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Foreword 

During the past decade, different analytical tools of applied mathematics, data 
science, information science, and statistics have gained the attention of numerous 
researchers and practitioners from all over the world, providing a strong impact on 
information technology, finance, engineering, and computer science applications. 
The purpose of this book, Advances in Artificial Intelligence for Renewable Energy 
Systems and Energy Autonomy, is to inquire, reflect, and comprehensively expose 
the rapidly growing field of artificial intelligence (AI) research in the important field 
of investigation and high-performance facilities for original, innovative, and novel 
real-world applications in the modern world and the area of renewable energy. 

Nowadays, artificial intelligence and Internet of Things (IoT) are two burgeoning 
technologies, full of promise for businesses in all industries. However, the real 
potential of these two technologies is probably their convergence, which would lead 
to a new paradigm of information and knowledge. These technologies are standing 
on the frontline of technological and scientific enhancements that represent real and 
potential transitions within smart and sustainable living. While environmental issues 
and the need for new managerial concepts remain at the forefront of operational 
research, renewable energy has become an important area of study. Moreover, while 
smart technology continues to rise while being refined, its applications broaden and 
enhance their potential impact on regime switching and paradigm shifts, and even 
revolutionize views and entire projects about sustainability. This potential can be 
fully realized only with a thorough comprehension of the most recent breakthroughs 
in the fields of renewable energy and energy autonomy in and of themselves. 

Conventional energy sources have drawbacks, such as environmental degradation 
and global warming, that have led to the development of clean energy sources 
to satisfy power demand. Optimization and decision-making must find out and 
propose methods of power generation that are not only environment-friendly but 
also implementable with moderate complexity. The solutions should be accepted by 
organizations and governments. In such situations, machine learning techniques can 
make a big difference and emerge as a major tool in the future, as represented in this 
book in impressive ways. 
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viii Foreword 

This book, Advances in Artificial Intelligence for Renewable Energy Systems and 
Energy Autonomy, is a global innovative research compendium that explores the 
recent steps forward in the direction of smart applications in sustainable modern 
and future industries, economies, and societies. This book focuses on dealing with 
the most recent issues in areas that integrate smart technology, alternative energy 
sources, and the methods and models associated with them through mathematical 
optimization. This edited collection of interesting and exciting research chapters 
has been proposed, prepared, reviewed, and successfully completed. Covering 
a wide scope of themes, including machine learning applications and neural 
control, evolutionary algorithms, electric charging, MPPT, and ecology, this book 
is designed and well suited for both professionals and researchers working in the 
emerging areas of energy efficiency, energy saving technologies, RES-based energy 
supply systems, and different kinds of renewable technologies. 

I express my thanks to the publishing house EAI-Springer Publishing and to 
the editors, Prof. Dr. Mukhdeep Singh Manshahia (Punjabi University, Patiala, 
India), Prof. Valeriy Kharchenko (Federal Scientific Agro engineering Center, VIM, 
Moscow, Russia), Prof. Dr. Gerhard-Wilhelm Weber (Poznan University of Tech-
nology, PUT, Poznan, Poland), and Prof. Dr. Pandian Vasant (MERLIN Research 
Centre, Ton Duc Thang University, Vietnam), for providing this opportunity for 
many experts to publish their research achievements and contributions. 

I wish all of you much joy in reading this exciting work, and hope that great 
benefit is gained from it, both professionally and socially. 

Sincerely yours, 

Ex. Dean (Research & Consultancy), Mayank Dave 
National Institute of Technology, Kurukshetra India 



Preface 

Requirements for problem-solving are exponentially increasing in demand. New 
technologies in artificial intelligence (AI), data analytics, big data, and innovative 
optimization have reduced the dimension of data coverage worldwide. Thus, recent 
inventions in data science have inched toward reducing the gaps and coverage of 
domains. Specialized software solutions and sophisticated models have been devel-
oped to handle data quantity and diversity. In turn, this has given rise to articulated 
software architectures that combine diverse components and interact successfully. 
The digging of information in large data and soft-computing techniques has con-
tributed to the strength of prediction, analysis, and decision potentials in niche areas, 
such as smart cities, renewable energy, agro-engineering, operational research, 
computational intelligence, data technology, engineering management, social com-
puting, Internet of Things (IoT), and green computing. Nurturing research in data 
technology and smart computing will help to find the correct pattern in the ocean of 
data. This book covers a broad range of green energy-related topics, including the 
emerging fields of neuro-computational models and simulations under uncertainty, 
such as fuzzy-based computational models and fuzzy trace theory, stochastic neural 
computation, and neural/brain modeling with stochastic differential equations and 
stochastic regime models. 

The book includes a description of a series of case studies for the investigation 
of new technological methods and technical means that ensure the organization 
of renewable energy systems with the application of the above-mentioned com-
puterized approaches, optimization, and modeling processes that should accelerate 
and make cheaper the path from new ideas to their practical implementation. 
Definite attention has been paid to works aimed at organizing an efficient production 
process and social comfort in the face of scarcity of energy resources and the 
need to rationally use them. In general, the book is intended to represent broad 
public advanced achievements in the field of electro-technologies, renewable energy 
sources (RESs), and energy autonomy, which will be useful to a wide range of 
readers and have a positive impact on sustainable development. 

The target audience of this book comprises professionals and researchers work-
ing in the fields of energy efficiency, energy-saving technologies, RES-based energy 
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x Preface 

supply systems, and different kinds of renewable technologies. Moreover, the book 
will provide insights and support executives concerned with the development of 
renewable energy systems in new territories and their sustainable development. 
The book will be useful to a wide range of persons, such as students of agro-
engineering and power specialties, experts and heads of municipal unions, managers 
of ministries, and other organizations responsible for the development of new smart 
territories. 

The book comprises 13 chapters, presenting recent advances in AI for renewable 
energy systems and energy autonomy with a variety of models, algorithms, and 
application domains. They represent United States, Russia, India, Ethiopia, South 
Africa, Vietnam, Uzbekistan, Pakistan, Ireland, Italy, and Mauritius. This worldwide 
representation clearly demonstrates the interest of the global research community to 
this book. A brief overview of the chapters is presented below: 

In Chap. 1, the authors discuss various methods for calculating the electrical load 
of agricultural objects based on the available initial data and different options for 
supplying it using a solar photovoltaic system. Information on methods for calcu-
lating the electrical loads of agricultural consumers was analyzed and systematized 
according to the necessary initial data. 

Chapter 2 proposes a radial basis function neural network (RBFNN)-based 
controller as a maximum power point tracker (MPPT) to extract the maximum 
power available from the wind. The proposed controller is used for wind turbines 
to produce maximum power output by adjusting the duty cycle of the converter. 
The control tracks the optimal rotor speed of the wind energy conversion system 
(WECS) to provide maximum power above and below the rated speed of the 
wind turbine. MATLAB/SIMULINK-based simulations provided better results in 
compression with FLC and MLFFNN. 

Chapter 3 presents a unique configuration for the future development of an 
all-wheel drive (AWD)–plug-in hybrid electric vehicle (PHEV), which has a 
mechanical connection to both the front and rear axles. The control methodology 
is designed for renewable energy sources to help reduce greenhouse gas emissions 
from car tailpipe exhausts and contributes to the preservation of the environment, 
thus reducing the severity of global warming. This AWD–PHEV configuration 
offers optimal vehicle performance in three different driving modes [electric 
vehicle (EV), series, and parallel]. The chapter covers the development of the 
complete model for implementation of the AWD–PHEV, including all powertrain 
components/controllers, accessories, cooling systems, and a hybrid control strategy 
designed inside the supervisor hybrid controller unit (HCU). Simulation results 
were obtained during the US06 driving cycle to illustrate the vehicle’s performance, 
energy consumption, efficiency, and performance of the powertrain components. 

Chapter 4 explores the existing flexibility management techniques and some 
crucial areas of AI deployment in energy management systems toward meeting 
the flexibility needs of modern energy supply systems. The outputs of renewable 
energy generators are intermittent, and thus create an imbalance between the 
instantaneous load demand and available supply at different instances of time. 
Different concepts of AI are deployed as a solution provider to numerous complex 
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Preface xi 

power system operational problems, especially in resource forecasting, electricity 
market dynamics prediction, intelligent decision-making for generator scheduling, 
etc. 

Chapter 5 provides a detailed overview of some key applications of AI and 
machine learning (ML) for renewable energy, with a particular focus on challenges, 
available resources, and potential future research opportunities. In detail, this 
chapter discusses AI and ML applications in weather forecasting, power produc-
tion, energy consumption forecasting, smart grids, and prognostic maintenance of 
renewable energy systems. An overview of the most commonly used AI and ML 
algorithms in the domain, along with a detailed description of some of the publicly 
available datasets for training and evaluation of these algorithms to perform different 
tasks in the renewable energy sector, is also provided. 

Chapter 6 describes an integrated approach for solving existing problems in 
the development of new technologies for the smelting of technical silicon, which 
can reduce energy costs, improve product quality, and reduce the severity of 
environmental problems in this production. Methods to increase the profitability of 
carbothermal electric arc melting of technical silicon are described by returning to 
the process of fine waste from the preparation of charge materials and microsilica-
dusty wastes from the production of silicon itself in the form of briquettes. The 
use of these pulverized wastes for the synthesis of liquid glass glue, concrete 
and building mixtures, and micro- and nano-sized silicon carbide powders is also 
discussed. 

Chapter 7 suggests metaheuristic-based methods of simultaneous reconfiguration 
of the distribution network and photovoltaic system placement (RDN-PVSP) to 
minimize the power loss of the distribution network (DN). To search for the optimal 
RDN-PVSP solution, two algorithms, namely, the recent Golden Jackal optimiza-
tion (GJO) and well-known particle swarm optimization (PSO), are applied. The 
performance of the two methods was validated on two test DNs consisting of 33-
buses and 69-buses in two cases: RDN and RDN-PVSP, respectively. The results 
showed that GJO outperformed PSO in terms of the optimal solution and statistical 
results. 

Chapter 8 discusses the technology of smelting one of the well-known modifi-
cations of multisilicon, namely, secondary cast polycrystalline silicon, and options 
for its application for production of a solar cell and the manufacture of heavily-
doped silicon substrates. The proposed multisilicon is intentionally subjected to 
overdoping, which must be carried out by adding one or a group of impurities to 
the solubility limit and simultaneously using a charge from a mixture of the highest 
grades of technical silicon. It is emphasized that film growth, as the base region 
of solar cells, should be carried out under conditions of guaranteed suppression of 
autodoping by known methods. 

Chapter 9 presents a critical analysis of ML methods and techniques for 
renewable energy systems, showing the advantages of introducing these novel 
approaches in future energy scenarios by discussing relevant case studies. ML helps 
obtain accurate predictions of variable renewable energy (VRE) generation, energy 
demand, or possible network outages, conferring to power system operators the 
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xii Preface 

possibility to perform the required actions to balance load and generation in intra-
day and day-ahead scheduling with benefits for operational costs, environmental 
impact, and system reliability. 

In Chap. 10, a customer baseline load (CBL)-centered electricity cost optimiza-
tion model is implemented to minimize electricity cost and peak power demand. The 
proposed algorithm has been successfully validated on smart-home residential loads 
of various categories, as well as real data of static and dynamic electricity pricing 
applicable to two utilities, the Tehran Power Distribution Company, Iran, and the 
Kerala State Electricity Board (KSEB), India. The proposed algorithm validates its 
performance in minimizing electricity cost and peak power demand simultaneously, 
and optimal scheduling of appliances facilitates both residential consumers and 
utilities. 

In Chap. 11, the placement of photovoltaic generators (PVGs) and wind power 
generators (WGs) in distribution networks is optimized for both size and location 
to minimize the power loss as much as possible. An IEEE 85-bus radial distribution 
power network was employed to simulate the effectiveness of PVGs and WGs. 
The optimal solutions to the problem are determined by applying three novel 
meta-heuristic methods, including Northern Goshawk optimization (NGO), Bonobo 
optimizer (BO), and transient search optimization (TSO). By evaluating the results 
obtained from these methods, NGO proved to be the most effective, and its 
performance was superior to both BO and TSO in all compared criteria, such as 
minimum loss value (Min.loss), mean loss value (Mean.loss), maximum loss value 
(Max.loss), and the standard deviation (STD). 

Chapter 12 documents some properties of a new modification of the well-
known semiconductor material silicon, the so-called granular silicon being a silicon 
powder of a given grain size, whose particles are not sintered or fused but simply 
mechanically pressed together with a known force. The newmaterial has shown high 
radiation resistance and stability in the parameters of heat energy converters made 
by subjecting it to high-intensity laser radiation. Methods for reducing granular 
silicon resistivity are discussed, and designs of thermal energy converters using 
natural or man-made heat, including concentrated solar radiation as a heat source, 
are presented. 

Chapter 13 considers two evolutionary algorithms: the genetic algorithm (GA) 
and particle swarm optimization (PSO) to solve constrained unit commitment 
problems in a power system. Renewable resources, such as wind power, are 
incorporated into the system. Given the fluctuating and intermittent nature of the 
wind, different wind scenarios were considered. The wind power and its associated 
probabilities were derived using a universal generating function (UGF). Constraints, 
such as the generation limit, power balance, minimum up time and down time, were 
considered. The transmission losses were considered, and in certain cases, a security 
constraint was applied. The GA and PSO were tested on an IEEE 6-bus system and 
an IEEE 30-bus system to confirm their effectiveness. The results were compared 
based on the total costs, and numerical results suggested that the PSO was slightly 
better than the GA. 
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Preface xiii 

The editors strongly believe that the information obtained from this book will 
undoubtedly be interesting and useful for a wide range of readers, beginning from 
students to exalted scientists. This edition should disseminate new information 
among interested scholars, engineers, professors, and students involved in the 
renewable energy industry, as well as intelligent computing activities in different 
fields of science and engineering. 

Patiala, India Mukhdeep Singh Manshahia 
Moscow, Russia Valeriy Kharchenko 
Ankara, Turkey Gerhard-Wilhelm Weber 
Ho Chi Minh City, Vietnam Pandian Vasant 
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General Approaches to Assessing 
Electrical Load of Agro-industrial 
Complex Facilities When Justifying 
the Parameters of the Photovoltaic Power 
System 

Yulia Daus, Valeriy Kharchenko , and Igor Yudaev 

1 Introduction 

In the period of modern development at various levels of the agricultural manage-
ment system [1], there appears objective need for technological re-equipment and 
modernization of the industry. The main strategic goal of agricultural development 
is the intrusion of digital technologies into the agricultural sector, designing 
digital platforms for the evolution of the agro-industrial complex. The idea of 
agriculture digitalization is quite new, and, despite the high positive potential effect, 
digitalization is used only in the small part of agricultural facilities (5–10%). 
Moreover, consequently, most of the agro-industrial complex and enterprises still 
operate inefficiently, causing the detriment of natural resources, soil quality, and 
low labor productivity [2, 3, 52]. With the growth of the population, enterprises 
are forced to work more intensively, which adversely affects the quality of land 
resources. Soil is worn out, water bodies are depleted and polluted, and livestock 
suffers. Numerous problems and limited opportunities for growth in production 
and product quality objectively contribute to the necessity of introduction of digital 
technologies [4–7]. This can be possible if to use natural resources as efficiently 
as possible at high level of labor productivity and optimization of the personnel 
of various categories, which, in turn, will have a positive effect on the liquidity of 
enterprises [8, 9]. Many scientists dealt with the problems of socioeconomic and 
technological development of the country’s agriculture [10–14]. 
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The main tasks of digitalization are to organize gradual transition of agricultural 
enterprises to a new level through the introduction of digital technologies and to 
search for information for the creation and implementation of regional programs 
for the modern development of the agricultural sector; rapid assessment of problem 
areas in the digitalization of agricultural production; quantitative internal assess-
ment of the prospects for digitalization of agriculture; assessment of the state of 
technological processes in the industry and areas of development; and identification 
of technological barriers hindering the development of the agricultural sector of the 
economy [53]. 

It is also necessary to consider that food security is one of the key objectives 
of sustainable development of the world community. The spread of the COVID-
19 pandemic across the globe revealed an urgent need to support and intensively 
develop the agro-industrial sector of the world economy [1, 10–12]. 

However, any modernization, associated with the use of up-to-date tools [2, 3, 
11, 13, 15], requires additional energy inputs from sources that would meet the 
requirements of high-tech processes introduced into agriculture [2, 5, 6, 16, 17]. 
Today, rural areas are characterized by a shortage of free capacities, which directs 
the search vector towards renewable energy sources, the functioning of which is 
characterized by local characteristics, and the energy generated by them can be used 
directly at the point where consumers are connected to them [18–20]. 

Motivation and significance of the study. However, all this caused an urgent 
need to search for energy supply reserves, since the old engineering systems are 
not designed for the increasing consumer capacity of agricultural producers and are 
characterized by a high level of wear and tear and low reliability [21–23, 48, 50]. 
Therefore, in rural areas, the search for new energy sources is especially relevant, 
for which renewable energy sources are the most promising option, since they are 
universally available and have a simple technological and environmentally friendly 
cycle of work [18, 24, 25, 49]. Low-power generating plants can both be connected 
to existing networks and create distributed generation systems on their basis [18, 
26, 27]. In this case, the most promising are photovoltaic installations, which are 
very easy to maintain and have a long service life and a huge potential as a primary 
energy source [28–30, 47, 64, 65]. 

Given the world’s population growth which is expected to reach more than 9 
billion people by 2050, the global demand for food will drastically rise, threatening 
food security as a critical component of sustainable development. Recent develop-
ments of urbanism and agro-industrialization have imposed pressure on agriculture 
with a decisive role in supplying the global food demand. Statistics reveal that in 
the shadow of the COVID-19 pandemic, world hunger has been increased so that 
the prevalence of undernutrition reached nearly 9.9% in 2020 from the value of 
8.4% in 2019 [68]. 

Human activities are estimated to cause global warming of around 1 ◦C compared 
to preindustrial levels. If warming continues at current rates, it is likely to reach 
1.5 ◦C by between 2030 and 2050. The Intergovernmental Panel on Climate Change 
has reported that the climate-related risks for natural systems will increase if the 
global temperature rise reaches 1.5 ◦C. Despite these upcoming challenges, we
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need to secure the nutrition of an expanding global population while reducing 
greenhouse gas emissions and protecting the environment [67]. The agricultural 
and food processing industries are considered key sectors aligned with sustainable 
development goals, as they play an important role in sustainable rural development. 
About 30% of global energy is used in these sectors, particularly thermal energy in 
both heating and cooling applications. Research considers solar energy technologies 
to be promising ways to increase system flexibility and lead to climate mitigation 
impacts [69]. For many years, solar energy has been utilized in the agricultural sec-
tor to supply energy requirements of various operations from traditional applications 
such as open sun drying and crop cultivation in greenhouses to modern agricultural 
practices using solar-powered farm robots and machinery. After several years of 
research and development in relative technologies, solar energy has been proved to 
be the most compatible energy source for use in agricultural and food production 
systems [66]. 

At the same time, photovoltaic systems for converting solar energy come to the 
fore, characterized by a relatively simple technology for converting insolation into 
electrical energy, environmental friendliness, ease of operation, and maintenance 
[23, 25, 8, 31, 61]. 

When justifying the parameters of the photovoltaic power plant or installation 
for the agricultural consumer, it is necessary to take into account the fact that the 
typical schedule of the electrical load of such a consumer is characterized by day 
and evening maximum load according to the specific technological process, and the 
graph of the coming solar radiation on the receiving surface has its well known, 
different from the consumption graph shape with a maximum at noon [32–34, 45, 
51]. As a result, it is necessary to install duplicate and/or accumulating energy 
sources at the photovoltaic power plant, which leads to additional material and 
financial costs. Therefore, it is necessary to pay special attention to the available 
initial information (the list and capacity of the consumer’s electrical consumers, 
load schedules of the entire enterprise or separately for each outgoing line from the 
substation switchgear, etc.), since this affects the final capacity of the solar system 
and accumulating or redundant devices [29, 35]. 

Having information about the electrical load, the required power of the supply 
system, switching, measuring electrical equipment, and electrical equipment of 
a number of electrical protections, current carrying equipment can be selected 
according to the condition of permissible heating, calculate losses, and voltage 
fluctuations [59]. Depending on the availability of the initial information, specific 
method for calculating the electrical load is used [36–38, 46]. Therefore, the choice 
of the method and source of information for determining the load has a significant 
impact on the parameters of the photovoltaic system. The uniqueness of this study 
consists in the data analysis on costs obtained by practical and computational 
methods. 

Methods for calculating electrical loads are divided into actual and practical 
methods [38–40, 55–62]. Practical methods include empirical (methods of the 
demand coefficient, the coefficient of difference in time of maxima, specific indi-
cators for electricity consumption and load density, two-term empirical expressions,
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technological graph), analytical (methods of ordered diagrams according to the 
principle of the maximum average load and the coefficient of calculated active 
load and the statistical method), and complex (methods of electrical consumption 
of products, professional analysis, forecasting of time series, specific capacities 
of electrical loads, total annual consumption, average annual demand coefficient, 
specific annual consumption of electrical energy) methods. Static voltage stability 
approaches [55], regardless of the complexity and variety of the dynamic behavior 
of the facilities in power systems [56, 57], still present some particular advantages. 
Voltage collapses are always accompanied by a heavy load; therefore, the maximum 
loading point [58], or alternatively the load margin, is regarded as an efficient 
evaluation for the static voltage stability of power systems [59]. Therefore, the 
continuation power flow [54, 56, 57] is presented to solve the parameterized load 
flow formulations with alternating predictor and corrector steps. An improved 
hybrid load flow calculation algorithm and its simplified and approximate version is 
presented in [60, 63] for weakly meshed distribution systems with PV nodes. The 
initial data for each method are presented in Table 1. 

For newly constructed facilities or in the absence of information on the power 
consumption of operated ones, it is recommended to use a stochastic method 
for calculating the electrical load, based on the results of a statistical survey. 
For the agro-industrial complex, guidelines have been designed for calculating 
electrical loads in networks of 0.38–110 kV for agricultural purposes under the title 
“Guidelines for the Design of Agricultural Power Supply System” [40]. 

Guidelines for the design of power supply systems for agricultural facilities are 
a single methodological instruction, presented as a reference material to all design 
organizations, engaged in the design and calculation of electrical loads in 0.38– 
110 kV agricultural networks. These guidelines unify the initial data for calculating 
power grids at different design stages, taking into account the actual load of power 
grid elements (transformers, power lines, etc.). 

The method for determining loads, when calculating electrical networks for 
agricultural purposes, is based on the summation of the calculated loads, presented 
in probabilistic form at the inputs of consumers or on the buses of transformer 
substations for the third settlement year. Estimated loads of residential buildings 
in 0.38 kV networks are determined, taking into account the achieved level of 
electricity consumption for intra-apartment needs and industrial, public, and utility 
consumers – according to the norms. 

Estimated loads in networks 0.38–110 kV are determined, taking into account 
the actual load, achieved by the initial year of the operating transformer substations. 

The design load is considered to be the largest of the average values of the total 
power over an interval of 30 minutes (half an hour maximum), which can occur at 
the input to the consumer or in the supply network for the seventh design year with 
a probability of at least 0.95. 

For a group of electrical consumers with the production cycle interval of 1 year, 
the number of hours of use of the maximum electrical load is applied: during this 
time, a group of electrical consumers, working at maximum load, consumes the 
same amount of electricity as working according to the real load schedule for a
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Table 1 Methods for calculating electrical loads 

Method Initial data 

Empirical (in the absence of technological and operational information) 
1. Demand coefficient 
method 

Rated full power of electrical equipment, kVA 
Cost of electrical receivers, o.e. 
Installed power, total rated electric power of the same type of 
electrical machines, kW 
Rated power, electrical power of electrical equipment at 100% 
load, kW 
Design power, installed power, taking into account the type of 
electrical installation, its mode of operation, and other indicators 
using design factors, kW 
The number of the same type of electrical receivers 

2. The coefficient of the 
difference in timing of the 
maxima 

Designed full power, installed power, taking into account the 
type of electrical installation, its mode of operation, and other 
indicators using design factors, kVA 
Designed active power, installed power, taking into account the 
type of electrical installation, its mode of operation, and other 
indicators using calculated coefficients, kW 
Designed reactive power, installed power, taking into account 
the type of electrical installation, its mode of operation using 
design factors, kVAr 

3. Method of two-term 
empirical expressions 

The largest load, kW 
Additive determined by the Guidelines [40], kW 

4. Methods of specific 
indicators 

Release per unit change 
Electricity consumption per unit of production, kWh 
Shift duration, h 
Specific design load per 1 m2, kW/m2 

Production area, m2 

5. Method of technological 
graphics 

Data of the technological mode of operation of electrical 
receivers 

Analytical (mathematical models of electrical loads and thermal models of conductors) 
1. Method of ordered charts Maximum load factor 

Load utilization factor 
Average (per cycle) power, average value of the total calculated 
active power for a time interval (cycle), kW 
Heating time constant, for conductors up to 1 kV ≈ 10 min 

2. Statistical method Calculation reliability factor 
Load variance 
Average (per cycle) power, average value of the total calculated 
active electrical power for a time interval (cycle), kW 

Complex (calculating electrical loads, it relies on analogues of created and operated 
facilities, using existing calculation methods) 
1. By electrical capacity of 
products 

Electrical capacity of products 
Volume of production 
The number of hours of use of the maximum loads 

2. According to the total 
annual electricity 
consumption W or the 
average annual power 

Number of hours per year, 8760 hours 
Maximum load factor 
Average (per cycle) power, average value of the total calculated 
active electrical power for a time interval (cycle), kW 

(continued)
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Table 1 (continued) 

Method Initial data 

3. According to the specific 
annual electricity 
consumption 

Maximum load factor 
Volume of production 
Number of hours per year, 8760 

4. According to the average 
annual demand coefficient 

Demand factor 
Installed power, total rated electric power of the same type of 
electrical machines, kW 

5. By specific power of 
electrical loads 

Specific design load per 1 m2, kW/m2 

Production area, m2 

6. Time series forecasting Matrix of indicators defined by a time series 
7. Professional logical 
analysis 

Matrix of electrical indicators characterizing the total power 
consumption of the facility 

year (8760 h). The number of hours of using the maximum Tm for power loads of 
enterprises for one shift equals 1500–2000 h/year, for two shift it equals 2500–4000 
h/year, for three shifts it equals 4500–6000 h/year, for continuous operation it equals 
6500–8000 h/year [41]. 

The average hourly active power of load types of enterprises is determined by the 
following formula [41]: 

W = 
Pinst guidelines · Tm 

8760 
(1) 

where Pinst guidelines is the installed power of the consumer according to the 
Guidelines, W. 

For reconstructed objects, in the presence of information about the existing level 
of power consumption, obtained during the survey of consumers, it is recommended 
to use methods for calculating electrical load, based on the drawing up of graphs 
of electrical loads of the consumer. To build a graph of electrical loads, it is 
necessary to know the technological cycle of operation of electrical equipment and 
take into account the full design power in the daytime and evening maximums of 
electrical loads. For industrial consumers of electricity, the calculation of electrical 
load is carried out by the method of the utilization rate of electrical equipment, 
for residential and public buildings; by the method of the demand coefficient, for 
agricultural consumers; and by the method of load factors of electrical receivers. 

The purpose of the research is to study various methods for calculating the 
electrical load of agricultural objects based on the available initial data and different 
options of supplying it by means of the solar photovoltaic system, taking into 
account the peculiarities of the consumer load graph. 

The object of research is the power supply system of the agricultural enterprise 
“Sorghum Plant”, located in Zernograd, Rostov region, Russian Federation (here-
inafter – the enterprise). The general plan of the enterprise is presented in Fig. 1. 

The enterprise is the complex of facilities for storing large quantities of grain in 
the highly mechanized silo-type granary, bringing it to a conditioned state [42].
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Fig. 1 Layout of electrical consumers of the research object 

The main consumers of electrical energy at the facility include drying and 
cleaning tower with the silo 9 (Fig. 1), machine building 7, and warehouse for 
finished products 6. In addition, on the territory there are weighing station 5, 
laboratory 2, checkpoint 4, office building 3, warehouses 1 and 11, workshop 8, 
station of fuels and lubricants 12, gatehouse 13, cargo vehicle unloader 10, and 
emergency and non-electrified structures 19–25. 

The source of electrical energy for the enterprise is the transformer substation 
CTS 10/0.4 with 630 kVA transformer, from which the plant’s consumers are 
supplied through five main radial lines: L1, power consumers 1–5; L2, electrical 
consumers 6–8; L3, electrical consumers 11–13; L4, power consumers 7; and L5, 
power consumers 9. 

2 Materials and Methods 

The difference between the hourly values of the generated and consumed electrical 
energy is determined by the formula: 

δWt = Wt · ηinv − Wtconst , (2) 

where Wt and .Wtconst are the hourly values of electricity generated by photovoltaic 
modules and consumed load, kWh, and ηinv is the inverter efficiency. 

The existing modes of operation of photovoltaic installation can be classified into 
the following types: 

1. The electricity generated by photovoltaic modules is completely consumed by 
the load: δWt = 0. The power distribution equation in such power supply system 
has the form: 

Wtconst = Wt · η. (3)
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2. Photovoltaic modules generate excess electrical energy, and batteries do not need 
to be charged: δWt ≥ 0. The power distribution equation in such power supply 
system has the form: 

Wtconst = Wt · ηinv − Wtnetwork, (4) 

where .Wtnetwork is the electricity, generated by photovoltaic modules to the 
network, kWh. 

3. Photovoltaic modules generate excess electrical energy, and batteries require 
charging: δWt ≥ 0. The value of the power supplied to the battery, taking into 
account the load, is determined by the formula: 

Wab =
(
Wt · ηinv − Wtconst

) · ηcontr, (5) 

where ηcontr is the charge controller efficiency. 
4. In the system, there is not enough electricity generated by photovoltaic modules; 

the difference is covered by batteries: δWt < 0. The power distribution equation 
in such power supply system has the form: 

Wtconst = (Wt + Wab · ηcontr) · ηinv. (6) 

where Wab is the electricity that is consumed by load, covered by batteries, kWh. 
5. The batteries are discharged; the difference is covered by a diesel generator or 

from the network: δWt < 0. The power distribution equation in such power supply 
system has the form: 

Wtconst = Wt · ηinv + Wdg = Wt · ηinv + Wtnetwork. (7) 

There were considered two types of graphs: the first graph is constant with rated 
power of 1.38 kW (lighting system of the flour-grinding areas of the enterprise, 
T = 24 hours; the second graph is according to Fig. 2 (agricultural processing 
enterprise [40]) for rated power of 1.38 kW. 

The necessary calculations of the operating mode of the installation with iden-
tically spatially installed photovoltaic modules, focused on the maximum degree 
of solar energy utilization at noon, when the insolation is the biggest during the 
daylight hours were conducted. 

The graph, presented in Fig. 2, is characterized by two maximum loads: morning 
peak load, which is of 100% of the rated power of the consumer, and the evening 
value of 77% of the rated power of the consumer. 

According to the above-described modes of operation of photovoltaic installa-
tion, there are considered three options for load coverage, using modules FSM-200 
for the layout of the photovoltaic installation [38]: 

Option 1: δW14 ≤ 0 (mode 1) 
Option 2: .

∑21
t=7 Wt ≥ ∑21

t=7 Wt cons (mode 3, 4) 
Option 3: δWbeggining of daylight hours ≥ 0, δWend of daylight hours ≥ 0 (mode 2)
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Fig. 2 Daily schedule of active load of agricultural processing enterprise 

3 Results and Discussion 

3.1 Construction of Annual and Daily Charts of Electric Loads 
by the Calculation Method 

There was determined the total active electric power of the enterprise for the 
estimated production periods: “July–August,” “September–October,” “November– 
February,” “March–April,” and “May–June,” which allows to build annual electrical 
load schedule. The total active power in the daytime and evening maximum loads at 
the enterprise for all calculation periods is presented in Table 2. 

According to Table 2, the annual schedule of electricity consumed by the 
enterprise, determined by the calculation method, is built (Fig. 3). The highest 
consumption of electric energy is projected from July to October (the time of 
intensive agricultural production); the increase in load from November to March 
is caused by the operation of the electric heating system. 

Taking as a basis, the technological process of the enterprise there was deter-
mined the daily power consumption for four characteristic days on March 15, July 
1, September 15, and December 15. Daily graphs of electricity consumed by the 
enterprise, determined by the calculation method, are presented in Fig. 4. 

The highest consumption of electric energy was obtained for a summer day (time 
of intensive agricultural production), the lowest consumption of electric energy is 
typical for a spring day, and a greater value of consumed electric energy in autumn 
and winter days is associated with the operation of the electric heating system.
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Table 2 The total designed active electrical power consumed during the year by the enterprise for 
five characteristic production periods 

Season 
July– 
August 

September– 
October 

November– 
February March–April May–June 

Number of 
months 

2 2 4 2 2 

Day/evening 
maximum load 
on the working 
days, kW 

169.6 
5.12 

125.4 
5.12 

120.5 
18.7 

42.7 
18.7 

19.5 
5.12 

Day/evening 
maximum load 
on the 
off-hour days, 
kW 

5.2/6.3 5.2/6.3 18.7/19.8 18.7/19.8 5.2/6.3 

Working days 31 + 31 21 + 23 20 + 22 + 17 + 20 20 + 22 18 + 19 
Off-hour days – 9 + 8 10 + 9 + 14 + 8 11 + 8 13 + 11 
Working hours 12 8 (+1) 8 (+1) 8 (+1) 8 (+1) 
Night hours 12 15 15 15 15 
Off-hour hours: 
day/night 

– 11/13 8/15 12/12 16/8 

Working hours 
for the season 

744 352 632 336 296 

Night hours for 
the season 

744 660 1185 630 555 

Off-hour hours 
for the season: 
day/night 

– 187/221 328/615 228/228 384/192 

Day/evening 
power 
consumption on 
the working day, 
kWh 

126182.4 
3809.3 

44140.8 
3379.2 

76156.0 
22159.5 

14347.2 
11781.0 

5772 
2841.6 

Day/evening 
power 
consumption on 
the weekend, 
kWh 

– 972.4 
1392.3 

6133.6 
12,177 

4263.6 
4514.4 

1996.8 
1209.6 

Seasonal total 
power 
consumption, 
kWh 

129991.7 47520.0 98315.5 26128.2 8613.6 

Total average 
monthly power 
consumption, 
kWh 

64995.8 23760.0 24578.9 13064.1 4306.8
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Fig. 3 Annual schedule of electricity consumed by the enterprise, determined by the calculation 
method 
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Fig. 4 Daily graphs of electricity consumed by the enterprise, determined by the calculation 
method
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3.2 Construction of Annual and Daily Schedules of Electrical 
Loads According to the Guidelines 

The total maximum nominal active power of the studied enterprise is 214.9 kW. 
According to the Guidelines, this installed capacity is close to facility No. 309 grain 
cleaning and drying complex KZR-5 with installed power of 250 kW [40]. This 
data is achieved by collecting and analyzing information on real load graphs of 
agricultural enterprises of different types. 

The enterprise has seasonal electrical load with the maximum power consump-
tion of the total active power in July and August. 

According to [40], the average annual total active electricity consumed per hour 
is 57.1 kWh as determined for the enterprise, which has a one-shift work schedule 
(Tm = 2000 h/year) [41]. 

The annual schedule of electricity consumed by the enterprise, in accordance 
with the methodology of the Guidelines, is presented in Fig. 5. 

According to the Guidelines, the lowest electricity consumption for the consid-
ered type of agricultural enterprise is projected from March to May; the period with 
the maximum value of electricity consumption is projected from July to January. 
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Fig. 5 The annual schedule of electricity consumed by the enterprise, in accordance with the 
methodology of the Guidelines
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3.3 Construction of Annual and Daily Schedules of Electrical 
Loads by Monitoring the Actual Consumed Electricity 

The enterprise receives electrical energy from the 10/0.4 kV high−/low-voltage 
kiosk-type tap-off complete transformer substation [43, 46]. 

On the buses of the low-voltage switchgear of 0.38 kV CTS 10/0.4 kV, 
commercial electricity metering unit is installed, consisting of three current trans-
formers TA1–TA3 of the IEK trademark with rated voltage of 0.66 kV, rated 
primary/secondary current of 600/5, accuracy class of 0.5, and rated full power on 
the secondary winding of 10 VA. A three-phase electric energy meter (made by 
ENERGOMERA, TsE6803VM brand) with rated voltage of 3x220 V (380 V) and 
secondary current of 5 A (1-7.5 A) is connected through current transformers TA1 -
TA2.8. The data on energy consumption by months obtained using the commercial 
metering unit for 2017–2020 are presented in Table 3. 

When designing power supply facilities for agricultural enterprises, which in 
most cases have seasonal electricity consumption schedules, it is necessary to 
take into account not the total maximum electricity consumption but the designed 
maximum electricity consumption by seasons during the year. When designing a 
backup power source, such as a solar power plant using photovoltaic modules, at 
operating enterprises of the agro-industrial complex, it is necessary to take into 
account not only the seasonality of the operation of the enterprise but also the actual 
annual, monthly, and daily schedule of electricity consumption and a number of 
technical features of the designed backup power source. 

The annual graphs of electricity consumed by the enterprise, constructed accord-
ing to various methods, are presented in Fig. 6. Daily graphs of electricity consumed 
by the enterprise for March 15, for July 1, for September 15, and for December 15, 
built according to various methods, are presented in Fig. 7. 

Table 3 Annual consumption of electrical energy by the enterprise for 2017–2020 (kWh/year) 

Month 2017 2018 2019 2020 Average 2017–2020 

January 9600 12,120 12,240 7680 10,410 
February 12,360 11,280 10,440 8400 10,620 
March 6360 11,160 8400 4680 7650 
April 6000 5640 6360 4080 5520 
May 2640 2040 1320 2640 2160 
June 2280 2040 3960 2520 2700 
July 21,360 32,040 27,480 24,960 26,460 
August 18,360 23,880 21,960 17,880 20,520 
September 13,200 9960 6960 10,320 10,110 
October 9000 8280 5520 6720 7680 
November 9360 13,920 5160 9480 9480 
December 10,080 10,440 9840 10,120 10,120
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Fig. 6 Annual graphs of electrical energy consumed by the enterprise, constructed according to 
various methods 

Fig. 7 Daily graphs of electricity consumed by the enterprise (a) for March 15, (b) for July 07, 
(c) for September 15, (d) for December 15, built according to various methods
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Figure 6 reveals that the consumption of electric energy by months is the highest 
when calculation method is used, while the difference with the monitoring data is 
from 100% to 200%. Data, according to the Guidelines, predicts smaller values of 
consumed electrical energy than according to real data monitoring. 

The data obtained by the Guidelines have clearly expressed two maximum loads 
for all characteristic days of the year, while they are practically the same in value 
for the same day. The calculation method also results in daily load graph that is 
characteristic of the typical agricultural consumer: two maximums at 1100 and 1400. 
Both forecasting methods give overestimated load values in comparison with the 
data obtained by monitoring the load by metering devices. 

Table 4 presents the comparative characteristics of methods for determining the 
annual consumption of electrical energy at the enterprise. 

3.4 Analysis of Operation Modes of Photovoltaic Modules 
Considering Load Graph of the Consumer 

Methods of supplying electrical load by means of the solar photovoltaic system were 
considered according to the solution options for those specific days of the year: 
March 21 (n = 79), June 22 (n = 172), September 22 (n = 264), and December 
22 (n = 356). The calculation results for the first type of schedule (consumption 
constantly throughout the day) are presented in Table 5. In brackets for Option 3 
according to n = 172 each, the number of photovoltaic modules is indicated for the 
time of day t = 9 and t = 19 hours δW9 ≥ 0, δW19 ≥ 0, as for the rest of the days, 
the calculation was carried out according to these hours. 

The first option for covering the typical load of the agricultural consumer is 
presented at Figure 9. For the selected number of PV modules for the day n = 172, 
all the generation curves lie below the load graph, while the coverage of daily 
consumption ranges from 8.8% in winter to 36.7% in summer. If to consider Fig. 9b, 
it can be seen that the generation of electric energy throughout the year, except for 
summer, does not exceed its consumption. The surplus of generation occurs in the 
period from 1200 to 1600 with the coverage of the daily demand for electric energy 
by 42.3%. In the rest of the year, the consumption of electricity from the network is 
reduced by 10.2% in winter and 30.0% in autumn. 

With the use of 18 FSM-200 [44] photovoltaic modules (n = 79), the overgener-
ation of electrical energy in the autumn months will be observed from 1200 to 1600 

and in the summer from 1100 to 1700, while half of the required amount of energy 
is generated in the summer, from 30.9% to 36.0% in the spring-autumn period and 
12.2% in winter. Application of the results of choosing the number of photovoltaic 
modules for n = 356 allows reducing the load on the network by 93% in summer, 
by 2/3 in spring and autumn, and by 22.4% in winter. 

Thus, the use of the first approach to the selection of the combination of power 
generation and load schedule for June 22 allows, without using additional storage
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Table 4 Comparative analysis of methods for determining the annual consumption of electrical 
energy at the enterprise 

Methods 

According to the 
recommendations of the 
Guidelines Calculation method 

Monitoring the actual 
electrical load curve 

Material and 
technical base 

Guidelines and 
educational-methodical 
complex 

Educational-methodical 
complex 

Educational and 
methodical complex, 
devices or complex of 
devices that register the 
actual consumed 
electricity 

Time duration 
of methods 

Acquaintance with the 
Guidelines, calculation 

Study of the features of 
the technological 
process, electrical 
schematic diagrams, 
determination of rated 
power of electrical 
equipment 

Collecting data on the 
amount of electricity 
consumed during set 
period 

Initial data The Guidelines data Feature of the 
technological process; 
electrical schematic 
diagrams; rated power of 
electrical equipment 

Data of commercial 
electricity metering unit 
or device that registers 
the actual consumed 
electricity 

Advantages Calculation of Wav. an. in 
a short period of time 

. 
Wactual year

Wdesighed year
· 100% =

33.8 . . . 68.4%
. 

Wactual year
Wdesighed year average%year

=
47.8%
Constant monthly 
deviations in 
calculations for 
10 months of 41.6, 
52.5%) 

High accuracy of annual 
power consumption by 
months, (days, hours) 

Disadvantages Calculation accuracy: 

. 
Wactual year

Wdesighed year
· 100% =

4.8 . . . 64.7%
. 

Wactual year
Wdesighed year average%year

=
25.5%

The complexity and 
duration of the 
calculation Wyear 
High calculation error of 
47.8% (on average). 

Annual monitoring of 
electrical load, the need 
for technical devices, or 
a set of devices to 
monitor consumed 
electricity 

devices, to reduce consumption from the electric network. Since the forms of the 
production and load schedules are different, for the rest of the specific days, it 
is necessary to use additional equipment to utilize excess electrical energy in the 
peaks of solar radiation intensity, which will lead to an increase in the cost of 
the photovoltaic installation. In addition, the batteries will not use up their entire 
resource, that is, the period of their operation will be shortened. 

The second option for the combination of power generation and load was 
considered (Fig. 8).
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Table 5 Results of 
calculating load coverage 
options for the first type of 
graph 

n Option 1 Option 2 Option 3 

79 N, pcs. 18 61 80 
Wgen, kWh/day 10.2 34.4 46.5 

172 N, pcs. 13 37 157 (31) 
Wgen, kWh/day 12.05 34.3 150.06 (29.6) 

264 N, pcs. 15 52 71 
Wgen, kWh/day 9.9 34.2 48.2 

356 N, pcs. 33 153 630 
Wgen, kWh/day 7.4 34.1 144.9 
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Fig. 8 Seasonal daily graphs of generation for the second option of load coverage, selected on 
different specific days: June 22 (a), September 22 (b), March 21 (c), December 22 (d) 

If to use 37 FSM-200 photovoltaic modules, the daily load is fully covered in 
summer, by 63.5% and 74.1%, respectively, in the spring-autumn period and by a 
quarter in winter. But in view of the difference in the shape of the generation and 
consumption schedules, it is required to put into operation storage batteries at the 
solar power plant in the period from 830 to 1930 in the summer, from 1000 to 1800 

in the fall and spring, and from 1300 to 1500 in winter, in order to accumulate an 
excess of electrical energy for its further implementation under conditions of low 
intensity of solar radiation or its absence. 

Applying the number of photovoltaic modules selected from the condition of 
ensuring the daily load for n = 79 and n = 264, the overgeneration of electrical
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Table 6 Results of 
calculating load coverage 
options for the typical 
electrical load graph of the 
agricultural consumer 

n Option 1 Option 2 Option 3 

79 N, pcs. 11 34 61 
Wgen, kWh/day 6.2 19.7 34.4 

172 N, pcs. 7 21 95 (27) 
Wgen, kWh/day 6.5 19.7 88.1 (25.0) 

264 N, pcs. 9 30 56 
Wgen, kWh/day 5.9 19.7 36.9 

356 N, pcs. 19 93 570 
Wgen, kWh/day 4.2 20.7 127.2 

energy in the summer will be from 46.6% to 72.0%, which requires the reorgani-
zation of the technological process by connecting additional consumers, that is, to 
reconfigure power supply systems, which is not always technically feasible. 

The photovoltaic installation equipped with 153 FSM-200 photovoltaic modules 
generates 2.6–4.3 times more daily electricity consumption per day except for 
winter. 

The application of the third approach to determining the ratio of generation and 
load capacities leads to the fact that the schedules of electric power generation 
completely cover the load schedule, but the total output per day is tens of times 
greater than consumption. 

The similar analysis of load coverage options for typical electrical load schedule 
for agricultural consumer was carried out (see Fig. 1). Table 6 shows the results of 
calculating the number of photovoltaic modules of the FSM-200 type for various 
options for the ratio of power generation and load for specific days of the year. 

The first option for covering the typical load of the agricultural consumer is 
presented at Fig. 9. 

For the selected number of photovoltaic modules for n = 172, all generation 
curves lie below the load graph, while the coverage of daily consumption is 35.9% in 
summer; 20.6% and 24.1%, respectively, and 7.9% in spring and autumn; and 7.9% 
in winter. When 19 photovoltaic modules (n = 356) are used, seasonal daily curves 
of electric power generation, except for the winter season, exceed the consumption 
schedule: from 1030 to 1830 in summer and from 1130 to 1730 in the spring-autumn 
period. At the same time, in summer, the daily load is provided by 93.1% and by 
56.5–65.6% in spring and autumn. 

Figure 9c shows that the winter and spring generation schedules are located 
below the load schedule for electricity consumption from the network, decreasing by 
12.2% in winter and by 38.0% in spring. In autumn, there is a slight overgeneration 
of electrical energy at the peak of the intensity of solar radiation from 1230 to 1400, 
which can be utilized due to the reorganization of the technological process and the 
connection of additional capacities. In the summer period, the excess of electrical 
energy (from 1200 to 1700) from the photovoltaic installation is significant and 
equivalent to the daily total load, that is, for its use, it is necessary to additionally 
introduce storage battery into the structure of the power installation, or completely
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Fig. 9 Seasonal daily generation schedules for the first option for covering the typical load 
schedule for the agricultural consumer, selected for various specific days: June 22 (a), September 
22 (b), March 21 (c), December 22 (d) 

reconfigure the technological process or the consumer’s power supply system, 
which does not always seem to be possible. 

For the number of photovoltaic modules selected for the date of September 22, 
the excess of power generation over consumption of electric energy is observed in 
the summer from 1230 to 1500 with a total daily generation of 44.1% more than 
the load. In the rest of the year, there is no surplus, and the reduction in electricity 
consumption from the network is from 10.0% in winter to 31.1% in autumn. 

Thus, the use of the first approach to the selection of the combination of power 
generation and load for June 22 allows, without using additional storage devices, 
to reduce consumption from the electric network by 7.9% in winter and 35.9% in 
summer. Since the forms of the production and load schedules are different, for the 
rest of the specific days, it is necessary to use additional equipment to utilize excess 
electrical energy in the peaks of solar radiation intensity, which will ultimately lead 
to the increase in the cost of the generated electrical energy. In addition, the batteries 
will not use up their entire resource (the period of their operation is limited by two 
seasons of the year), which will shorten the period of their exploitation. 

Let’s consider the second option of the combination of power generation and 
load (Fig. 10).
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Fig. 10 Seasonal daily generation schedules for the second option of covering the typical load 
schedule for the agricultural consumer, selected for various specific days: June 22 (a), September 
22 (b), March 21 (c), December 22 (d) 

When the photovoltaic installation is equipped with 21 photovoltaic modules of 
the FSM-200 type, the load of the agricultural consumer is provided by 22.6% in 
winter, 60.8% in spring, and 70.4% in autumn and completely in summer. 

For the number of photovoltaic modules n = 264 in summer, generation per day 
exceeds the load by 42.7%, and in spring and winter, the lack of electricity from the 
photovoltaic installation is 13.6% and 67.7%, respectively. 

When photovoltaic modules in the amount corresponding to the date of March 
22 are used, daily generation exceeds the load not only in summer by 61.7% but 
also in autumn by 14.0%, and in winter, electricity consumption is provided by only 
36.3%. 

To provide the daily amount of electrical energy required to carry out the 
technological process in winter, 93 modules of the FSM-200 type are needed to 
be installed on the photovoltaic installation. But the total generation per day from 
the installation will be 2.7–4.4 times higher than the load in the rest of the year. 

Thus, when equipping photovoltaic installation with the storage battery, it is 
advisable to provide fully the consumer of electrical energy from it only for the 
summer period – the period of the highest intensity of solar radiation. In the rest of 
the year, more modules are required, which will lead to the need to reconfigure the 
power supply system or reorganize the technological process, which is not always 
possible.
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Fig. 11 Seasonal daily generation schedules for the third option for covering the typical load 
schedule for the agricultural consumer, selected for various specific days: June 22 (a), September 
22 (b), March 21 (c), December 22 (d) 

Figure 11 shows seasonal daily schedules for the generation and consumption of 
electrical energy for the third option to cover the load of the agricultural consumer. 

The application of the third approach to the determination of the ratio of the 
power generation to the load leads to the fact that the total production of electrical 
energy per day at the photovoltaic installation significantly exceeds the amount 
required to ensure the technological process. In addition, the full coverage of 
the electric load schedule requires too many photovoltaic modules themselves, 
additional storage equipment, as well as a revision of the operating mode of the 
entire power supply system. 

4 Conclusions 

One of the main tasks in designing a solar power plant is to select optimal 
parameters for both photovoltaic modules and auxiliary equipment, duplicating 
and accumulating energy sources, which makes it possible to justify economically 
the electrical energy generation. Coordination of the graphs of electrical energy 
generation and consumption is most often carried out by introducing energy storage 
installations or additional generating equipment into the solar power plant, or
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by organizing the discharge of excess generated electricity into the power grid. 
All this leads to a significant increase in the cost of the project, which in some 
cases amounts to a two- or threefold increase in material costs, and makes the 
conversion of solar energy into electrical energy economically inexpedient. That 
is why it is necessary to take into account the nature of changes in solar radiation 
on the considered territory throughout the year, and the influence of atmospheric 
phenomena, as well as the graph of electricity consumption, which will help to 
predict the operating mode of the installation and coordinate the schedules of 
generation and consumption. 

The purpose of the research is to study various methods for calculating the 
electrical load of agricultural objects based on the available initial data and different 
options of supplying it by means of the solar photovoltaic system, taking into 
account the peculiarities of the consumer load graph. The load graph of the studied 
enterprise is very close to the typical agricultural processing enterprise load graph. 
The significance of the presented study consists in taking into account the effect 
of choosing the method and information source for determining the load of the 
consumer, which has a significant impact on the justification of the photovoltaic 
system parameters. The uniqueness of this study consists in the analysis of consumer 
load data obtained by various practical and calculation methods. 

Application results of the recommendations of the Guidelines are characterized 
by the calculation accuracy of 4.8–64.7%. Besides, the less amount of initial 
information is required when determining the load according to the Guidelines. 
The chosen calculation method, according to available initial data, resulted in high 
calculation complexity and duration with a calculation error of 47.8% on average. 
Monitoring the actual electrical load curve was revealed to need technical devices or 
a set of devices to monitor consumed electricity and long time period of observation. 

There were considered two types of graphs: the first graph is constant (lighting 
system of the flour-grinding areas of the enterprise); the second graph is a typical 
graph for an agricultural processing enterprise. For those load graphs, there were 
considered three options for load coverage. The application of the first approach to 
the selection of the power generation and load schedule combination for summer 
period allows, without using additional storage devices, to reduce consumption 
from the electric network. Since the forms of the production and load schedules 
are different, for the rest of the specific days, it is necessary to use additional 
equipment to utilize excess electrical energy in the peaks of solar radiation intensity, 
which will lead to an increase in the cost of the photovoltaic installation. In 
addition, the batteries will not use up their entire resource, that is, the period of 
their operation will be shortened. Applying the number of photovoltaic modules 
selected from the condition of ensuring the daily load for spring and autumn 
period, the overgeneration of electrical energy in the summer will be from 46.6% to 
72.0%, which requires the reorganization of the technological process by connecting 
additional consumers, that is, to reconfigure power supply systems, which is not 
always technically feasible. The application of the third approach to determining 
the ratio of generation and load capacities results in the complete cover of the load
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graph by the electric power generation graph, but the total output per day is tens of 
times greater than consumption. 

Future studies require additional consideration of technical and economic indi-
cators of photovoltaic system layout options and development of criteria for 
substantiating the parameters of a photovoltaic system for power supply of the 
agricultural consumer. 
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RBFNN for MPPT Controller in Wind 
Energy Harvesting System 

Tigilu Mitiku Dinku and Mukhdeep Singh Manshahia 

1 Introduction 

Due to several problems such as pollution, global warming, international energy 
crises, and others, the world’s electric energy consumption continues to increase 
[1]. Wind energy is a type of renewable energy which has been growing at a faster 
rate in most parts of the world [2]. Based on their range of operation, WECS is 
classified as a variable speed wind turbine (VSWT) and a fixed speed wind turbine 
(FSWT). Medium- to high-performance applications widely use variable speed 
WECS. The VSWT are generally operated with permanent magnet synchronous 
generator (PMSG). PMSG is preferred often for its better efficiency and use without 
gear box. For WECS to produce maximum energy, it must function at its maximum 
efficiency. In the last few years, several MPPT techniques have been applied to 
increase the efficiency of the system [3]. The main drawback of conventional 
methods is they perform effectively at constant wind speed [4]. 

RBFN has the ability to approximate any complicated nonlinearity infinitely 
with fault tolerance. It has a faster convergence property having simpler network 
structure as compared to common multilayer perceptron (MLP) neural networks [5]. 
RBFNN was proposed in [6] to extract the maximum power by controlling the duty 
cycle of boost converter. In [7], RBFNN was applied to manage the pitch angle by 
acting on the generator speed above the rated wind zone. Better result was obtained 
as compared to proportional integral (PI) controller. In [8], a hybrid method for 
control of generator torque was presented for the MPPT region to produce maximum 
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power. The PI controller was applied to regulate the generator torque. In [9], RBF 
was developed in two stages. The first one is a two-stage conversion with a diode 
bridge rectifier and boost converter unit, whereas the second one is a single-stage 
conversion unit with the boost-type Vienna Rectifier. 

In this study, RBFNN-based MPPT controller is proposed for wind turbines to 
produce maximum output power by adjusting the duty cycle of the converter. The 
control tracks optimal rotor speed of WECS to give the maximum power above and 
below the rated speed of wind turbine. 

The paper is arranged as follows: Sect. 2 presents about wind turbine dynamic 
model and PMSG model. The proposed technique is detailed in Sect. 3. In Sect. 4, 
simulation results are presented and discussed before conclusion and future scopes. 

2 Wind Energy Harvesting System 

The overall block diagram of variable speed stand-alone WEHS proposed in this 
paper is shown in Fig. 1. It contains wind turbine, directly driven PMSG-based 
wind turbine, a bridge rectifier, a DC-DC boost converter, battery banks for backup, 
and a DC-DC bidirectional buck-boost converter. 

DC-DC LC fiter 

MPPT 

R LoadC1 

Controlled 
Bidirectional buck 

boost converter 

PWM 

C3 

Rectifier Boost Converter Inverter 

Inverter 
control 

ωm 

Vw 
PMSG 

Fig. 1 Block diagram of wind turbine system
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2.1 Model of Wind Turbine 

The maximum mechanical power produced by turbine can be written as [10] 

Pm_opt = 1 

2 
CP_maxπ 

R 
λopt 

5 

ωm_opt 
3 = Koptωm_opt 

3 (1) 

where Cp is a nonlinear function of β and λ given by [11] 

Cp (λ, β) = 0.5716

(
116 

λi 
− 0.4β − 5

)
e
−21 
λi + 0.0068λi (2) 

with 

1 

λi 
= 1 

λ + 0.08β 
− 0.035 

β3 + 1 
(3) 

where 

λopt = ωm_optVw 

R 
(4) 

The optimum torque can be given by 

Tm_opt = Koptωm_opt 
2 (5) 

Wind turbine power characteristics are shown in Fig. 2. Based on the variation 
of wind speeds, the operations of turbine can be separated into four parts with 
different control strategies. Region one is when wind speed is less than Vcut _ in, 
the turbine doesn’t rotate, as the energy produced is not enough to cover the internal 
consumption. Hence, it is switched off. The second region is when the wind speed 
is between Vcut _ in and Vrated, the turbine is controlled to produce maximum power. 
Hence, this region is called MPPT region. Region 3 is when the turbine is between 
Vrated and Vcutout, the turbine pitch angle is controlled. This region is called full-load 
region. The last region is when the wind speed is greater than Vcutout, the turbine is 
totally close to safeguard the turbine from damage. The values of Vcut _ in, Vrated, 
and Vcutout are 3 m/s, 12 m/s and 25 m/s, respectively. 

2.2 Modeling of the PMSG 

The model of the turbine, the generator, and the bridge rectifier that converts the AC 
to DC is show in Fig. 3.
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Fig. 2 Wind turbine power characteristics 

PMSG 

Lsia 

ib 

ic 

D1 D3 D5 

D4 D6 D2 

C1 Vrec 

Irec 

ωm 

irip 

id 

Ls 

Ls 

Rs 

Rs 

Rs 

Fig. 3 Direct-drive PMSG connected to the rectifier 

3 Proposed Control Strategies 

Artificial intelligence (AI) plays an important role in WEHS to efficiently optimize 
the power output. The uncertain or unknown variations in plant parameters can be 
dealt more effectively by using AI techniques [12]. 

3.1 Radial Basis Function (RBF) 

RBF is one of the different types of ANNs which uses RNFs as activation functions. 
It is a type of feedforward network MLP proposed by Broomhead and Lowe in 
1988 [13]. The hidden layer of RBFNN contains the hidden nodes that perform 
computation using radial basis function. The weights are modified during training. 
The performance of the RBFNN depends on the interconnection pattern, weights,
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Fig. 4 RBFNN structure 

and activation function present in the system and on the center of activation 
functions and the distribution of center of activation functions [14] (Fig. 4). 

RBFN training process is performed in two steps. The first is unsupervised 
methods in which the parameters directing the basis function are estimated. The 
supervised training method on the basis of gradient descent is employed in second 
step to adjust the RBFN parameters [15, 16]. The calculated error is used based 
on the training patterns to regulate the parameters Wij, cij, and σ ij of the RBFN. 
Figure 5 shows the training performance of RBFNN. 

The RBFN parameters considered are given in Table 1. 

4 Simulation Results and Discussion 

The WECS contains a 20 kW wind turbine and PMSG, a boost converter, a 10 kW 
battery with DC-DC bidirectional buck boost converter, an inverter, filters, a total 
10 kW load, measuring units, and controllers. The voltages are fixed at 400 V 
and 50 Hz. The SPWM-based VSI has a 5 kHz switching frequency. Discrete time 
control is concluded with a sampling time of 5 µs. The simulated system is shown 
in Fig. 6. The parameters of the system used are given in Table 2. 

The system is subjected to a step change of wind speed for 5 seconds with average 
wind speed of 12 m/s as shown in Fig. 7.
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Fig. 5 Mean square error performance of RBF-NN 

Table 1 Parameters of 
trained RBFNN 

Parameters Values 

Input neurons 1 
Hidden neurons 20 
Output neurons 1 
Learning rate 0.1 
Basis width (spread) 0.39 
Training time 0.88 

The rotational speed, tip speed ratio, and power coefficient are given in Figs. 8, 
9, and 10, respectively. The rotational speed of the generator follows the changes 
of wind speed in order to bring the operating points around its optimal value where 
WEHS is at its high level of efficiency as shown in Fig. 8. Despite the rapid changes 
of the wind speed as shown in Figs. 8 and 9, respectively, this result verifies the 
performance of the MPPT algorithm. 

The turbine mechanical power and output electrical power are shown in Fig. 11. 
The electrical power follows the change in wind speed, and it is matching with 
the theoretical power. The power losses are almost negligible. Hence, the electrical 
power output of the generator is also 20 kW at rated wind speed. 

Figure 12 shows DC voltage at the terminal of boost converter. The voltage across 
the DC-link capacitor is maintained to reference voltage of 800 V. The output power 
of boost converter and battery is given in Fig. 13. There is slight difference between
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Table 2 Parameters of wind 
turbine and PMSG 

PMSG 

Rated power 20 kW 
Rated speed 22 rad/s 
Armature resistance, Rs 0.1764 ohm 
Stator inductance, ls 0.0048 H 
No of poles 36 

Fig. 7 Wind speed 

Fig. 8 Power coefficient of wind turbine 

Pdc and Pbat because of the power losses corresponding to the converters. When the 
load is supplied by wind power, the battery power is negative as it is in charging 
mode. When wind is not sufficient to supply the load, the battery starts supplying 
power to the load and keeps the DC link voltage constant. 

The output voltage of SPWM-based VSI is shown in Fig. 14. A constant 
400 V AC voltage is obtained after filtering at the load terminal with a constant 
frequency of 50 Hz and reaches this value at 0.02 s. 

The performance comparison of FLC, MLFFNN, and RBFN based on extracted 
maximum turbine power at base wind speed is given in Table 3. It shows that RBFN 
gives better results as compared to FLC.
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Fig. 9 TSR of wind turbine 

Fig. 10 Generator speed 

Fig. 11 Mechanical output power of wind turbine
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Fig. 12 Boost converter output voltage 

Fig. 13 Boost converter and battery output power 

Fig. 14 Load line voltage (v) 

The THD value of AC voltage and current computed for three cycles is found to 
be 0.66% (Fig. 15a). Similarly, it is found that the THD in load current (Fig. 15b) is  
0.66%.
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Table 3 Performance 
comparison between FLC and 
RBFNN 

Controller type Average power (Pm) 

RBFNN 20 kW 
MLFFNN 19.5 kW 
FLC 19.01Kw 

Fig. 15 THD value: (a) THD of load voltage and (b) THD of load current 

5 Conclusion 

This paper presents AC-DC-DC-AC-based energy conversion system through 
RBFN controller. The battery banks along with controller supply constant power 
to the load. These simulations show that the proposed controller gives better 
results under variable wind. It satisfies the load demand without the effect of wind 
speed change with better quality of the battery charging/discharging process. The 
performance of the proposed controller gives better results as compared to FLC 
and MLFFN. As a future work, it is better if the system is combined with a solar 
system to guarantee the supply power to remote areas and decrease the number of 
batteries.
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Simulation Optimum Performance 
All-Wheels Plug-In Hybrid Electric 
Vehicle 

Salem Al-Assadi 

1 Introduction 

The rising gas prices starting around 2004, concerns around air quality, and the 
Environmental Protection Agency (EPA) regulations have increased interest in 
renewable forms of energy using hybrid electric vehicles (HEVs) and other less 
polluting alternatives such as battery electric vehicles (BEVs) [1, 2]. 

HEVs combine at least two energy converters from internal combustion engine 
(ICE) and electric motor (E-motor) to meet the power demand and to provide 
mileage range and safety similar to conventional ICE vehicle with a reduction in 
lifetime fuel consumption and harmful emissions of fossil fuel by 25–30% [3]. The 
ICE converter used in HEVs allows a wider driving range and provides additional 
torque when higher torque is required during fast vehicle acceleration or steep 
hill climbing. The hybrid electric vehicles with plug-in capability (PHEVs) are  
even more effective in reducing emissions by 30–50% compared to conventional 
ICE vehicles [3], since they are mostly operated in all-electric mode that doesn’t 
emit harmful tailpipe pollutants. When low carbon intensity electricity is used to 
charge the vehicle, PHEVs can be 30–47% more energy efficient than conventional 
HEVs and 51–63% more efficient than conventional ICE vehicles [3]. PHEVs can 
be even more efficient than conventional HEVs due to the limited use of the ICE 
which allows the engine to operate closer to its maximum efficiency [4]. The large 
battery in the PHEV is more efficient, and charging from a renewable source may 
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cost less (e.g., wind power, solar energy, or hydroelectricity) in addition to being 
largely emission-free as compared to the on-board generator [4]. It often has a 
more powerful electric output capable of longer and more frequent electric mode 
driving, which helps lower the operating cost, saving around 40–60% in energy 
costs, compared to conventional HEVs and ICE vehicles, respectively [5]. Several 
studies published by the Belfer Center [6] and the US National Research Council [7, 
8] have concluded that PHEVs with larger and heavier batteries cost more, but they 
expected that the cost will continue to decline in the future while gasoline prices 
will increase. 

The AWD-PHEV configuration considered in this article offers optimum vehicle 
performance in three different driving modes (EV, Series, and Parallel). The 60 kW 
NiMH battery pack powered a rear traction motor connected directly to the rear 
axle and can provide power of up to 50 kW to drive the rear wheels. A Belt Stater 
Generator (BSG) powertrain having 60 kW generator linked mechanically through 
the accessory belt to drive the 2.5L 6-cylinders Internal Combustion Engine (ICE), 
which provides extra power to the front axle through a hydraulic separation clutch 
coupled to the six speeds transmission gearbox. In EV mode, the rear traction motor 
can run to provide power to the rear wheels to meet the driver power demand. In 
Series hybrid mode, when the battery capacity state of charge (SOC) level is low and 
not enough to drive the traction motor, the internal combustion engine (ICE) drives  
a generator (BSG) within its maximum efficiency at constant speed and constant 
torque to provide the requested electric energy to the rear traction motor and/or to 
charge the 60 kW NiMH battery pack. At higher vehicle speeds when the power 
demand is higher than the power provided from the rear traction motor and/or 
the battery capacity SOC is low and not enough to drive the traction motor, the 
separation hydraulic clutch is locked, and the Parallel hybrid mode is entered. In 
Parallel mode with “power-assist operation” activated, when battery SOC is high 
and the power from the rear traction motor is not enough to drive the vehicle, 
the ICE runs at optimal torque adding the extra power required directly to the 
front axle. In Parallel mode, when the driver needs a high torque especially during 
fast acceleration or steep hill climbing and the battery capacity is high, the “boost 
operation” is activated to deliver the requested higher torque. The ICE operates 
under full load with the maximum available ICE torque. The difference between the 
requested torque from the driver and the available maximum ICE torque is used as 
the requested torque to the rear traction motor. In Parallel mode with “power-assist 
and charge low operation” activated, when the battery SOC is low, the ICE can run at 
different speeds, adding power to the front axle in addition to driving the generator 
(BSG) to charge the high-voltage battery pack. The requested ICE torque varied 
and depended on the sum of available requested torque of the rear traction motor 
and the requested torque from driver command. In addition, when the vehicle speed 
drops during braking, the regenerative braking power provided from the mechanical 
friction brakes is recovered from the rear traction motor functioning in regeneration 
mode to supply the “electricity” power to charge the high-voltage battery pack. 

The article starts with a brief highlight of the main powertrain components of the 
AWD-PHEV plant model and the top level methodology of the control strategies
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Fig. 1 Powertrain components of AWD-PHEV 

design used for driving the AWD-PHEV, followed by a brief description of the 
complete simulation model and simulation results, and finally, we present our 
conclusions. 

2 Plug-In Hybrid Electric Vehicle Components 

The top-level configuration (Fig. 1) of the AWD-PHEV plant model with the main 
powertrains is considered in this article, which has a mechanical connection to the 
front and rear axles. The ICE/generator (BSG) is directly connected to the front 
axle through a hydraulic separation clutch coupled to the six-speed transmission 
gearbox. The rear traction motor (E-motor) is coupled directly to the rear axle. 
This configuration of the AWD-PHEV offers optimum vehicle performance in three 
different driving modes (EV, Series, and Parallel). 

3 Plug-In Hybrid Electric Control Methodology 

All control strategy points designed inside the supervisor hybrid controller unit 
(HCU) are summarized in the stateflow chart (Fig. 2). This chart shows how to 
evaluate a state variable called hybrid states, transition from one state to another, and 
how the current driving state of the vehicle provides the correct torque distributions 
based on the driver torque demand. It switches between the 16 different operating 
hybrid states depending on many conditions. When a selected hybrid state is
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Fig. 2 Control strategies (HCU) stateflow chart 

activated, it provides the control signals to all controller units of the vehicle 
powertrain subsystems including the generator, commanded ignition, and requested 
torque to the ICE, requested torque to the rear traction motor, requested mechanical 
torque of the vehicle wheel brake, and clutch status (open/closed) coupled to the 
six-speed transmission gearbox. Furthermore, the HCU calculates a requested brake 
torque, which depends on the brake pedal position of the driver subsystem. When 
the selected hybrid state is activated, it separates the requested brake torque of the 
recuperating motor torque and a requested torque of the mechanic brake with wheel 
vehicle brakes. 

3.1 EV Mode 

The EV mode provides the driver torque demand to the rear traction motor for pure 
electric drive. In this mode, the state (Electric-drive, State-10) is activated, when 
the battery capacity SOC is higher than the lower limit and the rear traction motor is 
capable of providing the requested driver torque. The driver torque demand depends 
on the acceleration pedal, which is used as the requested torque for running the 
traction motor to provide the torque to the rear wheels.
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3.2 Series Mode 

When the battery power capacity SOC is close to the lower limit value and the 
available power provided from the rear traction motor is enough to drive train, the 
Series mode is entered. 

In Series mode, the state (Charge-byEng, State-18) is activated, commanded 
ignition, and requested torque to the ICE. The ICE drives a Generator (BSG) 
within its maximum efficiency at constant speed and constant torque to provide 
the requested electric energy from the generator to the rear traction motor and/or 
to the storage system when it needs to be charged. In this mode, the rear traction 
motor is only in use and connected to the rear wheels to drive the vehicle, and the 
ICE/generator (BSG) is decoupled from the vehicle wheels. 

3.3 Parallel Mode 

At higher vehicle speeds, when the driver power demand is higher than the power 
provided from the rear traction motor and/or battery SOC capacity is low to power 
the rear traction motor, the Parallel hybrid mode is entered. In this mode, the 
separation clutch is locked, and the state (Eng_drive, State-20) is activated to 
connect both the rear traction motor and the ICE/generator (BSG) to drive train. 

In Parallel mode, the state (power assist, State-26) is activated, and when the 
battery capacity SOC is high and the power from the rear traction motor is limited 
and not enough to drive the vehicle, it uses the optimal ICE torque as the requested 
ICE torque to add the extra power required directly to the front axle. The difference 
between the optimal ICE torque and the requested torque from the driver is used as 
a requested torque to the rear traction motor. This state is used especially for better 
efficiency drive of the Parallel hybrid mode operation. 

In Parallel mode, when the driver needs a high torque especially during fast 
acceleration or steep hill climbing that requires maximum driving torque and the 
battery capacity is high, the state (Boost, State-27) is activated. This state is mainly 
used to achieve the higher torque request; the ICE operates under full load, and the 
maximum available ICE torque is used as the requested ICE torque. The difference 
between the requested torque from the driver and the available maximum ICE torque 
is used as requested torque to the rear traction motor. 

In Parallel mode, with low battery SOC, the state “power assist and charge low” 
(Charge_byEng, State 25) is activated. In this state, the ICE can run at different 
speeds, adding power to the front axle as well as drive the generator (BSG) to charge 
the high-voltage battery pack. The requested ICE torque varies depending on the 
sum of available requested torque of the rear traction motor and requested torque 
from the driver command.



44 S. Al-Assadi

3.4 Recuperation Brake Energy Mode 

The states for “Recuperation Brake Energy” mode are used to simulate the 
recuperation of the brake energy. When the vehicle speed drops during braking, the 
regenerative braking power provided from the mechanical friction brakes recovered 
from the rear traction motor functional in regenerating mode is converted into 
“electricity” power to charge the high-voltage battery pack. When braking occurs 
during EV mode, the state (Recuperation-withoutEng, State-14) is activated, the 
rear traction motor used in generator drive mode to supply the “electricity” power to 
charge the high-voltage battery pack. When braking occurs during Parallel mode, 
the state (Recuperation-withEng, State-24) is activated, the separation clutches 
open, the requested torque of the engine is set to 0 NM, and all requested brake 
torque is recovered from the rear traction motor. 

3.5 Motor Start/Stop Automatic (MSA) Mode 

The MSA states (Active/Inactive, States-42 and 41) are used to simulate the 
automatic start/stop function and only used at vehicle standstill. In (MSA-Active, 
State-42), the ICE shuts down to reduce the fuel consumption and disconnects from 
the drive train, and the rear traction motor is not in use. In (“MSA-Inactive”, State-
41), the ICE requested a 40 Nm (ICE Friction) starting torque to the generator that 
functional in motoring drive mode and the requested torque of the rear traction 
motor is set to – 40 Nm. 

3.6 Freewheeling Mode 

The (Freewheeling-with/without_Eng, States-23 and 13) are used to simulate a 
freewheeling driving mode. When the state (Freewheeling withEng, State-23) is  
activated, both ICE and rear traction motor are connected to the drive train. The 
ignition signal is turned on, the ICE torque is set to 0 Nm, and the requested torque 
to rear traction motor is set to 0 Nm. When the state (Freewheeling without_Eng, 
State-13) is activated, the ignition signal is turned off, the ICE requested torque is 
set to −50 Nm, and the requested torque to rear traction motor is set to 0 Nm. 

3.7 Mechanical Braking Mode 

The (Mechanical braking, State-30) provides the brake torque for pure mechanical 
brake with wheel vehicle brakes. When activated, the ICE is connected to the drive
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train, but the requested torque is set 0 Nm. The requested brake torque from the 
driver command leaded as the requested torque for the mechanic of the wheels brake 
system. 

4 AWD-PHEV Plant Model 

In this article, the simulation of the complete AWD-PHEV plant model (Fig. 3) 
was created using the Velodyn tool [9]. This AWD-PHEV plant model simulates 
all subsystems of the powertrain components including their controller units, all 
accessories, and cooling systems for the vehicle. 

5 Application 

All vehicle dynamic specifications and the main powertrain components parameters 
(Table 1) are used to simulate this AWD-PHEV plant model (Fig. 3). 

The supervisor hybrid controller unit (HCU) controls all powertrain components 
operation using the control strategies illustrated in the stateflow chart (Fig. 2). It acts 
as a master controller during a drive cycle for all powertrain slave controller units 
such as ICE/generator (BSG), rear traction motor (E-motor), battery pack, clutch 
status (open/closed), and the six-speed transmission gearbox. 

5.1 Simulation Results 

The three modes of operation (EV, Series, and Parallel) with most of the transition 
hybrid state (Fig. 2) activities during US06 drive cycle simulation of this PHEV 
model can be covered by setting the battery starting capacity value to SOC = 58% 
and the lower limit allowed value to 30%. 

Figures 4, 5, 6, 7, 8, 9, 10, and 11 shows the transition to hybrid states during the 
drive cycle with the three modes of operation, performances of the vehicle dynamic, 
battery pack condition, all powertrain components (ICE/generator, E-motor, clutch, 
and transmission gears), and the regenerative braking torque when the vehicle speed 
drops while braking. 

It was observed (Fig. 4) that the EV mode (State-10) and Series hybrid mode 
(State-18) are the dominant modes of operation to achieve the best drive torque 
demand during this drive cycle. The transition from EV mode to Series hybrid mode 
occurred when the battery capacity (SOC) level (Fig.  7) was close to the lower limit 
value (SOC = 33%). 

In Series hybrid mode, the state (Charge_byEng, State-18) is activated, and the 
ICE starts (Fig. 9) to drive a  generator (BSG) (Fig. 8) within its maximum efficiency
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Table 1 Vehicle specification parameters 

Vehicle specifications 

Vehicle platform Passenger car 
Vehicle mass (kg) 1234 
Dynamic wheel radius (m) 0.25 
Aero drag coefficient 0.32 
Air mass density (Kg/m3) 1.202 
Vehicle drag coefficient (Nh2/km2) 0.33/0.0033 
Wheel drag coefficient constant 0.014 
Front area (m2) 1.83 
Distance from COG to front axle (m) 1.6851 
Height COG over ground (m) 0.5 
Engine (ICE) specifications 

Engine size (cc) 2500 
Max speed (rpm) 5500 
Max torque (Nm) 260 
Inertia (kg*m2) 0.12 
Rear traction E-motor/generator specifications 

E-motor type Traction motor 
Motor power (KW) 50 
Max. speed (rpm) 5500 
Continuous torque (Nm) 225 
Peak torque (Nm) 450 
Mass (kg) 50 
HV battery specifications 

HV type NiMH 
#Serial/parallel cells 240/1 
Capacity each cell (Ah) 5.5 
Max. capacity power (KW) 60 
(Min/max) cell (volt) 0.8/1.68 
Mass each cell (kg) 0.2 
Front/rear axle specifications 

Vehicle drive FWD/AWD 
Gear ratios [3.1 2.13 1.48 1.14 0.95 0.82] 
Inertia of each input shaft (kg*m2) 0.0064 
Inertia of output shaft (kg*m2) 0.012 

at constant speed and constant torque to provide an “electrical” power to the rear 
traction motor (Fig. 10) and/or to charge the high-voltage battery pack (Fig. 7). 
However, during fast acceleration, when propulsion power demand is higher than 
the power provided from the rear traction motor and/or battery SOC capacity is low 
to power the rear traction motor, the transition from Series hybrid mode to Parallel 
hybrid mode occurs.
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Fig. 4 Hybrid control states 

Fig. 5 Vehicle performance
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Fig. 6 Axles/clutch performances 

Fig. 7 Battery pack performance
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Fig. 8 Generator performance 

Fig. 9 Engine performance
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Fig. 10 Rear E-motor performance 

Fig. 11 Transmission/clutch performance
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In Parallel mode, the separation clutch is locked (Fig. 11), and the (Eng_drive, 
State-20) is activated; the rear traction motor and the ICE are both connected to 
the drive train (Fig. 6). In Parallel mode, when battery capacity (SOC) is higher 
than the limit value and the power from the rear traction motor is not enough to 
drive the vehicle, the state “power assist” (Assist, State-26) is activated, and the 
ICE runs at optimal torque adding the extra power required directly to the front 
axle. The difference between the optimal ICE torque and the requested torque 
from the driver is used as a requested torque to the rear traction motor. In Parallel 
mode, with low battery capacity (SOC), the state “power assist and charge low” 
(Charge_byEng, State-25) is activated, and the ICE adds the power to the front axle 
and charges the high-voltage battery pack. In Parallel mode, if the driver needs a 
high torque especially during fast acceleration, the state (Boost, Stat-27) is activated, 
and the ICE operates under full load to use the maximum ICE available torque. The 
difference between the requested torque from the driver and the available maximum 
ICE torque is used as the requested torque to the rear traction motor. 

It was also noticed from these figures how the “Recuperation Brake Energy” is 
used to recuperate the brake energy (Fig. 5) when the vehicle speed drops while 
braking. The regenerative braking power provided from the mechanical friction 
brakes recovered from the rear traction motor functional in regenerating mode 
supplies the “electricity” power to charge the high-voltage battery pack. 

6 Conclusions 

This article presents the simulation results of a typical passenger AWD-Plug hybrid 
electric vehicle (PHEV). It illustrates how the control strategies designed inside 
the supervisor hybrid controller unit (HCU) manage the best distribution of the 
driver torque demand for all powertrain drive components, ICE/generator (BSG), 
and rear traction motor (E-motor). The three different modes of operation (EV, 
Series, and Parallel) offer optimum vehicle performance during US06 drive cycle. 
In addition, when the vehicle speed drops during braking, the regenerative braking 
power provided from the mechanical friction brakes recovered from the rear traction 
motor functional in regenerating mode supplies the “electricity” power to charge the 
high-voltage battery pack. 
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Artificial Intelligence Application to 
Flexibility Provision in Energy 
Management System: A Survey 

Oludamilare Bode Adewuyi, Komla A. Folly, David T. O. Oyedokun, 
and Yanxia Sun 

1 Introduction 

Energy remains an integral part of the human sustainability drive. Thus, the global 
call for clean, affordable, and reliable energy supply through the United Nations 
Sustainable Energy for All (SE4ALL) initiatives has become a crucial component of 
the energy transition efforts of different countries. However, the interaction between 
modern energy needs and energy production is becoming complex. Moreover, 
the economic implications of energy investments and the environmental impacts 
of energy projects are taking a new dimension due to the changing nature of 
energy production and some governance (i.e., socio-political) issues. Hence, in 
most cases, inadequate planning of the energy sector has led to poor return on 
investment in supply quality and reliability, especially in developing countries. 
In recent years, national and international energy planning policies have focused 
on developing models and tools that consider the several interlinking goals of 
modern energy supply systems. Crucial aspects of these goals include building 
resilience in energy systems toward achieving increased energy access. Achieving 
these goals will come with good economic benefits for both the suppliers and 
the consumers by improving supply quality, reducing negative socio-environmental 
impacts of energy production, increasing diversification of energy supply mix, 
etc., as indicated in Fig. 1 [1]. Therefore, research efforts on energy issues are 
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Fig. 1 Conceptual model of sustainable energy transition targets (SDG7) 

becoming transdisciplinary and involve integrated interaction of different energy 
planning tools and operation goals toward achieving more effective sustainable 
energy transition for different regions of the world. 

Providing a clean, reliable, and affordable electricity supply has been one of 
the aspirations of many countries. For this purpose, most countries are setting up 
reforms and committees to formulate and charter strategic policies toward attaining 
100% green energy transition within the shortest possible time [2]. Renewable 
energy-based microgrid can provide the necessary support for consumer loads 
with reduced stress on the existing grid infrastructure since they are closer to the 
consumer ends. The efforts of the United States toward efficient sustainable energy 
transition have been well emphasized by the US Presidency. The United State has 
set a goal of achieving a 100% clean energy power sector by 2035 toward making 
the energy sector sustainable and cutting down emission of greenhouse gases in 
the environment [3–5]. Many European countries are also working conscientiously 
toward achieving their set goals on sustainable energy and environment. Specif-
ically, Germany, UK, France, Netherlands, and Sweden are among the leading 
European nations that have embarked on developing different sustainable energy 
pathways aimed toward attaining 100% renewable energy by 2050 [6–8]. Quite 
several countries in Africa are also taking the initiatives in terms of commitment
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and efforts toward introducing a significant amount of renewable energy resources 
into their sustainable energy roadmap. The efforts of the following countries are 
worth mentioning: Kenya [9], Nigeria [10], Ghana [11], Mauritius [12], Egypt, and 
South Africa [13]. 

The call from the United Nations environment and energy division for the 
increase in the deployment of clean technologies for power generation using the 
renewable energy resources is getting stronger. However, the flexibility require-
ments of contemporary energy systems are becoming enormous as the amount of 
power from intermittent energy resources increases [14]. As a result, the modalities 
for meeting the requirements for techno-economic viability of energy systems 
are tending to be more complicated in recent times. For instance, researchers in 
South Africa conducted a detailed research on the economic cost of electricity 
supply interruptions in the face of increase integration of variable renewable energy 
resources. One of the key observations is that a full day of national blackout 
costs $3.4b to the economy. This finding highlights the cost of unmet energy need 
and the importance of maintaining high levels of reliability through appropriate 
flexibility measure [15]. Thence, to meet up with the minimum obligations for 
reliability, dynamic and robust schemes need to be devised to ensure real-time 
matching of load demand and available supply [16, 17]. Consequently, meeting 
the operational flexibility needs of power systems remains an essential yardstick 
for analyzing the strength and robustness of the grid to accommodate a shift from 
fossil fuel-based power injection to renewable energy resources-based [18, 19]. A 
grid infrastructure that is designed with adequate flexibility provision is capable of 
mitigating the effects of disturbances that can result from the inevitable fluctuations 
in the supply and load demand dynamics [20]. Thus, sufficient operational flexibility 
management mechanisms are a precondition for planning substantial injection of 
power from variable VREs [10, 21]. By general definition, power system operational 
flexibility is often depicted as the measure of the capability of grid infrastructure to 
techno-economically manage the variability and inherent uncertainties of demand 
and supply across all important schedules [22]; and this can be achieved by 
active deployment of adaptable power system equipment known as flexibility 
providers [23]. The remaining part of this book chapter is organized thus: section 
two provides insight on the conventional approaches to managing the flexibility 
management. A concise review of artificial intelligence and its deployment for 
flexibility management in energy system is presented in section three. In section 
four, a planning framework for integrated flexibility management using artificial 
intelligence concept is discussed, and the work is concluded in section five. 

2 Conventional Approach to Flexibility Management 

The conventional approach to energy supply system planning and design involves 
three disjointed stages: component capacity optimization, optimal operation 
scheduling using unit commitment, and evaluation of the energy market strategies
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Fig. 2 Conventional power system flexibility management approaches [22] 

for economic service exchange [24]. Segregating these three important components 
when designing an energy system often leads to redundancy in terms of component 
oversizing and inefficient flexibility management provision. Essentially, the 
efficiency of the power systems operation is mainly a function of the dispatchability 
and efficiency of control of the system generators whose capacity is determined at 
the first stage of design. Furthermore, as the share of power production from the 
VREs increases, the ability to control the outputs of energy supply systems and 
ensure techno-economic dispatch of the generators comes with significant level of 
complexities and at an additional cost, as discussed [25, 26]. The cost of flexibility 
is estimated as the extra cost to be considered while integrating adaptable flexibility 
mechanisms for checkmating the proliferated consequences of intermittency due 
to massive integration of VREs [10, 27]. Common techniques for energy system 
flexibility management, especially from the load side, are shown in Fig. 2 [28], etc. 
Flexibility management can also be initialized from the supply end by controlling 
generators’ ramping power and cycles, as well as controlling the generation limits. 
Other flexibility management practices from the supply end include increasing the 
cycles of generators shutdowns and start-ups in multi-generators configuration as 
outlined in [29]. 

The concept of hybrid energy systems, which involves the combinations of 
multiple renewable and non-renewable generators as well as backups, has evolved 
as a cost-effective tool for achieving flexibility management in energy systems 
with high uptake of VREs [30]. The significance of optimally planned hybrid 
energy supply technologies with energy storage system (ESS) toward achieving 
essential flexibility management was enunciated in [31]. In the same vein, in
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ref. [26], a concise structure for analyzing the most cost-effective and technically 
appropriate flexibility requirements of energy supply system using complementarity 
of generators and storages was presented. It is however essential to note that the 
robustness of the hybrid energy supply system depends greatly on the accuracy 
and reliability of the forecasting tool for VREs, available generation, load demand 
projections, and real-time market dynamics [32, 33]. With improved accuracy of 
prediction, crucial information about the energy management system (EMS) set up 
in terms of possible periods of power deficits and surpluses can be anticipated and 
prepared for before the eventual occurrence. The authors in [34] investigated and 
provide a direct illustration of the importance of ensuring accuracy in the prediction 
of renewable energy resources toward achieving a cost-effective design of EMS and 
avoiding generators’ oversizing, as well as reducing curtailment. With the adaptation 
of different power market scenarios, exhaustive models are developed for accurate 
prediction of power output from wind generators in [35], and a similar work was 
reported in [36]. Some practical flexibility provision mechanisms reported in the 
literature are discussed as follows: 

2.1 Demand-Side (Load) Management 

Load management involves the set of optimal real-time techno-economic actions 
taken by system operators toward achieving a stable match of the system instan-
taneous load demand and power generation [37, 38]. The specific goal of load 
management is to ensure that the most suitable and economically viable operating 
conditions are achieved based on the information of the supply (generating) capacity 
and the demand (load) conditions of the power system per time. In this regard, 
load management is one of the techniques for flexibility management, which can 
be influenced at both the supply and demand ends in response to the operational 
interests of the system operator and credible economic signals from the energy 
market. Electrical loads are categorized into either flexible/responsive loads (flexible 
demand resources, FDRs) or static/rigid loads (limited demand resources) for load 
management purposes. For the FDRs, the time of use can be changed from time 
to time in response to the system load and available generation dynamics. Common 
FDRs include heating and ventilation systems, refrigerators, washing machines, etc. 
Most often, their operation time can be rescheduled from the peak demand period 
and supply shortages to later when the available supply is sufficient and surplus/in 
excess. On the other hand, appliances such as security lights, illumination loads, 
alarm systems, and home entertainment are often regarded as non-shiftable loads; 
their usage is not usually subjected to varying time conditions, except if necessary. 

In recent times, the innovative grid concept has injected more intelligence into 
load management practices, especially in the face of the changing load patterns 
and proliferation of energy supply from renewable energy injection. Existing grid 
infrastructures are equipped with information and communication technologies for 
real-time monitoring and prompt control of power system equipment. As a result,
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the smart grid can make intelligent decisions on the appropriate flexibility actions 
toward meeting the operational needs of the EMS while smoothly executing actions, 
such as load-shifting or load-shedding, toward achieving stable system operating 
conditions. Another significant switch in EMS operations since the incorporation of 
smartness to grid infrastructures is the invitation for electricity users’ participation in 
determining the dynamics of the electricity market using the concept of demand-side 
management (DSM) [39]. In recent years, research on DSM as a tool for flexibility 
management in EMS through appropriate FDRs for controlling the load demand 
patterns of electricity consumers has intensified [40, 41]. Thus, the imbalance 
between load demand and available system generation per time can be easily 
mitigated for high-renewable energy-based EMS [42, 43]. Furthermore, in [44], 
an FRDR-controlled approach for providing effective flexibility measures based on 
integrated DSM for buildings was developed and implemented. While DSM is a 
broad concept, demand response programs (DRP) are the underlying energy market 
strategies by which consumers’ electricity consumption behaviors are tactically 
altered in terms of the time of demand for using their FDRs. 

The change in customers’ electricity usage patterns is achieved by utility 
companies making available some incentivization tariff packages such as flexible 
payments and lucrative prices for consumed electricity units [45]. DRP, as an 
integral branch of load management, is a conscious way of influencing the electricity 
consumption patterns of energy users’ by way of motivations through incentivized 
benefits from energy suppliers [46]. With an appropriately designed DR scheme, 
the flexibility needs of the grid through the additional generation and transmission 
capacity expansion can be grossly reduced [47, 48]. Consequently, most of the 
available information in the literature on the concepts of DRP is focused more on 
creating an ideal market for electricity transactions and service delivery. Thus, the 
most adopted types of DRPs are: namely, day-ahead pricing (DHP), critical peak 
pricing (CPP), time of use (TOU), real-time pricing (RTP), interrupted curtailable 
and direct load control, and so on [49, 50]. However, for implementing DRP 
effectively, real-time supply and future power system status in terms of the changing 
load and generation dynamics should be considered to exploit the energy market 
fully [51, 52] while capturing the VREs’ output uncertainties [34, 53]. Therefore, 
in [54–57], several arrangements were made to strategically incorporate DSM 
and energy storage systems (ESSs) in the capacity sizing optimization of EMS 
components. With these strategies of incorporating DSM and ESS into optimal 
planning of EMS, it is observed that the flexibility of the energy systems increases, 
and the overall cost of EMS design is comparatively reduced. 

2.2 Energy Storage Systems (ESSs) 

The supporting roles of energy storage systems (ESSs) for upscaling the VREs 
integration into power systems are significant for so many applications [58]. Some 
of the essential functions of ESSs make them an ideal tool for facilitating optimal
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restraining of the nasty effects of VREs intermittency on the supply outputs 
[59]. Depending on the techno-economic specifications and design technologies, 
several energy storage technologies have been designed and reported in works of 
literature [60]. Considerable research works have investigated and provided insights 
on the financial values (in terms of cost saving) of proper selection, planning, 
and design of appropriate energy storage facilities for different power system 
configurations. Available ESSs technologies include the most deployed battery 
energy storage (BESS) [61], pumped hydro storage (PHESS) [62], hydrogen storage 
[63], compressed air energy storage (CAES) [64], flywheel technologies [65], etc. 
In reference [66], a hybrid energy system model that included flexibility constraints 
for managing flexibility in a smart home environment was developed using a PV 
system and different ESSs. To accommodate the flexibility constraint, the authors 
increased the effective hours for operating the ESSs to limit the amount of power 
procured from the utilities. 

Analyses of potential benefits of large-scale energy storage facilities as viable 
options for providing techno-economically efficient flexibility support for wind 
energy integration are reported in [67]. The report analyzed the feasibility of 
pumped hydro storage systems (PHESS). Furthermore, the economic shrewdness 
of adding CAES is qualitatively assessed, and the authors also proposed possible 
strategies for motivating investors’ interest in financing additional projects on ESSs 
development. In [68], a metric is developed based on the response of the energy 
supply system to additional power injection from VREs toward evaluating the 
flexibility performance with the inclusion of sufficient energy storage capacity. 
It is generally observed that the deployment of ESSs can significantly influence 
the effective scheduling of the system generators using the day-ahead dispatch 
strategies. It can also improve the economic operation of the power system. In [69], a 
generator scheduling strategy based on a day-ahead dispatch approach was designed 
for an integrated natural gas and power system using DSM and ESSs integration 
under a high injection of power from wind turbines. 

Moreover, a general model for assessing the flexibility needs in an integrated 
EMS that consists of combined heat and power (CHP) systems and heat-based ESS 
is discussed in [70]. The authors observed that when the ESS is centrally located, 
more flexibility provisions are gained than when several ESS units are designed. 
In a similar work, the authors in [71] developed a multiple steps structure for 
assessing the potential benefits of incorporating BESS in high VREs-dependent 
power systems. At the initial step, the authors considered a stochastic UC approach 
for the derivation of the adaptable scheduling of the BESS using an appropriate eco-
nomic dispatch environment. In addition, the forecast uncertainty from wind power 
within a limited prediction horizon was also considered in the design procedure. 
Furthermore, the significant benefits of incorporating ESSs, especially BESS and 
PHES, for providing grid flexibility measures toward supporting significant uptake 
of renewable energy sources have been evaluated using different approaches, as 
provided in several works of literature on flexibility management [72–78].
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2.3 Electric Vehicles: V2G and G2V Technologies 

In the face of the massive integration of fluctuating inverter-based generators, 
battery energy storage (BESS) technology has developed to be one of the most 
applicable technologies for power system flexibility management [79]. Due to 
the consistent success recorded with BESS, electric vehicle (EV) technologies 
are developing daily as technically effective, economically efficient, and environ-
mentally friendly means of transportation. EV technology depends majorly on the 
fidelity of the BESS technology for performance and operationality. Encouraged 
by the dual benefits of energy storage and cost-effective mobility, more research 
efforts have been devoted to EV interactions with electricity grids in recent times 
[80, 81]. The technologies responsible for the interaction of EVs with the grids are 
technically known as the grid-to-vehicle (G2V) and vehicle-to-grid (V2G) technolo-
gies [82]. Combining these two technologies achieves bidirectional power flow for 
providing supplementary services to the grid, including flexibility management. The 
introduction of electric vehicles as a tool for power system flexibility management 
has been verified in several research studies carried out on the concept of vehicle-
to-grid, V2G, and grid-to-vehicle, G2V, technology [83]. 

In reference [84], the random behavior of electric vehicle mobility (EVM) was 
modeled as a flexibility provider for energy transfer in a smart grid environment 
considering wind energy uncertainty using the optimal grid reconfiguration (OGR) 
mechanism. To effectively measure the impact of EVM on grid performance, the 
authors developed a novel method to evaluate the system flexibility in the presence 
of thermal generators and EVs. The authors in reference [85] explore using a fleet 
of plug-in hybrid EVs (PHEVs) as a mechanism for regularizing energy imbalances 
that may result from the massive integration of wind energy resources in the 
generation expansion plan of the north-eastern Brazil power system. In the study, 
an optimization tool was deployed to verify the most efficient dispatch modality 
for variable output of the wind farms without compromising the grid stability 
and flexibility needs. Similar studies on EVs’ use to ensure adequate provision of 
flexibility requirements for power systems for different regions are reported in [86– 
91], etc. Generally, the contribution of EVs, i.e., G2V and V2G technologies as 
flexibility providers, is increasing daily. In the face of the continuously changing 
nature of power systems, flexibility needs are expected to increase. Thus, EV 
applications have shown huge prospects for cross-border interactions in highly 
interconnected systems [92, 93]. 

2.4 Grid Reinforcement 

Grid reinforcement is one of the earlier strategies for managing the inherent 
flexibility needs of the power systems [94]. However, population growth and the 
continuously changing face of technology often cause an extreme increase in the
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load demand beyond the grid’s existing capacity, and this causes deterioration in the 
power systems’ performance. Hence, commissioning new facilities and introducing 
supporting equipment, such as distributed generators, energy storage, and EVs, 
at crucial sections of the power system for network enhancement and congestion 
management are found to be inevitable [95, 96]. However, introducing VRE-based 
generators and ancillary facilities can contribute to additional technical challenges, 
leading to the deterioration of the grid flexibility performance index [97, 98]. Thus, 
grid reinforcement has been widely achieved through generation, and transmission 
capacity expansion planning using unit commitment and economic dispatch algo-
rithms when introducing additional generation from VREs technologies [99–105]. 

As the amount of renewable energy integration into the power systems increases 
with the decommissioning of synchronous generators, the inherent inertia of power 
systems has significantly reduced. The lack of adequate inertia support in modern 
power systems has negatively affected the flexibility capability. In recent times, grid-
forming inverters (GFIs) are currently being positioned as one of the solutions to 
managing grid inertia moving forward [106]. This is based on the way the inverter 
responds to change in grid conditions (in particular, the grid voltage). “Grid forming 
inverter” is an umbrella term that includes the concept of virtual synchronous 
machines (VSM), power synchronization loop, voltage-controlled inverter, etc. 
The swing equation is somewhat involved in some instances [107]. Authors in 
[108] proposed a framework for reinforcing the transmission and distribution 
network with inverter-based DGs, through increase efficiency in power delivery 
and extraction. The framework includes multi-agent control low-voltage-based DGs 
enabled by phase estimated Thevenin equivalent impedance and efficient power 
delivery. This model promotes increased participation of DGs to advance grid 
flexibility requirements while maintaining the required level of power quality and 
reduction in losses. 

In reference [76], transmission system flexibility enhancement and transmission 
congestion mitigation were achieved using a network-constraint unit commitment 
(NCUC) model in the presence of battery energy storage and transmission switch-
ing. The objective of the NCUC model is to minimize the overall energy supply 
system operating cost while exploring the mobility of the battery storage system for 
enhancing the transmission network performance and achieving network congestion 
management. However, managing the flexibility requirements of interconnected 
power systems by network reinforcement is often encountered with the problem 
of data privacy preservation between neighboring utilities. Thus, an equivalent 
economic dispatch model that considers hidden flexibility information alongside 
other power systems’ constraints is proposed in [109]. The equivalent flexibility 
model for network enhancement involves a multiperiod economic dispatch problem 
involving interconnected power networks using mixed-integer linear programming 
(MILP) approach.
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3 Review of Artificial Intelligence and Its Application to 
Flexibility Management in Energy System 

The foundational unit of AI is the artificial neural networks (ANNs) that mimic the 
biological neural network, i.e., human nervous system. The motivation behind this 
is connected to the understanding of the fact that the ability of humans (and other 
animals) to learn skills, such as visual, auditory, reading and writing, kinesthetic, 
and so on, is achieved experientially or iteratively using the trial and error rule 
[110]. Thus, it is not just the number of attempts but also the volume/magnitude and 
clarity of provided instructions that have been found crucial to increasing the human 
ability to learn and learn well. Generally, human structure for learning, reasoning, 
and perception of stimulus/signals is a function of the numerous electrical linkages 
between principal actors within the neural network such as the neurons, dendrites, 
soma, axon, synapses, etc., via the nerve[111]. All these components of BNN are 
arranged in layers, and the brain coordinates all the activities. Thus, in the same vein, 
the ANN models were developed by Warren McCulloch and Walter Pitts in 1943 
with several mathematical/analytical/logical operands, operators, and operations 
arranged in layers to be coordinated by the processing capacity of computers in 
response to the supply of relevant data [112]. 

The main corridor for AI implementation is machine learning (ML), and its 
improved version is known as deep learning (DL) [113, 114]. There are different 
variants and improved variants of ML and DL algorithms that are in existence 
as developed by researchers over time. However, the basic units of ML and DL 
algorithms, irrespective of their level of complexity, are the ANNs. The conceptual 
development of ANN for ML and DL applications within the scientific knowledge 
domain is widely regarded as a point of synergy between the frontline fields of 
information/computational science and statistics [115]. As evident in the ANN 
operating procedures, the computer used the knowledge of statistics to ascertain the 
preciseness of the ANN model in creating patterns and recognizing trends/dynamics 
within the given set of complete data. Once the relationship that describes the 
input–output dynamics of the provided data set has been established, a complete 
description (output values) can be obtained from a new incomplete set of data 
(input sets only) supplied to the computer. The processing of teaching the computers 
through the provision of a complete set of data is generally known as “training,” 
and the process of ascertaining the accuracy of the generated patterns/input–output 
relationship using a different set of data is known as “testing” [116]. A simple 
illustration of the progression and interactions between ANN, AI, ML, and DL is 
shown in Fig. 3. 

In terms of structure, the ANN model for ML is considered to have a few hidden 
layers, while that of DL is commonly expected to have several hidden/processing 
layers [118]. Regarding the complexity of processing layers, the structures of simple 
and deep neural network models are shown in Fig. 4. Deep learning can identify 
patterns and correlations between unstructured data with multiple hidden layers. 
Thus, DL has a significant advantage over ML algorithms in predictive analytics.
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Mimicking the intelligence or 
behavioural pattern of humans 
or any other living entity. 

A technique by which a computer 
can “learn” from data, without 
using a complex set of different 
rules. This approach is mainly 
based on training a model from 
datasets. 

Deep Learning: 
A technique to perform 
machine learning 
inspired by our brain’s 
own network of 
neurons. 

Fig. 3 Progression of AI from ML to DP [117] 
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Fig. 4 Artificial neural network models, (a) simple NN; (b) deep NN[117] 

Some of these advantages are its better self-learning capabilities; it can test its 
accuracy in terms of its predictions/outputs and updates itself as a necessity toward 
achieving better outputs with minimal human inputs [119]. Integrating AI into
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existing flexibility management approaches offers myriad benefits, which are both 
technical and economic compliant. Some of the most recent works on deploying AI 
to energy management systems are presented in Table 1. 

The scope of the reviews summarized in the table above is based on the authors’ 
contribution in line with the type of the AI tool deployed, and whether or not 
flexibility provisions are considered in the problem formulation. Thus, the summary 
presented in Table 1 shows that most of the existing works on the adoption of AI in 
energy management systems are limited to resource prediction and energy market 
forecast. Deep learning algorithms that offer vital solutions to some important 
requirements of modern energy systems such as big-data handling [140] and 
data/information privacy have not been explored [141]. 

4 Planning Integrated Flexibility Management with 
Artificial Intelligence 

Secure and economical operation of power systems is becoming difficult to achieve 
at the transmission and sub-transmission levels due to the increasingly dynamic 
nature of electricity networks [142, 143]. The complexity of grid operation is 
increased further by the liberal and competitive structure of the modern elec-
tricity markets [144]. Moreover, factoring in the flexibility requirements of the 
energy system into the design process to increase system reliability makes the 
decision-making procedure more complicated. Thus, introducing modern intelligent 
decision-making/control agents is essential for precise flexibility needs identifi-
cation and deployment of appropriate flexibility providers at different instances. 
The advent of artificial intelligence (AI) is reshaping the methods of providing 
solutions to current severe developmental issues. Common AI applications involve 
deploying intelligent-based learning for accurate prediction and solution preferment 
to issues that are too puzzling for the crude human ability to handle. As a branch 
of information science and engineering, AI can be deployed to develop and design 
intelligent agents that can perceive the specific flexibility needs in an innovative 
microgrid environment. These intelligent agents can take necessary actions toward 
making the most efficient decision on the suitable flexibility provider toward 
maximizing the VREs uptake while limiting the use of fossil-based backups. In 
this context, AI-enabled integrated flexibility management refers to a method of 
providing readily adaptable mechanisms based on AI to accommodate the effects 
of uncertainty and variability in energy demand and the availability of resources in 
an intelligent energy supply system. AI-enabled flexibility management approach 
can make automatic self-decision for optimal load-shifting and ancillary device 
deployment based on the real-time situation of the energy system. 

The AI flexibility manager can combine forecasted data using a relevant machine 
learning and deep learning approach and actual data from intelligent devices 
strategically placed at the supply and demand side with appropriate Internet of
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Things (IoT) edge devices [145, 146]. Such an AI-based flexibility management 
framework can efficiently integrate real-time power system flexibility requirements 
into capacity planning. It can also combine operation scheduling to increase the 
share of renewable energy uptake while reducing the use of fossil fuel-based 
thermal generators for backups and curtailing redundancy [147]. Another emerging 
research area in this direction is the concept of peer-to-peer (P2P) energy trading, 
which has significantly changed how energy is generated and consumed within a 
neighborhood. In this situation, excess energy produced by a household can either 
be sold to the grid or to neighbors that need energy. Depending on the load condition 
and weather, the selling neighbor, i.e., the energy producer at a particular time, can 
be an energy buyer (consumer) at another time leading to each neighbor being called 
prosumers [148, 149]. This new concept is gaining prominence and is significantly 
an outflow of Internet of Things (IoT) technology. However, the efficiency of this 
arrangement depends greatly on consistent and precise weather data and information 
on the prosumers’ load demand and energy consumption[150]. Thus, P2P can be 
enhanced with the deep learning capability of artificial intelligence technology for 
big-data analysis and enhanced prediction handling. 

5 Conclusions 

Due to the complicated load and supply balance dynamics, the massive amounts 
of renewable energy introduced into the energy mix poses significant challenges 
for utilities and their customers. The renewable energy generators’ outputs are 
intermittent and thus create an imbalance between the instantaneous load demand 
and available supply at different instances of time. Besides, the inertia in power 
systems is becoming lesser due to the displacement of the rotating mass of conven-
tional generators with inverter-based generators. Thus, the challenge of meeting the 
flexibility needs of modern power systems is becoming significantly high in recent 
times. Because of this, existing traditional methods of meeting the flexibility needs 
of power systems are becoming insufficient; this calls for developing new intelligent 
approaches that can handle complex situations. Different Artificial Intelligence 
(AI) concepts are deployed as a solution provider to numerous complex power 
systems operational problems, especially in resource forecasting, electricity market 
dynamics prediction, intelligent decision-making for generator scheduling, and 
more. Hence, this book chapter reviews existing flexibility management techniques 
and some crucial areas of AI deployment in energy management systems toward 
meeting the flexibility needs of modern energy supply systems. It also provides 
insights into the research direction for the effective adoption of AI to achieve better 
performance. As observed from the survey, deficient deployment of deep learning 
approaches for big data handling for accurate prediction and preserving information 
privacy are some of the more obvious areas for further research into flexibility needs 
management in interconnected energy systems. 
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Machine Learning Applications for 
Renewable Energy Systems 

Yasir Saleem Afridi, Laiq Hassan, and Kashif Ahmad 

1 Introduction 

In the modern world, our dependency on technology and modern machines has 
increased resulting in a significant increase in energy consumption. The World Bank 
indicators show a strong link between the consumption of energy and the devel-
opment of a country in different aspects of life, such as economy, infrastructure, 
health, education, etc. [1]. Fossil fuels, which include crude oil, natural gas, and 
coal, mainly remained a primary source of energy. However, in the current era, 
where global warming and climate change are considered to be among the biggest 
threats to mankind, the focus has been shifted toward renewable sources of energy, 
such as hydropower, geothermal heat, solar, and wind energy. Compared to fossil 
fuels, renewable sources of energy bring several advantages. For instance, it is a 
source of energy that never runs out. More importantly, its zero carbon emission 
characteristic makes it more environmentally friendly by ensuring cleaner air and 
water. 

While speaking about renewable sources of energy, hydropower has always been 
the leading source of energy. However, over the past decade, wind power and 
solar power have also gained a lot of attention [2]. The extensive research in the 
area has led to the development of technologically advanced and highly complex 
power generation machines. On one hand, where this development has increased 
the efficiency and performance of the equipment, it has also generated the need 
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for artificially intelligent energy forecasting, planning, and plant operation and 
maintenance models/solutions. These models/solutions also make use of state-of-
the-art machine learning (ML) algorithms for a diversified set of tasks in the domain. 

The current fast-paced advancements in the fields of artificial intelligence (AI) 
and ML have reduced the need for human intervention in carrying out different 
complex operations in the power sector to a minimum level. These developments 
have also enabled us to adopt a proactive approach to the challenges faced while 
managing such intricate renewable energy systems. The industry experts and 
analysts foresee a pivotal role being played by AI and ML in the future of renewable 
energy systems. Investments pertinent to AI in the renewable energy sector are 
expected to cross USD 7.78 billion by 2024, as per a market intelligence report 
published by BIS Research [3]. The extensive opportunities for growth offered 
by AI and ML have forced the major market players to incorporate them into 
their strategies. The applications of AI and ML in addressing the problems faced 
by energy companies are plentiful. This chapter provides an overview of AI and 
ML applications for renewable energy systems. The key applications covered in 
the chapter include: (i) weather prediction/forecasting using ML algorithms, (ii) 
forecasting energy supply and demand through AI, (iii) integration of AI with smart 
grids, and (iv) AI-based condition monitoring and prognostics maintenance systems. 
An overview of available resources, such as datasets and ML algorithms, for the 
researchers in the domain is also provided. Moreover, the chapter highlights the 
key challenges associated with the successful deployment of ML algorithms and 
potential future research directions in the domain. 

The rest of the chapter is organized as follows. Section 2 provides an overview 
of the existing literature on the topic. Section 3 provides an overview of some key 
applications of ML for renewable energy systems. Section 5 highlights the key 
challenges and potential opportunities in the domain. Finally, Sect. 6 concludes the 
chapter by providing key insights and lessons learned. 

2 Related Work 

The literature reports outstanding generalization capabilities for ML algorithms in 
different application domains, such image classification [4], speech recognition [5], 
and text processing [6]. ML algorithms allow the identification of hidden patterns 
in a large collection of data and extract meaningful insights. Similar to other 
application domains, where ML algorithms have been proved very effective, the 
energy sector also provides a huge amount of data on different aspects of energy 
systems [2, 7]. To extract meaningful insights from the data, several interesting ML 
solutions, exploring different aspects of the energy sector, have been proposed in 
the literature. 

Most of the recent efforts in the domain focus on renewable energy systems. For 
instance, Lai et al. [8] provide a detailed survey of ML models for the prediction 
tasks in renewable energy systems. The authors discussed different aspects of the
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domain, such as the performance of existing ML models, pre-processing techniques, 
and parameter selection approaches adopted in the literature. Gu et al. [9], on 
the other hand, discuss the use of ML algorithms for renewable energy materials. 
The authors explored the potential of ML in key renewable energy technologies 
including catalysis, batteries, solar cells, and crystal discovery. Daniel et al. [10] 
provide an overview of ML applications in harnessing of renewable energy, such as 
wind, solar, and thermal energy. 

The literature also reports interesting works on certain aspects of ML-based 
solutions for renewable energy applications. For instance, Salcedo et al. [11] 
provide an overview of feature selection approaches adopted in ML-based pre-
dictive solutions for renewable energy applications. The authors also highlight 
the challenges, potential, and key aspects of the feature selection process, such 
as the impact of certain features on the predictive capabilities of ML models in 
renewable energy applications. Several studies focus on applications of certain types 
of ML algorithms for renewable energy. For example, Perera et al. [12] explored 
the potential of reinforcement learning, which represents a sub-category of ML 
algorithms, in renewable energy applications. In total, seven different applications 
of renewable energy relying on reinforcement learning algorithms, namely building 
energy management system, dispatch, vehicle energy systems, energy devices, grids, 
energy markets prediction, are discussed. 

The rich literature on the topic shows the potential of ML in renewable energy 
applications. However, there are several challenges associated with the successful 
deployment of ML algorithms in different applications of renewable energy. In 
this chapter, we highlight such challenges by exploring different aspects of ML 
applications in renewable energy. We also highlight the potential opportunities, 
existing resources, and future research directions in the domain. 

3 Key Applications 

The list of ML applications for renewable energy is very diverse as shown in Fig. 1. 
In this section, we provide an overview of some of the key applications with a 
reasonable amount of existing literature, such as weather and energy consumption 
forecasting, prognostic maintenance, and ML applications in smart grids. 

3.1 Forecasting 

The process of estimating future events, states, and processes by deploying various 
conceptual models is known as forecasting. Forecasting is an important aspect of 
renewable energy systems, specifically solar and wind power, keeping in view their 
variable energy generation nature. The wind and solar power systems are therefore 
known as variable renewable energy (VRE) systems because their generation output
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Fig. 1 Some key applications of AI and ML for renewable energy 

varies in time, based on the intensity of their sources (i.e., the wind and the Sun). 
Consequently, an aspect of uncertainty gets associated with them as the power 
generation by these sources cannot be predicted with perfect accuracy [13]. This 
is where ML comes into play and is extensively used to carry out forecasts of wind 
speeds and solar irradiance. In the renewable energy sector, ML algorithms are used 
for the prediction/forecasting of the future events and states of different elements 
associated with renewable energy. Irrespective of several forecasting systems being 
adopted, the model errors continue to exist. However, with the increased use of 
advanced statistics, ML and AI, the accuracy of these forecasting models has been 
improved significantly. In the following subsections, we discuss some of the key 
forecasting applications in the domain. 

3.1.1 Weather Forecasting 

Weather forecasting plays a vital role in integrating solar and wind power gen-
erations into the grid, especially in cases where the penetration levels are high. 
The most crucial scheduling input for VRE generators that are weather dependent 
is obtained from weather forecasting data. Therefore, the forecast for power 
generations is a combination of regional weather forecasts and plant availability.
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In the literature, several interesting solutions for weather forecasting have been 
proposed. These methods can be broadly classified into two categories, namely 
physical methods and statistical methods [13]. In the physical methods, weather 
data including temperature, pressure, humidity, surface roughness, and obstacles 
are fed into a numerical weather predictor (NWP) model. The model in return 
generates weather conditions using physical and mathematical laws that are specific 
to terrain and can be converted into energy production. The statistical methods used 
alongside the NWP models aim to increase the correctness of the results generated 
by employing historic and real-time generation data. Persistence forecasting, for 
instance, is used as a benchmark for evaluating the advanced forecasting methods 
as it is the simplest statistical method based on an assumption that the current 
generation levels will remain constant in the near future [14]. Advanced forecasting 
methods make use of AI and big data to carry out the predictions by analyzing live as 
well as historical weather data. Since advanced forecasting facilitates and improves 
VRE integration, it is one of the main applications of AI in weather forecasting.With 
continual advancements in computing power and ML algorithms, these forecasts 
have become more and more accurate over the past few years. 

Moreover, the VRE forecasting approaches could also be categorized into cen-
tralized and decentralized methods. Centralized VRE forecasting is the cumulative 
system-wide forecast of all the VRE generators within a specific balancing area. 
The centralized forecasts are normally administered by the system operators and 
are considered to be one of the best approaches for economic dispatch. On the other 
hand, decentralized VRE forecasting is carried out by individual power generators. 
It facilitates the system operator in making efficient decisions pertinent to potential 
transmission congestion by providing plant-level information. The centralized VRE 
forecasting is more effective as it incorporates a single methodology of forecasting 
across all distributed power generators [15]. Therefore, it lowers the uncertainties at 
the system operator level and reduces the financial burden of carrying out individual 
forecasts on the distributed power generator level. However, relying on a single 
methodology in the case of centralized forecasting increases the risk of systematic 
bias. This issue can be addressed by incorporating the ensemble forecasting method, 
where an aggregate of the results generated by multiple forecast models is taken 
rather than relying on a single forecasting model [16]. 

3.1.2 Wind and Solar Power Production Forecasting 

In the areas with moderate to high wind power generation, the operators make use 
of wind energy forecasting to predict the power generation. Likewise, the solar 
irradiance data are used to forecast solar power forecasting. Given the stochastic 
nature of wind and solar power generations, ML algorithms have been extensively 
used for carrying out short-term forecasts of these entities. The current trends 
in solar and wind power estimation use disaggregation of power generation as 
well as innovative features and structural information for carrying out short-term 
forecasts. For instance, based on the video recordings of the sky, convolutional
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neural networks (CNNs) have been trained to predict near-real-time solar power 
generation [17]. The solar and wind power output is directly and closely related to 
the prevailing weather conditions. Recent research, therefore, aims to seamlessly 
integrate weather forecasting and power generation prediction. Efforts are being 
made to improve the efficiency of the weather forecasting models to effectively 
use them as an input for predicting VRE power generation. Numerous physics-
based NWP models have been developed to estimate solar irradiance from 0 to 
72 h ahead [18]. The output of these multi-timescale NWP models is then used 
as an input to ML algorithms for carrying out probabilistic power predictions. 
Similarly, various techniques take the NWP data as features to carry out supervised 
wind power forecasts. However, the supervised power prediction techniques have 
a limitation when dealing with distributed energy sources, where the size, location, 
panel orientation, and hardware data are not always available to the system operators 
for all the interconnected systems [19]. In such scenarios, satellite and aerial 
imagery data can be fed intoMLmodels for effectively predicting power outputs [2]. 

There are several benefits of wind and solar power forecasting. On one hand, it 
enables the power system operators to maintain lesser reserves. On the other hand, it 
helps them in handling the supply-side uncertainties. Moreover, efficient predictions 
can also help in tackling the extreme changes in wind and solar generation that 
cause a sudden change in the power output. Wind and solar power predictions also 
enable the grid operators to schedule and dispatch generating plants efficiently. 
Thereby, the power system operators can make smart and profitable choices on 
power purchasing by relying more on VRE sources. Furthermore, the wind and solar 
power prediction also facilitates the power generators by allowing them to carry out 
plant maintenance during the low production period. Based on the power prediction 
data, project financers can make better decisions by assessing the plant output data 
and thus arranging the necessary finance, accordingly. 

Nevertheless, the prospects for future research studies to deeply integrate weather 
and power prediction are quite bright. More studies need to be carried out to develop 
hybrid physical models where NWP physics-based models are directly incorporated 
into ML power prediction models. 

3.1.3 Load Forecasting 

The very fact that electricity cannot be stored in large quantities has given rise to a 
principle in the power industry known as “the balancing rule.” This rule suggests that 
a consistent balance must always be maintained between the amount of electricity 
demanded and the amount of electricity supplied. This is important because in 
both excessive generation and undersupply of electric power, monetary losses are 
faced by power operators. Hence, to maintain an ideal balancing situation, load 
forecasting has become an important phenomenon of the current power market. 
Load forecasting is a technique used by power operators to predict the energy 
demand to balance it with the anticipated energy supply. Load forecasting also plays 
a pivotal role in effective decision-making during power system capacity planning to
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meet the current load requirements and power system expansion to cater the future 
anticipated load requirements. 

Load forecasting can be broadly classified into three groups based on the time 
horizons of the planning strategies. These categories include: (i) long-term load 
forecasting (LTLF), (ii) medium-term load forecasting (MTLF), and (iii) short-
term load forecasting (STLF). LTLF ranges from 1 year to 20 years and is 
mainly used for carrying out economic planning of new generation capacity and 
transmission network. It also facilitates in predicting the future needs for expansion 
and infrastructure development. MTLF normally predicts the load for a period 
ranging from 1 week to 1 year. MTLF plays an important role in making decisions 
pertinent to the scheduling of fuel supplies, carrying out the maintenance activities, 
financial planning, and tariffs formulation. STLF, on the other hand, ranges from 1 h 
to 1 week and provides the basis for taking profitable decisions regarding generation 
units start-up and shutdown. STLFs are used to maintain the demand–supply 
balance that are important to avoid undersupply and excessive supply of energy. It 
also provides the information regarding the daily operations and unit commitment to 
the system operators. STLF is also used to overcome the transmission constraints by 
providing approximate load flow. STLF also facilitates in economic load dispatching 
and security assessment. 

Load forecasting is a stochastic problem rather than deterministic. Hence, there 
is no certainty in forecasting. The reason being load forecasting depends upon 
numerous factors that need to be taken into account while designing a forecasting 
model. Some of the factors include load density, population growth, historical data, 
alternative energy sources, and other geo-graphical factors. 

Among all the aforementioned load forecasting types, STLF is mostly utilized. 
One of the potential reasons for more focus on STLF is that it plays a vital role 
in managing energy transfer schedules based on the estimated load for periods 
ranging from thirty minutes to an entire day. Therefore, an efficient STLF reduces 
the expenses incurred by the system operators and enhances the efficiency of the 
transmission network [20]. In recent years, various techniques have been applied 
for enhancing the accuracy and efficiency of the load forecasting for VRE systems, 
including AI and fuzzy logic. Based on their explainability, flexibility to use, and 
symbolic reasoning, AI has gained more importance and is now being widely used. 
A technique based on fuzzy logic to carry STLF by incorporating historic weather 
data has been used by [21]. A detailed review on AI-based load forecasting for 
smart grids and buildings has been carried out by [22]. ANNs have been used 
to carry out next day load forecasting [23]. Similarly, an ANN-based STLF for 
distribution systems [24] and a non-linear autoregressive ANN with exogenous 
vector inputs to carry out STLF has been developed [25]. Since STLF is based 
on non-stationary data having forecasting horizon dependencies, LSTM has been 
used in lieu of its unprecedented ability to handle long-term data dependencies [26]. 
Atef et al. [27] proposed a deep-stacked LSTM model to forecast the load demand. 
The results showed that bidirectional LSTM (Bi-LSTM) outperformed the simple 
LSTM models in terms of forecasting accuracy. Similarly, hybrid ANN models with 
fuzzy logic have also been developed for accurately predicting the load demand
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by classifying a large input load dataset. A forecasting model that takes into 
account the effect of weather and holidays data on the load forecast has been 
developed using fuzzy logic and ANN [28]. Fuzzy logic has also been used to 
construct temperature and holiday factor rule bases, an ANN model is then used 
to predict the hourly load demand. The forecast results showed that the hybrid 
model produced better results as compared to a standalone ANN model. Also, 
an enhanced convolutional neural network (CNN) has been proposed to forecast 
electricity price and load [29]. Numerous AI techniques have been used to carry 
out load forecasting, and the research show that they have achieved promising 
results as compared to the conventional techniques. The non-parametric AI-based 
techniques can clearly overcome the limited capabilities of traditional parametric 
(statistical) models such as linear regression, stochastic modeling of time series, 
and general exponential techniques [30]. However, adequate and suitable training 
data, an appropriate learning algorithm, and an optimized network structure help 
increasing the overall performance and accuracy of the models, thus reducing the 
network complexities. 

3.2 Integrating AI with Smart Grids 

In the past decade, a global paradigm shift from the conventional centralized energy 
generation to the distributed renewable energy generation has been observed. This 
has given rise to the need of replacing the traditional transmission and distribution 
systems with more resilient and smart power distribution and transmission systems. 
Since, the current grids cannot efficiently cater the fluctuating generation from 
multiple distributed renewable energy sources and have become obsolete. Therefore, 
the current grids are now being replaced with the “smart grids.” A smart grid is a 
network that allows two-way flow of data and electricity by effectively integrating 
digital communication technology with energy distribution, thus, enabling the 
system operators to optimize the generation, transmission, and distribution of energy 
on one end and consumers to make cost-effective decisions regarding energy 
consumption on the other end. Although it is an important factor, but smart grids 
do not rely on power delivery only, rather the main aspect of a smart grid is a 
two-way connection of energy and information. Therefore, a smart grid generates 
an extensive amount of data that is also necessary for its successful operation. 
Hence, the conventional computational techniques do not have the ability to process 
such huge amount of data. This is where AI comes into play, capable enough to 
take into account millions of variables and data points that include but are not 
limited to weather, location, generation, infrastructure, demand, and assets. AI 
helps every household and system operator in making proactive decisions regarding 
the energy generation and supply and the associated energy cost. For instance, if 
we know ahead of time that it is going to rain for a week, the loss in the solar 
generation can be catered by proactively upscaling the other generation sources for 
that specific week. This is what makes AI so appealing for the implementation and
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management of smart grids. Since the modern power systems are revolutionizing 
at a fast pace, more and more distributed and diversified smart grid components, 
such as smart metering systems, digital communication infrastructure, distributed 
energy sources, and electric vehicles, are getting integrated into the power network 
along with an underlying communication system. This enables the customers and 
grid to be directly connected with the help of AI. Thus, homeowners can compre-
hensively monitor their consumption through smart metering systems and hence 
take profitable decisions by smartly consuming electricity during low-cost hours. 
Furthermore, a massive amount of data generated by these smart grid components 
help automate and enhance the performance of smart grids by supporting vast 
applications such as forecasting the system state, distributed energy management, 
fault diagnosis, and grid security against cyberattacks. 

3.2.1 Applications of AI in Smart Grids 

In smart grids, AI and ML algorithms are used for a diversified set of tasks. In this 
section, we provide an overview of some of the key applications of AI and ML for 
smart grids. These applications include: 

• Assessment of Power Grid Stability: The assessment of the stability of power 
grids is vital for ensuring the reliability and security of power systems. The power 
system stability ensures that the system maintains an equilibrium operation state 
or promptly reaches a new equilibrium state when a small change is induced [31]. 
The traditional models require extensive computing resources because of their 
dependence on dynamic power system models. Therefore, data-driven AI-based 
models are applied to carry out power grid stability analysis because of their 
efficient performance. The smart grid stability assessment mainly comprises 
transient stability assessments, small-signal stability, frequency stability, and 
voltage stability assessment [32]. Transient stability assessment is the ability 
to determine whether a system will remain synchronized when a huge change 
in the normal operating state takes place. The small-signal stability assessment, 
on the other hand, represents the ability of the system to maintain the state of 
synchronization during small disturbances. The frequency stability assessment is 
the ability of the system to maintain a steady frequency during the generation 
and load imbalances, while the voltage stability assessment is the ability of the 
system to evaluate and maintain voltage stability during a voltage collapse. 

• Faults Diagnosis: The increased complexity of smart grids has introduced 
numerous sensitive equipment and components into the system. Protection of 
such equipment against faults is very important for carrying out smooth opera-
tions. Fault diagnosis in smart grids, therefore, provides a defense mechanism 
for the safety of the sensitive equipment and helps to quickly isolate the faults. 
With the increased integration of VRE resources in smart grids, effective fault 
diagnosis has become a great challenge. AI and ML, therefore, play an important
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role in carrying out efficient predictive, preventive, and corrective maintenance 
activities for smart grids. 

The literature reports several interesting fault detection techniques. For 
instance, Fazai et al. [33] proposed an extreme learning machine (ELM) model 
for fault location detection based on wavelet transform. Similarly, an ensemble 
framework consisting of five ML algorithms is developed to analyze the power 
grid frequency disturbances that detected faults with three levels of severity [34]. 
In [35], a semi-supervised ML model based on KNN and decision tree algorithms 
are used for fault diagnosis of the transmission and distribution system of 
microgrids. Extensive research has been carried out in this area that reflects the 
effectiveness of AI and ML models for carrying out fault diagnosis in smart grids. 

• Security of Smart Grids: The inherent vulnerability of communication tech-
nology and the complexity of smart grids have exposed the communication 
layers to various security issues. A probable cyberattack on the system can 
result in operational failures, loss of synchronization, interruption in the power 
supply, cascading failures, and complete blackouts. Having lethal and vital 
economic and social consequences, power grids have become a lucrative target 
for cyberattacks [36]. The most common attacks carried out on smart grids 
include false data injection attacks (FDIA) and distributed denial of service 
(DDoS) attacks. In FDIA, the system data are being altered to mislead the 
power operators, while in DDoS attacks the attackers attempt to make a service 
unavailable for its intended users. In recent years, various state-of-the-art AI-
based approaches have been proposed to ensure the overall security of smart 
grids. For instance, a neural network model based on stacked denoising autoen-
coder (SDAE) has been proposed that identifies four different attacks on smart 
grids [37]. Kosek et al. [38], on the other hand, used an ANN model to identify 
malicious actions for controlling voltage in the low-voltage distribution grids. 
Similarly, a semi-supervised ML framework with a domain-adversarial training 
of known attacks has been used to detect anomalies and patterns for identifying 
the returning threats at distinct loads and hours [39]. Although sophisticated 
techniques have been proposed for ensuring the security of the smart grids, 
however, interdisciplinary research to develop a holistic and methodical solution 
can further help to tackle the security threats prone to smart grids, effectively. 

3.3 Condition Monitoring and Fault Prognostics of Renewable 
Energy Systems 

The continual advancements in the renewable energy sector have led to the 
development of more complex generation units. Such intricate generation units 
require more effective and efficient operation and maintenance (O&M) techniques. 
Furthermore, a delay in diagnosing a fault increases the cost of its rectification. 
Also, fault can propagate and damage other equipment that can further add to 
plant shutdown and uncalled-for outages, whereas, with the exponential increase
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in demand and increased dependency on energy globally, power outages and plant 
downtimes are highly unfavorable. For ensuring efficient and cost-effective O&M, 
the current reactive approaches toward fault diagnosis are being replaced with more 
advanced proactive approaches where the system faults are being predicted. Hence, 
condition-based monitoring (CBM) and fault prognostics have become the need of 
the day. To meet these challenges, state-of-the-art AI and ML models have been 
developed to predict the faults in renewable energy systems, including hydropower, 
wind power, and solar power projects. In the following subsections, we provide an 
overview of hydro, wind, and solar projects. 

3.3.1 Hydropower Projects 

Hydropower plants (HPPs) being one of the first renewable sources of energy are 
mostly relied upon to cater to the baseload demands of grids. Therefore, plant 
availability and reduced downtimes are very important while carrying O&M of 
HPPs. Consequently, the current preventive and corrective maintenance procedures 
are being replaced with more advanced diagnostic and prognostic maintenance 
systems. Hence, several efforts are being made for O&M. For instance, a graphical 
software-based condition monitoring system using wavelet analysis has been 
developed for a Francis turbine [40]. The research shows that the vast majority 
of predictive maintenance solutions for HPPs are data-driven. Several data-driven 
predictive maintenance models for HPPs are being analyzed and classified into 
three categories: a) physical models, b) stochastic models, and c) ML-based data 
mining models [41]. Likewise, support vector machine (SVM)-based CBM and 
fault diagnostic technique for HPPs have been developed [42]. Although SVM 
outperformed other classification methods, it required higher computational time. 
Deep learning models have also been used to carry out the CBM and predictive 
maintenance of HPPs. For instance, a deep neural network-based anomaly detection 
model in multivariate time-series data has been used [43]. The patterns in the data 
were captured using long short-term memory (LSTM) because of its unprecedented 
performance while dealing with time-series data. Similarly, the remaining useful life 
(RUL) of hydropower turbine bearings has also been determined using the bearing 
vibrations data acquired from run-to-failure experiments [44]. Although a lot of 
research have been carried out on the CBM of HPPs; however, variations in the 
operating conditions of the HPPs make the adaptability (i.e., a model trained on 
data obtained at one plant could be used for the prediction of data obtained at a 
plant at a different location with different operating environments) of these models 
a very complex process. 

3.3.2 Wind Power Projects 

Among all the renewable energy sources, CBM and fault prognostics for wind 
turbines (WTs) have always been in the limelight because of the following 
reasons:
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• WTs have got a very high capital cost; therefore, for an effective payback period, 
plant availability should be maximized. 

• WTs normally operate under stressful conditions because of the extreme weather 
conditions and a constantly variable load; therefore, they have got a higher failure 
probability. 

• Large offshore WTs have got a higher failure downtime because of the access 
difficulties. 

Therefore, an improved CBM and fault prognostics system for WTs can avoid 
its subassemblies from getting damaged, hence minimizing the plant downtime. 
Various fascinating and distinct solutions pertinent to the CBM of WTs are reflected 
in the literature. One of the key components of a WT that transfers the power 
between the turbine and the generator shaft is the gearbox. Being one of the 
most critical components, it contributes maximum to the capital cost of the WTs. 
Consequently, the associated maintenance and repair cost of gearboxes is also very 
high. Being an important aspect of renewable wind projects, several interesting 
solutions have been proposed for fault prognostics of wind turbines. For instance, 
a data-driven framework based on ANN is developed for carrying out the fault 
prognostics of WT gearbox [45]. The mechanical fault diagnosis of WTs can be 
further improved by analyzing the vibration signals acquired from the accelerom-
eters along with the power signals. A similar fault diagnostic system based on 
data mining techniques using multi-sensor data has been proposed [46]. Likewise, 
models for the estimation of RUL of WTs main bearing have been presented using 
the likelihood functions [47]. With the advancements in computational resources 
and the development of new AI algorithms, the search for the development of the 
most optimal fault diagnostic system for WTs continues. 

3.3.3 Solar Power Projects 

As compared to wind and hydropower projects, solar power projects are purely 
electrical and are therefore less susceptible to degradation and faults. Therefore, 
CBM and fault diagnostics in solar power projects are mostly related to the 
photovoltaic (PV) modules’ health analysis, monitoring the power loss, and the 
performance monitoring of energy storage systems. For instance, a framework based 
on ANN is used to carry out the PV health monitoring and analyze the degradation to 
make effective maintenance decisions accordingly [48]. The performance ratio (PR) 
of a PV module is the ratio of the actual generation against the rated generation 
capacity of that module. PR is a key indicator when assessing the reliability of 
a solar PV system. Various ML techniques have been used to predict the PR of 
solar power plants to improve the energy reliability [49]. Likewise, performance 
evaluation of several deep learning techniques including LSTM, ANN, and RNN 
has been assessed for carrying out the prognosis of solar power projects. The 
results indicated that LSTM outperformed the other algorithms in terms of accuracy 
especially while predicting temperature sequences [50]. The research pertinent to
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CBM and fault prognostics in solar power projects is still at an inchoate stage and 
requires further studies to be conducted. 

4 Resources (ML Algorithms and Datasets) 

4.1 AI/ML Algorithms 

In this section, we provide an overview of some of the most commonly used AI/ML 
algorithms for different applications in renewable energy. For better arrangement, 
the algorithms are categorized into four categories, namely fuzzy logic, hidden 
Markov models (HMMs), classical ML algorithms, and neural networks (NNs). In 
the following subsections, we provide a detailed overview of each of the categories. 
Moreover, a summary of some of the recent methods from each category is provided 
in Table 1. 

Table 1 Sample works based on each type of ML algorithm discussed in this section 

Ref. ML Model Application Description of the method 

[54] FL & NNs Solar 
forecasting 

It is a hybrid solution combining FL and NNs for 
solar forecasting. FL is mainly used for 
pre-processing to correlate key features including 
cloud cover, wind speed, and temperature 

[55] FL Fault detection Relies on FL for comparing electrical parameters 
against the theoretical parameters to identify 
faulty PV components 

[58] HMMs Fault detection It is a two-step solution where initially PCA is 
used to extract and select relevant features. An 
HMM is then trained on the extracted features for 
the detection and classification of faults 

[57] HMMs Energy 
consumption 
forecasting 

Relies on HMMs to deal with the heterogeneous 
data collected from different sensors for 
forecasting a day-ahead load 

[46] SVMs Fault detection An SVMs classifier, under three different 
experimental setups, is trained on multi-modal 
features obtained through different sensors for 
fault detection in wind turbines 

[60] RF Energy 
consumption 

Relies on an ensemble of RF classifiers that are 
trained on features extracted through fast Fourier 
transform 

[66] CNN & LSTM Energy state 
prediction 

Relies on a hybrid CNN-LSTM-based framework 
for energy state prediction from sequences of 
battery’s state of energy and other observable 
parameters of the mobile edge computing systems 

[67] Power forecasting CNN & LSTM Relies on two different hybrid models including a 
CNN-LSTM and a ConvLSTM trained on 
uni-variate and multivariate datasets for 
forecasting power production of a 
self-consumption PV plant



92 Y. S. Afridi et al.

4.1.1 Fuzzy Logic 

Fuzzy logic (FL) represents a subset of AI algorithms that are inspired by the 
reasoning capabilities of a human. Similar to humans, FL techniques take into 
account various intermediate possibilities (i.e., degrees of truth) between 0 and 
1 [51]. An FL architecture is mainly composed of four components: namely: (i) 
rules, (ii) fuzzification, (iii) inference engine, and (iv) defuzzification. The first 
component (i.e., rules) contains a list of rules and conditions (if-then) provided by 
domain experts. The second component converts inputs (sensor data) into fuzzy sets. 
The inference engine then determines/decides rules and actions to be performed 
based on the degree of match between fuzzy input and the rules. Finally, fuzzy sets 
are converted back into crisp values in the defuzzification process. 

FL techniques have been adopted in several types of AI systems in different 
application domains, such as medicine, autonomous cars/vehicle intelligence, bio-
informatics, consumer electronics, and aerospace [52]. FL techniques have also 
been widely exploited for different applications of AI for renewable energy [2, 53]. 
Some key applications of FL in the renewable energy sector include prognostics 
maintenance, site selection for solar power, solar forecasting, and forecasting energy 
consumption. For instance, Sivaneasan et al. [54] proposed an NNs and FL-based 
framework for solar forecasting. The FL-based techniques are mainly used to find a 
correlation of key features, such as cloud cover, temperature, wind speed, and wind 
direction, with irradiance value. Similarly, Zaki et al. [55] proposed a fault detection 
framework for solar power systems relying on FL to detect and differentiate eight 
different types of faults in solar systems. Lau et al. [56], on the other hand, utilize 
FL for forecasting energy consumption in a manufacturing system. The framework 
mainly monitors and analyzes the consumption of energy by the manufacturing plant 
when the functionality/operations of certain production units vary. 

4.1.2 Hidden Markov Models (HMMs) 

HMMs are state-space models that model the evolution of observable events 
depending on some non-observable internal factors (hidden states). The observed 
event is known as a “symbol,” while the non-observable factors are called “states.” 
We note that HMMs could be used in applications with an observable event “Y” 
and the non-observable factor/event “X” where the outcome of “Y” is influenced by 
the outcome of “X” in a known way. In such situations, the goal is to explore the 
outcome of “X” by observing “Y.” Moreover, the outcome of “Y” at .t = t0 must 
only depend on the outcome/value of “X” at time .t = t0, and the outcome of both 
“Y” and “X” at time .t < ti should not have any impact on the outcome of “Y” at 
.t = t0. This implies that the value of “Y” should not depend on the historical values 
of “X” at any stage. 

The literature reports several variations of HMMs, such as profile-HMMs, 
maximum entropy Markov models (MEMM), pair-HMMs, and context-sensitive 
HMMs. HMMs and their variations have been proved very effective in different
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application domains, such as speech analysis, text recognition, machine translation, 
and activity recognition. These types of AI algorithms are more effective in 
applications with sequential and time-series data. 

There are several applications of AI in renewable energy that involve analysis 
of sequential and time-series data, such as predictive maintenance (predicting the 
remaining useful life of machines), forecasting energy consumption, and load 
monitoring. The literature already reports several interesting works in this direction. 
For instance, Bajracharya et al. [57] proposed a HMMs-based energy forecasting 
framework for predicting a day-ahead load of a data center. The basic motivation 
behind the proposed solution is to take advantage of HMMs’ capabilities of dealing 
with heterogeneous data in a better way. Kouadri et al. [58], on the other hand, 
employ HMMs for fault detection in wind energy converter systems. As a first step, 
the authors use principal component analysis (PCA) to extract and select relevant 
features. Subsequently, an HMM is trained on the extracted features for the detection 
and classification of faults. 

4.1.3 Conventional ML Algorithms 

Conventional ML algorithms, which are also called traditional ML algorithms, 
represent a subset of ML algorithms that work on features generally extracted 
by human experts of a domain. These algorithms can be used for several tasks 
including classification, regression, clustering, and dimensionality reduction. The 
literature reports a diversified set of traditional ML algorithms, such as support 
vector machines (SVMs), decision trees, random forest (RF), nearest neighbors, 
K-means, and Bayes algorithms. Traditional ML algorithms possess several key 
characteristics that make them a preferable choice for different applications. These 
characteristics include simplicity in terms of concepts/understanding and imple-
mentation. More importantly, these algorithms are interpretable/explainable that 
bring several advantages to critical and human-centric applications [7]. For instance, 
interpretable ML models not only result in better failure analysis but also allow an 
opportunity to further improve the models’ performance by tuning them [59]. 

Most of the initial efforts on intelligent analysis via AI/ML in the energy sector 
are based on classical ML algorithms [2]. In this regard, the traditional classification 
algorithms, such as SVMs, RF, and Bayes classifiers, and clustering techniques, 
such as K-means, self-organizing map (SOM), and Gaussian mixture model (GMM) 
clustering algorithms, are widely exploited for different tasks in the domain. The key 
applications of renewable energy where traditional ML algorithms have been shown 
very effective include prognostic maintenance, energy consumption forecasting, 
weather forecasting, and other smart grid applications. For instance, Santos et 
al. [46] employed an SVMs classifier under three different experimental setups for 
fault detection in wind turbines. The classifier is trained on multi-model features 
including data from different types of sensors. Similarly, Li et al. [60] rely on RF  
for forecasting energy consumption.
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4.1.4 Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs), which are also called neural networks, represent 
one of the most commonly used families of AI/ML algorithms. ANNs are mainly 
inspired by the biological neural system where different algorithms are used to 
identify hidden patterns in data. Similar to a human brain, ANNs are composed 
of connected units namely “neurons,” which are also known as “nodes” and are 
based on a mathematical function (i.e., activation function) that collects input 
data, performs mathematical operations, and produces output according to specific 
criteria. These neurons are arranged in layers. A typical ANN (i.e., feed-forward 
NN) generally consists of three types of layers, namely: (i) input, (ii) hidden, 
and (iii) output layers. ANNs with a single hidden layer are called single-layer 
perceptrons, while the ANNs with multiple hidden layers are called multi-layer 
perceptrons. 

There are different types of NNs, such as convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), and feed-forward NNs, each with a specific set 
of characteristics. For instance, CNNs are more useful for image analysis. Similarly, 
RNNs have been proved more effective for sequential and time-series data [4]. 

In the renewable energy sector, due to the nature of the data, RNNs are most 
commonly used for different tasks. Among RNNs, long short-term memory (LSTM) 
and bidirectional LSTM (bi-LSTM) are widely exploited for different tasks in AI 
applications for renewable energy. Some key applications where LSTM and bi-
LSTM have been very effective include prognostic maintenance [2], forecasting 
energy consumption [61], the impact of climate change on renewable energy 
resources, risks assessment of renewable resources [62], and forecasting solar 
power [63]. CNNs are also widely utilized for different applications in the renewable 
energy sector. CNNs are most used for image-based solutions in the domain. 
Some key applications of AI for renewable energy where CNNs could be useful 
include image-based prognostic maintenance of renewable energy systems [2] and 
power load forecasting [64]. The literature also reports several hybrid solutions 
combining CNNs and RNNs (LSTM) for different tasks in the domain. These hybrid 
solutions allow to extract spatio-temporal features that result in better classification 
performances [65]. For instance, Ku et al. [66] proposed a CNN-LSTM-based 
solution for predicting the state of energy to avoid battery overcharging and 
discharging. Similarly, a CNN-LSTM model is proposed by Agga et al. [67] for  
the prediction of power production of a self-consumption PV plant. 

4.2 Datasets 

The applicability of ML algorithms in a domain largely depends on the availability 
of quality data. It is therefore important to provide the readers with a list of publicly 
available datasets for each application of ML in the renewable energy sector. The
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literature reports several datasets; however, most of them are not publicly available. 
Thus, in this section, only publicly available datasets are covered. 

4.2.1 Forecasting Energy Supply, Demand, and Weather 

Forecasting energy supply and demand is one of the key applications of renewable 
energy that benefited from ML algorithms. It generally involves processing a huge 
amount of weather data for meaningful insights, such as weather forecasting, mainly 
due to the dependency of renewable energy sources on climate changes [68]. Due to 
this connection, weather data are considered along with other factors for forecasting 
energy supply and demand. In this section, we discuss some of the publicly available 
datasets containing energy consumption and weather data for forecasting energy 
demand and supply via ML algorithms: 

• ENTSOE Dataset [69]: The dataset provides statistics on electrical consump-
tion, generation, pricing, and weather data for Spain collected from different 
sources for 4 years. The consumption and energy generation data are obtained 
from ENTSOE, which is a public portal for transmission service operator (TSO) 
data. The pricing and weather data, on the other hand, are obtained from the 
Spanish TSO Red Electric Espana and an open weather API, respectively. One 
of the key characteristics of the dataset is the hourly consumption data and the 
corresponding forecasts by the TSO for consumption and pricing, which can be 
used as a baseline for the underlying ML solutions. Moreover, the objectives of 
the dataset are multi-fold. For instance, it could be used for: (i) visualization 
of load and supply data, (ii) analyzing the impact of weather and major cities 
on the energy supply, demand, and price, and (iii) forecasting hourly and daily 
energy supply, demand, and price, etc. The dataset is provided in two separate 
files namely the energy dataset and weather features. 

• Daily Electricity Price and Demand Dataset [70]: The dataset provides 
statistics on the daily electricity price and demand in Victoria, Australia. The 
dataset provides prices and demands for a total of 2016 days from January 1, 
2015 to October 6, 2020. The feature set is composed of 14 different features 
including date/day entries, price, demand, temperature, solar exposure, and 
rainfall information. For price and demand, it provides values of daily, negative, 
and positive recommended retail price (RRP). For temperature, both max and 
min values are provided. 

• Half-hourly Electricity Demand Dataset [71]: This dataset is also based on the 
data collected in Victoria, Australia; however, it aims at operational demands. 
The operational demand represents the demand for energy met by local and 
semi-scheduled generating units having an aggregated energy higher than 30 
MW as well as by energy sources/energy imported to the region. The dataset 
provides a total of 52,608 data samples/records each containing five different 
fields of information (i.e., features). These fields include the date, time, electricity
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demand in megawatts, temperature, and a binary field indicating public holidays 
and working days. 

• Building Data Genome 2 (BDG2) Dataset [72]: It is an open dataset containing 
data samples (readings) from 3053 different energy meters installed in 1636 
different buildings. The data are collected over two years by measuring meter 
readings on an hourly basis. The dataset provides measurements of electricity 
consumption, heating, and cooling water, steam, and irrigation meters. The 
dataset is also used for great energy predictor III (GEPIII) organized by 
ASHRAE (American Society of Heating and Air-Conditioning Engineers). The 
dataset also provides weather and other additional information in the form of 
meta-data. The meta-data file is comprised of 30 different features including key 
information, such as building ID, site ID, timezone, latitude, longitude, and the 
number of floors and occupants in the buildings. 

• ISHRAE Weather Dataset [73]: The dataset covers weather data from 62 
different locations in India. The dataset is developed by White Box Technologies 
by collecting weather data from multiple sources, including the Indian Bureau 
of Meteorology (IBM), the US National Center for Environmental Data (NCEI), 
and satellite-derived solar radiation data. 

• Hourly Energy Demand Generation and Weather [74]: The dataset provides 
electrical consumption, generation, pricing, and weather data for Spain recorded 
for 4 years. The data are collected from different sources including ENTSOE (a 
public portal for Transmission Service Operator (TSO)) and Spanish TSO Red 
Electric España. The former provides consumption and generation data, while 
the latter is the source of settlement prices. The weather data, on the other hand, 
are obtained from the Open Weather API for the 5 largest cities in Spain. 

• Household Electric Power Consumption [75]: The dataset provides readings 
of electric power consumption in one household for 4 years. The readings are 
collected at a sample rate of a one-per minute. It includes readings of different 
electrical quantities as well as sub-metering values. The feature set includes 
date, time, global active power, global reactive power, voltage, global intensity, 
sub-metering (includes readings of kitchen containing a dishwasher, an oven, 
and a microwave), sub-metering 2 (includes laundry room containing a washing 
machine, a tumble drier, a refrigerator, and a light), and sub-metering 3 (includes 
an electric water heater and an air conditioner). 

4.2.2 Smart Grids 

The literature also provides several datasets to train and evaluate ML algorithms for 
a diversified set of operations in smart grids. Some of the publicly available datasets 
in the domain include: 

• Electrical Grid Stability Simulated Dataset [76, 77]: This is a simulated  
dataset for local stability analysis of the 4-node star system. The system 
represents a decentralized smart grid control unit implementing demand response 
without significant changes to the infrastructure. The dataset provides a total of
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10,000 data instances each covering 14 attributes including 11 predictive, 1 non-
predictive, and a couple of goal attributes. These attributes include reaction time 
of energy producers and consumers, power balance (producers and consumers), 
and price elasticity coefficient (gamma) of energy producers and consumers. 

• SustDataED2 Dataset [78]: The dataset provides smart meter data, which could 
be useful to train and evaluate ML algorithms for several applications in smart 
grids. The dataset provides energy consumption data of individual appliances as 
well as aggregated consumption of one household in Portugal for 96 days. The 
data are collected through plug-wise sensors installed at 18 different appliances 
at 0.5 Hz. Moreover, the data are annotated in a semi-automatic way where 
first event detection algorithms are used to identify each appliance’s events. 
The events are then manually inspected to verify the labels. The ground truths 
are provided for both individual appliance consumption and aggregated energy 
consumption for the house in separate CSV files. 

4.2.3 Condition Monitoring and Prognostics Maintenance 

Predictive maintenance is one of the key applications of ML for renewable energy 
systems. In this application, both accelerometer data and endoscopic images can be 
used. Some publicly available datasets for the application are: 

• Vibration Signal Dataset [79]: The dataset provides a large collection of data 
samples (approximately 16,384 instances), generated at a sample rate of 12.8K 
samples per second, from six different wind turbines. Although all the samples 
are generated with the same specification of the wind turbines, the data are 
organized into six different files each containing data samples generated by a 
separate turbine. Moreover, the signals are segmented to obtain uniform segments 
each 1.28 s long. The dataset also provides additional information along with the 
signal segments. This includes key features, such as the duration for which the 
data are recorded and the turbine’s speed. 

• Wind Generator Dataset [80]: The dataset is used for the predictive main-
tenance of wind turbine generators. The dataset provides a diversified set of 
features covering different aspects of wind turbine generators. In total, each 
data sample is composed of 101 different features and a single label field 
with two possible values representing the status of the component either faulty 
or normal [80]. The feature set can be roughly divided into environmental 
conditions (e.g., operational time and wind speed), measurements for wind 
turbine components (e.g., average rotations per minute), and electrical variables 
(e.g., voltage, current, and frequency). 

• Gearbox Raw and Elaborated Data [81]: The dataset is provided in two 
different forms including a collection of raw gearbox signals and a set of 
computed features, which is also called elaborated data. Both types of data could 
be used for predictive maintenance depending on the nature of ML algorithms. 
The elaborated dataset contains statistical features, such as the standard deviation 
of accelerations computed at different intervals/frequencies. In the current form,
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the elaborated dataset provides data samples at the frequencies of 10, 100, 
and 1000 consecutive data points. Each data sample is annotated as either a 
healthy or broken component. We note that the data are generated in a simulated 
environment through a simulator, namely SpectraQuest by placing four sensors 
placed at different points. Moreover, the dataset also provides data with different 
loads ranging from 0 to 90%. 

• Wind Turbine Failure Detection [82]: The dataset is meant for early-stage 
failure detection in wind turbines. The dataset provides data on five different 
components of wind turbines including gearbox, generator, generator bearing, 
transformer, and hydraulic group. The data are collected through different sensors 
placed at five different wind turbines for two years at a time interval of 10min. 
The resultant dataset is composed of 81 different features including different 
environmental factors. Moreover, the data are provided in separate training and 
test set. 

• Grid-connected PV System Faults (GPVS-Faults) Dataset [83]: This data 
is also generated in a simulated environment under sixteen different simula-
tion/experimental settings. The data samples generated in each experimental 
setup are provided in a separate file. Moreover, the dataset provides a deeper 
annotation hierarchy including: (i) faulty and non-faulty classes (i.e., containing 
fault-free samples), (ii) types of faults (a total of seven types are covered), and 
(ii) operational modes, namely limited and maximum power modes. Moreover, 
the feature set is composed of eleven features including time and various types 
of current and voltage measurements. 

5 Challenges and Open Research Issues 

In this section, some of the key open research issues and challenges associated with 
the successful deployment of ML algorithms for renewable energy applications have 
been discussed. 

• Availability of Data for Training and Evaluation: The energy sector is one 
of the application domains that lack quality annotated data for the training and 
evaluation of ML algorithms for different tasks. To overcome this issue, the 
literature reports some efforts for synthesized datasets where data samples are 
generated in a simulated environment. Though these datasets have been proved 
effective in training ML models for different tasks, it is very hard to replicate 
real-life scenarios in a simulated dataset that may affect the performances of the 
models in real-life applications. Moreover, the generation of these datasets in a 
simulated environment is also very expensive and requires a lot of effort. 

• Feature Engineering: In the energy sector, multi-modal data are usually col-
lected through different types of sensors. The selection of the most appropriate 
and informative features from the heterogeneous data is a challenging and time-
consuming job. Moreover, it requires deep knowledge of the domain and a
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complete understanding of the data collection process and environmental factors. 
Though deep-learning-based solutions generally do not involve a feature selec-
tion process, it is a critical process for classical ML algorithms. Moreover, the 
recent shift toward explainable AI solutions has further increased the importance 
of the feature engineering/selection process [2]. 

• Adversarial Attacks: In the modern world, adversarial attacks, which involve 
crafting a receivable input sample to misguide or disturb the predictive capabil-
ities of an ML model, are one of the biggest threats to ML-based solutions in 
critical applications [7, 84]. Renewable energy is one of the critical applications 
of ML where risks associated with a wrong prediction of an ML model are 
generally very high. Since most ML models including classical and deep learning 
models are prone to adversarial attacks, the development of robust ML models 
for renewable energy applications is the way forward. 

• Integration of Traditional Power Systems in Smart Grids: The fast-paced 
development of distributed renewable generation sources and microgrids has 
resulted in the increased development of smart grids, whereas the traditional 
power systems still use the old infrastructure for energy distribution. Integration 
of these traditional power systems in the smart grids has given rise to more 
uncertainties and complexities for the modern smart grids. This means that smart 
grids now have to handle an even larger quantity of data, which is still a challenge 
for them [85]. More research needs to be done to increase the adaptiveness, 
robustness, and online processing capabilities of the AI algorithms to effectively 
handle such a large volume of diversified data. 

• Cyberattacks: As compared to the traditional grids, smart grids opt a two-way 
communication with multiple integrated devices, which is a lucrative target for 
cyber attackers. Significant research has been done to develop AI models that 
can effectively identify the cyber risks; however, smart grids are still prone to 
a wide variety of attacks [86]. A trade-off is therefore to be made between the 
performance of AI algorithms and the security of the smart grids. 

• Power Curtailment: As compared to other sources of energy, VRE such as 
solar and wind power projects has got relatively low-capacity factor. To meet 
the demand during peak hours, these projects are over-built in terms of capacity. 
At times usage or storage of the excess energy is not possible. Therefore, access 
to energy is being reduced or curtailed. This is not only a monetary wastage but 
also a wastage of energy. Effective utilization of curtailed energy is still a big 
challenge for the VRE systems. 

• Load Control: Currently, the power system operates in a fashion where the 
load is being adjusted according to the demand of the energy. This limits the 
dependence on VRE because it is a variable generation. Therefore, the need for 
curtailment and reduced generation is also there. This challenge can be addressed 
if the power systems are designed in a way that instead of matching the load, 
energy shall be utilized only when there is a VRE generation in the grid. A 
paradigm shift from load control to demand control is therefore needed. Hence, 
controllable and responsive loads being one of the most underutilized reliability 
resources can balance the demand and supply over all time frames ranging from 
seconds to seasons.
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6 Conclusions 

This chapter discusses the key applications of ML and AI for renewable energy 
by providing a detailed overview of challenges, available resources in the form of 
datasets and ML algorithms, and potential future research directions. The chapter 
discusses how AI and ML algorithms can help in forecasting future events, states, 
and processes associated with renewable energy. Moreover, an overview of some 
of the key applications of AI and ML in smart grids and prognostic maintenance is 
also provided. The literature shows that AI and ML can play a vital role in further 
enhancing the productivity and management of renewable energy resources. Despite 
being widely explored over the last few years, several aspects need to be considered 
to fully explore the potential of AI and ML in the renewable energy sector. 
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Mirtemir Kurbanov , B. M. Abdurakhmanov , Mukhsindjan Ashurov , 
and Valeriy Kharchenko 

1 Introduction 

The classical method of obtaining technical silicon (TSi) [1, 2] includes operations 
for preparing the charge, that is, grinding a silicon-containing component (SCC), 
for example, silica (SiO2) in the form of vein quartz and carbonaceous reducing 
agent (CRA), which uses charcoal, coke, and petroleum coke, to a given size, their 
mixing in a given stoichiometric ratio, feeding the resulting charge into an electric 
arc furnace (EAF) and smelting the TSi by its carbothermic reduction from SCC in 
one way or another. According to [1–3], the technological process is carried out in 
EAF, the device of which is also described in detail in the same place. 

Both the main and secondary operations of the technology and, respectively, the 
equipment for smelting TSi have been modernized repeatedly and various useful 
improvements described in [1–11]. For example, a graphite electrode was made with 
a central hole for the passage of an inert gas as a carrier gas for part or all of the SCC 
in a fine fraction. The main purpose of the improvements were attempts to changes 
in the method of supplying the charge or its individual components into the EAF [12, 
13], since with the classical portion loading of furnace charge to the electrodes, the 
smelting of TSi proceeds in an intermittent mode and under suboptimal conditions, 
since different areas of the furnace charge are at different temperatures and where it 
is less, SiO2 is restored up to SiO, which is carried away from the EAF with waste 
gases. 
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In [13], the CRA was crushed to a size of 0÷1 mm, which is comparable to 
the size of quartz sand particles (QS), and then CRA was divided into two parts; 
one part of the CRA was mixed with SiO2 in a powdered state, and the resulting 
furnace charge was supplied into the arc combustion zone through a hollow graphite 
electrode using a carrier inert gas with simultaneous running, taking into account a 
given stoichiometric ratio between SiO2 and CRA, of another CRA part the into the 
furnace by a portion loading to the electrodes. 

This technology is one of the first, albeit partial, but successful attempts to solve 
the long overdue need in practice to modernize the carbothermic process, aimed 
at improving its environmental and economic indicators. The disadvantage of the 
described technology is that it is focused on a two-stage process; at the first stage of 
which, SiC is obtained by low-temperature carbonization of silica, and only at the 
second stage, TSi is smelted, during which SiC extracted from the EAF and ground 
to a particle size of 0÷1 mm is used as one of the CRA parts. 

Despite numerous studies, the technology of silicon smelting has not yet been 
perfected, and currently a number of challenges remain unresolved. The main of 
them are: 

(i) Silicon production is an energy-intensive process that consumes 11–17 MW 
per 1 ton of product. In the structure of the cost of technical silicon, the cost of 
electricity is 30–35% of the total production costs. 

(ii) The silica-containing raw materials used for the standard silicon produc-
tion technology – high-quality quartzite, vein quartz, and CRA – charcoal, 
petroleum coke, and coal coke are scarce and expensive materials. 

(iii) Fine-grained and fine-dispersed silicon production waste, the volume of which 
exceeds the volume of the target product itself, is not used in charge prepara-
tion. 

(iv) The process of silicon smelting is not perfect, requiring improvement of 
technological operations (charge loading mode, smelting, etc.). 

The present study is devoted to finding solutions to the abovementioned problems 
obstructing the efficiency of TSi production by modernizing the process of TSi 
smelting and increasing its controllability. Such an integrated approach to solving 
the problem of silicon smelting technology, unlike other studies in this direction, 
contributes to increasing the profitability of silicon smelting as a whole, because 
existing problems and their solutions are closely related to each other. 

2 Materials, Equipment, and Methods 

2.1 Materials 

The silica-containing raw materials (quartz, quartzite, and quartz sands), carbona-
ceous reducing agents (wood and coal, petroleum coke), and production waste,
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which is a fine-dispersed screening of small quartzite and carbonaceous reducing 
agent formed during the preparation of raw materials for smelting, as well as 
technogenic dust waste from the production of silicon and ferrosilicon – microsilica 
(MS) – were used as initial the materials. The MS contained up to ~95 mass. % 
SiO2, with the sizes of amorphous globule particles from ~10–20 nm to 250 nm. One 
of the solid types of CRA was petroleum coke with a solid carbon content of more 
than 90.0%; ash, no more than 0.7%; and moisture, 1.5–2.0%. When briquetting fine 
solid waste of silicon production, technical carbon (soot) of the K-354 brand with 
particle sizes of 10–200 microns and carbon content of 95.0%, which is a product 
of natural gas combustion at thermal power plants, was also used as a hydrocarbon. 

As an alternative CRA, we proposed using a relatively cheap natural gas 
compared to charcoal, consisting of 94% methane (CH4) [14–17, 37]. The method 
of methane supplying to the EAF will be described below. 

2.2 Methods 

The analysis of the chemical composition of the SCC, CRA, MS, TSi, and other 
materials was carried out using the ICP mass spectrometer MS 7700 (Agilent 
Technologies International Japan, Ltd., Japan). To study the morphology and 
particle sizes, a transmission electron microscope (TEM, LEO–912 AB Zeiss 
Germany) was used. The phase composition of the materials was determined using 
an automated XRD-6100 X-ray diffractometer (Shimadzu, Japan). 

2.3 Experimental Equipment 

It is known that DC arc furnaces are used for the smelting of TSi in recent years 
instead of AC arc furnaces, having a number of advantages and allowing to reduce 
(i) the consumption of graphite electrodes up to 2 kg per 1 ton of liquid metal; 
(ii) electricity consumption up to 20%; metal-carbon monoxide by 2–4%; and the 
amount of dust emissions by 6–7 ounce. The DC arc is highly stable, but at the same 
time, DC furnaces are more expensive than AC furnaces by 10–25% due to the cost 
of a DC power source. 

For the synthesis of silicon carbide, a resistance furnace of the GAN-150 × 130 
brand was used/1500/2500-S (Linn High Therm, Germany). 

For experiments on the use of gaseous CRA, we made a choice in favor of a 
direct current (DC) EAF. The device was designed in the form of a DC furnace with 
a conductive base and a closed cooled vault. The circuit diagram of the device is 
shown in Fig. 1. It consists of an EAF, a transformer, and a DC rectifier unit, water 
cooling systems, ventilation, and a gas distribution unit for natural gas supply. 

The proposed technology provides for the supply of methane not just together 
with the charge, as a gas atmosphere, but directly into the furnace to the combustion
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Fig. 1 Circuit diagram of the technological section devices [17] 

zone of the electric arc. At the same time, it was necessary to solve a number of 
fundamentally new technological and engineering tasks. Among the latter is the 
methane supply system. In order to ensure the reaction of silica and methane in 
the furnace, it is necessary to ensure that the latter enters the zone with the highest 
temperature in the furnace. Based on this, the supplying through the upper hollow 
graphite electrode was chosen. However, there are a number of obstacles. Thus, at 
the initial stage of charge melting, the hole in the electrode is sealed and clogged 
with fine charge particles, as well as a result of the reaction between methane and 
these particles in the electrode cavity itself. Therefore, at this stage of smelting, 
before the furnace charge is heated and methane is supplied into the furnace, 
nitrogen gas is supplied through the central hole in the electrode, which, being 
chemically inert relative to silicon and other components of the furnace charge, 
prevents the hole from slagging before the start of the main operation. 

An important innovation targeted at increasing the efficiency of the interaction 
of methane with silica is the provision of dissociation and partial ionization of the 
atoms of the substances that make up methane on the path of its supply to the 
furnace [14, 18]. This technique was based on the physical effect of the methane 
molecule decomposition into active carbon and atomic hydrogen upon contact of 
this gas with the heated surface of the catalyst, which was used as a metallic nickel. 
The catalyst housing 6 was made of nickel (see Fig. 2), which is a hollow cylinder 
with a massive blind bottom and many small holes with a diameter of ~0.1 mm on 
the side surface. The cylinder was suspended on a wire rope 7 with the possibility 
of vertical movement in the cavity of the central longitudinal hole in the graphite 
electrode 3. By approaching or distancing the nickel cylinder from the arc burning 
zones, its surface temperature can be adjusted and maintained in the optimal range
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Fig. 2 The EAF scheme 
demonstrating the method of 
supplying natural gas to the 
combustion zone of the 
furnace arc according to the 
patent of the Uzbekistan 
Republic №: 05440 [14]: (1) 
furnace body; (2) furnace lid; 
(3) hollow graphite electrode 
with a diameter of 76 mm; (4) 
charge (briquettes); (5) 
combustion zone of electric 
arc; (6) nickel ionizer in the 
form of a hollow cylinder; (7) 
wire rope 
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for nickel catalytic properties, lying between 400 and 600 ◦C. The physical effect 
of the methane decomposition on the catalyst makes it possible to increase the 
reactivity of the methane components, hydrogen, and carbon. Carbon and hydrogen, 
supplying into the furnace directly, interact actively with the main components 
of the furnace charge (SiO2, SiO, SiC), which is accompanied by the effective 
release of elemental silicon. Note that carbon and hydrogen also interact with any 
oxygen-containing complexes that are formed during the electric arc process. In 
comparison with known technical solutions related to the use of gaseous reducing 
agents in silicon smelting, one of which is CO, used in the process of plasma TSi 
production [19], it follows that with the same mass supply of CO and CH4 to the 
furnace, the technology we propose is more efficient than, for example, in [19– 
21], where there is a dissociation of the molecule of the used CO, and one carbon 
atom can enter into the reaction. Whereas in the variant we propose, four hydrogen 
atoms participate in the decomposition of the methane molecule in addition to the 
carbon atom. It is precise because of the high reactivity of dissociated and partially 
ionized methane components that it is possible to simplify the requirements for 
solid CRA and use a wider range of carbon-containing substances in the proposed 
technology than in classical technology, since there is insufficient reactivity of 
brown or hard coal, oil pitches, cokes, or their mixtures, as well as fine waste; 
the mentioned materials are easily compensated by the extremely high activity of 
the above methane components. Therefore, the suggested technology expanding the 
range of used hydrocarbons allows us to solve the issue of import substitution of 
charcoal and coke. 

When assessing the reducing activity of methane, it is necessary to pay attention 
to its ability to ionize and dissociate. As is known, the CH4 molecule has a 
tetrahedral structure, which is due to the sp3 hybridization of the carbon atom 
and the tetrahedral direction of the four hybrid electron clouds of the carbon atom. 
Moreover, the C − H bonds in the CH molecule are the same in all directions and
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are located at an angle of 109◦ 28′. Each of the four sp3-hybrid carbon atomic 
orbitals participates in axial (σ -) overlap with s-atomic orbitals of hydrogen or with 
sp3-atomic orbitals of another carbon atom, forming σ -bonds C–H or C–C. 

The peculiar structure of the CH4 molecule affects the interaction with electrons 
and leads to a wide variety of possible reactions that may take place, including the 
formation of different combinations of both neutral and ionized components, for 
example: 

e + CH4 → H3
+ + C + H + 2e (1) 

e + CH4 → H+ + C + 3H + 2e (2) 

Since the H3
+ ion is not stable and dissociates according to the scheme: 

H3
+ → H2

+ + H+, with the appearance of atomic hydrogen, this makes an 
additional contribution to the reduction process. It is not difficult to see that under 
the influence of ionization, characteristic of a burning electric arc, the formation of 
numerous combinations of neutral and ionized components of methane is possible, 
and therefore its sufficiently high activity should be expected even in the usual 
reduction process. In our case, already dissociated components of CH4 enter the 
combustion zone of the electric arc, which in itself increases its reactivity and, 
moreover, facilitates their ionization. Note that the supply of dissociated CH4 
goes directly into the combustion zone of the electric arc, where the temperature 
obviously exceeds the temperature of formation of SiO, which is at least 1700◦C. 

Therefore, the process of obtaining silicon with methane using in the furnace, 
according to [20], can be written as the following generalized reaction: 

SiO + CH4 → Si + CO + 2H2 (3) 

Note that at the middle levels of the furnace, where the silica gasification degree 
is not high, it is possible to obtain silicon by the reaction: 

SiO2 + CO + H2 → Si + CO + H2O (4) 

which was observed in a plasma reactor according to [20], and moreover, it was 
adopted as the basis for the plasma smelting of TSi developed. 

In our case, in the presence of dissociated methane in the furnace and the 
appearance of atomic hydrogen, the role of the latter increases significantly, and, 
in our opinion, the reaction involving CO, molten silica, and hydrogen becomes 
decisive, which manifests itself in the decrease in the specific energy intensity of 
the EAF when methane is supplied as CRA. At the same time, the fundamental 
point is that we propose to partially dissociate methane molecules on the feed path 
to the EAF directly [14, 18].
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3 Results and Discussion 

Smelting into the DC furnace has shown various combinations of CH4 with other 
local CRA and various local SCC showed that the methane usage of makes it 
possible to obtain high-quality TC grades Kr0 and Kr00, in the case of the use of 
vein quartz (CRA) from the Zargar (a) and Akbuyrin (b) deposits (Table 1). 

Experiments have shown that it is advisable to limit the replacement of solid CRA 
with methane by ~80%. The optimal range of the combination of solid and gaseous 
CRA is set in the ratio 50/50 to 20/80, within which the minimum number of current 
surges and gas fistulas is noted. This technology makes it possible to ensure high 
quality of the target product, replace imported coke with local raw materials, and 
significantly reduce the specific energy intensity of the smelting of TSi up to 8% [3, 
7, 22]. 

One of the physical reasons for this is the supply of CH4 only after partial 
dissociation of methane molecules on the heated surface of the nickel catalyst. The 
other one is that both methane and the carbon and hydrogen atoms obtained from it 
are subjected to ionization in the combustion zone of the electric arc, which naturally 
leads to an even greater increase in the reactivity of this CRA. Another fundamental 
difference is the adjustment [14, 18] of the mentioned methane reactivity, which is 
the most important characteristic of CRA. To this end, we propose to regulate the 
content of H2O vapors in methane in a controlled manner and, thereby, to change the 
ratio of hydrogen and oxygen atoms and ions directly in the combustion zone of the 
electric arc, that is, to influence the process of melting TSi by methods of physical 
electronics. It is known that the electric field of the EAF consists of two parallel 
branches. The first branch is “electrode-voltaic arc-under,” and the second branch 
is “electrode-charge-under.” Voltage ratio V (arc)/V (charge) varies according to 
various estimates [1, 3, 22], within very wide limits: from 15/85% to 85/15% that 
cannot be unambiguously explained by the difference in the equipment used in the 
research. Thus, experts not only do not have a common opinion about the role of 
these two branches of the current flow, but it is generally believed that it is possible 
to control the energy release and to estimate the amount of energy accurately that is 
released directly into the electric arc area. 

Actually, in order to control the process, it is necessary to first determine the 
signal, by the magnitude of which it would be possible to judge the speed of the 
process and (or) its performance, and only then look for means of influencing this 

Table 1 The chemical composition of the TSi used as the CRA is up to 80% CH4 

(a) Smelting of TSi from SCC in the form of the Zargar deposit 
Si Fe Al K Ca Na Ti Mg Ni Mn 
98.85 0.44 0.22 0.20 0.07 0.099 0.043 0.007 0.009 0.069 
(b) Smelting of TSi from SCC in the form of CRA of the Akbuyrin deposit 
Si Fe Al K Ca Na Ti Mg Ni Mn 
99.3 0.29 0.20 0.027 0.072 0.087 0.022 0.006 0.008 0.006
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Fig. 3 Temperature vs 
resistivity of various 
hydrocarbons: (1) birch retort 
charcoal; (2) semi-coke 
“Baysunsky”; (3) charcoal; 
(4) a mixture of soot from the 
combustion of natural gas 
with quartz sand 50/50% with 
the addition of binder; (5) 
crushed vein quartz; (6–7) 
mixtures of soot with QS 
35% and 70% 
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parameter. As such a signal, we propose to use the amount of current flowing in 
an electric arc. Therefore, the task of ensuring maximum energy release is in the 
arc burning area, and hence the maximum concentration of the course of reduction 
reactions near this area is one of the main ones. It is not difficult to notice that 
this is exactly our suggestion for supplying CRA in a gaseous state directly to the 
combustion zone of the electric arc. 

Figure 3 shows the temperature change in the resistivity of various CRA (curves 
1–3), soot obtained as a result of burning natural gas 4, crushed CRA 5, and mixtures 
of said soot with QS 6–7, in which the soot content is, respectively, 35% and 70%. 
It follows from the analysis of the curves (Fig. 3) that the resistivity of the furnace 
charge depends on the resistivity of the carbonaceous materials added to it and the 
ratio of the volumes of ore (SiO2) and carbon (2C) parts. Despite the similar nature 
of the temperature change, the absolute values of the resistivity of the “Baysunsky” 
semi-coke 2 imported to the Republic Uzbekistan, charcoal 3, and birch retort coal 
1 in the low temperatures (up to ~850 K) differ by almost two orders of magnitude, 
and only at temperatures near 1000 K, their values become comparable. Special 
interest causes the area of high temperatures. The resistance of all solid CRA with an 
increase in temperature reaches a plateau and no tends to zero. Based on these data, 
it can be concluded that the semi-coke made from “Baysun coal” has acceptable 
electrical conductivity, and if the required ash content and reactivity are provided, 
then this local CRA can be used in the production of ordinary TSi brands, as well 
as FeSi instead of imported charcoal. 

The revealed fact of a strong dependence of the resistivity of the furnace charge 
on the CRA content in the form of fine soot is also important because it was used 
as the basis for additional studies, the result of which was the discovery of the 
“dimensional effect.” Namely, a significant effect on the conductivity of the furnace 
charge is not only the CRA content in it but also the particle sizes of SCC and CRA 
brought into contact. At the same time, it is necessary to note the uniformity of this 
parameter for the entire array of equally prepared CRA and SCC powders. Thus,
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Table 2 The electrons 
interaction with a methane 
molecule and its constituent 
hydrogen and carbon atoms 
[12] 

Reaction number Interaction reaction 

1 È + ´°4 . CH+
4 + 2e

2Ã . CH+
3 + H + 2e

2b . CH+
3 + H− + e

3 . CH+
2 + H2 + 2e

4a ´°+ + ° + °2 + 2È 

4b ´°+ + °− + °2 + È 

5 ´+ + 2°2 + 2È 

6 °+ + ´°3 + 2È 

7 . H+
2 + CH2 + 2e

8 . H+
3 + C + H + 2e

8Ã . H+
3 + CH− + e

9Ã ° + °2 + ´° + 2È 

9b °+ + ° + ´°2 + 2È 

9c °+ + ´ + 3° + 2È 

10Ã . H+
2 + C + H2 + 2e

10b . H+
2 + C + 2H + 2e

briquetting of finely dispersed smelting components is not only expedient, from 
the point of view of technology stability, reproducibility of the conditions of TSi 
smelting, and reduction of specific energy consumption, but can also be optimized, 
both by taking into account the particle sizes of the furnace charge and by deliberate 
grinding of its components to specified size. As for the electrical conductivity of 
the furnace charge, based on the monotonous course of curves 6 and 7 at high 
temperatures, its sharp increase by heating is unlikely. Therefore, in the case of 
supplying S´C (methane) or a charge in bulk to the electrodes and supplying most 
of the hydrocarbons to the burning zone of the electric arc, the process of smelting 
TC can be controlled only by changing the amount of methane supply and (or) 
adjusting its reactivity. This conclusion is based on experimental facts obtained in 
terms of the ionization of methane molecules by physical electronics methods [12], 
namely, as a result of exposure to molecular methane of an electron beam in the 
energy range 5–90 eV, as well as data from works [23, 24] in which the electron 
impact method was used for CH4 ionization (see Table 2). 

It should be noticed that in the combustion zone of an electric arc characterized 
by a high temperature of ~6000 K at a voltage between the graphite electrode and 
the EAF hearth in the range from 50 to 500 V, electrons can have energies that 
overlap the range specified in [12]. 

Then, according to [12], as a result of the action of an electron beam, due to the 
peculiarities of the structure of the methane molecule, it is possible to obtain a whole 
set of various ions (Table 2). The table shows that reaction 1 illustrates a single 
ionization with the formation of a molecular ion and reactions 2a, 3, 4a, 5, 6, 7, 
and 8 describe the processes of so-called dissociative ionization with the formation 
of fragmentary ions and neutrals, whereas reactions 2b, 4b, and 8a correspond to 
the occurrence of even ion pairs, that is, positive and negative ions, for example,
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according to the reaction 4b (CH+) and (H−). In [12, 23], the multivariance of 
reactions 6 and 7 is noted, which, as can be seen from the table, can lead to the 
formation of various combinations of ions and neutral components, the general 
characteristic of which is a higher reactivity compared to that of the initial CH4. 

It is important to note that the ionized components are concentrated in the area of 
the electric arc combustion and their concentration affects the amount of current in 
the arc. That is, in addition to the main traditional method of the current regulation 
in the arc by moving up and down the graphite electrode, not to mention such 
techniques as regulating the voltage between the electrode and the hearth, which 
cannot be carried out in a wide range or an extremely inertial method consisting 
in drawing a charge to the electrodes with a large or, conversely, a lower content 
of CRA, we have proposed a new technique based on a controlled change in the 
furnace charge resistance in the arc burning area by regulating the supply of methane 
to this combustion zone; it is subjected to dissociation with subsequent ionization 
of hydrogen and carbon. 

The analysis of the smelting course of TSi with methane showed a decrease in 
the number of current surges and their amplitudes, as well as the number of gas 
fistulas in the processes with an increase in productivity and a decrease in energy 
intensity. The physical reason for this is a decrease in the residence time of gaseous 
silicon monoxide in the free state, which is responsible, among other things, for the 
fistula’s formation, due to the greater likelihood of its reacting with hydrogen and 
carbon ions with the release of silicon. 

As an additional regulator of the ratio between the concentration of gaseous 
reducing agents and, conversely, oxidants in the combustion zone of the electric 
arc, we proposed to use H2O vapors supplied together with methane. The useful 
application of water vapor in silicon technologies is known, including the regulation 
with its help of the intensity of high-temperature oxidative and reducing reactions 
involving silicon in the medium of hydrogen and other gases [25, 26]. We proceeded 
[18] from the fact that in the zone of electric arc gorenje, the water molecule 
breaks down into H2, H, and OH, which are active reagents with high reactivity, 
and also no less active hydrogen and oxygen ions arise, which react in the furnace 
of the EAF with gaseous silicon monoxide and carbon monoxide formed there, 
reducing the latter to Si and C, respectively, or, conversely, oxidizing to SiO2 
and CO2, depending on the local excess of the concentration of these substances 
relative to the equilibrium state determined by temperature and stoichiometric 
ratio between CRA and SiO2. This assumption has been confirmed in practice. 
Thus, we have suggested continuous monitoring of the current in the arc as an 
indicator of the smelting progress, and as its operational regulator — changing the 
supply of gaseous CRA to the arc combustion zone with the use of natural gas for 
extinguishing fistulas and associated current surges, humidification supplied to the 
furnace EAF. Let us illustrate the possibilities of controlling the smelting process 
through regulating the methane supply and changing its reactivity by humidification 
[37]. According to our proposed regulations for conducting the process of TSi 
smelting with partial replacement of solid CRA with methane, the optimal ratio



New Technologies and Equipment for Smelting Technical Silicon 115

for each specific case of gaseous and solid CRA is determined, firstly, from a given 
stoichiometric ratio between SCC and CRA. To do this, during the ignition operation 
of the EAF, when its operating temperature is reached, the operating current in the 
electric arc is measured, and, by the absence of its throws, that is, the smooth arc 
combustion, the optimal range of the ratio between CH4 and applied solid CRA is 
determined. That is, we additionally assign a fundamentally new responsible role to 
the EAF ignition operation, which consists in determining the optimal ratio between 
gaseous (methane) and solid CRA specifically used for this smelting. It has been 
experimentally proven that the permissible amount of CH4 in the composition of 
CRA is from 50% to 80%, but the optimal value of the supply of CH4, of course, 
depends on the specific solid CRA used (coke, charcoal, sawdust, petroleum coke, 
etc.) Since most (up to 80%) of the CRA is supplied to the furnace in gaseous, 
then it response to melting progress failures caused by either a violation of the 
stoichiometric ratio of the components or a sharp local change in the amount of 
one of them caused by the combustion of hydrocarbons, gas fistulas, or, provided 
for by the regulations of the process, periodic injection of a new batch of charge in a 
solid state, objectively manifested in throws, operating current, and, indirectly, in a 
change in the hum of the furnace, can be quickly stopped by changing the supply of 
CH4. This can be done at a constant value of the applied voltage, and by a smooth 
change in the operating current, it is possible to judge the real consumption of raw 
materials during melting, and with certain experience, and a change in the real ratio 
between CRA and SCC in the electric arc zone and an increase or decrease in the 
supply of methane to stabilize this most important technological parameter, directly 
related to the melting speed in the period between regular, routine injections into 
the furnace of a new batch of charge. Of exceptional importance is the fact that the 
natural gas supplied to the combustion zone of the electric arc, to compensate for 
the current surges caused by the periodic injection of new portions of the charge, is 
intentionally controlled by humidification. This is provided by passing part of the 
methane stream through a bubbler with distillate and regulating the humidification 
degree by diluting the humidified methane with the main flow of this gas and (or) 
controlled changes in the flow of methane passed through the bubbler, as well as 
by regulating the temperature of distilled water in the bubbler. The introduction 
of water vapor directly into the combustion zone of an electric arc together with 
methane is accompanied first by the dissociation of its molecule and then by the 
ionization of oxygen, hydrogen, and carbon atoms, which increases the reactivity of 
the CRA. In this case, there is a change in the electrical resistance of the substances 
in the discharge gap and, accordingly, the magnitude of the current in the electric 
arc at the same applied voltage and the same distance between the graphite electrode 
and the furnace hearth. This circumstance is the basis for increasing the flexibility 
and speed of controlling the technological process of smelting TSi. 

So, the typical regulations for the smelting of TSi using CH4 and charcoal on an 
experimental DC EAF are reduced to the installation of an EAF for this solid CRA 
ignition operation, and with its optimal ratio with CH4 being 50–50%, the operating 
current in the arc is ~2200 A with permissible fluctuations within 50 A. Current 
fluctuations above 50 A are stopped by the supply of moistened CRA [18].
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This proposal testing has shown that with its help, it is possible to reduce 
the specific power consumption by 8% while ensuring high controllability of the 
smelting process and obtaining the TSi of the Kr00 brand [28, 29]. 

The obtained results also demonstrated that in order to more fully solve the 
problem of increasing the controllability of the process of TSi smelting, it is 
necessary to radically change the method of feeding the charge, namely, to organize 
the supply of SCC to the arc burning area, similar to how we did it in terms of 
the supply of CRA and as we tried to do earlier in a two-stage process [13, 27]. 
The elaboration of options for changing the method of feeding the charge into the 
furnace of the EAF led to the need to assess the possibility of using the charge in 
a fundamentally different state than that usually used in the lump fraction or in the 
briquettes form. 

Two points should be noted. In our opinion, a higher degree of controllability and 
stability of processes should be expected when using a DC for EAF. In an alternating 
current EAF, by definition, the movement direction of not only electrons but also 
ions, including ions of the product of the TSi melting, is constantly changing. The 
second remark concerns the influence of impurities that are present in the initial 
materials of the charge on its electrical conductivity value. In our opinion, the 
electrical conductivity of the charge is determined primarily by the ratio of SCC 
and solid CRA and then by the charge temperature, as well as the particle sizes of 
CRA and SCC in the briquettes with a mechanical contact in them. The impurities 
of the SCC at about 2–3% and the CRA purity indicators close to this do not affect 
the electrical conductivity of the charge, do not determine the amount of current in 
the arc, and can locally, but vanishingly little, affect the rate of a number of reactions 
of silica reduction by carbon. Impurities also do not determine the conductivity 
of the target smelting product, into which they pass, being restored, like Si, from 
their oxides, by carbon and begin to influence the conductivity of TSi during its 
solidification, although the influence of any impurity is instrumentally difficult to 
measure due to the actual compensation of different types of impurities with each 
other and the fine-grained structure of TSi. Table 3 shows the data of the transition 
coefficients of impurities – the ratio between their content in the TSi and in the 
initial charge, that is, in CRA and SCC in percentage. 

The fundamental difference between the presented data and known in the 
literature [1–3, 8, 9, 30, 31] is that TSi is obtained by the “cold container” method 
[32] using microwave heating, in which contamination of the target product with 
impurities from the furnace walls and from the graphite electrode, that always occurs 
during standard electric arc smelting, is completely excluded. 

Based on the literature analysis devoted to the problems of TSi smelting, it can 
be concluded that the main purpose of the most radical changes in the TSi smelting 

Table 3 Transition coefficients of the impurities (wt.%) 

Fe Ca Al P Ti Mg Mn Cr Ni K 

93 82 87 48 90 56 47 59 50 47
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technology described there were attempts to improve the methods of feeding the 
charge into the EP, an operation extremely difficult to automate. This is precisely 
what new technical solutions were aimed at, for example, [11, 13] also the most  
perfect of them [27]. Thus, according to [27], the regulation of the technological 
process of TSi smelting includes operations of preparing the charge by crushing the 
CRA to the size of 0÷1 mm, which is comparable to the particle sizes of the quartz 
sand that is also used as a silicon-containing component. This process also includes 
separating the CRA into two parts, and mixing the silicon-containing component 
with a part of the CRA as powder, and the resulting charge is fed directly into 
the combustion zone of the electric arc through a hollow graphite electrode with 
simultaneous feeding, taking into account a given stoichiometric ratio between the 
silicon-containing component and the CRA, of another part of the CRA into the 
furnace and the actual TSi smelting. This technology makes it possible to increase 
the yield of the product by 1–12%, depending on the TSi used in each specific case 
of smelting, the mass ratio of the ground solid CRA, as which SiC is used to the 
QS mass. This technology is one of the first but successful attempts to solve the 
long overdue need in practice to modernize the process of TSi smelting aimed at 
improving its ecological and economic indicators. 

The described innovations complicate the technological process. Firstly, the 
technology [27] is focused on the so-called two-stage process, at the first stage 
of which SiC is obtained in a separate EAF, for example, by low-temperature 
carbidization of the initial silica. At the second stage, using separate technological 
equipment and using the second EAF, TSi is smelted, during which SiC ground to a 
particle size of 0÷1 mm (i.e., comparable to the particle size of the QS) is used as 
one of the parts of CRA. The other part of the HC is fed into the EAF in the same 
way as in [1, 3] and other, close to classical, options for implementing the process 
of TSi smelting [8] by manual or mechanically automated periodic ripple around 
graphite electrodes. 

The described two-stage technology is undoubtedly cumbersome and more 
energy-intensive, since per unit of the final product produced requires the use of 
almost twice the amount of equipment, additional production space, and, of course, 
additional electricity consumption. 

It should be noticed that the periodic feed of the charge into the furnace known 
from the classical method [1] by an outline to the electrodes or, as in [27], an outline 
to them of a CRA part is an uneven process. This is accompanied by changes in the 
operating current in the electric arc, which changes sharply after each successive 
injection of the charge into the furnace. This circumstance reduces the possibility of 
operational control over the course of melting by the magnitude of the operating 
current in the electric arc and tightens the requirements for the qualification of 
personnel. In addition, the introduction through the central axial hole in the graphite 
electrode directly into the combustion zone of the electric arc of a mixture of QS 
with ground SiC supplied to the upper part of the electrode by screw dispensers, 
and then by a flow of inert carrier gas, is accompanied by active combustion, that is, 
destruction of the opposite extremity of the graphite electrode located in the EAF 
in the combustion zone arcs [27]. This disadvantage is inherent not only in [27] but
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also occurs, for example, in [11, 36], not only for the smelting of TSi but also high 
silicon grades of FeSi. 

We propose a radically modernized method of smelting. Firstly, it is proposed 
to supply CRA in two aggregate states, gaseous and solid, which the expediency 
was shown earlier in [17]. Secondly, during the charge preparation, this is suggested 
to mix the solid part of the CRA subjected to pre-grinding with the CRA with the 
addition of a binder to the paste-like state of the charge, when briquettes are usually 
formed from the charge. This technology is described in [17, 33–35]. Then the 
resulting freshly prepared charge in a pasty state, continuously supplied directly to 
the combustion zone of the electric arc through a hollow electrode, and the gaseous 
part of the CRA (methane), taking into account the stoichiometric ratio between the 
CSi and CRA, to be fed into the furnace through a separate channel, coaxial with the 
feed channel of the charge [18]. It is also proposed to supply methane continuously 
and directly to the combustion zone of the electric arc, and the feed rate of the charge 
and CRA is adjusted according to the magnitude of the current flowing. That is, to 
use the process control technique described in [14, 29, 37]. This innovation radically 
changes the equipment for TSi smelting, and its implementation is a rather complex 
engineering task. 

Therefore, it was decided to gradually check the operability of its new distinctive 
features, including the main one, in terms of supplying the furnace charge in a pasty 
state (CPS). Furthermore, we considered the issue of the possibility of simultaneous 
feeding of charge to the EAF in any combination of its three states or types (solid 
lump fraction, pasty state, briquettes) with the CRA supply in various states – 
methane gas – and in the solid lump state as coke or charcoal, as well as both of 
these components in the composition of briquettes as soot and fine silica waste 
and charcoal or coke, screened out for batch operations. To do this, relying on 
the regulations of the TSi smelting according to [29], which includes preparing the 
charge in a paste-like state by mixing the lumped SCC or QS ground to a given 
size, with the addition of a part of solid CRA crushed to a given size using a binder, 
feeding freshly prepared CPS in continuous mode directly into the furnace of the 
EAF into the burning zone of electric arc, the supply of another part of the CRA 
to the combustion zone of the electric arc of methane, only part of the charge is 
intentionally transferred to a paste-like state, and the rest of the charge is fed in a 
lump fraction or in the briquettes with an outline to the electrode. At the same time, 
the supply of CPS and CRA and in the gaseous state is carried out in the directions 
towards each other, respectively, from below and above relative to the furnace of the 
EAF with the mixing of these melting components directly in the combustion zone 
of the electric arc under the charge layer in the lump fraction. Figure 4 illustrates the 
design of the EAF, in which the option of feeding the furnace charge of three types, 
including CPS, is implemented. 

As can be seen from Fig. 4, the EAF (1) with an internal, graphitized wall 2 
with a hollow graphite electrode 3, equipped with a central hole used as a means of 
supplying a part of the CRA (methane), the CPS supplying to the furnace is carried 
out through a separate channel from the CRA supply channel, starting at the loading 
hopper 4, where first, the finished CPS 5 arrives, which is then pushed through using
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Fig. 4 Scheme of the EAF variant according to Patent IAP UZ 06836 [37], which is a simplified 
version of Patent UZ IAP 05986 [29], with the supply of the charge in a pasty state in combination 
with the supply in the lump fraction and briquettes and with the supply of parts of the CRA in the 
form of CH4 (shown by the arrow) 

a screw dispenser 6 with an electromechanical drive 7 through a channel-pipeline 
8, made in the lower part of the EAF 1 directly under the tip of the hollow graphite 
electrode 3 through the graphite neck 10, that has a shape tapering from the inside 
to a cone. An outline of the charge in a lump fraction consisting of SCC in a lump 
fraction 11 and CRA also in a lump in the form of, for example, charcoal or coke 
in pieces 12 or in the form of briquettes 13 containing soot and waste trifles from 
the charging operation is carried out in a standard way [1, 3] through the grate from 
above around the electrode 3. The drain channel 14 of the TSi smelt is shown by an 
arrow. 

The TSi melting was carried out using the described technology and device as 
follows: first, CPS was made by mixing, ground in a ball mill to the same size ~0.2– 
0.4 mm., lumpy CRA with CRA with, crushed to the same size, 1/3 of the solid CRA 
in the form of coke, using a binder based on sodium CRA with a module 2.5÷3.0. 
Part of the same mixture of components was sent to the manufacture of briquettes. 
In parallel, they were preparing the SCC and the CRA, which were supposed to be 
sent to the EAF in a lump fraction.
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Table 4 The impurity composition of the TSi obtained on the EAF with a combined feed of the 
furnace charge in a lump fraction (~30%) and in a pasty state in combination with the supply of 
CRA in a lump fraction (~65%) and in the form of CH4 [29] 

Si Al Fe Ca Mg Ba P V 

98.97 0.34 0.33 0.32 0.0085 0.0055 0.007 0.0050 

For this aim, coke of the KO-3-5 brand (GOST 89-35-77) and pieces with 
dimensions of ~20 mm were used to supply the furnace with a draft to the electrode, 
and the trifle was sent to the grinding mentioned above. Similarly, CRA with a SiO2 
content of ~98% was sorted, and pieces of ~20 mm were selected for direct use of 
the sketch to the electrode, and the CRA trifle was also crushed using a ball mill, 
until particles with a size comparable to the size of the QS particles were obtained. 
QS with an initial SiO2 content of 97÷98% was washed with water, dried, and then 
thoroughly mixed with grinding of small CRA and with grinding of coke fines with 
the addition of a binder based on sodium liquid glass with a module (SiO2/Na2O) 
from 2.5 to 3.0. 

So, the resulting mass, that is, the charge in a paste-like state, is partially used 
directly and partially goes to the manufacture of briquettes, that is, pellets of 
~30 mm in size, which, after molding, were dried at ~400 K and then fed manually 
into the EAF by a sketch around the electrode together with silica (SiO2) in the  
form of CRA and coke in a lump fraction; the resulting CPS was fed into a filling 
funnel, and with the help of an auger, it was pushed through a steel pipe, analogous 
to the pipeline 8 in Fig. 4 welded to the bottom of the EAF casing. In the graphite 
plate of the EAF, a hole with a diameter of 40 mm was made directly under the 
tip of the hollow graphite electrode, that is, into the burning zone of the electric 
arc, which is shown in Fig. 4 with a zigzag arrow. The fundamental difference of 
this method is that in the opposite direction, directly under the graphite electrode, 
under a layer of lump charge and briquettes, a CPS is fed, which is controllably 
pushed into the combustion zone of the electric arc at a given speed through the 
hole (Fig. 4) depicted with a narrowing, conical along the course of the CPS. Thus, 
CPS and CH4 and the charge in the lump fraction and briquettes are fed into the 
EAF through separate channels, spatially separated with mixing directly in the 
combustion zone of the electric arc. The feed rate of CPS, as well as the frequency 
of sketching briquettes, CRA, and CRA to the electrode in a lump fraction, as 
well as the consumption of natural gas CH4 supplied through a hollow electrode 
is regulated according to the standard method, that is, the smooth “course of the 
furnace” [1], and, in parallel, according to the method we proposed [18], that is, 
tracking the amount of current flowing in an electric arc. The chemical composition 
of the obtained TSi is given in Table 4. 

It was shown that the EAF with these alterations, in principle, work in the modes 
of implementation of the new technology, both in full and in partial implementation, 
for example, with the supply of CRA to the furnace in the form of methane and 
coke, but only in ground form as part of briquettes or only in a lump fraction, 
or predominantly, that is, up to ~80% [15] in the form of natural gas. And SCC
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in the furnace can be served not only by a combination of CPS, CRA in a lump 
fraction, and briquettes but also by independent use of each or any pair of these 
three components of SCC. 

The limiting case is when, for one reason or another, the hole in the graphite 
plate of the EAF is closed with a graphite plug and the TSi smelting is carried out 
within the framework of the regulations [1, 3, 8] according to the classical scheme. 
Experiments have shown that the best option is the TSi smelting with a combined 
supply of SCC in the initial period of the process. Then, when the first portions of 
the melt appear, it is advisable to recharge the bath by feeding the furnace charge in 
a pasty state, and sintered silica and CRA in a lump fraction and (or) briquettes are 
used mainly as a kind of “vault” over the bath. 

The application of silicon production waste in concrete and building mixes. 
Electric arc smelting of TSi and siliceous alloys, the most popular of which is FeSi 
[4], based on the carbothermic Si reduction process, from silica and, accordingly, 
iron, manganese, chromium, and calcium from their oxides, is accompanied, as was 
reported above, by the appearance of dust waste consisting mainly of microsilica 
particles (MS), the daily volume of which is comparable to the amount of the target 
product, and, for example, on a 9600 KVA electric arc furnace used for smelting FSi 
of the running grades FSi45, FSi65 is more than 8 tons. MS is thoroughly, at least 
95%, captured by gas purification means, since it is dangerous to the environment 
[38]. The most primitive are the well-known ways of disposing of MS as unclaimed 
waste, the simplest but far from the best of which is its storage in slag fields with 
subsequent mixing with soil. 

MS, as shown in [39] and confirmed by instrumental estimates [33–35, 42] 
of its particle size distribution, is globules of amorphous SiO2 with sizes from 
50 nm to a few micrometers, and the smaller the particle sizes, the more often they 
aggregate into conglomerates of tens and hundreds of pieces. It should be noted that 
the capture of MS is carried out using filters with different cell sizes, and in the 
production of TSi or FeSi, it is possible to divide MS into groups of globule sizes 
without any additional costs, but this is simply not done. 

If the total granulometric composition of the particles of MS arising in various 
industries is approximately the same, then its chemical composition, on the contrary, 
strongly depends on the type of target product produced, its brand, and, of course, 
the raw materials used, which determines the variety of ways to use MS as a 
secondary raw material. 

To illustrate this, Table 5 compares the chemical composition of the MS that 
occurs at a number of enterprises in Russia and Uzbekistan during the TSi smelting 
and siliceous alloys [4, 34, 35, 39]. 

It can be seen that the content of SiO2 in the MS of different enterprises varies 
within very wide range, and even if we limit our consideration only to waste from 
the production of TSi and high silicon grades of FeSi (pos. 1, 2, 4, 8, 9 Table.5), 
then the content of silicon dioxide in the MS is in the range from 89% to 95%. 

As it was noted, briquetting is one of the advanced methods that make it possible 
to dispose of MS in the same technological processes where it is formed. However,
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Table 5 The chemical composition of the MS for different enterprises during the production of 
TSi and siliceous alloys of various types and grades 

№ n/n Metallurgical enterprise Alloy grades Oxides proportion (wt.%) 
SiO2 Fe2O3 Al2O3 CaO MgO K2O+Na2O 

1 Kuznetsk ferroalloys FeSi 90, FeSi 75 90.1 2.0 1.7 2.3 0.8 1.9 

2 

Chelyabinsk 
electrometallurgical 
plant FeSi 75, FeSi 65 89.2 0.4 1.7 2.1 1.7 1.4 

3 
Ermakovsky ferroalloy 
plant FeSi 65, FeSi 45 70.1 3.4 2.0 11.4 0.1 0.9 

4 Bratsk aluminum plant µSi -r1, µSi -r2 91.7 0.4 0.5 1.2 – – 
5 Aktobe ferroalloy plant FSiCr 40 66.1 2.2 1.3 0.4 14.6 – 
6 Aktobe ferroalloy plant FCr 800 16.6 1.8 6.6 0.5 38.6 – 

7 
Zestafoni ferroalloy 
plant SiMn20 33.8 2.3 3.9 4.6 4.0 2.4 

8 
Angren ferrosilicon 
plant FeSi 75 92.77 1.37 1.79 1.54 0.74 1.64 

FeSi 65 90.79 2.28 1.41 1.91 0.94 2.42 
FeSi 65 94.23 1.17 1.36 1.58 0.41 1.15 
FeSi 45 70.07 2.61 3.30 3.3 0.68 0.84 

9 
Bekabad metallurgical 
plant FeSi 65 95.8 0.8 0.4 0.4 0.4 1.0 

10 
Bekabad metallurgical 
plant FeSi 65 97.85 0.17 1.11 0.32 0.03 0.51 

based on the fact of the increased content of such impurities harmful to the TSi as 
Fe and considering that silica in the form of CRA or quartzite with a SiO2 content 
of at least 97% is used for smelting even its ordinary grades [1–5], it is clear that 
the MS obtained as the waste from the smelting of FeSi [4] and other siliceous 
alloys are generally unacceptable for the TSi production. In general, the waste from 
the production of siliceous alloys due to the deliberate implementation of specific 
metals into them should be processed at the same enterprises and to obtain the 
same target products, during the smelting of which they are formed. As for the 
waste from the smelting of the TSi, in addition to the trifles of silica and CRA, in 
general, it is impractical to return them to the production of silicon in the form of 
briquettes directly, while the introduction of MS from the processes of TSi melting 
into briquettes used for the FeSi smelting or other siliceous alloys, on the contrary, 
is possible and useful. 

To optimize this technology, it was shown that the amount of MS introduced 
into the composition of the silica part of the briquettes for the smelting of FSi 
should not be chosen randomly, but taking into account the average particle sizes 
of other silicon-containing substances used in briquetting, which is convenient to 
estimate by their bulk density [18, 40–42]. Such a technique allows to increase the 
share of MS in briquettes for the smelting of FSi up to 40% without losing their 
strength characteristics and at the same time reduce by 5–15% the specific energy
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Table 6 Compressive strength of concrete containing cement, QS, and MS in various combina-
tions at different maturation periods 

Physical and mechanical 
characteristics Compressive strength, kgs/cm2 

3 days 14 days 21 days 28 days 

Cement PPC 400 22.23 ÷ 25.05 40.54 ÷ 41.01 45.19 ÷ 45.23 50.86 ÷ 51.22 
5% ¯S + cement 27.11 ÷ 30.62 45.19 ÷ 46.05 50.12 ÷ 50.93 55.19 ÷ 55.20 
10% ¯S + cement 35.40 ÷ 35.85 57.23 ÷ 58.02 60.03 ÷ 62.89 65.82 ÷ 65.70 
15% ¯S + cement 45.22 ÷ 55.41 60.12 ÷ 61.00 65.82 ÷ 65.70 70.08 ÷ 71.34 
20% ¯S + cement 55.06 ÷ 55.21 70.36 ÷ 70.61 77.28 ÷ 87.40 100.23 ÷ 100.05 

consumption for the smelting of the target product, which is important for such an 
energy-intensive process, what is the electric arc melting of FSi. 

The MS usage as an additive in the production of concrete is great interest [39]. 
From the numerous literature and patents on this subject, it follows that the addition 
of MS to cements of any brands, naturally, with the correct dosage, invariably 
increases the strength characteristics of concrete, which is especially valuable 
when creating dams, foundations, arched bridge, and other concrete, load-bearing 
structures, including especially responsible, complex shapes, and also operated in 
conditions of high humidity, frost, alternating temperature changes, etc. The use 
of this experience is useful for the Uzbekistan Republic and other Central Asian 
republics located in a seismically active region, which is currently undergoing rapid 
housing and special construction. The Table 6 presents data on the compressive 
strength of concrete samples, the sealing of which was carried out by mixing PPC-
400 cement with a constant amount of quartz sand from the May deposit with a 
humidity of 0.43% and with the addition of MS to the mixture, obtained as waste 
during the smelting of FSi 65 at the Bekabad Metallurgical Combine and having a 
humidity of 0.24%. The proportion of the MS substituting cement in the mixture 
varied from 5% to 25%. 

It can be seen from Table 6 that the MS addition to cement mixtures, even without 
the introduction of a plasticizer into them, increases the compressive strength of 
concrete by 1.5–2 times, estimated according to the methodology regulated by 
GOST 310.4–81, and this parameter depends on the amount of the additive and the 
age of concrete in a complex way. In particular, the dependence of strength on the 
value of the additive MS has the form of a curve with a maximum of ~20% content 
in the initial cement mixture of MS, while the dependence of strength on age has a 
maximum in the region of 20 days. The data obtained by us, in general, are similar 
to those given in [44–49], where there is also the existence of complex relationships 
between the strength characteristics, the age of concrete, the content of MS in 
the cement mixture, as well as the brand of cement and, of course, contradictions 
existing among different authors regarding the optimal ratios of these components 
of the cement mixture. 

The maximum increase in the flexural strength of concrete is observed when 
cement is replaced by 15% of the MS, consisting of silicon dioxide particles having
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the shape of “globules” with dimensions regulated by TU 00186200–12:2019 
ranging from a few micrometers to tens of nanometers. The sizes of microsilica 
particles the value of which can change in wide range effect significantly on the 
strength characteristics of concrete. Therefore, we propose to conduct a separate 
selection of MS with a different characteristic size, which can be achieved by its 
organization in various places of the evacuation and purification system of gases 
departing from the EP, that is, in fact, it is proposed, by no means, to mix the dusty 
waste poured out in various places of the gas purification system but, on the contrary, 
sort MS by the size of dust particles and purposefully use them in order to achieve 
maximum efficiency, not only in the production of concrete and building mixes but, 
as will be shown below, also in the synthesis of adhesive compositions such as 
alkaline “liquid glass” (LG). 

The greatest effect from the use of intentionally selected, taking into account 
the size, and then mixed fine components can be obtained when creating finishing 
building mixes, since they provide not only increased strength but also smoothness 
of the surface when solidified. No less important, in our opinion, is the selection 
of MS by the size of globules and when it is used in the manufacture of ceramic 
products of various [40, 43], including technical [44] purposes. 

MS is a raw material for the manufacture of silicate glue. Less studied is the 
field of application of MS instead of or in mixtures with QS in the manufacture 
of adhesives of the LG type, which are widely used in everyday life, in various 
industries, and in construction [39]. mentions a method [50] according to which LG 
is made by mixing MS, sodium hydrate, and ordinary water and then cooking the 
mixture for an hour at atmospheric pressure at a temperature in the range of 85– 
95 ◦C, and the cooking time is determined by the LG module. The achievement of 
a useful effect in the method [50], which consists in shortening the duration and 
simplifying the technology, is ensured by the fact that an MS containing from 6% 
to 16% by weight of carbonaceous impurities in the form of graphite and SiC dust 
particles with high thermal conductivity is selected. 

Leaving without discussion the arguments of the authors [50] regarding the 
physicochemical processes of the interaction of alkali with SiO2 in the presence of 
heat-conducting impurities C and SiC, we point out the fact that the mass spectral 
analysis of the MS obtained in various processes and from different enterprises 
(Table 6) does not show the presence of these impurities in it, especially in such 
a large amount. SiC and free carbon are certainly present in the smelting process 
of TSi and siliceous alloys, but SiC is formed in the middle part of the EP in the 
charge descending to the furnace and actively interacts as a reducing agent with 
the gaseous silicon monoxide rising up and is completely consumed. As for the free 
carbon entering the furnace with a charge, it is also always consumed completely. To 
ensure the normal “course of the furnace”, the CRA amount added to the charge is 
always chosen more than is required by the stoichiometric ratio of the carbothermic 
reduction reaction of silica. 

In order to implement a relatively simple technology for producing LG using 
microsilicon, in contrast to [50], we propose to use technogenic carbon dust, formed,
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of course, not in the furnace but during the charge operation, as well as finely 
dispersed waste intentionally crushed by additional grinding, in mixtures with MS 
fed into a container for reaction with an aqueous NaOH solution. UV is also formed 
on the mentioned operation. Only in this case, the content of the carbonaceous 
component in the mixture with the MS can be adjusted within wide limits, including, 
to overlap the optimal range of their content specified in [50]. Such close attention 
paid by us to the production of LG is due to the fact that this ingredient is used as a 
binder in the manufacture of briquettes during the smelting of FS [4, 17, 33–35] in  
quantities of 3–6 kg per 100 kg of crushed silica charge materials, including MS, the 
amount of which in this part of the charge, for example, for the smelting of FSi with 
a low silicon content, can be up to ~40%. Therefore, the optimization of the binder 
production process from the point of view of simplifying its production and reducing 
the cost of this ingredient, the annual consumption of which, for example, on a 
9600 KVA furnace can be ~500 tons when organizing smelting only on briquetted 
charge, seems to be an urgent and economically justified task. 

The development of the proposed technology and its localization at the met-
allurgical enterprise contributes to the creation of a specialized briquetting area 
of the charge, which includes aggregates for the preparation and mixing of sand, 
quartzite fines, MS, and binder, which is manufactured on site, followed by the 
molding of briquettes from this mixture and their processing. In this regard, we 
propose the application a new optimized version of technology subscribed in [51– 
53], the essence of which is reduced to the separate use of certain fractions of MS. 
This allows to significantly reduce the role of carbon particles, while simultaneously 
using for the synthesis reaction of liquid glass the heat of gases escaping from the 
electric arc furnace, by analogy with the use of geothermal heat for these purposes 
[54]. 

The new technical solution developed by us [54] for the synthesis of LG consists 
of the following steps: i) preparation of a MS suspension in the sodium hydroxide 
solution and subsequent hydrothermal treatment at 80–85◦C and atmospheric 
pressure; ii) addition to the MS the dust and fine-dispersed waste from the operation 
of grinding the waste of the mentioned target products, arising during the rejection 
of products before sending to the consumer, that is, fine-dispersed waste of TSi or 
FSi in the amount of 5÷6 wt.%. 

The physicochemical essence of our proposal [54] consists in the fact that the 
pre-crushed or already sufficiently fine and dust particles of the target products 
introduced into the suspension instead of carbon and carborundum, that is, TSi or 
FSi, unlike C and SiC, enter into a chemical reaction with a solution of sodium 
hydroxide and completely, without sediment, dissolve in suspension. At the same 
time, such a suspension is a one-component system, the thermal conductivity of 
which is always higher than that of the starting substance and directly depends on 
the amount of dissolved dust particles TSi or FSi, and not two-component, as in 
the case of introducing insoluble particles C or SiC into it [51–53], the amount of 
which must be adjusted to the same acceptable values in order to achieve an increase 
in thermal conductivity up to 6÷16 wt. % or 6÷8 wt. %, respectively.
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Our proposal [54] is focused on the use of waste from modern production of 
both TSi and FSi, which makes it useful to dispose not only MS but also dust 
and fine-dispersed waste from the production of TSi and FSi, which inevitably 
arise when the castings of these products are broken into pieces with dimensions 
regulated by GOST 2169-69 and GOST 1415-93, respectively, and then it ensures 
the achievement of all the tasks set, including the replacement of carbon and 
carborundum in the LG technology, which are absent in the waste of modern TC 
or FS productions, on the dust and fine-dispersed waste of these target products 
always available in it. 

The new method of using MS proposed by us in the manufacture of briquettes 
for the smelting of siliceous alloys involves a set of measures consisting of: 

(i) Organization of the manufacture of the binder directly on site from the MS 
by selecting its small fractions with the sizes of amorphous particles of silicon 
dioxide from tens of nanometers to 200 nanometers, which are combined with 
an aqueous solution of sodium hydrate to ensure mixing and heating using the 
heat of gases leaving the EP. 

(ii) Pulling out the resulting mixture with constant stirring at a temperature of 80– 
90 ◦C for 30–40 minutes until the formation, in fact, of the desired binder in a 
jelly-like state. 

(iii) Mixing the resulting heated mass of a jelly-like binder with a pre-washed QP 
with water and with the remaining part of the MS, taken in equal parts by 
weight. 

(iv) Adding the specified, continuously mixed mixture of fine and dusty waste of 
LG or quartzite, as well as HC from the charge operation at the rate of 9 kg of 
binder for every 100 kg of total silicon and carbon-containing raw materials. 

(v) Forming pressed briquettes and drying them using a stream of air heated by 
heat, gases escaping from the EP. 

The physicochemical and technical essence of the new method we propose is, 
firstly, that the various fractions of the MS are proposed to be used separately. 

To do this, MS, poured out in different places of the purification system (after 
different filters), exhaust gases from the EP and differing in geometric dimensions, 
is not mixed, as is generally accepted, but is used separately, and the finest fraction 
containing SiO2 particles 50–200 nm in size is used for on-site preparation of a 
binder for briquettes. The rest of the microsilica, that is, the fraction of SiO2 particles 
with sizes greater than 200 nm but less than 2–3 µm, is sent for processing as part 
of mixtures for the briquettes themselves, that is, in a mixture with QS, as well as 
with other fine and dust waste silicon and carbonaceous components. 

The selection and use of the smallest fractions of MS for the preparation of a 
binder accelerate the process of interaction between an aqueous solution of sodium 
hydrate and silicon dioxide SiO2, which constitutes ~98÷95% of the selected 
nanosized particles of MS. In this case, the so-called size effect plays a role, 
according to which the smaller the particles of a substance, the easier and at lower 
energy costs they enter into a chemical reaction. That is, in our case, SiO2 and 
alkali react in an aqueous solution of Na2O at temperatures lower than usual, which
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reduces the duration and energy intensity of obtaining a binder. It is important to 
note that the selection of the MS fraction necessary for this with dimensions of 50– 
200 nm is carried out without any special equipment and additional costs, only by 
its selection where it is screened out precisely with such dimensions, that is, after a 
certain number of filters of the standard used in industry systems for cleaning gases 
from the EAF. 

The remaining part of the MS with larger SiO2 particles enters the mixture, as 
already mentioned, together with the QS preliminarily washed with water. Such a 
simple flotation makes it possible to remove clay spreads from the surface of sand 
particles and increase the SiO2 content from 97% to 98%, for example, in the QS of 
the Dzheroyskoe deposit, to 99–99.5 wt.%. 

It is advisable to stipulate that MS and washed QS enter the mixture for briquettes 
in equal proportions. This refinement proposed by us provides a guarantee of the 
overall high content of SiO2 in the briquettes, since the content of SiO2 in the MS 
usually ranges from 89% to 95%. In mixtures with high-purity QS with a SiO2 
content of 99–99.5%, taken in equal proportions with MS, the SiO2 content is quite 
consistent with the purity of QS or quartzite, which is usually used in the smelting 
of FeSi or quartzite, the fines of which are also added to briquettes, which means 
that the addition of MS cannot worsen the quality of the target product in terms of 
the content of impurities. 

MS as a Raw Material for the Synthesis of Micro- and Nanosized Powders 
of Silicon Carbide (SiC). It is also necessary to point out the great prospects for 
the use of MS in SiC technology [55] and, in particular, nanosized powders of 
this material, the production of which is currently based on plasma metallurgical 
technology (PMT) [58] and furnace synthesis (FS) [55]. 

A probable mechanism for the FS of SiC from mixtures of MS and CRA was 
proposed in [55], according to which the process of carbothermal reduction of MS 
proceeds with the active participation of gaseous silicon oxides. As in the case of 
the formation of MS, the mechanism of SiC synthesis is multichannel, and, which 
is of particular interest, as a result of the studies, the role of the size effect, that 
is, the real sizes of MC and CRA particles entering into chemical interaction, was 
identified and evaluated, which we also drew attention to in the development of 
optimized technologies for concrete, briquetting of MS and the creation of “LG” on 
its basis. The size effect in the “gas-dispersed crystalline phase” system manifests 
itself in a change in the saturated vapor pressure above the surface of crystalline 
particles depending on the degree of dispersion of the solid phase, and, accordingly, 
an increase in the interaction rate is due to an increase in the evaporation surface of 
SiO2 and a high adsorption capacity of the developed surface of the applied finely 
dispersed hydrocarbon. That is, when using fine and well-mixed materials, which 
are mixtures of MS and, for example, soot, especially obtained by burning natural 
gas, the primary interaction is the solid-phase contact interaction SiO2(t) + C(t), 
which, at temperatures ~1500 K, gaseous silicon and carbon monoxides are formed 
and, at temperatures above 1800 K, oxygen-deficient silicon-oxygen melt is also 
formed. The formation of silicon-oxygen melt films in the contact zone between
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silica and carbon increases the contact surface and intensifies the reduction process. 
Another channel for the formation of SiC is based on the interaction of gaseous SiO 
with solid carbon, and the completeness of the transition of silicon from MS to SiC 
depends on its manifestation. Thus, according to [55, 56], reduction of SiO2 to SiC 
proceeds predominantly through the formation of a silicon-oxygen melt, which is 
processed without significant accumulation at high rates of chemical reactions. The 
resulting SiC then interacts with the said silicon-oxygen melt until it completely 
disappears. 

In contrast to PS, the process of SiC formation in a plasma-metallurgical reactor, 
in which MS, natural gas-methane, and nitrogen plasma flow are used as initial 
reagents, can be considered as a “single-channel” process [55], proceeding with 
the participation of silicon vapor and hydrogen cyanide according to the “steam-
crystal.” 

PMT, unlike FS, makes it possible to obtain a product in the form of nanopowders 
with a particle size of 60–70 nm with a minimum number of surface defects and also 
makes it possible to control the synthesis process, for example, by controlling the 
composition of the gas phase, introducing certain additives into it, which ensures 
the production of SiC with specified electrical properties. At the same time, with 
the help of FS, SiC based on MS can be obtained in the form of a micropowder 
with a particle size of 200–900 nm and higher, which is also in demand in various 
fields of technology. It should be noted that the synthesis temperature when using 
MS can be significantly reduced compared to the traditional version of the PS of this 
material, as well as the duration of the process, which makes it possible to reduce 
the specific power consumption by almost two times compared to the traditional SiC 
production technology. 

We have carried out a series of studies aimed at developing the processes of 
furnace synthesis of SiC using MS and different types of CRA. MS, which is a 
technogenic waste from the production of TSi and FeSi, was used as a silica raw 
material, and carbon black and methane were used as hydrocarbons. 

It follows from the obtained experimental data that the particle size of SiC 
powders and their granulometric composition depends on the particle size of the 
used hydrocarbons. The size ratio of silica and CRA particles affect the reaction 
rate of carbon with SiO2. 

The resulting powder with a particle size of hexagonal 4H and 6H SiC types 
from 30 to 400 nm belongs to the class of mixtures of nano- and micropowders, 
which are in demand in various fields of practical application and, in terms of their 
cost indicators, exceed the prices for TSi and FeSi, the production waste of which 
is not used in as a raw material for their production. This circumstance indicates the 
expediency of combining the smelting of TSi and FeSi with the furnace synthesis 
of silicon carbide at one enterprise. It should be noted that substandard products of 
SiC furnace synthesis, in turn, can be successfully used in electric arc smelting of 
elite grades of TSi with a guaranteed reduction in specific energy consumption. 

The results obtained, based on standard equipment and methods of furnace 
synthesis of SiC, allowed us to proceed to the development of a new method for 
obtaining powders of this substance.
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We propose to modernize the process of furnace synthesis of micro- and 
nanosized SiC powders, which includes batch preparation operations by mixing 
CRA particles in the form of charcoal, petroleum coke, or their mixtures, specially 
ground to a given particle size, and a silicon-containing component in the form of 
MS, which is a dusty waste from carbothermal processes of electric arc smelting 
TSi or FeSi, placing the resulting mixture in a resistance furnace and carrying out 
the synthesis of silicon carbide. For this, a part of the solid CRA in the form of 
ground petroleum coke or charcoal or mixtures thereof is proposed to be replaced 
with gaseous CRA in the form of natural gas, taking into account the stoichiometric 
ratio between silicon and carbon, and the SiC synthesis operation is carried out with 
the provision of its flow; the natural gas is preliminarily subjected to dissociation 
into carbon and hydrogen, by contact with the heated surface of the catalyst; the 
completeness of the synthesis process is judged by the change in the color of the 
flame ignited at the outlet of the resistance furnace, reaction gases; and the heat 
from their combustion is useful to use to heat the catalyst. 

New equipment was created to implement the new process. Synthesis of SiC was 
carried out with a gradual and gradual increase in temperature from 700 to 1900 ◦C 
[57]. 

The scheme of the experimental apparatus is shown in Fig. 5. It is shows a  
section of the setup containing a resistance furnace 1, equipped with a tubular flow 
system 2, with a heating zone “A” and a cooling zone “B,” with front 3 and rear 4 
flanges, and equipped with nozzles 5 and 6, respectively, for supplying a portion of 
the carbonaceous reducing agent supplied as methane (shown by an arrow labeled 
“CH4”) and withdrawing the reaction gases. 

The charge prepared in advance consisted of finely dispersed wastes of petroleum 
coke and microsilica. The ratio of the mixed components of the charge was 
deliberately reduced to 50% the amount of solid carbonaceous reducing agent – 
petroleum coke, determined by stoichiometric ratio of the reaction of silicon with 
carbon. The missing part of the carbonaceous reducing agent was replenished with 
natural gas containing the reducing agent in the form of carbon and hydrogen, 
since natural gas is 94% CH4. The mixture, consisting of waste petroleum coke 
and microsilica, was poured without any compaction on the tiers of a multi-tiered 
boat 15 made of refractory ceramics and then, using a rod 16, was pushed inside the 
tubular flow system 2 of the resistance furnace 1, namely, into the heating zone “A.” 
Then the front flange 3 was installed, equipped with a prechamber 7, the system was 
purged with an inert gas – nitrogen, the heating was turned on, and upon reaching 
the set temperature in zone “A,” methane was let into the tubular flow system 2. 
The consumption of methane was chosen taking into account the missing part of the 
carbonaceous reducing agent, according to the stoichiometric ratio between silica 
and carbon, and it was monitored by the position of the rotameter float. 

The silicon carbide synthesis was carried out, as it was already noted above, with 
the preliminary dissociation of methane supplied through pipe 5 to flow system 2. 
To do this, methane was passed through prechamber 7, which is a flow container 
with built-in catalyst 8. The catalyst 8 was a hollow body made of nickel with 
fine mesh partitions 9 installed inside. Nickel was chosen due to its experimentally
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Fig. 5 Scheme of the experimental apparatus for the silicon carbide synthesis using methane: (1) 
resistance furnace; (2) tubular flow system of the resistance furnace; (“A”) furnace heating zone; 
(“B”) furnace cooling zone; (3 and 4) front and rear flanges; (5) CH4 supply pipe; (6) reaction 
gas outlet; (7) front chamber; (8) nickel catalyst; (9) partition in the form of fine mesh nickel 
meshes; (10) shutter; (11) burner; (12) reaction gas flame; (13) adjustable nickel catalyst electric 
heater; (14) methane dissociation products; (15) multi-tiered boat; (16) rod for moving the boat; 
(17) pressure gauge 

proven catalytic properties with respect to methane. The outer walls of the catalyst 
8 are in contact with the inner walls of the prechamber to provide thermal contact. 
Outside, prechamber 7 was heated to ~600–800 ◦C using two heaters – burner 11 
and adjustable electric heater 13. As a result of methane contact with the heated 
catalyst surface, it dissociates into hydrogen and carbon, which contributes to an 
increase in the reactivity of methane in silica reduction reactions. 

To determine the optimal synthesis conditions and achieve the maximum yield 
of SiC, experiments were carried out by varying the proportion of methane in the 
composition of the total carbonaceous reducing agent: petroleum coke, ´pc(s), and 
gaseous methane, CH4(g). While maintaining the total amount of carbonaceous 
reducing agent required by the stoichiometric ratio to reduce silicon with carbon, 
the proportion of CH4(g) varied from 0.15 to 0.60 of the total amounts of carbon, 
and ´pc(s) decreased from 0.85 to 0.40, respectively. 

The test results of the proposed method and the developed device for its 
implementation have shown the operability, efficiency, and usefulness of the
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proposed technology. SiC powders with a predominant particle size of less than 
100 nanometers were synthesized. The analysis of the powder X-ray indicates the 
production of SiC cubic 3C and hexagonal 4H and 6H polytypes of interest for use 
in modern technology. 

Similar positive results were obtained in the case when K-354 carbon black was 
used as 85% of solid HC, which is a soot product of natural gas combustion when 
generating electricity at thermal power plants, with particle sizes of 10–200 µ and 
with a solid carbon content of ~95%. In the synthesis of silicon carbide powders, 
15% of the bulk of the hydrocarbon in the form of soot was also natural gas, 
also intentionally, according to the invention, subjected to dissociation resistance 
to carbon and hydrogen at the entrance to the flow furnace. As a source of silicon, 
an MS was also used, which is an environmentally hazardous, dusty waste produced 
by FSi and TSi with a content of amorphous particles-SiO2 globules of 95–97% by 
weight and having dimensions from 10–20 to 250 nm. 

The obtained SiC powders are dominated by particles having an irregular, 
“fragmentary” shape with a smooth surface on which there are no manifestations 
of “roughness,” that is, pits, cracks, protrusions, and other growth defects. X-ray 
analysis of these micro and nanopowders also clearly indicates the production of 
SiC cubic 3C and hexagonal 4H and 6H polytypes, which are in demand in the 
production of both abrasives and high-temperature ceramics. 

4 Conclusion 

Based on the study of the process of melting technical silicon in electric arc 
furnaces: a new method for smelting silicon and silicon alloys has been proposed 
and implemented, which provides for the supply of methane to the combustion zone 
of the electric arc of the furnace and the use of briquetted charge, which makes it 
possible to replace traditional carbon reducing agents in the form of charcoal and 
coke by 80% with natural gas (methane) and obtain technical silicon with a purity 
not less than 98.5%, as well as ferrosilicon of any grades. 

Expediency is shown when replacing a part (50–80%) of a solid carbonaceous 
reducing agent with a gaseous one in the form of methane to ensure its dissociation 
into hydrogen and carbon by contact with a nickel catalyst heated to ~800 K directly 
on the methane supply path to the electric arc burning area and also control the 
process by the magnitude of the current flowing in the electric arc and quickly stop 
its spontaneous and regular surges by adding water vapor to methane. 

For the first time, the use of a furnace charge in a pasty state was proposed, and 
a new method for its supply to an electric arc furnace was developed, and a variant 
of this new technology was experimentally tested, which consists in supplying a 
gaseous carbonaceous reducing agent and a charge in a pasty state in opposite 
directions directly into the burning area of an electric arc and allowing simultaneous 
use traditional supply of charge in lumpy fraction and briquettes.
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The possibilities of increasing the profitability of silicon production by returning 
the waste of this production to the technological cycle in the form of briquettes, as 
well as using them for the synthesis of silicon carbide, glue “liquid glass,” and in 
the construction industry for strengthening concrete, are shown. 
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Reconfiguration of Distribution Network 
Considering Photovoltaic System 
Placement Based on Metaheuristic 
Algorithms 

Thuan Thanh Nguyen , Thang Trung Nguyen , and Cuong Viet Vo 

1 Introduction 

Distribution network (DN) accounts for a large proportion of the power system. 
However, power loss on the DN also accounts for a high part of the total loss of 
the power system. This situation occurs because the DN is operated at low voltage 
level. Therefore, reducing power loss in order to improve the operational efficiency 
of the DN is always a matter of concern in the operation of the DN. 

In order to reduce power loss, several techniques can be implemented such 
as raising operating voltage, increasing line cross section, compensating reactive 
power, installing distributed generation (DG), and transferring loads among lines. 
In which, the last technique mentioned above is one of the most effective solutions 
for reducing power loss on the DN without any costs. This technique is implemented 
by varying the power flow on the lines through opening and closing of the existing 
switches located on the lines to form radial operating structures. This process is 
often called reconfiguration of the DN (RDN). Although it is not expensive to invest 
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in equipment, the opening and closing of switches to find the optimal radial network 
structure is a complex problem with possible solutions of up to two powers of n for 
the DN with n switches. Therefore, finding an effective solving method to the RDN 
problem also attracted the attention of researchers and DN operators. 

In addition, as aforementioned, installing DG is also an effective solution to 
improve the efficiency operation of the DN. Compared to RDN, installing DG is 
more expensive, but in the context of the depletion of fossil energy sources and 
the strong development of renewable energy sources. The appearance of DG on 
the DN is increasingly popular. Therefore, implementing RDN should consider 
the influence of DG location and capacity. In particular, the solution of combining 
RDN and optimal DG placement is one of the effective solutions to maximize the 
effectiveness of both solutions in improving the efficiency of the DN. However, 
this combination makes the problem even more complicated due to the variety of 
variables to be determined. 

Merlin and Back were the first to propose the RDN problem and solve it by the 
discrete branch-and-bound method [1]. Civanlar et al. [2] used the switch exchange 
technique to determine the optimal radial network configuration for power loss 
reduction. Both the discrete branch-and-bound and switch exchange techniques 
are based on the heuristic technique that is relied on knowledge and experience 
in operation of the DN. These methods often face many challenges in finding the 
globally optimal solution and dealing with constraints. Meanwhile, these limitations 
can be overcome by using metaheuristic methods for RDN problem. Therefore, in 
recent years, many methods based on metaheuristic algorithms have been applied 
to the RDN problem such as genetic algorithm (GA) [3–5], particle swarm opti-
mization (PSO) [6–9], improved harmony search (IHS) [10], enhanced sine–cosine 
algorithm (ESCA) [11], improved whale optimization approach (IWOA) [12], 
coyote optimization algorithm (COA) [13], group search optimization (GSO) [14], 
modified marine predators optimizer (MMPO) [15], modified symbiotic organisms 
search (MSOS) [16], and the combination of the exchange market algorithm and 
wild goats algorithm (EMA-WGA) [17]. 

For the combined problem of RDN and DG placement, it is mainly solved 
by the metaheuristic-based methods because of the simplicity in description and 
constraints. There are a number of recent works that have solved the combined 
problem of RDN and DG placement by metaheuristic-based approaches such as 
salp swarm algorithm (SSA) [18], fireworks algorithm [19], intersect mutation 
differential evolution [20], and sine–cosine algorithm [21]. 

In this chapter, the details of applying the recent metaheuristic algorithm namely 
golden jackal optimization (GJO) and the well-known algorithm namely PSO for the 
simultaneous RDN and photovoltaic system placement (RDN-PVSP) problem are 
presented. GJO is developed based on the idea of the hunting behavior of the golden 
jackals, wherein the search phases of GJO are relied on prey searching, enclosing, 
and pouncing behaviors [22]. PSO is one of the most popular optimization algo-
rithms based on swarm intelligence that takes the idea from food searching behavior 
of birds [23]. GJO and PSO are applied to search the optimal open switches as well
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as optimal location and peak power of PV system (PVS) to minimize power loss of 
two test DNs. 

The structure of this study can be organized as follows: Section 1 reviews the 
RDN-PVSP problem and existing approaches. Section 2 mentions the output power 
of PVS, the main goal, and the related constraints of the RDN-PVSP problem. 
Section 3 describes how the GJO and PSO methods are applied for the RDN-
PVSP problem. Section 4 analyzes and discusses the results in different test systems. 
Finally, the conclusion is presented in Sect. 5. 

2 Model of the RDN-PVSP Problem 

2.1 Power Generation of PVS 

The solar irradiance affects the output power of PVS. The irradiance distribution at 
time t can be described by the beta PDF as follows [24–26]: 

fPDF
(
St

) =
{

�(at+bt )
�(at )�(bt )

(
St

)(at−1)(1 − St
)(bt−1); 0 ≤ St ≤ 1, at , bt ≥ 0 

0 ; otherwise 
(1) 

where St is the solar irradiance in kw/m2 at time t, fPDF(St) is the  distribution of  
the irradiance at time t, and at and bt are defined by the mean (ρt) and standard 
deviation (ϑt) of irradiance at time t as follows: 

bt = (
1 − ρt

)
(

ρt
(
1 + ρt

)

(ϑt )2 
− 1

)

(2) 

at = 
ρt bt 

1 − ρt
(3) 

The continuous PDF at time t is divided into sub-states to find the PVS output 
power (PPVS). The PPVS is determined by the probability of all possible sub-states 
as follows: 

PPVS = 
K∑

i=1 

μi

(
St 

i

)
PPVSpSt 

m,i (4) 

where K is the number of possible irradiance states, .St
m,i is the mean irradiance 

of the state i at time t, PPVSp is the peak power of PVS that is defined as (5), and 

.μi

(
St

i

)
is the probability of irradiance that belongs to the range of .

[
St
1,i , S

t
2,i

]
that 

is defined as (6).
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PPVSp = ηPVS.FPVS (5) 

μi

(
St 

i

) =
∫ St 

2,i 

St 
1,i 

fPDF
(
St 

i

)
d

(
St 

i

)
(6) 

where ηPVS and FPVS are the efficiency and area of the PVS, respectively. 

2.2 The Main Objective of the RDN-PVSP 

Power loss reduction is considered as one of main objectives in operating the DN 
due to its high portion in the total loss of the power system [27]. Thus, the objective 
function of the RDN-PVSP is to reduce power loss. It is defined as follows:

�P = 3 
nl∑

i 
|Ii |2Ri (7) 

where �P is the total loss of the DN, nl is the number of branches, Ii is the current 
through branch i, and Ri is the resistor of branch i. 

2.3 The Constraints of the RDN-PVSP Problem 

Radial topology: The RDN process has to maintain the radial topology of the DN. 
It is formulated as follows [28, 29]: 

|determinant(C)| = 1 (8) 

where C is a matrix that represents the connection of the DN. 
Power balance: 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

PG + 
nPVS∑

i=1 
PPVS,i = PLOAD + �P 

QG + 
nPVS∑

i=1 
QPVS,i = QLOAD + �Q 

(9) 

where PG + jQG is the complex power of the grid, PPVS, i + jQPVS, i is the complex 
ouput power of the PVS i, and PLOAD + jQLOAD and �P + j�Q are the load and 
power loss of the DN. 

Voltage and current limits: The bus voltage and branch current of the DN have to 
be in the allowed ranges:
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{
VD ≤ Vj ≤ VU 
Ii ≤ IU,i 

(10) 

where Vj is the voltage amplitude of bus j with j = 1, 2, . . , nb, nb is the number 
of buses, [VD,VU ] is the allowed boundary of the voltage, and Ii and IU, i are the 
current and the allowed values of branch i. 

Furthermore, in order to ensure that the installation of PVS does not affect other 
DNs, total output power of PVSs does not exceed the total load and losses of the 
DN. This is mathematically formulated as follows: 

nPVS∑

i=1 

PPVS,i ≤ PLOAD + �P (11) 

3 Optimal Solution Searching Method for the RDN-PVSP 
Problem 

3.1 Application of GJO for the RDN-PVSP Problem 

Step 1. Generating the Current Population of RDN-PVSP Candidates In GJO, 
each solution is considered as a prey. Similar to other metaheuristic algorithms, to 
search the optimal solution, the initial prey population is generated randomly as 
follows: 

Ri,j = Rmin,j + θ1
(
Rmax,j − Rmin,j

)
(12) 

where Ri, j is the variable j with j = 1, 2, . . , D of prey i with i = 1, 2, . . , N; 
[Rmin, j,Rmax, j ] is the boundary of variable j; D and N are the number of variables 
of each prey and the population size, respectively; and θ1 is the random number in 
[0,1]. 

Each solution of the RDN-PVSP problem includes three variable types consisting 
of open switch, PVS placement location, and its peak power. The variables 
indicating the open switch and PVS placement location are represented by integer 
numbers, while the variables indicating the PVS peak power are represented by real 
numbers. Thus, to map the RDN-PVSP problem, the current prey population needs 
to be modified as follows: 

Ri,j = 

⎧ 
⎨ 

⎩ 

fr

(
Ri,j

) ; j ≤ nsw 
fr

(
Ri,j

) ; nsw + 1 ≤ j ≤ nsw + nPVS 
Ri,j ; otherwise 

(13)



140 T. T. Nguyen et al.

where nsw is number of open switches to form the radial topology of the DN and fr 
is the round function. 

To evaluate the fitness of each prey, the parameter of the DN is updated. The open 
switch variables are used to remove the corresponding branches from the branch 
data. The PVS peak power variables are used to estimate the PVS output power as 
(4). Then, the PVS placement location and the PVS output power are used to update 
the bus data of the DN. If the radial topology constraint in (8) is satisfied, the power 
flow using the Newton method integrated in MATPOWER [30] is used to calculate 
the load flow. If the power balance is ensured, the objective function, voltage, and 
current limits as well as total output power limit of PVSs are integrated to the fitness 
function as follows: 

Fi = �Pi + kp

(
nb∑

j=1 
max

(
Vj − VU, 0

) + 
nb∑

j=1 
max

(
VD − Vj , 0

)

+ 
nl∑

i=1 
max

(
KI,i − 1, 0

) + max

(
nPVS∑

i=1 
PPVS,i − PLOAD − �Pi, 0

))

(14) 

where Fi is the fitness value of prey i, KI, i is the load-carrying factor of branch i, 
and kp is the penalty constant. 

After calculating the fitness value of each prey, the two best preys in the 
population are considered to position the male and female jackals, wherein the male 
one stands in front of the female one. 

The hunting process of jackals can be divided into two stages including searching 
and enclosing prey. In searching the prey, the male jackal usually leads and 
the female one follows. Other individuals move to these two individuals. While 
enclosing prey, jackals often harass and make the prey weak before they pounce. 
In JGO, based on these behaviors, the exploration mechanism based on searching 
for prey and the exploitation mechanism based on enclosing prey are equipped to 
find the optimal solution. The choice of either mechanism is based on the escaping 
energy level of the prey, which is defined as follows: 

E = 1.5 (2θ2 − 1)
(
1 − t

/

T

)
(15) 

where E is the escaping energy of prey, θ2 is the random number in [0,1], and t and 
T are the current and maximum number of iterations. 

The value of the escaping energy of the prey in Fig. 1 shows that in the earlier 
iterations, the prey has a high escaping energy level, and this value decreases in the 
later iterations. When the prey has a high escaping energy level, jackals will have 
to search for them, and when the prey has a low energy escaping level, they will be 
surrounded and destroyed. The details of the prey searching and enclosing process 
are presented as the below steps.
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Fig. 1 Escaping energy of the prey over 100 iterations in three runs 

Step 2. Searching the Prey If the prey has a high escaping energy level, jackals 
will have to search for them. In nature, the male jackal leads the hunting process, 
and it is followed by the female one. Furthermore, jackals can smell and follow the 
prey. Based on this metaphor, the exploration of GJO is formed as follows: 

Rt 
1,i = Rt 

M − E
∣∣Rt 

M − αL (β) Rt 
i

∣∣ (16) 

Rt 
2,i = Rt 

FM − E
∣
∣Rt 

FM − αL (β) Rt 
i

∣
∣ (17) 

where Rt 
1,i and R

t 
2,i are the male and female jackal positions compared to the current 

prey Rt 
i ; R

t 
M and R

t 
FM are the male and female jackal positions, respectively, at the 

current iteration; L is the levy distribution coefficient that is used to formulate the 
movement of the prey; α is the scale factor that is often set to 0.05; β is the constant 
that is selected to 1.5; and Rt 

i is the prey i. 

Step 3. Enclosing the Prey Jackals harass the prey to reduce the prey’s escaping 
energy. Then, jackals enclose and pounce on the prey. This action of jackals is 
modeled as follows: 

Rt 
1,i = Rt 

M − E
∣∣αL (β) Rt 

M − Rt 
i

∣∣ (18) 

Rt 
2,i = Rt 

FM − E
∣∣αL (β) Rt 

FM − Rt 
i

∣∣ (19) 

In the above equations, the term αL(β) prevents jackals from moving rapidly 
toward the prey. This helps GJO to exploit the search space. 

Step 4. Update New Position of the Prey The prey positions are updated based on 
the new positions of the male and female jackals as follows:
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Start

- Set the mean and standard deviation of irradiance at the considered time
- Determine the probabilities of the irradiance states using (1) and (6)
- Set N, D, T of GJO
- Generate randomly the prey population using (12)
- Modify the prey population using (13)
- Estimate the PVS output power using (4)
- Update the data of the DN
- Calculate the fitness value of each prey using (14)
- Determine two best preys (corresponding to male and female jackal positions)
- Set current iteration t = 1 

t = t + 1 
No 

Yes 

end 

t = T 

The optimal solution: the male jackal position 

Update the escaping energy level of the prey using (15) 

Update the prey population using (20) 

NoYes 
|E| ≥ 1 

Update the male and female jackal 
positions compared to the current 

prey using (16) and (17) 

Update the male and female 
jackal positions compared to the 
current prey using (18) and (19)

- Estimate the PVS output power using (4)
- Update the data of the DN 
- Calculate the fitness value of each prey using (14) 

Modify the prey population using (13) 

Update the male and female jackal positions 

Fig. 2 Flowchart of the RDN-PVSP method based on GJO 

Rt+1 
i = (

Rt 
1 + Rt 

2

)
/2 (20) 

After the updated position, the prey population is modified to map with the RDN-
PVSP problem by using (13). Then each solution validated the fitness value by using 
(14). Finally, the two best solutions for the current population are used to update the 
male and female jackal positions. The steps for solving the RDN-PVSP problem 
based on GJO are presented in Fig. 2.
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3.2 The RDN-PVSP Method Based on PSO 

Based on GJO’s search mechanisms, it can be seen that GJO’s search process relies 
on information of the leading individuals. This idea is similar to that of PSO. PSO 
is one of the most popular optimization algorithms based on swarm intelligence 
that takes the idea from food searching behavior of birds [23]. While PSO updates 
the warm position relying on the current positions and the leader of the whole 
population, GJO relies on the current positions and two leaders of the population. 
Therefore, in this chapter the performance of GJO for the RDN-PVSP problem will 
be compared with that of PSO. In PSO, the position of each particle is considered as 
a candidate solution to the optimization problem. Details of PSO for the RDN-PVSP 
problem are implemented as follows: 

Step 1. Generating the Current Population of RDN-PVSP Candidates The 
generation of the initial population of PSO for the RDN-PVSP problem is similar 
to that of GJO. Firstly, the population is generated and modified using (12) and 
(13). Then the fitness value of each solution is evaluated using (14). Finally, the best 
solution for population (Rgbest) is determined. 

Step 2. Update the Current Population The moving velocity of each particle 
depends on the best position of the population and the best experience itself. It is 
mathematically modeled as follows: 

V t+1 
i = wV t i + C1θ3

(
Rt 
best,i − Rt 

i

) + C2θ4

(
Rt 
gbest − Rt 

i

)
(21) 

where .V t+1
i and . V t

i are the velocity of the next and current iterations; C1 and C2 
are, respectively, the cognitive and social factors which are selected to 2; θ3 and θ4 
are the random numbers in [0, 1]; .Rt

best,i and .R
t
gbest are the best position of each 

particle and the warm; and w is the initial weight that is defined as follows: 

w = wmax − (wmax − wmin) t
/

T
(22) 

where wmax and wmin are the highest and lowest weights, respectively. 
The new position of the population is updated as follows: 

Rt+1 
i = Rt 

i + V t+1 
i (23) 

After the updated positions, the particle population is modified to map with the 
RDN-PVSP problem using (13). Then each solution validated the fitness value using 
(14). Then, the best position of each particle is updated as follows: 

Rt+1 
best,i =

{
Rt+1 

i ; if Fi < F t 
best,i 

Rt 
best,i; otherwise 

(24)
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Start

- Set the mean and standard deviation of irradiance at the considered time
- Determine the probabilities of the irradiance states using (1) and (6)
- Set N, D, T of PSO
- Generate randomly initial particle population using (12)
- Modify the particle population using (13)
- Estimate the PVS output power using (4)
- Update the data of the DN
- Calculate the fitness value of each particle using (14)
- Determine the best particle 
- Assign initial particle position to the current best position of each particle 
- Set current iteration t = 1 

t = t + 1 
No 

Yes 

end 

t = T 

The optimal solution: the best particle 
position of the whole population 

Update the velocity of each particle using (21) 

Update the position of each particle using (23)

- Estimate the PVS output power using (4)
- Update the data of the DN 
- Calculate the fitness value of each particle using (14) 

Modify the population using (13) 

Update the current best particle position using (24) and (25)  

Update the best particle position of the whole population 

Fig. 3 Flowchart of the RDN-PVSP method based on PSO 

F t+1 
best,i =

{
Fi; if Fi < F t 

best,i 
F t 
best,i; otherwise 

(25) 

Finally, the best position of the population is updated. The steps for solving the 
RDN-PVSP problem based on PSO are presented in Fig. 3.
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4 Simulation Results and Discussion 

In this section, in order to validate the performance of GJO and PSO for the RDN-
PVSP problem, the standard 33-buses and 69-buses DNs are used to search the 
optimal open switches, PVS location, and PVS power. Both GJO and PSO are coded 
in the MATLAB software. For each DN, three cases are considered in terms of 
power loss, voltage, and current profiles as follows: 

Case 1: Initial status 
Case 2: Reconfiguration of DN (RDN) 
Case 3: Reconfiguration of DN and PVS placement (RDN-PVSP) 

For the three cases, case 1 shows the current radial status of the DN, and case 2 
presents that the DN is only reconfigured and is applied for determining the optimal 
radial DN without PVS placement, while case 3 is applied for searching for the 
optimal radial DN and optimal PVS placement. For case 2, the control parameters 
of GJO and PSO consisting of population size, dimension, and maximum number 
of iterations are chosen to be 20, 5, and 100, respectively. For case 3, they are 
respectively set to 30, 11, and 1000. The lower VD and upper VU voltage amplitudes 
are chosen to be 0.95 and 1.05 pu, respectively. 

In order to determine the output power of PVSs, it is assumed that the irradiance 
at the PVS installation area is split into states consisting of 0–0.2, 0.2–0.4, 0.4– 
0.6, 0.6–0.8, 0.8–1.0 kW/m2 and the mean irradiance at this area at the considered 
time is 0.610 kW/m2 with standard deviation of 0.273 kW/m2. The probabilities of 
the irradiance states relying on the beta PDF according to (1) and (6) are shown in 
Fig. 4. The efficiency of PVS is chosen to be 0.186. The number of PVS is limited to 
three for each DN. The installed area for each PVS is in the range of [1000, 20,000] 
m2 corresponding to the peak power of each PVS obtained by (5) in the range of 
[0.186, 3.72] MW. 

Fig. 4 The beta PDF corresponding to solar irradiance states
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Fig. 5 The 33-buses DN 

4.1 The 33-Buses DN 

The 33-buses DN with a single-line diagram in Fig. 5 has a voltage level of 12.66 kV, 
37 branches, and 5 open switches. The DN’s parameters are taken from [31]. 

Table 1 presents the calculated results of GJO and PSO for the 33-buses DN. In 
the case 1, power loss is 202.6863 kW, and the minimum voltage amplitude (Vmin) 
is 0.9131 pu that is 0.0369 lower than the allowed lower voltage limit. In addition, 
the maximum current-carrying factor (KImax) is also 0.0518 higher than the allowed 
value. 

The performance of RDN in case 2 has helped to reduce significantly power loss. 
The power loss has been reduced to 62.704 kW from 202.6863 to 139.9823 kW 
that corresponds to a reduction of 30.94%. Furthermore, Vmin and KImax are also 
improved compared to those of the case 1. The KImax value has been reduced from 
1.0518 to 1.0361 pu corresponding to a reduction of 1.49% compared to that of case 
1. The Vmin is increased to 3.08% compared to that of case 1, and it is only 0.0088 
pu lower than the allowed lower voltage limit. 

By performing the optimal RDN-PVSP using GJO, the power loss is reduced 
from 202.6863 to 50.7745 kW. Thus, the power loss is reduced by 151.9118 kW, 
corresponding to a reduction of about 74.95% of the original power loss. The 
maximum load-carrying factor is also significantly reduced from 1.0518 to 0.5643 
pu corresponding to a reduction of 46.35% compared to that of case 1. In addition, 
the lowest node voltage amplitude has also improved by 6.79% compared to that 
of case 1. The optimal solution obtained by GJO in case 2 is exactly the same with 
that of GSO [14] and MSOS [16]. Compared to IHS [10], ESCA [11], and EMA-
WGA [17], although the power loss obtained by GJO is higher than 0.4323 kW, the
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Table 1 The optimal results of GJO and PSO for the 33-buses DN 

Case Method 

Open 
switches 
(switch 
number) 

Location 
of PVS 
(at node’s 
number) 

Peak 
power of 
PVS 
(MW) 

Power 
loss (kW) 

Maximum 
current 
factor 
(pu) 

Minimum 
voltage 
(pu) 

Maximum 
voltage 
(pu) 

Case 1 – 33-34-35-
36-37 

– – 202.6863 1.0518 0.9131 1.0 

Case 2 GJO 7-14-9-
32-28 

– – 139.9823 1.0361 0.9412 1.0 

PSO 7-14-9-
32-28 

– – 139.9823 1.0361 0.9412 1.0 

GSO [14] 7-14-9-
32-28 

– – 139.9823 – 0.9412 – 

MSOS 
[16] 

7-14-9-
32-28 

– – 139.9823 – 0.9412 – 

IHS [10] 7-9-14-
32-37 

– – 139.55 – – – 

ESCA 
[11] 

7-9-14-
32-37 

– – 139.55 – 0.9378 – 

EMA-
WGA 
[17] 

7-9-14-
32-37 

– – 139.55 – – – 

Case 3 GJO 33-34-11-
31-28 

18, 25, 7 1.1860, 
2.1046, 
1.5561 

50.7745 0.5643 0.9751 1.0 

PSO 33-10-8-
36-28 

15, 7, 25 1.1699, 
1.2933, 
2.5617 

54.8008 0.5574 0.9699 1.0 

lowest node voltage amplitude obtained by GJO is 0.0034 pu higher than the above 
methods. 

The comparison between case 2 and case 3 shows that RDN-PVSP brings 
superior efficiency compared to RDN. The reduction in power loss in case 3 is 
44.01% higher than in case 2. The maximum load-carrying factor is 44.86% lower 
than that of case 2, while the lowest node voltage amplitude is increased by more 
than 3.71% compared to that of case 2. As shown in Fig. 6, the node’s voltage 
has been significantly improved after implementing RDN and RDN-PVSP, wherein 
RDN-PVSP gives better efficiency than RDN. Figure 7 shows that the load-carrying 
coefficients of most branches in the system have been significantly reduced after 
implementing RDN and RDN-PVSP, wherein RDN-PVSP gives better reduction 
than RDN. This result shows the effectiveness of RDN-PVSP in improving the 
capacity of the DN. 

The comparison results between GJO and PSO in Tables 1 and 2 show that in 
case 2, both GJO and PSO have found the optimal configuration of 7-14-9-32-28 
as shown in Table 1, but the statistical results obtained in 30 runs presented in 
Table 2 show the superiority of GJO over PSO. In particular, the maximum, mean,
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Fig. 6 The voltage amplitude profile of the 33-buses DN 

Fig. 7 The current amplitude profile of the 33-buses DN 

and standard deviation of the GJO’s fitness values are lower than those of PSO. In 
addition, the execution time of GJO is also lower than that of PSO. In case 3, the 
obtained results in Table 1 show that the optimal solution obtained by GJO includes 
open switches of 33-34-11-31-28 and PVSs with peak capacity of 1.1860, 2.1046, 
and 1.5561 MW installed at the nodes of 18, 25, and 7, respectively. This solution 
helps to reduce the power loss on the system to 50.7745 kW corresponding to a 
reduction of 74.95% compared to that of case 1. Meanwhile, the solution obtained 
by PSO causes a loss of 54.8008 kW corresponding to a reduction of 72.96% 
compared to that of case 1. This reduction is 1.99% lower than that of GJO. Similar 
to case 2, the statistical values obtained by GJO in Table 2 for case 3 are lower 
than those of PSO. In addition, the execution time of GJO is also lower than that of 
PSO. The average convergence characteristics and fitness values in each run for the
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Table 2 The statistical results of GJO and PSO for the 33-buses DN 

Case Method Fmax Fmin Fmean STDF Trun (s) 

Case 2 GJO 249.357 205.8525 216.3236 10.2219 5.4536 
PSO 426.2957 205.8525 263.525 46.4197 5.9057 

Case 3 GJO 70.9231 50.7745 58.2917 4.5602 73.8417 
PSO 74.23 54.8008 61.1421 4.2983 95.9516 

Fig. 8 The convergence characteristic of GJO and PSO for the 33-buses DN in case 2 

Fig. 9 The convergence characteristic of GJO and PSO for the 33-buses DN in case 3 

two cases in Figs. 8 and 9 show that in each iteration GJO usually converges to a 
better value than PSO and, in each execution, GJO also often finds the better result 
than PSO. Figure 10 shows that the distribution of fitness values found in 30 runs of 
GJO is lower than that of PSO and the range of fitness values obtained by GJO is 
narrower than that of PSO for both cases. 

4.2 The 69-Buses DN 

The 69-buses DN with a single-line diagram in Fig. 11 has a voltage level of 
12.66 kV, 73 branches, and 5 open switches. The DN’s parameters are taken from 
[32].
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Fig. 10 The box plot of GJO and PSO for the 33-buses DN 

1 
54 6 82 

3 

7 199 1211 1413 1615 1817 27 

66 67 

23 24 2520 21 22 26 

68 69 

10 

36 37 3938 40 41 4342 44 45 46 

5853 5554 56 59 6560 6261 6463 

47 4948 50 

3328 3029 3231 34 35 

1 2 54 6 7 8  9 1211 141310 191615 1817 

27 

23 24 2520 21 22 26 

3328 3029 3231 34 

35 

37 3938 40 41 4342 44 45 

46 

36 

47 4948 

5152 50 

51 

52 

57 

5853 5554 56 59 

65 

60 6261 646357 

66 

67 

68 
69 

70 

71 

72 

73 

Fig. 11 The 69-node distribution network 

Table 3 shows the results of GJO and PSO for the 69-buses DN. In case 1, power 
loss is 224.8871 kW, and Vmin and KImax are respectively 0.9092 and 1.2413 pu. 
Both indexes are out of permitted ranges. After the performance of RDN, power loss 
has been reduced to 126.2996 kW from 224.8871 to 98.5875 kW that corresponds 
to a reduction of 56.16%. Furthermore, Vmin and KImax are also improved compared 
to those of the case 1. The KImax value has been reduced from 1.2413 to 1.2137 pu 
corresponding to a reduction of 2.22% compared to that of the case 1. The Vmin is 
increased to 4.43% from 0.9092 to 0.9495 pu compared to that of case 1. 

By performing the optimal RDN-PVSP using GJO, the power loss is reduced 
from 224.8871 to 35.9526 kW. Thus, the power loss is reduced by 188.9345 kW, 
corresponding to a reduction of about 84.01% of the original power loss. The 
maximum load-carrying factor is also significantly reduced from 1.2413 to 0.7514
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Table 3 The optimal results of GJO and PSO for the 69-buses DN 

Case Method 

Open 
switches 
(switch 
number) 

Location 
of PVS 
(at 
node’s 
number) 

Peak 
power of 
PVS 
(MW) 

Power 
loss 
(kW) 

Maximum 
current 
factor 
(pu) 

Minimum 
voltage 
(pu) 

Maximum 
voltage 
(pu) 

Case 1 – 69-70-71-
72-73 

– – 224.8871 1.2413 0.9092 1 

Case 2 GJO 69-70-14-
57-61 

– – 98.5875 1.2137 0.9495 1 

PSO 69-70-14-
57-61 

– – 98.5875 1.2137 0.9495 1 

IWOA 
[12] 

14-58-61-
69-70 

– – 98.5952 – – – 

COA [13] 69-70-14-
57-61 

– – 98.5875 – 0.9495 – 

GSO [14] 14-56-61-
69-70 

– – 98.59 – 0.9498 – 

ESCA 
[11] 

14-55-61-
69-70 

– – 98.6 – 0.9495 – 

MSOS 
[16] 

14-57-61-
69-70 

– – 98.5875 – 0.9495 – 

EMA-
WGA 
[17] 

14-56-61-
69-70 

– – 98.59 – 0.9498 – 

Case 3 GJO 69-70-13-
57-61 

10, 61, 
27 

1.1216, 
2.3544, 
0.9036 

35.9526 0.7514 0.9814 1 

PSO 69-70-12-
55-61 

27, 61, 
12 

0.9393, 
2.3512, 
0.186 

37.499 0.8167 0.9813 1 

pu corresponding to a reduction of 39.47% compared to that of case 1. In addition, 
the lowest node voltage amplitude has also improved by 7.94% compared to that of 
case 1. The power loss obtained by GJO in case 2 is similar to that of COA [13], 
MSOS [16], ESCA [11], GSO [14], and EMA-WGA [17] and slightly lower than 
that of IWOA [12]. 

Similar to the results of the 33-buses DN, the comparison between case 2 and 
case 3 shows that RDN-PVSP brings superior efficiency compared to RDN. The 
reduction in power loss in case 3 is 27.85% higher than in case 2. The maximum 
load-carrying factor is 37.24% lower than that of case 2, while the lowest node 
voltage amplitude is increased by more than 3.51% compared to that of case 2. 
Figure 12 shows that the node’s voltage has been improved after implementing 
RDN and RDN-PVSP, wherein RDN-PVSP gives better improvement than RDN. 
As shown in Fig. 13, the load-carrying coefficients of the branches gained by RDN-
PVSP have been more improvement than that of RDN. This result once again 
confirms the effectiveness of RDN-PVSP in improving the capacity of the DN.
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Fig. 12 The voltage amplitude profile of the 69-buses DN 

Fig. 13 The current amplitude profile of the 69-buses DN 

The comparisons between GJO and PSO for the 69-buses are also shown in 
Tables 3 and 4. For case 2, the statistical results obtained in 30 runs in Table 4 
show the superiority of GJO over PSO, though both GJO and PSO have found 
the optimal configuration of 69-70-14-57-61 as shown in Table 3. In particular, the 
maximum, mean, and standard deviation of the GJO’s fitness values are lower than 
those of PSO. For case 3, the obtained results in Table 3 show that the optimal 
solution obtained by GJO includes open switches of 69-70-13-57-61 and PVSs 
with peak capacity of 1.1216, 2.35444, and 0.90356 MW installed at the nodes 
of 10, 61, and 27, respectively. This solution helps to reduce the power loss on the 
system to 35.9526 kW corresponding to a reduction of 84.01% compared to that 
of case 1. Meanwhile, the solution obtained by PSO causes a loss of 37.4990 kW 
corresponding to a reduction of 83.33% compared to that of case 1. This reduction
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Table 4 The statistical results of GJO and PSO for the 69-buses DN 

Case Method Fmax Fmin Fmean STDF Trun (s) 

Case 2 GJO 556.742 526.4962 541.3005 9.8107 19.0839 
PSO 667.7074 526.4962 595.8009 60.9617 18.9557 

Case 3 GJO 72.9126 35.9526 44.4622 6.1116 247.7562 
PSO 76.2899 37.499 47.9712 10.4536 325.0729 

Fig. 14 The convergence characteristic of GJO and PSO for the 69-buses DN in case 2 

Fig. 15 The convergence characteristic of GJO and PSO for the 69-buses DN in case 3 

is 0.69% lower than that of GJO. Similar to case 2, the statistical values obtained by 
GJO in Table 4 for case 3 are lower than those of PSO. In addition, the execution 
time of GJO is also lower than that of PSO. The average convergence characteristics 
and fitness values in each run for the two cases in Figs. 14 and 15 show that 
in each iteration GJO usually converges to a better value than PSO and, in each 
execution, GJO also often reaches a better result than PSO. Figure 16 shows that the 
distribution of fitness values found in 30 runs of GJO for the 69-bues DN is lower 
than that of PSO and the range of fitness values obtained by GJO is narrower than 
that of PSO for both cases.
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Fig. 16 The box plot of GJO and PSO for the 69-buses DN 

5 Conclusion 

In this chapter, the application of the recently developed GJO for the RDN-PVSP 
to minimize power loss of the DN is successfully presented. The efficiency of GJO 
is compared with the well-known PSO on two test DNs including the 33-buses and 
69-buses. For each test DN, three cases consisting of the initial state, RDN only, and 
RDN-PVSP are considered. The simulated results show that the RDN-PVSP is more 
powerful than RDN in reducing power loss and improving the voltage and current 
profiles of the DN. For two test DNs, the power loss reduction of the RDN-PVSP 
is 44.01% and 27.85%, respectively, higher than that of RDN only. The compared 
results between GJO and PSO on both of the test DNs show that GJO outperforms 
PSO for the RDN and RDN-PVSP problem in terms of the final optimal solution 
and the statistical results. The comparisons with other methods also lead to GJO 
reaching the optimal solution for the considered problems. Therefore, GJO can be 
an effective method for the RDN and RDN-PVSP problems. 
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Technology of Secondary Cast 
Polycrystalline Silicon and Its 
Application in the Production 
of Solar Cells 

A. L. Kadirov, B. M. Abdurakhmanov, H. B. Ashurov, 
and Valeriy Kharchenko 

1 Introduction 

The low density of solar radiation on the Earth’s surface determines the high cost 
of electricity generated by solar photovoltaic stations (SPVS), since, in order to 
obtain practically significant capacities, it is necessary to collect and convert solar 
radiation from large areas, which is associated with both the cost of a large amount 
of expensive semiconductor materials and the need to develop and maintain high-
performance industrial technologies for the manufacture of these materials and solar 
cells based on monocrystalline silicon (MS). The cost of electricity produced in 
this way is several times higher than the cost of electricity generated by traditional 
methods. This is the main reason hindering the development of large-scale silicon-
based solar power industry. 

In this regard, the attraction and expansion of the use of a non-traditional raw 
material base for the production of solar cells, including from the waste of raw and 
metallurgical silicon, such as, for example, the secondary cast polycrystalline silicon 
(SCPS) considered in this work, are coming to the fore [1, 2]. 

Attempts to obtain efficient cheap solar cells based on waste silicon production 
are constantly being made. Thus, solar cells made of polysilicon [3] obtained by 
the method of directed crystallization in a casting mold (with ρ ~ 1–10 ±hm.cm) 
have an efficiency of only 2–3%. The low efficiency of these solar cells is related to 
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the small grain size of polysilicon (~200 µm). Solar cells made of poly-Si, which 
was obtained by the Stepanov method [4], turn out to be more efficient by growing 
profiled crystals of p-type conductivity with ~0.8–3.0 Ohm.cm. Their efficiency is 
in the range of 5–10%. 

We note in particular that in the manufacture of solar cells from profiled silicon, 
preliminary purification of the raw material is required, as a result of which alkali 
metal impurities are introduced into the substrate material, which increase the rate 
of carrier recombination. The maximum spectral sensitivity of the solar cells from 
this material lies in the region of 0.75–0.8 µm while for the solar cells from SCPS, 
as will be shown below, in the shorter wavelength region of the spectrum ~0.7 µm. 

As for tape polycrystalline silicon (PS), although the efficiency of laboratory 
solar cells made of this material reaches 9% [5, 6], the cost indicators of 1 W of the 
generated energy turn out to be higher than those of SCPS. This is due to the fact 
that the tape PS is a super overstressed material that requires an additional operation 
for normal operation – thermal annealing for 1.5–2 h. Energy costs for this process 
also affect the cost of photoelectric energy released by such solar cells, and the 
efficiency of solar cells from strip Si [5], which have not undergone heat treatment, 
is only 5–6%. 

A significant reserve for improving the quality of PS solar cells is the hydrogen 
passivation of the boundary charge states or the passivation of the recombination 
activity of the materialby the thermal method [7. Using this method, it is possible 
to achieve a significant increase in the mobility, lifetime, and diffusion length of 
charge carriers and, as a consequence, improve the characteristics of the solar cell. 

Currently, the following methods of PS passivation are used: thermal annealing 
[6], thermal annealing in a hydrogen medium [8], acoustic stimulation [9], treatment 
with hydrogen ions in a hydrogen plasma of a glow discharge, and low-energy H+ 

ion implantation, including using the Kaufman source [10]. 
In the commonwealth of independent states (CIS) countries, the ZTMK silicon 

laboratory in Zaporozhye was engaged in the manufacture of PS for solar cells on 
a pilot scale; there is a publication jointly with Rsearch and Poduction Asociation 
(RPA) Kvant. On a somewhat larger scale, PS for the same purposes, but using the 
Stepanov method, was carried out by RPA Saturn, Krasnodar. The production of 
solar cells at RPA Saturn was entirely dependent on the supply of initial silicon, the 
production of which was concentrated in Ukraine. The rupture of economic ties led 
to the cessation of these works. 

As for the thermoelectric method of converting the thermal component of solar 
radiation, as well as geothermal heat and the heat of heated bodies, there is 
a significant gap in this issue in regional research and development, associated 
primarily with the lack of production facilities producing or processing traditional 
thermoelectric materials. It is important to note that within the framework of this 
work, for the first time, the issue of involving various modifications of silicon in the 
creation of thermal energy converters (TEC) and primarily those produced in the 
Republic of Tajikistan (RT) is raised. 

This paper presents the scientific and practical results of obtaining and a 
comprehensive study of the electrophysical, photo- and thermal-voltaic properties
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of cast PS from silicon production waste, solar cells and TEC based on it and 
the issuance on this basis of scientifically substantiated modes of manufacturing 
PS and solar cells, formulated in the form of technological recommendations for 
implementation at existing production facilities in the region, development of own 
regional production of technical silicon (TS) based on local raw materials, obtaining 
PS from the regional TS by analogy with the technology of cast PS, substantiation 
of the foundations for laying in the RT its own closed production of TS, PS and solar 
cells and TEC on their basis [1, 2]. 

2 Smelting, Composition, and Electrophysical Properties 
of SCPS 

The introduction at the beginning of the twenty-first century of reverse technologies 
for gas phase production of raw Si by hydrogen reduction of trichlorosilane led to a 
sharp decrease in the cost of silicon and, accordingly, to a decrease in the price of 
solar electricity with a simultaneous increase in production volume. In this regard, 
the production of solar cells in the form of SCPS returned to its previous pace. The 
technology of smelting this material is presented, and variants of its application in 
the production of solar cells are described, with preference given to the option when 
SCPS is used as a material for the manufacture of heavily doped silicon substrates, 
and the base region of the TS is created in films grown on them from the gas phase 
with using the techniques of the aforementioned reverse technologies. 

The task of further reducing the cost of solar cells for ground energy does not 
lose its relevance and causes the expansion of the use of polycrystalline silicon (PS) 
for these purposes instead of monocrystalline (MS); however, this transition, given 
the existing plans to increase the production of photovoltaic products, is in any case 
associated with the need to increase the production of TS [11, 12] and then raw 
Si electronic purity. In this regard, the serial production of solar cells based on PS, 
made from the inevitably proportionally increasing volumes of silicon waste that 
occurs at all stages of its production, as well as in the production of solar cells and 
electronic products (EP), is becoming increasingly important. In this case, naturally, 
there arise the problems of choosing the simplest and most cost-effective technology 
for the production of blanks for solar cells with an acceptable efficiency from such 
a raw material. It is known that this indicator for PS TS is somewhat inferior to 
that for MS TS, which is due to the recombination of charge carriers at the grain 
boundaries (GB) of PS. In [13], a comparison was made of the passivation efficiency 
of the recombination activity of impurity and defect centers and electronic states 
on GBs in PS samples fabricated by various methods, including such a variety of 
PS as SCPS manufactured by remelting waste raw silicon, MS, and epitaxy, and 
it was shown that hydrogen ions effectively passivate GBs and dislocation pileups, 
especially linear dislocations. Transition metal impurities, which are responsible for
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reducing the lifetime of charge carriers, can also be passivated both in the volume 
of grains and at their boundaries. 

In [2], based on the problem of increasing the profitability of the production 
of solar cells based on SCPS, the reasons for the spread in the characteristics of 
solar cells manufactured in a single cycle based on SCPS were discussed, and the 
dependence of the photovoltaic (PV) efficiency on the size of the initial plates from 
this material was established. It was shown that the decrease in the TS efficiency and 
the spread of its value in a batch are due to the presence in this type of multisilicon 
of specific structural defects that occur during direct casting, the number of which 
naturally increases with an increase in the area of a single TS. A number of other 
parameters and properties of solar cells from the TS PS, including its behavior under 
illumination with concentrated solar radiation (CSR), were studied in [14], where 
the first discovered effect of superlinear growth of the short circuit current, observed 
in the range of CSR 4–5 times at Po = 850 W/m2, is reported. 

Electrical, photo-, thermal, and thermoelectric, mechanical, and other properties 
of solar and thermal energy converters made on the basis of PS are explained by the 
microstructure and morphology of the GBs. A number of studies have been carried 
out, for example [15–17], where it is shown that the microstructure and morphology 
strongly depend on the technology for obtaining PS, on the properties of atoms 
of residual or specially introduced impurities, and also on the processes of their 
segregation. Therefore, a detailed study of the structure of GBs, the influence of 
technological factors of impurity atoms, and the determination of ways to control 
them is currently considered one of the priority tasks of science, which have direct 
access to the production of semiconductor devices. 

The process of obtaining SCPS includes a number of operations similar to the 
production of silicon according to Czochralski. First of all, this is the preparation 
and assembly of melts - an operation that boils down to grinding proteins to sizes 
acceptable for loading into a crucible, and adding dopants, for example, in the case 
of obtaining secondary silicon for affected elements, the development of silicon 
doped with small acceptors, namely boron. 

The serial production of solar cells based on SCPS can, in principle, be organized 
by involving the production of the latter, not only waste from the production of raw 
Si and raw MS but also EP. However, in this case, it is necessary to evaluate the 
feasibility of metallurgical processing of EP production waste in comparison with 
the direct use, for example, of substandard silicon single-layer epitaxial structures 
(SSLES) or substrates freed from the epitaxial layer, which are quite suitable for 
the manufacture of solar cells of the types p+-n-n+, n+-p-p+, or n+-p, p+-n [18]. 
When using n-n+ structures prevailing in the production of SSLES, it is possible to 
predict the efficiency using a regression model [1, 19] and choose SSLES, on the 
basis of which to obtain solar cells with the simplest p-n junction and enlightenment 
with an efficiency of 8–13%, in some cases 15%, quite suitable for a complete 
set of household photovoltaic devices. Wastes from the production of EP from the 
operations of manufacturing integrated circuits and discrete semiconductor devices, 
representing the breakage of plates and structures, of course, should be subjected 
to metallurgical processing into PS or profiled silicon [2, 18, 20]. In this case, the
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main and serious problems are created by waste sorting and chemical-metallurgical 
processing and processing of raw materials, which exclude the ingress of deep 
impurities such as Mo, W, Cr, Ag, Au, and Cu, used in integrated circuit technology, 
into PS. It is here that the experience and developments available in the field of 
purification of TS by purely metallurgical methods can be successfully applied to 
a level acceptable for use in photovoltaics, which will be discussed below. As a 
result of the experiments, we have developed a variant of the technological process 
for obtaining SCPS going to create solar cells, which includes the operations of 
preparing raw materials and ligatures, quartz graphite equipment, a mold body, and 
the process of casting silicon blocks. 

The operation of preparing melts includes sampling p-type wastes from raw 
materials and MS production according to the thermo-electro driving force sign 
or using the three-probe method, as well as sampling wastes from the production 
of SSLES p-p+ for doping the charge in order to obtain an ingot of SCPS with a 
specific resistance of a given nominal value. 

Silicon ingots from the indicated raw materials were made by direct casting 
into graphite molds, followed by directional crystallization of the filled volume 
in vacuum or in vacuum with a small amount of inert gas flow. The directional 
crystallization of the melt in the mold was carried out from the bottom up due 
to the predominant heat removal through the graphite base of the mold and the 
creation of a thermal backwater to the melt mirror by the upper heating heater. 
Carrying out directional crystallization ensured the receipt of a columnar structure 
of manufactured blocks with a fineness of individual grains up to ~2 × 2 mm and 
without gas shells. 

Schematically, the process of obtaining cast polysilicon can be described using 
the data of Fig. 1 as follows. Melting was carried out in a vacuum of 5·10−2 mm. 
Hg using graphite directly heated heaters. After holding the melt in melting crucible 
1 with heater 2, turning on heater 3 melted silicon plug 4 of sprue 5, and the 
melt flowed into mold 6 with heater 7. The melt crystallized layer by layer from 
the bottom of mold 6 to the free surface. The duration of exposure of the melt 
in the mold, i.e., in fact, the crystallization rate is one of the main technological 
characteristics of the process, since it determines the size of the polycrystal grains. 
The experimentally established optimal range of the duration of the melt exposure 
lies within 1.5–2 h, while the dimensions of individual grains are guaranteed to 
exceed 2 mm over the entire volume of the ingot [1, 2]. 

A specially prepared quartz crucible, which is based on a standard quartz 
crucible, usually used in the processes of obtaining Si according to Czochralski, 
was used as a container for melting the initial charge – silicon with alloy. 

The melt is held until equilibrium crystals appear on the surface in the melting 
crucible (“frost”). After the appearance of “frost,” the power on the “cork” melting 
heater gradually increases. Heating of the casting mold begins simultaneously with 
the heating of the loaded silicon raw materials using a heating heater and is carried 
out until the melt is poured into it while maintaining a rotation speed of ~2– 
5 rpm. For 2–3 min. Before pouring the melt, the heating heater is set to power 
corresponding to the mode of crystallization and determined empirically. After
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Fig. 1 Scheme of the reactor 
unit of the melting plant 

filling the volume of the mold with molten silicon, the power of the heating heater is 
increased above the power corresponding to the equilibrium state of the solid-liquid 
system. By controlling the power and visually observing the melt mirror, the poured 
melt is crystallized for ~2 h. After the end of the crystallization process, the casting 
is annealed at the same fixed power for at least 90 min. 

After cooling, the ingot (Fig. 2) is removed from the mold and inspected to detect 
cracks and chips. Defective ingots are returned for remelting. Used graphite casting 
mold parts are cleaned from traces of the melt on the surface and transferred for 
reuse. 

The efficiency of polycrystalline TS, which are also made from SCPS, generally 
depends on the content of residual impurities in the raw material, impurities 
transferred from the walls of the melting equipment, and material structure features, 
in particular, on the size of PS grains. These rather stringent requirements for raw 
materials limit the volumes of direct processing of waste to those in which, a priori, 
there are no impurities that give deep energy levels in silicon. In our opinion, the 
increase in waste processed in SCPS can be increased if we use the experience 
gained in the field of the conversion of TS by purely metallurgical methods into 
multisilicon in combination with the purification of such material to an impurity 
level of at least 10−3% in order to use it in production solar cells. 

On Fig. 3 from [21] presents generalized data of various researchers [22–25], 
clearly showing how the presence of one or another impurity in the base region Si 
of a solar cell affects the efficiency of the solar cells. 

From Fig. 3 follows that the influence of various impurities differs significantly, 
which is associated with the type and depth of occurrence, the energy levels they 
create, and in the case of the presence of metals such as tantalum, molybdenum, 
niobium, zirconium, tungsten or titanium in silicon, their concentration is already at
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Fig. 2 Ready SCPS ingot in the fault 

Fig. 3 Influence of the type and concentration of an impurity of one or another metal in silicon on 
the efficiency of Si solar cells [22–25] 

the level 5.1012–5.1014 cm−3 catastrophically reduces the efficiency of converting 
solar radiation into electricity. 

There are a number of technologies, as well as scientific schools, that have 
developed them, offering purification of TS by metallurgical methods [26–30], zone 
melting of TS [30], remelting in solar furnaces [31], as well as hydrometallurgy 
methods, that is, by breaking the TS, mainly along GBs and subsequent chemical
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etching of impurities from exposed GBs [32], where they were displaced by 
segregation during TS crystallization. 

Thus, the refining of TS is known by release into settling tanks, where the 
melt is purified by blowing Cl, O2, and Ar or by treatment with fluxes (Na3AlF6, 
NaCl) [33] by adding fluxes [34]. Numerous, original, and effective technological 
methods have been developed based on bubbling the FC melt with mixtures of 
gaseous chemical reagents and, thereby, removing significant amounts of impurities 
B, P, As, Al, and Ca and a number of other metals due to their entry into high-
temperature reactions with the above gases and precipitation of the reaction product 
into slag or removal from the melt in the form of volatile chemicals [35]. Of 
great interest is the hydrometallurgical purification of silicon. It is based on the 
operations of grinding TS to a powder and its purification by etching in HCl. Since 
the physical phenomenon of segregation of impurities on the surface of grains during 
the crystallization of the melt is used here, two points are important: ensuring the 
crystallization of TS with a uniform grain size and ensuring its subsequent grinding 
mainly along the boundaries of these grains with exposure of the surfaces on which 
the impurities displaced by segregation are concentrated. If the first condition is 
difficult to fulfill, then the original TS is crushed to a particle size much smaller than 
the grain size, in practice up to 50 microns. The method makes it possible to reduce 
the Al content in TS to 3·10−6%, that is, to get rid of 75% of this impurity [32]. This 
method is also effective in the purification of TS from a number of other impurities 
harmful to solar cells [35], and the purification is facilitated by a decrease in the 
particle size of the TS powder, an increase in the process temperature, the choice of 
the optimal pressure and concentration of HCl, and the addition of oxidizing agents 
(FeCl3 and (NH4)2S2O8) [35]. It is possible to get rid of Ca by 66%, from Cr by 
92%, by 27% from Fe, by 98% from Cu and Ni, impurities that have an extremely 
negative effect on the lifetime of charge carriers (CC) in a solar cell, and by 89% 
from the Zn impurity. 

Purification of Ti is carried out [36] by treating the TS powder with a mixture of 
hydrofluoric (HF) and hydrochloric (HCl) acids, and the efficiency of the operation 
also increases with a decrease in the particle size of the TS powder, and Ti is 
removed by 97–99%. 

Electrolytic refining of TS with a purity of 99.5% was carried out in an electrolyte 
of composition, mol.%: CaCl2 (80–81) – NaCl (8–10) – CaO (5.0–8.5) – SiO2 (2.5– 
5.0) at a temperature of 1130–1250 K. Si was deposited on the Mo cathode, the 
content of impurities which turned out to be several times less than in the feedstock, 
namely: Fe by 6.3 times; Al at 14.8; Ti at 29.7; B by 133; and P by 28 times [37]. 

The refining of TS is also carried out by the method of partial melting with the 
removal of the formed liquid phase by centrifugation [38]. At the same time, the Fe 
content decreases by 37 times; Ti 179 times; and Cu 14 times. 

It is also possible to obtain, in a certain way, a mixture of silicon of electronic 
quality with purified TS (99.95%) [39]. Vacuum treatment of silicon melt TK 
(99.46%) using arc plasma allows it to be purified to purity (99.93%) [40]. Purifi-
cation of TS [41] using microwave plasma is promising and productive. In [42], the 
purification of TS by electron beam melting, vacuum and oxidative refining, and
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zone recrystallization is described, which led to an increase in electrical resistivity 
by a factor of 6, from 0.03 to 0.175 Ohm·cm. Other methods of crystallographic 
refining are also known. 

It was shown in [42] that in one pass of the molten zone, it is possible to increase 
the purity of TS brand Kr 1 from 98.6% to 99.9%. And zone melting of TS with a 
purity (99.855%) [43] of an electron-beam furnace after the first pass of the zone 
led to an increase in the purity of silicon to 99.999%, and after the second pass, it 
increased by ten times, with a decrease in the content of C and O2 by three and six 
times, respectively. 

In [44], the distribution of O2 and C in multisilicon smelted from TS was studied. 
It is shown that O atoms mainly occupy the interstices of the Si crystal lattice, but up 
to ~1016 cm3 oxygen is present in the form of precipitates of the second SiO2 phase. 
This silicon dioxide is displaced during crystallization at grain boundaries and is 
also concentrated near dislocations. Carbon sits inside grains up to concentrations 
determined by the solubility limit and, in the form of SiC, on GBs in complexes of 
the SiO4 type and other impurities. O2 and C worsen the solar cells’ efficiency by 
1–3% of the absolute value, due to the growth of the series resistance of the solar 
cells’ consistent resistance and the reduction in the lifetime of the CC dissipated on 
the mentioned complexes. Note that so far we have considered the purification of 
silicon from impurities that give deep energy levels, the presence of which is most 
detrimental to solar cells. However, purification from them does not at all indicate 
the suitability of the obtained material for solar cells, since the most problematic 
impurity in Si is boron, the maximum content of which should not exceed 1017– 
1018 cm−3, which corresponds to the resistivity of the base of the solar cell ~0.5–1.0 
Om.cm. It should be noted that boron was effectively removed from molten TS with 
moistened Ar or simply with water vapor, as well as with a mixture of Ar and H2 
[45]. A practically important result is achieved by chemical treatment of TS powder 
with a mixture of weak solutions of HNO3 and H2SO4 acids at T ~ 400 K, which 
makes it possible to purify TS from boron to ~4·10−6%, as well as from alkali 
metals [46]. It was shown in [47] that slag (CaO – SiO2 – LiF), being used in the 
processing of the TS melt at T ~ 1720 K, makes it possible to reduce the B content 
from 22·10−6 to 1.3·10−6%, i.e., to quite acceptable values for the solar cell base. 

In conclusion, we note that after any of the described methods of purification 
of TS, its additional remelting into ingots, suitable in shape for the manufacture of 
blank plates for solar cells, is required. At the same time, MS and PS metallurgy 
wastes are introduced into the mixture, and the given electrophysical properties are 
imparted to the material by alloying with small impurities [1, 2]. 

It should also be noted that, unfortunately, the experience of metallurgical 
purification of TS and multisilicon based on it, which has been accumulated by 
scientists and specialists, described in this section, may not be in demand in practice. 
As was emphasized at the beginning of the book, the reason lies in the fact that at the 
beginning of the twenty-first century, reverse technologies [46, 47] were introduced 
at the operations of obtaining raw silicon from trichlorosilane, which led to a sharp 
decrease in prices for raw Si of electronic purity, and many, if not all technologies for 
purification of TS and multisilicon, turned out to be economically and energetically
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uncompetitive. In our opinion, the prospect for these developments can be reopened 
if efforts are focused on obtaining by metallurgical methods not silicon suitable 
for creating the base region of a solar cell but silicon heavily doped with small 
impurities, which should be considered exclusively as a substrate material for solar 
cells with a deposited film base from the gas phase using reverse technologies. To 
assess the degree of suitability of the obtained SCPS for the production of solar 
cells, test structures with Ó-n transitions performed by diffusion or ion implantation 
were made from it, followed, on a number of samples, by hydrogen passivation and 
the deposition of antireflection coatings using standard technologies. Similarly, to 
illustrate the feasibility of the use of waste-based multisilicon proposed above, we 
fabricated p-p+ and n-n+ film structures using heavily doped SCPS substrates and 
gas phase epitaxy, in which p or n regions with a resistivity of ~1 ohm.cm were used 
as the base of the solar cells, making a p-n junction with a depth of ~1 µm, using 
the well-known methods indicated above [48]. 

In this case, when suppressing self-doping using traditional solutions [49] or the  
technology developed by us [47–50], the layer being grown, which is subsequently 
used as an n- or p-type TS base, inherits from the multisilicon substrate only 
the GBs and their orientation, that is, its poly or twin structure, and its electrical 
characteristics are determined exclusively by special alloying from the gas phase, 
that is, the influence of substrate impurities on the properties of the TS film base is 
minimized. 

This is illustrated by the data in the table, which shows the characteristics of 
TSs made from various types of silicon, including SCPS, PS of various grain sizes, 
SSLES, film structures based on SCPS, and MS. Information is also given on 
the manifestation of the effect of a superlinear increase in the efficiency of solar 
cells when they are illuminated by CSR, on the effectiveness of using hydrogen 
passivation, applying an antireflection coating, and creating pulling electric fields in 
the body of the solar cell. It can be seen that, as a result of hydrogen passivation, 
the efficiency of solar cells from SCPS and PS of all types increases. This occurs 
due to the passivation of recombination centers on the GB by hydrogen. It is 
important to note that an indicator of the effectiveness of hydrogen passivation is 
the disappearance of the spectral characteristic, treated with hydrogen ions, solar 
cells of the region with a change in the polarity of the photocurrent. This section 
of the solar cells not treated with hydrogen is in the wavelength range of ~1.0– 
1.1 µm and higher, that is, at the edge of the spectral sensitivity Si solar cells, 
and is associated with the generation of CC with the participation of energy levels 
caused by GBs [51, 52]. It can also be seen from the table that the use of PS in 
the embodiment of the base region of the solar cells from it, firstly, requires deep 
cleaning of the TS, which is laborious and economically unprofitable, and secondly, 
such solar cells are always inferior in efficiency to solar cells with an electronic 
quality silicon base. Therefore, as will be shown again below, we propose to use 
PS obtained by metallurgical methods from TS, as well as SCPS, exclusively as a 
heavily doped substrate material, which makes it possible to manufacture TSs with 
an efficiency equal to that of solar cells based on SSLES from electronic quality Si 
at those the same electrical parameters of the base (Table 1).
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Table 1 Efficiency and some properties of solar cells based on various types of silicon [49, 53] 

№ 

Type of solar cells, electrophysical material 
characteristics, and manufacturing 
technology of the base area 

Maximum 
efficiency value at 
AM 1.5 

Presence of the effect 
of over-linear growth 
of short current 
during irradiation of 
CSR 

1 n+-p, PS base, p-type electronic quality, 
ρ ~ 1 Om cm  

10–12 ++ 

2 n+-p-p+, PS base, p-type electronic quality. 
The pulling field in the base is made by Al 
diffusion 

11–13 ++ 

3 n+-p, large block PS base, p-type electronic 
quality, ρ ~ 1 ohm cm. Hydrogen passivation 

11–14 − 

4 n+-p, SCPS base, p type, ρ ~ 1 Om cm 5–8 +++ 
5 n+-p-p+, SCPS base, p-type with back Al 

alloying 
6–8 +++ 

6 n+-p, SCPS base, p type, ρ ~ 1 ohm cm. 
Hydrogen passivation 

8–9 − 

7 n+-p-p+, p+-SCPS doped to the solubility 
limit of Al and B, p-film base grown from 
the gas phase 

12–13 + 

8 n+-p-p+, p+-SCPS doped to the solubility 
limit of Al and B, p-film base grown by gas 
phase deposition 
Hydrogen passivation 

14 − 

9 n+-p-p+, n+-multisilicon obtained by 
repeated remelting of silicon production 
waste alloyed to the solubility limit of P and 
Sb, n-film base grown from the gas phase 

12 + 

10 n+-p-p+, n+-multisilicon doped to the 
solubility limit of P and Sb, n-film base 
grown from the gas phase. Hydrogen 
passivation 

13–14 − 

3 Models for Calculating the Efficiency of Solar Cells in the 
Conditions of Mass Production 

Predictive calculation of the efficiency of such solar cells, under the conditions 
of their mass production, can be carried out using a regression model, which was 
confirmed in practice. 

K/Ko = 0.79 + 0.00026 (X3) 2–0.03 X1X2X3–0.0003 (X1) 3 (1) 

Model (1) describes changes in efficiency (K) with varying independent vari-
ables: X1 is the specific resistance of the film grown on multisilicon, that is, the 
solar cell base, the value of which is supposed to vary from 1 to 10 Om·cm; X2 is 
the resistivity of the substrate, i.e., the multisilicon itself, which can be varied in
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the range from 0.001 to 0.01 ohm·cm; and X3 is the film base thickness within 
20–50 µm. The K/KÑ ratio was taken as the output parameter, where K is the 
efficiency of solar cells fabricated on the basis of film structures with a multisilicon 
substrate at 300 K before applying an antireflection coating and under illumination 
with a tungsten lamp with WÑ = 0.1 W/cm2, i.e., in standard conditions for testing 
workpieces Si solar cells in production, and Ko is its minimum allowable value 
under the specified measurement conditions. 

It can also be seen from the table that the hydrogen passivation of the solar cells 
leads to the disappearance of the section of the superlinear increase in the short 
current, which occurs during the CSR of medium intensity (5–10 times) due to the 
effect of the recombination center destruction upon illuminating non-single-crystal 
TS CSR [14] within which, with active heat removal, the efficiency of solar cells 
made of poly- and multisilicon can be higher than that of monocrystalline ones. 

A comparison of the radiation resistance of various types of solar cells showed 
that solar cells made of fine-grained polysilicon of electronic purity have the highest 
resistance to both X-ray radiation and irradiation with fast electrons, but their 
efficiency, according to the table, is minimal. The radiation resistance of solar cells 
based on SSLES made in the chlorosilane process on MS substrates of electronic 
purity is also high, but this is the case for solar cells with a multisilicon base, whether 
it is SCPS from raw materials pure in terms of impurities or from silicon obtained by 
remelting metallurgy waste with the addition of TS Kr00 according to Czochralski 
which is relatively low. 

The resistance of solar cell-type n-n+ with a film base with d = 50–60 µm, 
deposited in the chlorosilane process on large-block (dgrains = 500–1000 µm) 
substrates from heavily doped with a group of impurities (Sb, P, As) to the solubility 
limit of each, SCPS turns out to be higher than that of solar cells with a base of KSD-
1 silicon widely used in solar cell technology for ground power, as in the case if the 
p-n junction is created by ion implantation of boron or if the p-n junction is created 
by thermal diffusion of boron; thus, the use of multisilicon-type SCPS as a substrate 
material for fabricating film structures for solar cells is much more expedient than 
using it as a material for fabricating the actual base region of solar cells. At the 
same time, the technology for obtaining blank structures for solar cells with a film 
base must be oriented from the very beginning to the use of recycled chlorosilane 
technologies [54–57], which have shown their highest economic efficiency in the 
processes of obtaining silicon of raw electronic purity and to methods close to them, 
developed by us [50] recycling of waste gas-vapor mixtures of epitaxial production. 

From a comparison of the radiation resistance of various types of solar cells, it 
follows that it is the higher, the lower the concentration of boron impurity in the base 
material of p-type solar cells. But after all, the so-called photon degradation of solar 
cells with a p-type base manifests itself brighter and faster precisely in such solar 
cells. And it is caused, apparently, by the same physical reason – the occurrence 
in the base when exposed to light radiation for a sufficiently long time and when 
irradiated with charged particles or gamma quanta almost instantly, but depending 
on the dose of radiation. The question involuntarily arises: Is it possible to use the 
value of the solar cell radiation resistance, which can be estimated instrumentally
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and fairly quickly, as an indicator in predicting the life of the solar cells, for which 
at present there are no methods other than calculation? The clarification of this 
question seems to be a very interesting engineering problem. 

To control the process of group growth of films for the solar cell base from a 
computer, it is possible to successfully use the mathematical model of the growth 
rate, proven in practice, constructed by us by the method of experiment planning 
[51], which has the form in natural variables: 

V = 0.5550582 + 0.4924768 10−3X1 (X2) 2 + 0.88611089 10−7 X2 (X3) 2 
(2) 

where X1 is the flow rate of the vapor-gas mixture (VGM) (H2 + SiCl4) in the range 
of 60–120/min, covering the range of linear velocities of the VGM over the substrate 
surface in the range of 26.5–54 cm/s. 

X2-concentration of SiCl4 in hydrogen is in the range of 1.37–2.28 vol.%, and 
X3 is the substrate temperature in the range of 1300–1400 K. The proposed model 
(2) implements the Efroimson algorithm [52] and makes it possible to predict the 
layer growth rate in the range 0.8–1.2 µm/min while ensuring, according to the 
nomogram of the predominant occurrence of growth defects [53], the total density 
of defects arising in the process of growth is not higher than 10–102 cm. 

This model can also be used in relation to any technological equipment, provided 
that the same temperatures of the substrates, the same concentration of the silicon-
containing component in the gas-vapor mixture, and the same linear velocity of the 
VGM flow over the surface of the substrates and exactly the same pressure in the 
reaction volume for film growth [49, 53] lying at the above flow rates of the gas-
vapor mixture in the range of 110–120 kPa. 

If it is necessary to grow layers at high rates, one can use the regression 
mathematical model (2), which describes the kinetics of growth of thick support 
layers of polycrystalline silicon in the chloride process, with an accuracy of ±15%, 
used in silicon structures with dielectric insulation. 

V = −1.077–1.583· 10–7 X1X2X3–2.242–10−6 X3 + 3.972· 10–2 X2 + 5.373· 10–4 X3 
(3) 

whereX1 is the deposition temperature 1240–1300 ◦C; X2 is the hydrogen flow 
through the evaporator at a temperature of 20 ◦C, 60–100 l/min; and X3 is the 
hydrogen flow in the main line 20, 60/min. 

Model(3)1 covers the range of SiCl4 concentrations in VGM from 2% to 12% 
vol and makes it possible to predict the average growth rate of layers in a batch up

1 According to the famous theoretical physicist, Professor A.S. Baltenkov [62], the regression 
coefficients in models 1 and 2 should be rounded off. In our opinion, this should not be done, 
since all calculations of the efficiency of a solar cell and the growth rate of its film are fundamental 
in the chloride process. 
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Fig. 4 Influence of H2 and VGM consumption on the overpressure in the reactor (a) and  
evaporator (b) with a diluting H2 flow: 1, 0.75; 2, 1.3; 4, 2.83 m3/s × 103; pressure in the room, 
98.1 kPa 

to 3.2 µm/min. The maximum growth rate is observed at a concentration of SiCl4 in 
VGM ~5% vol, the maximum of the tested VGM consumption, and a temperature 
of 1270 ◦C. The choice of such a range of growth rates is justified if the growth 
is on multisilicon substrates doped with one or more weakly diffusing and, most 
importantly, relatively weakly evaporating impurities from the volume and surface 
of the substrate. In this case, suppression of autodoping can be achieved by simply 
exceeding the rate of growth over the rates of evaporation and diffusion of substrate 
impurities. 

We experimentally established a very interesting and practically important fact, 
namely, that one of the most important factors that reduce the growth rate of layers 
increases the spread of layer parameters between batches and causes an increased 
level of defects in thickness and surface quality is the excess pressure in the reactor, 
which increases with an increase in the VGM flow rate from 0.5·10−3 m3/s to 
3·10−3 m3/s by 20 kPa at a pressure in the process room Po = 98.1 kPa (Fig. 4). 

This factor must be taken into account in the operation of growth plants, 
considering it as one of the main independent process parameters. Moreover, this 
factor should be taken into account when organizing a group buildup of structures 
for solar cells. 

An important factor affecting the quality of the surface of the layers is also 
the temperature of the reactor walls in contact with the VGM. For example, the 
high thermal conductivity of water-cooled metal walls of modern growth equipment 
designed for processing large diameter substrates leads to a decrease in the VGM 
temperature near the wall surface and, accordingly, to an increase in the probability 
of polychloride formation in the VGM due to the residual moisture content of 
hydrogen even after its purification on palladium filters and being source of defect 
formation during layer growth. This is accompanied by an increased level of defects 
in surface quality compared to products made on equipment, for example, with a 
quartz reactor. Experiments with the introduction of a thermal shield into a metal 
reactor unambiguously confirm the above. The quality of the structures and the yield
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increase, and the growth rate of the layers increases by 20–30%. The results obtained 
determine ways to improve the design of the reactor unit of installations with a metal 
reactor, including, along with the use of quartz or graphite heat shields when using 
serial reactors, the development of reactors with controlled heat removal from the 
walls, in which conditions can be created that reduce the formation of polychlorides 
in the deposition zone. 

4 Discussion of Results and Conclusions 

The use of multisilicon obtained by metallurgical purification of TS, as well as the 
SCPS type manufactured from wastes of silicon metallurgy and EP as a raw material 
for solar cells, is advisable to limit its use as a substrate material for film solar cells, 
the film base region of which is grown by hydrogen reduction of trichlorosilane or 
silicon tetrachloride. Multisilicone, including SCPS, for these purposes should be 
a silicon material, deliberately overdoped in the processes of remelting, followed 
by casting into molds in a vacuum or remelting followed by Czochralski pulling. 
Re-doping should be carried out by one or a group of small impurities up to the 
solubility limit and use a charge from a mixture of TS brand Kr00 with waste from 
the production of silicon raw electronic purity and waste from silicon metallurgy 
from single crystal pulling and epitaxy operations. The main requirement for such a 
substrate material is a grain size of at least 300 µm and a resistivity of no more than 
0.01 Ohm·cm. 

The growth of the film, which will later serve as the base region of the solar cells, 
must be carried out under conditions of guaranteed suppression of autodoping by 
known standard methods or original methods based on the entrainment of impurity 
vapors evaporated from the reverse side of the substrate by a specially created gas 
flow directed into the cavity of the substrate holder. Naturally, this means, first of 
all, to prevent the transfer of substrate impurities inherited by its material from the 
melt of the initial raw material into the growing film. From the very beginning, the 
buildup of the film base area of the solar cells should be oriented towards the use of 
reverse technologies, similar to those introduced at the beginning of the twenty-first 
century for the operations of obtaining raw Si, which led to a tenfold decrease in 
prices for this product and, accordingly, for TS. The most important condition for 
the use of advanced technological methods known in the field of gas phase epitaxy 
in the processes of obtaining film structures on multisilicon substrates, including 
the use of mathematical regression models to control the process, including those 
given above, is the provision in, used for film growth, the reaction volume given: the 
pressure level, the concentration of the silicon-containing component, and the linear 
velocity of the VGM over the deposition surface. 

The value of the results obtained in the development of solar cells with a film 
base deposited on multisilicon substrates [49, 53], including SCPS, also lies in the 
fact that the greatest effect can be obtained by using, instead of SiCl4 or SiHCl3, 
monosilane (SiH4) [54–56], manufactured according to new technologies [57–59]
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of the process which, according to forecasts [60–62], will inevitably replace the 
chlorosilane process in the 30 s of the twenty-first century. In addition, the use 
of monosilane will make it possible to reduce the temperature of the substrates 
by 200–300◦ at the same film deposition rates, which greatly facilitates the fight 
against self-alloying. From our data on solar cells, another physically interesting 
conclusion follows, indicating that the reason for the nonlinearity of the temperature 
dependences of the parameters of a solar cell made of multisilicon is the generation 
of charge carriers in it during heating, which occurs with the participation of energy 
levels due to its inherent structural defects and impurities. As direct evidence, it can 
be cited that the hydrogen passivation of GBs in multisilicon and SCPS samples is 
accompanied not only by the disappearance of the effect of the superlinear growth of 
short current but also by a decrease and even disappearance of the abovementioned 
nonlinear changes in the solar cell parameters observed during heating. 

So, the main conclusions from the foregoing can be formulated as follows: 

1. It has been shown that by providing a preliminary sample from p-type silicon 
waste and high-resistance silicon of any type of conductivity by casting, 
followed by directional crystallization of the filled volume on the S-3179 
installation in a vacuum, it is possible to steadily obtain the initial coarse-
grained SCPS with grain sizes of at least 2 × 2 mm2 and without gas shells 
with a specific resistance of 0.5 5 Ohm.cm for the needs of photovoltaics. 

2. The maximum efficiency of solar cells based on SCPS, which, under illumina-
tion of AM 1 and AM 1.5, is 12.5% and 11.5%, respectively, is observed in solar 
cells, the substrates for which are previously subjected to grinding, polishing, 
and chemical etching with further ion implantation phosphorus to a depth of 
0.5 µm. Multilayer current-collecting contacts of the titanium-nickel-copper 
system on the front and back sides of the solar cells are obtained by vacuum 
deposition in a single technological cycle, which provides the required Ohmic 
contact with the surface, good adhesion, low current resistance, and corrosion 
resistance. 1150 nm thick SiOx antireflection coating gives an increase in 
efficiency by 20–25%. 

3. A range has been found within which the dependence of the charge carrier 
mobility in the SCPS on the concentration of the dopant changes with the 
formation of a pronounced mobility well, the position of which depends on the 
size of the SCPS grains. The maximum spectral sensitivity of the obtained solar 
cells was determined, which falls at ~0.7 µm, which indicates their optimal 
correspondence to the spectral composition of solar radiation reaching the 
Earth’s surface. 

4. It has been shown that hydrogen passivation using a Kaufman source effectively 
reduces the recombination activity of the charge states of the grain boundary 
and dislocation clusters, especially linear dislocations, as well as transition 
metal impurities, which leads to an increase in output parameters; however, this 
is accompanied by a decrease in the probability of the effect of short-circuit 
superlinearity closures.
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5. The effect of a superlinear increase in the short-circuit current of a solar cell 
based on SCPS in the range of solar radiation concentration of five to ten times 
was found, which leads to its increase up to ten times and the efficiency by 
20%. A new mechanism is proposed for interpreting the effect of superlinear 
increase in the lifetime of nonequilibrium carriers with a photoexcitation level 
due to the appearance of defect-impurity complexes of the negatively charged 
vacancy-positively charged recombination center type. 

6. Obtaining solar silicon based on regional TS [11, 12] is represented either by 
the traditional technology of chlorosilane processing, raw Si, and mono-Si, 
the ingots of which do not differ in the residual impurity composition from 
ordinary Si grades, or by the technology with its metallurgical processing in 
SCPS, when it was possible to achieve an efficiency of 5–7% without additional 
technological operations. 

7. Initially unsuitable for the photoelectric method of energy conversion, SCPS 
ingots with arbitrary grain sizes and lifetime can be used in converters of 
the non-photoactive component of solar radiation and heat of heated bodies. 
On TEC made of silicon powder and with the concentration of deep levels 
necessary for the manifestation of the thermovoltaic effect, record high values 
of the Seebeck coefficient were obtained, an order of magnitude higher than the 
tabular values for MS. 

8. An increase in the efficiency of TEC with minimization of grain sizes on isotype 
samples from micro-grained SCPS and TS has been established, which makes 
it possible to predict a sharp increase in the energy characteristics of converters 
when they are made of silicon with nanosized grains. 

9. A TEC made of p-type SCPS with a specific resistance of ~1 Ohm•cm and a 
grain size of ~300 µm is proposed, in the charge for the smelting of which 
FC was introduced containing iron impurities with deep energy levels, which 
ensures the manifestation of an impurity thermal voltaic effect. At the same 
time, record high values of short circuit current (3 mA) and no-load voltage 
(60 mV) were obtained at a temperature of 200 ◦C. 

10. It has been established that a necessary and sufficient condition for the 
manifestation of an impurity thermal voltaic effect on such samples is to 
provide a threshold concentration of deep levels >4.1018 cm-3 or obtaining 
SCPS ingots with a grain size of about 10 µm, that is, to ensure the desired 
critical concentration of deep levels due to defects at grain boundaries. 

11. On the basis of the materials presented in the work, developments, and the 
existing distribution of productive forces in the region, the task is initiated to 
assess the possibility of creating in the future in the Republic of Tajikistan an 
autonomous and complete cycle of production of TS, polycrystalline semicon-
ductor silicon, solar cells, and TEC [63, 64], since Kyrgyzstan, Tajikistan, and 
Uzbekistan are the owners of the entire chains of production of PS for various 
purposes, as well as the existing production facilities of EP capable of mastering 
the manufacture of solar cells and TEC in the shortest possible time.
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MTLF Medium-term load forecast 
N-BEATS Neural basis expansion analysis for interpretable time series 
NWP Numerical weather prediction 
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RES Renewable energy sources 
RNN Recurrent neural network 
STLF Short-term load forecast 
SVM Support vector machine 
SVR Support Vector Regression 
TCN Temporal convolutional network 
XGBoost eXtreme Gradient Boosting 

1 Introduction: Importance of Forecasting 
in Renewable-Based Energy Systems 

The global energy transition is already in place, and this represents the main reply 
of humanity to safeguard global climate and maintain a sustainable existence on 
Earth for future generations. The Paris Agreement has an objective of holding the 
increase in the global average temperature to well below 2 ◦C above pre-industrial 
levels and pursuing efforts to limit the temperature increase to 1.5 ◦C above pre-
industrial levels. To achieve this ambitious temperature goal, the Paris Agreement 
calls for emissions to peak as soon as possible and be reduced rapidly through 
several measures such as energy efficiency and accelerated adoption of renewables 
in all energy sectors [29]. As the main consequence of this latter measure, the 
electricity produced by renewable energy sources (RES) will increase worldwide 
as already demonstrated by the European Union that can be considered the leader 
in energy transition and has attended one of the largest growths in the last 5 years 
especially for electricity produced by photovoltaic and wind. 

On the other hand, the growing RES penetration in electricity systems is leading 
to an increase of reliability and stability issues due to their intermittent nature, 
thereby defining the compelling need to mitigate the uncertainties related to the 
production of renewable systems. In such a context, forecasting models and tools 
play a key role for fostering the transition from the current traditional centralized 
power systems towards smart grids that are based on advanced control systems for 
controlling and managing energy provided by distributed energy resources including 
RES. Managing in a proper way the RES uncertainties has also an important 
economic impact, since a high forecasting error can increase the overall system costs 
due to the increase in operating cost and the infrastructure needed. Another problem 
related to the economic impacts is represented by the RES energy imbalance 
management due to the difference between the forecasted and real injections of 
electricity into the grid [32]. 

In details, RES forecasting affects several parts of power system operation such 
as scheduling, dispatch, real-time balancing, and reserve requirements. Through 
proper forecasting tools, system operators can be aware of the up and down
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Fig. 1 The different types of generation forecasting (left) and load forecasting (right) based on 
their time horizon 

ramps of RES generation being able to balance load and generation in intraday 
and day-ahead, thereby obtaining several benefits such as reduction of fuel costs, 
minimization of RES curtailment, and improvement of power system reliability 
[121]. 

The main types of generation forecasts with time horizons (Fig. 1) and key 
application are listed below [121]: 

• The intra-hour forecasting (or very short-term forecasting) has a time horizon 
that goes from seconds to 1 h. It is used for real-time decisions such as dispatch 
and regulation. 

• The short-term forecasting has a time horizon that goes from 1 h to 6 h. It is 
useful for scheduling, grid congestion management, and load following. 

• The medium-term forecasting has a time horizon of day(s) ahead. It is useful for 
scheduling, reserve requirement, congestion management, and market trading. 

• The long-term forecasting has a time horizon of weeks, seasonal, 1 year, or 
more years. It is used for system and resource planning, contingency analysis, 
operation management, and maintenance planning. 

Along with the rising penetration levels of RES at local level, another major trend 
that is verified is the evolution of the role of the energy consumer that historically 
has been a passive user, covering the role of the customer consuming the energy 
produced at centralized level. Through the advent of distributed generation, the 
end user has been able to produce and consume their own energy and to store it 
and sell it back to the grid by exploiting RES availability locally, thereby being 
called “prosumer” [30]. Ideally, power generation from prosumers will be from 
RES, and technical solutions as energy storage or demand response can promote 
self-consumption [130]. 

However, in order to achieve the benefits deriving from these supportive tech-
nologies, it is essential to manage the high uncertainty not only related to RES 
generation but also related to flexibility of demand. The electricity load profile, 
given its nonlinearity and stochasticity due to the consumers’ behavior, is a signal
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difficult to forecast [48]. Increasing the accuracy of electricity load forecasting 
methods is always challenging because it is affected by many factors, such as time 
factors, including hour of the day, day of the week, holidays, and the season of the 
year [103], or weather conditions. 

From this, the importance is evident to rely on accurate load forecasting models 
and tools that will be highly beneficial for distributed energy resources (DER) 
deployment and for grid operators as well. 

The load forecasting can be mainly classified into three groups based on 
timescale (Fig. 1): 

• Short-term load forecast (STLF), in which the time period can range from few 
minutes or hours to 1 day ahead or a week. For RES-based energy system 
applications, STLF usually aims at real-time control and security assessment. 

• Medium-term load forecast (MTLF), in which the time period goes from a 
week to 1 year. MTLF has scheduling, coordination of load dispatch, and price 
settlement as main applications such that demand and generation are balanced all 
times. 

• Long-term load forecast (LTLF), in which the time period ranges from few years 
up to 10 –20 years ahead. LTLF aims at system planning. 

The dramatic increase of RES penetration in power system and of energy 
consumption defines another challenge for grid operators who need to guarantee the 
system reliability that strongly depends on proper capabilities to monitor and control 
the grid. Today, fault detection represents a key factor to ensure power system 
reliability. In detail, in power systems, a fault is related to an abnormal electric 
current as, for instance, a short circuit in which the current exceeds the normal 
operating conditions. With the advent of smart grids, it is essential to enhance the 
network of transmission lines, equipment, and controls with the aim to manage 
and integrate information and communication technologies in all the energy supply 
chain from power generation to consumption while reducing environmental impacts 
and costs, improving reliability, enhancing efficiency [107], and providing ancillary 
services to increase power systems’ security and adequacy [93]. 

Faults can occur at different layers of the power system such as, for instance, 
cables and transmission lines, renewable energy systems, power transformers, 
power converters, and conventional power generators. Moreover, faults in power 
systems can be categorized as [107]: 

• Physical faults that occur when a physical device or component does not work in 
normal operating conditions 

• Communication faults that occur in communications devices 
• Software/hardware faults that occur when a component of the control center fails 

command and/or operation 

In such a context, knowing in advance if a fault will occur within a predetermined 
time frame allows the system operator to plan maintenance interventions to ensure 
system reliability while also reducing costs of maintenance interventions.
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Machine learning (ML) is considered one of the most promising methods for 
RES, load, and fault forecasting. It can be considered as a subset of artificial 
intelligence and refers to those computer systems that can automatically improve 
their performance in execution of some tasks thanks to the experience [83]. Since 
the 2010s, the deep learning (DL), which is a subset of ML composed by approaches 
that learn a hierarchical representation of the data, has demonstrated to be the right 
paradigm to outperform classical approaches in several contexts, such as computer 
vision, natural language processing, etc. [45], and recently also some forecasting 
competitions (e.g., M5) have been dominated by ML-based approaches (top 50 
methods are based on ML) [74]. 

The ML techniques – and in particular the DL ones – have also the capability 
to take advantage from high amount and variety of available data (e.g., time series 
data, images, videos, etc.), hence enabling new use cases and opportunities. 

Given their dependence by data, the security and privacy issues [69], as well as 
data quality issues (e.g., representativity, possible presence of bias, adversarial data) 
[80], have to be considered to have a system that performs well in the real contexts. 

2 Novel Forecasting Methods for Renewable Energy 
Generation 

In the literature, there are some works dealing with the application of ML to other 
RES [15, 110], but most applications are related to wind and solar energy. 

There is a vast literature on the solar and wind power generation forecasting, but 
the proposed methods can be subdivided substantially in three main groups: physical 
approaches, statistical approaches, and hybrid approaches [11, 57, 121]. The main 
characteristics of each group are listed briefly in the following and are schematized 
in Fig. 2 by also highlighting their pros and cons. 

The physical approaches require the technical specifications of the generation 
system and the weather forecast obtained through a numerical weather prediction 
(NWP) module. 

For instance, for PV production forecasting, the necessary weather inputs (such 
as the Global Horizontal Irradiance, the temperature, and, eventually, the wind 
speed) can be obtained by the weather forecasting and used to compute the 
irradiance in the plane of the PV array and the temperature of PV modules. 
Through the PV model (obtained using the manufacturer specifications [71] or  
fitting historical data [98]), the prediction of the power production can be performed. 
These approaches can be applied to systems not yet established and, hence, are 
valuable tools for the initial design phase. The main drawback is the accuracy of 
the prediction that is dramatically affected by the quality of the weather forecasting 
that is not very accurate for short timescales (less than a few hours) [53] and the 
necessity to know the characteristics of the power generation system (also with the 
necessary simplifications that impact on the final result) [11]. 

The statistical approaches require historical data for training the model to predict 
the power production, given various inputs (e.g., past power generation values,
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Fig. 2 The main pros (green) and cons (red) of three main groups of generation forecasting 

Table 1 Summary of ML 
approaches for wind and PV 
power forecasting 

Renewable energy source Methods Reference 

PV MLP [38] 
PV GRU [78] 
PV GRU [125] 
PV CNN [52] 
Wind LSTM [14] 
Wind GRU [60] 
Wind ConvLSTM [128] 

past weather information, etc.). If historical data of production is available, the 
direct forecasting approach can be applied (forecast the next generated power using 
past power and meteorological data); otherwise the indirect forecasting approach 
(forecast the next generated power using only meteorological data) has to be selected 
[47]. The scarcity of historical data can also be overcome by training a model using 
data made available for similar plants located in the same meteorological region 
of interest, i.e., using the transfer learning approach [137]. Among the statistical 
approaches, the ones using ML and, in particular, DL methods have demonstrated 
to be the most effective. In [77], the authors presented several DL techniques 
used for PV power forecasting, while in [126], the DL techniques for wind power 
forecasting are presented. Some of the most used ML methods for PV and wind 
power forecasting are listed in Table 1.
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Physical and statistical approaches can be mixed for obtaining hybrid 
approaches. For instance, in physical approaches, information retrieved from some 
data could be used to correct the forecasts, or in the statistical approaches, they 
could inject some knowledge of the application domain. In some situations, the 
hybrid approaches perform better than the pure physical or statistical approaches 
[5, 53]. 

Given their peculiarities, some approaches are more suited for some forecasting 
horizons (and applications) than others, as described in [121]. For the intra-
hour forecasting (or very short-term forecasting), the statistical approaches are 
preferable, while for the short-term forecasting, the hybrid approaches are most 
used. For the medium-term forecasting, the physical approaches are most used but 
with corrections to remove biases in the forecasting. For the long-term forecasting, 
the physical approaches and climatological forecasting are preferable [53]. 

The great availability of data coming from different sources allows leveraging 
multimodal data to increase predictive performance. In this context, data fusion 
techniques [21, 92, 136] are crucial to combine multimodal data and extract useful 
information for improving the weather forecasting and hence the renewable energy 
generation forecast (in particular for the very-short term and short-term scale). In 
recent years, several works have used sky images [95], sky videos [114], or radar 
observations [105] to improve weather forecasting. 

Other most used data can be obtained from geostationary satellites [16] or  
gathered from other distributed sensors such as mobile cell phones [72] or personal 
weather stations [34]. To improve the quality of the prediction (in terms of higher 
spatial and temporal horizon), different spatial and temporal resolutions data could 
also be used [16]. 

As the input data, the decisions made by different predictors can also be fused 
together. These approaches are generally referred to as ensemble methods, and they 
often improve the overall performance of the forecast [44, 51] since the ensemble 
reduces the variance of the base models [89]. 

Recently, some works have shown that the generative models, such as the 
generative adversarial network (GAN), can be employed to improve the now-cast 
performance [105] or correct weather prediction in the short and medium term [56]. 

ML approaches can help the NWP and remote sensing (e.g., speeding up the 
processing of satellite data, improving the post processing of the models’ outputs, 
etc.) [18], but for their wide adoption, they should have some required characteristics 
such as reliability, explainability, reproducibility, and trustworthy1 as depicted in 
Fig. 3. 

Reliability is related to the ability of correctly managing “new” situations that are 
different respect to the ones the model has been trained on. This aspect is critical 
for ML models that assume the training and test data follow the same distribution.

1 In this context, reference is made to the concept of the confidence estimate of the predictive 
models. Recently the term trustworthy ML is used to indicate ML models that are explainable, fair, 
robust, causal and that preserve privacy. 
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Fig. 3 The main characteristics required to ML approaches 

For this reason, the selection of the training set should be made considering the 
real condition of usage of the deployed model. Moreover, the environment is 
nonstationary (e.g., climate change scenario), and in some situations, there is a 
scarcity of real data to use. For these problems, the continual learning approaches 
can help to build solutions robust to the changes [49], and the already mentioned 
transfer learning can help in case of scarcity of real data [137]. 

Explainability is related to the idea that several ML architectures are black 
boxes. In the last years, a lot of efforts have been devoted in order to improve the 
explainability of ML models [31, 81, 86, 108] and to make neural networks guided 
by physics [17, 59]. 

Reproducibility issues are present in many science fields, and for ML approaches, 
they are mainly due to the random initialization of the layer weights, shuffling of 
dataset used for the training process, changes in development frameworks, non-
determinism in GPU floating-point computations, etc. [84]. In recent years, many 
efforts have been made to improve the reproducibility of ML solutions through 
the usage of tools that track the changes in the code, hyper-parameters, data, and 
environment during the experimentation (e.g., DVC,2 Neptune,3 WandB,4 etc.) [94]. 

Trustworthy is related to the estimate of the uncertainty related to the obtained 
forecast (uncertainty quantification). The recent approaches to generate prediction 
sets for ML models, known as conformal prediction [10, 118], are pointing in this 
direction.

2 https://dvc.org/ 
3 https://neptune.ai/ 
4 https://wandb.ai/ 

https://dvc.org/
https://dvc.org/
https://dvc.org/
https://neptune.ai/
https://neptune.ai/
https://neptune.ai/
https://wandb.ai/
https://wandb.ai/
https://wandb.ai/
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3 Modern Approaches for Electric Energy Consumption 
Forecasting 

According to the literature, the methods most used for electricity load forecasting 
can be classified into conventional methods or based on artificial intelligence (AI) 
[79]. 

Conventional load forecasting techniques, such as linear regression models and 
autoregressive models, have been used in practice for a long time, providing 
satisfactory results, being recently often used as baseline models [22, 134]. Among 
the AI methods, the most used are based on FCNNs [75], RNNs [112], CNNs [66], 
and LSTM [62]. Other methods used are SVR [132, 133], hybrid methods [103], 
and the eXtreme Gradient Boosting (XGBoost) [1]. 

A typical characterization of the methods used for the electricity load forecasting 
depends on the length of forecast interval. Table 2 summarizes the methods most 
used in the literature depending on the time horizon used for the prediction. 

Table 2 Summary of ML approaches for electricity load forecasting 

Time horizon Methods Reference 

Short term Ensemble [101] 
Short term RNN [112] 
Short term Multiple kernel extreme learning machine, ensemble [67] 
Short term Ensemble [88] 
Short term Factored conditional restricted Boltzmann machine [48] 
Short term Hybrid [9] 
Short term FCNN, CNN, LSTM, XGBoost, SVR, multivariate linear 

regression 
[22] 

Short term Linear regression, FFNN, SVR, LS-SVM, HME-REG, 
HME-FFNN, FCM-FFNN 

[37] 

Medium term FCNN [12] 
Medium- term FCNN [70] 
Medium term SVR [104] 
Medium- term CNN, LSTM [46] 
Medium term Ensemble, LSTM [35] 
Long term LSTM [135] 
Long term LSTM [2] 
Long term Fuzzy, FCNN [8] 
Long term FCNN, RNN, SVR, k-nearest neighbors, Gaussian process 

regression, generalized regression neural network 
[109] 

Long term LSTM, GRU [63] 
Long term FCNN, multivariate adaptive regression spline [90] 
Long term LSTM, GRU [33] 
Long term LSTM, GRU [19]
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Fig. 4 Main features influencing the electrical load forecasting 

The electricity load forecasting is a signal difficult to predict, and the accuracy 
of methods used for it can be affected by several factors, such as the ones reported 
in Fig. 4. 

Such factors can have a different impact based on the different patterns of 
electricity use, characterizing the different types of consumers (residential, offices, 
industry, commercial, etc.). To assess the impact of the features on the prediction and 
select the most informative ones, the feature selection approaches are considered 
[116]. 

Singh et al. [115] tested several methods for forecasting the peak demand for 
individual households. They observed that considering historic data and data related 
to the occupancy allowed better prediction with respect to considering temperature 
and a seasonal time factor. 

Gajowniczek and Z ̨abkowski [43] proposed an approach for predicting the 
electricity loads of individual households using Classification and Regression Tree 
(CART), SVR, and MLPs for 24-h ahead load forecasts. They observed that a 
combination of historical usage data and household behavioral data increased the 
accuracy of the forecasting, obtaining a mean absolute percentage error (MAPE) 
of 51% when the neural networks were used and of 48% in case of support vector 
machine (SVM).
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Caliano et al. [22] tested several data-driven approaches, such as persistence, 
several linear regression methods, FCNNs, CNNs, LSTM, XGBoost, and SVR, 
for predicting the electricity loads of three individual households, by using data 
gathered from sensors. They observed that all methods considered performed 
similarly, while the most performing ones were multivariate linear regression, 
FCNNs, and XGBoost. The authors stated that the usage of an extended historic 
load dataset could improve the accuracy of the forecasting performed. 

In some cases, to increase the accuracy of the models, an approach based on the 
decomposition of the forecasting problem can be a valid choice. Depending on the 
decomposition degree, the problem is split into local subproblems, and for each of 
them, a specialized predictive model can be used. In the past, several works have 
also shown how having specialized predictive models for different day types, hour 
of the day, or month of year can be useful in some conditions. 

Papalexopoulos et al. [97] produced seven neural networks, each for each day of 
the week. Lee et al. [65] considered two load patterns, one for the weekdays and 
one for the weekend days. Then, each day was divided into three periods, and each 
of them was modeled using an individual neural network, whose weights had been 
estimated considering data for each one of the two load patterns. Similarly, [117] 
produced two separated neural networks, one for forecasting the electricity load of 
weekdays from Tuesday to Friday and one for Saturdays, Sundays, Mondays, and 
days after a holiday. 

Similar approaches have been used also from [24, 42, 82]. Kalaitzakis et al. [58] 
and Kodogiannis and Anagnostakis [61] produced 24 neural networks, each for each 
hour of the day to predict the load of the next days. Deihimi et al. [27] produced 
24 individual models, one for each hour of the day, based on wavelet echo state 
networks for 24-h-ahead short-term load forecasting. Decomposition into 12 months 
was used in [119] where 12 neural networks have been trained, and each of them 
performed the final 24-h-ahead load forecasting for 1 month of the year. 

Veit et al. [122] tested forecasting methods, such as autoregressive integrated 
moving average (ARIMA), neural networks, and exponential smoothing considering 
different strategies for training data selection (e.g., day type) and several forecasting 
horizons, ranging between 15 min and 24 h. They considered two datasets for 
evaluation: (i) a German single household and (ii) six households in the United 
States. The authors observed that the forecasting accuracy was influenced by the 
choice of the forecasting method and the parameter configuration used. In detail, 
for the German dataset, the average MAPE was about 30%, while for the American 
one, it was about 85%. 

A similar approach can be used for individual homes for which, thanks to smart 
meters data, it is possible to capture individual patterns of energy consumption 
related to home appliances. This allows the decomposition of the overall load into 
as many loads as the household appliances and equipment used, to predict the load 
of the single component. The approach proposed can be useful in the presence of 
appliances with more predictable load, such as the refrigerator. In addition, this will 
prevent predominant load devices, such as HVAC systems, from submerging the 
loads of other devices [36, 99].
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As stated before, the usage of multimodal data can increase predictive perfor-
mance. For instance, accessing information about interaction with social media, 
information from positioning sensors, and/or related to activity in progress (through 
video streams or using wearable sensors or smartphones) can improve the quality 
of the forecast [26] and in general improve the energy efficiency of the buildings 
by recognizing consumers’ activities and identifying the associated possible energy 
saving [3]. However, the access and leveraging of some information pose problems 
related to user’s privacy. 

In the context of energy systems composed of a potential large number of 
customers (and data), the complexity of individual load forecasting can be high due 
to the multiple time series involved. In such a case, two possible approaches can be 
used, consisting of a local or a global method. The first one consists in training 
a single predictive model for each time series involved considering parameters 
learned separately for each time series. The second one is based on training a single 
predictive model with parameters learned considering all the available time series. 
In the last years, the local methods have been the most used approach since they 
allow to make the forecasting problems simpler to solve, but recently several works 
have shown the effectiveness of the global approaches, in particular in case of large 
availability of data thanks to the capacity of global models to leverage patterns that 
are similar across different time series [50, 55, 64, 73, 74, 87, 123]. 

Recently, cluster-based approaches have been extensively used demonstrating 
how the aggregation of customers with similar characteristics in terms of electricity 
usage patterns can be an effective way to improve the forecasting performance [40, 
102, 111, 127, 131] as well as identify the similarity among days [91]. In [131], the 
load data of more than 1400 industrial customers were grouped in clusters based on 
the similarity of load features, and a CatBoost model was trained for each cluster 
obtaining the best performance in comparison with other approaches that did not 
use the clustering information. When the number of customers becomes very high, 
the computational complexity of the clustering algorithms becomes prohibitive, and 
alternative solutions, as dimensionality reduction, must be considered [7]. 

On the other side, in case the available data were not sufficient for training 
new prediction models by scratch, an effective data-driven approach to tackle these 
situations is represented by the transfer learning [96]. This approach allows the 
models pre-trained on large dataset to be customized and reused. Recently, many 
studies have used transfer learning for predicting the electricity load of different 
types of buildings over different time horizons. These works have showed increased 
accuracy of predictions when data from additional buildings were used, with respect 
to models using small target datasets [4, 41, 85, 106, 129], especially when source 
and target data shared some specific characteristics, such as belonging to similar 
building types or to the same climate zone (but different locations). 

Buonanno et al. [20] tested several methods, based on linear regression 
model, LSTM, temporal convolutional network (TCN), NBEATS, LightGBM, 
transformer, and persistence, for predicting the 1-h-ahead electricity load for 28 
lodging/residential buildings, by using global and local models and a transfer 
learning-based approach (called global-except). For each method tested, and for
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each building considered, a local model was produced, while a unique global 
model was produced for all 28 buildings together. The aims were (i) comparing the 
performance of the local and global models produced in predicting the electricity 
load of a single building and (ii) predicting the energy demand of a single building 
by using the electricity load data of the other 27 buildings (global-except approach). 
The authors observed that the global models performed similarly to the local 
ones, allowing at the same time to reduce the deployment and maintainability 
effort of the forecasting model. Moreover, the global-except model showed good 
performance revealing how, without any particular assumption, the load forecasting 
of a completely new building can be obtained using a global model trained on 
existing buildings. 

4 Predictive Outage Estimation for Renewable-Based Power 
Systems 

Predictive maintenance is fundamental for the operation of power systems, since 
it allows shifting from the routine maintenance with unnecessary stops of the 
operations to an “informed” maintenance based on the likelihood that a fault 
can occur considering the information coming from different sources, such as 
operational data, weather information, cameras, sensors, etc. 

In renewable-based energy systems, the efficiency and functioning under par-
ticular conditions should be ensured (e.g., removing the dirt from the PV panels, 
detecting the crack on PV panels, verifying the bearings in the wind turbines, etc.) 
to increase the reliability of the overall system and to reduce the operating costs. For 
that, diagnosis and fault detection for RES systems are necessary. 

In the literature, several works have investigated the usage of ML and DL for 
detecting defects in PV plants or wind farms. In [54], the authors collected a dataset 
of 71 k images of wind blades captured by drones in different orientations, lighting, 
and weather conditions. This dataset has been properly labeled and used to train a 
ResNet50 model to detect blades’ damages. 

For detecting the bearing defects in wind turbines, [113] analyzed the limitations 
of human-only and AI-only approaches proposing an AI-assisted fault detection 
system that, using CNN, classifies images obtained by an endoscope as defect or 
not. 

For defect detection in PV modules, infrared (IR) images or higher-resolution 
electroluminescence (EL) images can be used. There are many works that use the 
ML models applied to EL images to detect or classify defects in PV modules such 
as CNN [6], random forest and SVM [76], CNN and SVM [28], etc. Using image 
segmentation techniques, it is also possible to quantify the defect as done in [100] 
where the authors used a U-Net architecture to this scope. 

Many power outages are caused by adverse weather conditions such as storms, 
hurricanes, heath waves, etc., and the outage prediction can be useful to assess the
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resilience of the power system, namely, its characteristic to adapt and withstand to 
external modified conditions. In [39], the authors estimated the outages of the power 
grid component in response to hurricanes. The proposed approach is based on binary 
classifier (SVM) trained on historical data considering the resiliency index and 
distance from the center of the hurricane of various components and the category of 
the hurricane itself. 

In [120], the authors identified the storm using wind gust and pressure fields and 
classified the storm, using some ML approaches, based on the expected damage it 
can cause to the power grid. 

In [25], an Outer Prediction Model (OPM) leveraged outputs of numerical 
weather prediction and historical power outage data, spatially distributed informa-
tion (e.g., soil, vegetation, etc.) to forecast the outages in a power distribution grid 
and their spatial distribution. 

Other works are devoted to the maintenance interventions’ feasibility forecasting 
[124] or on the maintenance planning to reduce users’ discomfort [23]. 

In [13], several ML approaches were used to predict the faults in a power 
distribution network. In a radial power distribution grid, the current in each line of 
a middle voltage primary substation is recorded together with the outage data that 
can occur along the line (the exact position of the fault is unknown). For each fault, 
the affected line, the time of occurrence, the current in the line, and the weather 
conditions of the region containing the line are available. Using this information 
in an observation window of 30 days with a sampling period of 24 h, the tested 
predictive models can forecast the faults in the next 6 h. The problem has been stated 
as a binary classification problem since each multivariate time series related to the 
observation window is associated to “fault” values if in the next 6 h at least a fault 
has been occurred or “no fault” otherwise. At this scope, several binary classifiers 
were tested: XGBoost, LightGBM, random forest, k-nearest neighbors, SVM, and 
a FCNN with only one hidden layer. To assess fairly the results of each classifier 
at the best of its hyper-parameterization, a 10 × 5 stratified nested cross validation 
was used, and the evaluated metrics were the accuracy, the Matthews correlation 
coefficient, and the receiver operating characteristic area under curve (ROC-AUC). 
The historical data were available only for the lines that have experimented a fault 
in the years. For this reason, the authors extracted from the available data “no fault” 
examples considering the seasonality of the current and weather conditions. The 
work has shown that LightGBM and XGBoost models outperform other approaches 
and that, also in small data regime, the predictive models are able to give the power 
distribution manager informative outcomes. 

Even though ML and DL approaches have shown to be very effective for 
predictive maintenance, research in this field is hindered by the scarcity of historical 
fault data or of datasets of defects due to several reasons: privacy, security, company 
reputation, competitive advantage, etc. The available open access datasets contain 
information with a not sufficient granularity or lack of important information, and 
hence, many works are tested on simulated or synthetic datasets. 

The availability of historical outage dataset with good spatial and temporal 
granularity could boost the research in this field, and information like the topology
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of the grid could enable the possibility of using approaches that leverage this 
information (refer to the works reviewed in Liao et al. [68]). 

5 Conclusions 

This chapter presents a critical analysis of machine learning methods used to tackle 
different challenges present in renewable-based energy system management. 

Machine learning techniques can be effective tools in such a context, being 
employed in forecasting of energy generation and energy demand, in anomaly 
detection, and in outage forecasting. 

The chapter also presents several case studies (applications) for discussing the 
main advantages of machine learning methods and the critical aspects that have to 
be taken into consideration. 
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Bi-objective Optimal Scheduling 
of Smart Homes Appliances Using 
Artificial Intelligence 

Govind Rai Goyal and Shelly Vadhera 

1 Introduction 

There has been a lot of talk about “smart cities.” Countries all over the world are 
striving to build smart cities in order to increase productivity and socioeconomic 
growth. Although there are several aspects of a smart city, here in this research work 
we would like to highlight some important things from the energy perspective, i.e., 
smart homes. A smart home energy management system (EMS) is able to optimize 
the electricity consumption of the city by being able to record the real-time data 
pertaining to different residential, commercial, and industrial loads with the help of 
advanced metering infrastructure (AMI) [1]. 

Unfortunately, there is not yet a widely adopted and cost-effective strategy for 
optimizing the EMS available to end users, which would both lower electricity 
bills and lower peak demand on the grid. Reduction of peak power demand is 
as important as minimization of electricity bill costs. Peak load demand can be 
managed by flattening the load curve. Flattening of the load curve is the reduction 
of power consumption at peak load hours and increasing consumption during the 
low load periods [2, 3]. Some deferrable home appliances can be scheduled to run 
during off-peak or mid-peak hours to help flatten the load curve. To flatten the load 
curve, it is required to bring the actual load curve as close to the objective load curve 
as possible. So the objective becomes to minimize the difference between the actual 
load curve and the objective load curve [4]. Smart home appliances can be managed 
by implementing different programs of demand side management (DSM). DSM is 
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Fig. 1 Objectives of load management 

a way for consumers to help the electricity grid with the management of electric 
power. It is the modification of consumer demand behavior by various methods, 
such as financial rebates or incentives and differentiated tariffs [5, 6]. There are 
two terms in DSM, viz., load management and load growth. Load growth involves 
strategic conservation, or strategic load growth. On the other hand, the term load 
management has three different types of programs, viz., load leveling, dynamic 
pricing, and load control, as shown in Fig. 1 [7–10]. 

Demand response (DR) is also an integral part of demand side management. 
Demand response can provide a short-term response to energy market conditions, 
and it can change the regular consumption pattern of electricity in response to the 
change in electricity prices with time, i.e., dynamic pricing. The classification of DR 
programs is shown in Fig. 2 [11–14]. The major types of demand response programs 
are as follows:

• Load control: In this type of program, participants allow the load scheduler to 
manipulate their energy consumption.

• Emergency program: In this DR program, consumers are provided incentives for 
reducing the load when demand exceeds supply.

• Economic program: It is employed by utilities to avoid the significantly higher 
costs of producing energy during peak demand times of the day.

• Ancillary service program (ACP): This program of DR is used to support the 
reliable and regulated transmission of electricity to loads.

• Capacity market program (CMP): Customers commit to reducing their load by 
a predetermined amount in order to postpone capacity increase in the capacity 
market program.
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Fig. 2 Overview of demand response programs

• Interruptible service program (ISP): In this program consumers are given a 
rebate for reducing their load in contingency conditions. Consumers can also 
be penalized for not reducing their load. 

All programs of demand response can be categorized as price-based and 
incentive-based programs. Price-based DR programs rely on the customer’s 
response (change in energy consumption pattern) to the electricity price changing 
with time in order to reduce electricity bill costs. On the other hand, incentive-based 
DR programs depend on the rebates or penalties applied to consumers for reducing 
or raising their power consumption [15]. This research work focuses on price-based 
as well as incentive-based DR programs in which changes in the electricity prices 
over time are transmitted to residential customers. Customers may react differently 
to this dynamic price. One is that their consumption can be reduced only during 
peak hours and they maintain their normal load pattern during off-peak time. This 
results in load cutting in peak hours. Another action that could be taken is delaying 
the use of electricity from peak hours to off-peak or mid-peak hours to minimize 
the electricity bill cost [16]. This may result in increased load demand in off-peak 
and mid-peak hours. 

Dynamic pricing is one of the building blocks of DR programs. It is a demand-
and supply-based pricing strategy, viz., time-of-use (ToU) price; critical peak price 
(CPP); variable peak price (VPP); peak time rebates/penalties; etc. [17]. All these 
prices vary at different hours of the day, like off-peak, mid-peak, and peak hours. 
However, real-time price (RTP) is the most straightforward type of dynamic pricing, 
in which the cost of electricity is constantly fluctuating in response to variations in 
the wholesale price. The two types of RTP are day-ahead (DA-RTP) and hourly-
ahead (HA-RTP). In contrast to HA-RTP, which communicates the power price 
signal to the consumer at each interval, DA-RTP lets customers know how much 
electricity will cost them for the entire day in advance [18]. Implementation of 
dynamic pricing can be beneficial for all the stakeholders in different ways, like
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Fig. 3 Classification of dynamic pricing based on risk involved 

monetary benefits for customers [7, 9, 12] and actual cost recovery for suppliers. It 
is also helpful to postpone the investment in power generation capacity by shifting 
peak demand from peak hours to off-peak hours [14, 16, 18]. Dynamic pricing 
has been implemented by various researchers with different strategies of DSM for 
different objective functions in their studies. 

The variation in electricity tariff can be described as a risk for customers; 
however, it can also be related to the efficiency of the pricing options. Dynamic 
pricing options can be categorized as low-risk tariff plans, moderate-risk tariff plans, 
and high-risk tariff plans as shown in Fig. 3 [19–21]. 

Many programs have limited this risk by assigning customers a baseline for 
power consumption. The price for the purchase of power below the baseline 
consumption is usually the ToU rate. Above the baseline consumption, customers 
pay the real-time price (RTP), and also a rebate can be received for reducing 
the consumption below its baseline level. Such programs are known as two-part 
RTP programs with a customer baseline load (CBL) [22]. Demand response (DR) 
can expand the consumer’s participation in the electricity market. A consumer’s 
response towards CBL can be a method of evaluation of the successful implementa-
tion of a DR program. In fact, CBL is the expected pattern of customer consumption 
in the absence of a DR program [23]. 

1.1 Contribution of Research Work 

Key contributions of this research work can be summarized as follows:

• It suggests a way to figure out how much electricity costs that uses prices that 
change over time and can help both consumers and utilities.

• Single interval programming (SIP) is used to find the best way to schedule 
appliances when dynamic pricing is used.

• It studies the consequences of optimal scheduling of smart home appliances to 
minimize the cost of monthly electricity bills.
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2 Mathematical Modeling 

Smart home appliances under HEMS are categorized as deferrable and non-
deferrable [17]. In the smart home energy management system, consumers can 
define their preferences for the use of appliances through an energy controller. 

2.1 Objective Function for Minimization of Electricity Cost 

An objective function for the minimization of a consumer’s electricity bill costs for 
24 h of a day can be given by Eq. (1) [11]. 

Minimize CDEC = 
T∑

t=1 

xt (d) × pt (d) T = 24 (1) 

xt (d) = 
£∑

�=1 

ξ t
�y

t
�(d)T� t ∈ T (2) 

Here, pt = Electricity price during time interval t ∈ T. 
xt(d) = Energy consumption schedule in time slot t of the day d ∈ N. 
. yt

� = Power demand for a load �∈ £ in time slot t. 
. ξ t
� = On/off state of appliances. 
T� = Operational time of load � ∈ £. 
£ = Set of available appliances (deferrable and non-deferrable). 
The optimal scheduling of appliances in order to reduce the electricity bill will 

help to reduce the peak hour’s power consumption due to the high electricity price 
during peak hours. However, shifting appliances from high-priced hours to low-
priced homes may result in increased power demand during off-peak or mid-peak 
hours. Peak load management can be a solution to this problem. 

2.2 Objective Function for Peak Demand Management 

This research work also aims to manage the peak demand by minimizing the 
difference between the objective and optimal load curve [2]. The goal is to make 
the difference between the goal and actual load curves as small as possible. This can 
be expressed mathematically as Eq. (3) [12]. 

Minimize f1 = 
T∑

t=1 

xt (d) − Objt (d) T = 24 (3)
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Here, Objt(d) denotes the objective power demand. Objective power demand for 
each time slot t ∈ T on day d ∈ N can be calculated by Eq. (4) [13]. 

Objt (d) = 
1
/

pt (d) 
T∑

t=1 
pt (d) 

T∑

t=1 

yt (d) (4) 

Here, yt(d) is the forecasted demand at interval t. 

2.3 Proposed Objective Function for Cost of Electricity 

To minimize both the objectives simultaneously, an objective function based on the 
customer base load (CBL) line model is proposed for both the case studies. The 
proposed function of electricity cost is given by Eq. (5). 

Minimize CTotal = 
T∑

t=1 

⎧ 
⎨ 

⎩ 

xt (d)pt 
ToU, if xt (d) = Objt (d) 

1.2 × xt (d)pt 
ToU, if Objt (d) ≤ xt (d) 

0.8 × xt (d)pt 
ToU, if xt (d) ≤ Objt (d) 

⎫ 
⎬ 

⎭ (5) 

As per the proposed cost function, if the hourly consumption is equal to the CBL, 
then time-of-use (ToU) price as usual is applicable. But for the power consumption 
below this line, a rebate (20% of the ToU price for the respective time slot) can be 
given. Similarly, for the power consumption above the base line load, a penalty is 
applied. 

2.4 Operational Constraints [18–23] 

xt
� (d) = 0 t /∈ T� (6) 

xmin
� ≤ xt

� (d) ≤ xmax
� t ∈ T� (7) 

24∑

t=1 

xt
�(d) = DR� (8)
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3 Solution Methods 

In this research work, objective functions are optimized by CS and PSO algorithms. 
The best results of both algorithms are also compared to the hybrid GA-PSO. 

3.1 Cuckoo Search (CS) Method 

The Cuckoo search method works on the basics of the breeding behavior of cuckoo 
birds. Based on the breeding behavior of cuckoos, this algorithm works in order to 
find the most suitable host nest. So this algorithm is designed for the maximization 
of problems, but it can be used for minimization equally. Thus, it can be used for 
optimization of any function. Figure 4 shows the flowchart of the CS method [24]. 

3.2 Particle Swarm Optimization 

Particle swarm optimization (PSO) is one of the meta-heuristic, population-based 
search algorithms to solve optimization problems. It is a kind of swarm intelligence 
that is based on social behavior. This algorithm searches in parallel paths using a 
group of particles. It contributes to solving any optimization as well as engineering 
problems. Figure 5 shows the flowchart of the CS method [25]. 

3.3 Hybrid GA-PSO Algorithm 

To overcome the limitations of the PSO algorithm, a hybrid GA-PSO has been 
proposed by [26]. A hybrid approach is expected to combine the merits of PSO 
with those of GA. The main problem with PSO is its premature convergence to 
a stable point, but one advantage of PSO over GA is its simplicity. Another clear 
difference between PSO and GA is the ability of GA to control the convergence. 
GA crossover and mutation rates can have a subtle effect on convergence, but they 
are not comparable to the level of control achieved by adjusting the inertia weight 
of PSO. In fact, the decrease in inertia weight dramatically increases the swarm’s 
convergence. So, in the hybrid GA-PSO algorithm, the best features of GA like 
mutation and crossover are assorted to improve the performance of PSO. Figure 6 
shows the flow chart of the hybrid GA-PSO algorithm [27].
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Fig. 4 Optimization procedure of CS method 

4 System Data 

This model of energy management is applied to smart homes for residential 
consumers. Details of appliances and monthly power consumption by all the smart 
home residents are given in Table 1 [28], while Table 2 provides information on 
power rating and category of appliances [17]. 

Real data of pricing schemes available in Tehran Power Distribution Company 
(TPDC), Iran (case I), and Kerala State Electricity Board (KSEB), India (case II), 
are studied in this research work. In case study I (TPDC, Tehran) and case study II
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Fig. 5 Optimization procedure of PSO algorithm 

Table 1 Energy consumption and appliance information of smart homes 

S. no. Household no. 
Range 
(kWh) 

Monthly 
consumption (kWh) Total appliance 

Deferrable 
appliance 

1 1 <600 558.6 8 3 
2 2 601–750 654.6 9 3 
3 3 751–1000 947.4 14 6 
4 4 1001–1250 1142.4 14 6 
5 5 1251–1500 1312.5 12 7 
6 6 1501–2000 1732.5 14 9 
7 7 2001–2500 2392.5 15 10 

(KSEB, India), electricity pricing options available for retail consumers are block 
rate tariff and time-of-use (ToU) price. In this case, pricing data is considered for 
September 2015, while in case study II (KSEB, India), pricing data is considered 
for January 2017.
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Fig. 6 Flowchart of hybrid GA-PSO algorithm
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Table 2 Information of 
power rating and category of 
appliances 

S. no. Appliances Power rating (kW) Category 

1 Light 0.5 NDL 
2 Refrigerator 0.125 NDL 
3 Personal computer 0.20 NDL 
4 TV 0.14 TDL 
5 Hairdryer 1.0 TDL 
6 Washing machine 1.5 TDL 
7 Vacuum cleaner 1.0 TDL 
8 Electric stove 1.5 NDL 
9 Water heater 1.5 NDL 
10 Iron 1.0 TDL 
11 Air conditioner 1.0–1.5 PDL 
12 Water pump 2.0 TDL 
13 Dishwasher 1.0 TDL 
14 Air heater 1.5 NDL 
15 Cloth dryer 1.5 TDL 
16 Fan 0.12 NDL 

NDL non-deferrable, TDL time deferrable, PDL power 
deferrable 

Table 3 Electricity tariff 
plan in TPDC, Iran S. no. 

Electricity consumption 
(kWh/month) 

Electricity prices 
(cents/kWh) 

1 0–100 1.36 
2 100–200 1.59 
3 200–300 3.41 
4 300–400 6.14 
5 400–500 7.05 
6 500–600 8.87 
7 >600 9.78 

Table 4 Time-of-use (ToU) price in TPDC, Iran 

S. no. Category Extra cost/discount (cents/kWh) 

1 Discount for off-peak hours Electricity consumption (kWh) * 0.68 (cents/kWh) 
2 Discount for mid-peak hours Electricity consumption (kWh) * 0.27 (cents/kWh) 
3 Extra cost for peak Electricity consumption (kWh) * 1.36 (cents/kWh) 

4.1 Pricing Data for Case Study I (Tehran Power Distribution 
Company, Iran) 

Tables 3 and 4 show the block rate tariff and time-of-use (ToU) price in Tehran 
Power Distribution Company, Iran, respectively [29]. In the ToU price plan, an extra 
cost for peak hours and a discount for mid-peak or off-peak hours are calculated as 
per Table 4 after calculating the cost of electricity based on Table 3.
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Table 5 Block rate tariff plan in KSEB, India 

S. no. Electricity consumption (kWh/month) Electricity prices (INR/kWh) 

1 Up to 300 5.50 
2 Up to 350 6.20 
3 Up to 400 6.50 
4 Up to 500 6.70 
5 More than 500 7.50 

Table 6 Time-of-day (ToD) price in KSEB, India 

S. no. Category ToU price (INR/kWh) 

1 Normal/mid-peak period 100% of normal charges, i.e., 7.50 INR/kWh 
2 Peak period 120% of normal charges, i.e., 9.00 INR/kWh 
3 Off-peak period 90% of normal charges, i.e., 6.75 INR/kWh 

4.2 Pricing Data for Case Study II (Kerala State Electricity 
Board, India) 

Tables 5 and 6 show the block rate tariff and time-of-day (TOD) price applicable in 
Kerala State Electricity Board (KSEB), India, respectively [30]. In the KSEB, the 
rates of TOD tariff given in Table 6 are approved by the Kerala State Electricity 
Regulatory Commission (KSERC), Thiruvananthapuram, India, for LT domestic 
consumers having a 6-month average monthly consumption above 500 units in 
January 2017. The unit rate includes both capacity charges and energy charges. 
Here, INR 30/month (for single-phase users) and INR 80/month (for three-phase 
users) are also applicable as fixed charges. 

5 Optimal Results of Simulation Study 

5.1 Scenario 1: Minimization of Cost of Monthly Electricity 
Bill 

Optimal Results for Case Study I (Tehran Power Distribution Company, Iran) 
Results for case I of this study, which includes two pricing schemes, are shown in 
Table 7. For each of the seven households, the cost of the monthly electricity bill 
is obtained. The given power costs with ToU pricing in this table are calculated 
for all the households, both before and after optimization. Here, single interval 
programming (SIP) is used to attain optimal scheduling, with the fundamental 
optimization techniques: CS, PSO, and hybrid GA-PSO. It may be concluded from 
comparing the monthly electricity bill with various pricing plans shown in this table
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Fig. 7 Reduction of monthly electricity bill with optimal scheduling in case I 

that block rate tariffs are more expensive than ToU prices with estimated scheduling; 
however, this savings can be increased by optimal planning the use of appliances. 

According to the comparison of electricity bill costs by block rate tariff (before 
optimization) and ToU price with optimal scheduling, it can be observed that, 
on average for all homes, all three algorithms reduced the electricity bill cost by 
1.25%, 1.5%, and 2.5%, respectively. Here, it can be said that the hybrid GA-PSO 
algorithm’s optimal scheduling can lead to a minimum electricity bill for all levels 
of power consumption. Figure 7 compares the electricity cost before optimization 
to the monthly electricity bill with ToU price and optimal scheduling to show the % 
reduction in electricity bill expense. 

Table 8 gives the comparison of peak-to-average ratio (PAR) for seven house-
holds with estimated and optimal scheduling obtained for cost minimization. 
Figure 8 gives a graphical representation of the PAR obtained by estimated schedul-
ing and optimal scheduling with ToU price. From this comparative representation, 
it can be noticed that planning of appliances after optimization in order to minimize 
the bill costs may result in increased peak power consumption due to the scheduling 
of various appliances at low-cost time slots. 

Optimal Results for Case Study II (KSEB, India) 
Similar to case study I, Table 9 provides the best electricity cost results for case II. In 
this case study, the block rate tariff and TOD price are both applied. For each of the 
seven study households, the cost of the monthly electricity bill is obtained here. In 
this table, estimated scheduling (before to optimization) and optimal scheduling are 
used to determine the provided power costs with TOD pricing for all the households 
(after optimization). This table also includes a comparison of electricity expenses 
with respect to the best scheduling of appliances. It may be concluded that block 
rate tariffs are more expensive than TOD prices with anticipated scheduling by
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Table 8 Peak demand and peak to average ratio (PAR) for case I 

By estimated scheduling Resulted by optimal scheduling 
Household no. PAR Peak demand (kW) PAR Peak demand (kW) 

1 2.990 2.33 3.389 2.63 
2 3.203 2.92 4.443 4.04 
3 2.689 3.35 1.965 2.41 
4 2.325 3.68 2.935 3.97 
5 2.184 3.98 2.469 5.25 
6 2.450 5.88 4.208 10.12 
7 1.983 6.59 3.724 12.37 

House-1 House-2 House-3 House-4 House-5 House-6 House-7 
0 

1 

2 

3 

4 

5)
R

A
P(

oitar
egareva

ot
kae

P
 

Estimated scheduling 

Optimal scheduling with ToU price 

Fig. 8 Comparison of PAR before and after optimal scheduling for case I 

comparing the monthly power bill with various pricing schemes prior to optimal 
scheduling, which is shown in Table 9. This savings can be enhanced by optimal 
planning of appliances. 

However, for all of the households, the average monthly expense was reduced 
by 1.15%, 1.65%, and 3.0%, respectively, using the CS, PSO, and hybrid version 
of PSO. By comparing the pre-optimization monthly electricity bill cost by block 
rate tariff with the post-optimization monthly electricity bill cost by TOD price, it is 
observed that hybrid GA-PSO algorithm’s optimal scheduling resulted in the lowest 
possible monthly electricity bill cost regardless of the level of power consumption. 
Figure 9 shows the reduction in electricity bill cost after optimization by the hybrid 
GA-PSO algorithm in comparison of estimated scheduling with block rate tariff and 
TOD price. 

Peak-to-average ratio (PAR) for estimated and optimal scheduling for cost 
minimization using hybrid GA-PSO algorithm are compared in Table 10 for seven 
homes. The PAR achieved by approximated scheduling and optimal scheduling 
with TOD pricing is graphically depicted in Fig. 10. Here, it is clear that the 
best appliance scheduling for bill savings resulted in greater PAR and peak power 
consumption.
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Fig. 9 Reduction in monthly electricity bill using TOD price with optimal scheduling 

Table 10 Peak demand and peak-to-average ratio (PAR) for case II 

By estimated scheduling Resulted by optimal scheduling 
Household no. PAR Peak demand (kW) PAR Peak demand (kW) 

1 2.990 2.33 4.567 3.56 
2 3.203 2.92 4.443 4.05 
3 2.689 3.35 2.835 3.53 
4 2.325 3.68 3.039 4.81 
5 2.184 3.98 3.436 6.26 
6 2.450 5.88 4.321 10.37 
7 1.983 6.59 3.724 12.38 
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Fig. 10 Comparison of PAR before and after optimal scheduling for case II
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Table 11 Objective and optimal load obtained with ToU price 

Power demand (kW) Power demand (kW) 
Time slot Objective Optimal Time slot Objective Optimal 

T1 8.82 7.46 T13 18.18 13.88 
T2 8.82 7.39 T14 18.18 14.55 
T3 8.82 8.21 T15 18.18 14.52 
T4 8.82 9.00 T16 18.18 13.36 
T5 8.82 9.00 T17 18.18 13.25 
T6 8.82 10.48 T18 12.75 14.38 
T7 8.82 10.35 T19 12.75 14.38 
T8 12.75 14.50 T20 8.82 12.31 
T9 12.75 15.38 T21 8.82 12.31 
T10 12.75 15.72 T22 8.82 10.83 
T11 12.75 15.25 T23 8.82 10.58 
T12 18.18 13.87 T24 8.82 10.42 

2 4 6 8 10 12 14 16 18 20 22 24 
6 

8 

10 

12 

14 

16 

18 

20 

Time slots 

)
Wk(

dna
med

re
wop

ylruo
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Objective load curve 
Optimal load curve 

Fig. 11 Comparison of objective and optimal hourly power demand (kW) 

5.2 Scenario 2: Minimization of Peak Demand and Electricity 
Cost Simultaneously 

For the peak demand management, an objective load curve is prepared for 24 hours 
using Eq. (4) with a ToU price for all the seven households. Then optimal power 
demand is observed by minimizing the difference between optimal and objective 
load curves using Eq. (3). Table 11 gives the objective and optimal power demand 
collectively for all seven households. Figure 11 represents the comparison of 
objective and optimal load demand for both cases. 

Figures 12, 13, and 14 represent the objective and optimal load curves, respec-
tively, for household 4, household 5, and household 6. Similar curves can also be
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Fig. 12 Objective and optimal load curves for household 4 
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Fig. 13 Objective and optimal load curves for household 5 

drawn for other households. The data tips given on the scheduling curves show the 
peak power consumption. Here, X shows the time slot, and Y represents the value 
of peak demand that can be verified with the results given in Table 12. Table 12 
provides information on PAR and peak demand with optimal scheduling for all the 
households obtained by hybrid version of PSO as optimization algorithm for both 
the case studies. Table 13 displays the best values of the monthly power cost with 
optimal allocation of appliances for both the cases. 

As compared to the electricity costs with block rate tariff and ToU price (before 
optimization), the average power costs for all homes after optimization in scenario 
2 are reduced by 9.10% and 8.44%, respectively (results are given in Tables 7 and 
13). Similarly, by comparing the results for case II given in Tables 9 and 13, it is  
observed that optimal scheduling in scenario 2 minimized the electricity cost by 
7.98% and 7.74% as compared to the electricity cost with block rate tariff and TOD 
price before optimal scheduling. Optimal scheduling of smart home appliances in
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Fig. 14 Objective and optimal load curves for household 6 

Table 12 PAR and peak power demands by optimal scheduling 

Before optimal scheduling After optimal scheduling 
S. no. Household no. PAR Peak demand (kW) PAR Peak demand (kW) 

1 1 2.990 2.33 2.552 1.98 
2 2 3.203 2.92 2.626 2.39 
3 3 2.689 3.35 1.965 2.41 
4 4 2.325 3.68 1.952 2.31 
5 5 2.184 3.98 1.823 2.54 
6 6 2.450 5.88 2.137 3.82 
7 7 1.983 6.59 1.957 6.51 

Table 13 Monthly 
electricity cost in case I and 
case II by optimal scheduling 

S. no. Household no. 

Optimal 
electricity cost 
in case I 
($/month) 

Optimal 
electricity cost 
in case II 
(INR/month) 

1 1 85.13 4061.45 
2 2 100.56 4712.96 
3 3 135.92 6882.51 
4 4 152.46 8192.48 
5 5 181.29 9241.30 
6 6 225.74 12650.63 
7 7 300.53 16839.41 

scenario 2 also resulted in reduced PAR and peak power demand in comparison with 
estimated scheduling of 15.18% and 24.41%, respectively.
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6 Conclusion 

In this research work, a number of simulations were performed under two scenarios 
using real data of different pricing schemes applicable to Tehran Power Distribution 
Company, Iran, and Kerala State Electricity Board (KSEB), India. The problem of 
optimal scheduling of household appliances in order to minimize two objectives, 
viz., monthly electricity bill cost and peak power demand, while considering the 
consumer’s preferences of use, is solved by single interval programming using 
MATLAB. The efficiency and effectiveness of the suggested model are represented 
by a comparison of results obtained using artificial intelligence-based optimization 
algorithms. A person using a smart home energy controller with dynamic pricing 
will have great control over how much electricity he or she uses. 
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Optimal Placement of Photovoltaic 
Systems and Wind Turbines 
in Distribution Systems by Using 
Northern Goshawk Optimization 
Algorithm 

Bach Hoang Dinh , Thuan Thanh Nguyen , and Thang Trung Nguyen 

1 Introduction 

In modern power systems, distribution networks have a vital role in transferring 
electricity from national transmission networks to customers, especially at major 
loads in high/medium voltages. Recently, due to many benefits in economics and 
engineering, integrating distributed generators (DGs) into distribution networks 
becomes an emerging trend, especially with the presence of renewable power 
sources. The installation of DGs could reduce the burden on generating side which 
most power is produced from bundle generating sources located far from demand 
side as well as requiring a lot of financial resources in a long time. In addition, 
the amount of power supplied locally by DGs also scales down the current value 
circulated through transmission and distribution lines, and then the power loss as 
well as power quality will be significantly improved and optimized substantially. 
Moreover, if DGs are renewable energy type, e.g., wind, solar, and hydrogen, they 
also contribute to environment protection by reducing emission and improving the 
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reliability of network operation. Therefore, the research field regarding optimal 
integrating DGs into distribution networks has attracted many researchers all over 
the world. These studies aim to determine the optimal location and size of DGs 
in distribution networks so that the considered systems reach the minimization of 
one or more objective functions while satisfying the limitations. They are primarily 
classified into sub-items, such as integrating general DGs [1–10], analyzing DG-
based wind [11–18], allocating DG using solar energy [19–26], and combining solar 
and wind energy DGs [27–33]. 

As the main purpose of installing DGs in distribution systems is to produce active 
power locally, most studies have focused on searching for optimal positions of DGs 
and how to reduce active power loss rather than to obtain a better voltage profile. 
In [1], the objective of power loss as well as loss sensitivity index was analyzed to 
optimize sizes and locations of DGs for IEEE 33-node configuration. Another way 
of allocating DGs according to reconfiguration of distribution networks to minimize 
the power losses was mentioned in [2]. It was accomplished by combining between 
load flow analysis and metaheuristic algorithms where traditional load flow analysis 
methods, e.g., Newton-Raphson or Gauss-Seidel, were used to analyze the power 
flow and a metaheuristic method selected optimal size and location for each DG in 
the network. In study [3], various benchmark networks, including IEEE 33 nodes, 
IEEE 69 nodes, and IEEE 85 nodes, were applied to determine the appropriate 
size and position of DGs to minimize the total power loss. Besides reducing the 
power loss, the presence of DGs can enhance voltage stability. In the study [4], 
an IEEE 33-node configuration was applied to demonstrate the general effect of 
installing DGs for distribution networks in both aspects of active and reactive power. 
Another study in [5] focused on solutions to combine DGs of photovoltaic systems 
and wind energy so that the network was avoided from overload in lines as well 
as voltage stagnation at loads, and an IEEE 33-node configuration was tested by 
applying a new planning method with different stages. Similarly, to reduce the 
voltage stagnation and switching number during network reconfiguration, installing 
DGs has been considered in [6] where an IEEE 69-node configuration was used to 
investigate the effectiveness of the applied method. 

In operation of distribution networks, wind-based generators (WGs) have a better 
contribution to the grid than that of solar-based generators (SGs) because they can 
simultaneously control active and reactive power. Moreover, a wind power source 
has also higher power capacity than that of a solar source. However, it is not flexible 
in setting location and capacity. Doubly-fed induction generator (DFIG), which 
stator windings are connected to the grid and rotor windings are connected to the 
converter via slip rings and back-to-back voltage source converter that controls both 
the rotor and the grid currents [11], is widely used in wind turbine industry. In [12], 
particular benefits of installing WGs appropriately in distribution networks were 
analyzed, and the study in [13] discussed the cutting edges of energy storage system 
in the unbalanced distribution network. More specifically, the steady-state operation 
of DFIG has been analyzed in various conditions corresponding to several types 
of turbines which were placed in the unbalanced distribution network in [14]. One 
of the most comprehensive studies about WGs integrating in distribution networks 
was described by [15] in which various computing methods have been applied to
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determine the optimal size and the suitable location of wind turbines, and a wide 
range of setting parameters has been analyzed in various models of wind turbines as 
well as considered the power factor of wind turbines at PPT point. Another trend, 
integrating wind power in combined heat and power systems, has been mentioned 
in [16] where the operation results were significantly improved by reducing the fuel 
cost by 8% and power loss by 5% and improving the voltage profile better than 0.5% 
in an IEEE 33-node configuration. 

Photovoltaic module-based generators (PVGs) are the most popular DGs in 
renewable types due to high flexibility in setting location and capacity as well 
as cost-effectiveness. In [19, 20], small-scale PVGs were applied to assess the 
influences of these sources on load curve at the peak time. Another study [21] has 
focused on how to reduce the investment cost of distribution networks efficiently by 
placing PVGs appropriately. The impact of placing PVGs on active and reactive 
power loss and node voltage amplitudes was investigated by the optimization 
methods, and three benchmark distribution networks including IEEE 33-node, IEEE 
69-node, and IEEE 84-node systems have been applied in [11]. Another research 
in [22] has considered two different objective functions including total installing 
and operating PVGs and energy purchase cost at slack bus. In [18], the research 
has investigated the combination of PVGs and the hydrothermal systems in short-
term period within 1 day. Total generation cost and polluted emission of thermal 
generating sources of the hybrid systems have been minimized effectively by 
different metaheuristic methods. 

Recently, to maximize the advantages of both PVGs and WGs, a new trend 
of integrating multi-renewable sources in distribution networks has been taken 
much attention of researchers in optimal power system problems. For example, 
the optimized integration of wind turbines and solar panels has been applied to 
solve the optimal load flow problem with different objective functions in IEEE 33-
node configuration [27, 28]. In addition, the uncertainties of solar energy and wind 
power have been considered. In the studies [29, 30], the process of optimizing size 
and location of PVGs and WGs in distribution network has been considered under 
the consideration of demand-side response with many different objective functions, 
such as total power loss, annual cost, and annual demand response compensation 
as well as voltage stability index. Another trend integrating wind turbines and 
solar panels to solve the reconfiguration problems of distribution networks has 
been investigated in [31] where the unpredictable variation of load demand and 
the uncertainties of renewable generating sources were also considered. Moreover, 
to resolve the problem of unpredictable power output from renewable sources, a 
hybrid wind-solar system combined with battery storage [32] has been proposed 
and optimized in terms of design and allocation of each source type. 

To determine the optimal size and location for DGs, most of the mentioned stud-
ies have applied metaheuristic algorithms, the combination among those such algo-
rithms or hybrid methods which are combined between a metaheuristic algorithm 
and a non-metaheuristic method. However, for more complicated optimization prob-
lems, e.g., integrating both PVGs and WGs in distribution networks, metaheuristic 
algorithms are essentially sole approaches to determine the optimal solutions, for 
example, whale optimization algorithm (WOA) [1]; PathFinder algorithms (PA) [2];
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the Manta ray foraging optimization algorithm [3]; symbiotic organism search algo-
rithm (SOSA) [4]; shuffled frog-leaping algorithm (SFLA) [6]; marine predators 
algorithm (MPA) [8]; hybrid artificial bee colony algorithm (HABC) [11]; genetic 
algorithm (GA) and social welfare, multi-objective genetic algorithm (MOGA) and 
non-dominated sort GA-II (NSGA-II) [12]; inherited competitive swarm optimizer 
(ICSO) [13]; quantum-inspired particle swarm optimization (QPSO) [16]; and 
multi-objective artificial electric field algorithm (MOAEFA) [17]. Other popular 
methods can be list as Newton metaheuristic algorithm (NMA) [19], student-based 
optimization algorithm (SBOA) [20], particle swarm optimization (PSO) which 
was applied in [21], Cuckoo search algorithm (CSA) which was utilized in [22], 
modified gradient-based metaheuristic optimizer (MGMO) [24], and improved salp 
swarm algorithm (ISSA) [31]. Another approach was proposed in [27], a hybrid 
method including Ant Lion Optimizer (ALO) and Fuzzy Logic Controller (FLC), 
combining between differential evolution (DE) and improved whale optimization 
algorithm (IWOA) [28]. 

This study investigates three metaheuristic algorithms including Northern 
Goshawk Optimization (NGO) [34], Bonobo optimizer (BO) [35], and Transient 
Search Optimization (TSO) [36] in solving the optimal size and location of 
the photovoltaic power plant (PVG) and wind power plant (WG) integrating in 
distribution networks. The main contributions of the study can be summarized as 
follows: 

• Evaluate the optimal results to determine the best method among three applied 
methods according to the purpose of minimizing the power loss value. 

• Investigate and analyze quantitatively the impact caused by PVGs and WGs for 
the power loss of distribution networks. 

The structure of the entire study can be organized in five sections consisting of 
the following: 

Section 1 – Introduction: Generally, reviews about the considered problem and 
existing approaches. 

Section 2 – Problem description: Mentions about the main goal and related 
restrictions on the considered problem. 

Section 3 – Proposed optimization algorithm: Describes how the proposed methods 
are applied to solve the problem. 

Section 4 – Results: Depicts, evaluates, and discusses the results in different case 
studies. 

Section 5 – Conclusion. 

2 Problem Formula 

One of the most popular structures of electric distribution networks is the radial 
distribution network configuration (RDNC) which consists of distribution lines, 
source buses, and load buses. The main goal of this study is to locate and select
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the capacity of PVGs and WGs appropriately to shorten total power loss value 
of a specific radial distribution network consisting of Nbr distribution lines, Nno 
buses, and NLd load buses. WGs are supposed to generate both active and reactive 
power into RDNC, while PVGs only supply active power. Optimally placing DGs in 
RDNC will decrease the electric currents circulated in the distribution lines as well 
as total power loss value. 

In the next subsections, the mathematical expressions of the main goal as well 
as related constrains will be presented and described in detail. The entire process 
of the considered problem can be summarized as follows: metaheuristic algorithms 
will be applied to determine the optimal size and location of PVGs and WGs so that 
the power loss value is minimized as much as possible. However, the computation 
of power loss value is obtained by applied backward/forward sweep (BFS) [3]. 

2.1 The Main Goal and Its Mathematical Expression 

Two of the most concerns in RDNC operation are voltage drop and current on 
distribution lines. Voltage and current have a mutual relationship where if voltage 
magnitudes between the sending end and receiving end are high, the value of current 
sent through the conductor is low and vice versa. In addition, the power loss is also 
greater if the current is high. Hence, shortening power loss in distribution networks 
is always an important target, and the mathematical expression for this objective can 
be described by: 

Minimize�AP = 
Nbr∑

x=1

�APbrx (1) 

where �APbrx is the active power loss in the xth branch of the considered RDNCs. 

2.2 Renewable Energy Sources 

2.2.1 The Electricity Generation of Photovoltaic Power Generators 
(PVGs) 

The power output produced by PVGs is based on the solar irradiance and embedded 
temperature of the site. If the solar irradiance is determined, the generated power 
will be calculated by using solar radiation function [26] as follows: 

SPq = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 
SPq × (Raq)

2 

(RaCIP.Rast) ,
(
0 < Raq < Rast

)

SPq 
Raq 
RaCIP 

,
(
Raq ≥ Rast

)
(2)
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where SPq is the power output produced by the qth PVG, Raq is the solar radiation 
of the location where the qth PVG is located (W/m2), RaCIP is the solar radiation in 
standard environment (W/m2), and RaCIP is the certain irradiance point (W/m2). 

2.2.2 The Electricity Generation of Wind-Based Generators 

In this study, the type of wind generators installed in distribution networks is DFIG 
technology. It allows WGs to inject both active and reactive power into grids. 
Suppose that the power factors of all WGs are all the same and fixed at 0.95. 
According to [30], the power output of WGs can be determined by: 

Pwj = 

⎧ 
⎪⎨ 

⎪⎩ 

0, vj < vj,in or vj > vj,out 

Pwj,max × vj −vj,in 
vj,rate−vj,in 

, vj,in ≤ vj < vj,rate 

Pwj,max, vj,rate ≤ vj < vj,out 

(3) 

where Pwj is the active power generated by WT j; Pwj, max is the maximum active 
power generated by WT j; vj, in  and vj, out are, respectively, the cut-in and cut-out 
wind velocity for the jth WT; and vj, rate  is the rate of wind velocity belonging to 
WT j. 

2.3 The Operational Constraints 

Power system is a very complicated engineering system with many restrictions in 
balanced and unbalanced conditions to keep the system in stable operation. The 
occurrence of PVGs and WGs in distribution networks will affect the original 
operation states of the systems, such as voltage magnitude at buses, current value 
at each distribution line, and active and reactive power flows of electric sources and 
lines. The change of these parameters must be restricted in allowed ranges to assure 
that the entire system will operate safely, efficiently, and economically. Constraint 
of parameters is expressed as follows: 

• Voltage magnitude constraint: This condition means that the voltage magnitude at 
all nodes of RDNCs must be restricted in the boundaries between the maximum 
and minimum values. It can be described by the expression below: 

Vmin ≤ Vnodey ≤ Vmax; y = 1, . . . , Nno (4) 

where Vmin and Vmax are, respectively, the minimum and maximum voltage 
magnitudes and Vnodey is the voltage value of node y. 

• Line current constraint: Unlike bus voltages, the current through each distribution 
line is only restricted by its designed capability corresponding to the size and
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material of conductors. That parameter can be seen as the maximum current 
capability of the line without overload or damage. In a normal condition, an 
operation current of a specific distribution line must be not higher than its 
designed current capability and presented by: 

Ibrx ≤ I
Cap 
brx ; x = 1, . . . , Nbr (5) 

where .I
Cap
brx is the designed capability of the distribution line x. 

• Constraint of installation places of PVGs and WGs: The location of PVGs and 
WGs can be placed at nodes in distribution networks except for Node 1 (source 
node), which is the traditional generating source of the system. The location 
limits are formulated as follows: 

2 ≤ LCPV,q ≤ Nno (6) 

2 ≤ LCWT,n ≤ Nno (7) 

where LCPV, q and LCWT, n are, respectively, the locations of PVS q and WT n in 
RDNC. 

3 The Northern Goshawk Optimization 

3.1 The Main Inspiration 

The main idea of the Northern Goshawk Optimization (NGO) has been primarily 
inspired from hunting actions of the Northern Goshawk bird in nature. The species 
is a member of Accipiter family and mainly dwell on Eurasia and North America. 
The potential prey of Northern Goshawk could be any small creatures such as 
mice, rabbits, and squirrels or even several bigger animals such as raccoons and 
foxes. NGO is a natural behavior-based metaheuristic algorithm, and it is also 
acknowledged as a population-based algorithm. After running and comparing NGO 
with 8 other metaheuristic algorithms including genetic algorithm (GA), particle 
swarm optimization (PSO), teaching-learning-based optimization (TLBO), grey 
wolf optimizer (GWO), gravitational search algorithm (GSA), tunicate swarm 
algorithm (TSA), whale optimization algorithm (WOA), and marine predators 
algorithm (MPA) for solving 68 benchmark functions and 4 engineering design 
optimization problems [34], NGO was stated to be superior to these compared 
algorithms. So, NGO is suggested to be an effective algorithm for obtaining 
solutions of the considered problem in the study.
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3.2 The Candidate Solution-Searching Process of NGO 

Suppose that Pz is the population and each particle in the population is called Pj. 
At the initial state, each particle (also each solution) Pj (j = 1, . . . , Pz) can be 
randomly created within the search space [Pmin, Pmax] where Pmin and Pmax are, 
respectively, the minimum and maximum solutions in the search space. According 
to the specified objective function, each particle has a fitness value Fj. Then, NGO 
continues the searching process by creating new solutions as the update mechanism 
below. 

3.2.1 The Update Mechanism 

The main difference between NGO and other algorithm in the same class is its 
special update mechanism where a new solution is implemented by two main stages 
including target selection and offensive maneuver as subsections below: 

• Stage 1: Target selection 
At the beginning of the stage, NGO will randomly select a particular solution 

Pr from the initial population (i.e., Pr ∈ PZ). Then, each control variable in the 
particle Pj can be newly updated by: 

a
new1 
j,k =

{
aj,k + rd1

(
bk−rd2aj,k

)
, FPr < Fj 

aj,k + rd1
(
aj,k − bk

)
, FPr ≥ Fj 

; k = 1, . . . , K&j = 1, . . . , PZ 

(8) 

where .a
new1
j,k and aj, k are the kth new and old variables owned by the jth solution; 

bk is the kth variable of the selected solution Ppr and k = 1 . . .K where K is 
the dimensions featured according to the considered problem; rd1 is a random 
number in the interval between 0 and 1; rd2 is a natural random number, either 1 
or 2; and FPr is the fitness value of the selected solution Ppr. 

• After generated by Eq. (8), each new solution is compared to its older one, and a 
better solution is retained to make a new group of the high-quality solutions. The 
detail of the first evaluation step is described by: 

Pj =
{

P
new1 
j if F

new1 
j < Fj 

Pj else 
(9) 

where .P new1
j and .F new1

j are the jth new solution and fitness value of the jth new 
solution, respectively. 

• It is the first evaluation step to update new solutions, called target selection, of 
the whole update process. 

• Stage 2: The offensive maneuver
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In this stage, new variables of an updated solution can be generated by using 
following expressions: 

a
new2 
j,k = aj,k + PHR (2rd1 − 1) aj,k (10) 

where .anew2
j,k is the kth new variable owned by the jth solution in the population 

and PHR is the possible hunting area formulated as follows: 

PHR = 0.02
(
1 − 

I t  
IT  max

)
(11) 

where It and ITmax are the current value of iterations and the maximum number 
of iterations, respectively. 

• Thus, the second evaluation step to update new solutions, called offensive 
maneuver, is completed by: 

Pj =
{

P
new2 
j if F

new2 
j < Fj 

Pj else 
(12) 

3.2.2 The Terminated Condition 

Like all other metaheuristic algorithms, the searching process of NGO is also an 
iterative mechanism. So, the termination condition is established according to the 
maximum number of iterations. 

The entire searching process for the optimal solution of NGO is described step 
by step as a flowchart in Fig. 1. 

4 Numerical of Results 

Three metaheuristic algorithms, including Bonobo optimizer (BO), Transient 
Search Optimization (TSO), and Northern Goshawk Optimization (NGO), have 
been applied to determine the optimal sizes and locations of one PVG and one WG 
in the IEEE 85-node distribution network configuration to minimize energy loss. 
After that, the best algorithm is applied to investigate the impact of energy loss on 
the quantity of PVGs and WGs installed in the grid. The data for wind speed [11] 
and solar radiation [26] are presented in Tables A.1 and A.2 of the Appendix. The 
structure of the IEEE 85-node distribution network [21] is shown in Fig. 2. 

The implementation of proposed approaches for the considered problem is 
performed on a personal computer with 2.2 GHz of the central processing unit 
(CPU), 8GB of RAM. The code is built and simulated on MATLAB software
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Fig. 1 NGO flowchart
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Fig. 2 The configuration of IEEE 85-node distribution network 

version R 2019a. For each metaheuristic method, the evaluation is tested over 
50 independent runs, and the statistical analysis is conducted for all obtained 
results. The control parameters of the search processes such as population size 
(Pz) and maximum quantity of iterations (Itmax) are set by intuition and experiment 
experiences via many trials. In this research, the populations of TSO, BO, and NGO 
can be set as 20, 20, and 10, respectively; meanwhile Itmax of them is set to 50. 

4.1 The Determination of the Best Method for Solving 
the Considered Problem 

The results obtained by three applied methods will be presented and analyzed in 
different criteria to determine the best method. The specific values in terms of 
optimal size and position belonging to PVG and WT are shown in Table A.3 in 
the Appendix. Figure 3 describes the energy loss resulted from 3 applied methods 
over 50 runs. The blue line represents the energy loss diagram of NGO, while the 
dashed black line and the dotted red line are, respectively, illustrated for those of 
TSO and BO. As we can see in the figure, the fluctuation of energy loss values 
among runs given by NGO is the smallest and that of TSO is highest among three
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Fig. 3 The energy loss values obtained after 50 independent runs 
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Fig. 4 The minimum convergences given by three applied methods 

applied methods. It means that the optimal results obtained from many different runs 
of NGO vary only in a small range or, in other words, the obtained results are more 
reliable. 

Figure 4 shows the minimum convergence curves of three applied methods. It 
indicates that the best convergence of these algorithms is different and NGO seems 
to have an outstanding performance over others. In fact, NGO only requires 30
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Fig. 5 The mean convergences given by three applied methods 

iterations for reaching the optimal solutions, while BO utilizes over 40 iterations. 
On the contrary, TSO cannot determine the optimal solution even if the last iteration 
is reached. 

The mean convergence curves obtained by three applied methods are displayed in 
Fig. 5. From the independent runs of 25 to the end, the blue line illustrated for NGO 
is always much lower than the two other ones which are displayed for BO and TSO. 
That means the energy loss saved by the solution determined by NGO is better than 
the ones reached by BO and TSO. In the considered problem, the lower the value of 
energy loss is determined, the more efficient the corresponding proposed method is. 

Figure 6 proves the outperformance of NGO among the three applied methods in 
terms of the performance risk due to randomly searching solutions as indicated by 
the maximum convergence curves. By observing Fig. 6, it is easy to realize that the 
maximum values of energy loss resulting from NGO are substantially lower than 
both BO and TSA over 50 runs. It means that even in the poorest case, the obtained 
result of NGO is also better than those of BO and TSA, and it has the smallest risk 
among the three applied methods due to uncertain and random characteristics of 
metaheuristic algorithms. 

Table 1 shows the comparison among three applied methods by statistical values 
in terms of minimum loss (min. loss), mean loss (mean loss), maximum value (max. 
loss), and standard deviation (STD). By looking at min. loss values, NGO gives 
the best result with 1094.60 kWh, while the corresponding results reached by BO 
and TSO are 1094.96 kWh and 1098.30 kWh, respectively. Next, while the mean 
energy loss obtained by NGO is only 1150.27 kWh, the relevant value given by BO 
is 1174.64 kWh and by TSO is 1232.10 kWh. In other words, mean loss of NGO 
is lower than that of BO, about 24.37 kWh, as well as lower than that of TSO by
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Fig. 6 The maximum convergences given by three applied methods 

Table 1 The comparison on 
specific values resulted by 
three applied methods in 
different criterion 

Method TSO BO NGO 

Min. loss (kWh) 1098.30 1094.96 1094.60 
Mean loss (kWh) 1232.10 1174.64 1150.27 
Max. loss (kWh) 1356.64 1295.93 1229.54 
STD 55.14 53.34 38.01 

81.83 kWh or 2.12% and 7.11% in percentage, respectively. Regarding the max. 
loss, we can see that NGO is the best reliable method because even in the poorest 
case, NGO can also reach a better solution than that of both BO and TSO. In more 
detail, the max. loss of NGO is smaller than that of BO, about 66.39 kWh, and that 
of TSO up to 127.1 kWh or 5.40% and 10.43% in percentage, respectively. Finally, 
by observing the STD of the three applied methods, it is easy to know that NGO is 
the most stable method with the STD value of only 38.01 and TSO is the poorest 
stable one with STD of 55.14. 

According to statistical comparisons presented in Table 1, NGO is the most 
effective and stable method for solving the considered problem, while TSO seems 
to be an ineffective one due to poorer performance in all aspects. 

Figure 7 presents the optimal solution of NGO, which determines the necessary 
amount of active and reactive power supplied by both PVG and WG. The red dotted 
line depicts the active power supplied by PVG, while the blue and the pink ones, 
respectively, describe the amount of active and reactive power injected into the grid 
by WG.
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Fig. 7 The contribution of injected power from PVS and WG within 24 h 
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Fig. 8 Voltage profile in 24 h given by NGO 

The voltage values obtained by NGO during a day for 24 h are presented in Fig. 8. 
These voltage values completely comply with the voltage constraints as described 
in Eq. (4) in Sect. 2.3. Particularly, voltage values are always located inside the 
upper and lower boundaries. These boundary values are preset at 0.9 and 1.1 pu, 
respectively.
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4.2 The Investigation on Quantity of PVGs and WGs to Power 
Loss Value 

The investigation will be conducted based on the obtained results of the considered 
problem in three different cases where the power loss of the IEEE 85-node 
distribution network is evaluated via various installation plans of PVGs and WGs in 
the grid. Every case has a different quantity of PVGs and WGs integrated into grid, 
e.g., the base case with no PVGs and WGs installed and three others, as mentioned 
earlier, Case 1, Case 2, and Case 3. 

Figure 9 illustrates the power loss during 24 hours of the IEEE 85-node 
distribution network according to the specific number of PVGs and WGs installed. 
The black line presents the base case which no DGs is installed, the dotted red line 
describes the power loss of Case 1, and the blue line and the pink line, respectively, 
depict the obtained results from Case 2 and Case 3. As we can see in the figure, 
the power loss of the base case is obviously too high due to no DGs installed in the 
grid, while the remaining cases can significantly reduce the power loss thanks to 
the contribution of DGs in the grid. In addition, the different quantities of PVGs and 
WGs installed in the distribution network also cause different impacts on total power 
loss values. The greater the number of DGs installed in the grid, the more saving 
power/energy is obtained. However, from the economic point of view, the higher the 
number of DGs installed in the grid, the more investment is needed. Thus, before 
deciding any chosen case, we need to establish a full cost-benefit balance sheet to 
generally compare between saving energy cost and investment plus operation cost 
for each installation case of DGs. 
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Fig. 9 Loss values given by different cases without/with PVGs and WGs
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Fig. 10 The performance comparison among three installation cases in statistical criteria 

Furthermore, as NGO is a metaheuristic algorithm, the impact of different 
quantities of PVGs and WGs to power loss value should be statistically analyzed in 
detail. The particular values achieved by NGO regarding optimal size and position 
of PVGs and WGs in Case 2 and Case 3 are presented in Table A.4 in Appendix. 
Figure 10 describes the investigation of power loss value over 50 runs corresponding 
to different numbers of PVGs and WGs in the grid. 

The performance comparison among three installation cases is shown by Fig. 
10 in terms of different criteria such as minimum loss (min. loss), mean loss 
(mean loss), maximum loss (max. loss), and standard deviation (STD). As shown 
in the figure, the blue bars illustrate the obtained results of Case 1, while the 
red bars and the black bars represent the reported results of Case 2 and Case 
3, respectively. Regarding min. loss, Case 3 obtains the lowest power loss value 
of 872.89 kWh, while the corresponding value of Case 2 is 940.38 kWh and 
that of Case 1 is 1094.60 kWh. The improvement level of Case 3 compared to 
Case 2 and Case 1 is 7.73% and 25.40% in percentage, respectively. For another 
criterion, mean loss, Case 3 is also better than the ones given by Case 2 and Case 
1. The mean values reported from Case 3, Case 2, and Case 1 are, respectively, 
964.25 kWh, 1006.02 kWh, and 1150.27 kWh. Similar to the min. loss evaluation, 
the improvement levels of mean loss between Case 3 and Case 2 as well as between 
Case 3 and Case 1 are 4.33% and 19.29% in percentage, respectively. Regarding 
max. loss, Case 2 obtains the best power loss of only 1110.79 kWh, while the 
relevant results from Case 3 and Case 1 are 1130.78 kWh and 1229.54 kWh, 
respectively. Finally, the STD values show that Case 1 has the smallest value of 
38.01, while the other relevant values from Case 2 and Case 3 are 50.53 and 54.91, 
respectively.
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5 Conclusion 

In this study, three metaheuristic methods are applied successfully to determine 
the optimal size and location of PVGs and WGs installed in the IEEE 85-node 
distribution network to minimize the total power loss. In addition, the study has 
considered the data of both solar radiation and wind speed within a day’s operation 
for 24 h as well as respected all restrictions of the considered problem. Among 
the three applied methods, NGO is the outstanding method compared with other 
methods, including BO and TSO in terms of all aspects. Specifically, for the 
minimum loss value – the main target of the entire study – NGO obtained the 
smallest solution, while TSO reached the poorest one. Besides, other evaluation 
criteria including mean loss, maximum loss, and standard deviation determined 
by NGO are all completely superior to those values calculated by BO and TSO. 
Furthermore, to analyze the impact of the number of installed PVGs and WGs, 
the investigation through three different cases has been conducted using NGO. The 
optimal solutions for power loss resulting from different quantities of PVGs and 
WGs have proved that the greater the number of DGs is installed in the grid, the 
more power/energy is saved. Therefore, NGO has demonstrated to be a powerful 
searching method and can be highly recommended for solving the optimization 
problem of placing PVS and WG in distribution networks. 

Appendix 

To simulate the impact of PVGs and WGs on the power loss of the IEEE 85-node 
distribution network, solar radiation and wind speeds are used as input data for 24 
hours. The solar radiation data and the wind speed data are given in Tables A.1 and 
A.2. Finally, the obtained results including position and size of both PVG and WG, 
and power loss of the system are reported in Table A.3. 

Table A.1 The radiation 
data in 24 h within a day 

Time (hour) Gt (W/m2) Time (hour) Gt (W/m2) 

1 0 13 703 
2 0 14 736 
3 0 15 586 
4 0 16 425 
5 0 17 291 
6 0 18 86 
7 111 19 0 
8 311 20 0 
9 375 21 0 
10 503 22 0 
11 617 23 0 
12 686 24 0
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Table A.2 The wind speed 
data in 24 h within a day 

Time (hour) Gt (W/m2) Time (hour) Gt (W/m2) 

1 0 13 703 
2 0 14 736 
3 0 15 586 
4 0 16 425 
5 0 17 291 
6 0 18 86 
7 111 19 0 
8 311 20 0 
9 375 21 0 
10 503 22 0 
11 617 23 0 
12 686 24 0 

Table A.3 Optimal solutions 
given reported by three 
applied methods in Case 1 

Methods TSO BO NGO 

Position of PVG 35 34 34 
PVG size 837.445 1030.718 1012.114 
Position of WG 9 9 9 
WG size 1903.952 1790.142 1835.554 
Energy loss 1098.30 1094.96 1094.60 

Table A.4 Optimal solutions in Case 2 and Case 3 

Case Case 2 Case 3 

Position of PVGs 6; 68 7; 8; 24 
PVG size 1024.332; 893.433 98.488; 984.915; 337.912 
Position of WGs 10; 35 13; 35; 65 
WG size 1089.943; 670.594 411.510; 680.718; 623.675 
Energy loss 940.38 872.89 
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Granulated Silicon and Thermal Energy 
Converters on Its Basis 

B. M. Abdurakhmanov, M. M. Adilov, O. V. Trunilina, 
and Valeriy Kharchenko 

1 Introduction 

The study of the behavior of solar cells (SC) made of mono- (MS) and polycrys-
talline silicon (PS) at high summer temperatures, and then at even higher tem-
peratures, i.e., beyond the range typical for operation, revealed a non-monotonous 
change in the energy characteristics of the PS SC. Abnormal temperature changes in 
the parameters were detected for the temperature dependences of dark currents and 
voltages of the PS SC at temperatures ~400 K and above, namely, the occurrence 
of peaks of short-circuit current and no-load voltage of significant magnitudes [1]. 
The observed phenomena were explained from the standpoint of the manifestation 
of the thermal-voltage effect theoretically predicted in [2], consisting in generation 
of charge carriers in a heated polycrystalline semiconductor with participation of 
deep energy levels due to grain boundaries, impurities, and other structural defects. 
This conclusion was confirmed by the measurement results of dark currents and 
voltages for samples of technical silicon (TS) remelted in a solar furnace up to 
temperatures of 400 K and above [3] and even for MS SC irradiated by fast electron 
flows (E = 1 MeV) or ion implanted with alkali metal ions at p-n transition, but in 
both cases without subsequent annealing of induced radiation defects [4]. Then the 
relationship between dark current and voltage was established, namely, their growth 
with an increase in the density of various type defects in the material, as well as an 
increase in the Seebeck coefficient by two to four times in samples made of fine-
grained PS. 
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Based on these facts, we proposed the use of granular silicon (GS), i.e., silicon 
powder having the particles not sintered and not fused but simply mechanically 
pressed together with a certain effort to develop thermoelements. This approach has 
fully justified itself. It was found for GS samples that their specific thermal EMF is 
ten or more times higher than that of MS. 

2 The Physical Mechanism of the Observed Effects 

The competitiveness of a particular thermal energy converter and, accordingly, the 
material from which this device is made will be indisputable if TEC, in addition to 
accessibility and manufacturability, which in the case of silicon can be considered a 
solved problem, has high values of conductivity σ and, conversely, small values of 
thermal conductivity χ , which, along with α, determines the main parameter of the 
thermoelectric material – Q-factor Z [5, 6]. 

Z = 
α2 σ 
χ 

(1) 

The Seebeck coefficient α is considered one of the main parameters of a 
thermoelectric material and amounts to ~200–300 mV/K for traditional and most 
used thermoelectric materials such as alloys (BiTe, PbTe, SiGe) [7]. In MS, α is 
~44–50 mV/K at 300 K [5]. 

The expediency and prospects of using GS, that is, micrograin Si powder, are 
undoubted, since the specific thermal EMF at 300 K was 500 microvolts per degree 
[8], which, as indicated above, is more than ten times higher than the tabular value 
of this indicator per MS and is comparable or exceeds this value for a number of 
traditional thermoelectric materials. 

The reason for such high rates is the impurity thermal-voltage effect that, 
according to the theory [2], consists in the fact that isovalent impurities, or defects, 
a priori present in the GS and giving deep energy levels in the forbidden zone, 
participate in generating the electron-hole pairs, which occurs due to the absorption 
of heat, or photons having less energy, than the band gap width of the semiconductor. 
At the same time, the concentration, the degree of filling, and the position of these 
energy levels in the forbidden zone are very important. To fully realize the impurity 
thermal-voltage effect, it is necessary that the rate of generation of electrons and 
holes with the participation of deep levels has close values [2]. 

Of considerable interest is the use of data from [9] to explain the characteristics 
of GS, where it is shown that one of the promising directions in thermoelectricity is 
the creation of “electron-crystal phonon-glass” structures. Our GS object fits exactly 
this definition, since in GS “electronic crystal” is the grain itself – a granule or 
particle of silicon powder – and “phonon glass” is an oxide layer, SiO2, on the  
surface of a powder particle.
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By controlling the grain size, and in fact the ratio of the sum of the volumes of all 
grains and the sum of the volumes of all oxide layers at the intergrain boundaries, 
we can control the thermal conductivity of this thermoelectric material. 

Recall that the experimentally estimated thermal conductivity of c micrograined 
silicon with a grain size of about 1–30 microns, at 300–350 K, was from 10 to 
15 W/m • K, which is at least 7 times less than that of monocrystalline silicon 
and ~3.5 times less than that of silicon samples obtained by powder metallurgy, 
including operations of pressing silicon powders followed by sintering at 1500 K 
[10]. It should be noted that this is not the limit and there is a further possibility 
to reduce the value of the thermal conductivity of GS. In [10], our approach and 
the prospect of developments in the field of granular semiconductor materials were 
physically justified by considering a model of such a semiconductor. 

As a result, expression (2) was obtained from which it follows that, in contrast 
to expression (1) for homogeneous thermoelectric materials [5], the thermoelectric 
Q-factor Z of granular semiconductor depends both on the characteristics of the 
grain itself, which determine the Seebeck coefficient, and on the properties of 
the nanoscale layer of silicon dioxide covering each particle, which determine the 
thermal conductivity and conductivity of GS. 

Zeff = 
α2 
1 σ2 

χ2 
(2) 

It should be noted that theoretical estimates [10] of the thermoelectric Q-factor 
Zeff of granular semiconductors indicate their undoubted superiority in comparison 
with their monocrystalline modifications. 

This conclusion confirms the correctness of the present-day trend of replacing 
monocrystalline materials with polycrystalline ones in the field of thermoelectricity, 
which was first theoretically substantiated back in [11], but from completely differ-
ent physical prerequisites. This conclusion is also confirmed by our experimental 
results in terms of increasing α and decreasing χ [10]. 

It should be particularly noted that silicon, despite its mastery in production and 
the content in the rocks of the earth’s crust >25%, was practically not considered 
as a thermoelectric material, except in the form of alloys with germanium, due to 
the relatively small value of α in its single-crystal modification. However, based on 
the above results, we can assume that the proposed new modification in the form of 
GC can be used as a thermoelectric material and create new types of thermal energy 
converters (TEC), as well as develop prerequisites for finding new, nontrivial ways 
to increase the conductivity of GS, as described below. 

Figure 1 presents a scheme of the electron-crystal phonon-glass (ECPG) system 
consisting of semiconductor particles in contact with each other, separated by 
a thin film of a substance with the properties sharply different from those of 
semiconductor. In the system, the current can only run at places of mechanical 
contact of semiconductor particles with each other by tunneling charge carriers 
through a nanoscale layer of the substance film enveloping each of them from 
all sides. GS can be considered as one of the real examples of the system under
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Fig. 1 Structure of 
thermoelectric composite. (1) 
Granules (2) SiO2 matrix (3) 
Tunnel contact 

consideration where the silicon powder particles (grains) are the “electronic crystal.” 
The role of “phonon glass” is played by a nano-thickness film of silicon dioxide 
naturally occurring on the surface of silicon powder particles when they come into 
contact with oxygen in the air. 

Of the values σ eff, αeff, and χeff, it is possible to form an important dimensionless 
expression in thermoelectricity that characterizes the conversion efficiency: 

ZT = 
σeff α

2 
eff 

χeff 
T (3) 

where Z is the Q-factor and T is the average temperature of the thermoelement. 
In our case, when one of the “phases” is actually a tunnel contact, then we can 

talk about a heterosurface with tunnel contacts. As shown by the studies in [12], 
the most important element in terms of increasing Zeff is tunnel contacts. In our 
case, such tunnel contacts are SiO2-isthmuses between Si grains. The essence of the 
whole problem is to find conditions for optimizing the process of tunneling charge 
carriers through tunnel contacts [12, 13]. 

It is important to note that in these works we are talking about the usual 
(“Gamow”) tunneling of an electron with probability: 

D(1) (E) = exp
[
−2 

h

√
2m (V − E)x

]
(4) 

Here, V − E is the distance from the top of the potential barrier to the energy 
level of the particle and x is the barrier width. Since the tunnel contact conductivity 
is determined by the following expression [13]: 

σ (1) TK = const
∫ ∞ 

0 

D (ε∗) 
1 + exp

(
ε∗
x − μ∗) dε∗ (5)
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where ε* = ̈ /Íµ, μ* = μ/Íµ is the reduced level of energy and chemical potential, 
and then the expression (5) as  D(ε*) leads to a rather sharp drop with the growth 
of x. 

In [10], we modified the “Gamow” tunneling model by introducing two incoher-
ent electron jumps through an intermediate defective state inside the tunnel contact. 
It has been shown that in this case: 

D(2) (E) = 
1 

2 
exp

[
−2 

h

√
2m (V − E) x

/
2

]
(6) 

From the comparison of (4) and (6), it follows that this contributes to an increase 
in conductivity, but, unfortunately, not significantly. This conclusion was partially 
confirmed by our experiment during which an “island” film of conductive transition 
metal oxides, in particular, based on tin dioxide, was created on the surface of 
silicon particles coated, as mentioned above, with a nano-replaceable layer of its 
dioxide, outside of the mentioned silicon dioxide [14]. That is, according to [14], 
in order to tunnel charge carriers through a nanoscale gap of silicon dioxide, a kind 
of conducting “springboard” was created for each single grain from an island of tin 
dioxide of nanoscale thickness as well. 

More promising is the organization of the so-called resonant tunneling of charge 
carriers through an intermediate state inside the tunnel contact itself, that is, the 
organization of optimal tunneling conditions in the SiO2nanotool film itself [10, 
15]. 

It should be noted that resonant tunneling is fundamentally different from the 
“Gamovsky” one used in [12, 16], and judging by the review [17] devoted to the 
latest achievements in the field of composite thermoelectric materials, it is proposed 
in [10, 15] for use in thermoelectricity for the first time. 

For the case of resonant tunneling in [10], it was shown that the probability 
of charge carrier tunneling with the use of a local resonant energy level specially 
created in a nanoscale layer of silicon dioxide with an occurrence near the bottom 
of the conduction band is much higher than in the case of Gamow tunneling [12, 
13]. 

One of the ways to create such local energy levels can be irradiation, for example, 
with protons, neutrons, or gamma quanta. However, the process of radiation is 
not easy to run, especially and most importantly selection of the right dose. Our 
estimates show that for effective current transfer through resonant levels in silicon 
dioxide nanotubes, it is necessary that their number, i.e., the density of levels or 
states, should be an order of 1017–1018 cm−3. The desired density can be provided as 
a result of various types of irradiations, for example, neutron and proton irradiation 
strongly displacing regular atoms and gamma irradiation strongly ionizing strained 
chemical bonds. Using the concept of accumulated radiation through the so-called 
effective dose, which makes it possible to uniformly describe various types of 
radiation in rads [18], it can be stated that the characteristic, i.e., necessary, doses 
ensuring the appearance of levels at the bottom of the conduction band of silicon 
grains are 107 rad. However, firstly, this dose can be clearly insufficient for the
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appearance of the desired energy levels in the forbidden zone of silicon dioxide. 
Secondly, if we draw an analogy with the conductivity of irradiated monocrystalline 
silicon, it is possible that the SiO2 conductivity increases due to irradiation, while for 
the same reason, the conductivity of the silicon powder particles themselves drops 
sharply due to induced radiation defects causing a sharp increase in recombination 
of charge carriers. 

At least, our irradiation of granular silicon with gamma quanta of Co60 within the 
dose range of 107–109 rad did not lead to a significant improvement in its electrical 
conductivity. Nevertheless, the results we obtained made it possible to formulate 
other technological approaches to solving the problem of increasing the conductivity 
of silicon dioxide covering Si powder particles in GS. 

3 Application of Granular Silicon in New Types of Thermal 
Energy Converters 

We have proposed a TEC containing a working body made of granular silicon 
material of the same type with impurities giving deep levels. 

The TEC design is presented in Fig. 2 where it is shown in the section. 
It can be seen that the TEC contains a working body (1) made of silicon powder 

of n or p type of conductivity. Figure 2 shows a TEC variant with a working body 
made of p-type silicon powder placed in a form-forming tubular hollow housing 
(2) made of a dielectric heat-conducting material, for example, ceramics. To the p-
type silicon powder made by grinding the SHB 10 and SHB 0.5 plates, followed by 
sieving and selecting a part of the powder with a grain size of 10–30 microns, we 
added a powder made from technical silicon (TS) shown by asterisks in the shading 
of the working body (1). The Kr0-brand TS was used in the form of a powder 
with dispersion similar to that of the Si powder of electronic purity. TS contains 

Fig. 2 Thermovoltaic 
converter of thermal energy 
with a working body from 
isotype GS according to the 
Patent of the Republic of 
Uzbekistan № IAP 05121 
[19]. (1) Working body (2) 
Ceramic housing (3) Ohmic 
contact
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impurities giving deep energy levels, specifically an iron admixture at the 0.5% 
level. The working body (1) is equipped with ohmic contacts (3) connected at the 
edges of the housing (2) with terminals for connection to an external circuit. Ohmic 
contacts (3) are made of metal giving deep energy levels in silicon, namely, steel 
being an alloy consisting of >85% iron. TEC can operate from thermal radiation, as 
well as from contact with a heated body, hot gases, liquids, vapors, liquid metal, or 
an open flame. The heat supply is schematically shown by bold arrows. 

We have also developed a device in which the above-described individual TECs 
are switched into a battery. The battery [20] contains single TECs electrically 
connected in series with each other with a working body of GS of the same type 
of conductivity as in [19]. The single TECs are placed in a common housing in such 
a way that when the housing is rotated by the working side with a selective coating 
in the direction of the thermal radiation source, the unipolar ohmic contacts, namely, 
positive, are also turned towards the radiation source. Switching of the multipolar 
contacts into a serial electrical circuit is provided by connecting electrodes having a 
smaller cross-sectional area as compared to that of the multi-named ohmic contacts; 
each pair of ohmic contacts directly connected to each other does not have direct 
thermal contact with each other, which is achieved by their spatial separation. 

As is known, the solar cells (SC) convert only a part of the solar radiation 
reaching the Earth’s surface within the wavelength range of 0.4–1.1 microns, while 
only within the range from 0.4 to 3 microns, there are up to 44% of the total solar 
radiation energy [21]. Therefore, the conversion of this part of solar radiation, as 
well as the heat of heated bodies, liquids, and gases of natural or man-made origin, 
is an important issue to be solved with the help of thermal converters of various 
designs. One of such hypothetical energy converters [2] named by the author as 
a thermoelectric element is made from a non-monocrystalline material with p-n 
conductivity with the efficiency of ~80% and higher radiation resistance. 

By analogy with [2], we have created a TEC whose operation is also based on 
the processes characteristic of non-monocrystalline silicon. The working body of 
the TEC [22] consists of two regions mechanically contacting with each other; each 
of the regions is formed from silicon of p and n types of the same dispersion. 

The TEC working body [22] (Fig. 3) contains p and n regions 1 and 2, 
respectively, made equal in size, formed from silicon powders with different types 
of conductivity; the TEC working body is placed in housing 3 of a dielectric heat-
conducting material, for example, ceramics, with a selective coating 4; each of the 
different types of regions is equipped with an ohmic contact 5, which, in turn, is 
equipped with terminal 6 for connection to an electrical circuit. The impurity giving 
deep energy levels in silicon is intentionally introduced only into the p region 1 
in the form of an additive to the p-type silicon powder from which it is formed, a 
powder from TS containing an admixture of iron (schematically shown by asterisks 
in the hatching of the p region). The typical energy characteristics of TEC with the 
size of the p and n GS regions ~6 mm in length and 1.7 mm in diameter, for example, 
at temperature of 650 K, are Uoc ~ 200 mV and Jsc ~ 200 mA/cm2. 

This TEC is operable when heated by solar radiation or radiation from heated 
bodies; the heat can be supplied to the housing 3 in any known way: in the form of
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Fig. 3 Thermal energy converter with p and n areas made of granular silicon according to the 
Patent of the Republic of Uzbekistan No. IAP 04831 [22]. (1) p region, (2) n region, (3) tubular 
housing made of dielectric material, (4) selective coating, (5) ohmic contact, (6) output. Sizes of p 
and p areas: length 6 mm each, diameter 1.7 mm 

direct or concentrated solar radiation; in the form of a stream of heated gas, steam, 
and liquid; and through thermal contact with a heated body or by direct contact with 
an open flame, etc. The best results have been obtained when a temperature gradient 
is created, for example, from the TEC center, i.e., the contact point of Si powders 
made from raw materials with different types of conductivity to its edges or at least 
to one of the edges. 

Of interest are the new TEC designs developed by us, which use such an 
environmentally friendly source of thermal energy as concentrated solar radiation 
(CSR) and, accordingly, modules in which, unlike photovoltaic devices of this type, 
a non-photoactive component of CSR is applied. 

One of the new module designs is actually a GS-type TEC [19] having the heat 
supply to the working body from one of the ends of the dielectric housing; it is 
placed in a focal spot of the parabolic solar radiation concentrator with a 500-mm 
diameter, and this device with the solar radiation intensity of ~800 W/m2 can be 
heated an area of 80 mm in diameter up to ~800 K. 

Figures 4 and 6 show the designs of new-type devices with a working body from 
GS; they are very interesting because their work is based on the use of electricity: 

• Simultaneously heat and outer pressure arising, among other things, due to the 
use of CSR and acting on the TEC working body, made of TS-grinding GS. 

• The heat received from the CSR coming from a truncated conical concentrator 
focused on the boundary of the n- and p-type areas of the working body made 
of TS-grinding GS with the addition of powder made by grinding, respectively, 
silicon of n+ and p+ types, providing a temperature gradient along the length of 
the working body.
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Fig. 4 A new type of TEC from GS working on boundary of two media with T2 > T1 and P2 > P1, 
separated by an insulating wall. (1) Working body from GS, (2) carcass, (3) fixed electrode, (4) 
movable electrode connected to bellows (5), placed in an environment with a higher pressure P2 
and transmitting compression force working body (1). The arrows show not uniform heat supply 
to the TEC 

• Heat received from the CSR source and focused on the boundary between TS-
grinding GS and a contact material also providing a temperature gradient along 
the length of the working body. 

Figure 4 shows a section of the heat and pressure converter. Figure 5 shows 
the temperature dependences of current density Jsc when placing the device on 
the boundary of two media with different pressures (P2 > P1) and temperatures 
(T2 > T1). The developed TEC has a number of modifications. One of them contains 
two bellows and two movable electrodes placed along the edges of the housing 2. 
This TEC is completely placed in a high-pressure medium and outer pressure acts 
on the GS working body 1 from two sides. 

It is important to note that TEC of this type can operate under extreme operating 
conditions, for example, open space or on the surface of celestial bodies, such as 
Venus, the lower layers of the atmosphere characterized by high values of temper-
ature, pressure, and radiation levels. So, the TEC quite operable at temperatures 
of ~900 K and pressures of ~60 atm, characteristic of the Venus surface, is shown 
in Fig. 4. The statement regarding the GS resistance to radiation is based on our 
experimental data where the high radiation resistance of GS has been proven by 
special experiments. In particular, from comparing the results of measurements of 
the characteristics of TEC from GS before and after irradiation with gamma quanta 
of Co60 with a dose of 109 rad, which is certainly destructive for all types and kinds 
of semiconductor devices, no changes were noted. 

Another option for using this type of TEC is a new solar module using a parabolic 
concentrator as a source thermal energy that provides heating of the TEC working 
body to the required temperatures and simultaneous creation of outer pressure. 

The calculation results [23] show that with the help of such a concentrator made 
by sagging a glass billet with 500 mm in diameter, a focal length of 500 mm, and a
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Fig. 5 Typical dependences of current density of GS-TEC at various pressures P2 and tempera-
tures T2 at a fixed temperature T1 ~ 300 K. Pressure P2, MPa: (1) 270; (2) 235; (3) 205; (4) 185; 
(5) 170; (6) 155; (7) 135; (8) 95; (9) 55; (10) 25. GS contains 30% Kr00-grade TS powder sifted 
with separation fractions 10–30 microns 

sprayed aluminum coating having the reflection coefficient of ~0.8, it is theoretically 
possible to obtain with the solar radiation intensity of ~1000 W/m2 the temperature 
of ~800 K on the area ~80 mm in diameter and ~1300 K on the area 7.1 cm2, and 
the possible maximal temperature ~2800 K at a “point focus” with a diameter of 
<1 cm2. 

The actual temperature value measured by the chromel-alumel thermocouple 
mounted on a blackened round steel plate with a diameter of ~80 mm and a thickness 
of 5 mm placed behind the focus of this parabolic concentrator at a distance of 
~80 mm at a solar radiation intensity of 800 W/m2 did not exceed ~500 K. However, 
that was quite enough for testing the operation of TEC manufactured in two variants. 
The first variant of TE´ was a system [19] in which the working body was made 
of the GS particles pressed together with a fixed mechanically generated force of 
~35 MPa; GS consisted of ~70% of silicon p-type waste of electronic purity and 
30% of the same size particles of Kr00-brand TS powder. The heating of the working 
body was due to the use of the parabolic concentrator described above. This variant 
of TEC was used by us as a reference. 

The scheme of the module [24], in which the CSR is used both as a source 
of heating of the TEC working body and to create pressure on it, is shown in 
Fig. 6. The compression force of the GS particles is provided by the pressure of 
superheated water vapor placed in the cavity of the silphon 8; to one of its ends, 
the receiving platform 6 heated by the CSR is hermetically attached, and the second 
end is hermetically connected to a movable, “hot” electrode 3 equipped with a heat-
conducting shank 9. For the ratio of the silphon end area (50 cm2) and the end area 
of the “hot” electrode ~ (0.3 cm2), the calculated force of GS compression was
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Fig. 6 A new type of solar module with CSR. (1) Working body from the GS, (2) ceramic carcass 
of TEC, (3) movable “hot” electrode with a shank (9), (4) fixed “cold” electrode, (5) dielectric 
carcass, (6) reception area heated by CSR (shown arrows), (7) copper plate, (8) bellows with H2O 
vapor, (10) heat pipe 

~270 MPa. The “cold” electrode 4 is connected to a platform 7 made of copper and 
cooled by a heat pipe 8 like a gravity thermosiphon thermostabilizing its surface and 
hence the “cold” electrode 4 at a boiling point of 336 K, used in the heat pipe 8 as a 
refrigerant, acetone up to the supplied heat capacity of 250–260 Wt. 

The temperature of the “hot” electrode 3 was 475 K. The current density Jsc of 
TEC with the size of the GS working body Ø6 mm and a length of 12 mm was 
20 mA/cm2, and the voltage was Uoc ~ 80 mV. These values turned out to be ~30% 
lower than expected ones, which is explained by a loss of thermal energy through 
the device dielectric housing 5, as well as by a decrease in the absolute value of the 
current when the area of the TEC working body is increased, which occurs due to 
recombination currents running in GS and associated with charge states at the grain 
boundaries. 

Once again noting the improvement in the energy characteristics of TEC when 
creating a temperature gradient over the working body, we give an example of using 
this fact. Figure 7 shows the scheme and characteristics of a solar module containing 
a concentrator 1 in the form of a truncated cone; TEC 2 converting the CSR thermal 
energy is placed in its focal band; the TEC working body is equipped with electrodes 
3 and 4 that are brought into mechanical contact with the areas 5 and 6 made of GS 
manufactured by TS grinding with the addition of Si powders of n+ and p+ types, 
respectively. 

A sectional view of the module is shown in Fig. 7a; it can be seen that the CSR 
from the truncated conical concentrator 1 is directed to the receiver 7 being a narrow 
(~1 mm)metal ring with a blackened surface and mounted on the outer surface of the 
converter housing 2. The calculation shows that for the ratio of the diameter of the 
receiver 7 and that of the concentrator 1 ~ 1/100, the working body temperature in 
the area of the junction of n and p regions 5 and 6 when the receiver is illuminated 
7 by CSR from the transatmospheric Sun can be at a level of 1000 K even with



254 B. M. Abdurakhmanov et al.

–6 –4 –2 0 
0 

50 

100 

150 

200 

2 4 6

2 

1 
X (mm) 

Uxx (mV) 

–6 –4 –2 0 
0 

100 

200 

300 

2 4 6

2 

9 

3 
5 

7 
1 

–X +X 

6 
4 

8 
2 

a b

1 X (mm) 

Jsc(mA/cm2) 

 

 

 

Fig. 7 (a) This is a sectional view of the solar module. (1) Conical concentrator, (2) TEC carcass, 
(3 and 4) electrodes, (5) working body made of silicon with the n and p areas brought into contact, 
(6) working body made of granular silicon, (7) CSR receiver in the form of a ring, (8) screen, 
(9) radiator; (b) the change in current density Isc; (c) voltage Uoc when the converter is moved to 
directions (−X) – (+X) at temperatures of 1–500 K and 2–700 K measured on the receiver (7) 
when it is illuminated with CSR at P0 = 700 W/m2 and P0 = 850 W/m2, respectively 

insufficiently accurate execution of the concentrator 1 and a reflection coefficient 
of ~0.8. The radiation resistance of the module is ensured not only due to the TEC 
working body from GS but also due to the macroscopic screen 8 on the electrode 
4, which excludes any direct hit of charged particles going in the direction from the 
Sun to the TEC working body 2. Figure 7b, c show the changes in the short-circuit 
current density (Isc) and the no-load voltage (Uoc) when moving the TEC housing, 
i.e., displacement of the boundary between the n and p regions 5 and 6 to the right 
(+X) or to the left (−X) relative to the midline (mid-height) of the truncated conical 
concentrator 1. Curves (1) in Fig. 7b, c were measured under conditions of AM 1.5 
for the solar radiation intensity P0 = 700 W/m2 and curves (2) for P0 = 850 W/m2 

and air temperature 300 K. It can be seen that the maximum energy indicators of 
the module setup are observed when the middle line of the concentrator 1 coincides 
with the boundary between the different-type GS regions 5 and 6. The experiments 
with variation of the concentrator height within the range from 2 to 15 mm and 
with creation of temperature gradients along the working body length not only due 
to the TEC uneven illumination with CSR from the truncated conical concentrator 
but also due to heat transfer from the heated screen 8 and heat removal through the 
developed surface of the radiator 9 on the electrode 3 showed that it is possible to 
increase the value of Isc at temperature of 700 K up to ~6.6 mA for Uoc = 200 mV,



Granulated Silicon and Thermal Energy Converters on Its Basis 255

which was demonstrated by a pilot converter with a working body of 12 mm in 
length and 1.7 mm in diameter only. The ratio of the TEC-produced energy to 
the mass of the GS working body with the density of 0.69 of the monocrystalline 
silicon density under Earth conditions is ~30 mW/g, and the expected one, i.e., 
under transatmospheric Sun illumination, can be at least 48 mW/g with an unlimited 
service life. 

The described module can also be equipped with a TEC with a working body 
made of isotype GS, i.e., from Si powder of the n or p type only. In this case, the 
area of GS-metal contact is exposed to CSR illumination, i.e., local heating. It was 
found that when heating this region of the width from ~0.5 to 1 mm, the TEC with 
the length of only 6 mm and the diameter of 1.7 mm has a short-circuit current 
density of 200 mA/cm2 at a voltage of 60 mV. 

4 Ways to Improve the Energy Characteristics of Heat 
Energy Converters Based on Granular Silicon 

The most important issue for further development of TEC and modules is to 
increase the GS conductivity; its solution is based on increasing the probability of 
charge carrier tunneling through a nanoscale oxide layer covering silicon particles. 
We believe that this can be achieved either by creating for tunneling carriers a 
kind of “bridgeheads” made in the form of nanoscale islands of SnO2 on the 
surface of a nanoscale layer of silicon dioxide covering the GS particles [15] or  
by adding nanoscale particles of amorphous silicon to the GS powder, as well as 
by special alloying of a silicon dioxide film [25]. The solution in [25] implies two 
implementation options. The first is to select such an alloying impurity that would 
be a deep impurity in silicon and at the same time dissolve well in SiO2, creating 
energy levels at the bottom of the conduction band of silicon dioxide. In our opinion, 
such an admixture should be sought among those responsible for the color centers 
of SiO2-based glass, i.e., Co, Mo, Fe, etc. This can also be small impurities highly 
soluble both in Si and SiO2. We also believe that alkali metal impurities are very 
promising because of their easily diffusion in silicon and highly soluble in oxide. 
The second option assumed irradiation with a dose of at least 109 rad, leading to 
appearance of energy levels with the density of 1017–1018 cm−3 in the Si particle 
and in the nanoscale SiO2 film. These levels are near the ceiling of the silicon 
conduction band and the bottom of the SiO2 conduction band; through them the 
resonant tunneling of charge carriers through a nanoscale SiO2 film takes place with 
more probability as compared to “Gamovsky” one. The introduction of impurities 
soluble in SiO2 and in silicon itself into GC was more productive. This idea was 
first formulated in [26], and then after the experiments was performed, a patent for 
this specific technical solution was granted. 

For different types of GS, including those with different types of conductivity 
and with different grain sizes, we used impurities of Fe, Ni, and a number of
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alkali metals (AM). The originality of our approach lies in the fact that not the 
GS itself was doped, but GS was made from raw materials with one or another of 
the mentioned admixture introduced into it in advance. 

At the same time, the most important conditions determined by us were fulfilled, 
namely, raw materials for the GS manufacturing; the samples of PS of various 
technological origins were selected but with the grain sizes comparable to the 
GS particle size we planned to obtain by grinding this raw material. That is, the 
basis was, firstly, the fact of the predominant destruction of the polycrystals during 
mechanical grinding along grain boundaries, which happened, according to the 
results of optical microscopy of Si powder before sieving, from which a conclusion 
about relative uniformity of the powder particle sizes can be made. Secondly, we 
assumed that the GS particles obtained by grinding inherit from the grains of non-
monocrystalline raw materials the impurity clusters at their boundaries, which is 
automatically accompanied by doping the surface of the SiO2 film of the obtained 
silicon particles contacting with air oxygen. It is easy to notice that we use a 
well-known physical effect of impurity segregation at the grain boundaries during 
crystallization of polysilicon that is used in practice for polysilicon cleaning by 
grinding and subsequent etching of the powder particle surface. 

This assumption is confirmed by the data of instrumental estimation of the 
distribution in volume of a single Si granule with ~18 microns in size, oxygen and 
natrium introduced into the raw material in the form of PS. It was found that the 
silicon concentration decreases to the granule surface and the oxygen concentration, 
on the contrary, increases sharply. The Na content turns out to be minimal in the 
granule center and, as expected, increases towards the surface, reaching a maximum 
at the granule boundaries. 

The operational capability of a new method of increasing the GS conductivity 
is confirmed by Fig. 8 where the temperature dependences of GS resistivity are 
presented: Curve 1, standard, is for Si powder of electronic purity; Curve 2 is for a 
mixture of TS powders (30%) and p-type PS with the grain size of 10–30 microns; 
Curve 3 is for GS from p-type PS plates pre-doped with Na by ion implantation; 
and Curve 4 is for GS from p-type multi-silicon plates doped with nickel and 
Curve 5 with iron before grinding. It can be seen that when Na is introduced 
into the initial PS, the conductivity of GS obtained from it by grinding is two 
times higher than that of the standard within the heating temperature range of 300– 
650 K. This is even better seen at a temperature (≥430 ◦C), when there takes place 
intensive decomposition of oxygen-containing SiO4 complexes initially located at 
grain boundaries and after grinding mainly at the boundaries of GS particles. 

The increase in the conductivity of the grain boundaries obviously increases the 
probability of resonant tunneling of charge carriers through the nanoscale SiO2 
layer, which leads to the observed growth in the GS conductivity. In the case of Ni 
impurity introduction into the raw material (Curve 4), the increase in conductivity 
is less noticeable about 1.5 times less, which is explained by the fact that in the case 
of Na impurity introduced into the initial PS by ion implantation, it is possible to 
achieve a much higher degree of grain boundary doping than when introducing a 
nickel impurity by “rubbing” the Si surface [27] with subsequent diffusion. Perhaps
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Fig. 8 Dependence of the specific resistance of GS samples on temperatures: (1) GS from 
electronic purity Si powder; (2) GS from a mixture of powders TS (30%) and PS; (3) GS from 
PS doped with Ni; (4) initial PS doped with Na; (5) GS from multi-silicon melted from a charge 
with the addition of TS 

the low solubility of Ni in Si also plays a role. On the contrary, in the case of 
doping of the initial polycrystalline raw materials with an iron admixture from 
multi-silicon obtained from the charge with TS addition, the obtained GS has the 
highest conductivity (Curve 5). Similarly, the samples obtained by PS grinding 
and pre-doped with an iron admixture introduced by diffusion after “rubbing” the 
surface according to [27] have a sufficiently high conductivity. It is important to note 
that all the samples have a very high Seebeck coefficient (~490–520 at 350–375 K) 
measured independently in two organizations. 

The best raw material option for creating GS with minimal resistance turned out 
to be a mixture of TS and PS powders in the ratio of three to four parts of TS to six 
to seven parts of PS, pre-doped before grinding with an iron admixture, as well as 
grinding of multi-silicon manufactured by one remelting of TS with the addition of 
highly alloyed p+ plates of the SHB-0.003 grade with boron content 3•1019 cm−3 

with an additional two- or threefold doping of the plates cut from it by “rubbing” 
[27] of their surfaces with Al of CP grades and Ni followed by aluminum burning 
in nitrogen flow. That is, the intergrain boundaries in this case are doped with fine 
and two, at least, deep impurities simultaneously. This is confirmed by estimates 
of the elemental composition of the GS samples obtained by grinding of such raw 
materials by X-ray spectral microanalysis with the Aztec Energy Advanced X-Max 
80 spectrometer (Oxford Instruments, UK).
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5 Conclusions 

A new scientific direction has been proposed and justified concerning development 
of a new type of the thermoelectric material based on granular silicon in the 
form of Si powder. In the working body of the thermal energy converter, the Si 
powder particles are simply brought into mechanical contact with each other without 
destroying the nanoscale silicon dioxide film on the surface of particles arising from 
their contact with air oxygen in the process of mechanical grinding of the initial 
silicon material. 

The experimental results concerning abnormally high values of the Seebeck 
coefficient in samples of granular silicon have been physically justified, as well as 
values of thermal conductivity lower than that of monocrystalline silicon. 

The original ways of increasing the conductivity of granular silicon and EMF of 
thermal energy converters based on it have been physically justified. 

A number of fundamentally new types of thermal energy converters have 
been created and tested. Their energy characteristics increase under conditions 
of outer pressure on the working body, as well as modules equipped with them 
using concentrated solar radiation. A number of converter designs operable under 
conditions of high temperature, pressure, and radiation have been developed. 

The economic benefits of using granular silicon as a thermoelectric material, 
despite the so far modest energy characteristics of the converters created on its basis, 
have been obvious. Silicon is an affordable material and widely distributed chemical 
element in terrestrial rocks; it is the most mastered semiconductor in production. 
Moreover, a wide range of silicon production waste can be used in heat energy 
converters based on granular silicon, including sludge, i.e., a precipitate of silicon 
powder from a mixture of water-oil waste from cutting operations of silicon ingots 
into plates in any semiconductor production. 
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Abbreviations 

a Particle number 
C1 Cognitive parameter 
C2 Social parameter 
COSTji Cost of i-th generator at j-th time period 
D Dimension 
Dij Shutdown cost for i-th generator at j-th time period 
M Number of wind scenarios 
MDTi Minimum downtime of i-th generator 
MUTi Minimum uptime of i-th generator 
N Number of thermal generators available for dispatching (i = 1, . . .  N) 
NW Numbers of wind turbines 
PDj Load demand at j-th time period 
Pij Output of i-th generator during j-th time period 
Pi 

max Maximum generation capacity of i-th generator 
Pi 

min Minimum generation capacity of i-th generator 
Pjsce Probability of wind at j-th time period for scenario sce 
PLj System losses at j-th time period 
PRj Spinning reserve required at j-th time period 
Pwc Total power curtailed 
PWj Power produced by wind turbine 
S.D.C Shutdown cost of the system 
S.U.C Total startup cost of the system 
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Sce Scenarios of wind modelling 
Sij Startup cost for i-th generator at j-th time period 
t Current iteration 
T Number of time periods making the schedule 
Tij OFF Off time of unit i at j-th time period 
Tij ON On time of unit i at j-th time period 
Uij ‘On/off’ status of i-th generator during j-th time period. ON = 1,OFF = 0 
w Weight 
W.C.C Total wind curtailment cost 
Wc Cost of curtailed wind power per MW for a unit NW 

1 Introduction 

Wind power, itself being a renewable and clean source of energy, is a major field of 
study in the power sector. The need for optimising generation from wind power is 
due to its renewability and the ability to lower total operating costs. The optimisation 
of wind power is not fully well defined due to the dimension of a power system 
and the uncertainty associated with it, and it is still an ongoing research. Unit 
commitment analysis, which is a planning process, becomes mandatory to deal with 
the volatile nature of wind power. Wind power forecasting in unit commitment will 
help to maintain the reliability and safety of supply. Wind power flow adds network 
constraints to the already present technological constraints in the unit commitment 
problem. In fact, in power supply systems, use of wind and other renewable sources 
is limited to a small percentage of power grids to account for stability reasons. 

Thus, it is important for wind power to be modelled in order to illustrate its 
randomness. Atwa and El-Saadany [2] modelled wind speed behaviour as the 
Rayleigh probability density function where they used a stochastic approach for 
optimal allocation of wind-based distribution system. While many of wind mod-
elling methods rely on Monte Carlo simulation, Li and Zio [10] used the universal 
generating function technique, which is a convolution computation. They used 
a complex UGF function which combines mechanical and renewable generation 
states. Solar generators and wind turbines among others are all presented using 
UGF technique, and the advantage of the latter is that computation time is much 
lesser than simulation methods. Also, the computational effort used to solve the 
model was critical. The objective was to find reliability indices such as loss of load 
expectation and expected energy not supplied. Jin et al. [8] also modelled wind 
using UGF, due to its handling of discrete random variable and computational time. 
The fact that probability distribution of wind is non-identical from time to time, a 
multiple-period, multiple-state was used to model the wind system. 

Bender’s decomposition was proposed by Wang et al. [15] to solve the optimisa-
tion process. Due to the random nature of wind, different scenarios and probability 
of wind power were included in the subproblem. The master problem was consisted 
of rightly forecasted wind power generation, and the unit commitment problem was



Security-Constrained Unit Commitment with Wind Energy Resource Using. . . 263

solved in the master problem. There exists an iterative process between the two 
problems until the scenarios can be accommodated by redispatch. A simulation 
technique instead of analytical technique was used to model the wind distribution; 
Monte Carlo simulation was performed in accordance with Latin hypercube sam-
pling. Wang et al. [16] presented two unit commitment methods, deterministic and 
stochastic, to provide the linkage between day-ahead unit commitment and real-
time dispatching. The paper analysed the effects of wind power forecasting errors 
on the power system that is the uncertainty and variability of the wind power. 
The stochastic approach was found to be better in terms of cost and reliability. 
Therefore for future works, stochastic approach will be used to describe wind power. 
The deterministic approach showed similar result when more reserve requirements 
were used. No wind curtailment occurred because transmission constraints were not 
considered. 

The computational results of Wang et al. [17] suggested that a combined sample 
average approximation (SAA) algorithm can solve this complex power grid optimi-
sation problem. The risk of wind curtailment was minimised by setting risk levels 
for different probabilities. Chance constraint was exercised to describe policies 
to allow the utilisation of wind power output together with security constraints. 
Traditionally, researchers aimed for considering constraints when optimising the 
unit commitment problem. One of the main improvements that are addressed 
by Nasrolahpour and Ghasemi [12] is that transmission constraints together with 
the traditional generating constraints are considered. This constitutes the security 
constraints problem. The wind power generation being unpredictable and random 
makes the problem a stochastic one. The objective function was divided into two 
parts, one with forecasted wind power and the other with different wind scenarios. In 
addition, reconfigurable networks are proposed and compared with other solutions 
obtained. Bender’s decomposition is applied due to the nature of power systems 
which is a mixed integer type. The proposed model succeeded in maximising wind 
use and exploiting reconfiguration capability to distribute energy. 

Gupta et al. [7] proposed the use of line outage distribution factor to reduce 
the number of nonzero coefficients of post contingency DC security constraints 
for improving computational requirement. The authors considered a complex mixed 
integer linear programming problem which was solved using benders decomposition 
for modified IEEE reliability test system and 118-bus system. Guo et al. [6] built 
the uncertainty model for each main component in generation-grid-load-energy 
storage and combined with these models the production simulation method based 
on improved universal generating function. Thus, the flexibility evaluation tool 
and flexibility metrics are proposed based on flexibility definition and physical 
mechanism. The method was tested on the IEEE RTS-79 and on Zhangjiakou 
system which has serious renewable energy curtailment problems. Alqunun et al. 
[1] presented a modified formulation for the wind-battery-thermal unit commit-
ment problem that combines battery energy storage systems with thermal units 
to compensate for the power dispatch gap caused by the intermittency of wind 
power generation. A chance constraint was used to model the uncertainty of wind 
power in order to overcome the probabilistic infeasibility generated by classical
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approximations of wind power. The unit commitment problem was solved using a 
mixed-integer linear programming algorithm. 

Most research involved was to solve the problem of unit commitment in order 
to dispatch loads correctly. Many of them included evolutionary algorithms [9, 11, 
14], and due to widespread calls to use wind energy, it is therefore advantageous to 
investigate unit commitment while maximising wind power generation. It was noted 
that none of the evolutionary algorithms mentioned had a recurring optimal solution. 
For modelling of a proper power system, transmission and generation constraints 
should be considered in addition to power losses. However, only a few studies 
have considered this aspect, and those who have used it did not use a comparative 
approach. Therefore to validate the findings, evolutionary algorithms such as GA 
and PSO could be helpful. 

The chapter is organised as follows. The mathematical formulation of the 
unit commitment problem is described in Sect. 2. Wind modelling using UGF is 
presented in Sect. 3. Section 4 gives the methodology adopted in this study. The 
results are presented in Sect. 5, and conclusion is made in Sect. 6. 

2 Mathematical Formulation of the Unit Commitment 
Problem 

2.1 Constraints 

The barrier of the unit commitment problem finds its source in the constraints that 
should be dealt with for the optimal solution to be feasible. To maintain reliability 
of supply and safety, constraints should be considered when optimising. 

2.1.1 Generation Limit 

A committed generator can supply only power within its allowable range. The 
generator output is therefore bounded by minimum and maximum limits. 

It can be classified as: 

Pmin 
i ≤ Pij ≤ Pmax 

i (1) 

2.1.2 Power Balance 

It is of paramount importance that demand is equal to generation during a period. 
Transmission losses are catered, and the inequality becomes:
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N∑

i=1 

UijPij = PDj + PLj (2) 

Since wind power is also contributing to the grid, the constraint is modelled as: 

N∑

i=1 

UijPij + 
NW∑

i=1 

PWj = PDj + PLj (3) 

2.1.3 Minimum Uptime 

Once a generator is turned on, it should remain so during a certain time, known as 
minimum uptime. 

T ON 
i(j−1) − MUTi ×

[
Ui(j−1) − Uij

] ≥ 0 (4) 

2.1.4 Minimum Downtime 

Once a generator is turned off, it should remain so for a certain time. 

−MDTi ×
[
Uij − Ui(j−1)

] ≥ 0 (5) 

The objective function is the total generation cost. The latter includes the 
production cost (fuel), the transition cost and wind curtailment cost. Wind is 
assumed to be the generation cost free and hence be used as maximum as permitted. 
The objective function must be minimised, taking into consideration the constraints 
mentioned in the previous section. 

2.2 Transition Cost 

Transition implies the change of states of generators. The energy used for switching 
on and off is not used for power generation and hence is listed as costs. 

2.2.1 Startup Cost 

Since thermal generators are being used, the startup cost is divided into two types: 
The startup cost for i-th generator is modelled as: 

S.U.Ci = 
T∑

j=1

(
1 − Ui(j−1)

) × Uij × Sij
(
T OFF 
i(j−1)

)
(6)
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The total S.U.C of the power system is the sum of starting costs of all generators 
for the schedule. It is obtained by summing S.U.Ci over all i in the range [1, 2 . . .  
N]. 

S.U.C = 
N∑

i=1 

T∑

j=1

(
1 − Ui(j−1)

) × Uij × Sij
(
T OFF 
i(j−1)

)
(7) 

2.2.2 Shutdown Cost 

An i-th generator incurs shutdown costs when the generator is switched off and is 
given by the equation: 

S.D.Ci = 
T∑

j=1 

Ui(j−1) ×
(
1 − Uij

) × Dij (8) 

The total shutdown cost for all generators for the schedule is thus modelled as: 

S.D.C = 
N∑

i=1 

T∑

j=1 

Ui(j−1) ×
(
1 − Uij

) × Dij (9) 

2.3 Wind Curtailment 

Since wind is assumed to be cost-free, maximum wind generation should be used. 
However, the transmission constraints cause the wind to be curtailed and hence 
using thermal engines thereby incurring additional costs. Wind curtailment cost 
equation is given below: 

W.C.C = 
NW∑

w=1 

Pwc × Wc (10) 

For this paper, wind curtailment costs represent excess power that thermal 
generating units need to be produced, and load shedding is not included as it involves 
extreme cases. 

Therefore, total generation cost (objective function) amounts to the sum of 

1. Total production cost 
2. Shutdown costs of generators 
3. Startup costs of generators 
4. Wind curtailment costs
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2.4 Objective Function 

The fact that wind power depends on wind which is unpredictable makes the unit 
commitment problem to consider other scenarios. The wind that is being forecasted 
has the probability of 1 compared to other scenarios. The objective function is as 
follows: 

Objective function = MIN 
T∑

j=1

(
N∑

i=1

(
Sji  + Dji  + COSTj i

)

+ 
M∑

Sce=1 

Pjsce 

N∑

i=1

(
Sji  + Dji  + COSTj i

)
) (11) 

The 1st line of Eq. (11) considers the correct prediction of wind energy, while 
the 2nd line of the equation considers different scenarios due to its random nature. 

3 Wind Modelling 

As mentioned wind power output is highly fluctuating and intermittent unlike 
traditional power generators. With the insertion of wind power generating units, 
the randomness of a power system is increased further. This eventually makes the 
power system probabilistic production simulation more significant in the power 
system scheduling. Jin et al. [8] divided random modelling of wind power into two 
techniques:

• Multistate model of universal generating function which is an analytical tech-
nique

• Monte Carlo simulation which is a simulation technique 

Since numerous wind turbine generators (WTGs) are required and considering 
the high wind power penetration, simulation techniques have a major drawback in 
the long computational time. Hence analytical techniques like universal generating 
function (UGF)-based methods are more efficient than the simulation approaches 
for evaluating the average values of reliability indices in power system planning [4]. 

For this work, data has been taken from Atwa and El-Saadany [2]. 
A wind turbine is modelled as: 

Pw = 0 if  V ≤ Vin or V ≥ Vout (12) 

Pw = 
V − Vin 

Vrated − Vin 
× Prated for Vin ≤ V ≤ Vrated (13) 

Pw = Prated for Vrated ≤ V ≤ Vout (14)
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Fig. 1 Power output of a wind turbine 

where V, Vin, Vrated and Vout are the actual average speed, the cut-in speed, rated 
speed and cut-off speed of the wind turbine, respectively. Figure 1 illustrates the 
power output variation with wind speed. 

3.1 Universal Generating Function 

UGF is an efficient computational tool handling discrete random variable and 
is based on simple recursive procedures. It provides a systematic method for 
the system state enumeration that can substitute very complicated combinational 
algorithms and diminish the computational burden. In addition, a flexible approach 
is provided by the UGF to represent the various reliability models and their 
correlation in a power system with high wind power penetration [4]. 

Two random variables X1 and X2 are expressed in UGF form as: 

U1(z) = 
k1∑

i=1 

P (1, i) Zx(1,i) (15) 

U2(z) = 
k2∑

j=1 

P (2, j) Zx(2,j) (16) 

where U1(Z) and U2(Z) represent the u-model of X1 and X2. 
The purpose of ‘Z’ is to distinguish between the value and probability of random 

variables.
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Considering that X1 and X2 are independent of each other, their functional 
operation result will be obtained through operation of UGF. For example, if 
X3 = X1 + X2, X3 can be expressed in the UGF model as: 

U3(z) = 
k1∑

i=1 

k2∑

j=1 

P (1, i) P (2, j) Zx(1,i)+x(2,j) (17) 

In our case, X1 and X2 represent the output of wind turbine generators. The 
above equation clearly expresses the distributions of the generators. Mechanical 
state representations are neglected in our approach as only external sources of 
randomness (wind speed) are considered. 

Data taken from Atwa and El-Saadany [2] is as follows (Refer to Table 8 in the 
Appendix):

• Maximum wind speed = 22 m/s
• Mean wind speed = 6.07 m/s 

The wind turbine data is as follows:

• Cut-in speed = 4 m/s
• Rated speed = 14 m/s
• Cut-off speed = 25 m/s 

The data of the wind turbine is used to create the probabilistic wind power output 
model. 

From the Appendix, some states such as 0–4 m/s, 14–25 m/s and wind speed 
greater than 25 m/s are aggregated together because they represent the same power 
output either rated for the 2nd case or zero for the 1st and 3rd cases. 

Since a 10-MW wind turbine is assumed to be used, the generating power will 
be divided into five states, namely, 10 MW, 8 MW, 4.5 MW, 1.5 MW and 0 MW. 
These correspond to the performance rates. 

The probability should also be divided into five states, and the wind speed and 
probabilities are rearranged as shown in Table 1. 

The values of power output were obtained from wind turbine power equation by 
plugging mean values of wind speed. The wind speed limits were discretised such 
that wind speed limits were summed from the Appendix with their probabilities 
adding together. 

The load curve’s maximum wind power is around 100 MW and one Wind turbine 
is realistically made to produce 10 MW. Thus, in order to cater for demand, ten wind 
turbines will hence make the wind farm. 

Table 1 States and their 
probabilities 

Wind speed limits, m/s Probabilities Power output/MW 

14–25 0.078425 10 
10–14 0.152853 8 
7–10 0.280708 4.5 
4–7 0.282078 1.5 
0–4 0.205936 0
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For ten wind turbines and five states, there will be 510 (9765625) variables for 
both probabilities and state variables. 

Therefore for one wind turbine, the UGF function corresponds to: 

U1(z) = 0.078425z10 + 0.152853z8 + 0.280708z4.5 + 0.282078z1.5 + 0.2059936z0 

(18) 

Since the summing operator is used ⊗+, for ten wind turbines, the overall u-
function is termed as: 

UW(z) = U1(z)⊗+U2(z)⊗+U3(z)⊗+U4(z) . . . ⊗+U10(z) (19) 

U1(z)⊗+U2(z) =
(
0.078425 × 0.078425z10+10

) + . . .  
+ (

0.2059936 × 0.2059936z0+0
) (20) 

Modelling two wind turbines will result in the following u-function: 
The above equation will consist of 25 terms and, for example, states that a 

(10 + 10) MW will have a probability of 0.078425 × 0.078425. Henceforth, the 
overall u-function consists of 9,765,625 terms. 

Uw (z) = 8.81e − 12z100 + · · · +  1.372e − 7z0
︸ ︷︷ ︸

9,765,625 terms 

The probability density function is plotted using the data obtained, and the result 
is shown in Fig. 2. 

Fig. 2 Probability density function obtained from UGF
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4 Methodology 

4.1 Genetic Algorithm 

The three operators [3] (selection, crossover, mutation) that define GA were applied 
with default settings. 

In the case of Genetic Algorithm, principles used by Matlab software are as 
shown in Fig. 3. 

START 

Initialise population 

Set generation=1 

Apply selection operation 

Apply crossover operation 

Apply mutation operation 

Generation =generation+1 

Is maximum 
number of 

generations reached 
? 

END 
NO 

YES 

Fig. 3 GA flowchart
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4.2 Particle Swarm Optimisation 

The procedures to find global best particle are summarised as follows: 

Step I: Swarm and velocity initialisation 
The number of populations is randomly initialised, and the dimension is stated 
according to the optimisation problem. Furthermore, the particles’ velocities are 
randomly initialised, and these lie within the maximum and minimum limit of the 
velocities. 

Step II: Pbest, Gbest and iteration initialisation 
The maximum number of iteration is set. Using initial set of particles position, Pbest 
is the actual position as no iterations have been run as of now. The particle with the 
best (lowest) evaluation function is used to generate Gbest. 

Step III: Performing iteration 
At each iteration, new velocities are calculated using Eq. (21) and corrected to 
satisfy the velocity limits stated by Vmax and Vmin. New solutions are obtained using 
Eq. (22). The latter are used to evaluate new evaluation function. 

V 
(t) 
ia  = w × V 

(t−1) 
ia  + c1 × ran d(t) ia  ×

(
pbest(t−1) 

ia  − particle(t−1) 
ia

)

+c2 × ran d(t) ia  ×
(

gbest(t−1) − particle(t−1) 
ia

)
where i ε [1, 2 . . . .D] 

(21) 

particle(t) a = particle(t−1) 
a + V (t) ia (22) 

Step IV: Updating Pbest and Gbest 
Each new solution is compared to the best position. If the new solution has a lower 
evaluation value, it becomes the best solution and is termed Pbest. Among Pbests, 
the Gbest is chosen by selecting the lowest evaluation function. 

Step V: Stopping criterion 
The PSO algorithm is run for a number of iterations. If stopping criterion is not 
met, step III is repeated; otherwise the algorithm is ended. The flowchart of the PSO 
algorithm is shown in Fig. 4. 

MATLAB codes were written for the unit commitment problem, and the 
principles are illustrated as follows: 

Saadat’s power flow toolbox [13] was used and the generator on bus 1 was 
considered to be a slack bus. Therefore generator 1 was removed from optimisation 
to later implement power losses. The difficulty of the coding was the minimum 
generating power constraint, and to solve the optimisation problem, several times 
PSO and GA codes were run for a program. For example, to decide which generator 
should be on, codes are run to decide the maximum generating unit, or for adjusting 
power capacity under wind curtailment. Codes for comparison of costs are inserted 
to decide the power dispatch. If with power loss, maximum generator limit is 
exceeded, excess power is dispatch, and codes are re-run. Multiple scenarios are 
analysed, and with the probabilities obtained from UGF, the total cost is calculated.
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Fig. 4 PSO flowchart 
START 

Initialise particles with random position 
and velocity vectors 

Evaluate objective and evaluation 
function for all particles of the swarm 

Calculate Pbest and Gbest 

Set Iteration=1 

Calculate Velocities and update 
Positions of particles 

Evaluate function and update new Pbest 
and Gbest 

Iteration=iteration+1 

If iteration 
completed? 

YES 

END 

NO 

The above methodology applies to both PSO and GA. The coding flowchart is 
shown in Fig. 5. 

5 Results 

Unit commitment was solved using genetic algorithm and particle swarm optimisa-
tion. For the methods to be comparable, the following criteria were set the same:
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START 

NO 

YES 

NO 

YES 

If load-Wind 
> maximum 
limit slack 

End 

Excess power is optimised between 
generators 

If with losses, power 
exceeds maximum 
limit of slack 

Power flow is run to input power losses 

Insignificant power generators turned off and 
Comparative analysis to decide optimum unit 

Adjusting upper and lower bound optimise 
again to ensure generator is ON. 

Optimise excess power between generators 
to know which one takes most load. 

Fig. 5 Coding flowchart

• Maximum iteration
• Number of particles/population size 

The codes were written in MATLAB due the ability of implementing Saadat’s 
power flow toolbox [13] with the code. The 6-bus system was solved as a normal unit 
commitment problem, while the 30-bus system was solved as a security-constrained 
unit commitment problem. The 30-bus data set was taken from Gaddam [5]. Both
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were incorporated with power flow toolbox and wind energy resources, and results, 
particularly for the 6-bus system, are compared with Wang et al. [15] where the data 
has been acquired (Refer to Table 9 in the Appendix). 

It should be noted that simulations were performed on an Intel(R) Core(TM) i3 
CPU, 2.40 Ghz and 3 GB of RAM personal computer. 

The following cases have been considered: 

(i) Case 1: 6-bus system with GA 
(ii) Case 2: 6-bus system with PSO 

(iii) Case 3: 30-bus system with GA 
(iv) Case 4: 30-bus system with PSO 

Case 1: 6-Bus System with GA 
As shown from Table 2, for hours 1 to 9, generator 1 is sufficient to cater for demand 
and losses. Generators 2 and 3 are optimised for hours 10–22 because of increased 
load. For the remaining hours, generator 1 is run only. 

Table 2 Unit commitment of generators of 6-bus system with GA 

Hour G1/MW G2/MW G3/MW Production costs/$ Transition costs/$ 

1 177.57 0 0 2853.96 0 
2 167.18 0 0 2712.28 0 
3 160.52 0 0 2621.52 0 
4 156.47 0 0 2566.33 0 
5 156.80 0 0 2570.87 0 
6 162.36 0 0 2646.55 0 
7 175.56 0 0 2826.64 0 
8 193.05 0 0 3065.32 0 
9 208.80 0 0 3280.44 0 
10 210.60 0 10 3481.60 0 
11 220 0 12.30 3650.79 0 
12 220 10 10.09 3937.83 300 
13 220 10 16.14 4045.10 0 
14 220 10 17.63 4071.56 0 
15 220 13.11 20.00 4214.95 0 
16 220 20.54 20.00 4457.61 0 
17 220 20.90 20.00 4469.17 0 
18 220 10 12.87 3987.00 0 
19 220 10.37 20.00 4125.65 0 
20 216.25 10 10 3884.85 0 
21 220 10 11.39 3960.69 0 
22 210.67 10 10 3808.58 0 
23 204.14 0 0 3216.72 0 
24 199.80 0 0 3157.42 0 

8.09 × 104 300 
Total cost/$ 8.39 × 104
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Table 3 Unit commitment of generators of 6-bus system with PSO 

Hour G1/MW G2/MW G3/MW Production costs/$ Transition costs/$ 

1 177.57 0 0 2853.96 0 
2 167.18 0 0 2712.28 0 
3 160.52 0 0 2621.52 0 
4 156.47 0 0 2566.33 0 
5 156.80 0 0 2570.87 0 
6 162.36 0 0 2646.55 0 
7 175.56 0 0 2826.64 0 
8 193.05 0 0 3065.32 0 
9 208.80 0 0 3280.44 0 
10 210.60 0 10 3481.61 0 
11 219.94 0 12.22 3648.51 0 
12 219.83 0 19.87 3782.92 0 
13 219.91 11.23 14.81 4060.57 300 
14 219.89 10.08 17.43 4069.06 0 
15 219.87 12.86 19.95 4204.25 0 
16 219.88 19.99 20.00 4437.84 0 
17 219.88 20.32 20.00 4448.86 0 
18 219.86 10.04 12.85 3986.16 0 
19 219.87 10.21 19.96 4118.12 0 
20 216.29 10 10 3718.93 0 
21 219.84 10.01 11.46 3960.21 0 
22 219.97 0.50 10.41 3633.33 0 
23 204.14 0 0 3216.72 0 
24 199.80 0 0 3157.42 0 

8.31 × 104 300 
Total cost/$ 8.34 × 104 

Case 2: 6-Bus System with PSO 
As shown from Table 3, for hours 1 to 9, generator 1 is sufficient to cater for load 
demand and losses. The value is obtained from power flow analysis. For hours 10– 
12, generator 3 is needed to cater for demand, and during peak times, all three 
generators are run. Since demand and losses are less than generator 1 maximum 
power limit, the latter is run only at hours 23 and 24. 

Case 3: 30-Bus System with GA 
As shown in Table 4, wind curtailment occurs at time period 7, 8 and 11 due to the 
line limit. For hours 1 to 7, power flow analysis finds the value of generator 1. GA 
is employed for hours 8 to 23. 

At the end of iteration, all individuals should have same fitness values as the 
genetic operators have acted upon the chromosomes. The results are shown in Fig. 6.
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Table 4 Unit commitment of 30-bus system with GA 

Hour G1/MW G2/MW G3/MW G4/MW G5/MW G6/MW P wind/MW Pcurtailed/MW 

1 176.97 0 0 0 0 0 44 0 
2 165.74 0 0 0 0 0 70.2 0 
3 158.83 0 0 0 0 0 76 0 
4 154.61 0 0 0 0 0 82 0 
5 154.93 0 0 0 0 0 84 0 
6 160.61 0 0 0 0 0 84 0 
7 183.70 0 0 0 0 0 100 90.98 
8 180.38 20.00 0 0 0 0 100 92.35 
9 187.51 20 0 0 0 0 78 0 
10 200 20.30 0 0 0 0 64 0 
11 200 20.10 15.10 0 0 0 100 95.42 
12 200 21.65 16.65 0 0 0 92 0 
13 200 25.29 20.30 0 0 0 84 0 
14 200 27.44 22.44 0 0 0 80 0 
15 200 29.66 24.66 0 0 0 78 0 
16 200 50.87 15 0 0 0 32 0 
17 200 50.16 15 0 0 0 4 0 
18 200 24.18 19.18 0 0 0 8 0 
19 200 29.00 24.00 0 0 0 10 0 
20 200 20.96 15.96 0 0 0 5 0 
21 200 23.51 18.51 0 0 0 6 0 
22 194.42 20 15 0 0 0 56 0 
23 182.63 20 0 0 0 0 82 0 
24 199.74 0 0 0 0 0 52 0 
Total cost/$ 1.4028 × 104 

Case 4: 30-Bus System with PSO 
From Table 5, with the PSO algorithm, generators 1, 2 and 3 are sufficient and the 
cheapest way to deliver electricity. Using a limit for power flow on the wind turbine 
line, wind curtailment occurs at time period 7, 8 and 11. For hours 1 to 8, power 
flow analysis calculates generator 1’s output power. 

Figure 7 shows the case for hour 17 where after the 1st initialisation, particles 
take up entire space: 

After the final iteration, the solution space is shown in Fig. 8. 
Tables 6 and 7 summarise the results obtained for GA and PSO, respectively. It 

is found that PSO is slightly better than GA for both test systems. Results for the 
6-bus system are comparable to Wang et al. [15].
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Fig. 6 Final fitness values of individuals 

6 Conclusion 

The evolutionary methods GA and PSO were successfully applied as an optimisa-
tion method in a security-constrained unit commitment with wind energy resource. 
The two algorithms succeeded in linking with the load flow program to cater for 
power losses. 

For the 6-bus system, unit commitment with transmission losses and with wind 
power was solved using the two mentioned approaches. Both methods were able to 
locate the global optimum. It was found that PSO was slightly better than GA in 
this test system. The 24-hour unit commitment dispatch yielded the same result as 
Wang et al. [15] for both methods. 

For the 30-bus system, security constraint was applied, and PSO was also found 
to be slightly better than GA. Both unit commitment dispatches yielded nearly the 
same result. This result also seconds that the algorithms used in the 6-bus system 
were correct since the same conclusions were drawn. 

It can be concluded that the universal generating function (UGF) can effectively 
model wind power and its associated probabilities.



Table 5 Unit commitment of generators of 30-bus system with PSO 

Hour G1/MW G2/MW G3/MW G4/MW G5/MW G6/MW P wind/MW P curtail/MW 

1 176.97 0 0 0 0 0 44 0 
2 165.74 0 0 0 0 0 70.2 0 
3 158.83 0 0 0 0 0 76 0 
4 154.61 0 0 0 0 0 82 0 
5 154.93 0 0 0 0 0 84 0 
6 160.61 0 0 0 0 0 84 0 
7 183.70 0 0 0 0 0 100 90.98 
8 200 0 0 0 0 0 100 92.35 
9 187.51 20 0 0 0 0 78 0 
10 200 20.30 0 0 0 0 64 0 
11 200 20 15 0 0 0 100 95.42 
12 200 23.33 15.00 0 0 0 92 0 
13 200 29.64 15.02 0 0 0 84 0 
14 200 30.91 14.77 0 0 0 80 0 
15 200 35.80 16.03 0 0 0 78 0 
16 200 43.74 18.34 0 0 0 32 0 
17 200 44.98 18.79 0 0 0 4 0 
18 200 28.47 15.00 0 0 0 8 0 
19 200 34.75 15.88 0 0 0 10 0 
20 200 20 15 0 0 0 5 0 
21 200 27.09 15.00 0 0 0 6 0 
22 194.42 20 15 0 0 0 56 0 
23 182.63 20 0 0 0 0 82 0 
24 199.74 0 0 0 0 0 52 0 
Total cost/$ 1.3978 × 104 

Fig. 7 Initial search space



280 R. T. F. Ah King and D. Balgobin 

Fig. 8 Final search space 

Table 6 Comparison table 
for 6-bus system 

Method Costs/$ 

Genetic algorithm 8.39 × 104 

Particle swarm optimisation 8.34 × 104 

Table 7 Comparison table 
for 30-bus system 

Method Costs/$ 

Genetic algorithm 1.4028 × 104 

Particle swarm optimisation 1.3978 × 104
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Appendix 

Table 8 Annual wind speed 
data 

Wind speed limits, m/s Hours/year Probability 

0–4 1804 0.205936 
4–5 579 0.066096 
5–6 984 0.112329 
6–7 908 0.103653 
7–8 983 0.112215 
8–9 799 0.09121 
9–10 677 0.077283 
10–11 439 0.050114 
11–12 395 0.045091 
12–13 286 0.032648 
13–14 219 0.025 
14–25 687 0.078425 
Greater than 25 0 0 

Table 9 Load demand and wind profile 

Hour Power demand/MW Q demand/MVar Wind power/MW 

1 219.19 50.4 44 
2 235.35 47.4 70.2 
3 234.67 45.6 76 
4 236.73 44.5 82 
5 239.06 44.6 84 
6 244.48 46.1 84 
7 273.39 49.9 100 
8 290.40 51.1 100 
9 283.56 53.7 78 
10 281.20 59.5 64 
11 328.61 65.7 100 
12 328.10 67.9 92 
13 326.18 69.6 84 
14 323.60 70.0 80 
15 326.86 71.6 78 
16 287.79 73.5 32 
17 260.00 73.6 4 
18 246.74 70.9 8 
19 255.97 70.7 10 
20 237.35 68.2 5 
21 243.31 68.2 6 
22 283.14 66.9 56 
23 283.05 56.3 82 
24 248.75 56.2 52
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