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Abstract. Although deep neural networks have enjoyed remarkable suc-
cess across a wide variety of tasks, their ever-increasing size also imposes
significant overhead on deployment. To compress these models, knowl-
edge distillation was proposed to transfer knowledge from a cumber-
some (teacher) network into a lightweight (student) network. However,
guidance from a teacher does not always improve the generalization of
students, especially when the size gap between student and teacher is
large. Previous works argued that it was due to the high certainty of
the teacher, resulting in harder labels that were difficult to fit. To soften
these labels, we present a pruning method termed Prediction Uncertainty
Enlargement (PrUE) to simplify the teacher. Specifically, our method
aims to decrease the teacher’s certainty about data, thereby generat-
ing soft predictions for students. We empirically investigate the effec-
tiveness of the proposed method with experiments on CIFAR-10/100,
Tiny-ImageNet, and ImageNet. Results indicate that student networks
trained with sparse teachers achieve better performance. Besides, our
method allows researchers to distill knowledge from deeper networks to
improve students further. Our code is made public at: https://github.
com/wangshaopu/prue.

Keywords: Knowledge distillation · Network pruning · Deep learning

1 Introduction

Neural networks have gained remarkable practical success in many fields [3]. In
practice, researchers usually introduce more layers and parameters to make the
network deeper [37] and wider [15] for achieving better performance. However,
these over-parameterized models also incur huge computational and storage over-
head [5], which makes deploying them on edge devices impractical. Therefore,
several methods have been proposed to shrink neural networks, e.g., network
pruning [11,17], quantization [10], and knowledge distillation [13]. Among these
approaches, knowledge distillation has been widely utilized in many fields [2,39].
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Table 1. The test accuracy in percentage of various teachers and ResNet-8 as the
student.

ResNet-8 ResNet-20 w/o LS ResNet-20 w/LS ResNet-32 w/o LS

Teacher Acc. 87.56(±0.20) 91.72(±0.21) 92.06(±0.26) 92.99(±0.12)
Student Acc. – 88.05(±0.18) 86.13(±0.22) 87.60(±0.08)
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Fig. 1. Visualization of network predictions. We randomly select some training samples
from the three classes of CIFAR-10 “airplane” (gray), “automobile” (blue), and “bird”
(yellow), and then perform t-SNE dimensionality reduction [22] on network predictions.
Note that the x-y axis has no real meaning here. (Color figure online)

Generally speaking, it utilizes a pre-trained teacher to produce supervision for
students. In this way, a lightweight student network can achieve similar gener-
alization as the teacher.

Although this paradigm of encouraging students to mimic teachers’ behaviors
has proven to be a promising way, some recent works [25,30] argued that knowl-
edge distillation is not always effective. Specifically, it is found that well-behaved
teachers failed to improve student generalization under certain circumstances.
For instance, Müller et al. [25] discovered that teachers pre-trained with label
smoothing (LS) [31], a commonly used technique to regularize models, will distill
inferior students, even though the teacher’s generalization has been improved.
They attribute this phenomenon to the fact that LS tends to erase the relative
information within a class. As a result, teachers generate harder labels that are
difficult for students to fit. Meanwhile, Mirzadeh et al. [24] investigated another
more common scenario. When there exists a large capacity gap between students
and teachers, the former will perform worse. Coincidentally, their experiments
lead to a similar conclusion that well-performed teachers fail to generate soft
targets.

To investigate the relationship between network capacity and label smooth-
ing, we train ResNet-20 and ResNet-32 on CIFAR-10 and report the results of
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visualizing their predictions for the classes “airplane”, “automobile” and “bird”
in Fig. 1. The first row represents examples from the training set, while the
second row is from the validation set. As revealed in the first column, a ResNet-
20 trained without label smoothing (w/o LS) produces predictions scattered in
some broad clusters. We also notice that blue dots (automobile) and gray dots
(airplanes) in the validation set tend to be mixed at the boundary. A possible
explanation is that these vehicles are more similar in some features than the
yellow dots (birds), and it causes some misclassification. While in the second
column, a ResNet-20 is trained with a label smoothing factor of 0.2. We observe
that LS encourages samples in the training set to be equidistant from other
classes’ centers. What is striking in this figure is the third column. We train a
ResNet-32 and notice that it acts in a similar pattern to LS. They both compact
each class cluster. Next, we use ResNet-8 as a student to validate the effectiveness
of knowledge distillation. The accuracy results, as shown in Table 1, confirm that
while label smoothing and network deepening can improve the teacher network,
they will degrade the generalization of students as expected.

A possible speculation is that although the generalization of the networks
can be improved by the above two measures, their uncertainty about the data
is also reduced. As a result, teachers tend to produce similar overconfident pre-
dictions for all intra-class samples and distill inferior students. In this work, we
propose to improve knowledge distillation by increase teachers’ uncertainty. For-
tunately, a statistical metric, which we term prediction uncertainty, has been
proposed by [29] to quantify this phenomenon. Following this work, we propose
a criterion to identify the effect of weights on uncertainty in the teacher network.
Then we prune those less-contributing weights before distillation. Differing from
traditional pruning algorithms that focus on generalization, our method aims to
reduce the generalization error of student networks by softening teacher predic-
tions. We name our method Prediction Uncertainty Enlargement (PrUE).

We evaluate our pruning method on CIFAR-10/100, Tiny-ImageNet, and
ImageNet classification datasets with some modern neural networks. Specifically,
we first verify that label smoothing and network deepening reduce generaliza-
tion error with a sacrifice of prediction uncertainty. The following distillation
experiments show a positive correlation between the student’s accuracy and the
teacher’s prediction uncertainty. However, the teacher’s accuracy does not play a
crucial role in knowledge distillation. Generally, large networks struggle to distill
stronger students despite their high accuracy. To bridge this gap, we apply PrUE
to the aforementioned teacher networks and distill their knowledge to students.
Results show that our method can increase the teacher’s prediction uncertainty,
resulting in better performance improvement for students than existing distilla-
tion methods. We also compare PrUE with several other pruning schemes and
observe that sparse teacher networks distill good students, but PrUE usually
presents better performance.

Contributions: our contributions in this paper are as follows.

– We empirically investigate the impact of label smoothing and network capac-
ity on knowledge distillation. Interestingly, They both prevent teachers from
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generating soft labels and impair knowledge distillation, despite the improved
accuracy of teachers themselves.

– We apply a statistical metric to quantify the softness of labels. Based on this,
PrUE is proposed to increase the teacher’s prediction uncertainty.

– We perform experiments on CIFAR-10/100, Tiny-ImageNet, and ImageNet
with widely varying CNN networks. Results suggest that sparse teacher net-
works usually distill better students than dense ones. Besides, PrUE outper-
forms existing distillation and pruning schemes.

2 Related Work

Network Pruning. The motivation behind network pruning is that there is a
mass of redundant parameters in the neural network [7]. Previous works have
demonstrated that these parameters can be removed safely. Therefore, Lecun
et al. [17] proposed removing parameters in an unstructured way by calculat-
ing the Hessian of the loss with respect to the weights. Furthermore, Han et
al. [11] proposed a magnitude-based pruning method to remove all weights below
s predefined threshold. Recently, Frankle et al. [8] proposed the “Lottery Ticker
Hypothesis” that there exist sparse subnetworks that, when trained in isolation,
can reach test accuracy comparable to the original network. Furthermore, Miao
et al. [23] proposed a framework that can prune neural networks to any sparsity
ratio with only one training.

Soft Labels. Theoretically, the widely used one-hot labels could lead to over-
fitting. Therefore, label smoothing was proposed to generate soft labels, thereby
delivering regularization effects. On the other hand, there were usually some
noisy labels in the dataset that mislead deep learning models, and a recent
work [20] noted that label smoothing could help mitigate label noise. However,
label smoothing could only add random noise and cannot reflect the relation-
ship between labels. Another well-known paradigm for generating soft labels
was knowledge distillation [13]. Differing label smoothing, knowledge distillation
required a pretrained teacher to produce soft labels for each training example.
Therefore, Yuan et al. [35] regarded it as a dynamic form of label smoothing.
Although the original distillation scheme focused on transferring dark knowl-
edge from large to small models, Zhang et al. [38] had found that these gener-
ated soft labels can be used for distributed machine learning. Therefore, some
recent works [2,39] proposed distillation-based communication schemes to save
bandwidth.

Pruning in Distillation. Both network pruning and knowledge distillation are
widely used model compression methods. Therefore, some recent works proposed
combining them together to achieve higher compression ratios. For instance, Xie
et al. [33] used this paradigm to customize a compression scheme for the identifi-
cation of Person re-identification (ReID). Chen et al. [4] proposed to use pruning
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and knowledge distillation to train a lightweight detection model, to achieve syn-
thetic aperture radar ship real-time detection at a lower cost. Meanwhile, Aghli
et al. [1] introduced a compression scheme of convolutional neural networks,
mainly exploring how to combine pruning and knowledge distillation methods
to reduce the scale of ResNet with the guarantee of accuracy. Neill et al. [26]
proposed a pruning-based self-distillation scheme using distillation as the prun-
ing criterion to maximize the similarity of network representations before and
after pruning. Cui et al. [6] proposed a joint model compression method that
combines structured pruning and dense knowledge distillation. However, these
researches focused on simplifying student networks. In fact, they amplify the
capacity gap between students and teachers.

3 Background

Producing soft labels has been shown to be an effective regularizer. In practice,
encouraging networks to fit soft labels prevents overfitting. In this section, we
introduce a statistical metric quantifying label softness.

3.1 Preliminaries

Notations. Given a K-class classification task, We denote by D the training
dataset, consisting of m i.i.d tuples {(x1,y1), . . . , (xm,ym)} where xi ∈ R

d×1

is the input data and yi ∈ {0, 1}K is the corresponding one-hot class label. Let
y[i] be the i-th element in y, and y[c] is 1 for the ground-truth class and 0 for
others.

Knowledge Distillation. For a teacher network f(wT ) parameterized by wT ,
let a(wT ,xi) and f(wT ,xi) correspond to its logits and prediction for xi, respec-
tively. In vanilla supervised learning, f(wT ) is usually trained on D with cross-
entropy loss

LCE = −
m∑

i=1

yi log f(wT ,xi) (1)

where f(wT ,xi) = softmax(a(wT ,xi)).
As for a student network f(wS), its logits and prediction for xi are denoted

as a(wS ,xi) and f(wS ,xi). In knowledge distillation, f(wS) is usually trained
with a given temperature τ and KL-divergence loss

LKD = −
m∑

i=1

τ2KL(a(wT ,xi), a(wS ,xi)) (2)

When the hyperparameter τ is set to 1, we can regard the distillation process
as training f(wS) on a new dataset {(x1, f(wT ,x1), . . . , (xm, f(wT ,xm)} with
soft labels provided by a teacher. The key idea behind knowledge distillation is
to encourage the student f(wS) to mimic the behavior of the teacher f(wT ). In
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practice, researchers usually use correct labels to improve soft labels, especially
when the generalization of teachers is poor. Therefore, the practical loss function
for the student is modified as follows:

Lstudent =
m∑

i=1

(1 − λ)LCE + λLKD (3)

where λ is another hyperparameter that controls the trade-off between the two
losses. We refer to this approach as Logits( τ) through the paper.

Label Smoothing. Similar to knowledge distillation, label smoothing aims to
replace hard labels to penalize overfitting. Instead, it does not involve a teacher
network. Specifically, label smoothing modifies one-hot hard label vector y with
a mixture of weighted origin y and a uniform distribution:

yc =

{
1 − α if c = label,

α/(K − 1) otherwise.
(4)

where α ∈ [0, 1] is the hyperparameter flattening the one-hot labels.
Label smoothing has been a widely used trick to improve network general-

ization. A prior work [29] observes that although the network trained with label
smoothing suffers a higher cross-entropy loss on the validation set, its accuracy
is better than that without label smoothing.

3.2 Prediction Uncertainty

To observe the effect of label smoothing on the penultimate layer representations,
Müller et al. [25] proposed a visualization scheme based on squared Euclidean
distance. Similarly, we use t-SNE in Sect. 1 to visualize the predictions. However,
we cannot conduct numerical analysis on these intuitive presentations. To further
measure the label softness quantitatively and address the erasing phenomenon
caused by label smoothing, Shen et al. [29] propose a simple yet effective metric.
The definition is as follows1:

δ(w) =
1
K

K∑

c=1

(
1
nc

nc∑

i=1

‖f(w,xi)[c] − f̃(w,xi)[c]‖2) (5)

where class c contains nc samples. f̃(xi)[c] is the mean of in f(xi) class c. The
key idea behind this metric is to use the variance of intra-class probabilities to
measure the uncertainty of network predictions.

Now we discuss how prediction uncertainty influences knowledge distillation.
Assume an ideal network classifies each input precisely, and it is absolutely cer-
tain of each prediction. Correspondingly, this network is commonly regarded as

1 It was called stability in the origin paper. We modify it for the purpose of our work.
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a perfect model that achieves excellent generalization and low loss on the valida-
tion set. However, it tends to produce one-hot labels that fail to inform student
networks about the similarity between classes, i.e., dark knowledge. At this point,
the certainty of the teacher network downgrades the knowledge distillation to
vanilla training. Applying label smoothing to the distillation process could help
to moderate the teacher’s overconfidence. Unfortunately, this trick merely tells
students that airplanes and birds have the same probability as automobiles.
Therefore, we aim to make teachers feel uncertain between the automobile and
the airplane, thus improving the generalization behavior of the student network.

We next work on simplifying the teacher network to enlarge its prediction
uncertainty. Specifically, we utilize network pruning to close the capacity gap
between teachers and students.

4 Prediction Uncertainty Enlargement

In deep model compression, network pruning aims to deliver the regularization
effect to neural networks by simply removing parameters. Following the discus-
sion above, we introduce auxiliary indicator variables m ∈ {0, 1}l representing
the pruning mask. Then the enlargement of prediction uncertainty is formulated
as an optimization problem as:

max
m

δ(m � w) =max
m

1
K

K∑

c=1

(
1
nc

nc∑

i=1

‖f(m � w,xi)[c] − f̃(m � w,xi)[c]‖2),

s.t. m ∈ {0, 1}l, ‖m‖0 ≤ s,
(6)

where � denotes the Hadamard product.
Solving such a combinatorial optimization problem requires computing its

δ(m � w) for each candidate in the solution space, that is, it requires up to
l × l forward passes over the training dataset. However, the number of network
parameters has increased substantially recently. Since an arms race of training
large models has begun, millions of calculations δ(m � w) are unacceptable.

Following [16,18], we next measure the impact of each weight on the net-
work uncertainty and then prune less-contributing weights greedily. Since it is
impractical to directly solve this optimization problem with respect to binary
variables m, we first relax m into real variables m ∈ [0, 1]l. This change can be
seen as a form of soft pruning, where the corresponding mask m[j] is gradually
reduced from 1 to 0. In this way, the optimization problem is differentiable with
respect to m. We rewrite Optimization (6) as follows:

max
m

δ(m � w) =max
m

1
K

K∑

c=1

(
1
nc

nc∑

i=1

‖f(m � w,xi)[c] − f̃(m � w,xi)[c]‖2),

s.t. m ∈ [0, 1]l, ‖m‖0 ≤ s,
(7)
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This modification allows us to perturb the mask instead of setting it to zero.
For the weight w[j], we add an infinitesimal perturbation ε to the mask m[j]
to obtain its influence on δ(m � w). Its magnitude of differential �δj(m � w)
indicates the dependence of δ(m � w) on w[j]. Next, we find the derivative of
δ(m � w) with respect to m[j] as follows:

lim
ε→0

δ(m � w) − δ((1 − εej)m � w)
ε

= lim
ε→0

∂δ(m � w)
∂m[j]

= gj(w). (8)

where ej is a one-hot vector [0, ..., 0, 1, 0, ..., 0] with a 1 at position j.
Thus, we measure the importance of the weight w[j] to the prediction uncer-

tainty. To this end, we regard |gj(w)| as the proposed criterion. Given a desired
sparsity s, we can achieve prediction uncertainty enlargement by pruning s × l
weights that contribute less to the variance.

The key to our approach is to find the derivative of the uncertainty with
respect to the pruning mask of each weight. However, restricted by the modern
computing device, PrUE still faces some practical problems. Note that Optimiza-
tion (7) calls f(w) twice, which requires the automatic differentiation algorithm
to perform two forward-backward pass through the computational graph. Mod-
ern deep learning frameworks like PyTorch usually free gradient tensors after
the first backward pass to save memory. That is, our method consumes more
resources due to retaining the computational graph.

On the other hand, our method requires computing the averaged intra-class
probabilities for each class. In practice, researchers typically perform stochastic
gradient descent by randomly selecting a mini-batch of training data, where the
batchsize ranges from 128 to 1024. For a 10-class classification task like CIFAR-
10, this batchsize is sufficient to estimate f̃(x)[c], while not for ImageNet-1k
containing 1000 classes. In fact, most classes in ImageNet-1k only appear once
or twice in a batch, making accurate estimation of f̃(x)[c] impractical.

One could take straightforward measures such as saving intermediate val-
ues of the graph or leveraging more devices, but this would result in additional
overhead. Instead, we employ a simple yet effective trick to decompose the opti-
mization into two steps. Specifically, we first compute f̃(x)[c] for each class with
the computational graph detached, then sort the dataset by labels, thus guaran-
teeing that only class c appears in each batch. Finally, f(x)[c] can be estimated
in the current batch. We empirically observed that this trick only slightly affects
the results, but saves appreciable memory.

5 Experiments

In this section, we empirically investigate the effect of our proposed method on
knowledge distillation. In addition, we compare PrUE with other distillation and
pruning methods. The results show that our paradigm of distilling knowledge
from sparse teacher networks tends to yield better students. Moreover, PrUE
can exhibit better performance.
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Table 2. Number of weights and training hyperparameters in our experiments.

Dataset Network # Weights Epochs Batchsize Schedule

CIFAR-10 ResNet-8 [12] 78K 160 512 10× drop at
81, 122ResNet-20 272K

ResNet-32 466K
ResNet-56 855K
ResNet-110 1.7M

CIFAR-100 ResNet-8 83.9K 160 512 10× drop at
81, 122ResNet-20 278K

ResNet-32 472K
ResNet-56 861K
ResNet-110 1.7M

Tiny-ImageNet ResNext-50 [34] 15.0M 200 256 5× drop at
60, 120, 160ShuffleNet V2 [21] 1.5M

ImageNet EffcientNet-B2 [32] 9.1M 90 256 10× drop at
30, 60MobileNet V3 Small [14] 2.5M

Implementation Details. We conduct all experiments on 8 * NVIDIA Tesla
A100 GPU. The sparsity level is defined to be s = k/l × 100(%), where k is
the number of zero weights, and l is the total number of network weights. All
networks are trained with SGD with Nesterov momentum. We set the initial
learning rate to 0.1, momentum to 0.9. Table 2 describes the number of param-
eters of all the networks and corresponding training hyperparameters. During
distillation, we set λ to 1 for CIFAR-10 and 0.1 for the rest tasks.

5.1 The Effect of LS on Knowledge Distillation

We first investigate the compatibility of label smoothing and knowledge distilla-
tion on CIFAR-10 and CIFAR-100. Specifically, we train ResNet-20/32/56/100
with label smoothing turned on or turned off, then distill their knowledge into
ResNet-8. Table 3 presents the accuracy of student networks supervised by var-
ious teachers. We also report the vanilla supervised training results of ResNet-8
for baseline comparison.

Table 3. The test accuracy of a fixed student with various teachers trained without
(w/o) or with (w/) label smoothing. The vanilla supervised results of ResNet-8 is also
reported.

Vanilla ResNet-20 ResNet-32 ResNet-56 ResNet-110

CIFAR-10 87.56 w/LS 86.62(±0.21) 85.56(±0.25) 85.61(±0.03) 85.88(±0.19)
w/o LS 88.36(±0.12) 87.48(±0.22) 87.50(±0.10) 87.47(±0.17)

CIFAR-100 59.36 w/LS 58.75(±0.23) 58.73(±0.16) 59.14(±0.14) 58.52(±0.25)
w/o LS 59.81(±0.19) 59.50(±0.24) 59.47(±0.17) 59.76(±0.09)
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Fig. 2. Visualization of predictions of more network structures.

Although deep neural networks are well known for their generalization ability,
they fail to bring proportional improvement for students. In particular, ResNet-
20 tends to distill better students than other well-generalized teachers. Similarly,
teachers trained with hard labels achieve better distillation results compared
to those trained with label smoothing. To demonstrate this phenomenon, we
provide visualizations of these teachers’ predictions in Fig. 2. As we can see,
network deepening and label smoothing compacts each cluster and thus impairs
knowledge distillation in Table 3.

5.2 Comparison with Other Distillation Methods

Intuitively, improved teachers are overconfident in each sample, thus producing
harder predictions containing low information. To enlarge teacher uncertainty
without sacrificing generalization, we apply PrUE to prune them, and then fine-
tune them to restore accuracy.

Table 4. The test accuracy (%) and uncertainty (1e−2) of teacher networks with
varying sparsity.

Dataset Sparsity ResNet-20 ResNet-32 ResNet-56 ResNet-110
Acc. Uncer. Acc. Uncer. Acc. Uncer. Acc. Uncer.

CIFAR-10 s = 0 91.72 6.40 93.17 3.34 93.40 2.04 93.38 1.55
s = 20% 92.82 6.12 93.54 3.19 93.75 2.12 94.14 1.31
s = 50% 91.97 8.19 93.08 4.23 93.77 2.39 93.75 1.74
s = 90% 87.98 22.87 90.63 17.49 91.64 13.00 92.13 7.28

CIFAR-100 s = 0 68.61 26.01 69.65 19.16 71.29 10.72 71.84 5.72
s = 20% 69.04 25.83 70.44 18.77 72.01 10.47 73.36 5.55
s = 50% 68.26 27.97 69.18 22.55 71.33 14.56 72.83 7.18
s = 90% 54.30 28.33 60.49 30.53 62.92 30.78 62.16 30.52
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Fig. 3. Predictive visualization of networks with varying sparsity s. As the network
deepens, the predictions get tighter. While the increasing sparsity spreads the predic-
tions into broad clusters.

Figure 3 visualizes these sparse teacher networks. As the sparsity s increases,
the teacher’s predictions are scattered into wider clusters. We also observe that
a higher sparsity is appropriate for deep networks such as ResNet-110. On the
other hand, Table 4 provides quantitative results. It suggests that PrUE can
effectively improve teachers’ uncertainty with slight loss in performance.

Next, we distill knowledge from these sparse teachers to a ResNet-8. Mean-
while, we compare our method with other distillation methods. Table 5 and
Table 6 depicts the results of students performance on CIFAR-10 and CIFAR-
100, respectively. It is worth noting that λ is set to 0 on CIFAR-10, which means
that our method can only obtain the teacher’s prediction, while the others can
receive the ground truth. Although this is an unfair comparison, PrUE still out-
performs existing distillation methods notably. Another interesting observation
is that teachers with high uncertainty distill better students, even when their
accuracy is hurt by pruning. Therefore, we conclude that teacher uncertainty
plays an important role in knowledge distillation, rather than accuracy.

5.3 Comparison with Other Pruning Methods

With promising results on distillation, we further compare PrUE with other
pruning methods. In particular, we first train the teacher from scratch and apply
several one-shot pruning algorithms (Magnitude [11,19], SNIP [18], Random [9],
PrUE) to remove a portion of weights of the trained network, then fine-tune these
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Table 5. The test accuracy of ResNet-8 on CIFAR-10 using different distillation meth-
ods. TA(20), TA(32) refers to using ResNet-20 and ResNet-32 as a teacher assistant,
respectively.

CIFAR-10
ResNet-20 ResNet-32 ResNet-56 ResNet-110

Logit (τ = 1) [13] 88.36(±0.16) 87.48(±0.22) 87.50(±0.29) 87.47(±0.28)
Logit (τ = 4) 88.72(±0.26) 88.39(±0.17) 88.66(±0.21) 88.34(±0.29)
FitNet [28] 87.00(±0.24) 86.83(±0.27) 86.68(±0.08) 86.62(±0.10)
AT [36] 86.64(±0.14) 86.37(±0.16) 86.71(±0.09) 86.76(±0.17)
PKT [27] 87.41(±0.04) 87.30(±0.24) 87.26(±0.13) 87.08(±0.19)
TA(20) [24] – 87.55(±0.26) 87.87(±0.19) 87.66(±0.16)
TA(32) – – 87.83(±0.10) 87.37(±0.28)
PrUE (s = 20%) 88.89(±0.11) 88.30(±0.06) 88.49(±0.19) 88.47(±0.26)
PrUE (s = 50%) 89.17(±0.19) 88.39(±0.07) 88.68(±0.23) 89.22(±0.15)
PrUE (s = 90%) 87.01(±0.20) 87.95(±0.24) 89.08(±0.24) 89.27(±0.18)

pruned networks until convergence. We use ResNet-8 as a student to evaluate
the distillation performance of these sparse teachers.

Table 6. The test accuracy of ResNet-8 on CIFAR-100 using different distillation
methods.

CIFAR-100
ResNet-20 ResNet-32 ResNet-56 ResNet-110

Logit (τ = 1) 59.51(±0.10) 59.25(±0.23) 59.09(±0.08) 59.56(±0.26)
Logit (τ = 4) 59.81(±0.12) 59.50(±0.05) 59.47(±0.21) 59.76(±0.12)
FitNet 58.92(±0.20) 58.53(±0.49) 58.59(±0.07) 58.37(±0.11)
AT 58.52(±0.17) 58.74(±0.09) 58.60(±0.07) 57.87(±0.24)
PKT 58.57(±0.17) 58.74(±0.05) 58.96(±0.27) 58.81(±0.06)
TA(20) – 59.60(±0.25) 59.45(±0.09) 59.14(±0.18)
TA(32) – – 59.68(±0.12) 59.65(±0.09)
PrUE (s = 20%) 59.54(±0.06) 59.66(±0.12) 59.95(±0.05) 59.56(±0.14)
PrUE (s = 50%) 59.9(±0.30) 59.71(±0.25) 60.03(±0.37) 59.85(±0.27)
PrUE (s = 90%) 58.89(±0.32) 59.44(±0.19) 59.85(±0.20) 60.17(±0.08)

As illustrated in Fig. 4, our strategy of distilling knowledge from sparse net-
works can effectively improve the generalization behavior of student networks.
Even if the weights in the network are randomly removed, students can still
benefit from it. We also notice that PrUE could only exhibit similar perfor-
mance to other pruning methods on shallower networks. Such as on 90% sparse
ResNet-32, PrUE exhibits lower distillation performance (87.95%) than Mag-
nitude (88.53%) and SNIP (88.14%). But as the network grows, our method
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achieves better results (up to 89.27%). This result suggests that while previ-
ous work has argued that the large capacity gap between teachers and students
results in lower performance gains, our approach allows researchers to break the
restriction and use deeper networks to obtain further improve student accuracy.

(a) ResNet-20 (b) ResNet-32

(c) ResNet-56 (d) ResNet-110

Fig. 4. Distillation accuracy of sparse teacher networks obtained using different pruning
methods.

The Impact of Sparsity. We also find that inappropriate sparsity affects the
distillation results of all pruning algorithms. For instance, ResNet-20 with 90%
sparsity could face a 1–2% drop in distillation accuracy, although this result still
outperforms traditional distillation methods in Table 5. While networks with
more parameters like ResNet-110 can endure a higher sparsity ratio. Overall, if
the size of teachers is much larger than that of students, we suggest a higher
sparsity to bridge the capacity gap.

5.4 Distillation on Large-Scale Datasets

In this section, we consider practical applications on more challenging datasets.
In practice, some large convolutional networks have been proposed to achieve
better results on ImageNet tasks. On the other hand, researchers designed some
lightweight networks to reduce overhead and accelerate inference. We aim to
answer whether PrUE still works between these two different network structures.

We train ResNext-50 on Tiny-ImageNet as teacher network, while Shuf-
fleNetV2 serves as the student. As for ImageNet, we distill knowledge from
EfficientNet-B2 into MobileNetV3. Table 7 and Table 8 reports their own accu-
racy and distillation performance, respectively. Our method manages to improve
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Table 7. The test accuracy (%) and uncertainty (1e−2) of sparse teacher networks on
Tiny-ImageNet and ImageNet.

s = 0 s = 20% s = 50% s = 90%
Acc. Uncer. Acc. Uncer. Acc. Uncer. Acc. Uncer.

ResNext-50 65.32 1.35 66.24 1.34 68.07 1.29 64.09 3.24
EfficientNet-B2 72.32 34.66 72.62 34.70 72.45 34.85 71.03 35.14

Table 8. The test accuracy of student network distilled by sparse teachers.

Teacher Student Vanilla s = 0 s = 20% s = 50% s = 90%

ResNext-50 ShuffleNet V2 62.09 63.28 63.45 64.09 64.65
EfficientNet-B2 MobileNet V3 Small 60.85 60.88 61.18 61.22 62.12

student generalization on real-world datasets. More interestingly, we observed on
Tiny-ImageNet that the accuracy of the student network can sometimes exceed
that of the teacher network. We believe this suggests that PrUE can be extended
to a wider range of settings. Furthermore, we still lack understanding of knowl-
edge distillation, and our proposed method could be a potential tool to shed
light on it.

6 Conclusion

In this paper, we provided a data-dependent pruning method called PrUE to
soften the network predictions, thereby improving its distillation performance. In
particular, we proposed a computationally efficient criterion to estimate the effect
of weights on uncertainty, and removed those less-contribution weights. We first
showed a positive relationship between the uncertainty of the teacher network
and its distillation effect through a visualization scheme. The following empirical
experiments suggested that PrUE managed to increase the teacher uncertainty,
thereby improving the distillation performance. Extensive experiments showed
that our method notably outperformed traditional distillation methods. We also
found that our strategy of distilling knowledge from sparse teacher networks
could improve the generalization behavior of the student network, but the teacher
pruned by PrUE tended to exhibit better performance.
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