
A Comparative Analysis Between SysML
and AADL When Modeling a Real-Time

System

Quelita A. D. S. Ribeiro1 , Achim Rettberg2(B) ,
Fab́ıola Gonçalves C. Ribeiro3 , and Michel S. Soares1

1 Federal University of Sergipe Sao Cristovão, Sao Cristovão, Sergipe, Brazil
2 University of Applied Science Hamm/Lippstadt and CvO University Oldenburg,

Hamm, Germany
achim.rettberg@iess.org

3 Federal Institute Goiano, Goiânia, Brazil

Abstract. System Architecture has a primary role in communica-
tion between stakeholders, in addition to planning and structuring the
whole architectural process. Architecture Description Languages (ADLs)
should be helping within architectural activities. However, most ADLs
have not yet been widely used in industry. Another limiting factor for
the effective use of ADLs is the difficulty of these languages in concretely
expressing complex systems architecture. Considering this situation for
the effective use of ADLs, UML has been often used in past years for
architecture modeling. However, UML itself presents difficulties in rep-
resenting characteristics which are pertinent to real-time systems, such
as security or real-time restrictions. One of the advantages of UML is
its extensibility, ability which allows creation of profiles. Thus, this work
presents the Systems Modeling Language (SysML), a UML profile used
for system architecture modeling. SysML and Architecture Analysis &
Design Language (AADL) languages were both applied to a case and
compared. As a conclusion, it was noticed that SysML is better than
AADL when modeling abstract characteristics, such as decision making
and loops functionality, which are not well-described in AADL.

Keywords: SysML · AADL · Real-time system · System architecture

1 Introduction

As complexity of real-time systems and embedded applications increase, there is
the continuous need of more abstract representation of such systems. Modeling
systems architecture is a challenging task, since these systems are not only of
great magnitude, but are also significantly different [5]. Moreover, challenges and
difficulties happen when developing these systems, due to specific characteristics,
including mobility and security or real-time restrictions [6,7]. One of the main
challenges to be faced in the development of solutions is to connect domain
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
M. A. Wehrmeister et al. (Eds.): IESS 2019, IFIP AICT 576, pp. 27–38, 2023.
https://doi.org/10.1007/978-3-031-26500-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26500-6_3&domain=pdf
http://orcid.org/0000-0002-5045-3660
http://orcid.org/0000-0002-9181-1110
http://orcid.org/0000-0002-3303-9396
https://doi.org/10.1007/978-3-031-26500-6_3


28 Q. A. D. S. Ribeiro et al.

specific requirements, expressed by business analysts, with specific technological
solutions designed by software architects [1,3].

Since UML is a popular language in the software industry, and UML-based
modeling tools are fully available [12], the UML community has been working
with the purpose of presenting a way of modeling real-time system’s properties.
One of these efforts related to embedded systems is the SysML (Systems Mod-
eling Language) profile. SysML offers additional resources to UML, including
requirements modeling [7,9,11], and specification of several structural, behav-
ioral and temporal aspects of real-time systems [5,10].

Characteristics of SysML have been recognized for requirements engineering
[2,7] and for real-time systems requirements modeling [5]. These advantages
were evidenced and have been analyzed for modeling systems’ architecture [4,
12]. In this paper we present a case on an automatic headlight modeling in
an automotive system in two languages, SysML and ADDL. The objectives of
developing architectural representation with two different languages are: (1) to
analyze the weak and strong points of each language, (2) to offer a comparative
example and (3) to propose SysML as an architectural description language.

Authors of paper [12] describe a survey among 60 possible ADLs for develop-
ment of automotive systems. After analysis, 3 languages for architectural descrip-
tion were chosen: AADL, MARTE and SysML. MARTE (UML profile) was used
in a complementary way to SysML in order to model the systems execution time.
However, the author considers AADL as a better alternative for architectural
representation, based in criteria of code generation, formal verification, error
modeling and variability modeling.

A survey of modeling languages of real-time software systems is presented in
[4]. For the authors, each language has its advantages and disadvantages and, in
order to properly describe the architecture of the real-time software system, is
almost certain the need of complementary use of two or more languages. In the
referred work, AADL, UML, SysML and MARTE are explored in the context
of comprehending the contribution that each language brings to software engi-
neering and to determine if it is viable to combine aspects of the four modeling
languages in order to obtain a wider coverage in architectural descriptions.

2 Headlight Control System Details

The software requirements presented in this Section were primarily collected
through reading and research in automobile manuals, web-site and the book
[13]. After this stage the requirements were identified and organized for the
automatic headlight control system.

In the headlight control system, the headlights are activated through a pho-
toelectric sensor. The sensor is activated or deactivated by lightning conditions,
and may be dark or light. Thus, the automatic control of headlights switches
on the lights whenever the sensor feels the dark environment. For instance, the



A Comparative Analysis Between SysML 29

system will activate the headlights when a car enters in a tunnel or when an
environment presents heavy clouds.

In this example, according to the characteristics previously listed, and to the
results of the detailed domain analysis, the functional and non-functional system
requirements are described in Table 1:

Table 1. Description of the system requirements

ID Description

FR1 The light control system shall turn off the front lights in exactly 3 min after
engine is shut down

FR2 The light control system shall schedule simultaneous requests in memory every
50 ms

FR3 The light control system shall evaluate the functioning of all components every
50 ms

FR4 The light control system shall recognize sensor status of the front lights every 50
ms

FR5 The light control system shall recognize when the sensor detects a dark
environment in a maximum of 50 ms

FR6 If the FR5 is satisfied, the light control system shall turn on the front lights in a
maximum of 50 ms

FR7 The light control system shall recognize when the sensor detects light
environment in a maximum of 50 ms

FR8 If the FR7 is satisfied, the light control system shall turn off the front lights in a
maximum of 50 ms

FR9 The light control system shall get signal of the lights sensor every 50 ms

FR10 The light control system shall recognize the status from light actuator every
50 ms

FR11 The light control system shall notify to user the malfunction of any light
component, with a light on the dashboard, in a maximum of 50 ms

FR12 The light control system shall modify light intensity1 in a maximum of 50 ms,
when there is variation of external lighting

FR13 The light control system shall allow the driver to turn off the automatic lights

FR14 The light control system shall allow the driver to turn on the automatic lights

FR15 The light control system shall allow the driver to turn on the lights manually

FR16 The light control system shall allow the driver to modify manually the lights
intensity

FR17 The light control system shall allow the driver to turn off the lights manually

FR18 When driver uses the lights manually, the light control system shall notify to
user if the driver leaves the lights on after engine is switched off (by audio)

FR19 The light control system shall run requests of requirement FR2 every 50 ms

NFR01 The car shall have reliability lights system, tests shall guarantee lowest rate
(0.10%) to software failures

NFR02 When the car is in operation, the light control system shall be available 99% of
the time while the car is on



30 Q. A. D. S. Ribeiro et al.

3 Headlight System Modeled with SysML

SysML Requirements diagram allows each requirement to have an identification
(ID) and a textual information using natural language in order to describe the
requirement.

Fig. 1. SysML requirements diagram of the headlight system.

The Headlight control Requirements diagram is depicted in Fig. 1. The dia-
gram includes an incomplete description because, due to space limitation, the
description was omitted. In Sect. 2 there is a complete textual description of the
requirements. Functional requirements 13, 14, 15, 16, and 17 were not shown in
Fig. 1 because these are manual requirements, and the concern in this paper is
automatic requirements.

Relationship “DeriveRqt” relates a derivative requirement with its origin
requirement. “Containment” relationship, (represented by the symbol ⊕—— in
diagram in Fig. 1) specifies the hierarchy between requirements, its use prevent
the reuse of requirements in different contexts, once a specific element of the
model can only exist in a “Containment”. “Trace” relationship is of general
purpose between a requirement and any other element of the model and its use
occurs only for traceability reasons [8].

SysML also allows the representation of requirements, their properties and
relationships in a tabular format which can be seen in Table 2.



A Comparative Analysis Between SysML 31

Table 2. Requirements table (SysML) of the headlight system.

Id Name Type Derived
Req

DerivedFrom
Req

Containment
Req

FR8 Turn off light Functional FR2 FR7

FR10 Recognize status Functional FR2

FR11 Notify status Functional FR3

NFR01 Reliability Non-functional FR9

NFR02 Availability Non-functional FR3

FR1 Turn off light
when engine off

Functional FR2

FR2 Schedule requests Functional FR1, FR3,
FR6, FR8,
FR10, FR18

FR19

FR6 Turn on light Functional FR2 FR5 FR12

FR4 Recognize
sensor status

Functional FR9 FR5,
FR7

FR5 Recognize dark Functional FR6

FR3 Evaluate operation Functional FR2,
FR11

FR18 Notify light on Functional FR2

FR7 Recognize light Functional FR8

FR9 Get light
sensor signal

Functional FR4

FR12 Change intensify Functional

FR19 Run requests Functional

3.1 Block Definition Model

SysML provides two diagrams which are useful for system architecture modeling:
Block Definition Diagram (BDD) and Internal Block Diagram (IBD).

In the case study, BDD was developed for modeling components which are
involved in the headlight system. The specified functions are implemented for
secure communication with other components and with local sensors/actuators.
SysML BDD is represented in Fig. 2.

A SysML BDD can describe general structural elements, varying from small
to very large. SysML Blocks can be used to represent the hardware architecture,
the data and procedures of a system [8]. In the example of the headlight system,
10 related blocks are defined. The relationship between blocks was represented
by composition associations. The composition instance is synchronous, that is,
if an instance is destroyed, finishing the execution, the other executions are also
going to be finished. “Clock” Block controls time synchronicity. “Light system”
block communicates with other blocks which are not directly part of the head-
light system through the “Communication control” block, this communication is
essential for the necessary information to the execution of the headlight system
to be conducted.



32 Q. A. D. S. Ribeiro et al.

Fig. 2. BDD headlight system.

Fig. 3. IBD headlight system.

3.2 Internal Block Model

SysML IBD (Fig. 3) models the internal operations of the “Light System” block.
The doors connect to external entities and interact with a block through connec-
tors. A flow door specifies the entrance and exit items which can flow between
a block and its environment. The doors specify the flow path, data communica-
tion, operations, receptions and hardware resources (BUS). For modeling a flow
path, “FlowPort” was used, specifying entrance and exit items which can flow
between a block and its environment. Flow doors relay entrance and exit items
for a connector which connects blocks to the internal parts. The connectors are
labeled by messages which represent operations between two parts.



A Comparative Analysis Between SysML 33

Fig. 4. Activity diagram of the headlight system.

3.3 Activity Model

The main headlight activity is depicted in Fig. 4. Initial and final activities were
modeled, decision node which represents the action of switching the headlights
on and off, interactive loop with 〈〈loop node〉〉 and restrictions with OCL for
repetition of the loop and to switch the headlights off in exact 3 min after the
car is switched off.

4 Headlight System Modeled with AADL - External
Specification

AADL descriptions consist in basic elements named components. The modeling
of the interface (External specification) of components is given by the AADL
type definition. A component type declaration defines the interface elements of
a component and externally observable attributes, such as devices which are part
of the interaction with other components and connections (see Fig. 5).



34 Q. A. D. S. Ribeiro et al.

Fig. 5. External specification of the headlight control system in AADL.

The headlight control system, as shown in Fig. 5, is described in the AADL
language. The system consists in a system unity, which contains a processor,
a process and two devices. The system unity receives entrance signals coming
from a sensor device named as “light sensor”. When the absence or presence of
light is detected, the “light sensor” sends a signal through a door to the process
named “controller”. The process receives a signal and the system starts to be
executed with the information which was transmitted by the sensor. With the
goal of executing a software, it was used a memory processor. The memory is a
subcomponent of the processor, in memory the code is stored while the processor
is in execution. The “this bus” is required for loading data, controlling signals
and establishing data and events interchange between hardware and software
components, such as in the communication between the process and the sensor.



A Comparative Analysis Between SysML 35

Fig. 6. Process code in AADL.

4.1 Internal Specification of AADL Headlight System

Internal specification is specialized by an external implementation. A compo-
nents implementation declaration defines an internal structure of a component in
terms of subcomponents, subcomponents connections, subprogram calls sequen-
cies, modes, flow implementations and properties. Usually, external and internal
specifications are performed by alternately repeating two stages. Source code
of Fig. 6 presents an internal definition and the implementation of an AADL
process. The process, named “comm controler”, and the implementation of the
process contains and controls the threads.

In the headlight control system, threads are subcomponents of the process,
that is, they are an internal specification of the process and are presented in
Fig. 7. These threads must be able to receive as entrance the light intensity value
coming from the (“thread readSignal”) sensor, to process the signal and transmit
to the actuator the response regarding the automatic ignition of the headlights
(“thread controlLight”). These threads are connected with event doors, because
this kind of door allows the rowing of the event associated data. The last thread
must receive, as response from actuators, the current state of the headlights
(“thread sendSignal”).



36 Q. A. D. S. Ribeiro et al.

Fig. 7. Internal specification of the headlight control system in AADL.

A highlight of the AADL language is that, besides allowing both textual and
graphical description of the system, it relates both.

5 A Comparative Analysis: SysML x AADL

In practical terms, it was observed that abstract features such as decision making,
repetition of a functionality (loop), start and end representation of an activity,
characteristics that are related to reality, and consequently, to the system, are
not described in AADL. The lack of these characteristics was observed while the
headlights were being modeled in AADL.

Currently, AADL does not provide a specific diagram/representation to show
requirements or behavior by means of actions, such as the SysML Activity dia-
gram. In addition, it is not possible to show the relationship of requirements
with the systems design in AADL, and also relationships between system design
and software design.

Connectors in AADL are not differentiated, when two types of systems are
related, one can only relate them as “extension”, in other words, one system
only extends another. There is no other classification for connections like there
is in SysML, for example, “Trace, Derive, ou Containment”.

In AADL, component is identified only by name, there is no Identifier (ID).
ID is essential to identify and track easily a requirement, as shown in the SysML
example in Table 2.



A Comparative Analysis Between SysML 37

Developing models in the AADL graphical language is a complex activity,
it is necessary to manipulate the internal diagram so that the connections are
changed in the external diagram, sometimes this manipulation of the internal
diagram to the external or from the external to the internal becomes confused
because of the ports and connections, connections are difficult to implement in
the graphical model.

SysML provides diagrams for behavior modeling, such as the Sequence dia-
gram, Activity diagram (Figure 4) and State Machine diagram. SysML obviously
has strong ability to model system behavior. On the other hand, AADL provides
a limited vocabulary for behavior modeling [12].

6 Conclusion

In this paper, the main focus is to show that the SysML language can be used to
systems architecture modeling. The comparison between the SysML and AADL
languages is performed to understand the limitations that SysML presents and
to propose improvements in the architectural aspect.

It was observed that SysML can be used extensively for modeling abstract
features. SysML accurately captures the requirements, management of system
complexity is developed from the initial stages of production of a system with
the expressiveness of the Requirements diagram.

Block diagram and Internal Block diagram capture the systems and subsys-
tems, provide communication between them and the necessary resources. The
Activity diagram can represent the steps required for a given activity to be
completed successfully, or may display a predicted deviation. This diagram also
captures the main strategic decisions of a system, and serves for communication
between stakeholders.

We can conclude that the Requirements, Activities, Blocks and Internal
Blocks diagrams are suitable for software architecture modeling. However,
SysML needs to be expanded for classification of components, implementation
of the model through textual syntax and description of time properties to have
features necessary for modeling the architecture of real-time systems.

References

1. Van der Auweraer, H., Anthonis, J., De Bruyne, S., Leuridan, J.: Virtual engi-
neering at work: the challenges for designing mechatronic products. Eng. Comput.
29(3), 389–408 (2013). https://doi.org/10.1007/s00366-012-0286-6

2. Behjati, R., Yue, T., Nejati, S., Briand, L., Selic, B.: Extending SysML with
AADL concepts for comprehensive system architecture modeling. In: France, R.B.,
Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp.
236–252. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21470-
7 17

3. Brown, A.W.: Model driven architecture: principles and practice. Softw. Syst.
Model 3(4), 314–327 (2004). https://doi.org/10.1007/s10270-004-0061-2

https://doi.org/10.1007/s00366-012-0286-6
https://doi.org/10.1007/978-3-642-21470-7_17
https://doi.org/10.1007/978-3-642-21470-7_17
https://doi.org/10.1007/s10270-004-0061-2


38 Q. A. D. S. Ribeiro et al.

4. Evensen, K., Weiss, K.: A comparison and evaluation of real-time software sys-
tems modeling languages. In: AIAA Infotech@ Aerospace 2010, p. 3504. American
Institute of Aeronautics and Astronautics, California, USA (2010)

5. Khan, A.M., Mallet, F., Rashid, M.: Modeling systemverilog assertions using
SysML and CCSL. In: Electronic System Level Synthesis Conference, ESLsyn Con-
ference, Proceedings (2015)

6. Koopman, P.: Better Embedded System Software. Drumnadrochit Education,
Pittsburgh (2010)

7. Marques, M.R.S., Siegert, E., Brisolara, L.: Integrating UML, MARTE and SysML
to improve requirements specification and traceability in the embedded domain. In:
Proceedings of the 12th IEEE International Conference on Industrial Informatics
(INDIN), pp. 176–181. IEEE (2014)

8. OMG: OMG systems modeling language (OMG SysML). OMG Document: 03 June
2015, p. 346 (2015)

9. Ribeiro, F.G.C., Pereira, C.E., Rettberg, A., Soares, M.S.: Model-based require-
ments specification of real-time systems with UML, SysML and MARTE. Softw.
Syst. Model. 17(1), 343–361 (2016). https://doi.org/10.1007/s10270-016-0525-1

10. Ribeiro, Q.A.D.S., Ribeiro, F.G.C., Soares, M.S.: A technique to architect real-
time embedded systems with SysML and UML through multiple views. In: 19th
International Conference on Enterprise Information Systems (ICEIS), 2(1), pp.
287–294 (2017)

11. dos Santos Soares, M., Vrancken, J.L.: Model-driven user requirements specification
using SysML. JSW 3(6), 57–68 (2008)

12. Shiraishi, S.: Qualitative comparison of ADL-based approaches to real-world auto-
motive system development. Inf. Media Technol. 8(1), 196–207 (2013)

13. Zurawski, R.: Embedded Systems Handbook, 2-Volume Set. CRC Press Inc, Taylor
and Francis Group (2009)

https://doi.org/10.1007/s10270-016-0525-1

	A Comparative Analysis Between SysML and AADL When Modeling a Real-Time System
	1 Introduction
	2 Headlight Control System Details
	3 Headlight System Modeled with SysML
	3.1 Block Definition Model
	3.2 Internal Block Model
	3.3 Activity Model

	4 Headlight System Modeled with AADL - External Specification
	4.1 Internal Specification of AADL Headlight System

	5 A Comparative Analysis: SysML x AADL
	6 Conclusion
	References




