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Abstract. The paper presents a real-time operating system (RTOS) of
a time-triggered distributed computing environment based on physical
time and logical time for cyber-physical systems. In the environment,
input and output tasks are activated synchronized with physical time
and computation tasks are activated by the reception of timestamped
messages and managed based on logical time. The control performance
is affected by the jitters of input and output tasks but not affected by the
jitters of computation tasks, so the jitter of the computation task acti-
vation is tolerated. However, the response time of low priority compu-
tation tasks may be increased in fixed-priority scheduling, which is used
by most RTOSs. The paper presents a RTOS with mixed scheduling, in
which fixed scheduling is used for input and output tasks to minimize
the jitters and earliest deadline first (EDF) scheduling based on logical
deadlines is used for computation tasks to minimize the response time.
The logical deadline is not affected by the task activation time and higher
priority is assigned to a computation task with an earlier logical deadline
even if its activation is delayed, so the response time is improved. We
have evaluated the performance of the RTOS and have confirmed that
the performance is acceptable for practical embedded control systems.

Keywords: Real-time operating system · Cyber-physical systems ·
Embedded systems · Time-triggered architecture

1 Introduction

Cyber-physical systems (CPS) are real-time systems that affect physical processes
[1]. Embedded control systems are hard real-time CPS, in which the delay and
jitter may lead to performance degradation [2]. The time-triggered architecture
(TTA) is suitable for building a hard real-time distributed system with minimal
jitter [3]. TTA utilizes a time-triggered network such as TTP (Time-Triggered
Protocol) [4] and FlexRay [5], which supports clock synchronization. Tasks on
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each node are managed according to the synchronized system time. However, the
static scheduling of network communication compromises the flexibility.

Researches on distributed control systems utilizing the synchronized system
time but not requiring static scheduling of network communication have been
done. Henzinger et al. have presented an abstract programmer’s model based
on TTA called Giotto [6]. Giotto provides platform-independent development
environment. Benveniste et al. have presented Loosely Time-Triggered Architec-
ture (LTTA), which does not require clock synchronization [7,8]. Lee et al. have
presented event-triggered distributed systems with time synchronization [9] and
a programming model called PTIDES to provide a coherent temporal semantics
based on the synchronized time [10].

Recently, distributed control systems with wireless communication such as
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications are
increasing. The communication time of such systems varies and the message
transfer order may be disturbed when the routing is dynamically changed. How-
ever, the disturbance of the message transfer order is not considered in Giotto
and LTTA. PTIDES permits out of order processing events by utilizing times-
tamped events. PTIDES, however, requires that the clocks of all nodes must
be synchronized. A distributed computing environment that tolerates the vari-
ation of communication time and the disturbance of the message transfer order
is required.

A distributed embedded control system generally consists of tasks that per-
form sensor input operations, actuator output operations and computations. The
jitter of input and output operations must be minimized in CPS. However, the
jitter of computation is tolerated unless it affects the input and output opera-
tions. So, we have presented a time-triggered distributed computing environment
in which input and output tasks are activated synchronized with physical time
and computation tasks are activated by events of receiving timestamped mes-
sages and managed based on logical time [11]. The jitter of computation task
activation caused by the variation of communication time is tolerated in the
environment. The previous version of the environment uses OSEK OS [12] or
AUTOSAR OS [13], the fixed priority of which may increase the response time
of computation tasks with low priorities.

We present a real-time operating system (RTOS) to minimize the response
time of computation tasks in this paper. The RTOS utilizes mixed scheduling, in
which fixed scheduling is used for input/output tasks to minimize task activation
jitter and earliest deadline first (EDF) scheduling [14] based on logical deadlines
is used for computation tasks to minimize the response time. The logical deadline
of a computation task is not affected by the activation time and a higher priority
is assigned to a computation task with an earlier logical deadline even if its
activation is delayed, so the response time is improved.

The rest of the paper is organized as follows. Section 2 describes the time-
triggered distributed computing environment based on physical time and logical
time. Section 3 describes the RTOS with the mixed scheduling. We evaluate the
RTOS in Sect. 4. Section 5 concludes the paper.
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2 Distributed Computing Environment

2.1 Logical Time-Triggered Processing

Figure 1 shows the structures of an example distributed embedded control system,
which consists of four nodes and four periodic tasks; Input Task, Computation
Task A, Computation Task B and Output Task are distributed to each node.

Sensor
Input Output

Task
Computation

Task B

Node4Node1 Node3

Network

Computation
Task A

Node2

Input
Task

Actuator
Output

Communication Communication Communication

Fig. 1. Example distributed embedded control system

Figure 2 shows an example time chart of a time-triggered distributed system
with a time-triggered network, the structure of which is the same as shown by
Fig. 1. Each task is periodically activated in the period 10. Each numbered rect-
angle shows a job of a task, which receives a message from its predecessor task
and/or sends a message to its successor task. For example, a job of Computation
Task A receives the message from Input Task and sends a message to Computa-
tion Task B. We call the difference between the time to activate a task and the
time to activate its successor task the inter-task delay time. In this example, all
the inter-task delay times are 10.
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Fig. 2. Time chart of time-triggered architecture

Figure 3 shows an example time chart of a distributed system built with the
time-triggered distributed computing environment based on physical time and
logical time, the structure of which is same as shown by Fig. 1. This system
utilizes a network with varying communication time delays. Input Task and
Output Task are synchronously activated according to physical time. On the
other hand, Computation Task A and Computation Task B are asynchronously
activated by message reception events. The jitters of computation task activation
are caused by varying communication time delays.
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Fig. 3. Time chart of logical time-triggered processing

We introduce logical time, which is used to manage computation tasks. We
call the activation time represented by logical time the logical activation time,
which is given as same as the physical activation time in the corresponding TTA
shown by Fig. 2. We also call the processing in which tasks are activated based
on logical time logical time-triggered processing.

2.2 Timestamped Message

Timestamped messages are used to be tolerant with varying communication time
delays. When a job of a task sends a message, the logical activation time of the
job is attached to the message as a timestamp. The timestamps of messages are
shown in parentheses at the receiver tasks in Fig. 3.

We call the inter-task delay time represented by logical time the logical delay
time. The logical delay time is a constant and is defined to be equal to the corre-
sponding inter-task delay time in TTA shown by Fig. 2. The logical delay time is
statically designed considering the task execution time and the message commu-
nication time. The relation between the logical activation time, the timestamp
of the received message and the logical delay time is indicated by the following
formula (1).

Logical Activation T ime = Timestamp + Logical Delay T ime (1)

When a message to a computation task is received, the sum of its timestamp
and the logical delay time is checked to be equal to the logical activation time of
the next job of the computation task. If so, the next job is activated. Otherwise,
the activation is postponed because it means that the order of message transfer
is disturbed. When a message with the timestamp equal to the next logical acti-
vation time is received, the postponed jobs are activated. Thus, the environment
can utilize a network in which the order of message transfer may be disturbed.
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2.3 Task Scheduling

The priorities of input/output tasks should be higher than the priorities of com-
putation tasks. Fixed priority scheduling such as Rate Monotonic (RM) schedul-
ing [14] is suitable for input/output tasks because the jitter of the activation of
a task with a high priority is small. However, fixed priority scheduling is not
suitable for computation tasks. If the activation of a computation task with a
low priority is delayed by the communication delay, the response time of the
computation task may be increased.

Figure 4 shows the structures of an example distributed embedded control
system, which consists of three nodes. Computation Task A and Computation
Task B reside on Node2. Computation Task A is activated when receiving a
message from Input Task A on Node1 and Computation Task B is activated
when receiving a message from Input Task B on Node3.
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Input
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Fig. 4. Another example distributed embedded control system

Figure 5 shows an example time chart of the system when the computation
tasks on Node2 are scheduled by fixed priority scheduling. The priority of Com-
putation Task A is higher than the priority of Computation Task B. We call
the absolute deadline represented in logical time the logical deadline. The logical
deadline of each job is calculated by adding the relative deadline of the task to
the logical activation time. In this example, the relative deadline is 10, which
is same as the period of the task. The response time of Computation Task B is
much larger than the response time of Computation Task A because the jobs
of Computation Task B are preempted by the jobs of Computation Task A. For
example, the first job of Computation Task B is activated at physical time 11
and completed at physical time 24 because it is preempted by the second job of
Computation Task A.

We adopt EDF scheduling based on logical deadlines for computation tasks.
Earlier the logical deadline of a job is, higher the priority of the job is. Thus, a
higher priority is assigned to a task with an earlier logical deadline even if its
activation is delayed.

Figure 6 shows the time chart of a system, in which the computation tasks
on Node2 are scheduled by EDF scheduling. The response time of Computation
Task B is improved. For example, the first job of Computation Task B is not
preempted by the second job of Computation Task A and completed at physical
time 19 because the priority of the first job of Computation Task B with logical
deadline 20 is higher than the second job of Computation Task A with logical
deadline 30.
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The response time of computation tasks is minimized because the logical
deadline of the job of a computation task is not affected by the activation time
and higher priority is assigned to a job with an earlier logical deadline even if
its activation is delayed.

We call this scheduling the mixed scheduling, the mechanism of which is
described in Sect. 3.1.

2.4 Software Structure of Distributed Computing Environment

Figure 7 shows the software structure of the distributed computing environment.
The distributed computing middleware [11] runs on the RTOS presented in this
paper.
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Fig. 7. Software structure

We develop the RTOS by extending an OSEK-compliant RTOS called TOP-
PERS/ATK1, which has been developed by TOPPERS Project [15]. We use a
time synchronization mechanism based on GNSS (Global Navigation Satellite
Systems) [16] for nodes in which input or output tasks reside. The system time
synchronization is not needed if input tasks and output tasks reside on the same
node.

The middleware supports timestamped message communication and consists
of modules that performs message sending, message reception, task preprocess-
ing and reception ISR (Interrupt Service Routine). The middleware also sup-
ports message communication through CAN network [17] and ZigBee wireless
network [18].

3 Real-Time Operating System

3.1 Mixed Scheduling

We extend the scheduler of TOPPERS/ATK1 to support mixed scheduling.
The scheduler deal with three kinds of tasks: input/output tasks, computation
tasks and non real-time tasks. Input/output tasks and non real-time tasks are
scheduled by fixed scheduling and computation tasks are scheduled by EDF
scheduling based on their logical deadlines. The priorities of input/output tasks
are higher than the priorities of computation tasks. The priorities of non real-
time tasks are lower than the priorities of computation tasks.

Figure 8 shows the mixed scheduling mechanism of the RTOS. There are
ready queues with priority levels, in which tasks with state ready are queued
according to their priority levels. One of the ready queues is used for computa-
tion tasks scheduled by EDF scheduling. The ready queues with higher priority
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levels are used for input/output tasks and the ready queues with lower priority
levels are used for non real-time tasks. The number of ready queues and the
priority level of the computation task ready queue can be statically defined by
a developer. In the case of Fig. 8, there are sixteen priority levels: the priority
levels from 8 to 15 for input/output tasks, the priority level 7 for computation
tasks, and the priority levels from 0 to 6 for non real-time tasks.
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Fig. 8. Mixed scheduling mechanism

When a task is activated, the scheduler shifts the state of the task to ready
and enqueues the task into a ready queue according to its priority level. If the
priority level of the activated task is higher than the priority level of the running
task, a preemption occurs and the preempted task is enqueued into a ready
queue. When a running task is terminated, the scheduler selects the first task in
the highest-priority no-empty ready queue to be executed by the processor.

Computation tasks with state ready are queued in a single ready queue
according to their logical deadlines, which mean priorities. When a computa-
tion task is activated, the scheduler calculates the logical deadline by adding the
relative deadline to the logical activation time and inserts the computation task
into the computation task ready queue comparing its logical deadline and other
queued tasks’ deadlines. The task with the earliest logical deadline other than
the running computation task is to be at the head of the ready queue. If the
logical deadline of the activated computation task is earlier than the logical dead-
line of the running computation task, a preemption occurs and the preempted
computation task is enqueued into the computation task ready queue. When a
running computation task is terminated, the scheduler selects the computation
task at the head of the ready queue to be executed by the processor.
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3.2 Task Activation Mechanism

In an OSEK OS or AUTOSAR OS, periodic tasks are activated by an alarm
associated with the system counter, which counts the system time. Thus, the
system counter represents physical time. The upper part of Fig. 9 shows the sys-
tem counter and alarms for input/output tasks. The system counter is updated
by the tick interrupt, which is periodically issued by a hardware timer. If a non
real-time task is a periodic task, it is also activated by an alarm associated with
the system counter.

Signal
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Alarm
Activate

Input/Output
Task
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Network
Controller
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Interrupt

Logical Time
Counter Alarm
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Fig. 9. Counters and alarms

A counter other than the system counter can be defined in an OSEK OS or
AUTOSAR OS. A user-defined counter is used to represent a logical time and
an alarm to activate a computation task is associated with the counter. The
lower part of Fig. 9 shows logical time counters (user-defined counters for logical
times) and alarms to activate computation tasks.

3.3 Logical Time Updating

TOPPERS/ATK1 provides the API SignalCounter() to update a counter. When
a message for a computation task is received, the reception ISR (Interrupt Service
Routine) of the middleware is issued. The reception ISR calls SignalCounter()
if the timestamp of the received message meets the following formula (2).

Timestamp = NextLogical Activation T ime− Logical Delay T ime (2)

If the order of message transfer is disturbed and the timestamp does not meet
the formula (2), the ISR does not call SignalCounter() and the task activation
is postponed. When a message with the timestamp corresponding to the next
logical activation time of the task is received, the ISR repeatedly calls Signal-
Counter() and the postponed jobs are sequentially executed together.

Figure 10 shows a time chart that illustrates the behavior of computation
task activation. The period of the message communication is 10 and the logical
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Fig. 10. Time chart of computation task activation

delay time is 10 in this example. The initial value of the next logical activation
time is 20.

When the first message with timestamp 10 is received, the reception ISR of
the middleware is issued. The reception ISR stores the timestamp and the data
of the received message into the buffer and calls SignalCounter() to update the
logical time counter because the timestamp of the received message meets the
formula (2). Then, the computation task is activated by the alarm of the RTOS.
When the computation task is activated, the task preprocessing is executed
before executing the application. The task preprocessing updates the next logical
activation time.

In this example, the timestamp of the second message is 30 and the times-
tamp of the third message is 20 because the message transfer order is disturbed.
The reception ISR does not call SignalCounter() when the second message is
received and calls SignalCounter() twice when the third message is received.
Thus, the distributed computing environment is tolerated with the disturbance
of the message transfer order.

The logical time counter is updated by the period of the message communica-
tion at a time. If the period of the task is n times of the message communication
period, the task is activated once in n times of message reception.

4 Implementation and Evaluation

We use an evaluation board in which a microprocessor called H8S/2638F is
installed. The H8S/2638F has on-chip memories: the 256 kBytes ROM and the
16 kBytes RAM. The clock rate of the microprocessor is 20 MHz. The H8S/2638F
also has two on-chip CAN controllers. An XBEE wireless module that supports
ZigBee protocol is connected to the H8S/2638F through UART serial commu-
nication.

We have measured the CPU execution time of the task management system
calls of the developed RTOS to evaluate the overhead of the mixed scheduling.
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We have measured the CPU execution time of ActivateTask(), TerminateTask(),
ChainTask() and Schedule() in the case of fixed scheduling and in the case of
EDF scheduling. We have separately measured the execution time of Schedule()
in the case without dispatching and in the case with dispatching.

Table 1 shows the CPU execution time of the system calls. The execution
time of task activation in EDF scheduling is 27% larger than in fixed priority
scheduling because of ready queue search. The table also shows the CPU execu-
tion time of original TOPPERS/ATK1 that supports just fixed scheduling for
comparison. We think that the overhead is practically acceptable because the
overhead is less than 9% in fixed scheduling.

Table 1. Execution time of task management system calls

System call Execution time [µsec]

Developed RTOS TOPPERS/ATK1

Fixed scheduling EDF scheduling

ActivateTask 21.9 27.9 20.1

TerminateTask 8.3 8.3 7.8

ChainTask 18.3 21.6 17.5

Schedule without dispatch 21.2 22.0 20.3

with dispatch 27.3 28.1 26.4

5 Conclusion

We have presented a RTOS for time-triggered distributed computing environ-
ment based on physical time and logical time, which is suitable for cyber-physical
systems utilizing networks with varying communication time. The RTOS sched-
ules input/output tasks by fixed scheduling and schedules computation tasks by
EDF scheduling based on their logical deadlines. The response time of compu-
tation tasks is minimized because a higher priority is assigned to a computation
task with an earlier logical deadline even if its activation is delayed. We have
evaluated the CPU execution time of the task management system calls of the
RTOS and have confirmed the overhead is practically acceptable.

The distributed computing environment just supports periodic tasks. The
future work is to extend the RTOS and the middleware to support not only
periodic tasks but also aperiodic tasks. We are considering to adopt another
scheduling algorithms such as a fixed priority server or a dynamic priority server
to support aperiodic tasks. We are also extending the middleware to support
other wireless communications such as IEEE802.11p.
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