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1 Introduction 

In the modern world, our dependency on technology and modern machines has 
increased resulting in a significant increase in energy consumption. The World Bank 
indicators show a strong link between the consumption of energy and the devel-
opment of a country in different aspects of life, such as economy, infrastructure, 
health, education, etc. [1]. Fossil fuels, which include crude oil, natural gas, and 
coal, mainly remained a primary source of energy. However, in the current era, 
where global warming and climate change are considered to be among the biggest 
threats to mankind, the focus has been shifted toward renewable sources of energy, 
such as hydropower, geothermal heat, solar, and wind energy. Compared to fossil 
fuels, renewable sources of energy bring several advantages. For instance, it is a 
source of energy that never runs out. More importantly, its zero carbon emission 
characteristic makes it more environmentally friendly by ensuring cleaner air and 
water. 

While speaking about renewable sources of energy, hydropower has always been 
the leading source of energy. However, over the past decade, wind power and 
solar power have also gained a lot of attention [2]. The extensive research in the 
area has led to the development of technologically advanced and highly complex 
power generation machines. On one hand, where this development has increased 
the efficiency and performance of the equipment, it has also generated the need 
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for artificially intelligent energy forecasting, planning, and plant operation and 
maintenance models/solutions. These models/solutions also make use of state-of-
the-art machine learning (ML) algorithms for a diversified set of tasks in the domain. 

The current fast-paced advancements in the fields of artificial intelligence (AI) 
and ML have reduced the need for human intervention in carrying out different 
complex operations in the power sector to a minimum level. These developments 
have also enabled us to adopt a proactive approach to the challenges faced while 
managing such intricate renewable energy systems. The industry experts and 
analysts foresee a pivotal role being played by AI and ML in the future of renewable 
energy systems. Investments pertinent to AI in the renewable energy sector are 
expected to cross USD 7.78 billion by 2024, as per a market intelligence report 
published by BIS Research [3]. The extensive opportunities for growth offered 
by AI and ML have forced the major market players to incorporate them into 
their strategies. The applications of AI and ML in addressing the problems faced 
by energy companies are plentiful. This chapter provides an overview of AI and 
ML applications for renewable energy systems. The key applications covered in 
the chapter include: (i) weather prediction/forecasting using ML algorithms, (ii) 
forecasting energy supply and demand through AI, (iii) integration of AI with smart 
grids, and (iv) AI-based condition monitoring and prognostics maintenance systems. 
An overview of available resources, such as datasets and ML algorithms, for the 
researchers in the domain is also provided. Moreover, the chapter highlights the 
key challenges associated with the successful deployment of ML algorithms and 
potential future research directions in the domain. 

The rest of the chapter is organized as follows. Section 2 provides an overview 
of the existing literature on the topic. Section 3 provides an overview of some key 
applications of ML for renewable energy systems. Section 5 highlights the key 
challenges and potential opportunities in the domain. Finally, Sect. 6 concludes the 
chapter by providing key insights and lessons learned. 

2 Related Work 

The literature reports outstanding generalization capabilities for ML algorithms in 
different application domains, such image classification [4], speech recognition [5], 
and text processing [6]. ML algorithms allow the identification of hidden patterns 
in a large collection of data and extract meaningful insights. Similar to other 
application domains, where ML algorithms have been proved very effective, the 
energy sector also provides a huge amount of data on different aspects of energy 
systems [2, 7]. To extract meaningful insights from the data, several interesting ML 
solutions, exploring different aspects of the energy sector, have been proposed in 
the literature. 

Most of the recent efforts in the domain focus on renewable energy systems. For 
instance, Lai et al. [8] provide a detailed survey of ML models for the prediction 
tasks in renewable energy systems. The authors discussed different aspects of the
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domain, such as the performance of existing ML models, pre-processing techniques, 
and parameter selection approaches adopted in the literature. Gu et al. [9], on 
the other hand, discuss the use of ML algorithms for renewable energy materials. 
The authors explored the potential of ML in key renewable energy technologies 
including catalysis, batteries, solar cells, and crystal discovery. Daniel et al. [10] 
provide an overview of ML applications in harnessing of renewable energy, such as 
wind, solar, and thermal energy. 

The literature also reports interesting works on certain aspects of ML-based 
solutions for renewable energy applications. For instance, Salcedo et al. [11] 
provide an overview of feature selection approaches adopted in ML-based pre-
dictive solutions for renewable energy applications. The authors also highlight 
the challenges, potential, and key aspects of the feature selection process, such 
as the impact of certain features on the predictive capabilities of ML models in 
renewable energy applications. Several studies focus on applications of certain types 
of ML algorithms for renewable energy. For example, Perera et al. [12] explored 
the potential of reinforcement learning, which represents a sub-category of ML 
algorithms, in renewable energy applications. In total, seven different applications 
of renewable energy relying on reinforcement learning algorithms, namely building 
energy management system, dispatch, vehicle energy systems, energy devices, grids, 
energy markets prediction, are discussed. 

The rich literature on the topic shows the potential of ML in renewable energy 
applications. However, there are several challenges associated with the successful 
deployment of ML algorithms in different applications of renewable energy. In 
this chapter, we highlight such challenges by exploring different aspects of ML 
applications in renewable energy. We also highlight the potential opportunities, 
existing resources, and future research directions in the domain. 

3 Key Applications 

The list of ML applications for renewable energy is very diverse as shown in Fig. 1. 
In this section, we provide an overview of some of the key applications with a 
reasonable amount of existing literature, such as weather and energy consumption 
forecasting, prognostic maintenance, and ML applications in smart grids. 

3.1 Forecasting 

The process of estimating future events, states, and processes by deploying various 
conceptual models is known as forecasting. Forecasting is an important aspect of 
renewable energy systems, specifically solar and wind power, keeping in view their 
variable energy generation nature. The wind and solar power systems are therefore 
known as variable renewable energy (VRE) systems because their generation output
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Fig. 1 Some key applications of AI and ML for renewable energy 

varies in time, based on the intensity of their sources (i.e., the wind and the Sun). 
Consequently, an aspect of uncertainty gets associated with them as the power 
generation by these sources cannot be predicted with perfect accuracy [13]. This 
is where ML comes into play and is extensively used to carry out forecasts of wind 
speeds and solar irradiance. In the renewable energy sector, ML algorithms are used 
for the prediction/forecasting of the future events and states of different elements 
associated with renewable energy. Irrespective of several forecasting systems being 
adopted, the model errors continue to exist. However, with the increased use of 
advanced statistics, ML and AI, the accuracy of these forecasting models has been 
improved significantly. In the following subsections, we discuss some of the key 
forecasting applications in the domain. 

3.1.1 Weather Forecasting 

Weather forecasting plays a vital role in integrating solar and wind power gen-
erations into the grid, especially in cases where the penetration levels are high. 
The most crucial scheduling input for VRE generators that are weather dependent 
is obtained from weather forecasting data. Therefore, the forecast for power 
generations is a combination of regional weather forecasts and plant availability.
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In the literature, several interesting solutions for weather forecasting have been 
proposed. These methods can be broadly classified into two categories, namely 
physical methods and statistical methods [13]. In the physical methods, weather 
data including temperature, pressure, humidity, surface roughness, and obstacles 
are fed into a numerical weather predictor (NWP) model. The model in return 
generates weather conditions using physical and mathematical laws that are specific 
to terrain and can be converted into energy production. The statistical methods used 
alongside the NWP models aim to increase the correctness of the results generated 
by employing historic and real-time generation data. Persistence forecasting, for 
instance, is used as a benchmark for evaluating the advanced forecasting methods 
as it is the simplest statistical method based on an assumption that the current 
generation levels will remain constant in the near future [14]. Advanced forecasting 
methods make use of AI and big data to carry out the predictions by analyzing live as 
well as historical weather data. Since advanced forecasting facilitates and improves 
VRE integration, it is one of the main applications of AI in weather forecasting.With 
continual advancements in computing power and ML algorithms, these forecasts 
have become more and more accurate over the past few years. 

Moreover, the VRE forecasting approaches could also be categorized into cen-
tralized and decentralized methods. Centralized VRE forecasting is the cumulative 
system-wide forecast of all the VRE generators within a specific balancing area. 
The centralized forecasts are normally administered by the system operators and 
are considered to be one of the best approaches for economic dispatch. On the other 
hand, decentralized VRE forecasting is carried out by individual power generators. 
It facilitates the system operator in making efficient decisions pertinent to potential 
transmission congestion by providing plant-level information. The centralized VRE 
forecasting is more effective as it incorporates a single methodology of forecasting 
across all distributed power generators [15]. Therefore, it lowers the uncertainties at 
the system operator level and reduces the financial burden of carrying out individual 
forecasts on the distributed power generator level. However, relying on a single 
methodology in the case of centralized forecasting increases the risk of systematic 
bias. This issue can be addressed by incorporating the ensemble forecasting method, 
where an aggregate of the results generated by multiple forecast models is taken 
rather than relying on a single forecasting model [16]. 

3.1.2 Wind and Solar Power Production Forecasting 

In the areas with moderate to high wind power generation, the operators make use 
of wind energy forecasting to predict the power generation. Likewise, the solar 
irradiance data are used to forecast solar power forecasting. Given the stochastic 
nature of wind and solar power generations, ML algorithms have been extensively 
used for carrying out short-term forecasts of these entities. The current trends 
in solar and wind power estimation use disaggregation of power generation as 
well as innovative features and structural information for carrying out short-term 
forecasts. For instance, based on the video recordings of the sky, convolutional
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neural networks (CNNs) have been trained to predict near-real-time solar power 
generation [17]. The solar and wind power output is directly and closely related to 
the prevailing weather conditions. Recent research, therefore, aims to seamlessly 
integrate weather forecasting and power generation prediction. Efforts are being 
made to improve the efficiency of the weather forecasting models to effectively 
use them as an input for predicting VRE power generation. Numerous physics-
based NWP models have been developed to estimate solar irradiance from 0 to 
72 h ahead [18]. The output of these multi-timescale NWP models is then used 
as an input to ML algorithms for carrying out probabilistic power predictions. 
Similarly, various techniques take the NWP data as features to carry out supervised 
wind power forecasts. However, the supervised power prediction techniques have 
a limitation when dealing with distributed energy sources, where the size, location, 
panel orientation, and hardware data are not always available to the system operators 
for all the interconnected systems [19]. In such scenarios, satellite and aerial 
imagery data can be fed intoMLmodels for effectively predicting power outputs [2]. 

There are several benefits of wind and solar power forecasting. On one hand, it 
enables the power system operators to maintain lesser reserves. On the other hand, it 
helps them in handling the supply-side uncertainties. Moreover, efficient predictions 
can also help in tackling the extreme changes in wind and solar generation that 
cause a sudden change in the power output. Wind and solar power predictions also 
enable the grid operators to schedule and dispatch generating plants efficiently. 
Thereby, the power system operators can make smart and profitable choices on 
power purchasing by relying more on VRE sources. Furthermore, the wind and solar 
power prediction also facilitates the power generators by allowing them to carry out 
plant maintenance during the low production period. Based on the power prediction 
data, project financers can make better decisions by assessing the plant output data 
and thus arranging the necessary finance, accordingly. 

Nevertheless, the prospects for future research studies to deeply integrate weather 
and power prediction are quite bright. More studies need to be carried out to develop 
hybrid physical models where NWP physics-based models are directly incorporated 
into ML power prediction models. 

3.1.3 Load Forecasting 

The very fact that electricity cannot be stored in large quantities has given rise to a 
principle in the power industry known as “the balancing rule.” This rule suggests that 
a consistent balance must always be maintained between the amount of electricity 
demanded and the amount of electricity supplied. This is important because in 
both excessive generation and undersupply of electric power, monetary losses are 
faced by power operators. Hence, to maintain an ideal balancing situation, load 
forecasting has become an important phenomenon of the current power market. 
Load forecasting is a technique used by power operators to predict the energy 
demand to balance it with the anticipated energy supply. Load forecasting also plays 
a pivotal role in effective decision-making during power system capacity planning to
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meet the current load requirements and power system expansion to cater the future 
anticipated load requirements. 

Load forecasting can be broadly classified into three groups based on the time 
horizons of the planning strategies. These categories include: (i) long-term load 
forecasting (LTLF), (ii) medium-term load forecasting (MTLF), and (iii) short-
term load forecasting (STLF). LTLF ranges from 1 year to 20 years and is 
mainly used for carrying out economic planning of new generation capacity and 
transmission network. It also facilitates in predicting the future needs for expansion 
and infrastructure development. MTLF normally predicts the load for a period 
ranging from 1 week to 1 year. MTLF plays an important role in making decisions 
pertinent to the scheduling of fuel supplies, carrying out the maintenance activities, 
financial planning, and tariffs formulation. STLF, on the other hand, ranges from 1 h 
to 1 week and provides the basis for taking profitable decisions regarding generation 
units start-up and shutdown. STLFs are used to maintain the demand–supply 
balance that are important to avoid undersupply and excessive supply of energy. It 
also provides the information regarding the daily operations and unit commitment to 
the system operators. STLF is also used to overcome the transmission constraints by 
providing approximate load flow. STLF also facilitates in economic load dispatching 
and security assessment. 

Load forecasting is a stochastic problem rather than deterministic. Hence, there 
is no certainty in forecasting. The reason being load forecasting depends upon 
numerous factors that need to be taken into account while designing a forecasting 
model. Some of the factors include load density, population growth, historical data, 
alternative energy sources, and other geo-graphical factors. 

Among all the aforementioned load forecasting types, STLF is mostly utilized. 
One of the potential reasons for more focus on STLF is that it plays a vital role 
in managing energy transfer schedules based on the estimated load for periods 
ranging from thirty minutes to an entire day. Therefore, an efficient STLF reduces 
the expenses incurred by the system operators and enhances the efficiency of the 
transmission network [20]. In recent years, various techniques have been applied 
for enhancing the accuracy and efficiency of the load forecasting for VRE systems, 
including AI and fuzzy logic. Based on their explainability, flexibility to use, and 
symbolic reasoning, AI has gained more importance and is now being widely used. 
A technique based on fuzzy logic to carry STLF by incorporating historic weather 
data has been used by [21]. A detailed review on AI-based load forecasting for 
smart grids and buildings has been carried out by [22]. ANNs have been used 
to carry out next day load forecasting [23]. Similarly, an ANN-based STLF for 
distribution systems [24] and a non-linear autoregressive ANN with exogenous 
vector inputs to carry out STLF has been developed [25]. Since STLF is based 
on non-stationary data having forecasting horizon dependencies, LSTM has been 
used in lieu of its unprecedented ability to handle long-term data dependencies [26]. 
Atef et al. [27] proposed a deep-stacked LSTM model to forecast the load demand. 
The results showed that bidirectional LSTM (Bi-LSTM) outperformed the simple 
LSTM models in terms of forecasting accuracy. Similarly, hybrid ANN models with 
fuzzy logic have also been developed for accurately predicting the load demand
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by classifying a large input load dataset. A forecasting model that takes into 
account the effect of weather and holidays data on the load forecast has been 
developed using fuzzy logic and ANN [28]. Fuzzy logic has also been used to 
construct temperature and holiday factor rule bases, an ANN model is then used 
to predict the hourly load demand. The forecast results showed that the hybrid 
model produced better results as compared to a standalone ANN model. Also, 
an enhanced convolutional neural network (CNN) has been proposed to forecast 
electricity price and load [29]. Numerous AI techniques have been used to carry 
out load forecasting, and the research show that they have achieved promising 
results as compared to the conventional techniques. The non-parametric AI-based 
techniques can clearly overcome the limited capabilities of traditional parametric 
(statistical) models such as linear regression, stochastic modeling of time series, 
and general exponential techniques [30]. However, adequate and suitable training 
data, an appropriate learning algorithm, and an optimized network structure help 
increasing the overall performance and accuracy of the models, thus reducing the 
network complexities. 

3.2 Integrating AI with Smart Grids 

In the past decade, a global paradigm shift from the conventional centralized energy 
generation to the distributed renewable energy generation has been observed. This 
has given rise to the need of replacing the traditional transmission and distribution 
systems with more resilient and smart power distribution and transmission systems. 
Since, the current grids cannot efficiently cater the fluctuating generation from 
multiple distributed renewable energy sources and have become obsolete. Therefore, 
the current grids are now being replaced with the “smart grids.” A smart grid is a 
network that allows two-way flow of data and electricity by effectively integrating 
digital communication technology with energy distribution, thus, enabling the 
system operators to optimize the generation, transmission, and distribution of energy 
on one end and consumers to make cost-effective decisions regarding energy 
consumption on the other end. Although it is an important factor, but smart grids 
do not rely on power delivery only, rather the main aspect of a smart grid is a 
two-way connection of energy and information. Therefore, a smart grid generates 
an extensive amount of data that is also necessary for its successful operation. 
Hence, the conventional computational techniques do not have the ability to process 
such huge amount of data. This is where AI comes into play, capable enough to 
take into account millions of variables and data points that include but are not 
limited to weather, location, generation, infrastructure, demand, and assets. AI 
helps every household and system operator in making proactive decisions regarding 
the energy generation and supply and the associated energy cost. For instance, if 
we know ahead of time that it is going to rain for a week, the loss in the solar 
generation can be catered by proactively upscaling the other generation sources for 
that specific week. This is what makes AI so appealing for the implementation and
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management of smart grids. Since the modern power systems are revolutionizing 
at a fast pace, more and more distributed and diversified smart grid components, 
such as smart metering systems, digital communication infrastructure, distributed 
energy sources, and electric vehicles, are getting integrated into the power network 
along with an underlying communication system. This enables the customers and 
grid to be directly connected with the help of AI. Thus, homeowners can compre-
hensively monitor their consumption through smart metering systems and hence 
take profitable decisions by smartly consuming electricity during low-cost hours. 
Furthermore, a massive amount of data generated by these smart grid components 
help automate and enhance the performance of smart grids by supporting vast 
applications such as forecasting the system state, distributed energy management, 
fault diagnosis, and grid security against cyberattacks. 

3.2.1 Applications of AI in Smart Grids 

In smart grids, AI and ML algorithms are used for a diversified set of tasks. In this 
section, we provide an overview of some of the key applications of AI and ML for 
smart grids. These applications include: 

• Assessment of Power Grid Stability: The assessment of the stability of power 
grids is vital for ensuring the reliability and security of power systems. The power 
system stability ensures that the system maintains an equilibrium operation state 
or promptly reaches a new equilibrium state when a small change is induced [31]. 
The traditional models require extensive computing resources because of their 
dependence on dynamic power system models. Therefore, data-driven AI-based 
models are applied to carry out power grid stability analysis because of their 
efficient performance. The smart grid stability assessment mainly comprises 
transient stability assessments, small-signal stability, frequency stability, and 
voltage stability assessment [32]. Transient stability assessment is the ability 
to determine whether a system will remain synchronized when a huge change 
in the normal operating state takes place. The small-signal stability assessment, 
on the other hand, represents the ability of the system to maintain the state of 
synchronization during small disturbances. The frequency stability assessment is 
the ability of the system to maintain a steady frequency during the generation 
and load imbalances, while the voltage stability assessment is the ability of the 
system to evaluate and maintain voltage stability during a voltage collapse. 

• Faults Diagnosis: The increased complexity of smart grids has introduced 
numerous sensitive equipment and components into the system. Protection of 
such equipment against faults is very important for carrying out smooth opera-
tions. Fault diagnosis in smart grids, therefore, provides a defense mechanism 
for the safety of the sensitive equipment and helps to quickly isolate the faults. 
With the increased integration of VRE resources in smart grids, effective fault 
diagnosis has become a great challenge. AI and ML, therefore, play an important
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role in carrying out efficient predictive, preventive, and corrective maintenance 
activities for smart grids. 

The literature reports several interesting fault detection techniques. For 
instance, Fazai et al. [33] proposed an extreme learning machine (ELM) model 
for fault location detection based on wavelet transform. Similarly, an ensemble 
framework consisting of five ML algorithms is developed to analyze the power 
grid frequency disturbances that detected faults with three levels of severity [34]. 
In [35], a semi-supervised ML model based on KNN and decision tree algorithms 
are used for fault diagnosis of the transmission and distribution system of 
microgrids. Extensive research has been carried out in this area that reflects the 
effectiveness of AI and ML models for carrying out fault diagnosis in smart grids. 

• Security of Smart Grids: The inherent vulnerability of communication tech-
nology and the complexity of smart grids have exposed the communication 
layers to various security issues. A probable cyberattack on the system can 
result in operational failures, loss of synchronization, interruption in the power 
supply, cascading failures, and complete blackouts. Having lethal and vital 
economic and social consequences, power grids have become a lucrative target 
for cyberattacks [36]. The most common attacks carried out on smart grids 
include false data injection attacks (FDIA) and distributed denial of service 
(DDoS) attacks. In FDIA, the system data are being altered to mislead the 
power operators, while in DDoS attacks the attackers attempt to make a service 
unavailable for its intended users. In recent years, various state-of-the-art AI-
based approaches have been proposed to ensure the overall security of smart 
grids. For instance, a neural network model based on stacked denoising autoen-
coder (SDAE) has been proposed that identifies four different attacks on smart 
grids [37]. Kosek et al. [38], on the other hand, used an ANN model to identify 
malicious actions for controlling voltage in the low-voltage distribution grids. 
Similarly, a semi-supervised ML framework with a domain-adversarial training 
of known attacks has been used to detect anomalies and patterns for identifying 
the returning threats at distinct loads and hours [39]. Although sophisticated 
techniques have been proposed for ensuring the security of the smart grids, 
however, interdisciplinary research to develop a holistic and methodical solution 
can further help to tackle the security threats prone to smart grids, effectively. 

3.3 Condition Monitoring and Fault Prognostics of Renewable 
Energy Systems 

The continual advancements in the renewable energy sector have led to the 
development of more complex generation units. Such intricate generation units 
require more effective and efficient operation and maintenance (O&M) techniques. 
Furthermore, a delay in diagnosing a fault increases the cost of its rectification. 
Also, fault can propagate and damage other equipment that can further add to 
plant shutdown and uncalled-for outages, whereas, with the exponential increase
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in demand and increased dependency on energy globally, power outages and plant 
downtimes are highly unfavorable. For ensuring efficient and cost-effective O&M, 
the current reactive approaches toward fault diagnosis are being replaced with more 
advanced proactive approaches where the system faults are being predicted. Hence, 
condition-based monitoring (CBM) and fault prognostics have become the need of 
the day. To meet these challenges, state-of-the-art AI and ML models have been 
developed to predict the faults in renewable energy systems, including hydropower, 
wind power, and solar power projects. In the following subsections, we provide an 
overview of hydro, wind, and solar projects. 

3.3.1 Hydropower Projects 

Hydropower plants (HPPs) being one of the first renewable sources of energy are 
mostly relied upon to cater to the baseload demands of grids. Therefore, plant 
availability and reduced downtimes are very important while carrying O&M of 
HPPs. Consequently, the current preventive and corrective maintenance procedures 
are being replaced with more advanced diagnostic and prognostic maintenance 
systems. Hence, several efforts are being made for O&M. For instance, a graphical 
software-based condition monitoring system using wavelet analysis has been 
developed for a Francis turbine [40]. The research shows that the vast majority 
of predictive maintenance solutions for HPPs are data-driven. Several data-driven 
predictive maintenance models for HPPs are being analyzed and classified into 
three categories: a) physical models, b) stochastic models, and c) ML-based data 
mining models [41]. Likewise, support vector machine (SVM)-based CBM and 
fault diagnostic technique for HPPs have been developed [42]. Although SVM 
outperformed other classification methods, it required higher computational time. 
Deep learning models have also been used to carry out the CBM and predictive 
maintenance of HPPs. For instance, a deep neural network-based anomaly detection 
model in multivariate time-series data has been used [43]. The patterns in the data 
were captured using long short-term memory (LSTM) because of its unprecedented 
performance while dealing with time-series data. Similarly, the remaining useful life 
(RUL) of hydropower turbine bearings has also been determined using the bearing 
vibrations data acquired from run-to-failure experiments [44]. Although a lot of 
research have been carried out on the CBM of HPPs; however, variations in the 
operating conditions of the HPPs make the adaptability (i.e., a model trained on 
data obtained at one plant could be used for the prediction of data obtained at a 
plant at a different location with different operating environments) of these models 
a very complex process. 

3.3.2 Wind Power Projects 

Among all the renewable energy sources, CBM and fault prognostics for wind 
turbines (WTs) have always been in the limelight because of the following 
reasons:
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• WTs have got a very high capital cost; therefore, for an effective payback period, 
plant availability should be maximized. 

• WTs normally operate under stressful conditions because of the extreme weather 
conditions and a constantly variable load; therefore, they have got a higher failure 
probability. 

• Large offshore WTs have got a higher failure downtime because of the access 
difficulties. 

Therefore, an improved CBM and fault prognostics system for WTs can avoid 
its subassemblies from getting damaged, hence minimizing the plant downtime. 
Various fascinating and distinct solutions pertinent to the CBM of WTs are reflected 
in the literature. One of the key components of a WT that transfers the power 
between the turbine and the generator shaft is the gearbox. Being one of the 
most critical components, it contributes maximum to the capital cost of the WTs. 
Consequently, the associated maintenance and repair cost of gearboxes is also very 
high. Being an important aspect of renewable wind projects, several interesting 
solutions have been proposed for fault prognostics of wind turbines. For instance, 
a data-driven framework based on ANN is developed for carrying out the fault 
prognostics of WT gearbox [45]. The mechanical fault diagnosis of WTs can be 
further improved by analyzing the vibration signals acquired from the accelerom-
eters along with the power signals. A similar fault diagnostic system based on 
data mining techniques using multi-sensor data has been proposed [46]. Likewise, 
models for the estimation of RUL of WTs main bearing have been presented using 
the likelihood functions [47]. With the advancements in computational resources 
and the development of new AI algorithms, the search for the development of the 
most optimal fault diagnostic system for WTs continues. 

3.3.3 Solar Power Projects 

As compared to wind and hydropower projects, solar power projects are purely 
electrical and are therefore less susceptible to degradation and faults. Therefore, 
CBM and fault diagnostics in solar power projects are mostly related to the 
photovoltaic (PV) modules’ health analysis, monitoring the power loss, and the 
performance monitoring of energy storage systems. For instance, a framework based 
on ANN is used to carry out the PV health monitoring and analyze the degradation to 
make effective maintenance decisions accordingly [48]. The performance ratio (PR) 
of a PV module is the ratio of the actual generation against the rated generation 
capacity of that module. PR is a key indicator when assessing the reliability of 
a solar PV system. Various ML techniques have been used to predict the PR of 
solar power plants to improve the energy reliability [49]. Likewise, performance 
evaluation of several deep learning techniques including LSTM, ANN, and RNN 
has been assessed for carrying out the prognosis of solar power projects. The 
results indicated that LSTM outperformed the other algorithms in terms of accuracy 
especially while predicting temperature sequences [50]. The research pertinent to
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CBM and fault prognostics in solar power projects is still at an inchoate stage and 
requires further studies to be conducted. 

4 Resources (ML Algorithms and Datasets) 

4.1 AI/ML Algorithms 

In this section, we provide an overview of some of the most commonly used AI/ML 
algorithms for different applications in renewable energy. For better arrangement, 
the algorithms are categorized into four categories, namely fuzzy logic, hidden 
Markov models (HMMs), classical ML algorithms, and neural networks (NNs). In 
the following subsections, we provide a detailed overview of each of the categories. 
Moreover, a summary of some of the recent methods from each category is provided 
in Table 1. 

Table 1 Sample works based on each type of ML algorithm discussed in this section 

Ref. ML Model Application Description of the method 

[54] FL & NNs Solar 
forecasting 

It is a hybrid solution combining FL and NNs for 
solar forecasting. FL is mainly used for 
pre-processing to correlate key features including 
cloud cover, wind speed, and temperature 

[55] FL Fault detection Relies on FL for comparing electrical parameters 
against the theoretical parameters to identify 
faulty PV components 

[58] HMMs Fault detection It is a two-step solution where initially PCA is 
used to extract and select relevant features. An 
HMM is then trained on the extracted features for 
the detection and classification of faults 

[57] HMMs Energy 
consumption 
forecasting 

Relies on HMMs to deal with the heterogeneous 
data collected from different sensors for 
forecasting a day-ahead load 

[46] SVMs Fault detection An SVMs classifier, under three different 
experimental setups, is trained on multi-modal 
features obtained through different sensors for 
fault detection in wind turbines 

[60] RF Energy 
consumption 

Relies on an ensemble of RF classifiers that are 
trained on features extracted through fast Fourier 
transform 

[66] CNN & LSTM Energy state 
prediction 

Relies on a hybrid CNN-LSTM-based framework 
for energy state prediction from sequences of 
battery’s state of energy and other observable 
parameters of the mobile edge computing systems 

[67] Power forecasting CNN & LSTM Relies on two different hybrid models including a 
CNN-LSTM and a ConvLSTM trained on 
uni-variate and multivariate datasets for 
forecasting power production of a 
self-consumption PV plant
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4.1.1 Fuzzy Logic 

Fuzzy logic (FL) represents a subset of AI algorithms that are inspired by the 
reasoning capabilities of a human. Similar to humans, FL techniques take into 
account various intermediate possibilities (i.e., degrees of truth) between 0 and 
1 [51]. An FL architecture is mainly composed of four components: namely: (i) 
rules, (ii) fuzzification, (iii) inference engine, and (iv) defuzzification. The first 
component (i.e., rules) contains a list of rules and conditions (if-then) provided by 
domain experts. The second component converts inputs (sensor data) into fuzzy sets. 
The inference engine then determines/decides rules and actions to be performed 
based on the degree of match between fuzzy input and the rules. Finally, fuzzy sets 
are converted back into crisp values in the defuzzification process. 

FL techniques have been adopted in several types of AI systems in different 
application domains, such as medicine, autonomous cars/vehicle intelligence, bio-
informatics, consumer electronics, and aerospace [52]. FL techniques have also 
been widely exploited for different applications of AI for renewable energy [2, 53]. 
Some key applications of FL in the renewable energy sector include prognostics 
maintenance, site selection for solar power, solar forecasting, and forecasting energy 
consumption. For instance, Sivaneasan et al. [54] proposed an NNs and FL-based 
framework for solar forecasting. The FL-based techniques are mainly used to find a 
correlation of key features, such as cloud cover, temperature, wind speed, and wind 
direction, with irradiance value. Similarly, Zaki et al. [55] proposed a fault detection 
framework for solar power systems relying on FL to detect and differentiate eight 
different types of faults in solar systems. Lau et al. [56], on the other hand, utilize 
FL for forecasting energy consumption in a manufacturing system. The framework 
mainly monitors and analyzes the consumption of energy by the manufacturing plant 
when the functionality/operations of certain production units vary. 

4.1.2 Hidden Markov Models (HMMs) 

HMMs are state-space models that model the evolution of observable events 
depending on some non-observable internal factors (hidden states). The observed 
event is known as a “symbol,” while the non-observable factors are called “states.” 
We note that HMMs could be used in applications with an observable event “Y” 
and the non-observable factor/event “X” where the outcome of “Y” is influenced by 
the outcome of “X” in a known way. In such situations, the goal is to explore the 
outcome of “X” by observing “Y.” Moreover, the outcome of “Y” at .t = t0 must 
only depend on the outcome/value of “X” at time .t = t0, and the outcome of both 
“Y” and “X” at time .t < ti should not have any impact on the outcome of “Y” at 
.t = t0. This implies that the value of “Y” should not depend on the historical values 
of “X” at any stage. 

The literature reports several variations of HMMs, such as profile-HMMs, 
maximum entropy Markov models (MEMM), pair-HMMs, and context-sensitive 
HMMs. HMMs and their variations have been proved very effective in different
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application domains, such as speech analysis, text recognition, machine translation, 
and activity recognition. These types of AI algorithms are more effective in 
applications with sequential and time-series data. 

There are several applications of AI in renewable energy that involve analysis 
of sequential and time-series data, such as predictive maintenance (predicting the 
remaining useful life of machines), forecasting energy consumption, and load 
monitoring. The literature already reports several interesting works in this direction. 
For instance, Bajracharya et al. [57] proposed a HMMs-based energy forecasting 
framework for predicting a day-ahead load of a data center. The basic motivation 
behind the proposed solution is to take advantage of HMMs’ capabilities of dealing 
with heterogeneous data in a better way. Kouadri et al. [58], on the other hand, 
employ HMMs for fault detection in wind energy converter systems. As a first step, 
the authors use principal component analysis (PCA) to extract and select relevant 
features. Subsequently, an HMM is trained on the extracted features for the detection 
and classification of faults. 

4.1.3 Conventional ML Algorithms 

Conventional ML algorithms, which are also called traditional ML algorithms, 
represent a subset of ML algorithms that work on features generally extracted 
by human experts of a domain. These algorithms can be used for several tasks 
including classification, regression, clustering, and dimensionality reduction. The 
literature reports a diversified set of traditional ML algorithms, such as support 
vector machines (SVMs), decision trees, random forest (RF), nearest neighbors, 
K-means, and Bayes algorithms. Traditional ML algorithms possess several key 
characteristics that make them a preferable choice for different applications. These 
characteristics include simplicity in terms of concepts/understanding and imple-
mentation. More importantly, these algorithms are interpretable/explainable that 
bring several advantages to critical and human-centric applications [7]. For instance, 
interpretable ML models not only result in better failure analysis but also allow an 
opportunity to further improve the models’ performance by tuning them [59]. 

Most of the initial efforts on intelligent analysis via AI/ML in the energy sector 
are based on classical ML algorithms [2]. In this regard, the traditional classification 
algorithms, such as SVMs, RF, and Bayes classifiers, and clustering techniques, 
such as K-means, self-organizing map (SOM), and Gaussian mixture model (GMM) 
clustering algorithms, are widely exploited for different tasks in the domain. The key 
applications of renewable energy where traditional ML algorithms have been shown 
very effective include prognostic maintenance, energy consumption forecasting, 
weather forecasting, and other smart grid applications. For instance, Santos et 
al. [46] employed an SVMs classifier under three different experimental setups for 
fault detection in wind turbines. The classifier is trained on multi-model features 
including data from different types of sensors. Similarly, Li et al. [60] rely on RF  
for forecasting energy consumption.
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4.1.4 Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs), which are also called neural networks, represent 
one of the most commonly used families of AI/ML algorithms. ANNs are mainly 
inspired by the biological neural system where different algorithms are used to 
identify hidden patterns in data. Similar to a human brain, ANNs are composed 
of connected units namely “neurons,” which are also known as “nodes” and are 
based on a mathematical function (i.e., activation function) that collects input 
data, performs mathematical operations, and produces output according to specific 
criteria. These neurons are arranged in layers. A typical ANN (i.e., feed-forward 
NN) generally consists of three types of layers, namely: (i) input, (ii) hidden, 
and (iii) output layers. ANNs with a single hidden layer are called single-layer 
perceptrons, while the ANNs with multiple hidden layers are called multi-layer 
perceptrons. 

There are different types of NNs, such as convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), and feed-forward NNs, each with a specific set 
of characteristics. For instance, CNNs are more useful for image analysis. Similarly, 
RNNs have been proved more effective for sequential and time-series data [4]. 

In the renewable energy sector, due to the nature of the data, RNNs are most 
commonly used for different tasks. Among RNNs, long short-term memory (LSTM) 
and bidirectional LSTM (bi-LSTM) are widely exploited for different tasks in AI 
applications for renewable energy. Some key applications where LSTM and bi-
LSTM have been very effective include prognostic maintenance [2], forecasting 
energy consumption [61], the impact of climate change on renewable energy 
resources, risks assessment of renewable resources [62], and forecasting solar 
power [63]. CNNs are also widely utilized for different applications in the renewable 
energy sector. CNNs are most used for image-based solutions in the domain. 
Some key applications of AI for renewable energy where CNNs could be useful 
include image-based prognostic maintenance of renewable energy systems [2] and 
power load forecasting [64]. The literature also reports several hybrid solutions 
combining CNNs and RNNs (LSTM) for different tasks in the domain. These hybrid 
solutions allow to extract spatio-temporal features that result in better classification 
performances [65]. For instance, Ku et al. [66] proposed a CNN-LSTM-based 
solution for predicting the state of energy to avoid battery overcharging and 
discharging. Similarly, a CNN-LSTM model is proposed by Agga et al. [67] for  
the prediction of power production of a self-consumption PV plant. 

4.2 Datasets 

The applicability of ML algorithms in a domain largely depends on the availability 
of quality data. It is therefore important to provide the readers with a list of publicly 
available datasets for each application of ML in the renewable energy sector. The
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literature reports several datasets; however, most of them are not publicly available. 
Thus, in this section, only publicly available datasets are covered. 

4.2.1 Forecasting Energy Supply, Demand, and Weather 

Forecasting energy supply and demand is one of the key applications of renewable 
energy that benefited from ML algorithms. It generally involves processing a huge 
amount of weather data for meaningful insights, such as weather forecasting, mainly 
due to the dependency of renewable energy sources on climate changes [68]. Due to 
this connection, weather data are considered along with other factors for forecasting 
energy supply and demand. In this section, we discuss some of the publicly available 
datasets containing energy consumption and weather data for forecasting energy 
demand and supply via ML algorithms: 

• ENTSOE Dataset [69]: The dataset provides statistics on electrical consump-
tion, generation, pricing, and weather data for Spain collected from different 
sources for 4 years. The consumption and energy generation data are obtained 
from ENTSOE, which is a public portal for transmission service operator (TSO) 
data. The pricing and weather data, on the other hand, are obtained from the 
Spanish TSO Red Electric Espana and an open weather API, respectively. One 
of the key characteristics of the dataset is the hourly consumption data and the 
corresponding forecasts by the TSO for consumption and pricing, which can be 
used as a baseline for the underlying ML solutions. Moreover, the objectives of 
the dataset are multi-fold. For instance, it could be used for: (i) visualization 
of load and supply data, (ii) analyzing the impact of weather and major cities 
on the energy supply, demand, and price, and (iii) forecasting hourly and daily 
energy supply, demand, and price, etc. The dataset is provided in two separate 
files namely the energy dataset and weather features. 

• Daily Electricity Price and Demand Dataset [70]: The dataset provides 
statistics on the daily electricity price and demand in Victoria, Australia. The 
dataset provides prices and demands for a total of 2016 days from January 1, 
2015 to October 6, 2020. The feature set is composed of 14 different features 
including date/day entries, price, demand, temperature, solar exposure, and 
rainfall information. For price and demand, it provides values of daily, negative, 
and positive recommended retail price (RRP). For temperature, both max and 
min values are provided. 

• Half-hourly Electricity Demand Dataset [71]: This dataset is also based on the 
data collected in Victoria, Australia; however, it aims at operational demands. 
The operational demand represents the demand for energy met by local and 
semi-scheduled generating units having an aggregated energy higher than 30 
MW as well as by energy sources/energy imported to the region. The dataset 
provides a total of 52,608 data samples/records each containing five different 
fields of information (i.e., features). These fields include the date, time, electricity
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demand in megawatts, temperature, and a binary field indicating public holidays 
and working days. 

• Building Data Genome 2 (BDG2) Dataset [72]: It is an open dataset containing 
data samples (readings) from 3053 different energy meters installed in 1636 
different buildings. The data are collected over two years by measuring meter 
readings on an hourly basis. The dataset provides measurements of electricity 
consumption, heating, and cooling water, steam, and irrigation meters. The 
dataset is also used for great energy predictor III (GEPIII) organized by 
ASHRAE (American Society of Heating and Air-Conditioning Engineers). The 
dataset also provides weather and other additional information in the form of 
meta-data. The meta-data file is comprised of 30 different features including key 
information, such as building ID, site ID, timezone, latitude, longitude, and the 
number of floors and occupants in the buildings. 

• ISHRAE Weather Dataset [73]: The dataset covers weather data from 62 
different locations in India. The dataset is developed by White Box Technologies 
by collecting weather data from multiple sources, including the Indian Bureau 
of Meteorology (IBM), the US National Center for Environmental Data (NCEI), 
and satellite-derived solar radiation data. 

• Hourly Energy Demand Generation and Weather [74]: The dataset provides 
electrical consumption, generation, pricing, and weather data for Spain recorded 
for 4 years. The data are collected from different sources including ENTSOE (a 
public portal for Transmission Service Operator (TSO)) and Spanish TSO Red 
Electric España. The former provides consumption and generation data, while 
the latter is the source of settlement prices. The weather data, on the other hand, 
are obtained from the Open Weather API for the 5 largest cities in Spain. 

• Household Electric Power Consumption [75]: The dataset provides readings 
of electric power consumption in one household for 4 years. The readings are 
collected at a sample rate of a one-per minute. It includes readings of different 
electrical quantities as well as sub-metering values. The feature set includes 
date, time, global active power, global reactive power, voltage, global intensity, 
sub-metering (includes readings of kitchen containing a dishwasher, an oven, 
and a microwave), sub-metering 2 (includes laundry room containing a washing 
machine, a tumble drier, a refrigerator, and a light), and sub-metering 3 (includes 
an electric water heater and an air conditioner). 

4.2.2 Smart Grids 

The literature also provides several datasets to train and evaluate ML algorithms for 
a diversified set of operations in smart grids. Some of the publicly available datasets 
in the domain include: 

• Electrical Grid Stability Simulated Dataset [76, 77]: This is a simulated  
dataset for local stability analysis of the 4-node star system. The system 
represents a decentralized smart grid control unit implementing demand response 
without significant changes to the infrastructure. The dataset provides a total of
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10,000 data instances each covering 14 attributes including 11 predictive, 1 non-
predictive, and a couple of goal attributes. These attributes include reaction time 
of energy producers and consumers, power balance (producers and consumers), 
and price elasticity coefficient (gamma) of energy producers and consumers. 

• SustDataED2 Dataset [78]: The dataset provides smart meter data, which could 
be useful to train and evaluate ML algorithms for several applications in smart 
grids. The dataset provides energy consumption data of individual appliances as 
well as aggregated consumption of one household in Portugal for 96 days. The 
data are collected through plug-wise sensors installed at 18 different appliances 
at 0.5 Hz. Moreover, the data are annotated in a semi-automatic way where 
first event detection algorithms are used to identify each appliance’s events. 
The events are then manually inspected to verify the labels. The ground truths 
are provided for both individual appliance consumption and aggregated energy 
consumption for the house in separate CSV files. 

4.2.3 Condition Monitoring and Prognostics Maintenance 

Predictive maintenance is one of the key applications of ML for renewable energy 
systems. In this application, both accelerometer data and endoscopic images can be 
used. Some publicly available datasets for the application are: 

• Vibration Signal Dataset [79]: The dataset provides a large collection of data 
samples (approximately 16,384 instances), generated at a sample rate of 12.8K 
samples per second, from six different wind turbines. Although all the samples 
are generated with the same specification of the wind turbines, the data are 
organized into six different files each containing data samples generated by a 
separate turbine. Moreover, the signals are segmented to obtain uniform segments 
each 1.28 s long. The dataset also provides additional information along with the 
signal segments. This includes key features, such as the duration for which the 
data are recorded and the turbine’s speed. 

• Wind Generator Dataset [80]: The dataset is used for the predictive main-
tenance of wind turbine generators. The dataset provides a diversified set of 
features covering different aspects of wind turbine generators. In total, each 
data sample is composed of 101 different features and a single label field 
with two possible values representing the status of the component either faulty 
or normal [80]. The feature set can be roughly divided into environmental 
conditions (e.g., operational time and wind speed), measurements for wind 
turbine components (e.g., average rotations per minute), and electrical variables 
(e.g., voltage, current, and frequency). 

• Gearbox Raw and Elaborated Data [81]: The dataset is provided in two 
different forms including a collection of raw gearbox signals and a set of 
computed features, which is also called elaborated data. Both types of data could 
be used for predictive maintenance depending on the nature of ML algorithms. 
The elaborated dataset contains statistical features, such as the standard deviation 
of accelerations computed at different intervals/frequencies. In the current form,
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the elaborated dataset provides data samples at the frequencies of 10, 100, 
and 1000 consecutive data points. Each data sample is annotated as either a 
healthy or broken component. We note that the data are generated in a simulated 
environment through a simulator, namely SpectraQuest by placing four sensors 
placed at different points. Moreover, the dataset also provides data with different 
loads ranging from 0 to 90%. 

• Wind Turbine Failure Detection [82]: The dataset is meant for early-stage 
failure detection in wind turbines. The dataset provides data on five different 
components of wind turbines including gearbox, generator, generator bearing, 
transformer, and hydraulic group. The data are collected through different sensors 
placed at five different wind turbines for two years at a time interval of 10min. 
The resultant dataset is composed of 81 different features including different 
environmental factors. Moreover, the data are provided in separate training and 
test set. 

• Grid-connected PV System Faults (GPVS-Faults) Dataset [83]: This data 
is also generated in a simulated environment under sixteen different simula-
tion/experimental settings. The data samples generated in each experimental 
setup are provided in a separate file. Moreover, the dataset provides a deeper 
annotation hierarchy including: (i) faulty and non-faulty classes (i.e., containing 
fault-free samples), (ii) types of faults (a total of seven types are covered), and 
(ii) operational modes, namely limited and maximum power modes. Moreover, 
the feature set is composed of eleven features including time and various types 
of current and voltage measurements. 

5 Challenges and Open Research Issues 

In this section, some of the key open research issues and challenges associated with 
the successful deployment of ML algorithms for renewable energy applications have 
been discussed. 

• Availability of Data for Training and Evaluation: The energy sector is one 
of the application domains that lack quality annotated data for the training and 
evaluation of ML algorithms for different tasks. To overcome this issue, the 
literature reports some efforts for synthesized datasets where data samples are 
generated in a simulated environment. Though these datasets have been proved 
effective in training ML models for different tasks, it is very hard to replicate 
real-life scenarios in a simulated dataset that may affect the performances of the 
models in real-life applications. Moreover, the generation of these datasets in a 
simulated environment is also very expensive and requires a lot of effort. 

• Feature Engineering: In the energy sector, multi-modal data are usually col-
lected through different types of sensors. The selection of the most appropriate 
and informative features from the heterogeneous data is a challenging and time-
consuming job. Moreover, it requires deep knowledge of the domain and a
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complete understanding of the data collection process and environmental factors. 
Though deep-learning-based solutions generally do not involve a feature selec-
tion process, it is a critical process for classical ML algorithms. Moreover, the 
recent shift toward explainable AI solutions has further increased the importance 
of the feature engineering/selection process [2]. 

• Adversarial Attacks: In the modern world, adversarial attacks, which involve 
crafting a receivable input sample to misguide or disturb the predictive capabil-
ities of an ML model, are one of the biggest threats to ML-based solutions in 
critical applications [7, 84]. Renewable energy is one of the critical applications 
of ML where risks associated with a wrong prediction of an ML model are 
generally very high. Since most ML models including classical and deep learning 
models are prone to adversarial attacks, the development of robust ML models 
for renewable energy applications is the way forward. 

• Integration of Traditional Power Systems in Smart Grids: The fast-paced 
development of distributed renewable generation sources and microgrids has 
resulted in the increased development of smart grids, whereas the traditional 
power systems still use the old infrastructure for energy distribution. Integration 
of these traditional power systems in the smart grids has given rise to more 
uncertainties and complexities for the modern smart grids. This means that smart 
grids now have to handle an even larger quantity of data, which is still a challenge 
for them [85]. More research needs to be done to increase the adaptiveness, 
robustness, and online processing capabilities of the AI algorithms to effectively 
handle such a large volume of diversified data. 

• Cyberattacks: As compared to the traditional grids, smart grids opt a two-way 
communication with multiple integrated devices, which is a lucrative target for 
cyber attackers. Significant research has been done to develop AI models that 
can effectively identify the cyber risks; however, smart grids are still prone to 
a wide variety of attacks [86]. A trade-off is therefore to be made between the 
performance of AI algorithms and the security of the smart grids. 

• Power Curtailment: As compared to other sources of energy, VRE such as 
solar and wind power projects has got relatively low-capacity factor. To meet 
the demand during peak hours, these projects are over-built in terms of capacity. 
At times usage or storage of the excess energy is not possible. Therefore, access 
to energy is being reduced or curtailed. This is not only a monetary wastage but 
also a wastage of energy. Effective utilization of curtailed energy is still a big 
challenge for the VRE systems. 

• Load Control: Currently, the power system operates in a fashion where the 
load is being adjusted according to the demand of the energy. This limits the 
dependence on VRE because it is a variable generation. Therefore, the need for 
curtailment and reduced generation is also there. This challenge can be addressed 
if the power systems are designed in a way that instead of matching the load, 
energy shall be utilized only when there is a VRE generation in the grid. A 
paradigm shift from load control to demand control is therefore needed. Hence, 
controllable and responsive loads being one of the most underutilized reliability 
resources can balance the demand and supply over all time frames ranging from 
seconds to seasons.
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6 Conclusions 

This chapter discusses the key applications of ML and AI for renewable energy 
by providing a detailed overview of challenges, available resources in the form of 
datasets and ML algorithms, and potential future research directions. The chapter 
discusses how AI and ML algorithms can help in forecasting future events, states, 
and processes associated with renewable energy. Moreover, an overview of some 
of the key applications of AI and ML in smart grids and prognostic maintenance is 
also provided. The literature shows that AI and ML can play a vital role in further 
enhancing the productivity and management of renewable energy resources. Despite 
being widely explored over the last few years, several aspects need to be considered 
to fully explore the potential of AI and ML in the renewable energy sector. 
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