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Abstract. The recent advances in the field of embedded hardware and
computer vision have made autonomous vehicles a tangible reality. The
primary requirement of such an autonomous vehicle is an intelligent sys-
tem that can process sensor inputs such as camera or lidar to have a
perception of the surroundings. The vision algorithms are the core of a
camera-based Advanced Driver Assistance Systems (ADAS). However,
most of the available vision algorithms are x86 architecture based and
hence, they cannot be directly ported to embedded platforms. Texas
Instrument’s (TI) embedded platforms provide Block Accelerator Man-
ager (BAM) framework for porting vision algorithms on embedded hard-
ware. However, the BAM framework has notable drawbacks which result
in higher stack usage, execution time and redundant code-base. We pro-
pose a novel lightweight framework for TI embedded platforms which
addresses the current drawbacks of the BAM framework. We achieve an
average reduction of 15.2% in execution time and 90% reduction in stack
usage compared to the BAM framework.

Keywords: Embedded systems · Computer vision · Autonomous
systems · ADAS · TI TDA2xx

1 Introduction

Advanced Driver Assistance Systems (ADAS) can fully or partially assist a
human during the driving process. The rapid rise of ADAS in the automotive
industry is a prime example of the transforming capabilities of embedded vision
technology. As shown in Fig. 1, the recent years have seen unprecedented growth
in the field of embedded vision systems which has transformed it from being
a research-oriented field to real industrial use-case. The significant increase in
applications implementing embedded vision systems has been fuelled by the
recent improvements in the area of embedded hardware [7], and availability of
accurate and robust algorithms.

In principle, an ADAS can be implemented with different types of sen-
sors such as radar, lidar or camera, however, considering the current trends,
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Fig. 1. Growth in embedded vision based applications [1]

camera-based applications are gaining more popularity [2]. The compute-
intensive algorithms needed to process the camera inputs require specifically
designed embedded hardware for delivering real-time performance. However,
these algorithms cannot be ported on embedded platforms out of the box because
most of the significant vision libraries such as OpenCV are x86 architecture
based. Moreover, embedded platforms may use specific algorithm standards such
as Texas Instrument‘s XDAIS standard [17] and proprietary compilers which
are not standard compliant as GCC compilers. Furthermore, the limited mem-
ory constraints and specialised SIMD requirements are other factors which are
not addressed in x86 algorithm development. Therefore, the commonly avail-
able algorithms have to be adapted before they can be ported on an embedded
platform.

The TI’s TDA2xx [11] platform, which is also the target platform for eval-
uation in this paper, provides a Block Accelerator Manager (BAM) framework
[16] for porting of x86 algorithms on embedded platforms. The BAM framework
provides abstraction and improves programmability, however, the BAM frame-
work also has a few drawbacks such as graph-based execution, more complexity
(exposed interfaces) and limited DMA functionalities which influence the porting
time of the algorithms as well as the runtime of a ported algorithm.

In this paper, we propose and develop a new lightweight framework aiming to
rectify the drawbacks of the BAM framework. The term lightweight essentially
refers to the conceptual gravity of the framework, i.e., the reduced number of
exposed interfaces and the required code changes during the process of algorithm
porting. The proposed framework significantly reduces execution time and stack
usage of an ported application.

In summary, following are the main contributions of the paper.

– We propose a novel lightweight framework for porting computer vision algo-
rithms on embedded platforms.

– We address several drawbacks of the BAM framework such as graph-based
execution, best block search.
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– Our framework provides an average 15.2% reduction in execution time and
90% reduction in stack usage compared to the existing BAM framework.

2 Related Work

There exists a myriad of approaches to port vision algorithms on embedded
platforms [3–6,8,14,18]. These diverse approaches are primarily dictated by the
spectrum of different available processing platforms and different programming
models associated with these platforms. The use of ARM-based architectures
allows the use of standard programming models, however, they are not well
suited for compute-intensive applications. Hence, the use of Graphics Processing
Units (GPUs) or vector processors is encouraged to accelerate compute-intensive
applications to achieve higher energy efficiency. However, GPUs do not support
real-time operating systems (RTOS) or similar frameworks which makes it chal-
lenging for scheduling of hard real-time applications such as ADAS [9].

An ADAS application consists of different algorithms as building blocks and
performance optimization strategies for the individual algorithms have been
thoroughly investigated [10,12]. In [10], Nieto et al. propose a design and devel-
opment methodology in the form of an iterative cycle which enables develop-
ment of quick prototypes and further optimising and tuning specific aspects of
the algorithms. Apart from the algorithm optimization, the “time to market”
aspect has also been given fair attention. The difficulty of implementing an entire
ADAS application on the hardware has led to hybrid solutions, where software
and hardware implementations are combined to obtain the desired performance
[5,6,14,18].

In [8], Kocić et al. propose a methodology for porting of ADAS applications
on heterogeneous platforms based on the computational requirement of different
algorithms. They propose a method of decoupling an application such as a face-
detection application into different parts depending on the type of computational
requirements and algorithm-specific optimizations. The pixel manipulation part
of the application, for example, colour space conversion is ported on SIMD cores
(GPUs), whereas face-detection algorithms are implemented on DSP cores.

J. Perez proposes porting of the brake-by-wire application to an embed-
ded platform using a directed acyclic graph (DAG) [3]. The DAG is used to
present the schedule of the application threads to six processing elements and
the dataflow between the application threads, enabling task and temporal par-
allelism. Gostovic et al. propose a similar approach for porting of vision algo-
rithms on an embedded platform [4]. They port an object detection algorithm
to TI TDA2xx platform using a DAG. The DAG is used to model the data-flow
between different computation nodes as well as the input and output nodes.
TI provides Block Accelerator Manager (BAM) framework to expedite the pro-
cess of porting vision algorithms on its embedded platforms [16]. We observe
that the BAM framework has several drawbacks such as graph-based execution
which leads to higher stack usage.

In contrast to the above-mentioned works, we propose an efficient lightweight
framework for porting of vision algorithms on embedded platforms that rectifies
several drawbacks of the existing BAM framework.
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Fig. 2. Block diagram of BAM framework (adapted from [16])

3 Background

3.1 TDA2XX System-on-Chip

TI’s TDA2xx [11] is a high-performance System-on-Chip (SoC) based on TI’s
open multimedia applications platform architecture. The architecture is specifi-
cally designed for front camera and surround view applications. The embedded
vision engine [13] (EVE) subsystem in TDA2xx platform is a programmable vec-
tor processing engine, best suited for pixel manipulation operations such as color
space conversion. TDA2xx platform supports four independent EVE subsystems.

EVE subsystem consists of an ARP32 scalar core, a vector coprocessor
(VCOP) SIMD unit, and an Enhanced DMA (EDMA) controller. The ARP32
is a 32-bit scalar core and functions as the subsystem controller. The critical
features of the scalar core include the control and coordination of EVE’s inter-
nal interactions and interaction with other subsystems in the TDA2xx SoC. The
VCOP is a SIMD engine with built-in loop control and address generation func-
tionality. The EDMA block is the local DMA unit for the EVE subsystems. The
EDMA unit is used for transferring data blocks between system memories (typ-
ically SDRAM and/or L3 SRAM) and internal EVE memories (data buffers).

3.2 Block Accelerator Manager Framwork

To expedite the process of porting algorithms on EVE subsystem, TI provides
Block Accelerator Manager (BAM) framework. Figure 2 shows the block dia-
gram of the BAM framework. The prime objective of the BAM framework is to
simplify and speedup the porting of vision algorithms on TI’s embedded plat-
forms. The BAM framework achieves this objective by performing block-based
image processing rather than processing full image frame in a single execution.
The block-based processing is particularly suited to the needs of embedded plat-
forms. Further, the BAM framework provides abstraction of the data movement
and vector programming with the implementation of the directed acyclic graph.



134 A. Ashish et al.

Fig. 3. Graph based execution (adapted from [16])

As shown in Fig. 2, the entire framework is subdivided into two parts: XDAIS
interface and algorithm interface. The XDAIS interface is designed to enable
multiple algorithms to coexist and share system resources. The co-existence of
various algorithms is ensured by preventing ‘hard-coded’ use of critical system
resources such as memory, DMA, and other accelerators. The XDAIS interface
also enables a client application to query the algorithm specific requirements.

The algorithm-specific exposed interfaces are used by a client application for
the execution of the algorithm. As shown in Fig. 2, the algorithm initialization
interface is used by the client interface for the initialization of an algorithm’s
graph structure. In the algorithm initialization, the reference to specific APIs or
functions is assigned to different nodes of the graph as designed by a program-
mer. The execution interface is used by the client application to call the graph
structure at the time of execution. The algorithm-specific computation code is
executed on the vector co-processor which supports a C-variant programming
model. The computation code is called through a wrapper rather than an explicit
call to the algorithm’s computation function. As shown in Fig. 2, the helper func-
tions basically initialize and execute the computation code. The input and output
DMA transfers are realized by the source and sink nodes of the directed acyclic
graph.

As shown in Fig. 3, the DAG represents the source/sink nodes for data
input/output and processing nodes where the actual computation takes place.
The source and sink nodes are programmed in standard C implementation which
controls the TI’s EDMA (Enhanced Direct Memory Access) unit. The process-
ing nodes are implemented using Kernel-C, the TI’s vector core programming
language which handles actual algorithmic computation. Further details about
the BAM framework can be found in [16].

4 Proposed Framework

Figure 4 shows the block diagram of the proposed framework called Efficient-
BAM (E-BAM). The framework is designed to address drawbacks of the BAM
framework as explained later. The proposed approach offers the same level of
abstraction as provided by the BAM framework. We introduce substantial archi-
tectural changes to enhance the porting mechanism of vision algorithms on
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Fig. 4. Block diagram of the proposed framework (Color figure online)

TDA2xx platform which results in improved runtime performance. In the fol-
lowing subsections, we describe the main architectural changes to the existing
BAM framework as well as the motivation for these changes. The green blocks
in Fig. 4 highlights the major architectural changes in the proposed framework.

4.1 Modular Execution Model

The abstraction provided by the BAM is achieved primarily through a graph
creation which results in higher stack memory usage because the graph structure
is stored in the EVE on-chip memory during execution. Further, the graph object
is referenced for every image block, which results in the call overhead. Hence,
the graph creation adds to the overall execution time of an application.

In the proposed framework, instead of creating a wrapper such as a graph
structure for the DMA operation, memory allocation and kernel execution, we
perform these operations explicitly but in separate modules. This approach
ensures lower stack usage, which is required to store the graph object and
removes the latency due to repeated calls to the graph object. It also makes
code more transparent and easy to extend due to its modular nature.

4.2 Enhanced DMA API

The block-based processing requires image blocks to be repeatedly fetched, pro-
cessed and written back to the external memory. The BAM framework provides
two basic functions, i.e., auto-increment and scatter-gather DMA. We extend
DMA API with new features such as short inline functions, link transfer and
chain transfer [15]. In general, an application may require repeated DMA trans-
fers and the inline functions provide considerable improvement as it reduces the
considerable function call overhead. The transfer use cases such as the transfer of
input blocks between predefined memory location benefit from the link transfer
feature because it removes the requirement of repeated parameters update. Sim-
ilarly, the chain transfer feature automatically triggers the next transfer event
after completion, hence, reducing the overhead of triggering a new transfer event.
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Table 1. Qualitative comparison

Key features BAM E-BAM

Graph creation Online No graph creation

Best block search Runtime Offline

DMA Generic TI DMA library Enhanced DMA API

4.3 Best Block Search

In block-based image processing, dimensions of a block can have a significant
effect on the performance of the application. The BAM framework offers a block
optimization method, which deduces the optimum block dimensions, keeping
valid memory allocation during the process. However, the drawback with this
approach is the expensive processor cycles spent in search of optimal block
dimensions during run-time.

In the best block search algorithm for the E-BAM framework, we initialize
the block width and height of an image segment with the values of 16 and 8
respectively. The choice of this value is influenced by the SIMD width of the
vector processor. In order to find optimum dimensions, we iteratively increase
block dimensions and calculate the required memory size. When the required
memory size exceeds the available memory, the block dimensions in the previous
iteration are accepted as optimum block dimensions. This process ensures that
all the data fits in the available memory without leaking or overwriting each
other. Since the memory size of the EVE subsystem and image size are known
before hand, the offline computation of the best block is justified. Further, since
the ping-pong buffers in the EVE subsystems have only one read and write port,
we ensure that the input and output blocks are not written back to the same
buffer, thereby eliminating the waiting time before the block is read or written
back to the buffer.

Table 1 shows the summary of key features of BAM and E-BAM frame-
works. In the BAM framework, graph initialization takes place during runtime
of an application, however, in the E-BAM framework, the graph structure is not
used. On contrary, the E-BAM framework uses a mix of modular and sequential
programming to provide the same level of abstraction with improved runtime
performance. The best block search feature required for deducing the optimum
block dimensions is calculated during the execution of an application, however,
in the E-BAM framework, the best block search is performed offline. The BAM
framework uses the generic TI DMA library with basic functionalities, whereas
the E-BAM framework is equipped with the customized DMA API which sup-
ports additional features such as short in-line functions, link and chain transfers.
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5 Experimental Setup

To evaluate our proposed framework, we use TI TDA2xx as the test platform.
For benchmarking of the baseline BAM and proposed framework (E-BAM), we
choose image pyramid generation as the test application. The choice of the image
pyramid generator for evaluation is justified considering its complexity, inten-
sive computation and DMA requirements. We perform benchmarking for the
BAM and E-BAM frameworks using two different test vectors at three different
frequencies (535, 600 and 650 MHz) for the TDA2xx platform. Although, the
number of cycle count provides an accurate measure of the execution time, we
present our results for three different frequencies as it reflects the practical use
case where the TDA2xx platform can be operated at three different frequencies.
We present execution time which is the average of five consecutive test runs
for each test vector. Moreover, the timing measurement for TDA2xx platform is
done in total number of processor cycles which can account even small variations.

Fig. 5. Pyramid generation application

As shown in Fig. 5, the pyramid generation from raw camera input comprises
of three different algorithms, all executing in parallel with the output of the first
algorithm (RAW to RGB conversion) serving as the input for the second algo-
rithm (RGB to YUV conversion) and the output of the second algorithm as the
input for the third algorithm (Block Average). The application also requires syn-
chronization of data-block movement to/from the external memory. The image
pyramid application is also suitable for measuring the DMA overhead in both
frameworks since it requires intensive DMA operations due to 17 different output
images to be written back to off-chip memory.
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Fig. 6. Stack usage comparison Fig. 7. DMA overhead

6 Experimental Results

We compare our efficient lightweight framework (E-BAM) with the existing BAM
framework. We provide quantitative comparison of stack usage, execution time
at algorithm level as well as at application level.

6.1 Stack Usage

Figure 6 shows the stack usage in bytes of E-BAM and BAM frameworks. We see
that the proposed framework reduces 90% stack usage compared to the BAM
framework. The significant reduction in the stack usage is the result of not using
graph-based execution. The reduction in stack usage is very important as it
opens up possibilities for processing of larger block dimensions.

6.2 DMA Overhead

The DMA overhead is the time which processor spends while waiting for comple-
tion of input or output block transfer. Figure 7 shows the proposed framework
reduces the DMA transfer time compared to the BAM framework. The improve-
ment is largely due to the improved DMA API with short inline function calls
and additional features such as link transfer that we implemented for customized
DMA transfers.

6.3 Execution Time at Algorithm Level

Figure 8 and Fig. 9 show the execution time of individual algorithms for BAM
and E-BAM frameworks at 600 MHz. We see that all three algorithms (Raw to
RGB, RGB to YUV and Block Average) achieve significant reduction in execu-
tion time compared to the BAM framework. The average reduction in execution
time for the three algorithms is approximately 12%. The considerable reduction
in execution time is due to the reduced complexity in the handling of kernel com-
putation code in the E-BAM framework. The BAM framework involves function
calls to BAM helper functions which act as an interface between the kernel com-
putation code and the executed function. However, in the E-BAM, we initialize
and call the kernel computation function explicitly.
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Fig. 8. Execution time for test vector 1 Fig. 9. Execution time for test vector 2

Fig. 10. Overhead of best block search

6.4 Best Block Search Overhead

As shown in Fig. 10, the best block search algorithm incurs a significant amount
of overhead in the BAM framework. The results shown in Fig. 10 are the average
of five consecutive runs for the same algorithm on two different test vectors
with platform running at 600 MHz. The execution without the best block search
is performed with the block dimensions of 256 × 16 (width × height), which
is calculated manually. The best block search increases the overall execution
time. The best block search can also lead to variation in the execution time
due to different amount of time incurred to search the best block, which can
be problematic to model in a time-budget based hard real-time system. The E-
BAM algorithm does not suffer from the overhead and execution time variation
since the best block is computed offline.

6.5 Execution Time at Application Level

Figure 11 and Fig. 12 show the execution time of the entire application (includ-
ing the initialization, algorithmic computation and DMA transfer) for BAM
and E-BAM frameworks at three different frequencies. Again, we see that the
proposed framework reduces the execution time for different frequencies. The
average reduction in execution time is about 15.5% and 14.9% for the first and
second test vector, respectively. On average the proposed framework delivers an
average reduction in execution time of 15.2% compared to the BAM framework.
In addition to the reduced complexity in the handling of kernel computation code
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Fig. 11. Execution time for test vector 1 Fig. 12. Execution time for test vector 2

and enhanced DMA API, the removal of additional overhead due to repeated
calls to graph object also contributes to the reduced execution time of the E-
BAM framework.

7 Conclusions

The recent improvements in the performance of embedded hardware and accu-
racy of artificial vision systems have made autonomous vehicles a reality. How-
ever, different hardware architectures, programming models and varying use
cases make porting and optimization of vision algorithms on embedded plat-
forms an uphill task. The BAM framework provides a significant improvement
in terms of programmability and abstraction for porting of vision algorithms on
TI platforms, however, it has several drawbacks. We propose a novel lightweight
framework E-BAM for porting of vision algorithms on TI platforms. We opti-
mize the BAM framework by removing graph-based execution, shifting the best
block search to offline and customizing the DMA API which supports additional
features such as link transfers. Our proposed framework reduces average execu-
tion time by 15.2% along with 90% reduction in the stack usage compared to
the existing BAM framework.
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