in a fully distributed fashion, pro-
vided that routing decisions can be enforced downpath. Unfortunately, problem
P/SP and its distributed counterparts is NP -hard due to the arc capacity con-
straints, besides being based on the integer multicommodity flow problem, and
we cannot, in general, expect to solve it within the characteristic time needed to
operate real-world IoT networks. We resort therefore to a distributed heuristic,
specifically a Lagrangian matheuristic [4], that leverages the mathematical for-
mulation F1. In detail, we relax constraints 5 and we insert them in the objective
function with non negative penalties λij , (i, j) ∈ A. The resulting formulation
LP is as follows:

482 V. Maniezzo et al.

Algorithm 1: Core Lagrangian heuristic
1 function LagrHeuristic();

Input : Control parameters
Output: A feasible solution x∗ of value z*

2 Initialize the penalty vector λ;
3 Identify an “easy” subproblem LR(λ);
4 repeat
5 solve subproblem LR(λ) obtaining the possibly infeasible solution x;
6 check for unsatisfied constraints;
7 update penalties λ;

8 construct problem solution xh using x and λ;

9 if z(xh) < z∗ then x∗ = xh ; // z(xh),z∗ are the costs of xh,x∗

10 until end condition;

min zLP =
∑

k∈K

∑

i∈N

∑

j∈Γ−1
i

(cjix
k
ji + λjia

k(ξk
ij + ξk

ij)) −
∑

(i,j)∈A

λijcapij (8)

subject to (2), (3), (4), (6), (7),
λij ≥ 0 (i, j) ∈ A (9)

The constraint matrix now has a block structure and decomposes over the
different commodities, the only linkage being the objective function. It is thus
possible to solve separately for each commodity, identifying a Dijkstra tree rooted
in the corresponding publisher and having leaves in the subscriber nodes.

Formulation F1 actually contains the standard integer programming formu-
lation of the Single Source Shortest Path problem (SSSP), it keeps it as a sub-
problem, therefore the solution of the subproblems is readily made by means of
any code for the SSSP. Unfortunately, the Dijkstra algorithm lends itself poorly
to a distributed implementation. However, distributed alternatives to Dijkstra
for standard SSSP instances have been studied.

Most Lagrangian heuristics share a common general structure, that consti-
tutes a metaheuristic of its own. The structure is presented in Algorithm1. In
our case, the steps requiring most attention are Step 5 and Step 7.

Step 5 asks for solving problem LP, given the arc weights, and it decomposes
into solving |S| single source shortest path problems, one for each publisher. We
implemented a fully parallel Multiple Source Shortest Path (MSSP) algorithm.
The algorithm is based on a dynamic programming adoption of Dijkstra’s cost
update equation (details at the conference). The estimate at time t of the mini-
mum cost of the path from source s to node i, fi(t), is

fi(t) =

⎧
⎨

⎩
0, if i = s

min
j∈Γ−1

i

fj(t − 1) + c(j, i), otherwise (10)

and the predecessor pred(i) is accordingly updated.

Self-adaptive Publish/Subscribe Network Design 483

Step 7 requires special attention, because we need to distribute penalty
updates over the nodes, but the standard subgradient update rule, Polyak rule,
makes use of a normalization factor computed over all network subgradients.
This was unacceptable for the application, but we could solve it by means of
a rule similar to the one used in [2], called quasi constant step size rule. More
details at the conference.

3 Preliminary Computational Results

We validated our approach first by coding in C# a fully distributed implemen-
tation of our approach, then by moving it in C++ to be run in the Omnet++ [3]
network simulator. To validate our approach, we generated some simple P/SP
instance ourselves and adapted to Pub/Sub a few well-known multicommod-
ity network flows instances arising in the telecommunication industry, up to 71
nodes and 244 arcs. All instances are available from [5].

Fig. 3. Omnet++ ongoing simulation
for TinyInstance

Fig. 4. Packet delays with operational
and corrupted arc

Given constraint on short paper length, here we present only some illustra-
tive obtained results. Figure 3 shows the Omnet++ rendering of the instance
TinyInstance of Figs. 1 and 2, as taken during a simulation.

Fig. 5. Optimized data paths for instance res0

Figure 4 shows the final
result of a simulation
on TinyInstance, where
the network was initially
complete, then, at about
1/3 of the simulation, arc
(0,3) was dropped and
later reinstalled. There
is a clear disruption of
the level of service, that
affects both transmissions
as the network quickly

484 V. Maniezzo et al.

reroutes all packets from 4 to 3 through brokers 1 and 2. When the arc is
reinstalled, the original situation is recovered (but note the different adapta-
tion times). Finally, Fig. 5 shows the optimized topology of a more complex
case, resulting from the adaptation of one of the integer multicommodity flow
instances.

References

1. Nakamura, K., et al.: A LoRa-based protocol for connecting IoT edge computing
nodes to provide small-data-based services. Digit. Commun. Netw. 8, 257–266 (2021)

2. Boschetti, M.A., Maniezzo, V., Roffilli, M.: A fully distributed lagrangean solution
for a peer-to-peer overlay network design problem. INFORMS J. Comput. 23(1),
90–104 (2011)

3. Varga, A.: OMNeT++. In: Wehrle, K., Güneş, M., Gross, J. (eds.) Modeling and
Tools for Network Simulation, pp. 35–59. Springer, Berlin (2010)

4. Maniezzo, V., Boschetti, M.A., Stützle, T.: Matheuristics, Algorithms and Imple-
mentations. EURO Advanced Tutorials on Operational Research, Springer, Heidel-
berg (2021). https://doi.org/10.1007/978-3-030-70277-9

5. Publish/subscribe problem instances. http://astarte.csr.unibo.it/pspdata/
PSPinstances.html

https://doi.org/10.1007/978-3-030-70277-9
http://astarte.csr.unibo.it/pspdata/ PSPinstances.html
http://astarte.csr.unibo.it/pspdata/ PSPinstances.html

An Efficient Fixed Set Search
for the Covering Location

with Interconnected Facilities Problem

Isaac Lozano-Osorio1(B) , Jesús Sánchez-Oro1 , Anna Mart́ınez-Gavara2 ,
Ana D. López-Sánchez3 , and Abraham Duarte1

1 Universidad Rey Juan Carlos, Madrid, Spain
{isaac.lozano,jesus.sanchezoro,abraham.duarte}@urjc.es

2 Universidad Pablo de Olavide, Sevilla, Spain
gavara@uv.es

3 Universitat de València, Valencia, Spain
adlopsan@upo.es

Abstract. This paper studies the Coverage Location Problem with
Interconnected Facilities (CPIF). It belongs to the family of Facility
Location Problems, but being more realistic to nowadays situations as
surveillance, or natural disaster control. This problem aims at locating a
set of interconnected facilities to minimize the number of demand points
that are not covered by the selected facilities. Two facilities are consid-
ered as interconnected if the distance between them is smaller than or
equal to a predefined distance, while a facility covers a demand point if
the distance to it is smaller than a certain threshold. The wide variety
of real-world applications that fit into this model makes them attractive
for designing an algorithm able to solve the problem efficiently. To this
end, a metaheuristic algorithm based on the Fixed Set Search frame-
work is implemented. The proposed algorithm will be able to provide
high-quality solutions in short computational times, being competitive
with the state-of-the-art.

Keywords: Combinatorial optimization · Covering location problem ·
Fixed set search

1 Introduction

The Facility Location Problem (FLP) [1] seeks to select the best location for a set
of facilities optimizing a certain criterion, e.g., the cost of deployment, the total
travel time for the clients to satisfy their demands, etc. There are many FLP
variants in the literature, depending on the criterion used to place the facilities
and the constraints to be considered [6]. Furthermore, practitioners are forced
to introduce new constraints to model more realistic situations as stated in [2].

This paper addresses a variant of the p-Coverage problem [2] which consid-
ers that the selected facilities are interconnected, i.e., each pair of facilities are
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 485–490, 2023.
https://doi.org/10.1007/978-3-031-26504-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_37&domain=pdf
http://orcid.org/0000-0002-2608-8464
http://orcid.org/0000-0003-1702-4941
http://orcid.org/0000-0001-9995-010X
http://orcid.org/0000-0003-3022-3865
http://orcid.org/0000-0002-4532-3124
https://doi.org/10.1007/978-3-031-26504-4_37

486 I. Lozano-Osorio et al.

located within a maximum distance between them. This problem is named the
Coverage Location Problem with Interconnected Facilities, from now on CPIF,
where the main constraint indicates that the distance between two facilities can-
not exceed a given distance r, and a facility covers a demand point if and only
if the distance between them does not exceed a given threshold R. The original
work [2] proposed three exact formulations for the problem and a metaheuristic
method to solve it in a short computational time.

The interest in solving the CPIF problem is due to the fact that there are
many realistic problems that fit into this model. For example, in the context of
the Internet of Things, the deployment of a network of heterogeneous sensors
such as alarms or motion detectors [8] or minimizing the impact of a natural
disaster [2].

The paper is organized as follows: Sect. 2 defines the location problem
addressed in this manuscript. Section 3 describes the proposed algorithm and
the new strategies that we have implemented to solve it. Section 4 includes the
computational results. Finally, the conclusions and future research are discussed
in Sect. 5.

2 Problem Description

The Coverage Problem with Interconnected Facilities (CPIF) was recently intro-
duced [2]. The problem is defined as a set of locations available to host a facility
F and a set of demand points D that require the services of a facility. Let us
define a distance function d(i, j) which evaluates the shortest distance between
two points (either facilities or demand points).

Without loss of generality, it can be assumed that F = D, i.e., every demand
point is able to host a facility, instead of considering two disjoint sets, F ∩D = ∅.
Notice that node 0 is denoted as the root node that always hosts a facility, as it
is the site where the central facility is located [2].

Two facilities i ∈ F and j ∈ F are interconnected if and only if the distance
between them is smaller than or equal to a given threshold r, that is, d(i, j) ≤ r.
Additionally, a demand point x is considered covered by a facility i if and only if
d(x, i) ≤ R, where R is the maximum distance in which a facility can satisfy the
demand of a client. It is worth mentioning that in CPIF there are no capacity
constraints, so each demand point is always assigned to its closest facility.

The objective of CPIF is to place a set of interconnected facilities, S ⊆ F ,
with |S| = p, where p is a fixed constraint a priori, in order to minimize the
number of demand points that are not covered, i.e., the distance between the
demand point and its closest facility is strictly larger than the given threshold
R. Therefore, given a solution S, the objective function of CPIF is evaluated as
follows:

CPIF(S) ←
∣
∣
∣
∣

{

i ∈ D : min
j∈S

d(i, j) > R

}∣
∣
∣
∣

(1)

An Efficient Fixed Set Search for the Covering Location 487

Then, CPIF aims to find a solution S� with the minimum objective function
value. More formally,

S� ← arg min
S∈SS

CPIF(S) (2)

where SS is the complete search space, which is conformed by all possible combi-
nations of p − 1 facilities (notice that node 0 always belong to the solution since
it is the root node).

Figure 1 illustrates the CPIF with a example considering p = 3, r = 8,
and R = 10. In the figure, candidate facilities are represented by a square, i.e.,
F = {1, 2, 3, 8}, being 0 the root node, while demand points are represented
by a circle, i.e., D = {4, 5, 6, 7, 9, 10, 11}. In this example, a selected facility is
represented by a gray gradient from black to white. When a demand point is
covered by a facility, it is colored with the same gray gradient. Given the distance
constraints, the only feasible solutions are those depicted in the figure, since any
other combination of three facilities exceeds the maximum distance between the
selected facilities r to consider that they are interconnected. In Fig. 1(a) facilities
S1 = {0, 1, 3} are selected. Facilities 1 and 3 can be selected as facilities, since
d(0, 1) = 5 ≤ r and d(0, 3) = 5 ≤ r. Then, every demand point is assigned to its
closest facility: 5 and 10 are assigned to 0, 4 and 11 are assigned to 3, 6 and 9
are assigned to 1, and finally, 7 cannot be assigned to any facility since none of
them satisfies the distance constraint. In this case, the objective function value
is CPIF(S1) = 1 since there is only one demand point that is not covered.

Fig. 1. Example of two possible solutions with 4 candidate facilities (square) and 7
demand points (circle).

Figure 1(b) shows another feasible solution, S2 = {0, 2, 3}. In this solution,
5 and 10 are assigned to 0, 4 and 11 are assigned to 3, and finally, 6, 7 and 9
are assigned to 2. Notice that 9 cannot be assigned to 0 since d(0, 9) > R, but
it can be assigned to 2 since d(2, 9) = d(2, 1) + d(1, 9) = 9 ≤ R. In this case, the
objective function value is CPIF(S2) = 0 since all demand points are covered,
being S2 the optimal solution for this instance.

In this particular example, there are no additional feasible solutions SS =
{S1, S2}, since any other combination of selected facilities does not satisfy the
requirement that they are interconnected. It is remarkable that fixing the root

488 I. Lozano-Osorio et al.

node at 0 limits the search, eventually resulting in solutions where the central
facility 0 is not assigned to any demand point.

3 Fixed Set Search

Fixed Set Search (FSS) is a recently proposed population-based metaheuris-
tic that includes a learning mechanism to the constructive procedure. It was
originally introduced to solve the traveling salesman problem [3], and was later
used to solve the Minimum Weighted Vertex Cover Problem [4] and minimizing
makespan [5].

Algorithm 1 shows the pseudocode of the FSS. The algorithm has 4 input
parameters, namely: δ, number of initial solutions generated by the constructive
method; κ, number of selected solutions, ι number of maximum repetitions,
and τ , starting size of the solution. The method starts by generating an initial

Algorithm 1 FSS(δ, κ, ι, τ)
1: P ← Populate(δ)
2: Sb ← arg minS′∈P CPIF(S′)
3: for i ∈ 1 . . . ι do
4: Pκ ← RND(P, κ)
5: S ← RND(P)
6: S′ ← Fix(S, Pκ, (1 − τ) · |S|)
7: S′′ ← RGF(S′)
8: P ← P ∪ S′′′

9: if CPIF(S′′′) < CPIF(Sb) then � Improve
10: Sb ← S′′′

11: end if
12: end for
13: return Sb

population P conformed by δ random solutions to favor diversity (step 1). The
best solution in P is selected as the best current solution in step 2. The algorithm
then iterates (steps 3-12) until the maximum number of iterations ι is reached.

In each iteration, a set of not repeated solutions Pκ is generated (step 4) as a
random subset of κ solutions from P . Next, a single random solution is set to start
the procedure (step 5). Then, a partial solution is generated by the Fix procedure
(step 6). This solution is created by selecting the most frequent facilities in
Pk, among those that satisfy the constraint that guarantees that the facilities
are interconnected. The procedure RGF is a greedy procedure responsible for
generating a complete solution S′′ starting from the partial solution S′ (step 7).
In particular, RGF adds elements to S′ selecting the interconnected facilities
that produce the best quality based on the objective function value. After that,
solution S′′ is added to P in step 8. Finally, if solution S′′ is better than the
best solution found so far Sb (steps 9-11), it is updated (step 10). The procedure
ends with the return of the best solution found during the search (step 13).

An Efficient Fixed Set Search for the Covering Location 489

4 Computational Results

This section describes the computational experiments designed to evaluate the
performance of the proposed algorithms and analyze the results obtained. All
experiments have been performed in an Intel Core i7-9750H (2.6 GHz) with
16 GB RAM and the algorithms were implemented using Java 17 and the Meta-
heuristic Optimization framewoRK (MORK) 10 [7]. All instances and source
code of the proposed methods have also been made publicly available at https://
grafo.etsii.urjc.es/CPIF-MIC. We would like to thank the authors of the previ-
ous work [2] for kindly sending us their source code. This has helped us to
provide a fair comparison by executing all algorithms under the same hard-
ware constraints. The testbed of instances used in this work is the same set
considered in the previous work, which is derived from the well-known OR-
Library http://people.brunel.ac.uk/∼mastjjb/jeb/info.html, 555 instances are
considered where D = {100, ..., 900}, F = {5, ..., 200}, r = {25, 50, 80, 100, 150}
and R = {8, 10, 12, 15, 20}.

The results compare the performance of our proposal with the state-of-the-art
metaheuristic, based on Iterated Local Search (ILS) and the best exact method,
which is a Mixed-Integer Linear Programming implemented in the commercial
CPLEX solver (CPLEX) [2] in those instances in which the exact algorithm is
able to provide the optimal solution.

The Fixed Set Search (FSS) parameters are experimentally set as follows
ι = 20, κ = 10, δ = 10, τ = 1/2. Table 1 contains the following performance
metrics: the average objective function value, Avg.; the average execution time
of the algorithm measured in seconds, Time (s); the average deviation with
respect to the exact solution, Dev. (%); and, finally, the number of times that
the algorithm is able to reach the best solution in the experiment (#Best).

Table 1. Results of the FSS algorithm versus the state-of the-art procedures.

Algorithm Avg. Time (s) Dev. (%) #Best

FSS 154.17 2.05 5.87% 266

ILS 155.04 2.05 8.09% 212

CPLEX 151.83 36.43 0.00% 555

Table 1 shows competitive results when comparing both heuristic approaches.
In terms of deviation, ILS reports 8.09% versus 6.51% of the FSS in a similar
computing time (2.05 s in the state of the art versus 2.11 s in the FSS). Analyzing
the number of best solutions found, FSS is able to reach 246 out of the 555
available instances, while ILS obtains 212 best solutions.

5 Conclusion

In this paper, the Covering Location Problem with Intermediate Facilities is
addressed with a Fixed Set Search algorithm. The results obtained are promising

https://grafo.etsii.urjc.es/CPIF-MIC
https://grafo.etsii.urjc.es/CPIF-MIC
http://people.brunel.ac.uk/~mastjjb/jeb/info.html

490 I. Lozano-Osorio et al.

when comparing them with the state-of-the-art algorithm. In particular, FSS is
able to outperform the results obtained by ILS and remains close to the optimal
values reported by CPLEX.

As future research, it would be interesting to address an intelligent way to
construct the initial population as stated in [3]. Additionally, an efficient local
search method will be able to further improve the obtained solutions. Finally, a
further study on the parameters of the Fixed Set Search will be performed and
more challenging instances derived from real-life applications, where the exact
methods are not able to obtain solutions, will be considered.

Acknowledgments. The authors acknowledge support from the Spanish Ministry
of Ciencia, Innovación y Universidades under grant ref. PID2021-125709OA-C22 and
PID2021-126605NB-I00, Comunidad de Madrid and Fondos Estructurales of the Euro-
pean Union with grant references S2018/TCS-4566, Y2018/EMT-5062, the Span-
ish Ministry of Economı́a, Industria y Competitividad through Projects PID2019-
104263RB-C41, and from Junta de Andalućıa, FEDER-UPO Research & Development
Call, reference number UPO-1263769.

References

1. Balinski, M.L.: Integer programming: methods, uses, computations. Manag. Sci.
12(3), 253–313 (1965)

2. Cherkesly, M., Landete, M., Laporte, G.: Median and covering location problems
with interconnected facilities. Comput. Oper. Res. 107, 1–18 (2019)

3. Jovanovic, R., Tuba, M., Voß, S.: Fixed set search applied to the traveling salesman
problem. In: Blesa Aguilera, M.J., Blum, C., Gambini Santos, H., Pinacho-Davidson,
P., Godoy del Campo, J. (eds.) HM 2019. LNCS, vol. 11299, pp. 63–77. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-05983-5 5

4. Jovanovic, R., Voß, S.: Fixed Set Search Applied to the Minimum Weighted Vertex
Cover Problem. In: Kotsireas, I., Pardalos, P., Parsopoulos, K.E., Souravlias, D.,
Tsokas, A. (eds.) SEA 2019. LNCS, vol. 11544, pp. 490–504. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34029-2 31

5. Jovanovic, R., Voß, S.: Fixed set search application for minimizing the makespan
on unrelated parallel machines with sequence-dependent setup times. Appl. Soft
Comput. 110, 107521 (2021)

6. López-Sánchez, A.D., Sánchez-Oro, J., Laguna, M.: A new scatter search design for
multiobjective combinatorial optimization with an application to facility location.
INFORMS J. Comput. 33(2), 629–642 (2020)

7. Mart́ın, R., Cavero, S.: rmartinsanta/mork: v0.11 (2022)
8. Srinidhi, N.N., Kumar, S.M.D., Venugopal, K.R.: Network optimizations in the

internet of things: a review. Eng. Sci. Technol. Int. J. 22(1), 1–21 (2019)

https://doi.org/10.1007/978-3-030-05983-5_5
https://doi.org/10.1007/978-3-030-34029-2_31

Hybrid PSO/GA+solver Approaches
for a Bilevel Optimization Model to Optimize

Electricity Dynamic Tariffs

Maria João Alves1,2(B) , Carlos Henggeler Antunes2 , and Inês Soares2

1 CeBER and Faculty of Economics, University of Coimbra, Coimbra, Portugal
mjalves@fe.uc.pt

2 INESC Coimbra, Department of Electrical and Computer Engineering, University of Coimbra,
Coimbra, Portugal

{ch,inesgsoares}@deec.uc.pt

Abstract. Electricity retail markets are subject to competition and retailers gen-
erally work with thin commercialization margins. Thus, to increase their market
share, these companies should offer attractive tariff options to consumers, includ-
ing time-of-use pricing schemes, to maximize profits by exploiting the differ-
ences between buying energy in wholesale markets and selling it to consumers.
In turn, consumers aim to minimize the electricity bill by making the most of
time-differentiated prices. For this purpose, consumers may be assisted by an
automated energy management system performing on their behalf the integrated
optimization of appliance operation, charging/discharging of electric vehicle and
stationary batteries, on-site generation, and exchanges with the grid. The retailer’s
problem considering the consumer’s demand response can be formulated as a
bilevel mixed-integer nonlinear programming model. The retailer is the leader
acting first by setting the prices, and the consumer is the follower reacting to those
prices. Two hybrid PSO+solver and GA+solver algorithms have been developed
to cope with the complexity of this model. The PSO and the GA deal with the
upper-level search determining the prices. The exact solver computes the solution
to the lower-level problem for each price instantiation, which becomes a mixed-
integer linear program to determine the corresponding optimal demand schedule.
Results are presented for realistic data, comparing the two hybrid approaches.
The GA+solver approach achieved slightly better results than the PSO+solver
approach.

Keywords: Bi-level mixed-integer nonlinear programming · Hybrid
meta-heuristic · Dynamic tariffs

1 Introduction

The liberalization of the electricity sector led to competitive retail markets, in which
retailers compete for residential, commerce/services and industrial consumers. This
paper focuses on residential consumers, although the models can be applied to other

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 491–498, 2023.
https://doi.org/10.1007/978-3-031-26504-4_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_38&domain=pdf
http://orcid.org/0000-0002-2268-0110
http://orcid.org/0000-0003-4754-2168
http://orcid.org/0000-0001-7146-4273
https://doi.org/10.1007/978-3-031-26504-4_38

492 M. J. Alves et al.

consumer types. Retailers buy electrical energy in different types of wholesale markets
and sell it to consumers, aiming to maximize profits. Dynamic tariffs are interesting for
retailers, enabling them to exploit differences in buying and selling prices, as well as for
consumers, making the most of their flexibility in the scheduling of energy resources to
minimize costs considering comfort needs. The consumers’ decisions encompass appli-
ance operation, charging/discharging of electric vehicle and stationary batteries, on-site
generation, and exchanges with the grid (grid to home and home to grid). There is a hier-
archical relation between the two decision makers pursuing distinct aims: the retailer
is the leader setting prices, and the consumer is the follower reacting to those prices.
This decision setting can be represented by a bilevel mixed-integer nonlinear program-
ming model to assist the retailer to define dynamic tariffs considering the demand-side
response. The design of retail tariffs integrating demand response has been addressed
using bilevel models in a considerable number of studies in the literature [1]. However,
most of them consider very simplified formulations of the appliance operation in the
consumer’s problem, which are not realistic.

In this work, we consider a consumer’s model to optimize the operation of shiftable
appliances, an electric water heater, an air conditioner, static and electric vehicle bat-
teries and microgeneration, including buying and selling exchanges with the grid. Two
approaches have been developed to cope with the complexity of the bilevel model, which
use either a particle swarm optimization (PSO) algorithm or a genetic algorithm (GA) to
guide the search for price solutions in the upper level (retailer’s) problem, and a mixed-
integer linear programming (MILP) solver to obtain an optimal solution to the lower
level (consumer’s) problem for each price setting. This approach follows the work in
[2], where only the PSO was used, and a much more comprehensive consumer’s model
is considered herein.

This paper is organized as follows. In Sect. 2 the bilevel model is outlined. In Sect. 3,
the PSO-solver and the GA-solver algorithms are described, and the numerical results
comparing the two approaches for realistic data are presented. The main conclusions are
drawn in Sect. 4.

2 A Bilevel Nonlinear Optimization Model to Optimize Electricity
Dynamic Tariffs

Bilevel problems are difficult to solve because there is a lower-level optimization problem
nested into another optimization problem, the upper-level problem. Thus, the leadermust
incorporate into his/her optimization process the follower’s reaction because it affects
the leader’s objective value. Bilevel programming is known to be strongly NP-hard [3].
Recently, there has been an increasing interest in evolutionary techniques for bilevel
problems due to their potential to tackle these problems and their application in real
world problems [4].

In the bilevel problem addressed in this work, the retailer (leader) determines the
electricity prices xi (e/kWh) to be charged to the consumer (follower) in each predefined
subperiod Pi(i = 1, . . . , I) of the planning period �, which is discretized in T time
intervals (t = 1, . . . ,T). The retailer’s objective function is to maximize the profit.

Hybrid PSO/GA+solver Approaches for a Bilevel Optimization Model 493

Knowing the electricity prices, the consumer optimizes his/her energy uses aiming to
minimize the electricity bill.

The consumer’s model parameterized on the electricity prices is considered at the
lower level of the bilevel problem, which includes the accurate modeling of different
energy resources and exchanges with the grid:

• Shiftable loads, which are characterized by an operation cycle associated with each
program and cannot be interrupted (examples are laundry machines, dishwashers and
cloth driers). For these loads, the consumer provides the comfort time slots for load
operation according to his/her preferences; the optimization determines the starting
operation time and guarantees that the cycle is entirely executed in the due sequence
within any of the comfort time slots.

• An electric water heater, whose operation is controlled by a thermostat. Its modelling
requires several technical inputs (the power of the heating element, the ambient and
inlet water temperatures, the tank characteristics, etc.) and data from the consumer
(minimum/maximum allowed temperatures and water withdrawals); the optimization
determines the on/off status of the heating element in each time, which defines the
hot water temperature in the tank.

• An air conditioner system, which accounts for the behavior of the control thermostat
with hysteresis. Technical inputs include the nominal power, performance of the sys-
tem, outdoor temperatures and the thermal characteristics of the building envelope,
while the consumer provides the minimum and the maximum comfort indoor tem-
peratures; the optimization determines the on/off status of the air conditioner in each
time, which defines the indoor temperature.

• A static battery and an electric vehicle battery, which provide energy exchanges. Tech-
nical inputs include charging/discharging efficiencies, minimum/maximum allowed
battery charges, and data provided by the consumer mainly concerned with the utiliza-
tion of the electric vehicle; the optimization determines the charging and discharging
patterns of the static and electric vehicle batteries.

• A base load not deemed for control (examples are tv set and oven) and local
microgeneration using a photovoltaic system are also considered in the model.

The consumer’s MILP model requires a large number of binary variables and con-
straints. The optimization process yields the energy required from the grid (grid to home)
and the energy sold to the grid (home to grid) in each time interval t: EG2H

t and EH2G
t

(kWh), respectively. The set of all constraints of the consumer’s model is represented
below by G(EG2H

t ,EH2G
t).

494 M. J. Alves et al.

The bilevel model is outlined as follows:

max
x

F =
∑I

i=1

∑
t∈Pi

(
xiE

G2H
t

)
−

∑T

t=1

(
πtE

G2H
t

)
(1)

s.t. xi ≤ xi ≤ xi i = 1, . . . , I (2)

1

T

∑I

i=1

(
PUi − PLi + 1

)
xi ≤ xAVG (3)

min
EG2H ,EH2G

f =
∑I

i=1

∑
t∈Pi

(
xiE

G2H
t

)
−

∑T

t=1

(
cEH2G

t

)
(4)

s.t. Constraints G(EG2H
t ,EH2G

t) (5)

The retailer’s objective function (1) is to maximize profit (the difference between the
revenue with the sale of energy to consumers and the acquisition cost in the wholesale
market), where πt (e/kWh) is the energy acquisition price incurred by the retailer in
time t. Constraints (2) impose minimum (xi) and maximum (xi) values on xi in each
sub-period Pi = [

PLi ,PUi

] ⊂ �. Constraint (3) imposes a maximum average price
(xAVG) for the whole planning horizon. These upper-level constraints, (2) and (3), aim
to represent market competition of retailer prices as proposed in [5]. The lower-level
objective function (4) is to minimize the consumer’s net cost, where c (e/kWh) is the
remuneration to the consumer by selling energy to the grid. Lower-level constraints (5)
model all the above-mentioned consumer energy resources and exchanges with the grid.

Due to space limitations, the detailed model and the description of all variables and
parameters are available at https://home.deec.uc.pt/~ch/consumermodel.

3 Hybrid PSO+solver and GA+solver Approaches

The hybrid PSO+solver and GA+solver approaches have a similar structure. The popu-
lation consists of N individuals xn = (

xn1, . . . , x
n
I

)
, n = 1, . . . ,N , each one representing

a price vector (leader’s decision variables). The initial population is randomly generated,
and then the population evolves in the search space according to the principles of PSO
and GA in each approach. For each feasible xn, the follower’s problem (4–5) is solved
by the MILP solver Cplex. The algorithms run during G iterations. The general scheme
of these hybrid approaches is displayed in Fig. 1.

The PSO tries to iteratively improve the particles (price vectors) by moving them
along the best directions. Each particle xn is influenced by its best-known position – xn

best
,

and the best position of the entire swarm – gbest . These positions are updated whenever
better solutions to the bilevel problem are found, i.e., according to the leader’s objective
function F in (1). The movement in iteration q of each particle xn

q
is determined by its

previous position xn
q−1

and the velocity vector vn
q
as follows:

vn
q

i = ηvn
q−1

i + r1C1

(
xn

best

i − xn
q−1

i

)
+ r2C2

(
gbesti − xn

q−1

i

)
, ∀i = 1, . . . , I

xn
q = xn

q−1 + vn
q

https://home.deec.uc.pt/~ch/consumermodel

Hybrid PSO/GA+solver Approaches for a Bilevel Optimization Model 495

where η is the inertia weight, C1 and C2 are the cognitive and social parameters, and
r1, r2 = rand (0,1). For simplicity reasons, we will omit the iteration index q in what
follows.

A turbulence (mutation) operator is applied to xn with probability pm, by making
xni ← xni + ζ , with random ζ ∈ [−δ

(
xi − xi

)
, δ

(
xi − xi

)]
,∀i = 1, . . . , I (δ is a pre-

defined constant). This operator aims to diversify the search. After the movement and
turbulence, if xn does not satisfy the upper-level constraints (2–3), the repairing routine
described in [2] is called to fix it. Since, in practice, electricity prices have a fixed num-
ber of decimal places (4 with prices expressed in e/kWh), this issue is also taken into
account in the repairing routine, ensuring that constraints are satisfied for xni rounded to
4 decimal places.

Fig. 1. General scheme of the PSO+solver and GA+solver approaches.

The lower-level problem (4–5) parameterized on xn is solved by Cplex, for each
n = 1, . . . ,N , yielding

(
EG2Hn

,EH2Gn)
. The solutions

(
xn,EG2Hn

,EH2Gn)
are then

evaluated by F. The output of the algorithm is the solution that attains the highest F
value (Fbest) over the G iterations.

TheGA starts each new generation by creating the offspring population ofN individ-
uals: for each mating, one parent is selected using a binary tournament (decided by the F
value) and the other parent is picked randomly. Both individuals have the same probabil-
ity of being the first or the second parent, and they are subject to one-point crossover to
generate one offspring: if xn1 = (

xn11 , . . . , xn1I
)
and xn2 = (

xn21 , . . . , xn2I
)
are the first and

the second parents, respectively, then the offspring is xc =
(
xn11 , ..., xn1i1,x

n2
i1+1 . . . , xn2I

)

where i1 is the crossover point drawn at random in [2, I − 1]. Then, a mutation operator
(like the turbulence operator used in the PSO) is applied to xc with probability pm and,
if the new xc does not satisfy the constraints (2–3), the repairing routine is called. N
children are generated in this process.

As in the PSO, the follower’s problem (4–5) parameterized on xc is solved by Cplex
for each c = 1, ...,N ; the solutions are then assessed by the leader’s objective function
F defined in (1), which is the fitness function. In the selection process that determines
the population for the next generation, the best individual in the parent population and
the best one in the offspring are first selected; the other N − 2 individuals are chosen by
binary tournaments without replacement between an individual of the current population
and another one of the offspring, both randomly selected. The output of the algorithm
is the solution with the highest F value (Fbest) over the G iterations.

496 M. J. Alves et al.

Other features were embedded in both algorithms (PSO and GA): 1) Adaptive muta-
tion scheme: If Fbest has no improvement during a predefined numberG′ of consecutive
iterations (i.e., F

bestq− Fbestq−1

Fbestq < τ for a given threshold τ), then the mutation probability
pm is increased to promote further exploration; 2) Adopting an optimistic perspective of
the bilevel problem, i.e., when the follower has alternative optimal solutions for his/her
objective function, he/she will choose the solution that most benefits the leader: at the
end of each iteration, the lower-level problem with ties broken in favor of the leader is
solved again for the best solution found in that iteration. The result of this problem is
used for the possible update of Fbest . Other perspectives (e.g., the pessimistic one) could
be adopted in these hybrid algorithms without increasing the computational difficulty.

3.1 Results

The algorithms were coded in R language and run in a computer with an Intel Xeon
Gold 6138 CPU@3.7 GHz processor. The Cplex solver is called from the R code. The
following parameters were considered: specific for PSO, η = 0.4 and C1 = C2 = 1; for
both algorithms, pm = 0.05 and it increases to 0.1 if there is no improvement of F after
G′ = 5 consecutive iterations; τ = 0.001 and δ = 0.2. A planning horizon of 24 h has
been discretized into intervals of 15 min (T = 96), and six periods (I = 6) are considered
for the electricity prices charged to the consumers. The consumer’s problem includes
three shiftable loads (dishwasher, laundry machine and clothes dryer), an electric water
heater, an air conditioner system, a stationary battery, and an electric vehicle battery. All
the data are available at http://dx.doi.org/10.17632/j2vr7jgmcz.1.

For each instantiation of the electricity prices, the lower-level problem (4–5) com-
prises 933 binary variables, 1440 continuous variables and 2232 constraints. Although
beingMILP problems, the lower-level problems are difficult to solve to optimality. Thus,
a predefinedmaximum computation time of 1minwas imposed to solve each lower-level
problem by means of Cplex (the algorithms need to solve G × N lower-level problems
in each run). For the determination of the best optimistic solution of each iteration (one
resolution per iteration) a 5 min computation time was given. Ten independent runs were
performed for each algorithm, considering G = 20 and N = 10.

The performance of both approaches was very similar in terms of solution quality,
with a slight advantage of the GA+solver approach regarding the maximum and average
Fbest values but displaying a higher standard deviation than the PSO+solver approach.
The prices in the solutions with the maximum Fbest values are also alike. A summary of
the results is displayed in Table 1. The prices in the solution with the highest retailer’s
profit (which was obtained by the GA+solver, F = 4.0700), as well as the corresponding
grid to home and home to grid energy flows, are displayed in Fig. 2.

This solution of a dynamic tariff can be compared with a flat rate equal to the
average price (0.1620 e/kWh). Considering a computation time of 5 min to solve the
consumer’s problem with this flat rate, the retailer’s profit is F = 3.8762, which is worse
than the best solutions found using both hybrid approaches. Moreover, the consumer’s
cost corresponding to the best solution given by the GA+solver approach is f = 6.9661,
which compares with the cost f = 7.3135 considering the flat rate tariff. Therefore,
both the retailer and the consumer can be better off in a time-differentiated tariff setting,
which is expected to become a prevalent pricing scheme in smart grids.

http://dx.doi.org/10.17632/j2vr7jgmcz.1

Hybrid PSO/GA+solver Approaches for a Bilevel Optimization Model 497

Table 1. Summary of the results of 10 runs with PSO+solver and GA+solver.

In 10 runs:
maximum average minimum st. dev.

of
Average time

of one run
Prices (€/kWh) in the

best solution

PSO+solver 3.9501 3.8370 3.6451 0.1004 4h 01m
(0.0956, 0.1969, 0.2017,
0.1972, 0.2068, 0.1378)

GA+solver 4.0700 3.8777 3.6365 0.1402 4h 13m
(0.0996, 0.1917, 0.1928,
0.1944, 0.1933, 0.1620)

4 Conclusion

Fig. 2. Power flows in the best solution: grid to home (P_G2H) and home to grid (P_H2G).

Two hybrid approaches combining ameta-heuristic and a solver have been presented
to tackle a bilevel mixed-integer nonlinear optimization model to determine the elec-
tricity dynamic tariffs that maximize the retailer’s profit accounting for the consumers’
reaction to minimize costs. The PSO and the GA deal with the upper-level search to find
the prices, and the solver computes an optimal demand-side energy resource schedule in
the lower-level problem for each price instantiation. The GA+solver approach achieved
marginally better results than the PSO+solver approach. Moreover, it was shown that
optimally-designed time of use tariffs can be profitable for the retailer and the consumer
in comparison with flat rates.

Acknowledgments. This work has been funded through FCT – Fundação para a Ciên-
cia e a Tecnologia, I.P., within Projects UIDB/05037/2020, UIBD/00308/2020 and 3SQAIR-
SOE4/P1/E10041.

498 M. J. Alves et al.

References

1. Henggeler Antunes, C., Alves, M.J., Ecer, B.: Bilevel optimization to deal with demand
response in power grids: models, methods and challenges. TOP 28(3), 814–842 (2020). https://
doi.org/10.1007/s11750-020-00573-y

2. Soares, I., Alves,M.J., Antunes, C.H.: Designing time-of-use tariffs in electricity retail markets
using a bi-level model – estimating bounds when the lower level problem cannot be exactly
solved. Omega 93, 102027 (2020)

3. Hansen, P., Jaumard, B., Savard, G.: New branch-and-bound rules for linear bilevel program-
ming. SIAM J. Sci. Statist. Comput. 13(5), 1194–1217 (1992)

4. Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to evolutionary
approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–295 (2018)

5. Zugno, M., Morales, J.M., Pinson, P., Madsen, H.: A bilevel model for electricity retailers’
participation in a demand response market environment. Energy Econ. 3, 182–197 (2013)

https://doi.org/10.1007/s11750-020-00573-y

An Agent-Based Model
of Follow-the-leader Search Using

Multiple Leaders

Martha Garzón, Lindsay Álvarez-Pomar, and Sergio Rojas-Galeano(B)

Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

srojas@udistrital.edu.co

Abstract. In this paper we study a swarm optimisation algorithm for
real-valued bound-constraint cost functions whose search strategy oper-
ates on the basis of follow-the-leader intensification and random walk
diversification. We studied the single-leader and multi-leader modes of
operation. The simplicity of the search rules allows for a straightfor-
ward implementation of the algorithm as an agent-based model. In addi-
tion, various techniques were devised to prevent premature convergence
to local minima and stagnation. We evaluate the efficacy/efficiency of
the algorithm with empirical experiments on a testbed of well-known
unconstrained real-valued cost functions using the NetLogo simulation
environment. Our results indicate that the multi-leader configuration,
with a small number of followers, proved to be advantageous both in
accelerating convergence to the optimum on all testbed problems and in
improving success rates compared to its single-leader version.

Keywords: Swarm intelligence · Real-valued unconstrained
optimisation

1 Introduction

Despite the fact that many of the numerous swarm metaheuristics proposed in
this century have taken inspiration from natural, biological or social metaphors
[3,6], they essentially rely on an underlying algorithmic model that performs
iterative shifts to candidate solutions derived from other representative solu-
tions, an operation characterised as a differential vector movement [10]. When
these representatives solutions improve their quality (fitness) as the algorithm
progresses, the exploration of the swarm is guided towards increasingly more
promising regions of the search space, resulting on a sort of “follow the leader”
behaviour, the classic example being the Particle Swarm Optimisation (PSO)
algorithm [9]. The ability of the leader to escape from local minima and the
capacity of the followers to maintain diversity will determine the potential suc-
cess of this type of algorithms.

In a recent review of 323 bio-inspired metaheuristics [10], a taxonomy of
algorithms was outline from a behaviour perspective regardless of their inspi-
rational metaphor. The largest category correspond to algorithms that perform
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 499–505, 2023.
https://doi.org/10.1007/978-3-031-26504-4_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_39&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_39

500 M. Garzón et al.

differential vector movements of candidate solutions derived from a small group
of representative solutions (169 out of the 323, or 53%), a nod to the efficacy
that the follow-the-leader strategy has demonstrated in many natural occurring
systems, and consequently, in the metaheuristics inspired in such behaviour.

Certainly many of the algorithms in such category will likely share some
resemblance to the search rules we study in this paper; particularly we found that
the Leaders and Followers (LaF) algorithm described in [5] is similar in spirit
to our proposal. At the core of LaF, a subset of followers can follow any leader
from the subset of leaders in each iteration (so the follower base is shared among
leaders). In contrast, we investigate the behaviour of the search procedure when
separate (non-overlapping) groups of followers are influenced by each leader.
The details of the latter, along with and some additional operators intended to
improve exploration and avoid stagnation as well as premature convergence, will
be described in Sect. 2 where we focus our analysis on the algorithmic aspects of
the resulting metaheuristic rather than on a metaphor-oriented rationale [11].

2 Methods and Materials

2.1 Algorithm Design

Letus define a real-valued optimisationproblembya cost function tobeminimised,
f : �d → �,wherethegoal is tosearchfortheoptimumsolutionx∗ = argmin f(x),
subjecttotheboundconstraintsak ≤ xk ≤ bk, k = 1, . . . , d,wherex = [x1, . . . , xd].
The proposed algorithm maintains a set S = {xi ∈ �d, 1 ≤ i ≤ n} of candidate
solutions to theproblemf , that evolvebasedon the combinationof two search rules:
follow-the-leaderintensificationandrandomwalkdiversification.Thus,unlikeother
“follow-the-leader”typealgorithmssuchasPSOorLaF,we incorporatetherandom
walk operator in the hope of improving the exploration capability of the follow-the-
leader exploitation strategy. For this purpose, each agent behaves as one of three
possible roles: follower, leader or walker (hence we call it the FLW algorithm); the
effect of each of these roles is discussed in Sect. 3. Below, a detailed description of
the algorithm components is given.

Swarm Initialisation. The initial set S of n solutions is sampled using a uni-
form distribution across the search space defined by the bound constraints. This
initial set is divided into three subsets S = L ∪ F ∪ W as follows. Given a per-
centage ηW of walkers, a number nW = ηW ∗ n of agents are randomly chosen
and assigned to W ; then, a number nL of leader agents are randomly chosen
and assigned to L. Lastly, given nF = n − nL − nW , a number �nF

nL
	 of agents

is randomly chosen without replacement and assigned as followers to each of
the leaders in L, resulting in non-overlapping leader/followers subgroups. The
solution pool size n, walkers rate ηW and number of leaders nL are the setup
parameters of the algorithm; we will discuss the behaviour of several configura-
tion scenarios for these parameters in Sect. 3.

Intensification Rules. Follow-the-leader is the core search rule of the algo-
rithm. It is intended to drive followers to exploit local areas close to their cor-

An ABM of Follow-the-leader Search Using Multiple Leaders 501

responding leaders. Thus for an arbitrary follower xi ∈ F we defined a simple
update that shifts its location towards its leader x�, as shown in Eq. (1):

x′
i = xi + εi(x� − xi) + vi, (1)

where εi ∼ Uniform(0, 2) and vi ∼ N(0, 1) is a small random perturbation.
Besides, each leader is also moved so as to conduct local search using a small

perturbation ui ∼ N(0, 1) as per Eq. (2):

x′
� = x� + ui, (2)

Once all the solutions in the F and L sets are updated, leaders roles are
updated by choosing the best local solution from their follower base. The best
performing leader represent the best solution ever found by the algorithm, i.e.
x∗

� = argmin f(x′
�),x� ∈ L. Notice that the algorithm allows for a single-leader

or multi-leaders modes of operation as controlled by the parameter nL.

Diversification Rules. Random walk search was included into the algorithm
in order to promote exploration of the search space. Thus, for each arbitrary
walker xi ∈ W we defined the simple update of Eq. (3):

x′
j = xj + wj , (3)

where wi ∼N(0, 20) is a large random perturbation. If a walker becomes a better
solution than the current top leader, it moves to such location, x∗

� =x′
j , however

they still remain as different elements in their respective sets, x∗
� ∈L and x′

j ∈W .
On the other hand, it may be the case that two leaders end up exploring

the same promising region, and even collapse jointly with their followers into
the same location. If this occurs, in order to preserve diversity, the algorithm
incorporate a clash safeguard that choose one of the colliding leaders and replace
it with a new sample, dragging its followers along the way.

Furthermore, in order to avoid stagnation due to premature convergence to
local minima, the algorithm perform a warm restart of the entire set S, where
agents are uniform randomly dispersed to random locations under a uniform
distribution across the search space. This restart is activated when the average
cohesion of the leaders to their followers fall below a predefined threshold; alter-
natively, instead of cohesion an ageing mechanism was defined [2], where agents
are allocated a preset lifespan (number of iterations) before being restarted.

Lastly, we equipped the algorithm with a straightforward learning rule that
recalls the best solution ever found by moving a single walker to that location
at the beginning of each iteration. This is reminiscent of the elitism property of
other population-based metaheuristics, but also can be think of an information-
sharing mechanism between subgroups of leaders and followers, one that prevents
the swarm performing a new blind search after each warm restart.

We note in passing that the rules designed for this algorithm falls into the
differential vector movement category defined in the metaheuristic behaviour
taxonomy proposed in [10], and more specifically into differential vector as a
function of groups of solutions sub-category. Besides, a distinctive feature of

502 M. Garzón et al.

Fig. 1. Illustrations of the FLW algorithm: (a) Agent-based simulation view. (b) Flow
chart steps: L,F,W are the sets of leaders, followers and walkers.

this algorithm is that during its execution, the three subsets of non-overlapping
agents L,F and W coexist, so the rules of diversification and intensification can
be applied separately and simultaneously at each iteration (see Fig. 1b).

2.2 Model Implementation

Building upon our previous work on metaphor-based metaheuristics [1,4] we
developed an agent-based model of the proposed algorithm using the Netlogo
programming language and platform [12]. Since Netlogo operates over a discrete
simulation environment, firstly the cost function of the optimisation problem is
quantised and mapped onto the square grid of cells that make up the search
space where the agents move. Each agent would be located on a cell with coor-
dinates (x1, x2) in the resulting 2D landscape; the value of the cost function
evaluated at that cell indicates its quality (or fitness) as a candidate solution
for the chosen problem. Notice that the resolution level of the quantisation pro-
cess affects the sampling rate of the problem cost function and thus modifies
the size of the search space (the larger this size, the more difficult the search
for the cell with the optimum value). A testbed of 14 benchmark problems
were used in our empirical study to assess the performance of the model: Ack-
ley, Beale, Bohachesvsky, Booth, Easom, Eggholder, Himmelblau,
Michalewicz, Parsopoulos, Rastrigin, Rosenbrock, Sphere, Sphere-
offset, Three-hump Camel (see [7] for function definitions and properties).

A snapshot of the model’s simulated environment is shown in Fig. 1a (nL =
4, nF = 28, nW = 8); there, agents are searching for promising solutions around
the four global minima regions of the Himmelblau problem (leaders are shown

An ABM of Follow-the-leader Search Using Multiple Leaders 503

with a e symbol, best solution ever with☆, followers with△ same color as their
leaders, and walkers as grey △). In accordance with good laboratory practices
[8] we have made the code publicly available in the Netlogo Modelling Commons
repository, see: http://modelingcommons.org/browse/one model/6978.

3 Empirical Study

In this section we aim to assess the behaviour of different configurations of the
algorithm parameters, focusing on comparing the performance of the single vs.
multi-leader modes of search, including the following scenarios:

– Simultaneous Global Random Search (GRS): n = 5, nL = 1, ηW = 0.8, no
elitism. This is a configuration for a walkers-only swarm.

– Simultaneous Local Random Search (LRS): n = 5, nL = 4, ηW = 0.2, no
elitism). This is a configuration for a swarm of singleton leaders.

– Single-leader Swarm Search (SSS): n = 5, nL = 1, ηW = 0.2, no elitism. This
would be a swarm with an unique leader and its followers, plus a walker.

– Multi-leader Swarm Search (MSS): n = 20, nL = 4, ηW = 0.2, no elitism. This
would be a swarm of agents with multiple leaders, each one with a different
group of followers, plus a few walkers.

– FLW search: n = 20, nL = 4, ηW = 0.2, elitism. Same as MMS plus the
elitism enforcement. This correspond to the fully-equipped FLW algorithm.

The experiments were conducted using the BehaviorSpace tool included in
NetLogo platform v6.1, on a 1.4 GHz Intel Core i5 running Mac OS X ver-
sion 10.13.6; statistics were analysed using Python with libraries pandas and
seaborn.

Fig. 2 summarises the empirical results of LRS, GRS, SSS, MSS and FLW
configurations on the testbed problems, with different resolution levels for the
problem landscapes, averaged over 30 repetitions. Regarding the success rates
(Fig. 2a), the strategies based on random search, GRS and LRS, yielded values
below 50% for all problems at all resolutions (except GRS at 100 × 100, which
achieved slightly more than 50%, suggesting that such a simple strategy can be
useful in small-size search spaces).

The effect of the combination of follow-the-leader and random-walk operators
is noticeable in the other three scenarios (SSS, MSS and FLW); the single leader
configuration (SSS), however, struggles for high success rates in 5 out of 14
problems, particularly on Eggholder, Rastrigin and Rosenbrock at finer
resolutions; this is probably because the single leader and his followers converge
to local minima in these types of valley-shaped or multimodal cost functions. The
latter is alleviated in the multi-leader setting (MSS), which allows the swarm to
escape local minima by spreading the multiple leaders across different regions,
eventually discovering the optimal one; still, Eggholder which is a multimodal
problem with irregular and non-symmetric local minima remains difficult to
solve, specially at higher resolutions. In addition, the incorporation of elitism
in FLW, as a mechanism for information-sharing between multiple leaders, is

http://modelingcommons.org/browse/one_model/6978

504 M. Garzón et al.

Fig. 2. Average empirical results for 30 runs of LRS, GRS, SSS, MSS and FLW config-
urations on the testbed problems, with different resolution levels for the search space.
(a) Success rate: % of runs where optimum was found (warmer is better). (b) Number
of iterations taken to termination criteria (cooler is better).

useful to improve performance, raising the success rate on all problems in all
resolutions to nearly 100% efficacy.

Another interesting view of the algorithm performance is given by the effi-
ciency in terms of function evaluations per execution (Fig. 2b), which hints at
the benefit of combining the described intensification and diversification rules
with the multiple leader mode, yielding a reduction of the number of itera-
tions to converge to the optima in the latest MMS and FLW configurations;
FLW in particular managed, on average, less than 300 iterations to solve all the
problems.

4 Conclusions

Our study reports empirical evidence suggesting that the strategy of follow-the-
leaders with non-overlapping groups of followers yields a more effective search
behaviour than the single-leader strategy, particularly across a variety of prob-
lems with different optimisation properties.

The addition of random walk exploration, stagnation restarts, clash safe-
guards and elitism mechanisms improved success rate and efficiency, particu-
larly on multimodal, valley-shaped, and non-symmetric cost function problems.
Although the discrete nature of the implemented agent-based model can induce
quantisation errors, the method was robust at different resolution levels. This
behaviour suggests the suitability of the algorithm to also solve continuous-
valued problems in larger dimensionalities, questions that we plan to address
in our future work, including a comparative analysis with other state-of-the-art
methods from an efficiency and algorithmic complexity viewpoints.

An ABM of Follow-the-leader Search Using Multiple Leaders 505

References

1. Blanco, A., Chaparro, N., Rojas-Galeano, S.: An urban pigeon-inspired optimiser
for unconstrained continuous domains. In: Proceedings of 8th Brazilian Conference
on Intelligent Systems (BRACIS 2019). IEEE Xplore Digital Library (2019)

2. Chen, W.N., et al.: Particle swarm optimization with an aging leader and chal-
lengers. IEEE Trans. Evol. Comput. 17(2), 241–258 (2012)

3. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation
metaheuristic algorithms. Comput. Ind. Eng. 137, 106040 (2019)

4. Garzón, M., Rojas-Galeano, S.: An agent-based model of urban pigeon swarm
optimisation. In: 2019 IEEE Latin American Conference on Computational Intel-
ligence, pp. 1–6. IEEE (2019)

5. Gonzalez-Fernandez, Y.: Leaders and followers-a new metaheuristic to avoid the
bias of accumulated information. In: Congress on Evolutionary Computation, pp.
776–783. IEEE (2015)

6. Hussain, K., Mohd Salleh, M.N., Cheng, S., Shi, Y.: Metaheuristic research: a
comprehensive survey. Artif. Intell. Rev. 52(4), 2191–2233 (2019)

7. Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global opti-
misation problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)

8. Kendall, G., et al.: Good laboratory practice for optimization research. J. Oper.
Res. Soc. 67(4), 676–689 (2016)

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks, IEEE
International Conference on, vol. 4 (1995)

10. Molina, D., Poyatos, J., Ser, J.D., Garćıa, S., Hussain, A., Herrera, F.: Comprehen-
sive taxonomies of nature-and bio-inspired optimization: inspiration versus algo-
rithmic behavior, critical analysis recommendations. Cogn. Comput. 12(5), 897–
939 (2020)

11. Sörensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22(1),
3–18 (2015)

12. Tisue, S., Wilensky, U.: Netlogo: a simple environment for modeling complexity.
In: International Conference on Complex Systems. New England Complex Systems
Institute (2004)

A Scatter Search Approach
for the Parallel Row Ordering Problem

Raul Mart́ın-Santamaŕıa , Jose Manuel Colmenar(B) ,
and Abraham Duarte

Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid, Spain

josemanuel.colmenar@urjc.es

Abstract. In this work, we present a new approach for the Parallel Row
Ordering Problem (PROP), based on the Scatter Search metaheuristic.
The PROP focuses on minimizing the total weighted sum of all distances
between each pair of facility centers in a linear layout. The proposed
method is able to obtain all known optimal values in a fraction of the time
required by the previous exact methods for the set of smaller instances,
and it outperforms the current state of the art metaheuristic for the set
of larger instances, spending a comparable computing time.

Keywords: Facility layout problems · Scatter Search · Combinatorial
optimization

1 Introduction and Problem Description

Facility layout problems (FLPs) focus on determining the best arrangement of
a set of facilities. Some examples of their practical applications are distributing
rooms in a floor plan and organizing shelves to minimize material handling effort.
The FLP family includes a large set of problems, due to the variety of layout
constraints under consideration. We refer the reader to [1] for a detailed survey
on FLPs.

The Parallel Row Ordering Problem (PROP), first proposed by [2], considers
a two-row layout in which each facility i ∈ F is assigned to one row. Therefore, it
has to be placed only in the assigned row. Each facility i has an associated length
li, and a vector of weights w, where wij corresponds with the weight between
facilities i, j ∈ F . As in most of the FLPs, the objective function tries to minimize
the weighted distances between each pair of facility centers, as defined in Eq.
(1), where ci represents the position of the center of facility i in the layout.

min
∑

i,j∈F

wij ∗ |ci − cj | (1)

This work has been partially supported by the Spanish Ministerio de Ciencia, Inno-
vación y Universidades (MCIU/AEI/FEDER, UE) under grant refs. PGC2018-095322-
B-C22 and PID2021-126605NB-I00; and Comunidad de Madrid y Fondos Estructurales
de la Unión Europea with grant ref. P2018/TCS-4566.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 506–512, 2023.
https://doi.org/10.1007/978-3-031-26504-4_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_40&domain=pdf
http://orcid.org/0000-0002-9396-5375
http://orcid.org/0000-0001-7490-9450
http://orcid.org/0000-0002-4532-3124
https://doi.org/10.1007/978-3-031-26504-4_40

A Scatter Search Approach for the Parallel Row Ordering Problem 507

In order to avoid overlaps between the set of facilities in the same row (Fr),
the restriction shown in Eq. (2) must be observed.

|ci − cj | ≥ li
2

+
lj
2

∀i, j ∈ Fr, i �= j (2)

Because PROP is an NP-Hard problem [2,3], we tackle this problem from a
metaheuristic point of view in order to solve the different proposed instances in
reasonable computing times.

2 Algorithmic Proposal

The selected metaheuristic approach is Scatter Search. In this section, the main
structure of the method will be described, as well as the details of the combina-
tion method, which is a critical step in this algorithm.

2.1 Scatter Search

Scatter Search (SS) is a population-based evolutionary procedure firstly pro-
posed in [4], in the context of surrogate constrain relaxation procedures. It
mainly works by constantly evolving and combining a set of solutions in the
Reference Set (RefSet). In each iteration, a set of solutions is chosen from the
RefSet, new solutions are created as combinations of each pair, and the RefSet is
updated to include the new solutions if they are better or more diverse than the
already existing ones. The stopping criteria is usually set to a maximum num-
ber of update iterations in the RefSet, or an iteration without a RefSet update,
whichever happens first.

Although it may appear similar to other evolutionary algorithms, such as
Genetic Algorithms (GA), it has some key differences. On the one hand, the
RefSet size, which favors small values, is between 10 and 30, while the GA pop-
ulation size is usually one order of magnitude bigger. On the other hand, Scatter
Search lacks randomization, which is usually provided by mutation operators in
Genetic Algorithms [8].

A high-level view of the algorithm is presented in Algorithm 1, where π =
(π0, π1) represents an incumbent solution and πk is the layout of row k. Step 1 of
the algorithm shows how the current best solution π� is initialized by random.
Then, the multi-start loop begins in step 2 performing tmax iterations of the
algorithm. The initial RefSet, denoted as R in the code, is initialized as a set of
rsize solutions generated by randomly shuffling the facility order for each row
and then applying a best improvement local search based on the displacement
move, in steps 3 to 7. Each generated solution π′ is added to the initial RefSet
in step 7.

Then, in step 9, the main loop of SS executes. In the first step in this loop
(line 10 of the code) a copy of the original RefSet is retained, in order to later stop
the execution if the set has not changed. Then, each pair of existing solutions
(πi, πj) in the RefSet is combined in step 11. Notice that the combination is

508 R. Mart́ın-Santamaŕıa et al.

performed individually for each row, since the facilities are assigned to one of
the rows. The resulting solutions are stored in the candidate RefSet, denoted
as R′. The original RefSet is then merged with the candidate RefSet in step
12 in order to include the rsize best solutions from both sets, and the iteration
counter is increased (step 13). The main SS loop ends when either the RefSet
is not updated in the current iteration or the maximum number of iterations
lmax has been reached. After the loop ends, the best solution in the RefSet is
obtained in step 15 and compared with the current best in step 16. In case of
improvement, the current best is updated in step 17 and returned in step 18.

Algorithm 1: Multi-Start Scatter Search(I, tmax, lmax, rsize)
1 π� ← Shuffle(I)
2 for t = 1 to tmax do
3 R ← ∅

4 for t = 0 to rsize do
5 π ← Shuffle(I)
6 π′ ← BestImprovementLocalSearch(π)
7 R ← R ∪ {π′}
8 l ← 0
9 do

10 Rold ← R
11 R′ ← {Combine(π0

i , π0
j), Combine(π1

i , π1
j)} ∀πi, πj ∈ R, πi �= πj

12 R ← MergeSet(R, R′)
13 l ← l + 1

14 while l < lmax ∧ R �= Rold

15 π′ ← argminF(I, π) ∀π ∈ R
16 if F(I, π′) < F(I, π�) then
17 π� ← π′

18 return π�

2.2 Combination Method

The combination method proposed in this paper is detailed in Algorithm 2. As
stated before, it receives two permutations of solutions corresponding to two
individual row layouts, denoted as πp and πq. Then, for each position i of the
layout (step 1) a random facility is chosen after a uniform distribution from
either πp (step 3) or πq (step 5), depending on the generated random number.
Here, it is possible to pick the same facility twice in different positions, but
because π is a set, repeated facilities are not included multiple times. Due to
this, π may have missing facilities, so the solution needs to be repaired in step
6 including possible missing facilities (step 7 and 8) and generating a complete
new row π. Finally, a best improvement local search based on the displacement
move is executed in step 9, and the improved row layout is returned in step 10.

A Scatter Search Approach for the Parallel Row Ordering Problem 509

Algorithm 2: Combine(πp, πq)
1 for i = 0 to |πp| do
2 if Random([0, 1]) ≤ 0.5 then
3 π[i] ← πp[i]

4 else
5 π[i] ← πq[i]

6 for i = 0 to |πp| do
7 πr ← πp \ π
8 π ← π ∪ πr

9 π′ ← BestImprovementLocalSearch(π)
10 return π′

3 Experimental Experience

In this section, we first describe how the proposal has been tuned, and continue
by comparing the results obtained against both an exact method and the state-
of-the-art heuristic for the PROP.

Instances are divided in two sets: a smaller set, called Set1, for which the opti-
mum values are known, formed by 31 instances; and a set of 25 more challenging
instances, called Set2, for which the optimum values are not known. Instances
are taken from [9] and [7] respectively. For each instance, the number of facilities
in the first row is given by the following formula: �|F |/c�, for c ∈ {2, 3, 4, 5},
while the facilities in the second row are the remaining ones in lexicographical
order.

All experiments have been executed in a virtual machine with 32 cores and
16 GB of RAM, using Java 17 and our development framework. All the instances
and code are available upon request.

3.1 Proposal Tuning

The proposed algorithm has been automatically tuned using the irace software
package, which finds the most appropriate settings given a set of instances for
any given optimization problem [6]. The preliminary instance set used during
tuning is formed by a randomly chosen representative set of 11 instances, which
corresponds with approximately 20% of the complete instance set size.

Parameters such as number of iterations or the RefSet size cannot be directly
calibrated using irace, because if given the opportunity, irace will always try
to maximize the computational effort used. However, by defining a computing
budget b such as b = tmax · rsize, the computational effort is distributed between
the number of iterations and the RefSet size parameters.

Using a budget of b = 600, the chosen parameters by irace are rsize = 20,
tmax = 30. The maximum number of RefSet update operations (lmax) is fixed
to 100, in order to guarantee a maximum execution time.

510 R. Mart́ın-Santamaŕıa et al.

3.2 Results

The results obtained by the proposal are compared to the current state-of-the-
art methods: an exact model implemented in the commercial Gurobi solver [9],
denoted as Exact in the results and a heuristic approach based on a population-
based Simulated Annealing algorithm, denoted as PSA [5].

As the instance sets are different, the comparison will be divided in two
different tables. Table 1 sums up the comparison between the exact model and
our proposal. Instances have been grouped according to the number of elements
c in each row, reporting the number of times the algorithm reaches the best
solution (#Best), average deviation to best known value (%Dev), the average
execution time in seconds (T(s)) and the standard deviation of the execution
time in seconds (Std. T(s)). As it can be seen it the table, the Scatter Search
proposal reaches the best values for all instance types in a fraction of the time
required by the exact model.

Table 1. Summary comparison between the exact model and the Scatter Search
proposal for instances in Set1. The number of facilities per row is t = 	|F |/c
, for
c ∈ {2, 3, 4, 5}.

c Exact Scatter Search

#Best %Dev T(s) std T(s) #Best %Dev T(s) std T(s)

2 31 0.00 1342.32 1790.17 31 0.00 4.09 2.40

3 31 0.00 334.38 544.30 31 0.00 4.72 2.83

4 31 0.00 541.74 1300.40 31 0.00 5.45 3.31

5 31 0.00 1101.25 2043.17 31 0.00 5.94 3.57

Table 2 summarizes the results obtained by both the previous state-of-the-
art PSA and our Scatter Search proposal. Instances are similarly grouped by
the number of elements per row, and the reported elements are similar to the
previous table. As seen, the Scatter Search proposal obtains the highest number
of best results, with a total of 89 best results out of 100, while the PSA gets
57 out of 100, using comparable execution times. Specifically, with c = 2 both
metaheuristics reach the same number, but as the c parameter increases the
quality difference becomes stronger.

Extended result tables for each experiment detailing the results for each
instance are available at Zenodo (https://dx.doi.org/10.5281/zenodo.6616412).

https://dx.doi.org/10.5281/zenodo.6616412

A Scatter Search Approach for the Parallel Row Ordering Problem 511

Table 2. Summary comparison between the previous PSA work, and the Scatter Search
proposal for instances in Set2. The number of facilities per row is t = 	|F |/c
, for
c ∈ {2, 3, 4, 5}.

c PSA Scatter Search

#Best %Dev T(s) std T(s) #Best %Dev T(s) std T(s)

2 17 0.03 18.3 14.3 17 0.03 30.3 14.3

3 13 0.02 22.1 17.6 23 0.00 35.5 19.7

4 14 0.01 24.9 19.4 24 0.00 41.5 25.2

5 13 0.01 31.7 25.2 25 0.00 45.5 28.0

4 Conclusions and Future Work

In this work, we introduce a new Scatter Search approach for the Parallel Row
Ordering Problem (PROP). The proposal is based in the combination of solutions
by means of randomly merging the content of each row of pairs of solutions, as
well as on a best improvement local search. The comparison with the state-
of-the-art manifests the effectiveness of the proposal, obtaining all known best
values in a fraction of the time required by an exact model, and improving the
results of the previous state-of-the-art PSA heuristic for the larger instances.

The promising obtained results suggest that proposing a bigger set of more
challenging instances may increase the competitiveness of the algorithm. So,
further improvements in the PROP family of problems are possible. In particular,
more efficient local search neighborhoods and new different combination methods
may be tested, in order to increase the efficiency of the proposal. Learning from
this experience, future woks will involve similar problems from the facility layout
problem family.

References

1. Ahmadi, A., Pishvaee, M.S., Jokar, M.R.A.: A survey on multi-floor facility layout
problems. Comput. Ind. Eng. 107, 158–170 (2017)

2. Amaral, A.R.: A parallel ordering problem in facilities layout. Comput. Oper. Res.
40(12), 2930–2939 (2013)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San
Francisco (1979)

4. Glover, F.: Heuristics for integer programming using surrogate constraints. Decis.
Sci. 8(1), 156–166 (1977)

5. Gong, J., Zhang, Z., Liu, J., Guan, C., Liu, S.: Hybrid algorithm of harmony search
for dynamic parallel row ordering problem. J. Manuf. Syst. 58, 159–175 (2021)

6. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper. Res.
Perspect. 3, 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002

7. Maadi, M., Javidnia, M., Jamshidi, R.: Two strategies based on meta-heuristic algo-
rithms for parallel row ordering problem (PROP). Iran. J. Manag. Stud. 10(2),
467–498 (2017)

https://doi.org/10.1016/j.orp.2016.09.002

512 R. Mart́ın-Santamaŕıa et al.

8. Mart́ı, R., Corberán, Á., Peiró, J.: Scatter search. In: Mart́ı, R., Pardalos, P.,
Resende, M. (eds.) Handbook of Heuristics, pp. 717–740. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-07124-4 20

9. Yang, X., Cheng, W., Smith, A.E., Amaral, A.R.S.: An improved model for the
parallel row ordering problem. J. Oper. Res. Soc. 71(3), 475–490 (2020)

https://doi.org/10.1007/978-3-319-07124-4_20

A Multi-Population BRKGA
for Energy-Efficient Job Shop Scheduling

with Speed Adjustable Machines

S. Mahdi Homayouni1(B) , Dalila B. M. M. Fontes1,3 ,
and Fernando A. C. C. Fontes2,3

1 LIAAD- INESCTEC, Porto, Portugal
smh@inesctec.pt

2 Universidade do Porto, Porto, Portugal
3 SYSTEC-ISR-ARISE LA, Porto, Portugal

fontes@fep.up.pt, faf@fe.up.pt

Abstract. Energy-efficient scheduling has become a new trend in
industry and academia, mainly due to extreme weather conditions,
stricter environmental regulations, and volatile energy prices. This work
addresses the energy-efficient Job shop Scheduling Problem with speed
adjustable machines. Thus, in addition to determining the sequence of
the operations for each machine, one also needs to decide on the pro-
cessing speed of each operation. We propose a multi-population biased
random key genetic algorithm that finds effective solutions to the prob-
lem efficiently and outperforms the state-of-the-art solution approaches.

Keywords: Job shop scheduling problem · Energy efficiency · Speed
adjustable machines · Biased random key genetic algorithm

1 Introduction

The steady increase in energy consumption and public awareness of its envi-
ronmental impacts bring new challenges for the industrial sector. Thus, practi-
tioners are looking for ways of reducing energy consumption. An effective way
to accomplish such a reduction is to implement an energy-efficient scheduling
methodology which, additionally, needs no significant capital investments and is
particularly relevant for small and medium-sized enterprises [1].

The energy-efficient job shop scheduling problem (EEJSP) attempts to lower
energy consumption while providing the same level of service mainly by adjusting
machines processing speed [9] and/or by switching machines into a power-saving
mode when idle [8]. The former strategy balances energy consumption and pro-
duction time, while the latter balances energy savings from resorting to the use of
a power-saving mode and energy requirements to restart and warm up machines.

This work is financed by National Funds through the Portuguese funding agency, FCT
- Fundação para a Ciência e a Tecnologia, within project LA/P/0063/2020.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 513–518, 2023.
https://doi.org/10.1007/978-3-031-26504-4_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_41&domain=pdf
http://orcid.org/0000-0001-6833-9316
http://orcid.org/0000-0002-9402-2088
http://orcid.org/0000-0003-3516-5094
https://doi.org/10.1007/978-3-031-26504-4_41

514 S. M. Homayouni et al.

Furthermore, under the first strategy, non-processing energy consumption can
be decreased as adjusting the processing speed may reduce machines’ idle time.

Although only recently energy-efficient scheduling became the subject of sys-
tematic research, one of the first works on EEJSP with speed adjustable machines
is that of He et al. [5]. They propose a Tabu search (TS) algorithm to find a
sequence of operations for each machine as well as the machine processing speed
for each operation such that both the makespan (Cmax) and the total energy
consumption (E) are optimized. Later, [10] proposes a mixed-integer program-
ming (MIP) model and a genetic-simulated annealing algorithm. Recently, [9,11]
propose similar genetic algorithms (GAs). While [9] minimizes the weighted sum
of the normalized Cmax and the normalized E , [11] also includes the normalized
noise emissions in its weighted sum. More recently, hybrid metaheuristics have
been proposed. For example, [12] embeds two local search heuristics into a GA to
find solutions that minimize the total weighted tardiness (wT) and the E . One of
the heuristics attempts to improve the wT by swapping disjoint pairs of adjacent
operations on each machine and the other attempts to improve the E by decreas-
ing the processing speed of non-critical operations. Another example is the work
in [7] that decrease energy consumption by decelerating the processing of non-
critical operations as much as possible without affecting the completion time of
any other operation. A more complete account of recent work on energy-efficient
job shop scheduling problems can be found in [3].

This work proposes a multi-objective multi-population biased random key
genetic algorithm (multi-objective mpBRKGA) that finds effective solutions to
the EEJSP problem efficiently. The computational experiments performed on
a set of 13 benchmark problem instances show that the mpBRKGA outper-
forms the state-of-the-art algorithms. We describe the problem being addressed
in Sect. 2 and the proposed multi-objective mpBRKGA in Sect. 3. The compu-
tational experiments and results are reported in Sect. 4. Finally, Sect. 5 draws
some conclusions and points out future research directions.

2 Problem Definition

The classical job shop scheduling problem (JSP) comprises a set J of independent
jobs and a set of machines. Each job consists of a set Oj = {1, 2, . . . , nj},∀j ∈ J
of nj ordered operations. Each operation must be processed on a given machine
and each machine can only process one operation at a time.

The EEJSP with speed adjustable machines requires solving simultaneously
two interdependent combinatorial problems: scheduling the operations on each
machine (machine scheduling) and determining the speed at which each opera-
tion is processed (operation speed assignment).

A machine can process an operation at one of the various speeds requiring a
predefined processing time and power consumption. (The higher the processing
speed, the higher the power consumption required.) Idle machines are considered
in “stand-by” mode and with negligible power consumption.

A mpBRKGA for Energy-Efficient JSP 515

An operation can be started right after the completion of the previous oper-
ation of the same job (or immediately if it is the job’s first operation) if the
required machine is idle; otherwise, the job waits for the machine in a buffer.
Whenever an operation is completed the machine can start processing the next
operation immediately. Among all possible solutions, we are interested in those
that minimize the makespan Cmax and the energy consumed to process all pro-
duction operations E .

3 The Proposed Multi-objective MpBRKGA

Biased random key genetic algorithms (BRKGAs) have been successfully pro-
posed and implemented to find good quality solutions in several application
areas. The multi-objective mpBRKGA proposed in this work borrows its princi-
ples from [4] and evolves Ω+Π populations: each of the Ω populations considers
one of the Ω objectives, while each of the Π populations considers simultane-
ously all Ω objectives. The initial populations are uniformly randomly generated.
Nevertheless, 20% of the initial solutions of the single-objective population that
minimizes Cmax have the processing speeds set to the maximum value. Simi-
larly, the processing speeds are set to the minimum value for 20% of the initial
solutions of the single objective population that minimizes E .

A solution is encoded as a two-part vector with N =
∑

j∈J nj elements
each. Each vector element is a random key, i.e., a real number in the interval
[0, 1]. The first part provides a sequence of operations and the second assigns a
processing speed to each operation. (See Fig. 1.a for an example with three jobs,
each with three operations that can be processed at one of the three available
speeds.)

The decoding of the first N elements uses the smallest position value rule
to construct a permutation representation of the RKs. Elements are sorted in
ascending order, thus, providing a sequence of operations, see part (i) of Fig. 1.b).
Then, the permutation is converted into a feasible sequence of operations by sort-
ing the operations of each job in ascending order; this way ensuring precedence
constraints, see part (i) of Fig. 1.c). Each RK in the second part of the chro-
mosome is decoded into the processing speed of the corresponding operation.
The processing speed of operation l is given by the smallest integer greater than
or equal to RKl × |Pl|, where |Pl| is the number of speed values available for
operation l, see Fig. 1 - part (ii).

The evolutionary strategy is similar for all populations. At each genera-
tion, a new population is obtained by joining the set Ne of ne elite solutions,
the set No of no offspring solutions, and the set Nm of nm mutant solutions.
For each of the ω ∈ Ω single objective populations, the set Nω

e of elite solutions
comprises the best ne solutions of its current generation. Regarding each of the
π ∈ Π multi-objective populations, the set Nπ

e of elite solutions are the best
ne solutions chosen from a pool of solutions consisting of the best ne solutions
of its current generation and the best ne solutions of the current generation of
each ω ∈ Ω population, from which the repeated solutions are removed. Addi-
tionally, the Π multi-objective populations exchange their elite solutions after

516 S. M. Homayouni et al.

Fig. 1. Solution encoding and decoding procedures.

a pre-determined number of generations (gex). Thus, every gex generations, the
pool of solutions also contains the best ne solutions of each π ∈ Π population.
To identify the best solutions for the multi-objective populations, we employ
a non-dominated ranking procedure [2] and the crowding distance [2] to sort
solutions of the same rank.

Regardless of the population being evolved, the no offspring solutions are
obtained by a biased parameterized uniform crossover [4,6] and the nm mutants
are randomly generated in the same manner as the initial population was.

The evolutionary process is repeated for a predetermined number of gen-
erations Gmax. Then, a pool is created by joining the best solutions of the Ω
populations and the non-dominated solutions of the Π populations and removing
repeated and dominated solutions. The remaining solutions are Pareto solutions
and provide an approximation to the Pareto optimal front.

4 Numerical Results

The multi-objective mpBRKGA was implemented in Python R© 3.8 and all com-
putational experiments were carried out on a 3.20 GHz Intel R© Core

TM
i7-8700

PC with 24 GB RAM. We solve three problem instances proposed in [11] and
10 proposed in [9]. The former instances are designated as Yin01, Yin02, and
Yin03 and have four, 10, and 20 jobs with 12, 40, and 60 operations, respec-
tively. Instances Yin01 and Yin03 have five machines while instance Yin02 has
six. Operations can be processed at two or three speeds. The instances proposed
in [9] are designated as Sal01 ∼ 10 and each has three jobs with 25 operations
each and three machines. Operations can be processed at three speeds.

Following on literature recommendations, the control parameters of the
mpBRKGA were set as: population size P = 500, number of elite solutions
ne = 0.2P , number of mutants nm = 0.1P , and inheritance probability pe = 0.7
[4,6]. The remaining control parameters were set through empirical testing to
Gmax = 300, Π = 2, Ω = 2, and gex = 30.

The benchmark instances were solved in [11] by a genetic algorithm (GA) and
in [9] by a multi-objective GA (moGA) and constraint programming (CP). Both
[11] and [9] employed a weighted summation approach and reported the Cmax

and E values under different weight assumptions. Table 1 reports the boundary

A mpBRKGA for Energy-Efficient JSP 517

solutions, that is, the minimum makespan C∗
max and associated energy consump-

tion E and the minimum energy consumption E∗ and associated makespan Cmax,
obtained by the mpBRKGA and by the GA [11] for the Yin instances. Similar
results are reported for the Sal instances. However, the reported values are aver-
ages over the 10 problem instances since this is what is reported for the CP and
the moGA approaches in [9]. As it can be seen, the mpBRKGA is capable of
finding very good solutions and it outperforms the GA, the CP, and the moGA
approaches. Although the mpBRKGA finds the same boundary solutions and
PF for Yin01, it finds better ones for Yin02 and Yin03. Indeed, the mpBRKGA
boundary solutions dominate those of [11]. Regarding instances Sal01 ∼ 10, our
averages are always better, except for the minimum energy that we have the
same value.

Table 1. The makespan and energy consumption values at boundary solutions for the
EEJSP benchmark problem instances.

Solution approach C∗
max E Cmax E∗

Yin01 mpBRKGA 22.0 5.81 35.0 4.82

GA 22.0 5.81 35.0 4.82

Yin02 mpBRKGA 40.0 18.34 56.0 17.73

GA 40.0 19.48 60.0 18.13

Yin03 mpBRKGA 62.0 22.94 111.0 20.96

GA 64.0 23.68 105.0 21.73

Sal01 ∼ 10 mpBRKGA 1673.3 6699.7 2786.4 3827.1

CP 1673.4 6732.2 3160.0 3827.1

moGA 1697.0 7088.5 2888.8 3827.1

Figure 2 depicts the Pareto fronts (PFs) obtained by the mpBRKGA and the
ones obtained by the GA [11] for problem instances Yin01 ∼ 03. As it can be
seen, for instance Yin01, the (PFs) are the same for both methods. However,
for Yin02 and Yin03, the mpBRKGA produces much better solutions. All the
solutions found by the GA proposed in [11] are dominated by the ones found by
the mpBRKGA. In contrast, none of the mpBRKGA solutions are dominated.

20 Yin02
4.5

4.7

4.9

5.1

5.3

5.5

5.7

5.9

21 26 31 36

En
er

gy

Makespan

Yin01

mp-BRKGA GA (Yin et al., 2107)

120

7)

1 26 31 36
Makespan

17.5

18

18.5

19

19.5

20

38 43 48 53 58 63

En
er

gy

Makespan

Yin02

mp-BRKGA GA (Yin et al., 2107)

5
21

17

18

19

En
er

gy

20.5

21

21.5

22

22.5

23

23.5

24

60 70 80 90 100 110 120

En
er

gy

Makespan

Yin03

mp-BRKGA GA (Yin et al., 2107)

Fig. 2. Pareto fronts found by the mpBRKGA and the GA [11] for instances Yin01 ∼
03.

518 S. M. Homayouni et al.

5 Conclusion

We address the EEJSP with speed adjustable machines. We propose a multi-
objective mpBRKGA that is capable of finding good solutions efficiently and
outperforms the state-of-the-art solution approaches. Experiments show that,
our PFs are the better than those of [11] for instances Yin01 ∼ 03; and our
average values for boundary solutions are better than those reported in [9] for
instances Sal01 ∼ 10. This work can be extended by considering other energy
factors such as peak power, which usually is a major concern if renewable energies
are being used.

References

1. Bansch, K., et al.: Energy-aware decision support models in production environ-
ments: a systematic literature review. Comput. Ind. Eng. 159, 107456 (2021)

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

3. Fernandes, J.M., Homayouni, S.M., Fontes, D.B.M.M.: Energy-efficient scheduling
in job shop manufacturing systems: a literature review. Sustainability 14(10), 6264
(2022)

4. Gonçalves, J.F., Resende, M.G.: A parallel multi-population biased random-key
genetic algorithm for a container loading problem. Comput. Oper. Res. 39(2),
179–190 (2012)

5. He, Y., Liu, F., Cao, H.J., Li, C.B.: A bi-objective model for job-shop scheduling
problem to minimize both energy consumption and makespan. J. Cent. South Univ.
Technol. 12(2), 167–171 (2005)

6. Homayouni, S.M., Fontes, D.B.M.M., Gonçalves, J.F.: A multistart biased random
key genetic algorithm for the flexible job shop scheduling problem with transporta-
tion. Int. Trans. Oper. Res. 30(2), 688–716 (2023)

7. Lu, C., Zhang, B., Gao, L., Yi, J., Mou, J.: A knowledge-based multiobjective
memetic algorithm for green job shop scheduling with variable machining speeds.
IEEE Syst. J. 16(1), 844–855 (2021)

8. Meng, L., Zhang, C., Shao, X., Ren, Y.: MILP models for energy-aware flexible
job shop scheduling problem. J. Clean. Prod. 210, 710–723 (2019)

9. Salido, M.A., Escamilla, J., Giret, A., Barber, F.: A genetic algorithm for energy-
efficiency in job-shop scheduling. Int. J. Adv. Manuf. Technol. 85(5), 1303–1314
(2016)

10. Tang, D., Dai, M.: Energy-efficient approach to minimizing the energy consumption
in an extended job-shop scheduling problem. Chin. J. Mech. Eng. 28(5), 1048–1055
(2015). https://doi.org/10.3901/CJME.2015.0617.082

11. Yin, L., Li, X., Gao, L., Lu, C., Zhang, Z.: Energy-efficient job shop scheduling
problem with variable spindle speed using a novel multi-objective algorithm. Adv.
Mech. Eng. 9(4), 1–21 (2017)

12. Zhang, R., Chiong, R.: Solving the energy-efficient job shop scheduling problem:
a multi-objective genetic algorithm with enhanced local search for minimizing the
total weighted tardiness and total energy consumption. J. Clean. Prod. 112, 3361–
3375 (2016)

https://doi.org/10.3901/CJME.2015.0617.082

An Evolutionary Algorithm Applied
to the Bi-Objective Travelling Salesman

Problem

Luis Henrique Pauleti Mendes1(B) , Fábio Luiz Usberti1 ,
and Mário César San Felice2

1 Institute of Computing, State University of Campinas, Campinas, SP, Brazil
{luis.mendes,fusberti}@ic.unicamp.br

2 Department of Computing, Federal University of São Carlos, São Carlos, SP, Brazil
felice@ufscar.br

Abstract. This paper presents an evolutionary algorithm for multi-
objective optimization problems, based on the Biased Random-Key
Genetic Algorithms and on the Elitist Non-dominated Sorting Genetic
Algorithm. Computational experiments applied to the Bi-Objective
Travelling Salesman Problem compared our algorithm with other well-
known multi-objective evolutionary algorithms from the literature. The
results show that our methodology consistently outperformed the other
approaches with respect to the hypervolumes from the obtained non-
dominated fronts.

Keywords: Multi-objective optimization · NSGA-II · BRKGA

1 Introduction

Multi-objective Optimization Problems (MOPs) are an important field of oper-
ations research applied to many real-world problems that require taking into
account multiple conflicting points of view. A MOP can be stated as:

min
x∈X

f(x) = (f1(x), . . . , fm(x))T ,

where X ⊆ R
n is an n-dimensional decision space, f : X → R

m consists of
m real-valued objective functions, where each one needs to be minimized, and
Y = {f(x) : x ∈ X} ⊆ R

m is an attainable objective space. Improvement of
one objective function may lead to the deterioration of another. Thus, generally
no single solution can optimize all the objectives. Instead, the best trade-off
solutions, called efficient solutions, are of interest to a decision maker.

Population-based methods such as Evolutionary Algorithms (EAs) have
become increasingly popular for solving MOPs over the past decades [8]. These
methods, known as Multi-Objective Evolutionary Algorithms (MOEAs), carry
the advantage of finding a set of efficient solutions, because of their inherent
parallel character and group strategy.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 519–524, 2023.
https://doi.org/10.1007/978-3-031-26504-4_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_42&domain=pdf
http://orcid.org/0000-0001-9748-1186
http://orcid.org/0000-0002-8972-080X
http://orcid.org/0000-0001-6476-4534
https://doi.org/10.1007/978-3-031-26504-4_42

520 L. H. Pauleti Mendes et al.

Our contribution consists of a new MOEA applied to the Bi-Objective Trav-
elling Salesman Problem (BOTSP), whose performance is compared with other
MOEAs from the literature. Our methodology combines the benefits of Biased
Random-Key Genetic Algorithms (BRKGAs) and of the Elitist Non-Dominated
Sorting Genetic Algorithm (NSGA-II). We believe our methodology can be easily
applied to MOPs in general.

2 Base Algorithms

2.1 Biased Random-Key Genetic Algorithms

Random-Key Genetic Algorithms (RKGAs) were first introduced by [2] for solv-
ing single-objective combinatorial optimization problems involving sequencing.
In a RKGA, chromosomes are represented as vectors of randomly generated real
numbers in the interval [0, 1]. A deterministic algorithm, called decoder, maps
any individual to a solution of the optimization problem, for which a fitness
value can be computed.

The initial population P0 is made up of vectors of random-keys, where each
allele is generated independently at random in the interval [0, 1]. After the fitness
of each individual is computed by the decoder, the population P0 is partitioned
into a small set of elite individuals P e

0 , that is, those with the best fitness value,
and a larger set of non-elite individuals P ē

0 = P0\P e
0 , containing the remaining

individuals. In each generation t, the elite set P e
t is copied unchanged to genera-

tion t+1 and a small set Pm
t of random solutions called mutants are introduced

in the new population. Considering that |P e
t ∪ Pm

t | ≤ |Pt|, the population is
completed by offsprings, generated through the process of mating.

A BRKGA [6] differs from a RKGA in the way parents are selected for
mating. In an RKGA [2], the two parents are selected at random from the entire
population. Whereas in a BRKGA, each offspring is generated combining one
individual from the elite set P e

t and one individual from the non-elite set P ē
t .

Mating is done using parameterized uniform crossover, where a gene is taken
from the elite individual with probability ρ > 0.5, or otherwise it is taken from
the other individual.

The Multi-Parent Biased Random-Key Genetic Algorithm (BRKGA-MP) [9],
a variant of BRKGA, selects as many parents as the parameter π determines, and
rank them according to their fitness values. Among these, πe are elite parents
and πē = π − πe are non-elite parents, where πe ≥ πē. Then, a parameterized
uniform crossover is performed such that each allele is taken from an individual
chosen by the roulette method. Each parent has a probability of passing its alleles
to the offspring, which is calculated using the bias of the parent. Parent bias is
defined by a pre-determined, non-increasing weighting bias function Φ : N → R

∗
+

over its rank r.

2.2 Elitist Non-dominated Sorting Genetic Algorithm

The NSGA-II [5], one of the most popular algorithms for finding multiple Pareto-
optimal solutions for multi-objective optimization problems, has the following

An EA Applied to the BOTSP 521

features: it uses an elitist principle, it uses an explicit diversity preserving mech-
anism, and it emphasizes non-dominated solutions.

Initially, a random parent population P0 is created. The population is sorted
based on the non-domination. Each solution receives a rank equal to its non-
domination level. At first, the binary tournament selection, simulated binary
crossover, and polynomial mutation are used to create an offspring population
Q0 of size |P0|. Elitism is introduced by comparing current population with
previously found best non-dominated solutions.

Next, we describe the t-th generation of the NSGA-II. First, a combined
population Rt = Pt ∪ Qt, of size 2|Pt|, is formed. Then, the fast non-dominated
sorting is used to classify the entire population Rt. Although this requires more
computation compared to performing a non-dominated sorting on Qt alone,
it allows a global non-domination check among offspring and parent solutions,
ensuring elitism. Now, solutions belonging to the best non-dominated set S�

1 are
the best solutions in Rt and must be emphasized. If the size of S�

1 is smaller than
|Pt|, all members of S�

1 are chosen for the next population Pt+1. The remaining
members of the population Pt+1 are chosen from subsequent non-dominated set
in order of their ranking. Thus, solutions from the set S�

2 are chosen next, followed
by solutions from the set S�

3 , and so forth. This procedure is continued until no
more sets can be accommodated. When the last acceptable non-dominated set S�

l

is being considered, there may exist more solutions in the S�
l than the remaining

slots in the new population Pt+1. Instead of arbitrarily discarding some members
of the S�

l , a niching strategy is used to choose the solutions that reside in the
least crowded region of S�

l , increasing the diversity of the solutions chosen.

3 Non-dominated Sorting Biased Random-Key Genetic
Algorithm

In this work, we extend the single-objective BRKGA-MP framework for solv-
ing MOPs. The fitness of each chromosome must be taken into account for all
objective functions. Thus, the main question that arises is how to determine
an order for the solutions to select the elite set. To that end, we used the fast-
non-dominated sorting and the crowding distance assignment from NSGA-II [5].
Our proposed algorithm is named Non-dominated Sorting Biased Random-key
Genetic Algorithm (NS-BRKGA). The t-th generation of the NS-BRKGA is
presented in Algorithm 1.

The standard BRKGA have already been hybridized with NSGA-II to tackle
multi-objective combinatorial optimization problems [3,4]. However, to the best
of our knowledge, no other work from the literature have extended the BRKGA-
MP for multi-objective optimization. Furthermore, we do not insert mutant indi-
viduals into the population. Instead, we apply polynomial mutation on the off-
springs. Moreover, the NS-BRKGA uses crowding distance sorting to preserve
diversity on the objective space. To enhance the diversity on the genotype space,
we emphasize solutions with high diversity to be part of the elite set. Such mech-
anism is described in Algorithm 2.

522 L. H. Pauleti Mendes et al.

Algorithm 1. NS-BRKGA
1: Sort Pt using fast-non-dominated-sort and crowding-distance-sort
2: P e

t ← select-elite-set(Pt, S
�
1 , D, pe

min, pe
max)

3: Pt+1 ← P e
t � Initialize next population

4: while |Pt+1| < |Pt| do
5: c ← biased-multi-parent-crossover(Pt, P

e
t , π, πe, Φ)

6: c′ ← polynomial-mutation(c)
7: Pt+1 ← Pt+1 ∪ {c′} � Add offspring to next population

8: t ← t + 1

Algorithm 2. Select elite set
1: P e

t ← Pt[1 : pe
min]

2: if |P e
t | < |S�

1 | then
3: P e

t ← S�
1

4: if |P e
t | > pe

max then
5: P e

t ← Pt[1 : pe
max]

6: for p ← |P e
t | + 1 to pe

max do
7: if D(P e

t) < D(Pt[1 : p]) then
8: P e

t ← Pt[1 : p]

Line 1 initializes the elite set P e
t with the first pe

min elements of the cur-
rent population Pt. Lines 2–3 make sure that P e

t contains every non-dominated
solutions S�

1 from Pt. Lines 4–5 ensure that P e
t do not exceed the maximum

size pe
min. The loop of lines 6–8 makes sure that P e

t consists of the prefix of
Pt that maximizes the value of the diversity function D. Diversity is measured
using the average distance to centroid [7]: Dv(P) = 1

|P |
∑|P |

i=1 ‖P [i] − P̄‖, where

P̄ = 1
|P |

∑|P |
i=1 P [i] is the centroid of the population.

4 Bi-Objective Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is an NP-hard permutation-based com-
binatorial optimization problem, which have been extensively studied in the lit-
erature [1]. Consider a complete weighted graph G = (V,E, c), where V is the
set of vertices, E is the set of edges, and c : E → R is a function that assigns to
each edge e ∈ E a cost c(e) ∈ R. The goal of the TSP is to find a minimal cost
Hamiltonian cycle of G.

In the Bi-Objective TSP (BOTSP), an instance consists of a complete
weighted graph G = (V,E, c), where c : E → R

m is a function that assigns
to each edge e ∈ E a vector (c1(e), c2(e))T with 2 costs [12]. Many engineer-
ing problems, such as network structure design problems, machine scheduling
problems and vehicle routing problems, can be formulated as BOTSPs. Conse-
quently, the BOTSP is frequently employed as a benchmark problem to evaluate
the performance of multi-objective optimization algorithms.

An EA Applied to the BOTSP 523

5 Computational Experiments

Instances. We consider symmetric instances of size ranging from 100 to 1000 [10].
The instances with at most 200 cities have been generated combining single-
objective TSP instances of the TSPLIB. The instances of at least 300 cities, were
generated with random coordinates. The costs between the cities are computed
by calculating the Euclidean distance between each city.

Decoder. A chromosome that encodes a solution for an instance G = (V,E, c) of
the BOTSP is represented by a vector with |V | − 1 real numbers in the interval
[0, 1]. One vertex v ∈ V is fixed as the initial vertex of the Hamiltonian cycle
of G, and the order in which the vertices in V \ {v} are visited is given by the
value of each of the |V | − 1 genes. Hence, the decoder sorts the genes of the
chromosome and sum up the travel costs for each of the 2 objectives, which
gives a computational time complexity of O(|V | log |V |).

Benchmark. The proposed algorithm was compared with the following algo-
rithms, and their implementations available at the PAGMO2 library1: Eli-
tist Non-dominated Sorting Genetic Algorithm (NSGA-II) [5] and Multi-
Objective Evolutionary Algorithm by Decomposition with Differential Evolu-
tion (MOEA/D-DE) [13]. We performed five independent runs for each algo-
rithm and instance on a computer with an Intel Xeon CPU E5-2420 CPU of
1.90 GHz and 32 GB of RAM, with a time limit of one hour.

Evaluation Metric. The algorithms are compared by the hypervolume indica-
tor IHV [11]. Figure 1 presents the hypervolume obtained by each algorithm.
Figure 1a shows the mean hypervolume obtained for each instance size, and
Fig. 1b shows the mean hypervolume as a function of the execution time.

(a) (b)

Fig. 1. Hypervolume obtained by each algorithm.

1 https://esa.github.io/pagmo2/.

https://esa.github.io/pagmo2/

524 L. H. Pauleti Mendes et al.

Results. Analyzing Fig. 1a, we can conclude that the NS-BRKGA is more scal-
able, showing increasing margins of improvements for bigger instances. Moreover,
on Fig. 1b, we can see that the NS-BRKGA converges more rapidly to the best
hypervolumes compared to the other algorithms. To conclude, computational
experiments show that the proposed methodology consistently outperformed the
previous approaches, in both solution quality and execution time.

References

1. Applegate, D.L., Bixby, R.E., Chvatál, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2007)

2. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA J. Comput. 6(2), 154–160 (1994)

3. Chagas, J.B., Blank, J., Wagner, M., Souza, M.J., Deb, K.: A non-dominated sort-
ing based customized random-key genetic algorithm for the bi-objective traveling
thief problem. J. Heurist. 27(3), 267–301 (2021)

4. Damm, R.B., Ronconi, D.P.: A multi-objective biased random-key genetic algo-
rithm for service technician routing and scheduling problem. In: Mes, M., Lalla-
Ruiz, E., Voß, S. (eds.) ICCL 2021. LNCS, vol. 13004, pp. 471–486. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-87672-2 31

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

6. Gonçalves, J.F., Resende, M.G.: Biased random-key genetic algorithms for combi-
natorial optimization. J. Heurist. 17(5), 487–525 (2011)

7. Lacevic, B., Amaldi, E.: Ectropy of diversity measures for populations in Euclidean
space. Inf. Sci. 181(11), 2316–2339 (2011)

8. Li, X.: A non-dominated sorting particle swarm optimizer for multiobjective opti-
mization. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 37–48.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6 4

9. Lucena, M.L., Andrade, C.E., Resende, M.G., Miyazawa, F.K.: Some extensions
of biased random-key genetic algorithms. In: Proceedings of the 46th Brazilian
Symposium of Operational Research, pp. 1–12 (2014)

10. Lust, T., Jaszkiewicz, A.: Speed-up techniques for solving large-scale biobjective
TSP. Comput. Oper. Res. 37(3), 521–533 (2010)

11. Shang, K., Ishibuchi, H., He, L., Pang, L.M.: A survey on the hypervolume indicator
in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 25(1), 1–
20 (2021)

12. Shim, V.A., Tan, K.C., Chia, J.Y., Chong, J.K.: Evolutionary algorithms for solv-
ing multi-objective travelling salesman problem. Flex. Serv. Manuf. J. 23(2), 207–
241 (2011)

13. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

https://doi.org/10.1007/978-3-030-87672-2_31
https://doi.org/10.1007/3-540-45105-6_4

Hybrid Metaheuristic Approaches
for Makespan Minimization on a Batch

Processing Machine

Juan Carlos Rivera(B) and Ana María Cortes

Mathematical Modeling Research Group, Universidad EAFIT,
Carrera 49 # 7 sur - 50, Medellín, Colombia

{jrivera6,acortesz}@eafit.edu.co

Abstract. A batch processing machine (BPM) is characterized as
being able to process multiple jobs simultaneously. This type of
machines is common in industrial processes such as electrolytic coating,
heat treatments and drying ovens. The BPM scheduling problem
consists of grouping a set of jobs into batches to be processed in
a single machine with a limited capacity, in such a way that the
time necessary to manufacture all jobs (makespan) is minimized.
The BPM scheduling problem can be formulated as a mixed integer
linear program (MILP). Nevertheless, it is usually addressed through
metaheuristic algorithms due to it belongs to NP-Hard class of
problems. In this paper, techniques such as the savings methods, NEH
algorithm, Large Neighborhood Search (LNS) metaheuristic and splitting
algorithm (order-first cluster-second) are adapted to solve the BPM. The
performance of the algorithms is evaluated using known instances from
literature with up to 100 jobs. The proposed algorithms improve some
of the best known solutions in the literature.

Keywords: Batch processing machine · Metaheuristic algorithms ·
Machines scheduling · Combinatorial optimization

1 Introduction

The Batch Processing Machine (BPM) scheduling is a combinatorial
optimization problem in which a machine or processor is able to process multiple
jobs simultaneously. This type of machine is commonly found in manufacturing
and metallurgical industry in processes like thermal treatments, drying ovens
and painting processes, among others.

The search for BPM solution methods is essential at a practical level, taking
into account that generally these machines have a high cost; converting them
in a restrictive and scarce resource, that is, an optimal BPM schedule impacts
directly on the real production capacity and the efficiency of the processes.

The problem consists on schedule a set J = {1, ..., n} of jobs in a BPM which
has a limited capacity B. Each job j ∈ J is characterized by a release time rj , a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 525–530, 2023.
https://doi.org/10.1007/978-3-031-26504-4_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_43&domain=pdf
http://orcid.org/0000-0002-2160-3180
https://doi.org/10.1007/978-3-031-26504-4_43

526 J. C. Rivera and A. M. Cortes

minimum processing time pj and a size sj . They can be grouped into batches such
that the sum of the jobs sizes does not exceed the machine capacity. The release
time and the processing time of a batch are computed as the maximum of the
release times and the processing times of the jobs that compose it, respectively.
Therefore, it is understood that the jobs can be processed in a batch with longer
processing time without affecting the final product quality. The objective is to
find a schedule T , i.e. start and finish time for each job j ∈ J , so that the time
required to manufacture the n jobs (Cmax) is minimum [1].

There are several variants of the problem, which depend mainly on the
consideration (or not) of release times and arbitrary sizes of the jobs. This paper
focuses on the case in which both, release times and arbitrary sizes, are taken
into account for each one of the jobs. This particular case has been one of the
least studied in the literature.

Uzsoy [12] demonstrates that the problem with arbitrary sizes is NP-hard, so
several (meta)heuristics have been proposed to solve it. Melouk et al. [7] propose
a Simulated Annealing (SA) and a mixed integer linear program (MILP). Chou et
al. [3] present a two-phase metaheuristic. In the first phase, a Genetic Algorithm
(GA) defines a sequence of jobs, while the second one creates batches with
the heuristic First-Fit Longest Processing Time (FFLPT). Chou [2] proposes
a hybrid method combining Dynamic Programming with a Genetic Algorithm
(DP+GA). GA is used to generate several sequences of jobs while DP evaluates
each chromosome. This method outperforms the one presented by Chou et al.
[3]. Vélez-Gallego et al. [13] extend the SKP (Succcessive Knapsack Problem
[5]) heuristic by considering time windows to represent ready times. Xu et al.
[14] propose an Ant Colony Optimization (ACO) metaheuristic with candidate
lists to restrict the number of reachable solutions and a way to build heuristic
information based on reducing waste and idle space.

In the sequel this paper is organized as follows: The proposed solution
approaches are presented in Sect. 2. Section 3 describes the computational
experiments, while Sect. 4 introduces main concluding remarks.

2 Metaheuristic Approaches

This section introduces seven proposed solution approaches: a constructive
heuristic based on savings concept, a splitting procedure, a NEH heuristic and
four variants of Large Neigborhood Search (LNS) metaheuristic. Five destroying
operators and four repairing operators are also introduced.

Savings Algorithm: Savings concept, first proposed by Clarke and Wright [4]
to solve Vehicle Routing Problems (VRP), is adapted to deal BPM.

The procedure starts with n batches, each one composed by a single
job. When two batches can be processed simultaneously, i.e. they did not
exceed machine capacity when performed together, savings are computed as the
difference between the total processing time when they are processed separately
(one batch after the other) and when they are processed in the same batch. The
pairs of batches with the largest savings are prioritized.

Hybrid Metaheuristic Approaches for Makespan Minimization on a BPM 527

Splitting Algorithm: This algorithm adapts the one proposed by Prins [9] for
the VRP. More detailed information can be found on Prins et al. [10]. For the
BPM, the algorithm translates a sequence of jobs into a sequence of batches.
That is, given a sequence of jobs σ = (σ0, σ1, ..., σn), a Shortest Path Problem
(SPP) is defined on a digraph G = (J ′, E). The set of nodes (jobs) J ′ = J ∪ {0}
contains an initial dummy node and n jobs. Each job j ∈ J has a size sj , a
processing time pj and a release date rj . The set E contains arcs (i, j) such that
i < j and

∑j
k=i+1 sσk

≤ B. In this version, each arc (i, j) ∈ E represents a
possible batch composed by jobs (σi+1, ..., σj).

Belman-Ford algorithm is adapted to solve the proposed SPP. The algorithm
scans each node i ∈ σ, expands all feasible arcs (i, j) ∀ j ∈ σ, j > i, and evaluates
the cost to reach the node j as Vj = min{Vj , Rij +Pij , Vi +Pij}. The path with
the least value Vn is the one that represents the set of batches with minimum
makespan (Cmax).

As this method requires an initial sequence of jobs to get a BPM schedule,
it is tested with a savings based sequence and others proposed in following
subsections.

NEH-Based Algorithm: NEH algorithm was proposed by Nawaz, Enscore
and Ham [8] for the Flow-Shop Scheduling Problem (FSP) and adapted here for
the BPM. This algorithm starts by sorting the jobs according to LPT (longest
processing time) dispatching rule. Then, first two jobs are scheduled in such a
way that makespan is minimized. For the remaining jobs, on each step a job
from the set of unscheduled jobs is inserted in the position which produces the
best possible makespan. In our implementation the split procedure is performed
on each resulting sequence to create batches and evaluate the makespan. The
procedure can be also performed in opposite order (shortest processing time or
SPT dispatching rule).

Large Neighborhood Search (LNS): LNS, proposed by Shaw [11], improves
an incumbent solution by iteratively applying destroy and repair operators.
Destroy operators release some variables and fixes others at current values, while
Repair operators rebuild the solution, i.e. recover a complete solution.

In our implementation, the initial solution is get by Savings algorithm. Five
destroy operators are used with the same selection probability: a. remove the
biggest job from a random chosen batch, b. remove the longest job from a
random chosen batch, c. remove the job with largest volume from a random
chosen batch where volume is defined as processing time multiplied by size, d.
remove a random chosen job, and e. remove a random chosen batch. Similarly,
three repair operators are used with the same probability: a. insert jobs in the
batch with the smallest capacity slack, b. insert jobs in the first possible batch,
and c. best insertion, i.e. test all possible positions and choose the best one.

LNS+: LNS+ represents a variant of LNS method in which the Split procedure
is applied on each iteration to each rebuilt solution after a Repair operator.

528 J. C. Rivera and A. M. Cortes

Iterated Large Neighborhood Search (ILNS): ILNS modifies Iterative
Local Search (ILS), proposed by Lourenço et al. [6], by replacing neighborhoods
based search for a LNS search structure. Thus, the main difference between
ILNS and LNS is that ILNS use a Perturbation operator. It allows to restart
the search procedure from a new solution produced by applying random moves
on an incumbent solution. Perturbation operator removes a number of random
chosen jobs and reinserts them in random positions.

NEH-Based LNS: In this variant of LNS, a single destroy operator is
performed: a number of random chosen jobs are removed from an incumbent
solution. Them, the removed jobs are reinserted by a repair operator based on
NEH algorithm: jobs are sorted and tested one by one on each sequence position
to select the best possible. Makespan is computed by applying spliting algorithm
on each resulting sequence of jobs.

3 Computational Experimentation

Computational experiments are conducted in order to compare the proposed
methods. All tests have been performed on a Intel core-i7 processor (2.6GHz)
with 16GB of RAM, and methods have been coded on Python 2.7. We use the
instances proposed by Xu et al. [14], where n ∈ {10, 20, 50, 100}, pj ∼ U(8, 48),
rj ∼ U(0, LB) and LB is a lower bound. Two kind of problems are considered,
problems with small jobs where sj ∼ U(1, 30) and with large jobs where sj ∼
U(15, 35). Machine capacity is always the same (B = 40). For each type and
size, 10 instances have been tested.

Table 1 summarizes the obtained results. First two columns indicates the
number of jobs and the type of problem: with small jobs (1) and with large
jobs (2). For each method, the average perceptual gap with respect to optimal
solution and average computational time in seconds are shown. Stop criteria for
LNS-like methods is set to 100 iterations.

It can be noticed that type 1 instances get greater gaps and computational
times. Split procedure improves 1.3% Savings solutions on average without
significantly increasing running times. NEH/Split algorithm outperforms
previous methods by improving both, solution quality and running times. LNS
methods are able to improve solutions for type 2 instances. They also get all
optimal solutions for instances with n = 10. ILNS improves the average gap
obtained by NEH/Split. LNS/NEH gets the best average gap with the second
best running time. LNS/NEH improves most of the solutions gotten by ACO
Xu et al. [14] and it reaches 29 optimal solutions out of 80.

Hybrid Metaheuristic Approaches for Makespan Minimization on a BPM 529

Table 1. Summary of results

Instance Savings Savings+Split NEH/Split LNS LNS+ ILNS LNS/NEH

n Type Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

10 1 3.87 0.00 2.35 0.00 0.88 0.00 0.00 0.34 0.00 0.89 0.00 0.89 0.00 0.04

10 2 1.73 0.00 1.07 0.00 0.80 0.00 0.00 0.21 0.00 0.95 0.00 0.95 0.00 0.03

20 1 6.84 0.00 3.91 0.01 1.07 0.00 2.53 0.38 0.42 1.52 0.03 1.75 0.48 0.09

20 2 1.46 0.00 1.46 0.00 1.04 0.00 0.17 0.28 0.15 1.89 0.00 2.08 0.54 0.08

50 1 12.44 0.24 9.48 0.24 4.30 0.03 8.64 1.20 6.89 5.11 4.94 5.34 3.44 0.37

50 2 2.90 0.04 2.72 0.04 1.94 0.04 1.33 0.60 1.18 6.32 0.66 6.56 1.11 0.52

100 1 10.66 6.81 8.57 6.81 3.61 0.14 8.57 11.38 7.88 23.84 6.28 24.78 3.46 1.01

100 2 2.41 1.05 2.34 1.05 1.12 0.33 2.11 3.05 1.76 21.87 1.16 23.18 1.09 2.37

Average 1 8.45 1.76 6.08 1.77 2.47 0.04 4.93 3.33 3.80 7.84 2.81 8.19 1.84 0.38

2 2.12 0.27 1.90 0.27 1.22 0.10 0.90 1.04 0.77 7.76 0.46 8.19 0.68 0.75

Total 5.29 1.02 3.99 1.02 1.85 0.07 2.92 2.18 2.29 7.80 1.63 8.19 1.26 0.56

4 Conclusions

In this paper, new metaheuristic algorithms are proposed for BPM; some of
them have been adapted from classical algorithms for vehicle routing problems.
NEH/Split, which combine NEH strategy with a splitting algorithm, is the
fastest heuristic and gets better solutions than savings-based strategies. The
proposed LNS-like metaheuristics, based on the destroy and repair principle, are
successful at improving solutions by randomly alternate between five destroy
operators and three repair operators. LNS/NEH obtains the best performance
with respect to gap and computing time.

It is important to remark that job sizes (type of instance) have a great impact
on methods performance. Thus, instances composed by larger jobs (type 2) are
harder, so their gaps are larger for all tested methods.

As future research direction, an interesting approach is to adapt the proposed
strategies to other variants like the parallel batch processing machine scheduling.

References

1. Cheng, T., Ng, C., Yuan, J., Liu, Z.: Single machine scheduling to minimize total
weighted tardiness. Eur. J. Oper. Res. 165(2), 423–443 (2005)

2. Chou, F.D.: A joint GA+DP approach for single burn-in oven scheduling problems
with makespan criterion. Int. J. Adv. Manuf. Technol. 35(5–6), 587–595 (2007)

3. Chou, F.D., Chang, P.C., Wang, H.M.: A hybrid genetic algorithm to minimize
makespan for the single batch machine dynamic scheduling problem. Int. J. Adv.
Manuf. Technol. 31(3–4), 350–359 (2006)

4. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number
of delivery points. Oper. Res. 12(4), 568–581 (1964)

5. Dupont, L., Ghazvini, F.: Minimizing makespan on a single batch processing
machine with non-identical job sizes. Eur. J. Autom. 32, 431–440 (1998)

6. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and
applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics.
International Series in Operations Research & Management Science, vol. 146, pp.
363–397. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_12

https://doi.org/10.1007/978-1-4419-1665-5_12

530 J. C. Rivera and A. M. Cortes

7. Melouk, S., Damodaran, P., Chang, P.Y.: Minimizing makespan for single machine
batch processing with non-identical job sizes using simulated annealing. Int. J.
Prod. Econ. 87(2), 141–147 (2004)

8. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega 11(1), 91–95 (1983)

9. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing
problem. Comput. Oper. Res. 31, 1985–2002 (2004)

10. Prins, C., Lacomme, P., Prodhon, C.: Order-first split-second methods for vehicle
routing problems: a review. Transp. Res. Part C 40, 179–200 (2014)

11. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30

12. Uzsoy, R.: Scheduling a batch processing machine with non-identical job sizes. Int.
J. Prod. Res. 38(10), 2173–2184 (2000)

13. Vélez-Gallego, M., Damodaran, P., Rodríguez, M.: Makespan minimization on a
single batch processing machine with unequal job ready times. Int. J. Ind. Eng.
Theory Appl. Pract. 18(10), 536–546 (2011)

14. Xu, R., Chen, H., Li, X.: Makespan minimization on single batch-processing
machine via ant colony optimization. Comput. Oper. Res. 39(3), 582–593 (2012)

https://doi.org/10.1007/3-540-49481-2_30

Variable Neighborhood Descent
for Software Quality Optimization

Javier Yuste(B) , Eduardo G. Pardo , and Abraham Duarte

Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
{javier.yuste,eduardo.pardo,abraham.duarte}@urjc.es

Abstract. In the Software Development Life-Cycle, the maintenance
phase is often the most costly stage due to the efforts devoted to under-
standing the system. The Software Module Clustering Problem (SMCP)
is an optimization problem which objective is to find the most modu-
lar organization of software systems to ease their comprehension. In this
problem, software projects are frequently modeled as graphs. Then, the
objective of the SMCP, which is proved to be NP-hard, is to group the
vertices in modules such that the modularity of the graph is maximized.
In this work, we present an algorithm based on Variable Neighborhood
Descent for the SMCP and study a novel quality metric, the Function
of Complexity Balance, which was recently proposed for the problem.
Our proposal has been favorably evaluated over a dataset of 34 real
software projects, outperforming the previous state-of-the-art method,
a Hybrid Genetic Algorithm, in terms of both quality and computing
time. Furthermore, the results are statistically significant according to
the Wilcoxon’s signed rank test.

Keywords: Search-based software engineering · Software module
clustering · Heuristics · Function of complexity balance ·
Maintainability

1 Introduction

In the Software Development Life-Cycle, the maintenance phase has long been
known to be the most costly stage due to the efforts devoted to understanding
the code [3]. To ease this task, software systems are usually divided into different
components (e.g., classes) that are then grouped in modules (e.g., packages), try-
ing to achieve high cohesion (components in the same module are closely related)
and low coupling (components from different modules are loosely connected) [4].
The Software Module Clustering Problem (SMCP) is an optimization problem
that tries to find the most modular organization of a given software project. In
the SMCP, software systems are usually modeled in a graph structure known
as Module Dependency Graph (MDG). Therefore, the SMCP consists of parti-
tioning the vertices of the MDG in clusters, maximizing the modularity of the
graph.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 531–536, 2023.
https://doi.org/10.1007/978-3-031-26504-4_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_44&domain=pdf
http://orcid.org/0000-0002-5956-9977
http://orcid.org/0000-0002-6247-5269
http://orcid.org/0000-0002-4532-3124
https://doi.org/10.1007/978-3-031-26504-4_44

532 J. Yuste et al.

To the best of our knowledge, Mancoridis et al. [6] were the first ones to
tackle the SMCP as an optimization problem, introducing an objective function
named Modularization Quality (MQ), which has been extensively studied in
the area [12,14]. Lately, some related literature has highlighted issues in the
modularity paradigm and in the MQ metric [11]. As an alternative, Mu et al. [10]
proposed the Function of Complexity Balance (FCB) to deal with the problem
of over-cohesiveness and to reduce the number of isolated clusters. Since the
SMCP has been proven to be NP-hard [1], exact methods are less suitable for
this task than approximate search-based algorithms. In this context, evolutionary
approaches have been prominently studied for the SMCP. Although some authors
in the area have proposed trajectory-based metaheuristics [9], recent literature
has highlighted the need for a deeper and richer exploration of search-based
alternatives to evolutionary strategies [13].

In this paper, we present an efficient Variable Neighborhood Descent
(VND) [8] algorithm for the SMCP. We study the FCB objective function and
compare the results obtained with the Hybrid Genetic Algorithm (HGA) intro-
duced in [10] over a set of 34 real instances previously curated by the commu-
nity [9], producing solutions of equal or better quality in 29 out of the 34 tested
instances. Furthermore, our approach is three orders of magnitude faster than
the previous best method in the state of the art.

2 Problem Definition

In the SMCP, the software projects are often modeled in an MDG, a graph struc-
ture G = (V,E,W) where V is the set of vertices that represents components of
the system, E is the set of edges that represents relations between components,
and W is the set of weights that represents the strenght of the relations. Then, a
solution for the SMCP consists of a set M = {m1,m2, ...,mk} of disjoint subsets
of V , where k represents the number of modules (1 ≤ k ≤ |V |) and each mi,
with 1 ≤ i ≤ k, is a subset of V . To evaluate the quality of a solution, we study
the FCB objective function [10]. Given a solution x for the SMCP, the objective
function is calculated as follows:

FCB(x) =
C + max(di)

T
, (1)

where C is the coupling of the architecture (that is, the sum of the weights of
edges with endpoints in different modules), di is the cohesion of the ith module
(i.e., the sum of the weights of edges with both endpoints in mi), and T is the sum
of the weights of the entire architecture, which is a constant value independent
of the partitioning of the solution.

Then, the objective of the SMCP is to find a solution x� among the set of
all possible solutions X that minimizes Eq. 1. More formally:

x� = arg min
x∈X

(FCB(x)). (2)

Variable Neighborhood Descent for Software Quality Optimization 533

3 Algorithmic Proposal

The algorithm presented in this paper is a multi-start method based on the Vari-
able Neighborhood Search (VNS) methodology. VNS was originally proposed by
Mladenović and Hansen in 1997 [8] as a general framework for solving hard
combinatorial and global optimization problems, which has been later combined
with multi-start approaches [2]. In particular, the method is composed by a
random constructive and an improvement phase based on Variable Neighbor-
hood Descent (VND), a well-known variant of VNS. It receives an MDG (i.e.,
the instance) and the number of iterations. In each iteration, an initial solu-
tion is built by the random constructive and then improved in the VND phase.
When the algorithm reaches the maximum number of iterations, it returns the
best solution found during all iterations. The VND procedure receives two input
parameters: the initial solution obtained from the random constructive and the
set of neighborhoods to explore. Then, the algorithm explores each neighborhood
until all the neighborhoods have been explored sequentially without improving
the current best solution. If a better solution is found while exploring any of
the neighborhoods, the new solution is saved as the current best solution and
VND restarts the exploration of all the neighborhoods. This exploration is per-
formed with a local search that follows a first improvement strategy. When all
the neighborhoods have been explored sequentially without improving the solu-
tion, it means that none of the neighborhoods contains a solution better than
the current one. Consequently, the VND procedure exits the loop and returns
the best solution found.

In this work, we propose the use of three different neighborhoods for the
SMCP that will be explored during the VND phase. The first neighborhood (N1)
is composed of the solutions that can be reached with an insertion movement,
which consists of deleting a vertex from its current module and inserting it into
another module in the solution. Given a graph with |V | vertices and |M | modules,
the size of this neighborhood is |V | · (|M |−1). The second neighborhood (N2) is
composed of the solutions that can be reached with a merge movement. A merge
consists of joining two different existing modules into a single one. For a graph
with |M | modules, the size of this neighborhood is |M | · |M |−1

2 . Finally, the third
neighborhood (N3) is composed by the solutions that can be reached with a split
movement, which consists of splitting an existing module in half. Given a graph
with |M | modules, the size of the neighborhood is

∑|M |
i=1

|mi|!
�|mi|/2�!(|mi|−�|mi|/2�)! .

4 Experimental Results

In this section, we present the experimental results obtained in this research.
We compared our approach with the best previous method in the state of the
art (i.e., the HGA proposed in [10]) over a set of 34 real instances made publicly
available by the community [9]. For the sake of reproducibility, we make publicly

534 J. Yuste et al.

available both the code and the data used in this work1. Unfortunately, the code
for the HGA procedure was not available, and the results have been obtained
with our own implementation of the ideas proposed in [10]. All experiments were
run on an AMD EPYC 7282 @ 2795 MHz CPU, with 8 cores and 8 GB RAM.
The Operating System used was Microsoft Windows 10 Pro 10.0.19042 x64. Our
proposal was coded in Java 17.0.1 and using the Metaheuristic Optimization
framewoRK (MORK) project [7]. The HGA proposed in [10] was implemented
in Java and Matlab (R2021b Update 1). However, we noticed that the imple-
mentation in Matlab, as originally proposed by the authors, benefited from the
efficient use of matrix operations, which are important for the design of the algo-
rithm. Therefore, we used the results obtained by this second implementation
for comparison purposes. The search parameters of our proposal (the number of
iterations and the order of the neighborhoods) have been empirically determined
over a reduced preliminary dataset of 10 instances using the parameter-tunning
software irace [5]. In particular, our proposal has been set to perform a maxi-
mum of 100 iterations per instance and the VND approach has been configured
to explore the neighborhoods in the following order: N1, N3, and N2.

In Table 1, we present the results obtained by our proposal (VND) and
the state-of-the-art procedure (HGA [10]). Both algorithms were run once per
instance. We report the average quality of the best solutions found (Avg. score),
the average deviation to the best solution found in the experiment (Dev. (%)),
the number of best solutions found (# Best), and the average CPU time per
instance (CPUt (s)). As it can be observed, the quality of the solutions reached
by VND is higher than the quality of the solutions found by HGA. On average,
VND was able to obtain solutions closer to the best one found in the experiment
(with a deviation of 1.37 %) than HGA (with a deviation of 8.62 %). Addition-
ally, VND was able to find the best solution in 29 out of 34 instances, while HGA
reached the best solution only for 11 instances. Moreover, VND was, on average,
three orders of magnitude faster than HGA. According to the Wilcoxon’s signed
rank test, the results are statistically significant with p < 0.01.

Table 1. Comparison of the results of the algorithm presented in this work (VND)
and the best previous method in the state of the art (HGA [10]).

Method Avg. score Dev. (%) # Best CPUt (s)

VND 0.6293 1.37% 29 85.08

HGA [10] 0.6708 8.62% 11 35,804.40

Finally, to compare the performance of the algorithms when executed for
the same amount of time, we run them once per instance with different time
limits. Particularly, we performed 3 experiments, stopping the algorithms after

1 https://github.com/JavierYuste/Variable-Neighborhood-Descent-for-software-
quality-optimization.

https://github.com/JavierYuste/Variable-Neighborhood-Descent-for-software-quality-optimization
https://github.com/JavierYuste/Variable-Neighborhood-Descent-for-software-quality-optimization

Variable Neighborhood Descent for Software Quality Optimization 535

Table 2. Detailed results obtained for all the tested instances.

Instance |V | |E| HGA [10] GVNS

FCB CPUt (s) FCB CPUt (s)

squid 2 2 1.0000 109.31 1.0000 0.14

small 6 5 0.6000 112.66 0.6000 0.00

compiler 13 32 0.6875 134.96 0.6875 0.07

sharutils 19 36 0.6442 369.09 0.6250 0.05

spdb 21 17 0.5000 363.47 0.5000 0.02

ispell 24 103 0.7320 184.55 0.7113 0.20

ciald 26 64 0.6563 180.85 0.6563 0.13

crond 29 112 0.7085 287.81 0.6911 0.68

seemp 30 61 0.5200 364.55 0.4800 0.09

dhcpd-2 31 122 0.6544 331.84 0.6460 0.61

cyrus-sasl 32 100 0.6504 329.45 0.6104 0.86

star 36 89 0.5506 438.29 0.5506 0.20

cia 38 185 0.6117 416.18 0.5900 0.77

dot 42 255 0.7298 354.47 0.7419 1.13

screen 42 292 0.7364 793.49 0.7157 1.43

slang 45 242 0.7213 776.15 0.6778 1.44

slrn 45 323 0.7304 735.84 0.7056 1.93

hw 53 51 0.6093 512.97 0.4188 0.27

imapd-1 53 298 0.7201 517.52 0.6587 2.09

javaocr 58 155 0.5420 518.28 0.5496 0.53

dhcpd-1 59 571 0.7184 665.12 0.6445 11.39

icecast 60 650 0.7509 489.67 0.7060 6.71

servletapi 61 131 0.4803 1013.90 0.4567 0.65

bunch2 65 151 0.6250 675.35 0.5000 0.60

grappa 86 295 0.5952 722.76 0.6032 1.93

inn 90 624 0.7368 1174.01 0.6994 13.63

acqCIGNA 114 179 0.6862 6254.05 0.5585 1.75

cia++ 124 369 0.7395 8027.85 0.6377 6.23

JavaGeom 171 1445 0.7422 27942.71 0.6408 77.79

incl 174 360 0.4472 12310.84 0.6111 5.09

dom4j 195 930 0.7406 34328.38 0.6246 53.52

bunchall 324 1339 0.7424 189325.97 0.5818 117.95

JACE 338 1524 0.7430 347810.33 0.5195 158.20

res cobol 470 7163 0.7539 578777.00 0.7953 2424.60

536 J. Yuste et al.

1, 10, and 60 min, respectively. Considering the results of the 3 experiments, on
average, our approach obtained the best solutions in 33 out of the 34 instances,
with a score of 0.6237 and a deviation of 0.28%. In contrast, the state-of-the-art
algorithm obtained the best solutions in only 4 of the 34 instances on average,
with a score of 0.7249 and a deviation of 18.82% (Table 2).

Acknowledgements. This research has been partially funded by the Spanish gov-
ernment (Refs. PGC2018-095322-B-C22 and PID2021-125709OA-C22) and by the
Comunidad de Madrid (Ref. P2018/TCS-4566), cofinanced by European Structural
Funds ESF and FEDER. The opinions, findings, and conclusions or recommendations
expressed are those of the authors and do not necessarily reflect those of any of the
funders.

References

1. Brandes, U., et al.: On modularity clustering. IEEE Trans. Knowl. Data Eng.
20(2), 172–188 (2007)

2. Cavero, S., Pardo, E.G., Duarte, A.: A general variable neighborhood search for
the cyclic antibandwidth problem. Comput. Optim. Appl. 81, 657–687 (2022)

3. Chen, C., Alfayez, R., Srisopha, K., Boehm, B., Shi, L.: Why is it important to
measure maintainability and what are the best ways to do it? In: 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-C), pp.
377–378. IEEE (2017)

4. International Organization for Standardization: ISO/IEC/IEEE 24765:2017 Sys-
tems and software engineering - Vocabulary (2017)

5. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

6. Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y.F., Gansner, E.R.: Using auto-
matic clustering to produce high-level system organizations of source code. In:
6th International Workshop on Program Comprehension (IWPC 1998), pp. 45–52.
IEEE (1998)

7. Mart́ın, R., Cavero, S.: MORK: Metaheuristic Optimization framewoRK. https://
doi.org/10.5281/zenodo.6241738

8. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)

9. Monçores, M.C., Alvim, A.C.F., Barros, M.O.: Large neighborhood search applied
to the software module clustering problem. Comput. Oper. Res. 91, 92–111 (2018)

10. Mu, L., Sugumaran, V., Wang, F.: A hybrid genetic algorithm for software archi-
tecture re-modularization. Inf. Syst. Front. 22(5), 1133–1161 (2020)

11. de Oliveira Barros, M., de Almeida Farzat, F., Travassos, G.H.: Learning from
optimization: a case study with apache ant. Inf. Softw. Technol. 57, 684–704 (2015)

12. Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-
objective search problem. IEEE Trans. Softw. Eng. 37(2), 264–282 (2010)

13. Ramirez, A., Romero, J.R., Ventura, S.: A survey of many-objective optimisation
in search-based software engineering. J. Syst. Softw. 149, 382–395 (2019)

14. Yuste, J., Duarte, A., Pardo, E.G.: An efficient heuristic algorithm for software
module clustering optimization. J. Syst. Softw. 190, 111349 (2022)

https://doi.org/10.5281/zenodo.6241738
https://doi.org/10.5281/zenodo.6241738

Iterated Local Search with Genetic Algorithms
for the Photo Slideshow Problem

Labeat Arbneshi and Kadri Sylejmani(B)

Faculty of Electrical and Computer Engineering, University of Prishtina, Prishtina, Kosova
{labeat.arbneshi,kadri.sylejmani}@uni-pr.edu

Abstract. In this extended abstract, we present a two-stage approach for solving
the photo slideshow problem as defined in the qualification round of the Google
Hash Code 2019. In the first stage, we apply a Genetic Algorithm to produce a
good-quality initial solution, whereas, in the second stage, we apply an Iterated
Local Searchmetaheuristic to further optimize the solution. The presented compu-
tational study in four challenging test instances shows that our approach produces
comparable results to the ones achieved in the competition, where, for two of the
instances, new benchmark results are obtained.

Keywords: Iterated Local Search · Genetic Algorithms · Automated photo
slideshow design

1 Introduction

The photo slideshow problem was originally formulated in the qualification round of
Google Hash Code competition for the year 2019 [1]. This problem is about automated
design of a slideshow by using a set of photos, which are described by a set of tags (see
the example in Fig. 1).

Fig. 1. List of photos and their associated tags

The work on this paper was supported by the HERAS+ progam within the project entitled
“Automated Examination Timetabling in the Faculty of Electrical and Computer Engineering
- University of Prishtina”.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 537–543, 2023.
https://doi.org/10.1007/978-3-031-26504-4_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_45&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_45

538 L. Arbneshi and K. Sylejmani

The aim is to arrange the given set of photos into a slideshow so that the transition
between consecutive slides is both smooth and ‘interesting’, in terms of having some
similar and different tagswhen transiting between the consecutive slides of the slideshow.
A slide can be composed of either a single horizontal photo or two vertical photos.

The photo slideshow problem is related to the Traveling Salesman Problem (TSP)
[2] and the Orienteering Problem (OP) [3] in the aspect that it is a sequencing problem
that requires arranging a set of objects (nodes) into an optimized sequence. It is different
from TSP in the aspect that it does not require to have all the objects within the sequence,
and it is a maximization problem, while it is different from OP, since it optimizes based
on the edges (i.e., slide transitions) rather than objects. Further, it is different from both
TSP and OP in the aspect that objects are not strictly unary but can also be binary (the
case of the slide with two vertical photos).

The main contribution of this work is twofold. First, we hybridize Iterated Local
Search and Genetic Algorithms for designing a competitive approach for the photo
slideshow problem, and second, for the same problem, we also propose a unique neigh-
borhood exploration mechanism that include a combination of mutation and crossover
operators.

2 Mathematical Formulation

In the original formulation of the photo slideshow problem [1], a set of P photos is given,
where Ph of them have a horizontal orientation, while the remaining Pv are vertically
oriented. In addition, each photo k in set P is described by using a set of tags Tk,
which describe its content. The goal is to arrange the photos into a slideshow that is as
‘interesting’ as possible based on the so-called Transition Rule (Tr

i,i+1) that considers the
intersection and difference of tags of any two consecutive slides i and i + 1, as defined
in Eq. (1). A given photo can only be used once in the entire slideshow, while a given
slide can contain either a single horizontal photo or two vertical photos. In the first case,
the tags of the photo are also the tags of the slide, whereas in the latter case the tags of
the slide are the union of the tags of both photos.

Tr
i,i+1 = min(|T∩T i+1|, |Ti \ Ti+1|, |Ti+1 \ Ti|) (1)

Based on the number of horizontal and vertical photos, the total number of slides
is N = Ph + Nv, where Nv = Pv(Pv − 1)/2 represents the total number of theoretical
slides that can be created by using each pair of vertical photos (if we relax the constraint
that a single photo cannot be used more than once). For satisfying the constraint that
each photo can be used at most once, as part of the pre-calculation, it is convenient to
create a list of tuples L that contains pairs of slides (i, j), where i, j ∈ N , having the
same photos.

The presented mathematical formulation uses a Boolean decision variable zij, which
equals either 1 (if slide i is followed by slides j) or 0 (otherwise).

max
N∑

i=1

N∑

j=1
j �=i

zijT
r
i,j (2)

Iterated Local Search with Genetic Algorithms 539

N∑

j=1
j �=i

zij ≤ 1,∀i = [1, . . . ,N] (3)

N∑

i=1
i �=j

zij ≤ 1,∀j = [1, . . . ,N] (4)

zij + zji ≤ 1,∀i = [1, . . . ,N],

∀j = [1, . . . ,N], i �= j
(5)

N∑

a=1

N∑

b=1
b�=a

zabfij ≤ 1,∀(i, j) ∈ L

fij =
{
1, if (a = i)

∨
(a = j)

∨
(b = i)

∨
(b = j)

0, otherwise

(6)

Equation (2) maximizes the sum of the transitions between consecutive slides in the
slideshow. Equations (3) and (4) ensure the continuity of the slideshow by making sure
that each slide is followed by exactly one another slide. Equation (5) makes sure that
each slide is used at most once. Finally, Eq. (6) ensures that each photo is used at most
once in the slideshow.

3 Solution Approach

3.1 Preprocessing, Search Space and Fitness Function

In the preprocessing phase, besides grouping horizontal and vertical photos into two dis-
tinct clusters, we also calculate the transitions between all slides that include horizontal
photos and any two pairs of vertical photos.

A state in the search space is represented by a vector, whose size determines the
number of slides in the slideshow. Further, a particular vector member might have either
the index of a horizontal photo or indexes of two vertical photos.

The fitness function is implemented based on Eq. (2) that is presented in Sect. 2.

540 L. Arbneshi and K. Sylejmani

Algorithm 1 Iterated Local Search with Genetic Algorithms
1: procedure Solve (instance, totalTime, popSize, crossoverRate, mu-

tationRate, numMutants, slidingWindow, tournamentSize, hillClimb-
Time, localSearchTime, homeBaseRate, perturbIntensity, pertur-
bRate)

2: population = initializePopulation(instance, popSize, slid-
ingWindow)

3: while 0.2*totalTime not elapsed
4: numChildren = popSize/2 + numMutants
5: for c from 1 to numChildren
6: p = random(0,1)
7: child = population[c]
8: if p < crossoverRate
9: child = swapNHorizontalPhotos(child, tournamentSize)
10: if p < mutationRate
11: mutateOperator = selectMutationOperator(instance)
12: child = applyMutation (child, mutateOperator)
13: population = extendPopulation(child)
14: currentBest = selectBest(population)
15: currentBest = hillClimb(currentBest, hillClimbTime)
16: population = extendPopulation(bestChild)
17: population = updatePopulation(population)
18: best = home = current = selectBest(population)
19: while 0.8*totalTime not elapsed
20: while localSearchTime not elapsed
21: mutateOperator = selectMutationOperator(instance)
22: neighbor = applyMutation(current, mutateOperator)
23: if neighbor better than current
24: current = neighbor
25: if current better than best
26: best = current
27: home = updateHomeBase(home, current, homeBaseRate)
28: current = perturbHomeBase(home, perturbIntensity, pertur-

bRate)
29: return best

3.2 Initial Solution and Neighborhood Structure

The initial solution is generated based on a combined randomness and greediness strat-
egy. The addition of a particular slide into the slideshow (i.e., representation vector) is
done by first selecting, at random, several unassigned photos (as defined by the parame-
ter named slidingWindow) and then, based on the transition rule (as defined by Eq. (1)),
picking, amongst the selected photos, the best horizontal photo, or the best vertical pair
of photos to become the next slide.

The neighborhood structure consists of four operators, the first three being mutation
operators, and the last one a crossover operator, as described below.

Swap 2 slides – Selects two slides at random from a given parent and exchanges
their position in the slideshow.

Shuffle n slides – Selects a random position within the slideshow and shuffles the
next n slides from a given parent (if n exceeds slideshow size, then all remaining slides,
after the randomly selected position, are shuffled).

Iterated Local Search with Genetic Algorithms 541

Swap 2 vertical photos – First, from a given parent, two slides containing vertical
photos are selected at random, and then, one of the two photos (chosen at random) are
interchanged between the selected slides.

Swap n horizontal photos – Interchanges the photos of several randomly selected
slides (as defined by parameter n) between the two selected parents. This operator is
only applied between slides that contain horizontal photos.

3.3 Iterated Local Search with Genetic Algorithms

Iterated Local Search (ILS) and Genetic Algorithms (GA) have been hybridized in
various related optimization problems, such as location-routing problem [4], function
optimization [5] and ring loading problem [6]. In our implementation, as presented in
Algorithm 1, in the first phase, we use GA to produce a good-quality initial solution,
whereas, in the second phase, we apply ILS as an improvement method.

In each generation of the GA, from a population of size l, we select parents using
the tournament selection method and produce m children by selecting genetic operators
partially in random basis and partially based on the instance characteristics (e.g., number
of horizontal/vertical photos, number of average/minimum/maximum tags per photo,
etc.). The population is updated based on the l + m schema, meaning that the best l
members from the collection of l existing parents and the m children are selected to
produce the next population.

In the second phase, the best returned solution from GA is further improved by
using the ILS metaheuristic, which explores the solution neighborhood based only on
the presented mutation operators. The home base mechanism [7] is implemented in
a Monte Carlo search strategy, implying that a new home base can be adopted even
if it is not better than the current solution (subject to the parameter homeBaseRate).
The perturbation mechanism, with equal probability, either mutates the new home base
several times (as specified in perturbIntensity), by using the defined operators, or it first
removes several slides (as specified in perturbRate) and then re-inserts the corresponding
photos into the slideshow using the greedy heuristic that is applied when generating the
initial solution (as discussed in Sect. 3.2).

4 Computational Experiments

The proposed algorithm has been developed using the C# programming language and
the source code can be found in GitHub1. The computational experiments have been
performed using a machine with Intel Core i5–3470 processor, 8 GB of RAM memory
and Windows 10 operating system.

4.1 Data Set and Parameter Tuning

The dataset, as presented in Table 1, consists of four instances, which differ in terms of
number of photos (horizontal and vertical) and number of tags. There are instances that

1 https://github.com/labeatarbneshi/photo-slideshow.

https://github.com/labeatarbneshi/photo-slideshow

542 L. Arbneshi and K. Sylejmani

contain either horizontal or vertical photos, or both. In addition, some instances have a
larger number of tags, including unique ones and a higher average number of tags per
photo. Parameter tuning has been done based on some preliminary experimentation with
all four instances of the dataset, where the algorithm has been executed five times for
each instance and for three different configurations of the main algorithm parameters
that include popSize, tournamentSize, slidingWindow, perturbRate.

4.2 Comparison Results

Based on our initial and limited experimental design, in Table 2, we present the pre-
liminary computation results of our approach against the results of the two teams that
have participated in the Google Hash Code competition, namely AIM Tech (the winner)
and Fatture (the best ranked Italian team, whose solutions are available in GitHub2).
The presented outcomes show that our approach produces best new results for instances
memorablemoments and pet pictures, while it has a gap of 2.17%and 4.34% for instances
lovely landscapes and shiny selfies, respectively. Based on the complexity of a particular
problem instance, the computation time varies from 20 min for thememorable moments
up to six hours for the lovely landscapes. Despite our best efforts, we were not able to
acquire the computation time for the results achieved by the two referred approaches,
hence we are not able to make a direct comparison in this aspect.

Table 1. Dataset characteristics.

Instance
name

Photos # Horizontal
photos

Vertical
photos

Tags # Unique
tags

Avg. tags
per photo

Lovely
landscapes

80,000 80,000 0 1,440,000 840,000 18.0

Memorable
moments

1,000 500 500 9,476 2,166 9.4

Pet pictures 90,000 30,000 60,000 902,256 220 10.0

Shiny selfies 80,000 0 80,000 1,527,981 500 19.1

2 https://github.com/danieleratti/hashcode-2019.

https://github.com/danieleratti/hashcode-2019

Iterated Local Search with Genetic Algorithms 543

Table 2. Comparison against best Google Hash Code competition results.

Instance
name

Best known AIM Tech
(best)

Fatture
(best)

GA-ILS
(avg)

GA-ILS
(best)

ILS-GA gap
from best
known (%)

Lovely
landscapes

205,563 N/A 205,563 196,362 201,094 2.17

Memorable
moments

1,764 1,764 N/A 1,722 1,791 −1.53

Pet pictures 394,697 394,697 347,793 391,376 401,835 −1.81

Shiny selfies 559,233 559,233 537,349 488,265 534,976 4.34

5 Conclusion and Future Work

The proposed ILS-GAapproach exhibits its ability to produce competitive results against
the best-known approaches submitted in Google Hasch Code competition [1]. As part
of the future work, we aim to integrate memories that will record information about the
search space exploration experience, which in turn would be used for intensification and
diversification purposes.

References

1. Google Hash Code Archive Homepage: https://storage.googleapis.com/coding-competitions.
appspot.com/HC/2019/hashcode2019_qualification_task.pdf. Accessed 20 Apr 2022

2. Jünger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. In: Handbooks in
Operations Research and Management Science, vol. 7, pp. 225–330 (1995)

3. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: a survey.
Eur. J. Oper. Res. 209(1), 1–10 (2011)

4. Derbel, H., Jarboui, B., Hanafi, S., Chabchoub, H.: Genetic algorithmwith iterated local search
for solving a location-routing problem. Expert Syst. Appl. 39(3), 2865–2871 (2012)

5. Lima, C.F., Lobo, F.G.: Parameter-less optimization with the extended compact genetic
algorithm and iterated local search. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102,
pp. 1328–1339. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_127

6. Bernardino, A.M., Bernardino, E.M., Sanchez-Perez, J.M., Gomez-Pulido, J.A., Vega-
Rodriguez,M.A.:Genetic algorithms and iterated local search to solve the ring loadingproblem.
In: 2008 50th International Symposium ELMAR, vol. 1, pp. 265–268. IEEE (2008)

7. Luke, S.: Essentials of Metaheuristics. A Set of Undergraduate Lecture Notes. Zeroth Edition.
Online Version, 1 (2011)

https://storage.googleapis.com/coding-competitions.appspot.com/HC/2019/hashcode2019_qualification_task.pdf
https://doi.org/10.1007/978-3-540-24854-5_127

A Tabu Search Matheuristic
for the Generalized Quadratic

Assignment Problem

Peter Greistorfer1(B), Rostislav Staněk2, and Vittorio Maniezzo3

1 Operations and Information Systems, Karl-Franzens-Universität Graz,
Graz, Austria

peter.greistorfer@uni-graz.at
2 Applied Mathematics, Montanuniversität Leoben, Leoben, Austria

rostislav.stanek@unileoben.ac.at
3 Computer Science, Università di Bologna, Bologna, Italy

vittorio.maniezzo@unibo.it

Abstract. This work treats the so-called Generalized Quadratic Assign-
ment Problem. Solution methods are based on heuristic and partially
LP-optimizing ideas. Base constructive results stem from a simple 1-pass
heuristic and a tree-based branch-and-bound type approach. Then we use
a combination of Tabu Search and Linear Programming for the improv-
ing phase. Hence, the overall approach constitutes a type of mat- and
metaheuristic algorithm. We evaluate the different algorithmic designs
and report computational results for a number of data sets, instances
from literature as well as own ones. The overall algorithmic performance
gives rise to the assumption that the existing framework is promising
and worth to be examined in greater detail.

Keywords: Generalized Quadratic Assignment · Matheuristic ·
Metaheuristic · Linear Programming · Tabu Search

1 Introduction

The problem of interest is the so-called Generalized Quadratic Assignment Prob-
lem (GQAP). The GQAP has been used as a model for several relevant actual
applications, including order picking and storage layout in warehouse man-
agement, relational database design or scheduling activities in semiconductor
wafer processing. Technically, it originates from the Linear Assignment Problem
(LAP), where a number of agents (equivalently, machines or supplies) have to be
assigned to a number of jobs (tasks or demands) while minimizing the total cost
of service and obeying assignment constraints, which secure that each job has to
be serviced by exactly one agent and vice versa. The LAP in turn is a special case
of the Generalized Assignment Problem (GAP), in which assignment constraints
on the supply-side are replaced with upper bound constraints, which model an

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 544–553, 2023.
https://doi.org/10.1007/978-3-031-26504-4_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_46&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_46

A TS Matheuristic for the GQAP 545

agent’s capacity consumed by the assigned task weights. Another generaliza-
tion of the LAP is the Quadratic Assignment Problem (QAP), which models
multiplicative cost factors between agents and jobs, e.g. in locational analyzes
distances times interaction frequencies. Finally, the GQAP can be thought of as
a combination of the GAP and the QAP, where the objective function receives
a quadratic component in addition to the linear one, the same way as it is done
in the QAP and suppliers have an upper bound constraint as in the GAP.

It is well-known that there exist efficient polynomial algorithms for the LAP,
e.g. the Hungarian method, but the GAP, the QAP, and the GQAP are NP-
hard (e.g. see [1]). Matheuristics (see [6,8]), a synthesis of classical, as a rule,
(real-valued) linear and integer linear programming methods (LP, ILP) with
conventional heuristic methods (e.g. local search) and/or modern metaheuristic
methods (Tabu Search, GRASP, Scatter Search etc.) have become popular with
the rise of recent powerful hardware and even more because of the success of
solvers like CPLEX or Gurobi.

Our research focuses on both mathematical formulations of the GQAP as
well as on the development of LP- and ILP-based matheuristics. In this paper
we review a branch-and-bound type heuristic tree search and elaborate on the
basic decomposition idea of the LP-component in the improvement algorithm.
Afterwards, the focus lies on the presentation of a new Tabu Search (TS), the TS-
matheuristic GQAP approach (TS-GQAP) is presented. We conclude with current
computational results and a short outlook.

2 Modelling the GQAP

The GQAP can be described by means of the following quadratic integer pro-
gram. We are given m ∈ N, the number of agents, n ∈ N, the number of jobs,
with linear assignment costs and weights pij ∈ R and wij ∈ R

+
0 , where 1 ≤ i ≤ m

and 1 ≤ j ≤ n, respectively. The weights present resource amounts to be spent
by agent i for processing job j, without exceeding an available capacity ai ∈ R

+
0 .

Quadratic costs are defined by the product of dir ∈ R, the cost factor between
the agents i and r, and fjs ∈ R, 1 ≤ r ≤ m, 1 ≤ s ≤ n, the cost factor between
the jobs j and s. Binary decision variables xij ∈ {0, 1} determine whether a job
j is served by agent i, or not. Then the GQAP is defined by the following binary
quadratic program (BQP):

min
m∑

i=1

n∑

j=1

pijxij +
m∑

i=1

n∑

j=1

m∑

r=1

n∑

s=1

dirfjsxijxrs (1)

s.t.
n∑

j=1

wijxij ≤ ai ∀ 1 ≤ i ≤ m, (2)

m∑

i=1

xij = 1 ∀ 1 ≤ j ≤ n, (3)

xij ∈ {0, 1} ∀ 1 ≤ i ≤ m, ∀ 1 ≤ j ≤ n. (4)

546 P. Greistorfer et al.

3 Solving the GQAP with TS-GQAP

3.1 Basic Concepts

We start with a short summary of the constructive solution procedure, which was
in its original form presented as Guided Adaptive Relaxation Rounding Procedure
(GARRP) in [7]. GARRP starts with an empty (infeasible) solution and iteratively
creates partial solutions by fixing exactly one agent-task-assignment x′

ij
..= 1 at

each iteration, based upon the optimum solution of a relaxation of BQP, leaving
a subset of remaining decision variables as free. These partial solutions, X ′, i.e.
incomplete or partial assignments of jobs j to single specific agents i, are stored
within a tree, in which each tree-node represents one assignment made. So for
any (partial) solution all fixed assignments left can be found by pegging links
back to the root, which stores the result of the first relaxation solved (compare
[4]). At any node, relaxed, i.e. continuous values x∗

ij received from a GQAP-
LP-solution, define choice-probabilities among the k-best possible succeeding
fixations x∗

ij ≥ xLB (k and xLB being parameters), from which the most likely
option is chosen. The whole tree is explored in a depth-first manner, if needed
investigating all potential successor assignments according to a width-second
sequence. If at some node all successor options are unsuccessfully investigated
(in terms of feasibility defined by capacity constraints), a backtracing process
starts until a node with a free successor, becoming investigated, is found or until
all nodes failed because of overall infeasibility. Normally, this iterative process
stops as soon as n assignments have been made with a complete and feasible
solution, otherwise it fails.

The present work, focusing on improvement methods for the GQAP, has its
roots in the Magnifying Glass Heuristic approach, which was already success-
fully applied to the Quadratic Travelling Salesman Problem in [10]. Then, for
the first time, this approach was adopted as MG-GQAP [2] to improve (heuristic)
GQAP solutions. As might be expected, while the results were quite satisfying,
it turned out that there was still room for improvement. First, we considered the
possibility to include the quadratic components into the linear part by compress-
ing the quadratic coefficient matrix into a one-dimensional vector, by means of
techniques borrowed from data dimensionality reduction approaches, like princi-
pal component analysis. Specifically, we computed when possible (it has always
been) the eigenvalues of the coefficient matrix and used them in our heuristic.
The resulting code was efficient in the GQAP part, but the computation of the
eigenvalues was very demanding in case of big instances, moreover local search
was used in the method and it appeared as if the method was apparently not
sufficiently capable to escape from local optima. So, the idea was to dismiss lin-
earizations and, sort of the other way round, to use linear programming as an
improvement to a TS. This led to the design of the TS-GQAP, which combines
two distinct parts, the TS-neighbourhood and the MG-GQAP.

For the TS and its neighbourhood the performance of two prominent standard
operators was analyzed: either two jobs swap agents (exchange) or a job changes
to another agent (insert). We contrasted using these two operators together ver-

A TS Matheuristic for the GQAP 547

sus using them specifically. And since exclusive use of insert-moves turned out
to work best, this setting was chosen. In the course of the exploration the TS
sequentially checks all potential re-assignments of tasks. In doing so, a neigh-
bourhood of admissible TS nh size trial moves is built by using a short-term
recency tabu-memory. This memory is defined by the time, i.e. iteration, when
a job is assigned to a new agent. Using this information, a newly positioned
task is not allowed to be removed from its agent for a parametric number of
tenure iterations. As aspiration criterion, the best-improvement-rule is used, in
which case the tabu status is released from a given trial move if it improves the
incumbent best solution.

MG-GQAP can be seen as a variable fixing heuristic, which decomposes the
overall problem into a fixed and a free component. Thus, interpreting release as
destruction, the method shares similarities with a Large Neighbourhood Search,
where solutions are partially destroyed and repaired by corresponding operators;
a process, which is iteratively repeated until a local optimum is reached (see [9]).
For the GQAP the corresponding idea works like this: according to pre-defined
selection patterns, we consider K chosen columns (jobs, in constraints (3) of
BQP) and create a new auxiliary instance containing only these K columns
(and all rows). Firstly, linear costs pij are modified including the quadratic costs
caused by relations between the assignment of j to i and the already fixed assign-
ments outside of the chosen columns. Then, after re-adjusting the total amounts
of resources ai in order to reflect the remaining capacities, we solve the auxil-
iary problem optimally and get a new, possibly improved solution with changes
restricted to the K chosen columns. Note that alternatively also subsets of rows
(agents, constraints (2)) may be selected to define new auxiliary subproblems,
which establishes the differentiation between a column- and a row-oriented vari-
ant of MG-GQAP. The overall process ends after a total number of given iterations.
It should be noted that the idea behind MG-GQAP is even capable of serving as
a construction procedure. In that case it starts from an empty unfeasible solu-
tion, iteratively increasing the size of a partial solution as long as assignments
are found, which were not prevented by binding capacity restrictions, while ulti-
mately and ideally constructing a full feasible solution with n assignments. We
give this simple 1-pass start heuristic the name MG-GQAP-C and report results in
the computational section.

In summary, within TS-GQAP, the TS utilizes the LP-part in order to optimize
a good local solution in terms of intensification. The role of diversification is
taken over by the occasional use of elite solutions collected in a pool by the TS.
Section 3.2 explains this component and covers the algorithmic details.

3.2 Implementation Details

It is well-known that metaheuristic developments have proved to be successful
especially in cases, where their fundamental concepts are complemented with
pool-oriented approaches, originally rooted in Genetic Algorithms or Scatter
Search and Path Relinking. These algorithms maintain a reference set of high

548 P. Greistorfer et al.

quality solutions, which are repeatedly used during the search in order to guar-
antee a fruitful balance between diversification and intensification (see, e.g. [3]).
Therefore, Algorithm 1: TS-GQAP uses a pool structure as follows.

Require: a GQAP instance with a solution X ..= [xij]m×n ∈ {0, 1}m×n

Ensure: new solution Xnew with c(Xnew) ≤ c(X)
1: X∗ ..= X, cbest ..= c(X∗)
2: repeat
3: repeat // TS-phase:
4: X ′ ..= best admissible

(
TS neighbourhood(X)

)

5: if c(X ′) < cbest then
6: update X∗ ..= X ′

7: cbest ..= c(X ′)
8: end if
9: maintain a set pool of good and diverse solutions

10: until TS term
11: if TS failed then
12: X ′ ..= unchecked solution(pool)
13: end if
14: repeat // MG-GQAP-phase:
15: Col ..= select variable columns(X ′)
16: XLP

..= LP from(Col)
17: X∗

LP
..= solve(XLP) // CPLEX

18: X ′′ ..= combine solutions(X ′,X∗
LP)

19: if c(X ′′) < cbest then
20: update X∗ ..= X ′′

21: cbest ..= c(X ′′)
22: end if
23: until MG GQAP term
24: X ..= X ′′

25: until TS GQAP term
26: return xnew := X∗

Algorithm 1: TS-GQAP

As an improvement procedure, the TS-GQAP builds on a feasible solution X
with objective function value c(X). It consists of alternating TS- and MG-GQAP-
phases (lines 3–10 and 14–23), i.e. it is a series of TS1, MG-GQAP1, TS2,
MG-QAP2,... until an overall termination criterion, TS GQAP term, gets true.
Each TS is capable of maintaining the pool of elite solutions. Such solutions
are collected to be used in future iterations of the search process. Solution X ′

in line 4 is the actual and best admissible solution iteratively drawn from con-
secutive TS-neighbourhoods, which involves the maintenance and usage of the
TS-memory as described above.

The pool maintained by the TS, in line 9, collects a maximum of pool size
good and diverse solutions. In doing so, a solution is deemed good at the moment,
when it has just been improved by the TS, i.e. goodness means objective func-
tion value and diversity targets the structural difference mapped in the values

A TS Matheuristic for the GQAP 549

of the decision variables, i.e. assignments. In the current version such diversity
is—at least with high probability—ensured by allowing into the pool only mem-
bers with different objective function values. The diversification step is done in
lines 11–13 as soon as the TS was not able to improve the current solution,
expressed by a value true, returned from function TS failed. To diversify the
search, function unchecked solution(pool) extracts a/the cost-minimum solution
from the pool, which has not yet been output from the pool to be processed by
the MG-GQAP. In the case that all pool solutions are already processed, this pro-
cedure forwards the running, i.e. the best solution from the last TS-phase to the
MG-GQAP. For function select variable columns(X ′) in line 15, which stores free
assignments to be optimized by an LP in set Col, we considered a number of
possibilities. For the determination of these K ..= |Col| columns, several selec-
tion mechanisms were tested. These include random selection, so-called plane
selection of columns ((1, 2, 3), (4, 5, 6), ..., (n − 2, n − 1, n); (2, 3, 4), (5, 6,
7), ...) or binomial selection with columns ((1), (2), (3), (1, 2), (1, 3), (2, 3), (1,
2, 3); (2), (3), (4),...), all examples underlying K = 3. Trends in efficiency are
non-random strategies ≺ purely random ≺ mixed-random options. Therefore,
the chosen strategy is a half and a half mixture of random and plane.

After building the LP-subproblem by LP from(Col) and solving it, in lines
16 and 17, respectively, procedure combine solutions(X ′,X∗

LP) adds the opti-
mized values x∗

ijLP
to the starting solution X ′ and thus includes the LP-

optimized assignments of X∗
LP . If necessary, this is followed by an update of

the best solution, the same way as it is done for the TS in lines 5–8. At the
very end, with TS GQAP term getting true, the overall process stops and the
algorithm returns its best solution found as Xnew.

4 Computational Results

For the evaluation of the computational results we used three test beds with a
total of 64 instances. Abbreviated with LAM, CEAL and OWN, there are 27
instances with m = 6 − 30 and n = 10 − 16 from Lee and Ma [5], 21 instances
with m = 6 − 20 and n = 20 − 50 from Cordeau et al. [1] and 16 own randomly
generated instances with m,n = 10 − 200. All algorithms were implemented in
AMPL script V.20220310, using the solver CPLEX V.20.1.0.0 (MS VC++ 10.0,
64-bit). All runs were performed on a ThinkPad X1 notebook with an Intel(R)
Core(TM) i7-8550U CPU @1.80 GHz (Aug. 2017) under Windows 10 Pro with
8 GB RAM.

We aimed for a unified parameter setting, but eventually this was only pos-
sible to a certain extent due to the large structural differences in the data sets:
symmetry of the data matrices D and F , constancy of weights in W over the
agent set and, very basic, instance sizes, where the latter directly affect and
determine calculable LP subproblems, regarding the value of parameter K. To
profit from faster calculations, a relatively low value of TS nh size = 3 is chosen.
Tabu time becomes tenure ≈ 0.3n and pool size = 20. More numeric parametric
details are reported below. Evaluation is split into two parts, judgement of the

550 P. Greistorfer et al.

general design of the construction and improvement procedures, thereafter in
part two supplemented by the discussion of the specific results obtained for the
three data sets.

In order to test and evaluate the general design of the construction pro-
cedures, we used all 3 test sets. Starting with the tree heuristic GARRP and
LAM, parameter settings were xLB = 0.5 and k = 50. The procedure needs
min|avg|max = 6|2375|18364 tree nodes and min|avg|max = 0.3|168.5|1598.4
seconds (sec.). The second test set, CEAL, is solved with xLB = 0.85, k = 25
and min|avg|max = 21|1842|16103 nodes in min|avg|max = 1.1|391.6|3600
sec. Note that while feasible solutions for all instances of LAM can be built,
the method fails in two cases (#11 and #15) for CEAL, i.e. those ones for
which one hour of computing time was not enough. Here starting solutions
can be provided by solving the standard (linear) GAP. Results for set OWN,
solved with xLB = 0.9, k = 30, are min|avg|max = 11|30.6|201 nodes and
min|avg|max = 0.3|65.3|707.1 sec. Again, as in LAM, no infeasible solution had
to be accepted. Not much can be derived from these numbers, but two state-
ments appear to be meaningful: the number of nodes, equivalent to the number
of solved LPs, is relatively large for specific instances, which indicates a high
CPU load. Secondly, it is a pleasing fact that the success rate of the procedure is
quite high (62 of 64 cases). An objective-oriented reasoning of GARRP goes along
with the judgement of the magnifying glass approach used as a construction pro-
cedure, i.e. algorithm variant MG-GQAP-C. This time, exclusively based on CEAL,
setting K = 4, three MG-GQAP-C-runs with MG GQAP term = 500|1000|10000
iterations are performed. The hypothesis is that with an increasing number of
iterations, i.e. with higher computing time, the numerical quality of the overall
best solution will increase too, though by an unknown and decreasing amount.
These expectations are met as follows. Designating the result of the 500-run
as a basis, the relative stepwise improvements obtained between the 500- and
the 1000-result and between the 1000- and the 10000-result, averaged over the
objective values of all 21 instances, are 2.7% and 0.8%. Moreover, contrasting the
best MG-GQAP-C-result, the 10000-result with GARRP, it becomes obvious that the
tree-procedure works even better with an averaged additional 3.9% performance
gain. It is interesting to note that these numerical ratios apply not only for the
construction process but also for an improvement process that builds exactly
on the former starting solutions. Total running time (min.) naturally gradually
increases: 14.2|33.0|80.6 (MG-GQAP-C) vs. 137.1 (GARRP).

Next, we appraise the design of the proposed TS improvement procedure
TS-GQAP. Essentially, it consists of a TS component (TS-phase) and an LP com-
ponent (MG-GQAP-phase). So it is obvious to isolate the individual components
and to compare three test runs: (1) only MG-GQAP-phase, (2) only TS-phase
and (3) both phases combined (=TS-GQAP). Like above, test set CEAL is used,
input comes in all cases from the tree start heuristic GARRP and parametrization
from a unified, single parameter set. The outcome for (1) is an average improve-
ment of δavgtree = 5.75% (in 35.1 min., whole set), for (2) it is 2.5% (38.0 min.)
and finally for (3), the TS-GQAP, it is 6.39% (44.1 min.). Thus, even if the overall

A TS Matheuristic for the GQAP 551

concept gets sufficiently motivated, some captious comments seem appropriate.
Again, as an logical implication, objective function improvement comes at the
expense of CPU time. In the present context, however, the contribution of the
TS-phase is smaller than that of the MG-GQAP-phase. However, this is not
surprising since the optimizing component based on an optimum solution algo-
rithm will generally generate more visible improvements than a heuristic one.
One can also see that the neighbourhood structure of the TS, which is more
complex in terms of implementation, has a significant impact. Nonetheless, the
contribution of the TS is also a significant one, which is only underscored by the
overall effectiveness of the method.

The second part of the computational results covers the evaluation of the
specific results calculated for the three test sets. Moderately sized instances of
LAM allow the use of a mixed strategy. The number of LP-columns as well as
the number of LP-rows is set with K = 4 and the LP-build strategy, column- or
row-oriented, is changed every 25 iterations. Termination parameters are set as
TS term = 150,MG GQAP term = 50 and TS GQAP term = 20. The result
for LAM is δavgtree = 11.66%, which takes 2.4 min. averaged over all instances. It
can be observed that the algorithm finds the best solutions quite early. With
respect to quality it can be stated that the results appear to be good, but no
optimality gaps were calculated since optimal solutions are not published.

The next object of observation is the test set CEAL. Again, K = 4 and the
LP-component follows a column approach, exactly as it is described in Algorithm
1, while completion criteria are given by TS term = 500,MG GQAP term =
100 and TS GQAP term = 10. This leads to an improvement of δavgtree = 6.4% in
an average of 2.2 min. Because competing objective function values are available,
deviations from best-known objectives can be determined. They are given with
δCEAL and amount min|avg|max = 0.0%|1.4%|8.29%. Results’ quality clearly
correlates with instance-density ρ, the ratio of total capacity demanded over total
capacity available (reasonably only calculable for server independent constant
demands, as it is the case with CEAL and LAM). As already indicated, the two
problem instances, namely #11 and #15, cannot be improved. It should also be
stated in an exculpatory manner that average quality gets destroyed by only a
few outliers. Compensating these, an acceptable δavgCEAL = 0.9% can be achieved.

The third and last set, OWN, contains the hardest instances: asymmetric,
non-constant weights and sizes up to m,n = 200. It is solved with the same
column-oriented LP-strategy as used for CEAL. We set K = 3, however, due
to advanced dimensions, it was necessary to reduce the value of K to 2 for
instances with a high m = 200. Termination variables are given by TS term =
150,MG GQAP term = 25 and TS GQAP term = 40. With these parameters
we can achieve a δavgtree = 34.46% in average 11.0 min. In the OWN case running
time utilization is more efficient since for some instances the best result is only
achieved after 90% of the total running time. The majority of instances (≈ 11, 12
out of 16) cannot be solved optimally with the means at our disposal, hence no
reasonable deviations can be calculated.

552 P. Greistorfer et al.

As a final remark it should be noted that for all test sets, LAM, CEAL and
OWN, algorithm TS-GQAP constitutes an improvement over the old MG-GQAP as
described in [2]. In terms of objective value amount this progress is not out-
standing, but it is clearly visible. It comes either as an increase in CPU produc-
tivity, i.e. percentage improvement divided by CPU time used, or actually as an
improvement of the (average) objective.

5 Summary, Criticism and Outlook

This work is a further step in an ongoing research project looking for heuristic
solution procedures for the GQAP. We combine the well-known metaheuris-
tic TS with the strengths of mathematical programming and introduce a new
matheuristic referred to as TS-GQAP. The basic idea behind it was originally
coined as Magnifying Glass Heuristic, itself a matheuristic and successfully used
for a Quadratic Travelling Salesman Problem. The design of the new method
turned out to be successful in terms of CPU usage and the ability to deal with
larger problem sizes, while also specific results could be improved. Moreover, in
terms of competition, the method proved to be able to keep up with algorithms
from the literature and the best-known gaps could be reduced by another level.

Even if the new algorithmic design is promising, there exist clearly visible
improvement opportunities. New challenges raised are those about the course
of the interaction between the TS neighbourhood and the LP decomposition or
about the implementation of an overarching memory structure. Very basically,
a stumbling block on the way to outstanding performance is founded in the
capacity restricted nature of the underlying problem, which logically is intricate
to navigate. Fast metaheuristics are able to play off their superiority for prob-
lem classes, which are unrestricted or endowed with a large number of feasible
solutions (dense solution space) and often benefit from easier objective function
calculations. As observed, the explorable solution space, more accurately, the
neighbourhood induced solution landscape for some GQAP instances investi-
gated is quite sparse. It has already been put forward [6] that sparse solution
spaces are indicative of cases where matheuristics are probably more effective
than plain metaheuristics, usually relying on local search or simple construc-
tive procedures at their core. Moreover, GQAP is a representative problem of
nonlinear combinatorial optimization, an area that so far received much less
attention from research than its linear counterpart, despite its obvious relevance
for modelling and solving compelling real-world problems.

This opens sufficient room to set up and tune new neighbourhood mecha-
nisms to be developed, an endeavor, which of course cannot be done apart from
designing more efficient memory structures. It is precisely this problem area that
must be examined and analyzed more closely in the future.

A TS Matheuristic for the GQAP 553

References

1. Cordeau, J.-F., Gaudioso, M., Laporte, G., Moccia, L.: A memetic heuristic for the
generalized quadratic assignment problem. INFORMS J. Comput. 18(4), 433–443
(2006). https://doi.org/10.1287/ijoc.1040.0128

2. Greistorfer, P., Staněk, R., Maniezzo, V.: The magnifying glass heuristic for the
generalized quadratic assignment problem. In: Proceedings of the XIII Metaheuris-
tics International Conference, MIC 2019, pp. 22–24. Universidad de los Andes Sede
Caribe (2019)

3. Greistorfer, P., Voß, S.: Controlled pool maintenance for metaheuristics. In: Sharda,
R., Voß, S., Rego, C., Alidaee, B. (eds.) Metaheuristic Optimization via Memory
and Evolution. Operations Research/Computer Science Interfaces Series, vol. 30,
pp. 387–424. Springer, Boston (2005). https://doi.org/10.1007/0-387-23667-8 18

4. Kaufman, L., Broeckx, F.C.: An algorithm for the quadratic assignment problem
using Bender’s decomposition. Eur. J. Oper. Res. 2(3), 204–211 (1978)

5. Lee, C.-G., Ma, Z.: The generalized quadratic assignment problem. Research
report, Department of Mechanical and Industrial Engineering, University of
Toronto (2003)

6. Maniezzo, V., Boschetti, M.A., Stützle, T.: Matheuristics: Algorithms and Imple-
mentations. EURO Advanced Tutorials on Operational Research, Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-70277-9

7. Maniezzo, V., Greistorfer, P., Staněk, R.: Exponential neighborhood search for the
generalized quadratic assignment problem. EURO/ALIO International Conference
on Applied Combinatorial Optimization, 25–27 June 2018, Bologna, Italy (2018)

8. Maniezzo, V., Stützle, T., Voß, S.: Matheuristics: Hybridizing Metaheuristics and
Mathematical Programming, 1st edn. Springer, New York (2009). https://doi.org/
10.1007/978-1-4419-1306-7

9. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

10. Staněk, R., Greistorfer, P., Ladner, K., Pferschy, U.: Geometric and LP-based
heuristics for angular travelling salesman problems in the plane. Comput. Oper.
Res. 108, 97–111 (2019)

https://doi.org/10.1287/ijoc.1040.0128
https://doi.org/10.1007/0-387-23667-8_18
https://doi.org/10.1007/978-3-030-70277-9
https://doi.org/10.1007/978-1-4419-1306-7
https://doi.org/10.1007/978-1-4419-1306-7

A Fast Metaheuristic for Finding
the Minimum Dominating Set in Graphs

Alejandra Casado1 , Sergio Bermudo2 , Ana Dolores López-Sánchez2 ,
and Jesús Sánchez-Oro1(B)

1 Universidad Rey Juan Carlos, Mostoles, Spain
{alejandra.casado,jesus.sanchezoro}@urjc.es

2 Universidad Pablo de Olavide, Seville, Spain
{sbernav,adlopsan}@upo.es

Abstract. Finding minimum dominating sets in graphs is a problem
that has been widely studied in the literature. However, due to the
increase in the size and complexity of networks, new algorithms with the
ability to provide high quality solutions in short computing times are
desirable. This work presents a Greedy Randomized Adaptive Search
Procedure for dealing with the Minimum Dominating Set Problem in
large networks. The algorithm is conformed by an efficient construc-
tive procedure to generate promising initial solutions and a local search
designed to find a local optimum with respect to those initial solutions.
The experimental results show the competitiveness of the proposed algo-
rithm when comparing it with the state-of-the-art methods.

Keywords: Minimum dominating set · Grasp · Metaheuristics

1 Introduction
Due to the development of large networks in several context such as road net-
works, social networks, electrical networks, communication networks, computer
networks or security networks, among others, graph theory has regained the
interest of researchers and practitioners. The study of problems related to graph
domination is becoming more and more relevant. Since its original proposal [2]
and the main definition of domination number [10], more than two thousand
research papers have been published on this topic (we refer the reader to [6–8].

Given a graph G = (V,E), a dominating set of vertices D is a subset of
V in which every vertex u ∈ V \D is adjacent to, at least, one vertex in D,
i.e., ∃v ∈ D : (u, v) ∈ E. The objective function of the minimum dominating
set problem (MDSP) is evaluated as the number of vertices belonging to the
dominating set, i.e., MDSP(G,D) = |D|. Then, the MDSP consists of finding a
minimum dominating set D� among all possible dominating sets of the graph
under evaluation G. More formally,

D� ← arg min
D∈D

MDSP(G,D)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 554–559, 2023.
https://doi.org/10.1007/978-3-031-26504-4_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_47&domain=pdf
http://orcid.org/0000-0003-3417-6859
http://orcid.org/0000-0003-4838-3170
http://orcid.org/0000-0003-3022-3865
http://orcid.org/0000-0003-1702-4941
https://doi.org/10.1007/978-3-031-26504-4_47

A Fast Metaheuristic for Finding the Minimum Dominating Set in Graphs 555

Fig. 1. Two feasible solutions D1 and D2 for a graph with 10 nodes and 12 edges.

where D represents the set of all possible dominating sets over the graph G.
Let us illustrate this problem with a graphical example, depicted in Fig. 1. In

both examples, the vertices included in the dominating set are colored. Solution
D1 = {A,B,H, I}, depicted in Fig. 1(a), represents a dominating set for the
example graph with an associated objective value of |D1| = 4. If we now analyze
solution D2 = {A,E, J}, the objective function value is |D2| = 3, being better
than D1. In fact, D2 is the optimal solution for the considered graph (i.e., it is
not possible to find a dominating set with less than three vertices).

This problem has several applications in different fields: social networks [9],
radio stations [3], network surveillance [5], etc. The MDSP has been proven
to be NP-hard for arbitrary graphs [8], exact algorithms are not practical for
large-sized graphs. Although there are only a few works focused on finding an
algorithm to approximate the MDSP for general graphs [1,11], it has been exten-
sively studied for particular graphs, proposing several bounds for the minimum
size of the dominating set in general graphs also [6,8].

This work deals with the MDSP from a metaheuristic point of view for pro-
viding high-quality solutions in small computing times. As far as we know, the
best approach for the MDSP is an order-based randomized local search (RLS)
[1], which is shown to be better than previous approaches such as a greedy
heuristic or an Ant Colony Optimization algorithm [11]. This algorithm use a
permutation-based representation of the solution for MDSP which is transformed
into dominating sets using a greedy approach. Then, a local search method based
on randomized jump moves is applied.

The remaining of the paper is organized as follows: Sect. 2 presents the algo-
rithmic approach, Sect. 3 details the computational experiments performed to
test the quality of the proposal, and Sect. 4 draws some conclusions derived
from the research.

2 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start
metaheuristic originally introduced for solving the set covering problem [4]. It

556 A. Casado et al.

consists of two well-differenced phases. First, the construction phase is respon-
sible for generating an initial feasible solution and, then, the local improvement
stage finds a local optimum with respect to some predefined neighborhood. The
distinguishing feature of GRASP is the inclusion of randomization in the con-
struction phase, with the aim of increasing the diversity of the search.

2.1 Construction

The construction phase is one of the key parts of GRASP metaheuristic. It
is responsible for including randomization in the search, which prevents the
algorithm from stagnating in local optima. Algorithm 1 shows the pseudocode of
the proposed constructive procedure, named SNF (Select Non-monitored First).

Algorithm 1. SNF(G = (V,E), α)
1: v ← Random(V)
2: D ← {v}
3: CL ← V \{v}
4: M ← {u ∈ V : (u, v) ∈ E}
5: while |M | ≤ |V \D| do
6: gmin ← minc∈CL g(c)
7: gmax ← maxc∈CL g(c)
8: μ ← gmax − α · (gmax − gmin)
9: RCL ← {c ∈ CL : g(c) ≥ μ}

10: d ← Random(RCL)
11: D ← D ∪ {d}
12: CL ← CL\{d}
13: M ← M ∪ {u ∈ V : (u, d) ∈ E}
14: end while
15: return D

The method starts by randomly selecting the first vertex to be included in
the solutions, as it is customary in GRASP to increase diversity (step 1). Then,
the solution D is initialized with the selected vertex (step 2) and the candidate
list CL is constructed with all the vertices except the selected one (step 3).
Additionally, the set of monitored vertices is created with those vertices which are
adjacent to the selected one, since those are now monitored (step 4). Then, the
method iteratively adds a new vertex to the solution under construction until all
the vertices are monitored (steps 5–14). In each iteration, a greedy function value
g is considered to evaluate how promising a node is. In the context of MDSP,
a vertex is promising if it is able to monitor a large number of non-previously
monitored vertices. Therefore, the greedy function is evaluated as the number of
adjacent vertices to the node under evaluation which are not monitored by any
other node, i.e., g(v) = |{u ∈ V \M : (u, v) ∈ E}|. The procedure then evaluates
the minimum and maximum greedy function value (steps 6–7) to calculate a
threshold μ (step 8). The threshold directly depends on the value of an input

A Fast Metaheuristic for Finding the Minimum Dominating Set in Graphs 557

parameter named α ∈ [0, 1], which controls the randomness/greediness of the
method, i.e., if α = 0, then μ = gmax and the method is completely greedy,
while α = 1 results in μ = gmin, providing a completely random method. This
threshold is used to construct a restricted candidate list RCL which contains
all the candidate vertices whose greedy function value is better (larger) than μ
(step 9). Then, the next vertex is selected at random from the RCL (step 10),
including it in the solution under construction (step 11) and removing it from
the CL (step 12). Additionally, the set of monitored nodes M is updated with all
the adjacent vertices to the selected one (step 13). Finally, the method returns
the constructed solution (step 15).

2.2 Local Improvement

The first element to be defined in order to propose a local search method is the
move operator. In this work, we propose the use of swap moves, which removes a
vertex from the solution and replaces it with a new one. In mathematical terms,

Swap(D, i, j) ← D\{i} ∪ {j}
Notice that this movement is not able to produce any improvement by itself,

since the number of vertices in the dominating set will remain the same. However,
the movement may result in a solution in which some vertices are redundant,
i.e., they are covering vertices which are also covered by another vertex. All
those redundant vertices are removed after each swap move, eventually leading
to an improvement. Given this move operator, the neighborhood to be explored
is defined as all the solutions that can be reached with a single swap move. More
formally,

N(D) ← {D′ ← Swap(D, i, j) ∀i ∈ D ∧ ∀j ∈ V \D}
Having defined the move operator and the neighborhood explored, it is nec-

essary to establish the strategy followed by the local search to explore the
neighborhood. There are two main strategies to traverse the neighborhood: first
improvement and best improvement. Since the problem has constraints related
to computing time, we select first improvement as exploration strategy. Then,
the first swap move that leads to an improvement is performed in each iteration
of the search, avoiding exploring the complete neighborhood in each iteration,
thus leading to reduce the computational effort without deteriorating the quality
of the obtained solutions.

It is worth mentioning that when following a first improvement approach, the
order in which the neighbors is explored is relevant. Although the neighborhood
can be traversed at random, exploring first the most promising neighbors usually
result in better solutions. In the context of MDSP, the nodes to be removed are
selected in ascending order with respect to the number of nodes that remains non-
dominated after its removal, with the aim of increasing the number of redundant
nodes after the swap move. Additionally, the vertex which replaces it will be the
one which dominates the maximum number of non-dominated nodes after the

558 A. Casado et al.

removal. This heuristic selection of the nodes to be removed and the ones to be
added allows the local search procedure to find improvements in a small number
of iterations, resulting in an efficient and effective local search method, as it can
be seen in Sect. 3.

3 Computational Experiments

This section has two main objectives: 1) configure the parameters of the pro-
posed algorithm and 2) perform a competitive testing against the state-of-the-art
method, named RLS [1], previously described in Sect. 1.

The proposed algorithm have been implemented in Java 17 and all the exper-
iments has been carried out in an Intel Core i7 2.7 GHz and 16 GB RAM, while
the state of the art is executed in a similar computer but with 64 GB of RAM. In
order to have a fair comparison, we have used the same testbed of instances as
in the best previous work, conformed by 21 instances with nodes ranging from
34 to 16726, extracted from different applications of the problem. The results
reports the following metrics: Time (s), average computing time required by the
algorithm in seconds; Avg., average objective function value; Dev (%), average
percentage deviation with respect to the best value found in the experiment; and
#Best, number of times in which the best solution of the experiment is reached
by the algorithm.

The preliminary experimentation is designed to select the best configuration
of the proposed algorithm and, in order to avoid overfitting, a subset of 9 out
of 21 representative instances are selected for this stage. The GRASP algorithm
proposed has a single input parameter, which is the α parameter of the con-
structive procedure, which has to be tuned. In particular, the values tested are
α = {0.25, 0.50, 0.75,RND}, where RND indicates that it is selected at random
in the range [0, 1] in each construction. In all the cases, 100 constructions fol-
lowed by its corresponding local improvement are performed. The best results
are achieved when considering α = 0.25, reaching 8 out of 9 best solutions with
a deviation of 0.01%.

The competitive testing is performed against RLS to evaluate the perfor-
mance of GRASP. In this experiment, the complete set of instances is considered.
Table 1 shows the results obtained by both algorithms.

As it can be seen from the results, both algorithms provide similar perfor-
mance in terms of quality. Although RLS is able to reach an additional best solu-
tion, the average deviation of GRASP is smaller than the one of RLS. Finally,
the computing time required by GRASP is considerably smaller than the 10 min
required by RLS. These results show that GRASP emerges as a competitive
algorithm for finding a minimum dominating set in large graphs.

A Fast Metaheuristic for Finding the Minimum Dominating Set in Graphs 559

Table 1. Competitive testing between GRASP and RLS.

Algorithm Time (s) Avg. Dev(%) #Best

GRASP 33.66 603.19 0.40 19

RLS 600.00 603.05 0.68 20

4 Conclusion

The proposed GRASP algorithm is conformed by a greedy randomized adap-
tive constructive procedure and a local search method. The constructive proce-
dure, named SNF, is able to generate high quality and diverse solutions in small
computing times, providing promising starting points for the local search. The
proposed local search is able to find a local optimum with respect to the initial
point without requiring high computational efforts, resulting in an efficient and
effective algorithm for tackling the MDSP. The results obtained show the com-
petitiveness of GRASP when comparing it with the state of the art, providing
similar results, being almost twenty times faster than RLS. As a future work, the
testbed will be enlarged with more challenging instances derived from real-life
networks to show the potential of GRASP.

References

1. Chalupa, D.: An order-based algorithm for minimum dominating set with applica-
tion in graph mining. Inf. Sci. 426, 101–116 (2018)

2. De Jaenisch, C.F.: Applications de l’Analuse mathematique an Jen des Echecs.
Petrograd (1862)

3. Erwin, D.: Dominating broadcasts in graphs. Int. J. Comput. Eng. Technol. 42,
89–105 (2004)

4. Feo, T.A., Resende, M.G.: A probabilistic heuristic for a computationally difficult
set covering problem. Oper. Res. Lett. 8(2), 67–71 (1989)

5. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in
graphs applied to electric power networks. SIAM J. Discret. Math. 15(4), 519–529
(2002)

6. Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
CRC Press, Boca Raton (2013)

7. Haynes, T.W., Hedetniemi, S.T., Henning, M.A.: Structures of Domination in
Graphs. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-58892-2

8. Haynes, T.: Domination in Graphs: Volume 2: Advanced Topics. Routledge (2017)
9. Lozano-Osorio, I., Sánchez-Oro, J., Duarte, A., Cordón, Ó.: A quick grasp-based

method for influence maximization in social networks. J. Ambient Intell. Human.
Comput. 1–13 (2021)

10. Ore, O.: Theory of Graphs. AMS, Providence (1962)
11. Potluri, A., Singh, A.: Hybrid metaheuristic algorithms for minimum weight dom-

inating set. Appl. Soft Comput. 13, 76–88 (2013)

https://doi.org/10.1007/978-3-030-58892-2

Scheduling Jobs in Flexible Flow Shops
with s-batching Machines Using Metaheuristics

Jens Rocholl and Lars Mönch(B)

Chair of Enterprise-Wide Software Systems, University of Hagen, Universitätsstraße 1,
58097 Hagen, Germany

{Jens.Rocholl,Lars.Moench}@fernuni-hagen.de

Abstract. A scheduling problem for a two-stage flexible flow shop with s-
batchingmachines is considered.Abatch is a group of jobs that are processed at the
same time on a single machine. A maximum batch size is given. The jobs belong
to incompatible families. Only jobs of the same family can be batched together.
A setup time occurs between different batches. The processing time of a batch is
the sum of the processing times of the jobs forming the batch, i.e., the jobs are
processed in a serial manner. Batch availability is assumed. Each job has a weight,
a due date, and a release date. The performance measure is the total weighted tar-
diness (TWT). An iterative decomposition approach (IDA) is proposed that uses
a grouping genetic algorithm (GGA) or an iterated local search (ILS) scheme to
solve the single-stage subproblems. Results of computational experiments based
on randomly generated problem instances demonstrate that the IDA hybridized
with ILS is able to determine high-quality solutions.

Keywords: Flow shop · s-batching · Decomposition · Iterated local search ·
Grouping genetic algorithm

1 Introduction

Flexible flow shop scheduling problems are important in many industrial domains such
as semiconductor manufacturing, printing, food processing, or textile industries. Since
flow shop scheduling problems are typicallyNP-hard, metaheuristics are applied to solve
them. Solution approaches are often based on stage-based decomposition approaches.
We discuss a two-stage flexible flow shop with s-batch processing machines on each
stage. s-batch processing means that the jobs belonging to a batch are processed in a
serial manner. We assume that the sum of the sizes of the jobs belonging to a batch
does not exceed a maximum batch size. For instance, the maximum batch size can be
seen as the capacity of a transportation cart or a cassette for transporting wafers in
semiconductor manufacturing [7]. s-batching problems with a maximum batch size are
not often discussed in the literature. We demonstrate by computational experiments that
an IDA based on ILS outperforms the one that is based on GGAs.

The paper is organized as follows. In the next section, we describe the problem and
discuss related work. A decomposition approach and two metaheuristic approaches to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 560–568, 2023.
https://doi.org/10.1007/978-3-031-26504-4_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_48&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_48

Scheduling Jobs in Flexible Flow Shops with s-batching 561

tackle the resulting subproblems are described in Sect. 3. The results of computational
experiments are presented in Sect. 4. Finally, conclusions and future research directions
are discussed in Sect. 5.

2 Problem Setting and Related Work

2.1 Problem Description

We consider a two-stage flexible flow shop where identical s-batching machines are
assumed on each stage, i.e., the processing time of a batch is the sum of the processing
times of the jobs that belong to the batch. Incompatible job families are assumed, i.e.,
only jobs of the same family can belong to a batch. Each job j = 1, . . . , n has a size sj,
a ready time rj ≥ 0, a due date dj, and a weight wj to express the importance of job j.
A constant setup time qs is assumed between two batches at stage s. We consider batch
availability, i.e., the jobs of a batch can only be processed further when all jobs of the
batch are completed. We have a maximum batch size Bs < n on stage s, i.e., the sum
of the sizes of the jobs belonging to the batch does not exceed Bs. The performance
measure is the TWT := ∑n

j=1 wj
(
Cj − dj

)+ where Cj is the completion time of job j,
and we abbreviate x+ := max(x, 0). Using the three-field notation the problem can be
written as

FF2|Fs, s − batch, rj, sj, qs|TWT , (1)

where FF2 indicates a flexible flow shop, s − batch s-batching machines, and Fs the
incompatible families at stage s. A mixed integer linear programming (MILP) for-
mulation for problem (1) is provided in the supplement belonging to this paper. It is
shown in [1] that even the single-machine version of problem (1) with the total tardiness
performance measure is NP-hard. Hence, we have to look for efficient heuristics.

2.2 Discussion of Previous Work

A survey for batching including s-batching is provided in [10]. A single-machine s-
batching problem with a minimum and a maximum batch size and batch availability and
the total completion timemeasure is studied in [8]. Efficient optimal solution procedures
are designed. In [2], dynamic programming algorithms are proposed for a single-machine
scheduling problem with s-batching, minimum and maximum batch sizes, and batch
availability. The performance measure is the sum of the tardiness and the setup costs.
A tabu search approach for a single-machine s-batching problem with maximum batch
size and batch availability and the TWT measure is discussed in [13]. Polynomial-time
approaches tofindPareto-optimal schedules are established.Aparallel-machine schedul-
ing problem with s-batching, batch availability, family sequence-dependent setup times,
and the total weighted completion time performance measure is studied in [12]. Variable
neighborhood search procedures that iterate between batch formation and sequencing
are proposed. A single-machine s-batching problem with a minimum and a maximum
batch size and batch availability where the maximum lateness and makespan are the
performance measures is analyzed in [5]. All the discussed scheduling problems are

562 J. Rocholl and L. Mönch

for single- or parallel-machine environments, metaheuristic approaches are rarely used.
Hence, to the best of our knowledge, scheduling problem (1) is not discussed in the lit-
erature so far. A stage-wise IDA for a two-stage flexible flow shop with p-batching and
the TWT measure is designed in [14]. This IDA will be applied in the present paper to
obtain parallel-machine subproblems for which metaheuristic approaches are proposed.

3 Metaheuristic Approaches

3.1 Iterative Decomposition Scheme

The IDA proposed in [14] is applied to problem (1). As a result, the problem is decom-
posed to obtain single-stage Pm|Fs, s − batch, rj, sj, qs|TWT subproblems, where Pm
refers to identical parallel machines. The main idea of the IDA is to iteratively solve the
subproblems of both stages for parameter values obtained in previous iterations and thus
successively find improved solutions for problem (1). Reasonable parameter values for
each subproblem are required to allow for computing schedules which are favorable with
respect to the overall scheduling problem. We must set appropriate internal due dates
for the subproblem of the first stage which consider the processing times at the second
stage. Ready times of the jobs for the subproblem of the second stage depend on the
solution of the former subproblem. Internal due dates for each job are calculated during
the first iteration by adding half of its maximum slack to its earliest possible completion
time at the first stage. Waiting times observed in the previous iteration are taken into
account in the following iteration. A internal due date of job j in iteration l at the first
stage is set according to

d (l)
j1 := (1 − α)r(l−1)

j2 + α
(
dj − pbj2 − v(l−1)

j2

)
+ βv(l−1)

j2 , (2)

where pbj2 is the processing time of the batch to which j belongs. Moreover, r(l−1)
j2 and

v(l−1)
j2 are the internal ready time and the waiting time of j in the second stage of the
previous iteration, respectively. The parameters α and β are set to control the influence of
internal release dates and waiting times of preceding iterations. Due to space limitations,
we refer to [14] for a detailed description of the parameter settings. Internal ready times
for the subproblem of the second stage are set to the actual completion times taken from
the schedule of the first stage of the same iteration.

3.2 GGA for Solving the Subproblems

GGAs are introduced in [3] by observing that conventional representation schemes can
be too disruptive for grouping problems. A gene does not represent a job or its position
but a batch in the GGA encoding scheme. We use a two-part random key to encode
the batch-to-machine assignment and the batch sequence. A special crossover operator
is designed to better conserve favorable grouping decisions. Preliminary experiments
show that the performance of a GGA profits from hybridizing it with local search (LS).
Therefore, for a certain portion of each generation, namely 10%, five neighborhood
structures are used to insert a job into another batch, swap two jobs of different batches,

Scheduling Jobs in Flexible Flow Shops with s-batching 563

insert a batch at another position, swap the positions of two batches, and split a batch.
The LS is limited to ten moves for each neighborhood to make sure that enough time is
allocated to the evolution.

3.3 ILS for Solving the Subproblems

An initial schedule is obtained by sorting the jobs with respect to the apparent tardi-
ness cost (ATC) dispatching rule. The values of the look-ahead parameter κ are taken
from a grid over [0.1, 5.0] with step size of 0.1. The schedule that leads to the smallest
TWT value is taken. The jobs are assigned to machines using list scheduling. The LS
is then applied to form batches until a local optimum is found. A randomized variable
neighborhood descent similar to the one proposed in [11] is applied. The neighborhood
structures used in the GGA are shuffled randomly. They are then searched one by one
in a greedy manner until no better solution is found. If an improving schedule is found,
then the neighborhood structures are shuffled again and the search starts over with the
first one. Otherwise the search continues with the next neighborhood structure. The LS
converges eventually to a local optimum and the solution is saved. To escape this local
optimum and exploit different regions of the search space, perturbation moves randomly
chosen from the neighborhood structures job insert, job swap, and batch split are per-
formed. The LS and the perturbation phases are executed in an alternating manner until
a termination criterion is met. A trade-off exists between the number of iterations and
time provided for solving each individual subproblem. The GGA stops after five gener-
ations without improvement. The ILS terminates after 25 iterations of no improvement.
After ten iterations without improvement the number of perturbation steps is doubled.
These parameter values are justified by preliminary computational experiments based
on a small set of problem instances.

4 Computational Experiments

The proposed heuristics are coded in the C++ programming language using the Galib
framework [15]. All experiments are conducted on a computer with Intel Core I7-2600
CPU with 3.40 GHz and 16 GB RAM. A set of 12 small-sized problem instances with
ten jobs of two incompatible families at the first stage is examined (see the design of
experiments in the supplement). The MILPs for the problem instances are solved using
IBM CPLEX. However, the solver cannot compute optimal solutions for all instances
within a prescribed computing time limit of one hour per instance. The relative MIP
gap is reported. The heuristic approaches are performed with a prescribed computing
time limit of 60 s per instance. The relative performance PRH := TWTH/TWTCPLEX is
shown for heuristic H in Table 1. Best comparable results are marked bold.

With the bottleneck at the second stage, optimality of the solutions found by CPLEX
is guaranteed for four out of six instances. For these instances no heuristic computes a
better solution which indicates that the algorithms are implemented correctly. All but
one result found by the heuristics are within five percent of the best solutions. We use
α = 0.66 and β = 1.66 in the IDA based on preliminary experiments using a small set
of problem instances.

564 J. Rocholl and L. Mönch

Table 1. Results of experiments with small-sized problem instances

Inst. Bottleneck stage Range of releases GGA ILS CPLEX Rel. MIP gap

1 1 Tight 1.000 1.000 1.000 99.9%

2 0.952 0.952 1.000 99.7%

3 1.000 1.000 1.000 100.0%

4 Wide 0.994 1.012 1.000 100.0%

5 1.000 1.000 1.000 100.0%

6 1.000 1.000 1.000 100.0%

7 2 Tight 1.000 1.000 1.000 0.0%

8 1.009 1.046 1.000 0.0%

9 0.994 1.026 1.000 72.4%

10 Wide 1.002 1.000 1.000 0.0%

11 1.021 1.000 1.000 0.0%

12 1.003 1.006 1.000 33.7%

Table 2 shows the average results of five independent replications with a time limit
of 180 s for the large-sized instances (see the supplement). Each row represents the
TWT average of 24 instances. ILS provides the best results and serves as benchmark.
We observe that while delivering results with 17% deterioration compared to the results
obtained by the ILS for n = 30, the performance of the GGA quickly deteriorates with
an increasing number of jobs. Only the ILS scheme can preserve a good performance
even for larger instances.

Table 2. Results of experiments with large-sized problem instances

Bottleneck stage Number of jobs GGA ILS

1 30 1.128 1.000

45 1.292 1.000

60 1.413 1.000

2 30 1.165 1.000

45 1.222 1.000

60 1.319 1.000

5 Conclusions and Future Research

We discussed a two-stage flexible flow shop scheduling problem with s-batching
machines on each stage. We applied an IDA that allows to solve subproblems for each

Scheduling Jobs in Flexible Flow Shops with s-batching 565

of the two stages. A GGA and an ILS scheme were designed for the subproblems. It
was demonstrated by designed computational experiments that the IDA based on the
ILS outperforms the one based on a GGA.

There are several directions for future research. It seems interesting to design an
ILS scheme that works on a disjunctive graph representation of the scheduling problem
[9]. We expect that it is possible to extend the batch-oblivious approach from [6] from
a p-batch to an s-batch setting. Moreover, we believe that an extension to a flexible
flow shop setting with more than two stages is interesting. Another fruitful direction is
considering a machine environment where p-batching or s-batching can be found at the
different stages. Such mixed settings exist in semiconductor manufacturing [4].

Appendix A: MILP Formulation

The problem can be formulated as a MILP. We have the following sets and indices:

Moreover, the following parameters are used in the formulation:

The following decision variables are applied in the model:

566 J. Rocholl and L. Mönch

The model is formulated as follows:

The objective function (A1) to be minimized is the TWT. Constraint set (A2) ensures
that each job on each stage is assigned to exactly one batch. The constraints (A3) enforce
that the maximum batch size is respected for each formed batch. Constraint set (A4)
makes sure that exactly one family is assigned to a batch. The family of the jobs belonging
to a batch and the family assigned to a batch is the same. This is modeled by constraint
set (A5). Constraint set (A6) relates the starting time of the first batch on a givenmachine
to the ready time of the jobs that belong to the batch. The constraints (A7) make sure
that setup times are considered at the first stage. The starting times of adjacent batches
on a given machines are modeled by constraint set (A8). Constraint set (A9) computes
the completion time of jobs based on the completion time of the related batch. The ready
time of a batch on the second stage is not earlier than the completion time of any job
of the batch on the first stage. This is expressed by the constraints (A10). Constraint set
(A11) linearizes the tardiness. The domains of the decision variables are modeled by
(A12).

Scheduling Jobs in Flexible Flow Shops with s-batching 567

Appendix B: Design of Experiments

Table B1. Design of experiments for small-sized problem instances

The average batch size at stage i size is computed by dividing the maximum batch
size at stage s by the average job size, i.e. Bs := nBs/

∑n
j=1 sj.

A set of 144 large-sized instances is generated with 10, 15, and 20 jobs per family,
three families at the first stage and overall sixmachines. Themaximum batch size at each
stage is 15 and 30. The remaining parameters are identical to the ones of the small-sized
instances found in Table B1.

568 J. Rocholl and L. Mönch

References

1. Cheng, T.C.E., Kovalyov, M.Y.: Single machine batch scheduling with sequential job
processing. IIE Trans. 33(5), 413–420 (2001)

2. Chrétienne, P., Hazır, Ö., Kedad-Sidhoum, S.: Integrated batch sizing and scheduling on a
single machine. J. Sched. 14, 541–555 (2011)

3. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2(1), 5–30
(1996)

4. Fowler, J.W., Mönch, L.: A survey of scheduling with parallel batch (p-batch) processing.
Eur. J. Oper. Res. 298(1), 1–24 (2022)

5. He, C., Lin, H., Lin, Y.: Bounded serial-batching scheduling for minimizing maximum
lateness and makespan. Discrete Optim. 16, 70–75 (2015)

6. Knopp, S., Dauzère-Pérès, S., Yugma, C.: A batch-oblivious approach for complex job-shop
scheduling problems. Eur. J. Oper. Res. 263(1), 50–61 (2017)

7. Mönch, L., Fowler, J.W., Mason, S.J.: Production planning and control for semiconductor
wafer fabrication facilities: modeling, analysis and systems. Springer, New York (2013).
https://doi.org/10.1007/978-1-4614-4472-5

8. Mosheiov, G., Oron, D.: A single machine batch scheduling problem with bounded batch
size. Eur. J. Oper. Res. 187, 1069–1079 (2008)

9. Ovacik, I.M., Uzsoy, R.: Decomposition methods for complex factory scheduling problems.
Springer, New York (1997). https://doi.org/10.1007/978-1-4615-6329-7

10. Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: a review. Eur. J. Oper. Res. 120(2),
228–249 (2000)

11. Queiroga,E., Pinheiro,R.G.S.,Christ,Q., Subramanian,A., Pessoa,A.A.: Iterated local search
for single machine total weighted tardiness batch scheduling. J. Heuristics 27(3), 353–438
(2020). https://doi.org/10.1007/s10732-020-09461-x

12. Shen, L., Mönch, L., Buscher, U.: Simultaneous and iterative approach for parallel machine
scheduling with sequence dependent family setups. J. Sched. 17(5), 471–487 (2014)

13. Suppiah, S., Omar, M.K.: A hybrid tabu search for batching and sequencing decisions in a
single machine environment. Comput. Ind. Eng. 78, 135–147 (2014)

14. Tan, Y., Mönch, L., Fowler, J.W.: A hybrid scheduling approach for a two-stage flexible flow
shop with batch processing machines. J. Sched. 21(2), 209–226 (2017). https://doi.org/10.
1007/s10951-017-0530-4

15. Wall M.: Galib: A C++ library of genetic algorithms components (2017). http://lancet.mit.
edu/ga/

https://doi.org/10.1007/978-1-4614-4472-5
https://doi.org/10.1007/978-1-4615-6329-7
https://doi.org/10.1007/s10732-020-09461-x
https://doi.org/10.1007/s10951-017-0530-4
http://lancet.mit.edu/ga/

Correction to: Evaluating the Effects of Chaos
in Variable Neighbourhood Search

Sergio Consoli and José Andrés Moreno Pérez

Correction to:
Chapter “Evaluating the Effects of Chaos in Variable
Neighbourhood Search” in: L. Di Gaspero et al. (Eds.):
Metaheuristics, LNCS 13838,
https://doi.org/10.1007/978-3-031-26504-4_15

Chapter “Evaluating the Effects of Chaos in Variable Neighbourhood Search” was
previously published non-open access. It has now been changed to open access under a
CC BY 4.0 license and the copyright holder updated to ‘The Author(s)’. The book has
also been updated with this change.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

The updated original version of this chapter can be found at
https://doi.org/10.1007/978-3-031-26504-4_15

© The Author(s) 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, p. C1, 2023.
https://doi.org/10.1007/978-3-031-26504-4_49

https://doi.org/10.1007/978-3-031-26504-4_15
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_49&domain=pdf
https://doi.org/10.1007/978-3-031-26504-4_15
https://doi.org/10.1007/978-3-031-26504-4_49

Author Index

A
Ait Abderrahim, Imène 350
Akbay, Mehmet Anıl 1
Akter, Habiba 378
Alves, Maria João 491
Álvarez-Martínez, D. 436
Álvarez-Pomar, Lindsay 499
Andrade, Carlos E. 335
Antunes, Carlos Henggeler 491
Arbneshi, Labeat 537
Aslimani, N. 246
Aydın, Musa 158

B
Bello, Rafael 365
Bermudo, Sergio 554
Birch, Phil 378
Blum, Christian 1, 306
Bordonaro, Guido 230
Boschetti, Marco A. 478
Bouamama, Salim 306
Buratti, Chiara 30

C
Cacchiani, Valentina 30
Calamoneri, Tiziana 464
Can, Burhanettin 158
Casado, Alejandra 554
Cattaruzza, Diego 45
Ceschia, Sara 30, 260
Chatwin, Chris 378
Codognet, Philippe 470
Colmenar, Jose Manuel 506
Consoli, Sergio 200
Corò, Federico 464
Cors, Tobias 322
Cortes, Ana María 525

Crespi, Carolina 187
Cruz, N. C. 133
Cuellar-Usaquén, D. 436
Cutello, Vincenzo 103, 230

D
Da Ros, Francesca 449
Della Mea, Vincenzo 449
Deroma, Laura 449
Di Gaspero, Luca 449
Duarte, Abraham 485, 506, 531

E
Ecoretti, Andrea 260
Ellaia, R. 246

F
Fargetta, Georgia 187
Festa, Paola 17
Fontes, Dalila B. M. M. 513
Fontes, Fernando A. C. C. 513

G
Garzón, Martha 499
Gatica, Gustavo 61
Geibinger, Tobias 421
Gomez, C. 436
Greistorfer, Peter 544
Guerriero, Francesca 17
Gülcü, Ayla 143

H
Homayouni, S. Mahdi 513

I
Ishibuchi, Hisao 172

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 569–571, 2023.
https://doi.org/10.1007/978-3-031-26504-4

https://doi.org/10.1007/978-3-031-26504-4

570 Author Index

J
Jiménez, J. A. 365
Jourdan, Laetitia 45
Jovanovic, Raka 322

K
Kalayci, Can Berk 1
Kessaci, Marie-Eléonore 45
Kinoshita, Takato 172
Kiraz, Berna 158
Kletzander, Lucas 421
Kuş, Zeki 143, 158

L
La Barbera, David 449
Lahrichi, Nadia 76
Legrand, Clément 45
Licata, Sabrina 449
Llanza, Arcadi 215
Lodi, Andrea 76
Londe, Mariana A. 335
López-Sánchez, Ana D. 485
López-Sánchez, Ana Dolores 554
Lozano, J. A. 365
Lozano-Osorio, Isaac 485
Luong, Thé Van 118
Lupión, Marcos 133

M
Maia, Marcelo Rodrigues de Holanda 88
Mancini, Simona 464
Maniezzo, Vittorio 478, 544
Manzoni, Pietro 478
Martínez-Gavara, Anna 485
Martín-Santamaría, Raul 506
Masuyama, Naoki 172
Mateus, G. R. 290
Mignardi, Silvia 30
Mönch, Lars 560
Morillo-Torres, Daniel 61
Musliu, Nysret 274, 406, 421

N
Nakib, Amir 215
Niroumandrad, Nazgol 76
Nojima, Yusuke 172

O
Olteanu, Alexandru-Liviu 457
Ortigosa, P. M. 133

P
Paechter, B. 133
Pardo, Eduardo G. 531
Pauleti Mendes, Luis Henrique 519
Pavone, Mario 103, 187, 230
Peerlinck, Amy 391
Pérez, José Andrés Moreno 200
Perrachon, Quentin 457
Pessoa, Luciana S. 335
Plastino, Alexandre 88
Preininger, Jakob 406

R
Resende, Mauricio G. C. 17
Rivera, Juan Carlos 525
Rocholl, Jens 560
Roitero, Kevin 449
Rojas-Delgado, Jairo 365
Rojas-Galeano, Sergio 499
Rosati, Roberto Maria 306
Rosseti, Isabel 88

S
Salcedo-Moncada, Bryan F. 61
San Felice, Mário César 519
Sánchez-Oro, Jesús 485, 554
Santana, Ítalo 88
Scalzo, Edoardo 17
Schaerf, Andrea 260
Scollo, Rocco A. 187, 230
Sevaux, Marc 457
Sheppard, John 391
Shvai, Nadiya 215
Silva, D. M. 290
Soares, Inês 491
Souza, Uéverton dos Santos 88
Staněk, Rostislav 544
Stützle, Thomas 350
Sylejmani, Kadri 537

T
Taillard, Éric D. 118
Talbi, E-G. 246

Author Index 571

U
Ulmer, M. 436
Usberti, Fábio Luiz 519

V
Valent, Francesca 449
Vlćek, Tobias 322
Voß, Stefan 322

W
Winter, Felix 274, 406
Woodward, John 378

Y
Young, Rupert 378
Yuste, Javier 531

Z
Zito, Francesco 103

	 Preface
	 Organization
	 Contents
	Application of CMSA to the Electric Vehicle Routing Problem with Time Windows, Simultaneous Pickup and Deliveries, and Partial Vehicle Charging
	1 Introduction
	1.1 Our Contribution
	1.2 Organization of the Paper

	2 Related Literature
	3 Problem Description
	4 Adapt-CMSA for the EVRP-TW-SPD
	4.1 Solution Representation
	4.2 The Adapt-CMSA Algorithm
	4.3 Solution Construction

	5 Experimental Evaluation
	5.1 Computational Results

	6 Conclusion and Outlook
	References

	A BRKGA with Implicit Path-Relinking for the Vehicle Routing Problem with Occasional Drivers and Time Windows
	1 Introduction
	2 State of the Art
	3 The VRPODTW Description
	4 Solution Approach Using BRKGA
	5 Computational Study
	5.1 Instances and Parameter Setting
	5.2 Numerical Results

	6 Conclusions
	References

	Metaheuristic Algorithms for UAV Trajectory Optimization in Mobile Networks
	1 Introduction
	2 Problem Description
	3 Solution Methods
	3.1 Biased Random-Key Genetic Algorithm
	3.2 Simulated Annealing Algorithm

	4 Experimental Analysis
	4.1 Reference Scenario
	4.2 Channel Model
	4.3 Automatic Parameter Tuning
	4.4 Computational Results

	5 Conclusions
	References

	New Neighborhood Strategies for the Bi-objective Vehicle Routing Problem with Time Windows
	1 Introduction
	2 Bi-objective Routing Problem with Time Windows
	2.1 Multi-objective Optimization
	2.2 bVRPTW and Related Works

	3 Neighborhood Strategies
	3.1 The Baseline MOEA/D
	3.2 Strategy of Exploration
	3.3 Granularity and Pruning of Neighborhoods

	4 Experimental Setup
	4.1 The Solomon's Benchmark
	4.2 Setup and Tuning
	4.3 Experimental Protocol

	5 Analysis of Neighborhood Strategies
	6 Comparison with State of the Art Algorithms
	7 Conclusion
	References

	Tabu Search with Multiple Decision Levels for Solving Heterogeneous Fleet Pollution Routing Problem
	1 Introduction
	2 Problem Description
	3 Literature Review
	4 Proposed Solution Methodology
	4.1 Measurement of Emissions
	4.2 Heterogeneous Fleet
	4.3 Initial Solution
	4.4 Coding and Decoding
	4.5 Tabu Search Proposed

	5 Results
	6 Conclusions
	References

	A Learning Metaheuristic Algorithm for a Scheduling Application
	1 Introduction
	2 Related Literature
	3 Problem Statement and Proposed Learning Algorithm
	4 Experiments
	5 Discussion
	6 Conclusion
	References

	MineReduce-Based Metaheuristic for the Minimum Latency Problem
	1 Introduction
	2 The Minimum Latency Problem
	3 The MDM-GILS-RVND Metaheuristic
	4 MineReduce-Based Metaheuristic for the MLP
	4.1 The MineReduce Approach
	4.2 MineReduce-Based GILS-RVND

	5 Computational Results
	6 Conclusion
	References

	Optimizing Multi-variable Time Series Forecasting Using Metaheuristics
	1 Introduction
	2 Method, Model and Optimization
	2.1 Model
	2.2 Configuration
	2.3 Optimization

	3 Results
	4 Conclusions and Future Works
	References

	Unsupervised Machine Learning for the Quadratic Assignment Problem
	1 Introduction
	2 Technical Background
	2.1 The Quadratic Assignment Problem
	2.2 Frequent Itemsets in Associative Rule Learning

	3 Frequent Itemsets for Local Search Algorithms
	3.1 Extraction and Combination of Frequent Itemsets
	3.2 Apriori Algorithm for Extracting Itemsets from a Set of Solutions
	3.3 Combining Itemsets for Creating a New Set of Solutions

	4 Performance Evaluation
	4.1 QAP Instances
	4.2 Parameters for the Experiments
	4.3 Quality of Solutions
	4.4 Additional Information for the Positions of Solutions

	5 Conclusions
	References

	On Optimizing the Structure of Neural Networks Through a Compact Codification of Their Architecture
	1 Introduction
	2 Proposed Methodology
	2.1 Teaching-Learning-Based Optimization (TLBO)
	2.2 Solution Encoding
	2.3 Cost Function

	3 Application Example
	4 Experimentation and Results
	5 Conclusions
	References

	Neural Architecture Search Using Differential Evolution in MAML Framework for Few-Shot Classification Problems
	1 Introduction
	2 Neural Architecture Search in MAML
	2.1 Neural Architecture Search
	2.2 MAML Framework
	2.3 Differential Evolution

	3 Experimental Setting
	3.1 Datasets
	3.2 Training and Evaluation
	3.3 Search Space for MAML
	3.4 Architecture Encoding and DE Parameters

	4 Results and Discussion
	5 Conclusion
	References

	Neural Architecture Search Using Metaheuristics for Automated Cell Segmentation
	1 Introduction
	2 Methodologies
	2.1 Search Space
	2.2 Architecture Encoding
	2.3 Metaheuristics

	3 Experimental Setup
	3.1 Data Set

	4 Results and Discussion
	5 Conclusion
	References

	Analytical Methods to Separately Evaluate Convergence and Diversity for Multi-objective Optimization
	1 Introduction
	2 Conventional Performance Indicators
	2.1 Hypervolume
	2.2 Inverted Generational Distance
	2.3 Generational Distance

	3 Proposed Analytical Methods
	3.1 Diversity Indicators
	3.2 Proposed Methods for Comparison and Visualization

	4 Computational Experiments
	4.1 Analysis for Many-Objective MaF7 Problems
	4.2 Analysis for a Three-Objective DTLZ Test Suite

	5 Conclusion
	References

	How a Different Ant Behavior Affects on the Performance of the Whole Colony
	1 Introduction
	2 The Model
	3 Experiments and Results
	3.1 Group Analysis
	3.2 Overall Analysis

	4 Conclusions
	References

	Evaluating the Effects of Chaos in Variable Neighbourhood Search
	1 Introduction
	2 Related Work
	3 The Labelled Spanning Tree and Forest Problems
	4 Variable Neighbourhood Search
	5 Using Chaos in VNS
	6 Experimental Results
	7 Conclusions
	References

	Investigating Fractal Decomposition Based Algorithm on Low-Dimensional Continuous Optimization Problems
	1 Introduction
	2 Related Work
	3 The Fractal Decomposition Based Algorithm
	3.1 Exploration Component
	3.2 Exploitation Component

	4 Benchmark
	4.1 Performance Metrics

	5 Experiments and Discussion
	5.1 Runtime Distributions (ECDFs) Summary and Function Groups
	5.2 Scaling of Runtime with Problem Dimension
	5.3 Discussion

	6 Conclusions
	References

	A Comparative Analysis of Different Multilevel Approaches for Community Detection
	1 Introduction
	2 The Modularity as Evaluation Metric
	3 Immune Metaheuristics
	4 Multi-level Approaches
	4.1 Random and Smart Explosion
	4.2 Smart Merge

	5 Experimental Results
	6 Conclusions and Future Work
	References

	Tchebycheff Fractal Decomposition Algorithm for Bi-objective Optimization Problems
	1 Introduction
	2 Reference Points in Decomposition-Based Algorithms
	3 The Fractal Tchebycheff Algorithm
	3.1 Regularisation of the Tchebycheff Fractal
	3.2 Dynamic Management of the Fractal Distribution

	4 Computational Experiments
	4.1 Numerical Results

	5 Conclusion and Perspectives
	References

	Local Search for Integrated Predictive Maintenance and Scheduling in Flow-Shop
	1 Introduction
	2 Problem Definition
	3 Mathematical Model
	4 Solution Method
	4.1 Local Search
	4.2 Simulated Annealing

	5 Experimental Analysis
	5.1 Instance Generator
	5.2 Parameter Tuning
	5.3 Experimental Results

	6 Conclusions
	References

	An Investigation of Hyper-Heuristic Approaches for Teeth Scheduling
	1 Introduction
	2 The Artificial Teeth Scheduling Problem
	3 Low-Level Heuristics for the ATSP
	4 Experimental Evaluation
	5 Conclusion
	References

	A Mixed-Integer Programming Formulation and Heuristics for an Integrated Production Planning and Scheduling Problem
	1 Introduction
	2 Related Works
	3 Mixed-Integer Programming Formulation
	4 MIP Heuristics for CLSP-HFS Problem
	4.1 Relax-and-Fix (RF)
	4.2 Fix-and-Optimize (FO)
	4.3 Relax-and-Fix-and-Optimize (RFO)

	5 Decomposition Strategies
	6 Numerical Experiments
	7 Conclusions
	References

	Construct, Merge, Solve and Adapt Applied to the Maximum Disjoint Dominating Sets Problem
	1 Introduction
	2 Related Work
	3 Graphical Problem Illustration
	4 The CMSA Approach to the MDDSP
	4.1 Lexicographic Objective Function
	4.2 The CMSA Algorithm

	5 Experimental Evaluation
	5.1 Problem Instances
	5.2 Parameters Tuning
	5.3 Results

	6 Conclusions
	References

	Fixed Set Search Applied to the Territory Design Problem
	1 Introduction
	2 Related Research
	3 Model
	4 Heuristic
	5 Computational Study
	6 Conclusions
	References

	The P-Next Center Problem with Capacity and Coverage Radius Constraints: Model and Heuristics
	1 Introduction
	2 Related Work and Problem Formulation
	2.1 Related Work
	2.2 Problem Formulation

	3 Customizing the BRKGA for the pNCPCR
	3.1 Evolutionary Process
	3.2 Chromosome Representation and Decoder

	4 Experimental Results
	4.1 Instances
	4.2 Computational Environment and Parameter Settings
	4.3 Mathematical Model Results
	4.4 BRKGA Results

	5 Conclusions
	References

	Automatic Configuration of Metaheuristics for Solving the Quadratic Three-Dimensional Assignment Problem Using Irace
	1 Introduction
	2 The Q3AP
	3 Metaheuristics for the Q3AP
	3.1 Particle Swarm Optimization for Q3AP
	3.2 TS for Q3AP
	3.3 ILS for Q3AP
	3.4 PSO-TS and PSO-ILS for Q3AP

	4 Automated Algorithm Configuration
	4.1 The Automatic Configuration of Algorithms
	4.2 Parameters Configuration

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusion
	References

	Hyper-parameter Optimization Using Continuation Algorithms
	1 Introduction
	2 Related Work
	3 Hyper-parameter Optimization via Continuation
	4 Our Continuation Approach for Hyper-parameter Optimization
	5 Results and Discussion
	5.1 Accuracy Analysis
	5.2 Additional Meta-parameters

	6 Conclusions
	References

	Selecting the Parameters of an Evolutionary Algorithm for the Generation of Phenotypically Accurate Fractal Patterns
	1 Introduction
	1.1 Overview of the Paper

	2 Problem Specification
	2.1 Selected Fractal: The Barnsley Fern
	2.2 GA Parameters

	3 Results and Evaluation
	4 Conclusions and Future Work
	References

	Addressing Sustainability in Precision Agriculture via Multi-Objective Factored Evolutionary Algorithms
	1 Introduction
	2 Background
	2.1 Prescription Maps
	2.2 Multi-Objective Optimization

	3 Related Work
	4 Optimizing Prescriptions with MO-FEA and NSGA-II
	5 General Experimental Approach
	5.1 Factor Architecture
	5.2 Objective Functions
	5.3 Evaluation Metrics
	5.4 Prescription Evaluation

	6 Experimental Prescription Results
	6.1 Parameters and Data
	6.2 Results and Discussion

	7 Optimal Prescription Results
	7.1 Parameters and Data
	7.2 Results and Discussion

	8 Conclusion
	9 Future Work
	References

	Modeling and Solving the K-Track Assignment Problem
	1 Introduction
	2 Solver-Independent Modeling Approaches for the K-Track Assignment Problem
	2.1 Constraint Programming Model
	2.2 Integer Linear Programming Model
	2.3 Network Flow Reformulation

	3 A Simulated Annealing Approach
	4 Computational Results
	4.1 Generation of Instances
	4.2 Comparison of Results
	4.3 Comparison to the Literature
	4.4 The Deployment of Our Method on Real-Life Scenarios

	5 Conclusion
	References

	Instance Space Analysis for the Generalized Assignment Problem
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Algorithms
	5 Instances
	5.1 Results on Existing Instances
	5.2 Extended Instance Set

	6 Instance Space Analysis
	6.1 Concept and Methodology
	6.2 Performance Measure
	6.3 Features
	6.4 Initial Instance Space Analysis
	6.5 New Instance Generator
	6.6 Instance Space Analysis for the Full Instance Set

	7 Conclusion
	References

	Decision Support for Agri-Food Supply Chains in the E-Commerce Era: The Inbound Inventory Routing Problem with Perishable Products
	1 Introduction
	2 Literature Review
	3 Problem Definition and Mathematical Formulation
	4 A Two-Stage Matheuristic Decomposition
	4.1 Stage 1 - Solving Purchasing and Inventory Decisions
	4.2 Stage 2 - Routing Decisions
	4.3 Connection Between Stages

	5 Computational Experiments
	5.1 Data Sets
	5.2 Stopping Condition
	5.3 Results

	6 Conclusions
	References

	A Multi-objective Biased Random-Key Genetic Algorithm for the Siting of Emergency Vehicles
	1 Introduction
	2 Methods
	2.1 Study Area
	2.2 Biased Random-Key Genetic Algorithm

	3 Preliminary Results
	4 Conclusion
	References

	Simulated Annealing for a Complex Industrial Scheduling Problem
	1 Introduction
	2 Description of the Problem
	3 Neighbourhood-Based Resolution Approach
	3.1 Neighbourhoods Based on the Graph Representation
	3.2 Simulated Annealing

	4 Experiments and Results
	5 Conclusion
	References

	A Matheuristic for Multi-Depot Multi-Trip Vehicle Routing Problems
	1 Introduction
	2 Mathematical Formulation
	3 A Model Based Matheuristic Framework
	4 Computational Results and Discussion
	References

	Comparing QUBO Models of the Magic Square Problem for Quantum Annealing
	1 Introduction
	2 The Magic Square Problem
	3 One-Hot Encoding
	4 Unary/Domain-Wall Encoding
	5 Experiments with Fixstars Amplify Digital Annealer
	6 Conclusion
	References

	Self-adaptive Publish/Subscribe Network Design
	1 The Publish/Subscribe Pattern
	2 The Lagrangian Matheuristic
	3 Preliminary Computational Results
	References

	An Efficient Fixed Set Search for the Covering Location with Interconnected Facilities Problem
	1 Introduction
	2 Problem Description
	3 Fixed Set Search
	4 Computational Results
	5 Conclusion
	References

	Hybrid PSO/GA+solver Approaches for a Bilevel Optimization Model to Optimize Electricity Dynamic Tariffs
	1 Introduction
	2 A Bilevel Nonlinear Optimization Model to Optimize Electricity Dynamic Tariffs
	3 Hybrid PSO+solver and GA+solver Approaches
	3.1 Results

	4 Conclusion
	References

	An Agent-Based Model of Follow-the-leader Search Using Multiple Leaders
	1 Introduction
	2 Methods and Materials
	2.1 Algorithm Design
	2.2 Model Implementation

	3 Empirical Study
	4 Conclusions
	References

	A Scatter Search Approach for the Parallel Row Ordering Problem
	1 Introduction and Problem Description
	2 Algorithmic Proposal
	2.1 Scatter Search
	2.2 Combination Method

	3 Experimental Experience
	3.1 Proposal Tuning
	3.2 Results

	4 Conclusions and Future Work
	References

	A Multi-Population BRKGA for Energy-Efficient Job Shop Scheduling with Speed Adjustable Machines
	1 Introduction
	2 Problem Definition
	3 The Proposed Multi-objective MpBRKGA
	4 Numerical Results
	5 Conclusion
	References

	An Evolutionary Algorithm Applied to the Bi-Objective Travelling Salesman Problem
	1 Introduction
	2 Base Algorithms
	2.1 Biased Random-Key Genetic Algorithms
	2.2 Elitist Non-dominated Sorting Genetic Algorithm

	3 Non-dominated Sorting Biased Random-Key Genetic Algorithm
	4 Bi-Objective Travelling Salesman Problem
	5 Computational Experiments
	References

	Hybrid Metaheuristic Approaches for Makespan Minimization on a Batch Processing Machine
	1 Introduction
	2 Metaheuristic Approaches
	3 Computational Experimentation
	4 Conclusions
	References

	Variable Neighborhood Descent for Software Quality Optimization
	1 Introduction
	2 Problem Definition
	3 Algorithmic Proposal
	4 Experimental Results
	References

	Iterated Local Search with Genetic Algorithms for the Photo Slideshow Problem
	1 Introduction
	2 Mathematical Formulation
	3 Solution Approach
	3.1 Preprocessing, Search Space and Fitness Function
	3.2 Initial Solution and Neighborhood Structure
	3.3 Iterated Local Search with Genetic Algorithms

	4 Computational Experiments
	4.1 Data Set and Parameter Tuning
	4.2 Comparison Results

	5 Conclusion and Future Work
	References

	A Tabu Search Matheuristic for the Generalized Quadratic Assignment Problem
	1 Introduction
	2 Modelling the GQAP
	3 Solving the GQAP with TS-GQAP
	3.1 Basic Concepts
	3.2 Implementation Details

	4 Computational Results
	5 Summary, Criticism and Outlook
	References

	A Fast Metaheuristic for Finding the Minimum Dominating Set in Graphs
	1 Introduction
	2 Greedy Randomized Adaptive Search Procedure
	2.1 Construction
	2.2 Local Improvement

	3 Computational Experiments
	4 Conclusion
	References

	Scheduling Jobs in Flexible Flow Shops with s-batching Machines Using Metaheuristics
	1 Introduction
	2 Problem Setting and Related Work
	2.1 Problem Description
	2.2 Discussion of Previous Work

	3 Metaheuristic Approaches
	3.1 Iterative Decomposition Scheme
	3.2 GGA for Solving the Subproblems
	3.3 ILS for Solving the Subproblems

	4 Computational Experiments
	5 Conclusions and Future Research
	Appendix A: MILP Formulation
	Appendix B: Design of Experiments
	References

	Correction to: Evaluating the Effects of Chaos in Variable Neighbourhood Search
	Correction to: Chapter “Evaluating the Effects of Chaos in Variable Neighbourhood Search” in: L. Di Gaspero et al. (Eds.): Metaheuristics, LNCS 13838, https://doi.org/10.1007/978-3-031-26504-4_15

	Author Index

