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Preface

The European Conference on Machine Learning and Principles and Practice of Knowl-
edgeDiscovery in Databases (ECML–PKDD2022) in Grenoble, France, was once again
a place for in-person gathering and the exchange of ideas after two years of completely
virtual conferences due to the SARS-CoV-2 pandemic. This year the conference was
hosted for the first time in hybrid format, and we are honored and delighted to offer you
these proceedings as a result.

The annual ECML–PKDD conference serves as a global venue for the most recent
research in all fields of machine learning and knowledge discovery in databases, includ-
ing cutting-edge applications. It builds on a highly successful run of ECML–PKDD
conferences which has made it the premier European machine learning and data mining
conference.

This year, the conference drew over 1080 participants (762 in-person and 318 online)
from 37 countries, including 23 European nations. This wealth of interest considerably
exceeded our expectations, and we were both excited and under pressure to plan a
special event. Overall, the conference attracted a lot of interest from industry thanks to
sponsorship, participation, and the conference’s industrial day.

The main conference program consisted of presentations of 242 accepted papers and
four keynote talks (in order of appearance):

– Francis Bach (Inria), Information Theory with Kernel Methods
– Danai Koutra (University of Michigan), Mining & Learning [Compact] Representa-

tions for Structured Data
– Fosca Gianotti (Scuola Normale Superiore di Pisa), Explainable Machine Learning

for Trustworthy AI
– Yann Le Cun (Facebook AI Research), From Machine Learning to Autonomous

Intelligence

In addition, there were respectively twenty three in-person and three online work-
shops; five in-person and three online tutorials; two combined in-person and one com-
bined online workshop-tutorials, together with a PhD Forum, a discovery challenge and
demonstrations.

Papers presented during the three main conference days were organized in 4 tracks,
within 54 sessions:

– Research Track: articles on research or methodology from all branches of machine
learning, data mining, and knowledge discovery;

– Applied Data Science Track: articles on cutting-edge uses of machine learning, data
mining, and knowledge discovery to resolve practical use cases and close the gap
between current theory and practice;

– Journal Track: articles that were published in special issues of the journals Machine
Learning and Data Mining and Knowledge Discovery;
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– Demo Track: short articles that propose a novel system that advances the state of the
art and include a demonstration video.

We received a record number of 1238 abstract submissions, and for the Research
and Applied Data Science Tracks, 932 papers made it through the review process (the
remaining papers were withdrawn, with the bulk being desk rejected). We accepted 189
(27.3%) Research papers and 53 (22.2%) Applied Data science articles. 47 papers from
the Journal Track and 17 demo papers were also included in the program. We were able
to put together an extraordinarily rich and engaging program because of the high quality
submissions.

Research articles that were judged to be of exceptional quality and deserving of
special distinction were chosen by the awards committee:

– Machine LearningBest Paper Award: “Bounding the Family-Wise Error Rate in Local
Causal Discovery Using Rademacher Averages”, by Dario Simionato (University of
Padova) and Fabio Vandin (University of Padova)

– Data-Mining Best Paper Award: “Transforming PageRank into an Infinite-Depth
Graph Neural Network”, by Andreas Roth (TU Dortmund), and Thomas Liebig (TU
Dortmund)

– Test of Time Award for highest impact paper from ECML–PKDD 2012: “Fairness-
Aware Classifier with Prejudice Remover Regularizer”, by Toshihiro Kamishima
(National Institute of Advanced Industrial Science and Technology AIST), Shotaro
Akashi (National Institute of Advanced Industrial Science and Technology AIST),
Hideki Asoh (National Institute of Advanced Industrial Science and Technology
AIST), and Jun Sakuma (University of Tsukuba)

We sincerely thank the contributions of all participants, authors, PC members, area
chairs, session chairs, volunteers, and co-organizers who made ECML–PKDD 2022 a
huge success. We would especially like to thank Julie from the Grenoble World Trade
Center for all her help and Titouan from Insight-outside, who worked so hard to make
the online event possible. We also like to express our gratitude to Thierry for the design
of the conference logo representing the three mountain chains surrounding the Grenoble
city, as well as the sponsors and the ECML–PKDD Steering Committee.
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Bartosz Zieliński Jagiellonian University, Poland
Sebastian Ziesche Bosch Center for Artificial Intelligence, Germany
Indre Zliobaite University of Helsinki, Finland
Gianlucca Zuin UFM, Brazil

Program Committee Members, Demo Track

Hesam Amoualian WholeSoft Market, France
Georgios Balikas Salesforce, France
Giannis Bekoulis Vrije Universiteit Brussel, Belgium
Ludovico Boratto University of Cagliari, Italy
Michelangelo Ceci University of Bari, Italy
Abdulkadir Celikkanat Technical University of Denmark, Denmark



xl Organization

Tania Cerquitelli Informatica Politecnico di Torino, Italy
Mel Chekol Utrecht University, the Netherlands
Charalampos Chelmis University at Albany, USA
Yagmur Gizem Cinar Amazon, France
Eustache Diemert Criteo AI Lab, France
Sophie Fellenz TU Kaiserslautern, Germany
James Foulds University of Maryland, Baltimore County, USA
Jhony H. Giraldo Télécom Paris, France
Parantapa Goswami Rakuten Institute of Technology, Rakuten Group,

Japan
Derek Greene University College Dublin, Ireland
Lili Jiang Umeå University, Sweden
Bikash Joshi Elsevier, the Netherlands
Alexander Jung Aalto University, Finland
Zekarias Kefato KTH Royal Institute of Technology, Sweden
Ilkcan Keles Aalborg University, Denmark
Sammy Khalife Johns Hopkins University, USA
Tuan Le New Mexico State University, USA
Ye Liu Salesforce, USA
Fragkiskos Malliaros CentraleSupelec, France
Hamid Mirisaee AMLRightSource, France
Robert Moro Kempelen Institute of Intelligent Technologies,

Slovakia
Iosif Mporas University of Hertfordshire, UK
Giannis Nikolentzos Ecole Polytechnique, France
Eirini Ntoutsi Freie Universität Berlin, Germany
Frans Oliehoek Delft University of Technology, the Netherlands
Nora Ouzir CentraleSupélec, France
Özlem Özgöbek Norwegian University of Science and Technology,

Norway
Manos Papagelis York University, UK
Shichao Pei University of Notre Dame, USA
Botao Peng Chinese Academy of Sciences, China
Antonia Saravanou National and Kapodistrian University of Athens,

Greece
Rik Sarkar University of Edinburgh, UK
Vera Shalaeva Inria Lille-Nord, France
Kostas Stefanidis Tampere University, Finland
Nikolaos Tziortziotis Jellyfish, France
Davide Vega Uppsala University, Sweden
Sagar Verma CentraleSupelec, France
Yanhao Wang East China Normal University, China



Organization xli

Zhirong Yang Norwegian University of Science and Technology,
Norway

Xiangyu Zhao City University of Hong Kong, Hong Kong, China

Sponsors



Contents – Part III

Deep Learning

DialCSP: A Two-Stage Attention-Based Model for Customer Satisfaction
Prediction in E-commerce Customer Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Zhenhe Wu, Liangqing Wu, Shuangyong Song, Jiahao Ji, Bo Zou,
Zhoujun Li, and Xiaodong He

Foveated Neural Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Matteo Tiezzi, Simone Marullo, Alessandro Betti, Enrico Meloni,
Lapo Faggi, Marco Gori, and Stefano Melacci

Class-Incremental Learning via Knowledge Amalgamation . . . . . . . . . . . . . . . . . . 36
Marcus de Carvalho, Mahardhika Pratama, Jie Zhang, and Yajuan Sun

Trigger Detection for the sPHENIX Experiment via Bipartite Graph
Networks with Set Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Tingting Xuan, Giorgian Borca-Tasciuc, Yimin Zhu, Yu Sun,
Cameron Dean, Zhaozhong Shi, and Dantong Yu

Understanding Difficulty-Based Sample Weighting with a Universal
Difficulty Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Xiaoling Zhou, Ou Wu, Weiyao Zhu, and Ziyang Liang

Avoiding Forgetting and Allowing Forward Transfer in Continual
Learning via Sparse Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Ghada Sokar, Decebal Constantin Mocanu, and Mykola Pechenizkiy

PrUE: Distilling Knowledge from Sparse Teacher Networks . . . . . . . . . . . . . . . . . 102
Shaopu Wang, Xiaojun Chen, Mengzhen Kou, and Jinqiao Shi

Robust and Adversarial Machine Learning

Fooling Partial Dependence via Data Poisoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Hubert Baniecki, Wojciech Kretowicz, and Przemyslaw Biecek

FROB: Few-Shot ROBust Model for Joint Classification
and Out-of-Distribution Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Nikolaos Dionelis, Sotirios A. Tsaftaris, and Mehrdad Yaghoobi



xliv Contents – Part III

PRoA: A Probabilistic Robustness Assessment Against Functional
Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Tianle Zhang, Wenjie Ruan, and Jonathan E. Fieldsend

Hypothesis Testing for Class-Conditional Label Noise . . . . . . . . . . . . . . . . . . . . . . 171
Rafael Poyiadzi, Weisong Yang, Niall Twomey,
and Raul Santos-Rodriguez

On the Prediction Instability of Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . 187
Max Klabunde and Florian Lemmerich

Adversarially Robust Decision Tree Relabeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Daniël Vos and Sicco Verwer

Calibrating Distance Metrics Under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Wenye Li and Fangchen Yu

Defending Observation Attacks in Deep Reinforcement Learning
via Detection and Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Zikang Xiong, Joe Eappen, He Zhu, and Suresh Jagannathan

Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Zhihao Zhu, Chenwang Wu, Min Zhou, Hao Liao, Defu Lian,
and Enhong Chen

Securing Cyber-Physical Systems: Physics-Enhanced Adversarial
Learning for Autonomous Platoons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Guoxin Sun, Tansu Alpcan, Benjamin I. P. Rubinstein, and Seyit Camtepe

MEAD: AMulti-Armed Approach for Evaluation of Adversarial Examples
Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Federica Granese, Marine Picot, Marco Romanelli,
Francesco Messina, and Pablo Piantanida

Adversarial Mask: Real-World Universal Adversarial Attack on Face
Recognition Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Alon Zolfi, Shai Avidan, Yuval Elovici, and Asaf Shabtai

Generative Models

TrafficFlowGAN: Physics-Informed Flow Based Generative Adversarial
Network for Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Zhaobin Mo, Yongjie Fu, Daran Xu, and Xuan Di



Contents – Part III xlv

STGEN: Deep Continuous-Time Spatiotemporal Graph Generation . . . . . . . . . . . 340
Chen Ling, Hengning Cao, and Liang Zhao

Direct Evolutionary Optimization of Variational Autoencoders with Binary
Latents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Jakob Drefs, Enrico Guiraud, Filippos Panagiotou, and Jörg Lücke

Scalable Adversarial Online Continual Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Tanmoy Dam, Mahardhika Pratama, MD Meftahul Ferdaus,
Sreenatha Anavatti, and Hussein Abbas

Fine-Grained Bidirectional Attention-Based Generative Networks
for Image-Text Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Zhixin Li, Jianwei Zhu, Jiahui Wei, and Yufei Zeng

Computer Vision

Learnable Masked Tokens for Improved Transferability of Self-supervised
Vision Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Hao Hu, Federico Baldassarre, and Hossein Azizpour

Rethinking the Misalignment Problem in Dense Object Detection . . . . . . . . . . . . 427
Yang Yang,Min Li, Bo Meng, Zihao Huang, Junxing Ren, andDegang Sun

No More Strided Convolutions or Pooling: A New CNN Building Block
for Low-Resolution Images and Small Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Raja Sunkara and Tie Luo

SAViR-T: Spatially Attentive Visual Reasoning with Transformers . . . . . . . . . . . 460
Pritish Sahu, Kalliopi Basioti, and Vladimir Pavlovic

A Scaling Law for Syn2real Transfer: How Much Is Your Pre-training
Effective? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Hiroaki Mikami, Kenji Fukumizu, Shogo Murai, Shuji Suzuki,
Yuta Kikuchi, Taiji Suzuki, Shin-ichi Maeda, and Kohei Hayashi

Submodular Meta Data Compiling for Meta Optimization . . . . . . . . . . . . . . . . . . . 493
Fengguang Su, Yu Zhu, Ou Wu, and Yingjun Deng

Supervised Contrastive Learning for Few-Shot Action Classification . . . . . . . . . . 512
Hongfeng Han, Nanyi Fei, Zhiwu Lu, and Ji-Rong Wen



xlvi Contents – Part III

A Novel Data Augmentation Technique for Out-of-Distribution Sample
Detection Using Compounded Corruptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

Ramya Hebbalaguppe, Soumya Suvra Ghosal, Jatin Prakash,
Harshad Khadilkar, and Chetan Arora

Charge Own Job: Saliency Map and Visual Word Encoder for Image-Level
Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

Yuhui Guo, Xun Liang, Hui Tang, Xiangping Zheng, Bo Wu,
and Xuan Zhang

Understanding Adversarial Robustness of Vision Transformers via Cauchy
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

Zheng Wang and Wenjie Ruan

Meta-learning, Neural Architecture Search

Automatic Feature Engineering Through Monte Carlo Tree Search . . . . . . . . . . . 581
Yiran Huang, Yexu Zhou, Michael Hefenbrock, Till Riedel, Likun Fang,
and Michael Beigl

MRF-UNets: Searching UNet with Markov Random Fields . . . . . . . . . . . . . . . . . . 599
Zifu Wang and Matthew B. Blaschko

Adversarial Projections to Tackle Support-Query Shifts in Few-Shot
Meta-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

Aroof Aimen, Bharat Ladrecha, and Narayanan C. Krishnan

Discovering Wiring Patterns Influencing Neural Network Performance . . . . . . . . 631
Aleksandra I. Nowak and Romuald A. Janik

Context Abstraction to Improve Decentralized Machine Learning
in Structured Sensing Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

Massinissa Hamidi and Aomar Osmani

Efficient Automated Deep Learning for Time Series Forecasting . . . . . . . . . . . . . 664
Difan Deng, Florian Karl, Frank Hutter, Bernd Bischl,
and Marius Lindauer

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681



Deep Learning



DialCSP: A Two-Stage Attention-Based
Model for Customer Satisfaction

Prediction in E-commerce Customer
Service

Zhenhe Wu1,2,3, Liangqing Wu3, Shuangyong Song3, Jiahao Ji1, Bo Zou3,
Zhoujun Li1,2(B), and Xiaodong He3
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Beijing, China

3 JD AI Research, Beijing, China
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Abstract. Nowadays, customer satisfaction prediction (CSP) on e-
commerce platforms has become a hot research topic for intelligent cus-
tomer service. CSP aims to discover customer satisfaction according to
the dialogue content of customer and intelligent customer service, for
the purpose of improving service quality and customer experience. Pre-
vious works have made some progress in many aspects, but they mostly
ignore the huge expressional differences between customer questions and
customer service answers, and fail to adequately consider the internal
relations of these two kinds of personalized expressions. In this paper,
we propose a two-stage dialogue-level classification model containing an
intra-stage and an inter-stage, to emphasize the importance of modeling
customer part (content of customer questions) and service part (content
of customer service answers) separately. In the intra-stage, we model
customer part and service part separately by using attention mechanism
combined with personalized context to obtain a customer state and a
service state. Then we interact these two states with each other in the
inter-stage to obtain the final satisfaction representation of the whole
dialogue. Experiment results demonstrate that our model achieves better
performance than several competitive baselines on our in-house dataset
and four public datasets.

Keywords: Customer satisfaction prediction · Intelligent customer
service · Attention-based model

1 Introduction

With the development of e-commerce platforms in recent years, a large number
of companies use customer service chatbots, for the reasons that they could
answer to customers’ questions quickly and save labor cost. Customer satisfaction
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13715, pp. 3–18, 2023.
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prediction (CSP) for the dialogues in customer service chatbots has become
an important problem in industry. For one thing, customers’ satisfaction is a
crucial indicator to evaluate the quality of service, which can help improve the
ability of chatbots. For another, predicting customers’ satisfaction in real time
helps platforms handle problematic dialogues by transferring customer service
chatbots to staffs timely, which can improve the customers’ experience.

When will my order be shipped? 

Expedited shipping for you.

Can you urge? 

Don’t worry, please be pa ent. 

My wife‘s mobile phone is broken…

Sorry for the inconvenience caused. 

Ok, remember to hurry up. 

Thank you for your understanding. 

Sa sfac on level Sa sfied

customer

chatbotQ1

Q2

Q3

Q4

A1

A2

A3

A4

Fig. 1. A dialogue of customer and chatbot on e-commerce platform.

CSP is a multi-class classification task. Existing researches on CSP is
mainly divided into two directions, one is the turn-level CSP, the other is the
dialogue-level CSP. The former direction concerns satisfaction prediction in every
customer-service turn [19,20,24], while the latter one predicts satisfaction level of
the whole dialogue [9,13,14,21,22]. Turn-level CSP can only capture temporary
user’s satisfaction results which may have certain contingency, while dialogue-
level CSP is the key point to evaluate the quality of the service and whether
the customer’s problem has been solved. Thus, in this study, we concentrate
on dialogue-level CSP with five satisfaction levels (strongly satisfied, satisfied,
neutral, dissatisfied, or strongly dissatisfied). As shown in Fig. 1, the customer
expresses his anxiety and displeasure at the beginning, then turns into satisfied
after the good answers of the chatbot.

To address the dialogue-level CSP task, many approaches extracted features
from dialogue content and built models to fully utilize the interaction between
customer questions and customer service answers. Some earlier studies used man-
ual features to represent conversational context [21,22], while recent studies con-
cerned more on how well the questions and answers match each other [13,14].
Although these works have made great progress in CSP task, two issues still
remain: 1) existing studies ignore the huge expressional differences between cus-
tomers and customer service chatbots, in terms of the emotion intensity, speaking
habits, language richness, sentence length and etc. 2) most prior studies fail to
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adequately consider the internal relations of personalized expressions for cus-
tomers and staffs/chatbots respectively.

Fig. 2. The emotional intensity trends are obviously after split.

According to the above analysis, we figure that besides handling the inter-
action of customer questions and customer service answers, modeling customer
part and service part separately should also be taken into consideration due to
their expressional differences in many aspects. For example, customers’ ques-
tioning emotion is volatile and the emotional intensity is usually high, while the
answering emotion of service is relatively stable and the emotional intensity is
low. Figure 2 shows the emotional intensity trend of the case in Fig. 1, in which
the customer’s emotional intensity is higher with greater fluctuation, while the
chatbot is the opposite. After splitting the dialogue into customer part and ser-
vice part, we are able to catch their emotional intensity trends intuitively. For
the similar reason, other aspects of expressional differences also matter.

Thus, we propose a classification model for CSP in E-commerce customer
service dialogues which is called DialCSP. Besides an encoder and an decoder, our
model contains an intra-stage and an inter-stage as core structures. Firstly, we
adopt an encoding module to extract features of the dialogue content. Next comes
the intra-stage, which consists of a customer part and a service part. We split
customer questions and customer service answers as two independent sequences
and send them into these two parts separately. Specifically, each part is designed
to fully extract the internal relations of the sequence. In the end of the intra-
stage, we get customer state and service state as the results of the customer part
and service part. Then, the inter-stage apply an interactive attention mechanism
to capture satisfaction representations of the whole dialogue from customer state
and service state. In the end, a decoder module is used to predict the final
satisfaction level.

To summarize, our contributions are as follows:

– We propose a dialogue-level classification model DialCSP, for CSP in E-
commerce customer service chatbots.
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– By bringing forward a two-stage architecture, we split the dialogue content
into customer part and service part to model them separately. With the results
of customer state and service state, we construct interaction to capture final
satisfaction representation. This architecture handles the above-mentioned
two issues well.

– Experimental results indicate that our proposed model outperforms several
baselines on our in-house dataset and four public datasets.

2 Related Work

In recent years, researchers paid much more attention to CSP and similar tasks.
Some earlier works aimed to predict sentiment levels for subjective texts in
different granularities, such as words [15], sentences [16], short texts [17] and
documents [18]. More recently, mainstream research direction concentrated on
turn-level and dialogue-level CSP.

Some researchers explored the turn-level structure, such as modeling dia-
logues via a hierarchical RNN [19], keeping track of satisfaction states of dia-
logue participants [20], exploring contrastive learning [24] and so on. But, due to
the labels of turn-level satisfaction is difficult to obtain and dialogue-level CSP
appears to reflect service quality more realistically, we focus on dialogue-level
CSP in this paper.

To study the dialogue-level CSP, earlier methods used manual features [21,
22], while recent studies preferred deep neural networks and attention mechanism
to explore how questions and answers interact with each other. Some researchers
adopted a Bi-directional LSTM network to capture the contextual information of
conversational services and use the hidden vector of the last utterance for satis-
faction prediction [9], some researchers used each question to capture information
from all answers to model customer-service interaction [13], while another study
focusing on dialogue-level CSP used LSTM networks to capture contextual fea-
tures and computed the semantic similarity scores between customer questions
and customer service answers across different turns to model customer-service
interaction [14]. However, these works didn’t consider the expressional differ-
ences between customer and customer service. Morever, they failed to excavate
the internal relations of personalized expression sequences. In this work, we work
on addressing the two existing issues above, thus proposing DialCSP model for
dialogue-level CSP.

3 Methodology

3.1 Problem Definition

In the real scenario, a customer asks questions and the chatbot provides the
corresponding answers in turn, so a customer service dialogue is defined as a
sequence of utterances C = {q1, a1, q2, a2, ..., qn, an}. Each question qi is followed
by an answer ai, and the length of dialogue is 2n. The goal of our task is to predict
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Fig. 3. Framework of the DialCSP model.

the satisfaction level y based on the dialogue content C, while the satisfaction
level is divided into five classes: strongly satisfied, satisfied, neutral, dissatisfied,
strongly dissatisfied.

3.2 Proposed Model

As shown in Fig. 3, we propose DialCSP, a two-stage classification model for
dialogue-level CSP. Besides a session-encoder and a session-decoder, the core part
of our model contains an intra-stage and an inter-stage. The session-encoder is
a dialogue encoding module to process the raw conversation content. Intra-stage
is comprised of a customer part and a service part, which helps extract sufficient
internal features of question sequences and answer sequences separately. For both
parts in inter-stage, we utilize attention mechanisms to adequately discover the
sentence characteristics at each time step from their personalized context, served
as customer state and service state. Next, inter-stage applies an interactive atten-
tion mechanism to fully capture satisfaction representations of the whole dialogue
from customer state and service state. Finally, the session-decoder contributes
to predict the final satisfaction level. In the following sections, we will introduce
the details of the model structure in order.

3.3 Session-Encoder

Session-encoder aims to encode natural language dialogues into semantic repre-
sentations. Our input is the whole dialogue text, in which words are separately
transformed into 300 dimensional vectors by using pre-trained GloVe model [23]:

E = GloVe (C) (1)
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Then, inspired by previous study [1], we leverage a CNN layer with max-pooling
to extract context independent features of each utterance. Concretely, we apply
three filters of size 1, 2, 3 with 50 feature maps each, and employ ReLU activa-
tion [2] and max-pooling to deal with these feature maps:

fm1,2,3 = ReLU (CNN1,2,3 (E)) (2)

fm′
1,2,3 = max-pooling (fm1,2,3) (3)

Then, we concatenate these features and send them into a fully connected layer,
which produces the context representations cr as follow:

fm′ = concat
(
fm′

1,2,3

)
(4)

cr = ReLU (W0fm′ + b0) (5)

3.4 Intra-stage

Intra-stage is a core module of our two-stage model, which consists of the
customer part and service part. We can alternately divide cr into ques-
tion representations qr = {qr1, qr2, ..., qrn} and answer representations ar =
{ar1, ar2, ..., arn} as the input of customer part and service part. In the follow-
ing, we will illustrate how these two parts of intra-stage adequately exploit the
inside relations of their own utterance sequences.

Customer Part. LSTM has a special unit called memory cell, which is similar
to an accumulator or a gated neuron. We adapt a Bi-directional LSTM to capture
long-term dependencies of qr:

mq
i = BiLSTMq

(
mq

i±1, qri
)

(6)

where i = 1, 2, ..., n. mi is the output of Bi-directional LSTM at time step i, the
whole context representation of question sequence is mq = {mq

1,m
q
2, ...,m

q
n}.

To better explore the internal relations of question sequence, we capture the
satisfaction representation of each time step iteratively by adequately interacting
current features with context information. Firstly, an GRU encoder is used to
process the sequence:

hq
i = GRUq

encode

(
mq

i , h
q
i−1

)
(7)

where hq = {hq
1, h

q
2, ..., h

q
n}, hq is the hidden state of GRU. Secondly, we use an

attention mechanism to match hq
i with the masked personalized context:

maskedi (mq) =

{
mq

j , j ∈ {1, 2, ..., i}
0, Otherwise

(8)
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q, k, v = hq
i ,maskedi (mq) ,maskedi (mq) (9)

hq
i
′ = IntraAttq (q, k, v) (10)

where hq ′ = {hq
1
′, hq

2
′, ..., hq

n
′}, hq ′ is the result of this attention layer.

Up to now, we have adequately obtained the internal relations of question
sequence. Then, a GRU is used to decode the result from the intra attention
layer:

sqi = GRUq
decode

(
hq
i
′, sqi−1

)
(11)

sq = {sq1, s
q
2, ..., s

q
n}, where sq is customer state after the complete process of

customer part.

Service Part. Service part is the other part in intra-stage, which contributes
to the satisfaction state of service. The whole structure of service part is similar
to customer part:

ma
i = BiLSTMa

(
ma

i±1, ari
)

(12)

ha
i = GRUa

encode

(
ma

i , h
a
i−1

)
(13)

maskedi (ma) =

{
ma

j , j ∈ {1, 2, ..., i}
0, Otherwise

(14)

q, k, v = ha
i ,maskedi (ma) ,maskedi (ma) (15)

ha
i

′ = IntraAtta (q, k, v) (16)

sai = GRUa
decode

(
ha
i

′, sai−1

)
(17)

where sa is the service state.

3.5 Inter-stage

Inter-stage aims to fully interact sq with sa. Some researchers utilize attention
mechanisms to capture the most relevant information and construct interaction
between two sequences [3]. Inspired by those works, we use an attention mecha-
nism to interact sq with sa:

s̃q = InterAttq (sq, sa, sa) (18)



10 Z. Wu et al.

s̃a = InterAtta (sa, sq, sq) (19)

In order to make the learning process smoother, we adopt a layer of add &
normalization [4]:

s̃q
′
= Normalization (Add (s̃q, sq)) (20)

s̃a
′
= Normalization (Add (s̃a, sa)) (21)

In the end of the inter-stage, by using average pooling, we transform s̃q
′
and s̃a

′

into vectors and concatenate them together as follow:

s = concat
(
pooling

(
s̃q

′)
,pooling

(
s̃a

′))
(22)

where s is the final satisfaction representation of the whole dialogue.

3.6 Session-Decoder

The session-decoder module is used to decode the satisfaction representation
s to predict the customer satisfaction. We use two layers of fully connected
network with ReLU activation and softmax, then get the probability distribution
of classification P. ŷ is the final prediction of satisfaction level:

H = ReLU (W1s + b1) (23)

P = softmax (W2H + b2) (24)

ŷ = argmax
k

(P [k]) (25)

As for the loss function, we choose cross-entropy:

L(θ) = −
∑

v∈yV

Z∑

z=1

Yvz ln Pvz (26)

where yV is the set of dialogues that have real labels. Y is the label indicator
matrix, and θ is the collection of trainable parameters in DialCSP.

4 Experimental Settings

This section mainly introduces datasets, hyper parameters and baselines used in
our experiments (Table 1).
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Table 1. The statistics of the five datasets. While CECSP is our constructed Chinese
E-commerce CSP dataset, Clothes and Makeup are two released corpora in different
domains. MELD and EmoryNLP are two CER datasets.

Datasets Train Val Test Avg-turns

CECSP 22576 2822 2801 3.67

Clothes 8000 1000 1000 8.14

Makeup 2832 354 354 8.01

MELD 1037 113 279 3.19

EmoryNLP 685 88 78 3.86

4.1 Datasets

We evaluate DialCSP on our in-house dataset (a Five-classification task) and
four released public datasets (Three-classification tasks).

– CECSP. This is our in-house Chinese E-commerce CSP dataset collected
from one of the largest E-commerce platforms. We use real customer feed-
back as the dialogue-level satisfaction labels which include strongly satisfied,
satisfied, neutral, dissatisfied and strongly dissatisfied.

– Clothes & Makeup. These are two CSP datasets in clothes and makeup
domain collected from a top E-commerce platform [13]. Each dialogue is anno-
tated as one of the three satisfaction classes: satisfied, neutral and dissatisfied.

– MELD. This is a multi-party conversation corpus collected from the TV show
Friends [5]. Each utterance is annotated as one of the three sentiment classes:
negative, neutral and positive. While negative and positive are considered as
dissatisfied and satisfied respectively, neutral is kept unchanged.

– EmoryNLP. This is also a multi-party conversation corpus collected from
Friends, but varies from MELD in the choice of scenes and emotion labels
[6]. The emotion labels include neutral, joyful, peaceful, powerful, scared, mad
and sad. To create three satisfaction classes: joyful, peaceful and powerful are
positive emotion so we group them together to form the satisfied class; scared,
mad and sad are negative emotion so we group them together to form the
dissatisfied class; and neutral is kept unchanged.

– Transforming rules for MELD & EmoryNLP. Original MELD and
EmoryNLP are two released conversational emotion recognition (CER)
datasets. We transform them into the conversational service scenario follow-
ing four rules: (1) We consider the first speaker of a dialogue as the customer
(all other speakers as the customer service) and map all the emotion labels
into turn-level satisfaction labels; (2) We concatenate consecutive utterances
from the same person as a long utterance; (3) If a dialogue is ended by the
first speaker, we use utterance “NULL” as the answer of the last turn; (4) We
set the dialogue-level satisfaction as the average of turn-level satisfaction.
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4.2 Baselines

We compared DialCSP with the following baselines in our experiments:

– LSTMCSP [9]: This model uses a Bi-directional LSTM network to capture
the user’s intent and identify user’s satisfaction.

– CMN [10]: It is an end-to-end memory network which updates contextual
memories in a multi-hop fashion for conversational emotion recognition.

– DialogueGCN [11]: It is a graph-based approach which leverages inter-
speakers’ dependency of the interlocutors to model conversational context
for emotion recognition.

– CAMIL [13]: This Context-Assisted Multiple Instance Learning model pre-
dicts the sentiments of all the customer utterances and then aggregates those
sentiments into service satisfaction polarity.

– LSTM-Cross [14]: This model uses LSTM networks to capture contextual
features. Then, these features are concatenated with the cross matching scores
to predict the satisfaction.

– DialogueDAG [12]: This model uses directed graphs to collect nearby and
distant historical informative cues. We aggregate the node representations to
capture dialogue-level representations for CSP.

– BERT [25] & Dialog-BERT [26]: We use pre-trained language models and
linear layers with softmax on CSP problem. For each dialogue, we use [sep] to
concat utterances as input of the models. We use pre-trained bert-base-chinese
and dialog-bert-chinese on CECSP, and pre-trained bert-base-uncased and
dialog-bert-english on MELD & EmoryNLP (In Clothes & Makeup datasets,
words are replaced with ids for the data-safety, so we can not use pre-trained
model on them).

4.3 Hyper Parameters

We reproduce all baselines with their original experimental settings. In our two-
stage model, the batch sizes are set to be 64 for CECSP, Clothes, Makeup, MELD
and EmoryNLP. We adopt Adam [8] as the optimizer with initial learning rates
of 1e−3 and L2 weight decay rates of 1e−4, respectively. The dropout is set to be
0.5 [7]. We train all models for a maximum of 200 epochs and stop training if the
validation loss does not decrease for 30 consecutive epochs. The total number of
parameters in this model is 59.84 million. We use a piece of Tesla P40 24 GB.
Each epoch of these experiments costs around 400 s.

5 Results and Analysis

5.1 Overall Results

The overall results of all the models on five datasets are shown in Table 2. We
can learn from the results that DialCSP achieves better performance than all
the baselines on five datasets.



DialCSP 13

Table 2. Overall performance on the five datasets. We use the accuracy and the
weighted F1 score to evaluate each model. Scores marked by “#” are reported results
in authors’ paper, while others are based on our re-implementation.

Model CECSP Clothes Makeup MELD EmoryNLP

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

LSTMCSP 51.55 50.10 75.59 75.78 76.31 76.56 42.29 43.08 50.01 47.56

CMN 52.09 50.32 78.5 78.1 81.07 80.88 45.52 44.08 52.56 48.52

DialogueGCN 52.69 50.25 76.89 76.82 77.72 77.78 46.39 44.99 52.72 48.78

CAMIL 55.43 52.92 78.30# 78.40 78.50# 78.64 44.44 39.02 55.13 49.52

LSTM-Cross 55.51 53.11 78.91 79.33 79.88 79.58 46.70 45.41 55.28 51.00

DialogueDAG 55.12 51.97 75.4 75.04 73.73 73.73 48.03 47.28 59.26 54.82

BERT 55.57 52.86 - - - - 50.18 49.79 58.97 57.31

Dialog-BERT 56.44 51.72 - - - - 47.31 46.42 64.10 60.35

DialCSP 57.34 54.69 81.2 80.71 82.2 82.07 50.9 50.35 61.54 57.88

LSTMCSP, CMN, and DialogueGCN achieve similar performance on CECSP,
MELD and EmoryNLP. CMN is capable of capturing the emotional cues in con-
text, thus achieving better F1 scores than LSTMCSP on Clothes and Makeup.
However, chatbot answers are always neutral in conversational service, which
narrow the gap between CMN and LSTMCSP on CECSP. In our scene, cus-
tomer questions and chatbot answers are alternating, so the related positions
between them cannot provide additional information. Thus, the position method
in DialogueGCN does not have better performance here.

CAMIL takes turn-level sentiment information into account and outperforms
previous strategies on four datasets except MELD. Due to the customer-service
interaction modeling method, LSTM-Cross has made further improvement on
all datasets, which implies the importance of interactions in single turn. Dio-
logueDAG uses graphical structure to effectively collect nearby and distant infor-
mation, so it performs well on datasets with shorter average turns, such as MELD
and EmoryNLP. But when the average turns become longer, it doesn’t work well.

BERT is one of the strongest baslines in multiple NLP tasks. We use
pre-trained bert-base-chinese on CECSP and bert-base-uncased on MELD &
EmoryNLP. Dialog-BERT is further designed to focus on dialogue tasks, we
use pre-trained dialog-bert-chinese on CECSP and dialog-bert-english on MELD
& EmoryNLP. The superiority of pre-training makes BERT and Dialog-BERT
achieve better weighted F1 score over other baselines on small datasets MELD
& EmoryNLP, but the performance is mediocre on big dataset CECSP.

DialCSP reaches the new state of the art on four datasets except EmoryNLP.
On the one hand, intra-stage extracts internal correlation features of question
sequence and answer sequence in customer part and service part separately.
Using attention mechanism with the personalized context of both sequences
makes feature extraction sufficient at each time step. On the other hand, we
think each customer question is not only associated with the answer behind, but
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Table 3. Results of ablation study on the two representative datasets.

Method Weighted F1 score

CECSP Clothes

(1) Two-stage model 54.69 80.71

(2) - Inter-stage 53.68(↓ 1.01) 78.64(↓ 2.07)

(3) - Intra-stage 54.07(↓ 0.62) 78.23(↓ 2.48)

(4) - Intra-stage & Inter-stage 53.53(↓ 1.16) 78.44(↓ 2.27)

(5) + context part 53.61(↓ 1.08) 79.37(↓ 1.34)

(6) + context part & attention 54.31(↓ 0.38) 79.16(↓ 1.55)

also the answers in other turns, so inter-stage conducts fully interaction between
customer state and service state, which is different from the turn-level approaches
in earlier researches. As the results, our proposed model has improved by at least
1%–3% on F1 score over five datasets, compared with non-pretrained baseline
models. It also performs better than BERT and Dialog-BERT on CECSP and
MELD, meanwhile, taking the advantage of light and fast. Only on the smallest
dataset EmoryNLP, Dial-BERT performs better than DialCSP. However, the
test set of EmoryNLP contains only 78 samples, so the results may have certain
contingency.

5.2 Ablation Study

To study the impact of the modules in our two-stage model, we evaluate it
by removing 1) inter-stage 2) intra-stage 3) intra-stage and inter-stage together.
Removing the inter-stage means the we only retain the intra-stage (The output of
the Bi-LSTM is taken as the input of the intra-stage). Removing the intra-stage
means only the inter-stage remains (The output of the inter-stage is taken as
the input of session-decoder after pooling & concatenate). Removing both intra-
stage & inter-stage means we no longer separate the dialogue into two parts and
only retain the customer part of the intra-stage (The output of session-encoder
is taken as the input of customer part). We use CECSP and Clothes as the
representatives in this study because they are larger datasets with short and
long average turns. The results are shown in Table 3.

Here are two sets of comparative experiments. Firstly, let’s pay attention to
the comparison of rows (1) (2) (3). Without inter-stage, the weighted F1 score
drops by 1.01% on CECSP and 2.07% on Clothes. Without intra-stage, the
weighted F1 score drops by 0.62% on CECSP and 2.48% on Clothes. The results
imply the importance of both two stages, none of them can be removed. Secondly,
experiments on rows (2) (4) illustrate the advantage of intra attention. Both of
them don’t have inter-stage, and the only difference between them is whether
to split the dialogue into question sequence and answer sequence. As shown in
the table, the weighted F1 score drops by 0.15% and 0.20% if we don’t apply
intra method. Thus we can draw a conclusion, the intra method helps extract
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Fig. 4. Framework of DialCSP model with extra context part in the intra-stage.

the internal correlation of customer context and service context respectively, and
indeed improves the performance of our model.

Furthermore, to verify if full context features may improve model perfor-
mance, we conduct two groups of experiments. 1) We add context part in the
intra-stage (The full output of session-encoder is taken as the input of context
part, the structure of context part is the same as customer part and service part)
and concatenate its output with s̃q and s̃a after pooling. 2) We add context part
and get context state s as the output, then we use attention mechanism to inter-
act s with sq and sa separately, as shown in Fig. 4. The results are shown in
Table 3.

In the experiments on row (5), the only difference between this model and
DialCSP is an extra context part. As shown in the Table 3, the weighted F1
score drops by 1.08% and 1.34%, which proves that simply increasing extra
fully context information would not improve the performance of DialCSP. In
the experiments on row (6), we conduct interaction of context part with cus-
tomer part and service part by using attention mechanism, as shown in Fig. 4.
The weighted F1 score drops by 0.38% and 1.55%, which shows the effect of
interaction compared to row (5), while it still can’t improve DialCSP model.

In conclusion, the ablation study proves that both intra-stage and inter-
stage play important roles. In particular, the intra method of separating context
representations into questions and answers contributes to the improvement of
our model. Furthermore, we find extra fully context features extraction can’t
improve the performance of DialCSP model, which signifies the completeness
and rationality of our model.
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Q3: My wife‘s mobile phone is broken…         

A3: Sorry for the inconvenience caused. 
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A4: Thank you for your understanding.  
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Fig. 5. Results of case analysis. Part A represents the feature extraction process of
traditional model, while Part B represents our DialCSP model. The colors of heatmap
show the values of attention weights. (Color figure online)

5.3 Case Analysis

In order to better understand the advantages of the DialCSP model, we analyse
the case in Fig. 1. The result shows in Fig. 5. The heatmap is used to represent
the values of attention weights, where darker colors mean larger weights.

Part A illustrates the feature extraction process in traditional models, in
which the dialogue would not be separated into questions and answers. As cus-
tomer’s expression contains richer information (“when”, “urge”, “broken”) of his
problem and emotion, the model will pay more attention to Q1, Q2 and Q3. So,
it is likely to ignore the importance of answers, which are critical to deciding
whether these questions are solved, thus affecting customer’s satisfaction deeply
too.

By contrast, Part B illustrates our DialCSP model. The dialogue is split into
customer questions and chatbot answers, so the model can better learn the inside
relations of the two sequences separately in the intra-stage, which ensures the
expressions of customers would not attract much more attention than chatbots.
In this case, the customer expresses his anxiety and tells the mobile phone is
broken in Q2 and Q3, so the weights of those two are larger in the question
sequence. Similarly, A3 have larger weights in the answer sequence due to its
obvious comforting expression. Then, the inter-stage conducts the interaction to
adjust the attention weights of the two parts. In the end, we concatenate two
parts and find Q2, A2, Q3, A3 are important utterances of this dialogue. In this
dialogue situation, although the customer mainly shows his bad emotion and
unsolved problem in Q2 and Q3, the chatbot comforts him in A2 and A3, which
leads to a satisfied result. The result of part B appears to be more reasonable.
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By comparing the two results, we find the intra-stage of our DialCSP model
can balance the expressional differences of customer questions and chatbot
answers, while the traditional model pays more attention to customer questions.
What’s more, the inter-stage interacts customer state with service state to adjust
the weights of attention, which can help capture the characteristics of dialogue
more smoothly.

6 Conclusion

In this paper, we propose a two-stage model for dialogue-level CSP task. We first
introduce an intra-stage to discover the relations inside customer part and service
part respectively, in which an attention mechanism with masked personalized
context is used to fully capture the customer state and service state. Then, we
use an inter attention mechanism to combine those two states in inter-stage and
predict the customer satisfaction of the whole dialogue. Experimental results on
our in-house dataset and four public datasets indicate our model outperforms
all the baseline models on the dialogue-level CSP task.

In the future work, we will further improve our two-stage model by construct-
ing more specific structures. For example, we can make differentiated design on
customer part and service part in intra-stage. Moreover, we will try DialCSP
or its variants on other interesting tasks in customer service dialogues, such as
good dialogue mining or dialogue-level use intent detection.
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alessandro.betti@inria.fr

Abstract. The classic computational scheme of convolutional layers
leverages filter banks that are shared over all the spatial coordinates of
the input, independently on external information on what is specifically
under observation and without any distinctions between what is closer to
the observed area and what is peripheral. In this paper we propose to go
beyond such a scheme, introducing the notion of Foveated Convolutional
Layer (FCL), that formalizes the idea of location-dependent convolutions
with foveated processing, i.e., fine-grained processing in a given-focused
area and coarser processing in the peripheral regions. We show how the
idea of foveated computations can be exploited not only as a filtering mech-
anism, but also as a mean to speed-up inference with respect to classic
convolutional layers, allowing the user to select the appropriate trade-off
between level of detail and computational burden. FCLs can be stacked
into neural architectures and we evaluate them in several tasks, showing
how they efficiently handle the information in the peripheral regions, even-
tually avoiding the development of misleading biases. When integrated
with a model of human attention, FCL-based networks naturally imple-
ment a foveated visual system that guides the attention toward the loca-
tions of interest, as we experimentally analyze on a stream of visual stimuli.

Keywords: Foveated convolutional layers · Convolutional neural
networks · Visual attention

1 Introduction

In several visual tasks the salient information is distributed in regions of limited
size. Objects of interest do not typically occupy the whole visual field, while
peripheral areas could contain both relevant or redundant (if not misleading)
information. Processing the whole visual scene in a uniform manner can lead to
the development of learning machines which inherit spurious correlations from
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the training data [18,23], that might behave in an unexpected manner at infer-
ence time, when exposed to out-of-distribution inputs. A foveated artificial vision
system is characterized by a high-acuity fovea, at the center of gaze and a lower
resolution in the periphery. Several recent approaches implement this principle
by transforming the input [4,22], for example blurring the image periphery [16]
or sub-selecting a portion of it. Many other works introduced foveation pat-
terns into a variety of tasks [8], architectures [24] and rendering operations [11].
Foveation in machine vision systems has been investigated both for its computa-
tional advantages [15] and for its representational and perceptual consequences,
it can play a relevant role in terms of reducing undesirable correlations, noise
dependence and weakness to adversarial attacks [10,17].

The importance of foveated vision systems clashes with how classic 2D con-
volutional layers are designed, where all the input locations are treated the same
way, exploiting and sharing the same bank of filters over all the image plane [1].
This entails an architectural prior, implicitly assuming that all the input loca-
tions equally contribute to the learning process of the layer filters. From the per-
spective of the computational costs, extracting convolutional features requires
the same computational budget over all the spatial locations. Transformer archi-
tectures and related models [5,20,21] marked a paradigm shift towards the
removal of the inductive bias induced by convolutional layers, thanks to the self-
attention mechanism which basically gives different importance to sub-portions
of the vision field. However, this actually takes place due to further operations
that are applied to predict the importance of the convolutional features extracted
on image patches, and not due to an inherently foveated computational scheme,
with low computational efficiency. Similar considerations hold for the efficiency
of Locally Connected Layers (LCL) [6,13], that implements different filters for
each local receptive field. Moreover, LCLs hinder the generalization capability of
the network, losing interesting properties (invariances) and not capturing some
correlations due to their strong locality [14].

Recent activity in the context of modeling human attention [26] has shown
that it is possible to predict human-like scanpaths to tell deep networks what
are the important locations to “observe/focus”, thus filtering out non-relevant
information [19]. When paired with the aforementioned properties and benefits
of foveated visual systems, this calls to the need of developing neural models
that can naturally and efficiently exploit the information on what is focused.
Inspired by this intuition, we introduce a novel kind of foveated neural layer for
computer vision, named Foveated Convolutional Layer (FCL), that rethinks the
role of classic 2D convolutions. FCLs go beyond the idea of exploiting the same
filters over all the spatial coordinates of the input stimuli, formalizing the idea
of location-dependent foveated convolutions. Given the coordinates of a point of
interest, also referred to as focus of attention (FOA), either coming from exter-
nal knowledge on the task at hand or generated by a scanpath predictor [26], an
FCL extracts feature maps that depend on the FOA coordinates and on where
convolution is evaluated, giving a different emphasis to what is closer and far-
ther from the FOA. In particular, FCLs perform a finer-grained processing in
the focused areas (foveal region), and a progressively coarser processing when
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moving far away (peripheral regions). We propose several variants of FCL, which
differ in the way this principle is implemented. One of the proposed instances
of FCLs easily leads to faster processing with respect to classic convolutional
layers, allowing the user to select the appropriate trade-off between the process-
ing capability and computation streamlining, where the reduction of per-pixel
floating point operations (faster processing) is due to the coarser feature extrac-
tion in non-focused areas. We show how some instances of FCLs can loosen the
weight sharing constraint of classic 2D convolutions [13], limiting it to portions
of the image at similar distances from the FOA, thus introducing a FOA-based
form of locality in the connections [6]. When integrated with the dynamic model
of human attention of [26], FCL-based networks naturally implement an efficient
foveated visual system that guides the attention toward plausible locations of
interest, leveraging peripheral low-budget computations, as we experiment in the
context of a continual stream of visual stimuli.

The scope of our work is different from the one of Recurrent Attention
Models [12] (and related work), that iteratively process the input, focussing
on different portions of it, and learning to identify what is more relevant for
the task at hand [9]. In these models, the way attention behaves is intrinsically
interleaved with the task-related predictor, either by means of non-differentiable
components [12] or differentiable approximations, while what we study is indeed
completely agnostic to the source of the attention coordinates. Moreover, this
paper is not oriented toward designing systems that make predictions as the
outcome of a dynamic exploration of the input, being potentially complemen-
tary to the aforementioned approaches and other dynamic models [7]. The idea
of re-structuring the kernel function is also present in Locally Smoothed Neural
Networks (LSNNs) [14], that, however, are based on the idea of factorizing the
weight matrix to determine the importance of different local receptive fields.

In detail, the contributions of this paper are the following: (i) We pro-
pose Foveated Convolutional Layers (FCLs) to implement location-dependent
foveated processing, investigating several out-of-the-box FCLs. (ii) We study
how FCLs can be stacked or injected into neural architectures, reducing the
overall number of floating point operations and running times, as experimentally
investigated in multiple tasks. (iii) Thanks to faster processing on the peripheral
areas, we implement an all-in-one foveated visual system that can be used to
drive the gaze patterns of a focus-of-attention trajectory predictor, extending a
state-of-the-art scanpath model [26]. (iv) We evaluate the foveated visual sys-
tem in continual learning, manipulating attention at a symbolic level, coherently
with the skills that are progressively gained by the network.

2 Foveated Convolutional Layers

Let us consider an input image/tensor I : Ω → R
c with c channels, where I(x)

is the c-element vector at coordinates x = (x1, x2) ∈ Ω, being Ω the domain to
which the spatial coordinates belong. Let us also introduce a 2D convolutional
layer composed of a bank of F kernels/filters. Without any loss of generality,
and for the sake of simplicity, we restrict the following analysis to the case of
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c = 1. For each kernel kj : R2 → R, j = 1, . . . , F , the convolution between I and
kj is defined as follows,

oj(x) =
(
kj ∗ I

)
(x) =

∫

Ω

kj(τ)I(x − τ)dτ =
∫

Ω

I(τ)kj(x − τ)dτ. (1)

where oj(x) denotes the j-th output feature map computed at coordinates x.
Notice that, as usual, the same filter is shared over all the spatial locations. This
implies that all oj(x)’s, ∀x, are the outcome of having applied the exact same
filter function, after having centered it in x. However, from a very qualitative
standpoint, this clashes with the fact that humans do not process the visual
scene in such a uniform manner. The extraction of visual information depends
on what the gaze is specifically observing, a ∈ Ω. What is closer to a, the foveal
region, is not processed the same way as what is far from it. Usually, a finer-
grain processing is applied when close to a, while a coarser visual representation
is modeled as long as we depart from a. It is convenient to think that the former
is related to a larger usage of the computational resources, while the latter is
associated to less expensive processing.

We propose a novel class of convolutional layers, named Foveated Convolu-
tional Layers (FCLs), that make convolution dependent on a given location of
interest a, and that do not exploit the exact same filter over all the x’s. The infor-
mation on a might come from additional knowledge (e.g., knowing the location
of an object or simply focussing on the center of the image in Image Classifica-
tion) or from a model of human attention that predicts where to focus, both in
static images and videos [2,26]. In FCLs, the kernel exploited for the convolution
operation in Eq. 1 becomes a function of a, in order to model the dependency
on the location focused by the gaze, and also function of x, to differentiate
the way convolution is performed in different locations of the image plane. For
example, the notion of foveated processing implies that a coarser computation
is performed when x is far from a. We propose to implement this behaviour by
transforming the original kernel kj through a spatial convolution with a newly
introduced function μ, that depends both on a and x, and, in particular, on the
relative location of x with respect to a,

k̃j
x,a(z) =

(
μθ,x−a ∗ kj

)
(z) :=

∫

Ω

μ(θ, x − a, z − ξ)kj(ξ)dξ. (2)

We refer to μ as the modulating function, while θ are its structural parameters.
Notice that when c > 1, kj includes c 2D spatial components, and the spatial
convolution of Eq. 2 is intended to be applied to each of them. Features o(x) are
obtained as in Eq. 1, replacing kj with k̃j

x,a from Eq. 2.
This definition paves the road to a broad range of instances of FCLs that

differ in the way in which the modulating function μ(θ, ·, ·) is defined, and in how
we make operations less costly when departing from the FOA, that will be the
subject of the rest of this section, and that are briefly summarized in Fig. 1 (top-
left). In 2D convolutional layers, kj is assumed to be defined on a limited region
that, in the discrete case, is (c×) K × K. The portion of I (resolution w × h)
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that is covered by kj when computing such a discrete convolution at a certain
location x is what is usually referred to as receptive input. The major assumption
that we follow in designing out-of-the-box FCLs is that features extracted in the
peripheral regions (far from a) or in the focused regions (close to a) should be
about input portions of the same size, to avoid introducing strong biases in the
nature of the features extracted when varying x or a. In other words, all the
filters k̃j

x,a, regardless of x and a, must cover a receptive input of the same size.
We term this condition the uniform spatial coverage assumption.
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Fig. 1. Top-left: out-of-the-box FCLs. Bottom-left: example of R = 4 regions in the
piecewise-defined kernel case, when the attention a is given. Right: three strategies (one-
per-column) to implement a piecewise-defined kernel, with examples of spatial coverage
of the 4 region-wise kernels (coordinates not covered due to dilation are blank). We
report right after the strategy name further operations needed to fulfil the uniform
spatial coverage assumption.

The most basic instance of FCLs that directly applies the idea of a finer-grade
feature extraction around a and a coarser processing in the periphery, can be
obtained by blurring kernel kj with increasing intensity of the blurring operation
as long as we move farther from a. We can achieve this behaviour by selecting
μ(θ, x− a, ·) to be a Gaussian function g(σ, x− a, ·), or, more compactly, gσ,x−a,
characterized by a standard deviation σ(x − a) that depends on the distance
between x and a. FCLs that exploit such Gaussian modulator are referred to as
Gm-FCLs, and are based on σ defined as

σ(x − a) = σ̂a · �
(‖x − a‖2

)
+ σ̂A · (

1 − �
(‖x − a‖2

))
, (3)

being · the classic multiplication, � a function that is 1 when x = a and it is
0 when ‖x − a‖ reaches the maximum possible distance considering the image
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resolution, while σa and σA are the standard deviations on a and on the farthest
location from it.1 Due to the commutative property of the convolution (when Ω
is R2), putting together Eq. 2 and Eq. 1 and replacing μθ,x−a with the gσ,x−a, we
have oj(x) = (k̃j

x,a ∗ I)(x) = (gσ,x−a ∗ kj
x,a ∗ I)(x) = (kj

x,a ∗ (gσ,x−a ∗ I))(x). This
shows that we can implement this type of FCLs by blurring I with a location-
dependent Gaussian, filling the gap between FCLs and the common idea of
blurring the visual scene with a progressively increasing levels of intensity [15,16].
However, the computational burden is larger than classic 2D convolutional layers,
due to the additional convolution with gσ,x−a.

If σ of Eq. 3 is modeled with a piecewise-constant function defined in non-
overlapping ranges involving its argument, such as ρi ≤ ‖x − a‖ < ρi+1,
i = 1, . . . , R − 1, ρ1 = 0, ρR = ∞, then k̃j

x,a in Eq. 2 becomes a piecewise-
defined kernel. In other words, once we are given a, the exact same kernel is
used to compute features oj(x) of Eq. 1, for all x’s which fall inside the same
range. Moreover, as long as σ returns larger standard deviations, k̃j

x,a becomes a
blurrier copy of kj , leaving room to approximated representations that reduce its
K ×K spatial resolution. These considerations open to the definition of another
instance of FCLs that is specifically aimed at exploiting foveated processing to
speedup the computations, giving the user full control on the trade-off between
computational cost and the level of detail of the features extracted when moving
away from a. In piecewise-defined FCLs (Pw-FCLs), the input image is divided
into R ≥ 2 regions R1, . . . ,RR, centered in a and with no overlap, e.g., in func-
tion of ‖x − a‖ as previously described, naturally introducing a dependency on
the focused location, as shown in Fig. 1 (bottom-left).2 The cost of the convolu-
tion operation is controlled by a user-customizable reduction factor 0 < ri ≤ 1,
defined for each Ri, where r1 = 1 and ri+1 < ri,∀i. In particular, the cost of
computing a convolution in x ∈ Ri is forced to be riC1, where C1 is the cost of a
convolution for x ∈ R1. This means that convolutions in peripheral regions are
performed in a faster way than those in regions closer to a. As we will describe
in the following, there are multiple ways of fulfilling this computational con-
straints by introducing a coarser processing. In turn, coarser processing makes
Pw-FCLs exposed to less details and less data variability when far away from
a, that can result in a more data-efficient learning in non-focused areas.

We propose three different strategies for enforcing the cost requirement
imposed by the reduction factor, summarized in Fig. 1 (right). The first two ones
are based on the fact that the cost of convolution is directly proportional to the
number of spatial components of the kernel, thus the computational burden can
be controlled by reducing the size of the kernel defined in each region in function
of ri. However, a smaller kernel size implies covering smaller receptive inputs,
thus violating the previously introduced uniform spatial coverage assumption.

1 In our experiments we used an exponential law, with σ̂a almost zero and σ̂A = 10.
Function g is computed on a discrete grid of fixed-size 7 × 7.

2 The innermost region R1 is then a circle, and the other regions are circular crowns
with increasing radii. The outermost region RR is simply the complementary area.
We also tested the case of a squared R1 and frame-like Ri, i > 1.
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For this reasons, further actions are needed in order to ensure such a condition is
fulfilled, leading to two variants of Pw-FCLs, based on input downscaling and
dilated convolutions [25], respectively. The former appropriately downscales the
input to compensate the kernel reduction, and it requires then to upscale the
feature maps to match their expected resolution (Fig. 1, top-right). The third
strategy consists in not reducing the kernel and relying on strided convolutions,
thus skipping some x’s, that still requires to upscale the resulting feature maps
(more details in Appendix A.1).

The piecewise defined kernel is the outcome of adapting the same base kernel
kj over the different regions, thus we denote what we described so far as Pw-
FCL with shared weights, or, more compactly, Pw-FCL-S (Fig. 1, top-left).
This implies that all the region-defined filters share related semantics across the
image plane, due to the shared nature of the learnable kj . A natural alternative
to this model consists in using independent learnable filters in each region. In
this case, referred to as Pw-FCL-I, features extracted in different areas could
be fully different (or not) and associated to different (or same) meanings. Of
course, if the information stored in the foveal and peripheral areas share some
properties, then a Pw-FCL-S might be more appropriate.

It is interesting to show how the framework of FCLs can be further extended
along directions that depart a little bit from the idea of foveated processing,
but that are still oriented toward location-dependent processing in function of
the FOA coordinates a. Of course, a detailed analysis of them goes beyond
the scope of this paper. In particular, the degrees of freedom of FCLs can be
extended when μ(θ, x − a, z) is implemented with a neural network modulator,
naming these layers Nm-FCLs. It is convenient to think about such modulator
as a multi-layer feed-forward network with input x − a, and that yields N × N
real numbers as output, which is the filter that modulates kj in the discrete
counterpart of Eq. 1. Output values are normalized to ensure the filter sums to 1
in the N ×N grid, and we set N = 7 in our experiments, in analogy with the way
gσ,x−a was discretized. Another step in relaxing the formulation of FCLs consists
in fully re-defining k̃x,a of Eq. 2 as a discrete filter whose values are generated
by a neural network. The net acts as a neural generator, thus Ng-FCLs, that
learns to produce a bank of F distinct (c×) K × K filters given x − a, to be
used when computing convolution in coordinates x. It is easy to see that the
computation/memory burden of generating a different kernel for (almost) every
location x in the image plane, by means of a multi-layer network, makes it less
practical than the other described types of FCLs, even if it opens to further
investigations into this direction (details in Appendix A.2/A.3 suppl. material).

2.1 Learning with Attention in Foveated Neural Networks

From the point of view of the input-output, FCLs are equivalent to classic 2D
convolutional layers, with the exception of the additional input signal a. As a
result, they can be straightforwardly stacked into deep architectures, learning the
kernel components by Backpropagation. It is pretty straightforward to exploit
(single or stacked) FCLs to extract features for each pixel of the w × h network
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input. Whenever FCLs are used after pooling layers or, in any case, after having
reduced the resolution of the latent representations, a must be rescaled accord-
ingly. Depending on the properties of the considered task, it might be convenient
to use FCLs in the last portions of a deep architecture, at the beginning of it,
or in other configurations, for example stacking FCLs in a way that the lower
layers are mostly specialized in fine-grained processing over large areas around
a, that progressively get smaller in the upper layers.

In this paper, we study the case in which a is given, either due to specific
external knowledge or when it is estimated by a human-like model of visual
attention. A very promising model of human attention was recently proposed in
[26], well suited for generic free-viewing conditions too. Such a model estimates
attention a at time t, i.e., a(t), as a dynamic process driven by the following law

ä(t) + γa(t) − E(t, a(t), {mj(x, t), j = 1, . . . , M}) = 0, (4)

where E is a gravitational field that depends on a distribution of masses, each
of them indicated with mj , and γ is a customizable weight that controls dissi-
pation. Each mass attracts the attention in a way that is proportional to the
value of mj(x, t), eventually tuned by a customizable scalar. The authors of [26]
considered the case of M = 2, with m1 and m2 that yield high values when
x includes strong variations of brightness and motion, respectively. However,
other masses could be added over time, as briefly mentioned in [26] but never
investigated. Let us introduce a stream of visual information, being It the frame
at time t, and a neural network f(It, ωt) with weights ωt. In a C-class semantic
labeling problem, f returns a vector of C class membership scores for each image
coordinate x, i.e., f(It, ωt)(x). The notation fi,j,z,...(It, ωt)(x) is used to consider
only the scores of the classes listed in the subscript. Let us assume that the user
is interested in forcing the model to focus on specific object classes h and z. For
example, in a stadium-like scene during a soccer match, the model should be
attracted by the players, by the ball, and not by all the people in the bleachers
or by the sky. We can pool the class membership scores to simulate a novel mass
function, such as mq(x, t) = (max fh,z(It, ωt)(x)), so that the attention model is
automatically attracted by those pixels that are predicted as belonging to classes
h or z (or both—it holds for any number of classes). If f is based on Pw-FCLs,
then peripheral areas will be characterized by faster processing and slightly lower
prediction quality (due to the coarser feature extraction), as it happens in the
human visual system, and attention will be also influenced by such predictions.

3 Experiments

We implemented FCLs using PyTorch,3 performing experiments in a Linux envi-
ronment, using a NVIDIA GeForce RTX 3090 GPU (24 GB). We performed
four types of experiments on four different datasets, aimed at comparing FCLs

3 https://github.com/sailab-code/foveated neural computation.

https://github.com/sailab-code/foveated_neural_computation
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with classic convolutional layer in a variety of settings. Before going into fur-
ther details, we showcase the speedup obtained when using Pw-FCLs (R = 4
regions, r2 = 0.7, r3 = 0.4, r4 = 0.1), comparing the 3 different strategies of
Sect. 2 and Fig. 1 (right), also including a baseline with a classic convolutional
layer, and a vanilla configuration of Pw-FCLs without any cost reduction (i.e.,
ri = 1, ∀i). The bounding box of each region Ri (up to i = R − 1) linearly
increases from 10% of w up to 70% of it. Figure 2 (left) shows the average time
required to process an input I with c = 64 channels, whose resolution varies
in {256 × 256, 512 × 512, 1024 × 1024, 1920 × 1080}, using K = 11, while Fig. 2
(right) is about 512×512 and variable base kernel size K. Overall, the proposed
reduction strategies achieve big improvements with respect to classic convolu-
tional layers, with better scaling capabilities for larger resolutions and kernels.
The region-management overhead, that is evident in the vanilla case, is com-
pletely compensated by all the reduction mechanisms. The downscaling strategy
is the faster solution (of course, reducing the number of regions or ri’s yields
even better times–see Appendix C.1, supplementary material), that is what we
will use in the following experiments.

Fig. 2. Inference time of the 3 Pw-FCLs
strategies, of a convolutional layer (baseline),
of a fixed-kernel-size Pw-FCLs (vanilla). Left:
changing input resolution. Right: varying K.

The first task we consider is
referred to as Dual-Intention,
and it consists in classifying 200×
200 images in one out of 10
classes. In each image two dif-
ferent digits are present (each of
them covering ≈ 28 × 28 pixel,
MNIST dataset), one in the mid-
dle of it and one closer to the
image border. A special intention
sign is also present, far from the
middle (one of {�,�})). If the
sign is �, then the image class is
the one of the digit placed close
to the border. When � is used the
target class is the one of the digit in the center of the image—Fig. 3 (left). The
challenging nature of the task comes from fact that the training data only include
intention signs randomly located in locations close to the bottom border of the
image, while in the test data the sign is randomly located closer to the top border
(the peripheral digit stands on the opposite side with respect to the intention
sign). In order to gain generalization skills, the network must be able to learn rep-
resentations that are pretty much location-independent in the peripheral area,
and to differentiate them from the ones developed in the central area. We com-
pared multiple convolutional feature extractors, each of them followed by pooling
operation and a classification head (128 hidden neurons, ReLU). The first extrac-
tor is a CNN with 4 layers (denoted with CNN*), with final global-max pooling.
Then, we focused on a single classic convolutional layer (CL) followed by max
pooling (stride 10) or global-max pooling. We also introduced another type of
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pooling that is aware of the existence of two main image regions, that we simu-
lated with a 33×33 box surrounding the image center and the rest of the image,
performing max pooling in each of them and concatenating the results. We refer
to it as region-wise max pooling (reg-max ). Finally, we extracted features with
FCLs, leveraging Pw-FCL-S and Pw-FCL-I with FOA positioned at the image
center and R = 2 regions (a 33 × 33 box region and the complementary one—in
this case, region-wise max pooling is always exploited). We report the average
test accuracy over three runs (and standard deviations) in Table 1, considering
a 1K samples dataset and a 10K samples one (see Appendix C.2, supplementary
materials, for the model validation procedure; r2 is always < 1). Models based on
global-max pooling, being them deeper (CNN*) or shallower (CL+global-max ),
loose all the location-related information, thus they do not distinguish among
what is in the middle of the image and what is in the peripheral area. CL-max
only aggregates a few spatial coordinates, thus yielding (relaxed) location-related
features that let the classifier learn that the intention sign that is expected to
be always at the bottom. Thanks to region-wise max pooling, the CL+reg-
max network achieves good results, even if at the same computational cost of
CL. Interestingly, when a Pw-FCL is used, strongly reducing the computa-
tional burden, we still achieve similar performances to CL+reg-max, and in the
low-data regime both Pw-FCLs outperform it. The foveated computations in
the peripheral region implicitly filters the image, reducing noise and smoothing
samples, that turns out in making FCLs more data efficient (1K dataset). In
Table 2 we restrict our analysis in the case of K = 15 and F = 64, comparing
the two best models equipped with reg-max pooling, and showing the perfor-
mance relative to the different values of the reduction factor r2 (the one of the
peripheral region), along with the number of performed floating point operations
(GFLOPs).4 Interestingly enough, the proposed Pw-FCL-S can achieve a very
similar performance with respect to CL+reg-max, at a fraction of its cost.

Fig. 3. Left: train and test samples from Dual-Intention dataset (class 0, and class 6,
respectively). Middle: training sample from Stock-Fashion (class is “in stock shoes”).
Right: sample from the data by Xiao et al. [23] in its Original, Mixed-Same (1st row),
Mixed-Rand and Mixed-Next (2nd row) versions.

4 We measured the number of floating point operations using the PyTorch profiling
utilities https://pytorch.org/docs/stable/profiler.html.

https://pytorch.org/docs/stable/profiler.html
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Table 1. Dual-Intention. Average
test accuracy (and std) in low (1K) and
large (10K) data regimes.

Model 1K 10K

CNN* 54.3 ± 3.3 57.3 ± 1.0
CL+global-max 53.0 ± 1.4 53.1 ± 0.5
CL+max 24.7 ± 1.9 47.6 ± 1.1

CL+reg-max 71.0 ± 2.4 96.5 ± 0.0
Pw-FCL-S 73.7 ± 0.5 95.4 ± 0.3
Pw-FCL-I 72.3 ± 0.5 95.7 ± 0.1

Table 2. Dual-Intention. The case
of K = 15 and F = 64, varying the
reduction factor r2 (peripheral region).

Model r2 GFLOPs Accuracy

1K 10K

CL+reg-max - 0.996 71.0 96.5

Pw-FCL-S 0.1 0.078 56.7 87.7

0.25 0.159 69.7 94.7

0.5 0.398 73.7 95.4

Our next experimental activity is about a task that is based on what we
refer to as Stock-Fashion dataset, that is somewhat related to the previous
one, since we still have an entity in the middle of the image and another one
closer to the border. The middle area contains patterns that are harder to clas-
sify, simulated with samples from Fashion-MNIST dataset, paired with MNIST
digits placed in the upper image portion at training time, and in the bottom
image portion at test time. The goal is to recognize the class of the fashion item
in the middle (10 types) and also it is largely available in-stock or with limited
availability, in function of the value of the peripheral digit (0 to 4: limited; 5 to 9:
in-stock)—Fig. 3 (middle). Hence, the total number of classes is 20. The periph-
eral information is still crucial for the final purpose of classifying the image, but
it is of different type with respect to what is in the middle. We follow the same
experimental setup of the previous experiment (10K samples) and we report
in Table 3 the test accuracy of the compared models. Once again, region-wise
pooling-based models are the best performing ones. The independent filters of
Pw-FCL-I are able to learn dedicated properties for the foveal region and for
the peripheral region, that in this task do not share any semantic similarities,
leading to better performance (recall that r2 < 1). Recognizing the peripheral
digits is relatively simpler with respect to the fashion items, so that the foveated
computational scheme perfectly balances the computational resources over the
image. In Fig. 4 we report the test accuracy obtained by the foveated models,
restricting our analysis to the case of K = 15 and F = 128 and varying the
reduction factor r2. We remark that even with an evident reduction of their
computational capabilities (r2 ∈ {0.1, 0.25}), the models yield a robust repre-
sentational quality that allows the classifiers to reach large accuracies, with a
preference for Pw-FCLs-I.
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Table 3. Stock-Fashion, 10K, average
test accuracy (and std).

Model 1K Accuracy

CNN* 61.7 ± 1.4 83.4 ± 1.6

CL+global-max 59.7 ± 3.3 79.8 ± 1.4

CL+max 37.3 ± 4.7 42.4 ± 0.7

CL+reg-max 68.3 ± 0.5 85.9 ± 0.9

Pw-FCL-S 66.7 ± 0.0 83.1 ± 0.1

Pw-FCL-I 64.0 ± 0.9 86.0 ± 0.3

0.1 0.25 0.5 1.0
r2
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Fig. 4. Stock-Fashion, F = 128, K =
15, varying the reduction factor r2.

In our next experimental activity, we consider a context in which the infor-
mation in the background of an image might or might-not help in gaining robust
generalization skills, thus ending up in learning spurious correlations. An out-
of-distribution context change in the background usually leads to poor perfor-
mances in the classification accuracy of deep neural models, as studied in the
benchmark of Xiao et al. [23], based on ImageNet. Multiple test sets are made
available, Original, Mixed-Same, Mixed-Next, Mixed-Rand, where the
background of the images is left untouched, replaced with the one from another
example of the “same” class, of the “next” class, of a “random” class, as shown
Fig. 3 (right). We argue that the injection of FCLs into neural architectures, even
if very shallow or simple, favors the model robustness to issues related to back-
ground correlations. In particular, several advantages come from the fact that
FCLs reserve the finest-grained processing solely to the focused area, whilst the
peripheral portion of the frame is processed via coarser resources/reduced res-
olution. Thanks to this architectural prior, the variability of features extracted
from peripheral regions is reduced and they are harder to be tightly correlated
with a certain class. We considered the already described CNN* as reference,
replacing the first or last convolutional layer with a FCL, evaluating all the types
of FCLs of Sect. 2 (see Appendix C.4 for more details). In this case, the FOA a
can be either located at the center of the picture, or on the barycenter of the
main object of each picture (the one that yields the class label). Figure 5 shows
our experimental findings in the latter case, analyzing the first three classes of
the dataset (dog, bird, vehicle)–similar results with the whole dataset (Appendix
C.4). These results support the intuition that a standard CNN* suffers from the
background correlation issues, when comparing accuracy in Original (90.8%)
and Mixed-Next (57.1%), where the background is always extrapolated from
a different class. As expected, thanks to the introduction of FCLs, the perfor-
mance drop is remarkably reduced in most of the cases. In Pw-FCL-I (all) such
drop is almost halved (accuracy goes from 86.3% to 68.1%—remind that this
model features a reduced number of parameters with respect to CNN*). Using
neural modulators or generators (Nm-FCL, Ng-FCL) was less effective in the
all and first architectures, while in the last setting they yielded outstanding per-
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formances in terms of generalization both in the Original and Mixed-Next
test sets. This is due to the fact that these models are not explicitly foveated,
since they can freely learn how to perform convolutions at different coordinates
with no restrictions, thus they can still learn to specialize in background fea-
tures. However, when used in the last stages of a hierarchy, they actually learn
to further refine the learned representations to better focus on the main object.

Pw-I Gm Nm

0.6

0.7

0.8

0.9

all

Pw-I Gm Ng Nm

0.6

0.7

0.8

0.9

first

Pw-I Gm Ng Nm

0.6

0.7

0.8

0.9

last

CNN*

0.6

0.7

0.8

0.9

Original Mixed-Same Mixed-Rand Mixed-Next

Fig. 5. Background correlations. Accuracy in the first three classes of the dataset in
[23]. We dropped the string FCL from all the model names (except CNN*).

Going beyond experiments on static images, we studied an incremental learn-
ing setting in which a video stream is presented, frame-by-frame, to an FCL-
based foveated network, with the goal of learning to classify each single pixel as
belonging to one of 20 classes or as being part of the background. The atten-
tion model of [26] is exploited to explore the visual scene, yielding a(t) for each
frame (Eq. 4). The visual stream is composed of a sequence of what we refer
to as visual stimuli, each of them involving 20 unique pictures of handwritten
digits and letters from the EMNIST dataset, also generically referred to as “enti-
ties” (10 digits and 10 letters–A to K, excluding I that is too similar to digit
one). A single entity covers ≈25 × 25 pixels. For each stimulus (2260 frames) an
entity enters the scene from top, slowly moving down until it reaches the bot-
tom of the frame, and it stands still. A different entity does the same, until the
scene is completely populated by 20 entities with no overlap. Finally, the enti-
ties leave the scene moving down (in reverse order, sequentially). The network
processes two sequences of training stimuli, learning in a supervised manner,
initially receiving supervisions on digits only (first training sequence) and then
on letters only (second training sequence). We implemented a simple rehearsal-
based continual learning scheme to store a small subset of frames (≈20− 40) for
learning purposes [3], that are selected whenever the attention a(t) performs a
saccadic movement (details in Appendix C.5, supplementary materials). After
each training sequence, a test sequence is presented, generating end evaluating
multiple foveated-network-dependent masses that attract the attention toward
custom salient elements, as described in Sect. 2.1. Masses are initially about all
the digits, even digits, odd digits. Then, in the second test sequence, they are
about letters, the first 3 digits and first 3 letters (mix1 ), the last 3 digits and last
3 letters (mix2 ) respectively. Masses are activated in mutually exclusive manner
in evenly partitioned portions of each test sequence. All the types of FCLs of this
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paper are evaluated, excluding the network-generated ones that resulted to be
too memory demanding. The foveated network is composed of 2 convolutional
layers and a final FCL (last), or of 3 FCLs (all), R = 2, r2 = 0.25, compared
with a reference network with classic convolutional layers only (CNN). The w×h
pixel-wise feature vectors of the last layer are processed by a classifying head that
marks as “background” those coordinates with too small prediction confidence.

Table 4. Stream of visual stimuli, 200 ×
200. GFLOPs and average accuracy (3
runs) in classifying digits, letters and back-
ground.

Model GFLOPs Ex. Time (ms) Digits Letters Back.

CNN 6.13 1.3 71.9 23.7 84.0

L
a
st

Pw-FCLs 2.72 3.1 69.2 25.3 80.6
Gm-FCLs 6.19 4.3 70.4 22.7 79.8
Nm-FCLs 6.23 4.5 81.0 28.4 67.7

A
ll

Pw-FCLs 1.16 5.8 70.8 24.7 80.0
Gm-FCLs 6.25 6.7 75.2 24.2 77.6
Nm-FCLs 6.37 7.4 58.0 25.3 52.0

Digits Letters Even Odd Mix1 Mix2

0.2

0.4

0.6

Fig. 6. Stream of visual stimuli, 200 ×
200. Fraction of time spent on the
salient elements of the test stimuli (col-
ors are about the models of Table 4).
(Color figure online)

Table 4 reports our results for a stream at the resolution of 200 × 200, and it
shows that foveated models are able to perform similarly to (or even better than)
CNN, even if in Pw-FCLs the number of floating point operations is approx-
imately 3 to 5 times smaller. It is interesting to see that Nm-FCLs (last) and
Gm-FCLs yield significantly better results in the digit/letter pixels, compared
to CNN, but they have more difficulties in classifying background, since the mod-
ulated kernel tends to respond in a less precise manner closer to the digit/letter
boundaries. In Fig. 6 we report the fraction of time spent in those pixels that are
about elements for which an apposite mass was created (colors are about different
models, see Table 4). Results show that foveated networks based on Pw-FCLs
(last/blue), Gm-FCLs (last/light-green, all/red) explore the expected elements
in a similar manner to what happens in CNN (light-blue). The other models
frequently return a small margin between the winning prediction and the other
ones, thus the resulting mass is noisy. Figure 7 shows the saliency map generated
by the attention model exploiting foveated networks with Pw-FCLs (last), from
which we can qualitatively observe that the expected salient elements are indeed
explored by a(t).

In order to emphasize the computational gains when using Pw-FCLs, we
performed the same experiment considering a stream with resolution 1000 ×
1000. The original size of the digits/letters is left untouched, so that frames
are almost composed of background pixels. One might be tempted to simply
downscale each frame and provide it to the net, that actually turns out to be
a complete failure, since the size of digits/letters become significantly small,
as shown in Table 5. Differently, the performance of CNN processing the high-
resolution stream is almost matched by Pw-FCLs (last, all), with a running
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Fig. 7. Attention model of [26] with masses predicted by Pw-FCLs (last). For each
salient element (all digits, even digits, odd digits, letters, mix1, mix2 ), saliency maps are
shown for 2 visual stimuli, when the frame is fully populated (brighter-red: frequently
visited by a(t); lighter-red: sporadically visited by a(t)).

time that is approximately 70%–60% smaller than CNN (the time spent on the
salient elements is still comparable to the one of CNN–Appendix C.5). This
shows how foveated processing can let the network implement a good trade-off
between speed and computational burden, being able to focus and recognize
small digits/letters on a large resolution image.

Table 5. Stream of visual stimuli, 1000× 1000. Average test accuracy (± std, 3 runs),
GFLOPs, inference time in classifying digits, letters and background.

Model GFLOPs Time (ms) Digits Letters Background

CNN (resize to 200× 200) 6.13 1.3 ± 0.04 27.1 ± 1.1 6.0 ± 0.8 94.4 ± 0.6

CNN (full resolution) 153.15 13.2 ± 0.01 77.6 ± 5.4 30.3 ± 1.4 99.5 ± 0.0

Pw-FCLs (last) 63.72 9.1 ± 0.13 76.0 ± 1.5 30.6 ± 1.8 99.4 ± 0.1

Pw-FCLs (all) 18.84 8.6 ± 0.04 74.4 ± 2.3 28.5 ± 1.1 99.4 ± 0.0

4 Conclusions and Future Work

We presented Foveated Convolutional Layers to extract features in function of
a focused location with foveated processing. We proposed several instances of
this model, emphasizing the one that yields a significantly faster processing than
plain 2D convolutions. When injected into a human-like attention model, FCL-
based networks naturally implement a user-customizable visual system with fast
inference and coarser processing in the peripheral areas. Future work includes the
analysis of foveated networks in problems driven by motion invariance principles.
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Abstract. Catastrophic forgetting has been a significant problem hin-
dering the deployment of deep learning algorithms in the continual learn-
ing setting. Numerous methods have been proposed to address the catas-
trophic forgetting problem where an agent loses its generalization power
of old tasks while learning new tasks. We put forward an alternative
strategy to handle the catastrophic forgetting with knowledge amalgama-
tion (CFA), which learns a student network from multiple heterogeneous
teacher models specializing in previous tasks and can be applied to cur-
rent offline methods. The knowledge amalgamation process is carried out
in a single-head manner with only a selected number of memorized sam-
ples and no annotations. The teachers and students do not need to share
the same network structure, allowing heterogeneous tasks to be adapted
to a compact or sparse data representation. We compare our method
with competitive baselines from different strategies, demonstrating our
approach’s advantages. Source-code: github.com/Ivsucram/CFA.

Keywords: Continual learning · Transfer learning · Knowledge
distillation

1 Introduction

Computational learning systems driven by the success of deep learning have
obtained great success in several computational data mining and learning system
as computer vision, natural language processing, clustering, and many more
[1]. However, although deep models have demonstrated promising results on
unvarying data, they are susceptible to catastrophic forgetting when applied to
dynamic settings, i.e., new information overwrites past experiences, leading to a
significant drop in performance of previous tasks.

In other words, current learning systems depend on batch setting training,
where the tasks are known in advance, and the training data of all classes are
accessible. When new knowledge is introduced, an entire retraining process of
the network parameters is required to adapt to changes. This becomes imprac-
tical in terms of time and computational power requirements with the continual
introduction of new tasks.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13715, pp. 36–50, 2023.
https://doi.org/10.1007/978-3-031-26409-2_3
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To overcome catastrophic forgetting, learning agents must integrate continu-
ous new information to enrich the existing knowledge. The model must then pre-
vent the new information from significantly obstructing the acquired knowledge
by preserving all or most of it. A learning system that continuously learns about
incoming new knowledge consisting of new classes is called a class-incremental
learning agent.

A class-incremental solution showcases three properties:

1. It should learn from a data stream that introduces different classes at different
times,

2. It should provide a multi-class inference for the learned classes at any
requested time,

3. Its computational requirements should be bounded, or grow slowly, to the
number of classes learned.

Many strategies and approaches in the continual learning field attempt to
solve the catastrophic forgetting problem in the class-incremental scenario. Reg-
ularization techniques [5] identify essential parameters for inference of previous
tasks and avoid perturbing them when learning new tasks. Knowledge distilla-
tion methods have also been used [6], where knowledge from previous tasks and
incoming tasks are jointly optimized. Inspired by work in reinforcement learn-
ing, memory replay has also been an important direction explored by researchers
[18], where essential knowledge acquired from previous experiences is re-used for
faster training, or retraining, of a learning agent.

In this paper, we propose a catastrophic forgetting solution based on knowl-
edge amalgamation (CFA). Given multiple trained teacher models - each on a
previous task - knowledge amalgamation aims to suppress catastrophic forget-
ting by learning a student model that handles all previous tasks in a single-head
manner with only a selected number of memorized samples and no annota-
tions. Furthermore, the teachers and the students do not need to share the same
structure so that the student can be a compact or sparse representation of the
teachers’ models.

A catastrophic forgetting solution based on the knowledge amalgamation
approach is helpful because it allows heterogeneous tasks to be adapted to a
single-head final model. At the same time, knowledge amalgamation explores
the relationship between the tasks without the need for any identifier during the
amalgamation process, being smoothly integrated into already existing learning
pipelines. This approach can be perceived as a post-processing continual learning
solution, where a teacher model is developed for each task and flexibly combined
into a single compact model when inference is required. As a result, it does not
need to maintain specific network architectures for each task.

Contributions:

– A novel class-incremental learning approach via knowledge amalgamation
which:

• Allows teachers and students to present different structures and tasks;
• Integrable into existing learning pipelines (including non-continual ones);
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2 Related Work

A neural network model needs to learn a series of tasks in sequences in the
continual learning setting. Thus, only data from the current task is available
during training. Furthermore, classes are assumed to be clearly separated. As
a result, catastrophic forgetting occurs when a new task is introduced and the
model loses its generalization power of old tasks through learning.

Currently, there are three scenarios in which a continual learning experiment
can be configured. Task-incremental learning is the easiest of the scenarios, as a
model receives knowledge about which task needs to be processed. Models with
task-specific components are the standard in this scenario, where the multi-
headed output layer network represents the most common solution.

The second scenario, referred to as domain-incremental learning, does not
have task identity available during inference, and models only need to solve the
given task without inferring its task.

Finally, class-incremental learning, the third scenario, requires that the
models must solve each task seen so far while at the same time inferring its
task. The currently proposed method falls into this scenario. Furthermore, most
real-world problems of incrementally learning new classes of objects also belong
to this scenario.

Existing works to handle the continual learning problem are mainly divided
into three categories:

– Structure-based approach: One reason for catastrophic forgetting to occur
is that the parameters of a neural network are optimized for new tasks and
no longer for previous ones. This suggests that not optimizing the entire
network or expanding the internal model structure to deal with the new
tasks while isolating old network parameters could attenuate catastrophic
forgetting. PNN [8] pioneered this approach by adding new components to the
network and freezing old task parameters during training. Context-dependent
gating (XdG) [16] is a simple but popular approach that randomly assigns
nodes to tasks. However, these approaches are limited to the task-incremental
learning scenario by design, as task identity is required to select the correct
task-specific components during training.

– Regularization-based approach: When task knowledge is only available
during training time, training a different part of the network for each task can
still happen, but then the whole network is used through inference. Standard
methods in this approach estimate the importance of the network parame-
ters for the previously learned tasks and penalize future changes accordingly.
Elastic Weight Consolidation (EWC) [7] and its online counterpart (EWCo)
[31] adopt the Fisher information matrix to estimate the importance of the
network synapses. Synaptic intelligence (SI) [17] utilizes an accumulated gra-
dient to quantify the significance of the network parameters.

– Memory-based approach: This strategy replays old, or augmented, sam-
ples stored in memory when learning a new task. Learning without forgetting
(LWF) [6] uses a pseudo-data strategy where it labels the samples of the cur-
rent tasks using the model trained on the previous tasks, resulting in training
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that mixes hard-target (likely category according to previous tasks) with soft-
target (predicted probabilities within all classes). Gradient episodic memory
(GEM) [20] and Averaged GEM (A-GEM) [21] successfully boost continual
learning performance by the usage of exact samples stored in memory to esti-
mate the forgetting case and to constraint the parameter updates accordingly.
Gradient-based Sample Selection (GSS) [26] focuses on optimizing the selec-
tion of samples to be replayed. Dark Experience Replay (DER/DER++) [27]
and Function Distance Regularization (FDR) [28] use past samples and soft
outputs to align past and current outputs. Hindsight Anchor Learning (HAL)
[25] adds additional objectives into replaying, aiming to reduce forgetting of
key learned data points.
Alternatively, methods can also take advantage of generative models for
pseudo-rehearsal. For example, Deep Generative Replay (DGR) [18] utilizes a
separated generative model that is sequentially trained on all tasks to generate
samples from their data distribution. Additionally, knowledge distillation can
be combined with DGR (DGR+distill) [19] to pair generated samples with
soft target knowledge. Alternatively, methods can also take advantage of gen-
erative models for pseudo-rehearsal. For example, Deep Generative Replay
(DGR) [18] utilizes a separated generative model that is sequentially trained
on all tasks to generate samples from their data distribution. Additionally,
knowledge distillation can be combined to DGR (DGR+distill) [19] to pair
generated samples with soft target knowledge.

The proposed CFA is a memory-based approach that presents a novel way
to perform continual learning using knowledge amalgamation, a derivation of
knowledge distillation, and domain adaptation to merge several teacher models
into a single student model.

2.1 Domain Adaptation

Transfer learning (TL) [2] is defined by the reuse of a model developed for a task
to improve the learning of another task. Neural networks have been applied to
TL because of their power in representing high-level features.

While there are many sub-topics of TL, we are deeply interested in domain
adaptation (DA) [10]. While there are many approaches to measure and reduce
the disparity between the distributions of these two domains, Maximum Mean
Discrepancy (MMD) [11] and Kullback-Leibler divergence (KL) [12] are widely
used in the literature. Our approach uses KL to approximate the representa-
tion of learning distributions between the teachers and the student, differing
itself from the original knowledge amalgamation method [3], where the MMD
approach is applied.

2.2 Knowledge Distillation

Knowledge distillation (KD) [9] is a method of transferring learning from one
model to the other, usually by compression, where a larger teacher model super-
vises the training of a smaller student model. One of the benefits of KD is that
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it can handle heterogeneous structures, i.e., the teacher and the student do not
need to share the same network structure. Instead, the teacher supervises the
student training via its logits, also called the soft target. In other words, KD
minimizes the distance between the student network output ẑ and the logits z
from a teacher network, generated from an arbitrary input sample:

LKD = ||ẑ − z||22 (1)

Although KD has become a field itself in the machine learning community,
many approaches are still performed under a single teacher-student relationship,
with a sharing task [9]. Contrary to these constraints, our method can process
multiple and heterogeneous teachers, condensing their knowledge into a single
student model covering all tasks.

2.3 Knowledge Amalgamation

Knowledge Amalgamation (KA) [3,4] aims to acquire a compact student model
capable of handling the comprehensive joint objective of multiple teacher models,
each specialized in their task. Our approach extends the concept of knowledge
amalgamation in [3,23] to the continual learning environment.

3 Problem Formulation

In continual learning, within the class-incremental learning scenario, we experi-
ence a stream of data tuples (xi, yi) that satisfies (xi, yi)

iid∼ Pti(X,Y ), containing
an input xi and a target yi organized into sequential tasks ti ∈ T = 1, ...T , where
the total number of tasks T is unknown a priori. The goal is to learn a predictor
f : X × T → Y, which can be queried at any time to predict the target vector y
associated to a test sample x, where (x, y) ∼ Pt. Such test pair can belong to a
task that we have observed in the past or the current task.

We define the knowledge amalgamation task as follows. Assume that we
are given N teacher models tNi=1 trained a priori, each of which implements a
specific task T . Let Di denote the set of classes handled by model ti. Without
loss of generality, we assume Di �= Dj ,∀i �= j. In other words, for any pair of
models ti and tj , we assume they classify different tasks. The goal of knowledge
amalgamation is to derive a compact single-head student model that can infer
all tasks, in other words, to be able to simultaneously classify all the classes in
D = ∪N

i=1Di. In other words, the knowledge amalgamation mechanism is done
in the post-processing manner where all teacher models trained to a specific
task are combined into a single model to perform comprehensive classification as
per its teacher models. This approach provides flexibility over existing continual
learning approaches because a teacher model can be independently built for a
specific task. Their knowledge can later be amalgamated into a student model
without loss of generalization power.
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Algorithm 1: CFA
Input: Teacher models TN , Task Memory M, Student model S, number of

epochs
Output: Amalgamated Model S

1 for epoch in epochs do
2 M ← shuffle(M); # Optional
3 for sample m in M do
4 begin Joint Representation Learning:
5 LM = LR = 0; # Loss initialization

6 f̂S ← fS =← FS ; # Student encoder
7 for Ti in TN do

8 f̂Ti ← fTi ← FTi; # Teacher encoder

9 F ′
Ti ← fTi ← f̂Ti; # Teacher decoder

10 LM=LM + H(f̂S , f̂Ti) − H(f̂S); # Eq. 3
11 LR = LR + ||F ′

Ti - FTi||22; # Eq. 4

12 begin Soft Domain Adaptation:
13 yT ← TN (m); # Stacked teachers’ soft output
14 DKLsoft = H(ŷS , yT ) − H(ŷS); # Eq. 5

15 L = αDKLsoft + (1 − α)(LM + LR); # Eq. 6
16 Sθ = Sθ − λ∇L; # Parameter learning

4 Proposed Method

In this section, we introduce the proposed CFA and its details. The knowledge
amalgamation element is an extension of [3,4] and consists of two parts: a joint
representational learning and a soft domain adaptation.

4.1 Joint Representation Learning

The joint representation learning scheme is depicted in Fig. 1. The features of
the teachers and those to be learned from the students are first transformed into
a common feature space, and then two loss terms are minimized. First, a feature
ensemble loss LM encourages the features of the student to approximate those
of the teachers in the joint space. Then a reconstruction loss LR ensures the
transformed features can be mapped back to the original space with minimum
possible errors.

Adaptation Layer. The adaptation layer aligns the output feature dimension
of the teachers and students via a 1× 1 convolution kernel [13] that generates
a predefined length of output with different input sizes. Let FS and FTi

be
respectively the original features of the student and teacher Ti, and fS and fTi

their respective aligned features. In our implementation, fS and fTi
have the

same size of FS and FTi
.
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Fig. 1. A summarized workflow of the proposed CFA. It consists of two parts: A joint
representation learning and knowledge amalgamation. In the joint representation learn-
ing, the features of the teachers (showing two here) and those to be learned by the
students are first transformed into a joint space. Later on, knowledge amalgamation
enforces a domain invariant feature space between the student and teachers via KL.

Fig. 2. An illustration of the shared extractor sub-network. A sub-network is shared
between the teachers and the student during the joint representation learning proce-
dure. This shared extractor aims to create a domain-invariant space via KL, which is
then decompressed back into the student model.
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Shared Extractor. Once the aligned features are derived, a naive approach
would be to directly average the features of the teachers fTi

as that of the student
fS . However, due to domain discrepancy of the training data and architectural
differences of the teacher networks, the roughly aligned features may remain
heterogeneous. To this end, the teachers and students share the parameters of a
small learnable sub-network, illustrated in Fig. 2. This shared extractor consists
of three consecutive residual blocks of 1 stride. It converts fTi

and fS into the
common representation spaces f̂Ti

and f̂S . In our implementation, f̂Ti
and f̂S is

half the size of fTi
and fS .

Knowledge Amalgamation. To amalgamate knowledge from heterogeneous
teachers, we enforce a domain invariant feature space between the student and
teachers via the KL divergence, computed as follows:

DKLi
(f̂S ||f̂Ti

) = H(f̂S , f̂Ti
) − H(f̂S), (2)

where H(f̂S , f̂Ti
) is the cross entropy of f̂Ti

and f̂S and H(f̂S) is the entropy of
f̂S .

We then aggregate all such pairwise KL losses between each teacher and the
student, as shown in Fig. 2, and write the overall discrepancy LM in the shared
space as:

LM =
N∑

i=1

DKLi, (3)

To further enhance the joint representation learning, we add an autoencoder
[22] reconstruction loss between the original teachers’ feature space. Let F ′

Ti

denote the reconstructed feature of teacher Ti, the reconstruction loss LR is
defined as

LR =
N∑

i=1

||F ′
Ti − FTi||2, (4)

4.2 Soft Domain Adaptation

Apart from learning the teacher’s features, the student is also expected to pro-
duce identical or similar inferences as the teachers do. We thus also take the
teachers’ predictions by feeding unlabelled input samples to them and then
supervise the student’s training.

We assume that all teacher models handle non-overlapping classes, then
directly stack their score vectors and use them as the student’s target. A similar
strategy can be used for teachers with overlapping classes, where the logits of
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repeating classes can be summed or averaged, but we do not explore it here.
Instead of directly applying a cross-entropy loss between the student output and
the teachers’ soft output, as most knowledge distillation solutions do, we also
enforce a domain invariant space into the discriminative (fully-connected) layers
of the student by applying the KL between the student output and the stacked
teachers’ soft output.

Let yT denote the stacked teachers’ soft output and ŷS denote the corre-
sponding student soft output, then KL is applied as:

DKLsoft
(ŷS ||yT ) = H(ŷS , yT ) − H(ŷS) (5)

4.3 Final Loss

We incorporate the loss terms in Eqs. 3, 4 and 5 into our final loss function. The
whole framework is trained end-to-end by optimizing the following objective:

L = αDKLsoft
(ŷS ||yT ) + (1 − α)(LM + LR) (6)

where α ∈ [0, 1] is a hyper-parameter to balance the three terms of the loss
function. By optimizing this loss function, the student network is trained from
the amalgamation of its teachers without annotations.

5 Experiments

We evaluate CFA and its baselines under four benchmarks. Then, an ablation
study gives further insight regarding CFA memory usage and internal proce-
dures. Finally, we executed all CFA experiments using the same structure for
the teachers and students; a ResNet18 backbone [24] as a feature extractor and
two fully-connected layers ahead of it.

5.1 Replay Memory

To retrieve proper1 logits from the teachers, CFA uses the replay memory strat-
egy, where it records some previous samples to be replayed during the amalga-
mation process. The nearest-mean-of-exemplars strategy was used to build the
replay memory, but any other sample selection strategy can be used.

Nearest-Mean-of-Exemplars Strategy. Consider ti(x) the logits of a teacher
ti on a specific task i. We compute the mean exemplar for each class in class y
as μy = 1

||Di||
∑

x∈Di
ti(x). A sample x is then added to the memory if there is

free space or by descending sorting out the memory and x by their L2 distance.

1 Meaning, related to the original data distribution.
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5.2 Baselines Setup

We set up two different configurations of CFA. CFAfixed uses the nearest-mean-
of-exemplars replay memory strategy with a fixed memory footprint of 1000 sam-
ples. Meanwhile, CFAgrow uses the teachers’ confidence replay memory strategy
with a growing memory allowing 1000 samples per task. Hence, CFAfixed mem-
ory footprint maintains the same, independent of the number of classes learned
so far2, while CFAgrow memory footprint slowly grows are more classes are intro-
duced.

All teachers and students have the same architecture, a pre-trained ResNet18
feature-extractor followed by two fully-connected layers, a R

1000×500 followed by
a R

500×output. CFA is optimized under Adam with learning rate λ = 10−4,
hyper-parameter α = 0.5, and 100 training epochs.

The other baselines are based on the source-code release by [27]. Their con-
figuration is also detailed in the supplemental document. The ones which are
memory-based contains a memory budget of 1000 samples per task, making them
similar to CFAgrow.

All methods have been evaluated using the same computation environment,
a Windows machine with an Intel Core i9-9900K 5.0 GHz with 32 GB of main
memory and an Nvidia GeForce 2080 Ti.

5.3 Metrics

The continual learning protocol is followed, where we observe three metrics:

Average Accuracy: ACC =
1
T

T∑

i=1

RT,i (7)

Backward Transfer: BWT =
1

T − 1

T−1∑

i=1

RT,i − Ri,i (8)

Forward Transfer: FWT =
1

T − 1

T∑

i=2

Ri−1,i − b̄i (9)

where R ∈ RTxT is a test classification matrix, where Ri,j represents the test
accuracy in task tj after completely learn ti. The details are given by [20].

5.4 Benchmarks

SplitMNIST is a standard continual learning benchmark that adapts the entire
MNIST problem [15] into five sequential tasks, with a total of 10 classes.

SplitCIFAR10 features the incremental class problem where the full CIFAR10
problem [14] is divided into five sequential tasks, with a total of 10 classes.

2 Storage of the original teacher models parameters is still required, usually in sec-
ondary memory, as HDD or SSD.
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Table 1. Numerical results over five execution runs.

Baseline Metric (%) SplitMNIST SplitCIFAR10 SplitCIFAR100 SplitTinyImageNet

EWCo [7,31] ACC 19.13 ± 0.02 18.57 ± 2.04 7.91 ± 0.79 7.39 ± 0.03

BWT −97.37 ± 0.26 −88.51 ± 5.18 −83.80 ± 1.56 −71.79 ± 0.62

FWT −13.36 ± 1.38 −10.09 ± 5.64 −1.02 ± 0.15 −0.44 ± 0.16

LWF [6] ACC 19.20 ± 0.06 16.27 ± 4.55 9.13 ± 0.43 0.41 ± 0.20

BWT −96.52 ± 0.94 −89.24 ± 9.60 −83.34 ± 5.57 −50.33 ± 3.25

FWT −11.92 ± 2.01 −11.05 ± 1.88 0.16 ± 0.71 −0.25 ± 0.03

ER [29] ACC 23.41 ± 0.60 69.07 ± 3.31 27.41 ± 2.94 12.33 ± 1.23

BWT −93.83 ± 0.92 −24.15 ± 14.17 −66.35 ± 1.22 −71.07 ± 2.35

FWT −8.83 ± 3.14 −11.84 ± 0.40 −0.98 ± 0.08 −0.5 ± 0.05

AGEM [21] ACC 9.19 ± 0.65 13.49 ± 4.12 0.94 ± 0.32 1.55 ± 0.32

BWT −40.52 ± 46.02 −47.26 ± −47.26 2.99 ± 5.74 −14.93 ± 2.12

FWT −8.97 ± 3.54 −6.06 ± −6.06 0.74 ± 1.74 −0.55 ± 0.20

DER [27] ACC 60.85 ± 2.87 72.99 ± 6.43 32.60 ± 9.77 23.62 ± 3.30

BWT −42.80 ± 3.81 −22.71 ± 5.00 −44.64 ± 8.54 −52.19 ± 3.66

FWT −12.25 ± 2.71 −9.36 ± 8.93 −0.93 ± 0.09 −0.46 ± 2.12

DER++ [27] ACC 72.86 ± 0.95 77.86 ± 7.59 38.82 ± 8.28 23.94 ± 2.52

BWT −24.64 ± 1.21 −16.27 ± 5.71 −49.03 ± 7.60 −43.82 ± 5.95

FWT −12.59 ± 0.48 −6.26 ± 8.81 −0.91 ± 0.07 −0.26 ± 2.16

FDR [28] ACC 78.08 ± 3.41 48.00 ± 5.36 32.26 ± 5.51 13.30 ± 1.64

BWT −21.73 ± 4.36 −86.58 ± 4.37 −62.87 ± 5.83 −67.08 ± 1.69

FWT −10.10 ± 1.13 −11.41 ± 2.95 −0.87 ± 7.29 −0.67 ± 0.22

GSS [26] ACC 24.69 ± 0.80 43.96 ± 2.86 13.94 ± 0.30 9.60 ± 0.84

BWT −91.69 ± 1.04 −55.71 ± 2.57 −78.21 ± 0.32 −69.36 ± 0.28

FWT −10.31 ± 1.96 −10.56 ± 3.30 −0.39 ± 0.55 −0.53 ± 0.05

HAL [25] ACC 88.25 ± 0.46 50.11 ± 1.18 11.00 ± 2.87 3.23 ± 0.11

BWT −13.61 ± 0.62 −47.01 ± 2.14 −44.74 ± 1.84 −32.68 ± 4.10

FWT −8.81 ± 3.28 −11.70 ± 1.69 −0.97 ± 0.26 −0.24 ± 0.31

CFAfixed (Ours) ACC 83.51 ± 1.35 74.96 ± 0.46 27.76 ± 2.28 23.44 ± 2.55

BWT −7.95 ± 1.53 −14.25 ± 1.76 −16.41 ± 1.49 −17.58 ± 1.89

FWT 69.46 ± 9.41 54.28 ± 6.57 26.91 ± 3.17 20.49 ± 5.50

CFAgrow(Ours) ACC 89.25 ± 3.66 79.40 ± 1.15 38.74 ± 3.26 32.50 ± 3.35

BWT 69.77 ± 1.31 49.00 ± 2.78 11.49 ± 2.65 23.33 ± 3.45

FWT 91.77 ± 5.18 65.67 ± 8.22 21.84 ± 4.26 32.58 ± 5.12

SplitCIFAR100 features the incremental class problem where the complete
CIFAR100 problem [14] is divided into 10 sequential subsets, totalling 100
classes.

SplitTinyImageNet features the incremental class problem where 200 classes
from the full ImageNet [30] are resized to 64 × 64 colored pixels and divided into
10 sequential tasks.

5.5 Numerical Results

We compare CFAfixed and CFAgrow against one regularization-based approaches
(EWCo), one knowledge distillation approaches (LWF3), and six memory-based
approaches (AGEM, DER, DER++, FDR, GSS, HAL).
3 A multi-class implementation was put forward to deal with class-incremental learn-

ing, as in [27].
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Table 1 presents a metric summary between the chosen baselines and bench-
marks. It demonstrates that CFAfixed and CFAgrow are comparable, or even
stronger, in comparison with the current state-of-the art methods, specially when
we take in consideration that CFAfixed presents a fixed memory footprint. Fur-
thermore, both CFAfixed and CFAgrow have great BWT and FWT metrics, with
CFAgrow being the only model providing positive values to all metrics. This
means that CFA signalizes some zero-shot learning [20], although not explicitly
focused here.

Furthermore, the most outstanding achievement of CFA is being able to
achieve good continual learning performance when applied to an offline environ-
ment while maintaining competitive results. In other words, all other methods
are fully continual learning procedures, which would require an organization to
shift its entire learning pipeline from scratch. In contrast, CFA leverages the
power of individual teachers trained on the tasks, be it in an online or offline
environment. This scenario is expected in current organization pipelines, sav-
ing costs in an inevitable paradigm shift from offline to online learning agent
technologies.

5.6 Ablation Study

Memory Analysis. Table 2 put the strongest baselines face to face to compare
how their accuracies change over different memory budgets. CFAfixed maintains
a competitive performance, even though it presents a fixed memory footprint.
So, even though it has a performance similar to DER, DER++, and FDR, it
benefits from using less memory and being applied to current offline learning
pipelines.

Joint Representation Learning Analysis. As shown in Table 3, Joint Rep-
resentation Learning (JTL) is the main adaptation driver, responsible for driving
the student’s latent space to represent different tasks. Furthermore, as we are
using the same architecture for the teachers and students, the difference between
α = 1.0 and α = 0.5 is not that significant here but immensely important when

Table 2. ACC(%) metrics over different budget memories.

Benchmark Memory budget CFAfixed CFAgrow DER DER++ FDR

Split CIFAR10 100 48.87 ± 5.26 61.36 ± 2.02 46.77 ± 3.12 51.91 ± 4.21 39.60 ± 4.54

200 61.20 ± 4.35 69.33 ± 1.54 58.41 ± 3.23 64.92 ± 6.15 44.49 ± 4.31

500 69.53 ± 3.30 74.63 ± 1.20 65.63 ± 5.95 72.45 ± 6.85 48.20 ± 5.30

1000 74.96 ± 0.46 79.40 ± 1.15 72.99 ± 6.43 77.86 ± 7.59 41.91 ± 6.42

2000 76.45 ± 1.90 82.21 ± 2.52 73.81 ± 5.12 77.44 ± 8.90 47.39 ± 7.01

Split CIFAR100 100 7.75 ± 1.20 21.34 ± 2.30 13.23 ± 0.00 22.88 ± 4.90 12.23 ± 4.50

200 12.87 ± 2.12 26.01 ± 2.53 19.98 ± 0.00 23.78 ± 5.20 14.74 ± 2.24

500 21.23 ± 2.23 30.59 ± 3.54 26.53 ± 5.23 31.45 ± 6.43 22.26 ± 4.21

1000 27.76 ± 2.28 38.74 ± 3.26 32.60 ± 9.77 38.82 ± 8.28 32.26 ± 5.51

2000 41.50 ± 3.45 47.54 ± 3.18 36.78 ± 9.88 43.45 ± 8.54 33.12 ± 5.40
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Table 3. ACC(%) results with varying hyper-parameter α of the CFAfixed with 1000 of
memory budget, controlling the influence of the Joint Representation Learning (JTL)
and Soft Domain Adaptation (SDA) into its main loss.

Description Split CIFAR10

α = 1.0 | JTL(×)SDA(�) 35.78 ± 10.78

α = 0.5 | JTL(�)SDA(�) 74.96 ± 0.46

α = 0.0 | JTL(�)SDA(×) 69.68 ± 2.23

dealing with entire heterogeneous structures, as noted by [3]. When JTL is dis-
abled, the model has difficulties learning high-feature representations only with
the soft domain adaptation (SDA), resulting in a tremendous catastrophic for-
getting.

6 Conclusion

This paper proposes CFA, an approach to handle catastrophic forgetting for the
class-incremental environment with knowledge amalgamation. CFA can amalga-
mate the knowledge of multiple heterogeneous trained teacher models, each for
a previous task, into a single-headed student model capable of handling all tasks
altogether.

We compared CFA with a set of competitive baselines under the class-
incremental learning scenario, yielding positive generalization with excellent
average accuracy and knowledge transfer capabilities, backed by backward and
forward knowledge transfer metrics. At the same time, CFA demonstrated some
zero-shot learning aptitude and handled an enormous number of classes simul-
taneously.

CFA presents a novel approach towards continual learning using knowledge
amalgamation, enabling easy integration to current learning pipelines, enabling
the shift from offline to online learning with a performance similar to or superior
to the best of the only-online existing methods. Our approach is perceived as a
post-processing approach of continual learning, distinguishing itself from existing
approaches. Our future work is directed to explore the continual learning problem
in multi-stream environments.

Acknowledgement. This work is financially supported by National Research Foun-
dation, Republic of Singapore under IAFPP in the AME domain (contract no.:
A19C1A0018).

References

1. Gama, J.: Knowledge Discovery from Data Streams. CRC Press, Boca Raton
(2010)



Class-Incremental Learning via Knowledge Amalgamation 49

2. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

3. Luo, S., Wang, X., Fang, G., Hu, Y., Tao, D., Song, M.: Knowledge amalgamation
from heterogeneous networks by common feature learning. In: Kraus, S. (ed.) Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI 2019, Macao, China, 10–16 August 2019, pp. 3087–3093. ijcai.org
(2019). https://doi.org/10.24963/ijcai.2019/428

4. Shen, C., Wang, X., Song, J., Sun, L., Song, M.: Amalgamating knowledge towards
comprehensive classification. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, pp. 3068–3075 (2019). https://doi.org/10.1609/aaai.
v33i01.33013068

5. Lee, S.W., Kim, J.H., Jun, J., Ha, J.W., Zhang, B.T.: Overcoming catastrophic
forgetting by incremental moment matching. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS 2017, pp.
4655–4665. Curran Associates Inc., Red Hook (2017)

6. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach.
Intell. 40(12), 2935–2947 (2018). https://doi.org/10.1109/TPAMI.2017.2773081

7. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks.
Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017). https://doi.org/10.1073/pnas.
1611835114. https://www.pnas.org/content/114/13/3521

8. Rusu, A.A., et al.: Progressive neural networks. arXiv abs/1606.04671 (2016)
9. Hinton, G., Dean, J., Vinyals, O.: Distilling the knowledge in a neural network,

pp. 1–9 (2014)
10. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.:

A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)
11. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel

two-sample test. J. Mach. Learn. Res. 13(25), 723–773 (2012). http://jmlr.org/
papers/v13/gretton12a.html

12. Joyce, J.M.: Kullback-Leibler Divergence. In: Lovric, M. (ed.) International Ency-
clopedia of Statistical Science, pp. 720–722. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-04898-2 327

13. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015). https://doi.
org/10.1109/CVPR.2015.7298594

14. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto (2009)

15. LeCun, Y., Cortes, C.: MNIST handwritten digit database. ATT Labs (2010)
16. Masse, N.Y., Grant, G.D., Freedman, D.J.: Alleviating catastrophic forgetting

using context-dependent gating and synaptic stabilization. Proc. Natl. Acad.
Sci. 115(44), E10467–E10475 (2018). https://doi.org/10.1073/pnas.1803839115.
https://www.pnas.org/content/115/44/E10467

17. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence.
In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference
on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp.
3987–3995. PMLR (2017). https://proceedings.mlr.press/v70/zenke17a.html

18. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/
paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf

19. van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. arXiv
abs/1904.07734 (2019)

https://doi.org/10.24963/ijcai.2019/428
https://doi.org/10.1609/aaai.v33i01.33013068
https://doi.org/10.1609/aaai.v33i01.33013068
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://www.pnas.org/content/114/13/3521
http://jmlr.org/papers/v13/gretton12a.html
http://jmlr.org/papers/v13/gretton12a.html
https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1073/pnas.1803839115
https://www.pnas.org/content/115/44/E10467
https://proceedings.mlr.press/v70/zenke17a.html
https://proceedings.neurips.cc/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf


50 M. de Carvalho et al.

20. Lopez-Paz, D., Ranzato, M.A.: Gradient episodic memory for continual learning.
In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol.
30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/
file/f87522788a2be2d171666752f97ddebb-Paper.pdf

21. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning
with a-GEM. arXiv abs/1812.00420 (2019)

22. Rumelhart, D.E., McClelland, J.L.: Learning Internal Representations by Error
Propagation, pp. 318–362 (1987)

23. Shen, C., Wang, X., Song, J., Sun, L., Song, M.: Amalgamating knowledge towards
comprehensive classification. arXiv abs/1811.02796 (2019)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

25. Chaudhry, A., Gordo, A., Dokania, P.K., Torr, P., Lopez-Paz, D.: Using hindsight
to anchor past knowledge in continual learning (2020). https://doi.org/10.48550/
ARXIV.2002.08165. https://arxiv.org/abs/2002.08165

26. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient Based Sample Selection
for Online Continual Learning. Curran Associates Inc., Red Hook (2019)

27. Buzzega, P., Boschini, M., Porrello, A., Abati, D., Calderara, S.: Dark experience
for general continual learning: a strong, simple baseline. In: Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information
Processing Systems, vol. 33, pp. 15920–15930. Curran Associates, Inc. (2020)

28. Benjamin, A.S., Rolnick, D., Kording, K.: Measuring and regularizing networks
in function space (2018). https://doi.org/10.48550/ARXIV.1805.08289. https://
arxiv.org/abs/1805.08289

29. Ratcliff, R.: Connectionist models of recognition memory: constraints imposed by
learning and forgetting functions. Psychol. Rev. 97(2), 285–308 (1990)

30. Tavanaei, A.: Embedded encoder-decoder in convolutional networks towards
explainable AI. arXiv abs/2007.06712 (2020)

31. Schwarz, J., et al.: Progress & compress: a scalable framework for continual learn-
ing. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference
on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp.
4528–4537. PMLR (2018). https://proceedings.mlr.press/v80/schwarz18a.html

https://proceedings.neurips.cc/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/ARXIV.2002.08165
https://doi.org/10.48550/ARXIV.2002.08165
https://arxiv.org/abs/2002.08165
https://doi.org/10.48550/ARXIV.1805.08289
https://arxiv.org/abs/1805.08289
https://arxiv.org/abs/1805.08289
https://proceedings.mlr.press/v80/schwarz18a.html


Trigger Detection for the sPHENIX
Experiment via Bipartite Graph
Networks with Set Transformer

Tingting Xuan1, Giorgian Borca-Tasciuc1, Yimin Zhu1, Yu Sun2,
Cameron Dean3, Zhaozhong Shi3, and Dantong Yu4(B)

1 Stony Brook University, Stony Brook, NY, USA
{tingting.xuan,giorgian.borca-tasciuc,yimin.zhu}@stonybrook.edu

2 Sunrise Technology Inc., Stony Brook, NY, USA
yu.sun@sunriseaitech.com

3 Los Alamos National Laboratory, Los Alamos, NM, USA
{ctdean,zhaozhongshi}@lanl.gov

4 New Jersey Institute of Technology, Newark, NJ, USA
dantong.yu@njit.edu

Abstract. Trigger (interesting events) detection is crucial to high-
energy and nuclear physics experiments because it improves data acqui-
sition efficiency. It also plays a vital role in facilitating the downstream
offline data analysis process. The sPHENIX detector, located at the Rel-
ativistic Heavy Ion Collider in Brookhaven National Laboratory, is one
of the largest nuclear physics experiments on a world scale and is opti-
mized to detect physics processes involving charm and beauty quarks.
These particles are produced in collisions involving two proton beams,
two gold nuclei beams, or a combination of the two and give critical
insights into the formation of the early universe. This paper presents
a model architecture for trigger detection with geometric information
from two fast silicon detectors. Transverse momentum is introduced as
an intermediate feature from physics heuristics. We also prove its impor-
tance through our training experiments. Each event consists of tracks
and can be viewed as a graph. A bipartite graph neural network is inte-
grated with the attention mechanism to design a binary classification
model. Compared with the state-of-the-art algorithm for trigger detec-
tion, our model is parsimonious and increases the accuracy and the AUC
score by more than 15%.

Keywords: Graph neural networks · Event detection · Physics-aware
machine learning

1 Introduction

sPHENIX is a high-energy nuclear physics experiment under construction at
Brookhaven National Laboratory and situated on the Relativistic Heavy Ion
Collider (RHIC). The goal of sPHENIX is to probe the initial moments after
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Fig. 1. sPHENIX track detector and trigger design.

the Big Bang by studying quark-gluon plasma, a state of matter where atomic
nuclei melt under extremely hot and dense conditions.

The sPHENIX detector shown in Fig. 1 consists of several subdetectors for
collecting a wide range of patterns of physics events. The two subsystems closest
to the collision point are of most interest to this study. They are the MAPS
vertex detector (MVTX) and intermediate tracker (INTT). The MVTX detector
provides vertexing and tracking with high precision, while the INTT provides
tracking with a resolution capable of determining the individual beam crossings
at RHIC. sPHENIX also uses an outer calorimetry system to measure the energy
of particles in the detector at a low speed of 15 kHz, limited by the readout
electronics. As the collision rate for protons at RHIC is approximately 2 MHz, the
calorimeter system does not work with the online setting and is not considered
in this paper.

Heavy Flavor decays that we attempt to detect exhibit several prominent
characteristics with a wide value range that overlaps with background events.
The complex pattern and non-trivial decision boundary between heavy flavor
delay and background events provide an ideal playground to apply ML tech-
niques. The particles of interest decay on short time scales, typically a few
nanoseconds or less. These particles may travel several millimeters at the speed
of light before they decay. Physicists often extrapolate Particle tracks in the
detector space to determine whether the tracks coincide with the beam collision
point.

A tremendous volume of data is produced during collider experiments, but
only a tiny fraction of the data needs to be selected due to the rarity of the
targeted events. For example, an event that includes a charm quark typically
occurs once for every 50 background events [1,21] while a beauty quark occurs
once for roughly 1000 background events [2]. Collider experiments require a
trigger system to reduce data in real-time and resolve the big data problem that
is impractical for any data processing facility [11]. The triggers make decisions
to keep or discard an event in situ and significantly reduce the data volume that
needs to be retained for physics experiments. Our paper brings forth significant
impacts to physics experiments by shifting many offline analysis tasks into an
online setting and significantly shortening the latency between experiment and
scientific discovery.
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Before experiments start, we rely on simulation data to train and test our
model. The simulated data is expected to match real data at a high level and
has been extensively validated from previous physics experiments.

Contributions

– In this paper, we design a highly effective graph pooling/distributing mech-
anism for graph-level classification and prediction.

– Our model does not demand any pre-existing graph topology. Instead, it
employs a set transformer to combine local and global features into each
network node, enables effective knowledge exchange among network nodes,
and supports local and global-scale graph learning.

– We incorporate well-known physics analysis into the multi-task neural net-
work architecture and explicitly inference a crucial physics property in nuclear
physics experiments, i.e., transverse momentum. This physics-driven learning
improves our model accuracy and AUC score (Area Under Curve) by about
15%.

2 Related Work

The domain of experimental physics has a history of utilizing Machine Learn-
ing (ML) in physics-related tasks like particle identification, event selection, and
reconstruction. Neural Networks have been used in these experiments [3,16,35]
at first and were replaced by Boosted Decision Trees [40]. Recently Neural Net-
works and their modern implementation of Deep Learning (DL) regain their
popularity in physics because of their superior ability to automatically learn
effective features for many tasks and their outstanding performance [26].

Convolutional Neural Network (CNN) [25] is the most commonly used archi-
tecture with DL in the field of particle physics. It has proven its success in many
tasks such as jet identification [9,20,23], particle identification [12,19,24], energy
regression [12,15,36], and fast simulation [12,31,33]. The majority of CNN archi-
tecture models take a fixed-grid input tensor to represent the detector of an array
of sensors. More efforts attempt to explore other alternative DL architectures
for a better representation of physics: Recurrent Neural Network [14], recursive
networks [28], Graph Neural Network (GNN) [37], and DeepSets [24] for the
particle jet identification tasks. GNN is also applied to the classification tasks in
neutrino physics [13]. Garnet [36] is distance-weighted graph network that can
efficiently detect irregular pattern of sparse data. Transformer model architec-
ture [43] shows its success in many applications [10,17,39]. Taking the data cloud
as a set, Set Transformer [27] utilizes attention mechanism to learn interactions
between elements with EdgeConv that is permutation equivariant and fits the
set property.

Our previous works using ML to solve the same trigger detection problem
appear in [44,45]. Beyond these efforts, no other studies are addressing the same
issue. Jet taggers address a similar situation of tagging tracks with particles.
Nevertheless, Jet taggers rely on the different physics properties collected from
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Fig. 2. An example of trigger event. In trigger events, particles decay into two or
more different particles soon after the collision. Lines represent the trajectories of the
particles. Green ones come from the center of the collision. Blue, red, and orange tracks
start from the position where the decay happens. (Color figure online)

calorimeter detectors and they are interested in different target particles. Jet
tagger belongs to offline analysis, and the readout speed from the calorimeter
is much slower than the event rate, invalidating their applications in the online
use case. Several ML methods for top tagging are discussed in [22]. We gain
insights from the model design of existing tagging algorithms, especially those
supporting the particle cloud [36–38]. Our final goal is to apply the algorithm
to an online data-driven trigger system in an end-to-end fashion [29,44].

3 Problem Definition

Figure 2 schematically illustrates the trigger problem. The input of the physics
event consists of a set of tracks and is represented as a matrix X ∈ Rn×d, where
n is the total number of tracks, and d is the dimensionality of the features of each
track. Tracks are treated as vertices in a graph. The goal is to determine whether
this graph corresponds to a trigger event and triggers the data acquisition system
to retain the readouts from the entire detector for future studies.

The commonly adopted GNN-based trigger prediction model attempts to
perform end-to-end prediction from the raw hits that are the coordinates of the
detector pixels where a particle traverses the detector. This domain-agnostic app-
roach does not offer any insight into why an event becomes a trigger and results
in inferior performance. Domain scientists require physics-aware reasoning and
interpretation by explicitly incorporating physics models and properties. Since
collecting advanced physics properties by detector requires sophisticated detec-
tors and incurs considerable latency compared to the fast geometric detector, it
is not feasible to use advanced physics properties in an online data acquisition
environment. To incorporate the advanced physics properties, we must regress
them onto the available geometric data. Our ultimate goal is to predict trig-
gers while retaining the interpretability and rationality of intermediate tasks by
replicating offline physics analysis workflows.
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Fig. 3. The left figure shows that a positively charged particle will undergo a circu-
lar motion clockwise with a radius R in the uniform magnetic field B along the +z
direction. The right figure shows an example track with a fitted circle. The black cross
markers represent five hits on the example track; the red dashed curve approximate a
particle track and is the fitted circle with a radius R. (Color figure online)

4 Transverse Momentum Estimation

Transverse momentum, as part of the kinematics of particles, is crucial for study-
ing particle dynamics in high-energy and nuclear physics experiments. The trans-
verse momentum of a charged particle can be estimated with the knowledge of
the magnetic field where it travels and the radius of its curved path in the
magnetic field. The magnetic field in the sPhenix detector is fixed and can be
precomputed; once we redefine the triggering task on the graph of tracks instead
of hits, this transverse momentum is accessible for individual tracks and corre-
lated with the radius of the particle’s curved path (tracks) calculated using the
geometry information of the hits on the track.

4.1 Physics Relation Between Transverse Momentum and Track
Curvature

In particle collider experiments, we typically choose the cylindrical coordinates
to describe the particle momentum �p = (pT , pz) for simplicity. It is conventional
to choose the beam direction as the z-axis. Here, pT is called the transverse
momentum, an analog of track radius R in the cylindrical coordinates in the
transverse direction. pz is called the longitudinal momentum, an analog of z in
the cylindrical coordinates in the transverse direction.

The sPHENIX experiment uses a solenoid magnet with the field aligning
with the beam direction in the z-axis. The left figure in Fig. 3 shows a positively
charged particle moving clockwise under a magnetic field.

For a charged particle with charge q traveling across the magnetic field, a
Lorentz force acts on the charged particle. In our case, B, defined as the magnetic
field strength of the sPHENIX solenoidal magnet, is along the z direction. The
Lorentz force maximizes in the transverse direction. The velocity vector �v is
decomposed like the momentum �v = (vT , vz). When the charge of a particle is e,
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combined with the equation for circular motion, the magnitude of the Lorentz
force that points radially inward, is given by:

F = m
v2
T

R
= evTB.

The momentum is given by pT = mvT . Hence, we get

pT = eBR. (1)

All particles tracked in the detector have a unit charge of one electron volt (eV)
and so, if we change units so that the momentum is measured in GeV/c where
c is the speed of light, then Eq. 1 becomes

pT = 0.3BR, (2)

where the magnetic field is measured in Tesla (T). The detailed derivation is
beyond this paper. Equation 2 shows that the crucial physics property of particle
momentum is proportional to the track radius and guides us to integrate this
physics insight into the ML-based detection.

4.2 Track Curvature Fitting

A track consists of a list of hits tracking particles traversing detector layers.
The transverse momentum is highly correlated with the detected curvature of
particle tracks. We fit a circle to those hits to approximate the momentum and
calculate its radius. Here, regarding the direction of the magnetic field, we only
need to consider the x-axis and y-axis. The image on the right in Fig. 3 shows
an example track with its fitted circle.

A circle is represented by the following formula: x2 +y2+β1x+β2y+β3 = 0.
Given a track of kT hits T = {(x1, y1), (x2, y2), ..., (xkT

, ykT
)}, we define a linear

system that consists of kT equations for these hits and attempt to derive the
circle’s coefficients β = [β1, β2, β3]T . To get the best circle approximation, we
use the least-squares (LS) optimization to solve the linear regression equation
and extract the β coefficients:

β = (ATA)−1ATB.

Here A =

⎡
⎢⎢⎣

x1 y1 1
x2 y2 1
...

xkT
ykT

1

⎤
⎥⎥⎦, B = [−x2

1 − y2
1 ,−x2

2 − y2
2 , ...,−x2

kT
− y2

kT
]T . With the

optimized coefficients for the fitted circle, the circle radius is as follows:

R =
1
2

√
β2
1 + β2

2 − 4β3. (3)
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4.3 Momentum Estimation

The momentum can be calculated by Eq. 2 using the estimated radius. However,
this has the drawback that at least three hits are required for the track to
estimate the radius. We propose the second method based on a feed-forward
(FF) neural network to predict the transverse momentum of the given track and
its LS-estimated radius R. We compare the estimation accuracy in Sect. 6.2 and
evaluate their effect on trigger detection in Sect. 6.3.

5 Bipartite Graph Networks with Set Transformer
for Trigger Detection

To resolve the trigger detection problem, we attempt to label events based on
their entire tracks. The previous work [45] builds an affinity matrix of tracks
and forms a graph where each node represents a track. Given a track graph, our
algorithm first applies GNN to learn local embeddings and uses various pooling
methods to aggregate and label the event. In this paper, we discard the common
practice of building the fine-scale affinity matrix (graph) among hits and directly
apply physical analysis to guide our neural network architecture. Determining
whether an event is a trigger event involves three types of interactions:

1. Local track-to-track interactions, such as determining whether two tracks
share the same origin vertex.

2. Track-to-global interactions, such as determining the collision vertex of the
event and potential secondary vertices of decaying.

3. Global-to-track interactions, such as comparing each track’s origin with the
collision vertex of the event.

To incorporate various interactions, our neural network model uses set atten-
tion mechanisms to facilitate local track-to-track information flow, accumulate
track information into aggregators to facilitate local track-to-global information
flow, and updating the track embeddings based on the aggregators to facili-
tate global-to-local information flow. Thereby, the bipartite GNN architecture
performs the local track-to-global and global-to-local information flow.

Our model consists of several Set Encoder with Bipartite Aggregator (SEBA)
Blocks. The SEBA Blocks update our track embeddings and exchange informa-
tion between tracks. SEBA Blocks contain a Set Attention Block, a Bipartite
Aggregation module, and a Feed-Forward (FF) network for transformation, as
shown in Fig. 5. After several SEBA Blocks, we use some aggregation functions
as the readout functions to obtain the global representation for the whole set
and feed the representation into a FF network to get the final output. Figure 4
shows the entire architecture of our model.

5.1 Set Attention Blocks

We use the Set Attention Blocks designed by Lee in [27]. The module applies a
self-attention mechanism to every element in the input set to enable the model
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Fig. 4. Bipartite graph networks with set transformer model architectures.

Fig. 5. Set encoder with bipartite aggregator (SEBA) blocks.

to encode pairwise- or higher-order interactions between the elements in the set.
From the physics perspective, physicists often need to analyze the interactions
between tracks and which tracks are from the same origin points. The self-
attention mechanism neatly follows this physics practice.

Set Attention Blocks use Multi-head attention that Vaswani introduced orig-
inally in [43]. It packs a set of queries into a matrix Q. The keys and values are
also stacked into matrices K and V.

For a single attention function, We compute the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

Multi-head attention projects each of the Q, K, V matrices onto h different
matrices separately, and applies an attention function to each of these h projec-
tions. The multiple heads allow the model to jointly attend to information from
different representations subspaces at different positions.

Multihead(Q,K, V ) = Concat(O1, ..., Oh)WO,

where Oi = Attention(QWQ
i ,KWK

i , V WV
i ) and WQ

i ,WK
i ,WV

i ,WO are learn-
able parameters.

Given the matrix X ∈ Rn×d which represents a set of d-dimensional vectors.
Set Attention Blocks applies a multi-head attention function with Q = K =
V = X and serves as a mapping function using the following equation:
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SAB(X) = LayerNorm(H + rFF(H)),

where H = LayerNorm(X + Multihead(X,X,X)), rFF is a row-wise FF layer
applied to the input matrix and LayerNorm is the layer normalization [8].

5.2 Bipartite Aggregation

The idea of bipartite aggregation comes from GarNet architecture in [36]. Gar-
Net is a distance-weighted graph network that partitions nodes into two groups:
regular nodes of input elements and k aggregators, with both groups sharing the
same node space. The original GarNet uses FF networks to measure the ‘dis-
tance’ between the input elements and these aggregators and aggregates informa-
tion from elements to aggregators using a distance-weighted potential function.
Instead of using the potential function and physical positions to interpret the
relationship between track nodes and aggregators, we use the neural network to
learn the affinity scores dynamically among network nodes.

The trigger decision is a graph-level prediction and requires local and global
pooling. Experiments in [30] show that sophisticated pooling algorithms have
no significant advantages over simple global pooling. The problem arises from
the one-way rigid pooling mechanism that aggregates limited, sometimes biased
information from the lower layer to the higher layer while ignoring the reverse
information flow for distributing the aggregator information back to the low-
level graph nodes for adjustment and adaptation. We propose an iterative mes-
sage passing between two sides of networks, i.e., two-way gathering (from track
nodes to aggregators)/scattering (from aggregators to track nodes) operations
to resolve the missing link and inflexibility caused by the standard pooling algo-
rithm.

Figure 6 shows a complete bipartite graph that consists of two type of nodes:
track nodes X = {�x1, ..., �xn} and aggregators A = {�a1, ...,�ak}. Our track graph
uses aggregators to gather/disseminate information, where each track node is
connected to each aggregator. The aggregators in our problem setting are closely
related to two physics notions: the primary vertex where a physics event of
collision happens and the secondary vertices where particles decay.

Each aggregator gathers information from all elements via the edges. The
embedding of the edge between the ith element and the jth aggregator is

�eij = sij�xi,where S = σ(FFagg(X))

In the above equation, E = {eij} ∈ Rn×k×d represents the message from track
nodes to aggregators, and S = {sij} ∈ Rn×k

+ is the score matrix between
track nodes and aggregations nodes. FFagg is a feed-forward neural network that
assigns k weights to each element in X. The FFagg acts as a gate function to the
k aggregators, with each output weigh sij determining node i’s contribution to
the j-th aggregators, and σ is an activation function. After all information flows
through the neural network gates in FFagg, each aggregator performs a readout
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Fig. 6. Bipartite graph formed by elements and aggregators.

function on its gathered node information from tracks. We define the aggregator
function as follows:

A = readout(E),where A ∈ Rk×2d.

In our model, we concatenate the result of the mean and maximum readout
functions and assign them to each aggregator.

Given the fixed number of aggregators, once we aggregate the information
from elements to aggregators, we treat the k aggregators as a global graph
embedding vector g ∈ Rk×2d. Then we concatenate this global vector with each
track node vector to implement the by-pass connection in Fig. 5 and then apply
another feed-forward network to update each node vector. This by-pass design
allows us to scale the network stack into deep layers for complex event detections.

x′
i = FFNode(Concat(xi, g))

The bipartite aggregators first extract the local information to a global vec-
tor. Then the global information is fed back to each element by concatenation. It
generates an information cycle from local to global, then back to local. Consid-
ering also the Set Attention Block that allows the pairwise information exchange
between elements, by repeating our SEBA block several times, the intra-set rela-
tionship is well explored by our model.

6 Experiment Results

6.1 Dataset and Experiment Settings

Our experiment utilizes a simulation dataset1. We simulate the physics pro-
cess with the Pythia8.3 package [41] and the Geant4 simulation toolkit [5,7].
Pythia8 is a software package simulating QCD processes in small collisions sys-
tems and has been widely validated at many colliders [6,32,42]. Geant4 is a
package that simulates the passage of particles and radiation through matter.
For this project, only the three-layer MVTX and two-layer INTT detectors are

1 Some example data files can be found at https://github.com/sPHENIX-Collaborati
on/HFMLTrigger.

https://github.com/sPHENIX-Collaboration/HFMLTrigger
https://github.com/sPHENIX-Collaboration/HFMLTrigger
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Table 1. Performance of Momentum Regression Models. MLP-n indicates an MLP
with 4 layers and hidden dimensions of size n. Denote Pearson’s R as P’s R and
Spearman’s R as S’s R.

Method All tracks Tracks with at least 3 hits

R2 P’s R S’s R R2 P’s R S’s R

LS −116.18 0.0997 0.9376 −117.40 0.0999 0.9618

MLP-8 0.9071 0.9524 0.9534 0.9071 0.9524 0.9534

MLP-256 0.9100 0.9540 0.9564 0.9100 0.9540 0.9564

simulated because they are the only detectors capable of operation fast enough
to achieve the goal of extremely high speed online data analysis and decision
making. It has been extensively validated from previous physics experiments
that a high-level agreement exists between the simulation data and real data [4].
Our model will be used to filter data in the real experiment that will start taking
data in February 2023. The simulation data supporting the findings of this study
are available from the corresponding author upon reasonable request2.

The input vector for each track consists of coordinates of five hits in each
detector layer, the length of each track segment, the angle between segments
sequentially, and the total length of the track. The number of tracks per event
varies from several to dozens. The coordinates of the geometric center of all the
hits in the graph are calculated as complementary features to ease the down-
stream learning task. We also use the LS-estimated radius as another feature.
All of the experiments, unless otherwise noted, use 1, 000, 000 training samples,
400, 000 validation samples, and 400, 000 test samples. All models use the same
pre-split training, validation, and test data sets, to ensure no information leakage
and fair comparison. We adopt the Adam optimizer with a decayed learning rate
from 1e − 4 to 1e − 5 in 50 epochs for all the training experiments. Experiments
are run on various GPU architectures, including NVIDIA Titan RTX, A5000,
and A6000. All baselines and our model are implemented using PyTorch [34]
and PyTorch Geometric [18]. The code is publicly available on GitHub3.

6.2 Transverse Momentum Estimation

We compare two methods for estimating the transverse momentum. The trans-
verse momentum pT is linearly proportional to the radius of a track R, as shown
in Eq. 2. Here, we use a constant magnetic field with B = 1.4T in our dataset
settings. We estimate the radius R using the LS fitting described in Sect. 4. If
there are not enough hits to estimate the radius using LS fitting, we set the
estimated radius to be zero.

2 Please contact yu.sun@sunriseaitech.com for data access.
3 https://github.com/Sunrise-AI-Tech/ECML2022-TriggerDetectionForTheSPHENI

XExperimentViaBipartiteGraphNetworksWithSetTransformer.

https://github.com/Sunrise-AI-Tech/ECML2022-TriggerDetectionForTheSPHENIXExperimentViaBipartiteGraphNetworksWithSetTransformer
https://github.com/Sunrise-AI-Tech/ECML2022-TriggerDetectionForTheSPHENIXExperimentViaBipartiteGraphNetworksWithSetTransformer
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Table 2. Comparison to Baseline Models with Estimated Radius.

Model With LS-radius Without radius

#Parameters Accuracy AUC #Parameters Accuracy AUC

Set Transformer 300,802 84.17% 90.61% 300,418 69.80% 76.25%

GarNet 284,210 90.14% 96.56% 284,066 75.06% 82.03%

PN+SAGPool 780,934 86.25% 92.91% 780,678 69.22% 77.18%

BGN-ST 355,042 92.18% 97.68% 354,786 76.45% 83.61%

We make several observations on the pT estimation results in Table 1. The LS
estimated pT achieves a high degree of correlation with the true pT as measured
by Spearman’s R. However, the low value of Pearson’s R and the highly negative
coefficient value of determination indicate a poor linear correlation between the
two. We hypothesize that this is due to outliers because some tracks occasionally
produce an impossibly large estimated pT . Using an MLP on the track to refine
the LS pT results seems to be highly effective, with all three correlation coeffi-
cients indicating that the models are highly predictive of the true pT even with
a small neural network. Noticeably, however, for tracks with at least three hits,
the LS method outperforms the MLP method for Spearman’s R. This might
explain similar performance on triggering when using the LS-estimated pT and
the MLP-estimated pT shown in Table 3.

6.3 Trigger Detection

Baselines. We compare our model with the ParticleNet(PN)+SAGPool method
proposed in [45]. We also use Set Transformer and GarNet as our baselines
because they are also well-suited to the problem of classifying a set of tracks.
For Set Transformer, we use hidden dimension of 128 and four attention heads.
For GarNet, we set hidden dimension of 64 and sixteen aggregators. For BGN-
ST, we also use hidden dimension of 64 and sixteen aggregators. We use two-layer
neural network architecture for all three models. The PN+SAGPool model has
two stages. The first stage uses PN to generate an affinity matrix and track
embeddings. Three edge-convolutional layers are used, with the hidden dimen-
sions of 64, 128, and 64, respectively. All three edge-convolutional layers use
15 nearest neighbors when updating the node embeddings. The second stage
includes the Sagpool layer aggregating the embeddings to perform trigger pre-
diction. Sagpool uses three hierarchical pooling layers with a pooling ratio of
0.75.

Table 2 compares the performance between BGN-ST and the baseline mod-
els. From Table 2, we observe that BGN-ST outperforms all other methods by a
significant margin. It usually takes no more than one day to train the Set Trans-
former, GarNet and BGN-ST on a single GPU card. The baseline PN+SAGPool
has more parameters than ours. It takes two to three days to train the baseline
model PN+SAGPool.
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Table 3. Comparison of BGN-ST with LS-Estimated Radius and MLP-Refined Radius.
A three-layer model with sixteen aggregators is used in the experiment.

Hidden dim LS MLP

Accuracy AUC Accuracy AUC

32 91.52% 97.33% 91.48% 97.31%

64 92.18% 97.68% 92.23% 97.73%

128 92.44% 97.82% 92.49% 97.86%

Table 4. Hyperparameter grid search for BGN-ST

Hyperparameter Range

Hidden dim 32, 64, 128, 256

#Aggregators 8, 16, 32

#Layers 2, 3

Activations ReLU, Tanh, Potential, Softmax

Effect of Transverse Momentum Estimation. Table 2 shows the performance
comparison between different models with or without radius. From the table,
we observe both accuracy and AUC jump by 15% when the radius is added to
all these four models under the same model setting.

Effect of Refining Transverse Momentum Estimate with an MLP. From Table 3,
it is clear that further refining the momentum with an MLP trained to predict
the momentum from the track and the LS-estimated radius does not yield any
tangible improvement in the model performance. This applies to both the smaller
and larger models.

Ablation Study of Hyperparameters. We perform a grid search on hyperparam-
eters in Table 4 to find the best setting for trigger detection with BGN-ST.

We compare activation functions for aggregators in Table 4 in a two-layer
BGN-ST with 64 hidden dimensions and 16 aggregators. The table shows that
Softmax has the highest accuracy and AUC score among all choices.

We also undertook some other ablation studies. Figure 7 shows the accuracy
comparison for different hidden dimensions, the number of aggregators, and lay-
ers. A larger model tends to perform better, but the number of parameters also
increases exponentially. Our best performance is using a three-layer model with
256 hidden dimensions and 32 aggregators. The best accuracy for the test dataset
is 92.52% (Fig. 7), and the best AUC score is 97.86% (Table 3).
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Table 5. Ablation study of activations

Activation Accuracy AUC

ReLU 90.74% 96.87%

Tanh 90.19% 96.58%

Potential 90.41% 96.75%

Softmax 92.18% 97.68%

Fig. 7. Accuracy performance in respect to hidden dimension for two/three-layer mod-
els and different number of aggregators.

7 Conclusions

This paper details a novel Bipartite GNN architecture with a set transformer
that uses the set attention mechanism to enhance the tracking with event features
and ease the modeling of particle interactions in physics. Our model architecture
benefits the pairwise interactions between tracks and allows a two-way scattering
and gathering for effective information exchange and adaptive graph pooling.
We empirically validate that BGN-ST outperforms all selected state-of-the-art
methods. The paper adopts the physics-aware concept and introduces explicit
physics properties such as transverse momentum. As a result, we improve the
model accuracy and AUC score by about 15%.
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Abstract. Sample weighting is widely used in deep learning. A large
number of weighting methods essentially utilize the learning difficulty of
training samples to calculate their weights. In this study, this scheme
is called difficulty-based weighting. Two important issues arise when
explaining this scheme. First, a unified difficulty measure that can be
theoretically guaranteed for training samples does not exist. The learn-
ing difficulties of the samples are determined by multiple factors includ-
ing noise level, imbalance degree, margin, and uncertainty. Nevertheless,
existing measures only consider a single factor or in part, but not in
their entirety. Second, a comprehensive theoretical explanation is lack-
ing with respect to demonstrating why difficulty-based weighting schemes
are effective in deep learning. In this study, we theoretically prove that
the generalization error of a sample can be used as a universal diffi-
culty measure. Furthermore, we provide formal theoretical justifications
on the role of difficulty-based weighting for deep learning, consequently
revealing its positive influences on both the optimization dynamics and
generalization performance of deep models, which is instructive to exist-
ing weighting schemes.

Keywords: Learning difficulty · Generalization error · Sample
weighting · Deep learning interpretability

1 Introduction

Treating each training sample unequally improves the learning performance. Two
cues are typically considered in designing the weighting schemes of training sam-
ples [1]. The first cue is the application context of learning tasks. In applications
such as medical diagnosis, samples with high gains/costs are assigned with high
weights [2]. The second cue is the characteristics of the training data. For exam-
ple, samples with low-confidence or noisy labels are assigned with low weights.
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Characteristic-aware weighting has attracted increasing attention owing to its
effectiveness and universality [3–5].

Many existing characteristic-aware weighting methods are based on an intrin-
sic property of the training samples, i.e., their learning difficulty. The measures
for the samples’ learning difficulty can be roughly divided into five categories.

– Prediction-based measures. This category directly uses the loss [3,6,7] or the
predicted probability of the ground truth [4,8] as the difficulty measures. This
measure is simple yet effective and is widely used in various studies [3,4]. Their
intention is that a large loss (a small probability) indicates a large learning
difficulty.

– Gradient-based measures. This category applies the loss gradient in the mea-
surement of the samples’ learning difficulty [9,10]. Santiagoa et al. [9] uses
the norm of the loss gradient as the difficulty measure. Their intuition is that
the larger the norm of the gradient, the harder the sample.

– Category proportion-based measures. This category is mainly utilized in
imbalanced learning [11], where the category proportion measures the sam-
ples’ difficulty. People believe that the smaller the proportion of a category,
the larger the learning difficulty of samples in this category [11,12].

– Margin-based measures. The term “margin” refers to the distance from the
sample to the oracle classification boundary. The motivation is that the
smaller the margin, the larger the difficulty of a sample [13].

– Uncertainty-based measures. This category uses the uncertainty of a sample
to measure the difficulty. Aguilar et al. [14] identify hard samples based on
epistemic uncertainty and leverage the Bayesian Neural Network [15] to infer
it.

Varying difficulty measures have a huge impact on a difficulty-based weight-
ing strategy. The underlying factors which influence samples’ learning diffi-
culty considered in the above measures include noise level [6,7], imbalance
degree [11,12], margin [13], and uncertainty [14]. However, each measure only
considers a single factor or in part, and comes from heuristic inspirations but
not formal certifications, hindering the application scope of the measures. It is
desirable to theoretically explore a universal measure capturing all of the above
factors. Based on this measure, the role of difficulty-based sample weighting can
be revealed more concretely. However, neither theoretical nor empirical investi-
gations have been conducted to investigate a unified measure.

Moreover, despite the empirical success of various difficulty-based weight-
ing methods, the process of how difficulty-based weighting positively influences
the deep learning models remains unclear. Two recent studies have attempted to
investigate the influence of weights in deep learning. Byrd and Lipton [16] empir-
ically studied the training of over-parameterized networks with sample weights
and found that these sample weights affect deep learning by influencing the
implicit bias of gradient descent-a novel topic in deep learning interpretability,
focusing on why over-parameterized models is biased toward solutions that gen-
eralize well. Existing studies on this topic [17–19][?] reveal that the direction of
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the parameters (for linear predictor) and the normalized margin (for nonlinear
predictor) respectively converge to those of a max-margin solution.

Inspired by the finding of Byrd and Lipton [16], Xu et al. [20] dedicated to
studying how the understandings for the implicit bias of gradient descent adjust
to the weighted empirical risk minimization (ERM) setting. They concluded
that assigning high weights to samples with small margins may accelerate opti-
mization. In addition, they established a generalization bound for models that
implement learning by using sample weights. However, they only discussed the
measurement of difficulty by using one of the indicators (i.e., margin), resulting in
that their conclusion is limited and inaccurate in some cases. Furthermore, their
generalization bound cannot explicitly explain why hard samples are assigned
with large weights in many studies. More analyses based on a universal difficulty
measure are in urgent demand.

In this study, the manner of how the difficulty-based weighting affects the
deep model training is deeply investigated. First, our analyses support that the
generalization error of the training sample can be regarded as a universal diffi-
culty measure for capturing all of the four factors described above. Second, based
on this unified measure, we characterize the role of difficulty-based weighting on
the implicit bias of gradient descent, especially for the convergence speed. Third,
two new generalization bounds are constructed to demonstrate the explicit rela-
tionship between the sample weights and the generalization performance. The
two bounds illuminate a new explanation for existing weighting strategies. Our
study takes the first step of constructing a formal theory for difficulty-based
sample weighting. In summary, our contributions are threefold.

– We theoretically prove the high relevance of the generalization error with four
main factors influencing the samples’ learning difficulty, further indicating
that the generalization error can be used as a universal difficulty measure.

– We reveal how the difficulty-based sample weighting influences the optimiza-
tion dynamics and the generalization performance for deep learning. Our
results indicate that assigning high weights on hard samples can not only
accelerate the convergence speed but also enhance the generalization perfor-
mance.

– We bring to light the characteristics of a good set of weights from multi-
ple perspectives to illuminate the deep understanding of numerous weighting
strategies.

2 Preliminaries

2.1 Description of Symbols

Let X denote the input space and Y a set of classes. We assume that the training
and test samples are drawn i.i.d according to some distributions Dtr and Dte

over X × Y. The training set is denoted as T = {x, y} = {(xi, yi)}n
i=1 that

contains n training samples, where xi denotes the i-th sample’s feature, and
yi is the associated label. Let di and w (di) be the learning difficulty and the
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difficulty-based weight of xi. The learning difficulty can be approximated by
several values, such as loss, uncertainty and generalization error which will be
explained in Sect. 3.

The predictor is denoted by f (θ,x) and F = {f (θ, ·) |θ ∈ Θ ⊂ R
d}. For the

sake of notation, we focus on the binary setting yi ∈ {−1, 1} with f (θ,x) ∈ R.
The sign of the model’s output f (θ,xi) is the predicted label. However, as to
be clarified later, our results can be easily extended to the multi-class setting
where yi ∈ {1, 2, · · · , C}. For multi-class setting, the softmax function is used
to get the probability, and the logits are given by {fyj

(θ,x)}C
j=1. Given a non-

negative loss � and a classifier f (θ, ·), the empirical risk can be expressed as
L(θ,w) = 1

n

∑n
i=1 w (di)·� (yif (θ,xi)). We focus particularly on the exponential

loss � (u) = exp (−u) and logistic loss � (u) = log (1 + exp (−u)). Let ∇l(u) be
the loss gradient and f (x|T ) is the trained model on T . The margin is denoted
as γi(T ) = yif (θ,xi|T ) for the binary setting, where it is equivalently denoted
as γi(T ) = fyi

(θ,xi|T ) − maxi�=j fyj
(θ,xi|T ) for the multi-class setting.

2.2 Definition of the Generalization Error

Bias-variance tradeoff is a basic theory for the qualitative analysis of the gener-
alization error [22]. This tradeoff is initially constructed via regression and mean
square error, which is given by

Err = Ex,yET [||y − f(x|T )||22]
≈ Ex,y[||y − f(x)||22]︸ ︷︷ ︸

Bias

+Ex,yET [||f(x|T ) − f(x)||22]︸ ︷︷ ︸
V ariance

, (1)

where f (x) = ET [f (x|T )]. Similarly, we define the generalization error of a
single sample xi as

erri = ET [� (f (xi|T ) , yi)] ≈ B (xi) + V (xi) , (2)

where B (xi) and V (xi) are the bias and variance of xi.

2.3 Conditions and Definitions

Our theoretical analyses rely on the implicit bias of gradient descent. The gra-
dient descent process is denoted as

θt+1 (w) = θt (w) − ηt∇L (θt [w(d [t])]) , (3)

where ηt is the learning rate which can be a constant or step-independent,
∇L (θt [w(d [t])]) is the gradient of L, and w(d [t]) is the difficulty-based weight
of difficulty d at time t. The weight may be dynamic with respect to time t if
difficulty measures, such as loss [3] and predicted probability [4], are used. To
guarantee the convergence of the gradient descent, two conditions following the
most recent study [20] are shown below.
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– The loss � has an exponential tail whose definition is shown in the supple-
mentary file. Thus, limu→∞ �(−u) = limu→∞ ∇�(−u) = 0.

– The predictor f(θ,x) is α-homogeneous such that f(c · θ,x) = cαf(·θ,x),
∀c > 0.

It is easy to verify that losses including the exponential loss, log loss, and cross-
entropy loss satisfy the first condition. The second condition implies that the
activation functions are homogeneous such as ReLU and LeakyReLU, and bias
terms are disallowed. In addition, we need certain regularities from f(θ,x) to
ensure the existence of critical points and the convergence of gradient descent:

– For ∀x ∈ X , f(θ,x) is β-smooth and l-Lipschitz on Rd.

The third condition is a common technical assumption whose practical implica-
tions are discussed in the supplementary file.

The generalization performance of deep learning models is measured by the
generalization error of the test set L̂ (f) [21], defined as

L̂ (f) = P(x,y)∼Dte [γ(f (x, y)) ≤ 0]. (4)

2.4 Experiment Setup

Demonstrated experiments are performed to support our theoretical analyses.
For the simulated data, the linear predictor is a regular regression model, and
the nonlinear predictor is a two-layer MLP with five hidden units and ReLU
as the activation function. Exponential loss and standard normal initialization
are utilized. CIFAR10 [23] is experimented with, and ResNet32 [24] is adopted
as the baseline model. For the imbalanced data, the imbalance setting follows
Ref. [11]. For the noisy data, uniform and flip label noises are used and the noise
setting follows Ref. [25]. The models are trained with a gradient descent by using
0.1 as the learning rate.

The model uncertainty is approximated by the predictive variance of five
predictions. To approximate the generalization error, we adopt the five-fold cross-
validation [26] to calculate the average learning error for each sample.

3 A Universal Difficulty Measure

As previously stated, four factors pointed out by existing studies, namely, noise,
imbalance, margin, and uncertainty, greatly impact the learning difficulty of
samples. Nevertheless, existing measures only consider one or part of them, and
their conclusions are based on heuristic inspirations and empirical observations.
In this section, we theoretically prove that the generalization error of samples is
a universal difficulty measure reflecting all four factors. All proofs are presented
in the supplementary file. Without increasing the ambiguity, the generalization
error of the samples is termed as error for brevity.
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Fig. 1. (a) Generalization errors of clean and noisy samples on noisy data. The noise
ratio is 10% (b) Generalization errors of samples in ten categories on imbalanced data.
The imbalance ratio is 10:1. CIFAR10 and ResNet32 are used. Other values of noise
ratio and imbalance ratio following Ref. [25] are also experimented with and the same
conclusions can be obtained.

3.1 Noise Factor

Noise refers to data that is inaccurate in describing the scene. Numerous stud-
ies devoted to reducing the influence of noisy samples in the dataset on the
deep learning models and these literature intuitively consider noisy samples as
hard ones without formal certification [7,27]. The two kinds of noise are feature
noise [31] and label noise [27]. We offer two propositions to reveal the relation-
ship between the generalization error and the noise factor. For feature noise, we
offer the following proposition:

Proposition 1. Let Δxi be the perturbation of sample (xi, yi), which is
extremely small in that o(Δxi) can be omitted. Let ∠ϕ be the angle between the
direction of Δxi and the direction of ET [f ′ (xi|T )]. If ET [f ′ (xi|T ) · Δxi] < 0
(i.e., ∠ϕ > 90◦), then the error of the noisy sample is increased relative to
the clean one. Alternatively, the direction of the perturbation Δxi and that of
ET [f ′ (xi|T )] are contradictory. Otherwise, if ET [f ′ (xi|T ) · Δxi] > 0, then
∠ϕ < 90◦, and the error of the noisy sample is decreased.

According to Proposition 1, feature noise can be divided into two categories,
which increase or decrease the learning difficulty (generalization error) of the
samples, respectively. In this paper, noise that increases the error is called the
adversarial type, which is always used in the field of adversarial learning; oth-
erwise, it is a promoted type, which refers to noise that decrease the learning
difficulty of samples. Therefore, the variation of the error under feature noise is
determined by the noise type. For example, as all feature noises are adversarial
in adversarial learning [32], all of the samples’ errors are increased with feature
noise. For label noise, we offer the following proposition:

Proposition 2. Let π be the label corruption rate (i.e., the probability of each
label flipping to another one). Denote the probability of correct classification for
the original samples as p. If p > 0.5, then the errors of the noisy samples are
larger than those of the clean ones.
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This proposition implies that the errors of the samples with label noises are
larger than those of the clean ones on the average. Specifically, if a sample is
more likely to be predicted correctly, its generalization error is increased due to
label noise. Let L∗ be the global optimum of the generalization error of the clean
dataset and y′ be the corrupted label. When the noise in Proposition 2 is added,
the empirical error L′ is

L′ = (1 − π) L∗ + πL (f (x) , y′) , (5)

where we have taken expectations over the noise. When π → 0, the noise dis-
appears, and the optimal generalization is attained. Proposition 2 is consistent
with the empirical observation shown in Fig. 1(a), where the noisy samples have
larger errors than the clean ones on the average.

3.2 Imbalance Factor

Besides noise, imbalance is another common deviation of real world datasets.
The category distribution of the samples in the training set is non-uniform.
Various methods solve this issue by assigning high weights on samples in tail
categories which are considered to be hard ones [4,11]. Nevertheless, a theoretical
justification about why these samples are harder lacks. The imbalance ratio is
denoted by cr = max{c1, c2, · · · , cC} : min{c1, c2, · · · , cC}. Then, we offer the
following proposition.

Proposition 3. If a predictor on an imbalanced dataset (cr > e : 1) is an
approximate Bayesian optimal classifier (as the exponential loss is an approxi-
mation for the zero-one loss), which is to minimize the total risk, then the average
probability of the ground truth of the samples in the large category is greater than
that of the samples in the small category.

With Proposition 3, it is easy to obtain Proposition A.1 shown in the sup-
plementary file that the average error of samples in the small category is larger
than that of the samples in the large category, indicating there are more hard
samples in the small category. This proposition is verified by the experiments, as
shown in Fig. 1(b). The tail categories contain more samples with larger errors.
To enhance the performance of the classification model, samples with larger
errors should be assigned with higher weights, as most methods do [11]. Further
experiments in Sect. 5 (Fig. 6) indicate that the classification performance of the
small category can be improved by increasing its sample weights.

3.3 Margin Factor

The samples’ margins measure the distances of the samples from the decision
boundary. Some literature intuitively consider a small margin indicates a large
learning difficulty and corresponds to a low confidence of the prediction [13,33].
However, a formal justification is lacking. We offer the following proposition.



Understanding Difficulty-Based Sample Weighting 75

Fig. 2. (a) Correlation between generalization error and average margin. (b) Correla-
tion between generalization error and epistemic uncertainty. CIFAR10 and ResNet32
are used in this experiment. All values are normalized.

Proposition 4. Let μi be the true margin of xi corresponding to the oracle
decision boundary. The condition is that the functional margins of a sample
trained on random datasets obey a Gaussian distribution. In other words, for
sample xi, its functional margin γi obey a Gaussian distribution N (μi, σ

2
i ). For

sample xj, γj ∼ N (μj , σ
2
j ). When the margin variances of the two samples are

same (i.e., σ2
i = σ2

j ), if μi ≤ μj, then erri ≥ errj. Similarly, when the true
margins of the two samples are the same (i.e., μi = μj), if σ2

i ≥ σ2
j , then

erri ≥ errj.

Proposition 5 indicates a fact that even a sample with a large true margin, as
long as the margin variance is large, it may also have a high learning difficulty.
Specifically, the true margin (i.e., the mean of the functional margin distribution)
of a sample and error are negatively correlated when the margin variances of
the samples are equal. By contrast, the margin variance and error are positively
correlated when the true margins are equal. This illumination revises the current
wisdom. The conclusion in which samples close to the oracle decision boundary
are hard ones [20] is not completely correct. Indeed, the relation between the
margin and error of sample xi conforms with the following formula:

erri = ET [e−γi(T )] = e−μi+
1
2σ2

i , (6)

where erri, μi, and σi refer to the generalization error, the true margin, and the
margin variance of sample xi, respectively. For the two samples xi and xj , if
μi < μj and σ2

i < σ2
j , then we cannot judge whether erri is greater than errj .

As shown in Fig. 2(a), the average margin and error are negatively correlated
for most samples, but it is not absolute, which accords with the above analyses.
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Fig. 3. The distributions of samples’ margins.

Although it is intuitive that the functional margin trained on random datasets
obeys a Gaussian distribution, we evaluate it via the Z-scores of the distributions’
Kurtosis and Skewness [34] which is shown in Fig. 3. More margin distribution
curves and all Z-score values of the distributions are shown in the supplementary
file. As all Z-scores are in [−1.96, 1.96], under the test level of α = 0.05, the
distribution of margin obeys the Gaussian distribution.

3.4 Uncertainty Factor

Uncertainties [37] in deep learning are classified into two types. The first type
is aleatoric uncertainty (data uncertainty), which is caused by the noise in the
observation data. Its correlation with the error has been discussed in Sect. 3.1.
The second type is epistemic uncertainty (model uncertainty). It is used to indi-
cate the consistency of multiple predictions. We give the analyses of the rela-
tionship between the generalization error and epistemic uncertainty.

Let T be a training set, and let P (θ|T ) be the distribution of the training
models based on T . The predictive variance V ar(f(xi|θ1), · · · , f(xi|θK)) plus
a precision constant is a typical manner of estimating epistemic uncertainty [35,
36]. Take the mean square loss as an example1, the epistemic uncertainty is

̂Var [xi] :=τ−1 +
1

|K|
∑

k
f(xi|θk)ᵀf(xi|θk) − E[f(xi|θk)]ᵀE[f(xi|θk)], (7)

where τ is a constant. The second term on the right side of Eq. (7) is the second
raw moment of the predictive distribution and the third term is the square of the
first moment. When K → ∞ and the constant term is ignored, Eq. (7) becomes

V̂ar [xi] :=
∫

θ

||f(xi|θ) − f(xi)||22dP (θ|T ). (8)

If P (θ|T ) is approximated by the distribution of learned models on random
training sets which conform to the Gaussian distribution N (T, δI), Eq. (8) is
exactly the variance term of the error defined in Eq. (2) when the mean square
loss is utilized.

As the bias term in the error can capture the aleatoric uncertainty and
the variance term captures the epistemic uncertainty, the overall relationship
1 For other losses, other methods can be used to calculate the predictive variance [26].



Understanding Difficulty-Based Sample Weighting 77

between uncertainty and error is positively correlated. Nevertheless, the rela-
tionship between epistemic uncertainty and error is not simply positively or
negatively correlated. For some samples with heavy noises, their epistemic uncer-
tainties will be small as their predictions remain erroneous. However, their errors
are large due to their large bias. This phenomenon is consistent with the experi-
mental results shown in Fig. 2(b). Epistemic uncertainty and error are positively
correlated for some samples, and the two variables are negatively correlated for
other samples.

3.5 Discussion About Generalization Error

The commonly used difficulty measures, such as loss [3] and gradient norm [9],
are mainly related to the bias term. Shin et al. [27] emphasized that only using
loss as the measurement cannot distinguish clean and noisy samples, especially
for uniform label noise. There are also a few existing studies that use variance [28,
29]. For instance, Agarwal et al. [30] applied the variance of gradient norms as
the difficulty measure. Indeed, both the variance and bias terms should not be
underestimated when measuring the samples’ learning difficulty. Our theoretical
analyses support that generalization error including both the two terms can
capture four main factors influencing the samples’ learning difficulty. Thus, the
error can be leveraged as a universal measure that is more reasonable than
existing measures. Existing studies generally apply the K-fold cross-validation
method [26] to calculate the generalization error. More efficient error calculation
algorithms are supposed to be proposed which will be our future work.

4 Role of Difficulty-Based Weighting

This section aims to solve the second issue of explaining the difficulty-based
weighting in deep learning. Based on the universal difficulty measure, the impacts
of the difficulty-based weighting schemes on the optimization dynamics and the
generalization performance in deep learning are investigated. Compared with the
most recent conclusions [20] established only on the margin factor, our theoretical
findings, which are based on our universal measure, are more applicable and
precise.

4.1 Effects on Optimization Dynamics

Linear Predictor. We begin with the linear predictors allowing for a more
refined analysis. Xu et al. [20] inferred an upper bound containing the term
DKL(p‖w), where DKL is the Kullback-Leibler divergence and p is the optimal
dual coefficient vector. A smaller value of DKL(p‖w) means that the convergence
may be accelerated. Therefore, to accelerate the convergence, they believe that
the weights w should be consistent with the coefficients p. Alternatively, the
samples with small functional margins will have large coefficients and thus should
be assigned with large weights. However, the functional margin is not the true
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Fig. 4. “Cosine distance” represents the cosine of the angle between the decision bound-
ary (at that epoch) and the max-margin solution. (a), (b) Cosine distance and average
margin of equal weights and inverse margin weights using the linear predictor. (c), (d)
Cosine distance and average margin of equal weights and inverse margin weights using
the nonlinear predictor. (e), (f) Cosine distance and average margin of equal weights
and increasing weights of noisy samples using the nonlinear predictor on the noisy data.
(g), (h) Cosine distance and average margin of equal weights and increasing weights
of samples in tail categories using the linear predictor on the imbalanced data. More
results are placed in the supplementary file.

margin that corresponds to the oracle boundary. Therefore, their conclusion that
samples close to the oracle classification boundary should be assigned with large
weights [20] cannot be well-drawn according to their inference. We offer a more
precise conclusion with the unified difficulty measure (i.e., generalization error).
As before, we assume that the functional margins of a sample xi obey a Gaussian
distribution N (μi, σ

2
i ), where μi is the true margin and σ2

i is the margin variance
of xi. We offer the following proposition:

Proposition 5. For two samples xi and xj, if erri ≥ errj, then we have:
(1) When the optimal dual coefficient pi of xi on a random training set T is a

linear function of its functional margin γi on T , if μi ≤ μj, then ET [pi] ≥ ET [pj ]
(i.e., ET [wi] ≥ ET [wj ]);

(2) When the optimal dual coefficient pi of xi on a random training set T is
a natural exponential function of its functional margin γi on T , ET [pi] ≥ ET [pj ]
(i.e., ET [wi] ≥ ET [wj ]) always holds. Notably, even when μi > μj, ET [pi] >
ET [pj ] may still hold.

The proof is presented in the supplementary file. ET [pi] > ET [pj ] implies
that wi > wj holds on the average. The conclusion that samples with small true
margins should be assigned with large weights may not hold on some training
sets when pi is not a linear function of γi [17]. A sample with a small true margin
may have a smaller weight than a sample with a large true margin yet a large
error. Thus, a more general conclusion when pi is not a linear function of γi is
that increasing the weights of hard samples (samples with large generalization
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Fig. 5. (a)–(c) Normalized margin of increasing the weights of noisy samples/samples
with small margins/samples in tail categories. CIFAR10 data is used. Uniform label
noise is adopted. The noise ratio and imbalance ratio are 10% and 10:1. (d) Generaliza-
tion error of the test set when the nonlinear model is trained with different weights on
simulated imbalanced data with the imbalance ratio as 10:1. Other noise and imbalance
settings are also experimented with and the same conclusions can be obtained.

errors) may accelerate the convergence, rather than just for samples with small
margins. Other factors, including noise, imbalance, and uncertainty also affect
samples’ learning difficulty. Notably, the weights of the hard samples should
not be excessively increased, as to be explained in the succeeding section. We
reasonably increase the weights of the hard samples shown in Figs. 4 and A-3 in
the supplementary file indicating that the optimization is accelerated.

We also prove that difficulty-based weights do not change the convergence
direction to the max-margin solution shown in Theorem A.1 in the supplemen-
tary file. As shown in Fig. 3, the cosine distance and margin value are always
increasing during the training procedure, indicating the direction of the asymp-
totic margin is the max-margin solution.

Nonlinear Predictor. Analyzing the gradient dynamics of the nonlinear pre-
dictors is insurmountable. The main conclusion obtained by Xu et al. [20] can
also be established for difficulty-based weights only if the bound of weights is
larger than zero. However, their theorem has only been proven for binary cases as
the employed loss is inapplicable in multi-class cases. Here, we extend the theory
to the multi-class setting with a regularization λ||θ||r on the cross-entropy loss.
Let θλ (w) ∈ arg min Lλ (θ,w). Formally, the dynamic regime for the nonlinear
predictor can be described as follows:

Theorem 1. Let w ∈ [b,B]n. Denote the optimal normalized margin as

γ∗ = max
‖θ(w )‖≤1

min
i

(fyi
(θ(w),xi) − max

j �=i
(fyj

(θ(w),xi))) (9)

Let θλ(w) = θλ(w)/‖θλ(w)‖. Then, it holds that (1) Denote the normalized
margin as

γλ(w) = min
i

(fyi
(θλ (w) ,xi) − max

j �=i
fyj

(θλ (w) ,xi)) (10)

Then, γλ (w) → γ∗, as λ → 0.
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Fig. 6. Top: Equal weights of the two categories. Bottom: Samples in the small cate-
gory are assigned with high weights, obtaining better performance for the small (red)
category. The imbalance ratio is set to 10:1. The same conclusions can also be obtained
for other imbalance ratios. (Color figure online)

(2) There exists a λ := λ (r, a, γ∗,w). For α ≤ 2, let θ′(w) denote a α-
approximate minimizer of Lλ. Thus, Lλ

(
θ′ (w)

) ≤ αLλ (θλ (w)). Denote the
normalized margin of θ′(w) by γ′ (w). Then,γ′ (w) ≥ γ∗

10αa/r .

The proof is presented in the supplementary file. When λ is sufficiently small,
the difficulty-based weighting does not affect the asymptotic margin. According
to Theorem 2, the weights do affect the convergence speed. A good property
is that even though Lλ (θλ (w)) has not yet converged but close enough to its
optimum, the corresponding normalized margin has a reasonable lower bound.
A good set of weights can help the deep learning model to achieve this property
faster. However, the conditions in which a set of weights can accelerate the speed
are not clearly illuminated. Notably, as shown in our experiments in Figs. 4 and
A-3 in the supplementary file, assigning large weights for hard samples increases
the convergence speed. The results on the multi-class cases (CIFAR10) indicate
that assigning large weights on hard samples increases the margin, as shown in
Figs. 5(a–c). However, some particular occasions of difficulty-based weights, such
as SPL [3], do not satisfy the bounding condition because the lower bounds of
these weights are zero instead of a positive real number. The theorem requires
further revision to accommodate this situation.

4.2 Effects on Generalization Performance

Besides the role of difficulty-based weights on optimization dynamics, we are
also concerned as to whether and how the difficulty-based weights affect the
generalization performance. The generalization bound of Xu et al. [20] does not
contain the sample weights, thus it cannot explicitly explain why hard samples
are assigned with large weights. In addition, they assume that the source and
target distributions are unequal, restricting the application of their conclusion.
The two generalization bounds we propose offer good solutions to these issues.
They illuminate how a weighting strategies can be designed.

Let Ps and Pt be the source (training) and target (testing) distributions,
respectively, with the corresponding densities of ps(·) and pt(·). Assume that
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the two distributions have the same support. The training and test samples are
drawn i.i.d according to distributions Ps and Pt, respectively. Learning with
sample weights w(x) is equivalent to learning with a new training distribution
P̃s. The density of the distribution of the weighted training set P̃s is denoted
as p̃s(x) and p̃s(x) ∼ w(x)ps(x). Pearson χ2-divergence is used to measure
the difference between P̃s and Pt, i.e., Dχ2(Pt‖P̃s) =

∫
[(dP̃s/dPt)2 − 1]dP̃s. We

consider depth-q (q ≥ 2) networks with the activation function φ. The binary
setting is considered, in that the network computes a real value

f (x) := W qφ (W q−1φ (· · · φ (W 1x) · · · )) , (11)

where φ(·) is the element-wise activation function (e.g., ReLU). The training set
contains n samples. Denote the generalization error for a network f as L̂(f).
The generalization performance of f with weights can be described as follows.

Theorem 2. Suppose φ is 1-Lipschitz and 1-positive-homogeneous. With a prob-
ability at least of 1 − δ, we have

L̂ (f) ≤ 1
n

n∑

i=1

pt(xi)
p̃s(xi)

1(yif(xi) < γ)

︸ ︷︷ ︸
I

+
L ·

√

Dχ2

(
Pt‖P̃s

)
+ 1

γ · q(q−1)/2
√

n
︸ ︷︷ ︸

(II)

+ ε(γ, n, δ)
︸ ︷︷ ︸

(III)

,

(12)

where ε(γ, n, δ) =
√

log log2
4L
γ

n +
√

log(1/δ)
n and L := supx ‖x‖.

The proof is presented in the supplementary file. Compared with the findings
of Xu et al. [20], the bound of the generalization error is directly related to the
sample weights w(x) contained in p̃s(x). In view of reducing the generalization
error, a natural optimization strategy can be implemented as follows: 1) an
optimal weight set w(x) (in p̃s(x)) is obtained according to decreasing the right
side of Eq. (12) based on the current f ; 2) f is then optimized under the new
optimal weights w(x). In the first step, the reduction of generalization error
can come from two aspects. One is to increase the weights of samples with
small margins. The other is to make the test and training distributions close.
Disappointingly, this strategy heavily relies on the current f which is unstable.
Given a fixed training set, f depends on random variables (denoted as V) such as
hyperparameters and initialization. To obtain a more stable weighting strategy,
we further propose the following proposition.

Proposition 6. Suppose φ is 1-Lipschitz and 1-positive-homogeneous. With a
probability of at least 1 − δ, we have

EV [L̂ (fV)] ≤ 1

n

n
∑

i=1

pt(xi)

p̃s(xi)
EV [1(yifV(xi) < γ)]

︸ ︷︷ ︸

(I)

+

L ·
√

Dχ2

(

Pt‖ ˜Ps

)

+ 1

γ · q(q−1)/2
√

n
︸ ︷︷ ︸

(II)

+(III)

(13)
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Accordingly, increasing the p̃s(xi) of the samples with large EV [1(yifV(xi) < γ)]
will reduce (I). In fact, samples with larger generalization errors will have larger
values of EV [1(yifV(xi) < γ)]. The proof is placed in the supplementary file.
Alternatively, increasing the weights of the hard samples will reduce (I). However,
the weights of the hard samples cannot be increased arbitrarily as Dχ2(Pt‖P̃s)
may be large. Therefore, a tradeoff between (I) and (II) should be attained to
obtain a good set of weights. Alternatively, a good set of weights should increase
the weights of hard samples while ensuring that the distributions of the training
set and the test set are close.

It is worth mentioning that our two above conclusions are still insightful when
Pt = Ps while the conclusion of Xu et al. [20] assumes Pt �= Ps. Apparently, even
when Pt = Ps, assigning weights according to the samples’ difficulties is still
beneficial as the tradeoff between (I) and (II) still takes effect.

5 Discussion

Our theoretical analyses in Sects. 3 and 4 provide answers to the two concerns
described in Sect. 1.

First, the generalization error has been theoretically guaranteed as a generic
difficulty measure. It is highly related to noise level, imbalance degree, margin,
and uncertainty. Consequently, two directions are worth further investigating.
The first direction pertains to investigating a more efficient and effective esti-
mation method for the generalization error, enhancing its practicality. This will
be our future work. As for the second direction, numerous existing and new
weighting schemes can be improved or proposed using the generalization error
as the difficulty measure. Our theoretical findings supplement or even correct
the current understanding. For example, samples with large margins may also
be hard-to-classify in some cases (e.g., with heterogeneous samples in their neigh-
bors).

Second, the existing conclusions on convergence speed have been extended.
For the linear predictors, the existing conclusion is extended by considering our
difficulty measure, namely, the generalization error. For the nonlinear predictors,
the conclusion is extended into the multi-class cases. Furthermore, the explicit
relationship between the generalization gap and sample weights has been estab-
lished. Our theorem indicates that assigning large weights on the hard samples
may be more effective even when the source distribution Ps and target distribu-
tion Pt are equal.

Our theoretical findings of the generalization bounds provide better expla-
nations to existing weighting schemes. For example, if heavy noise exists in the
dataset, then the weights of the noisy samples should be decreased. As noisy
samples are absent in the target distribution (i.e., pt(xi) = 0), the weights of
the noisy samples in a data set with heavy noise should be decreased to better
match the source and target distributions. The experiments on the noisy data
are shown in Fig. A-5 in which decreasing the weights of noisy samples obtain
the best performance. In imbalanced learning, samples in small categories have
higher errors on the average. Increasing the weights of the hard samples will
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not only accelerate the optimization but also improve the performance on the
tail categories, as shown in Figs. 5(d) and 6. These high-level intuitions justify a
number of difficulty-based weighting methods. Easy-first schemes, such as Super-
loss [7] and Truncated loss [6], perform well on noisy data. Hard-first schemes,
such as G-RW [12] and Focal Loss [4], are more suitable for imbalanced data.

6 Conclusion

This study theoretically investigates difficulty-based sample weighting. First, the
generalization error is verified as a universal measure as a means of reflecting the
four main factors influencing the learning difficulty of samples. Second, based
on a universal difficulty measure, the role of the difficulty-based weighting strat-
egy for deep learning is characterized in terms of convergence dynamics and
the generalization bound. Theoretical findings are also presented. Increasing the
weights of the hard samples may accelerate the optimization. A good set of
weights should balance the tradeoff between the assigning of large weights on
the hard samples (heavy training noises are absent) and keeping the test and the
weighted training distributions close. These aspects enlighten the understanding
and design of existing and future weighting schemes.
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Abstract. Using task-specific components within a neural network in
continual learning (CL) is a compelling strategy to address the stability-
plasticity dilemma in fixed-capacity models without access to past data.
Current methods focus only on selecting a sub-network for a new task
that reduces forgetting of past tasks. However, this selection could limit
the forward transfer of relevant past knowledge that helps in future learn-
ing. Our study reveals that satisfying both objectives jointly is more chal-
lenging when a unified classifier is used for all classes of seen tasks–class-
Incremental Learning (class-IL)–as it is prone to ambiguities between
classes across tasks. Moreover, the challenge increases when the semantic
similarity of classes across tasks increases. To address this challenge, we
propose a new CL method, named AFAF (Code is available at: https://
github.com/GhadaSokar/AFAF.), that aims to Avoid Forgetting and
Allow Forward transfer in class-IL using fix-capacity models. AFAF allo-
cates a sub-network that enables selective transfer of relevant knowledge
to a new task while preserving past knowledge, reusing some of the previ-
ously allocated components to utilize the fixed-capacity, and addressing
class-ambiguities when similarities exist. The experiments show the effec-
tiveness of AFAF in providing models with multiple CL desirable proper-
ties, while outperforming state-of-the-art methods on various challenging
benchmarks with different semantic similarities.

Keywords: Continual learning · Class-incremental learning · Stability
plasticity dilemma · Sparse training

1 Introduction

Continual learning (CL) aims to build intelligent agents based on deep neu-
ral networks that can learn a sequence of tasks. The main challenge in this
paradigm is the stability-plasticity dilemma [34]. Optimizing all model weights
on a new task (highest plasticity) causes forgetting of past tasks [33]. While fixing
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(a) (b) (c)

Fig. 1. (a) Two different sub-networks are evaluated for Task B in class-IL. One
sub-network balances forgetting and forward transfer, while the other maintains the
performance of Task A at the expense of Task B. (b) Performing the same model-
altering scheme in task-IL and class-IL leads to different performance. (c) By reusing
some of Task A’s components during learning Task B, we can achieve similar perfor-
mance in class-IL as adding new components while reducing the memory and computa-
tional costs, represented by model parameters (#params) and floating-point operations
(FLOPs), respectively. Details are in Appendix B.

all weights (highest stability) hinders learning new tasks. Finding the balance
between stability and plasticity is challenging. The challenge becomes more dif-
ficult when other CL requirements are considered, such as using fixed-capacity
models without access to past data and limiting memory and computational
costs [13].

Task-specific components strategy [12,30,48] offers some flexibility to address
this dilemma by using different components (connections/neurons), i.e., sub-
network within a model, for each task. The components of a new task are flexible
to learn, while the components of past tasks are fixed. There are some challenges
that need to be tackled in this strategy to balance multiple CL desiderata:

(a) Selection of a new sub-network. Current methods focus solely on for-
getting and choose a sub-network for a new task that would maintain the
performance of past tasks regardless of its effectiveness for learning the new
task. This hinders the forward transfer of relevant past knowledge in future
learning.

(b) Managing the fixed-capacity and training efficiency. Typically, new
components are added for every new task in each layer, which may unneces-
sarily consume the available capacity and increase the computational costs.
Using fixed-capacity models for CL requires utilizing the capacity efficiently.

(c) Operating in the class-Incremental Learning setting (class-IL).
Unlike task-Incremental Learning (task-IL), where each task has a separate
classifier under the assumption of the availability of task labels at inference, in
class-IL, a unified classifier is used for all classes in seen tasks so far. The latter
is more realistic, yet it brings additional challenges due to agnosticity to task
labels: (1) class ambiguities, using past knowledge in learning new classes
causes ambiguities between old and new classes. (2) component-agnostic
inference, all model components are used at inference since the task label is
not available to select the corresponding components. This increases interfer-
ence between tasks and the performance dependency on the sub-network of
each task.
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In response to these challenges, we study the following question: How to alter
the model structure when a new task arrives to balance CL desiderata in class-IL?
Specifically, which components should be added, updated, fixed, or reused?

We summarize our findings below with illustrations shown in Fig. 1:

– The chosen sub-network of each task has a crucial role in the performance,
affecting both forgetting and forward transfer (Fig. 1a).

– The optimal altering of a model differs in task-IL and class-IL. For example,
all components from past similar tasks could be reused in learning a new
task with minimal memory and computational costs in task-IL. However,
this altering limits learning in class-IL due to class ambiguities (Fig. 1b).

– Reusability of past relevant components is applicable in class-IL under careful
considerations for class ambiguity. It enhances memory and computational
efficiency while maintaining performance (Fig. 1c).

– Neuron-level altering is crucial in class-IL (e.g., fixing some neurons for a
task), while connection-level altering could be sufficient in task-IL since only
one sub-network is selected at inference using the task label (Appendix C).

– The challenge in balancing CL desiderata increases in class-IL when similarity
across tasks increases (Sect. 5.1).

Motivated by these findings, we propose a new CL method, named AFAF,
based on sparse sub-networks within a fix-capacity model to address the above-
mentioned challenges. Without access to past data, AFAF aims to Avoid For-
getting and Allow Forward transfer in class-IL. In particular, when a new task
arrives, we identify the relevant knowledge from past tasks and allocate a new
sub-network that enables selective forward transfer of this knowledge while main-
taining past knowledge. Moreover, we reuse some of the allocated components
from past tasks. To enable selective forward transfer and component re-usability
jointly with forgetting avoidance in class-IL, AFAF considers the extra chal-
lenges of class-IL (class-ambiguities and agnostic component inference) in model
altering. We propose two variants of standard CL benchmarks to study the chal-
lenging case where high similarity exists across tasks in class-IL. Experimental
results show that AFAF outperforms baseline methods on various benchmarks
while reducing memory and computation costs. In addition, our analyses reveal
the challenges of class-IL over task-IL that necessitate different model altering.

2 Related Work

We divide CL methods into two categories: replay-free and replay-based.

Replay-Free. In this category, past data is inaccessible during future learning.
It includes two strategies: (1) Task-specific components. Specific components
are assigned to each task. Current methods either extend the initially allocated
capacity of a model for new tasks [43,55] or use a fixed-capacity model and
add a sparse sub-network for each task [29,30,32,48,52,54]. Typically, connec-
tions of past tasks are kept fixed, and the newly added ones are updated to
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learn the current task. The criteria used for adding new connections often focus
solely on avoiding forgetting, limiting the selective transfer of relevant knowl-
edge to learn future tasks. Moreover, most methods rely on task labels to pick
the connections corresponding to the task at inference. SpaceNet [48] addressed
component-agnostic inference by learning sparse representation during training
and fixing a fraction of the most important neurons of each task to reduce inter-
ference. Sparse representations are learned by training each sparse sub-network
using dynamic sparse training [14,36], where weights and the sparse topology are
jointly optimized. Yet, selective transfer and class ambiguity are not addressed.
(2) Regularization-based. A fixed-capacity model is used, and all weights are
updated for each task. Forgetting is addressed by constraining changes in the
important weights of past tasks [1,19,56] or via distillation loss [9,25].

Replay-Based. In this category, forgetting is addressed by replaying : (1) a
subset of old samples [3,5,27,41,42], (2) pseudo-samples from a generative
model [37,45,46], or (3) generative high-level features [50]. A buffer is used to
store old samples or a generative model to generate them.

Attention to task similarities and forward transfer has recently increased.
Most efforts are devoted to task-IL. In [40], the analysis showed that higher layers
are more prone to forgetting, and intermediate semantic similarity across tasks
leads to maximal forgetting. SAM [47] meta-trains a self-attention mechanism for
selective transfer in dense networks. CAT [18] addresses the relation between task
similarities and forward/backward transfer in task-IL, where task labels are used
to find similar knowledge in dense models. In [23], an expectation-maximization
method was proposed to select the shared or added layers to promote transfer in
task-IL. Similarly, [51] uses a modular neural network architecture and searches
for the optimal path for a new task by the composition of neural modules. A
task-driven method is used to reduce the exponential search space. In [6], the
lottery ticket hypothesis [11] is studied for CL.

3 Network Structure Altering

When a model faces a new task, task-specific components methods alter its
structure via some actions to address the stability-plasticity dilemma. Next, we
will present commonly used and our proposed actions.

3.1 Connection-Level Actions

Most state-of-the-art methods alter fixed-capacity models at the connection
level . The connection-level actions include:

– “Add”: New connections, parameterized by Wt, are added for each new task
t. Each task has a sparse sub-network resulting from either pruning dense
connections [30] (Fig. 2b) or adding sparse ones from scratch [48] (Fig. 2c).
The current practice is to randomly add connections in each layer using
unimportant components of past tasks focusing solely on forgetting [30,48];
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Wt = {Wt
l : 1 ≤ l ≤ L − 1} where L is the number of layers. This will be

addressed in Sect. 4 to enable selective transfer and reusability .
– “Update”: Wt are updated during task t training (i.e., allows plasticity).
– “Fix”: Once a task has been learned, Wt are frozen (i.e., controls stability).

Note that regularization methods add dense connections at step t = 0 (Fig. 2a).
Each task updates all weights. Stability is controlled via regularization.
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Fig. 2. Overview of a model when it faces a new task t using different methods. (a)
Regularization methods use and update all connections with regularization for learning
task t [1,19]. (b) Dense connections are added, and unimportant connections are pruned
after training [30]. Connections of previous tasks are fixed. (c) Sparse connections are
added from scratch [48]. Connections and important neurons of past tasks are fixed
(dashed lines and filled circles). (d) Our proposed method, AFAF. Starting from layer
lreuse, new connections are added for each class using the candidate neurons for the
class to enable selective transfer and free neurons to capture residual knowledge. New
outgoing connections are allowed from fixed neurons at layer l but could only connect
free neurons (unfilled circles) in layer l + 1 to preserve the old knowledge.

3.2 Neuron-Level Actions

Component-agnostic inference in class-IL makes reducing task interference at
the connection level only more challenging since connections from different tasks
share the same neurons (Fig. 2b). Reducing interference at the representational
level is more efficient (Appendix C). Hence, we believe that the following neuron-
level actions are needed:

– “Fix”: After learning a task, its important neurons should be frozen to reduce
the drift in its representation [48]. Other neurons are “free” to be updated.

– “Reuse”: Reusing neurons that capture useful representation in learning
future tasks. Fixed neurons could be reused by allowing outgoing connec-
tions only from these neurons. Details are provided in the next section.
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Table 1. Actions used to alter the model components at the connection and neuron
levels by different methods.

Method Add weights Fix old
weights

Fix neurons Reuse past
components

Selective
transfer

EWC [19], MAS [1] Dense × × × ×
PackNet [30] Dense+Prune

√ × × ×
SpaceNet [48] Sparse

√ √ × ×
AFAF (ours) Sparse

√ √ √ √

Most previous methods operate at the connection level except the recent
work, SpaceNet [48], which shows its favorable performance over replay-free
methods using a fixed-capacity model via fixing the important neurons of each
task and learning sparse representations (Fig. 2c). However, besides adding new
components for every task in each layer, it does not selectively transfer relevant
knowledge. A summary is provided in Table 1. Our goal is to address selective
transfer and reusability of previous relevant neurons while maintaining them
stable.

4 Proposed Method

We consider the problem of learning T tasks sequentially using a fix-capacity
model with a unified classifier. Each task t brings new C classes. The output
layer is extended with new C neurons. Let Dt = {Dtc}|Cc=1, where Dtc is the
data of class c in task t. Once a task has been trained, its data is discarded.

AFAF is a new task-specific component method that dynamically trains a
sparse sub-network for each task from scratch. Our goal is to alter the model
components to (i) reuse past components and (ii) selectively transfer relevant
knowledge while (iii) reducing class ambiguity in class-IL. This relies on the
selection of a new sub-network and its training. When a new task arrives, AFAF
adds a sub-network such that past knowledge is transferred from relevant neurons
while retaining it, and residual knowledge is learned. Section 4.1 introduces the
selection mechanism of a sub-network and illustrates the added and reused com-
ponents. Section 4.2 discusses the considerations for class ambiguity. In Sect. 4.3,
we present task training and identify the fixed and updated components.

4.1 Selection of a New Sub-network

Notation. Let l ∈ {1, .., L} represents a layer in a neural network model. A
sparse connections W t

l , with a sparsity εl, are allocated for task t in layer l

between a subset of the neurons denoted by halloc
l and halloc

l+1 in layers l and l+1,
respectively. We use the term neuron to denote a node in multilayer perceptron
networks or a feature map in convolution neural networks (CNNs). The selected
neurons in each layer determine the initial sub-network for a new task.
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Typically, when there is a semantic similarity between old and new classes,
the existing learned components likely capture some useful knowledge for the
current task. Hence, we propose to reuse some of these components. Namely,
instead of adding new connections in each layer, we allocate new sparse connec-
tions starting from layer lreuse (Fig. 2d). lreuse is a hyper-parameter that controls
the trade-off between adding new connections and reusing old components based
on existing knowledge and the available capacity. Hence, the connections of a
new task t are Wt = {Wt

l : lreuse ≤ l ≤ L − 1}. Layers from l = 1 up to
but excluding layer lreuse remains unchanged. We show that reusing past com-
ponents reduces memory and computational costs (Sect. 5.1), balances forward
and backward transfer (Sect. 5.2), and utilizes the available fixed-capacity effi-
ciently by allowing new dissimilar tasks to acquire more resources that are saved
by reusability, i.e., higher density for sparse sub-networks (Appendix D).

Starting from lreuse, we add new sparse connections Wt
l in each layer l. The

selected neurons for allocation should allow: (i) selective transfer of relevant
knowledge to promote forward transfer and (ii) preserving old representation to
avoid forgetting. To this end, we select a set of candidate and free neurons in
each layer, as we will discuss next. Details are provided in Algorithm 1.

Identify Candidate Neurons. To selectively transfer the relevant knowledge,
for each layer l ≥ lreuse, we identify a set of candidate neurons Rc

l that has a
high potential of being useful when “reused” in learning class c in a new task t.
Classes with semantic similarities are most likely to share similar representations
(Appendix F). Hence, we consider the average activation of a neuron as a metric
to identify its potential for reusability. In particular, we feed the data of each
class c in a new task t, Dtc , to the trained model at time step t−1, f t−1(Wt−1),
and calculate the average activation Ac

l in each layer l as follows:

Ac
l (W

t−1) =
1

|Dtc |
|Dtc |∑

i=1

al(xtc
i ), (1)

where al is the vector of neurons activation at layer l when a sample xtc
i ∈ Dtc

is fed to the model f t−1(Wt−1), and |Dtc | is the number of samples of class c.
Once the activation is computed, neurons with the top-κ activation are selected
as potential candidates Rc

l as follows:

Rc
l = {i|Ac

li ∈ top- κ(Ac
l )}, (2)

where κ denotes the number of candidate neurons, and Ac
li

is the average activa-
tion of neuron i in layer l. Neuron activity shows its effectiveness as an estimate
of a neuron/connection importance in pruning neural networks for single task
learning [7,15,28]. To assess our choice of this metric to identify the candidate
neurons, we compare against two metrics: (1) Random, where the candidate
neurons are randomly chosen from all neurons in a layer, and (2) Lowest, where
the candidates are the neurons with the lowest activation (See Sect. 5.2).

Note that by exploiting the representation of candidate neurons Rc
lreuse

in
layer lreuse, we selectively reuse past components connected to these neurons in
preceding layers (l < llreuse

). Hence, these components are stable but reusable.
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Identify Free Neurons. To preserve past representation while allowing
reusability of neurons, “fixed” neurons that might be selected as candidates
should be stable. Hence, we allow outgoing connections from these neurons but
not incoming connections. The outgoing connections from fixed neurons in layer
l can be connected to “free” neurons in layer l +1. To this end, in each layer, we
select a subset of the free neurons for each task, denoted as SFree

l . For these neu-
rons, incoming and outgoing connections are allowed to be allocated and used
to capture the specific representation of a new task.

Allocation. The neurons used to allocate new sparse weights Wc
l between layers

l and l + 1 for a class c are as follows:

Algorithm 1. AFAF Sub-network Allocation

1: Require: lreuse, sparsity level εl, |halloc
l |, κ, hFix

l

2: for each class c in task t do � Get candidate neurons
3: Ac

l ← calculate average activation of Dtc � Eq. 1
4: Rc

l ← get candidates for class c ∀l ≥ lreuse � Eq. 2
5: end for each
6: SFree

l ← randomly select subset of free neurons ∀l ≥ lreuse
7: Rc

L−1,Rc
L ← ∅ � No candidate neurons used in last layer

8: SFree
L ← {c} ∀c ∈ t � Output neurons for new classes

9: for each class c in task t do
10: for l ← lreuse to L − 1 do
11: halloc

l ← {Rc
l ∪ SFree

l } � Neurons for allocation
12: halloc

l+1 ← {(Rc
l+1\hFix

l+1 ) ∪ SFree
l+1 } � Neurons for allocation

13: Allocate Wc
l with sparsity εl between halloc

l & halloc
l+1

14: Wl ← Wl ∪ Wc
l

15: end for each
16: end for each

halloc
l = {Rc

l ∪ SFree
l },

halloc
l+1 = {(Rc

l+1 \ hFix
l+1 ) ∪ SFree

l+1 },
(3)

where hFix
l+1 is the set of fixed neurons at layer l + 1.

4.2 Addressing Class Ambiguities

Unlike task-IL, reusing past relevant knowledge in future learning may result in
class ambiguity in class-IL (Sect. 1). To this end, we propose three constraints
for reusability that aim to (1) allow a new task to learn its specific representation
and (2) increase the decision margin between classes (see Sect. 5.2 for analysis).

Learn Specific Representation. Learning specific representation reduces
ambiguity between similar classes. Hence, we add two constraints. First, new
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connections should be added in at least one layer before the classification layer
to capture the specific representation of the task (i.e., lreuse ∈ [2, L−2]). Second,
the output connections are allocated using free neurons only (i.e., no candidate
neurons are used; halloc

L−1 = SFree
L−1 ) since candidate neurons in the highest-level

layer are highly likely to capture the specific representation of past classes.

Increase the Decision Margin Between Classes. To learn more discrimina-
tive features and increase the decision margin between classes, we use orthogonal
weights in the output layer [24]. To this end, once a task has been trained, we
force all its neurons in the last layer, halloc

L−1 , to be fixed and not reusable.

4.3 Training

The new connections are trained with stochastic gradient descent. During train-
ing, the weights and important neurons of past tasks are kept fixed to protect
past representation. We follow the approach in [48] to train a sparse topology
(connections distribution) and identify the portion of the important neurons
from halloc

l in each layer that will be fixed after training (Appendix G). In short,
a sparse topology is optimized by a dynamic sparse training approach to produce
sparse representation. To reuse important neurons of past tasks while protecting
the representation, we block the gradient flow through all-important neurons
of past tasks, even if they are reused as candidates for the current task. The
gradient gl through the neurons of layer l is:

gl = gl ⊗ (1 − 1hFix
l

), (4)

where 1 is the indicator function. This allows not to forget past knowledge while
reusing it for selective transfer. Since the important neurons of dissimilar classes
are less likely to be involved in the sub-network selection, they are protected.

5 Experiments and Results

Baselines. Our study focuses on the replay-free setting using a fixed-capacity
model. Therefore, we compare with several representative regularization methods
that use dense fixed-capacity, EWC [19], MAS [1], and LWF [25]. In addition,
we compare with task-specific components methods that use sparse sub-networks
within a fixed-capacity model, PackNet [30] and SpaceNet [48].

Benchmarks. We performed our experiments on three sets of benchmarks: (1)
standard split-CIFAR10, (2) sequences with high semantic similarity at the class
level across tasks, and (3) sequence of mixed datasets where tasks come from
different domains to study the stability-plasticity dilemma for sequences with
concept drift and interfering tasks.

Standard Evaluation. We evaluate the standard split-CIFAR10 benchmark
with 5 tasks. Each task consists of 2 consecutive classes of CIFAR10 [21].



94 G. Sokar et al.

Similar Sequences. To assess replay-free methods under more challenging con-
ditions, we design two new benchmarks with high semantic similarity across
tasks. In the absence of past data, we test the unified classifier’s ability to dis-
tinguish between similar classes when they are not presented together within the
same task. (1) sim-CIFAR10 is constructed from CIFAR-10 by shuffling the
order of classes to increase the similarity across tasks (Appendix A; Table 5). It
consists of 5 tasks. (2) sim-CIFAR100 is constructed from CIFAR-100 [20].
Classes within the same superclass in CIFAR-100 have high semantic similarity.
Hence, we construct a sequence of 8 tasks with two classes each and distribute
the classes from the same superclass in different tasks (Appendix A; Table 6).

Mix Datasets. The considered datasets are CIFAR10 [20], MNIST [22], NotM-
NIST [4], and FashionMNIST [53]. We construct a sequence of 8 tasks with 5
classes each. The first four tasks are dissimilar, while the second four are similar
to the first ones (Appendix A; Table 7).

Implementation Details. Motivated by the recent study on architectures for
CL [35], we follow [18,44,51] to use an AlexNet-like architecture [21] that is
trained from scratch using stochastic gradient descent. We start reusing relevant
knowledge in future tasks after learning similar ones. Therefore, for Mix and
sim-CIFAR100, we start reusing past components from task 5, while for split-
CIFAR10 and sim-CIFAR10, we start from task 3. Earlier tasks add connections
in each layer using the free neurons. For all benchmarks, we use lreuse of 4.

Evaluation Metrics. To evaluate different CL requirements, we assess various
metrics: (1) Average accuracy (ACC), which measures the performance at
the end of the learning experience, (2) Backward Transfer (BWT) [27], which
measures the influence of learning a new task on previous tasks (large negative
BWT means forgetting), (3) Floating-point operations (FLOPs), which
measure the required computational cost, and (4) Model size (#params),
which is the number of model parameters. More details are in Appendix A.

5.1 Results

Table 2 shows the performance on each benchmark. AFAF consistently outper-
forms regularization-based methods and other task-specific components meth-
ods on all benchmarks. The difference in performance between split-CIFAR10
and sim-CIFAR10, which have the same classes in a different order, reveals the
challenge caused by having similar classes across tasks in class-IL. All stud-
ied methods have lower ACC and BWT on sim-CIFAR10 than split-CIFAR10.
Yet, AFAF is the most robust method towards this challenge. When the simi-
larity across tasks increases more, as in sim-CIFAR100, regularization methods
and PackNet fail to achieve a good performance. We also observe that LWF
outperforms other regularization-based methods in most cases except on the
Mix datasets benchmark, where there is a big distribution shift across tasks
from different domains. Most task-specific components methods outperform the
regularization-based ones with much lower forgetting.
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Analyzing task-specific components methods, we observe that altering the
model at the connection level only by PackNet is not efficient in class-IL despite
its high performance in task-IL (Appendix C). Besides the additional memory
and computational overhead of pruning and retraining dense models, the per-
formance is lower than other task-specific components methods. Altering at the
connection and neuron levels, as in SpaceNet and AFAF, enables higher perfor-
mance. The gap between these methods increases when the sequence has a larger
number of tasks with high similarities (i.e., sim-CIFAR100 and Mix datasets).

AFAF consistently achieves higher ACC and BWT than SpaceNet on all
benchmarks with various difficulty levels. Interestingly, the achieved performance
is obtained by reusing relevant knowledge via selective transfer. AFAF exploits
the similarity across tasks in learning future tasks while addressing class ambigu-
ities. Moreover, the performance gain is accompanied by using a smaller memory
and less computational cost than all the baselines.

5.2 Analysis

Effect of Selective Transfer. To measure the impact of selective transfer
and the initially allocated sub-network on forward and backward transfer in
AFAF, we compare our selection strategy for the candidate neurons to two other
potential strategies discussed in Sect. 4.1: Random and Lowest. To reveal the
role of selective transfer on performance, we also report the Learning Accuracy
(LA) [42], which is the average accuracy for each task directly after it is learned
(Appendix A). We calculate this metric starting from the first task that reuses
past components in its learning onwards. Figure 3 shows the results on Mix
datasets and sim-CIFAR10. We present the performance of the tasks that reuse
past components (i.e., t ≥ 5 and t ≥ 3 for Mix and sim-CIFAR10, respectively)
since the performance of other earlier tasks is the same for all baselines (i.e.,
the allocation is based on the free neurons). As shown in the figure, using the
relevant neurons with the highest activation to allocate a new sub-network leads
to higher LA on new tasks and lower negative BWT on past tasks than using
random neurons. AFAF also has higher ACC than the Random baseline by
4.79% and 3.01% on Mix and sim-CIFAR10, respectively. On the other hand,
the Lowest baseline limits learning new tasks. It has much lower ACC and LA
than the other two baselines. Note that the high BWT of this Lowest baseline is
a factor of its low LA. This analysis shows the effect of the initial sub-network
on performance, although topological optimization occurs during training.

Class Ambiguities. We performed an ablation study to assess each of our
proposed contributions in addressing class ambiguities in class-IL (Sect. 4.2).
We performed this analysis on Mix datasets and sim-CIFAR10 benchmarks. To
show that class ambiguity causes more challenges in class-IL, we also report the
performance in task-IL. To compare only the effect of class ambiguities in both
scenarios, we assume components-agnostic inference for task-IL. Yet, task labels
are used to select the output neurons that belong to the task at hand.
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(a) Mix datasets

(b) sim-CIFAR10

Fig. 3. Performance of AFAF backbone with different strategies for selecting the can-
didate neurons used to add new connections.

Table 2. Evaluation results on four CL benchmarks in the replay-free class-IL setting
with fixed-capacity models.

Method Split-CIFAR10 Sim-CIFAR10

ACC (↑) BWT (↑) FLOPs (↓) #params (↓) ACC (↑) BWT (↑) FLOPs (↓) #params (↓)

Dense model – – 1 × (14.97e14) 1 × (23459520) – – 1 × (14.97e14) 1 × (23459520)

EWC [19] 38.30 ± 0.81 −59.30 ± 2.03 1 × 1× 28.90 ± 3.11 −66.10 ± 5.49 1× 1×
LWF [25] 48.10 ± 2.28 −42.33 ± 1.15 1× 1× 40.43 ± 1.22 −50.36 ± 1.98 1 × 1×
MAS [1] 38.30 ± 1.06 −56.56 ± 3.30 1× 1× 28.93 ± 4.05 −61.86 ± 5.66 1× 1×
PackNet [30] 44.33 ± 0.85 −50.40 ± 1.45 3.081× 1× 32.63 ± 1.22 −61.96 ± 1.52 3.081× 1×
SpaceNet [48] 51.63 ± 1.28 −36.50 ± 1.53 0.154× 0.154× 42.86 ± 4.57 −30.69 ± 4.63 0.325× 0.325×
AFAF (ours) 52.35±2.35 −32.93±3.19 0.148× 0.148× 45.23±2.14 −29.35±3.54 0.322× 0.322×
Method Sim-CIFAR100 Mix datasets

ACC (↑) BWT (↑) FLOPs (↓) #params (↓) ACC (↑) BWT (↑) FLOPs (↓) #params (↓)

Dense Model – – 1×(23.96e13) 1 × (23471808) – – 1 × (5.600e15) 1 × (23520960)

EWC [19] 15.73 ± 1.89 −74.50 ± 5.10 1× 1× 54.63 ± 1.93 −31.33 ± 2.82 1× 1×
LWF [25] 14.40 ± 2.69 −52.86 ± 1.12 1× 1× 40.60 ± 3.25 −60.46 ± 3.54 1× 1×
MAS [1] 13.50 ± 0.66 −81.70 ± 1.02 1× 1× 56.86 ± 1.81 −26.83 ± 3.44 1× 1×
PackNet [30] 10.12 ± 2.55 −20.35 ± 3.83 5.241× 0.8× 16.61 ± 2.35 −18.58±1.38 5.250× 0.8×
SpaceNet [48] 32.86 ± 2.73 −36.29 ± 2.78 0.089× 0.089× 56.25 ± 1.69 −30.02 ± 1.79 0.053× 0.053×
AFAF (ours) 33.74±2.18 −21.26±2.21 0.088× 0.088× 59.02±1.76 −25.91 ± 1.51 0.050× 0.050×

Table 3. Effect of each contribution in addressing class ambiguities: orthogonal output
weights, using free neurons only for allocating output weights, and constraining reusing
all past components. ACC is reported in class-IL and task-IL.

sim-CIFAR10 Mix datasets

Class-IL Task-IL Class-IL Task-IL

AFAF (ours) 45.23±2.14 94.57±0.05 59.02±1.76 93.41±0.26

w/o orth WL 41.74 ± 2.05 93.20 ± 0.26 56.38 ± 3.34 93.39 ± 0.30

w/RL−1 40.30 ± 2.14 93.27 ± 0.17 56.83 ± 1.19 92.85 ± 0.28

w/lreuse = L − 1 22.27 ± 1.61 83.54 ± 1.64 40.98 ± 2.75 85.05 ± 1.01
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Analysis 1: Effect of Orthogonal Output Weights. We evaluate a baseline
that denotes AFAF without using orthogonal weights in the output layer “w/o
orth WL”. We obtain this baseline by fixing part of the neurons in the last
layer instead of fixing all neurons. We use the same fraction used for other
fully connected layers (Appendix A). Table 3 shows the results. Having a large
decision margin via orthogonal output weights increases the performance. We
observe that the difference between AFAF and this baseline is larger in class-IL
than task-IL, which indicates that task-IL is less affected by class ambiguities.

Analysis 2: Effect of Using Free Neurons Only in the Last Layer. To
analyze this effect, we add another baseline that uses free Sfree

L−1 and candi-
date RL−1 neurons in allocating the output weights. We denote this baseline as
“w/RL−1”. As shown in Table 3, using free neurons only allows learning specific
representation that decreases the ambiguities across tasks. The performance in
class-IL is improved by 4.93% and 2.19% on sim-CIFAR10 and Mix datasets,
respectively.

Analysis 3: Effect of Constraining Reusing all Past Components. We
analyze the performance obtained by reusing all past components in learning
similar tasks (i.e., lreuse = L−1). We denoted this baseline as “w/lreuse = L−1”.
As shown in Table 3, the performance has decreased dramatically. Despite that
the degradation also occurs in task-IL, it has less effect. This shows the challenge
of balancing performance, memory, and computational costs in class-IL.

(a) Mix datasets (b) Sim-CIFAR10

Fig. 4. Normalized performance of AFAF at different values of lreuse.

Reusable Layers. We analyze the effect of reusing full layers on perfor-
mance. We evaluate the performance at the possible values of lreuse ∈ [2, L − 2]
(Sect. 4.2). A min-max scaling is used to normalize the ACC, BWT, and LA;
exact values are in Appendix E. Figure 4 shows the performance of Mix datasets
and sim-CIFAR10. Adding new components in lower-level layers (lreuse ∈ {2, 3})
enables new tasks to achieve high LA but increases forgetting (negative BWT),
leading to lower ACC. Reusing the components in lower-level layers while
adding new components to learn specific representations in the higher-level ones
(lreuse = 4) achieves a balance between ACC, BWT, and LA. While using a
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higher value for lreuse limits the performance of new tasks due to class ambigu-
ities, leading to the lowest LA and ACC.

We performed another study to illustrate the effect of reusing past compo-
nents in utilizing the fixed-capacity. We show that reusability allows for using
higher density for tasks that are dissimilar to the previously learned knowledge,
which increases the performance. Details are provided in Appendix D.

6 Conclusion

Addressing the stability-plasticity dilemma while balancing CL desiderata is a
challenging task. We showed that the challenge increases in the class-IL setting,
especially when similar classes are not presented together within the same task.
With our proposed task-specific components method, AFAF, we show that alter-
ing the model components based on exploiting past knowledge helps in achieving
multiple desirable CL properties. Critically, the choice of the sub-network of a
new task affects the forward and backward transfer. Hence, we proposed a selec-
tion mechanism that selectively transfers relevant knowledge while preserving it.
Moreover, we showed that complete layers could be reused in learning similar
tasks. Finally, we addressed the class ambiguity that arises in class-IL when sim-
ilarities increase across tasks and showed that model altering at the connection
and neuron levels is more efficient for component-agnostic inference.
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Abstract. Although deep neural networks have enjoyed remarkable suc-
cess across a wide variety of tasks, their ever-increasing size also imposes
significant overhead on deployment. To compress these models, knowl-
edge distillation was proposed to transfer knowledge from a cumber-
some (teacher) network into a lightweight (student) network. However,
guidance from a teacher does not always improve the generalization of
students, especially when the size gap between student and teacher is
large. Previous works argued that it was due to the high certainty of
the teacher, resulting in harder labels that were difficult to fit. To soften
these labels, we present a pruning method termed Prediction Uncertainty
Enlargement (PrUE) to simplify the teacher. Specifically, our method
aims to decrease the teacher’s certainty about data, thereby generat-
ing soft predictions for students. We empirically investigate the effec-
tiveness of the proposed method with experiments on CIFAR-10/100,
Tiny-ImageNet, and ImageNet. Results indicate that student networks
trained with sparse teachers achieve better performance. Besides, our
method allows researchers to distill knowledge from deeper networks to
improve students further. Our code is made public at: https://github.
com/wangshaopu/prue.

Keywords: Knowledge distillation · Network pruning · Deep learning

1 Introduction

Neural networks have gained remarkable practical success in many fields [3]. In
practice, researchers usually introduce more layers and parameters to make the
network deeper [37] and wider [15] for achieving better performance. However,
these over-parameterized models also incur huge computational and storage over-
head [5], which makes deploying them on edge devices impractical. Therefore,
several methods have been proposed to shrink neural networks, e.g., network
pruning [11,17], quantization [10], and knowledge distillation [13]. Among these
approaches, knowledge distillation has been widely utilized in many fields [2,39].
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Table 1. The test accuracy in percentage of various teachers and ResNet-8 as the
student.

ResNet-8 ResNet-20 w/o LS ResNet-20 w/LS ResNet-32 w/o LS

Teacher Acc. 87.56(±0.20) 91.72(±0.21) 92.06(±0.26) 92.99(±0.12)
Student Acc. – 88.05(±0.18) 86.13(±0.22) 87.60(±0.08)
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Fig. 1. Visualization of network predictions. We randomly select some training samples
from the three classes of CIFAR-10 “airplane” (gray), “automobile” (blue), and “bird”
(yellow), and then perform t-SNE dimensionality reduction [22] on network predictions.
Note that the x-y axis has no real meaning here. (Color figure online)

Generally speaking, it utilizes a pre-trained teacher to produce supervision for
students. In this way, a lightweight student network can achieve similar gener-
alization as the teacher.

Although this paradigm of encouraging students to mimic teachers’ behaviors
has proven to be a promising way, some recent works [25,30] argued that knowl-
edge distillation is not always effective. Specifically, it is found that well-behaved
teachers failed to improve student generalization under certain circumstances.
For instance, Müller et al. [25] discovered that teachers pre-trained with label
smoothing (LS) [31], a commonly used technique to regularize models, will distill
inferior students, even though the teacher’s generalization has been improved.
They attribute this phenomenon to the fact that LS tends to erase the relative
information within a class. As a result, teachers generate harder labels that are
difficult for students to fit. Meanwhile, Mirzadeh et al. [24] investigated another
more common scenario. When there exists a large capacity gap between students
and teachers, the former will perform worse. Coincidentally, their experiments
lead to a similar conclusion that well-performed teachers fail to generate soft
targets.

To investigate the relationship between network capacity and label smooth-
ing, we train ResNet-20 and ResNet-32 on CIFAR-10 and report the results of
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visualizing their predictions for the classes “airplane”, “automobile” and “bird”
in Fig. 1. The first row represents examples from the training set, while the
second row is from the validation set. As revealed in the first column, a ResNet-
20 trained without label smoothing (w/o LS) produces predictions scattered in
some broad clusters. We also notice that blue dots (automobile) and gray dots
(airplanes) in the validation set tend to be mixed at the boundary. A possible
explanation is that these vehicles are more similar in some features than the
yellow dots (birds), and it causes some misclassification. While in the second
column, a ResNet-20 is trained with a label smoothing factor of 0.2. We observe
that LS encourages samples in the training set to be equidistant from other
classes’ centers. What is striking in this figure is the third column. We train a
ResNet-32 and notice that it acts in a similar pattern to LS. They both compact
each class cluster. Next, we use ResNet-8 as a student to validate the effectiveness
of knowledge distillation. The accuracy results, as shown in Table 1, confirm that
while label smoothing and network deepening can improve the teacher network,
they will degrade the generalization of students as expected.

A possible speculation is that although the generalization of the networks
can be improved by the above two measures, their uncertainty about the data
is also reduced. As a result, teachers tend to produce similar overconfident pre-
dictions for all intra-class samples and distill inferior students. In this work, we
propose to improve knowledge distillation by increase teachers’ uncertainty. For-
tunately, a statistical metric, which we term prediction uncertainty, has been
proposed by [29] to quantify this phenomenon. Following this work, we propose
a criterion to identify the effect of weights on uncertainty in the teacher network.
Then we prune those less-contributing weights before distillation. Differing from
traditional pruning algorithms that focus on generalization, our method aims to
reduce the generalization error of student networks by softening teacher predic-
tions. We name our method Prediction Uncertainty Enlargement (PrUE).

We evaluate our pruning method on CIFAR-10/100, Tiny-ImageNet, and
ImageNet classification datasets with some modern neural networks. Specifically,
we first verify that label smoothing and network deepening reduce generaliza-
tion error with a sacrifice of prediction uncertainty. The following distillation
experiments show a positive correlation between the student’s accuracy and the
teacher’s prediction uncertainty. However, the teacher’s accuracy does not play a
crucial role in knowledge distillation. Generally, large networks struggle to distill
stronger students despite their high accuracy. To bridge this gap, we apply PrUE
to the aforementioned teacher networks and distill their knowledge to students.
Results show that our method can increase the teacher’s prediction uncertainty,
resulting in better performance improvement for students than existing distilla-
tion methods. We also compare PrUE with several other pruning schemes and
observe that sparse teacher networks distill good students, but PrUE usually
presents better performance.

Contributions: our contributions in this paper are as follows.

– We empirically investigate the impact of label smoothing and network capac-
ity on knowledge distillation. Interestingly, They both prevent teachers from
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generating soft labels and impair knowledge distillation, despite the improved
accuracy of teachers themselves.

– We apply a statistical metric to quantify the softness of labels. Based on this,
PrUE is proposed to increase the teacher’s prediction uncertainty.

– We perform experiments on CIFAR-10/100, Tiny-ImageNet, and ImageNet
with widely varying CNN networks. Results suggest that sparse teacher net-
works usually distill better students than dense ones. Besides, PrUE outper-
forms existing distillation and pruning schemes.

2 Related Work

Network Pruning. The motivation behind network pruning is that there is a
mass of redundant parameters in the neural network [7]. Previous works have
demonstrated that these parameters can be removed safely. Therefore, Lecun
et al. [17] proposed removing parameters in an unstructured way by calculat-
ing the Hessian of the loss with respect to the weights. Furthermore, Han et
al. [11] proposed a magnitude-based pruning method to remove all weights below
s predefined threshold. Recently, Frankle et al. [8] proposed the “Lottery Ticker
Hypothesis” that there exist sparse subnetworks that, when trained in isolation,
can reach test accuracy comparable to the original network. Furthermore, Miao
et al. [23] proposed a framework that can prune neural networks to any sparsity
ratio with only one training.

Soft Labels. Theoretically, the widely used one-hot labels could lead to over-
fitting. Therefore, label smoothing was proposed to generate soft labels, thereby
delivering regularization effects. On the other hand, there were usually some
noisy labels in the dataset that mislead deep learning models, and a recent
work [20] noted that label smoothing could help mitigate label noise. However,
label smoothing could only add random noise and cannot reflect the relation-
ship between labels. Another well-known paradigm for generating soft labels
was knowledge distillation [13]. Differing label smoothing, knowledge distillation
required a pretrained teacher to produce soft labels for each training example.
Therefore, Yuan et al. [35] regarded it as a dynamic form of label smoothing.
Although the original distillation scheme focused on transferring dark knowl-
edge from large to small models, Zhang et al. [38] had found that these gener-
ated soft labels can be used for distributed machine learning. Therefore, some
recent works [2,39] proposed distillation-based communication schemes to save
bandwidth.

Pruning in Distillation. Both network pruning and knowledge distillation are
widely used model compression methods. Therefore, some recent works proposed
combining them together to achieve higher compression ratios. For instance, Xie
et al. [33] used this paradigm to customize a compression scheme for the identifi-
cation of Person re-identification (ReID). Chen et al. [4] proposed to use pruning



106 S. Wang et al.

and knowledge distillation to train a lightweight detection model, to achieve syn-
thetic aperture radar ship real-time detection at a lower cost. Meanwhile, Aghli
et al. [1] introduced a compression scheme of convolutional neural networks,
mainly exploring how to combine pruning and knowledge distillation methods
to reduce the scale of ResNet with the guarantee of accuracy. Neill et al. [26]
proposed a pruning-based self-distillation scheme using distillation as the prun-
ing criterion to maximize the similarity of network representations before and
after pruning. Cui et al. [6] proposed a joint model compression method that
combines structured pruning and dense knowledge distillation. However, these
researches focused on simplifying student networks. In fact, they amplify the
capacity gap between students and teachers.

3 Background

Producing soft labels has been shown to be an effective regularizer. In practice,
encouraging networks to fit soft labels prevents overfitting. In this section, we
introduce a statistical metric quantifying label softness.

3.1 Preliminaries

Notations. Given a K-class classification task, We denote by D the training
dataset, consisting of m i.i.d tuples {(x1,y1), . . . , (xm,ym)} where xi ∈ R

d×1

is the input data and yi ∈ {0, 1}K is the corresponding one-hot class label. Let
y[i] be the i-th element in y, and y[c] is 1 for the ground-truth class and 0 for
others.

Knowledge Distillation. For a teacher network f(wT ) parameterized by wT ,
let a(wT ,xi) and f(wT ,xi) correspond to its logits and prediction for xi, respec-
tively. In vanilla supervised learning, f(wT ) is usually trained on D with cross-
entropy loss

LCE = −
m∑

i=1

yi log f(wT ,xi) (1)

where f(wT ,xi) = softmax(a(wT ,xi)).
As for a student network f(wS), its logits and prediction for xi are denoted

as a(wS ,xi) and f(wS ,xi). In knowledge distillation, f(wS) is usually trained
with a given temperature τ and KL-divergence loss

LKD = −
m∑

i=1

τ2KL(a(wT ,xi), a(wS ,xi)) (2)

When the hyperparameter τ is set to 1, we can regard the distillation process
as training f(wS) on a new dataset {(x1, f(wT ,x1), . . . , (xm, f(wT ,xm)} with
soft labels provided by a teacher. The key idea behind knowledge distillation is
to encourage the student f(wS) to mimic the behavior of the teacher f(wT ). In
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practice, researchers usually use correct labels to improve soft labels, especially
when the generalization of teachers is poor. Therefore, the practical loss function
for the student is modified as follows:

Lstudent =
m∑

i=1

(1 − λ)LCE + λLKD (3)

where λ is another hyperparameter that controls the trade-off between the two
losses. We refer to this approach as Logits( τ) through the paper.

Label Smoothing. Similar to knowledge distillation, label smoothing aims to
replace hard labels to penalize overfitting. Instead, it does not involve a teacher
network. Specifically, label smoothing modifies one-hot hard label vector y with
a mixture of weighted origin y and a uniform distribution:

yc =

{
1 − α if c = label,

α/(K − 1) otherwise.
(4)

where α ∈ [0, 1] is the hyperparameter flattening the one-hot labels.
Label smoothing has been a widely used trick to improve network general-

ization. A prior work [29] observes that although the network trained with label
smoothing suffers a higher cross-entropy loss on the validation set, its accuracy
is better than that without label smoothing.

3.2 Prediction Uncertainty

To observe the effect of label smoothing on the penultimate layer representations,
Müller et al. [25] proposed a visualization scheme based on squared Euclidean
distance. Similarly, we use t-SNE in Sect. 1 to visualize the predictions. However,
we cannot conduct numerical analysis on these intuitive presentations. To further
measure the label softness quantitatively and address the erasing phenomenon
caused by label smoothing, Shen et al. [29] propose a simple yet effective metric.
The definition is as follows1:

δ(w) =
1
K

K∑

c=1

(
1
nc

nc∑

i=1

‖f(w,xi)[c] − f̃(w,xi)[c]‖2) (5)

where class c contains nc samples. f̃(xi)[c] is the mean of in f(xi) class c. The
key idea behind this metric is to use the variance of intra-class probabilities to
measure the uncertainty of network predictions.

Now we discuss how prediction uncertainty influences knowledge distillation.
Assume an ideal network classifies each input precisely, and it is absolutely cer-
tain of each prediction. Correspondingly, this network is commonly regarded as

1 It was called stability in the origin paper. We modify it for the purpose of our work.
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a perfect model that achieves excellent generalization and low loss on the valida-
tion set. However, it tends to produce one-hot labels that fail to inform student
networks about the similarity between classes, i.e., dark knowledge. At this point,
the certainty of the teacher network downgrades the knowledge distillation to
vanilla training. Applying label smoothing to the distillation process could help
to moderate the teacher’s overconfidence. Unfortunately, this trick merely tells
students that airplanes and birds have the same probability as automobiles.
Therefore, we aim to make teachers feel uncertain between the automobile and
the airplane, thus improving the generalization behavior of the student network.

We next work on simplifying the teacher network to enlarge its prediction
uncertainty. Specifically, we utilize network pruning to close the capacity gap
between teachers and students.

4 Prediction Uncertainty Enlargement

In deep model compression, network pruning aims to deliver the regularization
effect to neural networks by simply removing parameters. Following the discus-
sion above, we introduce auxiliary indicator variables m ∈ {0, 1}l representing
the pruning mask. Then the enlargement of prediction uncertainty is formulated
as an optimization problem as:

max
m

δ(m � w) =max
m

1
K

K∑

c=1

(
1
nc

nc∑

i=1

‖f(m � w,xi)[c] − f̃(m � w,xi)[c]‖2),

s.t. m ∈ {0, 1}l, ‖m‖0 ≤ s,
(6)

where � denotes the Hadamard product.
Solving such a combinatorial optimization problem requires computing its

δ(m � w) for each candidate in the solution space, that is, it requires up to
l × l forward passes over the training dataset. However, the number of network
parameters has increased substantially recently. Since an arms race of training
large models has begun, millions of calculations δ(m � w) are unacceptable.

Following [16,18], we next measure the impact of each weight on the net-
work uncertainty and then prune less-contributing weights greedily. Since it is
impractical to directly solve this optimization problem with respect to binary
variables m, we first relax m into real variables m ∈ [0, 1]l. This change can be
seen as a form of soft pruning, where the corresponding mask m[j] is gradually
reduced from 1 to 0. In this way, the optimization problem is differentiable with
respect to m. We rewrite Optimization (6) as follows:

max
m

δ(m � w) =max
m

1
K

K∑

c=1

(
1
nc

nc∑

i=1

‖f(m � w,xi)[c] − f̃(m � w,xi)[c]‖2),

s.t. m ∈ [0, 1]l, ‖m‖0 ≤ s,
(7)
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This modification allows us to perturb the mask instead of setting it to zero.
For the weight w[j], we add an infinitesimal perturbation ε to the mask m[j]
to obtain its influence on δ(m � w). Its magnitude of differential �δj(m � w)
indicates the dependence of δ(m � w) on w[j]. Next, we find the derivative of
δ(m � w) with respect to m[j] as follows:

lim
ε→0

δ(m � w) − δ((1 − εej)m � w)
ε

= lim
ε→0

∂δ(m � w)
∂m[j]

= gj(w). (8)

where ej is a one-hot vector [0, ..., 0, 1, 0, ..., 0] with a 1 at position j.
Thus, we measure the importance of the weight w[j] to the prediction uncer-

tainty. To this end, we regard |gj(w)| as the proposed criterion. Given a desired
sparsity s, we can achieve prediction uncertainty enlargement by pruning s × l
weights that contribute less to the variance.

The key to our approach is to find the derivative of the uncertainty with
respect to the pruning mask of each weight. However, restricted by the modern
computing device, PrUE still faces some practical problems. Note that Optimiza-
tion (7) calls f(w) twice, which requires the automatic differentiation algorithm
to perform two forward-backward pass through the computational graph. Mod-
ern deep learning frameworks like PyTorch usually free gradient tensors after
the first backward pass to save memory. That is, our method consumes more
resources due to retaining the computational graph.

On the other hand, our method requires computing the averaged intra-class
probabilities for each class. In practice, researchers typically perform stochastic
gradient descent by randomly selecting a mini-batch of training data, where the
batchsize ranges from 128 to 1024. For a 10-class classification task like CIFAR-
10, this batchsize is sufficient to estimate f̃(x)[c], while not for ImageNet-1k
containing 1000 classes. In fact, most classes in ImageNet-1k only appear once
or twice in a batch, making accurate estimation of f̃(x)[c] impractical.

One could take straightforward measures such as saving intermediate val-
ues of the graph or leveraging more devices, but this would result in additional
overhead. Instead, we employ a simple yet effective trick to decompose the opti-
mization into two steps. Specifically, we first compute f̃(x)[c] for each class with
the computational graph detached, then sort the dataset by labels, thus guaran-
teeing that only class c appears in each batch. Finally, f(x)[c] can be estimated
in the current batch. We empirically observed that this trick only slightly affects
the results, but saves appreciable memory.

5 Experiments

In this section, we empirically investigate the effect of our proposed method on
knowledge distillation. In addition, we compare PrUE with other distillation and
pruning methods. The results show that our paradigm of distilling knowledge
from sparse teacher networks tends to yield better students. Moreover, PrUE
can exhibit better performance.
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Table 2. Number of weights and training hyperparameters in our experiments.

Dataset Network # Weights Epochs Batchsize Schedule

CIFAR-10 ResNet-8 [12] 78K 160 512 10× drop at
81, 122ResNet-20 272K

ResNet-32 466K
ResNet-56 855K
ResNet-110 1.7M

CIFAR-100 ResNet-8 83.9K 160 512 10× drop at
81, 122ResNet-20 278K

ResNet-32 472K
ResNet-56 861K
ResNet-110 1.7M

Tiny-ImageNet ResNext-50 [34] 15.0M 200 256 5× drop at
60, 120, 160ShuffleNet V2 [21] 1.5M

ImageNet EffcientNet-B2 [32] 9.1M 90 256 10× drop at
30, 60MobileNet V3 Small [14] 2.5M

Implementation Details. We conduct all experiments on 8 * NVIDIA Tesla
A100 GPU. The sparsity level is defined to be s = k/l × 100(%), where k is
the number of zero weights, and l is the total number of network weights. All
networks are trained with SGD with Nesterov momentum. We set the initial
learning rate to 0.1, momentum to 0.9. Table 2 describes the number of param-
eters of all the networks and corresponding training hyperparameters. During
distillation, we set λ to 1 for CIFAR-10 and 0.1 for the rest tasks.

5.1 The Effect of LS on Knowledge Distillation

We first investigate the compatibility of label smoothing and knowledge distilla-
tion on CIFAR-10 and CIFAR-100. Specifically, we train ResNet-20/32/56/100
with label smoothing turned on or turned off, then distill their knowledge into
ResNet-8. Table 3 presents the accuracy of student networks supervised by var-
ious teachers. We also report the vanilla supervised training results of ResNet-8
for baseline comparison.

Table 3. The test accuracy of a fixed student with various teachers trained without
(w/o) or with (w/) label smoothing. The vanilla supervised results of ResNet-8 is also
reported.

Vanilla ResNet-20 ResNet-32 ResNet-56 ResNet-110

CIFAR-10 87.56 w/LS 86.62(±0.21) 85.56(±0.25) 85.61(±0.03) 85.88(±0.19)
w/o LS 88.36(±0.12) 87.48(±0.22) 87.50(±0.10) 87.47(±0.17)

CIFAR-100 59.36 w/LS 58.75(±0.23) 58.73(±0.16) 59.14(±0.14) 58.52(±0.25)
w/o LS 59.81(±0.19) 59.50(±0.24) 59.47(±0.17) 59.76(±0.09)
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Fig. 2. Visualization of predictions of more network structures.

Although deep neural networks are well known for their generalization ability,
they fail to bring proportional improvement for students. In particular, ResNet-
20 tends to distill better students than other well-generalized teachers. Similarly,
teachers trained with hard labels achieve better distillation results compared
to those trained with label smoothing. To demonstrate this phenomenon, we
provide visualizations of these teachers’ predictions in Fig. 2. As we can see,
network deepening and label smoothing compacts each cluster and thus impairs
knowledge distillation in Table 3.

5.2 Comparison with Other Distillation Methods

Intuitively, improved teachers are overconfident in each sample, thus producing
harder predictions containing low information. To enlarge teacher uncertainty
without sacrificing generalization, we apply PrUE to prune them, and then fine-
tune them to restore accuracy.

Table 4. The test accuracy (%) and uncertainty (1e−2) of teacher networks with
varying sparsity.

Dataset Sparsity ResNet-20 ResNet-32 ResNet-56 ResNet-110
Acc. Uncer. Acc. Uncer. Acc. Uncer. Acc. Uncer.

CIFAR-10 s = 0 91.72 6.40 93.17 3.34 93.40 2.04 93.38 1.55
s = 20% 92.82 6.12 93.54 3.19 93.75 2.12 94.14 1.31
s = 50% 91.97 8.19 93.08 4.23 93.77 2.39 93.75 1.74
s = 90% 87.98 22.87 90.63 17.49 91.64 13.00 92.13 7.28

CIFAR-100 s = 0 68.61 26.01 69.65 19.16 71.29 10.72 71.84 5.72
s = 20% 69.04 25.83 70.44 18.77 72.01 10.47 73.36 5.55
s = 50% 68.26 27.97 69.18 22.55 71.33 14.56 72.83 7.18
s = 90% 54.30 28.33 60.49 30.53 62.92 30.78 62.16 30.52
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Fig. 3. Predictive visualization of networks with varying sparsity s. As the network
deepens, the predictions get tighter. While the increasing sparsity spreads the predic-
tions into broad clusters.

Figure 3 visualizes these sparse teacher networks. As the sparsity s increases,
the teacher’s predictions are scattered into wider clusters. We also observe that
a higher sparsity is appropriate for deep networks such as ResNet-110. On the
other hand, Table 4 provides quantitative results. It suggests that PrUE can
effectively improve teachers’ uncertainty with slight loss in performance.

Next, we distill knowledge from these sparse teachers to a ResNet-8. Mean-
while, we compare our method with other distillation methods. Table 5 and
Table 6 depicts the results of students performance on CIFAR-10 and CIFAR-
100, respectively. It is worth noting that λ is set to 0 on CIFAR-10, which means
that our method can only obtain the teacher’s prediction, while the others can
receive the ground truth. Although this is an unfair comparison, PrUE still out-
performs existing distillation methods notably. Another interesting observation
is that teachers with high uncertainty distill better students, even when their
accuracy is hurt by pruning. Therefore, we conclude that teacher uncertainty
plays an important role in knowledge distillation, rather than accuracy.

5.3 Comparison with Other Pruning Methods

With promising results on distillation, we further compare PrUE with other
pruning methods. In particular, we first train the teacher from scratch and apply
several one-shot pruning algorithms (Magnitude [11,19], SNIP [18], Random [9],
PrUE) to remove a portion of weights of the trained network, then fine-tune these
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Table 5. The test accuracy of ResNet-8 on CIFAR-10 using different distillation meth-
ods. TA(20), TA(32) refers to using ResNet-20 and ResNet-32 as a teacher assistant,
respectively.

CIFAR-10
ResNet-20 ResNet-32 ResNet-56 ResNet-110

Logit (τ = 1) [13] 88.36(±0.16) 87.48(±0.22) 87.50(±0.29) 87.47(±0.28)
Logit (τ = 4) 88.72(±0.26) 88.39(±0.17) 88.66(±0.21) 88.34(±0.29)
FitNet [28] 87.00(±0.24) 86.83(±0.27) 86.68(±0.08) 86.62(±0.10)
AT [36] 86.64(±0.14) 86.37(±0.16) 86.71(±0.09) 86.76(±0.17)
PKT [27] 87.41(±0.04) 87.30(±0.24) 87.26(±0.13) 87.08(±0.19)
TA(20) [24] – 87.55(±0.26) 87.87(±0.19) 87.66(±0.16)
TA(32) – – 87.83(±0.10) 87.37(±0.28)
PrUE (s = 20%) 88.89(±0.11) 88.30(±0.06) 88.49(±0.19) 88.47(±0.26)
PrUE (s = 50%) 89.17(±0.19) 88.39(±0.07) 88.68(±0.23) 89.22(±0.15)
PrUE (s = 90%) 87.01(±0.20) 87.95(±0.24) 89.08(±0.24) 89.27(±0.18)

pruned networks until convergence. We use ResNet-8 as a student to evaluate
the distillation performance of these sparse teachers.

Table 6. The test accuracy of ResNet-8 on CIFAR-100 using different distillation
methods.

CIFAR-100
ResNet-20 ResNet-32 ResNet-56 ResNet-110

Logit (τ = 1) 59.51(±0.10) 59.25(±0.23) 59.09(±0.08) 59.56(±0.26)
Logit (τ = 4) 59.81(±0.12) 59.50(±0.05) 59.47(±0.21) 59.76(±0.12)
FitNet 58.92(±0.20) 58.53(±0.49) 58.59(±0.07) 58.37(±0.11)
AT 58.52(±0.17) 58.74(±0.09) 58.60(±0.07) 57.87(±0.24)
PKT 58.57(±0.17) 58.74(±0.05) 58.96(±0.27) 58.81(±0.06)
TA(20) – 59.60(±0.25) 59.45(±0.09) 59.14(±0.18)
TA(32) – – 59.68(±0.12) 59.65(±0.09)
PrUE (s = 20%) 59.54(±0.06) 59.66(±0.12) 59.95(±0.05) 59.56(±0.14)
PrUE (s = 50%) 59.9(±0.30) 59.71(±0.25) 60.03(±0.37) 59.85(±0.27)
PrUE (s = 90%) 58.89(±0.32) 59.44(±0.19) 59.85(±0.20) 60.17(±0.08)

As illustrated in Fig. 4, our strategy of distilling knowledge from sparse net-
works can effectively improve the generalization behavior of student networks.
Even if the weights in the network are randomly removed, students can still
benefit from it. We also notice that PrUE could only exhibit similar perfor-
mance to other pruning methods on shallower networks. Such as on 90% sparse
ResNet-32, PrUE exhibits lower distillation performance (87.95%) than Mag-
nitude (88.53%) and SNIP (88.14%). But as the network grows, our method
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achieves better results (up to 89.27%). This result suggests that while previ-
ous work has argued that the large capacity gap between teachers and students
results in lower performance gains, our approach allows researchers to break the
restriction and use deeper networks to obtain further improve student accuracy.

(a) ResNet-20 (b) ResNet-32

(c) ResNet-56 (d) ResNet-110

Fig. 4. Distillation accuracy of sparse teacher networks obtained using different pruning
methods.

The Impact of Sparsity. We also find that inappropriate sparsity affects the
distillation results of all pruning algorithms. For instance, ResNet-20 with 90%
sparsity could face a 1–2% drop in distillation accuracy, although this result still
outperforms traditional distillation methods in Table 5. While networks with
more parameters like ResNet-110 can endure a higher sparsity ratio. Overall, if
the size of teachers is much larger than that of students, we suggest a higher
sparsity to bridge the capacity gap.

5.4 Distillation on Large-Scale Datasets

In this section, we consider practical applications on more challenging datasets.
In practice, some large convolutional networks have been proposed to achieve
better results on ImageNet tasks. On the other hand, researchers designed some
lightweight networks to reduce overhead and accelerate inference. We aim to
answer whether PrUE still works between these two different network structures.

We train ResNext-50 on Tiny-ImageNet as teacher network, while Shuf-
fleNetV2 serves as the student. As for ImageNet, we distill knowledge from
EfficientNet-B2 into MobileNetV3. Table 7 and Table 8 reports their own accu-
racy and distillation performance, respectively. Our method manages to improve
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Table 7. The test accuracy (%) and uncertainty (1e−2) of sparse teacher networks on
Tiny-ImageNet and ImageNet.

s = 0 s = 20% s = 50% s = 90%
Acc. Uncer. Acc. Uncer. Acc. Uncer. Acc. Uncer.

ResNext-50 65.32 1.35 66.24 1.34 68.07 1.29 64.09 3.24
EfficientNet-B2 72.32 34.66 72.62 34.70 72.45 34.85 71.03 35.14

Table 8. The test accuracy of student network distilled by sparse teachers.

Teacher Student Vanilla s = 0 s = 20% s = 50% s = 90%

ResNext-50 ShuffleNet V2 62.09 63.28 63.45 64.09 64.65
EfficientNet-B2 MobileNet V3 Small 60.85 60.88 61.18 61.22 62.12

student generalization on real-world datasets. More interestingly, we observed on
Tiny-ImageNet that the accuracy of the student network can sometimes exceed
that of the teacher network. We believe this suggests that PrUE can be extended
to a wider range of settings. Furthermore, we still lack understanding of knowl-
edge distillation, and our proposed method could be a potential tool to shed
light on it.

6 Conclusion

In this paper, we provided a data-dependent pruning method called PrUE to
soften the network predictions, thereby improving its distillation performance. In
particular, we proposed a computationally efficient criterion to estimate the effect
of weights on uncertainty, and removed those less-contribution weights. We first
showed a positive relationship between the uncertainty of the teacher network
and its distillation effect through a visualization scheme. The following empirical
experiments suggested that PrUE managed to increase the teacher uncertainty,
thereby improving the distillation performance. Extensive experiments showed
that our method notably outperformed traditional distillation methods. We also
found that our strategy of distilling knowledge from sparse teacher networks
could improve the generalization behavior of the student network, but the teacher
pruned by PrUE tended to exhibit better performance.
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Abstract. Many methods have been developed to understand complex
predictive models and high expectations are placed on post-hoc model
explainability. It turns out that such explanations are not robust nor trust-
worthy, and they can be fooled. This paper presents techniques for attack-
ing Partial Dependence (plots, profiles, PDP), which are among the most
popular methods of explaining any predictive model trained on tabular
data. We showcase that PD can be manipulated in an adversarial man-
ner, which is alarming, especially in financial or medical applications where
auditability became a must-have trait supporting black-box machine learn-
ing. The fooling is performed via poisoning the data to bend and shift expla-
nations in the desired direction using genetic and gradient algorithms. We
believe this to be the first work using a genetic algorithm for manipulating
explanations, which is transferable as it generalizes both ways: in a model-
agnostic and an explanation-agnostic manner.

Keywords: Explainable AI · Adversarial ML · Interpretability

1 Introduction

Although supervised machine learning became state-of-the-art solutions to many
predictive problems, there is an emerging discussion on the underspecification
of such methods which exhibits differing model behaviour in training and prac-
tical setting [14]. This is especially crucial when proper accountability for the
systems supporting decisions is required by the domain [35,38,42]. Living with
black-boxes, several explainability methods were presented to help us understand
models’ behaviour [5,19,23,36,40], many are designed specifically for deep neu-
ral networks [6,34,44,49]. Explanations are widely used in practice through their
(often estimation-based) implementations available to machine learning practi-
tioners in various software contributions [4,8,11].

Nowadays, robustness and certainty become crucial when using explana-
tions in the data science practice to understand black-box machine learning
models; thus, facilitate rationale explanation, knowledge discovery and respon-
sible decision-making [9,22]. Notably, several studies evaluate explanations
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Fig. 1. Framework for fooling model explanations via data poisoning. The red color
indicates the adversarial route, a potential security breach, which an attacker may use
to manipulate the explanation. Researchers could use this method to provide a mis-
leading rationale for a given phenomenon, while auditors may purposely conceal the
suspected, e.g. biased or irresponsible, reasoning of a black-box model. (Color figure
online)

[1,2,10,27,29,51] showcasing their various flaws from which we perceive an exist-
ing robustness gap; in critical domains, one can call it a security breach. Apart
from promoting wrong explanations, this phenomenon can be exploited to use
adversarial attacks on model explanations to achieve manipulated results. In
regulated areas, these types of attacks may be carried out to deceive an auditor.

Figure 1 illustrates a process in which the developer aims to conceal the unde-
sired behaviour of the model by supplying a poisoned dataset for model audit.
Not every explanation is equally good—just as models require proper perfor-
mance validation, we need similar assessments of explainability methods. In this
paper, we evaluate the robustness of Partial Dependence (PD) [19], moreover
highlight the possibility of adversarial manipulation of PD (see Figs. 4 and 5 in
the latter part of the paper). We summarize the contributions as follows:

(1) We introduce a novel concept of using a genetic algorithm for manipulating
model explanations. This allows for a convenient generalization of the attacks
in a model-agnostic and explanation-agnostic manner, which is not the case for
most of the related work. Moreover, we use a gradient algorithm to perform
fooling via data poisoning efficiently for neural networks.
(2) We explicitly target PD to highlight the potential of their adversarial manip-
ulation, which was not done before. Our method provides a sanity check for the
future use of PD by responsible machine learning practitioners. Evaluation of
the constructed methods in extensive experiments shows that model complexity
significantly affects the magnitude of the possible explanation manipulation.

2 Related Work

In the literature, there is a considerable amount of attacks on model explanations
specific to deep neural networks [16,21,25,30,53]. At their core, they provide
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various algorithms for fooling neural network interpretability and explainability,
mainly of image-based predictions. Such explanations are commonly presented
through saliency maps [45], where each model input is given its attribution to the
prediction [6,43,44,49]. Although explanations can be used to improve the adver-
sarial robustness of machine learning models [37], we target explanations instead.
When considering an explanation as a function of model and data, there is a pos-
sibility to change one of these variables to achieve a different result [54]. Heo et
al. [25] and Dimanov et al. [15] propose fine-tuning a neural network to under-
mine its explainability capabilities and conceal model unfairness. The assump-
tion is to alter the model’s parameters without a drop in performance, which can
be achieved with an objective function minimizing the distance between expla-
nations and an arbitrarily set target. Note that [15] indirectly change partial
dependence while changing the model. Aivodji et al. [3] propose creating a sur-
rogate model aiming to approximate the unfair black-box model and explain its
predictions in a fair manner, e.g. with relative variable dependence.

Alternate idea is to fool fairness and explainability via data change since its
(background) distribution greatly affects interpretation results [28,30]. Solans et
al. [48] and Fukuchi et al. [20] investigate concealing unfairness via data change by
using gradient methods. Dombrowski et al. [16] propose an algorithm for saliency
explanation manipulation using gradient-based data perturbations. In contrast,
we introduce a genetic algorithm and focus on other machine learning predictive
models trained on tabular data. Slack et al. [46] contributed adversarial attacks
on post-hoc, model-agnostic explainability methods for local-level understanding;
namely LIME [40] and SHAP [36]. The proposed framework provides a way to
construct a biased classifier with safe explanations of the model’s predictions.

Since we focus on global-level explanations, instead, the results will modify
a view of overall model behaviour, not specific to a single data point or image.
Lakkaraju and Bastani [32] conducted a thought-provoking study on mislead-
ing effects of manipulated Model Understanding through Subspace Explanations
(MUSE) [33], which provide arguments for why such research becomes crucial to
achieve responsibility in machine learning use. Further, the robustness of neural
networks [13,50] and counterfactual explanations [47] have became important, as
one wants to trust black-box models and extend their use to sensitive tasks. Our
experiments further extend to global explanations the indication of Jia et al. [29]
that there is a correlation between model complexity and explanation quality.

3 Partial Dependence

In this paper, we target one of the most popular explainability methods for tabu-
lar data, which at its core presents the expected value of the model’s predictions
as a function of a selected variable. Partial Dependence, formerly introduced
as plots by Friedman [19], show the expected value fixed over the marginal
joint distribution of other variables. These values can be relatively easily esti-
mated and are widely incorporated into various tools for model explainability
[7,8,11,24,39]. The theoretical explanation has its practical estimator used to
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compute the results, later visualized as a line plot showing the expected predic-
tion for a given variable; also called profiles [12]. PD for model f and variable
c in a random vector X is defined as PDc(X , z) := EX−c

[
f(X c|=z)

]
, where

X c|=z stands for random vector X , where c-th variable is replaced by value z.
By X−c, we denote distribution of random vector X where c-th variable is set
to a constant. We defined PD in point z as the expected value of model f given
the c-th variable is set to z. The standard estimator of this value for data X is
given by the following formula P̂Dc(X, z) := 1

N

∑N
i=1 f

(
X

c|=z
i

)
, where Xi is

the i-th row of the matrix X and the previously mentioned symbols are used
accordingly. To simplify the notation, we will use PD, and omit z and c where
context is clear.

4 Fooling Partial Dependence via Data Poisoning

Many explanations treat the dataset X as fixed; however, this is precisely a
single point of failure on which we aim to conduct the attack. In what follows, we
examine PD behaviour by looking at it as a function whose argument is an entire
dataset. For example, if the dataset has N instances and P variables, then PD is
treated as a function over N×P dimensions. Moreover, because of the complexity
of black-box models, PD becomes an extremely high-dimensional space where
variable interactions cause unpredictable behaviour. Explanations are computed
using their estimators where a significant simplification may occur; thus, a slight
shift of the dataset used to calculate PD may lead to unintended results (for
example, see [26] and the references given there).

We aim to change the underlying dataset used to produce the explanation
in a way to achieve the desired change in PD. Figure 1 demonstrates the main
threat of an adversarial attack on model explanation using data poisoning, which
is concealing the suspected behaviour of black-box models. The critical assumption
is that an adversary has a possibility to modify the dataset arbitrarily, e.g. in
healthcare and financial audit, or research review. Even if this would not be the
case, in modern machine learning, wherein practice dozens of variables are used
to train complex models, such data shifts might be only a minor change that a
person looking at a dataset or distribution will not be able to identify.

We approach fooling PD as an optimization problem for given criteria of
attack efficiency, later called the attack loss. It originates from [16], where a
similar loss function for manipulation of local-level model explanations for an
image-based predictive task was introduced. This work introduces the attack loss
that aims to change the output of a global-level explanation via data poisoning
instead. The explanation’s weaknesses concerning data distribution and causal
inference are exploited using two ways of optimizing the loss:

– Genetic-based1 algorithm that does not make any assumption about the
model’s structure – the black-box path from data inputs to the output pre-
diction; thus, is model-agnostic. Further, we posit that for a vast number

1 For convenience, we shorten the algorithm based on the genetic algorithm phrase to
genetic-based algorithm.
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of explanations, clearly post-hoc global-level, the algorithm does not make
assumption about their structure either; thus, becomes explanation-agnostic.

– Gradient-based algorithm that is specifically designed for models with dif-
ferentiable outputs, e.g. neural networks [15,16].

We discuss and evaluate two possible fooling strategies:

– Targeted attack changes the dataset to achieve the closest explanation
result to the predefined desired function [16,25].

– Robustness check aims to achieve the most distant model explanation from
the original one by changing the dataset, which refers to the sanity check [1].

For practical reasons, we define the distance between the two calculated PD
vectors as ‖x − y‖ := 1

I

∑I
i=1(xi − yi)2, yet other distance measures may be

used to extend the method.

4.1 Attack Loss

The intuition behind the attacks is to find a modified dataset that minimizes
the attack loss. A changed dataset denoted as X ∈ R

N×P is an argument of
that function; hence, an optimal X is a result of the attack. Let Z ⊂ R be
the set of points used to calculate the explanation. Let T : Z → R be the
target explanation; we write just T to denote a vector over whole Z. Let gZc :
R

N×P → R
|Z| be the actual explanation calculated for points in Z; we write

gc for simplicity. Finally, let X ′ ∈ R
N×P be the original (constant) dataset. We

define the attack loss as L(X) := Lg, s(X), where g is the explanation to be
fooled, and an objective is minimized depending on the strategy of the attack,
denoted as s. The aim is to minimize L with respect to the dataset X used to
calculate the explanation. We never change values of the explained variable c in
the dataset.

In the targeted attack, we aim to minimize the distance between the
target model behaviour T and the result of model explanation calculated on the
changed dataset. We denote this strategy by t and define Lg, t(X) = ‖gc(X)−T‖.
Since we focus on a specific model-agnostic explanation, we substitute PD in
place of g to obtain LPD, t(X) = ‖PDc(X) − T‖. This substitution can be
generalized for various global-level model explanations, which rely on using a
part of the dataset for computation.

In the robustness check, we aim to maximize the distance between the
result of model explanation calculated on the original dataset gc(X ′), and the
changed one; thus, minus sign is required. We denote this strategy by r and
define Lg, r(X) = −‖gc(X) − gc(X ′)‖. Accordingly, we substitute PD in place
of g to obtain LPD, r(X) = −‖PDc(X) − PDc(X ′)‖. Note that Lg, s may
vary depending on the explanation used, specifically for PD it is useful to
centre the explanation before calculating the distances, which is the default
behaviour in our implementation: LPD, r(X) = −‖PDc(X) − PDc(X ′)‖, where
PDc := PDc(X) − 1

|Z|
∑

z∈Z PDc(X, z). We consider the second approach of
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comparing explanations using centred PD, as it forces changes in the shape of
the explanation, instead of promoting to shift the profile vertically while the
shape changes insignificantly.

4.2 Genetic-Based Algorithm

We introduce a novel strategy for fooling explanations based on the genetic
algorithm as it is a simple yet powerful method for real parameter optimiza-
tion [52]. We do not encode genes conventionally but deliberately use this term
to distinguish from other types of evolutionary algorithms [18]. The method will
be invariant to the model’s definition and the considered explanations; thus, it
becomes model-agnostic and explanation-agnostic. These traits are crucial when
working with black-box machine learning as versatile solutions are convenient.

Fooling PD in both strategies include a similar genetic algorithm. The main
idea is to define an individual as an instance of the dataset, iteratively perturb
its values to achieve the desired explanation target, or perform the robustness
check to observe the change. These individuals are initialized with a value of the
original dataset X ′ to form a population. Subsequently, the initialization ends
with mutating the individuals using a higher-than-default variance of perturba-
tions. Then, in each iteration, they are randomly crossed, mutated, evaluated
with the attack loss, and selected based on the loss values. Crossover swaps
columns between individuals to produce new ones, which are then added to
the population. The number of swapped columns can be randomized; also, the
number of parents can be parameterized. Mutation adds Gaussian noise to the
individuals using scaled standard deviations of the variables. It is possible to
constrain the data change into the original range of variable values; also keep
some variables unchanged. Evaluation calculates the loss for each individual,
which requires to compute explanations for each dataset. Selection reduces the
number of individuals using rank selection, and elitism to guarantee several best
individuals to remain in the next population.

We considered the crossover through an exchange of rows between individu-
als, but it might drastically shift the datasets and move them apart. Addition-
ally, a worthy mutation is to add or subtract whole numbers from the integer-
encoded (categorical) variables. We further discuss the algorithm’s details in the
Supplementary material. The introduced attack is model-invariant because no
derivatives are needed for optimization, which allows evaluating explanations of
black-box models. While we found this method a sufficient generalization of our
framework, there is a possibility to perform a more efficient optimization assum-
ing the prior knowledge concerning the structure of model and explanation.

4.3 Gradient-Based Algorithm

Gradient-based methods are state-of-the-art optimization approaches, especially
in the domain of deep neural networks [34]. This algorithm’s main idea is to
use gradient descent to optimize the attack loss, considering the differentiabil-
ity of the model’s output with respect to input data. Such assumption allows
for a faster and more accurate convergence into a local minima using one of
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the stochastic optimizers; in our case, Adam [31]. Note that the differentiability
assumption is with respect to input data, not with respect to the model’s param-
eters. We shall derive the gradients ∇X−c

Lg, s for fooling explanations based on
their estimators, not the theoretical definitions. This is because the input data
is assumed to be a random variable in a theoretical definition of PD, making
it impossible to calculate a derivative over the input dataset. In practice, we do
not derive our method directly from the definition as the estimator produces the
explanation.

Although we specifically consider the usage of neural networks because of
their strong relation to differentiation, the algorithm’s theoretical derivation does
not require this type of model. For brevity, we derive the theoretical definitions
of gradients ∇X−c

LPD, t, ∇X−c
LPD, r, and ∇X−c

LPD, r in the Supplementary
material. Overall, the gradient-based algorithm is similar to the genetic-based
algorithm in that we aim to iteratively change the dataset used to calculate the
explanation. Nevertheless, its main assumption is that the model provides an
interface for the differentiation of output with respect to the input, which is not
the case for black-box models.

5 Experiments

Setup. We conduct experiments on two predictive tasks to evaluate the algo-
rithms and conclude with illustrative scenario examples, which refer to the frame-
work shown in Fig. 1. The first dataset is a synthetic regression problem that
refers to the Friedman’s work [19] where inputs X are independent variables uni-
formly distributed on the interval [0, 1], while the target y is created according
to the formula: y(X) = 10 sin(π ·X1 ·X2)+ 20(X3 − 0.5)2 +10X4 +5X5. Only 5
variables are actually used to compute y, while the remaining are independent of.
We refer to this dataset as friedman and target explanations of the variable X1.
The second dataset is a real classification task from UCI [17], which has 5 contin-
uous variables, 8 categorical variables, and an evenly-distributed binary target.
We refer to this dataset as heart and target explanations of the variable age.
Additionally, we set the discrete variables as constant during the performed fool-
ing because we mainly rely on incremental change in the values of continuous
variables, and categorical variables are out of the scope of this work.

Results. Figure 2 present the main result of the paper, which is that PD can be
manipulated. We use the gradient-based algorithm to change the explanations
of feedforward neural networks via data poisoning. The targeted attack aims to
arbitrarily change the monotonicity of PD, which is evident in both predictive
tasks. The robustness check finds the most distant explanation from the original
one. We perform the fooling 30 times for each subplot, and the Y-axis denotes
the model’s architecture: layers×neurons. We observe that PD explanations are
especially vulnerable in complex models.

Next, we aim to evaluate the PD of various state-of-the-art machine learn-
ing models and their complexity levels; we denote: Linear Model (LM), Ran-
dom Forest (RF), Gradient Boosting Machine (GBM), Decision Tree (DT),
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Fig. 2. Fooling Partial Dependence of neural network models (rows) fitted to the
friedman and heart datasets (columns). We performed multiple randomly initiated
gradient-based fooling algorithms on the explanations of variables X1 and age respec-
tively. The blue line denotes the original explanation, the red lines are the fooled
explanations, and in the targeted attack, the grey line denotes the desired target. We
observe that the explanations’ vulnerability greatly increases with model complexity.
Interestingly, the algorithm seems to converge to two contrary optima when no target
is provided. (Color figure online)
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K-Nearest Neighbours (KNN), feedforward Neural Network (NN). The model-
agnostic nature of the genetic-based algorithm allows this comparison as it might
be theoretically and/or practically impossible to differentiate the model’s output
with respect to the input; thus, differentiate the explanations and loss.

Table 1. Attack loss values of the robustness checks for Partial Dependence of various
machine learning models (top), and complexity levels of tree-ensembles (bottom).
Each value corresponds to the scaled distance between the original explanation and
the changed one. We perform the fooling 6 times and report the mean±sd. We observe
that the explanations’ vulnerability increases with GBM complexity.

Task
Model

LM RF GBM DT KNN NN SVM

friedman 0±0 152±76 127±71 332±172 164±61 269±189 576±580

heart 2±3 20±5 77±28 798±192 133±21 501±52 451±25

Task
Model

Trees
10 20 40 80 160 320

friedman
GBM 57±12 114±20 157±37 176±20 189±8 210±9

RF 233±22 219±25 219±9 201±23 216±13 209±15

heart
GBM 1±0 3±1 29±4 70±24 152±56 321±95

RF 62±7 55±3 29±9 21±6 14±5 13±2

Table 1 presents the results of robustness checks for Partial Dependence of
various machine learning models and complexity levels. Each value corresponds
to the distance between the original explanation and the changed one; multiplied
by 103 in friedman and 106 in heart for clarity. We perform the checks 6 times
and report the mean ± standard deviation. Note that we cannot compare the
values between tasks, as their magnitudes depend on the prediction range. We
found the explanations of NN, SVM and deep DT the most vulnerable to the
fooling methods (top Table). In contrast, RF seems to provide robust expla-
nations; thus, we further investigate the relationship between the tree-models’
complexity and the explanation stability (bottom Table) to conclude that an
increasing complexity yields more vulnerable explanations, which is consistent
with Fig. 2. We attribute the differences between the results for RF and GBM to
the concept of bias-variance tradeoff. In some cases (heart, RF), explanations
of too simple models become vulnerable too, since underfitted models may be
as uncertain as overfitted ones.

Ablation Study. We further discuss the additional results that may be of interest
to gain a broader context of this work. Figure 3 presents the distinction between
the robustness check for centred Partial Dependence, which is the default algo-
rithm, and the robustness check for not centred PD. We use the gradient-based
algorithm to change the explanations of a 3 layers × 32 neurons ReLU neural
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network and perform the fooling 30 times for each subplot. We observe that
centring the explanation in the attack loss definition is necessary to achieve the
change in explanation shape. Alternatively, the explanation shifts upwards or
downwards by essentially changing the mean of prediction. This observation was
consistent across most of the models despite their complexity.

Fig. 3. Fooling Partial Dependence of a 3× 32 neural network fitted to the friedman
(top row) and heart (bottom row) datasets. We performed multiple randomly ini-
tiated gradient-based fooling algorithms on the explanations of variables X1 and age
respectively. We observe that centring PD is beneficial because it stops the manipulated
explanation from shifting.

Table 2. Attack loss values of the robustness checks for PD of various ReLU neu-
ral networks. We add additional noise variables to the data before model fitting, e.g.
friedman+2 denotes the referenced dataset with 2 additional variables sampled from
the normal distribution. We perform the fooling 30 times and report the mean ± sd.
We observe that the explanations’ vulnerability greatly increases with task complexity.

Task NN
1× 8 2× 8 3× 8 2× 32 3× 32 1× 128 3× 128

friedman 25±3 33±0 75±24 100±32 98±42 54±15 97±50

friedman+1 31±2 40±4 50±9 106±40 115±44 57±15 114±55

friedman+2 34±1 40±10 50±22 106±52 115±50 50±15 137±66

friedman+4 46±6 33±0 83±8 145±31 163±27 40±5 140±58

friedman+8 71±9 47±3 89±15 204±25 176±25 39±6 156±34

heart 11±0 8±1 10±0 32±3 41±5 6±1 134±14

heart+1 10±1 17±6 17±2 44±4 57±13 6±1 128±8

heart+2 13±1 31±13 17±5 63±4 79±10 14±2 218±82

heart+4 13±1 21±9 30±17 113±4 139±60 29±5 232±36

heart+8 16±0 28±18 43±20 125±49 227±28 25±8 311±283
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Table 2 presents the impact of additional noise variables in data on the per-
formed fooling. We observe that higher data dimensions favor vulnerable expla-
nations (higher loss). The analogous results for targeted attack were consistent;
however, showcased almost zero variance (partially observable in Figs. 2 and 3).

Adversarial Scenario. Following the framework shown in Fig. 1, we consider three
stakeholders apparent in explainable machine learning: developer, auditor, and
prediction recipients. Let us assume that the model predicting a heart attack
should not take into account a patient’s sex; although, it might be a valuable
predictor. An auditor analyses the model using Partial Dependence; therefore,
the developer supplies a poisoned dataset for this task. Figure 5 presents two pos-
sible outcomes of model audit: concealed and suspected, which are unequivocally
bound to the explanation result and dataset. In first, the model is unchanged
while the stated assumption of even dependence between sex is concealed (equal
to about 0.5); thus, the prediction recipients become vulnerable. Additionally, we
supply an alternative scenario where the developer wants to provide evidence of
model unfairness to raise suspicion (dependence for class 0 equal to about 0.7).

Supportive Scenario. In this work, we consider an equation of three variables:
data, model, and explanation; thus, we poison the data to fool the explanation
while the model remains unchanged. Figures 4 and 5 showcase an exemplary
data shift occurring in the dataset after the attack where changing only a few
explanatory variables results in bending PD. We present a moderate change
in data distribution to introduce a concept of analysing such relationships for
explanatory purposes, e.g. the first result might suggest that resting blood pres-
sure and maximum heart rate contribute to the explanation of age; the second
result suggests how these variables contribute to the explanation of sex. We
conclude that the data shift is worth exploring to analyse variable interactions
in models.

6 Limitations and Future Work

We find these results both alarming and informative yet proceed to discuss the
limitations of the study. First is the assumption that, in an adversarial scenario,
the auditor has no access to the original (unknown) data, e.g. in research or
healthcare audit. While the detectability of fooling is worth analyzing, our work
focuses not only on an adversarial manipulation of PD, as we sincerely hope
such data poisoning is not occurring in practice. Even more, we aim to underline
the crucial context of data distribution in the interpretation of explanations and
introduce a new way of evaluating PD; black-box explanations by generalizing
the methods with genetic-based optimization.

Another limitation is the size of the used datasets. We have engaged with
larger datasets during experiments but were turned off by a contradictory view
that increasing the dataset size might be considered as exaggerating the results.
PD clearly becomes more complex with increasing data dimensions; moreover,
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Fig. 4. Partial Dependence of age in the SVM model prediction of a heart attack
(class 0). Left: Two manipulated explanations suggest an increasing or decreasing rela-
tionship between age and the predicted outcome depending on a desired outcome.
Right: Distribution of the explained variable age and the two poisoned variables from
the data, in which the remaining ten variables attributing to the explanation remain
unchanged. The mean of the variables’ Jensen-Shannon distance equals only 0.027 in
the upward scenario and 0.021 in the downward scenario, which might seem like an
insignificant change of the data distribution.

Fig. 5. Partial Dependence of sex in the SVM model prediction of a heart attack
(class 0). Left: Two manipulated explanations present a suspected or concealed variable
contribution into the predicted outcome. Right: Distribution of the three poisoned
variables from the data, in which sex and the remaining nine variables attributing to the
explanation remain unchanged. The mean of the variables’ Jensen-Shannon distance
equals only 0.023 in the suspected scenario and 0.026 in the concealed scenario.
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higher-dimensional space should entail more possible ways of manipulation,
which is evident in the ablation study. We note that in practice, the explanations
might require 100–1000 observations for the estimation (e.g. kernel SHAP, PDP),
hence the size of the datasets in this study. Finally, we omit datasets like Adult
and COMPAS because they mainly consist of categorical variables.

Future Work. We foresee several directions for future work, e.g. evaluating the
successor to PD – Accumulated Local Effects (ALE) [5]; although the prac-
tical estimation of ALE presents challenges. Second, the attack loss may be
enhanced by regularization, e.g. penalty for substantial change in data or mean
of model’s prediction, to achieve more meaningful fooling with less evidence. We
focus in this work on univariate PD, but targeting bivariate PD can also be
examined. Overall, the landscape of global-level, post-hoc model explanations is
a broad domain, and the potential of a security breach in other methods, e.g.
SHAP, should be further examined. Enhancements to the model-agnostic and
explanation-agnostic genetic algorithm are thereby welcomed.

Another future direction would be to enhance the stability of PD. Rieger and
Hansen [41] present a defence strategy against the attack via data change [16] by
aggregating various explanations, which produces robust results without chang-
ing the model.

7 Conclusion and Impact

We highlight that Partial Dependence can be maliciously altered, e.g. bent
and shifted, with adversarial data perturbations. The introduced genetic-based
algorithm allows evaluating explanations of any black-box model. Experimen-
tal results on various models and their sizes showcase the hidden debt of model
complexity related to explainable machine learning. Explanations of low-variance
models prove to be robust to the manipulation, while very complex models should
not be explained with PD as they become vulnerable to change in reference data
distribution. Robustness checks lead to varied modifications of the explanations
depending on the setting, e.g. may propose two opposite PD, which is why it is
advised to perform the checks multiple times.

This work investigates the vulnerability of global-level, post-hoc model
explainability from the adversarial setting standpoint, which refers to the respon-
sibility and security of the artificial intelligence use. Possible manipulation of
PD leads to the conclusion that explanations used to explain black-box machine
learning may be considered black-box themselves. These explainability meth-
ods are undeniably useful through implementations in various popular software.
However, just as machine learning models cannot be developed without exten-
sive testing and understanding of their behaviour, their explanations cannot be
used without critical thinking. We recommend ensuring the reliability of the
explanation results through the introduced methods, which can also be used to
study models behaviour under the data shift. Code for this work is available at
https://github.com/MI2DataLab/fooling-partial-dependence.

https://github.com/MI2DataLab/fooling-partial-dependence
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Abstract. Classification and Out-of-Distribution (OoD) detection in
the few-shot setting remain challenging aims, but are important for devis-
ing critical systems in security where samples are limited. OoD detection
requires that classifiers are aware of when they do not know and avoid
setting high confidence to OoD samples away from the training data dis-
tribution. To address such limitations, we propose the Few-shot ROBust
(FROB) model with its key contributions being (a) the joint classification
and few-shot OoD detection, (b) the sample generation on the boundary
of the support of the normal class distribution, and (c) the incorporation
of the learned distribution boundary as OoD data for contrastive neg-
ative training. FROB finds the boundary of the support of the normal
class distribution, and uses it to improve the few-shot OoD detection per-
formance. We propose a self-supervised learning methodology for sample
generation on the normal class distribution confidence boundary based
on generative and discriminative models, including classification. FROB
implicitly generates adversarial samples, and forces samples from OoD,
including our boundary, to be less confident by the classifier. By including
the learned boundary, FROB reduces the threshold linked to the model’s
few-shot robustness in the number of few-shots, and maintains the OoD
performance approximately constant, independent of the number of few-
shots. The low- and few-shot robustness evaluation of FROB on different
image datasets and on One-Class Classification (OCC) data shows that
FROB achieves competitive performance and outperforms baselines in
terms of robustness to the OoD few-shot population and variability.

Keywords: Out-of-Distribution detection · Few-shot anomaly
detection

1 Introduction

In real-world settings, for AI-enabled systems to be operational, it is crucial to
robustly perform joint classification and Out-of-Distribution (OoD) detection,
and report an input as OoD rather than misclassifying it. The problem of detect-
ing whether a sample is in-distribution, i.e. from the training distribution, or OoD
is critical. This is crucial in safety and security as the consequences of failure to
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detect OoD objects can be severe and eventually fatal. However, deep neural net-
works produce overconfident predictions and do not distinguish in- and out-of-
data-distribution. Adversarial examples, when small modifications of the input
appear, can change the classifier decision. It is an important property of a classifier
to address such limitations and provide robustness guarantees. In parallel, OoD
detection is challenging as classifiers set high confidence to OoD samples away
from the training data. In this paper, we propose the Few-shot ROBust (FROB)
model to accurately perform simultaneous classification and OoD detection in the
few-shot setting. To address rarity and the existence of limited samples in the
few-shot setting [1,2], we aim at reducing the number of few-shots of OoD data
required, whilst maintaining accurate and robust performance.

Training with outlier sets of diverse data, available today in large quantities,
can improve OoD detection [3–5]. General OoD datasets enable OoD generaliza-
tion to detect unseen OoD with improved robustness and performance. Models
trained with different outliers can detect OoD by learning cues for whether inputs
lie within or out of the support of the normal class distribution. By exposing
models to different OoD, the complement of the support of the normal class
distribution is modelled. The detection of new types of OoD is enabled. OoD
datasets improve the calibration of classifiers in the setting where a fraction of
the data is OoD, addressing overconfidence issues when applied to OoD [3,4].

The main benefits of FROB are that (a) joint classification and OoD detec-
tion is realistic, effective, and beneficial, (b) our proposed distribution boundary
is a principled, effective, and beneficial approach to generate near OoD samples
for negative training, and (c) contrastive training to include the learned nega-
tive data during training is effective and beneficial. Furthermore, the benefits
of performing joint multi-class classification and OoD detection are that (i) this
setting is more realistic and has wider applicability because in the real-world,
models should be both operational and reliable and declare an input as OoD
rather than misclassifying it, (ii) using discriminative classifier models leads to
improved OoD detection performance, and (iii) in the few-shot setting, discrimi-
native classifiers address the limited data problem with improved robustness. An
additional benefit of performing simultaneous classification and OoD detection
is that we take advantage of labelled data to achieve improved anomaly detec-
tion performance as they contain more information because of their labels and
classes. Knowing the normal data better, as well as learning how the data are
structured in clusters with class labels, helps us to detect OoD data better.

We address the rarity of near and relevant anomalies during training by per-
forming sample generation on the boundary of the support of the underlying
distribution of the data from the normal class. The benefit of this is improved
robustness to the OoD few-shot population and variability. Task-specific OoD
samples are hard to find in practice; in the real world, we also have budget limita-
tions for (negative) sampling. FROB achieves significantly better robustness for
few-shot OoD detection, while maintaining in-distribution accuracy. Aiming at
solving the few-shot robustness problem with classification and OoD detection,
the contribution of our FROB methodology is the development of an integrated
robust framework for self-supervised few-shot negative data augmentation on



FROB: Few-Shot ROBust Model for Out-of-Distribution Detection 139

the distribution confidence boundary, combined with few-shot OoD detection.
FROB trains a generator to create low-confidence samples on the normal class
boundary, and includes these learned samples in the training to improve the per-
formance in the few-shot setting. The combination of the self-generated boundary
and the imposition of low confidence at this learned boundary is a contribution
of FROB, which improves robustness for few-shot OoD detection. The main ben-
efits of our distribution boundary framework are that it is a principled approach
based on distributions, it generates near-OoD samples that are well-sampled and
evenly scattered, these near negative data are strong anomalies and adversarial
anomalies [6,11], and these learned OoD data are the closest possible negative
samples to the normal class. This latter characteristic of our algorithm leads
to the tightest-possible OoD data description and characterization, and to self-
generated negatives that are optimal in the sense that no unfilled space is allowed
between the normal class data and the learned OoD samples. In this way, FROB
uses the definition of anomaly and the delimitation of the support boundary of
the normal class distribution, which are needed for improved robustness.

We achieve generalization to unseen OoD, with applicability to new unknown,
in the wild, test sets that do not correlate to the training sets. FROB’s evaluation
in several settings, using cross-dataset and One-Class Classification (OCC) eval-
uations, shows that key methodological contributions such as generating samples
on the normal class distribution boundary and few-shot adaptation, improve few-
shot OoD detection. Our experiments show robustness to the number of OoD
few-shots and to outlier variation, outperforming methods we compare with.

2 Proposed Methodology for Few-Shot OoD Detection

We propose FROB in Fig. 1 for joint classification and few-shot OoD detection
combining discriminative and generative models. We aim for improved robust-
ness and reliable confidence prediction, and force low confidence close and away
from the data. Our key idea is to jointly learn a classifier but also a generative
model that finds the boundary of the support of the in-distribution data. We
use this generator to create adversarial samples on the boundary close to the in-
distribution data. We combine these in a self-supervised learning manner, where
the generated data act as a negative class. We propose a robustness loss to clas-
sify as less confident samples on, and out of, the learned boundary. FROB also
uses few-shots of real OoD data naturally within the formulation we propose.

Loss Function. We denote the normal class data by x where xi are the labeled
data, with labels yi between 1 and K. The few-shot OoD samples are Zm. The
cost function of the classifier model, minimized during training, is

arg minf − 1
N

N∑

i=1

log
exp(fyi

(xi))∑K
k=1 exp(fk(xi))

(1)

− λ
1
M

M∑

m=1

log

(
1− max

l=1,2,...,K

exp(fl(Zm))
∑K

k=1 exp(fk(Zm))

)
,
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Fig. 1. FROB training with learned negative sampling, O(z), and few-shot OoD.

where f(·) is the Convolutional Neural Network (CNN) discriminative model for
multi-class classification with K classes. The proposed objective cost function has
two loss terms and a hyperparameter. The two loss terms operate on different
samples for positive and negative training, respectively. The first loss term is
the cross-entropy between yi and the predictions, softmax(f(xi)); the CNN is
followed by the normalized exponential to obtain the probability over the classes.
The second loss term enforces f(·) to more accurately detect outliers, in addition
to performing multi-class classification. It is weighted by a hyperparameter, λ.

FROB then trains a generator to generate low-confidence samples on the
normal class distribution boundary. Our algorithm includes these learned low-
confidence samples in the training to improve the performance in the few-shot
setting. We do not use a large general OoD dataset because general-purpose OoD
datasets lead to an ad hoc selection of outliers that try to approximate data
outside the support of the normal class distribution. Instead, we use negative
data augmentation and self-supervised learning to model the boundary of the
support of the normal class distribution. Our proposed FROB model generates
outliers via a trained generator O(z), which takes the form of a CNN. Here, O
refers to OoD samples, and z are samples from a standard Gaussian distribution.
The optimization of maximizing dispersion subject to being on the boundary is

arg minO
1

N − 1

N∑

j=1, zj �=z

||z − zj ||2
||O(z)− O(zj)||2 + ν minj=1,2,...,Q ||O(z)− xj ||2

+ μ max
l=1,2,...,K

exp(fl(O(z))− fl(x))∑K
k=1 exp(fk(O(z))− fk(x))

, (2)

where by using (2), we penalize the probability that O(z) has higher confidence
than the normal class. We make O(z) have lower confidence than x. FROB
includes the learned low-confidence samples in the training by performing (1)
with the self-generated boundary, O(z), instead of Z. Our self-supervised learn-
ing mechanism to calibrate prediction confidence in unforeseen scenarios is (2)
followed by (1). We perform distribution boundary data augmentation in a learn-
able manner and set this distribution confidence boundary as negative data to
improve few-shot OoD detection. This learned boundary includes strong and
specifically adversarial anomalies close to the distribution support and near high
probability normal class data. FROB sets samples just outside the data distri-
bution boundary as OoD. We introduce relevant anomalies to more accurately
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and more robustly detect few-shots of OoD [2]. We detect OoD samples by
generating task-specific anomalous samples. We employ a nested optimization:
an inner optimization to find O(z) in (2), and an outer optimization based on
cross-entropy with negative training in (1). For this nested optimization, if an
optimum point is reached for the inner one, an optimum will also be reached for
the outer.

FROB, for robust OoD detection, performs negative data augmentation on
the support boundary of the normal class in a well-sampled manner. Specifically,
FROB performs OoD sample description and characterization. By using (2), it
does not allow for unfilled space between the normal class and the self-generated
OoD. The second loss term of our loss function in (2) is designed to not permit
unused and slack space between the learned negatives and the normal class data
[6,11]. Our learned near-OoD samples have low point-to-set distance as measured
by the second loss term of our proposed objective cost function shown in (2).

In the proposed self-supervised approach, the loss function for the param-
eter updation in the generator is (2). The first loss term is for scattering the
generated samples. This measure reduces mode collapse and preserves distance
proportionality in the latent and data spaces. The second loss term penalizes
deviations from normality by using the distance from a point to a set. The third
term in (2) guides to find the data distribution boundary by penalizing predic-
tion confidence and pushing the generated samples OoD. In the second term, we
denote the data by (xj , yj)

Q
j=1, e.g. xj is a vector of length 3072 for CIFAR-10.

By employing (2) followed by (1), FROB addresses the question of what OoD
samples to introduce to our model for negative training in order to accurately and
robustly detect few-shot data and achieve good few-shot generalization. FROB
introduces self-supervised learning and learned negative data augmentation using
the tightest-possible OoD data description algorithm of (2) followed by (1). Our
distribution confidence boundary in (2) is robust to the problem of generators
not capturing the entire data distribution and eventually learning only a Dirac
distribution, which is known as mode collapse [6,7]. Using scattering, we achieve
sample diversity by using the ratio of distances in the latent and data spaces. In
addition, in (2), our FROB model also uses data space point-set distances.

FROB redesigns and streamlines the use of general OoD datasets to work
for few-shot samples, even for zero-shots, using self-supervised learning to model
the boundary of the support of the normal class distribution instead of using a
large OoD set. Such general-purpose large OoD sets lead to an ad hoc selection
of outliers trying to model the complement of the support of the normal class
distribution. The boundary of the support of the normal class distribution, which
FROB finds using (2), has and needs less samples than the entire complement
of the support of the data distribution that big OoD sets try to approximate.

Inference. The Anomaly Score (AS) of FROB for any queried test sample, x̃,
in the data space, during inference and model deployment, is given by

AS(f, x̃) = max
l=1,2,...,K

exp(fl(x̃))∑K
k=1 exp(fk(x̃))

, (3)
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where l is the decided class. If the AS of x̃ has a value smaller than a predefined
threshold, τ , i.e. AS < τ , then x̃ is OoD. Otherwise, x̃ is in-distribution data.

3 Related Work on Classification and OoD Detection

General OoD Datasets. Training detectors using outliers from general OoD
datasets can improve the OoD detection performance to detect unseen anoma-
lies [5]. Using datasets disjoint from train and test data, models can learn
representations for OoD detection. Confidence Enhancing Data Augmentation
(CEDA), Adversarial Confidence Enhancing Training (ACET), and Guaranteed
OoD Detection (GOOD) address the overconfidence of classifiers at OoD samples
[3,4]. They enforce low confidence in a l∞-norm ball around each OoD sample.
CEDA employs point-wise robustness [13]. GOOD finds worst-case OoD detection
guarantees. The models are trained on general OoD datasets that are, however,
reduced by the normal class dataset. Disjoint distributions are used for positive
and negative training, but the OoD samples are selected in an ad hoc manner. In
contrast, FROB performs learned negative data augmentation on the normal class
distribution confidence boundary to redesign few-shot OoD detection.

Human Prior. GOOD first defines the normal class, and then filters it out from
the general-purpose OoD dataset. This filtering-out process of normality from
the general OoD dataset is human-dependent. It is not practical and cannot be
used in the real world as anomalies are not confined to a finite labelled closed set
[15]. This modified dataset is set as anomalies. Next, GOOD learns the normal
class, and sets low confidence to these OoD. This process is not automatic and
data- and feature-dependent [10,11]. In contrast, FROB eliminates the need for
feature extraction and human intervention which is the aim of deep learning, as
they do not scale. FROB avoids application and dataset dependent processes.

Learned Negatives. The Confidence-Calibrated Classifier (CCC) uses a GAN
to create samples out of, but also close to, the normal class distribution [9]. FROB
substantially differs from CCC that finds a threshold and not the normal class
distribution boundary. CCC uses a general OoD dataset, U(y), where the labels
follow a Uniform distribution, to compute this threshold. This can be limiting
as the threshold depends on U(y), which is an ad hoc selection of outliers that
are located randomly somewhere in the data space. This leads to unfilled space
between the OoD samples and the normal class which is suboptimal. In contrast,
FROB finds the normal class distribution boundary and does not use U(y) to
find this boundary. Our distribution boundary is not a function of U(y), as
U(y) is not necessary. For negative training, CCC defines a closeness metric
(KL divergence), and penalizes it [11]. CCC suffers from mode collapse as it
does not perform scattering for diversity. Confidence-aware classification is also
performed in [9]. Self-Supervised outlier Detection (SSD) creates OoD samples in
the Mahalanobis metric [8]. It is not a classifier, and it performs OoD detection
with few-shot outliers. FROB achieves fast inference with (3), in contrast to [16]
which is slow during inference. [16] does not address issues arising from detecting
using nearest neighbours, while using a different composite loss for training.
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4 Evaluation and Results

We evaluate FROB trained on different image datasets. For the evaluation of
FROB, we examine the impact of different combinations of normal class datasets,
OoD few-shots, and test datasets, in an alternating manner. We examine the
generalization performance to few-shots of unseen OoD samples at the dataset
level (out-of-dataset anomalies), which are different from the training sets.

Metrics. We report the Area Under the Receiver Operating Characteristic
Curve (AUROC), Adversarial AUROC (AAUROC), and Guaranteed AUROC
(GAUROC) [3,14]. To strengthen the robustness evaluation of FROB and to
compare with benchmarks, in addition to AUROC, we also evaluate FROB with
AAUROC and GAUROC. AAUROC and GAUROC are suitable for evaluat-
ing the robustness of OoD detection models focusing on the worst-case OoD
detection performance using l∞-norm perturbations for each of the OoD image
samples. It uses the maximum confidence in the l∞-norm ball around each OoD
and finds a lower (upper respectively) bound on this maximum confidence. These
worst-case confidences for the OoD samples are then used for the AUROC.

To examine the robustness to the number of few-shots, we decrease the num-
ber of OoD few-shots by dividing them by two, employing uniform sampling.
We examine the influence of this on AUROC. Specifically, we examine the vari-
ation of AUROC, AAUROC, and GAUROC, which constitute the dependent
variables, to changes of the independent variable, which is the provided number
of few-shots of OoD samples. We examine the Breaking Point of our FROB algo-
rithm and of benchmarks; we define this point as the number of few-shot data
from which the OoD performance in AUROC decreases and then falls to 0.5.

Datasets. For the normal class, we use either CIFAR-10 or SVHN. For OoD
few-shots, we use data from CIFAR-10, SVHN, CIFAR-100, and Low-Frequency
Noise (LFN). To compare with baselines from the literature, for the general OoD
datasets, we use SVHN, CIFAR-100, and the same general OoD dataset as in
[3,5] but debiased, as in [18]. We evaluate our FROB model on the datasets
CIFAR-100, SVHN, and CIFAR-10, as well as on LFN and Uniform noise.

Model Architecture. FROB uses a CNN discriminative model, as described
in Sect. 2. We also train and use a generator that takes the form of a CNN. We
implement FROB in PyTorch and use the optimizer Adam for training.

Baselines. We demonstrate that FROB is effective and outperforms baselines
in the few-shot OoD detection setting. We compare FROB to the baselines
GEOM, GOAD, DROCC, Hierarchical Transformation Discriminating Gen-
erator (HTD), Support Vector Data Description (SVDD), and Patch SVDD
(PSVDD) in the few-shot setting, using OCC [1]. We also compare FROB to
GOOD [3], CEDA, CCC, OE and ACET [4], and [5]. For many-samples OoD,
[3,5] use a general OoD set, which is not representative of the few-shot OoD
detection setting. General OoD sets result in a nonoptimal ad hoc selection of
OoD, especially when operating on a fixed few-shot budget for sampling from
the OoD class.
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Table 1. OoD performance of FROB with the learned distribution boundary, O(z),
in AUROC using OCC and few-shots of 80 CIFAR-10 anomalies, and comparison to
baselines, [1]. FODS is FROB with the outlier OoD dataset SVHN.

NORMAL DROCC GEOM GOAD HTD SVDD PSVDD FROB FODS

Plane 0.790 0.699 0.521 0.748 0.609 0.340 0.811 0.867
Car 0.432 0.853 0.592 0.880 0.601 0.638 0.862 0.861

Bird 0.682 0.608 0.507 0.624 0.446 0.400 0.721 0.707

Cat 0.557 0.629 0.538 0.601 0.587 0.549 0.748 0.787
Deer 0.572 0.563 0.627 0.501 0.563 0.500 0.742 0.727

Dog 0.644 0.765 0.525 0.784 0.609 0.482 0.771 0.782

Frog 0.509 0.699 0.515 0.753 0.585 0.570 0.826 0.884
Horse 0.476 0.799 0.521 0.823 0.609 0.567 0.792 0.815

Ship 0.770 0.840 0.704 0.874 0.748 0.440 0.826 0.792

Truck 0.424 0.834 0.697 0.812 0.721 0.612 0.744 0.799

MEAN 0.585 0.735 0.562 0.756 0.608 0.510 0.784 0.802

Ablations. We evaluate FROB for few-shot OoD detection with (�) the learned
distribution boundary, O(z), i.e. FROB. For ablation, we also evaluate models
that are trained without (−) O(z) samples which we term FROBInit.

4.1 Evaluation of FROB

Evaluation of FROB Using OCC Compared to Baselines. We evaluate
FROB using OCC for each CIFAR-10 class against several benchmarks in the
few-shot setting of 80 samples [1]. FROB outperforms baselines in Table 1 which
shows the mean performance of FROB when the normal class is a CIFAR-10
class. We compare our proposed FROB model to the baselines DROCC, GEOM,
GOAD, HTD, SVDD, and PSVDD [1]. FROB with the self-learned O(z) outper-
forms baselines for few-shot OoD detection in OCC when we have budget con-
straints and OoD sampling complexity limitations. We also evaluate our FROB
model further retrained with the outlier OoD dataset SVHN, FODS, and show
that using the OoD set is beneficial for few-shot OoD detection using OCC.

Robustness of FROB to the Number of Few-Shots. We evaluate FROB
with few-shots of OoD samples from SVHN in decreasing number, setting the
normal class as CIFAR-10. We experimentally demonstrate the effectiveness of
FROB, and the results are shown in Table 2 and Fig. 2. We evaluate FROB on
SVHN, as well as on CIFAR-100 and LFN, in Fig. 2 where the in-distribution
data are from the CIFAR-10 dataset while the OoD are from SVHN, CIFAR-100,
and LFN. Using FROB, the performance improves showing robustness even for
a small number of OoD few-shots, pushing down the phase transition point in
the number of few-shots in Fig. 2. When the few-shots are from the test set, i.e.
SVHN in Fig. 2, FROB is effective and robust for few-shot OoD detection.
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Table 2. OoD performance of FROB using the learned boundary, O(z), and OoD
few-shots, tested on SVHN. The normal class is CIFAR-10 (C10). The second column
shows the training data of OoD few-shots and their number.

MODEL OoD FEW-SHOTS TEST SET AUROC AAUROC GAUROC

FROB SVHN: 1830 SVHN 0.997 0.997 0.990
FROB SVHN: 915 SVHN 0.995 0.995 0.984
FROB SVHN: 732 SVHN 0.995 0.995 0.981
FROB SVHN: 457 SVHN 0.997 0.997 0.982
FROB SVHN: 100 SVHN 0.996 0.996 0.950
FROB SVHN: 80 SVHN 0.995 0.995 0.928

We experimentally demonstrate that first performing sample generation on
the distribution boundary, O(z), and then including these learned OoD samples
in our training is beneficial. The improvement of FROB in AUROC is because
of these well-sampled O(z) samples. The component of FROB with the highest
benefit is the self-generated distribution boundary, O(z). Our proposed FROB
model shows improved robustness to the number of OoD few-shots because with
decreasing few-shots, the performance of FROB in AUROC is robust and approx-
imately independent of the OoD few-shot number of samples in Fig. 2.

Performance on Unseen Datasets. We evaluate FROB on OoD samples from
unseen, in the wild, datasets, i.e. on samples that are neither from the normal
class nor from the OoD few-shots. We examine our proposed FROB model in
the few-shot setting in Fig. 2 for normal CIFAR-10 with OoD few-shots from
SVHN, and tested on the new CIFAR-100 and LFN. These are unseen as they
are not the normal class or the OoD few-shots. The performance of FROB in
this OoD few-shot setting in Fig. 2 is robust on CIFAR-100 and on LFN.

Next, exchanging the datasets, FROB with the normal class SVHN, and a
variable number of CIFAR-10 OoD few-shots, is tested in Table 3 and in Fig. 3.
In Table 3, compared to Table 2, FROB achieves comparable performance for
normal class SVHN and few-shots of CIFAR-10, compared to for normal class
CIFAR-10 and few-shots of SVHN, in all the AUC-type metrics. According to
Fig. 3, when compared to Fig. 2, for the unseen test set CIFAR-100, FROB
achieves better AUROC for normal SVHN compared to for normal CIFAR-10.

Effect of Domain and Normal Class. The performance of FROB in AUROC
depends on the normal class. In Fig. 3, the OoD detection performance of FROB
for small number of few-shots is higher for normal class SVHN than for normal
CIFAR-10 in Fig. 2. FROB is robust and effective for normal SVHN on seen and
unseen data. FROB is not sensitive to the number of few-shots for few-shot OoD
detection, when we have OoD sample complexity constraints.
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Fig. 2. FROB (normal C10) with SVHN OoD few-shots: AUROC and GAUROC.

Table 3. Evaluation of FROB for normal SVHN with the self-generated O(z) and OoD
few-shots, tested on CIFAR-10 (C10). According to the second and third columns, the
OoD few-shots and the OoD test samples are from C10.

MODEL OoD FEW-SHOTS TEST SET AUROC AAUROC GAUROC

FROB C10: 600 C10 0.996 0.996 0.982
FROB C10: 400 C10 0.994 0.994 0.964
FROB C10: 200 C10 0.996 0.996 0.967
FROB C10: 80 C10 0.991 0.991 0.951

OoD Detection Performance of FROB with OoD Few-Shots from the
Test Set. In Tables 2 and 3 we experimentally demonstrate that FROB improves
the AUROC and AAUROC when the few-shots and the test samples originate
from the same dataset. We also show that FROB achieves high GAUROC.

OoD Detection Performance of FROB, OoD Few-Shots and Test are
Different Sets. More empirical results in Figs. 2 and 3 show that FROB also
improves the AUROC when the few-shots and OoD test samples originate from
different sets, i.e. LFN and CIFAR-100. This shows robustness to the test set.

OoD Performance of FROB for OoD Few-Shots from the Test Set
but Also Adding a General OoD Dataset. Table 4 shows the OoD detec-
tion performance of FROB for OoD few-shots from the test dataset, adding a
general-purpose OoD dataset [3,5,18]. Compared to Table 2, FROB without the
OoD dataset achieves higher AUC-metrics, and this is important. This happens
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Fig. 3. Evaluation of FROB using the learned distribution boundary, O(z), and few-
shot OoD samples from CIFAR-10 in AUROC. The normal class is SVHN.

Table 4. OoD performance of FROB using the learned O(z), OoD few-shots, and
a general OoD dataset following the procedure in [3,18] resulting in 73257 samples,
evaluated on SVHN. The normal class is CIFAR-10. FS is Few-Shots.

OoD FS Outlier OoD TEST AUROC AAUROC GAUROC

SVHN: 1830 � SVHN 0.994 0.994 0.972
SVHN: 915 � SVHN 0.993 0.993 0.333
SVHN: 732 � SVHN 0.990 0.990 0.010
SVHN: 457 � SVHN 0.997 0.997 0.807
SVHN: 100 � SVHN 0.992 0.992 0.896
SVHN: 80 � SVHN 0.981 0.981 0.922
SVHN: 80 − SVHN 0.995 0.995 0.928

because of including our proposed self-generated distribution boundary, O(z), in
our training. Adding a general-purpose OoD dataset leads to far-OoD samples
which are not task-specific and might be irrelevant [17]. These far-OoD samples
from the general benchmark OoD dataset are far away from the boundary of the
support of the normal class distribution, have high point-to-set distance as mea-
sured by the second loss term of our loss function in (2), are unevenly scattered in
the data space, and are non-uniformly dispersed. Notably, in Table 2, compared
to Table 4, the AUROC of FROB for normal CIFAR-10 is 0.996 and 0.995 for
100 and 80 OoD few-shots from SVHN respectively, while the AUROC of FROB
with a general OoD dataset is 0.992 and 0.981 respectively. This is an important
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Fig. 4. FROB for normal SVHN in GAUROC with O(z) and a variable number of
OoD CIFAR-10 few-shots, tested on CIFAR-100, CIFAR-10, and Uniform Noise.

finding implying that a general OoD dataset is not needed, and that FROB with
the self-generated O(z) achieves state-of-the-art performance for few-shot OoD
detection when the OoD few-shots originate from the test set. We hypothesise
that the general OoD set is not required because O(z) generates samples that
are out of the data distribution that well cover the space between these samples
and the normal (in-distribution) class. An external outlier OoD dataset likely
provides samples that are further out and dispersed, and not task-specific.

We have thus shown in Table 4 that when FROB with the learned boundary,
O(z), is used during training, then the use of a general OoD dataset is not needed.
Next, Fig. 4 shows the performance of FROB for normal SVHN and a variable
number of OoD CIFAR-10 few-shots. In Figs. 4 and 3, compared to Fig. 2, we
show that FROB achieves better performance for normal SVHN, compared to
for normal CIFAR-10, in all AUC-type metrics, on the unseen CIFAR-100.

FROB Compared to Baselines. We compare our proposed FROB model
to baselines for OoD detection. We focus on all the AUROC, AAUROC, and
GAUROC, on the robustness of the models, and on the worst-case OoD detection
performance using l∞-norm perturbations for each of the OoD data samples
(Table 5).

We examine the OoD detection performance of the baseline models CCC,
CEDA, [5], ACET, and GOOD when using C10 as the normal class, a general
OoD dataset [3,18], and the SVHN OoD dataset. We evaluate these baseline
models on the SVHN set. FROB outperforms baselines, specifically when the
three evaluation metrics AUROC, AAUROC, and GAUROC are considered.
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Table 5. Performance of FROB with the self-generated O(z), normal class C10, and
general OoD set following the procedure in [3,18]. Comparison to baselines.

MODEL O(z) OoD dataset TEST AUROC AAUROC GAUROC

FROB � SVHN: 1830 SVHN 0.997 0.997 0.990
FROB � [3,18], SVHN: 1830 SVHN 0.994 0.994 0.972
CCC − SVHN SVHN 0.999 0.000 0.000
CEDA − [3,18] SVHN 0.979 0.257 0.000
OE − [3,18] SVHN 0.976 0.70 0.000
ACET − [3,18] SVHN 0.966 0.880 0.000
GOOD − [3,18] SVHN 0.757 0.589 0.569

4.2 Ablation Studies

Removing O(z). We remove the learned distribution boundary, O(z), in a
model we term FROBInit. We compare with FROB using OoD few-shots from
SVHN, using 1830 samples, in Table 6. The OoD detection performance of FROB
in AUROC in Table 6 is 0.997 and that of FROBInit, which does not use the
learned boundary, O(z), is 0.847. FROB outperforms FROBInit in all AUC-
based metrics, by approximately 18% in AUROC and AAUROC and 36% in
GAUROC. These results demonstrate the effectiveness and efficacy of FROB.

FROB Generating the Boundary, O(z), Leads to Robustness to the
Number of OoD Few-Shots. Most existing methods from the literature are
sensitive to the number of OoD few-shots. We demonstrate this sensitivity in
Figs. 5 and 6, where we examine the performance of FROBInit which lacks the
generator of boundary samples by varying the number of few-shot outliers. We
also compare with FROB. Comparing Figs. 5 and 6 with Figs. 2 and 3, we see
that ablating O(z) leads to loss of robustness to a small number of few-shots.

In Figs. 5 and 6, the performance of FROBInit without the learned distribu-
tion boundary, O(z), is not robust for few-shot OoD detection, i.e. for few-shots
less than approximately 1800 samples. In Figs. 2 and 3, compared to Fig. 5,
FROB achieves robust OoD detection performance as the number of OoD few-
shots decreases. This indicates that O(z) is effective and FROB is robust to the
number of OoD few-shots, even to a small number of few-shot samples. We have
shown that when the self-generated distribution boundary, O(z), is not used,
the OoD performance in AUROC decreases as the number of OoD few-shots
decreases. The self-generated distribution boundary of FROB leads to a specific
selection of anomalous samples that do not allow unfilled space in the data space,
between the learned negatives and the normal class. FROB, because it generates
samples on the distribution boundary, shows a more robust and improved OoD
performance to the number of OoD few-shots when compared to FROBInit.
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Fig. 5. OoD performance of FROBInit in AUROC, for the normal class CIFAR-10,
without O(z) and using OoD few-shots of variable number from SVHN.

Table 6. OoD performance of FROB with the learned distribution boundary, O(z),
and 1830 OoD samples from SVHN without and with a general OoD dataset following
the procedure in [3,18]. The normal class is CIFAR-10.

MODEL O(z) OoD low-shots AUROC AAUROC GAUROC

FROB � SVHN: 1830 0.997 0.997 0.990
FROBInit − SVHN: 1830 0.847 0.847 0.728

Further Evaluation of FROBInit and Its Breaking Point. To show the
benefit of our proposed FROB model using our learned distribution boundary
samples, O(z), in (2), we now continue the evaluation of FROBInit in this abla-
tion study analysis. We have demonstrated in Figs. 5 and 6 that the performance
of FROBInit without the self-produced O(z) data samples, when the normal class
is the CIFAR-10 dataset, with a variable number of OoD few-shot samples from
the SVHN dataset, when evaluated on different image datasets, decreases as the
number of the few-shots of OoD data decreases.

The Break Point threshold at AUROC 0.5 is reached for approximately 800
few-shots for CIFAR-100. When the learned distribution boundary, O(z), is not
used, we do not achieve a robust performance for decreasing few-shots. The
performance falls with the decreasing number of few-shots: steep decline for low-
shots less than 1830 samples, tested on SVHN and on Low-Frequency Noise.
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Fig. 6. Performance of FROBInit, without O(z), in GAUROC for the normal class
CIFAR-10, and with a variable number of OoD few-shots from SVHN.

5 Conclusion

We have proposed FROB which uses the self-generated support boundary of the
normal class distribution to improve few-shot OoD detection. FROB tackles the
few-shot problem using joint classification and OoD detection. Our contribu-
tion is the combination of the generated boundary in a self-supervised learning
manner and the imposition of low confidence at this learned boundary leading
to improved robust few-shot OoD detection performance. To improve robust-
ness, FROB generates strong adversarial samples on the boundary, and enforces
samples from OoD and on the boundary to be less confident. By including the
self-produced boundary, we reduce the threshold linked to the model’s few-shot
robustness. FROB redesigns, restructures, and streamlines the use of general
OoD datasets to work for few-shot samples. Our proposed FROB model performs
classification and few-shot OoD detection with a high level of robustness in the
real world, in the wild. FROB maintains the OoD performance approximately
constant, independent of the few-shot number. The performance of FROB with
the self-supervised boundary is robust and effective. Its performance is approx-
imately stable as the OoD low- and few-shots decrease in number, while the
performance of FROBInit, which is without O(z), sharply falls as the few-shots
decrease in number. The evaluation of FROB on several datasets, including the
ones dissimilar to training and few-shot sets, shows that it is effective, achieves
competitive state-of-the-art performance and generalization to unseen anoma-
lies, with applicability to unknown, in the wild, test datasets, and outperforms
baselines in the few-shot anomaly detection setting, in AUC-type metrics.
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Abstract. In safety-critical deep learning applications robustness mea-
surement is a vital pre-deployment phase. However, existing robustness
verification methods are not sufficiently practical for deploying machine
learning systems in the real world. On the one hand, these methods
attempt to claim that no perturbations can “fool” deep neural networks
(DNNs), which may be too stringent in practice. On the other hand,
existing works rigorously consider Lp bounded additive perturbations on
the pixel space, although perturbations, such as colour shifting and geo-
metric transformations, are more practically and frequently occurring in
the real world. Thus, from the practical standpoint, we present a novel
and general probabilistic robustness assessment method (PRoA) based on
the adaptive concentration, and it can measure the robustness of deep
learning models against functional perturbations. PRoA can provide sta-
tistical guarantees on the probabilistic robustness of a model, i.e., the
probability of failure encountered by the trained model after deployment.
Our experiments demonstrate the effectiveness and flexibility of PRoA in
terms of evaluating the probabilistic robustness against a broad range of
functional perturbations, and PRoA can scale well to various large-scale
deep neural networks compared to existing state-of-the-art baselines. For
the purpose of reproducibility, we release our tool on GitHub: https://
github.com/TrustAI/PRoA.

Keywords: Verification · Probabilistic robustness · Functional
perturbations · Neural networks

1 Introduction

With the phenomenal success of Deep Neural Networks (DNNs), there is a grow-
ing and pressing need for reliable and trustworthy neural network components,
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particularly in safety-critical applications. Neural networks’ inherent vulnerabil-
ity to adversarial attacks has been receiving considerable attention from the
research community [21]. Numerous empirical defence approaches, including
adversarial training [14], have been developed recently in response to diverse
adversarial attacks. Such defence strategies, however, are subsequently over-
whelmed by elaborate and advanced adversarial attacks [10].

Therefore, in order to construct safe and trustworthy deep learning models
with a certain confidence, a challenge has emerged: how can we verify or cer-
tify our models under adversarial perturbations with guarantees? Various earlier
works have attempted to quantify the deterministic robustness of a given input x
concerning a specific neural network; they seek to state that no adversarial exam-
ples exist within a neighbourhood of x [9]. However, such safety requirements are
not always satisfied and applicable in practice. For instance, as ISO/IEC Guide
51 [6] suggests, “safety risks and dangers are unavoidable; residual risks persist
even after risk reduction measures have been implemented”. Thus, in comparison
to those ensuring deterministic robustness, it is a more practical assessment of
robustness to properly confine the possibility of a failure event occurring. For
example, no communication networks can guarantee that no message will be
lost over a wireless communication route, and messages might be lost owing to
collisions or noise contamination even with proper functioning network hard-
ware. Occasional message loss is tolerated if the occurrence chance is within an
acceptable level. However, it is still unexplored for such probabilistic robustness
verification.

In the meantime, the majority of existing verification methods consider a
narrow threat model with additive perturbations, i.e. adversarial examples are
produced by adding slight tweaks (measured in Lp distance) to every single
feature of normal inputs (e.g. counterexamples are generated by adding minor
changes to every single pixel in an image classification task). While the addi-
tive threat model implies that the divergence between generated adversarial
instances and original instances does not surpass a modest positive constant ε
measured by Lp norm, other sorts of perturbations undetectable to humans are
overlooked. For instance, cameras installed in self-driving cars may be vibrated
on bumpy roads, leading to rotating or blurring photos. Resultant rotated and
blurry photographs are likely to be misidentified by neural networks, even if
they do not “hoodwink” human perception. Such risky and frequent scenarios
motivate the robustness assessment against various general perturbations, e.g.
geometric transformation like rotation and translation, and common corruptions.

In this paper, we propose a novel and scalable method called PRoA that can
provide statistical guarantees on the probabilistic robustness of a large black-box
neural network against functional threat models. Specifically, in this approach,
we introduce functional perturbations, including random noise, image trans-
formations and recolouring, which occur naturally and generally, and additive
perturbation would be a specific instance in which perturbation functions add a
modest adjustment to each feature of inputs. Instead of worst-case based verifi-
cation, this method measures the probabilistic robustness, i.e. accurately bounds
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the tolerated risk of encountering counterexamples via adaptively randomly sam-
pling perturbations. This robustness property is more appropriate in real-world
circumstances. Furthermore, the proposed method makes no assumptions about
the neural network, e.g. activation functions, layers, and neurons, etc. This grants
our probabilistic robustness assessment method (PRoA) the scalability to evalu-
ate state-of-the-art and large-scale DNNs. Our main contributions are threefold
as follows:

– We propose a randomised algorithm-based framework for evaluating the prob-
abilistic robustness of deep learning models using adaptive concentration
inequality. This method is well-scalable and applicable to large and state-
of-the-art black-box neural networks.

– The method is attack-agnostic and capable of providing a theoretical guaran-
tee on the likelihood of encountering an adversarial example under parametric
functional perturbations.

– Experimentally, we validate our certification method and demonstrate its
practical applicability with different trained neural networks for various nat-
ural functional perturbations, e.g. geometric transformations, colour-shifted
functions, and Gaussian blurring.

2 Related Work

Reachability Based Approaches. For a given input and a specified perturba-
tion, reachability-based algorithms endeavour to determine the lower and upper
bounds of the output. Thus, robustness can be evaluated by solving an out-
put range analysis problem. Some reachability-based approaches employ layer-
by-layer analysis to obtain the reachable range of outputs [13,18–20,22,26,27].
ExactReach [26] estimates a DNN’s reachable set as a union of polytopes by
setting the outputs of each layer with Relu activation to a union of poly-
topes. Yang et al. [27] present an exact reachability verification method utilising
a facet-vertex incidence matrix. Additionally, another research approach is to
employ global optimisation techniques to generate a reachable output interval.
GeepGo [18] uses a global optimisation technique to find the upper and lower
bounds of the outputs of Lipschitz-continuous networks. This algorithm is capa-
ble of operating on black-box DNNs. Reachability analysis can be used to address
the challenge of safety verification; however, these methods often require that
target networks be Lipschitz continuous over outputs, which limits their appli-
cation.

Constraint Based Approaches. Constraint-based techniques generally trans-
form a verification problem into a set of constraints, which can then be solved
by a variety of programme solvers. In recent papers [1,8], Katz et al. [8] intro-
duce an SMT-based technique called Reluplex for solving queries on DNNs with
Relu activation by extending a simplex algorithm, while Amir et al. [1] propose
another SMT-based method by splitting constraints into easier-to-solve linear
constraints. For constraint-based techniques, all types of solvers can produce
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a deterministic answer with guarantees, i.e., they can either satisfy or violate
robustness conditions. However, these techniques suffer from a scalability issue
and need to access the internal structure and parameters of the targeted DNN
(in a white-box setting).

These deterministic verification approaches might be unduly pessimistic in
realistic applications since they only account for the worst scenario. In contrast,
PRoA focuses on the tail probability of the average case, which is more realistic
in a wide range of real-world applications, and worst-case analysis can be a
special case of tail risks when we take the tail probability (0%) of the most
extreme performance into consideration.

Statistical Approaches. Unlike the above deterministic verification methods,
statistics-based techniques aim to quantify the likelihood of finding a counterex-
ample. For example, random sampling has lately emerged as an effective sta-
tistical strategy for providing certified adversarial robustness, e.g. randomised
smoothing [3,28], cc-cert [16], and SRC [5], among others. Additionally, Webb
et al. [24] propose an adaptive Monte Carlo approach, i.e. multi-level splitting,
to estimate the probability of safety unsatisfiability, where failure occurs as an
extremely rare occurrence in real-world circumstances. However, these statistics-
based analyses focus on the pixel-level additive perturbations and always require
assumptions upon target neural networks or distributions of input, which limits
their applicability.

In contrast, we introduce a general adversarial threat model, i.e. functional
perturbations, and PRoA aims to bound the failure chance with confidence under
the functional threat model. Moreover, PRoA is able to provide rigorous robust-
ness guarantees on black-box DNNs without any assumptions and scale to large-
scale networks.

3 Preliminary

Classification Program. Given a training set with N distinct samples S =
{(x1, y1), . . . , (xN , yN )} where xi ∈ X = R

n are i.i.d. samples with dimension
n drawn from an unknown data distribution and yi ∈ R = {1, . . . , K} are
corresponding labels. We consider a deterministic neural network f : X → [0, 1]K

that maps any input to its associated output vector, and fk(·) : Rn → [0, 1] is
a deterministic function, representing the output confidence on label k. Our
verification procedure solely requires blackbox assess to f , thus, it can obtain
the corresponding output probability vector f(x) for each input x ∈ X .

Additive Perturbation. Given a neural network f and an input x ∈ X , an
adversarial example x̃ of x is crafted with a slight modification to the original
input such that arg max

k∈{1,...,K}
fk(x̃) �= arg max

k∈{1,...,K}
fk(x); this means that the classifier

assigns an incorrect label to x̃ but x̃ is perceptually indistinguishable from the
original input x. Intuitively, slight perturbations δ ∈ R

n can be added directly
to x to yield adversarial examples x̃ = x+ δ, in the meantime, a Lp norm bound
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is normally imposed on such additive perturbations, constraining x̃ to be fairly
close to x. The relevant definition is as follows:

x̃ = x + δ and ‖δ‖p ≤ ε s.t. arg max
k∈{1,...,K}

fk(x̃) �= arg max
k∈{1,...,K}

fk(x).

Functional Perturbation. Unlike the additive perturbation, a normal input
x is transformed using a perturbation function F : X → X parameterised with
θ ∈ Θ. That is to say, xFθ

= Fθ(x). It is worth noting that functional per-
turbation allows for a substantially larger pixel-based distance, which may be
imperceptible to humans as well, since the perturbed version xFθ

consistently
preserves semantic information underlying images, such as shape, boundary,
and texture. Unfortunately, such perturbations may confuse the classifier f(·),
which is capable of outputting the proper label to an undistorted image, i.e.
arg max

k∈{1,...,K}
fk(x) �= arg max

k∈{1,...,K}
fk(xFθ

).

Prior literature on functional perturbations is surprisingly sparse. To our
best knowledge, only one work involves a term functional perturbations [11], in
which a functional threat model is proposed to produce adversarial examples
by employing a single function to perturb all input features simultaneously. In
contrast, we introduce a flexible and generalised functional threat model by
removing the constraint of global uniform changes in images. Obviously, the
additive threat model is a particular case of the functional threat model, when
the perturbation function Fθ manipulates pixels of an image by adding slight
Lp bounded distortions.

Verification. The purpose of this paper is to verify the resilience of the classifier
f(·) against perturbation functions F parameterised with θ ∈ Θ while functional
perturbations Fθ would not change the oracle label from human perception if
θ within parameter space Θ, or, more precisely, to provide guarantees that the
classifier f(·) is probabilistically robust with regard to an input x when exposed
to a particular functional perturbation Fθ. To this end, let k∗ denote the ground
truth class of the input sample. Assume that SF (x) is the space of all images xFθ

of x under perturbations induced by a perturbation function Fθ and P is the
probability measure on this space SF (x). This leads to the following robustness
definitions:

Definition 1 (Deterministic robustness). Let Fθ be a specific perturbation
function parametrized by θ, and Θ denotes a parameter space of a given pertur-
bation function. Assume that xFθ

= Fθ(x) is the perturbed version of x given
θ ∈ Θ, and SF (x) is the space of all images xFθ

of x under perturbation function
Fθ. Given a K-class DNN f , an input x and a specific perturbation function Fθ

with θ ∈ Θ, we can say that f is deterministically robust w.r.t. the image x, i.e.
x is correctly classified with probability one, if

arg max
k∈{1,...,K}

fk (xF ) = k∗, for all xF ∼ SF (x).
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Definition 2 (Probabilistic Robustness). Let Fθ be a specific perturbation
function parametrized by θ, and Θ denotes a parameter space of a given pertur-
bation function. Assume that xFθ

= Fθ(x) is the perturbed version of x given
θ ∈ Θ, and SF (x) is the space of all images xFθ

of x under perturbation func-
tion Fθ. Given a K-class DNN f , an input x, a specific perturbation function
Fθ with θ ∈ Θ, and a tolerated error rate τ , the K-class DNN f is said to be
probabilistically robust with probability at least 1 − δ, if

PxF ∼SF (x)

(

p

(

arg max
k∈{1,...,K}

fk (xF ) �= k∗
)

< τ

)

≥ 1 − δ. (1)

Verifying deterministic robustness has been widely studied in the context of
pixel-level additive perturbations and worst-case adversarial training; however,
deterministic robustness is always too stringent to hold, and deterministic
robustness and probabilistic robustness are “equivalent” to each other when
we choose τ = 0.

4 Verification of Probabilistic Robustness

We now present our proposed method, named PRoA, for verifying the prob-
abilistic robustness of black-box classifiers against functional perturbations. A
schematic overview of PRoA is illustrated in Appendix A.

4.1 Formulating Verification Problem

Our goal is to verify probabilistic robustness properties for a neural network
classifier f , providing the classifier with probabilistic guarantees of its stabil-
ity under functional perturbations. We formalise the robustness properties by
examining substantial discrepancies of outputs w.r.t. input transformations [16].
Next, we describe how to formalise the robustness property using both original
and perturbed images.

We have a deterministic neural network f : R
n → [0, 1]K . Assume that a

given input x and its perturbed image xF are assigned by f with the output
probability vectors p = f(x) and pF = f(xFθ

), respectively. Let k∗ = arg maxp
and k̃ = arg maxpF denote the output labels assigned to original image x and
perturbed version xFθ

and d = p1−p2
2 be the half of the difference between two

largest components of p.
Then, the certain perturbations would not change the label, i.e. c̃ = c, if

‖p − pF‖∞ < d. (2)

where ‖p − pF‖∞ = max (|p1 − pF1 | , . . . , |pK − pFK |).
That means, if the maximum change caused by functional perturbations

amongst all classes w.r.t. the output probability vectors, does not exceed half of
the maximum difference d between the two largest components of p, the classifier
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will retain the category to an input x. Thus, it is straightforward to provide the
probabilistic guarantees that the class label assigned to an input x by a classi-
fier f would not change under the transformation functions Fθ by bounding the
probability of the event ‖p − pF‖∞ < d occurring.

Subsequently, we suggest applying adaptive concentration inequalities, which
enable our algorithm iteratively to take more and more samples until the esti-
mated probability of event occurrence is sufficiently accurate to be used to com-
pute the probability satisfying Eq. (2). We establish some notation for the ver-
ification process that follows. For a random variable Z ∼ PZ following any
probability distribution PZ , μZ = EZ∼PZ

[Z] donates the expectation of Z. To
fit the context of probabilistic robustness verification, we let

Z = 1l [‖p − pF‖∞ < d] (3)

where 1l[x] is an indicator function that returns 1 if x is true and 0 otherwise. In
this case, μZ represents certified stable probability of a data instance x under
functional transformations Fθ parameterised by θ, i.e.,

μZ = EZ∼PZ
[Z] = PZ∼PZ

[Z = 1] . (4)

4.2 Adaptive Concentration Inequalities

Concentration inequalities [2], e.g. Chernoff inequality, Azuma’s bound and
Hoeffding’s inequality, are fundamental statistical analytic techniques, widely
applied to reliable decision-making with probabilistic guarantees. Hoeffding
inequality is utilised to bound the probability of an event or the sum of bounded
variables.

Let Z be a random variable with distribution PZ , and Z1, Z2, . . . , Zn are
independent and identically distributed samples drawn from PZ , then we can
estimate μZ , which represents the expected value of Z using

μ̂Z =
1
n

n
∑

i=1

Zi. (5)

Note that, regardless of the number of samples used, there must be some error
ε between the estimated value μ̂Z and true expected value μZ . However, we can
derive high-probability bounds on this error using Hoeffding inequality [4].

Definition 3 (Hoeffding Inequality [4]). For any δ > 0,

PZ1,...,Zn∼PZ
[|μ̂Z − μZ | ≤ ε] ≥ 1 − δ (6)

holds for δ = 2e−2nε2
, equivalently, ε =

√

1
2n log 2

δ .

The number of samples n, on the other hand, must be independent of the under-
lying process and determined in advance, yet in most circumstances, we gen-
erally have no idea how many samples we will need to validate the robustness
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specification. Consequently, we would like the number of samples used during
the verification procedure to be a random variable. We decide to incorporate
adaptive concentration inequality into our algorithm, enabling our verification
algorithm to take samples iteratively. Upon termination, n becomes a stopping
time J , where J is a random variable, depending on the ongoing process. Then,
the following adaptive Hoeffding inequality is utilised to guarantee the bound
of the aforementioned probability since traditional concentration inequalities do
not hold when the number of samples is stochastic.

Theorem 1 (Adaptive Hoeffding Inequality [30]). Let Zi be 1/2-
subgaussian random variables, and let μ̂

(n)
Z = 1

n

∑n
i=1 Zi, also let J be a random

variable on N ∪ {∞} and let ε(n) =
√

a log(logc n+1)+b
n where c > 1, a > c/2, b >

0, and ζ is the Riemann-ζ function. Then, we have

P
[

J < ∞ ∧
(∣

∣

∣μ̂
(J)
Z

∣

∣

∣ ≥ ε(J)
)]

≤ δb (7)

where δb = ζ(2a/c)e−2b/c.

4.3 Verification Algorithm

In this section, we will describe how to verify the probabilistic robustness of a
given classifier, deriving from adaptive Hoeffding inequality. To begin, we can
derive a corollary from Theorem 1. Note that the values of a and c do not have
a significant effect on the quality of the bound in practice [30] and we fix a and
c with the recommended values in [30], 0.6 and 1.1, respectively.

Theorem 2. Given a random variable Z as shown in Eq. (3) with unknown
probability distribution PZ , let {Zi ∼ PZ}i∈N

be independent and identically dis-
tributed samples of Z. Let μ̂

(n)
Z = 1

n

∑n
i=1 Zi be estimate of true value μZ , and

let stopping time J be a random variable on N ∪ {∞} such that P [J < ∞] = 1.
Then, for a given δ ∈ R+,

P
[∣

∣

∣μ̂
(J)
Z − μZ

∣

∣

∣ ≤ ε(δ, J)
]

≥ 1 − δ (8)

holds, where ε(δ, n) =
√

0.6·log(log1.1 n+1)+1.8−1·log(24/δ)
n .

We give a proof in Appendix B.
In the context of probabilistic robustness verification, we can certify the

probabilistic robustness of a black-box neural network against functional threat
models. Specifically, certified probability, μZ , is calculated by computing the
proportion of the event (Z < d) occurring through sampling the perturbed
images surrounding an input x. For example, given a target neural network, we
would like to verify whether there are at most τ (e.g. 1%) adversarial examples
within a specific neighbouring area around an image x with greater than 1 − δ
(e.g. 99.9%) confidence. This means we would like to have more than 99.9%
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confidence in asserting that the proportion of the adversarial examples is fewer
than 1%.

Building upon this idea, the key of this statistical robustness verification is
to prove the robustness specification of form μZ ≥ 1 − τ holds. If μZ is quite
close to 1 − τ , then more additional samples are required to make ε to be small
enough to ensure that μ̂Z is close to μZ . We use a hypothesis test parameterized
by a given modest probability τ of accepted violation predefined by users.

◦ H0: The probability of robustness satisfaction μ ≥ 1 − τ . Thus, the classifier
can be certified.

◦ H1: The probability of robustness satisfaction μ < 1 − τ . Thus, the classifier
should not be certified.

Alternatively, consider the hypothesis testing with two following conditions

H0 : μ̂Z + τ − ε − 1 ≥ 0
H1 : μ̂Z + τ + ε − 1 < 0.

(9)

If H0 holds, then together with P
[∣

∣

∣μ̂
(J)
Z − μZ

∣

∣

∣ ≤ ε
]

≥ 1 − δ, we can assert that
μZ ≥ μ̂Z − ε ≥ 1 − τ with high confidence. Likewise, we can conclude that
μZ ≤ μ̂Z + ε < 1 − τ , if H1 holds.

The full algorithm is summarized in Algorithm 1 in Appendix A.

5 Experiments

In order to evaluate the proposed method, an assessment is conducted involving
various trained neural networks on public data sets CIFAR-10 and ImageNet.

Specifically, for neural networks certified on the CIFAR-10 dataset, we have
trained three neural networks based on ResNet18 architecture: a naturally
trained network (plain), an adversarial trained network augmented with adver-
sarial examples generated by l2 PGD attack (AT), and a perceptual adversarial
trained network (PAT) against a perceptual attack [12]. In addition, four state-
of-the-art neural networks, i.e. resnetv2 50, mobilenetv2 100, efficientnet b0 and
vit base patch16 244 are introduced for ImageNet dataset; all pre-trained models
are available on a PyTorch library. For our models, selected details are described
in Table 6 in Appendix C.1.

We provide the details about considered functional perturbations in the fol-
lowing subsection, and the results follow. Nota bene, we choose τ = 5% for
certifying the robustness of all models, as this is a widely accepted level in most
practice. All the experiments are run on a desktop computer (i7-10700K CPU,
GeForce RTX 3090 GPU).

5.1 Baseline Setting

To demonstrate the effectiveness and efficiency of PRoA1, it is natural to com-
pare the estimated probability of the event, i.e. a target model will not fail when
1 Our code is released via https://github.com/TrustAI/PRoA.

https://github.com/TrustAI/PRoA


A Probabilistic Robustness Assessment Against Functional Perturbations 163

Table 1. Comparison with related work in different aspects.

SRC [5] AMLS
based [24]

Randomized
smoothing
[3,28]

DeepGo [18] Reachability
based [26]

Semantify-
NN
[15]

FVIM
based [27]

CROWN
[23,25,29]

PRoA

Deterministic robustness ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗

Probabilistic robustness ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Verifying robustness on functional perturbation ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Black-box model ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓

encountering functional perturbations, obtained by PRoA with the lower limit
of the corresponding confidence interval, i.e. Agresti-Coull confidence interval
(A-C CI), see Appendix C.2.

We list the relevant existing works in Table 1 and compare our method with
these typical methods from five aspects. Specifically, DeepGo [18], Reachability
based [26], Semantify-NN [15], FVIM based [27] and CROWN [23,25,29] only
can evaluate deterministic robustness of neural networks. Although SRC [5],
AMLS based [24], Randomized Smoothing [3,28] are able to certify probabilistic
robustness, our work extensively consider models’ probabilistic robustness under
functional threat models.

To the best of our knowledge, there is no existing study in terms of certifying
the probabilistic robustness of neural networks involving a functional threat
model. Since [5] is the closest approach in spirit to our method amongst recent
works, we use SRC [5] as our baseline algorithm. The proposal of SRC is to
measure the probabilistic robustness of neural networks by finding the maximum
perturbation radius using random sampling, and we extend it to be a baseline
algorithm for computing the certified accuracy under functional perturbations.

5.2 Considered Functional Perturbations

PRoA is a general framework that is able to assess the robustness under any
functional perturbations. In our experiments, we specifically study geometric
transformation, colour-shifted function, and Gaussian blur in terms of verifying
probabilistic robustness.

Gaussian Blur. Gaussian blurring is used to blur an image in order to reduce
image noise and detail involving a Gaussian function

Gθg
(k) =

1
√

2πθg

exp
(

−k2/(2θg)
)

(10)

where θg is the squared kernel radius. For x ∈ X , we define

FG(x) = x ∗ Gθg
(11)

as the corresponding function parameterised by θg where ∗ denotes the convo-
lution operator.

Geometric Transformation. For geometric transformation, we consider three
basic geometric transformations: rotation, translation and scaling. We imple-
ment the corresponding geometric functions in a unified manner using a spatial



164 T. Zhang et al.

T
a
b
le

2
.

C
IF

A
R

-1
0

-
C

o
m

p
a
ri

so
n

o
f

em
p
ir

ic
a
l

ro
b
u
st

a
cc

u
ra

cy
(G

ri
d

a
n
d

R
a
n
d
.)

a
n
d

p
ro

b
a
b
il
is

ti
ca

ll
y

ce
rt

ifi
ed

a
cc

u
ra

cy
(C

er
t.

A
cc

)
w

it
h

re
sp

ec
t

to
a

sp
ec

ifi
c

m
o
d
el

(R
es

N
et

1
8
)

w
it

h
th

re
e

tr
a
in

in
g

m
et

h
o
d
s,

sh
ow

n
in

T
a
b
le

6
.
M

o
re

ov
er

,
p
ro

b
a
b
il
is

ti
ca

ll
y

ce
rt

ifi
ed

a
cc

u
ra

cy
is

p
re

se
n
te

d
w

it
h

th
re

e
co

n
fi
d
en

ce
le

v
el

s
(1

−
δ)

,
lo

w
le

v
el

o
f
co

n
fi
d
en

ce
(δ

=
1
0

−
4
),

m
id

d
le

le
v
el

o
f
co

n
fi
d
en

ce
(δ

=
1
0

−
1
5
)

a
n
d

h
ig

h
le

v
el

o
f
co

n
fi
d
en

ce
(δ

=
1
0

−
3
0
),

re
sp

ec
ti

v
el

y.

T
ra

n
sf

o
rm

a
ti

o
n

P
a
ra

m
e
te

rs
T
ra

in
in

g
ty

p
e

G
ri

d
R

a
n
d
.

S
R
C

C
e
rt

.
A

c
c

P
R
o
A

C
e
rt

.
A

c
c

δ
=

1
0

−
3
0

δ
=

1
0

−
1
5

δ
=

1
0

−
4

δ
=

1
0

−
3
0

δ
=

1
0

−
1
5

δ
=

1
0

−
4

R
o
ta

ti
o
n

θ
r

∈
[−

3
5

◦ ,
3
5

◦ ]
p
la

in
2
6
.9

%
7
6
.8

%
2
4
.7

%
2
4
.8

%
2
4
.8

%
3
0
.3

%
3
1
.5

%
3
2
.0

%

P
A
T

1
6
.7

%
5
5
.9

%
8
.1

%
8
.1

%
8
.1

%
1
0
.8

%
1
2
.4

%
1
2
.9

%

A
T

1
6
.5

%
7
4
.5

%
1
1
.2

%
1
1
.2

%
1
1
.2

%
1
4
.7

%
1
5
.2

%
1
5
.4

%

T
ra

n
sl

a
ti

o
n

θ
t

∈
[−

3
0
%

,
3
0
%

]
p
la

in
6
2
.8

%
8
9
.6

%
6
4
.9

%
6
5
.1

%
6
6
.6

%
7
7
.5

%
7
8
.8

%
7
9
.4

%

P
A
T

5
0
.1

%
7
7
.7

%
3
1
.1

%
3
1
.7

%
3
2
.4

%
4
7
.5

%
4
8
.6

%
4
9
.5

%

A
T

5
6
.5

%
7
9
.3

%
4
5
.3

%
4
5
.7

%
4
6
.1

%
5
8
.9

%
6
0
.1

%
6
1
.7

%

S
c
a
le

θ
s

∈
[−

7
0
%

,
1
3
0
%

]
p
la

in
4
5
.4

%
8
6
.9

%
4
8
.7

%
4
9
.0

%
4
9
.7

%
6
3
.3

%
6
5
.2

%
6
7
.1

%

P
A
T

2
3
.5

%
7
3
.1

%
8
.4

%
8
.7

%
9
.6

%
2
0
.9

%
2
2
.8

%
2
4
.7

%

A
T

3
4
.4

%
7
4
.4

%
1
9
.2

%
1
9
.4

%
2
0
.3

%
3
2
.4

%
3
4
.5

%
3
5
.9

%

H
u
e

θ
h

∈
[−

π 2
,

π 2
]

p
la

in
7
6
.9

%
8
9
.9

%
7
5
.0

%
7
5
.0

%
7
5
.0

%
7
9
.5

%
7
9
.8

%
7
9
.6

%

P
A
T

6
3
.0

%
7
7
.5

%
5
3
.6

%
5
3
.6

%
5
3
.6

%
5
6
.7

%
5
7
.6

%
5
7
.9

%

A
T

5
7
.6

%
5
5
.1

%
5
4
.7

%
5
4
.7

%
5
4
.7

%
5
4
.1

%
5
4
.5

%
5
5
.7

%

S
a
tu

ra
ti

o
n

θ
s

∈
[−

3
0
%

,
3
0
%

]
p
la

in
9
2
.3

%
9
3
.9

%
9
5
.3

%
9
5
.3

%
9
5
.3

%
9
5
.6

%
9
5
.6

%
9
6
.4

%

P
A
T

7
7
.1

%
8
0
.8

%
7
2
.3

%
7
2
.3

%
7
2
.4

%
7
5
.6

%
7
6
.0

%
7
7
.3

%

A
T

7
4
.5

%
7
6
.4

%
7
6
.8

%
7
7
.0

%
7
7
.0

%
7
9
.4

%
7
9
.6

%
8
0
.3

%

B
ri

g
h
tn

e
ss

+
C

o
n
tr

a
st

θ
b

∈
[−

3
0
%

,
3
0
%

]
θ

c
∈

[−
3
0
%

,
3
0
%

]
p
la

in
7
2
.6

%
9
2
.7

%
7
5
.5

%
7
5
.7

%
7
6
.2

%
8
3
.8

%
8
4
.8

%
8
4
.1

%

P
A
T

3
6
.1

%
7
6
.2

%
2
0
.5

%
2
0
.9

%
2
1
.6

%
3
7
.4

%
3
8
.2

%
3
7
.0

%

A
T

3
1
.5

%
7
3
.9

%
1
7
.8

%
1
7
.9

%
1
8
.4

%
3
4
.7

%
3
8
.1

%
3
5
.7

%

G
a
u
ss

ia
n

B
lu

rr
in

g
θ

g
∈

[0
,
9
]

p
la

in
1
.0

%
1
8
.1

%
3
.1

%
3
.1

%
3
.3

%
3
.6

%
3
.7

%
3
.4

%

P
A
T

2
.9

%
3
9
.7

%
1
1
.0

%
1
1
.0

%
1
1
.0

%
1
3
.5

%
1
3
.7

%
1
2
.9

%

A
T

3
.7

%
4
2
.9

%
1
8
.7

%
1
8
.9

%
1
8
.9

%
1
9
.2

%
1
9
.3

%
1
8
.8

%



A Probabilistic Robustness Assessment Against Functional Perturbations 165

(a) plain (b) PAT (c) AT

Fig. 1. CIFAR-10 - An illustration of evaluating robustness of trained neural networks
using PRoA, SRC and A-C CI with different confidence parameter δ against one specific
perturbation, image scaling.

transformer block with a set of parameters of affine transformation, i.e. T (x, θ),
in [7], where

θ =
[

θ11 θ12 θ13

θ21 θ22 θ23

]

(12)

is an affine matrix determined by θr, θt as well as θs.

Colour-Shifted Function. Regarding colour shifting, we change the colour of
images based on HSB (Hue, Saturation and Brightness) space instead of RGB
space since HSB give us a more intuitive and semantic sense for understanding
the perceptual effect of the colour transformation. We also consider a combina-
tion attack using brightness and contrast.

All mathematical expressions of these functional perturbations as well as
their parameter ranges are presented in Appendix C.3.

5.3 Quantitative Results of Experiments on CIFAR-10

To evaluate our method, we calculate the probabilistically certified accuracy of
1,000 images randomly from a test set for various functional perturbations by
PRoA and SRC, in dependence on the user-defined confidence level. Further-
more, empirical robust accuracy is computed against random and grid search
adversaries as well.

To begin, we validate the effectiveness of our method over three ResNet18
models (plain, AT and PAT) trained with different training protocols against
all considered functional perturbations on the CIFAR-10 dataset as mentioned
previously. As a result of the experiments, we present considered perturbation
functions, accompanying parameters, and quantitative results in terms of proba-
bilistically certified accuracy (Cert. Acc), empirical accuracy (Rand.) and empiri-
cal robust accuracy (Grid) in Table 2. Clearly, the results of the proposed method
align well with the validation results obtained by exhaustive search and random
perturbation, and PRoA is able to achieve higher certified accuracy than SRC
in almost all scenarios. Thus, the effectiveness of PRoA can be demonstrated.
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Fig. 2. ImageNet - Comparison of probabilistic certified accuracy with confidence level
1 − 10−4 , computed over the 500 randomly selected ImageNet images, amongst the
models described in Table 6.

Table 3. CIFAR-10 - Confusion matrix comparing SRC and PRoA [plain model under
brightness+contrast perturbation, δ = 10−10].

PRoA

Certified Uncertified Termination

SRC Certified 329 32 12

Uncertified 36 9 0

Infeasible 69 11 2

An illustration of model verification using A-C CI, SRC and PRoA with
various confidence levels (90% ∼ 1 − 10−30) against the picture scaling func-
tion on CIFAR-10 is depicted in Fig. 1. For instance, according to Fig. 1(a), we
have 90% confidence (δ = 10−1) that this considered trained model will cor-
rectly identify roughly 71% of images in CIFAR-10 after a no more than 30%
image scaling with a greater than 95% chance (τ = 5%). In contrast, we have
1 − 10−30 (δ = 10−30) confidence that the proportion of images with a mis-
classification probability below our accepted level 5% would be 67%. Clearly,
accuracy certified by PRoA reduces along with the growth of confidence, but it
is not significantly changed for SRC and progressively diminishes for A-C CI. In
addition, as compared with baselines, the proposed method achieves remarkable
higher certified robust accuracy and a narrower gap to empirical robust accuracy
along with our confidence increasing, see Fig. 1. Moreover, Grid is an approxi-
mated accuracy to the extreme case with zero tolerance (τ = 0) to perturbations.
However, certified accuracy with a 5% tolerance level obtained by SRC and A-C
CI always tends to be below the Grid without tolerance as the confidence level
increases, which causes underestimation of the probabilistic robustness.

We apply SRC and PRoA for verifying the robustness of 500 images, which
are randomly chosen from the test set on CIFAR-10. The corresponding con-
fusion matrix is shown in Table 3, which takes into account the cases in which
the SRC outputs an “infeasible” status when it fails to obtain a deterministic
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certification result, and PRoA reaches sample limitation (set to 10,000) as a ter-
mination condition. Unsurprisingly, our method can take a certification decision
in most cases when SRC returns an “infeasible”, even though 14 images obtain
a “termination” status due to adaptive sampling reaching sample limitation.

5.4 Comparing Probabilistic Robustness Across Models
on ImageNet

We also use our method to analyse four large state-of-the-art neural networks
against perturbation functions as mentioned earlier with 500 images randomly
picked from the ImageNet test set. Figure 2 demonstrates the robustness com-
parison of different models when subjected to diverse functional perturbations.
All validation results of different models are shown as percentages in Fig. 2. For
the ‘rotation’ scenario, the certified accuracy of resnetv2 50 produced by PRoA
is 57.8%, which means we have 99.99% confidence in the claim that on aver-
age, in resnetv2 50, 57.8% of images will produce an adversarial example with a
chance of more than 5% in the ‘rotation’ scenario, e.g. camera rotation.

Table 4. ImageNet - Comparison Agresti-Coull, SRC and PRoA [δ = 10−10].

Model Perturbation Certified (%) Avg. runtime (sec.)

Agresti-Coull SRC PRoA Agresti-Coull SRC PRoA

Mobilenetv2 100 Rotation 38 40 43 5.08 5.10 8.35

Translation 41 34 47 5.14 5.20 8.96

Scaling 38 30 44 5.32 5.07 8.64

Hue 40 48 48 5.64 5.16 5.19

Saturation 65 71 72 5.60 5.16 7.26

Brightness+Contrast 47 54 62 5.58 5.17 7.03

Gaussian Blurring 3 6 8 6.38 5.72 3.89

efficientnet b0 Rotation 46 47 49 5.08 6.25 6.28

Translation 49 44 57 5.14 6.24 7.77

Scaling 46 44 51 5.32 6.25 9.83

Hue 48 55 57 5.64 6.53 8.69

Saturation 73 79 81 5.60 6.53 9.83

Brightness+Contrast 55 56 65 5.59 6.53 12.37

Gaussian Blurring 10 14 17 6.38 7.11 5.61

Resnetv2 50 Rotation 51 46 54 12.77 9.68 15.76

Translation 58 44 57 12.80 9.56 18.88

Scaling 51 38 54 12.80 9.54 17.89

Hue 61 61 63 13.10 9.81 13.04

Saturation 77 83 86 13.15 9.82 16.87

Brightness+Contrast 39 32 40 14.02 9.81 20.51

Gaussian Blurring 15 14 17 14.16 10.43 6.66

vit base patch16 224 Rotation 39 34 41 34.68 33.04 49.62

Translation 47 32 49 34.43 33.06 59.18

Scaling 40 33 43 34.32 33.00 63.21

Hue 63 53 54 34.61 33.31 45.70

Saturation 70 71 73 37.54 33.31 41.37

Brightness+Contrast 32 24 34 36.83 34.19 70.69

Gaussian Blurring 32 28 30 35.99 34.88 33.96
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Table 5. ImageNet - PRoA [δ = 10−10].

Model Perturbation Avg. runtime

(sec.±std)

Avg. sample

num.

Certified (%)

resnetv2 50 Rotation 15.76 ± 17.74 5820 54

Brightness+Contrast 20.51 ± 33.05 7930 40

Blurring 6.66 ± 9.64 2420 17

mobilenetv2 100 Rotation 8.35 ± 13.40 7860 43

Brightness+Contrast 7.03 ± 8.23 6650 62

Blurring 3.88±10.55 3180 6

efficientnet b0 Rotation 6.28 ± 7.28 4970 49

Brightness+Contrast 12.37 ± 13.81 9370 65

Blurring 5.61 ± 2.50 3790 17

vit base patch16 224 Rotation 49.62 ± 80.11 7260 41

Brightness+Contrast 70.69 ± 106.84 9950 34

Blurring 35.96 ± 69.26 5020 30

We also compare our algorithm to the Agresti-Coull confidence interval and
SRC with a moderate confidence level, i.e. δ = 10−10, as shown in Table 4.
On the one hand, our method provides the highest certified accuracy for prac-
tically all scenarios and models; on the other hand, the average runtime of our
method is comparatively longer than baselines, due to the error bounds of the
estimate, which are not tight enough to make decisions and necessitate more
samples. Interestingly, our algorithm takes the shortest time to certify images
under a sophisticated functional perturbation, the Gaussian blurring, whereas
the computation time of A-C CI and SRC increases. This is because, instead
of a predetermined and decided a priori number of samples, our method termi-
nates at any runtime J depending on the ongoing process once it is capable of
delivering a result, avoiding superfluous samples.

Finally, the average number of samples and the average runtime for a single
image are reported in Table 5. As one can notice, our method can be easily scaled
to various SOTA network architectures, and the computation time and required
samples increase reasonably with network size and complexity of perturbation
function.

6 Conclusion

This paper aims to certify the probabilistic robustness of a target neural network
to a functional threat model with an adaptive process inspired by the Adaptive
Concentration Inequalities. With PRoA, we can certify that a trained neural
network is robust if the estimated probability of the failure is within a tolerance
level. PRoA is dependent on the ongoing hypothesis test, avoiding a-prior sample
size. The tool is scalable, efficient and generic to black-box classifiers, and it also
comes with provable guarantees. In this paper, the hypothesis testing and adap-
tive sampling procedure are sequential and bring difficulty for parallelization, so
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one interesting future direction lies in how to further boost PRoA’s efficiency,
e.g., by enabling parallelization on GPUs. Another interesting future work is to
bridge the gap between worst-case certification and chance-case certification.
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Abstract. In this paper we aim to provide machine learning practition-
ers with tools to answer the question: have the labels in a dataset been
corrupted? In order to simplify the problem, we assume the practitioner
already has preconceptions on possible distortions that may have affected
the labels, which allow us to pose the task as the design of hypothesis
tests. As a first approach, we focus on scenarios where a given dataset
of instance-label pairs has been corrupted with class-conditional label
noise, as opposed to uniform label noise, with the former biasing learn-
ing, while the latter – under mild conditions – does not. While previous
works explore the direct estimation of the noise rates, this is known to
be hard in practice and does not offer a real understanding of how trust-
worthy the estimates are. These methods typically require anchor points
– examples whose true posterior is either 0 or 1. Differently, in this paper
we assume we have access to a set of anchor points whose true posterior
is approximately 1/2. The proposed hypothesis tests are built upon the
asymptotic properties of Maximum Likelihood Estimators for Logistic
Regression models. We establish the main properties of the tests, includ-
ing a theoretical and empirical analysis of the dependence of the power
on the test on the training sample size, the number of anchor points, the
difference of the noise rates and the use of relaxed anchors.

1 Introduction

When a machine learning practitioner is presented with a new dataset, a first
question is that of data quality [24] as this will affect any subsequent machine
learning tasks. This has led to tools to address transparency and accountability
of data [27,28]. However, in supervised learning, an equally important concern
is the quality of labels. For instance, in standard data collections, data curators
usually rely on annotators from online platforms, where individual annotators
cannot be unconditionally trusted as they have been shown to perform incon-
sistently [25]. Labels are also expected to not be ideal in situations where the
data is harvested directly from the web [31,32]. In general this is a consequence
of annotations not being carried out by domain experts [13].

The existing literature primarily focuses on directly estimating the distor-
tion(s) present in the labels and mainly during the learning process (see Sect. 4).
In this paper we argue that, in most cases, that is too hard a problem and might
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13715, pp. 171–186, 2023.
https://doi.org/10.1007/978-3-031-26409-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26409-2_11&domain=pdf
https://doi.org/10.1007/978-3-031-26409-2_11
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lead to suboptimal outcomes. Instead, we suggest modifying this approach in two
ways. First, we leverage the practitioner’s prior knowledge on the type possible
distortions affecting the labels and use their preconceptions to design hypothe-
sis testing procedures that would allow us (under certain assumptions we state
later) to provide a measure of evidence for the presence of the distortion. This
is of course a much simple task than addressing the estimation of any possible
distortion. As an example, in this paper, we focus on class-conditional noise,
as opposed to uniform noise (as we discuss later, class-conditional noise biases
the learning procedure, while uniform noise under mild conditions does not).
Secondly, with this information at hand, and given that the tests are performed
right after data collection and annotation and before learning takes place, the
practitioner can then make more informed decisions. If the quality of the labels is
deemed poor, then the practitioner could resort to: (1) a modified data labelling
procedure (e.g., active learning in the presence of noise [29]), (2) seek methods
to make the training robust (e.g., algorithms for learning from noisy labels [30]),
or (3) drop the dataset altogether.

Let us introduce the binary classification setting, where the goal is to train
a classifier g : X → {−1,+1}, from a labelled dataset Dtrain

n = {(xi, yi)}n
i=1 ∈

(Rd × {−1, 1}), with the objective of achieving a low miss-classification error:
PX,Y (g(X) �= Y ). While it is generally assumed that the training dataset is
drawn from the distribution for which we wish to minimise the error for Dtrain

n ∼
p(X,Y ), as mentioned above, this is often not the case. Instead, the task requires
us to train a classifier on a corrupted version of the dataset D̃train

n ∼ p(X, Ỹ )
whilst still hoping to achieve a low error rate on the clean distribution.

In this work we focus on a particular type of corruption, instance-independent
label noise, where labels are flipped with a certain rate, that can either be uniform
across the entire data-generating distribution or conditioned on the true class of
the data point. A motivating example of class-conditional noise is given in [12]
in the form of medical case-control studies, where different tests may be used for
subject and control. An essential ingredient in our procedure is the input from
the user in the form of a set of anchor points. Differently from previous works, we
assume anchor points for which the true posterior distribution P(Y = 1 | X = x)
is (approximately) 1⁄2. For an instance x this requirement means that an expert
would not be able to provide any help to identify the correct class label. While
this will be shown to be convenient for theoretical purposes, finding such anchor
points might be rather difficult to accomplish in practice, so we show how to
relax this notion to a more realistic η(x) ≈ 1/2.

The tests rely on the asymptotic properties of the Maximum Likelihood
Estimate (MLE) solution for Logistic Regression models, and the relationship
between the true and noisy posteriors. On the theoretical side, we show that when
the asymptotic properties of MLE hold and the user provides a single anchor
point, we can devise hypothesis tests to assess the presence of class-conditional
label corruption in the dataset. We then further extend these ideas to allow for
richer sets of anchor points and illustrate how these lead to gains in the power of
the test. In Sect. 2 we cover the necessary background on MLE, noisy labels and
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define the necessary tools. In Sect. 3 we illustrate how to carry a z-test using
anchor points on the presence of class-conditional noise. In Sect. 4 we discuss
related work and in Sect. 5 we present experimental findings.

2 Background

We are provided with a dataset (X,y) = {(xi, yi)}n
i=1 ∈ (Rd ×{−1, 1}), and our

task is to assess whether the labels have been corrupted with class-conditional
flipping noise. We use y to denote the true label, and ỹ to denote the noisy label.
We assume the feature vectors (x) have been augmented with ones such that
we have x → (1, x). We assume the following model:

yi ∼ Bernoulli (ηi) ,

ηi = σ(θ�
0 xi) =

1
1 + exp

(−θ�
0 xi

) .

Following the MLE procedure we have:

θ̂n = argmax
θ∈Θ

�n (θ | Dn) = argmax
θ∈Θ

n∏

i=1

�i (θ | xi, yi)

where:
� (θ | xi, yi) =

yi + 1
2

· log ηi +
1 − yi

2
· log(1 − ηi)

In this setting, the following can be shown (See for example Chap. 4 of [15]):
√

n
(
θ̂n − θ0

)
D−→ N (

0, In(θ0)
−1

)
(1)

where Iθ0 denotes the Fisher-Information Matrix:

In(θ0) = Eθ

(
−∂2�n(θ;Y | x)

∂θ∂θ�

)
= Eθ (−Hn(θ;Y | x))

where the expectation is with respect to the conditional distribution, and Hn is
the Hessian matrix.

We will consider two types of flipping noise and in both cases the noise rates
are independent of the instance: P(Ỹ = −i | Y = i, X = x) = P(Ỹ = −i | Y = i)
for i ∈ {−1, 1}.

Definition 1. Bounded Uniform Noise (UN)
In this setting the per-class noise rates are identical: P(Ỹ = 1 | Y = −1) =
P(Ỹ = −1 | Y = 1) = τ and bounded: τ < 0.50. We will denote this setting with
UN(τ), and a dataset D = (X,y) inflicted by UN(τ) by: Dτ .

Definition 2. Bounded Class-Conditional Noise (CCN)
In this setting the per-class noise rates are different, α �= β and bounded α+β < 1
with: P(Ỹ = −1 | Y = 1) = α and P(Ỹ = 1 | Y = −1) = β. We will denote this
setting with CCN(α, β), and a dataset D = (X,y) inflicted by CCN(α, β) by:
Dα,β.
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An object of central interest in classification settings is the posterior pre-
dictive distribution: η(x) = P(Y = 1 | X = x). Its noisy counterpart,
η̃(x) = P(Ỹ = 1 | X = x), under the two settings, UN(τ) and CCN(α, β),
can be expressed as: (See Appendix 8.1 for full derivation)

η̃(x) =
{

(1 − α − β) · η(x) + β if (CCN)
(1 − 2τ) · η(x) + τ if (UN) (2)

We consider loss functions that have the margin property: �(y, f(x)) =
ψ(yf(x)), where f : Rd → R is a scorer, and g(x) = sign(f(x)) is the predictor.
Let f∗ = arg minf∈F EX,Y ψ(Y f(X)) and f̃∗ = arg minf∈F EX,Ỹ ψ(Ỹ f(X))
denote the minimisers under the clean and noisy distributions, under model-
class F .

Definition 3. Uniform Noise robustness [14]
Empirical risk minimization under loss function � is said to be noise-tolerant if
PX,Y (g∗(X) = Y ) = PX,Y (g̃∗(X) = Y ).

Theorem 1. Sufficient conditions for robustness to uniform noise
Under uniform noise τ < 0.50, and a margin loss function, �(y, f(x)) = ψ(yf(x))
satisfying: ψ(f(x)) + ψ(−f(x)) = K for a positive constant K, we have that
g̃∗(x) = sign(f̃∗(x)) obtained from: f̃∗ = arg minf∈F EX,Ỹ ψ(Ỹ f(X)) is robust
to uniform noise.

For the proof see Appendix 8.2. Several loss functions satisfy this, such as: the
square, unhinged (linear), logistic, and more. We now introduce our definition of
anchor points1.

Definition 4. (Anchor Points) An instance x is called an anchor point if we
are provided with its true posterior η(x). Let Ak

s denote a collection of k anchor
points, with η(x) = s ∀x ∈ Ak

s . Furthermore, let us also define Ak
s,δ, to imply that

η(xi) = s + εi, for εi ∼ U([−δ, δ]), with 0 ≤ δ 
 1 (respecting 0 ≤ η(x) ≤ 1).
Also let As,δ = A1

s,δ.

Ak
1 → η(x) = 1 → η̃(x) = 1 − α

Ak
1/2 → η(x) = 1/2 → η̃(x) =

1 − α + β

2
Ak

0 → η(x) = 0 → η̃(x) = β

The cases we will be referring to are shown to the right. The first and last,
Ak

1 and Ak
0 , have been used in the past in different scenarios. In this work we

will make use of the second case, Ak
1/2.

1 Different notions -related to our definition- of anchor points have been used before
in the literature under different names. We review their uses and assumptions in
Sect. 4.
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3 Hypothesis Tests Based on Anchor Points

In this section we introduce our framework for devising hypothesis tests to exam-
ine the presence of class-conditional label noise in a given dataset (with uniform
noise, as the alternative), assuming we are provided with an anchor point(s). Our
procedure is based on a two-sided z-test (see for example Chap. 8 of [33]) with a
simple null hypothesis, and a composite alternative hypothesis (Eq. 5). We first
define the distribution under the null hypothesis (Eq. 6), and under the alterna-
tive hypothesis (Eq. 7), when provided with one strict anchor point (η(x) = 1/2).
In this setting, for a fixed level of significance (Type I error) (Eq. 8), we first
derive a region for retaining the null hypothesis (Eq. 9), and then we analyse the
power (Prop.1) of the test (where we have that Type II Error = 1 - power). We
then extend the approach to examine scenarios that include: (1) having multiple
strict anchors (η(xi) = 1/2, ∀i ∈ [k], k > 1), (2) having multiple relaxed anchors
(η(xi) ≈ 1/2, ∀i ∈ [k], k > 1), and (3) having no anchors.

With the application of the delta method (See for example Chap. 3 of [15])
on Eq. 1, we can get an asymptotic distribution for the predictive posterior:

√
n(η̂(x) − η(x)) D−→ N

(
0,

(
η(x)(1 − η(x))

)2 · x�I−1

θ0
x
)

(3)

This would not work in the case of η(x) ∈ {0, 1}, so instead we work with
1/2. Which, together with the approximation of the Fisher-Information matrix
with the empirical Hessian, we get:

η̂(x) D−→ N
(

1
2
,

1
16

· x�Ĥnx

)
(4)

where Ĥn = (X�DX)−1, where D is a diagonal matrix, with Dii = η̂i(1 − η̂i),
where η̂i = σ(x�

i θ̂).
For the settings: (D, Ak

1/2) and (Dτ , Ak
1/2), for an x ∈ Ak

1/2 we get: η̃(x) = 1
2 .

While for (Dα,β , Ak
1/2) we get: η̃(x) = 1−α+β

2 . Note that under (Dτ , Ak
1/2), we

also have
(
η̃(x)(1 − η̃(x))

)2 = 1
16 similarly to (D, Ak

1/2).

3.1 A Hypothesis Test for Class-Conditional Label Noise

We now define our null hypothesis (H0) and (implicit) alternative hypothesis
(H1) as follows:

H0 : α = β & H1 : α �= β (5)
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Under the null and the alternative hypotheses, we have the following distri-
butions for the estimated posterior of the anchor:

H0 : η̂(x) ∼ N
(

1
2
,

1
16

· x�Ĥx

)

= N
(

1
2
, v(x)

)
(6)

H1 : η̂(x) ∼ N
(

1 + α − β

2
, ṽ(x)

)
(7)

where

ṽ(x) =

(
(1 − α + β)(β − α)

)2

16
· x� ˆ̃Hx

Level of Significance and Power of the Test. The level of significance (also known
as Type I Error) is defined as follows:

a = P(reject H0 | H0 is True) (8)

Rearranging Eq. 6 we get: η̂(x)−1/2√
v(x)

∼ N (0, 1), under the null. Which for a

chosen level of significance (a) allows us to define a region of retaining the null
H0. We let za/2 and z1−a/2 denote the lower and upper critical values for retaining
the null at a level of significance of a.

Retain H0 if:

za/2 ·
√

v(x) + 1/2 ≤ η̂(x) ≤ z1−a/2 ·
√

v(x) + 1/2 (9)

Using the region of retaining the null hypothesis, we can now derive the power
of the test.

Proposition 1. Power of the test (See Appendix 8.3 for the full derivation.)
Under the distributions for the estimated posterior under the null and alternative
hypotheses in Eqs. 6 & 7, based on the definition of the hypotheses in Eq. 5, the
test has power: P(reject H0 | H0 is False) = 1 − b1, where:

b1=Φ

⎛
⎜⎜⎜⎜⎝

z ·
√

v(x) +
β − α

2√
ṽ(x)

⎞
⎟⎟⎟⎟⎠

−Φ

⎛
⎜⎜⎜⎜⎝

−z ·
√

v(x) +
β − α

2√
ṽ(x)

⎞
⎟⎟⎟⎟⎠

(10)

3.2 Multiple Anchor Points

In this section we discuss how the properties of the test change in the setting
where multiple anchors points are provided.

Let η̂i correspond to the ith instance in Ak
1/2. Then for η̄ = 1

k

∑k
i=1 η̂i we

have:

η̄ ∼ N
(

1
2
,

1
16

· x̄�Hx̄

)

where x̄ = 1
k

∑k
i=1 xi with xi ∈ Ak

1/2 ∀i. For the full derivation see Appendix
8.4.
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Anchors Chosen at Random. We have that x ∈ Ak
1/2 → x�β0 = 0, so that

for an orthonormal basis U , x = Ur. Without loss of generalisation we let
U :,0 = β0

‖β0‖2
, and therefore η(x) = 1/2 → r0 = 0. In words: ∀x ∈ Ak

1/2 we have
that x’s component in the direction of β0 is 0.

Now we make the assumption that x’s are random with rj ∼ U([−c, c]).
Therefore, Erj = 0, and Vrj = c2

3 . In the following we use the subscript S in
the operator ES to denote the randomness in choosing the set A. In words: we
assume that the set Ak

1/2 is chosen uniformly at random from the set of all anchor
points.

Combining these we get:

ESv(x) = ESx�Hx = ESr�UHU�r

=
dc2

3
· tr(UHU�) =

dc2q

3

where q = tr(H). While for k anchor points chosen independently at random,
we get:

ESv(x̄) = ES

⎡

⎣ 1
k2

k∑

i,j

x�
i Hxj

⎤

⎦

= ES

⎡

⎣ 1
k2

k∑

i,j

r�
i UHU�rj

⎤

⎦

=
dc2

3k
· tr(UHU�) =

dc2q

3k

Following the same derivation as above we get:

bk=Φ

⎛
⎜⎜⎜⎜⎝

z ·
√

v(x̄) +
β − α

2√
ṽ(x̄)

⎞
⎟⎟⎟⎟⎠

− Φ

⎛
⎜⎜⎜⎜⎝

−z ·
√

v(x̄) +
β − α

2√
ṽ(x̄)

⎞
⎟⎟⎟⎟⎠

If we let v = ESv(x) (similarly ṽ = ES ṽ(x)), then we have seen that ESv(x̄) =
v
k (Reminder: expectations are with respect to the randomness in picking the
anchor points). Then we have:

bk

b1
=

Φ

(
z
√

v + h
√

k√
ṽ

)

− Φ

(
−z

√
v + h

√
k√

ṽ

)

Φ

(
z
√

v + h√
ṽ

)
− Φ

(−z
√

v + h√
ṽ

) ≤ 1 (11)

with h = β−α
2 .
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3.3 Multiple Relaxed Anchors-Points

In this section we see how the properties of the test change in the setting where
the anchors do not have a perfect η(x) = 1/2. We now consider the case of Ak

1/2,δ.
Let x be such that η(x) = 1

2 + ε, where ε ∼ U([−δ, δ]) with 0 < δ 
 1. (Note: by
definition δ ≤ 1/2.)

For one instance we have the following: Eθ̂η̂ = 1/2 + ε, and ESEθ̂η̂ = 1/2

For the variance component we have: (η̂(1 − η̂))2 =
((

1
2 + ε

) (
1
2 − ε

))2 ≈
1
16 − ε2

2 , ignoring terms of order higher than ε2, under the assumption that
δ 
 1.

Under the law of total variance we have:

V(η) = E (V (η | ε)) + V (E (η | ε))

= E

((
1
16

− ε2

2

)
· x�Hx

)
+ V

(
1
k

k∑

i=1

η̂i

)

=
(

1
16

− δ2

6

)
· x�Hx + V

(
1
2

+
1
k

k∑

i=1

εi

)

=
(

1
16

− δ2

6

)
· x�Hx +

δ2

3k
(12)

For the full derivation see Appendix 8.6. Finally, bringing everything together
and ignoring δ2 terms we get:

η̄ ∼ N
(

1
2
,

(
1
16

− δ2

6

)
· x̄�Hx̄

)

≈ N
(

1
2
,

1
16

· x̄�Hx̄

)

3.4 What if We have No Anchor Points?

We have shown that we can relax the hard constraint on the anchor points to
be exactly η = 1/2, to η ≈ 1/2. It is natural then to ask if we need anchor points
at all. If instead we were to sample points at random, then we would have the
following: Ep(X)η(X) = π. The importance of needing for set of anchor points,
either Ak

1/2 or Ak
1/2,δ, is that, the anchor points would be centered around a known

value 1/2 , as opposed to having no anchor points and sampling at random, where
the anchor points would end up being centered around π. Knowledge of the class
priors could allow for a different type of hypothesis tests to asses the presence of
label noise. We do not continue this discussion in the main document as it relies
on different type of information, but provide pointers in the Appendix 7.8.

3.5 Practical Considerations and Limitations

Beyond Logistic Regression. Our approach relies on the asymptotic properties of
MLE estimators, and specifically of Logistic Regression. More complex models
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can be constructed in a similar fashion through polynomial feature expansion.
However the extension of these tests to richer model-classes, such as Gaussian
Processes, remains open.

Multi-class Classification. Multi-class classification setting can be reduced to
one-vs-all, all-vs-all, or more general error-correcting output codes setups as
described in [23], which rely on multiple runs of binary classification. In these
settings then we could apply the proposed framework. The challenge would then
be how to interpret η = 1/2.

Finding Anchor Points. While it might not be straightforward for the user to
provide instances whose true posterior is η(x) = 1/2, we do show how this can
be relaxed, by allowing η(x) ≈ 1/2. We then show how multiple anchor points
can be stacked, improving the properties of the test.

Model Misspecification. Our work relies on properties of the MLE and its asymp-
totic distribution (Eq. 1). These assume the model is exactly correct. Similarly,
under the null in the scenario of α = β > 0, we are at risk of model misspec-
ification. This is not a new problem for Maximum Likelihood estimators, and
one remedy is the so-called Huber Sandwich Estimator [34] which replaces the
Fisher Information Matrix, with a more robust alternative.

Instance-Dependent Noise (IDN). In IDN the probability of label flipping
depends on the features. It can be seen as a generalisation over UN (which
is unbiased under mild conditions (See Theorem 1) and CCN (where learning is
in general biased). Our theoretical framework for CCN serves as a starting point
to devise tests of IDN.

4 Related Work

Previous works have focused on the importance of (automatic) data preparation
and data quality assessment [24,36–38]. These data quality measures refer to
aspects such as the presence of noise in data, missing values, outliers, imbal-
anced classes, inconsistency, redundancy, timeliness and more [36,38]. Within
this context, in this work we focus on label noise and, in particular, assessing
the presence of class-conditional label noise, as opposed to uniform label noise.
Related approaches include the identification specific corrupted instances, or dis-
tilled examples, and the direct estimation of the noise rates. These are discussed
below.

Noisy Examples. As presented in [11,26], the aim is to identify the specific
examples that have been inflicted with noise. This is a non-trivial task unless
certain assumptions can be made about the per-class distributions, and their
shape. For example, if we can assume that the supports of the two classes do
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not overlap (i.e. η(x)(1 − η(x)) ∈ {0, 1} ∀x), then we can identify mislabelled
instances using per-class densities. If this is not the case, then it would be dif-
ficult to differentiate between a mislabelled instance and an instance for which
η(x)(1 − η(x)) ∈ (0, 1). A different assumption could be uni-modality, which
would again provide a prescription for identifying mislabelled instances through
density estimation tools.

Distilled Examples. The authors in [16] go in the opposite direction by trying
to identify instances that have not been corrupted → the distilled examples. As
a first step the authors assume knowledge of an upper-bound2 (Theorem 2 of
[16]) which allows them to define sufficient conditions for identifying whether an
instance is clean. As a second step they aim at estimating the (local) noise rate
based on the neighbourhood of an instance (Theorem 3 of [16]).

Anchor Points and Perfect Samples. Finally, we can aim to directly estimate
noise rates (or general distortions) while training [17,39]. A common approach
is to proceed by correcting the loss to be minimised, by introducing the notion
of a mixing matrix M ∈ [0, 1]c×c, where Mi,j = P(ỹ = ej | y = ei) [8]. Using
these formulations, we are in a position where, if we have access to M , we can
correct the training procedure to obtain an unbiased estimator. However, M is
rarely known and difficult to estimate. Works on estimating M rely on having
access to perfect samples and can be traced back to [3], and the idea was later
adapted and generalised in [4,5,17] to the multi-class setting. Interestingly, in [1]
authors do not explicitly define these perfect samples, but rather assume they do
exist in a large enough (validation) dataset X ′ – obtaining good experimental
results. Similarly, [18] also work by not explicitly requiring anchor points, but
rather assuming their existence.

5 Experiments

In order to illustrate the properties of the tests, for the experiments we consider
a synthetic dataset where the per-class distributions are Gaussians, with means
[1, 1]� and [−1, −1]�, with identity as scale. For this setup we know that anchor
points should lie on the line y = −x, and draw them uniformly at random
x ∈ [−4, 4]. We analyse the following parameters of interest:

1. N ∈ [500, 1000, 2000, 5000]: the training sample size.
2. (α − β)∈ [−0.05, 0.10, 0.20]: the difference between the per-class noise rates.
3. k ∈ [1, 2, 4, 8, 16, 32]: the number of anchor points.
4. δ ∈ [0, 0.05, 0.10]: how relaxed the anchor points are: η(x) ∈ [0.50−δ, 0.50+

δ].

For all combinations of N and (α − β) we perform 500 runs. In each run,
we generate a clean version of the data D, and then proceed by corrupting it to

2 The paper aims at tackling instance-dependent noise.
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obtain a separate version: Dα,β . For both datasets, we fit a Logistic Regression
model. We sample both the anchor points and relaxed anchor points. Finally, we
then compute the z-scores, and subsequently the corresponding p-values3.

The box-plots should be read as follows: Q1, Q2 & Q3 separate the data
into 4 equal parts. The inner box starts (at the bottom) at Q1 and ends (at
the top) at Q3, with the horizontal line inside denoting the median (Q2). The
whiskers extend to show Q1 − 1.5 · IQR, and Q3 + 1.5 · IQR. IQR denotes the
Interquartile Range and IQR = Q3 − Q1.

In Figs. 1, 2 and 3 we have the following: moving to the right we increase
the relaxation of anchor points, and moving downwards we increase the training
sample-size. On the subplot level, on the x-axis we vary the number of anchor
points, and on the y-axis we have the p-values. In all subplots we indicate with
a red dashed line the mark of 0.10, and with a blue one the mark of 0.05, which
would serve as rejection thresholds for the null hypothesis.

The experiments are illustrative of the claims made earlier in the paper.
Below we discuss the findings in the experiments and what they mean with
regards to Type I and Type II errors. We discuss these points in two parts; we
first discuss the effect on sample size (N), difference in noise rates (|α − β|) and
number of anchor points (k).

Size of Training Set (N). As the size of training set (N) increases, the power
increases. This can be seen Figs. 1, 2 & 3. By moving down the first column,
and fixing a value for k, where N increases, we see the range of the purple box-
plots decreasing, and essentially a larger volume of tests falling under the cut-off
levels of significance (red and blue dashed lines). This is expected given that
the variance of the MLE θ̂MLE vanishes as N increases, as is seen in Eq. 1 and
discussion underneath it.

Difference in noise rates (|α−β|) As |α−β| increases, the power increases. This
can be seen in Figs. 1, 2 & 3, by fixing a particular subplot in the first column
(for example, top-left one), and a value for k, we see again that the volume moves
down. As presented in Eq. 10, as β − α increases, the power also increases.

Number of Anchor Points (k). The same applies to the number of anchor points
– as the number of anchor points (k) increases, the power of the test increases.
This can be seen in all three figures by focusing in any subplot in the first column,
and considering the purple box-plots moving to the right. In Eq. 11 we see effect
of k on the power.
3 What we have so far presented is aligned with the Neyman-Pearson theory of hypoth-

esis testing. We have shown how to utilise anchor points to obtain the p-value – a
continuous measure of evidence against the null hypothesis- and then leverage the
implicit alternative hypothesis of class-conditional noise and a significance level to
analyse the power of the test. In this case, the p-value is the basis of formal decision-
making process of rejecting, or failing to reject, the null hypothesis. Differently, in
Fisher’s theory of significance testing, the p-value is the end-product [35]. Both the
p-value and the output of the test can be used as part of a broader decision process
that considers other important factors.
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Fig. 1. Fixed |β − α| = 0.05. Red dotted line at 0.10, and blue at 0.05. (Color figure
online)

Fig. 2. Fixed |β − α| = 0.10. Red dotted line at 0.10, and blue at 0.05. (Color figure
online)
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Fig. 3. Fixed |β − α| = 0.20. Red dotted line at 0.10, and blue at 0.05. (Color figure
online)

In all three discussions above we focused on the first column of each of the
figures – which shows results from experiments on strict anchors. What we also
observe in this case (the first column of all figures) is that the p-values follow
the uniform distribution under the null (as expected, given the null hypothesis
is true) – shown by the green box-plots. Therefore the portion of Type I Errors
= a (the level of significance Eq. 8). When we relax the requirements for strict
anchors to allow for values close to 1/2, we introduce a bias in the lower and
upper bounds in Eq. 9 of +ε. While Eε = 0 this shift on the boundaries of the
retention region will increase Type I Error. On the other hand, in Eq. 12 we
see how this bias decreases as you increase the number of anchor points. Both
of these phenomena are also shown experimentally by looking at the latter two
columns of the figures.

Anchor Point Relaxation (δ). Lastly, we examine the effect of relaxing the strict-
ness of the anchors (δ), η(x) ∈ [0.50 − δ, 0.50 + δ] on the properties of the test.
As just discussed we see that as we increase the number of anchor points Type
I Error decreases (volume of green box-plots under each of the cut-off points).
We also observe that, as compared to only allowing strict anchors, the power is
not affected significantly – with the effect decreasing as the number of anchor
points increases. Furthermore, in the latter two columns we also observe the
phenomena mentioned in the discussion concerning the first column only.
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6 Conclusion and Future Work

In this work we introduce the first statistical hypothesis test for class-conditional
label noise. Our approach requires the specification of anchor points, i.e.
instances whose labels are highly uncertain under the true posterior probability
distribution, and we show that the test’s significance and power is preserved over
several relaxations on the requirements for these anchor points. Our experimental
analysis, which confirms the soundness of our test, explores many configurations
of practical interest for practitioners using this test. Of particular importance
for practitioners, since anchor specification is under their control, is the high
correspondence shown theoretically and experimentally between the number of
anchors and test significance.

Future work will cover both theoretical and experimental components. On
the theoretical front, we are interested in understanding the test’s value under a
richer set of classification models, and further relaxing requirements on true pos-
terior uncertainty for anchor points. Experimentally, we are particularly inter-
ested in applying the tests to diagnostically challenging healthcare problems and
utilising clinical experts for anchor specification.

Acknowledgements. This work was funded by the UKRI Turing AI Fellowship
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Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12892, pp. 332–
343. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86340-1 27

31. Fergus, R., et al.: Learning object categories from google’s image search. In: Tenth
IEEE International Conference on Computer Vision (ICCV 2005), vol. 1. IEEE
(2005)

32. Schroff, F., Criminisi, A., Zisserman, A.: Harvesting image databases from the web.
IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 754–766 (2010)

http://arxiv.org/abs/1705.02245
http://arxiv.org/abs/1705.01936
http://arxiv.org/abs/1909.05167
https://doi.org/10.1007/978-3-030-86340-1_27


186 R. Poyiadzi et al.

33. Casella, G., Berger, R.L.: Statistical inference. Cengage Learning (2021)
34. Freedman, D.A.: On the so-called “Huber sandwich estimator” and “robust stan-

dard errors”. Am. Stat. 60(4), 299–302 (2006)
35. Perezgonzalez, J.D.: Fisher, Neyman-Pearson or NHST? a tutorial for teaching

data testing. Front. Psychol. 6, 223 (2015)
36. Gupta, N., et al.: Data quality toolkit: automatic assessment of data quality and

remediation for machine learning datasets. arXiv preprint arXiv:2108.05935 (2021)
37. Afzal, S., et al.: Data readiness report. In: 2021 IEEE International Conference on

Smart Data Services (SMDS). IEEE (2021)
38. Corrales, D.C., Ledezma, A., Corrales, J.C.: From theory to practice: a data quality

framework for classification tasks. Symmetry 10(7), 248 (2018)
39. Chu, Z., Ma, J., Wang, H.: Learning from crowds by modeling common confusions.

In: AAAI (2021)

http://arxiv.org/abs/2108.05935


On the Prediction Instability of Graph
Neural Networks

Max Klabunde(B) and Florian Lemmerich

Faculty of Computer Science and Mathematics, University of Passau,
Passau, Germany

{max.klabunde,florian.lemmerich}@uni-passau.de

Abstract. Instability of trained models, i.e., the dependence of indi-
vidual node predictions on random factors, can affect reproducibility,
reliability, and trust in machine learning systems. In this paper, we sys-
tematically assess the prediction instability of node classification with
state-of-the-art Graph Neural Networks (GNNs). With our experiments,
we establish that multiple instantiations of popular GNN models trained
on the same data with the same model hyperparameters result in almost
identical aggregated performance, but display substantial disagreement
in the predictions for individual nodes. We find that up to 30% of the
incorrectly classified nodes differ across algorithm runs. We identify cor-
relations between hyperparameters, node properties, and the size of the
training set with the stability of predictions. In general, maximizing
model performance implicitly also reduces model instability.

Keywords: Prediction churn · Reproducibility · Graph neural
networks

1 Introduction

Intuitively, if we fit any machine learning model with the same hyperparame-
ters and the same data twice, we would expect to end up with the same fitted
model twice. However, recent research has found that due to random factors,
such as random initializations or undetermined orderings of parallel operations
on GPUs, different training runs can lead to significantly different predictions for
a significant part of the (test) instances, see for example [2,17,21]. This predic-
tion instability (also called prediction differences or prediction churn, see Fig. 1)
is undesirable for several reasons, including reproducibility, system reliability,
and potential impact on user experience. For example, if a service is offered
based on some classification of users with regularly retrained models, predic-
tion instability can lead to fluctuating recommendations although there was no
change of the users. Furthermore, if only one part of a machine learning system
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Init 1 Init 2

✓

✗✓✓

✓ ✓ ✓

✓✓✓

✓ ✗

Fig. 1. An example of prediction instability. Green nodes (✓) denote correct predic-
tions, red ones (✗) false predictions. The two sparsely connected nodes on the right
are predicted differently depending on the initialisation. Although the performance is
identical between runs, one third of the predictions are different. (Color figure online)

is retrained, the subsequent parts may not be able to adapt to the difference in
predictions and overall system performance deteriorates unpredictably despite
improvement of the retrained model [9]. Finally, the reproducibility of individual
predictions is important in critical domains such as finance or medicine, in which
recommendations reliant on (for example) random initializations might not be
acceptable.

Due to this importance, there has been a recent surge of work studying the
prediction instability of machine learning models [2,6,9,12,15,17,21]. However,
research on the instability of models in graphs/network settings, such as node
classification, has received little attention so far. As an exception, two recent
studies [14,19] assessed the stability of unsupervised node embedding methods,
mainly from a geometrical perspective. An evaluation of state-of-the-art super-
vised node classification algorithms based on Graph Neural Networks (GNNs)
has—to the best of the authors’ knowledge—not yet been performed.

This paper aims to fill this research gap by presenting an extensive and sys-
tematic experimental evaluation of the prediction instability of graph neural
networks. In addition, we set out to understand how design, data, and train-
ing setup affect prediction stability.1 In more detail, we summarize the major
contributions of our paper as follows:

1. We demonstrate that the popular Graph Convolutional Networks [7] and
Graph Attention Networks [18] exhibit significant prediction instability
(Sect. 3.1). As a key result, we establish that while the aggregated accuracy
of the algorithms is mostly stable, up to a third of incorrectly classified nodes
differ between training runs of a model.

2. We empirically study the influence of node properties (Sect. 3.2), model hyper-
parameters and the training setup on prediction instability (Sect. 3.3). We
find that nodes that are central in the network are less likely to be unstably
predicted. High width, L2 regularization, low dropout rate, and low depth all
show a tendency to help decrease prediction instability.

1 Code and supplementary material are available at https://github.com/mklabunde/
gnn-prediction-instability.

https://github.com/mklabunde/gnn-prediction-instability
https://github.com/mklabunde/gnn-prediction-instability
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3. By introspecting individual deep GNN models with centered kernel alignment
[8], we discover a trend that deeper layers (closer to the output) are less stable
(Sect. 3.4).

In general, we find that the objectives of maximizing performance and mini-
mizing prediction instability almost always align. Our results have direct impli-
cations for practitioners who seek to minimize prediction instability, such as in
high-stakes decision-recommendation scenarios.

2 Preliminaries and Experimental Setup

This section introduces our problem setting and describes the models, datasets,
and instability measures used in our study.

Multiclass Node Classification. We focus on the multiclass classification
problem on graphs G = (V,E), where every node v ∈ V has some features
x ∈ X and a one-hot encoded label y ∈ {0, 1}C with C the number of different
classes, and E is the set of edges. We only consider the transductive case, in
which all edges and nodes including their features are known during training,
but only a subset of node labels is available.

Graph Neural Networks. Graph Neural Networks [13] operate by propagating
information over the graph edges. For a specific node, the propagated information
from neighboring nodes is aggregated and combined with its own representation
to update its representation. For node classification, the representations of the
last layer can be used to predict the node labels.

In particular, we study in this paper two of the currently most popular
state-of-the-art models for node classification: Graph Convolutional Networks
(GCN) [7] and Graph Attention Networks (GAT) [18]. GAT and GCN differ,
as the aggregation mechanism of GCN uses a static normalization based on the
degree of nodes, whereas GAT aggregation employs a trained multi-head atten-
tion mechanism. We select the hyperparameters as stated in their respective
papers. The hidden dimension is 64 for GCN, GAT uses 8 attention heads with
8 dimensions each. The models have two layers, with the second layer producing
the classification output. For the final GAT layer, the outputs of the different
heads are summed up, in contrast to concatenation in the earlier layer. In addi-
tion to the convolutional layers, we use dropout on the input and activations of
the first layer with p = 0.6. We apply the same dropout rate to the attention
weights in the GAT layer. GCN uses ReLU activation, and GAT uses ELU. For
more details on the investigated models, we refer to the original publications.

Training Procedure. We train the models for a maximum of 500 epochs with
an early stopping period of 40 epochs on the validation loss using the Adam
optimizer with a learning rate of 0.01. In all cases, we use full batch training.
For each dataset, we train 50 models with different initializations. We keep all
other known sources of randomness constant including low-level operations.
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Datasets. We focus on the node classification task and use the following pub-
licly available standard datasets: CiteSeer and Pubmed [20], Coauthor CS and
Physics [16], Amazon Photo and Computers [16], and WikiCS [11]. Since the
datasets from [16] do not have public train/validation/test splits, we create splits
for them by randomly taking 20 nodes from each class for training and using 500
nodes as validation data. The rest are used for testing. All datasets are treated
as undirected graphs. While this could affect performance negatively, e.g., when
a class depends on the ratio of incoming to outgoing edges, we follow the com-
mon approach in literature [7,16] and note that disregarding directions lead to
improved performance in preliminary experiments.

Measuring Prediction Instability. To quantify prediction instability, we now
define several measures that capture differences in the model output. These
measures have two main differences: They either use the predicted labels as
input, i.e., the argmax of the model output, or the softmax-normalized output.
While the first approach directly follows intuition and has the advantage of
being interpretable, it has the downside of using the discontinuous argmax, which
means that even slight differences in model output can lead to different outcomes.

We follow the definition of Madani et al. [10] and define the (expected) pre-
diction disagreement as follows:

d = Ex,f1,f21{arg max f1(x) �= arg max f2(x)} (1)

where fi ∈ F are instantiations of a model family F and 1{·} is the indicator
function. The disagreement is easily calculated in practice by training a number
of models and then averaging the pairwise disagreement of their predictions of
individual nodes. This measure is also known as churn [1,2,6,12] and jitter [9].

The theoretically possible value of the disagreement of a pair of model instan-
tiations is bounded by their performance. For example, when two models, f1
and f2, perform with 95% accuracy, then the minimal disagreement equals zero,
which occurs when the predictions are identical. Maximal disagreement occurs
when 90% of predictions are identical, and f1 is correct on the 5% of data where
f2 is incorrect. In general, it holds [2]:

|Errf1 − Errf2 | ≤ df1,f2 ≤ min(1, Errf1 + Errf2), (2)

where Err is the error rate of a model and df1,f2 is the empirical disagreement
between f1 and f2. While two models with high error rates do not necessarily
have large disagreement, we later show that disagreement and error rate are in
fact highly correlated, a finding which has not received much attention so far.

Disagreement is an intuitive and straightforward measure of disagreement.
However, to better understand the relationship between disagreement and error
rate, we define the min-max normalized disagreement, which gives the disagree-
ment relative to its minimal and maximal possible values:

dnorm = Ef1,f2

[
df1,f2 − min df1,f2

max df1,f2 − min df1,f2

]
. (3)
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A natural extension of the aforementioned measures is to condition the com-
putation on specific subgroups of predictions, e.g., the correct or incorrect pre-
dictions. As Milani Fard et al. [12], we define those as true disagreement dTrue

and false disagreement dFalse, respectively:

dTrue = E(x,y),f1,f21{arg max f1(x) �= arg max f2(x)| arg max f1(x) = y}. (4)

dFalse is computed analogously. False disagreement is less reliant on model per-
formance as it is always possible that incorrectly predicted nodes are predicted
differently in another run if the second model has equal or lower performance.
False disagreement and normalized disagreement are especially important to dis-
entangle model performance and stability since model hyperparameters, such as
width, may affect performance and disagreement jointly.

All of the above measures work on the hard predictions of the models. To mea-
sure the difference between the output distributions, we use the mean absolute
error, where C is the number of classes: dMAE = Ex,f1,f2

[
1
C ‖f1(x) − f2(x)‖1

]
.

3 Results

This section presents our main results on the instability of GNNs. We showcase
overall results before introducing detailed analyses on the effect of node proper-
ties and model design. Finally, we describe results of inspecting the instability
of GNNs layer-by-layer. We always report results on examples not seen during
training. For all experiments, we only show a subset of the results due to space
constraints. The complete results can be viewed in the supplementary material
(See footnote 1).

3.1 Overall Prediction Instability of GNNs

We now demonstrate the prediction instability of GAT and GCN on several
well-known datasets.

We show the results in Table 1. The prediction disagreement d is between
three and four percent, with the exceptions of CiteSeer and Computers, where
the disagreement is almost ten percent. Models with higher accuracy tend to
have lower disagreement, but the datasets must be taken into account. For exam-
ple, the classification accuracies are higher on the Computers dataset compared
to Pubmed, but disagreement is higher as well. We find that dnorm is lower
than 25%, which means that disagreement is relatively close to the minimum
that variation in model performance allows. Interestingly, nodes that are falsely
predicted by one model have a high probability of being predicted differently
by another model. False disagreement is almost always at least one magnitude
larger than true disagreement, which is partially explained by the high perfor-
mance of the models. Finally, the mean absolute error reveals that the predicted
probabilities of classes are not much different between models. Overall, GNNs
clearly demonstrate prediction instability to a significant degree.

In the following, we focus in our discussion on the prediction disagreement
measure d. Typically, identical tendencies can be observed for the other measures.
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Table 1. Prediction disagreement (in %) and its standard deviation.

Dataset Model Accuracy d dnorm dTrue dFalse MAE

CiteSeer GAT 69.0 ± 1.0 10.5 ± 1.7 15.4 ± 2.5 5.2 ± 1.4 22.3 ± 3.8 3.4 ± 0.6

GCN 69.2 ± 0.7 7.1 ± 1.0 10.3 ± 1.6 3.5 ± 0.9 15.1 ± 2.4 2.9 ± 0.3

Pubmed GAT 75.7 ± 0.6 3.7 ± 1.4 6.4 ± 2.7 2.4 ± 1.0 8.0 ± 3.3 2.3 ± 0.7

GCN 76.8 ± 0.5 2.4 ± 0.7 4.1 ± 1.4 1.5 ± 0.6 5.6 ± 2.2 2.5 ± 1.0

CS GAT 90.7 ± 0.5 3.7 ± 0.5 17.3 ± 2.0 1.7 ± 0.4 22.0 ± 3.6 0.7 ± 0.1

GCN 90.7 ± 0.5 3.3 ± 0.6 15.4 ± 2.7 1.6 ± 0.5 19.9 ± 4.1 0.7 ± 0.2

Physics GAT 92.0 ± 0.7 3.8 ± 0.8 19.7 ± 4.2 1.8 ± 0.6 25.7 ± 6.4 2.0 ± 0.4

GCN 92.7 ± 0.3 1.6 ± 0.4 8.6 ± 2.7 0.8 ± 0.3 12.2 ± 4.3 1.2 ± 0.4

Computers GAT 81.0 ± 1.5 9.5 ± 2.2 21.6 ± 5.6 4.8 ± 1.8 29.6 ± 7.3 2.3 ± 0.5

GCN 81.2 ± 0.9 9.9 ± 1.9 24.2 ± 4.9 4.8 ± 1.3 31.9 ± 6.0 2.3 ± 0.4

Photo GAT 90.3 ± 0.8 4.4 ± 1.1 18.9 ± 4.9 2.0 ± 0.8 26.0 ± 6.9 1.5 ± 0.3

GCN 90.8 ± 0.5 3.7 ± 0.8 17.5 ± 3.7 1.6 ± 0.5 24.1 ± 5.5 1.4 ± 0.3

WikiCS GAT 79.6 ± 0.3 3.8 ± 0.5 8.6 ± 1.3 1.7 ± 0.3 11.7 ± 1.8 0.9 ± 0.1

GCN 79.4 ± 0.2 3.3 ± 0.4 7.6 ± 1.0 1.6 ± 0.3 10.1 ± 1.4 0.7 ± 0.1

1 2 3 4 5 6 7
Septile

0.00

0.05

0.10

D
is
ag
re
em

en
t
d

PageRank — Photo

GCN
GAT

1 2 3 4 5 6 7
Septile

0.02

0.03

0.04

0.05

0.06

0.07

D
is
ag
re
em

en
t
d

PageRank — CS

1 2 3 4 5 6 7
Septile

0.00

0.05

0.10

0.15

0.20

0.25

D
is
ag
re
em

en
t
d

PageRank — CiteSeer

Fig. 2. Prediction disagreement for PageRank septiles on selected datasets. Low septile
index corresponds to low Pagerank. On most datasets, we see that low PageRank nodes
are less stably predicted than high PageRank nodes. However, on CiteSeer the trend
is unclear.

3.2 The Effect of Node Properties

Next, we examine the unveiled prediction instability in more detail and set them
in relation to data properties. We consider four node properties: i) PageRank, ii)
clustering coefficient, iii) k-core, and iv) class label. The first three are related
to the graph structure, whereas the class label is related to underlying node
features. PageRank measures the centrality of a node, the clustering coefficient
the connectivity of a node neighborhood, and the k-core of a node is the maximal
k, for which the node is part of a maximal subgraph containing only nodes with
a degree of at least k. Thus, the k-core gives an indication of both connectivity
and centrality. See the supplementary material for formal definitions.

For the structural properties, we divide the nodes into seven equal-sized parts
(septiles) with respect to the analyzed property. Then, we record prediction
instability and model performance for each of these subgroups of the data. We
use the same models as in the previous section.

We give a representative overview of prediction disagreement in relation to
the values of structural properties in Fig. 2. Central nodes show lower prediction



On the Prediction Instability of GNNs 193

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mean Subgroup Accuracy

0.00

0.05

0.10

0.15

0.20

D
is
ag
re
em

en
t
d

Class

CiteSeer
Pubmed
CS
Physics
Computers
Photo
WikiCS

0.6 0.7 0.8 0.9
Mean Subgroup Accuracy

0.025

0.050

0.075

0.100

0.125

0.150

D
is
ag
re
em

en
t
d

PageRank

CiteSeer
Pubmed
CS
Physics

Computers
Photo
WikiCS

Fig. 3. Relation between subgroup accuracy and prediction disagreement for GAT with
respect to the node classes (left) and PageRank septiles (right). The higher the accu-
racy, the lower the disagreement. The correlation between accuracy and disagreement
suggests that central nodes are stably predicted due to high model performance on
that subgroup of the data. Results for the other properties and GCN are similar.

instability. Low clustering negatively impacts stability, but there is no consistent
relation over all datasets for other septiles. A high core number reduces the risk
of prediction instability. For all properties, the results depend on the dataset
to some extent. We attribute many of the differences in prediction instability
to differences in model performance in different subgroups (Fig. 3). Now, we
describe the results in more detail.

Structural Properties. Nodes with higher PageRank have lower prediction
disagreement on all datasets except Pubmed. However, the magnitude of the
difference varies depending on the dataset. Interestingly, the disagreement of
falsely predicted nodes is roughly constant in many cases. This also holds for
normalized disagreement, which shows that differences between subgroups can
be explained to a large degree by differences in accuracy. The MAE of the output
distributions almost always decreases with higher PageRank.

There is no consistent relationship between the clustering coefficient and the
prediction instability in our results. The only common trend is that low cluster-
ing is correlated with high prediction disagreement. Higher clustering coincides
with lower prediction disagreement on WikiCS and CS, Physics and Computers
display an U-like relationship. On Photo, there is no clear trend. For Pubmed
and CiteSeer, more than 65% of the nodes have a clustering coefficient of zero, so
a comparison of equal bins is not possible. Similar to PageRank, false and nor-
malized disagreement are almost constant in many cases, which again highlights
that the prediction disagreement is closely related to the model performance.

On all datasets, the group with the highest k-core has the lowest prediction
disagreement, and the group with the lowest k-core has the highest disagreement.
In between, we do not observe a clear trend. Furthermore, the variance of the
disagreement decreases with increasing k-core. Again, false disagreement and
normalized disagreement do not show large differences.
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Fig. 4. Effect of training data on disagreement (left) and error rate (right) for GCN.

Class Label. There are large differences between classes with respect to both the
average disagreement and its variance. Differences shrink for false disagreement
and when normalizing for accuracy. MAE behaves similar to disagreement.

Classes with few examples are not less stable than large classes. As shown
in Fig. 3, the average accuracy explains much of the differences in disagreement.
Interestingly, the variance of the accuracy does not impact the prediction dis-
agreement, although it affects the lower bound of prediction disagreement, which
depends on the performance difference of two models.

3.3 The Effect of Model Design and Training Setup

In the previous section, we find evidence that prediction stability is related to
model performance. Model design and training setup reasonably influence model
performance (and thus may impact prediction stability), but how exactly they
correlate with prediction stability and if they influence stability beyond the
performance is unclear. We test the influence of individual hyperparameters on
prediction stability by following the training protocol of Sect. 2, but changing
one hyperparameter per experiment, if not specified otherwise. Since including
standard deviations decreases readability of the visualizations, we focus on the
mean value here and refer to the supplementary material for more details.

Training Data. To analyze the effect of training data availability on prediction
stability, we vary the number of node labels available for training between 1 and
60% of all nodes and use a fixed-size validation set of 15% of the data. We sample
the nodes of each class proportionally to their total class size, so that nodes of
all classes are present in the test set. Further, to avoid dependency on specific
data splits, we repeat the experiment with 10 different data splits per graph. In
total, we train 42000 models for this experiment.

Results are shown on a log-log scale in Fig. 4. We find that both the dis-
agreement and the error rate decrease significantly with increasing available
training data. This underlines the correlation between model performance and
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Fig. 5. Prediction disagreement (left) and error rate (right) for training GCN with
Adam, SGD with momentum of 0.9, and SGD without momentum.

Fig. 6. Effect of L2 reg. on disagreement (left) and error rate (right) for GCN.

disagreement. The same trends can also be observed for the other measures of
disagreement. Only Pubmed shows significantly different behaviour; that is, the
disagreement does not decrease. GAT results are highly similar and also show a
smooth decrease in disagreement and error rate.

Optimizer. We train the models with different optimizers: Adam, Stochastic
Gradient Descent (SGD), and SGD with momentum (SGD-M), which we set to
0.9. We show the results for GCN in Fig. 5. For prediction disagreement, SGD
performs much worse than SGD-M and Adam. SGD-M performs on par with
or better than Adam, with the exception of Pubmed. Overall, disagreement and
error rate are correlated, but SGD-M optimization leads to lower disagreement.
Furthermore, SGD-M decreases the average MAE between the output distribu-
tions of the models more than Adam. For GAT, Adam and SGD-M perform
similarly with a slight edge to Adam. SGD performs much worse with respect
to both error rate and disagreement. Based on the discrepancy between GCN
and GAT results, there does not appear to be a simple rule to select one of the
tested optimizers to generally minimize prediction disagreement.

L2 Regularization. We show the results of GCN for varying L2 regularization
in Fig. 6. Disagreement decreases only slightly with moderate regularization. We
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Fig. 7. Effect of dropout on disagreement (left) and error rate (right) for GCN.

Fig. 8. Effect of width on disagreement (left) and error rate (right) for GCN.

observe the largest changes, both for the disagreement and error rate, with the
maximal value of L2 regularization. Strong regularization reduces disagreement
(all measures) on 5 out of 7 datasets compared to without regularization, though
changes are small. Interestingly, disagreement decreases even when the error rate
stays roughly constant.

Dropout. We show the results for varying dropout rates in Fig. 7. Large dropout
rates increase disagreement for 6 of the 7 datasets for GCN. In contrast to previ-
ous observations, change in disagreement does not follow the error rate. Instead,
the more dropout, the more prediction disagreement in most cases. Although
the effect is small in absolute terms, dropout influences prediction stability neg-
atively. Even so, a finely tuned dropout rate can improve disagreement in some
cases while also decreasing the error rate.

Width. We vary the width of the models on a logarithmic scale between 8 and
256. GAT always has eight attention heads, which means that the dimension
per head varies between 1 and 32. Figure 8 shows the absolute disagreement d
and the error rate in relation to the width for GCN. Wider models have less
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Fig. 9. Effect of depth on disagreement (left) and error rate (right) for GCN.

Fig. 10. Comparison of baseline GCN model and a stable variant, which implements
all hyperparameters as suggested by the previous experiments.

prediction disagreement, which holds even for models for which the error rate
does not decrease. This relation is mirrored in all stability measures.

Depth. We change the number of layers from 2 to 6. Between every layer, there
are dropout and activation functions, while otherwise following the previously
used training procedure. Figure 9 shows the results for GCN. Prediction dis-
agreement increases with depth of the model. Similarly, the error rate increases,
which can be explained by a lack of training techniques for deep GNNs, e.g.,
residual connections or normalization. Nevertheless, even when the model per-
formance does not decrease much, prediction stability decreases, e.g., on the
Physics dataset, the absolute disagreement increases almost four-fold. We make
the same observation for GAT, which suggests that the depth of a model nega-
tively affects its prediction stability.

Combining Optimal Hyperparameters. To test whether the observations so
far can inform model selection, we now train “stable variants” of GAT and GCN
and compare them with the baseline models, as described in Sect. 2. We select
hyperparameters of the models according to the previous experiments, i.e., those
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Fig. 11. Similarity of layers to corresponding layers of another trained GCN on Cite-
Seer (left) and GAT on CS (right). The deeper the layer in the trained model, the less
similar they are.

that minimize the disagreement. Since the best hyperparameters differ between
datasets, we manually pick them as width of 256 (200 for GAT on Physics due to
memory limitations), depth of 2, dropout of 0.2, and L2 regularization of 10−4.
We use the Adam optimizer and the same data as in all previous experiments.
Using SGD with momentum yields similar results.

We show the results for GCN in Fig. 10. The stable variant has less prediction
disagreement on 6 of the 7 datasets, despite not always having a lower error rate.
We make a different observation for GAT, having lower disagreement on only 2
of the 7 datasets as the average error rate increased considerably on the datasets
that disagreement is high on.

3.4 Layer-Wise Model Introspection

In the last part of our analysis, we aim to obtain a better understanding about
where in the deep neural architecture instability primarily arises. For that pur-
pose, we investigate the (in-)stability of internal representations with centered
kernel alignment (CKA) [8] to measure the similarity of representations from
corresponding layers in different models, see below for a slightly more extensive
description. That is, we compare layer 1 of model A with layer 1 of model B,
layer 2 of A with layer 2 of B, etc. We focus on the similarity of models with
varying depths and train the models according to Sect. 2, but again vary the
number of layers and add dropout layers between them.

Centered Kernel Alignment. CKA is a state-of-the-art method for mea-
suring the similarity of neural network representations. Roughly speaking, CKA
compares two matrices of pairwise similarities by vectorizing them and calculat-
ing the dot product. We use the linear variant of CKA, i.e., the pairwise similar-
ities are calculated with the dot product, since it is efficient and other variants,
such as using the RBF kernel for similarity computation, do not show better
performance consistently. For details, we refer to the original publication [8] and
the supplementary material.
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Results. Figure 11 shows some exemplary results. In these plots, each color of
boxplots refers to one model with a specific number of layers while the different
groups of boxplots from left to right refer to the position of the layer within
the model architecture. In general, the more layers the model has, the lower the
similarity of the layers. Moreover, the deeper the layer (closer to the output),
the lower the similarity. Similarly, the variance of the similarity increases with
depth. Some outliers exist, for which changes in similarity between layers are
small, or the similarity increases with depth (GCN WikiCS and Computers, 6
layer GAT on Pubmed). Overall, however, deep GNNs have more variance in
their internal structure and representations.

Although the first layers may suffer from vanishing gradients, they are much
more self-similar than the deeper layers, which should receive much larger
updates. On the one hand, these large updates could make deep layers less
similar as they may need to adapt to varying outputs of the earlier layers. On
the other hand, the first layers are extremely similar, although they start from
a random initialization. As a consequence, these layers provide very similar rep-
resentations to deep layers, questioning why the deep layers are dissimilar. We
leave a more detailed analysis for future work and hope that this observation
sparks further research into the learned representations of GNNs.

4 Discussion

We discuss limitations and implications of our work, as well as future work.

Limitations. The models we study do not use popular techniques for deep
GNNs, such as normalization or residual connections. Furthermore, we avoid
mini-batching and distributed training. Although relatively shallow GNNs work
well on many tasks, recent work introduces new benchmarks that benefit greatly
from more complex models [3,5]. Therefore, interesting future work would be to
explore how these techniques, combined with larger models and larger graphs,
affect prediction stability.

We find statistical relationships between model hyperparameters and predic-
tion stability. However, it is not transparent how different aspects, such as model
performance, model hyperparameters, and prediction stability, causally influence
each other. Attribution of changes to specific variables is difficult; hence, we only
propose heuristics on how to select hyperparameters that minimize prediction
instability. However, as our experiments show, training a model with hyper-
parameters jointly selected according to these rules does decrease prediction
instability if care is taken with respect to performance. Causal attribution and
consequent robust rules for model selection with respect to prediction stability
is another avenue for future work.

Dataset Dependency. Repeatedly, models behave differently on the Pubmed
dataset compared to the others. This suggests that the dataset plays a crucial
role in determining prediction stability. We did not identify a single property of
the dataset that sensibly explains the effect, which highlights the opportunity of
examining prediction stability from the data perspective.
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Implementation as a Source of Instability. We investigated the sources of
instability by doing additional experiments with fixed random seeds and models
trained on GPU vs CPU. We do not restrict the implementation to determin-
istic low-level algorithms, see the supplementary material for full results. We
find that with a fixed random seed on the exact same data, GCN behaves com-
pletely deterministic while GAT in some cases still exhibits considerable insta-
bility. Surprisingly, even when GAT is trained on a CPU with fixed initialization
and training, minor instability remains. Since the instability does not show all
the time, we speculate that small implementations issues could be hidden ini-
tially and only influence stability later, e.g., after data updates. Overall, GPU
instabilities are much smaller compared to differences introduced by changing
initialization. This is good news from a pure reproducibility perspective, but we
consider the instabilities established and analyzed in this paper still as crucial
in many practical scenarios since they emphasize the sensitivity of predictions
on implementation details.

Influence on Model Selection. Our results have direct implications on model
selection. If we have to decide between multiple models that perform equivalently,
and we are interested in minimizing prediction instability, then we can select the
model with higher width and L2 regularisation, and lower dropout rate and
depth. While this may not be a straightforward decision, as tradeoffs between
different variables have to be made, the proposed rule can be a rough guide.

5 Related Work

Our work is related to previous research that we outline in the following section.

Stability of Node Embeddings. Wang et al. [19] and Schumacher et al. [14]
study the influence of randomness on unsupervised node embeddings. These
embeddings, mainly computed via random walk-based models or matrix fac-
torization, capture some notion of proximity of nodes, which should then be
reflected in the geometry of the embedding space. They both measure large
variability in the geometry of the embedding spaces, e.g., in the nearest neigh-
bors of embeddings. Schumacher et al. find that the aggregated performance
of downstream models does not change much, but individual predictions vary.
Wang et al. further demonstrate that less stable nodes are less likely to be pre-
dicted correctly. In contrast to their work, we focus on supervised GNNs and
prediction instability instead of geometrical instability.

Impact of Tooling. Zhuang et al. [21] find that prediction instability arises
along the entire stack of software, algorithm design, and hardware. Modifying
model training to be perfectly reproducible incurs highly variable costs, in some
cases more than tripling the computation time. Moreover, they observe that
subgroups of the data are affected to different extents from random factors in
training. Introducing batch normalization reduces performance variability but
increases prediction disagreements. They focus mainly on large CNNs, whereas
we study comparatively much smaller GNNs.
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Increasing Prediction Stability. Several recent works successfully introduce
techniques to increase prediction stability. For example, by regularizing labels [1,
12], distillation [2,6], ensembling techniques [15,17], or data augmentation [17].
It is noted that these techniques sometimes also increase model performance,
but a general relationship between prediction stability and model performance
is not highlighted. For the CNNs in the work by Summers and Dineen [17], even
single bit changes lead to significantly different models.

Model Influence. Liu et al. [9] study how data updates affect prediction stabil-
ity in the domain of language processing. Moreover, they compare whether model
architecture, model complexity, or usage of pretrained word embeddings improve
stability. They identify a trade-off between prediction stability and model per-
formance. In our experiments, the trade-off is small or nonexistent, validating
experiments of prediction stability in different domains.

GNN Robustness. The stability of GNNs can be viewed from a different per-
spective: adversarial unnoticable perturbations of the graph data can signifi-
cantly reduce model performance and thus prediction stability [22]. Zügner and
Günnemann [23] propose a method to certify robustness of nodes against such
attacks. Further, stochastic perturbations in the graph structure can lead to
instability of predictions. Gao et al. [4] show that increased width and depth
increase possible changes of outputs of GNNs. In this paper, we assume that
only the initialization changes, i.e., there are no changes to the graph.

6 Conclusion

In this paper, we systematically assessed the instability of Graph Neural Net-
work predictions with respect to multiple aspects: random initialization, model
architecture, data, and training setup. We found that up to 30% of the falsely
predicted nodes are different between training runs that use the same data and
hyperparameters but change the initialization. Nodes on the periphery of a graph
are less likely to be stably predicted. Furthermore, models with higher width,
higher L2 regularization, lower depth, and a lower dropout rate are more stable
in their predictions. Instability of deep GNNs is reflected in their internal rep-
resentations. Finally, maximizing model performance almost always implicitly
minimizes prediction instability.

Future work may study prediction instability of GNNs from the perspective
of larger, more complex models or data properties. Furthermore, finding clear
causal relationships may be beneficial to select models that are more stable with
respect to their predictions. Lastly, it would be interesting to see whether existing
techniques aiming to reduce model instability for other types of models perform
well for GNNs.
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Abstract. Decision trees are popular models for their interpretation
properties and their success in ensemble models for structured data.
However, common decision tree learning algorithms produce models that
suffer from adversarial examples. Recent work on robust decision tree
learning mitigates this issue by taking adversarial perturbations into
account during training. While these methods generate robust shallow
trees, their relative quality reduces when training deeper trees due the
methods being greedy. In this work we propose robust relabeling, a post-
learning procedure that optimally changes the prediction labels of deci-
sion tree leaves to maximize adversarial robustness. We show this can
be achieved in polynomial time in terms of the number of samples and
leaves. Our results on 10 datasets show a significant improvement in
adversarial accuracy both for single decision trees and tree ensembles.
Decision trees and random forests trained with a state-of-the-art robust
learning algorithm also benefited from robust relabeling.

Keywords: Decision trees · Pruning · Adversarial examples

1 Introduction

With the increasing interest in trustworthy machine learning, decision trees have
become important models [17]. Due to their simple structure humans can inter-
pret the behavior of size-limited decision trees. Additionally, decision trees are
popular for use within ensemble models where random forests [3] and particularly
gradient boosting ensembles [6,7,9,15] achieve top performance on prediction
tasks with tabular data. However, decision trees are optimized without consid-
ering robustness which results in models that misclassify many data points after
adding tiny perturbations [14,26], i.e. adversarial examples. Therefore we are
interested in training tree-based models that correctly predict data points not
only at their original coordinates but also in a radius around these coordinates.
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Recent work has proposed decision tree learning algorithms that take adver-
sarial perturbations into account during training to improve adversarial robust-
ness [4,5,22]. These methods significantly improved robustness for shallow deci-
sion trees, but lacked performance for deeper trees due to their greedy nature.
Optimal methods for robust decision tree learning [12,23] have also been pro-
posed but they use combinatorial optimization solvers which makes them scale
poorly in terms of both tree depth and data size. Adversarial pruning [24,25] is
a method that pre-processes datasets by removing a minimal number of samples
to make the dataset well-separated. While this method helps ignore samples that
will only worsen robustness when predicted correctly, the learning algorithm is
unchanged so the resulting models still suffer from adversarial examples. It is
important to be able to train deeper robust trees as shallow trees can signifi-
cantly underfit the data. Particularly in random forests where we aim to ensemble
unbiased models [2] we need to be able to train very deep trees.

To improve the performance of robust decision trees we propose Robust Rela-
beling1. This post-learning procedure optimally changes the prediction labels of
the decision tree leaves to maximize accuracy against adversarial examples. We
assume that the user specifies an arbitrary region around each sample that rep-
resents the set of all possible perturbations of the sample. Then, we only consider
a sample to be correctly predicted under adversarial attacks if there is no way
for an attacker to perturb the sample such that the prediction is different from
the label. We prove that in binary classification the optimal robust relabeling
is induced by the minimum vertex cover of a bipartite graph. This property
allows us to compute the relabeling in polynomial time in terms of the number
of samples and leaves.

We compare the classification performance of decision trees and tree ensemble
models on 10 datasets from the UCI Machine Learning Repository [8] and find
that robust relabeling improves the average adversarial accuracy for all models.
We also evaluate the performance when relabeling robust decision trees trained
with a state-of-the-art method GROOT [22]. The resulting models improve
adversarial accuracy compared to the default GROOT models by up to 20%.
Additionally, we study the effects of standard Cost Complexity Pruning against
robust relabeling. Both methods reduce the size of the learned decision trees
and can improve both regular accuracy and adversarial accuracy compared to
unpruned models. While, Cost Complexity Pruning performs better on regular
accuracy, robust relabeling results in better adversarial accuracy.

2 Background Information

2.1 Decision Tree Learning

Decision trees are simple models that execute a series of logical tests to arrive
at a prediction value. In our work, we focus on decision trees where a node k
performs an operation of the type ‘feature value ak is less than or equal to some

1 https://github.com/tudelft-cda-lab/robust-relabeling.

https://github.com/tudelft-cda-lab/robust-relabeling
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value bk’. When we follow the path of such decision nodes to a leaf node t, we
find the prediction value ct.

The most popular methods to learn such decision trees are greedy algo-
rithms that recursively create decision nodes to improve predictive accuracy.
For instance, CART [1] starts by creating a root node and tests all possible
combinations of feature ak and value bk to use for a split. These splits are all
scored with the Gini impurity and the best one is selected. The samples are then
sorted into a left side and right side of this split and the algorithm continues
recursively on both sides until no improvements can be made or a user-defined
stopping criterion is reached. While methods like CART have been hugely popu-
lar, their splitting criteria (e.g. Gini impurity or information gain) do not account
for adversarial attacks. Therefore recent work has focused on modifying such
algorithms in a way that the learned trees are robust to perturbations.

Fig. 1. Training decision trees using a (regular) greedy learner and robust greedy
learner. The robust learner greedily perturbed samples close to the split which caused
it to assign sub-optimal predictions to its leaves. This effect increases with the tree
depth. By relabeling these leaves we can improve robustness.

2.2 Robust Decision Tree Learning

In the field of robust decision trees we usually assume that an adversary modifies
our data points at test time in order to cause misclassifications. Then, we aim to
train a decision tree that is maximally robust to such modifications. The type of
modifications that we allow the adversary to make strongly influences the learned
trees. In this work we consider an adversary that can make arbitrary changes to
each test data point i within a radius ε of the original point. In line with previous
works [5,22] we measure this distance with the l∞ norm. Therefore the set of all
possible perturbations applied to data point i is S(i) = {x + δ | ||δ||∞ ≤ ε}. For
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a decision tree T it is especially important to know what leaves TL sample i can
reach after applying perturbations, we refer to this set as T S(i)

L .
To improve the adversarial robustness of decision trees different methods have

been proposed [4,5,22] that take adversarial perturbations into account during
training. These methods are based on the same greedy algorithm that is used to
train regular decision trees, but they use a different function to score the quality
of splits. Then, when a locally optimal split is found, they apply perturbations to
samples that are close to the split in the worst possible arrangement. This means
that some number of samples that were originally on the left side of the split will
be sent to the right and vice versa. Although this generally improves robustness,
the fact that these samples are perturbed greedily can be detrimental to the
quality of the learned tree after creating successive splits. For example in Fig. 1
the fact that samples were greedily perturbed caused the learned decision tree to
create to leaves with bad predictions. Due to their greedy nature, these robust
decision tree learning algorithms are successful in training shallow decision trees
but they perform worse on deeper decision trees.

In recent work, optimal methods for robust decision tree learning [12,23] have
also been proposed. These methods model the entire robust optimization prob-
lem and therefore do not suffer from greedy effects. However, these methods use
combinatorial optimization solvers such as Mixed-Integer Linear Programming
and Maximum Satisfiability. These solvers run in exponential time in terms of
their input size, and the inputs grow with the size of the dataset and the depth
of the tree. In practice, this means that training optimal robust decision trees on
datasets of hundreds of samples is currently computationally infeasible for trees
deeper than 2.

2.3 Minimum Vertex Covers and Robustness

To the best of our knowledge, Wang et al. [24] first published that for any given
dataset D, there can be pairs of samples that can never be simultaneously cor-
rectly predicted against adversarial examples. For example, when considering
perturbations within some radius ε, two samples with different labels that are
within distance 2ε cannot both be correctly predicted when accounting for these
perturbations. Given this fact, one can create a graph G with each vertex rep-
resenting a sample and connect all such pairs. When we compute the minimum
vertex cover of this graph, we find the minimum number of data points C to
remove from D such that D \ C can be correctly predicted. Although D \ C can
be correctly predicted, non-robust learning algorithms can and will still learn
models that suffer from adversarial examples, e.g., because decision planes are
placed too close to the remaining data points.

Wang et al. [24] used this minimum vertex cover idea by removing C from the
training data in order to learn a robust nearest neighbor classifier. Adversarial
pruning [25] uses a similar method to train nearest neighbor models, decision
trees and tree ensembles from D \ C. The authors of ROCT [23] also used the
minimum vertex cover but to compute an upper bound on adversarial accuracy
which improved the time needed to train optimal robust decision trees.
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Fig. 2. Example of the robust relabeling procedure applied to a decision tree that suf-
fers from adversarial examples. We first create a bipartite graph that connects samples
with different labels that can reach the same leaf with perturbations. After remov-
ing the samples corresponding to the graph’s minimum vertex cover we can relabel
the decision tree to correctly predict the remaining samples. The resulting labeling is
maximally robust to adversarial perturbations.

2.4 Relabeling and Pruning Decision Trees

Improving the quality of decision trees with respect to some metric by changing
their leaf predictions is not a new idea. Many pruning algorithms have been
proposed that remove parts of the decision tree to improve generalization. For
example, Cost Complexity Pruning [1] is a widely used method that merges
leaves when this improves the trade-off between the size of the tree and its
predictive performance. Similarly, ideas to relabel decision trees have been used
to improve performance for objectives such as fairness [13] and monotonicity [20].
Such metrics are not aligned with the objective that is optimized during training.
To the best of our knowledge, we are the first to propose using leaf relabeling to
improve adversarial robustness. Since relabeling methods never add new leaves,
they can be seen as pruning methods since they reduce the size of the trees (after
merging leaves that have the same label) (Fig. 2).

3 Robust Relabeling

Since regular decision trees and ensembles suffer from adversarial examples we
are interested in post-processing the learned models to improve their robust-
ness. In this work, we propose ‘robust relabeling’ (Algorithm 1) a method that
keeps the decision tree structure intact but changes the predictions in the leaves
to maximize adversarial accuracy. Robust relabeling is closely related to earlier
works that determine minimum vertex covers to improve robustness [23–25]. In
these works, the authors leverage the fact that samples with overlapping pertur-
bation ranges and different labels can never be simultaneously classified correctly
under optimal adversarial perturbations. We notice that in decision trees, two
samples cannot be simultaneously classified correctly under optimal adversarial
perturbations when they both reach the same leaf. Using this property we can
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Algorithm 1. Robust relabeling decision tree
Input: dataset X (n samples, m features), labels y, tree leaves TL

1: L ← {i | yi = 0} � O(n)
2: R ← {i | yi = 1} � O(n)

3: E ← {(u, v) | u ∈ L, v ∈ R, T S(u)
L ∩ T S(v)

L �= ∅} � O(nm|TL| + n2|TL|)
4: M ← maximum matching(L, R, E) � O(n2.5)
5: C ← kőnig’s theorem(M, L, R, E) � O(n)
6: for t ∈ TL do � O(n|TL|)
7: if {i ∈ L | t ∈ T S(i)

L } �= ∅ then
8: ct ← 0
9: else

10: ct ← 1
11: end if
12: end for

find the smallest set of samples to remove from the dataset such that all remain-
ing samples can be classified correctly under perturbations. These samples then
induce a labeling of the decision tree that correctly classifies the largest possible
set of samples against adversarial perturbations.

To robustly relabel a decision tree T we create a bipartite graph G =
(L,R,E) where L represents the set of samples with label yi = 0 and R the
set of samples with label yj = 1. The set of edges E is defined by connecting all
pairs of samples (i, j) that have different labels yi �= yj and overlapping pertur-
bation ranges T S(i)

L ∩T S(j)
L �= ∅. Here S(i) is the set of all possible perturbations

applied to data point i and T S(i)
L is the set of leaves that are reached by S(i). We

find the minimum vertex cover C of G and remove the samples represented by C
from the dataset. We can then relabel the decision tree to classify all remaining
samples correctly even under optimal adversarial attacks.

In this paper, we consider only the case where S(i) describes an l∞ radius
around each data point as this is common in research on robust decision trees.
However, our proof does not make use of this fact and robust relabeling can
easily be extended to other attack models such as different l-norms or arbitrary
sets of perturbations.

Theorem 1. The optimal adversarially robust relabeling for decision tree leaves
TL is determined by the minimum vertex cover of the bipartite graph where sam-
ples i, j with different labels yi �= yj are represented by vertices that share an
edge when their perturbations can reach any same leaf (T S(i)

L ∩ T S(j)
L �= ∅).

Proof. For a sample i to be correctly classified by a decision tree T , all leaves
T S(i)
L reachable by adversarial perturbations applied to Xi need to predict the

correct label, i.e. ∀t ∈ T S(i)
L , ct = yi (otherwise an adversarial example exists).

Given two samples i, j with different labels yi �= yj and overlapping sets of



Adversarially Robust Decision Tree Relabeling 209

reachable leaves by perturbations T S(i)
L ∩ T S(j)

L �= ∅ these samples cannot be
correctly robustly predicted as there exists a leaf t that is in both sets T S(i)

L

and T S(j)
L and that misclassifies one of the samples. Create the bipartite graph

G = (L,R,E) where L = {i | yi = 0}, R = {i | yi = 1} and E = {(u, v) |
u ∈ L, v ∈ R, T S(u)

L ∩ T S(v)
L �= ∅}. By removing the minimum vertex cover C

from G, we are left with the largest graph G′ = (L \ C,R \ C, ∅) for which no
edges remain. Since none of the remaining vertices (representing samples) share
an edge we are able to set ∀t ∈ T S(i)

L ,∀i ∈ (L′ ∪ R′) : ct = yi, so all remaining
samples get correctly robustly classified. Since C is of minimum cardinality the
induced relabeling maximizes the adversarial accuracy. 	


Where a naive relabeling algorithm would take exponential time to enumerate
all 2|TL| labelings, the above relabeling procedure runs in polynomial time in
terms of the dataset size (n×m matrix) and the number of leaves |TL|. When
building the graph G the runtime is dominated by computing the edges which
takes O(nm|TL| + n2|TL|) time. This is because we first build a mapping for
each sample i to their reachable leaves T S

L (i) in O(nm|TL|) time, then compute
samples that reach any same leaf in O(n2|TL|) time. Given the bipartite graph
G we use the Hopcroft-Karp algorithm [11] to compute a maximum matching
in O(n2.5) time and convert this in linear time into a minimum vertex cover
using Kőnig’s theorem. Combining all steps, robust relabeling runs in worst-case
O(nm|TL| + n2|TL| + n2.5) time.

Fig. 3. Runtime of robust relabeling and relabeling criterion trees on samples of the
Wine dataset. While decision tree relabeling runs in within seconds, relabeling ensem-
bles takes more time due to the number of trees and increase in tree size. The runtime
for relabeling criterion trees quickly increases with the number of samples.
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3.1 Robust Relabeling as Splitting Criterion

While the robust relabeling procedure described before provides an intuitive use
case as a post-processing step for decision tree learners, we can also use the
procedure to select splits during learning. In greedy decision tree learning the
learner finds a locally optimal split, partitions the samples into a left and right set
(including perturbed samples) and continues this process recursively. While this
approach finds an optimal split for the top decision node, the detrimental effect
of choosing splits greedily increases with the depth of the tree. We will try to
reduce the impact of greedily perturbing samples by using the robust relabeling
procedure. To do this we can consider all samples each time we score a split
and use the cardinality of the maximum matching M as a splitting criterion. By
choosing splits that minimize this criterion we are then directly optimizing the
adversarial accuracy of the decision tree. The pseudo-code for this algorithm is
given in the appendix. We will refer to this method as relabeling criterion trees.

3.2 Runtime Comparison

We compare the runtimes of robust relabeling and relabeling criterion trees on
different sample sizes of the Wine dataset in Fig. 3. Robust relabeling decision
trees runs in a matter of seconds since the number of trees is small. In tree
ensembles where there are 100 trees to relabel and many more leaves the run-
time quickly increases. We find that relabeling criterion trees take more than an
hour to train on 2000 samples, training on larger sample sizes quickly becomes
infeasible.

In this work all experiments ran without parallelism on a laptop with 16 GB
of RAM and a 2 GHz Quad-Core Intel Core i5 CPU. All results in this paper
took approximately a day to compute, this is including robustness verification
with combinatorial optimization solvers. Particularly robust relabeling criterion
trees and robustness verification of tree ensembles for the wine dataset require
much runtime. Without robust relabeling criterion trees and wine robustness
verification the runtime is approximately 2 h.

4 Improving Robustness

To investigate the effect of robust relabeling on adversarial robustness, we com-
pare performance on 10 datasets with a fixed perturbation radius for each
dataset. We used datasets from the UCI Machine Learning Repository [8]
retrieved through OpenML [19]. All datasets, their properties and perturbation
radii ε are listed in Table 1. We pre-process each dataset by scaling the fea-
tures to the range [0, 1]. This way, we can interpret ε as representing a fraction
of each feature’s range. We compare robust relabeling to regular decision trees
and ensembles trained with Scikit-learn [16], robust decision trees trained with
GROOT [22] and adversarial pruning [25]. All adversarial accuracy scores were
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Table 1. Summary of datasets used. Features are scaled to [0, 1] so the l∞ perturbation
radius ε represents a fraction of each feature’s range.

Dataset ε Samples Features Majority class

Banknote-authentication .05 1,372 4 .56

Breast-cancer-diagnostic .05 569 30 .63

Breast-cancer .1 683 9 .65

Connectionist-bench-sonar .05 208 60 .53

Ionosphere .05 351 34 .64

Parkinsons .05 195 22 .75

Pima-Indians-diabetes .01 768 8 .65

Qsar-biodegradation .05 1,055 41 .66

Spectf-heart .005 349 44 .73

Wine .025 6,497 11 .63

computed with optimal adversarial attacks using the GROOT toolbox2. For sin-
gle trees, computing optimal adversarial attacks is done by enumerating all the
leaves and for tree ensembles by solving the Mixed-Integer Linear Programming
formulation by Kantchelian et al. [14] using GUROBI 9.1 [10].

4.1 Decision Trees

Decision trees have the desirable property that they are interpretable when con-
strained to be small enough. What exactly is the number of leaves that allow
a decision tree to be interpretable is not well defined. In this work, we decide
to train single trees up to a depth of 5 which enforces a maximum number of
leaves of 25 = 32. In Table 2 we compare the performance of regular, robust
GROOT [22] trees and relabeling criterion trees defined in Sect. 3.1. We score
the regular and GROOT trees before and after relabeling but we skip this step
for relabeling criterion trees as this does not affect the learned tree.

Robust relabeling improves the performance of regular and GROOT trees
significantly on most datasets and never reduces the mean adversarial accuracy.
Relabeling criterion trees and relabeled GROOT trees performed similarly on
average but relabeled GROOT trees run orders of magnitude faster.

4.2 Decision Tree Ensembles

For tasks that do not require model interpretability, it is a popular choice to
ensemble multiple decision trees to create stronger models. We experiment with
the robust relabeling of random forests, GROOT random forests and gradient
boosting ensembles, all limited to 100 decision trees. For the gradient boost-
ing ensembles we limit the trees to a depth of 5 to prevent overfitting. This
2 https://github.com/tudelft-cda-lab/GROOT.

https://openml.org/search?type=data&status=active&id=1462
https://openml.org/search?type=data&status=active&id=1510
https://openml.org/search?type=data&status=active&id=15
https://openml.org/search?type=data&status=active&id=40
https://openml.org/search?type=data&status=active&id=59
https://openml.org/search?type=data&status=active&id=1488
https://openml.org/search?type=data&status=active&id=42608
https://openml.org/search?type=data&status=active&id=1494
https://openml.org/search?type=data&status=active&id=337
https://openml.org/search?type=data&status=active&id=287
https://github.com/tudelft-cda-lab/GROOT
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Table 2. Mean adversarial accuracy scores of decision trees of depth 5 on 5-fold
cross validation. GROOT trees with robust relabeling and relabeling criterion trees
score best against adversarial attacks. However, GROOT with relabeling runs orders
of magnitude faster.

Dataset Tree Tree relabeled GROOT GROOT
relabeled

Relabeling
criterion

Banknote .734 ± .077 .823 ± .035 .794 ± .049 .824 ± .038 .811 ± .049

Breast-cancer .874 ± .013 .903 ± .025 .912 ± .035 .922 ± .012 .925 ± .013

Breast-cancer-d .617 ± .158 .810 ± .026 .835 ± .013 .847 ± .014 .851 ± .038

Sonar .482 ± .140 .573 ± .073 .601 ± .048 .606 ± .048 .582 ± .070

Ionosphere .689 ± .071 .792 ± .045 .892 ± .030 .889 ± .028 .895 ± .028

Parkinsons .513 ± .139 .759 ± .126 .749 ± .071 .790 ± .058 .795 ± .075

Diabetes .708 ± .009 .712 ± .025 .677 ± .053 .712 ± .025 .710 ± .032

Qsar-bio .292 ± .060 .661 ± .004 .704 ± .029 .736 ± .050 .686 ± .014

Spectf-heart .840 ± .041 .840 ± .041 .831 ± .044 .831 ± .044 .768 ± .016

Wine .526 ± .027 .610 ± .047 .618 ± .043 .618 ± .052 Timeout

is not required for random forests where one purposefully ensembles low bias,
high variance models [2], i.e., unconstrained decision trees. We did not compare
to random forests trained with the robust relabeling criterion as this was com-
putationally infeasible. The adversarial accuracy scores before and after robust
relabeling are presented in Table 3. On the Wine dataset we only used 100 test
samples to limit the runtime.

Robust relabeling increases the mean adversarial accuracy over 5-fold cross-
validation on all datasets and models. On average, the GROOT random forests
with robust relabeling performed best. Clearly, the combination of robust splits
and robust labeling is better than regular splits and robust labeling. Additionally
we find that relabeled GROOT forests (Table 3) outperform relabeled GROOT
trees (Table 2) on many datasets. This is in contrast with the original GROOT
paper [22]. In that paper, large values were used for ε that did not allow for the
models to achieve significant improvements over predicting the majority class.

4.3 Adversarial Pruning

Adversarial pruning [25] is a technique that implicitly prunes models by remov-
ing samples from the training dataset that are not well separated (D \ C). This
intuitively makes models more robust as the models then explicitly ignore sam-
ples that will make the models more susceptible to adversarial attacks. Using
decision tree learning algorithms as-is on this dataset (D \ C), without taking
robustness into account, still provides models that suffer from adversarial exam-
ples. In Table 4 we compare the adversarial robustness of models trained with
adversarial pruning and robust relabeling. We notice that on many datasets,
adversarial pruning only removes a small number of samples which results in
models that are similar to the fragile models produced by regular decision tree
learning algorithms.
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Table 3. Mean adversarial accuracy scores of decision tree ensembles on 5-fold cross
validation. GROOT trees with robust relabeling score best against adversarial attacks,
relabeled regular trees perform on average similarly to robust GROOT trees that did
not use relabeling.

Dataset Boosting Forest GROOT

forest

Boosting

relabeled

Forest

relabeled

GROOT

forest rel

Banknote .786 ± .072 .846 ± .032 .851 ± .037 .822 ± .052 .849 ± .039 .862 ± .039

Breast-cancer .873 ± .027 .908 ± .020 .946 ± .017 .937 ± .020 .930 ± .011 .952 ± .017

Breast-cancer-d .606 ± .070 .745 ± .035 .805 ± .025 .821 ± .019 .842 ± .022 .847 ± .021

Sonar .438 ± .089 .389 ± .051 .510 ± .069 .616 ± .076 .582 ± .034 .577 ± .048

Ionosphere .635 ± .163 .812 ± .037 .903 ± .018 .815 ± .010 .872 ± .017 .912 ± .021

Parkinsons .492 ± .177 .508 ± .170 .728 ± .092 .759 ± .126 .749 ± .021 .826 ± .066

Diabetes .596 ± .043 .668 ± .049 .703 ± .052 .697 ± .032 .729 ± .036 .730 ± .047

Qsar-bio .078 ± .025 .173 ± .015 .648 ± .046 .663 ± .002 .663 ± .002 .781 ± .026

Spectf-heart .863 ± .034 .891 ± .028 .888 ± .023 .877 ± .037 .897 ± .025 .894 ± .029

Wine .202 ± .044 .184 ± .050 .384 ± .051 .494 ± .081 .482 ± .090 .606 ± .038

4.4 Accuracy Robustness Trade-Off

Since we optimize robustness by enforcing samples to be correctly classified in
a region around each sample, there can be a cost in regular accuracy. In Table 5
we compare the accuracy of regular models with and without robust relabeling.
We find that indeed robust relabeling reduces regular accuracy in approximately
two out of three cases that we tested. However, there are also instances where
accuracy actually improves, such as in the case of gradient boosting on the breast
cancer datasets. We expect that robustification has a helpful regularization effect
in these situations.

5 Regularizing Decision Trees

Robust relabeling regularizes decision trees and tree ensembles by changing the
leaf labels to maximize adversarial robustness. To understand the regularization
effect we first visualize models before and after robust relabeling on toy datasets.
Additionally, we contrast the regularization effect of robust relabeling with Cost
Complexity Pruning. We show that while both methods can improve test accu-
racy, robust relabeling favors robustness while Cost Complexity Pruning favors
regular accuracy.

5.1 Toy Datasets

To understand the effects of robust relabeling we generate three two-dimensional
datasets and visualize the decision regions before and after relabeling. In Fig. 4
we train decision trees, random forests and gradient boosting with 5% label noise
and adversarial attacks within an l∞ radius of ε = 0.05. All features are scaled
to the range [0, 1] therefore ε represents 5% of each feature’s range. The boosted
and single decision trees were limited to a depth of 5.
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Fig. 4. Decision regions of tree models before and after robust relabeling. Robust rela-
beling effectively removes fragile regions resulting in visually simpler models.
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Table 4. Comparison of adversarial accuracy scores for adversarial pruning [25]
and robust relabeling (ours). Adversarial pruning does not take into account that the
learner can select non-robust splits where relabeling effectively removes such splits thus
producing more robust models.

Dataset Decision tree Gradient boosting Random forest

Pruning Relabeling Pruning Relabeling Pruning Relabeling

Banknote .718 ± .060 .823 ± .035 .809 ± .053 .822 ± .052 .855 ± .032 .849 ± .039

Breast-cancer .867 ± .016 .903 ± .025 .868 ± .031 .937 ± .020 .906 ± .016 .930 ± .011

Breast-cancer-d .617 ± .158 .810 ± .026 .619 ± .081 .821 ± .019 .749 ± .035 .842 ± .022

Sonar .482 ± .140 .573 ± .073 .438 ± .089 .616 ± .076 .389 ± .051 .582 ± .034

Ionosphere .689 ± .071 .792 ± .045 .635 ± .163 .815 ± .010 .812 ± .037 .872 ± .017

Parkinsons .513 ± .139 .759 ± .126 .492 ± .177 .759 ± .126 .508 ± .170 .749 ± .021

Diabetes .708 ± .009 .712 ± .025 .596 ± .043 .697 ± .032 .668 ± .049 .729 ± .036

Qsar-bio. .262 ± .052 .661 ± .004 .149 ± .024 .663 ± .002 .183 ± .010 .663 ± .002

Spectf-heart .840 ± .041 .840 ± .041 .863 ± .034 .877 ± .037 .891 ± .028 .897 ± .025

Wine .562 ± .030 .610 ± .047 .212 ± .094 .494 ± .081 .240 ± .047 .482 ± .090

In all types of models we see that there are small regions with a wrong
prediction in areas where the model predicts the correct label. For instance, in
the normal decision tree trained on ‘moons’, we see a slim orange leaf in the
region that is otherwise predicted as blue. This severely reduces the robustness
of the model against adversarial attacks since nearby samples can be perturbed
into those regions. Robust relabeling effectively removes these leaves from the
models to improve adversarial robustness. Although the effect of regularization of
decision trees is hard to quantify, we intuitively see that the relabeled models are
more consistent in their predictions. We expect this property to also improve the
explainability of the models by methods such as counterfactual explanations [21].

5.2 Comparison with Cost Complexity Pruning

Cost Complexity Pruning is a method that reduces the size of decision trees to
improve their generalization capabilities. This method iteratively merges leaves
that have a lower increase in predictive performance than some user-defined
threshold α. In Fig. 5 we compare the effects of Cost Complexity Pruning and
robust relabeling on the Diabetes dataset. Here, we trained decision trees without
size constraints and varied the hyperparameters α and ε then measured accuracy
before and after adversarial attacks.

While the effectiveness of cost complexity pruning and robust relabeling
varies between datasets we find that generally both methods can increase test
accuracy compared to the baseline model. However, cost complexity pruning
achieved better accuracy scores on average while robust relabeling achieved bet-
ter adversarial accuracy scores. Clearly, there is a difference between regular-
ization for generalization and adversarial robustness. Such a trade-off between
accuracy and robustness has been widely described in the literature [18,27].
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Table 5. Comparison of regular accuracy scores before and after applying robust
relabeling. Since robustness is generally at odds with accuracy robust relabeling loses
out on accuracy in about 2 out of 3 cases. However, in some cases robustness actually
improves accuracy as a type of regularization.

Dataset Decision tree Gradient boosting Random forest

Before After Before After Before After

Banknote .967 ± .022 .948 ± .036 .991 ± .007 .941 ± .038 .994 ± .005 .956 ± .020

Breast-cancer .969 ± .014 .958 ± .019 .962 ± .008 .965 ± .009 .968 ± .008 .969 ± .003

Breast-cancer-d .930 ± .034 .912 ± .032 .917 ± .036 .931 ± .024 .954 ± .017 .947 ± .028

Sonar .740 ± .058 .716 ± .054 .731 ± .044 .740 ± .046 .803 ± .031 .755 ± .054

Ionosphere .883 ± .034 .857 ± .047 .906 ± .041 .863 ± .022 .926 ± .026 .932 ± .033

Parkinsons .872 ± .065 .851 ± .071 .867 ± .071 .851 ± .071 .913 ± .082 .759 ± .014

Diabetes .737 ± .026 .738 ± .034 .742 ± .026 .719 ± .028 .769 ± .039 .768 ± .040

Qsar-bio .819 ± .042 .661 ± .004 .872 ± .023 .663 ± .002 .868 ± .023 .663 ± .002

Spectf-heart .840 ± .041 .840 ± .041 .871 ± .028 .880 ± .033 .897 ± .025 .897 ± .025

Wine .696 ± .048 .686 ± .047 .774 ± .024 .494 ± .081 .786 ± .019 .498 ± .080

Fig. 5. Test scores on the Diabetes dataset when varying the hyperparameters of cost
complexity pruning and robust relabeling. Both improve upon unpruned trees (α =
ε = 0) but cost complexity pruning performs better at regular accuracy while robust
relabeling enhances adversarial accuracy.

6 Conclusions

In this work, we studied relabeling as a method to improve the adversarial
robustness of decision trees and their ensembles. As training optimal robust
decision trees is expensive and training heuristic robust trees inexact, we pro-
pose a polynomial-time post-learning algorithm to overcome these problems:
robust relabeling. Our results show that robust relabeling significantly improves
the robustness of regular and robust tree models. Robustly relabeling models
trained with the state-of-the-art robust tree heuristic GROOT further improved
the performance. While we can also use the robust relabeling method during the
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tree learning procedure this took up to hours of runtime and produced decision
trees that were approximately as robust as relabeled GROOT trees.

We expect robust relabeling in combination with methods such as GROOT to
become important for training models that get deployed in adversarial contexts
such as fraud or malware detection. The result that finding an optimal robust
labeling can be done in polynomial time can help to further improve meth-
ods for optimal robust decision tree learning. In future work, we will explore
the regularity effects of robust models for instance for improved counterfactual
explanations.
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Abstract. Estimating distance metrics for given data samples is essen-
tial in machine learning algorithms with various applications. Accurately
determining the metric becomes impossible if there are observation noises
or missing values. In this work, we proposed an approach to calibrating
distance metrics. Compared with standard practices that primarily reside
on data imputation, our proposal makes fewer assumptions about the
data. It provides a solid theoretical guarantee in improving the quality
of the estimate. We developed a simple, efficient, yet effective computing
procedure that scales up to realize the calibration process. The experi-
mental results from a series of empirical evaluations justified the benefits
of the proposed approach and demonstrated its high potential in practi-
cal applications.

Keywords: Missing data · Metric calibration · Alternating projection

1 Introduction

In data processing, a distance metric, or a distance matrix, is used to measure
the pairwise dis-similarity relationship between data samples. It is crucial and
lays a foundation in many supervised and unsupervised learning models, such as
the K-means clustering algorithm, the nearest neighbor classifier, support vector
machines [9,18,30,35].

Calculating pairwise distance is straightforward if the data samples are clean
and fully observed. Unfortunately, with observation noises or missing values,
which are natural and common in practice, obtaining a high-quality distance
metric becomes a challenging task, and nontrivial challenges arise to learning
algorithms based on the distance estimation between data samples.

Significant research attention has been devoted to handling the difficulty
brought by missing values. Various imputation techniques were designed as a
routine treatment, which has greatly influenced the progress in various disciplines
[11,25]. These techniques complete the data by replacing the missing values with
substituted ones based on various assumptions. Based on the imputed data, the
pairwise distances can be calculated accordingly.
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Despite the popularity received by data imputation approaches, nontrivial
challenges still exist. When the assumptions made by the imputation techniques
are violated, there is no guarantee at all on the quality of the imputed values,
needless to say, the impact on subsequent data analysis tasks. Furthermore, with
a large portion of missing values, the imputation can be highly demanding or
even prohibitive in computation, which becomes another serious concern.

As a remedy, we carried out a series of work in two directions. Firstly and
as the main contribution of this paper, our work proposed a metric calibration
model that avoids data imputation in Sect. 3.2. It starts from an approximate
metric estimated from incomplete samples or prior knowledge and then calibrates
the metric iteratively. The calibrated metric is guaranteed to be better than the
initial metric in terms of a shorter Frobenius distance to the accurate unknown
metric, except in rare cases, the two metrics are identical. Secondly, our work
applied Dykstra’s projection algorithm to realize the calibration process and
designed a cyclic projection algorithm as a more scalable alternative.

Compared with the popular imputation methods in handling missing data,
the calibration approaches seemed to rely less on the assumption of the cor-
relation among data features or the data’s intrinsically low dimension/rank.
As a result of the less dependency, the approaches reported more robust and
reliable results in empirical evaluations. The improvement from the calibration
approaches is especially significant when the missing ratio is high, or the noisy
level is high, which exhibited their high potential in handling missing and noisy
data in practical applications.

The paper is organized as follows. Section 2 introduces the background.
Section 3 presents our model and algorithms. Section 4 reports the experimen-
tal results, followed by the conclusion in Sect. 5.

2 Background

2.1 Missing Data and Imputation

Missing observations are everywhere and pose nontrivial challenges to numerous
data analysis applications in science and engineering. Developing techniques to
process incompletely observed data becomes one of the most critical tasks in
statistical sciences [11,25].

A common approach to dealing with missing observations is through data
imputation. A missing value may be replaced by a zero value, the feature’s
mean, median, or the most frequent value among the nearest neighbor samples
or all observed samples.

A more rigorous treatment is based on the expectation-maximization (EM)
algorithm [6]. The approach assumes the existence of specific latent structures
and variables. By alternatively estimating the model parameters and the missing
values with the fitted model parameters, the approach generates a maximum
likelihood or a maximum a posterior estimate for each missing observation.

Another imputation approach, the low-rank matrix completion approach
developed more recently, makes assumptions on the rank of the data matrix
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to be completed. Efficient algorithms were designed to achieve exact reconstruc-
tion with high probability and reported quite successful results, such as in rec-
ommender systems [3,19]. In recent work, based on the assumption that two
random batches from the same dataset share the same distribution, a measure
of optimal transport distances is applied as an optimization objective for miss-
ing data imputation, which achieves excellent performances on some practical
tasks [27].

Despite the success and the popularity that has been achieved, an inherent
challenge exists. All imputation approaches, either explicitly or implicitly, have
assumed the low dimensionality or the low-rank structure of the data. However,
when the assumption does not hold, all these approaches will lose the perfor-
mance guarantee on the imputation quality.

2.2 Metric Calibration

Instead of imputations, a matrix calibration approach can be applied to improve
a metric obtained from incomplete or noisy data. As an example, let us consider
the metric nearness model [2]. Denote the set of all n×n matrices by Mn, which
is a closed, convex polyhedral cone. Assume we are given n incomplete samples
and an estimate of their distance matrix D0 =

{
d0ij

}n

i,j=1
∈ Mn. The estimate

is inaccurate and might violate the triangle inequality property that the true
metric possesses. As a remedy, we consider the following model:

min
D∈Mn

∥
∥D − D0

∥
∥2

F
(1)

s.t.,
dij ≥ 0, dii = 0, dij = dji, and dij ≤ dik + dkj ,

for all 1 ≤ i, j, k ≤ n.
The model above seeks a new matrix D = {dij}n

i,j=1 that best approximates
the input matrix D0 in Frobenius norm, from a feasible region of matrices that
meet the desired constraints. After calibration, the result will restore the prop-
erty that the true distance metric should possess.

The calibration approach has an implicit but key benefit [23]. Suppose the
feasible region of the distance matrix of interest is appropriately defined. In that
case, although the factual matrix is never known to us, the new calibrated matrix
can be guaranteed to be nearer to the ground truth than the initial estimate D0,
except in rare cases that they are identical.

The metric nearness model defined in Eq. (1) can be formulated as a quadratic
program and solved by modern convex optimization packages [1]. Besides, an
elegant triangle fixing algorithm [2] was developed, which exploited the inherent
structure of the triangle inequalities and improved running efficiency. Besides, we
can also consider a stochastic sampling of constraints or Lagrangian formulations
to seek an algorithmic solution [31]. Despite the partial success that has been
achieved along this line, however, the intrinsic complexity from O

(
n3

)
inequality

constraints to Eq. (1) makes the model hard to scale up, which significantly limits
the application of the model.
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3 Model

3.1 A Kernel’s Trick

Our work resides on a mild assumption that the data samples in the study are
isometrically embeddable in a real Hilbert space, or equivalently, the samples can
be represented as real vectors. Recall the definition of isometrical embedding.

Definition 1. Consider a separable metric space X with a distance function ρ,
having the properties that ρ(x, x′) = ρ(x′, x) ≥ 0 and ρ(x, x) = 0 for all points x
and x′ in X . (X , ρ) is said to be isometrically embeddable in a real Hilbert space
H (or embeddable, for short) if there exists a map φ : X �→ H such that

‖φ(x) − φ(x′)‖ = ρ(x, x′)

for all points x and x′ in X .

A classical result on isometrical embedding [29,34] states that:

Theorem 2. Assume (X , ρ) is embeddable. Then, for each γ > 0 and 0 < α < 1,
n∑

i,j=1

exp
(
−γρ2α(xi, xj)

)
ξiξj ≥ 0

holds for every choice of points x1, · · · , xn in X and real ξ1, · · · , ξn.

For any finite subset {x1, · · · , xn} ⊆ X (n ≥ 2), denote by D∗ =
{
d∗

ij

}n

i,j=1

with d∗
ij = ρ(xi, xj) for each i, j and exp (−γD∗) =

{
exp

(
−γd∗

ij

)}n

i,j=1
. By

choosing α = 1
2 , we have, if (X , ρ) is embeddable, the matrix exp (−γD∗) is

positive semi-definite and we also say that the matrix D∗ is embeddable.
In the machine learning area, the positive definite function exp (−γ ‖x − x′‖)

is known as the Laplacian kernel, popularly used in the context of kernel-based
algorithms [30]. In our application, the function connects an embeddable metric
D∗ and a positive semi-definiteness matrix exp (−γD∗).

3.2 Direct Calibration

For given samples {x1, · · · , xn} in X , let D0 =
{
d0ij

}n

i,j=1
be an input distance

matrix between the samples. Assume that, due to observation noise or missing
values, the metric D0 is not accurate. From the relationship between isometrical
embedding and positive semi-definiteness in Sect. 3.1, we naturally investigate
the following model to calibrate the matrix D0 to a better estimate:

min
D∈Mn

∥
∥D − D0

∥
∥2

F
, (2)

s.t.

exp(−γD) 	 0, dii = 0 (1 ≤ i ≤ n), and dij ≥ 0 (1 ≤ i 
= j ≤ n),

where 	 0 denotes the positive semi-definiteness constraint on a matrix.
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Solving the optimization problem in Eq. (2) is not straightforward. Here we
develop an efficient approximation. Let μ = max {ρ(xi, xj), 1 ≤ i, j ≤ n} be a
normalizing factor, and γ = ε

μ where ε is a small positive number1. Denote
E0 =

{
e0ij

}n

i,j=1
= exp(−γD0), and we reach a known problem in literature [23]:

min
E∈Mn

∥
∥E − E0

∥
∥2

F
(3)

s.t.

E 	 0, eii = 1 (1 ≤ i ≤ n), and eij ∈ [1 − ε, 1] (1 ≤ i 
= j ≤ n).

Let R = {X ∈ Mn|X 	 0, xii = 1, xij ∈ [1 − ε, 1] for all i, j} be a closed
convex subset of Mn. The optimal solution to Eq. (3) is the projection of E0 onto
R, denoted by E0

R. Let E∗ = exp(−γD∗), where D∗ is the true but unknown
metric. Obviously E∗ ∈ R, and

∥
∥
∥E∗ − E0

R
∥
∥
∥
2

F
≤

∥
∥
∥E∗ − E0

R
∥
∥
∥
2

F
− 2

〈
E∗ − E0

R, E0 − E0
R

〉

≤
∥
∥
∥
(
E∗ − E0

R
)

−
(
E0 − E0

R
)∥
∥
∥
2

F
. (4)

The first “≤” holds due to Kolmogrov’s criterion [7], which states that the pro-
jection of E0 onto R is unique and characterized by:

E0
R ∈ R and

〈
E − E0

R, E0 − E0
R

〉
≤ 0, for all E ∈ R.

The equality holds if and only if E0
R = E0, i.e., E0 ∈ R.

Equation (4) gives
∥
∥
∥E∗ − E0

R
∥
∥
∥
2

F
≤

∥
∥E∗ − E0

∥
∥2

F
, which shows that E0

R is

an improved estimate towards the unknown E∗. Next, let D0
R be obtained from

E0
R = exp(−γD0

R). From Taylor-series expansion:

ez = 1 + z + O
(
z2

)
≈ 1 + z, for |z| � 1,

we have: ∥
∥
∥E∗ − E0

R
∥
∥
∥
2

F
=

ε2

μ2

∥
∥
∥D∗ − D0

R
∥
∥
∥
2

F
+ O(ε4), (5)

and
∥
∥E∗ − E0

∥
∥2

F
=

ε2

μ2

∥
∥D∗ − D0

∥
∥2

F
+ O(ε4). (6)

If E0 /∈ R, we have
∥
∥
∥E∗ − E0

R
∥
∥
∥
2

F
<

∥
∥E∗ − E0

∥
∥2

F
. For a sufficiently small ε,

we have
∥
∥
∥D∗ − D0

R
∥
∥
∥
2

F
<

∥
∥D∗ − D0

∥
∥2

F
based on Eqs. (5) and (6). If E0 ∈ R, we

have E0
R = E0, which implies D0

R = D0. Considering both cases, we have:

1 We set μ = max
{
d0
ij

}
and ε = 0.02 in the study.
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∥
∥
∥D∗ − D0

R
∥
∥
∥
2

F
≤

∥
∥D∗ − D0

∥
∥2

F
. (7)

The equality holds if and only if exp(−λD0) 	 0. The result shows that, except
in the special case D0

R = D0 that happens when E0 ∈ R, the calibrated D0
R is

a better estimate than the input D0 in terms of a smaller Frobenius distance to
the true but unknown metric D∗.

3.3 Dykstra’s Algorithm

Solving Eq. (3) to find the projection of E0 onto set R is well-studied in the
optimization community. Several algorithms are available with quite good per-
formances [28]. Similarly to the work of [16,23], we resort to a simple and flexible
procedure based on Dykstra’s alternating projection algorithm [10], also called
direct calibration in the sequel.

Equip the closed convex set Mn with an inner product that induces the
Frobenius norm:

〈X,Y 〉 = trace
(
XT Y

)
, for X,Y ∈ Mn.

Define two nonempty, closed and convex subsets of Mn:

S = {X ∈ Mn|X 	 0} , and T = {X ∈ Mn|xii = 1, xij ∈ [1 − ε, 1] for all i, j} .

Obviously R = S ∩ T . Directly projecting E0 onto R is expensive, while pro-
jecting it onto S and T respectively is easier. Denote by PS the projection onto
S, and PT the projection onto T . For PS and PT , we have the following two
results.

Fact 1. Let X ∈ Mn and UΣV T be its singular value decomposition with Σ =
diag (λ1, · · · , λn). The projection of X onto S is given by: XS = PS (X) =
UΣ′V T where Σ′ = diag (λ′

1, · · · , λ′
n) and each λ′

i = max {λi, 0}.

Fact 2. The projection of X ∈ Mn onto T is given by: XT = PT (X) ={(
xT

)
ij

}n

i,j=1
where

(
xT

)
ij

= med {1 − ε, xij , 1}, i.e., the median of the three

numbers.

Dykstra’s projection algorithm can be applied to find the minimizer to Eq. (3).
Starting from E0, it generates a sequence of iterates

{
Et

S , Et
T

}
and increments

{
It
S , It

T
}

, for t = 1, 2, · · · , by:

Et
S = PS

(
Et−1

T − It−1

S
)

(8)

It
S = Et

S −
(
Et−1

T − It−1

S
)

(9)

Et
T = PT

(
Et

S − It−1

T
)

(10)

It
T = Et

T −
(
Et

S − It−1

T
)

(11)



Calibrating Distance Metrics Under Uncertainty 225

where E0
T = E0, I0S = 0, I0T = 0 and 0 is an all-zero matrix of proper size. The

sequences
{

Et
S

}
and

{
Et

T
}

converge to the optimal solution E0
R as t → ∞.

3.4 Cyclic Calibration

Based on the proposed calibration model and the Dykstra’s alternating pro-
jection algorithm presented in Sects. 3.2 and 3.3 respectively, a more scalable
calibration algorithm, called cyclic calibration [24] in the sequel, can be designed
based on the following result.

Fact 3. Let R be a closed convex subset of Mn and E∗ ∈ R. Let C be a closed

convex superset of R and C ⊆ Mn. For any E0 ∈ Mn, we have
∥
∥
∥E∗ − E0

C
∥
∥
∥
2

F
≤

∥
∥E∗ − E0

∥
∥2

F
. The equality holds if and only if E0

C = E0, i.e., E0 ∈ C.

This result can be obtained similarly to Eq. (4). It states that the projection of
E0 onto C provides an improved estimate towards E∗. Based on the observation,
we can design a domain decomposition algorithm that avoids factorizing the full
n×n matrix. Let C1, · · · , Cr be r closed convex sets that satisfy R ⊆

⋂r
k=1 Ck and⋃r

k=1 Ck ⊆ Mn. Starting from E0 ∈ Mn, again we apply Dykstra’s projection
which generates the iterates {Et

k} and the increments {It
k} cyclically by:

Et
0 = Et−1

r (12)
Et

k = PCk

(
Et

k−1 − It−1
k

)
(13)

It
k = Et

k −
(
Et

k−1 − It−1
k

)
(14)

where k = 1, · · · , r and t = 1, 2, · · · . The initial values are given by E0
r = E0

and I0k = 0 (1 ≤ k ≤ r). The sequences of {Et
k} converges to the projection of

E0 onto
⋂r

k=1 Ck [10].

Theorem 3. Let C1, · · · , Cr be closed and convex subsets of Mn such that C =⋂r
k=1 Ck is not empty. For any E0 ∈ Mn and any k = 1, · · · , r, the sequence

{Et
k} converges strongly to E0

C = PC
(
E0

)
, i.e.,

∥
∥
∥Et

k − E0
C
∥
∥
∥
2

F
→ 0 as t → ∞.

To realize the cyclic calibration approach, we define the r supersets C1, · · · , Cr

of R as follows. Denote r nonempty index sets by I1, · · · , Ir, which satisfies⋃r
k=1 Ik = {1, · · · , n}. For any matrix A ∈ Mn, denote by Ak the principal

submatrix formed by selecting the same rows and columns of A indicated by Ik.
Then for each Ik (1 ≤ k ≤ r), define

Sk = {A ∈ Mn|Ak 	 0} , and, Ck = Sk ∩ T .

Recall that a matrix is positive semi-definite if and only if all its principal sub-
matrices are positive semi-definite [14,17], and we know that R ⊆ C =

⋂r
k=1 Ck.

So by projecting E0 onto each Ck successively with Dykstra’s procedure, we will
obtain the projection onto C, which provides an improved estimate towards the
unknown E∗, with the following steps:
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1. For given r, randomly generate index sets I1, . . . , Ir;
2. Calibrate the matrix by projecting it onto C1, · · · , Cr cyclically;
3. Repeat steps 1 and 2 until convergence.

Cyclic calibration can be regarded as an extension of the direct calibration
presented in Sect. 3.3. When r = 1, the cyclic algorithm reduces exactly to the
direct algorithm.

Let D0
C be obtained from E0

C . Similarly to the result in Eq. (7), we have:

∥
∥
∥D∗ − D0

C
∥
∥
∥
2

F
≤

∥
∥D∗ − D0

∥
∥2

F
, (15)

which shows that D0
C improves D0 and gets nearer to the unknown D∗.

3.5 Complexity Analysis

To project an n×n matrix directly onto the convex set S via SVD, the complexity
is O

(
n3

)
per iteration [5,15]. With cyclic calibration, we set the cardinality of

Ik to O (n/r) and project an input matrix onto Sk (1 ≤ k ≤ r) successively.
We need to decompose r principal submatrices in each iteration. The complexity
is O

(
n3/r3

)
to decompose one submatrix, and O

(
n3/r2

)
for r decompositions,

which significantly improves the complexity of the direct approach.
For the number of iterations to converge, theoretically, the convergence rate of

Dykstra’s alternating projection for polyhedral sets is known to be linear [10,12].
Empirically the direct approach converged in around 20 iterations, and the cyclic
approach converged in around 40 iterations on a problem with n = 10, 000 and
r = 10 in our evaluation.

For memory requirement, if the whole distance matrix is stored in memory,
both calibration approaches have a storage complexity of O

(
n2

)
. For the cyclic

approach, it is also possible to reduce the storage complexity to O
(
n2/r2

)
by only

keeping the working principal submatrix in memory, at the cost of swapping-in
and swapping-out operations on other matrix elements from time to time.

4 Evaluation

4.1 Settings

We carried out empirical studies to evaluate the proposed model and calibration
algorithms, specifically with the objectives of investigating their effectiveness in:

– reducing the noise of distance matrices;
– computing distance metrics from incomplete data;
– performances in classification applications;
– running speed and scalability.

We used five benchmark datasets that are publicly available. These datasets
cover a reasonably wide range of application domains, including:
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Table 1. Relative squared deviations on calibration of noisy distance metrics.
Each item has two values, corresponding to ζ = 0.1 and 0.5 respectively: the smaller
RSD value, the better performance. Direct calibration reported the best calibration
quality on almost all experiments.

Dataset TRIFIX DIRECT CYCLIC

MNIST .976/.362 .137/.034 .164/.039
CIFAR10 .904/.369 .146/.031 .181/.037
PROTEIN .992/.358 .178/.031 .222/.025
RCV1 .999/.356 .184/.023 .233/.023
SENSEIT .778/.351 .103/.032 .123/.045

– MNIST: images of handwritten digits with 28 × 28 pixels each [21];
– CIFAR10: ten classes of color images with 32 × 32 pixels each [20];
– PROTEIN: 357-dimensional sparse binary bio-samples in three classes [4];
– RCV1: 47, 236-dimensional sparse newswires from Reuters in two classes [22];
– SENSEIT: 100-dimensional samples from a vehicle net in three classes [8].

We implemented the calibration approaches in the MATLAB platform. For
the cyclic calibration approach, the number of partitions was set to r = 10 unless
otherwise specified. All results were recorded on a server with 28 CPU cores and
192GB memory enabled for computation.

4.2 Noise Reduction on Distance Metrics

One specific application scenario of the proposed approaches is noise reduc-
tion in given distance metrics. In each run of the experiment, we randomly
chose 1, 000 samples from the MNIST dataset and computed their pairwise
Euclidean distance matrix (D∗) as the ground truth metric. Next we added
certain amounts of white noise to D∗ and obtain a noisy metric D0 with each
d0ij = max

{
0, d∗

ij + ζμv
}
, where μ is the mean of all elements in D∗, ζ was set

to 0.1/0.5 respectively and v ∼ N (0, 1) is a standard Gaussian random variable.
We applied the direct calibration approach (denoted by DIRECT) and the

cyclic calibration approach (denoted by CYCLIC) on D0 and obtained two cali-
brated matrices (D0

R). The relative squared deviation (RSD) from D∗, calculated

as

∥
∥
∥D0

R−D∗
∥
∥
∥

2

F

‖D0−D∗‖2
F

, was recorded to measure the performance of each calibration
method.

We repeated the experiment for ten runs and reported the mean of the results
in Table 1. Compared with the noisy matrix D0, the direct calibration reduced
more than 86% of squared deviation when ζ = 0.1 and more than 96% when
ζ = 0.5, and the cyclic calibration reported comparable improvements.
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Table 2. Relative squared deviations on calibration of approximate metrics
from incomplete samples. Each item has two values, corresponding to p = 0.1 and
0.5 respectively: the smaller RSD value, the better performance. Direct calibration
reported the best performances on almost all experiments.

Dataset Imputation Calibration

MEAN kNN SVT TRIFIX DIRECT CYCLIC

MNIST 2.80/8.20 7.96/18.5 2.51/8.57 1.00/.998 .998/.767 1.12/.813
CIFAR10 765./243 119./292 25.1/61.5 1.00/1.00 .991/.979 1.37/.997
PROTEIN 53.0/17.7 1.77/3.40 1.79/3.12 .994/.924 .975/.506 1.05/.464
RCV1 1.48/3.00 1.52/3.07 1.44/2.89 .999/.931 .806/.429 .975/.430
SENSEIT 82.8/27.9 .908/1.13 .890/.861 .922/.502 .874/.489 .917/.543

We also recorded the performance of triangle fixing (TRIFIX) algorithm2 (cf.
Sect. 2.2), which calibrates the noisy metric to restore the triangle inequalities.
The triangle fixing algorithm reduced around 2% and 64% squared deviations,
respectively. As a comparison, our proposed approaches reported significantly
superior calibration results. In addition to the MNIST dataset, we carried out
the same experiment on the other datasets and found very similar results.

4.3 Distance Metrics from Incomplete Data

The second experiment was on estimating the distance metric from incomplete
observations. In each of the ten runs, we randomly chose a subset of 1, 000
samples from the MNIST dataset and computed the pairwise distance matrix
D∗ as the ground truth.

Then, we randomly marked different portions (p = 0.1/0.5 respectively) of
features as missing for each sample. For any two incomplete samples xi and xj

in the dataset, denote xi(xj) a new vector formed by keeping those features
of xi that are observed in both xi and xj . Based on the common features, an
approximate distance for the two incomplete samples was given by:

d0ij = ‖xi(xj) − xj(xi)‖
√

q

qij

where q = 784 is the dimension of the MNIST samples and qij is the number of
features observed in both samples.

Let a distance matrix D0 =
{
d0ij

}n

i,j=1
. The matrix is often not embeddable,

which leaves potential room for further calibration. Accordingly, we calibrated
D0 to a new estimate D0

R by our proposed approaches, and computed their RSD
values from the ground truth D∗ as described in Sect. 4.2.

The two proposed approaches were compared with the triangle fixing algo-
rithm (cf. Sect. 2.2) on the quality of the calibration. In addition, the results
2 Implementation downloaded from http://optml.mit.edu/software.html.

http://optml.mit.edu/software.html
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from several imputation methods, which were popularly used in practice, were
also included as a baseline. These imputation methods include:

– MEAN: Replacing missings by the observed mean of the feature;
– kNN: Replacing missings by weighted mean of k = 5 nearest samples [33];
– SVT: Low-rank matrix completion with singular value thresholding3 [3].

We applied these imputation methods to replace the missing features with
substituted values, calculated the distance matrix based on the imputed data,
and recorded the corresponding RSD values. In the experiment, we also tested
two implementations [13,26] of the classical expectation-maximization algorithm
and the recent optimal transport algorithm [31] to impute the data. Unfortu-
nately, different from their known excellent performances on low-dimensional
data, both algorithms failed to execute on most of these high-dimensional data
samples with a large portion of missing values. So their results were not available.

The results are given in Table 2. Compared with the un-calibrated D0, we
can see that the calibration approaches brought significant drops in squared
deviations from the true D∗. Direct calibration reported the best results in RSD
values on most of the datasets and the settings. When p = 0.5, it reduced
around 23% to 57% squared deviations on most datasets. The only exception
is on the CIFAR10 dataset, where the reduction of squared deviations is not
that significant. However, the improvement from calibration approaches over
the imputation methods is still significant.

At the same time, we can see that the imputation approaches had no guar-
antee of the quality of RSD values. The imputed data’s distance matrix may be
far from the ground truth. For example, naïvely filling the mean to the missing
values on the CIFAR10 dataset produced a distance matrix that was more than
seven hundred times away from the ground truth than that of D0. Comparatively,
the calibration approaches consistently reduced the squared deviation from the
ground truth by calibrating the input matrix as expected.

4.4 Classification on Incomplete Samples

Having justified the capability of removing metric noises by the proposed
approaches, we would like to investigate whether the calibrated results bene-
fit real applications. Specifically, we applied the calibrated metrics in nearest
neighbor classification tasks. Given a training set of samples with class labels,
we tried to predict the labels of the samples in the testing set. For each test-
ing sample, its label was predicted by the label of the nearest neighbor in the
training set. Then the predicted label was compared against the accurate label
to measure the classification performance.

We carried out one-versus-all cross-validation on the classification task. Each
sample was used, in turn, as the testing sample, while all other samples formed
the training set. We averaged all testing samples’ classification errors and

3 Implementation downloaded from https://candes.su.domains/software/.

https://candes.su.domains/software/
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Table 3. Ten-fold mean classification errors on incomplete samples by near-
est neighbor classifier. Each item has two values, corresponding to p = 0.1 and
0.5 respectively: the smaller MCE values, the better performance. Direct calibration
reported the best performances on almost all experiments.

D0 Imputation Calibration

MEAN kNN SVT TRIFIX DIRECT CYCLIC

MN .127/.203 .145/.503 .132/.272 .150/.450 .127/.200 .126/.192 .127/.191
CI .767/.765 .786/.878 .781/.842 .780/.838 .767/.765 .751/.757 .771/.758
PR .581/.615 .604/.634 .638/.698 .595/.620 .581/.624 .573/.610 .574/.617
RC .339/.442 .324/.432 .324/.435 .334/.437 .338/.463 .321/.419 .327/.427
SE .299/.377 .394/.503 .299/.389 .292/.402 .292/.362 .288/.357 .301/.366

Table 4. Ten-fold mean classification errors on incomplete samples by hard-
margin SVM with Gaussian kernel and default parameters. One-versus-all
strategy was applied for classifying more than two classes. Each item has two values,
corresponding to p = 0.1 and 0.5 respectively: the smaller MCE values, the better per-
formance. Direct calibration reported the best performances on almost all experiments.

D0 Imputation Calibration

MEAN kNN SVT TRIFIX DIRECT CYCLIC

MN .100/.141 .105/.158 .098/.894 .105/.159 .100/.142 .096/.136 .097/.138
CI .661/.664 .671/.694 .785/.903 .665/.691 .661/.664 .656/.658 .658/.670
PR .516/.606 .399/.485 .401/.686 .400/.486 .516/.610 .452/.550 .397/.484
RC .247/.370 .127/.287 .497/.523 .138/.258 .136/.384 .124/.237 .135/.248
SE .373/.478 .239/.293 .249/.741 .240/.291 .369/.473 .264/.388 .231/.289

recorded the mean of average classification errors (MCE) over ten runs. Simi-
lar to the RSD results in Table 2, the calibration approaches reported improved
MCE results in Table 3. With different missing ratios p = 0.1 and p = 0.5,
the calibration approaches consistently reduce the classification errors over the
approximate metric D0 on all datasets, among which the direct calibration app-
roach performed the best. Comparatively, the metrics from imputation-based
approaches sometimes performed even worse than D0.

We further experimented with the support vector machines (SVM) algorithm
[30]. SVM seeks a linear boundary with the maximum margin to separate two
classes of samples in the feature space. To apply SVM, a positive semi-definite
kernel matrix needs to be provided as the input to the algorithm. In the eval-
uation, we used the popular Gaussian kernel to construct the kernel matrix,
exp

(
−αD2

)
, where D2 is the element-wise square of the metric obtained from

each algorithm and α is the default kernel parameter set by the LibSVM package
[4]. In case the kernel matrix constructed is not positive semi-definite (namely,
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D0 and TRIFIX), a small positive number will be added to the diagonal elements
to shift the matrix to be positive semi-definite. The one-versus-all strategy was
applied for classifying more than two classes.

The MCE results are shown in Table 4. The proposed calibration methods
reported similarly improved accuracies over the un-calibrated metric and the
imputation approaches. The most significant improvement over the performance
of D0 was on the RCV1 dataset, from 0.247 to 0.124 and from 0.370 to 0.237
respectively. Consistent improvements were observed on the other datasets. Sim-
ilarly, the calibration approaches reported superior results over the imputation
approaches on most experiments. In the evaluation, we found that when the
missing ratio is high, the performances of the imputation approaches become
relatively unstable. For example, when p = 0.5, the misclassification error with
kNN imputation significantly increased to 0.894 on the MNIST dataset and 0.903
on the CIFAR10 dataset, like a random guess. Comparatively, the calibration
approaches’ performances are much more reliable.

When comparing the proposed calibration approaches with the triangle fixing
algorithm, we can find a similar trend of improvement in classification errors,
although not as significant as the improvement over the imputation approaches.
The improved classification accuracies are consistent with the results reported
in Sects. 4.2 and 4.3, which again justifies the benefits from the better-calibrated
metrics to the unknown ground truth metric.

4.5 Scalability

Fig. 1. Running time on the MNIST dataset with different sample sizes. For
n = 1K/5K/10K, r = 10; for n = 50K, r = 50. |Ik| ≈ 2n

r
(1 ≤ k ≤ r). The triangle

fixing algorithm failed to execute other than n = 1K. Cyclic calibration exhibited
evidently improved scalability when the sample size is large.
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The last experiment was to evaluate the scalability. Similarly to the setting
described in Sect. 4.2, white noise was added to the factual distance matrix, and
then the calibration approaches were carried out. Figure 1 shows the running time
in seconds of our two proposed approaches and the triangle fixing algorithm on
the MNIST dataset with different numbers of training samples from n = 1, 000
to n = 50, 000.

With n = 1, 000 training samples, the direct calibration approach took
around three seconds, about a hundred times faster than the triangle fixing
algorithm with the default parameter setting. When n = 2, 000 (not shown
in the figure) or larger, the triangle fixing algorithm failed to execute on our
platform due to prohibitive memory requirement caused by the O

(
n3

)
triangle

inequalities, so the results were not available here.
When comparing the direct and the cyclic calibration approaches, we can

see that the cyclic approach did not report advantage with a small num-
ber of samples. However, when the number of samples got sufficiently large,
e.g., n = 10, 000, the cyclic approach began to exhibit its superiority. When
n = 50, 000, the cyclic approach was around twenty times faster than the direct
approach to converge, being consistent with the complexity analysis in Sect. 3.5
and confirming a more scalable solution.

5 Conclusion

Estimating distance metrics between samples is a fundamental problem in data
processing with various applications. To deal with the challenge, we suggested
calibrating an approximate metric, which avoids the difficulty in imputation and
returns an improved estimate with a solid guarantee. By connecting isometrical
embedding and positive semi-definiteness of a distance matrix, the proposed
approach provides a simple yet rigorous model for missing data processing, which
forms the main contribution of our work. Computationally, Dykstra’s alternating
projection algorithm provides a natural solution to our proposed model and can
be applied directly. Besides, our work also designed a cyclic projection algorithm
that provided better scalability in the way of divide and conquer.

Compared with popular imputation methods, the proposed calibration
approaches make fewer assumptions on the correlations among data features
and the intrinsic data dimensions/ranks. As a result, the proposed approaches
reported more reliable empirical results in our empirical evaluations of noise
reduction and classification applications. Compared with existing models that
can be applied for calibration purposes, such as the triangle fixing algorithm, the
proposed approaches also reported significantly improved speed and accuracy.
Although preliminary, all the results clearly justified the proposed approaches’
benefits and demonstrated their high potential in practical tasks.

Despite the achieved results, more work along this line deserves to be inves-
tigated. The improved performance of our work relies on the assumption that
the data samples can be isometrically embeddable in a Hilbert/Euclidean space.
However, this assumption may not hold for general metrics. For example, the
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Robinson-Foulds distance metric [32] defined on trees satisfies the triangle
inequalities but is typically not embeddable. Can we extend the proposed app-
roach to calibrate such metrics? It deserves our investigation. Another potential
topic, although the cyclic calibration approach exhibited better scalability, it
still seems demanding when handling big data, and the scalability issue deserves
further consideration.
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Abstract. Neural network policies trained using Deep Reinforcement
Learning (DRL) are well-known to be susceptible to adversarial attacks.
In this paper, we consider attacks manifesting as perturbations in the
observation space managed by the external environment. These attacks
have been shown to downgrade policy performance significantly. We focus
our attention on well-trained deterministic and stochastic neural net-
work policies in the context of continuous control benchmarks subject to
four well-studied observation space adversarial attacks. To defend against
these attacks, we propose a novel defense strategy using a detect-and-
denoise schema. Unlike previous adversarial training approaches that
sample data in adversarial scenarios, our solution does not require sam-
pling data in an environment under attack, thereby greatly reducing risk
during training. Detailed experimental results show that our technique
is comparable with state-of-the-art adversarial training approaches.

1 Introduction

Deep Reinforcement Learning (DRL) has achieved promising results in many
challenging continuous control tasks. However, DRL controllers have proven vul-
nerable to adversarial attacks that trigger performance deterioration or even
unsafe behaviors. For example, the operation of an unmanned aerial navigation
system may be degraded or even maliciously affected if the training of its con-
trol policy does not carefully account for observation noises introduced by sensor
errors, weather, topography, obstacles, etc. Consequently, building robust DRL
policies remains an important ongoing challenge in architecting learning-enabled
applications.

There have been several different formulations of DRL robustness that have
been considered previously. [13,18] consider DRL robustness against perturba-
tions of physical environment parameters. More generally, [7] has formalized DRL
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Fig. 1. Robots we evaluated in non-adversarial and adversarial scenarios. Robots fall
down and gain less rewards when they are under attack.

robustness against uncertain state transitions, and [21] has studied DRL robust-
ness against action attacks. Similar to [27], our work considers DRL robust-
ness against observation attacks. Prior work has demonstrated a range of strong
attacks in the observation space of a DRL policy [9,11,16,20,26,27], all of which
can significantly reduce a learning-enabled system’s performance or cause it to
make unsafe decisions. Because observations can be easily perturbed, robustness
to these kinds of adversarial attacks is an important consideration that must
be taken into account as part of a DRL learning framework. There have been
a number of efforts that seek to improve DRL robustness in response to these
concerns. These include enhancing DRL robustness by adding a regularizer to
optimize goals [1,27] and defending against adversarial attacks via switching
policies [5,24]. There have also been numerous proposals to improve robustness
using adversarial training methods. These often require sampling observations
under online attacks (e.g., during simulation) [9,16,26]. However, while these
approaches provide more robust policies, it has been shown that such approaches
can negatively impact policy performance in non-adversarial scenarios. More-
over, a large number of unsafe behaviors may be exhibited during online attacks,
potentially damaging the system controlled by the learning agent if adversarial
training takes place in a physical rather than simulated environment.

To address the aforementioned challenges, we propose a new algorithm that
strengthens the robustness of a DRL policy without sampling data under adver-
sarial scenarios, avoiding the drawbacks that ensue from encountering safety
violations during an online training process. Our method is depicted in Fig. 2.
Given a DRL policy π, our defense algorithm retains π’s parameters and trains a
detector and denoiser with offline data augmentation. The detector and denoiser
address problems on when and how to defend against an attack, resp. When
defending π in a possibly adversarial environment, the detector identifies anoma-
lous observations generated by the adversary, and the denoiser processes these
observations to reverse the effect of the attacks. With assistance from the detec-
tor and the denoiser, the algorithm overcomes adversarial attacks in the policy’s
observation space while retaining performance in terms of the achieved total
reward.
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Fig. 2. Framework

Both the detector and denoiser are modeled with Gated Recurrent Unit Vari-
ational Auto-Encoders (GRU-VAE). This design choice is inspired by recent
work [12,15,23,25] that has demonstrated the power of such anomaly detec-
tors and denoisers. After anomalies enforced by attacks are detected, we need
to reverse the effect of the attacks with a denoiser. However, training such a
denoiser requires the observations under attack as input, but sampling such
adversarial observations online is unappealing. To avoid unsafe sampling, our
algorithm instead conducts adversarial attacks using offline data augmentation
on a dataset of observations collected by the policy in a non-adversarial envi-
ronment.

Our approach provides several important benefits compared with previous
online adversarial training approaches. First, because we do not retrain victim
policies, our approach naturally retains a policy’s performance in non-adversarial
scenarios. Second, unlike adversarial training methods that need to sample data
under online adversarial attacks, we only require sampled observations with a
pretrained policy in a normal environment not subject to attacks. Third, the
stochastic components in our detect-and-denoise pipeline (i.e., the prior distri-
bution in the variational autoencoders) provide a natural barrier to defeat adver-
sarial attacks [10,14]. We have evaluated our approach on a range of challenging
MuJoCo [22] continuous control tasks for both deterministic TD3 policies [3] and
stochastic PPO policies [19]. Our experimental results show that compared with
the state-of-the-art online adversarial training approaches [26], our algorithm
does not compromise policy performance in perturbation-free environments and
achieves comparable policy performance in environments subject to adversarial
attacks.

To summarize, our contributions are as follows:

– We integrate autoencoder-style anomaly detection and denoising into a
defense mechanism for DRL policy robustness and show that the defense
mechanism is effective under environments with strong known attacks as well
as their variants and does not compromise policy performance in normal envi-
ronments.
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– We propose an adversarial training approach that uses offline data augmen-
tation to avoid risky online adversarial observation sampling.

– We extensively evaluate our defense mechanism for both deterministic and
stochastic policies using four well-studied categories of strong observation
space adversarial attacks to demonstrate the effectiveness of our approach.

2 Background

2.1 Markov Decision Process

A Markov Decision Process (MDP) is widely used for modeling reinforcement
learning problems. It is described as a tuple (S,A, T,R, γ,O, φ). S and A repre-
sent the state and action space, resp. T (s, a) : S × A → P(S) is the transition
probability distribution. Given current state s and the action a, the Markov
probability transition function T (s, a) returns the probability of a new state s′.
R(s, a, s′) : S×A×R → R is the reward function that measures the performance
of a given transition (s, a, s′). Let the cumulative discounted reward be R, and
the reward at time t be R(st, at, st+1). Then, R =

∑T
t=0 γtR(st, at, st+1), where

γ ∈ [0, 1) is the discounted factor and T is the maximum time horizon. The last
element in the MDP tuple is an observation function φ : S → O which trans-
forms states in the state space S to the observation space O. The task of solving
an MDP is tantamount to finding an optimal policy π : O → A that maximizes
the discounted cumulative reward R.

2.2 Observation Attack

Given a pretrained policy π, the observation attack AB injects noise to the
observation to downgrade the cumulative reward R. B quantifies this noise term.
Typically, B is an �n-norm region around the ground-truth observation. Given
an observation ot, B(ot) = {ôt | ||ôt − ot||n < ε}, where ε is the radius of the �n

norm region. Additionally, attacks can choose when to inject noise. Since it is
crucial to downgrade performance using as few attacks as possible, it is typical to
define a vulnerability indicator 1vul : O → {True, False}. Given an observation
ot, if 1vul(ot) is False, the policy π receives the perturbation-free observation
ot as input; otherwise, the input will be an adversarial observation ôt = AB(ot).

2.3 Defense via Detection and Denoising

The MDP tuple becomes (S,A, T,R, γ,O, φ,AB,1vul) after incorporating an
adversary. One way to defend against adversarial attacks is to retrain a pol-
icy for the new MDP. However, such an approach ignores the fact that we
already have a trained policy that performs well in non-adversarial scenarios.
Additionally, the solution of such an MDP may not yield an optimal policy
[27]. In contrast, our approach considers removing the effects introduced by
AB,1vul by casting the adversarial MDP problem back into a standard MDP.
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To do so, we exploit the trained policy and avoid the possibility of failing to
find an optimal policy, even in non-adversarial scenarios. Notably, our approach
eliminates the effect introduced by the vulnerability indicator 1vul and obser-
vation attack AB by using an anomaly detector and a denoiser, resp. Given a
sequence of observations ht = {o0, ..., ot}, the detector is tasked with predicting
whether an attack happens in the latest observation ot. Conversely, the denoiser
predicts the ground-truth observation of ot with ht. If the detector finds an
anomaly, the denoiser’s prediction is used to replace the current observation ot

with the ground-truth observation. Our defense only intervenes when the detec-
tor reports an anomaly, which preserves the performance of pretrained policies
when no adversary appears. Training a VAE denoiser typically requires both
the groundtruth inputs (i.e., the actual observations) and the perturbed inputs
(i.e., the adversarial observations). However, sampling the adversarial observa-
tions under online adversarial attacks can be risky. Thus, we prefer sampling
adversarial observations offline.

2.4 Online and Offline Sampling

The difference between online and offline sampling manifests in whether we need
to sample data via executing an action in an environment. Adversarial attacks
can downgrade performance by triggering unsafe behaviors (e.g., flipping an ant
robot, letting a humanoid robot fall), and hence online sampling adversarial
observations can be risky. In contrast, offline sampling does not collect data
via executing actions in an environment and thus does not suffer from potential
safety violations when performing the sampling online. Here, adversarial observa-
tions are sampled offline by running adversarial attacks on a normal observation
dataset (i.e., observations generated in non-adversarial scenarios).

3 Approach

The overall framework of our approach is shown in Fig. 2. Our defense technique
is presented in Sect. 3.1. It consists of two components: a detector and a denoiser.
First, the anomaly detector checks whether the current environment observation
is an anomaly due to an adversarial attack. When an anomaly is detected, the
denoiser reverses the attack by denoising the perturbed observation. We evaluate
our defense strategy over four attacks described in Sect. 3.2. Similar to [9,11], our
framework allows an adversary, when given an observation, to decide whether
the observation is vulnerable to an attack.

3.1 Defense

Adversarial training has broad applications to improve the robustness of machine
learning models by augmenting the training dataset with samples generated
by adversarial attacks. In the context of deep reinforcement learning, previous
approaches [9,13,16,26] conduct policy searches in environments subject to such
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attacks, leading to robust policies under observations generated from adversar-
ial distributions. As mentioned earlier, our method is differentiated from these
approaches by using a detect-and-denoise schema learnt from offline data aug-
mentation while keeping pretrained policies.

Prior work has shown that the LSTM-Autoencoder structure outperforms
other methods in various anomaly settings [12,23,25] including anomaly detec-
tion in real-world robotic tasks [15]. Inspired by the success of this design choice,
we choose to implement both the detector and denoiser as Gated Recurrent Unit
Variational Auto-Encoders (GRU-VAE).

GRU GRU GRU GRUE
nc

od
er

z1 z2 z3 zt

Linear Linear Linear Linear Linear Linear Linear Linear

GRU GRU GRU GRUD
ec

od
er

Linear Linear Linear Linear
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Fig. 3. GRU-VAE. The input of the encoder is a sequence of observations. These
observations pass a GRU layer and two different linear layers to generate the mean μt

and log variance log σt of a Gaussian distribution. The latent variable zt is sampled
from this Gaussian distribution, and is passed to the decoder. The decoder decodes zt
with a GRU and a linear layer. The decoder is a deterministic model. For the detector,
the output of the decoder is trained to be the same as the input observation sequence.
For the denoiser, the output is trained to remove perturbations injected by adversaries.

Detector. The structure of our detector is depicted in Fig. 3. The detector learns
what normal observation sequences should be. We train it with an observation
dataset Dnormal sampled online with a pretrained policy in non-adversarial envi-
ronments. The objective function is the standard variational autoencoder lower
bound [2],

Ldet = Eqθq (zt|ot,ho
t )

[
log pθp

(ot | zt, h
z
t )

] − DKL

(
qθq

(zt | ot, h
o
t )‖pr(zt)

)

where θq is the parameters of encoder qθq
and θp is the parameters of decoder

pθp
; ot ∈ Dnormal is the observation at time t; ho

t and hz
t are the hidden states

for the encoder and decoder, resp.; and zt is sampled from the distribution
parameterized by qθq

. Decoding the latent variable zt reconstructs the input



Defending Obs. Attacks via Detection and Denoising 241

observation ot. Eqθq (zt|ot,ho
t )

[
log pθp

(ot | zt, h
z
t )

]
is known as the reconstruction

objective, the maximization of which increases the likelihood of reconstructing
the observations sampled by the pre-trained policy. DKL

(
qθq

(zt | ot, h
o
t )‖pr(zt)

)

is the KL-divergence between the distribution qθq
(zt | ot, h

o
t ) generated by the

encoder and the prior distribution pr(zt), which serves as the KL regularizer
that makes these two distributions similar. Following [15], we set pr(zt) as a
Gaussian distribution whose covariance is the identity matrix I, but leave the
mean of pr(zt) to be μzt

instead of 0. The learnable μzt
allows the mean of

the prior distribution to be conditioned on input observations. This modified
GRU-VAE is different from a general GRU-VAE model which assumes the prior
distribution is a fixed normal distribution. It depends on the decoder to provide
prior distributions, which is crucial for a detector as shown in [15].

The detector reports an anomaly observation when a decoded observation is
significantly different from the encoded observation, measured by the �∞-norm
between the input observation ot and the output observation o′

t. The detector
reports the anomaly if the �∞-norm between ot and o′

t is greater than a threshold
Canomaly using by the anomaly detection indicator function:

1anomaly(ot, o
′
t) := �∞(ot, o

′
t) > Canomaly

Denoiser. The denoiser learns to map anomaly observations found by the
detector to the ground-truth normal observations. The objective function of the
denoiser is:

Lden = Eq′
θ

q′ (zt|ōt,hōt )

[
log p′

θp′ (ot | zt, h
z
t )

]
− DKL

(
q′

θq′ (zt | ōt, h
ō
t )‖pr(zt)

)

Compared to the detector’s objective function Ldet, the input to the encoder
q′

θq′ is replaced by an observation ōt ∈ Dadv ∪Dnormal and hidden state hō
t . The

encoder of the denoiser maps ōt and hidden state hō
t to a latent variable zt that

is used by the decoder p′
θp′ to generate the ground-truth observation ot. We

also leave the mean of pr(zt) to be μzt
as in the detector. Training the denoiser

requires the observation ōt, which we have to sample by conducting adversarial
attacks.

Sampling adversarial observations online is generally viewed to be a costly
requirement because it must handle potentially unsafe behaviors that might man-
ifest; these behaviors could damage physical agents (e.g., robots) during training
(e.g., by causing a robot to fall down). In contrast, we generate these adversar-
ial observations offline. First, since a well-trained policy already exists, we can
sample a normal observation dataset Dnormal online. Then, we directly apply
adversarial attacks to this dataset. Given an adversary AB, we build an adver-
sarial dataset Dadv = {AB(o) | o ∈ Dnormal}. In Sect. 3.2, we will demonstrate
why two types of adversarial attacks can generate the Dadv without interacting
with an environment under adversarial attacks.
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Robustness Regularizer. A robustness regularizer [27] can also be integrated
into our defense schema. The intuition behind the robustness regularizer is that
if we can minimize the difference between the action distribution under normal
observations and the action distribution under attacks, the robustness of our
network can be improved. A robustness regularizer measures this difference.

Assuming a denoiser den and pretrained policy π, the action a = π(den(o)).
We treat π and den as one network πden. Given an attack ô = AB(o) and the
policy covariance matrix Σ, the robustness regularizer for stochastic PPO is

Rppo = (πden (AB(o)) − πden (o)) · Σ−1 · (πden (AB(o)) − πden (o))

and the robustness regularizer for deterministic TD3 is:

Rtd3 = ‖πden (AB(o)) − πden (o)‖2 .

Following [26], the attack AB considered here is the opposite attack that will
be introduced in Sect. 3.2. The opposite attack depends on the policy network.
When computing the robustness regularizer, we attack πden instead of π. The
theoretical foundation for minimizing the difference between action distributions
is provided by Theorem 5 in [27]. It shows the total variance between the normal
action distribution and the action distribution generated by observation ô under
attack can bound the value function (i.e., performance) difference. However,
unlike [26] that trains a policy with a robustness regularizer, we achieve this by
training the parameters of the denoiser den, and retain the parameters of the
pretrained policy π.

The regularizers can be added with the denoiser’s objective function directly.
Then, according to the policy type, we optimize Lden + Rppo or Lden + Rtd3 to
update the denoiser’s parameters. Optimizing the denoiser’s objective function
and robustness regularizer focus on different goals. A small value of Lden means
the output of the denoiser is close to the groundtruth observations, while a small
Rppo or Rtd3 means the action distributions in adversarial and non-adversarial
scenarios are similar.

3.2 Observation Attacks

Attacks. We evaluate our defense on four well-studied categories of observation
attacks. In this section, we briefly introduce these attacks and explain why the
opposite attack and Q-function attack can be used to generate offline adversarial
datasets without sampling under adversarial scenarios.

Opposite Attack. The opposite attack appears in [6,11,16,27]. By perturbing
observations, this attack either minimizes the likelihood of the action with the
highest probability [6,16,27] or maximizes the likelihood of the least-similar
action [11] in discrete action domains. We choose to minimize the likelihood of
the preferred action. The attacked observation ôt is computed as:

ôt = argmax
ôt∈B(ot)

lop(ot, ôt), (1)
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where B(ot) signifies all the allowed perturbed observations around ot. For
stochastic policies, lop(ot, ôt) = (π(ot) − π(ôt))Σ−1(π(ot) − π(ôt)), where π(ot)
and π(ôt) are the mean of the predicted Gaussian distribution, and Σ is the
policy covariance matrix. For a deterministic TD3 algorithm, the difference is
defined as the Euclidean distance between the predicted actions, lop(ot, ôt) =
||π(ot) − π(ôt)||2. This attack only depends on the policy π. Given a normal
dataset Dnormal, we can apply this attack on every observation in Dnormal to
generate the adversarial dataset Dadv = {AB(o) | o ∈ Dnormal} without any
interaction with the environment. Since generating Dnormal and applying the
opposite attack does not sample under adversarial scenarios. Thus, generating
Dadv does not require sampling under adversarial scenarios.

Q-function Attack. [9,16,27] compute observation perturbations with the Q-
function Q(ot, at). This attack only depends on the Q function Q(ot, at). The Q
function sometimes comes with trained policies (e.g., TD3). When the Q function
is not accompanied by trained policies (e.g., PPO), the Q-function can be learnt
under non-adversarial scenarios [26]. We want to find a ôt such that it minimizes
the Q under budget B. Thus, the attacked observation ôt is computed as

ôt = argmin
ôt∈B(ot)

Q(ot, π(ôt)) (2)

We can generate the adversarial dataset Dadv with Dnormal and Q(ot, at). Notice
that getting Dnormal and Q(ot, at) does not require interacting with environ-
ments under attacks. Therefore, the Q-function attack can also generate the
Dadv = {AB(o) | o ∈ Dnormal} without sampling under adversarial scenarios.

Optimal Attack. The optimal attack learns an adversarial policy πadv adding
perturbation Δot

to the observation ot. For example, [26] demonstrated this
strong attack over MuJoCo benchmarks. [4] learns such an adversarial policy in
two-player environments. The action outputted by the adversarial policy is Δot

,
and the input of πadv is ot. The perturbed observation is

ôt = projB(ot + Δot
) (3)

where projB is a projection function that constrains the perturbed observation ôt

to satisfy the attack budget B. The adversarial policy is trained to minimize the
cumulative discounted reward R. Importantly, training this adversarial policy
πadv requires adversarial sampling online. Thus, we did not adopt it to generate
our adversarial dataset Dadv.

Enchanting Attack. This type of attack first appeared in [11]. It integrates a
planner into the attack loop. The planner generates a sequence of adversarial
actions, and the adversary crafts perturbations to mislead neural network policies
to output adversarial action sequences. At time step t, an adversarial motion
planner generates a sequence of adversarial actions [at,0, at,1, ..., at,T−t] guiding
the agent to perform poorly. Since we attack the observation space and cannot
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change the action directly, we need to perturb observations to mislead the policy
to predict the planner’s adversarial actions. Given the policy network π, the
perturbed observation is

ôt = argmin
ôt∈B

||π(ôt) − at,0||2 (4)

The at,0 is the target adversarial action. In our attack, we call the planner
at every step and use the first action as an adversarial action, which avoids
the errors caused by the deviation between the actual trajectory and planned
trajectory, and thus strengthens the enchanting attack. For the continuous con-
trol problem, we use a Cross-Entropy Motion (CEM) planner [8] for adversarial
planning. Generating or applying an adversarial planner typically requires online
adversarial sampling. Therefore, we did not generate the Dadv with the enchant-
ing attack.

To summarize, we evaluate our defense over four types of attacks. However,
we only generate the adversarial dataset Dadv with the opposite attack and Q-
function attack because they do not require risky online adversarial sampling.
Section 4 shows that the denoiser trained with the adversarial dataset generated
from these two attacks alone performs surprisingly well even when used in defense
against all the four attacks we consider.

When to Attack. Since we want to minimize the reward with as few pertur-
bations as possible, it is crucial to attack when the agent is vulnerable. We use
the value function approximation as the indicator of vulnerability. When the
value function predicts a certain observation has a small future value, such an
observation is likely to cause a lower cumulative reward. A lower cumulative
reward shows either the vulnerability of this observation itself (e.g., a running
robot is about to fall) or the vulnerability of the corresponding policy (i.e., the
policy would perform poorly given this observation). Thus, we can use the value
function approximation to choose the time to trigger our attack. Given an obser-
vation ot and the value function V , by choosing a threshold Cvul, we only trigger
the attack when V (ot) < Cvul. The vulnerability indicator is

1vul(ot) := V (ot) < Cvul

We use the value function learned during training for the PPO policy. Because
V (ot) =

∫
at∼π(ot)

Q(ot, at) and at = π(ot) for a deterministic policy, V (ot) =
Q(ot, π(ot)). Hence, we can compute the value function of TD3 with the learned
Q function and policy. We tune Cvul to achieve the strongest attack while min-
imizing the number of perturbations triggered.

4 Experiments

We evaluate our approach on five continuous control tasks with respect to a
stochastic PPO policy and a deterministic TD3 policy. The PPO policies were
trained by ourselves, and the TD3 policies use pretrained models from [17]. Our
experiments answer the following questions.
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Q1. Does our defense improve robustness against adversarial attacks?
Q2. How does our defense impact performance in non-adversarial scenarios?
Q3. How does our approach compare with state-of-the-art online adversarial

training approach?
Q4. How is the performance of our detectors and denoisers in terms of accuracy?
Q5. How does our defense perform under adaptive attacks?

4.1 Rewards Under Attack w/wo Defense (Q1)

In this section, we show how our defense improves robustness. We report attack
and defense results on the pretrained policies in Table 1. The “Benchmark” and
“Algo” columns are the continuous control tasks and the reinforcement learning
policies, resp. The “Dimension” column contains the dimensionality information
of state and action space. The ε column shows the ε of attack budget B. The ε of
“Hopper”, “HalfCheetah”, and “Ant” are the same as the attack budget provided
in [26]; we increased ε in “Walker2d” to 0.1. The “Humanoid” with the highest
observation and action dimension is not evaluated in [26]. We choose ε = 0.15
for “Humanoid”.

Table 1. Benchmark information and rewards under attack w/wo defense

Benchmark Algo ε Dimension Attack/Defense
State Action Opposite Q-function Optimal Enchanting

Hopper TD3 0.075 11 3 390/2219 960/3328 267/2814 1629/3287
PPO 271/2615 700/3569 247/3068 217/2751

Walker2d TD3 0.1 17 6 751/4005 478/4329 187/4772 762/4538
PPO 241/1785 3510/4737 −38/1393 1582/1741

HalfCheetah TD3 0.15 17 6 1770/8946 1603/8471 1017/8174 1802/8838
PPO 1072/6115 1665/4218 833/3765 274/4477

Ant TD3 0.15 111 8 603/3516 −46/2137 −893/2809 522/4729
PPO −351/5404 −157/1042 558/4574 196/5497

Humanoid TD3 0.15 376 17 431/4849 454/4042 585/5130 420/5125
PPO 531/3161 406/3508 415/3630 396/1695

We provide attack and defense results in the “Attack/Defense” column. The
four sub-columns in this column are the attacks we described in Sect. 3.2. The
numbers before the slash are the cumulative rewards gained under attack. In
this table, we assume the adversary is not aware of our defense’s existence.
The experiment results show that these strong attacks can significantly decrease
the benchmarks’ rewards, and our defense significantly improved rewards for all
attacks.
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4.2 Non-adversarial Scenarios (Q2) and Comparison (Q3)

We evaluate rewards in non-adversarial scenarios and compare them with ATLA
[26], a state-of-the-art online adversarial training approach, in this section.
Adversarial attacks do not always happen. Therefore, maintaining strong per-
formance in normal cases is essential. The “Non-adversarial” column summarizes
the reward gained by policies without any adversarial attack injected. Rewards
are computed as the average reward over 100 rollouts. The “Pre.” column shows
the cumulative reward of pretrained policies, while the “ATLA” column is the
reward gained by the ATLA policy in [26]. The “Ours” column is the reward
gained by the policies under our defense. The numbers in parentheses are the
percentages of rewards preserved when compared with the pretrained policies,
which are computed with reward in “Ours” divided by reward in “Pre.”. Observe
that the introduction of the detector preserves the performance of pretrained
policies. Because our defense only intervenes when it detects anomalies, it has
a mild impact on the pretrained policies in non-adversarial cases. In contrast,
ATLA policies do not perform as well as our defended policies when no adversary
appears on all the benchmarks (Table 2).

Table 2. Rewards in non-adversarial scenarios and comparison

Benchmark Algo Non-adversarial Avg./Min (Best attack)
Pre. ATLA Ours ATLA Ours

Hopper TD3 3607 3220 3506(0.97) 2192/1761(opt) 2912/2219(ops)
PPO 3206 3201(1.00) 3001/2615(ops)

Walker2d TD3 4719 3819 4712(1.00) 1988/1430(opt) 4411/4005(ops)
PPO 4007 3980(0.99) 2414/1393(opt)

HalfCheetah TD3 9790 6294 8935(0.91) 5104/4617(enc) 8607/8174(opt)
PPO 8069 7634(0.95) 4644/3765(opt)

Ant TD3 5805 5313 5804(1.00) 4310/3765(q) 3298/2137(q)
PPO 5698 5538(0.97) 4129/1042(q)

Humanoid TD3 5531 4108 5438(0.98) 3311/2719(q) 4786/4042(q)
PPO 4568 4429(0.97) 2999/1695(enc)

The column “Avg./Min.(Best Attack)” show statistics comparing ATLA and
our defense under the four attacks. The numbers before the slash are the average
reward gained under attacks, and the numbers after the slash are the lowest
rewards among all the attacks. The abbreviations in parentheses are the best
attack that achieves the lowest reward, where “ops” means the opposite attack,
“q” means the Q-function attack, “opt” means the optimal attack, and “enc”
means the enchanting attack. The results show that our defense trained with data
sampled under non-adversarial scenarios provides comparable results with the
riskier online adversarial training approach. Observe that 6 out of 10 benchmarks
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have a higher reward than ATLA for the average rewards over attacks. For the
worst rewards over attacks, our defense has a higher reward than the ATLA on
5 of 10 benchmarks. The result is surprising considering that we do not sample
any adversarial observations online.

4.3 Detector and Denoiser (Q4)

The detector’s performance is crucial for our defense since it prevents unneces-
sary interventions. We report the detectors’ accuracy in non-adversarial scenarios
and their F1 scores and false-negative rates under attack. The accuracy measures
detectors’ performance when no attack appears, and the F1 score measures how
well the detectors perform when policies are under attack. Meanwhile, the false-
negative rate tells us the percentage of adversarial attacks that are not detected.
We present these results in the “Detector” column of Table 3.

Table 3. Detector and denoiser performance

Benchmark Algo Detector Denoiser
Acc. F1 score False negative rate Mean absolute error
Normal Ops Q Opt Enc Ops Q Opt Enc Ops Q Opt Enc

Hopper TD3 0.99 0.82 0.98 0.88 0.99 0.00 0.01 0.07 0.00 0.030 0.023 0.032 0.024
PPO 0.99 0.97 0.94 0.94 0.95 0.00 0.00 0.00 0.00 0.026 0.018 0.034 0.038

Walker2d TD3 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.02 0.01 0.030 0.032 0.042 0.045
PPO 0.95 0.97 0.93 0.95 0.99 0.05 0.01 0.00 0.01 0.041 0.030 0.033 0.037

HalfCheetah TD3 0.95 0.99 0.98 0.98 0.96 0.00 0.00 0.00 0.00 0.049 0.048 0.050 0.043
PPO 0.99 0.99 0.98 0.96 0.96 0.00 0.01 0.02 0.01 0.057 0.041 0.046 0.048

Ant TD3 0.99 0.99 0.99 0.99 0.99 0.00 0.00 0.00 0.00 0.022 0.022 0.022 0.023
PPO 0.99 0.99 0.99 0.99 0.99 0.00 0.00 0.00 0.00 0.023 0.024 0.027 0.026

Humanoid TD3 0.99 0.96 0.97 1.00 0.96 0.08 0.04 0.00 0.07 0.048 0.047 0.043 0.046
PPO 0.99 0.99 0.99 0.99 0.99 0.00 0.00 0.00 0.00 0.055 0.045 0.048 0.050

The detector is expected only to report negative in non-adversarial scenarios.
Since there is no adversarial observation (i.e., positive sample) in non-adversarial
scenarios, we measure the detector’s quality with accuracy instead of the F1
score. The 3rd column in Table 3 reports the accuracy of all the detectors in
non-adversarial scenarios. The worst accuracy is 0.95. The high accuracy explains
why our defense retains the performance of pretrained policies in non-adversarial
cases. We measure the quality of detectors under attack with the F1 scores
and false-negative rate. When attacking Hopper’s PPO policy with the opposite
attack and optimal attack, the F1 scores are 0.82 and 0.88, respectively. However,
their false negative rates are 0.00 and 0.01, respectively. The low false-negative
rates show that our detectors ensure the denoiser would be triggered under
attack. Moreover, the data shows that the relatively low F1 score was caused
by false positives, which means the defense will be cautious and use denoised
observations more often. The left data has an F1 score higher than 0.94 and a
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false negative rate lower than 0.04, which supports our claim that the detector
works well when the policies are under attack.

The Mean Absolute Errors (MAEs) between the outputs of the denoiser
and groundtruth observations are reported in the “Denoiser” column in Table 3.
Although we only train the denoiser with the augmented data generated with the
opposite and Q-function attack, the MAE of the optimal attack and enchanting
attack is close to the MAE of the opposite attack and Q-function attack. This
explains why our defense also works well on the opposite and enchanting attacks,
as shown in Table 1.

4.4 Adaptive Attack (Q5)

We further evaluated the robustness of our defense under adaptive attacks. The
defense in Sect. 4.1 is evaluated when the attacks are not aware of the existence
of our defense. However, once the adversaries realize that we have upgraded our
defense, they can jointly attack our defense and pretrained policies. When the
adversary can access both the detector and denoiser, it can mislead the detector
to ignore anomalies with adversarial observations. We briefly introduce the key
idea of adaptive attacks here. A more formal description of our adaptive attack
design is provided in Appendix B.

The adversary needs to attack our defense and the pretrained policy jointly.
Firstly, we consider how to attack the denoiser. Under our defense, the action at

is computed with a sequential model at = π(den(ot)); we thus replace the pre-
trained policy π(ot) with π(den(ot)) and attack this sequential model. Secondly,
adaptive attacks also need to fool the detector. Because the anomaly is defined
with respect to being greater than a threshold, a malicious observation should
decrease the �∞-norm in 1anomaly. This objective can be defined with a loss
term ldet(ot) = ||det(ot)− ot||∞. For the opposite attack, q-function attack, and
enchanting attack, in addition to using π(den(ot)) to replace π(ot), we optimize
ldet(ot) jointly with Eq. (1), Eq. (2), and Eq. (4) respectively. For the optimal
attack, we train the adversarial policy with the involvement of our defense.

We use the defense rewards in Table 1 (numbers after the slash) as baselines
and report the percentages by which reward changes under adaptive attacks in
Table 4. The benchmark column contains the task names and the policy types.
We have introduced the attack name abbreviations in Sect. 4.1, and the rewards
changes under these attacks are reported from column 2 to column 5. The “Min”
and “Max” columns are the minimal and maximal changes comparable with the
baseline rewards. In the worst case, the adaptive attack causes the performance
on Ant-TD3 to decrease 28% under the opposite attack. We can observe that
some rewards increase under the adaptive attack. This is because jointly attack-
ing the detector can be challenging for the adversary. Since the detector is also a
GRU-VAE, the first problem the adversary needs to address is the stochasticity
introduced by the detector and denoiser themselves. Moreover, the adversary
needs to fool the policy and detector simultaneously, which increases the diffi-
culty of attacking our defense.
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Table 4. Adaptive attack (% change in reward)

Benchmark Algo Ops Q Opt Enc Min Max

Hopper TD3 0.63 0.06 0.17 0.04 0.04 0.63
PPO −0.16 −0.18 −0.12 −0.11 −0.18 −0.11

Walker2d TD3 0.19 0.10 0.00 0.05 0.00 0.19
PPO 0.12 −0.18 −0.16 0.17 −0.18 0.17

HalfCheetah TD3 −0.14 0.06 0.08 0.03 −0.14 0.08
PPO −0.23 0.10 0.17 0.20 −0.23 0.20

Ant TD3 −0.28 −0.17 −0.14 −0.18 −0.28 −0.14

PPO −0.24 0.40 0.11 −0.22 −0.24 0.40
Humanoid TD3 0.09 0.28 −0.03 −0.06 −0.06 0.28

PPO 0.28 0.23 0.01 0.06 0.01 0.28

5 Conclusion

This paper proposes a detect-and-denoise defense against the observation attacks
on deep reinforcement learning. Our defense samples the adversarial observations
offline and thus avoids the risky online sampling under adversarial attacks. In the
absence of an adversary, our defense does not compromise performance. We eval-
uated our approach over four strong attacks with five continuous control tasks
under both stochastic and deterministic policies. Experiment results show that
our approach is comparable to previous online adversarial training approaches,
provides reasonable performance under adaptive attacks, and does not sacrifice
performance in normal (non-adversarial) settings.
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Abstract. Recent studies show that Graph Neural Networks (GNNs) are
vulnerable and easily fooled by small perturbations, which has raised con-
siderable concerns for adapting GNNs in various safety-critical applica-
tions. In this work, we focus on the emerging but critical attack, namely,
Graph Injection Attack (GIA), in which the adversary poisons the graph
by injecting fake nodes instead of modifying existing structures or node
attributes. Inspired by findings that the adversarial attacks are related
to the increased heterophily on perturbed graphs (the adversary tends
to connect dissimilar nodes), we propose a general defense framework
CHAGNNagainstGIA through cooperative homophilous augmentation of
graph data and model. Specifically, the model generates pseudo-labels for
unlabeled nodes in each round of training to reduce heterophilous edges of
nodes with distinct labels. The cleaner graph is fed back to the model, pro-
ducing more informative pseudo-labels. In such an iterative manner, model
robustness is then promisingly enhanced. We present the theoretical anal-
ysis of the effect of homophilous augmentation and provide the guarantee
of the proposal’s validity. Experimental results empirically demonstrate
the effectiveness of CHAGNN in comparison with recent state-of-the-art
defense methods on diverse real-world datasets.

Keywords: Graph neural network · Adversarial attack · Defense

1 Introduction

In recent years, graph neural networks (GNNs) have been successfully applied
in social networks [1], knowledge graphs [2] and recommender systems [3] due
to it’s good performance in analyzing graph data. In spite of the popularity and
success of GNNs, they have shown to be vulnerable to adversarial attacks [4–
6]. Classification accuracy of GNNs on the target node might be significantly
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degraded by imperceptible perturbations, posing certain practical difficulties.
For instance, an attacker can disguise his credit rating in credit prediction by
establishing links with others. Financial surveillance enables attackers to conceal
the holding relationship in order to carry out a hostile takeover. Due to the
widespread use of graph data, it is critical to design a robust GNN model capable
of defending against adversarial attacks.

Existing graph adversarial attacks mainly focus on two aspects [7]. The first
one is the graph modification attack(GMA), which poisons graphs by modify-
ing the edges and features of original nodes. The other attack method, graph
injection attack (GIA), significantly lowers the performance of graph embedding
algorithms on graphs by introducing fake nodes and associated characteristics.
The latter type of attack appears to be more promising. For instance, it is
unquestionably easier for attackers to establish fake users than to manipulate
authentic data in recommender systems. Promoting attackers’ influence in social
media via registering fake accounts is less likely to be detected than modifying
system data. Given the flexibility and concealment of GIA, it is crucial to develop
defense strategies. However, the fact is that there are currently fewer methods to
defend GIA in comparison to GMA. In this paper, we propose a defense method
against GIA.

Defense methods are mainly categorized into two groups [8]. One approach
is to begin with models and then improve their robustness, for example, through
adversarial training [9]. The other seeks to recover the poisoned graph’s original
data. Obviously, the first sort of approach is firmly connected to the model,
which implies that it may not work with new models. By contrast, approaches
based on data modification are disconnected from concrete models, which is the
subject of this paper.

Recent studies [10,17] have shown that adversarial attacks are related to the
increased heterophily on the perturbed graph, which has inspired works about
data cleaning. Existing works [17] rely heavily on the similarity of features,
e.g., utilizing Jaccard similarity or Cosine similarity, to eliminate potentially
dirty data. However, they ignored critical local subgraphs in the graph. More
specifically, existing methods only measure heterophilous anomalies based on
descriptive features while ignoring meaningful interactions between nodes, which
leads to biased judgments of heterophily, normal data cleaning, and model per-
formance decline. Additionally, while eliminating heterophily makes empirical
sense, it lacks theoretical support.

In this work, we propose a general defense framework, CHAGNN, to resist
adversarial attacks by cooperative homophilous augmentation. To begin, in order
to fully use graph information, we propose using GCN labels rather than descrip-
tive attributes to determine heterophily. This is because GCNs’ robust rep-
resentation capability takes into account both the feature and adjacency of
nodes. However, it is undeniable that the model must guarantee good perfor-
mance to provide credible pseudo-labels. Thus, we further propose a cooperative
homophily enhancement of both the model and the graph. To be more precise,
during each round of training, the model assigns prediction labels to the graph
data in order to find and clean heterophilous regions, while the cleaned data is
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supplied back to the model for training in order to get more informative sam-
ples. In this self-enhancing manner, the model’s robustness and performance
are steadily improved. Notably, we theoretically demonstrate the effectiveness of
homophilous augmentation in resisting adversarial attacks, which has not been
demonstrated in prior research [10,17]. Homophilous augmentation can consid-
erably reduce the risk of graph injection attacks and increase the performance
of the model. The experimental results indicate that after only a few rounds of
cleaning, the model outperforms alternative protection approaches.

The contributions of this paper are summarized as follows:

– We propose a homophily-augmented model to resist graph injection attacks.
The model and data increase the graph homophily in a cooperative manner,
thereby improving model robustness.

– We theoretically prove that the benefit of heterophilous edge removal process
is greater than the penalty of misoperation, which guarantees the effectiveness
of our method.

– Our experiments consistently demonstrate that our method significantly out-
performs over baselines against various GIA methods across different datasets.

2 Preliminaries

2.1 Graph Convolutional Network

Let G = (V,E) be a graph, where V is the set of N nodes, and E is the set of
edges. These edges can be formalized as a sparse adjacency matrix A ∈ R

N×N ,
and the features of nodes can be represented as a matrix X ∈ R

N×D, where
D is the feature dimension. Besides, in the semi-supervised node classification
task, nodes can be divided into labeled nodes VL and unlabeled nodes VU .

In the node classification task we focus on, the model fθ is trained based
on G = (A,X) and the labeled nodes VL to predict all unlabeled nodes VU as
correctly as possible. θ is the model’s parameter. The model’s objective function
can be defined as:

max
θ

∑

vi∈VU

I(argmax(fθ(G)i) = yi), (1)

where fθ(G)i ∈ [0, 1]C , C is the number of categories of nodes.
GCN [25], one of the most widely used models in GNNs, aggregates the struc-

tural information and attribute information of the graph in the message passing
process. Due to GCN’s excellent learning ability and considerable time complex-
ity, it has been applied in various real-world tasks, e.g., traffic prediction and
recommender systems. Therefore, it is important to study improve the robust-
ness of GCN against adversarial attacks. Given G and VL as input, a two-layer
GCN with θ = (W1,W2) implements fθ(G) as

fθ(G) = softmax(Âσ(ÂXW1)W2), (2)

where Â = D̃−1/2(A + I)D̃−1/2 and D̃ is the diagonal matrix of A + I. σ
represents an activation function, e.g., ReLU.
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2.2 Graph Adversarial Attack

The attacker’s goal is to reduce the node classification accuracy of the model on
the target nodes T as much as possible. A poisoning attack on a graph can be
formally defined as

min
G′

max
θ

∑

vi∈T

I(argmax(fθ(G′)i) = yi), (3)

s.t. G′ = (A′, X′), ‖A′ − A‖ + ‖X′ − X‖ ≤ Δ,

where A′ and X′ are modified adjacency and feature matrix, and the predefined
Δ is used to ensure that the perturbation on the graph is small enough.

The attacker only makes changes in the original graph without introducing
new nodes, which is called graph modification attack (GMA). Inversely, the
attack that does not destroy the original graph but injects new nodes on graphs
is defined as the graph injection attack (GIA). Modifying existing nodes is often
impractical, e.g., manipulating other users in a social network. However, creating
new accounts in social media is feasible and difficult to be detected. Due to the
practicality and concealment of GIA, we focus more on it. The difference between
GMA and GIA is shown in Fig. 1.

Injection AttackModification Attack

[ ]..[ ]..

[ ]..[ ]xx

Fig. 1. GMA vs GIA

Now, we give GIA’s formal definition. An attacker is limited to inject NI

nodes with well-crafted features into the graph. If the injected nodes are rep-
resented by VI , then the injected adjacency matrix and feature matrix can be
formalized as follows:

A′ =
[

A AOI

AT
OI AI

]
,A ∈ RN×N , AOI ∈ RN×NI , AI ∈ RNI×NI , (4)

X′ =
[

X
XI

]
,X ∈ RN×D, XI ∈ R

NI×D, (5)

where AOI is the connections between original nodes and injected nodes.
Following the settings of KDD-CUP 2020, VU and VI are mixed. The defender

does not know which unlabeled nodes belong to VU or VI . Given G′ and VL as
input, the defender’s goal is to maximize the classification accuracy of the model
on VU .

max
θ

∑

vi∈VU

I(argmax(fθ(G′)i) = yi). (6)
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3 The Proposed Framework

Based on the practicability and harm of graph injection attacks, we present an
efficient method to resist it in this section. In Sect. 3.1, we relate heterophily
to adversarial attacks and defense, and reveal the motivation for our method.
Section 3.2 proposes a defensive framework by homophilous augmentation while
leveraging the cooperation of the graph and the model to boost robustness. More-
over, in Sect. 3.3, we theoretically demonstrate the effectiveness of the proposed
method.

3.1 Heterophily and Attack

Before formally tracing the source of the attack, we give the definition of het-
erophily and homophily in the graph. If the labels of nodes at both ends of a
path are the same, we call it a homophilous path. Conversely, a heterophilous
path indicates that the labels of nodes at both ends of it are not the same. Fol-
lowing [20,21], we use the homophily ratio h to quantify the degree of homophily,
which is defined as the fraction of homophilous edges among all the edges in a
graph:

h = |{(u, v) ∈ E|yu = yv}|/|E| (7)

Assume that the nodes in a graph are randomly connected, then for a balanced
class, the expectation for h is 1

C . If the homophily ratio h satisfies h >> 1
C , we

call the graph a homophilous graph. On the other hand, it is a heterophilous
graph if h << 1

C . In this paper, we focus on the homophilous graph due to it’s
ubiquity.

Many research [17,18] shows that extremely destructive attacks tend to
increase the heterophily of the homophilous graph. It seems plausible since neigh-
bor relationships in graph networks provide critical insights for GNN predictions.
The attacker cannot destroy these relationships, but can only weaken the con-
nection by connecting heterophilous edges. This empirical finding also inspired
subsequent research work based on data cleaning. We do not have a god-view to
know the label of each node, so GCNJaccard [17] measures heterophily based on
the similarity of features, such as using Jaccard similarity or cosine similarity.
Removing heterophilous paths thereby increases the homophily of the graph.
However, they only measure heterophilous anomalies based on descriptive fea-
tures, ignoring the more critical local subgraphs in the graph. The similarity
is stronger if a node and its neighbors share similar hobbies, but it cannot be
measured based on descriptive features. Therefore, the unreasonable homophily
measures may lead to biased judgments of heterophily and reduce model per-
formance. In addition, these studies are only reasonable assumptions based on
experience, and how to guarantee their validity theoretically is challenging.
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Algorithm 1: Eliminating heterophilous Edges
Input: Poisoned graph G′, modified nodes VM , labeled nodes VL, pseudo-labels

Ŷ , soft-labels fθ(G
′), elimination rate q

Output: Cleaned Graph Ĝ′

1 He = ∅
2 for u ∈ VM do
3 ŷu ←− pseudo-label of node u; Nu ←− u’s neighbors
4 for v ∈ Nu do
5 if (v ∈ VL and yv �= ŷu) or (v /∈ VL and ŷv �= ŷu) then
6 He ←− He ∪ {(u, v)}

7 for (u, v) ∈ He do
8 fθ(G

′)u ←− soft label of node u; fθ(G
′)v ←− soft label of node v

9 The degree of heterophily of (u, v) is h̄u,v = JS(fθ(G
′)u, fθ(G

′)v)

10 Pick and eliminate q · |He| heterophilous edges according to the sampling
probability vector p, which is calculated by Eq.(9)

11 Output the cleaned graph Ĝ′

3.2 Cooperative Homophilous Augmentation

Considering the deficiencies of existing methods discussed in last subsection,
we propose a synergistic homophily augmentation strategy to resist attacks.
As mentioned before, using the similarity of features without graph’s structure
information to represent heterophily is biased. Thus, we propose to increase the
graph’s homophily by pseudo-labels that contain the information of both features
and structure.

In GIA scenarios, fake connections must be the edges of unlabeled nodes.
Therefore, our method focuses on this region of the graph. Due to the gap
between pseudo-labels and labels, using pseudo-labels to discriminate and
remove heterophilous edges may lead to mistakenly eliminating homophilous
edges. Besides, pseudo-labels can not quantify the strength of heterophily of
edges. For example, suppose the predictions of nodes u, v, and w are [0.99, 0.01],
[0.49, 0.51] and [0.01, 0.99] respectively. Pseudo-labels will treat edge (u,v) and
(u,w) as identical, which is unreasonable. Compared to pseudo-labels, a node’s
soft label can more specifically reflect the probability that the node belongs to
each category. Therefore, we use the JS divergence of the soft labels of nodes
at both ends of the edge to measure the degree of heterophily of the edge (u,v).
Heterophilous edges with a high degree of heterophily are more likely to be
removed.

h̄u,v = JS
(
fθ(G

′)u, fθ(G
′)v

)

=
1

2

C∑

i=1

fθ(G
′)i

u log
2fθ(G

′)i
u

fθ(G′)i
u + fθ(G′)i

v

+
1

2

C∑

i=1

fθ(G
′)i

v log
2fθ(G

′)i
v

fθ(G′)i
u + fθ(G′)i

v

,

(8)
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where fθ(G′)u is the soft label of node u, fθ(G′)i
u denotes the probability that

node u belongs to class i.
The value range of JS divergence is [0, 1]. The value of the JS divergence is

closer to 0 as the two probability distributions are more similar. It means that the
smaller the value, the more likely the edge is a homophilous edge. We normalize
the vector h̄, which stores the degree of heterophily of all the heterogeneous
edges.

pi,j = exp(h̄i,j)/
∑

(u,v)∈He

exp(h̄u,v), (9)

where He is the heterophilous edges set, pi,j is the probability that (i, j) is
sampled to be removed. Then we pick out some heterophilous edges according to
the sampling probability vector p. Edges with a higher degree of heterophily are
more likely to be picked out for removal. The process of eliminating heterophilous
edges is described in Algorithm 1.

However, the result of Algorithm 1 strongly depends on the authenticity of
the pseudo-label. To achieve better performance, we propose to enhance the
homophily of graph via cooperatively cleaning graph and improving model per-
formance. Specifically, the model provides pseudo-labels to clean the data, while
the purified graph guides the model by providing more reliable pseudo-labels.
The model and data thus cooperatively increase classification accuracy.

Next we give the implementation details of CHAGNN. In GIA scenarios,
the poisoned regions are consumingly related to the unlabeled nodes, including
the unlabeled nodes VU in the original graph and injected nodes VI . The nodes
selected to modify their edges are called modified nodes (VM ). In order to accu-
rately remove maliciously injected edges, we simply define VM as VU ∪VI . At the
beginning of our algorithm, we first use poisoned graph to conduct pre-training
process on the model. Then we obtain all nodes’ pseudo-labels and soft labels.
The pseudo-labels and soft labels are input to Algorithm 1 to generate a purified
graph Ĝ. After that, model parameters will be fine-tuned on Ĝ. This process will
dramatically improve classification performance in a few rounds. The details of
our method are shown in Algorithm 2. The algorithm flowchart of CHAGNN is
shown in Fig. 2.

We found that AdaEdge [29] also used pseudo-labels in their algorithm, but
our proposal is quite different from it. Unlike AdaEdge, which directly removes
the heterophilous edges based on pseudo labels, we introduce JS divergence to
quantify the degree of heterophily of heterophilous edges before the elimination
process, which greatly reduces the possibility of misoperation. Besides, the sub-
jects of the research are different. AdaEdge focuses on solving the over-smoothing
problem, and they perform a cleanup operation on the entire graph. Instead,
we consider the scenario of graph injection attacks, applying heterophilous edge
removal to potentially injected edges in the graph and providing the correspond-
ing theoretical guarantee. The experimental comparison results of the two algo-
rithms are shown in Sect. 4.2 and 4.3.
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Fig. 2. Algorithm flowchart of CHAGNN

Algorithm 2: CHAGNN
Input: Poisoned graph G′, labeled nodes VL, modified nodes VM , elimination

rate q, max iterations max iter
Output: Prediction on test set

1 Pretrain model parameters θ on G′

2 for i=1,...,max iter do
3 Obtain the pseudo-labels P and soft-labels fθ(G

′) of all nodes
4 G′ ←− Algorithm1(G′, VM , VL, P, fθ(G

′), q)
5 Fine-tune θ on G′

6 Output the prediction on test set

3.3 Theoretical Guarantee

In general, removing heterophilous edges benefits model, while homophilous
edges deletion brings model penalties. We want to mitigate the damage of the
graph data by heterophilous edges as much as possible. However, identifying
and eliminating heterophilous edges via nodes’ pseudo-labels may mistakenly
delete homophilous edges. In this section, we prove that given an arbitrary model
accuracy, the expected benefits of the proposed strategy outweigh the expected
penalties. Specifically, we firstly use the variation of loss to represent the impact
of eliminating heterophilous(homophilous) edges. Then we analyze the probabil-
ity of deleting homophilous edge by mistake with model’s accuracy. Combining
these two parts, we guarantee the reliability of CHAGNN theoretically. We give
the proof of theorems in appendix.
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To simplify the proof, we employ the SGC model which removes the activa-
tion function compared with GCN model. Given G = (A,X) and YL as input,
a two-layer SGC with θ = W implements fθ(G) as

fθ(G) = softmax(Â2XW ). (10)

Following [10]’s setting, we assume that G is a d-regular graph which means
that each node of G has d connections with other nodes. For each node of G,
proportion h of their neighbors belong to the same class, while proportion 1−h

C−1
of them belong to any other class uniformly. The features of node v are defined
as xv = p · onehot(yv ) + 1−p

C , where yv means the node’s label.
We use the change of CM loss of the model to analyze the influence of inject-

ing nodes to the graph. The CM loss of node v is defined as:

Z = Â2XW , lossv = Zvyv
− max

j �=yv

Zvj . (11)

Define the CM loss of node v on clean graph as L0. After we generate nodes to
inject homophilous edges to the graph, the CM loss changes to L1. Correspond-
ingly, the CM loss is called L2 after we generate nodes to inject heterophilous
edges to the graph. Assume that the proportion of node v’s edges which is con-
nected to class yv before poisoned is h0(including self-loop of node v), and the
proportion of other classes is h1. After we inject nodes to the graph, the propor-
tion of node v’s edges which is connected to class yv is r0, and the proportion
of other classes is r1. For convenience, we separate the proportions of injected
edges from r0 or r1. The proportion of injected edges is denoted as r2.

Theorem 1. Consider target attack and direct attack which means that the
inject nodes are directly connected to the target node v. Then we have:

L1 − L0

L0 − L2
=

(r0 − r1 + r2) − (h0 − h1)
(h0 − h1) − (r0 − r1 − r2)

(12)

Remark 1. heterophilous edges elimination is actually the reverse process of
attack. According to Theorem 1, we can estimate the ratio between the penalty
of deleting a homophilous edge and the benefit of deleting a heterophilous edge.

Based on the relation between the penalty and benefit stated in Theorem
1, we analyze the expected benefit and expected penalty of the edge deletion
operation at the specified model accuracy. For simplicity, we focus on judging
whether a node belongs to a specific class in Theorem 2, which is a binary
classification problem. Referring to [32], it is easily extensible and applicable to
multi-class scenarios.

Assume that the prediction accuracy of model on unlabeled nodes is p. The
prediction accuracy of different nodes is independent. Suppose we judge that
there is a heterogeneous edge between nodes u and v according to pseudo-labels
and then we delete euv. The probability that euv is actually a homogeneous edge
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is p1 while the probability that euv is actually a heterogeneous edge is p2. The
pseudo-labels of u and v are ŷu and ŷv, ŷu �= ŷv. The labels of u and v are yu

and yv. Then we have:

Theorem 2. The ratio of expected penalty to expected benefit for eliminating an
edge in CHAGNN is related to the prediction accuracy p.

e1
e2

< 2p(1 − p) < 1 (13)

Remark 2. Theorem 2 shows that the expected benefit is always greater than
the expected penalty in our algorithm. For a binary classification problem, an
effective classifier should have an accuracy greater than 50%. This means that
we can reduce the ratio in Theorem 2 by continuously improving the accuracy
of an effective classifier.

4 Experiment

In this section, we compare the proposed CHAGNN with state-of-the-art defense
strategies. The experiment primarily validates our algorithm’s excellent perfor-
mance by answering the following research questions:

– RQ1. How well does CHAGNN perform compared to other state-of-the-art
defense methods under different graph injection attacks?

– RQ2. How well does CHAGNN perform with different injected nodes ratio
under the state-of-the-art GIA methods?

– RQ3. How much does the deletion rate affect the performance of CHAGNN?

4.1 Experimental Setup

Dataset. We evaluate the proposed algorithms with four widely used citation
network datasets, including Cora-ml, Cora [22,23], Citeseer [24], and Pubmed.
The statistics of datasets are summarized in Table 1. Following [12], we only
consider the largest connected component (LCC) of each graph data.

To evaluate the effectiveness of our method, we compared it with the state-
of-the-art defense models. The compared algorithms and attack methods are
introduced in the next two subsections.

Compared Algorithms

– GCN [25]: We compare our algorithm with other methods with GCN, one of
the most widely used models in GNNs.

– GCNSVD [16]: GCNSVD is a preprocessing method to resist adversarial
attacks. It use a low-rank approximation of the graph to train GCN.
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Table 1. Statistics of benchmark datasets

NLCC ELCC Classes Features

Cora-ml 2810 7981 7 2879

Cora 2485 5069 7 1433

Citeseer 2110 3668 6 3703

Pubmed 19717 44338 3 500

– GCN-Jaccard [17]: Another preprocessing method to resist adversarial
attacks. They identity and eliminate heterophilous edges with nodes’ features.

– GNNGUARD [19]: GNNGUARD added the attention mechanism to defend
against adversarial attacks. It learns how to best assign higher weights to
edges connecting similar nodes while pruning edges between unrelated nodes.

– ORH [10]: ORH mitigates the damage to the graph structure on account of
the addition of heterophilouss edges by increasing the node’s weight.

– VPN [31]: VPN replaces the graph convolutional operator A with the
weighted sum of adjacency matrices with different powers.

– AdaEdge [29]: AdaEdge uses pseudo-labels to remove heterophilous edges
to solve model’s over-smoothing problem. Unlike our method, AdaEgde does
not consider actual attack scenarios. Moreover, the judged heterophilous edges
are directly removed without screening, which can easily lead to the mistaken
deletion of homophilous edges.

Attack Methods

– TDGIA [7]: TDGIA first introduces the topological defective edge selection
strategy to choose the original nodes for connecting with the injected ones.
It then designs the smooth feature optimization objective to generate the
features for the injected nodes.

– FGA [26]: A framework to generate adversarial networks based on the gradi-
ent information in GCN.

– MGA [27]: This paper proposes a Momentum Gradient Attack (MGA) against
the GCN model, which can achieve more aggressive attacks with fewer
rewiring links than FGA.

FGA and MGA are not directly applicable in GIA scenario. We modify them to
work for GIA setting. They are performed on the graph poisoned by a heuristic
injection.

Parameter Settings. For each dataset, we randomly split the nodes into
labeled nodes for training procedure (10%), labeled nodes for validation (10%),
and unlabeled nodes as test set to evaluate the model (80%). The hyper-
parameters of all the models are tuned based on the loss and accuracy on val-
idation set. We report the average performance of 5 runs for each experiment.
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Table 2. Node classification performance (Accuracy ± Std) under non-targeted attack

Attack Defense Cora-ml Cora Citeseer Pubmed

TDGIA No Attack 84.64 ± 0.34 81.26 ± 1.20 71.46 ± 0.30 85.00 ± 0.09

Attack 67.80 ± 0.44 71.52 ± 0.33 60.18 ± 1.19 73.18 ± 0.25

GCNSVD 68.44 ± 0.28 73.56 ± 0.26 63.24 ± 0.55 78.06 ± 0.28

GCNJaccard 65.10 ± 1.35 70.04 ± 0.48 61.60 ± 0.70 76.48 ± 0.23

GNNGUARD 65.26 ± 1.35 72.30 ± 0.23 64.38 ± 0.61 70.46 ± 0.66

ORH 56.30 ± 1.13 65.16 ± 0.55 55.92 ± 1.34 70.58 ± 0.46

VPN 69.03 ± 1.11 75.76 ± 0.39 66.90 ± 0.83 78.83 ± 0.17

AdaEdge 76.34 ± 1.43 76.86 ± 0.48 67.62 ± 0.44 78.62 ± 0.20

CHAGNN 79.52±0.32 77.84±0.29 69.22±0.59 79.66±0.37

FGA No Attack 84.64 ± 0.34 81.26 ± 1.20 71.46 ± 0.3 85.00 ± 0.09

Attack 82.08 ± 0.33 79.38 ± 0.58 70.72 ± 0.56 80.62 ± 0.32

GCNSVD 78.84 ± 0.16 76.66 ± 0.22 67.66 ± 0.3 80.96 ± 0.05

GCNJaccard 79.66 ± 0.91 79.38 ± 0.32 70.92±0.27 81.52 ± 0.17

GNNGUARD 74.98 ± 0.41 74.42 ± 0.55 69.26 ± 0.84 80.38 ± 0.07

ORH 73.34 ± 1.61 74.22 ± 0.84 66.70 ± 2.74 72.20 ± 0.25

VPN 78.53 ± 0.71 74.32 ± 0.64 69.76 ± 0.62 81.48 ± 0.13

AdaEdge 83.00 ± 0.41 78.66 ± 0.66 70.08 ± 1.12 81.40 ± 0.14

CHAGNN 83.06±0.56 79.64±0.6 70.36 ± 0.83 81.56±0.14

MGA No Attack 84.64 ± 0.34 81.26 ± 1.20 71.46 ± 0.30 85.00 ± 0.09

Attack 81.98 ± 0.70 76.06 ± 0.54 69.68 ± 0.45 80.74 ± 0.10

GCNSVD 80.38 ± 0.30 74.42 ± 0.47 67.82 ± 0.17 80.96 ± 0.05

GCNJaccard 80.10 ± 0.82 75.42 ± 0.43 69.94 ± 0.38 81.30 ± 0.44

GNNGUARD 73.56 ± 0.37 72.18 ± 0.55 67.28 ± 0.77 80.62 ± 0.69

ORH 72.46 ± 1.66 69.24 ± 0.95 66.68 ± 1.20 74.66 ± 0.48

VPN 78.93 ± 0.84 74.68 ± 0.36 69.84 ± 0.64 81.20 ± 0.05

AdaEdge 83.26 ± 0.67 77.64 ± 0.68 70.04 ± 0.27 81.12 ± 0.12

CHAGNN 83.66±0.62 78.02±0.23 70.14±0.34 81.38±0.15

To avoid excessive cleaning of the graph, we fixed the elimination rate in each
iteration at 10% and the maximum number of iterations at 5.

4.2 Defense Performance Against Non-targeted Adversarial Attacks

We compare the performance of different methods at 10% injected nodes rate
on four datasets. The results are shown in Table 2. We highlight the best perfor-
mance in bold. From the table, we have the following observations and discus-
sions.
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– CHAGNN significantly outperforms all compared algorithms on most set-
tings, indicating that the validity of targeted design towards GIA and coop-
erative homophilous augmentation.

– The performance of FGA and MGA is not significant compared to TDGIA.
It makes sense because TDGIA was designed specifically for GIA scenarios,
whereas FGA and MGA were originally designed for GMA. When resisting
weak attacks, such as FGA and MGA, the defense performance of several
compared models is poor or even worse than the vanilla GCN. We think it is
due to the fact that the graph considered by the defense algorithm is severely
damaged. However, when dealing with less poisoned or clean graphs, the per-
formance of most defense algorithms may decrease. For instance, GCNSVD
uses low-rank representation of the graph, leading to the loss of informa-
tion carried in the original graph structure. The performance of GCNSVD on
the original graph will be worse than the vanilla GCN. We can also see this
phenomenon in [18]’s experiment.

– The performance of ORH and VPN fluctuates greatly. We think it is because
the performance of both algorithms depends on the choice of hyperparame-
ters. Specifically, the performance of ORH depends on the weight of the node’s
own information and neighbors’ information in the message passing process.
The performance of VPN depends on the weights of different powered graphs.

4.3 Defense Performance Under Different Injected Nodes Ratio

We compare the performance of different algorithms under different injected
nodes ratio. We choose TDGIA, the attack method with the best results in
our experiment, to evaluate the performance of defense methods under differ-
ent injected nodes ratios. The results are reported in Fig. 3. Observations and
discussions are listed as follows.

– Our method is effective against more powerful attacks. Even with a high
injected nodes ratio, our approach can significantly improve model’s perfor-
mance. Vanilla GCN shows poor performance under 20% injected nodes ratio.
Our method can improve it by 27%, 12%, 13% and 10% on the four datasets
respectively.

– TDGIA shows better performance as the injected nodes ratio increases. Under
different injected nodes ratios, our method outperforms others in most cases,
exhibiting excellent defensive performance. It illustrates that heterophilous
edges elimination can indeed enhance the robustness of the model against
adversarial attacks.

– The performance of AdaEdge is better than GCNJaccard, which illustrates
the effectiveness of using nodes’ pseudo-labels to discriminate heterophily
is more effective than using nodes’ features. The performance of AdaEdge
is second only to CHAGNN on multiple datasets. It shows that the pro-
cess of screening the discriminated heterophilous edges can effectively reduce
the possibility of homophilous edges being mistakenly removed, which brings
stronger defense performance in CHAGNN.
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Fig. 3. Node classification performance under different injected nodes ratio on Cora-ml,
Cora, Citeseer and Pubmed

4.4 Parameter Sensitivity on Eliminating Rate

In this part, we conduct sensitivity analysis with respect to the eliminating rate.
We only report the results for the Cora-ml dataset at 20% and 2% injected nodes
rates, since the results for other datasets share similar trends. The performance
of node classification with different eliminating rates under TDGIA is shown in
Fig. 4. We fixed the maximum number of iterations at 10. The following are some
observations.

– The classification performance improves overall as the number of iterations
increases. Our method has a certain defensive effect on most eliminating rates.

– It is not true that the higher the eliminating rate, the better our method
performs. An excessive eliminating rate on a graph with few injected nodes
can cause our method to perform poorly. This is because in a graph with few
injected nodes, it is very easy to remove homophilous edges by mistake. In
the future, we will devise some efficient methods to find the most appropriate
eliminating rate.
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Fig. 4. Node classification performance under different eliminating rates

5 Related Work

5.1 Adversarial Attacks on GNNs

Nettack [11] stated that adding unnoticeable perturbations to the graph can fool
GCN into incorrectly predicting. They generated perturbations to lead GCN to
misclassify the target node while preserving the features’ co-occurrences and
the graph’s degree distribution. Metattack [12] is proposed to reduce the overall
performance of the model based on meta-learning. Most attacks are based on
modifying nodes in the original graph. A more realistic scenario, graph injection
attack (GIA), is studied in [13,14], which injects new vicious nodes instead of
modifying the original graph. A greedy algorithm [15] is proposed to generate
edges of malicious nodes and their corresponding features aiming to minimize the
classification accuracy on the target nodes. NIPA [13] modeled the critical steps
of graph injection attack based on reinforcement learning strategy. TDGIA [7]
presented an analysis on the topological vulnerability of GNNs under GIA set-
ting and proposed the topological defective graph injection attack (TDGIA) for
effective injection attacks.

5.2 Defenses on GNNs

GCNSVD [16] found that Nettack has a greater impact on the high-rank part of
the network. Then they proposed to use a low-rank approximation of the graph
to train GCN by Singular Value Decomposition (SVD). GCNJaccard [17] stated
that the attacks tend to connect the target node to nodes with different fea-
tures. They removed the edges connecting the nodes that share few similarities
to the target node by jaccard similarity. Pro-GNN [18] explored both properties
mentioned before and designed a general framework to jointly learn a structural
graph and a robust graph neural network model guided by these properties.
GNNGUARD [19] detected and quantified the relationship between the graph
structure and node features and then exploited that relationship to mitigate neg-
ative effects of the adversarial attacks. In addition to the defense methods against
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graph adversarial attacks, some methods based on data augmentation can also
mitigate the influence of the model on graph adversarial attacks. VPN [31]
designed the robust GCN via graph powering. They proposed a new convolution
operator that is provably robust in the spectral domain. They incorporated it
in the GCN architecture to improve model’s expressivity and interpretability.
AdaEdge [29] optimizes the graph topology based on the model predictions for
relieving the over-smoothing issue. They simply remove the heterophilous edges
without considering the effect of mistakenly removing the homophilous edges in
this process. And the method does not consider the scenario of graph adversarial
attacks. GAUG [30] used GAE to help improve GCN’s robustness. The model’s
effectiveness at defending graph adversarial attacks depends on GAE’s perfor-
mance. However, all the defense methods mentioned are designed for GMA. As
there are currently few methods to defend GIA, this paper defines this problem,
which may provide critical insights for future research.

6 Conclusion

A more realistic scenario, graph injection attack (GIA), demonstrated effective
attack performance on GNNs. However, there were few specific defense methods
against GIA, a scenario that is easier for attackers to implement. In this paper,
we formalized the anti-GIA defense scenario and designed the corresponding
algorithm. Our experiments showed that our method significantly outperforms
state-of-the-art baselines and improves the overall robustness under various GIA
methods. Theoretically, the proposed strategy could work in various graph adver-
sarial attacks. However, in the more practical GIA scenario, we can strictly guar-
antee the effectiveness from empirical and theoretical aspects. In the future, we
plan to apply this strategy to more attack scenarios.
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Abstract. The rapid development of cyber-physical systems in high-
stakes safety-critical areas requires innovations in protecting them
against malicious adversaries. Data-driven attack detection mechanisms
based on deep learning (DL) have emerged as powerful tools to fulfil
this need. However, it is well-known that adversarial attacks deceive
DL models with specifically crafted perturbations added to clean data
samples. This work combines cyber-physical system characteristics with
DL to develop a hybrid attack detection system. Using knowledge from
both physical dynamics and data, we defend against both cyber-physical
attacks and adversarial attacks. This approach paves the way to use clas-
sical theories from the application domain to mitigate the deficiency of
DL, complementing existing adversarial defence methods such as adver-
sarial training. We implement our defence system for an autonomous
vehicle platoon test-bed in a sophisticated simulator, where our approach
doubles the detection F1 score and increases the minimum inter-vehicle
distances compared to existing baselines. Hence, we greatly improve the
safety and security of the target system against adversarially-masked
cyber-physical attacks.

Keywords: Cyber-physical attacks · Adversarial machine learning ·
Autonomous platoons

1 Introduction

Cyber-physical systems, where sensor networks and embedded computing are
intertwined with the physical environment, are fast becoming a key driving
force of today’s economy. Such systems observe and interact with the changes
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in surrounding environments to achieve high levels of reliability and context-
aware autonomy. As a paradigm and example of such a cyber-physical system,
autonomous vehicle platoons attract attention with potentially improved driving
experience and energy efficiency, reduced pollution as well as increased traffic
throughput. This concept involves a string of vehicles travelling as a single unit
from an origin to a destination. Each platoon member obtains other vehicles’
dynamics and manoeuvre-related information through existing and emerging
vehicle-to-vehicle communication networks and embedded sensors in order to
adapt its own behaviour to maintain a narrow inter-vehicle distance and relative
velocity.

The high levels of connectivity and open communication implementations
highlight vehicle platoons as appealing targets for cyber-physical attacks causing
degradation of their dependability or even catastrophic incidents. The potential
impact of security vulnerabilities has motivated the development of attack detec-
tion methods. Due to the rapid development of deep learning (DL), researchers
have shown an increased interest in applying data-driven techniques, especially
in the form of deep neural networks, to study and classify the complex patterns
of system behaviour. Although DL-based attack detection demonstrates excel-
lent defence performance against conventional cyber-physical attacks, they are
also known to be vulnerable to adversarial attacks, in which specifically crafted
perturbations are added on top of clean data with the aim of evading detection.

Motivation and Problem. If a DL-based attack detection system fails to
detect cyber-physical attacks masked with adversarial perturbations, then the
system is exposed to a much wider range of safety risks, since any conventional
attack can be masked to evade detection this way. Traditionally, physical systems
have been designed and analysed with classical modelling techniques, which con-
stitute the foundation of control theory. Although data-driven approaches are
becoming dominant in many areas, those classical tools still have an important
role to play in cyber-physical systems such as vehicle platoons.

In this context, recent work [9] generates adversarial attacks against an
anomaly detector for a water treatment problem considering the effects of a
‘rule-checker’. Yet, the rules are derived mainly from observations instead of
physical laws from first principles. While [1] combine a data-driven algorithm
- generalized Extreme Studentized Deviate (ESD) - with the physical laws of
kinematics to perform real-time anomaly detection, they have not considered the
effects of adversarial attacks in their work. Similarly, model-based approaches
alone are not a ‘silver bullet’ to the cyber-physical security problem either. A
well-educated attacker could derive and leverage the underlying system model
to increase the level of stealthiness [6].

Novelty and Contributions. This paper presents a novel combination of engi-
neering modelling techniques with DL and proposes a hybrid attack detection
system using knowledge from both physical dynamics and data to defend against
both cyber-physical attacks and adversarial attacks. This approach paves the way
to use classical theories from the application domain to make up for the defi-
ciencies of DL and vice versa. Our approach is also applied in combination with
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existing adversarial defence techniques such as adversarial training to further
improve its robustness. The contributions of this paper include:

(1) We provide a novel physics-enhanced data-driven attack detection system
for cyber-physical systems that leverages knowledge from both data and
physics.

(2) We illustrate that classical physics-modelling techniques can help to mitigate
the deficiency of deep learning-based approaches, which extends the appli-
cability of many state-of-the-art DL-based approaches for cyber-physical
systems.

(3) As a demonstration, we successfully improve the security and dependability
of vehicle platoons. Our defence system provides excellent detection perfor-
mance against an informed white-box attacker.

(4) Our results are demonstrated both analytically and visually using sophis-
ticated, system-level simulations. It outperforms standard baseline attack
detection methods and proves the potential to be applied with existing adver-
sarial defence techniques for better performance.

Related Work. Sumra et al. [18] provide a comprehensive survey of the cyber-
physical attacks on major security goals, i.e., confidentiality, integrity and avail-
ability. For example, data integrity attacks corrupt the legitimacy of transmit-
ted information, which allows malicious or Sybil vehicles to gain the privilege of
the road or to cause traffic congestion and even serious collisions [3]. Malicious
attackers may conduct eavesdropping attacks to steal and misuse confidential
information [21].

In terms of data-driven learning-based attack detection approaches, [11]
apply both feed-forward deep neural networks and convolutional neural net-
works to identify a malicious attacker who tries to cause collisions by altering
the controller gains. [22] propose an ensemble model consisting of 4 tree-based
algorithms to detect attacks against the Controller Area Network (CAN) bus.
To better utilise the embedded temporal information within the time-series data
from such systems, several attempts [2] have been made to solve the attack
detection problem by examining the deviations of system behaviour and model
predictions with machine learning models.

In the past, adversarial attacks have been extensively studied mainly in
domains such as image and audio and far less attention has been paid to cyber-
physical domains especially systems involved with time-series data. Existing
research on the subject has also been mostly restricted to a few pre-generated
datasets. For instance, [10] investigate the effects of adversarial attacks against
time-series classifiers based on the UCR archive with data generated a posteriori
of various types (e.g., motion, sensor etc.). In our work, we investigate the tar-
geted cyber-physical system in various types of fringe and dangerous situations
where the data and its corresponding adversarial examples are generated in an
online fashion.

The vulnerabilities of DL models have motivated the development of adver-
sarial defences. Adversarial training is a simple yet effective defence approach,
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which is to include adversarial examples directly as part of the training data-
set [8]. Although the improved model is aware of adversarial examples in advance
thereby more robust, the defender needs knowledge of the adversarial attacks
and efforts to generate those examples a priori. Other defence methods includ-
ing data distortion [23], defence distillation [14] have been proved to have their
own advantages and limitations. Recently, physical knowledge has been exploited
to enhance the training procedure or overall performance of neural networks in
the targeted domain. Physical models of the underlying system become part of
the loss function to bound the space of admissible solutions to the neural net-
work parameters [5]. Nevertheless, few researchers have been able to draw any
systematic study on incorporating physical knowledge for adversarial defence.

2 Problem Definition

A typical cyber-physical system (e.g., autonomous vehicles, smart grids, etc.)
acquires necessary real-time information via onboard sensors or wireless com-
munication with other parties. Malicious adversaries often target these commu-
nication networks and onboard sensors to destabilize or break down such safety-
critical systems via cyber-physical attacks. If the system contains machine learn-
ing components, a range of adversarial attacks can be utilized by the attacker to
perform so-called adversarially-perturbed cyber-physical attacks. The attacker’s
ultimate goal is to maximize physical damage while remaining stealthy.

This work presents a hybrid defence method that utilizes knowledge both
from data and physics to address such security challenges. The data-driven com-
ponent of our approach learns the complex physical dynamics of a real system
purely from data when existing modelling techniques fail to model accurately
and reliably. The physics component with a simple system model helps when
learning-based methods suffer from adversarial perturbations. Specifically, the
underlying system structure can be modelled by physical first principles with
differential equations in the form of ẋ = g(x), where x contains the states of
the system. For example, the motion of autonomous vehicle platoons can be
modelled by the kinematic model whereas power system dynamics can be mod-
elled by the swing equation [20]. As a general defence framework, the physics
part of our proposed defence framework could be substituted accordingly based
on the underlying cyber-physical system. The deep-learning model could also
be replaced by feed-forward neural networks, convolutional neural networks etc.
We would utilize the kinematic model for vehicle platoons as a case study in the
rest of the work. To generalize from autonomous vehicles to the smart grids, for
example, one can replace the kinematic model used by our physics component
with the swing equation.

3 Attacker Model

As a paradigm of cyber-physical attacks, false data injection corrupts the content
of wirelessly transmitted messages or sensor observations to cause performance
degradation or catastrophic failure of safety-critical systems. In the present work,
we consider two attack approaches as presented in Sect. 3.1 and Sect. 3.2.
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3.1 Conventional Cyber-Physical Attacks

Vanilla False Data Injection Attack. We extend the message falsification
attacks [2,19] from only affecting communication messages to attacking both
communication and sensor observations [4] in a subtle way and name it vanilla
false data injection (v-FDI). In particular, the adversary progressively increases
the attack intensity to achieve its malicious objectives (e.g., causing collisions)
while evading detection. Take acceleration modification in the vehicle platoon
case as an example, the modified acceleration value is similar to the original
one at the beginning of the attack. As attack effects progressively build up, it
might become too late for the defence system to react since the attack may have
already led to limited response time or even collision.

Model-Aware False Data Injection Attack. Model-aware false data injec-
tion (m-FDI) can be seen as an evolved version of its vanilla counterpart. Instead
of injecting arbitrary modifications, the adversary utilizes the knowledge of the
underlying system model to conduct malicious modifications concurrently on
a range of observations. Following the acceleration modification example, as
the acceleration modification progressively increases, the attacker computes the
resulting velocity and position quantities based on the system model and injects
velocity and position modifications accordingly. In this way, the modified data is
consistent with the underlying system model (i.e., the kinematic model) thereby
increasing its stealthiness level and attack strength. We will show in later sec-
tions how this type of attack can bypass model-based detection methods but not
ours.

3.2 Adversarially-Masked Cyber-Physical Attacks

While attacking the cyber-physical systems with conventional cyber-physical
attacks, intelligent adversaries may also create carefully-crafted adversarial per-
turbations to deceive DL-based attack detection systems. In contrast to conven-
tional adversarial attacks against classifiers, we investigate similar attack meth-
ods but applied against regression models in cyber-physical domains. Inspired
by the linear behaviour of modern machine learning models, the basic iterative
method (BIM) [13] uses the first-order information of the loss function and gen-
erates adversarial examples iteratively. It is adopted in our work because of its
improved attack performance with an even reduced perturbation level compared
to other gradient-based attack methods such as the fast gradient sign method.

3.3 Attacker Capabilities

For simplicity, we consider only the dynamic information of a single vehicle
(e.g., the preceding vehicle) will be modified by the attacker, which includes the
transmitted acceleration messages via wireless communication as well as velocity
and position information measured by a rangefinder (e.g., radar). Different levels
of a priori knowledge (e.g., white-box knowledge of the controller, the DL-based
attack detection system, the underlying system model as well as full access to the
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onboard memory) are assumed to conduct different types of malicious attacks,
which are summarized in Table 1. Attack abbreviation followed by (adv. masked)
denotes that adversarial perturbations are added to deceive a machine learning
model which in our case is a DL-based anomaly detector.

Table 1. Knowledge required by the attacker to conduct different attacks.

Attack types Access to

Sensors Communication DL model System model Memory

v-FDI ✓ ✓ ✗ ✗ ✗

m-FDI ✓ ✓ ✗ ✓ ✗

v-FDI (adv. masked) ✓ ✓ ✓ ✗ ✓

m-FDI (adv. masked) ✓ ✓ ✓ ✓ ✓

4 Physics-Enhanced Defense Approach

The proposed defence system consists of a data-driven component powered by
deep neural networks to detect conventional cyber-physical attacks (e.g., false
data injections) and a physics-inspired component to assist in reporting adver-
sarial perturbations to compensate for the deficiency of deep learning models.
We apply this general approach to the specific case of autonomous vehicle pla-
toons as an illustrative example. Figure 1a shows the overall structure of our
proposed defence system along with the pseudo-code of this new Double-Insured
Anomaly Detection (DAD) method presented in Algorithm 1.

Fig. 1. The defence system applied to the vehicle platoon case study.
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Algorithm 1. Double-Insured Anomaly Detection (DAD)
Input: Communication messages S and sensor readings R
Output: Anomaly flag

1: Initialization()
2: while Destination is not reached do
3: Vehicle receives S and measures R
4: hist ← Load one-step history data
5: flag1 ← AnomalyDetector(R, hist)
6: flag2 ← PhysicalConsistencyChecker(S, R, hist)
7: if flag1 or flag2 is TRUE then
8: Anomaly flag ← Anomaly
9: else

10: Anomaly flag ← Normal
11: end if
12: end while

4.1 Case Study: Autonomous Vehicle Platoons

Platoon Control Policy. We consider a vehicle platoon consisting of N vehi-
cles travelling on a straight highway segment and let vehi denote the i-th vehi-
cle within the platoon, where i ∈ [0, N − 1]. Each vehicle member adopts the
predecessor-leader following information flow topology. Specifically, vehi obtains
dynamic information including location, speed, acceleration, etc., from both the
platoon leader veh0 and its immediate preceding vehicle vehi−1. Based on this
topology, the vehicle’s longitudinal motion is governed by the cooperative adap-
tive cruise control (CACC) policy, which computes the desired acceleration for
vehi by:

ẍi = ades = α1ai−1 + α2a0 + α3ε̇i,i−1 + α4ε̇i,0 + α5εi,i−1, (1)

εi,i−1 = xi − xi−1 + L, ε̇i,i−1 = vi − vi−1,

where α’s are controller gains taken from [16]. ai−1 and a0 are the accelerations
of the preceding vehicle and the leader respectively. The distance error εi,i−1

is calculated based on a desired gap distance L and the obtained inter-vehicle
distance between vehi and vehi−1. Similarly, their corresponding relative speed
is represented as ε̇i,i−1 with vi denoting the speed of vehi.

Kinematic Model. The longitudinal motion of each vehicle can be modelled
as uniformly accelerated motion along a line by Eq. (2). This motion arises
when an object is subjected to a constant acceleration. The acceleration value
determines the gradient of the velocity-time function with an initial velocity
labelled as vi(0). Similarly, the steady changing velocity determines the gradient
of the position-time function with an arbitrary initial position xi(0).

vi(t) = vi(0) + ait, xi(t) = xi(0) + vi(0)t +
1
2
ait

2, (2)
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where the acceleration and velocity variables are defined in Eq. (1). This kine-
matic model can be used to approximate the local behaviour of general longitu-
dinal motions by modeling the object’s motion within two consecutive sampling
steps t − 1 and t as uniformly accelerated motion. In general, its approximation
strength increases with increased sampling frequency.

4.2 Data-Driven Anomaly Detector

At each time instance t, vehi obtains the relative speed and distance with respect
to its predecessor via a rangefinder (e.g., a radar sensor), which are the inputs
to our DL attack detector. As a bonus, although vehi also receives commu-
nication messages from other vehicles, only sensor measurements are used as
detector inputs because they are more difficult to modify in practice and inher-
ently immutable to communication-related attacks resulting in high detection
success rate when only communication channels are compromised. The overall
structure is shown in Fig. 1b, which consists of two parts:

1. Predictor, trained with data from normal manoeuvre behaviour based on a
sliding window, outputs the expected desired acceleration value ãdes at the
current time instance. In our work, we use a multivariate time-series regression
model and a sliding window to fully extract the temporal information within
the data.

2. Comparator computes the difference between the inputs, i.e., the controller
output ades and the predicted value ãdes. We use a sliding window to compute
the mean absolute error ē in order to reduce the false alarm rate. Consider
an error window of size M , ē at time t is computed as

ē(t) =
1
M

i=t∑

m=t−M+1

‖ades(m) − ãdes(m)‖. (3)

An anomaly is flagged when ē is greater than a threshold pre-determined in
a benign driving environment.

4.3 Physical Consistency Checker

Corrupted controller inputs may not obey the underlying physical processes of
the platoon system. Based on the kinematic model, the physics-based component
of the proposed defence method - the physical consistency checker - consists of
two components: the distance checker and speed checker.

Distance Checker. The change of inter-vehicle distance (Δεi,i−1) within consecu-
tive sampling instances can be directly calculated based on transmitted location
information from the preceding vehicle vehi−1 and its own location readings.
The same quantity (Δε̃i,i−1) can also be computed based on locally measured
speed and acceleration information according to the kinematic model.
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Δεi,i−1(t) = εi,i−1(t) − εi,i−1(t − 1),

Δε̃i,i−1(t) = ε̇i,i−1 · Δt +
1
2
Δt2 (ai(t − 1) − ai−1(t − 1))

Speed Checker. Similarly, the change of relative speed can be computed directly
by the subtraction of speed measurements or by the kinematic model utilizing
acceleration information.

Δε̇i,i−1(t) = ε̇i,i−1(t) − ε̇i(t − 1),

Δ˜̇εi,i−1(t) = (ai(t − 1) − ai−1(t − 1)) Δt.

Both the direct calculation and physical model-based calculation produce similar
results when there are no adversarial attacks against the anomaly detector or
the proposed defence system in general. However, they deviate in an adversarial
environment. If the deviation is greater than a pre-defined threshold, it triggers
our physical consistency checker to report anomalies. Note that, these thresholds
are domain-specific. In our evaluation, they are determined to balance out the
false positive and false negative rates in a benign driving environment, which
contains various types of highway driving scenarios. The overall structure is
shown in Fig. 1c along with the pseudo-code presented in Algorithm 2.

Algorithm 2. Physical Consistency Checker (PCC)
Input: Communication messages S, sensor readings R and one-step history hist
Output: TRUE or FALSE

1: Δε̇ ← ε̇i,i−1(t) − ε̇i,i−1(t − 1) {Speed check}
2: Δ˜̇ε ← (ai(t − 1) − ai−1(t − 1))Δt
3: Anomaly flag 1 ← Comparator(Δε̇, Δ˜̇ε)
4: Δε ← εi,i−1(t) − εi,i−1(t − 1) {Distance check}
5: Δε̃ ← ε̇i,i−1(t − 1) · Δt + 1

2
Δt2(ai(t − 1) − ai−1(t − 1))

6: Anomaly flag 2 ← Comparator(Δε, Δε̃)
7: if Anomaly flag 1 or Anomaly flag 2 is TRUE then
8: Anomaly flag ← TRUE
9: else

10: Anomaly flag ← FALSE
11: end if
12: return Anomaly flag

5 Experimental Results

5.1 Simulation Setup

To provide a comprehensive evaluation of our proposed detection method, we use
Webots as our simulation platform, which provides a broad range of calibrated
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vehicle models, sensor modules as well as static objects and materials to realize
different simulation scenarios with high physical accuracy. It is a cost-efficient
approach to generating adequate training data and constructing different cyber-
physical attacks. Our data sets and implementations are available on Github at
https://garrisonsun.github.io/Securing-Cyber-Physical-Systems/.

Platoon and Traffic Simulation. We simulate a vehicle platoon of 4 BMW X5
vehicles driving along a highway segment. Multiple sensors are embedded in
each vehicle to measure, transmit and receive critical driving information. For
example, vehi uses a radar sensor to measure the inter-vehicle distance and rel-
ative speed with respect to its predecessor vehi−1. Radar noise is calibrated
according to the datasheet of a real-world radar (Delphi ESR 2.5 pulse Doppler
cruise control radar). Other control inputs (e.g., leader’s dynamics used in Eq. 1)
are obtained via wireless communication. In addition, each vehicle reads its own
speed, acceleration, etc. directly from the speedometer and accelerometer respec-
tively.

We generate a large number of vehicles in real-time in Webots interfacing with
Simulation of Urban MObility (SUMO) [15] in order to construct a more realistic
driving environment. Traffic flows involve four types of vehicles (i.e., motorcycles,
light-weight vehicles, trucks, and trailers) with various driving characteristics
(cooperative or competitive) and intentions to merge, which generates many
random situations.

5.2 Double-Insured Anomaly Detection (DAD)

Data-Driven Anomaly Detector. For this work, we train an LSTM network from
normal data as our predictor due to its outstanding performance for time-series
prediction. It is a many-to-one prediction model, which consists of a normaliza-
tion layer, and two stacked LSTM layers with 200 and 100 hidden units respec-
tively. Each LSTM layer is followed by a dropout layer (rate = 0.3) to avoid
overfitting. The last dropout layer is connected with two fully connected layers
with 50 and 1 hidden units, respectively. The model takes a sequence of historical
sensor measurements (controlled by the sliding window size) and outputs a pre-
diction of the desired acceleration ãdes for the next time instance. An anomaly is
reported if this predicted value significantly deviates from the controller output.

Physical Consistency Checker. Since the physical consistency checker assumes
vehicle motion within consecutive sampling time instances as uniformly accel-
erated motion, high-frequency sensor noise could degrade its anomaly detection
performance when noise level and sampling frequency are both high. Therefore,
we apply a digital Butterworth low-pass filter to remove the noise and reveal
the underlying trend of the residuals between direct and model calculations.
Note that, its performance is expected to be improved with low-noise sensors
specifically designed for vehicle platoon applications.

https://garrisonsun.github.io/Securing-Cyber-Physical-Systems/
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5.3 Evaluation Setup

We employ Keras 2.4.3 and Python 3.8.10 to implement DAD and all the base-
lines on Ubuntu 20.04 operating system with a commodity i7-10510U CPU. The
models are trained using an Adam optimizer with a learning rate of 0.001 for up
to 500 epochs with early stopping (patience = 10). Mean squared error is chosen
as the loss function. We found a window size of 20 (input size 20 × 2) results in
the best prediction performance. For the comparator, a window size of 40 and a
detection threshold of 2 can effectively smooth out the prediction residuals and
reduce the false alarm rate without degrading prediction performance.

Metrics. We prioritize F1 score [24] for this evaluation because a high F1 score
indicates a combination of high precision and recall. Missing an attack is often
more costly for such safety-critical systems, potentially causing catastrophic
damages. Therefore, detection recall (Rec) is also included as our secondary
comparison metric.

Attacks. Conventional cyber-physical attacks along with their adversarially-
masked versions are examined in our evaluation:

Vanilla false data injection (v-FDI), as described in Sect. 3.1, and progres-
sively modify received/measured dynamics information from the proceeding
vehicle. For v-FDI, the modifications can be posed on a single variable such
as on acceleration (v-FDI-Acce.) or in combination (e.g., v-FDI-Acce.Speed
that alters both acceleration and speed).
Model-aware false data injection (m-FDI), is seen as an evolved version of
v-FDI. We consider the acceleration is modified with the maximum allowable
modification as 5 m/s2 (since higher accelerations are unrealistic in practice)
and both the speed and location magnitudes are also modified based on the
underlying system model to improve stealthiness.
Adversarial attack, the BIM attack approach [13] in particular, is used to mask
these cyber-physical attacks in order to deceive the deployed attack detector
(e.g., adversarially masked m-FDI is denoted as m-FDI adv. masked). The
max-norm ball ε is chosen to be a small value as 0.4. In this way, the attack
data is only slightly modified thereby retaining the original attack effects of
the cyber-physical attack. Note that, the ε value is prefixed in this evaluation
and a grid search may be required to find the optimal ε for different detectors
under different attacks.

Baselines Attack Detectors. To demonstrate the effectiveness and robust-
ness of our proposed defence system, we compare the detection results with
pure data-driven and model-based detection approaches and study the impact
of each component of our proposed method. In addition, we also consider adver-
sarial training, based on the BIM attack, as an adversarial defence baseline
in our evaluation with a robustified LSTM reconstruction-based attack detec-
tor (D1: LSTM∗). The state-of-the-art data-driven defence baselines include an
LSTM reconstruction-based attack detector (D1: LSTM) as in [7] and a CNN
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reconstruction-based attack detector (D2: CNN) similar to [12]. Some litera-
ture [17] also recognizes the effectiveness of autoencoders in performing classifi-
cation or anomaly detection tasks based on reconstruction errors. For complete-
ness, we also implement a convolutional autoencoder-based detector (D3: AE).
Besides, the physics component of our proposed method - physical consistency
checker (PCC) - is also used for comparison as a standalone attack detector.

5.4 Attack Detection Results

We demonstrate that our proposed attack detection system (DAD) provides
improved attack detection performance against both conventional cyber-physical
attacks and their adversarially-masked counterparts. In total, eight conventional
cyber-physical attacks are examined including 7 variants of vanilla false data
injection and 1 model-aware false data injection. Each type of attack has been
performed five times. The complete detection F1 score is summarized in Fig. 2
along with error bars at the top. The detection results for the model-aware false
data injection (m-FDI) are summarized in Table 2.

Fig. 2. Detection F1 scores comparing our method with alternatives.

Conventional Cyber-Physical Attacks. The detection F1 scores for conven-
tional cyber-physical attacks are summarized in Fig. 2a. In general, data-driven
methods such as LSTM, CNN and AE reconstruction-based attack detectors per-
form well against these attacks. Depending on the exact attack type, one may
slightly outperform the other. The physical consistency checker (PCC), as seen in
the left half of Table 2, misses most of the attack instances when acting alone to
detect m-FDI resulting in a recall of 0.18 and an F1 score of 0.29. This highlights
the necessity of data-driven approaches to capture complex system behaviour. In
comparison, our proposed method takes the advantage of both data-driven and
physics-inspired methods achieving an F1 score of 0.86 on average (Fig. 2a) over
all considered conventional attacks and outperforms other popular data-driven
approaches.
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Adversarially-Masked Cyber-Physical Attacks. The physics-inspired com-
ponent of our method, the physical consistency checker, starts to shine when the
cyber-physical attacks are masked with adversarial perturbations. The detection
performance, as shown in Fig. 2b and right half of Table 2, is greatly reduced for
all data-driven attack detectors, which exposes the cyber-physical system (i.e.,
the vehicle platoon) to a wide range of safety risks. Although some attacks
require larger perturbations to fully deceive the detector, the average F1 scores
are reduced to 0.40, 0.26 and 0.32 from 0.73, 0.71, 0.69 respectively for the LSTM,
CNN, and AE based detectors. Because the generated adversarial perturbations
are inconsistent with the physics model, our proposed method is able to detect
the adversarially-perturbed cyber-physical attacks with an average F1 score of
0.78, which doubles the detection F1 score compared to existing baselines.

Adversarial Training Variants. As seen at the bottom of Table 2, our pro-
posed method can be applied along with existing adversarial defence approaches
(e.g., adversarial training). Combining the robustified model with physics knowl-
edge would result in a better detection system DAD∗, increasing detection
recall and F1 score from 0.77 and 0.78 to 0.84 and 0.81, respectively, against
adversarial-perturbed attacks. Although adversarial training might slightly sac-
rifice detection performance against classical cyber-physical attacks, it is demon-
strated that our defence framework has the potential to provide better perfor-
mance with an improved DL model and/or with other advanced adversarial
defence methods against much stronger adversaries.

Table 2. Attack detection results against m-FDI with different detection methods. ∗

denotes adversarial training.

Attack m-FDI m-FDI (adv. masked)

Defense Rec F1 Defense Rec F1

D1: LSTM 0.70 0.73 D1: LSTM 0.39 0.49

D2: CNN 0.57 0.66 D2: CNN 0.05 0.08

D3: AE 0.56 0.66 D3: AE 0.00 0.00

PCC 0.18 0.29 PCC 0.63 0.75

Ours: DAD 0.77 0.77 Ours: DAD 0.77 0.78

D1: LSTM∗ 0.70 0.73 D1: LSTM∗ 0.48 0.56

Ours: DAD∗ 0.75 0.76 Ours: DAD∗ 0.84 0.81

5.5 Simulation Demonstration for the M-FDI Attack

In this subsection, we use the inter-vehicle distance as a measuring metric to
examine the dangerous level of the compromised vehicle under attack. The entire
simulation process can be roughly divided into four stages as shown in Fig. 3a and
Fig. 3c. It starts from the preparation stage, where each vehicle starts with zero
velocity and accelerates from an arbitrary position with a random inter-vehicle
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distance. Once the vehicle platoon is established, all platoon members quickly
enter the transient stage and gradually reach the desired inter-vehicle distance
(2 m in this case). This distance will be maintained throughout the simulation
with only minor fluctuations when traffic condition changes with the power of
the CACC platoon controller. The steady stage ends when an attack is initiated
and we start to observe the resulting inter-vehicle distances for different defence
methods. In this demonstration, we assume the vehicle would request a manual
manoeuvre (not affected by data false injection attacks) as a simple mitigation
strategy when the defence system reports an attack.

– As indicated in Fig. 3a and Fig. 3b, our method as well as other data-driven
baselines can maintain a relatively safe inter-vehicle distance under conven-
tional cyber-physical attacks (i.e., m-FDI). However, our method results in
the best detection performance against m-FDI with nearly unnoticeable fluc-
tuation throughout the entire attack period. In comparison, the model-based
detection method PCC leads to a minimum distance of 0.25 m, which greatly
increases safety risks, especially in the highway driving scenario, and high-
lights the importance of data-driven approaches for cyber-physical systems.

– Figure 3c and Fig. 3d indicate that DL-based detectors suffer the most under
adversarially-masked cyber-physical attacks with CNN and AE-based detec-

Fig. 3. Comparison between different defense methods under attacks: (a)&(b)-
Conventional cyber-physical attacks (m-FDI), (c)&(d)-Adversarially-masked cyber-
physical attacks (m-FDI (adv. masked)).
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tors leading to catastrophic collisions. Our proposed method again signifi-
cantly improves system safety and security against such a powerful adversary
with white-box knowledge of both the DL and physics models. It is also impor-
tant to point out that the model-based detector PCC alone cannot detect such
attacks accurately during the entire attack period.

6 Conclusions

In this paper, we have presented a novel physics-enhanced attack detection
system for autonomous vehicle platoons as a critical cyber-physical system.
Our approach and algorithms greatly improve platoon security and dependabil-
ity against both classical cyber-physical and adversarial attacks. Our methods
inherit the advantages of existing data-driven attack detection systems based on
recent advances in deep learning as well as utilize physics modelling techniques
to improve robustness against adversarial attacks to cyber-physical systems. We
consider a powerful white-box attacker and demonstrate that our approach out-
performs conventional detection methods with a sophisticated simulator, which
highlights its potential to perform even better when dealing with real-world
attackers who normally only have limited information about the system. Future
research will evaluate the extension of this resiliency architecture to other cyber-
physical systems (e.g., smart grids) with various data-driven defence approaches.
The scope of adversarial attacks in this work is limited to existing approaches
developed mainly in the vision domain. Therefore, a further study could incor-
porate the physics model with the adversarial example generation process to
create a stronger adversarial attack method and investigate its attack effects
on the cyber-physical system and evasion strength against the proposed defence
method.
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1 Introduction

Despite recent advances in the application of machine learning, the vulnerability
of deep learning models to maliciously crafted examples [34] is still an open
problem of great interest for safety-critical applications [2,4,10,39]. Over time,
a large body of literature has been produced on the topic of defense methods
against adversarial examples. On the one hand, interest in detecting adversarial
examples given a pre-trained model is gaining momentum [17,24,27]. On the
other hand, several techniques have been proposed to train models with improved
robustness to future attacks [26,31,38]. Interestingly, Croce et al. have recently
pointed out that, due to the large number of proposed methods, the problem
of crafting an objective approach to evaluate the quality of methods to train
robust models is not trivial. To this end, they have presented RobustBench [9],
a standardized benchmark to assess adversarial robustness. To the best of our
knowledge, we claim that an equivalent benchmark does not exist in the case of
methods to detect adversarial examples given a pre-trained model. Therefore,
in this work, we provide a general framework to evaluate the performance of
adversarial detection methods. Our idea stems from the following key observa-
tion. Generally, the performance of current state-of-the-art (SOTA) adversarial
examples detection methods is evaluated assuming a unique and thus implic-
itly known attack strategy, which does not necessarily correspond to real-life
threats. We further argue that this type of evaluation has two main flaws: the
performance of detection methods may be overestimated, and the comparison
between detection schemes may be biased. We propose a two-fold solution to
overcome the aforementioned limitations, leading to a less biased evaluation of
different approaches. This is accomplished by evaluating the detection methods
on simultaneous attacks on the target classification model using different adver-
sarial strategies, considering the most popular attack techniques in the literature,
and incorporating three new attack objectives to extend the generality of the
proposed framework. Indeed, we argue that additional attack objectives result
in new types of adversarial examples that cannot be constructed otherwise. In
particular, we translate such an evaluation scheme in MEAD.

MEAD is a novel evaluation framework that uses a simple but still effective
“multi-armed” attack to remove the implicit assumption that detectors know the
attacker’s strategy. More specifically, for each natural sample, we consider the
detection to be successful if and only if the detector is able to identify all the dif-
ferent attacks perpetrated by perturbing the testing sample at hand. We deploy
the proposed framework to evaluate the performance of SOTA adversarial exam-
ples detection methods over multiple benchmarks of visual datasets. Overall, the
collected results are consistent throughout the experiments. The main takeaway is
that considering a multi-armed evaluation criterion exposes the weakness of SOTA
detection methods, yielding, in some cases, relatively poor performances. The pro-
posed framework, although not exhaustive, sheds light on the fact that evaluations
so far presented in the literature are highly biased and unrealistic. Indeed, the
same detector achieves very different performances when it is informed about the
current attack as opposed to when it is not. Not surprisingly, supervised and unsu-
pervised methods achieve comparable performances with the multi-armed frame-
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work, meaning that training the detectors knowing a specific attack used at testing
time does not generalize to other attacks enough. Indeed the goal of MEAD is not
to show that new attacks can always fool robust classifiers but to show that the
detectors that may work well when evaluated with a unique attack strategy end
up being defeated by new attacks.

1.1 Summary of Contributions

We propose MEAD, a novel multi-armed evaluation framework for adversarial
examples detectors involving several attackers to ensure that the detector is not
overfitted to a particular attack strategy. The proposed metric is based on the
following criterion. Each adversarial sample is correctly detected if and only if all
the possible attacks on it are successfully detected. We show that this approach is
less biased and yields a more effective metric than the one obtained by assuming
only a single attack at evaluation time (see Sect. 4).

We make use of three new objective functions which, to the best of our knowl-
edge, have never been used for the purpose of generating adversarial examples at
testing time. These are KL divergence, Gini Impurity and Fisher-Rao distance.
Moreover, we argue that each of them contributes to jointly creating competitive
attacks that cannot be created by a single function (see Sect. 3.2).

We perform an extensive numerical evaluation of SOTA and uncover their
limitations, suggesting new research perspectives in this research line (see
Sect. 5).

The remaining paper is organized as follows. First, in Sect. 2, we present a
detailed overview of the recent related works. In Sect. 3, we describe the adver-
sarial problem along with the new objectives we introduce within the proposed
evaluation framework, MEAD, which is further explained in Sect. 4. We exten-
sively experimentally validate MEAD in Sect. 5. Finally, in Sect. 6, we provide
the summary together with concluding remarks.

2 Related Works

State-of-the-art methods to detect adversarial examples can be separated in two
main groups [2]: supervised and unsupervised methods. In the supervised setting,
detectors can make use of the knowledge of the attacker’s procedure. The net-
work invariant model approach extracts natural and adversarial features from the
activation values of the network’s layers [7,23,28], while the statistical approach
extract features using statistical tools (e.g. maximum mean discrepancy [16],
PCA [21], kernel density estimation [13], local intrinsic dimensionality [25], model
uncertainty [13] or natural scene statistics [17]) to separate in-training and out-
of-training data distribution/manifolds. To overcome the intrinsic limitation of
the necessity to have prior knowledge of attacks, unsupervised detection methods
consider only clean data at training time. The features extraction can rely on dif-
ferent techniques (e.g., feature squeezing [22,36], denoiser approach [27], network
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invariant [24], auxiliary model [1,32,40]). Moreover, detection methods of adver-
sarial examples can also act on the underlying classifier by considering a novel
training procedure (e.g., reverse cross-entropy [30]; the rejection option [1,32])
and a thresholding test strategy towards robust detection of adversarial exam-
ples. Finally, detection methods can also be impacted by the learning task of the
underlying network (e.g., for human recognition tasks [35]).

2.1 Considered Detection Methods

Supervised Methods. Supervised methods can make use of the knowledge of
how adversarial examples are crafted. They often use statistical properties of
either the input samples or the output of hidden layers. NSS [17] extract the
Natural Scene Statistics of the natural and adversarial examples, while LID [25]
extract the local intrinsic dimensionality features of the output of hidden lay-
ers for natural, noisy and adversarial inputs. KD-BU [13] estimates the kernel
density of the last hidden layer in the feature space, then estimates the bayesian
uncertainty of the input sample, following the intuition that the adversarial
examples lie off the data manifold. Once those features are extracted, all meth-
ods train a detector to discriminate between natural and adversarial samples.

Unsupervised Methods. Unsupervised method can only rely on features of the
natural samples. FS [36] is an unsupervised method that uses feature squeezing
to compare the model’s predictions. Following the idea of estimating the distance
between the test examples and the boundary of the manifold of normal examples,
MagNet [27] comprises detectors based on reconstruction error and detectors
based on probability divergence.

2.2 Considered Attack Mechanisms

The attack mechanisms can be divided into two categories: whitebox attacks,
where the adversary has complete knowledge about the targeted classifier (its
architecture and weights), and blackbox attacks where the adversary has no
access to the internals of the target classifier.

Whitebox Attacks. One of the first introduced attack mechanisms is what we
call the Fast Gradient Sign Method (FGSM) [14]. It relies on computing the
direction gradient of a given objective function with respect to (w.r.t.) the input
of the targeted classifier and modifying the original sample following it. This
method has been improved multiple times. Basic Iterative Method (BIM) [19]
and Projected Gradient Descent (PGD) [26] are two iteration extensions of
FGSM. They were introduced at the same time, and the main difference between
the two is that BIM initializes the algorithm to the original sample while PGD
initializes it to the original sample plus a random noise. Despite that PGD was
introduced under the L∞-norm constraint, it can be extended to any Lp-norm
constraint. Deepfool (DF) [29] was later introduced. It is an iterative method
based on a local linearization of the targeted classifier and the resolution of this
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simplified problem. Finally, the Carlini&Wagner method (CW) aims at finding
the smaller noise to solve the adversarial problem. To do so, they present a
relaxation based on the minimization of specific objectives that can be chosen
depending on the attacker’s goal.

Blackbox Attacks. Blackbox attacks can only rely on queries to attack specific
models. Square Attack (SA) [3] is an iterative method that randomly searches for
a perturbation that will increase the attacker’s objective at each step, Hop Skip
Jump (HOP) [8] tries to estimate the gradient direction to perturb, and Spatial
Transformation Attack (STA) [12] applies small translations and rotations to
the original sample to fool the targeted classifier.

3 Adversarial Examples and Novel Objectives

Let X ⊆ R
d be the input space and let Y = {1, . . . , C} be the label space related

to some task of interest. We denote by PXY the unknown data distribution over
X × Y. Throughout the paper we refer to the classifier q

̂Y |X(y|x; θ) to be the
parametric soft-probability model, where θ ∈ Θ are the parameters, y ∈ Y the
label and fθ : X → Y s.t. fθ(x) = arg maxy∈Y q

̂Y |X(y|x; θ) to be its induced hard
decision. Finally, we denote by x′ ∈ R

d an adversarial example, by �(x,x′; θ) the
objective function used by the attacker to generate that sample, and a�(·; ε, p)
the attack mechanism according to a objective function �, with ε the maximal
perturbation allow and p the Lp-norm constraint.

3.1 Generating Adversarial Examples

Adversarial examples are slightly modified inputs that can fool a target classifier.
Concretely, Szegedy et al. [33] define the adversarial generation problem as:

x′ = arg min
x′∈Rd : ‖x′−x‖p<ε

‖x′ − x‖ s.t. fθ(x′) �= y, (1)

where y is the true label (supervision) associated to the sample x. Since this
problem is difficult to tackle, it is commonly relaxed as follows [6]1:

a�(x; ε, p) ≡ x′
� = arg max

x′
�∈Rd : ‖x′

�−x‖p<ε

�(x,x′
�; θ). (2)

It is worth to emphasize that the choice of the objective �(x,x′
�; θ) plays a crucial

role in generating powerful adversarial examples x′
�. The objective function �

traditionally used is the Adversarial Cross-Entropy (ACE) [26]:

�ACE(x,x′
�; θ) = EY |x

[ − log q
̂Y |X(Y |x′

�; θ)
]
, (3)

It is possible to use any objective function � to craft adversarial samples. We
present the three losses that we use to generate adversarial examples in the fol-
lowing. While these losses have already been considered in detection/robustness
cases, to the best of our knowledge, they have never been used to craft attacks
to test the performances of detection methods.
1 Throughout the paper, when the values of ε and p are clear from the context, we

denote the attack mechanism as a�(·).
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Fig. 1. Decision boundary for the binary classifier 1a–1c: the decision region for class 1
is green, the decision region of class 0 is pink. The natural testing samples belonging to
class 0 are reported in blue, the corresponding adversarial examples crafted using ACE
(1a) and Gini Impurity (1c) in red. Decision boundary of the detectors 1b–1d: B, the
decision region of the natural examples; A�, reported in red shades, the decision region
of the adversarial examples when the detector is trained on data points crafted via
� ∈ {ACE, Gini} as objective. The darker shades stand for higher confidence. The red
points represent the adversarial examples created with the opposite loss (respectively
� ∈ {Gini, ACE}).

3.2 Three New Objective Functions

The Kullback-Leibler Divergence. The Kullback-Leibler (KL) divergence
between the natural and the adversarial probability distributions has been widely
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used in different learning problems, as building training losses for robust mod-
els [37]. KL is defined as follows:

�KL (x,x′
�; θ) = E

̂Y |x;θ

[

log

(
q

̂Y |X(Ŷ |x; θ)

q
̂Y |X(Ŷ |x′

�; θ)

)]

. (4)

The Fisher-Rao Objective. The Fisher-Rao (FR) distance is an information-
geometric measure of dissimilarity between soft-predictions [5]. It has been
recently used to craft a new regularizer for robust classifiers [31]. FR can be
computed as follows:

�FR(x,x′
�; θ) = 2 arccos

⎛

⎝
∑

y∈Y

√
q

̂Y |X(y|x; θ)q
̂Y |X(y|x′

�; θ)

⎞

⎠ . (5)

The Gini Impurity Score. The Gini Impurity score approximates the proba-
bility of incorrectly classifying the input x if it was randomly labeled according
to the model’s output distribution q

̂Y |X(y|x′
�; θ). It was recently used in [15] to

determine whether a sample is correctly or incorrectly classified.

�Gini(·,x′
�; θ) = 1 −

√∑

y∈Y
q2

̂Y |X(y|x′
�; θ). (6)

3.3 A Case Study: ACE vs. Gini Impurity

In Fig. 1 we provide insights on why we need to evaluate the detectors on attacks
crafted through different objectives. We create a synthetic dataset that consists
of 300 data points drawn from N0 = N (μ0, σ

2I) and 300 data points drawn
from N1 = N (μ1, σ

2I), where μ0 = [1 1], μ1 = [−1 − 1] and σ = 1. To each
data point x is assigned true label 0 or 1 depending on whether x ∼ N0 or
x ∼ N1, respectively. The data points have been split between the training set
(70%) and the testing set (30%). We finally train a simple binary classifier with
one single hidden layer and a learning rate of 0.01 for 20 epochs. We attack
the classifier by generating adversarial examples with PGD under the L∞-norm
constraints with ε = 1.2 for the ACE attacks and ε = 5 for the Gini Impurity
attacks to have a classification accuracy (classifier performance) of 50% on the
corrupted data points. In Fig. 1a–1c we plot the decision boundary of the binary
classifier together with the adversarial and natural examples belonging to class
0. As can be seen, ACE creates points that lie in the opposite decision region
with respect to the original points (Fig. 1a). Conversely, Gini Impurity tends
to create new data points in the region of maximal uncertainty of the classifier
(Fig. 1c). Consider the scenario where we train a simple Radial Basis Function
(RBF) kernel SVM on a subset of the testing set of the natural points together
with the attacked examples, generated with the ACE or the Gini Impurity score
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Fig. 2. MEAD: x is the natural example, ε = 5 is the perturbation magnitude, L1 is
the norm. From the set of all the possible existing attacks A we consider the ones using
PGD. The sifter discards all the perturbed samples that do not fool the classifier fθ. d
is the detector.

depending on the case (Fig. 1b–1d). We then test the detector on the data points
originated with the opposite loss, Fig. 1b and Fig. 1d respectively. The decision
region of the detector for natural examples is in blue, and the one for the adver-
sarial examples is in red. The intensity of the color corresponds to the level of
certainty of the detector. The accuracy of the detector on natural and adversar-
ial data points decreases from 71% to 62% when changing to the opposite loss
in Fig. 1b, and from 87% to 63% in Fig. 1d. Hence, testing on samples crafted
using a different loss in Eq. (2) means changing the attack and, consequently,
evaluating detectors without taking into consideration this possibility leads to a
more biased and unrealistic estimation of their performance. When the detector
is trained on the adversarial examples created with both the losses, the accuracy
is 79.8% when testing on Gini and 66.3% when testing on ACE, which is a better
trade-off in adversarial detection performances.

The aforementioned losses will be included in the following section to
design MEAD, our multi-armed evaluation framework, a new method to eval-
uate the performance of adversarial detection with low bias.

4 Evaluation with a Multi-armed Attacker

The proposed evaluation framework, MEAD, consists in testing an adversarial
examples detection method on a large collection of attacks grouped w.r.t. the
Lp-norm and the maximal perturbation ε they consider. Each given natural input
example is perturbed according to the collection of attacks. Note that, for every
attack, a perturbed example is considered adversarial if and only if it fools the
classifier. Otherwise, it is discarded and will not influence the evaluation. We
then feed all the natural and successful adversarial examples to the detector and
gather all the predictions. Finally, based on the detection decisions, we evaluate
the detector according to a worst-case scenario:

i) Adversarial decision: for each natural example, we gather all the successful
adversarial examples. If the detector detects all of them, then the perturbed
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sample is considered correctly detected (i.e., it is a true positive). However, if the
detector misses at least one of them, the noisy sample is considered undetected
(i.e., it is a false negative).
ii) Natural decision: for each natural sample, if the detector does not detect it,
then the sample is considered correctly non-detected (i.e., it is a true negative);
otherwise it is incorrectly detected (i.e., it is a false positive).

Specifically, let Dm = {(xi, yi)}m
i=1 ∼ PXY be the testing set of size m,

where xi ∈ X is the natural input sample and yi ∈ Y is its true label. Let d:
X × R → {0, 1} be the detection mechanism and a� : X × R × {1, 2,∞} → X
the attack strategy according to the objective function � ∈ L within a selected
collection of objectives L as described in Sect. 3. For every considered Lp-norm,
p ∈ {1, 2,∞}, maximal perturbation ε ∈ R, and every threshold γ ∈ R

2:

TPε,p(γ) =
{

(x, y) ∈ Dm : ∀� ∈ L {fθ

(
a�(x)

) �= y} ∧ {d(
a�(x), γ

)
= 1}

}
(7)

FNε,p(γ) =
{

(x, y) ∈ Dm : ∃� ∈ L {fθ

(
a�(x)

) �= y} ∧ {d(
a�(x), γ

)
= 0}

}
(8)

TNε,p(γ) = {(x, y) ∈ Dm : d(x, γ) = 0} (9)
FPε,p(γ) = {(x, y) ∈ Dm : d(x, γ) = 1}. (10)

In Fig. 2 we provide a graphical interpretation of MEAD when the perturbation
magnitude and the norm are fixed.

5 Experiments

In this section, we assess the effectiveness of the proposed evaluation framework,
MEAD. The code is available at https://github.com/meadsubmission/MEAD.

5.1 Experimental Setting

Evaluation Metrics. For each Lp-norm and each considered ε, we apply our
multi-armed detection scheme. We gather the global result considering all the
attacks and all the objectives. Moreover, we also report the results per objec-
tive. The performance is measured in terms of the AUROC ↑ [11] and in terms
of FPR ↓95%. The first metric is the Area Under the Receiver Operating Charac-
teristic curve and represents the ability of the detector to discriminate between
adversarial and natural examples (higher is better). The second metric repre-
sents the percentage of natural examples detected as adversarial when 95% of
the adversarial examples are detected, i.e., FPR at 95% TPR (lower is better).

2 With an abuse of notation, ∀� ∈ L stands for all the considered attack mechanisms
for specific values of ε, p within a collection of objectives L.

https://github.com/meadsubmission/MEAD
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Datasets and Classifiers. We run the experiments on MNIST [20] and
CIFAR10 [18]. The underlying classifiers are a simple CNN for MNIST, con-
sisting of two blocks of two convolutional layers, a max-pooling layer, one fully-
connected layer, one dropout layer, two fully-connected layers, and ResNet-18 for
CIFAR10. The training procedures involve 100 epochs with Stochastic Gradient
Descent (SGD) optimizer using a learning rate of 0.01 for the simple CNN and
0.1 for ResNet-18; a momentum of 0.9 and a weight decay of 10−5 for ResNet-18.
Once trained, these networks are fixed and never modified again.

Grouping Attacks. We test the methods on the attacks presented in Sect. 2.2,
and we present them based on the norm constraint used to construct the attacks.
Under the L1-norm fall PGD with ε in {5, 10, 15, 20, 25, 30, 40}. Under the L2-
norm fall PGD with ε in {0.125, 0.25, 0.3125, 0.5, 1, 1.5, 2}, CW with ε = 0.01,
HOP with ε = 0.1, and DF which has no constraint on ε. Under the L∞-norm
fall FGSM, BIM and PGD with ε in {0.0315, 0.0625, 0.125, 0.25, 0.3125, 0.5},
CW with ε = 0.3125, and SA with ε = 0.3125 for MNIST and ε = 0.125 for
CIFAR10. Finally, ST is not constrained by a norm or a maximum perturbation,
as it is limited in maximum rotation (30 for CIFAR10 and 60 for MNIST) and
translation (8 for CIFAR10 and 10 for MNIST).

Detection Methods. We tested detection methods introduced in Sect. 2.1. In
the supervised case, we train the detectors using adversarial examples created by
perturbing the samples in the original training sets with PGD under L∞-norm
and ε = 0.03125. In the unsupervised case, the detectors only need natural
samples in the training sets. They are tested on all the previously mentioned
attacks, generated on the testing sets.

5.2 Experimental Results

In this section, we refer to single-armed setting when we consider the setup where
the adversarial examples are generated w.r.t. one of the objectives in Sect. 3. We
provide the average of the performances of all the detection methods on CIFAR10
in Table 1 and on MNIST in Table 2. Due to space constraints, the detailed tables
for each detection method (i.e., NSS, LID, KD-BU, MagNet, and FS) and for
each dataset (i.e., CIFAR10 and MNIST) are reported in Appendix A.

MEAD and the Single-Armed Setting. Table 1 shows a decrease in the per-
formance of all the detectors when going from the single-armed setting to MEAD.
NSS is the more robust among the supervised methods when passing from the
single-armed setting to the proposed setting. Indeed, (cf Table 1), in terms of
AUROC↑, it registers a decrease of up 4.9% points under the L1-norm constraint,
4.7 under the L2-norm constraint, and 5.3 under the L∞-norm constraint. This
can be explained by the fact that the network in NSS is trained on the natu-
ral scene statistics extracted from the trained samples differently from the other
detectors. In particular, these statistical properties are altered by the presence of
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adversarial perturbations and hence are found to be a good candidate to deter-
mine if a sample is adversarial or not. By looking closely at the results for NSS
in Table 5, it comes out that it performs better when evaluated on L∞ norm con-
straint. Indeed, in this case, the adversarial examples at testing time are similar
to those used at training time. Not surprisingly, the performance decreases when
evaluated on other kinds of attacks. Notice that, in the single-armed setting, all
the supervised methods turn out to be much more inefficient than when pre-
sented in the original papers. Indeed, as already explained in Sect. 5.1, we train
the detectors using adversarial examples created by perturbing the samples in
the original training sets with PGD under L∞-norm and ε = 0.03125, and then
we test them on a variety of attacks. Hence, we do not train a different detector
for each kind of attack seen at testing time. On the other side, the unsupervised
detector MagNet appears to be more robust than FS when changing from the
single-armed setting to MEAD. Indeed, in terms of AUROC↑, it loses at most
2.2% points (L∞ norm case). On average, FS is the unsupervised detector that
achieves the best performance on CIFAR10, while MagNet is the one to achieve
the best performance on MNIST.

Remark: Some single-armed setting results turn out to be worse than the corre-
sponding results in MEAD (cf Table 5–9 and Table 11–15 in Appendix A). We
provide here an explanation of this phenomenon. Given a natural input sample
x, let x� denotes the perturbed version of x according to some fixed norm p, fixed
perturbation magnitude ε and objective function � between ACE, KL, Gini and
FR. Suppose fθ(xACE) = y, where y is the ground true label of x, this means that
xACE is a perturbed version of the natural example but not adversarial. Assume
instead fθ(xKL) �= y, fθ(xGini) �= y and fθ(xFR) �= y. If at testing time the
detector is able to recognize all of them as being positive (i.e., adversarial), then
under MEAD, xKL,xGini,xFR would be considered a true positive. This example,
counting as a true positive under MEAD, would instead be discarded under the
single-armed setting of ACE, as xACE is neither a clean example nor an adver-
sarial one. Then, the larger amount of true positives in MEAD can potentially
lead to an increase in the global AUROC↑.

Effectiveness of the Proposed Objective Functions. In Table 4 and
Table 10, relegated to the Appendix due to space constraints, we report the
averaged number of successful adversarial examples under the multi-armed set-
ting as well as the details per single-armed settings on CIFAR10 and MNIST,
respectively. The attacks are most successful when the value of the constraint
ε for every Lp-norm increases. Generating adversarial examples using the ACE
for each attack scheme creates more harmful (adversarial) examples for the clas-
sifier than using any other objective. However, using either the Gini Impurity
score, the Fisher-Rao objective, or the Kullback-Leibler divergence seems to cre-
ate examples that are either equally or more difficult to be detected by the
detection methods. For this purpose, we provide two examples. First, by looking
at the results in Table 7, we can deduce that LID finds it difficult to recognize
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Table 3. Performances of each detection method under the MEAD framework on
CIFAR10 and MNIST averaged over the norm-based constraint. The best results among
all the methods is in bold; the ones per type of detection method (i.e. Supervised and
Unsupervised) are underlined.

Supervised methods Unsupervised methods

NSS KD-BU LID FS MagNet

AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%%

MNIST 90.7 29.3 51.5 93.9 85.4 41.1 72.8 71.3 93.4 29.8

CIFAR10 71.8 66.1 53.0 95.2 64.0 81.8 66.4 73.6 64.6 69.7

the attacks based on KL and FR objective functions but not the ones created
through Gini. For example, with PGD1 and ε = 40, we register a decrease in
AUROC↑ of 9.5% points when going from the single-armed setting of Gini to the
one of FR. Similarly, the decrease is 8.3% points in the case of KL. This behavior
is even more remarkable when we look at the results in terms of FPR↓95%: the
gap between the best FPR↓95% values (obtained via Gini) and the worst (via
FR) is 30.7% points. On the other side, the situation is reversed if we look at the
results in Table 8 as FS turns out to be highly inefficient at recognizing adversar-
ial examples generated via the Gini Impurity score. By considering the results
associated to the highest value of ε for each norm, namely ε = 40 for L1-norm;
ε = 2 for L2-norm; ε = 0.5 for L∞-norm, the gap between best FPR↓95% values
(obtained via KL divergence) and the worst (via Gini Impurity score), varies
from a minimum of 41.7 (L∞-norm) to a maximum of 64.4 (L2-norm) percent-
age points. This example, in agreement with Sect. 3.3, testify on real data that
testing the detectors without taking into consideration the possibility of creat-
ing attacks through different objective functions leads to a biased and unrealistic
estimation of their performances.

Comparison Between Supervised and Unsupervised Detectors. The
unsupervised methods find it challenging to recognize attacks crafted using the
Gini Impurity score. Indeed, according to Sect. 3.3, that objective function cre-
ates attacks on the decision boundary of the pre-trained classifier. Consequently,
the unsupervised detectors can easily associate such input samples with the clus-
ter of naturals. Supervised methods detect Adversarial Cross-Entropy loss-based
attacks more and, therefore, more volatile when it comes to other types of loss-
based attacks. Overall, by looking at the results in Table 3 on both the datasets,
most of the supervised and unsupervised methods achieve comparable perfor-
mances with the multi-armed framework, meaning that the current use of the
knowledge about the specific attack is not general enough. The exception to this
is NSS, which, as already explained, seems to be the most general detector.

On the effects of the norm and ε. The detection methods recognize attacks
with a large perturbation more easily than other attacks (cf Table 5–9 and Table
11–15). L∞-norm attacks are less easily detectable than any other Lp-norm
attack. Indeed, multiple attacks are tested simultaneously for a single ε under
the L∞ norm constraint. For example, in CIFAR10 with ε = 0.3125 and L∞,



300 F. Granese et al.

PGD, FGSM, BIM, and CW are tested together, whereas, with any other norm
constraint, only one typology of attack is examined. Indeed the more attack we
consider for a given ε, the more likely at least one attack will remain undetected.
Globally, under the L∞-norm constraint, Gini Impurity score-based attacks are
the least detected attacks. However, each method has different behaviors under
L1 and L2. NSS is more sensitive to Kullback-Leibler divergence-based attacks
while MagNet is more volatile to the Fisher-Rao distance-based attacks. As
already pointed out, FS achieves inferior performance when evaluated against
attacks crafted through the Gini Impurity objective, while the sensitivity of LID
and KD-BU to a specific objective depends on the Lp-norm constraint.

6 Summary and Concluding Remarks

We introduced MEAD a new framework to evaluate detection methods of adver-
sarial examples. Contrary to what is generally assumed, the proposed setup
ensures that the detector does not know the attacks at the testing time and
is evaluated based on simultaneous attack strategies. Our experiments showed
that the SOTA detectors for adversarial examples (both supervised and unsuper-
vised) mostly fail when evaluated in MEAD with a remarkable deterioration in
performance compared to single-armed settings. We enrich the proposed evalua-
tion framework by involving three new objective functions to generate adversar-
ial examples that create adversarial examples which can simultaneously fool the
classifier while not being successfully identified by the investigated detectors. The
poor performance of the current SOTA adversarial examples detectors should
be seen as a challenge when developing novel methods. However, our evaluation
framework assumes that the attackers do not know the detection method. As
future work we plan to enrich the framework to a complete whitebox scenario.
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Abstract. Deep learning-based facial recognition (FR) models have de-
monstrated state-of-the-art performance in the past few years, even when
wearing protective medical face masks became commonplace during the
COVID-19 pandemic. Given the outstanding performance of these mod-
els, the machine learning research community has shown increasing inter-
est in challenging their robustness. Initially, researchers presented adver-
sarial attacks in the digital domain, and later the attacks were transferred
to the physical domain. However, in many cases, attacks in the physical
domain are conspicuous, and thus may raise suspicion in real-world envi-
ronments (e.g., airports). In this paper, we propose Adversarial Mask, a
physical universal adversarial perturbation (UAP) against state-of-the-
art FR models that is applied on face masks in the form of a carefully
crafted pattern. In our experiments, we examined the transferability of
our adversarial mask to a wide range of FR model architectures and
datasets. In addition, we validated our adversarial mask’s effectiveness
in real-world experiments (CCTV use case) by printing the adversarial
pattern on a fabric face mask. In these experiments, the FR system was
only able to identify 3.34% of the participants wearing the mask (com-
pared to a minimum of 83.34% with other evaluated masks). A demo of
our experiments can be found at: https://youtu.be/ TXkDO5z11w.

Keywords: Adversarial attack · Face recognition · Face mask

1 Introduction

For the past two years, the coronavirus has impacted every aspect of our lives,
and its impact will continue for the foreseeable future. Since its emergence,
various suggestions have been made to reduce its spread. While the effectiveness
of some actions is questionable, there is no doubt that face masks are a key
factor in preventing the spread of the virus in crowded and enclosed spaces. The
widespread adoption of face masks and the ever-increasing use of deep learning-
based facial recognition (FR) models in everyday systems can be leveraged to
perpetrate targeted adversarial attacks that will enable attackers to evade such
models and compromise their robustness, without raising an alarm.
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M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13715, pp. 304–320, 2023.
https://doi.org/10.1007/978-3-031-26409-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26409-2_19&domain=pdf
http://orcid.org/0000-0003-0270-1743
http://orcid.org/0000-0002-9641-128X
http://orcid.org/0000-0003-0630-4059
https://youtu.be/_TXkDO5z11w
https://doi.org/10.1007/978-3-031-26409-2_19


Adversarial Mask: Real-World Universal Adversarial Attack 305

Fig. 1. Illustrating the effect of an adversarial pattern printed on a fabric mask (right),
which results in the failure of the FR system to detect the person wearing it, compared
to the FR system’s ability to detect the same individual without a mask, as well as
with a standard disposable mask.

Adversarial attacks in the computer vision domain have gained a lot of inter-
est in recent years, and various ways of fooling image classifiers [9,22] and object
detectors [21,23,32] have been proposed. Attacks against FR systems have also
been shown to be effective. For example, research has demonstrated that face
synthesis in the digital domain can be used to fool FR models [28]. In the phys-
ical domain, some of the proposed methods involved wearing adversarial eye-
glasses [18], projecting lights on human faces [20], wearing a hat containing
an adversarial sticker [14], and using adversarial makeup [10]. However, the pro-
posed attacks are conspicuous and do not allow the attacker to blend in naturally
in real-world scenarios, potentially triggering defense systems.

In this work, we propose a universal adversarial attack that can be used to
physically evade FR systems; in this case, an adversarial pattern is printed on
a fabric face mask, as shown in Fig. 1. To create the adversarial pattern, we use
a gradient-based optimization process that aims to cause all identities wearing
the mask to be misclassified by the FR model. We first demonstrate the attack’s
ability to fool state-of-the-art models (e.g., ArcFace [7]) in the digital domain
by applying the face mask to every facial image in the dataset (dynamically)
using 3D face reconstruction. Then, we print the adversarial pattern on an actual
fabric face mask and test it under real-world conditions. The results in the digital
domain show that our adversarial mask performs better than all evaluated masks
and is transferable to other models. In the physical domain, we show that 96.66%
of the participants wearing our mask evaded the detection by the FR system.

The contributions of our research can be summarized as follows:

– We are the first to present a physical universal adversarial attack that fools
FR models, i.e., we craft a single perturbation that causes the FR model
to falsely classify all potential attackers as unknown identities, even under
diverse conditions (angles, scales, etc.) in a real-world environment (fully-
automated CCTV scenario).

– In the digital domain, we study the transferability of our attack across dif-
ferent model architectures and datasets.

– We present a fully differentiable novel digital masking method that can accu-
rately place any kind of mask on any face, regardless of the position of the
head. This method can be used for other computer-vision tasks (e.g., training
masked-face detection models).
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– We craft an inconspicuous pattern that “continues” the contour of the face,
allowing a potential attacker to easily blend in with a crowd without raising
an alarm, given the variety and widespread use of face masks during the
COVID-19 pandemic.

– We propose various countermeasures that can be used during the FR model
training and inference phases.

2 Background and Related Work

2.1 Adversarial Attacks

Digital Attacks. Initially, attacks in the digital domain aimed at fooling classifi-
cation models were introduced [9,22]. While those earlier attacks are based on
methods that generate a perturbation for a single image, Moosavi-Dezfooli et
al. [17] proposed universal adversarial perturbations (UAPs), which enable any
image that is blended with the UAP to fool a DNN. Digital attacks on models
that perform more complex computer vision tasks (e.g., face recognition and
object detection) have also emerged. Yang et al. [28] designed a digital patch
which is placed on a person’s forehead to deceive face detectors. Recent studies
targeting FR models suggested various techniques. Deb et al. [6] proposed auto-
mated adversarial face synthesis, using a generative adversarial network (GAN)
to create minimal perturbations. Agarwal et al. [1] and Amada et al. [2] pro-
posed UAPs that can deceive FR models for multiple identities simultaneously.
However, these attacks only call attention to the potential threat inherent to
such models but cannot be transferred to the physical world.

Physical Attacks. Physical attacks differ from digital attacks in the way real-
world constraints are considered throughout the process of generating the pertur-
bation. Consequently, these constraints allow the perturbations to transfer more
easily to the physical world. In recent years, physical attacks on object detectors
have gained attention. Chen et al. [5] printed stop signs containing adversarial
patterns that evaded detection by the object detector, and Sitawarin et al. [21]
deceived autonomous car systems by crafting toxic traffic signs that look similar
to the original traffic signs. Methods against person detectors have also been
proposed. Thys et al. [23] suggested attaching a small adversarial cardboard
plate to a person’s body to evade detection. Continuing this line of research,
other studies involved printing adversarial patterns on t-shirts, which resulted
in a more realistic article of clothing that blends into the environment more nat-
urally [26,27]. A slightly different approach, in which the perturbation affects
the sensor’s perception of the object by applying a translucent patch on the
camera’s lens, was also introduced [32].

Numerous studies have demonstrated different ways of fooling FR systems.
For example, Shen et al. [20] introduced the visible light-based attack, where
lights are projected on human faces. Other studies showed that carefully applied
makeup patterns can negatively affect the performance of FR systems [10,30].
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Accessories were also shown to be effective; for example, Sharif et al. [18] sug-
gested wearing adversarial eyeglass frames that were crafted using gradient-based
methods. Later, GAN methods were used to generate an enhanced version of the
adversarial eyeglass frames [19]. Recently, Komkov et al. [14] printed an adver-
sarial paper sticker and placed it on a hat to fool the state-of-the-art ArcFace [7]
FR model. However, when implemented on a person, these methods may call
attention to the person by causing them to stand out in a crowd given their
unnatural appearance. In contrast, we propose a method in which the pertur-
bation is placed on a face mask, a safety measure widely used in the COVID-19
era; in addition, unlike prior work in which the proposed attacks craft tailor-
made perturbations (target a single image or person), our universal attack can
be applied more widely without the need for an expert to train a tailor-made one.
Furthermore, we demonstrate the effectiveness of our method in a real-world use
case involving a CCTV system, an aspect not addressed by previous studies.

2.2 Face Recognition

Models. FR models can be categorized by two main attributes, the model’s
backbone and the novel loss function, both of which are involved in the train-
ing phase. The main architecture used as the backbone in these models is the
ResNet [12] architecture, which varies in terms of the number of layers it contains,
also referred to as the backbone depth. On top of the backbone, an additional
layer (or more) is added, usually containing a novel loss function that is used
to train the backbone weights [7,16,24]. Later, when the FR model is used for
inference, only the backbone layers are used to generate the embedding vector.

Systems. The end-to-end procedure of a fully automated FR system consists
of several main steps: (a) Record - a camera records the environment and then
produces a series of frames (a video stream); (b) Detect - each frame is analyzed
by a face detector to extract cropped faces; (c) Align - the cropped faces are
aligned according to the FR model’s alignment method; (d) Embed - the aligned
facial images serve as input to an FR model f that maps a facial image Iface

to a vector f(Iface), also referred to as an embedding vector; (e) Verify - the
embedding vector is compared to a list of precalculated embedding vectors (also
referred to as ground-truth embedding vectors) using a similarity measure (e.g.,
cosine similarity). The identity with the highest similarity score is marked as a
potential candidate and eventually confirmed if its similarity score surpasses a
predefined verification threshold (which depends on the system’s use case).

3 Method

The objective of our research is to generate an adversarial pattern that can be
printed on a face mask and cause FR systems to classify a registered identity as
an unknown identity. Further, we aim to create an adversarial pattern that is: (a)
universal - it must be effective on any identity from multiple views and angles,
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and at multiple scales, (b) practical - the pattern should remain adversarial
when printed on a fabric mask in the real world, and (c) transferable - it must
be effective on different models (backbone depths and loss functions).

Fig. 2. Overview of our mask projection method pipeline.

3.1 Mask Projection

In order to digitally train our adversarial mask, we first need to simulate the mask
overlay on a person’s face in the real world. Therefore, we use 3D face recon-
struction to digitally apply a mask on a facial image. Feng et al. [8] introduced
an end-to-end approach called UV position map that records the 3D coordinates
of a complete facial point cloud using a 2D image. This map records the position
information of a 3D face and provides dense correspondence to the semantic
meaning of each point in the UV space, allowing us to achieve near-real approx-
imation of the mask on the face, which is essential to the creation of a successful
adversarial mask in the real world.

More formally, we consider our mask Madv ∈ R
w×h×3 and a rendering func-

tion Rθ. The rendering function (partially inspired from [25]) takes a mask Madv

and a facial image xface, and applies the mask on the face, resulting in a masked
face image Rθ(Madv, xface). As shown in Fig. 2, the pipeline of the mask’s pro-
jection on the facial image is as follows:

1. Detect the landmark points of the face - given a landmark detector, we extract
the landmark points of the face.

2. Map the mask pixels to the facial image - the landmark points of the face
extracted in the previous step of the pipeline are used to map the mask pixels
to the corresponding location on the facial images.

3. Extract depth features of the face - the facial image is passed to the 3D face
reconstruction model to obtain depth features.

4. Transfer 2D facial image to the UV space - the depth features are used to
remap the facial image to the UV space.

5. Transfer 2D mask image to the UV space - the depth features are used to
remap the mask image to the UV space.
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6. Augment mask - to improve the robustness of our adversarial mask, random
geometric transformations and color-based augmentations (parameterized by
θ) are applied: (i) geometric transformations - random translation and rota-
tion are added to simulate possible distortions in the mask’s placement on the
face in the real world, and (ii) color-based augmentations - random contrast,
brightness, and noise are added to simulate changes in the appearance of the
mask that might result from various factors (e.g., lighting, noise or blurring
caused when the camera captures the image).

7. Combine and reconstruct - the UV representations of the facial image and
the mask are combined, and the combined image is reconstructed back to the
regular 2D space, resulting in a masked face image.

Usually, adversarial attacks that employ textile-like objects (e.g., wearable
t-shirt [26,27]) use thin plate splines (TPSs) [4] to simulate fabric distortions. In
contrast to these studies, although we aim to craft a textile-based mask, in our
case, the mask form on the face remains steady and is not subject to significant
distortions. In addition, our 3D approach allows us to simulate smaller distortions
(e.g., caused by the nose shape) without actively using TPSs.

Above all, it is important to note that the entire process presented is com-
pletely differentiable and allows us to backpropagate and update the mask pixels.

3.2 Patch Optimization

To optimize our mask’s pixels, we propose an iterative optimization process. In
each iteration, we select a random batch of facial images of multiple identities
and digitally project the mask on each facial image. We then feed the masked
face images to the FR model and obtain the embedding representations. Since
our goal is to cause an attacker to be unknown to FR models, we aim to create
a patch Madv that will decrease the similarity between the output embedding
and the ground-truth embedding egt (precalculated) for each identity.

More formally, an FR model f : X w×h×3 → R
N receives a facial image

x ∈ X (in our case, a masked face image Rθ(Madv, x)) as input and outputs the
embedding representation f(Rθ(Madv, x)). Therefore, we minimize the cosine
similarity between the embedding vectors and use the following loss function:

�sim(Madv) = Eθ,x[cos(f(Rθ(Madv, x)), egt)] (1)

Since our method is not system-dependent (i.e., does not use a fixed verification
threshold determined by a specific use case), we aim to decrease the similarity
to the fullest extent possible, in order to perform the most successful attack.

To improve the mask’s transferability to other models, we train our patch
using an ensemble of FR models, denoted as J . We replace 1 with the following:

�sim(Madv) = Eθ,x
1

|J |
∑

j
cos(f (j)(Rθ(Madv, x)), e(j)gt ), (2)

where f (j) denotes the jth model and e
(j)
gt denotes the embedding representation

calculated using the jth model.
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We also include the total variation (TV) [18] factor to ensure that the opti-
mizer favors smooth color transitions between neighboring pixels and is calcu-
lated on the mask pixels as follows:

�TV =
∑

i,k

√
(pi,k − pi+1,k)2 + (pi,k − pi,k+1)2 (3)

When neighboring pixels are not similar, the penalty of this component is greater.
To be more precise, since the output of �sim is in the range of [−1, 1] and

the output of �TV is in the range of [0, 1], we transform �sim so it is in the same
range ([0, 1]); thus, we replace 2 with the following:

�sim(Madv) = Eθ,x
1

|J |
∑

j

cos(f (j)(Rθ(Madv, x)), e(j)gt ) + 1
2

(4)

Finally, the optimization problem we solve is as follows:

min
Madv

[�sim(Madv) + λ ∗ �TV (Madv)], (5)

where λ is set at a low value.

4 Evaluation

In our evaluation, we first run experiments in the digital domain by applying the
mask to facial images, using the rendering function Rθ (as explained in Sect. 3).
Then, we evaluate the performance of our adversarial pattern in the physical
domain (i.e., real world) by printing it on a fabric mask.

Models. We use three different types of loss functions that were originally used
to train the models, which are considered state-of-the-art: ArcFace [7], Cos-
Face [24], and MagFace [16]. Specifically, we use pretrained models which were
trained using the ArcFace and CosFace loss functions [3], with four different
ResNet depths (18, 34, 50, and 100) each, and a pretrained ResNet100 backbone
originally trained with the MagFace [16] loss function, for a total of nine dif-
ferent models. We examine multiple training variations, using one or more (i.e.,
ensemble) models to train the adversarial mask and then test it in a white-box
setting to evaluate the performance. We also evaluate the transferability of our
mask to other unknown models (i.e., black-box setting).

Datasets. Throughout this paper, we use three commonly used datasets in the
face recognition domain: CASIA-WebFace [29], CelebA [15], and MS-Celeb [11].

For the training phase, we randomly choose 100 different identities (50 men
and 50 women) from the CASIA-WebFace dataset. We extract five random facial
images for each identity, for a total of 500 facial images.

For the evaluation phase, we use 200 identities from each dataset (an equal
number of men and women from each dataset), evaluating both the performance
on the same distribution (different identities from the CASIA-WebFace dataset,
∼20K images) and the transferability to other datasets (CelebA and MS-Celeb,
∼6K and ∼24K images, respectively).
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Metrics. In our experiments, we quantify the performance of our attack as the
ability to decrease the similarity score - specifically the cosine similarity (an
approach originally presented in [14]). The cosine similarity calculation is a step
required prior to making a binary decision based on a predefined threshold. This
evaluation approach does not require a system-dependent predefined threshold
and demonstrates our attack’s effectiveness. In the physical domain, we also
quantify the effectiveness of our attack using two additional metrics, each of
which relates to a different stage of an end-to-end FR system:

– Recognition rate (RR) = |Frec|/ |Fdet|, where |Frec| denotes the total number
of frames in which the identity was correctly recognized (the cosine similarity
between the ground-truth embedding and the output embedding surpasses
the verification threshold), and |Fdet| denotes the total number of frames in
which a face was detected and analyzed by the FR system.

– Persistence detection - since the goal of our adversarial mask is to ensure that
an attacker is not identified by the system, we propose a metric that indicates
whether the goal was met. An attacker is considered as identified if, within
a window of Nsliding window frames, the attacker was recognized in Nrecognized

frames (where Nrecognized ≤ Nsliding window).

Implementation Details. The models we work with in this research only take size
3 × 112 × 112 facial images as input. Therefore, We set the size of our patch to
be 3 × 60 × 112 to avoid significant downsampling when dynamically rendering
the mask to the facial image, and we set the initial color of the mask to white.
The pixels are updated using the Adam optimizer [13], where the initial learning
rate is set at 10−2. The weight factor of the TV component in the loss function
λ is manually set at 0.1. The source code is available online.1

Types of Face Masks Evaluated. Since we are the first to present a physical
universal perturbation, we compare the effectiveness of our mask with several
control masks: (a) Clean - the original facial image without a mask, (b) Adv -
our optimized adversarial mask, (c) Random - a mask with randomly colored
pixels, and (d) Blue - a standard disposable blue mask (simple black and white
masks were also tested and yielded the same results). In addition, due to our
trained mask’s resemblance to a human face, the lower face area of a female and
male are used as control masks and will be referred to as Female Face and Male
Face, respectively. The masks compared in our evaluation are shown in Fig. 3.

Evaluation Setup. Since the state-of-the-art models discussed above were not
specifically designed to address the issue of masked faces, we first examine the
model’s (ResNet100@ArcFace) performance on a number of simple face masks.
For this evaluation, we use 100 identities from the CASIA-WebFace dataset,
where five images of each identity are used to calculate the ground-truth embed-
ding, and the remaining images are applied with different types of masks.

1 https://github.com/AlonZolfi/AdversarialMask.

https://github.com/AlonZolfi/AdversarialMask
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Fig. 3. Examples of facial images w/o mask (a), and when various masks are digitally
applied to them (b)–(f). (Color figure online)

Table 1. Cosine similarity comparison between two ground-truth embedding genera-
tion methods on the Resnet100@ArcFace. Bold indicates better performance.

Mask type No mask Blue Black White

Cosine similarity w/o Mask* .732 .399 .407 .428

w/Mask** .682 .547 .549 .561

*Embedding vectors created using original facial images.
**A masked version of the original images is added to the embed-
ding calculation.

To the best of our knowledge, the scientific community has not reached a
consensus on the way in which masked face images should be dealt with by
FR models. Therefore, we use two approaches for generating the ground-truth
embedding: (a) the current approach for unmasked face models - averaging the
embedding vectors of the original images only, and (b) an extension of the first
approach - in addition to the original images, we create a masked face version
for each image (the specific mask is randomly chosen from blue, black, and white
masks) and average the embedding vectors of the two versions of the images. We
then calculate the cosine similarity between the masked face images’ embedding
vectors and the two versions of ground-truth embedding vectors generation.

In Table 1 we can see that although the first approach (w/o Mask) performs
better on unmasked images, its performance on masked images is unsatisfactory.
On the other hand, the cosine similarity for the second approach (w/Mask) only
slightly decreases the cosine similarity on unmasked images (∼0.05 decrease)
and performs significantly better on masked images (∼0.1–0.15 increase). Thus,
throughout this section the results we present are obtained using the second
approach (the ground-truth embedding vectors used for the training procedure
are generated using first approach). It is important to note that by choosing the
second approach, we increase the difficulty of deceiving these models, since the
ground-truth embedding vectors encapsulate the use of a face mask.

4.1 Digital Attacks

We conduct digital experiments to quantify our adversarial mask’s effectiveness
using the rendering function Rθ (see Sect. 3), which allows us to dynamically
apply masks to the facial images in the test set.
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Fig. 4. Distribution of the cosine similarity score across different masks. ‘Adv Univer-
sal’ represents our optimized universal mask, and ‘Adv Targeted’ represents a tailor-
made mask for each identity.

Effectiveness of the Adversarial Mask in a White-Box Setting. We examine the
effectiveness of our attack in a white-box setting in which our mask is optimized
and tested on the ResNet100@ArcFace. As shown in Fig. 4, our adversarial mask
has a significant impact compared to the no mask case, in which the average
cosine similarity decreased from ∼0.7 to ∼0.1. As the case of no mask images
represents the upper bound of the cosine similarity, we also perform a targeted
attack in which a mask is tailored to each person, to determine the lower bound.
The targeted mask results are averaged across all identities in the test set. We can
see that the universal mask performs almost as good as a tailor-made mask (∼0.1
difference). The tailor-made masks represent an attack that is more difficult to
detect, since the adversarial pattern varies among different identities. In addition,
while the female and male face control masks are also able to decrease the cosine
similarity to a lower level (∼0.45), our mask outperforms them both for almost
all tested identities.

Transferability Across Backbone Depth. We also examine whether our mask can
deceive FR models it was not trained on. Since the majority of the models use the
ResNet architecture, we evaluate the performance across different depths of the
ResNet@ArcFace. The results are presented in Fig. 5a. In the figure, we can see
that the use of our adversarial mask can cause the cosine similarity to decrease
regardless of the model used for training. It can also be seen that our attack
generalizes better to unknown models whose architecture depth is closer to that
of the trained model. For example, an adversarial mask trained on a model with
100 layers performs better on the models with 34 and 50 layers (decreasing the
cosine similarity to 0.182 and 0.168, respectively) than on the 18-layer model
(0.282). In addition, we see that the mask trained on an ensemble of all models
does not outperform a mask trained on a single model in a white-box setting,
however the ensemble’s effectiveness is seen over all models combined.
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Fig. 5. Transferability experiments measured in terms of cosine similarity. Rows are
divided into three groups: control masks, masks trained using a single model, mask
trained using all of the models.

Transferability Across Different Loss Functions. We further demonstrate the
adversarial mask’s transferability across different model loss functions. We use
the ResNet100 backbone in which the weights were trained using one of the
following loss functions: ArcFace, CosFace, and MagFace. In Fig. 5b, we observe
that our method is loss-agnostic, as the decrease in the cosine similarity is seen on
for all tested models. However, a mask that was trained using the MagFace model
does not generalize as well as the masks trained with other models, where the
cosine similarity decreased to 0.065 in the white-box setting but only decreased to
0.255 and 0.2 on the ArcFace and CosFace models, respectively. It is interesting
to examine the mask trained by each model (presented in Fig. 6). Whereas there
is a resemblance in the contour of the optimized masks, the mask trained using
the ResNet100@MagFace backbone (Fig. 6c) learns completely different colors
than the other two, in some way providing a possible explanation for its decreased
ability to generalize to the ArcFace and CosFace models.

Transferability Across Datasets. We also find our mask to be effective across
different datasets. In another experiment, we train our mask using images from
one of the examined datasets (presented earlier in this section) and study its
effectiveness on the other datasets (i.e., the ground-truth embedding vectors are
generated using another dataset’s images). We train all of the masks using the
ResNet100@ArcFace. The results show that the impact of using a specific dataset
is insignificant, since our mask generalizes over all datasets. For example, when
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Fig. 6. Illustrations of our adversarial masks trained on different ResNet100 backbones,
which vary in terms of the original loss function they were trained on.

Fig. 7. The adversarial masks trained on the ResNet100@ArcFace using single gender
identities.

training the mask on the CASIA-WebFace dataset and testing it on the CelebA
and MS-Celeb datasets, we respectively obtained an average cosine similarity
of 0.128 and 0.114, similar to the white-box setting results (mask trained and
tested on images from the CASIA-WebFace dataset, Fig. 4).

Effect of Gender. Another aspect we studied is the effect of a specific gender
on the trained mask. The experiments include optimization of the adversarial
mask using only female or male identities, and the final masks are presented
in Fig. 7a and Fig. 7b, respectively. The results show that even when training
the mask on facial images of a single gender, the cosine similarity decreases to
the same level as the mask trained on both genders (∼0.1). In addition, masks
trained by a single gender were able to transfer very well to the other gender
(male → female = 0.097, and female → male = 0.145).

Generally, the contour of the trained masks (including the mask trained on
both genders, Fig. 6a) is quite interesting. Despite the fact that only facial images
of female identities were used to train the mask (Fig. 7a), the optimized mask has
an high resemblance to a male face. More generally, the resemblance of all the
trained masks to a male face might indicate there is an underlying bias hidden
in these models.

4.2 Physical Attacks

Finally, to evaluate the effectiveness of our attack in the real world, we print our
digital pattern on two surfaces: on regular paper cut in the shape of a face mask
and on a white fabric mask, as shown in Fig. 9. In addition, we create a testbed
that operates an end-to-end fully automated FR system (explained in Sect. 2),
simulating a CCTV use case.
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Fig. 8. Physical experiments’ averaged results on all participants across different eval-
uated masks and different victim models.

Setup. The system contains: (a) a Dahua IPC-HDBW1431E network camera
which records a long corridor, (b) an MTCNN [31] detection model for face
detection, preprocessing, and alignment, and (c) an attacked model - we per-
form a white-box attack in which the model used for training the adversarial
mask is also the model under attack, a ResNet100@ArcFace. In addition, we
perform an “offline” analysis in a black-box setting, in which the facial images
are cropped from the original frames and compared to ground-truth embedding
vectors generated using other models.

To calculate the specific verification threshold (set at 0.38), we use a subset
of 1,000 identities from the CASIA-WebFace dataset and perform the following
procedure. Various face masks are applied (digitally) to each identity’s original
facial images. Then, we calculate the cosine similarity between the identity’s
embedding vector and each masked face image. Since we employ a semi-critical
security use case (CCTV), we chose the threshold that led to a false accep-
tance rate (FAR) of 1%. Furthermore, to minimize false positive alarms, we
used a persistence threshold of Nrecognized = 7 frames and a sliding window of
Nsliding window = 10 frames to designate a candidate identity as a valid one.

We recruited a group of 15 male and 15 female participants (after approval
was granted by the university’s ethics committee). Each participant was asked
to walk along the corridor seven times, once with each mask evaluated (clean,
blue, random, male face, and female face), similar to the digital experiments,
and two more times with our adversarial masks printed on paper and fabric.
The ground-truth embedding of each participant was calculated using two facial
images, where a standard face mask was applied (digitally) to each image, for a
total of four facial images.

Results. The results of our experiments are shown in Fig. 8 where we can see that
our adversarial masks (paper and fabric) performed significantly better than the
other masks evaluated on every metric, with a high correlation to the cosine
similarity results obtained in the digital domain.
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Fig. 9. An illustration of: (a) the digital adversarial mask trained on the
ResNet100@ArcFace; (b) the digital pattern printed on fabric mask; and (c) the digital
pattern printed on paper.

In terms of the RR, the performance of the FR model for the different masks
can be divided into four groups (listed in decreasing order): (a) the unmasked
version (74.83%), (b) blue and random masks (53.04% and 54.76%, respectively),
(c) male and female masks (30.85% and 28.36%, respectively), and (d) our fabric
and paper adversarial masks (5.72% and 4.61%, respectively).

In a realistic case of CCTV use in which an attacker tries to evade the
detection of the system, our adversarial fabric mask was able to conceal the
identity of 29 out of 30 participants (which represents a persistence detection
value of 3.34%), as opposed to the control masks which were able to conceal 5
out of 30 participants at most (persistence detection value of 83.34%).

We also examine the effectiveness of our masks on models they were not
trained on. The results presented in Fig. 8 show that our masks have similar
adversarial effect on FR models in a black-box setting as in a white-box setting.

Another aspect we examined in our physical evaluation is the ability to print
the adversarial pattern on a real surface. Figures 9b and 9c present the digital
adversarial pattern (Fig. 9a) printed on the different surfaces. Due to the limited
ability of a printer to accurately output the original colors onto the fabric, we can
see that there is a slight difference in the performance of the masks. Nonetheless,
both of our adversarial masks outperformed the other masks evaluated.

5 Countermeasures

We propose two ways in which our digital masking method can be used to defend
against adversarial masks: (a) adversarial training – adversarial (universal and
tailor-made) masked face images could be provided to the model during training
to improve its robustness; and (b) mask substitution – during the inference phase,
every masked face image could be preprocessed so that the worn mask is replaced
digitally with a standard one (e.g., blue mask Fig. 3b), where the models had
satisfactory performance, as shown in Sect. 4, eliminating the potential threat of
an adversarial face mask. An implementation of the mask substitution method
on facial images of 100 identities (∼10K images) from the CASIA-WebFace
dataset increased the RR from 0.4% (the adversarial mask is applied to the
facial images) to 65.5% (the blue mask is applied to the adversarial images).
In a physical experiment, in which the blue mask was digitally placed on facial
images extracted from the videos frames (videos of participants wearing the
adversarial mask), the RR increased from 5.72% to 57.3%.
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6 Conclusion

In this paper, we presented a physical universal attack in the form of a face
mask against FR systems. Whereas other attack methods used different acces-
sories that are more conspicuous and do not blend naturally in the environment,
our mask will not raise any suspicion due to the widespread use of face masks
during the COVID-19 pandemic. We demonstrated the effectiveness of our mask
in the digital domain, both under white-box and black-box settings. In the phys-
ical domain, we showed how our mask is able to prevent the detection of multiple
participants in a CCTV use case system. Moreover, we proposed possible coun-
termeasures to deal with such attacks. To sum up, in this research, we highlight
the potential risk FR models face from an adversary simply wearing a carefully
crafted adversarial face mask in the COVID-19 era.
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1 Introduction

Uncertainty quantification (UQ) is the process of characterizing the uncertainty
of system dynamics, accounting for two main sources of uncertainty [4]. The
aleatoric uncertainty (or data uncertainty) refers to uncertainty arising from
external factors, such as measurement noise, and random initial or boundary
conditions. The epistemic uncertainty arises from the inadequate knowledge of
the underlying model, such as inherent stochasticity in human behavior. With
these random factors, UQ of dynamical systems is crucial to avoid potential
system oscillation or cascading errors.

Two classes of methods are developed to characterize the aforementioned
sources of uncertainty. The physics-based method assumes that the observa-
tions are generated from underlying physics imposed by Gaussian noise; thus
filtering methods or Bayesian inference can be applied to propagate uncer-
tainty. However, the physics-based method suffers from limitations such as non-
Gaussian likelihoods and high-dimensional posterior distributions [22]. In con-
trast, the data-driven method, such as generative adversarial networks (GAN)
[7], tries to characterize any distribution of data directly without making any
assumption of noise. Recently, there is a growing trend in integrating physics-
based models into the data-driven framework, namely, physics-informed deep
learning (PIDL) [15]. PIDL-based UQ methods can characterize generic data
distribution while ensuring physics consistency.

Among all PIDL models for UQ, the physics-informed GAN is the most
widely used, which has been applied to solve stochastic differential equations
[5,21,22] and quantify uncertainty in various domains [12–14,17–19]. Although
GAN generates high-quality samples [9] through adversarial training, it has sta-
bility and convergence issues. Moreover, as GAN cannot calculate the model
likelihood, it may miss important modes of the data distribution, namely, mode
collapse [20]. In contrast, normalizing flow [6] calculates the exact data likelihood
and is trained using maximum likelihood estimation (MLE), which is an effective
way to avoid mode collapse. However, applying PIDL to the normalizing flow is
still at its nascent stage and we only find one relevant work [10].

Leveraging the pros of both the MLE and adversarial training, Flow-GAN,
a combination of normalizing flow and GAN, is first introduced in [9], which
can achieve both high data likelihood and good sample qualities. Flow-GAN has
been applied to manifold learning [3] and image-to-image translation [8]. Little
research has been documented that applies Flow-GAN to UQ problems.

In this paper, we propose TrafficFlowGAN that leverages likelihood training,
adversarial training, and PIDL for the UQ problems. To the best of our knowl-
edge, we are the first to integrate these three methods for the UQ problems.
Main contributions of this paper include:

– We propose a hybrid generative model, TrafficFlowGAN, combining normaliz-
ing flow and GAN to achieve both high likelihoods and good sample qualities
and to avoid mode collapse.

– We incorporate physics information into the TrafficFlowGAN model for esti-
mation accuracy and data efficiency, and use neural network surrogate models
to learn the inter-relations between the physics variables at the same time.
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– We apply the TrafficFlowGAN model to learn solutions of second-order
stochastic partial differential equations (PDEs), and demonstrate the perfor-
mance of TrafficFlowGAN by applying it to a traffic state estimation (TSE)
problem with real-world data.

The rest of this paper is organized as follows: Sect. 2 introduces the background
and related work. Section 3 introduces the structure of TrafficFlowGAN for the
UQ problems. Section 4 demonstrates how TrafficFlowGAN learns solutions of
a PDE and the relations between physics variables using a neural network sur-
rogate model. Section 5 demonstrates how TrafficFlowGAN characterizes uncer-
tainty from the real-world data in the TSE problem, where two traffic models,
i.e. the Aw-Rascle-Zhang (ARZ) [2] and the Lighthill-Whitham-Richards (LWR)
[11] models, are used as the physics components. Section 6 concludes our work
and projects future directions in this promising arena.

2 Background and Related Work

2.1 Normalizing Flow

The flow model aims to learn an invertible function zzz = fθ(uuu) : RD �→ R
D, where

data uuu is sampled from a distribution pdata(uuu) and zzz ∼ pzzz(zzz) is a random noise
of the same dimension as the data. The data likelihood pθ(uuu) can be explicitly
expressed by using the change of variable formula:

pθ(uuu) = pzzz(zzz)
∣
∣
∣
∣
det

(
∂f−1

θ (zzz)
∂zzz

)∣
∣
∣
∣

−1

. (1)

To compute pθ(uuu), it is nontrivial to choose a latent variable zzz that has an
easy form and to design the invertible function fθ so that the Jacobian deter-
minant can be easily computed. A common selection of the latent variable zzz
is the standard Gaussian, i.e. pzzz(zzz)∼N (0, IIID). To compute the Jacobian deter-
minant, RealNVP [6] designs the invertible function fθ as an affine coupling
transformation following the equations below:

fθ :=

{

zzz1:d = uuu1:d

zzzd+1:D = uuud+1:D � ekθ(uuu1:d) + bθ(uuu1:d)
, (2)

where uuu and zzz are split into two partitions at the dth elements. The scale func-
tion kθ and the translation function bθ are neural networks to be learned, which
constitute the affine transformation of the partition uuu1:d. � is the Hadamard
product or element-wise product. By this design of invertible function, the Jaco-
bian determinant in Eq. 1 can be computed by

∣
∣
∣
∣
det

(
∂f−1

θ (zzz)
∂zzz

)∣
∣
∣
∣

−1

= e
∑

j [kθ(zzz1:d)]j , (3)
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where j is the index of the element of kθ(zzz1:d). The inverse function f−1
θ can

also be obtained by

f−1
θ :=

{

uuu1:d = zzz1:d

uuud+1:D = (zzzd+1:D − bθ(zzz1:d))/ekθ(zzz1:d)
. (4)

To better accommodate the complex data distribution, fθ is further modeled
as a sequence of affine coupling transformations: fθ = fL ◦ ... ◦ f1, where L is
the total number of transformations. Let fl be the lth invertible mapping and
hhh(l) be the lth latent variable that satisfies hhh(l) = fl(hhh(l−1)), where hhh(0) = uuu and
hhh(L) = zzz. Then the log-likelihood of uuu can be computed by:

log pθ(uuu) = log pzzz(zzz) +
L−1∑

l=0

log
∣
∣
∣
∣
det

(
∂f−1

l (hhh(l))
∂hhh(l)

)∣
∣
∣
∣

−1

. (5)

The computation of the log-likelihood of zzz is straightforward as zzz is assumed to
follow a standard Gaussian distribution, and each Jacobian determinant can be
calculated following Eq. 3. Thus, the exact data likelihood is tractable and the
flow model can be trained by the MLE.

2.2 Generative Adversarial Network (GAN)

GAN aims to train a generator Gθ to learn the mapping from a random noise
zzz to the corresponding state variables uuu, i.e. Gθ : zzz → uuu. The objective of the
generator Gθ is to fool an adversarially trained discriminator Dφ. Different GAN
variants use different metrics to evaluate the divergence between the prediction
distribution and the data distribution, such as the Kullback-Leibler (KL) diver-
gence, the Jensen-Shannon divergence, and the Wasserstein distance [1]. Among
these metrics, the Wasserstein distance has received growing popularity for its
stability, which optimizes the following objective:

min
θ

max
φ∈F

Epdata(uuu) [Dφ(uuu))] − Epzzz(zzz) [Dφ(Gθ(zzz))] , (6)

where θ and φ are the parameters of the generator and the discriminator, respec-
tively. F is defined such that Dφ is 1-Lipschitz.

3 Framework of TrafficFlowGAN

3.1 Problem Statement

Define the spatial and temporal domains as X and T , respectively. (x, t) ∈
X × T is the spatio-temporal coordinate (“coordinate” for short). It is assumed
that the state variable uuu can only be observed by limited number of sensors
placed at fixed locations and at a specific frequency. Thus, we further define
the observed (labeled) region O ⊆ X × T as the spatio-temporal region where
the state variable uuu is observed, and thereby the unobserved (unlabeled) region
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C = X × T \ O. We represent the continuous domain in a discrete manner
using grid points. Thus, the observed region O and the unobserved region C can
be represented as collections of discrete coordinates: O = {(x(i)

o , t
(i)
o )}No

i=1 and
C = {(x(j)

c , t
(j)
c )}Nc

j=1, where i and j are the indices of observed and unobserved
coordinates, respectively; No, Nc are the numbers of observed and unobserved
coordinates, respectively.

The state variable uuu is a random variable for each coordinate, i.e. uuu ∼
pdata(uuu|x, t). Our goal is to train a generator such that its prediction distri-
bution distribution pθ(ûuu|x, t) matches the data distribution pdata(uuu|x, t). Below
we will introduce how to achieve this goal with our proposed TrafficFlowGAN.

3.2 Overview of TrafficFlowGAN Structure

An overview of TrafficFlowGAN is illustrated in Fig. 1, which consists of three
main components, namely, a conditional flow fθ, a physics-based computa-
tional graph, and a convolutional discriminator Dφ. The data is illustrated as
a heatmap in the spatio-temporal domain. We assume the data is measured
by sensors at fixed locations. Due to limited range each sensor can cover, the
observation region consists of separate horizontal “strips.” The observed and
unobserved coordinates are fed into the conditional flow model to generate pre-
dictions ûuuo and ûuuc, respectively. Those predictions bifurcate into two branches.
In the upper branch, ûuuc are fed into a physics-based computational graph, which
encodes physics laws, to calculate the physics loss function. This process of calcu-
lating physics loss from the unobserved coordinates is illustrated by grey arrows.
In the lower branch, the prediction states ûuuo and the observed states uuuo are then
reshaped to constitute the prediction matrix M̂ and the observation matrix M ,
respectively. These two matrices are then fed into the convolutional discrimina-
tor. The process of calculating the adversarial loss from observed coordinates
and states is illustrated by blue arrows.

We will detail each component sequentially and explain how we integrate
those components in the following subsections.

Fig. 1. Structure of the TrafficFlowGAN.
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3.3 Convolutional Neural Network as the Discriminator

Existing physics-informed GAN models construct the discriminator as a fully
connected network. By explicitly adding the spatio-temporal coordinates into
the input space, the discriminator is expected to make decisions based on the
spatio-temporal pattern, which will be represented better by the convolutional
neural network (CNN). In this work, we propose to use CNN as the discriminator.

The discriminator Dφ consists of a sequence of convolutional layers (Conv)
followed by a fully connected layer (FC). This FC layer outputs a 1 × 1 scalar
indicating if the input matrix is from observations or predictions. The pooling
layer is not used in this structure, as there is no requirement for compression in
our task.

The reshape of the observation uuu is straightforward. As we represent the
spatio-temporal domain in a discrete manner, uuu(x, t) for each coordinate can be
viewed as a “pixel”, and the dimension of uuu is its number of channels. This is the
same for reshaping the prediction ûuu to get the prediction matrix M̂ . Note that
due to randomness in data and predictions, we can sample multiple observation
matrices {M (i)}Nω

i=1 and prediction matrices {M̂ (i)}Nω
i=1, where Nω is the total

number of sampling.
The discriminator Dφ can be updated by minimizing the Wasserstein loss:

LD(φ) = − 1
Nω

Nω∑

i=1

Dφ(M (i)) − Dφ(M̂ (i)). (7)

3.4 Conditional Flow as the Generator

We construct a conditional flow as our generator, as illustrated in Fig. 2. Assume
uuu has two elements, i.e. u1 and u2. Different from the tradition normalizing flow,
we add a prior network (p-net) to transform the standard Gaussian prior zzz =
(z1, z2) to z̃zz = (z̃1, z̃2) with shifting and scaling, considering that the magnitude
of uncertainty at different (x, t) coordinates can be different. The prior network
takes as input the coordinate (x, t) and outputs the prior mean μμμ = (μ1, μ2) and
prior standard deviation σσσ = (σ1, σ2); thus z̃zz ∼ N (μμμ,σσσ). The prior network is
followed by affine coupling layers. Each affine coupling layer consists of a scale
function (k-net) and a translation function (b-net), as introduced in Sect. 2.1.

Based on [23] and our experiment, the exponential operation in Eq. 2 is
numerically unstable, which may result in gradient explosion. Instead of using
the RealNVP, we replace the exponential operation in Eq. 2 with a Sigmoid
operation:

fθ :=

{

z̃zz1:d = uuu1:d

z̃zzd+1:D = uuud+1:D � Sigmoid(kθ(uuu1:d;x, t)) + bθ(uuu1:d;x, t)
, (8)

and the calculation of Jacobian determinant in Eq. 5 is thus changed to
∣
∣
∣
∣
det

(
∂f−1

θ (z̃zz)
∂z̃zz

)∣
∣
∣
∣

−1

=
∑

j

[kθ(z̃zz1:d;x, t)]j , (9)
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where j is the element index of kθ(z̃zz1:d;x, t). We define a likelihood loss function
for the generator as:

LNLL(θ) = −
Nω∑

i=1

∑

(xo,to)∈O

log pθ(uuu|xo, to, ω
(i))

= −
Nω∑

i=1

∑

(xo,to)∈O

log pz̃zz(z̃zz|xo, to) +
L−1∑

l=0

log
∣
∣
∣
∣
det

(
∂f−1

l (hhh(l))
∂hhh(l)

)∣
∣
∣
∣

−1

,

(10)
which is the summation of negative log-likelihood (NLL) over all observed coor-
dinates and random events.

Fig. 2. Structure of the conditional flow with a prior network.

Apart from the likelihood loss LNLL, the flow generator fθ can also be trained
with the discriminator Dφ through adversarial training. The adversarial loss for
the generator is depicted as:

LAdv(θ) = − 1
Nω

Nω∑

i=1

Dφ(M̂ (i)), (11)

which uses the Wasserstein objective defined in Eq. 6; M̂ is the prediction matrix
and Nω is the total number of sampling.

Using the adversarial loss LAdv alone is prone to mode collapse. We demon-
strate below how the likelihood loss LNLL can mitigate the mode collapse by one
example. Suppose the data is generated from a mixture model of two Gaussian
distributions N (−1, 1) and N (1, 1). By adversarial training, the generator may
end up only generating one mode, say N (−1, 1). In this case, the discriminator
cannot distinguish between the samples and the ground truth. If the MLE is
used, the likelihood of the missing mode is very low, resulting in a high overall
NLL. Thus, the likelihood loss LNLL can guide the generator to leave the current
local optimum.
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3.5 Physics Regularization

The conditional flow model is further regularized by the physics-informed com-
putational graph, which encodes physics prior knowledge like partial differential
equations (PDE).

Suppose data follows laws that can be depicted as stochastic PDEs below:

uuut(x, t;ω) + Nx[uuu(x, t;ω);λ(ω)] = 000, (x, t) ∈ X × T , ω ∈ Ω,

B[uuu(x, t;ω)] = 000, (x, t) ∈ ∂X × T ,

I[uuu(x, 0;ω)] = 000, x ∈ X ,

(12)

where, uuut is its partial derivative of uuu with regard to t; ∂X is the boundary of
the space domain X ; Nx is a non-linear differential operator; B is a boundary
condition operator; I is an initial condition operator; λ is the parameters of
the PDEs. ω is a random event sampled from the probability space Ω, which
represents uncertainties residing in the PDE parameters or the boundary and
initial conditions.

By encoding physics information, the physics-informed flow generator has
an additional learning objective on the unobserved region C, which encourages
the prediction of the generator to follow the physics defined by the PDE. The
physics loss function is defined as:

LPhy(θ, λ) = Eq(xc,tc)

∣
∣Epzzz(zzz) [(ûuuc)t + Nx[ûuuc;λ]]

∣
∣
2
, (13)

where ûuuc = fθ(xc, tc, zzz) is the prediction of the generator on the unobserved
region. This physics loss function serves as a regularization term for the genera-
tor. If the flow generator fθ is well trained, the physics loss needs to be as close
to zero as possible.

3.6 Training of TrafficFlowGAN

The loss function of the flow model is a weighted sum of the likelihood loss,
adversarial loss, and physics loss:

Lf (θ) = αLNLL(θ) + βLAdv(θ) + γLPhy(θ, λ), (14)

where α, β, γ ∈ (0, 1] are hyperparameters that determine the contribution of
each loss component. With the generator loss Lf (θ), the discriminator loss LD(φ)
defined in Eq. 7, and physics loss LPhy(θ, λ) defined in Eq. 13, we are ready to
introduce the training algorithm as shown in Algorithm 1.

4 Numerical Experiment: Learning Solutions of a Known
Second-Order PDE

In this experiment, we apply TrafficFlowGAN to learn solutions of a known PDE
and also to learn the relations of the PDE’s parameters.
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Algorithm 1. TrafficFlowGAN Training Algorithm.
Initialization:
Initialized physics parameters λ0; Initialized networks parameters θ0, φ0; Train-
ing iterations Iter; Batch size m; Learning rate lr; Weights of loss functions α,
β, and γ.
Input: The observation data {(x(i)

o , t
(i)
o ,uuu

(i)
o )}No

i=1 and unobserved coordinates
{x

(j)
c , t

(j)
c }Nc

j=1.
1: for k ∈ {0, ..., Iter} do
2: Sample batches {(x(i)

o , t
(i)
o ,uuu

(i)
o )}m

i=1 and {x
(j)
c , t

(j)
c }m

j=1 from the observa-
tion data and unobserved coordinates, respectively
// update the discriminator

3: Calculate LD by Eq. 7
4: φk+1 ← φk − lr · Adam(φk,∇φLD)

// update the generator
5: Calculate LNLL by Eq. 10, LAdv by Eq. 11, and LPhy by Eq. 13
6: Calculate Lf by Eq. 14
7: θk+1 ← θk − lr · Adam(θk,∇θLf )

// update the physics
8: λk+1 ← λk − lr · Adam(λk,∇λLPhy)
9: end for

4.1 Numerical Data

The numerical data is generated from the ARZ model [2], which is a second-order
PDE that is used to describe the traffic dynamics. It is depicted as

{

ρt + (ρu)x = 0,

(u + h(ρ))t + u(u + h(ρ))x = (Ueq(ρ) − u)/τ,
(15)

where,

h(ρ) = Ueq(0) − Ueq(ρ) (16)

is the hesitation function and

Ueq(ρ) = umax(1 − ρ/ρmax) (17)

is the equilibrium traffic velocity; traffic density ρ and traffic velocity u are the
state variables, i.e. uuu = (ρ, u); τ is the relaxation parameter; ρmax and umax

are the maximum traffic density and the maximum traffic velocity, respectively.
In this experiment, we study a “ring road” in t ∈ [0, 3] and x ∈ [0, 1] with
a boundary condition uuu(0, t) = uuu(1, t). We set the parameters as ρmax = 1.13,
umax = 1.02, and τ = 0.02. We set the initial conditions of ρ and u as bell-shaped
functions shown in Fig. 3(a). The x-axis is the space domain, and the y-axis is
the initial value of ρ (blue line) and u (red line). We solve Eq. 15 using the Lax-
Friedrichs scheme on a spatio-temporal grid of sizes 240×960, and the solutions
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ρ(x, t) and u(x, t) are shown in Fig. 3(b) and Fig. 3(c), respectively. The dashed
black lines indicate 4 locations where data is observed (the top and bottom
dashed black lines indicate the same position as it is a ring road). We then add
a white noise ε ∼ N (0, 0.02) to the solution to represent the uncertainty.

Fig. 3. Numerical data generator from the ARZ model. (a) is the bell-shaped initial
ρ and u over x ∈ [0, 1]; (b) and (c) are numerical solutions for ρ and u, respectively.
(Color figure online)

4.2 Physics-Based Computational Graph

Figure 4(a) illustrates the physics-based computational graph assosciated with
the ARZ. We assume that the exact form of Ueq is unknown, and we use a sur-
rogate network (s-net) to learn an approximate Ûeq. The corresponding physics
loss for each line of Eq. 15 is as below:

⎧

⎨

⎩

L(1)
ARZ = |Ezzz [ρ̂t + (ρ̂û)x]|2

L
(2)
ARZ =

∣
∣
∣Ezzz

[

(û + h(ρ̂))t + û(û + h(ρ̂))x − (Ûeq(ρ̂) − û)/τ
]∣
∣
∣

2

.
(18)

In implementation, derivatives with regard to x and t can be easily calculated
by the Pytorch module torch.autograd.

Additionally, we add a shape constraint to regularize the s-net to be monoton-
ically decreasing for the ARZ physics loss, given the domain knowledge that the
equilibrium speed Ueq decreases as the density ρ increases. This shape constraint
is depicted as follows:

Lreg =
∫ b

a

max

(

0,
∂Ûeq(ρ)

∂ρ

)

dρ, (19)

where hyperparameters a and b determine the interval where the shape constraint
takes effect, e.g. a = 0 and b = 1.13 in this ring road experiment. Summarizing
the loss terms defined in Eq. 18 and Eq. 19, the final physics loss can thus be
written as:
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LPhy = ηL(1)
ARZ + (1 − η)L(2)

ARZ + ξLreg, (20)

where η ∈ (0, 1] and ξ ∈ (0,∞) are hyperparameters that control the weights.

Fig. 4. Physics with surrogate models. (a) is the physics for ARZ and (b) is the physics
for LWR, which will be introduced in Sect. 5.2.

4.3 Experiment Setting

Experiments are conducted on a Google cloud workstation with 8 Intel Xeon E5-
2686 v4 processors and an NVIDIA V100 Tensor Core GPU with 16 GB memory
in Ubuntu 18.04.3. The learning rate for the Adam optimizer is 0.0005, and
other configurations are kept as default. The configuration of the discriminator
is different for different loop detectors, which are detailed in the supplementary
materials.

4.4 Results

The results of the TrafficFlowGAN are shown in Fig. 5. Figure 5(a) is the predic-
tion of the traffic density. It demonstrates that the TrafficFlowGAN can recon-
struct the traffic density with observations from 4 sensors. Two prediction snap-
shots at t = 0.078 and t = 1.0 shown in Fig. 5(b) and Fig. 5(c), respectively. The
blue line stands for the mean of the ground truth; the dashed red line repre-
sents the mean of the prediction, and the yellow band is the prediction interval.
Figure 5(d) illustrates the relation between traffic density and traffic velocity
learned by the s-net, i.e. Ûeq(ρ̂). The solid blue line is the ground-truth relation
Ueq(ρ) that is defined in Eq. 17. The dashed black line and the dashed red line are
the Ûeq(ρ̂) at the 1st and the 15000th epochs, respectively. We can see that s-net
manages to recover the underlying traffic density-velocity relation. The reason
for the relatively poor performance for ρ > 0.9 is that the numerical data does
not contain ρ that is bigger than 0.9, as indicated by the colorbar of Fig. 3(b).
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Fig. 5. Results of the TrafficFlowGAN on the numerical data generated by ARZ.

5 Case Study: Traffic State Estimation

Traffic state estimation (TSE) is an important traffic engineering problem that
aims to infer traffic state variables represented by traffic density and velocity
along a road segment from partial observations. In a nutshell, the goal of TSE
is to learn a mapping from a spatio-temporal domain to traffic states, i.e. f :
(x, t) → (ρ, u), using partial observations from fixed sensors (e.g. loop detectors).

5.1 Dataset

The Next Generation SIMulation (NGSIM)1 is a real-world dataset that collects
vehicle trajectory every 0.1 s. We focus on a 15-min data fragments collected on
highway US 101. The traffic density and velocity are shown in Fig. 6.

Fig. 6. NGSIM dataset, where (a) is the traffic density and (b) is the traffic velocity.

1 www.fhwa.dot.gov/publications/research/operations/07030/index.cfm.

www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
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5.2 Physics-Based Computational Graph

As the underlying physics for the real-world scenario is unknown, in addition
to the ARZ, we also adopt the LWR model as our physics. LWR is depicted as
below: {

ρt + (ρu)x = 0,

u = Ueq(ρ) � umax(1 − ρ/ρmax),
(21)

which shares the same physics parameters, i.e. ρmax and umax, as the ARZ. The
physics computational graph associated with LWR is illustrated in Fig. 4(b). The
corresponding physics losses are as below:

⎧

⎨

⎩

L(1)
LWR = |Ezzz [ρ̂t + (ρ̂û)x]|2

L
(2)
LWR =

∣
∣
∣Ezzz

[

(Ûeq(ρ̂) − û)
]∣
∣
∣

2 . (22)

5.3 Baselines and Metrics

We adopt the following baselines for comparison: the pure flow model, the
physics-informed flow with ARZ as the physics (PhysFlow-ARZ), the physics-
informed flow with LWR as the physics (PhysFlow-LWR), FLowGAN, and the
ARZ-based extended Kalman filter (EKF) [16]. EKF applies a non- linear version
of the Kalman filter and is widely used in nonlinear systems like the TSE.

We use the L
2 relative percentage error (RE) to measure the difference

between the mean of the prediction and that of the ground truth. The reason for
choosing this metric is to mitigate the influence of the scale of the ground truth.
In addition, the reverse Kullback-Leibler (KL) divergence is used to measure the
difference between the prediction distribution and the sample distribution.

5.4 Results

Figure 7 shows the REs (left two) and KL divergences (right two) of traffic den-
sity ρ and velocity u of TrafficFlowGAN and the baselines. The x-axis is the
number of loop detectors. Different scatter types and colors are used to distin-
guish with different models. From this figure, we can see that TrafficFlowGAN-
ARZ outperforms others across nearly all numbers of loop detectors for REs,
and TrafficFlowGAN-LWR achieves the best performance for KL divergences.
We also record the training time of each model when the number of loops is 10.
The Flow-based models, including Flow and PhysFlow, cost 0.11 s per epoch.
This means that the extra computational time from calculating the physics loss
is negligible. The training time of the FlowGAN-based models, including Traf-
ficFlowGAN and FlowGAN, is 0.31 s per epoch.

Figure 8 show the predictions of traffic density (top row) and traffic velocity
(bottom row). Figure 8(a) and Fig. 8(d) present the heatmaps of traffic density
and traffic velocity in spatio-temporal space. Those two predictions are close to
the ground truth shown in Fig. 6. The other 4 subfigures show the snapshots of
the prediction intervals of the traffic density and velocity.
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Fig. 7. The REs and KL of our proposed TraficFlowGAN and the baselines.

Fig. 8. Predictions of the traffic density (top row) and the traffic velocity (bottom row)
of the TrafficFlowGAN.

Figure 9 presents the comparison between the ground-truth traffic density
distribution and that predicted by the TrafficFlowGAN model, each subfigure
for a randomly sampled spatio-temporal coordinates. Most parts of the predicted
and ground-truth distributions overlap with each other, which demonstrates that
our proposed model can estimate the real-world traffic states uncertainties well.

Figure 10 shows the learned traffic density-velocity relation by TrafficFlow-
GAN. When the number of loop detectors is 4, TrafficFlowGAN can already
capture this relation well. Increasing the number of loop detectors helps Traf-
ficFlowGAN learn a subtler pattern.
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Fig. 9. Prediction distributions of TrafficFlowGAN for the NGSIM dataset.

Fig. 10. Traffic density-velocity relations learned by the surrogate model (s-net) for
different loop detector numbers. (a) loop detector number is 4. (b) loop detector number
is 6. (c) loop detector number is 10.

6 Conclusions

This paper proposes TrafficFlowGAN to quantify the uncertainty in dynami-
cal systems. TrafficFlowGAN leverages MLE, adversarial training, and PIDL
to generate high-quality samples with exact data likelihood and efficient data
usage. To verify that TrafficFlowGAN can learn the solutions of a second-order
PDE, we conduct a numerical experiment where data is generated from a known
ARZ equation. Numerical results show that TrafficFlowGAN manages to recon-
struct the PDE solutions and recover the underlying relation between state vari-
ables. We further apply TrafficFlowGAN to a TSE problem using real-world data
to demonstrate its performance. Results show that TrafficFlowGAN can better
capture the real-world uncertainty than baselines, including the pure flow, the
physics-informed flow, and the flow based GAN. We also show that TrafficFlow-
GAN can learn the real-world traffic density-velocity relation simultaneously.
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This work can be further improved in two directions. First, apart from the
weighted sum, other approaches to integrating the likelihood loss, adversarial
loss, and physics loss can be proposed. Second, TrafficFlowGAN needs to be
re-trained if applied to other roads or to the same road but within a new time
slot. We will work on the generalizability of TrafficFlowGAN in the future.

Acknowledgements. This work is sponsored by NSF under CPS-2038984.
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Abstract. Spatiotemporal graph generation has realistic social signifi-
cance since it unscrambles the underlying distribution of spatiotemporal
graphs from another perspective and fuels substantial spatiotemporal
data mining tasks. Generative models for temporal and spatial networks
respectively cannot be easily generalized to spatiotemporal graph gener-
ation due to their incapability of capturing: 1) mutually influenced graph
and spatiotemporal distribution, 2) spatiotemporal-validity constraints,
and 3) characteristics of multi-modal spatiotemporal properties. To this
end, we propose a generic and end-to-end framework for spatiotemporal
graph generation (STGEN) that jointly captures the graph, temporal,
and spatial distributions of spatiotemporal graphs. Particularly, STGEN
learns the multi-modal distribution of spatiotemporal graphs via learning
the distribution of spatiotemporal walks based on a new heterogeneous
probabilistic sequential model. Auxiliary activation layers are proposed
to retain the spatiotemporal validity of the generated graphs. In addition,
a new boosted strategy for the ensemble of discriminators is proposed
to distinguish the generated and real spatiotemporal walks from multi-
dimensions and capture the combinatorial patterns among them. Finally,
extensive experiments are conducted on both synthetic/real-world spa-
tiotemporal graphs and demonstrated the efficacy of the proposed model.

Keywords: Deep graph generation · Spatiotemporal graph · Deep
generative model

1 Introduction

Many complex systems can be modeled as graphs, which characterize the objects
(i.e., nodes) and their interactions (i.e., edges) [31]. In many graph systems, the
nodes and edges need to be embedded in space and evolve over time. The former
is denoted as spatial network [4] while the latter is named temporal graphs [14],
both of which are well-explored domains by network science models such as
spatial small worlds model [29], optimal network [1], and epidemic temporal
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Fig. 1. The example of real world STGs. a) the human mobility graph describes one
week’s living trajectory between different locations of an adult with timestamps on
directed edges. b) The protein folding process [21] with amino acids in different folding
phases, which is a spatial graph evolves with time.

network [20]. These conventional methods propose to utilize prescribed struc-
tural assumptions (e.g., temporal exponentiality, network shortest distance) to
characterize spatiotemporal graphs (STGs) through synthesizing them. How-
ever, traditional methods are limited in modeling and interpreting STGs since
the intrinsically complex spatiotemporal patterns are hard to be modeled only by
prior knowledge. Such prior knowledge is not always available especially consid-
ering the limited information of human beings on many real-world complex net-
works such as brain network dynamics [23], the folding of protein structure [21],
and catastrophic failures in power grids [27]. Therefore, it is desired to have
a model with high expressiveness in learning the dynamics directly from data
without detailed handcrafted rules.

Recently, there has been a surge of research efforts on deep generative models
in the task of graph generation. For example, enormous works [7,25,32,34,35]
have achieved promising performance in generating realistic static or temporal
graphs or separately considering the spatial properties. On the other hand, there
is also a fast-growing research body on discriminative learning for STG data
and their applications, such as traffic prediction [33], emotion perception [5],
and object recognition [22]. However, joint generative consideration of spatial,
temporal, and graph aspects is still under-explored.

To fill this gap, we focus on the generic problem of STG generation, which
cannot be easily handled by combining existing works because 1) Difficulties in
jointly learning both graph and spatiotemporal distribution of STGs. As shown
in Fig. 1(a), the human mobility behavior follows the distribution characterized
jointly by the spatial, temporal, and graph patterns. More important, these three
patterns are strongly correlated. For example, the time “9 AM on workday”
may correlate to the edge “going to work” and the location “traffic from home
to downtown”. Existing static and dynamic graph generative models cannot be
combined to model it, which will discard the synergies among all the patterns
simultaneously [8,10]. 2) Difficulties in ensuring spatiotemporal validity in the
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generated STGs. STGs need to follow spatial and temporal constraints. The
former means that the locations of the nodes and edges are confined in a specific
geometric topology, while the latter means that the nodes and edges need to
respect their temporal order. For example, in Fig. 1(a), for a path in the human
mobility graph, the timestamp value of the first edge must be smaller than
that for the second. In Fig. 1(b), a pair of amino acids with direct connections
must be close to each other in space. Spatial and temporal constraints directly
determine the validity of STGs. And because they are hard constraints, they
cannot be intrinsically merged into the distribution of STGs, which are typically
continuous according to the common statistical models. Therefore, establishing a
model that can generate STGs while maintaining their validity is imperative yet
challenging. 3) Difficulties in identifying the dependencies and independencies
of spatial, temporal, and graph patterns. A STG is composed of multi-modal
components: graph information, temporal information, and spatial information.
Some of the information are correlated while some are independent, which forms
combinatorial among them into STG patterns, such as spatial and temporal
graph patterns. Taking Fig. 1(a) and (b) as examples: in human mobility STG,
spatial, temporal, and graph patterns are strongly correlated. In the folding
process of protein (spatial graph of amino acids), the correlation between spatial
and network patterns is even stronger than that between temporal and some
graph properties (e.g., edge connections).

To address all the challenges, we propose a novel continuous-time STG gener-
ation framework, called STGEN, which coherently models both graph topology
and spatiotemporal dynamics of observed STGs through a new generative adver-
sarial model. Specifically, we propose to decompose STGs into spatiotemporal
walks by developing a novel spatiotemporal walk generator to jointly capture the
graph and spatiotemporal distribution. Novel STGs can be assembled through
conditionally concatenating generated spatiotemporal walks with the guarantee
of spatiotemporal validity. On top of that, we design a new discriminator which
is an ensemble of multi-modal sub discriminators with different combinations of
spatial, temporal, and graph patterns. We summarize contributions as follows:

– The development of a new generative framework for STG genera-
tion. We formally define the problem of STG generation and propose STGEN
to tackle its unique challenges arising from real applications. It generates
STGs with ensuring graph, temporal, and spatial validity.

– The design of a novel spatiotemporal walk generator. We develop
a novel spatiotemporal walk generator with spatiotemporal information
decoders to capture the underlying dynamics of observed STGs. Auxiliary
activation layers are leveraged to ensure the validity of the generated STG.

– The proposal of the ensemble of multi-modal sub discriminators
for stronger STG adversarial training. Multiple sub discriminators are
designed and synergized by adaptively boosting extension in order to coher-
ently examine the different combinations of spatial, temporal, and graph pat-
terns. To extend WGAN by our ensemble discriminator, we propose a well-
modularized learning objective and optimization algorithm.
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– The conduct of extensive experiments to validate the effectiveness
of the proposed model. Extensive experiments and case analysis on both
synthetic and real-world datasets demonstrate the capability of STGEN in
generating the most realistic STGs compared to other baselines in terms of
both temporal and spatial similarities.

2 Related Works

Spatial and Temporal Graphs. The graph is a mathematical subject that
describes the interactions (edges) between a set of objects (nodes). Such a graph
structure can also be employed as the infrastructure of real-world dynamic sys-
tems. However, for many dynamic systems, one might have more information
than just about who interacts. Transportation and mobility networks [3], inter-
net of things [18], and social networks [24], are all examples where time and space
information are significant and where graph topology alone does not contain all
the information. Nowadays, both spatial and temporal graphs have become indis-
pensable extensions of static graphs and achieved success in various dynamic
system modeling tasks [28,30,33]. We refer readers to recent surveys [4,14] for
more details of both spatial and temporal graphs.

Deep Graph Generation. A number of deep generative models for static
graphs have emerged in the past few years [12]. Specifically, GraphVAE [25] try
to generate new graphs’ adjacency matrix in a variational auto-encoder way,
while [32] treats graph generation as a node/edge sequence generation process
based on LSTM. NetGAN and its variant [7,19] generates new graphs through
modeling the random walk distribution in observed graphs. Other than the static
graph generation, the other line of works [11,34,35] have achieved success in
generating temporal or spatial graphs. Both lines of works leverage temporal
walks and spatial attribute to model the temporal and spatial properties of
the observed graphs, respectively. However, none of the above works can be
directly adapted to generate STGs since they neither can effectively decode the
joint distribution of topology and spatiotemporal properties in STGs nor ensure
the spatiotemporal validity (i.e., temporal ordering, semantics of spatial coor-
dinates, and physical constraints of spatial properties) of the generated graph
[4,14]. Recently, STGD-VAE [9] is proposed to model deep generative processes
of composing discrete spatiotemporal networks, which is a specific type of gen-
eral spatiotemporal graphs that reduces time information into ordinal values.
Hence it does not directly generate continuous-time spatiotemporal graphs, spa-
tiotemporal validity constraints, and various spatiotemporal distributions. In
this paper, we propose a generic framework to jointly model the distribution
of multi-modal properties of observed STGs and generate novel ones with the
spatiotemporal validity guarantee. To the best of our knowledge, STGEN is the
first-of-its-kind deep generative model designed for continuous STGs with valid-
ity constraints.

Spatiotemporal Deep Learning. With the prevalence of deep learning tech-
niques, various models [16,33] have been proposed to model spatiotemporal data



344 C. Ling et al.

(a) A Time-inversed Spatiotemporal Walk

Start

End

(b) Segmented Spatiotemporal Walks

Fig. 2. Figure 2(a) illustrates a spatiotemporal walk, and (b) indicates the decomposi-
tion process of a spatiotemporal walk to multiple smaller-sized segmented spatiotem-
poral walk. For the sake of simplicity, we omit the turning angle φi and velocity ξi
attached on each edge ei in above figures.

through decoding its underlying distribution in a discriminative way without
applying any hand-crafted rules. These approaches generally achieve promising
results in plenty of predictive tasks through analyzing specific patterns (e.g.,
spatial proximity [16] and temporal correlations [5,33]) of the spatiotemporal
data. However, interpreting spatiotemporal data from the generation perspec-
tive has received less attention since it is a more challenging task and requires one
to comprehensively capture the underlying dynamics among multi-modal spa-
tiotemporal properties and their intricate and entangled dependencies. A few
tries of utilizing deep generative models have been observed in spatiotemporal
data generation. Additionally, [26] converts spatiotemporal data (e.g., trajec-
tory) to images and applies GAN for the generation. Another work SVAE [15]
utilizes VAE modules to learn variables from Gaussian distribution and generate
novel human mobility accordingly. However, existing works still cannot explic-
itly consider the spatiotemporal validity during the generation. STGEN is the
first-of-its-kind generative model that generates spatiotemporal data in the form
of graphs with spatiotemporal validity.

3 Problem Setting

A continuous-time spatiotemporal graph (STG) is a directed graph G =
{e1, ..., ei, ...}, where each edge ei =

(
ui, vi, ti, l

(i)
u , l

(i)
v

)
. ui, vi ∈ V are two end

nodes of ei, ti ∈ [0, tend] is the timestamp on the edge, and [0, tend] is the time
span of the STG with tend ∈ R

+. Each node vi in a STG is associated with a
spatial attribute l

(i)
v . The spatial attribute l

(i)
v = (lvi

lat, l
vi

lon) can be interpreted as
a Global Positioning System (GPS) location with specific latitude and longitude
on earth.

Definition 1 (Spatiotemporal Walk) A spatiotemporal walk s = {t0, e1, ...,
eLs , tLs} is defined as a sequence of spatiotemporal edges and a pair of initial
time budget t0 and end time budget tLs , where Ls is the length of the spa-
tiotemporal walk s and ∀ei ∈ G. Specifically, a spatiotemporal edge is defined
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as: ei =
(
ui, vi, ti, l

(i)
u , l

(i)
v

)
∈ E, where each ti ∈ [0, tend], ti < ti−1 is called the

“time budget” for ei indicating the total timespan consumed in ei. Intuitively,
the initial time budget t0 = tend and end time budget tLs = 0. An example of the
spatiotemporal walk is illustrated in Fig. 2(a).

A continuous-time STG can be denoted as the union of all the spatiotem-
poral walks G =

⋃
s∼Pr(s)

s, where the Pr(s) is the distribution of all walks in
graph G. It is straightforward that we can leverage fixed-length sequential mod-
els to learn the distribution of the spatiotemporal walks in order to capture the
overall STG distribution. However, the nature of continuous-time STGs decides
one cannot arbitrarily sample random walks as was done in static graphs [7] but
needs to follow certain spatiotemporal orders. More specifically, the length of a
spatiotemporal walk in STG is regulated by the starting and ending point based
on the spatiotemporal information on edges. The length of the spatiotemporal
walk varies that may easily reach a million-scale (especially when the time gran-
ularity is small), which cannot be learned effectively and efficiently by sequence
learning methods. Therefore, the definition of spatiotemporal walk needs to be
enriched into the following extension.

Definition 2 (Segmented Spatiotemporal Walk) A segmented spatiotem-
poral walk is defined as a sequence s̄ = {(x, y, t0), e1, e2, ..., eL} with its pro-
file informatiom (x, y, t0), which is segmented from an originated spatiotemporal
walk. Specifically, the L ≤ Ls is the length of each segmented spatiotemporal
walk. The profile information (x, y, t0) includes x ∈ {0, 1} and y ∈ {0, 1}, which
denote whether s is the respective starting or ending segmentation (x = 1, y = 0
or x = 0, y = 1) or neither of them (x, y = 0) in its originated spatiotempo-
ral walk. The whole process of decomposing a spatiotemporal walk to segmented
spatiotemporal walks is elucidated in Fig. 2(b).

With all the aforementioned notions, we can formalize the problem of STG
generation as follows:

Problem 1 (Spatiotemporal Graph Generation). The problem of the STG
generation is to learn an overall distribution Pr(G) from the observed STGs,
where each G is denoted as the union of all the spatiotemporal walks. Novel
STGs Ĝ can be sampled from the distribution such that Ĝ ∼ Pr(·).

There are several challenges in solving the novel STG generation problem:
1) It is difficult to capture the joint distribution of the multi-modal properties
in s̄ since its properties are characterized with both categorical distributions
(e.g., x, y, and (ui, vi)) and continuous-value distribution (e.g., ti and (ui, vi)).
2) Correctly decoding all the information from the learned distribution poses
another challenge. The validity of each graph component ((ui, vi), ti, and the
calculated spatial locations (l(i)u , l

(i)
v )) requires extra attention since the generated

STGs need to have realistic semantic meaning (i.e., tLs ≤ ti ≤ t0 and (l(i)u , l
(i)
v )

is valid in a prescribed spatial region). 3) It is also difficult to characterize the
dependency among multi-modal properties in different STGs due to the interplay
among spatial, temporal, and graph information.
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Fig. 3. Overview of spatiotemporal walk generator

4 Generative Model for Spatiotemporal Graph

In this section, we first introduce the backbone of our framework - STGEN
for generating continuous-time STG. Then, we elaborate on each component of
the generative framework, namely the spatiotemporal walk generator G and the
boosted spatiotemporal walk discriminator D.

4.1 Overall Architecture

STGEN learns the distribution of STG through a generative adversarial archi-
tecture, which consists of two parts: a recurrent-structure-based spatiotemporal
walk generator G (as shown in Fig. 3), and a boosted spatiotemporal walk dis-
criminator D (as shown in Fig. 6). The training of both generator G and discrim-
inator D are conducted under the framework of Wasserstein GAN (WGAN) [2]
to maximize the discrepancy W (Pr, Pθ) between the real STG distribution Pr

and the generated STG distribution Pθ such that:

W (Pr, Pθ) = max
[
Esr∼Pr

[D(sr)] − Esθ∼Pθ
[D(sθ)]

]

s.t. sθ = G(z) ∼ Pθ, T (sθ) ∈ T,K(sθ) ∈ K (1)

where sr and sθ are real and fake spatiotemporal walks sampled from Pr and Pθ,
respectively. z is a latent noise sampled from the standard normal distribution.
Specifically, the spatiotemporal walk generator G trains a fixed-length LSTM
whose output sθ = G(z) is a segmented spatiotemporal walk. The time budgets
as well as the spatial attributes of these generated spatiotemporal walks sθ are
regulated by a temporal activation layer T and a spatial activation layer K, such
that T (sθ) and K(sθ) are valid in respect of both temporal constraint T and
spatial constraint K. We introduce both the spatiotemporal walk generator and
the corresponding STG assembler in Sect. 4.2. Moreover, due to the multi-modal
nature of the spatiotemporal walk (i.e., node sequence, time budget on the edge,
and the spatial attribute), a boosted discriminator is proposed for each com-
bination of the spatiotemporal walk components to characterize dependencies
among all components. We give further details of the boosted discriminator and
theoretical analysis in Sect. 4.3.
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Model Complexity. Existing static and dynamic graph generative models usu-
ally generate graphs through generating adjacency matrices or snapshots, and
they require at least O(N2 · Ms) time complexity, where N is the number of
nodes, and Ms is the number of snapshots. For large-scale or dynamic graphs
with a large timespan but small granularity, these models [9,25,32] would suf-
fer from the scalability and information loss. However, since a continuous-time
STG is composed of spatiotemporal walks and does not involve with an adja-
cency matrix, it makes the overall complexity of STGEN to be O(Ls · Me) since
STGEN only needs to generate segmented spatiotemporal walks and assemble
them as a whole, where Ls is the maximal length of all the spatiotemporal walks
and Me is the number of spatiotemporal walks needed to compose an STG.

4.2 Spatiotemporal Walk Generator with Validity Constraints

Segmented spatiotemporal walk is a heterogeneous sequence where some ele-
ments are categorical signals (starting point x and ending point y), continuous-
value scalars (ti, l

(i)
u , l

(i)
v ), and edges (ui, vi). To effectively characterize all the

modalities in segmented spatiotemporal walks, we propose a novel heterogeneous
recurrent-structured generator with various encoding/decoding functions for var-
ious modalities. In addition, we propose new activation functions to enforce spa-
tiotemporal validity constraints on the generated spatiotemporal walk patterns.
Finally, an STG assembler is proposed to compose final STGs by conditionally
generating spatiotemporal walks given other spatiotemporal walks.

Segmented Spatiotemporal Walk Generation. The generator G defines
an implicit probabilistic model for generating segmented spatiotemporal walks
s̄ that are similar to the real spatiotemporal walks s sampled from Pr, and
its overall architecture is summarized in Fig. 3. Specifically, the generator is
modeled by a fixed-length LSTM model. Each LSTM unit keeps a hidden state
hi and cell state ci as memory state, takes ai as input, and returns oi as output.
The generator outputs the generated time budget ti, node pair (ui, vi), and the
spatial attributes (l(i)u , l

(i)
v ) through decoding oi in different decoding functions

in a sequential order. The decoding functions can be divided into two categories:
discrete-value and continuous-value decoding functions. Discrete-value decoding
functions include a node decoding function: fv(ovi

) that outputs the node vi,
a starting point decoding function fx(ox) that outputs the starting point x,
and a ending point decoding function fy(oy) that outputs the ending point y.
Continuous-value decoding functions include a time decoding function ft(ot)
that outputs a residual time budget ti on the generated edge, and the time budget
ti is regulated by the temporal activation layer T in order to meet the temporal
constraint T. In addition, STGEN also contains a location decoding function
fl(ol) that outputs spatial attributes l

(i)
u and l

(i)
v for both end nodes ui and vi on

the generated edge. Likewise, the generated spatial attributes are also regulated
by a spatial activation layer K to meet the spatial constraint K. Other than
the decoding functions, the generator G also uses different encoding functions
to encode each generated components back to the next LSTM unit input ai+1.
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Periodic Gaussian

MLP + Dropout

Fig. 4. Example of the sampling procedure of location decoder fl(·).

We employ Multi-layer Perceptron (MLP) structures for all encoding functions.
For discrete-value decoding functions, a Gumbel-softmax trick [17] is applied to
make the sampling procedure differentiable. We describe the continuous-value
decoding functions in more details in the following part. Due to space limit, we
summarize the overall generative process in the supplementary material.

With Spatiotemporal Validity Constrained Multi-modal Decoding
Functions. The time budget ti as well as the spatial attributes (l(i)u , l

(i)
v ) (e.g.,

GPS coordinates) of a spatiotemporal walk in many real world situations are
typically irregular but following different underlying distributions, which makes
both components cannot be trivially decoded by deterministic functions. There-
fore, ti and (l(i)u , l

(i)
v ) are assumed to be sampled from a latent distribution. The

sampling procedure is handled by both time decoder ft(·) and location decoder
fl(·). Particularly, ft(·) is an end-to-end sampling function that convert the latent
representation oi to parameters of an prescribed distribution (e.g., μ and σ in
Gaussian distribution). Then, ti ∼ ft(ot) could be sampled directly. In order
to fulfill the temporal constraint, we apply a activation layer T to ensure the
temporal validity of the generated segmented spatiotemporal walks. Specifically,
we propose to impose a Min-max Bounding in the activation layer T :

T (ti) =

⎧
⎪⎨

⎪⎩

ti = ti − min({ti}), if min({ti}) ≤ ε

ti = ti/max({ti}), if max({ti}) > 1
ti = ti, otherwise

where min({ti}) and max({ti}) are the min and max time budget in the gener-
ated mini-batch {ti}, respectively. ε is a threshold with small value (i.e., 1e−3) to
prevent zero value for ti. On the other side, spatial locations in many real-world
situations have higher variance and could not to be typically described by known
distributions. Instead of directly sampling exact locations, in this work, we sam-
ple the relative turning angle φi and the speed ξ in the spatiotemporal edge ei

for computing the node location l
(i)
v and l

(i)
u . Specifically, we leverage MLP and

dropout to mimic the sampling operation to obtain a continuous-valued speed ξi

on spatiotemporal edge ei from the LSTM unit’s latent input ol. Moreover, we
model the distribution of turning angle φi to fit the Periodic Gaussian distribu-
tion [6]. Based on the sampled time budget ti, speed ξi, and turning angle φi, the
relative distance can be directly computed. By assigning the initial location for
the first node in the generated spatiotemporal walk, the locations for the subse-
quent node can also be determined. We visualize the whole procedure in Fig. 4.
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:

:

:

Fig. 5. Example of the spatiotemporal walk assembly. For step 1 (first line), the gener-

ator initially generates a segmented spatiotemporal walk with x = 1 and y = 0, t
(1)
0 =

tend containing two spatiotemporal edges (orange ovals) indicating it is the start of a
spatiotemporal walk. At Step 2 and 3, the generator generates one additional edge e3
(purple oval) and e4 (blue oval) conditioned on the inputs of last edge, respectively.

The final time budget t
(3)
4 = 0 indicating the end of the spatiotemporal walk (x = 0

and y = 1) has reached.

To further regulate the generated node locations to have semantic meanings, we
propose a spatial activation layer K with Geographical Bounding :

K(l(i)v ) =

{
l
(i)
v = lξj

, if τ(l(i)v ) /∈
⋃H

j=1 τ(ψj)
l
(i)
v = l

(i)
v , otherwise

where {ψj} is a set of prescribed geographical areas with size H. Particularly, for
each generated geo-location l

(i)
v generated in the set {l

(i)
v }, we project both l

(i)
v

and {ψj} to the same space with a geographical projection function τ(·) (e.g.,
Universal Transverse Mercator projection). If the projected τ(l(i)v ) belongs to any
τ(ψj), this generated geo-location is valid and has realistic semantic meaning.
Otherwise, this geo-location will be replaced by the closest point lψj

on the
prescribed area ψj that has the minimal distance to the original l

(i)
v .

Spatiotemporal Walk Assembler. The next step is to compose spatiotempo-
ral walks from these segmented spatiotemporal walks generated from G. In order
to force the consistency of the underlying spatiotemporal diffusion pattern when
we concatenate two segmented spatiotemporal walk, we may not chronologically
concatenate walks purely based on their residual time budget ti. Instead, we
start by generating an initial segmented spatiotemporal walk s̄1 = (e(1)1 , ..., e

(1)
L )

with x = 1, y = 0, and t0 = tend that contains L spatiotemporal edges. The last
spatiotemporal edge e

(1)
L of s̄1 is taken as the input to generate the next seg-

mented spatiotemporal walk s̄2 = (e(1)L , e
(2)
2 , ..., e

(2)
L ) starting from e

(2)
L . In this

case, s̄2 can be appended to s̄1 with the guarantee of following the underlying
diffusion pattern. We incrementally appending additional segmented spatiotem-
poral walks until we run out of the time budget (i.e., ti = 0) to form one final
spatiotemporal walk (with the ending flag x = 0, y = 1). The overall process of
assembling a spatiotemporal walk is illustrated in Fig. 5.
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 Score

Fig. 6. The overview of the boosted discriminator. Each Di is a weak classifier that
takes a certain combination of spatiotemporal walk components.

4.3 Spatiotemporal Walk Discriminator

Discriminator D is employed to distinguish real and generated spatiotemporal
walks, which is difficult due to their multi-modal nature. We aim to impose a
stronger discriminator that can guide the generator characterizing both depen-
dency and independency among the spatial, temporal, and graph modalities in
STGs. Beyond a single discriminator that merely jointly considers spatial, tem-
poral, and graph aspects of the walk, we propose to consider all the combinatorial
of these aspects, such as spatial-temporal discriminator, temporal graph discrim-
inator, spatial graph discriminator, etc. Our method is achieved by leveraging
boosting strategy, which is well-recognized to enable the ensemble of models to
outperform each individual model. Using a unified discriminator would also bring
up the well-known training instability and potential mode collapse since the GAN
may fall into recognizing only one of the generated modalities as the real sam-
ple while neglecting other modalities. Thus, we consider a multi-discriminator
structure to better approximate Eq. (1) and constantly provide a harsher critique
to the generator by considering the combinatorial of all modalities. A detailed
architecture of the boosted discriminator is shown in Fig. 6.

Particularly, we adopt an adaptive boosted structure of the discriminator for
discriminating each combination s(i) of the spatiotemporal walk components,
and there are a total of R combinations, such as spatiotemporal component
(ti and (l(i)u , l

(i)
v )) and joint STG element ((ui, vi), (l(i)u , l

(i)
v ), and ti), etc. The

boosted discriminator D takes the voting result over R sub discriminators Di so
that each sub discriminator Di is performed as a weak-classifier. Such a boosted
discriminator structure forces G to generate high fidelity samples that must hold
up under the scrutiny of all R discriminators. The major voting strategy in
our adaptive boosting can be induced into the WGAN objective and lead to a
well-modularized objective function in Theorem 1.
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Table 1. Dataset Description

Syn 100 Syn 500 Syn 2000 Taxi Check-in Citation

Node 100 500 2,000 66 70 628
Temporal Edge 5,606 5,750 5,750 28,532 17,045 914
Temporal Samples 60 110 120 30 30 30

Theorem 1. The aforementioned adaptive boosting strategy extends the objec-
tive function W (Pr, Pθ) in Eq. (1) of STGEN into the following:

W (Pr, Pθ) = max
R∑

i=1

αi

[
E
s
(i)
r ∼Pr

[Di(s(i)r )] − E
s
(i)
θ ∼Pθ

[Di(s
(i)
θ )]

]
,

s.t., sθ = G(z) ∼ Pθ,G(z) ∈ {T,K},
R∑

i=1

αi =
R

4
.

With the objective of maximizing the above objective function, we can mini-
mize the loss function of the generator LG = −

∑R
i=1 αi ·Es

(i)
θ ∼Pθ

[Di(s
(i)
θ )], where

as well as the discriminator’s overall loss function LD =
∑R

i=1 αi · LDi
, where

each sub discriminator’s loss function is defined as: LDi
=

[
E
s
(i)
θ ∼Pθ

[Di(s
(i)
θ )] −

E
s
(i)
r ∼Pr

[Di(s
(i)
r )]

]
. The proof of Theorem 1 can be found in Appendix. We illus-

trate the overall training framework in the supplementary material.

5 Experiment

In this section, we demonstrate the performance of our proposed STGEN frame-
work across various synthetic and real world STGs. Basic experiment settings are
illustrated here. Additional experiments (e.g., sensitivity analysis) are provided
in the supplementary material. Code and data are made available1.

Data. We performed experiments on three synthetic and three real-world STGs
with different graph sizes and characteristics, where basic statistics are shown
in Table 1. All graphs contain continuous timestamps as temporal information
and geo-coordinates (latitude and longitude) as spatial information. Due to the
space limit, details of all graphs can be found in the supplementary material.

Comparison Methods. Since there is no existing methods handling the STG
generation problem, STGEN is compared with two categories of methods: deep
graph generation methods: a) GraphRNN [32], b) NetGAN [7], c) TagGen [35], d)
TG-GAN [34], and e) STGD-VAE [9]; and spatial attribute generation methods:
a) LSTM [13], b) SVAE and its variant SVAE-γ [15], and c) IGMM-GAN [26].

1 github.com/lingchen0331/STGEN.

https://github.com/lingchen0331/STGEN
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Table 2. Performance comparison between real and generated graph samples in max-
imum mean discrepancy (MMD) (the lower the better), models with the best perfor-
mance are marked with black.

Dataset Method AND AGS AGN ACN GD Method MCD VCP

Syn 100 GraphRNN 4.2 e−3 7.12 e−3 0.175 7.2 e−2 7.12 e−2 LSTM 1.09 e−1 51.37%

NetGAN 3.64 e−5 1.89 e−3 0.0613 2.77 e−2 5.17 e−3 SVAE-y 4.17 e−1 61.24%

TagGen 4.14 e−4 2.72 e−3 0.0911 6.18 e−3 4.11 e−2 SVAE 2.41 e−1 50.19%

TG-GAN 3.16 e−5 5.31 e−3 0.0221 3.06 e−3 4.17 e−3 IGMM-GAN 9.12 e−3 69.13%

STGD-VAE 2.53 e−5 3.57 e−3 0.0367 5.15 e−3 7.92 e−3 – – –

STGEN 2.31 e−5 1.96 e−3 0.0315 2.14 e−3 3.89 e−3 STGEN 3.52 e−3 100%

Syn 500 GraphRNN 7.64 e−4 3.73 e−5 0.0525 3.72 e−2 4.13 e−2 LSTM 4.56 e−1 57.15%

NetGAN 2.19 e−4 6.12 e−4 0.023 7.71 e−3 7.18 e−3 SVAE-y 7.12 e−2 69.21%

TagGen 3.24 e−5 1.23 e−2 0.3912 1.71 e−2 5.86 e−3 SVAE 6.12 e−2 59.19%

TG-GAN 1.44 e−4 8.5 e−3 0.0023 1.24 e−2 5.12 e−2 IGMM-GAN 9.12 e−2 49.14%

STGD-VAE 7.98 e−5 2.67 e−4 0.0024 3.97 e−3 8.43 e−3 – – –

STGEN 2.29 e−5 4.71 e−3 0.009 2.19 e−3 7.41 e−3 STGEN 9.18 e−3 100%

Syn 2000 GraphRNN 2.79 e−4 7.4 e−2 0.042 2.88 e−2 2.15 e−2 LSTM 4.22 e−1 51.33%

NetGAN 3.67 e−5 2.69 e−2 0.0472 6.92 e−3 6.22 e−3 SVAE-y 2.33 e−1 48.12%

TagGen 2.67 e−4 1.98 e−2 0.031 5.57 e−3 5.66 e−3 SVAE 7.28 e−2 50.67%

TG-GAN 2.66 e−5 4.19 e−4 0.012 4.95 e−3 2.97 e−3 IGMM-GAN 5.43 e−2 33.27%

STGD-VAE 5.48 e−4 2.67 e−2 0.037 9.42 e−3 6.43 e−3 – – –

STGEN 2.56 e−5 4.34 e−3 0.009 4.49 e−3 9.76 e−3 STGEN 1.07 e−2 100%

Taxi GraphRNN 4.73 e−3 4.63 e−3 0.0226 3.2 e−3 2.57 e−2 LSTM 1.1852 17.23%

NetGAN 8.29 e−1 5.25 e−6 0.0189 5.63 e−4 7.87 e−3 SVAE-y 2.37 e−2 21.44%

TagGen 3.92 e−2 7.24 e−4 0.0221 3.58 e−4 3.91 e−3 SVAE 3.11 e−2 20.46%

TG-GAN 6.69 e−4 8.87 e−6 0.0132 1.06 e−5 2.67 e−3 IGMM-GAN 1.67 e−1 9.54%

STGD-VAE 9.61 e−6 3.61 e−4 0.0233 7.26 e−4 4.74 e−3 – – –

STGEN 9.85 e−5 3.09 e−6 0.0165 1.17 e−5 2.55 e−3 STGEN 3.39 e−3 100%

Check-in GraphRNN 3.5 e−3 2.89 e−2 0.0312 4.78 e−4 5.32 e−2 LSTM 0.0963 3.77%

NetGAN 4.37 e−3 2.54 e−4 0.063 4.38 e−4 2.38 e−3 SVAE-y 2.67 e−2 23.11%

TagGen 1.27 e−2 1.77 e−2 0.0292 3.58 e−4 3.91 e−3 SVAE 1.79 e−2 19.24%

TG-GAN 7.69 e−4 3.76 e−6 0.0139 1.79 e−5 3.99 e−3 IGMM-GAN 2.37 e−1 15.23%

STGD-VAE 1.33 e−4 6.71 e−3 0.0283 3.12 e−4 9.95 e−2 – – –

STGEN 9.17 e−5 5.74 e−6 0.0126 1.39 e−5 3.57 e−3 STGEN 1.58 e−4 100%

Citation GraphRNN 3.24 e−1 3.12 e−2 0.0465 1.98 e−3 4.21 e−2 LSTM 1.6857 45.18%

NetGAN 5.2 e−1 3.77 e−3 0.0577 3.13 e−3 2.18 e−2 SVAE-y 7.41 e−1 8.33%

TagGen 3.34 e−2 3.24 e−3 0.0561 7.71 e−5 3.67 e−3 SVAE 5.91 e−1 10.84%

TG-GAN 1.24 e−2 1.78 e−5 0.0587 1.13 e−4 1.38 e−4 IGMM-GAN 1.47 e−1 3.21%

STGD-VAE 3.75 e−1 3.64 e−3 0.0493 5.67 e−4 2.15 e−2 – – –

STGEN 3.04 e−3 1.23 e−5 0.0398 3.66 e−5 2.77 e−3 STGEN 3.77 e−2 100%

Details of all baselines can be found in the supplementary material. Note that
GraphRNN, NetGAN, TagGen, and STGD-VAE are discrete graph generative
models, and they cannot generate continuous-time STGs. We instead modify
them to generate multiple discrete-snapshot graphs and convert them into a
continuous-time temporal graph. In addition, STGD-VAE cannot generate real-
istic spatial attributes (i.e., GPS locations) so that we only compare STGD-VAE
in generating graph properties. Evaluation Metrics. A set of metrics, as eluci-
dated in Table 2, are used to measure the similarity between the generated and
real STGs in terms of both temporal and spatial graph attributes. For temporal
attributes measurement, we adopt AND: Average Node Degree, AGS: Average
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Group Size, AGN: Average Group Number, ACN: Average Coordination Num-
ber, and GD: Group Duration. For spatial attributes measurement, we leverage
MCD: Mean Coordinates Distribution and VCP: Valid Coordinates Percentage.

5.1 Quantitative Performance

The overall performance comparisons are shown in Table 2. The proposed
STGEN generally outperforms other methods in terms of both temporal and
spatial attributes generation with only a few exceptions. Specifically, in terms
of the similarity in temporal graph properties, STGEN performs better than
static graph generation methods (i.e., GraphRNN and NetGAN) by, on average,
two orders of magnitudes in several temporal graph properties (e.g., AND, AGS,
and ACN). The main reason is that static graph generation methods generate
dynamic graphs via generating a series of snap-shots, which may cause severe
information loss [14]. STGEN also consistently achieves competitive results with
dynamic graph generation methods (i.e., TagGen and TG-GAN) among all
datasets since STGEN can effectively capture the underlying multi-modal dis-
tribution of STGs. Compared with the only discrete STG generation method -
STGD-VAE, STGEN still exhibits an overall better performance in generating
continuous STGs. In terms of the spatial graph properties generation, STGEN
exceeds other approaches with an evident margin (two orders of magnitudes on
average) in MCD while achieving a 100% validity rate of the generated spatial
properties among all datasets. With the applied spatiotemporal constraints, the
coordinates generated by STGEN can always be regulated in a valid semantic
region and guarantee a 100% validity rate, while other methods can only achieve
at most 70% validity rate. In other words, a large portion of the coordinates
generated by baseline methods do not have valid semantic meanings.

5.2 Case Study

Spatiotemporal walks in STGs are typically associated with various purposes,
such as “wandering in attractions” and “picking-up people from the airport”. In
other words, each node in STGs has a semantic meaning that can be projected to
a certain geographic area. We thus conduct a case study to evaluate the quality
of the generated spatial information by projecting each of the generated GPS
coordinates to a real-world map. Taking the Manhattan taxi trip STG as an
example, we project a batch of generated coordinates for each method to the
Manhattan map, and the results are shown in Fig. 7. Compared with the true
coordinates (Fig. 7e), our proposed method STGEN (Fig. 7d) generates coor-
dinates that all lie within the valid region by successfully characterizing the
spatiotemporal properties. However, other deep methods like LSTM generate
a large portion of coordinates scattered all over the New York City area since
LSTM cannot effectively decode the spatial information from the multi-modal
spatiotemporal distribution of STG. As can be seen from Fig. 7a to 7c, coordi-
nates generated by comparison methods are disorganized (coordinates are not in



354 C. Ling et al.

(a) LSTM (b) IGMM-GAN (c) SVAE (d) STGEN (e) Ground Truth

Fig. 7. The comparison of generated coordinates by each baseline.

Table 3. Average runtime comparison (in minutes).

GraphRNN NetGAN TagGen TG-GAN STGD-VAE STGEN

Syn 100 23.3561 0.8126 1.1682 0.9533 1.9781 0.9783
Syn 500 71.5622 1.9346 2.2653 1.4861 3.9923 1.6458
Syn 2000 337.7614 10.3302 8.5324 6.0182 10.8779 6.9633

the Manhattan area) and lack real semantic meaning (coordinates are projected
on the sea) since they cannot consider any constraints during the model learning.

5.3 Model Scalability

The runtime of graph generative methods is often composed of model training
and graph assembling. Therefore, we record the average training time per epoch
plus the graph assembling time, and the results are shown in Table 3. All the run-
times are shown with respect to the growth of graph size for all synthetic STGs.
As can be seen from the table, TagGen, TG-GAN, and STGEN have linear
growth regarding the graph size because these dynamic graph generation meth-
ods decode dynamic graphs into dynamic walks instead of utilizing snapshots,
which makes both training and graph assembling processes in these methods are
not sensitive to the overall graph size. Although NetGAN also utilizes random
walk to learn the static graph distribution, but its random walk sampling process
limits its capability in generating large dynamic graphs with many snapshots.
Finally, the runtime growth of GraphRNN is exponential because of its quadratic
complexity in modeling the whole graph as a sequence.

6 Conclusion

In this paper, we propose a novel generative framework for continuous-time STG
generation, which can effectively model the underlying dynamics of STGs while
maintaining the spatiotemporal validity. Our framework captures both graph and
spatiotemporal distribution through utilizing a novel heterogeneous recurrent-
structured generator to learn the distribution of sampled spatiotemporal walks.
A novel boosted discriminator is proposed to characterize correlations between
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all modalities in STGs. Extensive experiments are conducted on generating both
synthetic and real world STGs. Experimental results and analysis demonstrate
the advantages of STGEN over existing deep graph generative models in terms
of generating the most similar and realistic STGs.
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4. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1–3) (2011)
5. Bhattacharya, U., Mittal, T., Chandra, R., Randhavane, T., Bera, A., Manocha,

D.: Step: spatial temporal graph convolutional networks for emotion perception
from gaits. In: AAAI (2020)

6. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning (2006)
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Abstract. Many types of data are generated at least partly by discrete
causes. Deep generative models such as variational autoencoders (VAEs)
with binary latents consequently became of interest. Because of discrete
latents, standard VAE training is not possible, and the goal of previous
approaches has therefore been to amend (i.e, typically anneal) discrete
priors to allow for a training analogously to conventional VAEs. Here,
we divert more strongly from conventional VAE optimization: We ask
if the discrete nature of the latents can be fully maintained by apply-
ing a direct, discrete optimization for the encoding model. In doing so,
we sidestep standard VAE mechanisms such as sampling approxima-
tion, reparameterization and amortization. Direct optimization of VAEs
is enabled by a combination of evolutionary algorithms and truncated
posteriors as variational distributions. Such a combination has recently
been suggested, and we here for the first time investigate how it can be
applied to a deep model. Concretely, we (A) tie the variational method
into gradient ascent for network weights, and (B) show how the decoder
is used for the optimization of variational parameters. Using image data,
we observed the approach to result in much sparser codes compared to
conventionally trained binary VAEs. Considering the for sparse codes
prototypical application to image patches, we observed very competi-
tive performance in tasks such as ‘zero-shot’ denoising and inpainting.
The dense codes emerging from conventional VAE optimization, on the
other hand, seem preferable on other data, e.g., collections of images of
whole single objects (CIFAR etc.), but less preferable for image patches.
More generally, the realization of a very different type of optimization
for binary VAEs allows for investigating advantages and disadvantages
of the training method itself. And we here observed a strong influence
of the method on the learned encoding with significant impact on VAE
performance for different tasks.

Keywords: Variational autoencoder · Evolutionary optimization ·
Sparse encoding · Variational optimization · Binary latents
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1 Introduction and Related Work

Objects or edges in images are either present or absent, which suggests the use of
discrete latents for their representation. There are also typically only few objects
per image (of all possible objects) or only few edges in any given image patch (of
all possible edges), which suggests a sparse code (e.g., [20,43,56,61]). In order to
model such and similar data, we study a novel, direct optimization approach for
variational autoencoders (VAEs), which can learn discrete and potentially sparse
encodings. VAEs [32,51] in their many different variations, have successfully
been applied to a large number of tasks including semi-supervised learning (e.g.,
[40]), anomaly detection (e.g., [33]) or sentence and music interpolation [5,52]
to name just a few. The success of VAEs, in these tasks, rests on a series of
methods that enable the derivation of scalable training algorithms to optimize
VAE parameters. These methods were originally developed for Gaussian priors
[32,51]. To account for VAEs with discrete latents, novel methodology had to be
introduced (we elaborate below and later in Sec. S1).

The training objective of VAEs is derived from a likelihood objective, i.e.,
we seek model parameters Θ of a VAE that maximize the data log-likelihood,
L(Θ) =

∑
n log

(
pΘ(�x (n))

)
, where we denote by �x(1:N) a set of N observed data

points, and where pΘ(�x) denotes the modeled data distribution. Like conven-
tional autoencoders (e.g., [1]), VAEs use a deep neural network (DNN) to gen-
erate (or decode) observables �x ∈ R

D, from a latent code �z. Unlike conventional
autoencoders, however, the generation of data �x is not deterministic but it takes
the form of a probabilistic generative model. For VAEs with binary latents, we
here consider a generative model with Bernoulli prior:

pΘ(�z) =
∏

h

(
πzh

h (1 − πh)(1−zh)
)
, pΘ(�x |�z) = N (

�x; �μ(�z;W ), σ2
I
)
, (1)

with �z ∈ {0, 1}H being a binary code, �π ∈ [0, 1]H being parameters of the prior
on �z, and the non-linear function �μ(�z;W ) being a DNN (that sets the mean of
a Gaussian distribution). pΘ(�x |�z) is commonly referred to as decoder. The set
of model parameters is Θ = {�π,W, σ2}, where W incorporates DNN weights
and biases. Here, we assume homoscedasticity of the Gaussian distribution, but
note that there is no obstacle to generalizing the model by inserting a DNN
non-linearity that outputs a covariance matrix. Similarly, the algorithm could
easily be generalized to different noise distributions should the task at hand call
for it. Here, however, we will focus on the elementary VAEs given by Eq. (1).

For conventional and discrete VAEs, essentially all optimization approaches
seek to approximately maximize the log-likelihood using the following series of
methods (we elaborate in Sec. S1):

(A) Instead of the log-likelihood, a variational lower-bound (a.k.a. ELBO) is
optimized.

(B) VAE posteriors are approximated by an encoding model, i.e., by a specific
distribution (usually Gaussian) parameterized by one or more DNNs.

(C) The variational parameters of the encoder are optimized using gradient
ascent on the lower bound, where the gradient is evaluated based on sam-
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pling and the reparameterization trick (which allows for sufficiently low-
variance and yet efficiently computable estimates).

(D) Using samples from the encoder, the parameters of the decoder are optimized
using gradient ascent on the variational lower bound.

Optimization procedures for VAEs with discrete latents follow the same steps
(Points A to D). However, discrete or binary latents pose substantial further
obstacles for learning, mainly due to the fact that backpropagation through dis-
crete variables is generally not possible or biased [2,53]. Widely used stochastic
gradient estimators for discrete random variables typically either exploit the
REINFORCE [65] estimator in combination with variance control techniques
[11,13,34,38] or reparameterization of continuous relaxations of discrete distri-
butions [29,41]; reparameterization is also combined with REINFORCE [22] or
generalized to non-reparameterizable distributions [8]. Also a recent approach by
Berliner et al. [3] is related to REINFORCE but uses natural evolution strate-
gies (not to be confused with evolutionary optimization we apply here) to derive
low-variance estimates for gradients (also see Related Work and Sec. S1). While
accomplishing, in different senses, the goal of maintaining standard VAE train-
ing as developed for continuous latents (i.e., learning procedures and/or learn-
ing objectives that allow for gradient-based optimization of the encoder and
decoder DNNs), gradient estimation methods usually apply significant amounts
of methodology additional to the learning methods conventionally applied for
VAE optimization (see Fig. S2). These additional methods, their accompanying
design decisions and used hyper-parameters increase the complexity of the sys-
tem. Furthermore, the additional methods usually impact the learned represen-
tations. For instance, softening of discrete distributions, e.g., by using ‘Gumbel-
softmax’ [29] or ‘tanh’ approximations [18] seems to favor dense codes. While
dense codes (as also used by conventional VAEs and generative adversarial net-
works [21]) can result in competitive performance for a subset of the above
discussed tasks, other recent contributions point out advantages of sparse codes,
e.g., in terms of disentanglement [63] or robustness [45,60].

In order to avoid adding methods for discrete latents to those already in place
for standard VAEs, it may be reasonable to investigate more direct optimiza-
tion procedures that do not require, e.g., a softening of discrete distributions or
other mechanisms. Such a direct approach is challenging, however, because once
DNNs are used to define the encoding model (as commonly done), we require
methodologies for discrete latents to estimate gradients for the encoder (as done
via sampling and reparameterization; see Points C and D). A direct optimization
procedure, as we investigate here, consequently has to change VAE training sub-
stantially. For the data model of Eq. (1), we will maintain the variational setting
(Point A) and a decoding model with DNNs as non-linearity. However, we will
not use an encoding model parameterized by DNNs (Point B). Instead, the varia-
tional bound will be increased w.r.t. an implicitly defined encoding model which
allows for an efficient discrete optimization. The procedure does not require gra-
dients to be computed for the encoder such that discrete latents are addressed
without the use of reparameterization trick and sampling approximations.
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Related Work. In order to maintain the general VAE framework for encoder opti-
mization in the case of discrete latents, different groups have suggested different
possible solutions (for discussion of numerical evaluations of related approaches,
see Sec. S1.3): Rolfe [53], for instance, extends VAEs with discrete latents by
auxiliary continuous latents such that gradients can still be computed. Work
on the concrete distribution [41] or Gumbel-softmax distribution [29] proposes
newly defined continuous distributions that contain discrete distributions as limit
cases. Lorberbom et al. [39] merge the Gumbel-Max reparameterization with the
use of direct loss minimization for gradient estimation, enabling efficient training
on structured latent spaces (also compare [48,49] for further improved Gumbel-
softmax versions). Furthermore, work, e.g., by van den Oord et al. [44] combines
VAEs with a vector quantization (VQ) stage in the latent layer. Latents become
discrete through quantization but gradients for learning are adapted from latent
values before they are processed by the VQ stage. Similarly, Tomczak & Welling
[62] use, what they call, (learnable) pseudo-inputs which determine a mixture
distribution as prior, and the ELBO then contains an additional regularization
for consistency between prior and average posterior. Tonolini et al. [63] extend
this work and introduce an additional DNN classifier which selects pseudo-inputs
and whose weights are learned instead of the pseudo-inputs themselves. Tono-
lini et al. also argue for the benefits not only of discrete latents but of a sparse
encoding in the latent layer in general. Fajtl et al. [18] base their approach on a
deterministic autoencoder and use a tanh-approximation of binary latents and
projections to spheres in order to treat binary values. Targeting not only the
optimization of discrete latent VAEs but also more general approaches such as
probabilistic programming or general stochastic automatic differentiation, Bing-
ham et al. [4] and van Krieken et al. [35] apply gradient estimators for discrete
random variables which optimize surrogate losses [54] derived based on the score
function [19] or other methods [35].

2 Direct Variational Optimization

Let us consider the variational lower bound of the likelihood. If we denote by
q
(n)
Φ (�z) the variational distributions with parameters Φ = (Φ(1), . . . , Φ(N)), then

the lower bound is given by:

F(Φ,Θ) =
∑

n E
q
(n)
Φ

[
log

(
pΘ(�x (n) |�z) pΘ(�z)

)] − ∑
n E

q
(n)
Φ

[
log

(
q
(n)
Φ (�z)

)]
, (2)

where we sum over all data points �x(1:N), and where E
q
(n)
Φ

[
h(�z)

]
denotes the

expectation value of a function h(�z) w.r.t. q
(n)
Φ (�z). The general challenge for

the maximization of F(Φ,Θ) is the optimization of the encoding model q
(n)
Φ .

VAEs with discrete latents, as an additional challenge, have to address the ques-
tion how gradients w.r.t. discrete latents can be computed. Seeking to avoid
the problem of gradients w.r.t. discrete variables, we do not use a DNN for the
encoding model. Consequently, we need to define an alternative encoding model
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q
(n)
Φ , which has to remain sufficiently efficient. Considering prior work on gener-

ative models with discrete latents, variational distributions based on truncated
posteriors offer themselves as such an alternative. Truncated posteriors have pre-
viously been considered to be functionally competitive (e.g., [27,56,58]). Most
relevant for our purposes are very efficient and fully variational approaches that
allow mixture models [17,26] and shallow generative approaches [14] to be very
efficiently scaled to large model sizes. In all these previous applications, opti-
mization of truncated variational distributions used standard expectation max-
imization based on closed-form or pseudo-closed form M-steps available for the
shallow decoder models considered. In the context of VAEs with discrete latents,
the important question arising is if or how efficient optimization with truncated
variational distributions can be performed for deep generative models.

Optimization of the Encoding Model. Encoder optimization is usually based on
a reformulation of the variational bound of Eq. (2) given by:

F(Φ,Θ) =
∑

n E
q
(n)
Φ

[
log

(
pΘ(�x (n) |�z)

)] − ∑
n DKL

[
q
(n)
Φ (�z); pΘ(�z)

]
. (3)

For discrete latent VAEs, the variational distributions in Eq. (3) are commonly
replaced by an amortized encoding model qΦ(�z) with a DNN-based parameteriza-
tion. When expectations w.r.t. qΦ(�z) are approximated (as usual) via sampling,
the encoder optimization requires gradient estimation methods for discrete ran-
dom variables (cf. Related Work and Sec. S1). At this point truncated posteriors
represent alternative variational distributions which avoid gradients w.r.t. dis-
crete latents. Given a data point �x (n), a truncated posterior is the posterior itself
truncated to a subset Φ

(n)
of the latent space, i.e., for �z ∈ Φ

(n)
applies:

q
(n)
Φ (�z) :=

pΘ(�z | �x (n))
∑

�z ′∈Φ
(n)

pΘ(�z ′ | �x (n))
=

pΘ(�x (n) |�z) pΘ(�z)
∑

�z ′∈Φ
(n)

pΘ(�x (n) |�z ′) pΘ(�z ′)
(4)

while q
(n)
Φ (�z) = 0 for �z �∈ Φ

(n)
. The subsets Φ = {Φ(n)}N

n=1 are the varia-
tional parameters. Centrally for this work, truncated posteriors allow for a spe-
cific alternative reformulation of the bound. The reformulation recombines the
entropy term of the original form (Eq. (2)) with the first expectation value into
a single term, and is given by (see [14,17,26] for details):

F(Φ,Θ) =
∑

n

log
( ∑

�z∈Φ
(n)

pΘ(�x (n) |�z) pΘ(�z)
)
. (5)

Thanks to the simplified form of the bound, the variational parameters Φ
(n)

of the encoding model can now be sought using direct discrete optimization
procedures. More concretely, because of the specific form of Eq. (5), pairwise
comparisons of joint probabilities are sufficient to maximize the lower bound: if
we update the set Φ

(n)
for a given �x (n) by replacing a state �z old ∈ Φ

(n)
with a

state �z new �∈ Φ
(n)

, then F(Φ,Θ) increases if and only if:
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log
(
pΘ(�x (n), �z new)

)
> log

(
pΘ(�x (n), �z old)

)
. (6)

To obtain intuition for the pairwise comparison, consider the form of
log(pΘ(�x, �z)) when inserting the binary VAE defined by Eq. (1). Eliding terms
that do not depend on �z we obtain:

˜log pΘ(�x, �z) = −‖�x − �μ(�z,W )‖2 − 2σ2
∑

h π̃h zh, (7)

where π̃h = log
(
(1 − πh)/πh

)
. The expression assumes an even more familiar

form if we restrict ourselves for a moment to sparse priors with πh =π < 1
2 , i.e.,

π̃h = π̃ > 0. The criterion defined by Eq. (6) then becomes:

‖�x (n) − �μ(�z new,W )‖2 + 2σ2π̃ |�z new| < ‖�x (n) − �μ(�z old,W )‖2 + 2σ2π̃ |�z old| ,
(8)

where |�z | =
∑H

h=1 zh and 2σ2π̃ > 0. Such functions are routinely encountered in
sparse coding or compressive sensing [16]: for each set Φ

(n)
, we seek those states

�z that are reconstructing �x (n) well while being sparse (�z with few non-zero bits).
For VAEs, �μ(�z,W ) is a DNN and as such much more flexible in matching the
distribution of observables �x than can be expected from linear mappings. Fur-
thermore, criteria like Eq. (8) usually emerge for maximum a-posteriori (MAP)
training in sparse coding [43]. In contrast to MAP, however, here we seek a
population of states �z in Φ

(n)
for each data point. It is a consequence of the

reformulated lower bound defined by Eq. (5) that it remains optimal to evaluate
joint probabilities (as for MAP) although the constructed population of states
Φ

(n)
can capture (unlike MAP training) rich posterior structures.

Evolutionary Search. But how can new states �z new that optimize Φ
(n)

be found
efficiently in high-dimensional latent spaces? While blind random search for
states �z can in principle be used, it is not efficient; and adaptive search space
approaches [17,26] are only defined for mixture models. However, a recently sug-
gested combination of truncated variational optimization with evolutionary opti-
mization (EVO; [14]) is more generally defined for models with discrete latents,
and does only require the efficient computation of joint probabilities pΘ(�x, �z). It
can consequently be adapted to the VAEs considered here.

EVO optimization interprets the sets Φ
(n)

of Eq. 4 as populations of binary
genomes �z, and we can here adapt it by using Eq. (7) in order to assign to each
�z ∈ Φ

(n)
a fitness for evolutionary optimization. For the concrete updates, we use

for each EVO iteration Φ
(n)

as initial parent pool. We then apply the following
genetic operators in sequence to suggest candidate states �z new to update the
Φ

(n)
based on Eq. (6) (see Fig. S3 for an illustration and Sec. S1.2 and [14]

for further details): Firstly, parent selection stochastically picks states from the
parent pool. Subsequently, each of these states undergoes mutation which flips
one or more entries of the bit vectors. Offspring diversity can be further increased
by crossover operations. Using the children generated this way as the new parent
pool, the procedure is repeated giving birth to multiple generations of candidate
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states. Finally, we update Φ
(n)

by substituting individuals with low fitness with
candidates with higher fitness according to Eq. (6). The whole procedure can
be seen as an evolutionary algorithm (EA) with perfect memory or very strong
elitism (individuals with higher fitness never drop out of the gene pool). Note
that the improvement of the variational lower bound depends on generating as
many as possible different children with high fitness over the course of training.

We point out that the EAs optimize each Φ
(n)

independently, which allows
for distributed execution s.t. the technique can be efficiently applied to large
datasets in conjunction with stochastic or batch gradient descent on the model
parameters Θ. The approach is, at the same time, memory intensive, i.e., all sets
Φ

(n)
need to be kept in memory (details in Sec. S1.1). Furthermore, we point out

the we here optimize variational parameters Φ
(n)

of the encoding model which
is fundamentally different from the approach of Hajewski & Oliveira [24] (who
use EAs to optimize DNN architectures of otherwise conventionally optimized
VAEs with continuous latents).

Optimization of the Decoding Model. Using the previously described encoding
model q

(n)
Φ (�z), we can compute the gradient of Eq. (2) w.r.t. the decoder weights

W which results in (see Sec. S1 for details):

�∇W F(Φ,Θ) = − 1
2σ2

∑

n

∑

�z∈Φ
(n)

q
(n)
Φ (�z) �∇W ‖�x (n) − �μ(�z,W )‖2. (9)

The right-hand-side has salient similarities to standard gradient ascent for VAE
decoders. Especially the familiar gradient of the mean squared error (MSE)
shows that, e.g., standard automatic differentiation tools can be applied. How-
ever, the decisive difference is represented by the weighting factors q

(n)
Φ (�z). Con-

sidering Eq. (4), we require all �z ∈ Φ
(n)

to be passed through the decoder DNN
in order to compute the q

(n)
Φ (�z). As all states of Φ

(n)
anyway have to be passed

through the decoder for the MSE term of Eq. (9), the overall computational com-
plexity is not higher than an estimation of the gradient with samples instead of
states in Φ

(n)
(but we use many states per Φ

(n)
, compare Tab. S1).

To complete the decoder optimization, update equations for variance σ2 and
prior parameters �π can be computed in closed-form (compare, e.g., [57]) and are
given by:

σ2 = 1
DN

∑

n

∑

�z∈Φ
(n)

q
(n)
Φ (�z) ‖�x (n) − �μ(�z,W )‖2,

�π = 1
N

∑

n

∑

�z∈Φ
(n)

q
(n)
Φ (�z) �z .

(10)

The full training procedure for binary VAEs is summarized in Algorithm 1. We
refer to the binary VAE trained with this procedure as Truncated Variational
Autoencoder (TVAE) because of the applied truncated posteriors1.
1 Source code available at https://github.com/tvlearn.

https://github.com/tvlearn
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Algorithm 1. Training Truncated Variational Autoencoders (TVAE)
Initialize model parameters Θ = (�π,W, σ2)
Initialize each Φ

(n)
with S distinct latent states

repeat
for all batches in dataset do

for sample n in batch do
Φnew = Φ

(n)

for all generations do
Φnew = mutation (selection (Φnew))
Φ

(n)
= Φ

(n) ∪ Φnew

end for
Define new Φ

(n)
by selecting the S fittest elements in Φ

(n)
using Eq. (6)

end for
Use Adam to update W using Eq. (9)

end for
Use Eq. (10) to update �π, σ2

until parameters Θ have sufficiently converged

3 Numerical Experiments

TVAE can flexibly learn prior parameters �π, and if low values for the πh are
obtained (which will be the case), the code is sparse. The prototypical application
domain to study sparse codes is image patch data [20,43]. We consequently use
such data to investigate sparsity, scalability and efficiency on benchmarks. For
all numerical experiments, we employ fully connected DNNs �μ(�z;W ) for the
decoder (compare Fig. S4); the exact network architectures and activations used
are listed in Tab. S1. The DNN parameters are optimized based on Eq. (9) using
mini-batches and the Adam optimizer (details in Sec. S2.1).

Verification and Scalability. After first verifying that the procedure can recover
generating parameters using ground-truth data (see Sec. S2.2), we trained TVAE
on N = 100, 000 whitened image patches of D = 16 × 16 pixels [25] using
two different decoder architectures, namely a shallow, linear decoder with H =
300 binary latents, and second, a deep non-linear decoder with a 300-300-256
architecture (i.e., H = 300 binary latents and two hidden layers with 300 and 256
units, respectively; details in Sec. S2.3). For both linear and non-linear TVAE,
we observed a sparse encoding with on average

∑
h πh

H = 20.3
300 and

∑
h πh

H = 28.5
300

active latents across data points, respectively. We observed sparse codes also
when we varied the parameter initialization and further modified the decoder
DNN architecture. As long as decoder DNNs were of small to intermediate size,
we observed efficient scalability to large latent spaces (we went up to H = 1, 000).
Compared to linear decoders, the main additional computational cost is given by
passing the latent states in the Φ

(n)
sets through the decoder DNN instead of just

through a linear mapping. The sets of states (i.e., the bitvectors in Φ
(n)

) could be
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kept small, at size S = |Φ(n) | = 64, such that N × (|Φ(n) | + |Φ(n)

new|) states had to
be evaluated per epoch. This compares to N × M states that would be used for
standard VAE training (given M samples are drawn per data point). In contrast
to standard VAE training, the sets Φ

(n)
have to be remembered across iterations.

For very large datasets, the additional O(N×|Φ(n) |×H) memory demand can be
distributed over compute nodes, however.

Denoising - Controlled Conditions. Due to its non-amortized encoding model,
the computational load of TVAE increases more strongly with data points com-
pared to amortized training. Consequently, tasks such as disentanglement of
features using high-dimensional input data, large DNNs, and small latent spaces
are not a regime where the approach can be applied efficiently. With this in mind,
we focused on tasks with relatively few data for which an as effective as possible
optimization is required, and for which advantages of a direct optimization can
be expected. As one such task, we here considered ‘zero-shot’ image denoising. To
apply TVAE in a ‘zero-shot’ setting (in which no additional information besides
the noisy image is available, e.g., [28,59]), we trained the model on overlapping
patches extracted from a given noisy image and subsequently applied the learned
encoding to estimate non-noisy image pixels (details in Sec. S2.4). In general,
denoising represents a canonical benchmark for evaluating image patch models,
and approaches exploiting sparse encodings have shown to be particularly well
suited (compare, e.g., [42,56,68]). The ‘zero-shot’ setting has recently become
popular also because the application of conventional DNN-based approaches has
shown to be challenging (see discussion in Sec. S2.4).

One denoising benchmark, which allows for an extensive comparison to other
methods is the House image. Standard benchmark settings for this image make
use of additive Gaussian white noise with standard deviations σ ∈ {15, 25, 50}
(Fig. 1 A). First, consider the comparison in Fig. 1 C where all models used the
same patch size of D = 8 × 8 pixels and H = 64 latent variables (details in
Sec. S2.4). Figure 1 C lists the different approaches in terms of the standard
measure of peak signal-to-noise ratio (PSNR). Values for MTMKL [61] and GSC
[56] were taken from the respective original publications (which both established
new state-of-the-art results when first published); for EBSC [14], we produced
PSNRs ourselves by running publicly available source code (cf. Sec. S2.4). As
can be observed, TVAE significantly improves performance for high noise lev-
els; the approach is able to learn the best data representation for denoising and
establishes new state-of-the-art results in this controlled setting (i.e., fixed D
and H). The decoder DNN of TVAE provides the decisive performance advan-
tage: TVAE significantly improves performance compared to EBSC (which can
be considered as an approach with a shallow, linear decoding model), confirm-
ing that the high lower bounds of TVAE on natural images (compare Fig. S9)
translate into improved performance on a concrete benchmark. For σ = 25 and
σ = 50, TVAE also significantly improves on MTMKL, and GSC, which are
both based on a spike-and-slab sparse coding (SSSC) model (also compare [20]).
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Fig. 1. Denoising results for House. C compares PSNRs (in dB) obtained with different
‘zero-shot’ models using a fixed patch size and number of latents (means and standard
deviations were computed over three runs with independent noise realizations, see text
for details). D lists PSNRs for different algorithms with different optimized hyper-
parameters. The top category only requires the noisy image (‘zero-shot’ setting). The
middle uses additional information such as noise level (KSVD, WNNM, BM3D) or
additional noisy images with matched noise level (N2V†). The bottom three algorithms
use large clean datasets. The highest PSNR per category is marked bold, and the
overall highest PSNR is bold and underlined. B depicts the denoised image obtained
with TVAE for σ = 50 in the best run (PSNR = 30.03 dB).

Despite the less flexible Bernoulli prior, the decoder DNN of TVAE provides the
highest PSNR values for high noise levels.

Denoising - Uncontrolled Conditions. To extend the comparison, we next eval-
uated denoising performance without controlling for equal conditions, i.e., we
also included approaches in our comparison that use large image datasets and/or
different patch sizes for training (including multi-scale and whole image process-
ing). Note that different approaches may employ very different sets of hyper-
parameters that can be optimized for denoising performance (e.g., patch and
dictionary sizes for sparse coding approaches, or network and training scheme
hyper-parameters for DNN approaches). By allowing for comparison in this less
controlled setting, we can compare to a number of recent approaches including
large DNNs trained on clean data and training schemes specifically targeted to
noisy training data. See Fig. 1 D for an extensive PSNR overview with results
for other algorithms cited from their corresponding original publications if not
stated otherwise. PSNRs for S5C originate from [55], GSVAE-B, EBSC and
ES3C from [14], and WNNM and EPLL from [67]. For Noise2Void (N2V; [36]),
Self2Self (S2S; [50]), GSVAE-C [29], and VLAE [47], we produced results our-
selves by applying publicly available source code (details in Sec. S2.4). Note that
the best performing approaches in Fig. 1 D were trained on noiseless data: EPLL
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Fig. 2. Data encodings and denoising results for Barbara obtained with generative
model approaches and different decoding models. In B, approaches with binary (top)
and continuous (bottom) latents are separated. EBSC and ES3C are considered as using
a shallow, linear decoder. Listed are best performances of several runs of each algorithm.
∗VLAE uses importance sampling-based log-likelihood estimation. C compares decoder
outputs for singleton (i.e., one-hot) input vectors. See Sec. S2.4 for details.

[71], BDGAN [70] and DPDNN [12] all make use of clean training data (typically
hundreds of thousands of data points or more). EPLL, KSVD [15], WNNM [23]
and BM3D [10] leverage a-priori noise level information (these algorithms use
the ground-truth noise level of the test image as input parameter). As noisy data
is very frequently occurring, lifting the requirement of clean data has been of
considerable recent interest with approaches such as Noise2Noise (N2N; [37]),
N2V, and S2S having received considerable attention.

Considering Fig. 1 D, first note that TVAE consistently improves PSNRs of
N2V, also when comparing to a variant trained on external data with matched
noise level (N2V† in Fig. 1 D). At high noise level (σ = 50), PSNRs of TVAE
represent state-of-the-art performance in the ‘zero-shot’ category (Fig. 1 D, top);
compared to methods which exploit additional a-priori information (Fig. 1 D,
middle and bottom), the denoising performance of TVAE (at high noise level) is
improved only by WNNM, BDGAN and DPDNN. At lower noise levels, TVAE
still performs competitively in the ‘zero-shot’ setting, yet highest PSNRs are
obtained by other methods (S2S and ES3C). Figure 1 D reveals that TVAE
can improve on two competing VAE approaches, namely GSVAE (which uses
Gumbel-softmax-based optimization for discrete latents) and VLAE (which uses
continuous latents and Gaussian posterior approximations). For more system-
atic comparison, we applied the VAE approaches using identical decoder archi-
tectures and identical patch sizes (details in Sec. S2.4). As striking difference
between the approaches, we observed GSVAE to learn a significantly denser
encoding compared to TVAE. Furthermore, we observed that the sparse encod-
ings of TVAE resulted in strong performance not only in terms of denoising
PSNR but also in terms of lower bounds (see Fig. 2).

Inpainting. Finally, we applied TVAE to ‘zero-shot’ inpainting tasks. For TVAE,
the treatment of missing data is directly available given the probabilistic formu-
lation of the model. Concretely, when evaluating log-joint probabilities of a data-
point, missing values are treated as unknown observables (details in Sec. S2.5).
In contrast, amortized approaches need to specify how the deterministic encoder
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Fig. 3. Inpainting results for House (50% missing pixels) and Castle (50% and 80%
missing; top group lists ‘zero-shot’ approaches). PSNR for Papyan et al. as reported in

[64]. Depicted is TVAE’s restoration for 50% missing pixels (sparsity
∑

h πh

H
= 10.56

512
).

DNNs should treat missing values. Figure 3 evaluates performance of TVAE on
two standard inpainting benchmarks with randomly missing pixels. Methods
compared to include MTMKL, BPFA [69], ES3C, the method of Papyan et al.
[46], DIP [64], PLE [66], and IRCNN [6]. PLE uses the noise level as a-priori
information, and IRCNN is trained on external clean images. On House, TVAE
improves the performance of Papyan et al. and BPFA; highest PSNRs for this
benchmark are obtained by DIP (which, in contrast to TVAE, is not permutation
invariant and uses large U-Nets) and ES3C (which is based on a SSSC model
and EVO-based training). On Castle, PSNRs of TVAE are higher in comparison
to SSSC-based BPFA (for 50% missing pixels) and IRCNN.

4 Discussion

We investigated a novel approach built upon Evolutionary Variational Opti-
mization [14] to train VAEs with binary latents. Compared to all previous opti-
mizations suggested for VAEs with discrete latents, the approach followed here
differs the most substantially from conventional VAE training. While all other
VAEs maintain amortization and reparameterization as key elements, the TVAE
approach instead uses a direct and non-amortized optimization. Recent work
using elementary generative models such as mixtures and shallow models [14,17]
have made considerations of direct VAE optimization possible for intermediately
large scales. A conceptual advantage of the here developed approach is its concise
formulation (compare Fig. S2) with fewer algorithmic elements, fewer hyperpa-
rameters and fewer model parameters (e.g., no parameters of encoder DNNs).
Functional advantages of the approach are its avoidance of an amortization gap
(e.g., [9,30]), its ability to learn sparse codes, and its generality (it does not use a
specific posterior model, and can be applied to other noise models, for instance).
However, non-amortized approaches do in general have the disadvantage of a
lower computational efficiency: an optimization of variational parameters for
each data point is more costly (Tab. S3). Conventional amortized approaches
(for discrete or continuous VAEs) are consequently preferable for large-scale
data sets and for the optimization of large, intricate DNNs. There are, however,
alternatives such as transformers (which can use >150M parameters) or diffu-
sion nets, which both are considered to perform more strongly than VAEs for
large-scale settings and density modeling ([7,31] for recent comparisons).
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At the same time, direct discrete optimization can be feasible and can be
advantageous. For image patch data, for instance, we showed that TVAEs with
intermediately large decoder DNNs perform more strongly than Gumbel-softmax
VAEs (GSVAE), and TVAEs are also outperforming a recent continuous VAE
baseline (VLAE; Figs. 1 and 2). The stronger performance of TVAE is presum-
ably, at least in part, due to the approach not being subject to an amortization
gap, due to it avoiding factored variational distributions, and, more generally,
due to the emerging sparse codes being well suited for modeling image patch
data. In comparison, the additional methods to treat discrete latents in GSVAE
seem to result in dense codes with significantly lower performance than TVAE.
Compared to GSVAE, the VLAE approach, which uses standard non-sparse (i.e.
Gaussian) latents, is more competitive on the benchmarks we considered. The
reason is presumably that VLAE’s continuous latents are able to better cap-
ture component intensities in image patches. This advantage does not outweigh
the advantages of sparse codes learned by TVAE, however. If sparse codes and
continuous latents are combined, the example of ES3C shows that strong per-
formances can be obtained (Figs. 1, 2 and 3). For the here considered binary
latents, however, a linear decoder (compare EBSC) is much inferior to a deep
decoder (Figs. 1, 2 and S9), which suggests future work on VAEs with more com-
plex, sparse priors if the goal is to improve ‘zero-shot’ denoising and inpainting.
Dense codes are notably not necessarily disadvantageous for image data. On
the contrary, for datasets with many images of single objects like CIFAR, the
dense codes of GSVAE and also of VLAE are, in terms of ELBO values, similar
or better compared to TVAE (Tab. S4). The suitability of sparse versus dense
encoding consequently seems to highly depend on the data, and here we confirm
the suitability of sparse codes for image patches. In addition to learning sparse
codes, direct optimization can have further advantages compared to conventional
training. One such advantage is highlighted by the inpainting task: in contrast
to other (continuous or discrete) VAEs, it is not required to additionally specify
how missing data shall be treated by an encoder DNN (compare Sec. S2.5).

We conclude that direct discrete optimization can, depending on the data and
task, serve as an alternative for training discrete VAEs. In a sense, the approach
can be considered more brute-force than conventional amortized training: direct
optimization is slower but at scales at which it can be applied, it is more effective.
To our knowledge, the approach is also the first training method for discrete
VAEs not using gradient optimization of encoder models, and can thus contribute
to our understanding of how good representations can be learned by different
approaches.
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Abstract. Adversarial continual learning is effective for continual learn-
ing problems because of the presence of feature alignment process gener-
ating task-invariant features having low susceptibility to the catastrophic
forgetting problem. Nevertheless, the ACL method imposes considerable
complexities because it relies on task-specific networks and discrimina-
tors. It also goes through an iterative training process which does not fit
for online (one-epoch) continual learning problems. This paper proposes a
scalable adversarial continual learning (SCALE) method putting forward
a parameter generator transforming common features into task-specific
features and a single discriminator in the adversarial game to induce
common features. The training process is carried out in meta-learning
fashions using a new combination of three loss functions. SCALE out-
performs prominent baselines with noticeable margins in both accuracy
and execution time.

Keywords: Continual learning · Lifelong learning · Incremental
learning

1 Introduction

Continual learning (CL) has received significant attention because of its impor-
tance in improving existing deep learning algorithms to handle long-term learn-
ing problems. Unlike conventional learning problems where a deep model is pre-
sented with only a single task at once, a continual learner is exposed to a sequence
of different tasks featuring varying characteristics in terms of different distribu-
tions or different target classes [9]. Since the goal is to develop a never-ending
learning algorithm which must scale well to possibly infinite numbers of tasks,
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it is impossible to perform retraining processes from scratch when facing new
tasks. The CL problem prohibits the excessive use of old data samples and only
a small quantity of old data samples can be stored in the memory.

The CL problem leads to two major research questions. The first question
is how to quickly transfer relevant knowledge of old tasks when embracing a
new task. The second problem is how to avoid loss of generalization of old tasks
when learning a new task. The loss of generalization power of old tasks when
learning a new task is known as a catastrophic forgetting problem [9,20] where
learning new tasks catastrophically overwrites important parameters of old tasks.
The continual learner has to accumulate knowledge from streaming tasks and
achieves improved intelligence overtime.

There exists three common approaches for continual learning [20]: memory-
based approach [16], structure-based approach [26], regularization-based app-
roach [14]. The regularization-based approach makes use of a regularization term
penalizing important parameters of old tasks from changing when learning new
tasks. Although this approach is computationally light and easy to implement,
this approach does not scale well for a large-scale CL problem because an overlap-
ping region across all tasks are difficult to obtain. The structure-based approach
applies a network growing strategy to accommodate new tasks while freezing
old parameters to prevent the catastrophic forgetting problem. This approach
imposes expensive complexity if the network growing phase is not controlled
properly or the structural learning mechanism is often done via computationally
expensive architecture search approaches thus being infeasible in the online con-
tinual learning setting. The memory-based approach stores a small subset of old
samples to be replayed along with new samples to handle the catastrophic for-
getting problem. Compared to the former two approaches, this approach usually
betters the learning performance. The underlying challenge of this approach is
to keep a modest memory size. SCALE is categorized as a memory-based app-
roach here where a tiny episodic memory storing old samples is put forward for
experience replay mechanisms.

The notion of adversarial continual learning (ACL) is proposed in [10]. The
main idea is to utilize the adversarial learning strategy [12,13] to extract task-
aligned features of all tasks deemed less prone to forgetting than task-specific
features. It offers disjoint representations between common features and private
features to be combined as an input of multi-head classifiers. The main bot-
tleneck of this approach lies in expensive complexities because private features
are generated by task-specific networks while common features are crafted by
the adversarial game played by task-specific discriminators. In addition, ACL is
based on an iterative training mechanism which does not fit for online (single-
epoch) continual learning problems.

This paper proposes scalable adversarial continual learning (SCALE) reduc-
ing the complexity of ACL significantly via a parameter generator network and
a single discriminator. The parameter generator network produces scaling and
shifting parameters converting task-invariant features produced by the adversar-
ial learning mechanism to task-specific features [21,22]. Our approach does not
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need to store task-specific parameters rather the parameter generator network
predicts these parameters leading to private features. Production of private fea-
tures are carried out with two light-weight operations, scaling and shifting. The
parameter generator is trained in the meta-learning way using the validation
loss of the base network, i.e., feature extractor and classifier. The meta-learning
strategy is done by two data partitions: training set and validation set portray-
ing both new and old concepts. The training set updates the base network while
the validation set trains the parameter generator. Our approach distinguishes
itself from [22] where the adversarial training approach is adopted to produce
task-invariant features and we do not need to construct two different memories
as per [22]. Unlike ACL, the adversarial game is played by a single discriminator
without any catastrophic problem while still aligning the features of all tasks
well.

SCALE outperforms prominent baselines with over 1% margins in accu-
racy and forgetting index while exhibiting significant improvements in execution
times. The ablation study, memory analysis and sensitivity analysis further sub-
stantiate the advantages of SCALE for the online (one-epoch) continual learning
problems. This paper offers four major contributions: 1) a new online continual
learning approach, namely SCALE, is proposed; 2) our approach provides a scal-
able adversarial continual learning approach relying only on a single parameter
generator for feature transformations leading to task-specific features and a sin-
gle discriminator to induce task-invariant features; 3) the training process is done
in the meta-learning manner using a new combination of three loss functions:
the cross-entropy loss function, the DER++ loss function [4] and the adversarial
loss function [10]. Although the adversarial loss function already exists in [10],
the adversarial game is done differently here using the concept of BAGAN [18]
rather than that the gradient reversal strategy [10,12]; 4) All source codes, data
and raw numerical results are made available in https://github.com/TanmDL/
SCALE to help further studies.

Fig. 1. Structure of ACL based on task-specific feature extractors and discriminators.

https://github.com/TanmDL/SCALE
https://github.com/TanmDL/SCALE
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2 Related Works

Regularization-based Approach relies on a penalty term in the loss function
preventing important parameters of old tasks from significant deviations. The
L2-regularization strategy is combined with the parameter importance matrix
indicating the significance of network parameters. Different strategies are pro-
posed to construct the parameter importance matrix: Elastic Weight Consolida-
tion (EWC) makes use of the Fisher Importance Matrix (FIM) [14], Synaptic
Intelligence (SI) utilizes accumulated gradients [32], Memory Aware Synapses
(MAS) adopts unsupervised and online criteria [1]. online EWC (oEWC) puts
forward an online version of EWC using Laplace approximation [28]. Learning
without Forgetting (LWF) utilizes the knowledge distillation (KD) approach to
match between current and previous outputs. The regularization strategy is bet-
ter performed in the neuron level rather than in the synaptic level [19] because
of the hierarchical nature of the deep neural network. [17] follows the same
principle as [19] and goes one step further using the concept of inter-task simi-
larity. Such approach allows a node to be shared across related tasks. Another
attempt to improve scalability of regularization-based approaches also exists in
[5] where the projection concept is put forward to induce wide local optimum
regions. The regularization-based approach heavily depends on the task-IDs and
the task-boundaries.

Structure-based Approach offers different philosophies where new tasks are
handled by adding new network components while isolating old components to
avoid the catastrophic forgetting problem. The pioneering approach is the pro-
gressive neural network (PNN) [26] where a new network column is integrated
when handling a new task. PNN incurs expensive structural complexities when
dealing with a long sequence of tasks. [31] puts forward a network growing condi-
tion based on a loss criterion with the selective retraining strategy. The concept
of neural architecture search (NAS) is proposed in [15] to select the best action
when observing new tasks. Similar approach is designed in [30] but with the
use of Bayesian optimization approach rather than the NAS concept. These
approaches are computationally prohibitive and call for the presence of task IDs
and boundaries. [3,23] put forward a data-driven structural learning for unsu-
pervised continual learning problems where hidden clusters, nodes and layers
dynamically grow and shrink. The key difference between the two approaches
lies in the use of regularization-based approach in [3] via the Knowledge Dis-
tillation (KD) strategy and the use of centroid-based experience replay in [23].
The data-driven structural learning strategy does not guarantee optimal actions
when dealing with new tasks.

Memory-based Approach utilizes a tiny memory storing a subset of old data
samples. Old samples of the memory are interleaved with current samples for
experience replay purposes to cope with the catastrophic forgetting problem.
iCaRL exemplifies such approach [24] where the KD approach is performed with
the nearest exemplar classification strategy. GEM [16] and AGEM [7] make use
of the memory to identify the forgetting cases. HAL [6] proposes the idea of
anchor samples maximizing the forgetting metric and constructed in the meta-
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learning manner. DER [4] devises the dark knowledge distillation and success-
fully achieves improved performances with or without the task IDs. CTN is pro-
posed in [22] using the feature transformation concept of [21] and integrates the
controller network trained in the meta-learning fashion. ACL [10] is categorized
as the memory-based approach where a memory is used to develop the adversar-
ial game. However, ACL imposes considerable complexities because of the use
of task-specific feature extractors and discriminators. We offer an alternative
approach here where private features are induced by the feature transformation
strategy of [21] and the adversarial game is played by one and only one discrim-
inator. Compared to [22], SCALE integrates the adversarial learning strategy
to train the shared feature extractor generating common features being robust
to the catastrophic forgetting problem and puts forward a new combination of
three loss functions.

3 Problem Formulation

Continual learning (CL) problem is defined as a learning problem of sequentially
arriving tasks T1, T2, ..., Tk, k ∈ {1, ...,K} where K denotes the number of tasks
unknown in practise. Each task carries triplets Tk = {xi, yi, ti}Nk

i=1 where Nk

stands for a task size. xk
i ∈ Xk denotes an input image while yk

i ∈ Yk, yk
i =

[l1, l2, ..., lm] labels a class label and tki stands for a task identifier (ID). The goal
of CL problem is to build a continual learner fφ(gθ(.)) performing well on already
seen tasks where gθ(.) is the feature extractor and fφ(.) is the classifier. This
paper focuses on the online (one-epoch) task-incremental learning and domain-
incremental learning problems [29] where each triplet of any tasks {xi, yi, ti} �
Tk is learned only in a single epoch. The task-incremental learning problem
features disjoint classes of each task, i.e., Suppose that Lk and Lk′ stand for
label sets of the k − th task and the k′ − th task, ∀k, k′Lk ∩ Lk′ = ∅. The
domain-incremental learning problem presents different distributions or domains
of each task P (X,Y )k �= P (X,Y )(k+1) while still retaining the same target
classes for each task. That is, a multi-head configuration is applied for the task-
incremental learning problem where an independent classifier is created for each
task fφk

(.). The domain-incremental learning problem is purely handled with a
single head configuration fφ(.). The CL problem prohibits the retraining process
from scratch 1

K

∑K
k=1 Lk,Lk � E(x,y)�Dk

[l(fφ(gθ(x)), y)]. The learning process is
only supported by data samples of the current task Tk and a tiny memory Mk−1

containing old samples of previously seen tasks to overcome the catastrophic
forgetting problem.

4 Adversarial Continual Learning (ACL)

Figure 1 visualizes the adversarial continual learning method [10] comprising four
parts: shared feature extractor, task-specific feature extractors, task-specific dis-
criminator and multi-head classifiers. The shared feature extractor generates



378 T. Dam et al.

task-invariant features while the task-specific feature extractors offer private
features of each task. The task-specific discriminator predicts the task’s origins
while the multi-head classifiers produce final predictions. The training process
is governed by three loss functions: the classification loss, the adversarial loss
and the orthogonal loss. The classification loss utilizes the cross-entropy loss
function affecting the multi-head classifiers, the shared feature extractor and
the task-specific feature extractors. The adversarial loss is carried out in the
min-max fashion between the shared feature extractor and the task-specific dis-
criminators. The gradient reversal layer is implemented when adjusting the fea-
ture extractor thus converting the minimization problem into the maximization
problem. That is, the shared feature extractor is trained to fool the task-specific
discriminators and eventually generates the task-invariant features. The orthogo-
nal loss ensures clear distinctions between the task-specific features by the shared
feature extractor and the private features by the task-specific feature extractors.

The task-specific discriminator is excluded during the testing phase and the
inference phase is performed by feeding concatenated features of the private
features and the common features to the multi-head classifiers producing the
final outputs. ACL incurs high complexity because of the application of the
task-specific feature extractors and the task-specific discriminators. We offer a
parameter generator here generating scaling and shifting parameters to perform
feature transformation. Hence, the task-specific features are generated with low
overheads without loss of generalization, while relying only on a single discrim-
inator to play the adversarial game inducing aligned features. In addition, ACL
relies on an iterative training procedure violating the online continual learning
requirements whereas SCALE fully runs in the one-epoch setting.

Fig. 2. SCALE consists of the parameter generator, the feature extractor, the multi-
head classifiers (the single-head classifier in the domain-incremental learning problem)
and the discriminator. The parameter generator generates the scaling and shifting
coefficients converting the common features into the task-specific features. The task-
specific features and the task-invariant features are combined and feed the classifier.
The training process is controlled by the classification loss, the DER++ loss and the
adversarial loss. The training process of the parameter generator is carried out in the
meta-learning fashion minimizing the three loss functions. The single discriminator is
updated by playing an adversarial game using the cross entropy loss and the DER++
loss.



Scalable Adversarial Online Continual Learning 379

5 Learning Policy of SCALE

The learning procedure of SCALE is visualized in Fig. 2 and Algorithm 1 where
it comprises four blocks: the feature extractor gθ(.), the parameter generator
Pϕ(.), the multi-head classifiers fφk

(.) (the single-head classifier in the domain-
incremental learning problem) and the single discriminator Dξ(.). The feature
extractor extracts the task-invariant features enabled by the adversarial learning
mechanism with the discriminator predicting the task IDs. Unlike ACL where
task-specific features are produced by task-specific feature extractors, SCALE
benefits from the feature transformation strategy with the scaling parameters
Φ1 and the shifting parameters Φ2 produced by the parameter generator. The
scaling and shifting parameters modify the common features into the task-
specific features. The classifier receives aggregated features and thus delivers
the final predictions. Since the scaling and shifting parameters assure distinct
task-specific features of those common features, the orthogonal loss is removed.
SCALE replaces the task-specific discriminators in ACL with only a single dis-
criminator.

5.1 Feature Transformation

SCALE does not deploy any task-specific parameters violating the fixed archi-
tecture constraint [22] rather the parameter generator produces the scaling and
shifting parameters thereby reducing its complexity significantly. We adopt sim-
ilar idea of [21,22] where the scaling and shifting parameters creates the task-
specific features via the feature transformation procedure as follows:

g̃θ(x) =
Φ1

||Φ1||2
� gθ(x) +

Φ2

||Φ2||2
(1)

where � denotes the element-wise multiplication. Φ1, Φ2 are the scaling and
shifting parameters generated by the parameter generator Pϕ(t) = {Φ1, Φ2}
taking the task IDs as input features with an embedding layer to produce low-
dimensional features. This implies the parameter generator network ϕ to produce
the scaling and shifting parameters Φ1, Φ2. A residual connection is implemented
to linearly combine the shared and private features:

gθ(x) = g̃θ(x) + gθ(x) (2)

We follow the same structure as [22] where the feature transformation strategy
is implemented per layer with one parameter generator per layer. It is imple-
mented for all intermediate layers except for the classifier in the case of multi-
layer perceptron network while it is only applied to the last residual layer for
convolutional neural network, thus only utilizing a single parameter generator
network. A nonlinear activation function s(.) is usually applied before feeding
the combined features to the classifier fφk

(s(gθ(.))).
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5.2 Loss Function

The loss function of SCALE consists of three components: the cross-entropy (CE)
loss function, the dark-experience replay++ (DER++) loss function [4], and the
adversarial loss function [10]. The CE loss function focuses on the current task
and the previous tasks simultaneously while the DER++ loss function concerns
on the past tasks thus distinguishing the second part of the DER++ loss with
the CE loss function. The adversarial loss function is designed to align features
of all tasks. Suppose that o = fφ(gθ(.)) stands for the output logits or the pre-
softmax responses and l(.) labels the cross-entropy loss function, the loss function
of SCALE is expressed:

L = E(x,y)�Dk∪Mk−1 [l(o, y)]
︸ ︷︷ ︸

LCE

+E(x,y)�Mk−1 [λ1||o − h||2 + λ2l(o, y)]
︸ ︷︷ ︸

LDER++

+

E(x,y)�Dk∪Mk−1 [λ3l(Dξ(gθ(x)), t)]
︸ ︷︷ ︸

Ladv

(3)

where h = fφ(gθ(.))k−1 is the output logit generated by a previous model, i.e.,
before seeing the current task. λ1, λ2, λ3 are trade-off constants. The second term
of LDER++, l(o, y), prevents the problem of label shifts ignored when only check-
ing the output logits without the actual ground truth. The three loss functions
are vital where the absence of one term is detrimental as shown in our ablation
study.

5.3 Meta-training Strategy

The meta-training strategy [11,27] is implemented here to update the parameter
generator Pϕ(.) subject to the performance of the base network fφ(gθ(.)). This
strategy initiates with creation of two data partitions: the training set T k

train and
the validation set T k

val where both of them comprise the current data samples
and the memory samples T k ∪ Mk−1. The meta-learning strategy is formulated
as the bi-level optimization problem using the inner loop and the outer loop [22]
as follows:

Outer : min
ϕ

E(x,y)�T k
val

[L]

Inner : s.t {φ∗, θ∗} = arg min
φ,θ

E(x,y)�T k
train

[L]
(4)

where L denotes the loss function of SCALE as formulated in (3). From (4), the
parameter generator and the classifier are trained jointly. Because of the absence
of ground truth of the scaling and shifting coefficients, our objective is to find the
parameters of the parameter generator ϕ that minimizes the validation loss of the
base network. This optimization problem is solvable with the stochastic gradient
descent (SGD) method where it first tunes the parameters of the classifier in the
inner loop:

{φ, θ} = {φ, θ} − α
∑

(x,y)∈T k
train

∇{φ,θ}[L] (5)
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where α is the learning rate of the inner loop. Once obtaining updated param-
eters of the base network, the base network is evaluated on the validation set
and results in the validation loss. The validation loss is utilized to update the
parameter generator:

ϕ = ϕ − β
∑

(x,y)∈T k
val

∇ϕ[L] (6)

where β is the learning rate of the outer loop. Every outer loop (6) involves the
inner loop . Both inner and outer loops might involve few gradient steps as in
[22] but only a single epoch is enforced in SCALE to fit the online continual
learning requirements.

5.4 Adversarial Training Strategy

The adversarial training strategy is applied here where it involves the feature
extractor gθ(.) and the discriminator Dξ(.). The goal is to generate task-invariant
features, robust against the catastrophic forgetting problem. The discriminator
and the feature extractor play a minimax game where the feature extractor is
trained to fool the discriminator by generating indistinguishable features while
the discriminator is trained to classify the generated features by their task labels
[10]. The adversarial loss function Ladv is formulated as follows:

Ladv = min
g

max
D

K∑

k=0

Ik=tk log(Dξ(gθ(x))) (7)

where the index k = 0 corresponds to a fake task label associated with a Gaussian
noise N (μ,Σ) while Ik=tk denotes an indicator function returning 1 only if k = tk

occurs, i.e., tk is the task ID of a sample x. The feature extractor is trained to
minimize (7) while the discriminator is trained to maximize (7). Unlike [10] using
the gradient reversal concept in the adversarial game, the concept of BAGAN
[18] is utilized where the discriminator to trained to associate a data sample to
either a fake task label k = 0 or one of real task labels k = 1, ..,K having its
own output probability or soft label. A generator role is played by the feature
extractor. The discriminator is trained with the use of memory as with the base
network to prevent the catastrophic forgetting problem where its loss function
is formulated:

Ldisc = Ladv + LDER++ (8)

where LDER++ is defined as per (3) except that the target attribute is the
task labels rather than the class labels. Unlike [22] using two memories, we use a
single memory shared across the adversarial training phase and the meta-training
phase.

6 Experiments

The advantage of SCALE is demonstrated here and is compared with recently
published baselines. The ablation study, analyzing each learning component, is
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Algorithm 1. Learning Policy of SCALE
Input: continual dataset D, learning rates μ, β, α, iteration numbers nin =
nout = nad = 1
Output: parameters of the base learner {φ, θ}, parameters of the parameter
generator ϕ, parameters of the discriminator ξ
for k = 1 to K do

for n1 = 1 to nout do
for n2 = 1 to nin do

Update base learner parameters {θ, φ} using (4)
end for
Update parameter generator parameters ϕ using (6)

end for
for n3 = 1 to nad do

Update discriminator parameters ξ minimizing (8)
end for
Mk = Mk−1 ∪ Bk /*Update memory/*

end for

Table 1. Experimental Details

Datasets #Tasks #classes/task #training/task #testing/task Dimensions

PMNIST 23 10 1000 1000 1× 28× 28

SCIFAR-10 20 5 2500 500 3× 32× 32

SCIFAR-10 5 2 10000 2000 3× 32× 32

SMINIIMAGENET 20 5 2400 600 3× 84× 84

provided along with the memory analysis studying the SCALE’s performances
under different memory budgets. All codes, data and raw numerical results are
placed in https://github.com/TanmDL/SCALE to enable further studies.

6.1 Datasets

Four datasets, namely Permutted MNIST (PMNIST), Split CIFAR100 (SCI-
FAR100), Split CIFAR10 (SCIFAR10) and Split MiniImagenet (SMINIIMA-
GENET), are put forward to evaluate all consolidated algorithms. The PMNIST
features a domain-incremental learning problem with 23 tasks where each task
characterizes different random permutations while the rests focus on the task-
incremental learning problem. The SCIFAR100 carries 20 tasks where each task
features 5 distinct classes. As with the SCIFAR100, the SMINIIMAGENET con-
tains 20 tasks where each task presents disjoint classes. The SCIFAR10 presents
5 tasks where each task features 2 mutually exclusive classes. Our experimental
details are further explained in Table 1.

https://github.com/TanmDL/SCALE
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6.2 Baselines

SCALE is compared against five strong baselines: GEM [16], MER [25], ER-
Ring [8], MIR [2] and CTN [22]. The five baselines are recently published
and outperform other methods as shown in [22]. All algorithms are memory-
based approaches usually performing better than structure-based approach,
regularization-based approach [22]. No comparison is done against ACL [10]
because ACL is not compatible under the online (one-epoch) continual learning
problems due to its iterative characteristics. Significant performance deteriora-
tion is observed in ACL under the one-epoch setting. All baselines are recently
published, thus representing state-of-the art results. All algorithms are executed
in the same computer, a laptop with 1 NVIDIA RTX 3080 GPU having 16 GB
RAM and 16 cores Intel i-9 processor having 32 GB RAM, to ensure fairness
and their source codes are placed in https://github.com/TanmDL/SCALE.

6.3 Implementation Notes

Source codes of SCALE are built upon [16,22] and our experiments adopt the
same network architectures for each problem to assure fair comparisons. A two
hidden layer MLP network with 256 nodes in each layer is applied for PMNIST
and a reduced ResNet18 is applied for SCIFAR10/100 and SMINIIMAGENET.
The hyper-parameter selection of all consolidated methods is performed using
the grid search approach in the first three tasks as with [7] to comply to the
online learning constraint. Hyper-parameters of all consolidated algorithms are
detailed in the supplemental document. Numerical results of all consolidated
algorithms are produced with the best hyper-parameters. Since the main focus
of this paper lies in the online (one-epoch) continual learning, all algorithms run
in one epoch. Our experiments are repeated five times using different random
seeds and the average results across five runs are reported. Two evaluation met-
rics, averaged accuracy [16] and forgetting measure [7] are used to evaluate all
consolidated methods. Since all consolidated algorithms make use of a memory,
the memory budget is fixed to 50 per tasks.

6.4 Numerical Results

The advantage of SCALE is demonstrated in Table 2 where it outperforms
other consolidated algorithms with significant margins. In SMINIIMAGENET,
SCALE beats CTN in accuracy with over 1.5% gap and higher than that for other
algorithms, i.e., around 10% margin. It also shows the smallest forgetting index
compared to other algorithms with over 1% improvement to the second best
approach, CTN. The same pattern is observed in the SCIFAR100 where SCALE
exceeds CTN by almost 2% improvement in accuracy and shows improved perfor-
mance in the forgetting index by almost 2% margin. Other algorithms perform
poorly compared to SCALE where the accuracy margin is at least over 9%.
and the forgetting index margin is at least over 5%. In pMNIST, SCALE beats
its counterparts with at least 2% gap in accuracy while around 2% margin is

https://github.com/TanmDL/SCALE
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Table 2. Numerical results of consolidated algorithms across the four problems. All
methods use the same backbone network and 50 memory slots per task

Method SMINIIMAGENET SCIFAR100

ACC(↑) FM(↓) ACC(↑) FM(↓)

GEM 54.50 ± 0.93 7.40 ± 0.89 60.22 ± 1.07 9.04 ± 0.84

MER 53.38 ± 1.74 10.96 ± 1.57 59.48 ± 1.31 10.44 ± 1.11

MIR 54.92 ± 2.29 8.96 ± 1.68 61.26 ± 0.46 9.06 ± 0.63

ER 54.62 ± 0.80 9.50 ± 1.09 60.68 ± 0.57 9.70 ± 0.97

CTN 63.42 ± 1.18 3.84 ± 1.26 67.62 ± 0.76 6.20 ± 0.97

SCALE 64.96± 1.10 2.60± 0.60 70.24± 0.76 4.16± 0.48

Method pMNIST SCIFAR10

ACC(↑) FM(↓) ACC(↑) FM(↓)

GEM 71.10 ± 0.47 10.16 ± 0.41 75.9 ± 1.3 12.74 ± 2.85

MER 68.70 ± 0.35 12.04 ± 0.30 79.4 ± 1.51 9.7 ± 1.07

MIR 71.90 ± 0.49 11.74 ± 0.34 79 ± 1.16 9.28 ± 0.91

ER 74.76 ± 0.56 9.06 ± 0.58 79.76 ± 1.26 8.68 ± 1.49

CTN 78.70 ± 0.37 5.84 ± 0.36 83.38 ± 0.8 5.68 ± 1.43

SCALE 80.70± 0.46 2.90± 0.27 84.9± 0.91 4.46± 0.4

observed in the forgetting index. SCALE is also the best-performing continual
learner in the SCIFAR10 where it produces the highest accuracy with 1.5% dif-
ference to CTN and the lowest forgetting index with about 1% gap to CTN.
Numerical results of Table 2 are produced from five independent runs under dif-
ferent random seeds.

6.5 Memory Analysis

This section discusses the performances of consolidated algorithms, MER, MIR,
CTN, SCALE under different memory budgets |Mk| = 50, 100, 150, 200 per task.
GEM and ER are excluded here because ER performs similarly to MER and
MIR while GEM is usually worse than other algorithms. The memory analysis
is carried out in the SCIFAR100 and in the SMINIIMAGENET. Our numerical
results are visualized in Fig. 2(a) for the SCIFAR100 and in Fig. 2(B) for the
SMINIIMAGENET. It is obvious that SCALE remains superior to other algo-
rithms under varying memory budgets in the SCIFAR100 where the gap is at
least 1% to CTN as the second best algorithm across all memory configurations.
In SMINIIMAGENET problem, SCALE outperforms other algorithms with the
most noticeable gap in |Mk| = 50 presenting the hardest case. The gap with
CTN becomes close when increasing the memory slots per tasks but still favours
SCALE. Note that the performances of SCALE and CTN is close to the joint
training (upper bound) with increased memory slots in the SMINIIMAGENET,
i.e., no room for further performance improvement is possible.
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Fig. 3. Consolidated Algorithms under Different Memory Budgets in case of (a) SCI-
FAR100, and (b) SMINIIMAGENET

Table 3. Ablation Study: Different Learning Configurations of SCALE

Method SCIFAR10 SCIFAR100

ACC(↑) FM(↓) ACC(↑) FM(↓)

A 83.66 ± 1.42 6.26 ± 1.23 68.58 ± 1.88 5.88 ± 2.06

B 76.08 ± 2.83 16.32 ± 3.57 45.32 ± 2.09 27.68 ± 1.95

C 81.68 ± 1.22 7.12 ± 1.63 66.64 ± 1.71 5.76 ± 0.78

SCALE 84.9± 0.91 4.46± 0.40 70.24± 0.76 4.16± 0.48

6.6 Ablation Study

This section discusses the advantage of each learning component of SCALE
where it is configured into three settings: (A) SCALE with the absence of adver-
sarial learning strategy meaning that the meta-training process is carried out
only with the CE loss function and the DER++ loss function while removing
any adversarial games; (B) SCALE with the absence of DER++ loss function
meaning that the meta-training process is driven by the CE loss function and
the adversarial loss function while the adversarial game in (8) is undertaken
without the DER++ loss function; (C) SCALE with the absence of parameter
generator network meaning that no task-specific features are generated here due
to no feature transformation approaches. Table 3 reports our numerical results
across two problems: SCIFAR10 and SCIFAR100.

Configuration (A) leads to drops in accuracy by about 2% and increases in
forgetting by about 2% for SCIFAR10 and SCIFAR100. These facts confirm the
efficacy of the adversarial learning strategy to boost the learning performances of
SCALE. Such strategy allows feature’s alignments of all tasks extracting common
features, being robust to the catastrophic forgetting problem. Configuration (B)
results in major performance degradation in both accuracy and forgetting index
across SCIFAR10 and SCIFAR100, i.e., 10% drop in accuracy for SCIFAR10 and
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Table 4. Execution Times of All Consolidated Algorithms across All Problems

Dataset Methods Execution Times

pMNIST SCALE 41.33

CTN 52.01

ER 26.28

MIR 23.56

MER 26.80

GEM 28.53

SCIFAR10 SCALE 142.1

CTN 358.5

ER 250.86

MIR 242.52

MER 257.44

GEM 151.96

SCIFAR100 SCALE 108.33

CTN 321.87

ER 211.94

MIR 218.24

MER 222.39

GEM 314.24

SMINIIMAGENET SCALE 193.73

CTN 298.33

ER 290.27

MIR 254.20

MER 261.17

GEM 540.46

25% drop in accuracy for SCIFAR100; 12% increase in forgetting for SCIFAR10
and 23% increase in forgetting for SCIFAR100. This finding is reasonable because
the DER++ loss function is the major component in combatting the catastrophic
forgetting problem. Configuration (C) leaves SCALE without any task-specific
features, thus causing drops in performances. 3% drop in accuracy is observed for
SCIFAR10 while 4% degradation in accuracy is seen for SCIFAR100. The same
pattern exists for the forgetting index where 3% increase in forgetting occurs
for SCIFAR10 and 1.5% increase in forgetting happens for SCIFAR100. Our
finding confirms the advantage of each learning component of SCALE where it
contributes positively to the overall performances.
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Table 5. Sensitivity Analysis of Hyper-parameters in SCIFAR100

Hyper-parameters ACC (↑) FM(↓)

λ1, λ2 = 3, λ3 = 0.9 69.5 ± 0.54 5.5 ± 0.44

λ1, λ2 = 3, λ3 = 0.3 69.34 ± 1.04 5.12 ± 0.53

λ1, λ2 = 3, λ3 = 0.09 69.26 ± 1.22 5.2 ± 1.08

λ1, λ2 = 3, λ3 = 0.03 69.88 ± 0.98 4.82 ± 0.55

λ1, λ2 = 1, λ3 = 0.9 69.2 ± 0.76 5.16 ± 0.85

λ1, λ2 = 1, λ3 = 0.3 69.24 ± 0.84 5.44 ± 1.19

λ1, λ2 = 1, λ3 = 0.09 69.8 ± 0.73 4.88 ± 0.90

λ1, λ2 = 1, λ3 = 0.03 70.24± 0.76 4.16± 0.48

6.7 Execution Times

Execution times of all consolidated algorithms are evaluated here because it is an
important indicator in the online continual learning problems. Table 4 displays
execution times of consolidated algorithms across all problems. The advantage
of SCALE is observed in its low running times compared to other algorithms
in three of four problems except in the pMNIST. SCALE demonstrates signif-
icant improvements by almost 50% speed-up from CTN in realm of execution
times because it fully runs in the one-epoch setting whereas CTN undergoes few
gradient steps in the inner and outer loops. Note that both SCALE and CTN
implement the parameter generator network. This fact also supports the adver-
sarial learning approach of SCALE, absent in CTN, where it imposes negligible
computational costs but positive contribution to accuracy and forgetting index
as shown in our ablation study. Execution times of SCALE are rather slow
in pMNIST problem because the parameter generator is incorporated across
all intermediate layers in the MLP network. The execution times significantly
improves when using the convolution structure because the parameter generator
is only implemented in the last residual block. SCALE only relies on one and only
discriminator to produce aligned features while private features are generated
via parameter generator networks.

7 Sensitivity Analysis

Sensitivity of different hyper-parameters, λ1, λ2, λ3, are analyzed here under
the SCIFAR100 where these hyper-parameters control the influence of each loss
function (3). Other hyper-parameters are excluded from our sensitivity analysis
because they are standard hyper-parameters of deep neural networks where their
effects have been well-studied in the literature. Note that the hyper-parameter
sensitivity is a major issue in the online learning context because of time and
space constraints for reliable hyper-parameter searches. Specifically, we select
λ1, λ2 = 1 and λ1, λ2 = 3, while varying λ3 = [0.03, 0.09, 0.3, 0.9]. Table 5 reports
our numerical results.
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It is observed that SCALE is not sensitive to different settings of hyper-
parameters. That is, there does not exist any significant gaps in performances
compared to the best hyper-parameters as applied to produce the main results
in Table 2, λ1, λ2 = 1, λ3 = 0.03, the gaps are less than < 1%. Once again,
this finding confirms the advantage of SCALE for deployments in the online
(one-epoch) continual learning problem.

8 Conclusion

This paper presents an online (one-epoch) continual learning approach, scal-
able adversarial continual learning (SCALE). The innovation of SCALE lies in
one and only one discriminator in the adversarial games for the feature align-
ment process leading to robust common features while making use of the fea-
ture transformation concept underpinned by the parameter generator to produce
task-specific (private) features. Private features and common features are linearly
combined with residual connections where aggregated features feed the classifier
for class inferences. The training process takes place in the strictly one-epoch
meta-learning fashion based on a new combination of the three loss functions.
Rigorous experiments confirm the efficacy of SCALE beating prominent algo-
rithms with noticeable margins (>1%) in accuracy and forgetting index across
all four problems. Our memory analysis favours SCALE under different memory
budgets while our ablation study demonstrates the advantage of each learning
component. In addition, SCALE is faster than other consolidated algorithms in
3 of 4 problems and not sensitive to hyper-parameter selections. Our future work
is devoted to continual time-series forecasting problems.
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Abstract. In this paper, we propose a method called BiKA (Bidirec-
tional Knowledge-assisted embedding and Attention-based generation)
for the task of image-text matching. It mainly improves the embed-
ding ability of images and texts from two aspects: first, modality con-
version, we build a bidirectional image and text generation network to
explore the positive effect of mutual conversion between modalities on
image-text feature embedding; then is relational dependency, we built a
bidirectional graph convolutional neural network to establish the depen-
dency between objects, introduce non-Euclidean data into image-text
fine-grained matching to explore the positive effect of this dependency
on fine-grained embedding of images and texts. Experiments on two pub-
lic datasets show that the performance of our method is significantly
improved compared to many state-of-the-art models.

Keywords: Cross-modal retrieval · Graph convolutional network ·
Knowledge embedding · Cross-attention · Attentional generative
network

1 Introduction

The human brain will spontaneously switch between modalities. For example,
when people hear a sentence or see a text, we will associate related images in
their brains. Similarly, when people see a picture or a video, our brains will
spontaneously construct their language expression. As shown in Fig. 1, these
spontaneous modal transformation behaviors help us understand the world. In
the field of deep learning, there are similar tasks, such as Image Caption and
Text to Image (T2I) generation. Recently, both modal transformation tasks have
made remarkable progress. The cross-modal retrieval task aims to capture the
association between different modalities. Applying modal transformations to the
cross-modal retrieval task should enhance the expressive ability of model embed-
ding. Based on this idea, we propose a bidirectional attentional generative net-
work. While performing image-text matching, additional generative tasks are
introduced to constrain the expression ability of modal embedding vectors.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13715, pp. 390–406, 2023.
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Fig. 1. Establish fine-grained dependency structure and bidirectional generative struc-
ture between objects

Traditional deep learning models such as LSTM and CNN have achieved
great results on Euclidean data (such as language, image, video, etc.). However,
there are certain limitations in the processing of non-Euclidean data. Kipf et al.
[12] proposed Graph Convolutional Neural networks (GCNs) to process graph
data. There are problems with data sparseness and a lack of key information
for image and text retrieval tasks. The text description is usually very short
and cannot describe the corresponding image in detail. For example, the text
description in Fig. 1 “A man jumps to hit a tennis ball” does not express key
information such as environment, tennis rackets, etc.

Moreover, a static image at a specific moment cannot fully express the state
of objects at the current moment. For example, in Fig. 1, due to the high-speed
motion, the image capture of a tennis ball is blurred and cannot be captured by
the deep model. These problems limit the performance of retrieval. In response
to this problem, we proposed a knowledge-assisted embedding method, combin-
ing traditional depth models with non-Euclidean data, and modeled the depen-
dencies between objects. As shown in Fig. 1, by constructing the dependency
relationship between “Sports Ball” and “Tennis Racket,” text and image can be
better matched.

Our main contributions are as follows:

• We propose a knowledge-assisted embedding network, which allows external
knowledge to be integrated into the local embedding of images and text, which
strengthens regional-level text and image embedding.

• We propose a location relationship embedding method, which embeds multi-
ple location relationship information of multiple entities in an image into its
encoding.

• We introduce a bidirectional attentional generative network to optimize the
expression of global and local features of images and text.

2 Related Work

Bottom-up attention [1] refers to detecting salient regions at the object level,
similar to spontaneous bottom-up attention in the human visual system (for
example, the foreground in an image is generally more concerned than the
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background). Karpathy et al. [11] used R-CNN [5] to obtain The region-level
embedding of the image calculates the similarity between the image and the
text by aggregating the similarity of all regions and all words. Lee et al. [13] pro-
posed a stacked cross-attention model that uses both bottom-up attention and
conventional attention models. The model aligns each segment with all other
segments from other modalities to train the model. The most advanced perfor-
mance is achieved on several benchmark datasets for cross-modal retrieval, but
the amount of calculation for inference becomes enormous due to the fine-grained
matching method. Gu et al. [6] and Peng et al. [19] propose to incorporate gener-
ative models into cross-view feature embedding learning. Li et al. [14] used GCN
to obtain image region features with enhanced semantic relations, at the same
time, which incorporated generative models to enhance the expressive ability
of image networks. Chen et al. [2] proposed an iterative matching method for
cross-modal image text retrieval to deal with semantic complexity and proposed
an iterative matching method of cyclic attention memory to refine the alignment
relationship between images and text. Ji et al. [10] proposed a Stepwise Hierar-
chical Alignment Network (SHAN), which decomposes image-text matching into
a multi-step cross-modal reasoning process. Compared with our models, these
models either only consider coarse-grained matching between images and text
or only consider fine-grained matching between image regions and words. We
combine these two matching methods.

The regional features obtained by bottom-up attention may lack the expres-
sion of positional relationship. Hu et al. [9] introduced geometric attention to
object detection for the first time, which uses bounding box coordinates and size
to infer the weight of the relationship between the object pairs. The closer the
two bounding boxes, the more similar the size, the stronger their relationship.
Herdade et al. [8] changed the structure of Transformer [21] to embed the posi-
tional relationship of the region of interest. We get three kinds of relationship
matrices from the image: the area matrix, distance matrix, and azimuth matrix.
We combine these three relational matrices to obtain feature representations of
embedded positional relations.

Chen et al. [4] used GCN for multi-label image recognition and achieved good
performance by constructing a directed graph to model the relationship between
objects. Li et al. [15] used a multi-head attention mechanism on the text and
image side to enhance feature extraction. Chen et al. [3] used this structure in
object detection tasks to make the generated bounding box more reasonable.
We also use a similar structure, but we use GCN to assist in embedding text
and images. We explore the relationship between objects to solve the insufficient
expressive ability of text and the image itself and embed this relationship into
the image and text. In local embedding, better feature expression is obtained.

3 Proposed Method

3.1 Framework

The purpose of knowledge-assisted embedding in a cross-modal retrieval network
is to improve the performance of cross-media retrieval by exploring the seman-
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tics and dependencies of objects in two modalities. We designed an integrated
framework based on the baseline model SCAN [13]. Unlike the method that only
considers visual and textual features, the knowledge-assisted embedding cross-
modal retrieval network explicitly considers the semantics and dependencies of
the objects in the two modalities. Explore this dependency in images and text.
The structure of the frame is shown in Fig. 2. The critical problem faced by
the knowledge-assisted embedding cross-modal retrieval network is how to learn
the dependency relationship between objects and embed it into the local feature
vector of each modal. We use two graphs to model the dependencies between
objects. Specifically, we designed a GCN-based network to get the dependency
information between objects.
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Fig. 2. The structure of BiKA, where GI and GT are the text generation network and
the image generation network, respectively.

We propose a framework divided into two modules: a global semantic network
and two external knowledge embeddings. The global semantic network extracts
the global semantic information of images and texts; the external knowledge
embedding module constructs a directed graph on the dataset, where the nodes
on the text end are vectors represented by the word embedding of the label. The
nodes on the image end are vectors pooled by the average of the corresponding
classification features representation. Then we use GCN to obtain a higher-level
semantic representation. The semantic representation obtained on the image side
is multiplied by the encoding point of the image local feature to obtain the image
local label encoding. The semantic representation obtained on the text side is
multiplied by the encoding point of the image local feature to obtain Text local
label encoding, and finally, we introduce the attention model to establish the
alignment relationship between two local label encodings.
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3.2 Positional Embedding

We pay attention to the bounding box from the bottom up to calculate three
kinds of matrices, namely the orientation matrix O, the distance matrix D, and
the area matrix A, as shown in Fig. 3.

DO ADO A

Fig. 3. Three kinds of position relationship matrices are obtained from the bounding
box.

The position relationship embedding network we proposed is shown in Fig. 4.
We modify it based on self-attention and combine the attention matrix with the
position relationship matrix to obtain the output after the position relationship
is embedded:
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Output

Fig. 4. Positional Relationship Embedding framework in BiKA.

v =
m∑

i=0

n∑

j=0

(σ(QT
i Ki) � Ej)Vi + I. (1)

in which I represents the local features of the input image, m represents the num-
ber of layers of the network, σ(x) represents the Sigmoid gate structure, and its
function is represented by σ(x) = 1/(1 + e−x), Ej represents the external posi-
tion relationship matrix, we have defined three position relationship matrices,
namely the orientation relation matrix O, distance relationship Matrix D, and
area matrix A. The distance matrix is symmetric, and the area matrix is diag-
onal. For the i-th and j-th image local embedding vectors, the three types of
matrices are defined as follows:
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Oi,j = arctan(
h̄i − h̄j

w̄i − w̄j
),

Di,j = Dj,i =
‖W,H‖2 − ‖(h̄i − h̄j), (w̄i − w̄j)‖2

‖W,H‖2 ,

Ai,i =
hi

H
· wi

W
,

(2)

where W and H represent the original image’s horizontal and vertical pixel
numbers, respectively, w and h represent the target bounding box’s horizontal
and vertical pixel numbers, respectively. w̄ represents the horizontal coordinate
representing the center of the target bounding box, and h̄ represents the vertical
coordinate representing the center of the target bounding box.

3.3 Object Relational Reasoning

The key problem faced by object relational networks is how to effectively capture
the global semantic relations in labels. We use graphs to model global semantic
relationships in labels, explore the topology of implicit global knowledge, and we
construct an adjacency matrix for labels. Specifically, we design a fGCN-based
network to obtain global semantic relation information.

We first define the GCN. The objective of GCN is to learn a function f(D,A)
on the graph G, D is the input eigenvector, and A is the adjacency matrix. The
feature expression obtained by the i-th level GCN is Di ∈ R

n×d, where n is
the number of graph nodes and d is the depth of the graph. The output of
the next layer of GCN is Di+1 ∈ R

n×d′
. Each GCN layer can be written as

Di+1 = f(Di, A). After applying the convolutional operation, f(D,A) can be
expressed as Di+1 = r(ÂDiWi).

The nodes in GCN transmit information through edges, that is, to construct
the adjacency matrix of the graph. How to construct the adjacency matrix is the
key to modeling with graphs. We process the dataset with an object detection
model, and the classification result corresponding to the output of each image is
obtained. First, the number of occurrences of each classification label in the data
set is calculated to obtain the matrix T ∈ R

N×N , where N is the number of class
labels, and both dimensions of the matrix correspond to class labels C ∈ R

1×N .
Ti,j represents the number of co-occurrences of categories Ci and Cj , and the
conditional probability P (Ci|Cj) = Tj,i/Tj,j represents the probability of the
occurrence of the i-th category when the j-th category appears. For example,
when a bicycle appears, there is a high probability that someone will appear
next to it, and when someone appears, the probability of a bicycle appearing
will be much smaller. This is the relationship between people and bicycles.

However, there are two serious problems with the above simple correlation
analysis. First, the co-occurrence pattern between one label and other labels may
exhibit a long-tailed distribution, where some numerically small co-occurrence
times may be due to noise. Second, due to the different datasets in the training
and testing phases, the number of simultaneous occurrences in training and
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testing is inconsistent. Therefore, We binarize the relation matrix T . Specifically,
the noise is filtered by setting a threshold �. The binary relationship matrix is

Aij =
{

0, if P (Ci|Cj) < �

1, if P (Ci|Cj) ≥ �
, (3)

The binary adjacency matrix brings a new problem, node features may be over-
smoothed, so that nodes from different scenes (for example, nodes composed of
categories related to kitchen and living room) may become indistinguishable. To
alleviate this problem, we use the following reweighting scheme:

A′
ij =

{
p/

∑C
j=1 Aij , if i �= j

1 − p, if i = j
, (4)

where A′ is the reweighted relation matrix. The weights of the node itself and
other related nodes are determined by p. When p is close to 1, the characteristics
of the node itself are not considered. On the other hand, when p is close to 0,
the neighbor information is easily ignored. After applying the obtained weighted
relational adjacency matrix A to a multi-layer GCN, we get:

Di+1 = r(Â′DiWi) (5)

where the matrix Â′ is the normalized version of the correlation matrix A′; W
is the transformation matrix to be learned by the i-th layer GCN, Di is the
input node feature of the i-th layer; r is the nonlinear operation, and we use the
LeakyReLU activation function.

In our proposed method, We apply GCN to both image and text side, using
two two-layer GCN networks to capture the dependencies between objects to aid
feature embedding for text and images.

3.4 Bidirectional Attentional Generative Network

The structure of the two generative models is shown in Fig. 5, in which GI gen-
erates a sequence of sentences to make the generated sequence as similar as
possible to the corresponding text description; The purpose of GT is to generate
a realistic image with similar semantics to the corresponding real image. In addi-
tion, they all use the attention mechanism of the Encoder-Decoder framework
to focus on the input sequence when generating a specific word or image region
instead of relying only on the context vector to complete the generative task.

Attentional Text Generative Network. We use the Encoder-Decoder struc-
tures in [25], we use GRU as the main structure of the encoder and decoder, using
the Soft Attention mechanism, which is shown in the upper part of the Fig. 5.
Different from the traditional encoder-decoder structure, after applying atten-
tion, the state of each step of the encoder will be considered when each word in
the target sequence is generated. When the decoder generates each word yi, the
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GT

GI
Attention

Attention

z~N(0,I)

aperson drivesa

e'

v'
Image 

Encoder

Text 
Encoder

up/down
sampling attention residual

Generator Discriminator

Decoder

Fig. 5. Proposed bidirectional generative network’s structure, in which e′ and v′ are
the output of each step of the text encoder and image encoder in Fig. 2.

hidden layer state of the encoder per step is considered, and the current time
step is output more accurately. After the application of attention, the process of
the decoder generates the target sequence has become as follows:

y1 = f(c1)
yi = f(ci, y1, ..., yi−1)

(6)

where ci corresponds to the attention probability distribution of each word
in the input sequence. In general, according to the widely used Soft Atten-
tion mechanism, ci is weighted and obtained through all hidden layers in
the encoder, which is represented as cj =

∑I−1
i=0 αj,iv

′
i, where αj,i =

exp (rj,i)/
∑T−1

k=0 exp (rj,k), rj,i = hT
j v′

i, I represents the number of image region
features. The weight of attention is obtained by comparing the hidden layer
status of the current time decoder and all hidden layers in the encoder.

Attentional Generative Adversarial Network. For the text side, the
embedding vector of the text is combined with the attention mechanism, and
the feature map of the final size is obtained through multiple upsampling. The
image of a specific size is generated by the generator and provided to the dis-
criminator for discrimination. Specifically, for the global feature vector ē and
the local feature vector e obtained by the text encoder, there are the following
formulas:

h0 = F0

(
z, ē′) ,

ĥ =
n∑

i=1

Fi(hi−1, F
att
i (e′, hi−1)),

x̂ = G(h),

(7)

in which z is a noise vector, which is usually sampled from the standard normal
distribution, ē′ is the hidden layer of the last step of the GT encoder in Fig. 5. Fi

represents n feature transformation networks used to sample the feature map, ĥ
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represents the feature map output by the last layer, G(h) is a convolution kernel
with a size of 3 × 3 convolutional neural network, used to generate RGB color
images. In our model, n is 3, and the generated image size is 64 × 64.

Following [26], Fatt has two inputs, namely the word features e and the
hidden state h of the previous layer. First, the word feature is converted into a
semantic space similar to the image features by adding a perceptron layer, i.e.,
e′ = We+b. Then, according to the image’s hidden features (query), the context
vector is calculated for each region-level feature of the image. For j-th area-level
features, the word context vector is expressed as ĉj =

∑T−1
i=0 βj,ie

′
i, where βj,i =

exp (sj,i)/
∑T−1

k=0 exp (sj,k), represents the weight of the word when the model
generates the j-th subregion of the image sj,i = hT

j e′
i. Then the image feature

of the context matrix is generated by F att(e′, h) = (ĉ0, ĉ1, ..., ĉN−1). Finally,
the next stage image is generated by fusing image features and corresponding
context features.

3.5 Global and Local Multi-modal Cross-Attention

The text encoder uses the GRU structure. We use the hidden layer of each time
step as the local vector of the text, all local features are represented by e, and
the last time step hides the layer state ē as a global embedded vector. Similarly,
the local feature vector v and global feature vector v̄ can be obtained.

Aiming at local and global embedding results, we propose Global and Local
Multi-modal Cross-attention (GLMC). GLMC requires four inputs: image local
features v, image global features v̄, Word feature e and sentence feature ē, the
output is the similarity score of the image feature-text pair at the regional level.
We can get the similarity relationship between a certain image area and the
corresponding word embedding: sij = vT

i ej/‖vi‖ ‖ej‖, i ∈ [1, k], j ∈ [1, n], in
which k = 36 corresponds to the regional features of 36 images obtained by
bottom-up attention, and n is the number of tokens in the sentence. Then we
normalize the calculated cosine similarity to get the similarity score

s̄ij = relu (sij)/

√√√√
n∑

i=1

relu (sij)
2
, (8)

where relu(x) = max(0, x). In addition, we constructed a global attention
model to calculate the regional context vector of each word (querry): ci =∑n

j=1 αijej , where αij = exp (λ1s̄ij)/
∑n

j=1 exp (λ1s̄ij), λ1 is the inverse temper-
ature coefficient of the softmax function, which is used to adjust the smoothness
of the attention distribution. Inspired by the minimum classification error for-
mula in the speech recognition task [7], we use the following formula to calculate
the similarity between image I and the sentence T :

R(I, T ) = log

(
k∑

i=1

exp (λ2R (vi, ci))

)(1/λ2)

, (9)
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in which λ2 is a magnification factor, which determines how much the importance
of the most relevant word and regional context pair is magnified. When λ2 → ∞,
S(I, T ) approaches maxk

i=1 R (vi, ci).
For a batch of image sentence pairs (Ii, Ti), according to the posterior prob-

ability of sentence Ti matching image Ii is calculated as follows: P (Ti | Ii) =
exp (R (Ii, Ti))/

∑M
j=1 exp (R (Ii, Tj)), where M represents the number of image-

text pairs in each batch. We define the loss function as the negative logarithmic
posterior probability of an image that matches its corresponding text description:

Lr = −
M∑

i=1

log P (Ti | Ii) −
M∑

i=1

log P (Ii | Ti) . (10)

We define R(I, T ) =
(
v̄T ē

)
/(‖v̄‖‖ē‖) for the global text and image embedding,

from this, the global matching loss Lg can be obtained. Finally, the objective
function of GLMC is defined as:

LGLMC = Lr + λ3Lg, (11)

in which λ3 is used to adjust the weight between the global loss Lg and the local
loss Lr.

3.6 Object Function

BiKA’s objective function is mainly divided into three parts, namely matching
loss LGLMC , image-to-text generation loss Lcap, and text-to-image generation
loss Lgen, we define the final objective function of the BiKA network as

L = LGLMC + Lcap + Lgen (12)

For the captions generation part, the visual representation obtained at each
step of the model should be able to generate sentences, making it close to the
ground truth captions. Specifically, we use an attention-based encoder-decoder
framework. We maximize the log-likelihood of the predicted output sentence.
The loss function is defined as Lcap = −∑li

t=1 log p
(
yi

t | yi
t−1, Vi; θi

)
, where li is

the length of the output word sequence Yi = (yi
1, ...y

i
l ) in the i-th step. θi is the

parameter of the sequence-to-sequence model. The generator loss Lgen is defined
as

Lgen = −1
2

Ex∼pG
[log D (x)]

︸ ︷︷ ︸
uncondition

−1
2

Ex∼pG
[log D (x, ē)]

︸ ︷︷ ︸
condition

(13)

in which the unconditional loss is used to make the generated image more real-
istic, and the conditional loss is used to make the generated image more match
the original text description. In contrast to the training of the generator, the
discriminator is trained to judge the authenticity of the input by minimizing a
defined cross-entropy loss
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LD = −1
2

Ex∼pdata [log D (x)] − 1
2

Ex∼pG
[log (1 − D (x))]

︸ ︷︷ ︸
uncondition

−1
2

Ex∼pdata [log D (x, ē)] − 1
2

Ex∼pG
[log (1 − D (x, ē))]

︸ ︷︷ ︸
condition

.

(14)

4 Experiments

We use two popular datasets: MS-COCO [16], and Flickr30k [27] datasets, and
we evaluated our method on these two datasets. The division of the model is
provided by [13]. The training set of MS-COCO has 113287 images, the valida-
tion set and the test set each have 5000 images, and each image corresponds to
5 captions. The training set of Flickr30k has 2800 images, the validation set and
the test set each have 5000 images, and each image corresponds to 5 captions.
We set � in Eq. (3) to be 0.4 and p in Eq. (4) to be 0.2.

4.1 Quantitative Analysis

Table 1 summarizes the performance comparison results of the MS-COCO 1K
test set. We can see that our BiKA model achieves the best performance, sur-
passing all baselines. Our method has the same backbone as SCAN. On R-1, the
relative gains from image to text and text to image are 6.7% and 6.8%, respec-
tively; on R-5, the relative gains from image to text and text to image are 1.8%
and 2.1%, respectively; on R-sum, the relative gain is 2.7%. In the MS-COCO 5k
test set, these gains are 8.1%, 4.4%, 1.4%, 2.3%, 2.4%. Table 2 summarizes the
performance comparison results of the Flickr30K 1K test set. We can see that
the relative gains of image-to-text and text-to-image on R-1 between our method
and SCAN are 11.6% and 12.8%, respectively. The relative gains of image-to-text
and text-to-image on R-5 are 9.4% and 10.2%, respectively. The relative gains
from image to text and text to image on R-10 are 1.4% and 6.1%, respectively.
On R-sum, the relative gain is 5.4%. In addition, in comparison with the new
method [2,10,14,22–24], our model still has a relatively significant advantage.
Therefore, it can be seen from the above comparison that the BiKA model is
effective in assisting embedding.

4.2 Qualitative Analysis

We demonstrate some examples of fine-grained image-text matching in Fig. 6,
some text retrieval examples of a given image query sentence in Fig. 7, and a
given image in Fig. 8 A search example of a text query image.

As shown in Fig. 6, we visualize fine-grained text matching. It can be seen
that when the word is “men,” we mainly focus on the two riders in the image.
When the word is “horses,” we also focus on the image. Two horses and two
riders embody the dependency between “horse” and “person.” When there is a
horse in the image, there is usually someone nearby, but when there is a person
in the image, the horse will probably not appear.
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Table 1. Quantitative experimental results on MS-COCO test set.

Method Caption Retrieval Image Retrieval

R-1 R-5 R-10 R-1 R-5 R-10 R-sum

MSCOCO-1K

SCAN [13] 72.7 94.8 98.4 58.8 88.4 94.8 507.9

CAMP [24] 72.3 94.8 98.3 58.5 87.9 95.0 506.8

BFAN [17] 74.9 95.2 / 59.4 88.4 / /

PFAN [23] 76.5 96.3 99.0 61.6 89.6 95.2 518.2

VSRN [14] 76.2 94.8 98.2 62.8 89.7 95.1 516.8

SGM [22] 73.4 93.8 97.8 57.5 87.3 94.3 504.1

IMRAM [2] 76.7 95.6 98.5 61.7 89.1 95.0 516.6

SHAN [10] 76.8 96.3 98.7 62.6 89.6 95.8 519.8

BiKA 77.6 96.5 98.6 62.8 90.3 95.8 521.6

MSCOCO-5K

SCAN [13] 50.4 82.2 90.0 38.6 69.3 80.4 410.9

CAMP [24] 50.1 82.1 89.7 39.0 68.9 80.2 410.0

SGM [22] 50.0 79.3 87.9 35.3 64.9 76.5 393.9

VSRN [14] 53.0 81.1 89.4 40.5 70.6 81.1 415.7

IMRAM [2] 53.7 83.2 91.0 39.7 69.1 79.8 416.5

BiKA 54.5 83.4 91.4 40.2 70.9 80.7 421.1

Table 2. Quantitative experimental results on Flickr30k test set.

Method Caption Retrieval Image Retrieval

R-1 R-5 R-10 R-1 R-5 R-10 R-sum

SCAN [13] 67.4 90.3 95.8 48.6 77.7 85.2 465.0

CAMP [24] 68.1 89.7 95.2 51.5 77.1 85.3 466.9

BFAN [17] 68.1 91.4 / 50.8 78.4 / /

PFAN [23] 70.0 91.8 95.0 50.4 78.7 86.1 472.0

VSRN [14] 71.3 90.6 96.0 54.7 81.8 88.2 482.6

SGM [22] 71.8 91.7 95.5 53.5 79.6 86.5 478.6

IMRAM [2] 74.1 93.0 96.6 53.9 79.4 87.2 484.2

SHAN [10] 74.6 93.5 96.9 55.3 81.3 88.4 489.9

BiKA 75.2 91.6 97.4 54.8 82.5 88.6 490.1

4.3 GCN Parameter Analysis

Layer Number Analysis. As shown in Fig. 9(a), we have done experimental
comparisons for the effect of the number of GCN layers on the model perfor-
mance. It can be seen from the figure that the performance of the model does
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two men in war uniforms

riding horses in grassy area

Fig. 6. Image text matching examples, showing the contribution of each image region to
the similarity of the current word-image region. The brightness represents the strength
of the similarity, and we select the image area with the similarity greater than a certain
threshold to highlight it with a bounding box.

✔Multiple men sitting in a living room having 
a meeting .
✔Three men having a discussion in an office.
✔A group of men in suits sitting on couches 
talking.
✔a group of men that are sitting around on 
some couches.
✔Group of businessman discussing something 
important.

✖People on motorbikes line up in the street of 
a city.
✔a street that has some motorcycles going 
down it.
✔A few people on motor scooters riding down 
a street.
✔People on motorbikes driving down the road 
in a city.
✔A city street with multiple shops and people 
riding motorcycles.

✔A computer desk with a laptop and 
television by a window .
✔a laptop computer in front of a window with 
indoor plants
✖Two computers on a desk by a bookshelf .
✖A home office with two computers and a 
bookcase
✔A laptop on a desk in front of a window .

✔A blue bus is parked by a strip of grass .
✔A colorful bus on the street next to a tree .
✔A bus parked on a street next to a tree .
✖A blue and white bus parked in front of a 
brick house .
✖A large blue bus sign sitting on the side of a 
road .

Fig. 7. A few qualitative examples of text retrieval for a given image query. Error
results are highlighted in red and marked with an “×.” reasonable mismatch are black.
(Color figure online)

not improve with the deepening of the GCN. The model can get the best per-
formance when the number of GCN layers is 2.

Node Number Analysis. The number of different nodes may have a greater
impact on the performance of the model. We use Faster-RCNN [20] to predict
the dataset, obtain the co-occurrence matrix between objects, and sort by the
appearance frequency of the objects, according to the order of appearance fre-
quency. We select 40, 80, 120, 160, 200, 240, 280 objects respectively, and obtain
the word embeddings of the corresponding words through the pre-trained GloVe
model and use them as graph nodes, the co-occurrence matrix between them
as the adjacency matrix of the graph. The experimental results are shown in
Fig. 9(b). It can be seen from the figure that when the number of nodes is small,
as the number of nodes increases, the performance of the model is also enhanced,
but when the number of nodes reaches 160 or more, the performance of the model
no longer increases, even to a certain extent. The weakening. Therefore, we select
160 nodes as GCN graph nodes to assist text and image embedding.
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View from gate of jet connected to jet way for passengers to board or deplane.

A little boy in a baseball uniform holds the bat ready to swing.

a woman going to touch a horse in a field.

A young man is standing away from the traffic.

Fig. 8. A few qualitative examples of image retrieval for a given text query. Correct
results are highlighted with a green border, and incorrect results are highlighted with
a red border. A reasonable mismatch is highlighted with a blue border. (Color figure
online)
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Fig. 9. The effect of GCN parameters on performance, where (a) represents the effect of
the number of GCN layers, and (b) is the effect of the number of nodes on performance.

4.4 Visualization

In Fig. 10, we use t-SNE [18] to visualize the output of the last layer of GCN. It
can be seen that the semantics of nodes show clustering patterns. Specifically,
in the visualization on the image side, objects are more likely to appear at the
same time in the same scene, For example, “baseball” and “baseball glove,”
“keyboard” and “mouse,” and so on. They all have similar semantics. The same
characteristics are also shown in the text-side GCN output visualization. Our
method is effective in modeling the dependencies between objects.
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Fig. 10. Visual representations of GCN output, where (a) represents the output on the
image side, and (b) represents the output on the text side.

4.5 Ablation Experiments

We perform ablation experiments to demonstrate the gain of our modification
on mutual retrieval performance between text and images. The results of the
corresponding four models are shown in Table 3. It can be seen that our changes
to the model are effective, in which the effect of GCN is significant.

Table 3. Comparison of ablation experiment results. “Bi-Gen” represents the bidi-
rectional generative network in Fig. 5. “GCN” means knowledge-assisted embedding
structure. “Pos-Emb” means position relation embedding module, and “Cross-Att”
means fine-grained text image matching.

Bi-Gen GCN Pos-Emb Cross-Att R-sum

MS-COCO Flickr30k

� 514.0 481.2

� 512.3 471.2

� 512.2 472.3

� � 516.2 482.7

� � 516.1 483.3

� � 514.3 483.1

� � � 518.6 487.9

� � � � 521.6 490.1

5 Conclusion

In this paper, we proposed BiKA, which uses external knowledge to assist text
and image embedding, models the dependencies between objects, and aggregates
the information of each node through the GCN network. At the same time,
we explored a new positional relationship embedding structure, which makes
the distance information, orientation information between objects, and the area
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information of each object embedded in the feature vector, which enhances the
expressive ability of the model. In addition, we propose a bidirectional generative
structure to constrain the extraction of features through the mutual generation
of images and text. Our work has promising results on two public datasets. We
have done sufficient experimental analysis and provided the visualization effect of
node characteristics, which proves the robustness of our method. We conducted
ablation experiments to prove that each structural change is effective.
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Abstract. Vision transformers have recently shown remarkable perfor-
mance in various visual recognition tasks specifically for self-supervised
representation learning. The key advantage of transformers for self super-
vised learning, compared to their convolutional counterparts, is the
reduced inductive biases that makes transformers amenable to learn-
ing rich representations from massive amounts of unlabelled data. On
the other hand, this flexibility makes self-supervised vision transform-
ers susceptible to overfitting when fine-tuning them on small labeled
target datasets. Therefore, in this work, we make a simple yet effec-
tive architectural change by introducing new learnable masked tokens to
vision transformers whereby we reduce the effect of overfitting in transfer
learning while retaining the desirable flexibility of vision transformers.
Through several experiments based on two seminal self-supervised vision
transformers, SiT and DINO, and several small target visual recognition
tasks, we show consistent and significant improvements in the accuracy
of the fine-tuned models across all target tasks.

Keywords: Vision transformer · Transfer learning · Computer vision

1 Introduction

Deep learning on small datasets usually relies on transferring a model that is
pretrained on a large-scale source task [25]. Recent concurrent advancements in
transformers [1] and self-supervised pretraining [9–12] have made self-supervised
Vision Transformers (ViTs) a viable alternative to supervised pretraining of Con-
volutional Networks (ConvNets) [5–7]. Mainly based on self-attention [1,4] and
multi-layer perceptron, ViTs have shown improved performance over the state-
of-the-art ConvNets on large datasets [2,3,62,64] while retaining computational
efficiency [23,24]. Considering that collecting large volumes of unlabeled data is
becoming increasingly easier, a practical approach for transfer learning would
be to pretrain ViTs with self-supervision and then fine-tune them on the down-
stream task with a small amount of labeled data.
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The supremacy of ViTs for self-supervised learning over ConvNets can be
attributed to the reduced inductive biases of ViTs which facilitates learning from
the abundance of unlabelled data that is commonly available for self-supervised
learning. However, this comes at a cost. That is, such flexibility of ViTs makes a
fully-fledged fine-tuning of them on small target datasets susceptible to overfit-
ting. This is due to the fact that the dense self-attention among image patches
in ViTs is more likely to find spurious patterns in small datasets. This makes the
locality and sparsity inductive biases of ConvNets, in contrast to ViTs, crucial
for fine-tuning on small amount of labelled data.

Fig. 1. An overview of the vision transformer with masked tokens. The part in the
dashed rectangle is the proposed structural augmentation.

Therefore, in this paper, we aim at alleviating overfitting of fine-tuning self-
supervised ViTs on small, domain-specific target sets while preserving their flex-
ibility when learning from large unlabeled data. To this purpose, we propose
masked tokens, a simple and flexible structural augmentation for self-attention
layers. Each masked token aggregates a selected subset of patches to draw out
sparse informative patterns. By varying the subset size from small to large,
masked tokens encode the spatial information at different sparsity levels. We
augment a self-attention layer by adding all the masked tokens to regular ones
such that its output contains not only dependencies between patches, but also
among different sparsity levels. Furthermore, we employ a data-driven method
and two regularization techniques to learn the patch selection function for each
masked token that can select patches with the most informative sparse patterns.
The introduced sparsity makes the fine-tuning less prone to overfitting while the
learnt selectivity retains the benefits of ViTs. Importantly, the proposed masked
tokens are trained to encode details from local regions, reminiscent of the locality
bias in the convolutional layers but with two key differences that the locality (i)
can be learnt and (ii) can happen at various levels.

We summarize our contributions as below.

– We mitigate the overfitting of fine-tuned self-supervised ViTs by integrating
sparsity and locality biases of ConvNets through masked tokens.
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– We propose data-driven mechanisms to dynamically select the local region
individually for each masked token and at different sparsity levels.

– We conduct extensive experiments on two self-supervised ViTs and various
target tasks which show effectiveness of learnable masked tokens for ViTs.

2 Vision Transformers with Learnable Masked Tokens

2.1 Background: Vision Transformers

Given an input image I ∈ RH×W , it is divided into T non-overlapping patches
{pi ∈ RP×P }T and flattened into a sequence, where T = �HW

P 2 �. A trans-
former [1] consists of L identical blocks with residual connections [33,34]. Each
block processes the input patch sequence {pi} as

Z0 = [hcls;F(p1) + e1; · · · ;F(pT ) + eT ], (1)
Z′

l = MSA(LN(Zl−1)) + Zl−1, (2)
Zl = MLP(LN(Z′

l)) + Z′
l, (3)

y = softmax(MLP(Z0
L)), (4)

where MSA, MLP, LN and softmax(·) respectively indicate multi-head self-
attentions, MLP with GELU, layer normalization and softmax. F(·) is a convolu-
tional feature extractor and {ei}T are position embeddings. Further, a learnable
class token hcls ∈ Rd is used at the beginning of the sequence to globally repre-
sent entire image by taking an attention-weighted sum of every patch.

We augment ViT blocks by introducing masked tokens, which can alleviate
overfitting by masking out redundant regions of input images. Given the sequence
Zl\hcls = [z1l ; · · · ; zTl ] of input tokens for layer l + 1, we construct N masked
tokens {sjl }N via selecting and aggregating a subset of patch tokens for each sjl
using a selection function G(·, ·). More specifically, the subset Sj

l ⊂ Zl of tokens
selected for sjl can be presented as

Sj
l = {zi1l , · · · , z

iMj

l },Mj = �j · T

N
�, (5)

where Mj defines the sparsity level of sjl indicating the size of the informative
sub regions for encoding. Then sjl can be produced by aggregating Sj

l using any
permutation-invariant pooling. We use mean pooling in this work. Finally, the
generated masked tokens for this layer are appended at the end of Zl:

Z̃l = [hcls; z1l ; · · · ; zTl ; s1l ; · · · ; sNl ]. (6)

This augmented Z̃l is then fed to the MSA layer instead of the original Zl. For
two consecutive augmented MSA layers1 l and l + 1, where masked tokens sjl

1 We omit LN and MLP layers in between for convenience.
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and self-attention output zT+j
l are both there, we combine these two parts using

a weighted summation as

s̃jl = αsjl + (1 − α)zT+j
l , (7)

where α is a hyper-parameter set to 0.2 as default. In such cases, s̃jl will replace
sjl in Eq. (6) as masked tokens.

Figure 1 illustrates the workflow of an augmented self-attention. We name the
number of masked tokens N as the sparsity granularity since it spans the sparsity
level, from sparse to dense, that masked tokens cover. It is also worth noting that
despite the fact that a single masked token can only encode information for a
region, with multi-head MSA layers, it can be extended to multiple regions.

2.2 Learning the Selection Function

We propose a data-driven approach to learn the patch selection function G(·, ·)
such that it can choose the most informative patches for masked tokens. We
reformulate it as a corresponding ranking problem, where each masked token sjl
takes the top Mj patch tokens based on ranking scores oj

l = {oi,jl }T . To obtain
oj
l , we define a set of new parameters {wj

l ∈ Rd}N to dot-product with each zil,
whose score oi,jl can be computed as

oi,jl = (zil)
ᵀwj

l . (8)

We name wj
l as Masked Query Embedding (MQE), it can be seen as a learned

query that selects the (masked) tokens. It is worth mentioning that similar to
position embedding, when N is changed, wj

l can be interpolated to match the
new sparsity granularity. Now the selection function G(·, ·) can be further defined
as

G(z1:Tl ,Mj ;w
j
l ) = argsort(oj

l )z
1:T
l |1:Mj

, (9)

where argsort(·) returns a T × T matrix whose rows are one-hot vectors, indi-
cating the location of i-th largest value at the i-th row. ·|1:Mj

means it takes
only the top Mj rows as the output.

To overcome the discrete nature of argsort(·), we approximate it by a dif-
ferentiable relaxation named SoftSort [14], denoted by SS(·):

SS(oj
l ) = softmax

(
|sort(oj

l )1
ᵀ − 1(oj

l )
ᵀ|

τ

)
, (10)

where softmax(·) is applied row-wise. sort(·) returns a sorted input. | · | takes
element-wise absolute value and τ is a temperature set to 0.1 by default. By
replacing argsort with SS, wj

l can be learnt jointly with other network weights.
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2.3 Regularizations on Masked Tokens

We additionally introduce two regularizations that directly work on masked
tokens to stabilize the training. First, to avoid masked tokens collapsing due
to overlapping patches [11,52], we add a linear classifier C(·) at the top of the
last layer to identify the sparsity index j associated to each masked token fea-
tures. This is trained with the cross-entropy loss Lsparse:

Lsparse = − 1
N

N∑
j=1

δᵀ
j log(C(zT+j

L )), (11)

where δj is the one-hot vector with one at element j. Conversely, we use con-
trastive loss [13], to have masked tokens of the same image with maximal sim-
ilarities to each other. Specifically, given a batch of images {Ik}K , we consider
any pair of the form (zT+j1

k1
, zT+j2

k1
) as a positive pair2, and the rest as negative

pairs. We compute the contrastive loss Lcon between the positive pairs like

Lcon(zT+j1
k1

, zT+j2
k1

) = − exp (cs(zT+j1
k1

, zT+j2
k1

))

exp (cs(zT+j1
k1

, zT+j2
k1

)) +
∑N·(K−1)

j,k �=k1
exp (cs(zT+j1

k1
, zT+j

k ))
,

(12)
and the total contrastive loss Ltotal_con as

Ltotal_con =
1

K · N · (N − 1)

K∑
k=1

N∑
j1=1

N∑
j2 �=j1

logLcon(z
T+j1
k , zT+j2

k ), (13)

here cs(·) is a cosine-similarity function.

3 Experiments

In this section we evaluate the effectiveness of learning masked tokens on var-
ious image benchmarks. This aim of the proposed modifications is to improve
the transferability of self-supervised ViTs. Thus, we mainly focus on fine-tuning
pretrained models on small datasets. We only consider image-level classification
tasks to simplify the architectural choices of the backbone.

3.1 Configurations

Baselines. We apply two state-of-the-art self-supervised ViTs as our pretraining
schemes and baselines: SiT [8] and DINO [9].

– SiT [8] replaces the class token hcls with two tokens, namely a rotation token
hrot and a contrastive token hcontr, such that it can be trained by predicting
image rotations [15] and maximizing the similarity between positive pairs [13].
Furthermore, it features another regularization task where corrupted inputs
are reconstructed via inpainting.

2 We remove the layer index l, and replace it with the image index k for convenience.
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Table 1. Top-1 accuracy (%) for linear evaluations on CIFAR datasets. All the baseline
performance are reported from [8].

Method Backbone CIFAR-10 CIFAR-100

DeepCluster [41] ResNet-32 43.31 20.44

RotationNet [15] ResNet-32 62.00 29.02

Deep InfoMax [42] ResNet-32 47.13 24.07

SimCLR [12] ResNet-32 77.02 42.13

Rel. Reasoning [43] ResNet-32 74.99 46.17

Rel. Reasoning [43] ResNet-56 77.51 47.90

SiT [8] ViT-B/16 81.20 55.97

MT SiT (ours) ViT-B/16 81.98 57.18

– DINO [9] takes a self-distillation paradigm by simultaneously updating the
teacher with an exponential moving average and encouraging the student to
have similar outputs as the teacher. Such objective is further optimised using
multi-crops augmentation to ensure consistency between different scales.

Implementations. We implement our proposed augmentations based on their offi-
cially released codes in PyTorch. Our pilot studies show that augmenting many
layers with masked tokens will show diminishing return. Thus, unless specified
otherwise, we use a single ViT variant by replacing the MSA layers in the last
four blocks with the augmented ones, and set the default sparsity granularity to
4. To reduce the computational cost we only do the token selection for the first
of the four augmented blocks. For both baselines, we refer to their augmented
ones with the prefix “MT”. All experiments are done with 8 Nvidia A100 GPUs.

3.2 In-domain Transfer Learning

We first present the results using the SiT-based [8] pretraining on three datasets:
CIFAR-10/100 [17] and STL-10 [19]. For a fair comparison, we follow the same
experimental protocols as [8] including random seeds, hyper-parameters and data
augmentations. In this way, we first train the model on the entire dataset using
SiT losses, then fine-tune the model on a fully labeled subset. Since both source
and target are from the same domain, we refer it as In-domain Transfer Learning
(IdTL) in the rest of the paper. ViT-B/16 will be our default backbone.

IdTL for CIFAR-10 and CIFAR-100

Linear Evaluation. We first report the linear evaluation results in Table 1 to
make sure that masked tokens won’t degrade the pretrained features due to
additional model complexities. As we can see, MT SiT can outperform ConvNet-
based methods by significant margins of 4.47 percentage points on CIFAR-10
and 9.28 on CIFAR-100. However, such gains become smaller when compared
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Table 2. Top-1 accuracy (%) of IdTL on CIFAR datasets. Referred to as ‘few-shot’
in [8].

Method 1% 10% 25%

CIFAR-10
[43] 76.55 80.14 85.30

SiT [8] 74.78 87.16 92.90

MT SiT (ours) 82.52 92.23 95.60

CIFAR-100
[43] 46.10 49.55 54.44

SiT [8] 27.50 53.72 67.58

MT SiT (ours) 24.51 61.39 72.69

with SiT, with only 0.78 for CIFAR-10 and 1.21 percentage point for CIFAR-
100. This supports the assumption that the architectural change of introducing
masked tokens would not make overfitting worse.

Fine-Tuning. Following [8], we fine-tune the MT SiT on subsets with different
percentage of available labels. From Table 2, we can observe significant improve-
ments over the SiT baseline in most cases. More specifically, we achieve 7.74, 5.07
and 2.70 percentage point improvements on CIFAR-10 with only 1%, 10% and
25% of labels. Moreover, in most cases MT SiT can achieve higher performance
gain over the vanilla SiT when fine-tuning labels become much less, indicating
the positive effects for reducing overfitting brought by masked tokens. On the
other hand, while we can find similar improvements on CIFAR-100 with 10%
and 25% labels, MT SiT performs worse than the SiT baseline and has a nearly
20 percentage point gap with the ConvNet baseline [43]. We argue that this is
due to too few training samples to learn meaningful patterns on the target set.
In such cases, fine-tuning can have a high variance and furthermore attentions
between masked tokens may put an overly strong emphasis on localities, causing
the drop in transferability.

IdTL for STL-10. Now we consider the STL-10 [19] dataset, which contains
100, 000 unlabeled and 5, 000 labeled training images. Thus, compared to CIFAR,
it almost doubles the pretraining size while keeping the target set small. We
directly fine-tune our models with all training labels without further dividing
them into various subsets.

Fine-Tuning. Table 3 summarizes the fine-tuning results for STL-10. Similar to
the CIFAR, MT SiT consistently outperforms the SiT and other ConvNet base-
lines with a small 1.84 percentage points margin, showing the relative effective-
ness of involving masked tokens for fine-tuning. Moreover, the experiments on
three popular benchmarks, so far, suggest that ViTs could benefit from masked
tokens for IdTL on small datasets.
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Table 3. IdTL comparisons with SOTAs on STL-10 dataset.

Method Backbone Fine-tuning (%)

Exemplars [37] Conv-3 72.80

Artifacts [38] Custom 80.10

ADC [39] ResNet-34 56.70

Invariant Info Clustering [40] ResNet-34 88.80

DeepCluster [41] ResNet-34 73.37

RotationNet [15] ResNet-34 83.22

Deep InfoMax [42] AlexNet 77.00

Deep InfoMax [42] ResNet-34 76.03

SimCLR [12] ResNet-34 89.31

Relational Reasoning [43] ResNet-34 89.67

SiT [8] ViT-B/16 93.02

MT SiT (ours) ViT-B/16 94.86

Table 4. Ablation studies of pretraining the MT SiT with different components on the
STL-10 dataset.

Method MT Lsparse Lcon G(·, ·) Linear Fine
tuning

SiT [8] - - - - 78.58 93.02

MT SiT
(ours)

✓ 71.95 94.22

✓ ✓ 68.77 93.89

✓ ✓ 69.47 94.00

✓ ✓ 77.71 94.44

✓ ✓ ✓ 78.75 94.78

✓ ✓ ✓ ✓ 78.99 94.86

Ablation Study. We further perform ablation studies on STL-10 to understand
how each component affects the performance. The corresponding results are
listed in Table 4. Although the fine-tuning accuracy can be boosted by any of
the individual components, randomly selecting patches (as opposed to G), pre-
training with no or partial regularizers has produced worse self-supervised fea-
tures than the complete model. Therefore, all proposed components seem to be
important for achieving the best performance.

Visualization. This additional qualitative study investigates how the learnt
masked regions are spatially distributed by visualizing selected patches of each
masked token at the first augmented block. We randomly sample 10 examples from
STL-10 and highlight the positions of selected patches using different colors for
each masked token in Fig. 2. Overall, in most cases, the majority of patches in the
same sparsity level are spatially close to each other, forming local clusters that
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Fig. 2. Visualized examples from STL-10 datasets showing selected patch tokens at
the first augmented MSA layer for each sparsity level using the learnt selection.

Table 5. Accuracy on ImageNet-1K. We list both results that reported from [9] (top)
and trained by ourselves (bottom) to assure comparison is fair. ‘FT’ means ‘fine-tune’.

Method Arch KNN Linear FT-10% FT-20%

BYOL [11] ViT-S 66.6 71.4 N/A N/A
MoCov2 [10] ViT-S 64.4 72.7 N/A N/A
SwAV [16] ViT-S 66.3 73.5 N/A N/A
DINO [9] ViT-S 73.3 76.0 N/A N/A
DINO (300
epochs)

ViT-S/16 73.06 75.83 58.48 68.46

MT DINO (4
masked
tokens)

ViT-S/16 73.10 75.93 57.71 68.69

MT DINO (28
masked
tokens)

ViT-S/16 73.08 75.90 60.26 70.02

cover multiple small regions. This lends evidence that masked tokens can indeed
encode local information from the informative sub-regions at various sparsity lev-
els in the image. On the other hand, it is also surprising to see that low-level tokens
tend to select the patches lying outside of the main interested object in many cases,
which is slightly counter-intuitive. We conjecture about this observation as the use-
fulness of the associated contexts for reducing overfitting. While global attentions
are pretrained to focus on the interested object due to large pretraining samples,
the secondary contents also becomes informative and complimentary when the
training size decreases during the fine-tuning. Low-level masked tokens are flex-
ible enough to be tuned to capture such information.

IdTL for ImageNet-1K. Here we consider a larger pretraining source i.e.,
ImageNet-1K [18], which serves as a fundamental pretraining source for many
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small datasets. Since SiT [8] doesn’t report ImageNet-pretrained results, we
switch to another state-of-the-art baseline DINO [9] to avoid any setting incon-
sistencies. Besides, due to our hardware limitations, we can only afford to train
DINO and MT DINO using ViT-small (ViT-S) [2]. Similar to previous experi-
ments, we follow the same protocol provided by the official baseline implemen-
tation.

KNN and Linear Classification. Like [9], we do KNN (K = 20) and linear
classification for self-supervised features first, whose results are in the middle two
columns in Table 5. Compared with the baseline, MT DINO does not show clear
improvements for either KNN or linear evaluation, implying that masked tokens
may not be necessarily helpful when the pretraining size is large enough, as even
the most informative localities are likely to be modelled by global attentions.

Fine-Tuning with Increased Number of Masked Tokens. We further inspect the
fine-tuning on two subsets of ImageNet-1K with only 10% and 20% labels, and
report their accuracy in the last two columns of Table 5. Surprisingly, we ini-
tially find MT DINO with default number of scale tokens are outperformed by
the baseline on 10% labeled subset with a 0.77 percentage point margin. We then
increase the sparsity granularity up to 28 and find the performances are boosted
by 2.55 and 1.33 for each subset. We speculate that as the dataset size grows,
there are enough samples for the global patch tokens to model some sparse and
local patterns, therefore, more masked tokens are needed to become complemen-
tary in addition to the standard tokens. Thus, a proper sparsity granularity is
also important. Moreover, comparing with Sect. 3.2, the performance gain signif-
icantly drops, implying masked tokens may become less effective as dataset size
increases. This also coincides with [2] that ViTs may beat ConvNets as training
set size grows.

Costs for Introducing Masked Tokens. Here we briefly discuss the additional
model complexity and time consumption added by masked tokens. It is easy to
see that the only new model weights are MQE for the first augmented block,
bringing around 1%(4/384) more parameters than any projections of a self-
attention layer in our implementation. Thus, the computational overhead of
masked token is quite negligible. Meanwhile, the inference time using 4 and 28
tokens increases 1 and 5 s respectively on the entire ImageNet validation set,
showing that the extra computational costs don’t affect the ViT’s efficiency too
much.

3.3 Cross-Domain Transfer Learning

We now conduct experiments of transferring ImageNet-pretrained ViTs to vari-
ous domain-specific datasets, which is closer to the mainstream transfer learning
applications. Compared to Sect. 3.2, the target datasets exhibit a significant
domain shift from the source, making them more challenging. Thus, we refer to
such tasks as Cross-domain Transfer Learning (CdTL) in contrast to IdTL. We
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Table 6. CdTL performance comparing with SOTA baselines for fine-grained recog-
nition on CUB200-2011 dataset. The input size is 448. Baselines that outperform MT
DINO are underlined.

Method Backbone Supervised pretraining? Accuracy
(%)

RA-CNN [30] VGG-19 ✓ 85.30

ResNet-50 [6] ResNet-50 ✓ 85.50

M-CNN [31] VGG-16 ✓ 85.70

GP-256 [45] VGG-16 ✓ 85.80

MaxEnt [46] DenseNet161 ✓ 86.60

DFL-CNN [47] ResNet-50 ✓ 87.40

Nts-Net [32] ResNet-50 ✓ 87.50

Cross-X [50] ResNet-50 ✓ 87.70

DCL [49] ResNet-50 ✓ 87.80

CIN [48] ResNet-101 ✓ 88.10

ViT [2] ViT-B/16 ✓ 90.80

TransFG [51] ViT-B/16 ✓ 91.70

DINO [9] ViT-S/16 ✗ 86.47

MT DINO ViT-S/16 ✗ 86.68

MT DINO (28
masked tokens)

ViT-S/16 ✗ 87.38

continue using ViT-S/16 [2] as the backbone and DINO [9] for self-supervised
pretraining on ImageNet-1K.

Comparison with the State-of-the-Art. We compare the MT DINO with
DINO and other related baselines on four small datasets from three different
domains, CUB-200-2011 birds [20] for fine-grained recognition, SoybeanLocal
and Cotton80 [21] for ultra fine-grained recognition, and COVID-CT [22] for
medical imagery-based diagnosis.

Fine-Grained Classifications (FG). Table 6 lists the accuracy for MT DINO and
other state-of-the-art baselines on CUB birds dataset. MT DINO can achieve
∼ 1 percentage point improvement over vanilla DINO with 28 masked tokens
and a comparable result with most ConvNet baselines. It is worth emphasis-
ing that computational cost prevents us from getting higher performance by
either pretraining on larger datasets or using larger backbones. Besides, those
outperforming baselines (underlined in the table) are achieved by extra mecha-
nisms such as fully-supervised pretraining on larger datasets using more powerful
backbones [2,51], or fine-tuned with FG-specific losses [32,48–50]. We believe this
does not undermine the effectiveness of masked tokens.

Ultra Fine-Grained Classifications (UFG). Comparing to the FG, UFG requires
more subtle details to distinguish its categories, effectively rendering the available
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Table 7. CdTL performances for UFG datasets. Same as [21], the input size is set to
384.

Method Backbone Supervised pretraining? Soybean Local Cotton80

Nts-Net [32] ResNet-50 ✓ 42.67 51.67

ADL [35] ResNet-50 ✓ 34.67 43.75

Cutmix [36] ResNet-50 ✓ 26.33 45.00

MoCov2 [10] ResNet-50 ✗ 32.67 45.00

BYOL [11] ResNet-50 ✗ 33.17 52.92

SimCLR [12] ResNet-50 ✗ 37.33 51.67

ViT [2] ViT-B/16 ✓ 39.33 51.25

BeiT [3] ViT-B/16 ✓ 38.67 53.75
TransFG [51] ViT-B/16 ✓ 38.67 45.84

DINO [9] ViT-S/16 ✗ 41.33 49.58

MT DINO ViT-S/16 ✗ 41.17 51.67

MT DINO (28
masked
tokens)

ViT-S/16 ✗ 43.33 53.75

Table 8. CdTL performances for COVID-CT dataset.

Method Backbone Supervised
pretraining?

Accuracy (%)

DenseNet [44] DenseNet-169 ✓ 84.65

DINO ViT-S/16 ✗ 83.25

MT DINO ViT-S/16 ✗ 82.76

MT DINO (28 masked tokens) ViT-S/16 ✗ 85.22

data even smaller. Table 7 shows the comparison with multiple ViT and ConvNet
baselines on SoybeanLocal and Cotton80 datasets, which only have 600 and 240
fine-tuning samples for each. It is encouraging to see that MT DINO performs
2.00 and 4.17 percentage points better than DINO with 28 masked tokens on
the two datasets respectively, and outperforms most baselines. Especially, MT
DINO can improve over ViT baselines [2,3,51] that use more powerful backbones
and supervised pretraining, demonstrating the usefulness of masked tokens for
reducing overfitting. Similar to ImageNet results, more scale tokens help improve
the fine-tuning performance.

Medical Imagery-Based Diagnosis. We conduct domain-specific transferability
experiments on COVID-CT dataset [22], which contains only 425 samples for
fine-tuning. The results are shown in Table 8. Similar to the UFG, we achieve
a better performance than baselines with increased masked token number than
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the default case, which provides corroborates to our assumption that higher
performance can be achieved with more masked tokens.

Fig. 3. Performance varia-
tions versus masked tokens
numbers (sparsity granular-
ity) on CdTL tasks.

(a) 4 masked tokens. (b) 28 masked tokens.

Fig. 4. Average attention values of classification
head and each masked tokens across different
datasets and token numbers.

The Impact of Sparsity Granularity. Inspired by previous observations
w.r.t. the number of masked tokens, we further study the relationship between
the performance and the masked tokens in two more experiments.

Granularity vs. Performance. We plot the line chart in Fig. 3 to show the per-
formance gains with different masked token numbers on all four CdTL datasets.
Overall, despite a few exceptions, the performance increases as masked token
number grows for all datasets, confirming that more sparsity levels can yield
better results. However, after a certain point, the performance begins to drop as
number continue growing. This is expected as too many masked tokens can carry
many overlapped patches, leading to a higher chance of overfitting on smaller
sets. Thus, it is not always good to keep a large masked token number.

Attentions for Masked Tokens. We additionally compute the attention values
between the class token hcls and each masked tokens, and visualize their means
across multi-heads and samples for UFG and COVID-CT datasets in Fig. 4.
Basically, the patterns of attention are similar when masked token number is
small, where attentions are uniformly distributed across each masked token.
As token number increases, these patterns act differently for each dataset. For
Cotton80, the class token has more dependencies with both the low and high
sparsity levels than the mid level, while such dependencies tend to decrease
from low to high for SoybeanLocal and COVID-CT as their attention values
drop when the sparsity level goes higher. Especially on COVID-CT, tokens with
the lower levels have significantly higher attention than others, indicating the
class token relies more on the lower sparsity level information.
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4 Related Works

Vision Transformers. Inspired by works in NLP [56,57], transformers are intro-
duced into computer vision by iGPT [55]. Later, ViT [2] introduced the class
token for supervised classification and demonstrated its superiority over tradi-
tional CovNets on large-scale datasets. Since it may yield suboptimal perfor-
mance due to venerability of overfitting, works such as [58–64] are proposed
to moderate the effect by strengthening the inductive bias of locality. Some of
which try to aggregate spatial information in smaller regions [58], where oth-
ers focus on removing redundant patches to highlight informative ones [62–64].
Other methods like [59–61] introduce localities by reshaping tokens back to 2D
grids and forward them to a convolution kernel just like ConvNets.

Self-supervised Learning. Numerous techniques are introduced to train a visual
model in a self-supervised fashion. Some earlier works do this by predicting patch
orders [26], image rotations [15], or colorization [27]. Recently, contrastive-based
methods have become increasingly popular [10,12,28,29,52], which augment the
input image into multiple views and optimise the model by maximizing the sim-
ilarity between positive pairs. To prevent from collapsing, [10,12,28] propose to
increase the number of informative negative pairs by constructing large mem-
ory banks or batches, while other works [11,52] build non-gradient-based targets
without explicitly involving negative pairs. Besides, a few methods focus on
clustering-based training [16,53,54], or using transformers as backbones [8,9].

5 Conclusions

We tackle the problem of alleviating overfitting for fine-tuned self-supervised
ViTs on small, domain-specific datasets. We introduce masked tokens, which
mask out redundant regions by aggregating a subset of informative patch tokens.
Defined by their sparsity levels, multiple masked tokens encode different sub
regions of input images with sizes from small to large. With the proposed patch
selection and regularizations, masked tokens can be trained to determine most
interesting encoding regions in a data-driven manner. Via integrating masked
tokens with self-attentions, we augment ViTs with sparsity and locality biases
without altering their core structures. We conduct extensive experiments on var-
ious datasets and have found that masked tokens can more effectively capture
local secondary contents, which can be complimentary to the standard global
attention. Thus with a proper number of masked tokens, an augmented ViT is
more amenable to small sets, and retains capabilities of learning rich represen-
tations when training sets grow larger.
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Abstract. Object detection aims to localize and classify the objects in a
given image, and these two tasks are sensitive to different object regions.
Therefore, some locations predict high-quality bounding boxes but low
classification scores, and some locations are quite the opposite. A mis-
alignment exists between the two tasks, and their features are spatially
entangled. In order to solve the misalignment problem, we propose a
plug-in Spatial-disentangled and Task-aligned operator (SALT). By pre-
dicting two task-aware point sets that are located in each task’s sensitive
regions, SALT can reassign features from those regions and align them to
the corresponding anchor point. Therefore, features for the two tasks are
spatially aligned and disentangled. To minimize the difference between
the two regression stages, we propose a Self-distillation regression (SDR)
loss that can transfer knowledge from the refined regression results to the
coarse regression results. On the basis of SALT and SDR loss, we pro-
pose SALT-Net, which explicitly exploits task-aligned point-set features
for accurate detection results. Extensive experiments on the MS-COCO
dataset show that our proposed methods can consistently boost differ-
ent state-of-the-art dense detectors by ∼2 AP. Notably, SALT-Net with
Res2Net-101-DCN backbone achieves 53.8 AP on the MS-COCO test-
dev.

Keywords: Object detection · Misalignment problem · Spatial
disentanglement

1 Introduction

The main goal of object detection contains two tasks, one is to give the accurate
location of the object in an image (i.e., regression), and the other is to predict
the category of the object (i.e., classification). During the inference step, the
regression and classification results predicted from the same location are paired
together as the detection result. Then the NMS algorithm is usually applied
to remove redundant detection results by taking the classification scores as the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13715, pp. 427–442, 2023.
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(a) Detection Results (b) Classification (c) IoU

Fig. 1. Illustration of the spatial misalignment of classification and regression. In (a),
the blue box denotes the ground truth, and the other boxes are the detection results of
ATSS [34]. The two points are the locations where the detection results are predicted.
(b) and (c) are the distributions of classification and IoU scores over all image pixels,
and “IoU” denotes the intersection over union between the predicted box and the
ground truth. (Color figure online)

ranking keywords. For the same instance, the detection result with a high clas-
sification score will be kept, while others are filtered out. However, the natures
of these two tasks are so distinct that they require features from different object
locations [22]. As shown in Fig. 1, the classification and regression quality (i.e.,
IoU) scores from the same location can be quite different. Classification focus on
the salient part of the object (e.g., the head of the person), while regression is
sensitive to the whole object, especially for its border part. Therefore, the pre-
diction distributions of the two tasks are misaligned. The detection result with
a high classification score can have low-quality regression prediction and vice
versa.

We model the prediction qualities of the two tasks as two Discrete distribu-
tions. Therefore, the goal of solving the misalignment problem is bridging the
gap between these two distributions (i.e., minimizing the distance of their peak
positions).

CNN-based dense detectors utilize a coupled or decoupled head to conduct
classification and regression. As illustrated in Fig. 2(a), the coupled head predicts
the classification and regression results based on the shared features [15,19,20].
As a result, the coupled head structure introduces feature conflicts between the
two tasks and makes them compromise each other. To solve this problem, the
decoupled head structure [28] is proposed and has been widely adopted in recent
years [16,22,23]. As shown in Fig. 2(b), the decoupled head utilizes two parrel
sub-networks to perform regression and classification, respectively. This could
alleviate the conflict problem by reducing the shared parameters. However, the
point features (i.e., the two orange points) that predict the detection result still
share the identical receptive field. In conclusion, both the coupled and decoupled
heads predict the classification and regression results from the spatially identical
and entangled features. Considering the difference in their spatial sensitivity, the
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(a) Coupled (b) Decoupled

Fig. 2. Illustration of the entangled features in the coupled and decoupled heads.

entangled features inevitably make a location prefer one task over the other one,
thereby compounding the misalignment problem.

In this paper, we propose a plug-in operator to address the misalignment
problem: the Spatial-disentangled and Task-aligned operator (SALT). The first
stage of our network is the coarse regression predictions made by a simple Dirac
delta decoder [34]. After that, SALT predicts two sets of spatial-disentangled
points to represent each task’s sensitive regions, respectively. Then we use bilin-
ear interpolation to reassign features from those regions to the corresponding
anchor point. In the second stage, SALT utilizes spatial-disentangled and task-
aligned features to make refined predictions with a General distribution decoder
[12]. Therefore, a single anchor point can obtain accurate regression and clas-
sification predictions simultaneously. Feature reassignment can bring the peak
positions of the two Discrete distributions closer so that SALT can weaken the
impact of the misalignment problem.

In order to minimize the difference between the first and second stage pre-
dictions, we also propose a novel Self-distillation regression (SDR) loss, making
the coarse predictions learn from the refined predictions. As a result, the final
performance got improved without any extra inference cost.

1. We propose an operator that can generate spatial-disentangled and task-
aligned features for regression and classification, respectively.

2. The proposed operator can be easily plugged into most dense object detectors
and bring a considerable improvement of ∼2 AP.

3. Our proposed SDR loss can also boost the overall performance in an inference
cost-free fashion.

4. Without bells and whistles, our best single-scale model (Res2Net-101-DCN)
yields 51.5 AP on the COCO test-dev set, which is very competitive results
among dense object detectors.

2 Related Work

Misalignment: Dense detectors, such as IoU-aware [27], FCOS [23] and PAA
[10] apply an extra branch to predict the regression confidence and combine it
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Fig. 3. Architecture of SALT-Net. Our proposed architecture consists of a backbone,
an FPN (P3-P7), and two subnetworks for classification and regression, respectively.
“ϕ” and “γ” denote Eqs. (2) and (5), respectively. “/” denotes the gradient flow detach-
ment. “KD” denotes our proposed self-distillation approach. “R-points” and “C-Points”
denote the regression-aware and classification-aware points, respectively.

with the classification confidence as the detection score. Different from previ-
ous methods, GFL [13] and VFNet [31] propose a joint representation format by
merging the regression confidence and classification result to eliminate the incon-
sistency between training and inference. TOOD [6] proposes a prediction align-
ment method that predicts the offset between each location and the best anchor
and then readjusts the prediction results. Guided Anchoring [25], RefineDet [35],
and SRN [3] learn an offset field for the preset anchor and then utilize a feature
adaption module to extract features from the refined anchors. RepPoints [29]
and VFNet [31] utilize the deformable convolution [4] to extract accurate point
feature. However, all the aforementioned methods extract features for regression
and classification from the same locations, without considering their spatial pref-
erence. That is, the features for these tasks are spatially entangled, which leads
to inferior performance.

Self-distillation: Model distillation [7] usually refers to transferring knowledge
from a pre-trained heavy teacher network to a compact student network. DML
[36] provides a new paradigm that a pre-trained teacher is no longer needed and
all the student counterparts are trained simultaneously in a cooperative peer-
teaching manner. Following this paradigm, many self-distillation approaches
[8,14,30,32] are proposed for classification knowledge transfer learning. How-
ever, transferring regression knowledge of object detection has been proven to
be difficult [9,26], as different locations of an image have different contributions
to the regression task. LGD [33] is the only self-distillation approach for gen-
eral object detection, which proposes an intra-object knowledge mapper that
generates a better feature pyramid and then performs distillation with feature
imitation. This approach provides performance gains but also introduces too
many auxiliary layers.
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Fig. 4. (a) is the illustration of the regression-aware points. “ϕ” and the white box
denotes Eq. (2) and the coarse bounding box prediction, respectively. (b) is the illus-
tration of the spatial disentanglement method. “γ” denotes Eq. (5).

3 Proposed Approach

In this section, we first detail the proposed operator SALT. Then we introduce
our self-distillation approach that enables the first-stage decoder to learn from
the second-stage decoder. Finally, we introduce the loss function of SALT-Net.

3.1 SALT: Regression-Aware Points

As shown in Fig. 4(a), given the misaligned regression features Fr from the last
layer of the regression tower (i.e., the 3× convolutions shown in Fig. 3), SALT
first predicts the coarse bounding box C with the Dirac delta decoder, as in
[23,34]. The coarse bounding box is represented by the top-left corner and its
width and height (i.e., (xmin, ymin,w, h)).

Then SALT predicts the scale Factors S that measures the normalized dis-
tances between the top-left corner of the coarse bounding box and the regression-
sensitive regions (i.e., regression-aware points ΔPr). Scale factors S and the
coarse bounding box C are obtained by only two convolution layers, i.e.:{ C = δ(convc(Fr))

S = σ(convs(Fr)) (1)

where σ and δ are Sigmoid and ReLU, respectively. C ∈ R
H×W×4, S ∈

R
H×W×(2N−4) and N is the number of the regression-aware points. Then the

location of i-th regression-aware point Δpi can be obtained with Eq. (2):{
xi = xmin + w ∗ Six

yi = ymin + h ∗ Siy
(2)

where (xmin, ymin) is the location of the top-left corner of the coarse bound-
ing box C, and (Six,Siy) are scale factors that measure the normalized dis-
tance between the i-th point and top-left corner. Therefore, the location of the
regression-aware points ΔPr can be represented by:

ΔPr = {Δpr
i }N

i=1 (3)
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Note that all coordinates are represented by taking the location that pre-
dicts the detection result as the coordinate origin. Therefore, the coordinates
mentioned in this section are relative locations, not absolute coordinates.

The total number of the regression-aware points is N , the channels of scale
factors S and the regression-aware points ΔPr are 2N − 4 and 2N , respectively.
The reason for this inconstancy is that we want to ensure that the sampled
regression-aware points contain the four extreme points (i.e., left-most, right-
most, top-most, bottom-most), which encode the location of the object. On this
account, four points are sampled on the four bounds of the coarse bounding box
(i.e., the green points in Fig. 4 (a)), respectively. As the location of the bounding
box has been predicted, four axial coordinates of the extreme points are preset
and do not need to be learned (i.e., xmin, ymin, xmin + w, ymin + h).

3.2 SALT: Classification-Aware Points

Regression and classification are sensitive to different areas of the object. For this
reason, extracting features from the regression-interested-locations hinders the
detection performance. Therefore, SALT contains a spatial disentangle module
to guide the classification branch to generate a set of classification-aware points.
As shown in Fig. 4(b), the regression-aware points act as the shape hypothesis of
the object to be classified. In other words, we take the regression-aware points
as a point-set anchor for predicting the classification-aware points.

Similar to the scale factors, this module also consists of only one convolution
layer. As shown in Fig. 4(b), given the feature map Fc from the last layer of the
classification tower, the disentanglement vectors D are obtained by:

D = δ(convd(Fc)) (4)

With the regression-aware points ΔPr taken as the point-set anchor, we
propose two functions to generate the classification-aware points, as illustrated
by Eqs. (5) and (6). We choose Eq. (5) as the final prediction strategy. Details
and analysis can be found in Sect. 4.2.

ΔPc = eD · ΔPr (5)

ΔPc = D + ΔPr (6)

To make sure the learning process of classification and regression are inde-
pendent of each other. The gradient flow of the regression-aware points ΔPr is
detached from the classification branch. ΔPr only serves as the prior knowledge
in this module. Therefore, the supervision of the classification task does not
affect the learning of regression-aware points.

3.3 SALT: Feature Alignment

The regression-aware and classification-aware points are located in each task’s
sensitive regions, and they are spatially misaligned. Therefore, we aggregate



Rethinking the Misalignment Problem 433

Fig. 5. Illustration of the feature alignment method. The red point denotes the location
that predicts the detection result. (Color figure online)

features from those regions to the same anchor point (shown in Fig. 5). Given
the learned point set ΔP = {Δpi}N

i=1, we use the bilinear interpolation to make
ΔP differentiable. Let {pi}N

i=1 be the sampling window of a regular convolution
grid, where N is the number of grid points. The new irregular sampling locations
can be represented by Eq. (7), and the bilinear interpolation is formulated as
Eq. (8),

P̂ = {p + pi + Δpi | i = 1, . . . , N} (7)

F̂(p) =
∑

p̂

G(p̂, p) · F(p̂) (8)

where F(·) and F̂(·) are the input and output feature maps, and G(·, ·) is the
bilinear interpolation kernel. p̂ ∈ P̂, and p is the location that predicts the
detection result.

The aligned task features are extracted from the locations of the task-aware
points, and then they are used for classification and regression refinement. Dif-
ferent from the first stage, the second regression stage utilizes the General dis-
tribution decoder [13] that outputs the discrete representation of the bounding
box.

3.4 Self-distillation

As Fig. 6 shows, the bottom boundary of the handcrafted annotation is inaccu-
rate and ambiguous, which can misguide and hurt the training process. However,
the network’s localization prediction results sometimes provide better and clearer
regression targets that are easier for the network to learn. For this reason, we
propose a self-distillation regression loss (SDR) that could transfer regression
knowledge from the refined predictions to the coarse ones.

As Eq. 9 shows, R1, R2, and y are the output of the stage-one, stage-two
decoders, and the classification score. IoU1 and IoU2 denote the Intersection
over Union between the ground truth label and the corresponding regression
results, and GIoU is the Generalized Intersection over Union as in [21]. As the
stage-two decoder is fed with better features, we take its outputs as the regression
upper bound of the stage-one decoder. That is, we utilize the integral results from
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Fig. 6. The red and green boxes are the ground truth and the bounding box prediction
made by our stage-two decoder, respectively. (Color figure online)

the Discrete distribution decoder as the soft target for the Dirac delta decoder.
Here, y ·IoU2 denotes the confidence score of the refined regression result, and its
gradient is detached. Thus, SDR loss pays more attention to the high-confidence
prediction results. Notably, SDR loss only penalizes the network when the pre-
dictions of the stage-two decoder are better than the stage-one decoder (i.e.,
IoU2 > IoU1). Our proposed SDR loss enables the coarse predictions to learn
from the refined results and bridges the gap between them. Better stage-one pre-
dictions lead to better stage-two predictions and promote the training process
into positive circulation.

LSDR(R1, R2, y) =
{

y · IoU2 · (1 − GIoU(R1, R2)), if IoU2 > IoU1

0 otherwise (9)

3.5 Loss Function

The proposed SALT-Net is optimized in an end-to-end fashion, and both the
coarse and the refined detection stages utilize ATSS [34] as the positive and
negative targets assignment strategy. The training loss of SALT-Net is defined
as follows:

L =
1

Npos

∑
z

λ0LQ

+
1

Npos

∑
z

1{c∗
z>0} (λ1LR1 + λ2LR2 + λ3LD + λ4LSDR)

(10)

where LQ is the Quality Focal loss [13] for the classification task. LR1 and LR2

are both GIoU loss [21], one for the coarse bounding box prediction and the
other for the refined regression result. LD is the Distribution Focal Loss [13]
for optimizing the general distribution representation of the bounding box, and
LSDR is the proposed self-distillation loss. λ0 ∼ λ4 are the hyperparameters used
to balance different losses, and they are set as 1, 1, 2, 0.5, and 1, respectively.
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Table 1. Ablation study of SALT on the COCO val2017 split. S1 and S2 denote
the stage-one and stage-two regression results. “R-Points” and “C-Points” denote
the regression-aware and Classification-aware points, respectively. “P-anchor” denotes
utilizing the regression-aware points as the point-set anchor for generating the
Classification-aware points. “skip” denotes the skip connection of the classification
tower, as shown in Fig. 3.

Method R-Points C-Points P-anchor skip AP AP50 AP75 APS APM APL

baseline

S1 [34] 39.9 58.5 43.0 22.4 43.9 52.7

S2 [12] 40.9 58.3 44.4 23.9 44.7 53.5

S2 � 41.3 58.7 44.9 23.3 45.0 54.2

S2 � � 41.6 59.1 45.6 23.7 45.4 54.7

S2 � � � 42.1 59.6 45.6 24.8 45.4 55.5

S2 � � � � 42.5 60.1 46.2 25.1 45.9 56.4

S1 � � � � 41.3 58.6 44.9 23.2 45.1 54.2

Fig. 7. Visualization of the regression-aware (upper row) and classification-aware
(lower row) points. Different task-aware points are located on the different areas of
the object, and their sensitive regions (i.e., the bounding boxes) are distinct.

Npos denotes the number of selected positive samples, and z denotes all the
locations on the pyramid feature maps. 1{c∗

z>0} is the indicator function, being
1 if c∗

z > 0 and 0 otherwise.

4 Experiments

Figure 3 presents the network of our proposed SALT-Net. We take state-of-the-
art dense detectors ATSS [34] and GFLv2 [12] as our baseline, and they serve as
the stage-one and stage-two decoders, respectively. Our SALT-Net is evaluated
on the challenging MS-COCO benchmark [17]. Following the common practice,
we use the COCO train2017 split (115K images) as the training set and the
COCO val2017 split (5K images) for the ablation study. To compare with state-
of-the-art detectors, we report the COCO AP on the test-dev split (20K images)
by uploading the detection result to the MS-COCO server.
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Table 2. Spatial disentanglement strategies. “exp” and “+” denotes utilizing Equation
(5) and (6) to generate the classification-aware points, respectively.

Method AP AP50 AP75 APS APM APL

w/+ 42.3 60.1 46.1 24.7 46.0 56.1

w/exp 42.5 60.1 46.2 25.1 45.9 56.4

Table 3. Performance of implementing our proposed approach in popular dense detec-
tors.

Method AP AP50 AP75

FCOS 38.6 57.2 41.7

SALT-FCOS 40.9 (+2.3) 59.3 44.2

RepPoints w/ GridF 37.4 58.9 39.7

SALT-RepPoints 39.0 (+1.6) 60.5 41.6

4.1 Performance of SALT’s Component Parts

To validate the effectiveness of different component parts of our proposed oper-
ator SALT, we gradually add the proposed modules to the baseline. As shown
in Table 1, the second and third rows are the baseline performances of the stage-
one and stage-two decoders, respectively. Note that the stage-one decoder utilizes
joint representation of IoU and classification scores instead of its original cen-
ternesss branch, as in [13]. The baseline performances of the two stages are 39.9
AP and 40.9 AP, respectively.

As presented in the fourth row, the first experiment investigates the effect
of implementing the regression-aware points. Therefore, SALT only predicts the
scale factors S for generating the regression-aware points. Both subnetworks
utilize aligned features from the locations of the regression-aware points for the
refined detection results. The AP is improved to 41.3, which indicates that the
aligned features do improve the detection accuracy, even though features for the
two tasks are still spatially entangled.

As shown in the fifth row, to test the effect of spatial disentanglement, SALT
predicts the disentanglement vectors D for generating the classification-aware
points. Note that these points are learned without the regression-aware points
acting as the point-set anchor (i.e., ΔPc = D), yet the AP is still boosted to
41.6. These classification-aware points are located in different regions from the
regression-aware points, and higher accuracy is obtained (41.6 vs. 41.3). There-
fore, spatial disentanglement does raise the detection performance by eliminating
their spatial feature conflicts.

The sixth row shows the performance when taking the regression-aware
points as the point-set anchor for generating the classification-aware points.
It can be observed that a notable performance gain is achieved (i.e., 0.5 AP
improvement). That thereby proves the effectiveness of utilizing the regression-
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Table 4. The effect of SDR loss

Method SDR AP AP50 AP75 APS APM APL

S1 41.3 58.6 44.9 23.2 45.1 54.2

S2 42.5 60.1 46.2 25.1 45.9 56.4

S1 � 42.1(+0.8) 60.5 45.9 24.8(+1.6) 45.7 54.9

S2 � 42.8(+0.3) 60.6 46.7 25.1 46.4 56.0

aware points as the shape hypothesis and the importance of task disentan-
glement. Figure 7 is the visualization of task-aware points and their sensitive
regions. This figure indicates that classification and regression are sensitive to
different locations of the object, which also gives the interpretability of spatial
disentanglement.

As shown in the seventh row, the long-range skip connection (i.e., the residual
connection on the classification tower) can also bring a considerable performance
boost and gain 0.4 AP. Note that the overall performance has been improved
by 1.6 AP and 2.9 APL compared with the strong baseline. Finally, the last row
indicates that the coarse regression results with the refined classification results
can also improve the baseline performance by 1.4 AP.

4.2 The Selection of Spatial Disentanglement Strategies

We propose two disentanglement functions to generate the classification-aware
points, as illustrated in Eqs. (5) and (6). In Eq. (5), the disentanglement vector
set D is taken as the exponent, whereas D is directly aggregated with ΔPr in
Eq. (6). As illustrated in Table 2, the “exp” strategy performs better than that
of “+.” The reason is that predicting log-space transforms (i.e., D = ln ΔPc

ΔPr ),
instead of directly predicting the distance (i.e., D = ΔPc − ΔPr), prevents
unstable gradients during training. Therefore, it is easier to be learned.

4.3 Generality of SALT

Our proposed SALT can act as a plug-in operator for dense detectors. Therefore,
we plug SALT into popular detectors [23,29], to validate its generality. As shown
in Table 3, the performance gain is 2.3 AP on FCOS, which is a considerable
improvement. Compared with RepPoints, our SALT-RepPoints performs better
than it and gains 1.6 AP. One can see that SALT can significantly improve the
accuracy of different detectors, which demonstrates its generality.
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(a) Classification (b) S2 (c) S1+SDR

Fig. 8. Prediction distributions (Fig. 1) after applying SALT and SDR loss. The loca-
tions of their distribution peaks are identical.

4.4 Self-distillation Regression Loss

The baseline for this ablation study is the best model of Table 1. Here, both
stages utilize the refined classification scores as the NMS ranking keywords. As
Table 4 shows, after applying the SDR loss to the SALT-Net, the performance
of both stages got improved. The performance gain of the stage-one decoder is
an absolute 0.8 AP score. Notably, the performance on small objects has been
improved by 1.6 AP, which is a relatively large margin compared with the strong
baseline. Furthermore, the improvement of the stage-one decoder also brings
positive feedback to the stage-two decoder and leads to the highest performance
of our SALT-Net (i.e., 42.8 AP).

4.5 Evaluations for Task-Alignment of SALT-Net

Figure 8(a) and (b) are the distributions of the refined detection results when
implementing SALT, whereas Fig. 1(b) and (c) are the original coarse prediction
distributions made by the stage-one decoder. The green arrows point to the dis-
tribution peaks, and one can see that they are spatially aligned (i.e., at the same
location). Therefore, the detection result with the highest classification score also
has the best regression result, and the misalignment gap is bridged. Figure 8(c)
is the IoU distribution of the stage-one decoder after applying the SDR loss. Its
quality distributions become very close to the stage-two decoder (i.e., Fig. 8(b)),
which proves the effectiveness of the regression knowledge transfer. In Fig. 9, the
qualitative results show that SALT can align the regression and detection tasks
and thereby suppress some low IoU but high classification score results.

4.6 Comparisons with State-of-the-Arts

The multi-scale training strategy (i.e., input images are resized from [400, 1333]
to [960, 1333]) and the 2 × schedule [1] are adopted as they are commonly used
strategies in state-of-the-art methods. GFLV2 only applies DCN on the last two
stages of the backbone, whereas the common practices [24,31] usually apply it on
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Table 5. SALT-Net vs. State-of-the-art Detectors. All test results are reported on the
COCO test-dev set. “DCN2, DCN”-applying Deformable Convolutional Network [38]
on the last two and three stages of the backbone, respectively. “DCNp”-applying DCN
on both the backbone and the FPN. “*” indicates applying SDR loss and “†” indicates
test-time augmentations, including horizontal flip and multi-scale testing.

Method Backbone Epoch AP AP50 AP75 APS APM APL

Multi-stage

GuidedAnchor [25] R-50 12 39.8 59.2 43.5 21.8 42.6 50.7

DCNV2 [38] X-101-32x8d-DCN 24 44.5 65.8 48.4 27.0 48.5 58.9

BorderDet [18] X-101-64x4d-DCN 24 48.0 67.1 52.1 29.4 50.7 60.5

RepPointsV2 [2] X-101-64x4d-DCN 24 49.4 68.9 53.4 30.3 52.1 62.3

TSD† [22] SE154-DCN 24 51.2 71.9 56.0 33.8 54.8 64.2

VFNet [31] X-101-32x8d-DCN 24 50.0 68.5 54.4 30.4 53.2 62.9

LSNet [5] R2-101-DCNp 24 51.1 70.3 55.2 31.2 54.3 65.1

One-stage

CornerNet [11] HG-104 200 40.5 59.1 42.3 21.8 42.7 50.2

SAPD [37] X-101-32x8d-DCN 24 46.6 66.6 50.0 27.3 49.7 60.7

ATSS [34] X-101-32x8d-DCN 24 47.7 66.5 51.9 29.7 50.8 59.4

GFL [13] X-101-32x8d-DCN 24 48.2 67.4 52.6 29.2 51.7 60.2

FCOS-imprv [24] X-101-32x8d-DCN 24 44.1 63.7 47.9 27.4 46.8 53.7

PAA [10] X-101-64x4d-DCN 24 49.0 67.8 53.3 30.2 52.8 62.2

GFLV2 [12] R-50 24 44.3 62.3 48.5 26.8 47.7 54.1

GFLV2 [12] X-101-32x8d-DCN2 24 49.0 67.6 53.5 29.7 52.4 61.4

TOOD [6] X-101-64x4d-DCN 24 51.1 69.4 55.5 31.9 54.1 63.7

SALT-Net∗ R-50 24 46.1 64.0 50.3 28.0 49.5 57.2

SALT-Net X-101-32x8d-DCN2 24 49.8 68.5 54.2 30.6 53.2 62.6

SALT-Net X-101-32x8d-DCN 24 50.2 68.8 54.9 31.2 53.4 63.1

SALT-Net R2-101-DCN2 24 51.1 69.7 55.7 32.3 54.5 64.0

SALT-Net∗ R2-101-DCN 24 51.5 70.0 56.2 32.1 55.1 64.8

SALT-Net∗
† R2-101-DCN 24 53.8 71.1 59.9 36.3 56.9 65.1

the last three stages. Therefore, for a fair comparison, the results of the proposed
method with both settings are reported. As Table 5 shows, our model achieves
a 46.1 AP with ResNet-50, which outperforms other state-of-the-art methods
with heavier backbones (e.g., FCOS with X-101-32x8d-DCN). With test-time
augmentations and R2-101-DCN as the backbone, our best model achieves a
53.8 AP, which is a very competitive result among dense object detectors.
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Baseline-S2

Baseline-S2
+

SALT

Fig. 9. Comparisons between the stage-two baseline decoder and our SALT-Net.

5 Conclusion

In this work, we presented SALT, a simple yet effective plug-in operator that
can solve the misalignment problem between regression and classification. Our
new-fashioned framework can disentangle classification and regression from the
spatial dimension by extracting features from each task’s sensitive locations and
aligning them to the same anchor point. We also proposed SDR loss to transfer
the regression knowledge from the stage-two decoder to the stage-one decoder.
The refined detection results also received positive feedback by improving the
coarse regression results, and the final performance improved in an inference cost-
free fashion. Extensive experiments showed that SALT could considerably raise
the performance of various dense detectors, and SALT-Net showed promising
results among the state-of-the-art dense detectors.
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Abstract. Convolutional neural networks (CNNs) have made resound-
ing success in many computer vision tasks such as image classification
and object detection. However, their performance degrades rapidly on
tougher tasks where images are of low resolution or objects are small. In
this paper, we point out that this roots in a defective yet common design
in existing CNN architectures, namely the use of strided convolution
and/or pooling layers, which results in a loss of fine-grained information
and learning of less effective feature representations. To this end, we pro-
pose a new CNN building block called SPD-Conv in place of each strided
convolution layer and each pooling layer (thus eliminates them alto-
gether). SPD-Conv is comprised of a space-to-depth (SPD) layer followed
by a non-strided convolution (Conv) layer, and can be applied in most if
not all CNN architectures. We explain this new design under two most
representative computer vision tasks: object detection and image classi-
fication. We then create new CNN architectures by applying SPD-Conv
to YOLOv5 and ResNet, and empirically show that our approach sig-
nificantly outperforms state-of-the-art deep learning models, especially
on tougher tasks with low-resolution images and small objects. We have
open-sourced our code at https://github.com/LabSAINT/SPD-Conv.

1 Introduction

Since AlexNet [18], convolutional neural networks (CNNs) have excelled at many
computer vision tasks. For example in image classification, well-known CNN
models include AlexNet, VGGNet [30], ResNet [13], etc.; while in object detec-
tion, those models include the R-CNN series [9,28], YOLO series [4,26], SSD [24],
EfficientDet [34], and so on. However, all such CNN models need “good quality”
inputs (fine images, medium to large objects) in both training and inference.
For example, AlexNet was originally trained and evaluated on 227 × 227 clear
images, but after reducing the image resolution to 1/4 and 1/8, its classification
accuracy drops by 14% and 30%, respectively [16]. The similar observation was

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13715, pp. 443–459, 2023.
https://doi.org/10.1007/978-3-031-26409-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26409-2_27&domain=pdf
https://github.com/LabSAINT/SPD-Conv
https://doi.org/10.1007/978-3-031-26409-2_27
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made on VGGNet and ResNet too [16]. In the case of object detection, SSD suf-
fers from a remarkable mAP loss of 34.1 on 1/4 resolution images or equivalently
1/4 smaller-size objects, as demonstrated in [11]. In fact, small object detection
is a very challenging task because smaller objects inherently have lower resolu-
tion, and also limited context information for a model to learn from. Moreover,
they often (unfortunately) co-exist with large objects in the same image, which
(the large ones) tend to dominate the feature learning process, thereby making
the small objects undetected.

In this paper, we contend that such performance degradation roots in a defec-
tive yet common design in existing CNNs. That is, the use of strided convolu-
tion and/or pooling, especially in the earlier layers of a CNN architecture. The
adverse effect of this design usually does not exhibit because most scenarios
being studied are “amiable” where images have good resolutions and objects are
in fair sizes; therefore, there is plenty of redundant pixel information that strided
convolution and pooling can conveniently skip and the model can still learn fea-
tures quite well. However, in tougher tasks when images are blurry or objects are
small, the lavish assumption of redundant information no longer holds and the
current design starts to suffer from loss of fine-grained information and poorly
learned features.

To address this problem, we propose a new building block for CNN, called
SPD-Conv, in substitution of (and thus eliminate) strided convolution and pool-
ing layers altogether. SPD-Conv is a space-to-depth (SPD) layer followed by a
non-strided (i.e., vanilla) convolution layer. The SPD layer downsamples a fea-
ture map X but retains all the information in the channel dimension, and thus
there is no information loss. We were inspired by an image transformation tech-
nique [29] which rescales a raw image before feeding it into a neural net, but
we substantially generalize it to downsampling feature maps inside and through-
out the entire network; furthermore, we add a non-strided convolution operation
after each SPD to reduce the (increased) number of channels using learnable
parameters in the added convolution layer. Our proposed approach is both gen-
eral and unified, in that SPD-Conv (i) can be applied to most if not all CNN
architectures and (ii) replaces both strided convolution and pooling the same
way. In summary, this paper makes the following contributions:

1) We identify a defective yet common design in existing CNN architectures
and propose a new building block called SPD-Conv in lieu of the old design.
SPD-Conv downsamples feature maps without losing learnable information,
completely jettisoning strided convolution and pooling operations which are
widely used nowadays.

2) SPD-Conv represents a general and unified approach, which can be easily
applied to most if not all deep learning based computer vision tasks.

3) Using two most representative computer vision tasks, object detection and
image classification, we evaluate the performance of SPD-Conv. Specifically,
we construct YOLOv5-SPD, ResNet18-SPD and ResNet50-SPD, and evaluate
them on COCO-2017, Tiny ImageNet, and CIFAR-10 datasets in comparison
with several state-of-the-art deep learning models. The results demonstrate
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Fig. 1. Comparing AP for small objects (APS). “SPD” indicates our approach.

significant performance improvement in AP and top-1 accuracy, especially on
small objects and low-resolution images. See Fig. 1 for a preview.

4) SPD-Conv can be easily integrated into popular deep learning libraries such as
PyTorch and TensorFlow, potentially producing greater impact. Our source
code is available at https://github.com/LabSAINT/SPD-Conv.

The rest of this paper is organized as follows. Section 2 presents back-
ground and reviews related work. Section 3 describes our proposed approach and
Sect. 4 presents two case studies using object detection and image classification.
Section 5 provides performance evaluation. This paper concludes in Sect. 6.

2 Preliminaries and Related Work

We first provide an overview of this area, focusing more on object detection since
it subsumes image classification.

Current state-of-the-art object detection models are CNN-based and can be
categorized into one-stage and two-stage detectors, or anchor-based or anchor-
free detectors. A two-stage detector firstly generates coarse region proposals
and secondly classifies and refines each proposal using a head (a fully-connected
network). In contrast, a one-stage detector skips the region proposal step and
runs detection directly over a dense sampling of locations. Anchor-based methods
use anchor boxes, which are a predefined collection of boxes that match the
widths and heights of objects in the training data, to improve loss convergence
during training. We provide Table 1 that categorizes some well-known models.

Generally, one-stage detectors are faster than two-stage ones and anchor-
based models are more accurate than anchor-free ones. Therefore, later in our
case study and experiments we focus more on one-stage and anchor-based mod-
els, i.e., the first cell of Table 1.

A typical one-stage object detection model is depicted in Fig. 2. It consists
of a CNN-based backbone for visual feature extraction and a detection head
for predicting class and bounding box of each contained object. In between, a
neck of extra layers is added to combine features at multiple scales to produce
semantically strong features for detecting objects of different sizes.

{https://github.com/LabSAINT/SPD-Conv}.
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Table 1. A taxonomy of OD models.

Model Anchor-based Anchor-free

One-stage Faster R-CNN [27],
SSD [24],
RetinaNet [21],
EfficientDet [34],
YOLO [4,14,26,36]

FCOS [35],
CenterNet [7],
DETR [5],
YOLOX [8]

Two-stage R-CNN [10],
Fast R-CNN [9]

RepPoints,
CenterNet2

Fig. 2. A one-stage object detection pipeline.

2.1 Small Object Detection

Traditionally, detecting both small and large objects is viewed as a multi-scale
object detection problem. A classic way is image pyramid [3], which resizes input
images to multiple scales and trains a dedicated detector for each scale. To
improve accuracy, SNIP [31] was proposed which performs selective backpropa-
gation based on different object sizes in each detector. SNIPER [32] improves
the efficiency of SNIP by only processing the context regions around each object
instance rather than every pixel in an image pyramid, thus reducing the training
time. Taking a different approach to efficiency, Feature Pyramid Network (FPN)
[20] exploits the multi-scale features inherent in convolution layers using lateral
connections and combine those features using a top-down structure. Following
that, PANet [22] and BiFPN [34] were introduced to improve FPN in its feature
information flow by using shorter pathways. Moreover, SAN [15] was introduced
to map multi-scale features onto a scale-invariant subspace to make a detec-
tor more robust to scale variation. All these models unanimously use strided
convolution and max pooling, which we get rid of completely.

2.2 Low-Resolution Image Classification

One of the early attempts to address this challenge is [6], which proposes an end-
to-end CNN model by adding a super-resolution step before classification. Fol-
lowing that, [25] proposes to transfer fine-grained knowledge acquired from high-
resolution training images to low-resolution test images. However, this approach



SPD-Conv for Low-Resolution Images and Small Objects 447

Fig. 3. Illustration of SPD-Conv when scale = 2 (see text for details).

requires high-resolution training images corresponding to the specific application
(e.g., the classes), which are not always available.

This same requirement of high-resolution training images is also needed
by several other studies such as [37]. Recently, [33] proposed a loss function
that incorporate attribute-level separability (where attribute means fine-grained,
hierarchical class labels) so that the model can learn class-specific discrimina-
tive features. However, the fine-grained (hierarchical) class labels are difficult to
obtain and hence limit the adoption of the method.

3 A New Building Block: SPD-Conv

SPD-Conv is comprised of a Space-to-depth (SPD) layer followed by a non-
strided convolution layer. This section describes it in detail.

3.1 Space-to-depth (SPD)

Our SPD component generalizes a (raw) image transformation technique [29] to
downsampling feature maps inside and throughout a CNN, as follows.

Consider any intermediate feature map X of size S × S × C1, slice out a
sequence of sub feature maps as

f0,0 = X[0 : S : scale, 0 : S : scale], f1,0 = X[1 : S : scale, 0 : S : scale], . . . ,
fscale−1,0 = X[scale − 1 : S : scale, 0 : S : scale];

f0,1 = X[0:S :scale, 1:S :scale], . . . , fscale−1,1 = X[scale−1:S :scale, 1:S :scale];
...

f0,scale−1 = X[0 : S : scale, scale − 1 : S : scale], f1,scale−1, . . . ,
fscale−1,scale−1 = X[scale− 1 :S : scale, scale− 1 :S : scale].
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In general, given any (original) feature map X, a sub-map fx,y is formed by all
the entries X(i, j) that i + x and j + y are divisible by scale. Therefore, each
sub-map downsamples X by a factor of scale. Figure 3(a)–(c) give an example
when scale = 2, where we obtain four sub-maps f0,0, f1,0, f0,1, f1,1 each of which
is of shape (S2 ,

S
2 , C1) and downsamples X by a factor of 2.

Next, we concatenate these sub feature maps along the channel dimension
and thereby obtain a feature map X ′, which has a reduced spatial dimension by a
factor of scale and an increased channel dimension by a factor of scale2. In other
words, SPD transforms feature map X(S, S,C1) into an intermediate feature
map X ′( S

scale ,
S

scale , scale
2C1). Figure 3(d) gives an illustration using scale = 2.

3.2 Non-strided Convolution

After the SPD feature transformation layer, we add a non-strided (i.e., stride=1)
convolution layer with C2 filters, where C2 < scale2C1, and further transforms
X ′( S

scale ,
S

scale , scale
2C1) → X ′′( S

scale ,
S

scale , C2). The reason we use non-strided
convolution is to retain all the discriminative feature information as much as
possible. Otherwise, for instance, using a 3 × 3 filer with stride=3, feature maps
will get “shrunk” yet each pixel is sampled only once; if stride=2, asymmetric
sampling will occur where even and odd rows/columns will be sampled differ-
ent times. In general, striding with a step size greater than 1 will cause non-
discriminative loss of information although at the surface, it appears to convert
feature map X(S, S,C1) → X ′′( S

scale ,
S

scale , C2) too (but without X ′).

4 How to Use SPD-Conv: Case Studies

To explain how to apply our proposed method to redesigning CNN architec-
tures, we use two most representative categories of computer vision models:
object detection and image classification. This is without loss of generality as
almost all CNN architectures use strided convolution and/or pooling operations
to downsample feature maps.

4.1 Object Detection

YOLO is a series of very popular object detection models, among which we
choose the latest YOLOv5 [14] to demonstrate. YOLOv5 uses CSPDarknet53 [4]
with a SPP [12] module as its backbone, PANet [23] as its neck, and the YOLOv3
head [26] as its detection head. In addition, it also uses various data augmenta-
tion methods and some modules from YOLOv4 [4] for performance optimization.
It employs the cross-entropy loss with a sigmoid layer to compute objectness and
classification loss, and the CIoU loss function [38] for localization loss. The CIoU
loss takes more details than IoU loss into account, such as edge overlapping, cen-
ter distance, and width-to-height ratio.

YOLOv5-SPD. We apply our method described in Sect. 3 to YOLOv5 and
obtain YOLOv5-SPD (Fig. 4), simply by replacing the YOLOv5 stride-2 convo-
lutions with our SPD-Conv building block. There are 7 instances of such replace-
ment because YOLOv5 uses five stride-2 convolution layers in the backbone to
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Fig. 4. Overview of our YOLOv5-SPD. Red boxes are where the replacement happens.
(Color figure online)

downsample the feature map by a factor of 25, and two stride-2 convolution lay-
ers in the neck. There is a concatenation layer after each strided convolution in
YOLOv5 neck; this does not alter our approach and we simply keep it between
our SPD and Conv.

Scalability. YOLOv5-SPD can suit different application or hardware needs by
easily scaling up and down in the same manner as YOLOv5. Specifically, we can
simply adjust (1) the number of filters in every non-strided convolution layer
and/or (2) the repeated times of C3 module (as in Fig. 4), to obtain different
versions of YOLOv5-SPD. The first is referred to as width scaling which changes
the original width nw (number of channels) to �nw × width factor�8 (rounded
off to the nearest multiple of 8). The second is referred to as depth scaling which
changes the original depth nd (times of repeating the C3 module; e.g., 9 as in 9×
C3 in Fig. 4) to �nd×depth factor�. This way, by choosing different width/depth
factors, we obtain nano, small, medium, and large versions of YOLOv5-SPD as
shown in Table 2, where factor values are chosen the same as YOLOv5 for the
purpose of comparison in our experiments later.
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Table 2. Scaling YOLOv5-SPD to obtain different versions that fit different use cases.

Models Depth Factor Width Factor

YOLOv5-SPD-n 0.33 0.25

YOLOv5-SPD-s 0.33 0.50

YOLOv5-SPD-m 0.67 0.75

YOLOv5-SPD-l 1.00 1.00

4.2 Image Classification

A classification CNN typically begins with a stem unit that consists of a stride-2
convolution and a pooling layer to reduce the image resolution by a factor of
four. A popular model is ResNet [13] which won the ILSVRC 2015 challenge.
ResNet introduces residual connections to allow for training a network as deep
as up to 152 layers. It also significantly reduces the total number of parameters
by only using a single fully-connected layer. A softmax layer is employed at the
end to normalize class predictions.

ResNet18-SPD and ResNet50-SPD. ResNet-18 and ResNet-50 both use a
total number of four stride-2 convolutions and one max-pooling layer of stride
2 to downsample each input image by a factor of 25. Applying our proposed
building block, we replace the four strided convolutions with SPD-Conv; but on
the other hand, we simply remove the max pooling layer because, since our main
target is low-resolution images, the datasets used in our experiments have rather
small images (64 × 64 in Tiny ImageNet and 32 × 32 in CIFAR-10) and hence
pooling is unnecessary. For larger images, such max-pooling layers can still be
replaced the same way by SPD-Conv. The two new architectures are shown in
Table 3.

5 Experiments

This section evaluates our proposed approach SPD-Conv using two representa-
tive computer vision tasks, object detection and image classification.

5.1 Object Detection

Dataset and Setup. We use the COCO-2017 dataset [1] which is divided into
train2017 (118,287 images) for training, val2017 (5,000 images; also called
minival) for validation, and test2017 (40,670 images) for testing. We use a
wide range of state-of-the-art baseline models as listed in Tables 4 and 5. We
report the standard metric of average precision (AP) on val2017 under different
IoU thresholds [0.5:0.95] and object sizes (small, medium, large). We also report
the AP metrics on test-dev2017 (20,288 images) which is a subset of test2017
with accessible labels. However, the labels are not publicly released but one needs
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Table 3. Our ResNet18-SPD and ResNet50-SPD architecture.

Layer name ResNet18-SPD ResNet50-SPD

spd1 SPD-Conv

conv1 3× 3 kernel, 64 output channels

conv2

[
3× 3, 64

3× 3, 64

]
× 2

⎡
⎢⎣
1× 1, 64

3× 3, 64

1× 1, 256

⎤
⎥⎦ × 3

spd2 SPD-Conv

conv3

[
3× 3, 128

3× 3, 128

]
× 2

⎡
⎢⎣
1× 1, 128

3× 3, 128

1× 1, 512

⎤
⎥⎦ × 4

spd3 SPD-Conv

conv4

[
3× 3, 256

3× 3, 256

]
× 2

⎡
⎢⎣
1× 1, 256

3× 3, 256

1× 1, 1024

⎤
⎥⎦ × 6

spd4 SPD-Conv

conv5

[
3× 3, 512

3× 3, 512

]
× 2

⎡
⎢⎣
1× 1, 512

3× 3, 512

1× 1, 2048

⎤
⎥⎦ × 3

fc (fully conn.) Global avg. pooling + fc(no. of classes) + softmax

to submit all the predicted labels in JSON files to the CodaLab COCO Detection
Challenge [2] to retrieve the evaluated metrics, which we did.

Training. We train different versions (nano, small, medium, and large) of
YOLOv5-SPD and all the baseline models on train2017. Unlike most other
studies, we train from scratch without using transfer learning. This is because
we want to examine the true learning capability of each model without being
disguised by the rich feature representation it inherits via transfer learning from
ideal (high quality) datasets such as ImageNet. This was carried out on our own
models (∗-SPD-n/s/m/l) and on all the existing YOLO-series models (v5, X, v4,
and their scaled versions like nano, small, large, etc.). The other baseline models
still used transfer learning because of our lack of resource (training from scratch
consumes an enormous amount of GPU time). However, note that this simply
means that those baselines are placed in a much more advantageous position
than our own models as they benefit from high quality datasets.

We choose the SGD optimizer with momentum 0.937 and a weight decay
of 0.0005. The learning rate linearly increases from 0.0033 to 0.01 during three
warm-up epochs, followed by a decrease using the Cosine decay strategy to a final
value of 0.001. The nano and small models are trained on four V-100 32 GB GPU
with a batch size of 128, while medium and large models are trained with batch
size 32. CIoU loss [38] and cross-entropy loss are adopted for objectness and
classification. We also employ several data augmentation techniques to mitigate
overfitting and improve performance for all the models; these techniques include
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Table 4. Comparison on MS-COCO validation dataset (val2017).

Model Backbone Image size AP APS (small obj.) Params
(M)

Latency (ms)
(batch size=1)

YOLOv5-SPD-n - 640 × 640 31.0 16.0 (+13.15%) 2.2 7.3

YOLOv5n - 640 × 640 28.0 14.14 1.9 6.3

YOLOX-Nano - 640 × 640 25.3 - 0.9 -

YOLOv5-SPD-s - 640 × 640 40.0 23.5 (+11.4%) 8.7 7.3

YOLOv5s - 640 × 640 37.4 21.09 7.2 6.4

YOLOX-S - 640 × 640 39.6 - 9.0 9.8

YOLOv5-SPD-m - 640 × 640 46.5 30.3 (+8.6%) 24.6 8.4

YOLOv5m - 640 × 640 45.4 27.9 21.2 8.2

YOLOX-M - 640 × 640 46.4 - 25.3 12.3

YOLOv5-SPD-l - 640 × 640 48.5 32.4 (+1.8%) 52.7 10.3

YOLOv5l - 640 × 640 49.0 31.8 46.5 10.1

YOLOX-L - 640 × 640 50.0 - 54.2 14.5

Faster R-CNN R50-FPN – 40.2 24.2 42.0 -

Faster R-CNN+ R50-FPN – 42.0 26.6 42.0 -

DETR R50 - 42.0 20.5 41.0 -

DETR-DC5 ResNet-101 800 × 1333 44.9 23.7 60.0 -

RetinaNet ViL-Small-RPB 800 × 1333 44.2 28.8 35.7 -

(i) photometric distortions of hue, saturation, and value, (ii) geometric distor-
tions such as translation, scaling, shearing, fliplr and flipup, and (iii) multi-image
enhancement techniques such as mosaic and cutmix. Note that augmentation is
not used at inference. The hyperparameters are adopted from YOLOv5 without
re-tuning.

Results
Table 4 reports the results on val2017 and Table 5 reports the results on
test-dev. The APS,APM,APL in both tables mean the AP for small/medium/
large objects, which should not be confused with model scales (nano, small,
medium, large). The image resolution 640 × 640 as shown in both tables is not
considered high in object detection (as opposed to image classification) because
the resolution on the actual objects is much lower, especially when the objects
are small.

Results on val2017. Table 4 is organized by model scales, as separated by
horizontal lines (the last group are large-scale models). In the first category of
nano models, our YOLOv5-SPD-n is the best performer in terms of both AP and
APS: its APS is 13.15% higher than the runner-up, YOLOv5n, and its overall
AP is 10.7% higher than the runner-up, also YOLOv5n.

In the second category, small models, our YOLOv5-SPD-s is again the best
performer on both AP and APS, although this time YOLOX-S is the second
best on AP.

In the third, medium model category, the AP performance gets quite close
although our YOLOv5-SPD-m still outperforms others. On the other hand, our
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Table 5. Comparison on MS-COCO test dataset (test-dev2017).

Model ImgSize Params
(M)

AP AP50 AP75 APS

(small obj.)
APM APL

YOLOv5-SPD-n 640 × 640 2.2 30.4 48.7 32.4 15.1(+19%) 33.9 37.4

YOLOv5n 640 × 640 1.9 28.1 45.7 29.8 12.7 31.3 35.4

EfficientDet-D0 512 × 512 3.9 33.8(Trf) 52.2 35.8 12.0 38.3 51.2

YOLOv5-SPD-s 640 × 640 8.7 39.7 59.1 43.1 21.9(+9.5%) 43.9 49.1

YOLOv5s 640 × 640 7.2 37.1 55.7 40.2 20.0 41.5 45.2

EfficientDet-D1 640 × 640 6.6 39.6 58.6 42.3 17.9 44.3 56.0

EfficientDet-D2 768 × 768 8.1 43.0(Trf) 62.3 46.2 22.5(Trf) 47.0 58.4

YOLOv5-SPD-m 640 × 640 24.6 46.6 65.2 50.8 28.2(+6%) 50.9 57.1

YOLOv5m 640 × 640 21.2 45.5 64.0 49.7 26.6 50.0 56.6

YOLOX-M 640 × 640 25.3 46.4 65.4 50.6 26.3 51.0 59.9

EfficientDet-D3 896 × 896 12.0 45.8 65.0 49.3 26.6 49.4 59.8

SSD512 512 × 512 36.1 28.8 48.5 30.3 - - -

YOLOv5-SPD-l 640 × 640 52.7 48.8 67.1 53.0 30.0 52.9 60.5

YOLOv5l 640 × 640 46.5 49.0 67.3 53.3 29.9 53.4 61.3

YOLOX-L 640 × 640 54.2 50.0 68.5 54.5 29.8 54.5 64.4

YOLOv4-CSP 640 × 640 52.9 47.5 66.2 51.7 28.2 51.2 59.8

PP-YOLO 608 × 608 52.9 45.2 65.2 49.9 26.3 47.8 57.2

YOLOX-X 640 × 640 99.1 51.2 69.6 55.7 31.2 56.1 66.1

YOLOv4-P5 896 × 896 70.8 51.8 70.3 56.6 33.4 55.7 63.4

YOLOv4-P6 1280 × 1280 127.6 54.5 72.6 59.8 36.8 58.3 65.9

RetinaNet 1280 × 1280 66.9 50.7 70.4 54.9 33.6 53.9 62.1

(w/ SpineNet-143)

APS has a larger winning margin (8.6% higher) than the runner-up, which is a
good sign because SPD-Conv is especially advantageous for smaller objects and
lower resolutions.

Lastly for large models, YOLOX-L achieves the best AP while our YOLOv5-
SPD-l is only slightly (3%) lower (yet much better than other baselines shown
in the bottom group). On the other hand, our APS remains the highest, which
echos SPD-Conv’s advantage mentioned above.

Results on test-dev2017. As presented in Table 5, our YOLOv5-SPD-n is
again the clear winner in the nano model category on APS, with a good winning
margin (19%) over the runner-up, YOLOv5n. For the average AP, although
it appears as if EfficientDet-D0 performed better than ours, that is because
EfficientDet has almost double parameters than ours and was trained using high-
resolution images (via transfer learning, as indicated by “Trf” in the cell) and AP
is highly correlated with resolution. This training benefit is similarly reflected in
the small model category too.

In spite of this benefit that other baselines receive, our approach reclaims its
top rank in the next category, medium models, on both AP and APS. Finally
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in the large model category, our YOLOv5-SPD-l is also the best performer on
APS, and closely matches YOLOX-L on AP.

Summary. It is clear that, by simply replacing the strided convolution and
pooling layers with our proposed SPD-Conv building block, a neural net can
significantly improves its accuracy, while maintaining the same level of parameter
size. The improvement is more prominent when objects are small, which meets
our goal well. Although we do not constantly notch the first position in all the
cases, SPD-Conv is the only approach that consistently performs very well; it
is only occasionally a (very close) runner-up if not performing the best, and is
always the winner on APS which is the chief metric we target.

Lastly, recall that we have adopted YOLOv5 hyperparameters without re-
tuning, which means that our models will likely perform even better after dedi-
cated hyperparameter tuning. Also recall that all the non-YOLO baselines (and
PP-YOLO) were trained using transfer learning and thus have benefited from
high quality images, while ours do not.

Visual Comparison. For a visual and intuitive understanding, we provide two
real examples using two randomly chosen images, as shown in Fig. 5. We com-
pare YOLOv5-SPD-m and YOLOv5m since the latter is the best performer
among all the baselines in the corresponding (medium) category. Figure 5(a)(b)
demonstrates that YOLOv5-SPD-m is able to detect the occluded giraffe which
YOLOv5m misses, and Fig. 5(c)(d) shows that YOLOv5-SPD-m detects very
small objects (a face and two benches) while YOLOv5m fails to.

5.2 Image Classification

Dataset and Setup. For the task of image classification, we use the Tiny
ImageNet [19] and CIFAR-10 datasets [17]. Tiny ImageNet is a subset of the
ILSVRC-2012 classification dataset and contains 200 classes. Each class has 500
training images, 50 validation images, and 50 test images. Each image is of
resolution 64 × 64 × 3 pixels. CIFAR-10 consists of 60,000 images of resolution
32 × 32 × 3, including 50,000 training images and 10,000 test images. There are
10 classes with 6,000 images per class. We use the top-1 accuracy as the metric
to evaluate the classification performance.

Training. We train our ReseNet18-SPD model on Tiny ImageNet. We perform
random grid search to tune hyperparameters including learning rate, batch size,
momentum, optimizer, and weight decay. Figure 6 shows a sample hyperparame-
ter sweep plot generated using the wandb MLOPs. The outcome is the SGD opti-
mizer with a learning rate of 0.01793 and momentum of 0.9447, a mini batch size
of 256, weight decay regularization of 0.002113, and 200 training epochs. Next, we
train our ResNet50-SPD model on CIFAR-10. The hyperparameters are adopted
from the ResNet50 paper, where SGD optimizer is used with an initial learning
rate 0.1 and momentum 0.9, batch size 128, weight decay regularization 0.0001,
and 200 training epochs. For both ReseNet18-SPD and ReseNet50-SPD, we use
the same decay function as in ResNet to decrease the learning rate as the number
of epochs increases.
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(a) Purple boxes: YOLOv5m predictions. (b) Green boxes: YOLOv5-SPD-m predic-
tions.

(c) Purple boxes: YOLOv5m predictions. (d) Green boxes: YOLOv5-SPD-m predic-
tions.

Fig. 5. Object detection examples from val2017. Blue boxes indicate the ground truth.
Red arrows highlight the differences.

Testing. The accuracy on Tiny ImageNet is evaluated on the validation dataset
because the ground truth in the test dataset is not available. The accuracy on
CIFAR-10 is calculated on the test dataset.

Results. Table 6 summarizes the results of top-1 accuracy. It shows that our
models, ResNet18-SPD and ResNet50-SPD, clearly outperform all the other
baseline models.

Finally, we provide in Fig. 7 a visual illustration using Tiny ImageNet. It
shows 8 examples misclassified by ResNet18 and correctly classified by ResNet18-
SPD. The common characteristics of these images is that the resolution is low and
therefore presents a challenge to the standard ResNet which loses fine-grained
information during its strided convolution and pooling operations.
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Fig. 6. Hyperparameter tuning in image classification: a sweep plot using wandb.

Table 6. Image classification performance comparison.

Model Dataset Top-1 accuracy (%)

ResNet18-SPD Tiny ImageNet 64.52

ResNet18 Tiny ImageNet 61.68

Convolutional Nystromformer for Vision Tiny ImageNet 49.56

WaveMix-128/7 Tiny ImageNet 52.03

ResNet50-SPD CIFAR-10 95.03

ResNet50 CIFAR-10 93.94

Stochastic Depth CIFAR-10 94.77

Prodpoly CIFAR-10 94.90

Fig. 7. Green labels: ground truth. Blue labels: ResNet18-SPD predictions. Red labels:
ResNet-18 predictions. (Color figure online)
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6 Conclusion

This paper identifies a common yet defective design in existing CNN architec-
tures, which is the use of strided convolution and/or pooling layers. It will result
in the loss of fine-grained feature information especially on low-resolution images
and small objects. We then propose a new CNN building block called SPD-Conv
that eliminates the strided and pooling operations altogether, by replacing them
with a space-to-depth convolution followed by a non-strided convolution. This
new design has a big advantage of downsampling feature maps while retaining
the discriminative feature information. It also represents a general and unified
approach that can be easily applied to perhaps any CNN architecture and to
strided conv and pooling the same way. We provide two most representative use
cases, object detection and image classification, and demonstrate via extensive
evaluation that SPD-Conv brings significant performance improvement on detec-
tion and classification accuracy. We anticipate it to widely benefit the research
community as it can be easily integrated into existing deep learning frameworks
such as PyTorch and TensorFlow.
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Abstract. We present a novel computational model, SAViR-T, for the
family of visual reasoning problems embodied in the Raven’s Progressive
Matrices (RPM). Our model considers explicit spatial semantics of visual
elements within each image in the puzzle, encoded as spatio-visual tokens,
and learns the intra-image as well as the inter-image token dependen-
cies, highly relevant for the visual reasoning task. Token-wise relationship,
modeled through a transformer-based SAViR-T architecture, extract group
(row or column) driven representations by leveraging the group-rule coher-
ence and use this as the inductive bias to extract the underlying rule rep-
resentations in the top two row (or column) per token in the RPM. We use
this relation representations to locate the correct choice image that com-
pletes the last row or column for the RPM. Extensive experiments across
both synthetic RPM benchmarks, including RAVEN, I-RAVEN, RAVEN-
FAIR, and PGM, and the natural image-based “V-PROM” demonstrate
that SAViR-T sets a new state-of-the-art for visual reasoning, exceeding
prior models’ performance by a considerable margin.

Keywords: Abstract visual reasoning · Raven’s progressive matrices ·
Transformer

1 Introduction

Human abstract reasoning is the analytic process aimed at decision-making or
solving a problem [1]. In the realm of visual reasoning, humans find it advan-
tageous, explicitly or implicitly, to break down an image into well-understood
low-level concepts before proceeding with the reasoning task, e.g., examining
object properties or counting objects. These low-level concepts are combined to
form high-level abstract concepts in a list of images, enabling relational reason-
ing functions such as assessing the increment of the object count, changes in
the type of object, or object properties, and subsequently applying the acquired
knowledge to unseen scenarios. However, replicating such reasoning processes in
machines is particularly challenging [12].
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Fig. 1. Three RPM examples from the (a) RAVEN, (b) PGM, and (c) V-PROM
datasets. The highlighted green box shows the correct image in the choice list. Solving
these RPM requires identifying the underlying rules applied to image attributes or lines
along a row or column and, the image with the best fit from the choice list to the rules
is the correct answer. RAVEN example (left), the rules governing are “distribute three”
on {position, color }(Colorfigureonline) and “progression” on {type, size}. The rules
governing PGM(middle) are “OR” on object type line and “XOR” on the position of
shapes. And V-PROM (right) example is “And”. (Color figure online)

A popular test format of abstract reasoning in the visual domain is the
Raven’s Progressive Matrix (RPM), developed on Spearman’s work on human
general intelligence [23]. The test is designed as an incomplete 3×3 matrix, with
each matrix element being an image and the bottom right location left empty,
c.f., Fig. 1. Every image can contain one or more objects or lines characterized by
the attributes of shape, color, scale, rotation angle, and, holistically, the counts
of items or their variability (all circles, all pentagons, both pentagons, and cir-
cles, etc.). The top two rows or columns follow a certain unknown rule applied
to the attributes; the task is to pick the correct image from an unordered set of
choices, satisfying the same constraints. For example in Fig. 1, we present three
instances of RPM, RAVEN [32], PGM [2], and V-PROM [25] datasets, where
the first eight images are denoted as context images, and below them is the set
of choice images.

Classical computational models for solving RPMs, built upon access to sym-
bolic attribute representations of the images [5,15–17], are incapable of adapting
to unseen domains. The success of deep models in other computer vision tasks
made it possible to exploit the feature representation and relational learning
concepts in visual reasoning [18]. Initial studies [2,32] using widely popular neu-
ral network architecture such as ResNet [9] and LSTM [10] failed in solving
general reasoning tasks. These models aim to discover underlying rules by map-
ping the eight context images to each choice image. Modeling the reasoning
network [3,11,33] to mimic the human reasoning process has led to a large per-
formance gain. All recent works utilize an encoding mechanism to extract the
features/attributes of single or groups of images, followed by a reasoning model
that learns the underlying rule from the extracted features to predict scores for
images in the choice list. The context features are contrasted against each choice
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features to elucidate the best image in the missing location. However, these mod-
els make use of holistic image representations, which ignore the important local,
spatially contextualized features. Because typical reasoning patterns use intra
and inter-image object-level relationships, holistic representations are likely to
lead to suboptimal reasoning performance of the models that rely on it.

In this work, we focus on using local, spatially-contextualized features accom-
panied by an attention mechanism to learn the rule constraint within and across
groups (rows or columns). We use a bottom-up and top-down approach to the
visual encoding and the reasoning process. From the bottom-up, we address how
a set of image regions are associated with each other via the self-attention mech-
anism from visual transformers. Specifically, instead of extracting a traditional
holistic feature vector on image-level , we constrain semantic visual tokens to
attend to different image patches. The top-down process is driven to solve visual
reasoning tasks that predict an attention distribution over the image regions.
To this end, we propose “SAViR-T”, Spatially Attentive Visual Reasoning with
Transformers, that naturally integrates the attended region vectors with abstract
reasoning. Our reasoning network focuses on entities of interest obtained from
the attended vector since the irrelevant local areas have been filtered out. Next,
the reasoning task determines the Principal Shared rules in the two complete
groups (typically, the top two rows) of the RPM per local region, which are
then fused to provide an integrated rule representation. We define a similarity
metric to compare the extracted rule representation with the rules formed in the
last row when placing each choice at the missing location. The choice with the
highest score is predicted as the correct answer. Our contributions in this work
are three-fold:

– We propose a novel abstract visual reasoning model, SAViR-T, using spatially-
localized attended features for reasoning tasks. SAViR-T accomplishes this
using: the Backbone Network responsible for extracting a set of image region
encodings; the Visual Transformer performing self-attention on the tokenized
feature maps; and finally Reasoning Network, which elucidates the rules gov-
erning the puzzle over rows-columns to predict the solution to the RPM.

– SAViR-T automatically learns to focus on different semantic regions of the
input images, addressing the problem of extracting holistic feature vectors per
image, which may omit critical objects at finer visual scales. Our approach
is generic because it is suitable for any configuration of the RPM problems
without the need to modify the model for different image structures.

– We drastically improved the reasoning accuracy over all RPM benchmarks,
echoed in substantial enhancement on the “3×3 Grid”, “Out-In Single”, and
“Out Single, In Four Distribute” configurations for RAVEN and I-RAVEN,
with strong accuracy gains in the other configurations. We show an average
improvement of 2 − 3% for RAVEN-type and PGM datasets. Performance
improvement of SAViR-T on V-PROM, a natural image RPM benchmark,
significantly improves by 10% over the current state-of-the-art models.
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2 Related Works

2.1 Abstract Visual Reasoning

RPM is a form of non-verbal assessment for human intelligence with strong roots
in cognitive science [2,5,32]. It measures an individual’s eductive ability, i.e., the
ability to find patterns in the apparent chaos of a set of visual scenes [23]. RPM
consists of a context matrix of 3×3 that has eight images and a missing image at
the last row last column. The participant has to locate the correct image from a
choice set of size eight. In the early stages, RPM datasets were created manually,
and the popular computational models solved them using hand-crafted feature
representations [19], or access to symbolic representations [15]. It motivated the
need for large-scale RPM datasets and the requirement for efficient reasoning
models that utilized minimal prior knowledge. The first automatic RPM gener-
ation [28] work was based on using first-order logic, followed by two large-scale
RPM datasets RAVEN [32] and Procedurally Generated Matrices (PGM) [2].
However, the RAVEN dataset contained a hidden shortcut solution where a
model trained on the choice set only can achieve better performance than many
state-of-the-art models. The reason behind this behavior is rooted in the creation
of the choice set. Given the correct image, the distractor images were derived
by randomly changing only one attribute. In response, two modified versions of
the dataset, I-RAVEN by SRAN [11] and RAVEN-FAIR [3], were proposed to
remove the shortcut solution and increase the difficulty levels of the distractors.
Both the works, devised algorithm to generate a different set of distractors and
provide evidence through experiments to claim the non-existence of any short-
cut solution. The first significant advancement in RPM was by Wild Relational
Network (WReN) [2], which applies the relation network of [24] multiple times
to solve the abstract reasoning problem. LEN [34] learns to reason using a triplet
of images in a row or column as input to a variant of the relation network. This
work empirically supports improvements in performance using curriculum and
reinforcement learning frameworks. CoPINet [33] suggests a contrastive learning
algorithm to learn the underlying rules from given images. SRAN [11] designs a
hierarchical rule-aware framework that learns rules through a series of steps of
learning image representation, followed by row representation, and finally learn-
ing rules by pairing rows.

2.2 Transformer in Vision

Transformers [26] for machine translation have become widely adopted in numer-
ous NLP tasks [7,14,22]. A transformer consists of self-attention layers added
along with MLP layers. The self-attention mechanism plays a key role in draw-
ing out the global dependencies between input and output. Grouped with the
non-sequential processing of sentences, transformers demonstrate superiority in
large-scale training scenarios compared to Recurrent Neural Networks. It avoids
a drop in performance due to long-term dependencies. Recently, there has been
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a steady influx of visual transformer models to various vision tasks: image classi-
fication [6], object detection [4], segmentation [29], image generation [21], video
processing [31], VQA [13]. Among them, Vision Transformer (ViT) [8] designed
for image classification has closed the gap with the performance provided by any
state-of-the-art models (e.g., ImageNet, ResNet) based on convolution. Similar
to the word sequence referred to as tokens required by transformers in NLP, ViT
splits an image into patches and uses the linear embeddings of these patches as
an input sequence. Our idea is closely related to learning intra-sequence rela-
tionships via self-attention.

3 Method

Before presenting our reasoning model, we provide a formal description of the
RPM task in Sect. 3.1 designed to measure abstract reasoning. The description
articulates the condition required in a reasoning model to solve RPM ques-
tions successfully. In Sect. 3.2, we describe the three major components of our
SAViR-T: the backbone network, the visual transformer, and the reasoning net-
work. Our objective is based on using local feature maps as tokens for rule
discovery among visual attributes along rows or columns to solve RPM ques-
tions.

3.1 Raven’s Progressive Matrices

Given a list of observed images in the form of Raven’s Progressive Matrix (M)
referred to as the context of size 3 × 3 with a missing final element at M3,3,
where Mi,j denotes the j-th image at i-th row. In Fig. 2, for ease of notation,
we refer to the images in M as index locations 1 through 16 as formatted in
the dataset, where the first eight form the context matrix and the rest belong
to the choice list. The task of a learner is to solve the context M by finding the
best-fit answer image from an unordered set of choices A = {a1, . . . , a8}. The
images in an RPM can be decomposed into attributes, objects, and the object
count. Learning intra-relationship between these visual components will guide
the model to form a stronger inter-relationship between images constrained by
rules. The learner needs to locate objects in each image, extract their visual
attributes such as color, size, and shape, followed by inferring the rules “r” such
as “constant”, “progression”, “OR”, etc., that satisfies the attributes among a list
of images. Usually, the rules “r” are applied row-wise or column-wise according
to [5] on the decomposed visual elements. Since an RPM is based on a set of
rules applied either row-wise or column-wise, the learner needs to pick the shared
rules between the top two rows or columns. Among the choice list, the correct
image from A, when placed at the missing location in the last row or column,
will satisfy these shared rules.

3.2 Our Approach: SAViR-T

Our method consists of three sub-modules: (i) a Backbone Network, (ii) a Visual
Transformer (VT), and (iii) a Reasoning Network, trained end to end. Please
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Fig. 2. SAViR-T consists of Backbone Network, Visual Transformer, Reason-
ing Network. Each image in M given to the Backbone Network (ΦCNN) to extract
the “Feature Maps”, f ∈ R

D×K×K . Visual Transformer attends on the features of
local image patches and returns the attended vectors f̂ of each image. The Reasoning
Network functions per patch (depicted as K parallel layers) for the entire context and
choice attended vectors. Per patch, we start with group (row or column) rule extraction
ri via ΦMLP, followed by Shared rule extraction rij via ΨMLP. The Principal Shared
rule r12 is compared against extracted Shared rule for choice a, 1

2
(r1c + r2c) (“c” is the

choice row index for choice image “a”). The choice image with max similarity score is
predicted as the answer.

refer Fig. 2 for an illustration of our model. First, we process the images in
M via several convolutional blocks referred to as the backbone network. The
output feature map is given as to the visual transformer to extract the attended
visual embedding. The attended embedding is given to the reasoning network
to discover the embedded rule representation in RPM. A scoring function is
used to rank the choice images by comparing its row or column representation
(extracted by placing it in the missing location) with the rule representation
and predicting the index with the highest similarity as the correct choice. We
leverage the strength of convolutions, which learns location invariant low-level
neighborhood structures and visual transformer to relate to the higher-order
semantic concepts. We treat each local region as a token separately in reasoning
and apply a fusion function to recover the hidden rules that point the model to
the correct answer.

Backbone Network. The backbone network receives as input an image from
the context (M) or choice list (A) of size R

C×H×W . The extracted feature map
(fij , fa) is of dimension R

D×K×K where K × K is the number of image regions
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also referred to as tokens, and D is the dimension of the feature vector of each
area. Accordingly, each feature vector corresponds to a (WK × H

K ) pixel region
retaining the spatial information of the raw image. We intend to summarize the
high-level semantic information present in the image by learning from a set of
low-level visual tokens. To this effect, we employ several convolutional blocks as
our backbone network, denoted as ΦCNN, to extract local features from images.
We use ResNet [9] as our primary backbone network, although we show results
with other popular backbones in our ablation study.

fij = ΦCNN(Mij), i, j = 1, . . . , 3 and i, j �= 3 (1)
fa = ΦCNN(a), ∀a ∈ A (2)

Both the context and choice feature representation are generated using the same
network. We flatten and concatenate the matrix format in context to prepare fea-
ture vector FM = [f11, . . . , f32] ∈ R

8×K2×D, where each feature map is reshaped
into a K2-tall sequence of tokens, RK2×D. Choices are processed in the same
manner, FA = [fa1 , . . . , fa8 ] ∈ R

8×K2×D. Finally, both the context and the
choice representations are concatenated as F = [FM, FA], with [·, ·] denoting
the concatenation operator.

Visual Transformer. To learn the concepts responsible for reasoning, we seek
to model the interactions between local regions of an image as a bottom-up
process, followed by top-down attention to encoder relations over the regions.
We adopt Visual Transformer [8], which learns the attention weights between
tokens to focus on relationally-relevant regions within images. The transformer
is composed of “Multi-head Self-Attention” (MSA) mechanism followed by a
multi-layer perceptron (MLP). Both are combined together in layers l = 1, . . . , L
to form the transformer encoder. A layer normalization layer (LN) and residual
connection are added before and after every core component. The interactions
between the tokens generate an attention map for each layer and head. Below
we describe the steps involved in learning the attended vectors.

Reasoning Model. Human representations of space are believed to be hierar-
chical [20], with objects parsed into parts and grouped into part constellations.
To mimic this, SAViR-T generates weighted representations over local regions in
the image described above. Our reasoning module combines the inductive bias in
an RPM and per-patch representations to learn spatial relations between images.
We start by translating these attended region vectors obtained from RPM above
into within-group relational reasoning instructions, expressed in terms of the
row representations rik via ΦMLP. These representations hold knowledge of the
rules that bind the images in the i-th row. We realize ten row representations,
including eight possible last rows, where each choice is replaced at the missing
location (similarly for the columns). We define function ΨMLP which retrieves
the common across-group rule representations rijk , given the pair (rik, r

j
k). The

maximum similarity score between the last-row rules based on the Choice list,
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{r1ck , r2ck },∀c = 3, . . . , 10, and the extracted Principal Shared rule from the top
two rows r12k indicates the correct answer.

Row Relation Extraction Module. Since our image encoding is prepared
region-wise, we focus on these regions independently to detect patterns main-
taining the order of RPM, i.e., row-wise (left to right) or column-wise (top to
bottom). We restructure the resulting output of a RPM from the transformer F̂

as RK2×16×D, where the emdeddings of each local region k for an image at index
n in the RPM is denoted f̂n

k for n = 1, 2, . . . , 161 and k = 1, . . . , K2. We collect
these embeddings for every row and column as triplets (f̂1

k , f̂2
k , f̂3

k ), (f̂4
k , f̂5

k , f̂6
k ),

(f̂7
k , f̂8

k , f̂a
k ), a = 9, . . . , 16. Similarly, the triplets formed from columns are

(f̂1
k , f̂4

k , f̂7
k ), (f̂2

k , f̂5
k , f̂8

k ), (f̂3
k , f̂6

k , f̂a
k ). Each row and column is concatenated along

the feature dimension and processed through a relation extraction function
ΦMLP :

r1k = ΦMLP(f̂1
k , f̂2

k , f̂3
k ), c1k = ΦMLP(f̂1

k , f̂4
k , f̂7

k )

r2k = ΦMLP(f̂4
k , f̂5

k , f̂6
k ), c2k = ΦMLP(f̂2

k , f̂5
k , f̂8

k )

r3k = ΦMLP(f̂7
k , f̂8

k , f̂a
k ), c3k = ΦMLP(f̂3

k , f̂6
k , f̂a

k ).

(3)

The function ΦMLP has two-fold aims: (a) it seeks to capture common properties
of relational reasoning along a row/column for each local region; (b) it updates
the attention weights to cast aside the irrelevant portions that do not contribute
to rules.

Shared Rule Extraction Module. The common set of rules conditioned on
visual attributes in the first two rows of a RPM is the Principal Shared rule
set which the last row has to match to select the correct image in the missing
location. The top two rows will contain these common sets of rules, possibly along
with the rules unique to their specific rows. Given rik, rjk, the goal of function
ΨMLP is to extract these Shared rules between the pairs of rows/columns,

rijk = ΨMLP(rik, r
j
k), cijk = ΨMLP(cik, c

j
k), rcijk = [rijk , cijk ]. (4)

Similar to ΦMLP, function ΨMLP aims to elucidate the Shared relationships
between any pair i, j of rows/columns. Those relationships should hold across
image patches, thus we fuse rcijk obtained for k = 1, . . . , K2 regions via aver-
aging, leading to the Shared rule embedding rcij = 1

K2

∑
k rcijk for the entire

image.

3.3 Training and Inference

Given the principal Shared rule embedding rc12 from the top two row pairs, a
similarity metric is a function of closeness between sim(rc12, rca), where rca =
1
2 (rc1c+rc2c),∀c = 3, . . . , 10 is the average of the Shared rule embeddings among
the choice a and the top two rows, and sim(·, ·) is the inner product between

1 16 = 8 + 8 for eight Context and eight Choice images of an RPM.



468 P. Sahu et al.

rc12 and the average Shared rule embedding. The similarity score will be higher
for the correct image is placed at the last row compared to the wrong choice,

a∗ = arg max
a

sim(rc12, rca). (5)

We use cross-entropy as our loss function to train SAViR-T end-to-end. To bolster
generalization property of our model, two types of augmentation were adapted
from [33]: (i) shuffle the order of the top two rows or columns, as the resulting
change will not affect the final solution since the rules remain unaffected; and (ii)
shuffling the index location of the correct image in the unordered set of choice
list. After training our model, we can use SAViR-T to solve new RPM problems
(i.e., during testing) by applying (5).

4 Experiments

We study the effectiveness of our proposed SAViR-T for solving the challenging
RPM questions, specifically focusing on PGM [2], RAVEN [32], I-RAVEN [11],
RAVEN-FAIR [3], and V-PROM [25]. Details about the datasets can be found
in the Supplementary. Next, we describe the experimental details of our simula-
tions, followed by the results of these experiments and the performance analysis
of obtained results, including an ablation study of our SAViR-T.

4.1 Experimental Settings

We trained SAViR-T for 100 epochs on all three RAVEN datasets, 50 epochs for
PGM and 100 epochs for V-PROM, where each RPM is scaled to 16×224×224.
For V-PROM, similar to [25], we use the features extracted from the pre-trained
ResNet-101 before the last pooling layer; i.e., dimension of 2048 × 7 × 7. To
further reduce the complexity in case of V-PROM, we use an MLP layer to
derive 512 × 7 × 7 feature vectors; we must mention that this MLP becomes
part of SAViR-T’s training parameters. We use the validation set to track model
performance during the training process and use the best validation checkpoint
to report the accuracy on the test set. For SAViR-T, we adopt ResNet-18 as our
backbone for results in Table 1 and Table 2. Our transformer depth is set to one
for all datasets and the counts of heads set to 3 for RAVEN datasets, to 6 for
PGM and to 5 for V-PROM. Finally, in our reasoning module, we use a two-layer
MLP, ΦMLP, and a four-layer MLP, ΨMLP with a dropout of 0.5 applied to the
last layer. As the RAVEN dataset is created by applying rules row-wise, we set
the column vector cijk in (4) as zero-vector while training our model. No changes
are made while training for PGM, as the tuple (rule, object, attribute) can be
applied either along the rows or columns.

4.2 Performance Analysis

Table 1 summarizes the performance of our model and other baselines on the
test set of RAVEN and I-RAVEN datasets. We report the scores from [35] for
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Table 1. Model performance (%) on RAVEN / I-RAVEN.

Method Acc Center 2×2Grid 3×3Grid L-R U-D O-IC O-IG

LSTM [10] 13.1/18.9 13.2/26.2 14.1/16.7 13.7/15.1 12.8/14.6 12.4/16.5 12.2/21.9 13/21.1

WReN [2] 34.0/23.8 58.4/29.4 38.9/26.8 37.7/23.5 21.6/21.9 19.7/21.4 38.8/22.5 22.6/21.5

ResNet+DRT [32] 59.6/40.4 58.1/46.5 46.5/28.8 50.4/27.3 65.8/50.1 67.1/49.8 69.1/46.0 60.1/34.2

LEN [34] 72.9/39.0 80.2/45.5 57.5/27.9 62.1/26.6 73.5/44.2 81.2/43.6 84.4/50.5 71.5/34.9

CoPINet [33] 91.4/46.1 95.1/54.4 77.5/36.8 78.9/31.9 99.1/51.9 99.7/52.5 98.5/52.2 91.4/42.8

SRAN [11] 56.1†/60.8 78.2†/78.2 44.0†/50.1 44.1†/42.4 65.0†/70.1 61.0†/70.3 60.2†/68.2 40.1†/46.3

DCNet [36] 93.6/49.4 97.8/57.8 81.7/34.1 86.7/35.5 99.8/58.5 99.8/60 99.0/57.0 91.5/42.9

SCL [30] 91.6/95.0 98.1/99.0 91.0/96.2 82.5/89.5 96.8/97.9 96.5/97.1 96.0/97.6 80.1/87.7

SAViR-T (Ours) 94.0/98.1 97.8/99.5 94.7 /98.1 83.8/93.8 97.8/99.6 98.2/99.1 97.6/99.5 88.0/97.2

Human 84.41/- 95.45/- 81.82/- 79.55/- 86.36/- 81.81/- 86.36/- 81.81/-

† indicates our evaluation of the baseline in the absence of published results.

Table 2. Test accuracy of different models on PGM.

LSTM [10] ResNet CoPINet [33] WReN [2] MXGNet [27] LEN [34] SRAN [11] DCNet [36] SCL [30] SAViR-T (Ours)

Acc 35.8 42.0 56.4 62.6 66.7 68.1 71.3 68.6 88.9 91.2

Table 3. Test accuracy of different models on V-PROM.

Method RN [25] DCNet [36] SRAN [11] SAViR-T (Ours)

Acc 52.8†† 30.4† 40.8† 62.6
† indicates our evaluation of the baseline in the absence of pub-
lished results.
†† indicates our evaluation of the baseline (reported result in [25]
was 51.2).

I-RAVEN on LEN, COPINet, and DCNet. We also report the performance of
humans on the RAVEN dataset [32]; there is no reported human performance
on I-RAVEN. Overall, our SAViR-T achieves superior performance among all
baselines for I-RAVEN and a strong performance, on average, on RAVEN. Our
method performs similar to DCNet for RAVEN with a slight improvement of
0.4%. We notice DCNet has better performance over ours by a margin of 1.4%–
3.5% over “3 × 3 Grid”, “L-R”, “U-D”, “O-IC” and “O-IG” , while we show 13%
improvement for “2 × 2 Grid”. For I-RAVEN, the average test accuracy of our
model improves from 95% (SCL) to 98.13% and shows consistent improvement
over all configurations across all models. The most significant gain, spotted in “3
× 3 Grid” and “O-IG” is expected since our method learns to attend to semantic
spatio-visual tokens. As a result, we can focus on the smaller scale objects present
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Table 4. Test accuracy of different models on RAVEN-FAIR.

Method ResNet [9] LEN [34] COPINet [33] DCNet [36] MRNet [3] SAViR-T (Ours)

Acc 72.5 78.3 91.4 54.5† 96.6 97.4
† indicates our evaluation of the baseline in the absence of published results.

in these configurations, which is essential since the attributes of these objects
define the rules of the RPM problem. In Table 1, DCNet achieves better accuracy
for “3 × 3”, “L-R”, “U-D”, “O-IC”, and “O-IG” for RAVEN but significantly
lower accuracy for I-RAVEN, suggesting DCNet exploits the shortcut in
RAVEN. See our analysis in Table 5 that supports this observation.

We also observe that our reasoning model shows more significant improve-
ments on I-RAVEN than RAVEN. This is because the two datasets differ in the
selection process of the negative choice set. The wrong images differ in only a
single attribute from the right panel for RAVEN, while in I-RAVEN, they differ
in at least two characteristics. The latter choice set prevents models from deriv-
ing the puzzle solution by only considering the available choices. At the same
time, this strategy also helps the classification problem (better I-RAVEN scores)
since now the choice set images are more distinct. In Table 4, we also report the
test scores on the RAVEN-FAIR dataset against several baselines. Similar to the
above, our model achieves the best performance.

Table 2 reports performance of SAViR-T and other models trained on the
neutral configuration in the PGM dataset. Our model improves by 2.3% over
the best baseline model (SCL). PGM dataset is 20 times larger than RAVEN,
and the applied rule can be present either row-wise or column-wise. Additionally,
PGM contains “line” as an object type, increasing the complexity compared to
RAVEN datasets. Even under these additional constraints, SAViR-T is able to
improve RPM solving by mimicking the reasoning process.

In Table 3 we report the performance on the V-PROM dataset, made up
of natural images. The background signal for every image in the dataset can
be considered as noise or a distractor. In this highly challenging benchmark,
our SAViR-T shows a major improvement of over 8% over the Relation Network
(RN) reported in [25] (51.2 reported in [25] and 52.83 for our evaluation of the
RN model –since the code is not available–). Since the V-PROM dataset is the
most challenging one, we define the margin Δ for each testing sample to better
understand the performance of SAViR-T:

Δ = sim(rc12, rca
∗
) − max

a�=a∗
sim(rc12, rca),

where a∗ indicates the correct answer among eight choices. The model is con-
fident and correctly answers the RPM question for Δ � 0). When Δ ≈ 0, the
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model is uncertain about its predictions, Δ < 0 indicating incorrect and Δ > 0
correct uncertain predictions. Finally, the model is confident but incorrectly
answers for Δ � 0).

Fig. 3. V-PROM RPM examples (trained on SAViR-T) for 4-cases of Δ inorder from
correct prediction with strong certainty to incorrect prediction with strong certainty.

In Fig. 3 we present examples from the V-PROM testing set. In the Sup-
plementary we present additional detailed analysis of these results. The first
example has a Δ > 100, which means that the trained SAViR-T is very con-
fident about its prediction. Next, we move to examples with Δ very close to
zero, either negative or positive. We visualize two such examples in Fig. 3, in
the second (correctly classified RPM) and the third (misclassified) puzzles. The
second is a counting problem where the first image in a row has x objects and
the next two images in the same row y (i.e., first row x = 7, y = 2). Some
images are distorted and/or blurred after the pre-processing required to use the
pre-trained ResNet-101, which makes the recognition and “counting” of objects
difficult. The second example is an “And” rule on object attributes. The first row
contains circle objects and the second and third cylinders. The wrongly selected
image (depicted in a red bounding box) contains as well cylinder objects. In
these two cases, the model is uncertain about which image is solving the RPM.

Lastly, we study examples which SAViR-T very confidently misclassifies.
Specifically, we picked the worst six instances of the testing set. One of these
examples is depicted in the last puzzle of Fig. 3. All examples belong to the “And
rule” for object attributes like the case Δ � 0. In the depicted example, “And”
rule of the last row refers to “Players”; where in both cases, they are playing
“Tennis”. The problem is that images five and eight depict “Players” playing
“Tennis”, resulting in a controversial situation. Although the model misclassifies
the “Player” in the second choice, it is reasonable to choose either the second,
fifth, or eighth images as the correct image in the puzzle.

Table 5 presents our cross-dataset results between models trained and tested
on different RAVEN-based datasets. Since all three datasets only differ in the
manner their distractors in the Choice set were created but are identical in the
Context, a model close to the generative process should be able to pick the
correct image irrespective of how difficult the distractors are. In the first two
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Table 5. Results of cross-dataset evaluation. Top row indicates the training set, next
the test set.

Model training set RAVEN I-RAVEN RAVEN-F

Evaluation Dataset I-RAVEN RAVEN-F RAVEN RAVEN-F RAVEN I-RAVEN

SRAN 72.8 78.5 57.1 71.9 54.7 60.5

DCNet 14.7 27.4 37.9 51.7 57.8 46.5

SAViR-T (Ours) 97 97.5 95.1 97.7 94.7 88.3

columns, we train SAViR-T with the RAVEN dataset and measure the trained
model performance on I-RAVEN, RAVEN-FAIR (RAVEN-F) testing sets; other
combinations in the succeeding columns follow the respective train-test patterns.
As was expected, when training on RAVEN (94%), we see an improvement on
both I-RAVEN (97%) and RAVEN-FAIR (97.5%) test since the latter datasets
have more dissimilar choice images, helping the reasoning problem. This increase
in performance can be seen for SRAN from 56.1% to 72.8% and 78.5% respec-
tively. Since DCNet (93.6%) utilizes the short solution, the accuracy drops to
14.7% and 27.4% respectively. For the same reasons, when training on I-RAVEN
(98.8%), our model shows a drop in RAVEN (95.1%) performance; for RAVEN-
FAIR (97.7%), the performance remains close to the one on the training dataset.

4.3 Ablation Study

Exploiting Shortcut Solutions. As shown in SRAN [11], any powerful model
that learns by combining the extracted features from the choices is capable of
exploiting the shortcut solution present in the original RAVEN. In a context-
blind setting, a model trained only on images in the RAVEN choice list should
predict randomly. However, context-blind {ResNet, CoPINet, DCNet} models
attain 71.9%, 94.2% and 94.1% test accuracy respectively. We train and report
the accuracy for context-blind DCNet and reported the scores in [11] for ResNet,
CoPINet. Similarly, we investigate our SAViR-T in a context-blind setting. We
remove the reasoning module and use the extracted attended choice vectors from
the visual transformer, passed through an MLP, to output an eight-dimensional
logit vector. After training for 100 epochs, our model performance remained
at 12.2%, similar to the random guess of 1/8 = 12.5%, suggesting that our
Backbone with the Visual Transformer does not contribute towards finding a
shortcut. Thus, our semantic tokenized representation coiled with the reasoning
module learns rules from the context to solve the RPM questions.

Does SAViR-T Learn Rules? The rules in RPMs for the I-RAVEN dataset
are applied row-wise. However, these rules can exist in either rows or columns.
We evaluate performance on two different setups to determine if our model
can discover the rule embeddings with no prior knowledge of whether the rules
were applied row-wise or column-wise. In our first setup, we train SAViR-T with
the prior knowledge of row-wise rules in RPMs. We train our second model by
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preparing rule embeddings on both row and column and finally concatenating
them to predict the correct answer. Our model performance drop was only 3.8%
from 98.1% to 94.3%. In the case of SRAN [11], the reported drop in performance
was 1.2% for the above setting. Overall, this indicates that our model is capable
of ignoring the distraction from the column-wise rule application.

(a) All Configurations (b) Center Single (CS) (c) 2 × 2 Grid (d) 3 × 3 Grid

(e) Left-Right (f) Up-Down (g) Out CS-In CS (h) Out CS-In Grid

Fig. 4. Testing set classification accuracy for the SAViR-T trained on all configurations
based on each I-RAVEN rule (constant, progression, arithmetic, and distribute three)
and used attribute (number, position, type, size, color of the objects). From left to
right, Fig. 4a presents the classification accuracy for all configurations, Figure 4b for
“Center Single”, Fig. 4c for 2 × 2 Grid, and Fig. 4d for 3 × 3 Grid in the top row.
Similarly in the bottom row, Fig. 4e for left right, Fig. 4f for the up down, Fig. 4g for
out single, in center single and finally Fig. 4h for out single, in 2 × 2 Grid.

Figure 4 presents the I-RAVEN performance on the test set for SAViR-T when
trained on the I-RAVEN dataset. The eight different heatmap images correspond
to the setting with all configurations (Fig. 4a) and individual configurations from
“Center Single”(Fig. 4b) to “Out-In-Grid” (Fig. 4h). The row dimension in each
heatmap corresponds to the RPM rules used in the puzzles (Constant, Progres-
sion, Arithmetic, and Distribute Three). In I-RAVEN, each rule is associated
with an attribute. Therefore, in the columns, we identify the characteristics
of different objects, such as their “Number”, “Position,” “Type,” “Size,” and
“Color”. The Blank cells in the heatmap e.g., “(Arithmetic, Type)”, indicate
non-existence for that (rule, attribute) pair combination in the dataset.

The most challenging combination of (rule, attribute) is a progression with
the position. In this setup, the different objects progressively change position on
the 2 × 2 and 3 × 3 grids. The models fail to track this change well. To further
understand this drop in performance, we performed extended experiments, inves-
tigating the difference in attributes between the correct image and the predicted
(misclassified) image (more details in the Appendix). We notice that for the
2 × 2 grid configuration, the predicted differences are only in one attribute, pri-
marily the “Position”. This means the distractor objects are of the same color,
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size, type, and number as the correct one but have different positions inside
the grid. The second group of misclassified examples differs in the “Type” of
the present objects. Therefore, we can conclude the model finds it challenging to
track the proper position of the entities and their type for some examples. Again,
in the 3 × 3 grid, “Position” is the main differentiating attribute, but the “Size”
attribute follows it; this makes sense since, in the 3 × 3 grid, the objects have
a petite size resulting in greater sensitivity to distinguish the different scales.
Similar behavior is observed in the O-IG configuration.

5 Conclusions

In this paper, we introduced SAViR-T, a model that takes into account the
visually-critical spatial context present in image-based RPM. By partitioning
an image into patches and learning relational reasoning over these local win-
dows, our SAViR-T fosters the learning of Principal rule and attribute represen-
tations in RPM. The model recognizes the Principal Shared rule, comparing it
to choices via a simple similarity metric, thus avoiding the possibility of finding a
shortcut solution. SAViR-T shows robustness to injection of triplets that disobey
the RPM formation patterns, e.g., when trained with both choices of row- and
column-wise triplets on the RPM with uniquely, but unknown, row-based rules.
We are the first to provide extensive experiments results on all three RAVEN-
based datasets, PGM, and the challenging natural image-based V-PROM, which
suggests that SAViR-T outperforms all baselines by a significant margin except
for RAVEN where we match their accuracy.
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Abstract. Synthetic-to-real transfer learning is a framework in which a
synthetically generated dataset is used to pre-train a model to improve
its performance on real vision tasks. The most significant advantage of
using synthetic images is that the ground-truth labels are automatically
available, enabling unlimited expansion of the data size without human
cost. However, synthetic data may have a huge domain gap, in which case
increasing the data size does not improve the performance. How can we
know that? In this study, we derive a simple scaling law that predicts
the performance from the amount of pre-training data. By estimating the
parameters of the law, we can judge whether we should increase the data
or change the setting of image synthesis. Further, we analyze the theory of
transfer learning by considering learning dynamics and confirm that the
derived generalization bound is consistent with our empirical findings.
We empirically validated our scaling law on various experimental settings
of benchmark tasks, model sizes, and complexities of synthetic images.

1 Introduction

The success of deep learning relies on the availability of large data. If the tar-
get task provides limited data, the framework of transfer learning is preferably
employed. A typical scenario of transfer learning is to pre-train a model for a
similar or even different task and fine-tune the model for the target task. How-
ever, the limitation of labeled data has been the main bottleneck of supervised
pre-training. While there have been significant advances in the representation
capability of the models and computational capabilities of the hardware, the size
and the diversity of the baseline dataset have not been growing as fast [57]. This

H. Mikami, K. Fukumizu, K. Hayashi—Equal contribution.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26409-2_29.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13715, pp. 477–492, 2023.
https://doi.org/10.1007/978-3-031-26409-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26409-2_29&domain=pdf
https://doi.org/10.1007/978-3-031-26409-2_29
https://doi.org/10.1007/978-3-031-26409-2_29


478 H. Mikami et al.

is partially because of the sheer physical difficulty of collecting large datasets
from real environments (e.g., the cost of human annotation).

In computer vision, synthetic-to-real (syn2real) transfer is a promising strat-
egy that has been attracting attention [9,12,22,29,44,56,61]. In syn2real, images
used for pre-training are synthesized to improve the performance on real vision
tasks. By combining various conditions, such as 3D models, textures, light con-
ditions, and camera poses, we can synthesize an infinite number of images with
ground-truth annotations. Syn2real transfer has already been applied in some
real-world applications. Teed and Deng [59] proposed a simultaneous localiza-
tion and mapping (SLAM) system that was trained only with synthetic data
and demonstrated state-of-the-art performance. The object detection networks
for autonomous driving developed by Tesla was trained with 370 million images
generated by simulation [36].

The performance of syn2real transfer depends on the similarity between syn-
thetic and real data. In general, the more similar they are, the stronger the effect
of pre-training will be. On the contrary, if there is a significant gap, increasing
the number of synthetic data may be completely useless, in which case we waste
time and computational resources. A distinctive feature of syn2real is that we
can control the process of generating data by ourselves. If a considerable gap
exists, we can try to regenerate the data with a different setting. But how do we
know that? More specifically, in a standard learning setting without transfer, a
“power law”-like relationship called a scaling law often holds between data size
and generalization errors [35,53]. Is there such a rule for pre-training?

In this study, we find that the generalization error on fine-tuning is explained
by a simple scaling law,

test error � Dn−α + C, (1)

where coefficient D > 0 and exponent α > 0 describe the convergence speed of
pre-training, and constant C ≥ 0 determines the lower limit of the error. We refer
to α as pre-training rate and C as transfer gap. We can predict how large the pre-
training data should be to achieve the desired accuracy by estimating the param-
eters α,C from the empirical results. Additionally, we analyze the dynamics of
transfer learning using the recent theoretical results based on the neural tangent
kernel [50] and confirm that the above law agrees with the theoretical analysis. We
empirically validated our scaling law on various experimental settings of bench-
mark tasks, model sizes, and complexities of synthetic images.

Our contributions are summarized as follows.

– From empirical results and theoretical analysis, we elicit a law that describes
how generalization scales in terms of data sizes on pre-training and fine-tuning.

– We confirm that the derived law explains the empirical results for various
settings in terms of pre-training/fine-tuning tasks, model size, and data com-
plexity (e.g., Fig. 1). Furthermore, we demonstrate that we can use the esti-
mated parameters in our scaling law to assess how much improvement we can
expect from the pre-training procedure based on synthetic data.

– We theoretically derive a generalization bound for a general transfer learning
setting and confirm its agreement with our empirical findings.
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Fig. 1. Empirical results of syn2real transfer for different tasks. We conducted four pre-
training tasks: object detection (objdet), semantic segmentation (semseg), multi-label
classification (mulclass), surface normal estimation (normal), and three fine-tuning
tasks for benchmark datasets: object detection for MS-COCO, semantic segmentation
for ADE20K, and single-label classification (sinclass) for ImageNet. The y-axis indi-
cates the test error for each fine-tuning task. Dots indicate empirical results and dashed
lines indicate the fitted curves of scaling law (1). For more details, see Sect. 4.2.

2 Related Work

Pre-training for Visual Tasks. Many empirical studies show that the perfor-
mance at a fine-tuning task scales with pre-training data (and model) size. For
example, Huh et al. [32] studied the scaling behavior on ImageNet pre-trained
models. Beyond ImageNet, Sun et al. [57] studied the effect of pre-training with
pseudo-labeled large-scale data and found a logarithmic scaling behavior. Similar
results were observed by Kolesnikov et al. [38].

Syn2real Transfer. The utility of synthetic images as supervised data for com-
puter vision tasks has been continuously studied by many researchers [9,12,14,
22,29,31,43–45,56,61]. These studies found positive evidence that using syn-
thetic images is helpful to the fine-tuning task. In addition, they demonstrated
how data complexity, induced by e.g., light randomization, affects the final per-
formance. For example, Newell and Deng [45] investigated how the recent self-
supervised methods perform well as a pre-training task to improve the perfor-
mance of downstream tasks. In this paper, following this line of research, we
quantify the effects under the lens of the scaling law (1).

Neural Scaling Laws. The scaling behavior of generalization error, including
some theoretical works [e.g., 3], has been studied extensively. For modern neu-
ral networks, Hestness et al. [28] empirically observed the power-law behavior
of generalization for language, image, and speech domains with respect to the
training size. Rosenfeld et al. [53] constructed a predictive form for the power-law
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in terms of data and model sizes. Kaplan et al. [35] pushed forward this direction
in the language domain, describing that the generalization of transformers obeys
the power law in terms of a compute budget in addition to data and model sizes.
Since then, similar scaling laws have been discovered in other data domains [25].
Several authors have also attempted theoretical analysis. Hutter [33] analyzed
a simple class of models that exhibits a power-law n−β in terms of data size n
with arbitrary β > 0. Bahri et al. [5] addressed power laws under four regimes
for model and data size. Note that these theoretical studies, unlike ours, are
concerned with scaling laws in a non-transfer setting.

Hernandez et al. [27] studied the scaling laws for general transfer learning,
which is the most relevant to this study. A key difference is that they focused
on fine-tuning data size as a scaling factor, while we focus on pre-training data
size. Further, they found scaling laws in terms of the transferred effective data,
which is converted data amount necessary to achieve the same performance gain
by pre-training. In contrast, Eq. (1) explains the test error with respect to the
pre-training data size directly at a fine-tuning task. Other differences include
task domains (language vs. vision) and architectures (transformer vs. CNN).

Theory of Transfer Learning. Theoretical analysis of transfer learning has been
dated back to decades ago [7] and has been pursued extensively. Among others,
some recent studies [16,42,62] derived an error bound of a fine-tuning task in the
multi-task scenario based on complexity analysis; the bound takes an additive
form O(An−1/2 + Bs−1/2), where n and s are the data size of pre-training and
fine-tuning, respectively, with coefficients A and B. Neural network regression
has been also discussed with this bound [62]. In the field of domain adaptation,
error bounds have been derived in relation to the mismatch between source and
target input distributions [1,19]. They also proposed algorithms to adopt a new
data domain. However, unlike in this study, no specific learning dynamics has
been taken into account. In the area of hypothesis transfer learning [18,64],
among many theoretical works, Du et al. [17] has derived a risk bound for kernel
ridge regression with transfer realized as the weights on the training samples. The
obtained bound takes a similar form to our scaling law. However, the learning
dynamics of neural networks initialized with a pre-trained model has never been
explored in this context.

3 Scaling Laws for Pre-training and Fine-tuning

The main obstacle in analyzing the test error is that we have to consider interplay
between the effects of pre-training and fine-tuning. Let L(n, s) ≥ 0 be the test
error of a fine-tuning task with pre-training data size n and fine-tuning data size
s. As the simplest case, consider a fine-tuning task without pre-training (n = 0),
which boils the transfer learning down to a standard learning setting. In this
case, the prior studies of both classical learning theory and neural scaling laws
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Fig. 2. Scaling curves with different (a) pre-training size and (b) fine-tuning size.

tell us that the test error decreases polynomially1 with the fine-tuning data size
s, that is, L(0, s) = Bs−β + E with decay rate β > 0 and irreducible loss E ≥ 0.
The irreducible loss E is the inevitable error given by the best possible mapping;
it is caused by noise in continuous outputs or labels. Hereafter we assume E = 0
for brevity.

3.1 Induction of Scaling Law with Small Empirical Results

To speculate a scaling law, we conducted preliminary experiments.2 We pre-
trained ResNet-50 by a synthetic classification task and fine-tuned by ImageNet.
Figure 2(a) presents the log-log plot of error curves with respect to pre-training
data size n, where each shape and color indicates a different fine-tuning size s.
It shows that the pre-training effect diminishes for large n. In contrast, Fig. 2(b)
presents the relations between the error and the fine-tuning size s with different
n. It indicates the error drops straight down regardless of n, confirming the
power-law scaling with respect to s. The above observations and the fact that
L(0, s) decays polynomially are summarized as follows.

Requirement 1. lims→∞ L(n, s) = 0.

Requirement 2. limn→∞ L(n, s) = const.

Requirement 3. L(0, s) = Bs−β .

Requirements 1 and 3 suggest the dependency of n is embedded in the coefficient
B = g(n), i.e., the pre-training and fine-tuning effects interact multiplicatively.
To satisfy Requirement 2, a reasonable choice for the pre-training effect is g(n) =

1 For classification with strong low-noise condition, it is known that the decay rate
can be exponential [49]. However, we focus only on the polynomial decay without
such strong condition in this paper.

2 The results are replicated from Appendix C.2; see the subsection for more details.



482 H. Mikami et al.

n−α + γ; the error decays polynomially with respect to n but has a plateau at
γ. By combining these, we obtain

L(n, s) = δ(γ + n−α)s−β , (2)

where α, β > 0 are decay rates for pre-training and fine-tuning, respectively,
γ ≥ 0 is a constant, and δ > 0 is a coefficient. The exponent β determines
the convergence rate with respect to fine-tuning data size. From this viewpoint,
δ(γ + n−α) is the coefficient factor to the power law. The influence of the pre-
training appears in this coefficient, where the constant term δγ comes from the
irreducible loss of the pre-training task and n−α expresses the effect of pre-
training data size. The theoretical consideration in Section E.5 suggests that
the rates α and β can depend on both the target functions of pre-training and
fine-tuning as well as the learning rate.

3.2 Theoretical Deduction of Scaling Law

Next, we analyze the fine-tuning error from a purely theoretical point of view. To
incorporate the effect of pre-training that is given as an initialization, we need
to analyze the test error during the training with a given learning algorithm
such as SGD. We apply the recent development by [50] to transfer learning.
The study successfully analyzes the generalization of neural networks in the
dynamics of learning, showing it achieves minmax optimum rate. The analysis
uses the framework of the reproducing kernel Hilbert space given by the neural
tangent kernel [34].

For theoretical analysis of transfer, it is important to formulate a task sim-
ilarity between pre-training and fine-tuning. If the tasks were totally irrelevant
(e.g., learning MNIST to forecast tomorrow’s weather), pre-training would have
no benefit. Following Nitanda and Suzuki [50], for simplicity of analysis, we dis-
cuss only a regression problem with square loss. We assume that a vector input
x and scalar output y follow y = φ0(x) for pre-training and y = φ0(x) + φ1(x)
for fine-tuning, where we omit the output noise for brevity; the task types are
identical sharing the same input-output form, and task similarity is controlled
by φ1.

We analyze the situation where the effect of pre-training remains in the
fine-tuning even for large data size (s → ∞). More specifically, the theoretical
analysis assumes a regularization term as the �2-distance between the weights
and the initial values, and a smaller learning rate than constant in the fine-
tuning. Hence we control how the pre-training effect is preserved through the
regularization and learning rate. Other assumptions made for theoretical analysis
concern the model and learning algorithm; a two-layer neural network having M
hidden units with continuous nonlinear activation3 is adopted; for optimization,
the averaged SGD [51], an online algorithm, is used for a technical reason.

The following is an informal statement of the theoretical result. See
Appendix E for details. We emphasize that our result holds not only for syn2real
transfer but also for transfer learning in general.
3 ReLU is not included in this class, but we can generalize this condition; see [50].
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Theorem 1 (Informal). Let f̂n,s(x) be a model of width M pre-trained by
n samples (x1, y1), . . . , (xn, yn) and fine-tuned by s samples (x′

1, y
′
1), . . . , (x

′
s, y

′
s)

where inputs x, x′ ∼ p(x) are i.i.d. with the input distribution p(x) and y = φ0(x)
and y′ = ϕ(x′) = φ0(x′) + φ1(x′). Then the generalization error of the squared
loss L(n, s) = |f̂n,s(x) − ϕ(x)|2 is bounded from above with high probability as

ExL(n, s) ≤ A1(cM + A0n
−α)s−β + εM . (3)

εM and cM can be arbitrary small for large M ; A0 and A1 are constants; the
exponents α and β depend on φ0, φ1, p(x), and the learning rate of fine-tuning.

The above bound (3) shows the correspondence with the empirical derivation of
the full scaling law (2). Note that the approximation error εM is omitted in (2).

We note that the derived bound takes a multiplicative form in terms of the
pre-training and fine-tuning effects, which contrasts with the additive bounds
such as An−1/2 +Bs−1/2 [62]. The existing studies consider the situation where
a part of a network (e.g., backbone) is frozen during fine-tuning. Therefore, the
error of pre-training is completely preserved after fine-tuning, and both errors
appear in an additive way. This means that the effect of pre-training is irreducible
by the effect of fine-tuning, and vice versa. In contrast, our analysis deals with
the case of re-optimizing the entire network in fine-tuning. In that case, the
pre-trained model is used as initial values. As a result, even if the error in pre-
training is large, the final error can be reduced to zero by increasing the amount
of fine-tuning data.

3.3 Insights and Practical Values
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Fig. 3. Pre-training scenarios.

The form of the full scaling law (2) sug-
gests that there are two scenarios depend-
ing on whether fine-tuning data is big
or small. In “big fine-tune” regime, pre-
training contributes relatively little. By
taking logarithm, we can separate the full
scaling law (2) into the pre-training part
u(n) = log(n−α + γ) and the fine-tuning
part v(s) = −β log s. Consider to increase
n by squaring it. Since the pre-training
part cannot be reduced below log(γ) as
u(n) > u(n2) > log(γ), the relative improvement (u(n2) − u(n))/v(s) becomes
infinitesimal for large s. Figure 2(b) confirms this situation. Indeed, prior stud-
ies provide the same conclusion that the gain from pre-training can easily van-
ish [24,45] or a target task accuracy even degrade [67] if we have large enough
fine-tuning data.

The above observation, however, does not mean pre-training is futile. Dense
prediction tasks such as depth estimation require pixel-level annotations, which
critically limits the number of labeled data. Pre-training is indispensable in such



484 H. Mikami et al.

“small fine-tune” regime. Based on this, we hereafter analyze the case where the
fine-tuning size s is fixed. By eliminating s-dependent terms in (2), we obtain a
simplified law (1) by setting D = δs−β and C = δγs−β . After several evaluations,
these parameters including α can be estimated by the nonlinear least squares
method (see also Sect. 4.1).

As a practical benefit, the estimated parameters of the simplified law (1)
bring a way to assess syn2real transfer. Suppose we want to solve a classifica-
tion task that requires at least 90% accuracy with limited labels. We generate
some number of synthetic images and pre-train with them, and we obtain 70%
accuracy as Fig. 3(a). How can we achieve the required accuracy? It depends
on the parameters of the scaling law. The best scenario is (b)—transfer gap C
is low and pre-training rate α is high. In this case, increasing synthetic images
eventually leads the required accuracy. In contrast, when transfer gap C is larger
than the required accuracy (c), increasing synthetic images does not help to solve
the problem. Similarly, for low pre-training rate α (d), we may have to generate
tremendous amount of synthetic images that are computationally infeasible. In
the last two cases, we have to change the rendering settings such as 3D models
and light conditions to improve C and/or α, rather than increasing the data size.
The estimation of α and C requires to compute multiple fine-tuning processes.
However, the estimated parameters tell us whether we should increase data or
change the data generation process, which can reduce the total number of trials
and errors.

4 Experiments

4.1 Settings

For experiments, we employed the following transfer learning protocol. First, we
pre-train a model that consists of backbone and head networks from random
initialization until convergence, and we select the best model in terms of the
validation error of the pre-training task. Then, we extract the backbone and add
a new head to fine-tune all the model parameters. For notations, the task names
of object detection, semantic segmentation, multi-label classification, single-label
classification, and surface normal estimation are abbreviated as objdet, semseg,
mulclass, sinclass, and normal, respectively. The settings for transfer learning
are denoted by arrows. For example, objdet→semseg indicates that a model is
pre-trained by object detection, and fine-tuned by semantic segmentation. All
the results including Fig. 1 are shown as log-log plots. The details of pre-training,
fine-tuning, and curve fitting are described in Appendix A.1.

4.2 Scaling Law Universally Explains Downstream Performance
for Various Task Combinations

Figure 1 shows the test errors of each fine-tuning task and fitted learning curves
with (1), which describes the effect of pre-training data size n for all combinations
of pre-training and fine-tuning tasks. The scaling law fits with the empirical fine-
tuning test errors with high accuracy in most cases.
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linear fittings of them.

4.3 Bigger Models Reduce the Transfer Gap

We compared several ResNet models as backbones in mulclass→sinclass and
objdet→objdet to observe the effects of model size. Figure 4(left) shows the
curves of scaling laws for the pre-training data size n for different sizes of
backbone ResNet-x, where x ∈ {18, 34, 50, 101, 152}. The bigger models attain
smaller test errors. Figure 4(right) shows the values of the estimated transfer gap
C. The results suggest that there is a roughly power-law relationship between
the transfer gap and model size. This agrees with the scaling law with respect
to the model size shown by Hernandez et al. [27].

4.4 Scaling Law Can Extrapolate for More Pre-training Images

We also evaluated the extrapolation ability of the scaling law. We increased
the number of synthetic images from the original size (n = 64, 000) to 1.28
million, and see how the fitted scaling law predicts the unseen test errors where
n > 64, 000. As a baseline, we compared the power-law model, which is equivalent
to the derived scaling law (1) with C = 0. Figure 5(left) shows the extrapolation
results in objdet→objdet setting, which indicates the scaling law follows the
saturating trend in regions with large pre-training sizes for all models, while the
power-law model fails to capture it. The prediction errors is numerically shown
in Fig. 5(right), which again shows our scaling law achieves better prediction
performance.

4.5 Data Complexity Affects both Pre-training Rate and Transfer
Gap

We examined how the complexity of synthetic images affects fine-tuning per-
formance. We controlled the following four rendering parameters: Appearance:
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Fig. 5. Ability to extrapolate. Left: The solid lines represent the fitted power law and
the dashed curves represent the fitted scaling law (1), in which the laws were fitted
using the empirical errors where the pre-training size n was less than 64,000 (the first
five dots). The vertical dashed line indicates where n = 64, 000. Right: The root-mean-
square errors between the laws and the actual test errors in the area of extrapolation
(the last five dots).

Number of objects in each image; single or multiple (max 10 objects). Light :
Either an area and point light is randomized or fixed in terms of height, color,
and intensity. Background : Either the textures of floor/wall are randomized or
fixed. Object texture: Either the 3D objects used for rendering contain texture
(w/) or not (w/o). Indeed, the data complexity satisfies the following ordered
relationships: single < multiple in appearance, fix < random in light and
background, and w/o < w/ in object texture4. To quantify the complexity, we
computed the negative entropy of the Gaussian distribution fitted to the last acti-
vation values of the backbone network. For this purpose, we pre-trained ResNet-
50 as a backbone with MS-COCO for 48 epochs and computed the empirical
covariance of the last activations for all the synthetic data sets.

The estimated parameters are shown in Fig. 6, which indicates the following
(we discuss the implications of these results further in Sect. 5.1).

– Data complexity controlled by the rendering settings correlates with the neg-
ative entropy, implying the negative entropy expresses the actual complexity
of pre-training data.

– Pre-training rate α correlates with data complexity. The larger complexity
causes slower rates of convergence with respect to the pre-training data size.

– Transfer gap C mostly correlates negatively with data complexity, but not
for object texture.

As discussed in Sect. 4.1, we have fixed the value of D to avoid numerical
instability, which might cause some bias to the estimates of α. We postulate,
however, the value of D depends mainly on the fine-tuning task and thus has
a fixed value for different pre-training data complexities. This can be inferred
4 The object category of w/o is a subset of w/, and w/ has a strictly higher complexity

than w/o.
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Fig. 6. Effect of synthetic image complexity. Best viewed in color. Left: Scaling curves
of different data complexities. Right: Estimated parameters. The error bars represent
the standard error of the estimate in least squares.

from the theoretical analysis in Appendix E.5: the exponent β in the main factor
s−β of D does not depend on the pre-training data distribution but only on the
fine-tuning task or the pre-training true mapping. Thus, the values of D should
be similar over the different complexities, and the correlation of α preserves.

5 Conclusion and Discussion

In this paper, we studied how the performance on syn2real transfer depends
on pre-training and fine-tuning data sizes. Based on the experimental results,
we found a scaling law (1) and its generalization (2) that explain the scaling
behavior in various settings in terms of pre-training/fine-tuning tasks, model
sizes, and data complexities. Further, we present the theoretical error bound for
transfer learning and found our theoretical bound has a good agreement with
the scaling law.

5.1 Implication of Complexity Results in Sect. 4.5

The results of Sect. 4.5 has two implications. First, data complexity (i.e., the
diversity of images) largely affects the pre-training rate α. This is reasonable
because if we want a network to recognize more diverse images, we need to train
it with more examples. Indeed, prior studies [5,55] observed that α is inversely
proportional to the intrinsic dimension of the data (e.g., dimension of the data
manifold), which is an equivalent concept of data complexity.

Second, the estimated values of the transfer gap C suggest that increasing
the complexity of data is generally beneficial to decrease C, but not always.
Figure 6(right) shows that increasing complexities in terms of appearance, light,
and background reduces the transfer gap, which implies that these rendering
operations are most effective to cover the fine-tuning task that uses real images.
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However, the additional complexity in object texture works negatively. We sus-
pect that this occurred because of shortcut learning [20]. Namely, adding tex-
tures to objects makes the recognition problem falsely easier because we can
identify objects by textures rather than shapes. Because CNNs prefer to recog-
nize objects by textures [21,26], the pre-trained models may overfit to learn the
texture features. Without object textures, pre-trained models have to learn the
shape features because there is no other clue to distinguish the objects, and the
learned features will be useful for real tasks.

5.2 Lessons to Transfer Learning and Synthetic-to-Real
Generalization

Our results suggest the transfer gap C is the most crucial factor for successful
transfer learning because C determines the maximum utility of pre-training.
Large-scale pre-training data can be useless when C is large. In contrast, if C is
negligibly small, the law is reduced essentially to n−α, which tells that the volume
of pre-training data is directly exchanged to the performance of fine-tuning tasks.
Our empirical results suggest two strategies for reducing C: 1) Use bigger models
and 2) fill the domain gap in terms of the decision rule and image distribution.
For the latter, existing techniques such as domain randomization [60] would be
helpful.

5.3 Limitations

We have not covered several directions in this paper. In theory, we assume several
conditions that may not fit with the actual setting; the additive fine-tuning model
φ0(x) + φ1(x) in Theorem 1 does not address the transfer to different type of
tasks, and the distributional difference of the inputs (synthetic versus real) is
not considered. We analyzed only ASGD as the optimization and the effect of
the choice is not fully clarified. In spite of these theoretical simplifications, our
analysis has revealed the important aspects of the transfer learning as discussed
in Sect. 3. In the experiments, although our theory is justified, we have not
investigated the case when a pre-training dataset is not synthetic but real. These
topics are left for future work.
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Abstract. The search for good hyper-parameters is crucial for various
deep learning methods. In addition to the hyper-parameter tuning on
validation data, meta-learning provides a promising manner for optimiz-
ing the hyper-parameters, referred to as meta optimization. In all exist-
ing meta optimization methods, the meta data set is directly given or
constructed from training data based on simple selection criteria. This
study investigates the automatic compiling of a high-quality meta set
from training data with more well-designed criteria and the submodular
optimization strategy. First, a theoretical analysis is conducted for the
generalization gap of meta optimization with a general meta data com-
piling method. Illuminated by the theoretical analysis, four criteria are
presented to reduce the gap’s upper bound. Second, the four criteria are
cooperated to construct an optimization problem for the automatic meta
data selection from training data. The optimization problem is proven to
be submodular, and the submodular optimization strategy is employed
to optimize the selection process. An extensive experimental study is
conducted, and results indicate that our compiled meta data can yield
better or comparable performances than the data compiled with existing
methods.

Keywords: Hyper-parameter optimization · Meta optimization ·
Generalization gap · Submodular optimization · Selection criteria

1 Introduction

Hyper-parameters have a considerable effect on the final performance of a model
in machine learning. In shallow learning, cross-validation is usually leveraged to
search (near) optimal hyper-parameters; in deep learning, due to the high time
consumption of cross-validation, an independent validation set is constructed,
and the hyper-parameters with the best performance are selected as the final
hyper-parameters. In both strategies, the hyper-parameters are searched in a
pre-defined grid. Recently, meta-learning has provided an effective manner to
directly optimize the hyper-parameters instead of the grid search in existing
strategies. Various hyper-parameters, such as learning rates [1], weights of noisy
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or imbalanced samples [3–5], pseudo labels [6–8], and others inside particular
methods [9,10], have been optimized via meta-learning on an additional small
meta data set. Meta-learning based hyper-parameter optimization is called meta
optimization.

In meta optimization, an independent meta data set is required, and ideally
the meta set is unbiased. For example, in meta semantic data augmentation [10],
which applies meta optimization for the covariance matrix, the meta data set
in an experimental run contains a certain number of images independent of the
training set. Although the leveraged meta set is claimed to be unbiased, no “unbi-
ased” standard is provided. Most existing studies directly assume that an inde-
pendent and high-quality meta set is ready for training. However, independent
meta data do not usually exist. Recently, Zhang and Pfister [11] combine two
criteria to compile meta data from training data with a simple greedy selection
strategy. Initial promising results are reported in their study. However, their uti-
lized criteria are still simple and may be insufficient in meta data compiling. This
study proposes a new effective method for compiling meta data only from the cor-
responding training data. First, the generalization gap is analyzed for compiled
meta data. Based on the upper bound of the gap, we analyze the characteristics
that meta data should meet. Four selection criteria are then obtained: cleanness,
balance, diversity, and uncertainty. The submodular optimization strategy [12] is
leveraged to optimize the selection process with the criteria. Experiments on the
two typical meta optimization scenarios, namely, imbalance learning and noisy
label learning, are performed to verify the effectiveness of our method. The main
contributions are summarized as follows:

– The expected generalization gap of the meta optimization is inferred when
the ideal (i.e., not unbiased) meta set is not given, and the employed meta set
is constructed through a meta data compiling method. This gap facilitates
the understanding and explanation of the performances of meta optimiza-
tion with different meta data compiling methods. Moreover, the gap provides
theoretical guidance for automatic meta data construction.

– A new meta data compiling method is proposed to select meta data from
training data for meta optimization. In our method, four sophisticated crite-
ria are considered illuminated by the gap, and the submodular optimization
strategy is introduced to solve the optimal subset selection with the fused
criteria. Extensive experiments indicate our compiled meta data yield better
accuracies in typical meta optimization scenarios than existing strategies.

2 Related Work

This section briefly introduces meta optimization, meta data compiling, and
submodular optimization in machine learning.

2.1 Meta Optimization

Meta optimization is the instantiation of meta-learning [13,14], which optimizes
the target hyper-parameters by minimizing the learning error on meta data.
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Compared with the grid search, meta optimization is more efficient and has
theoretical advantages over traditional cross-validation [15]. Let T and S be
the training and (unbiased) meta sets, respectively. Let Θ and μ be the model
parameters and hyper-parameters, respectively. Given μ, an optimal Θ∗(μ) can
be subsequently obtained as follows:

Θ∗(μ) = argmin
Θ

LT (Θ,μ), (1)

where L is the loss. The optimal hyper-parameters μ∗ can thus be obtained by
minimizing the loss on the meta set S:

μ∗ = argmin
μ

LS(Θ∗(μ)). (2)

Meta optimization has been widely used in various scenarios, such as imbal-
ance learning and noisy label learning.

2.2 Meta Data Compiling

In existing studies, meta data are assumed to be given in advance, and no stan-
dard for selecting meta data is provided and discussed. Take meta optimization
as an example in imbalance to illustrate how the meta data are compiled in nearly
all existing studies. The benchmark data set CIFAR10 [16] contains 50,000 train-
ing samples on ten balanced categories. In the experiments, a balanced subset of
50,000 images is used as the independent meta set. Then, the rest of the images
are used to build imbalanced training set by different category-wise probabilities.

Unfortunately, the above simulation process is infeasible in real applications.
A promising solution is to define a set of “unbiased” criteria and then select meta
data from training data. So far, only one recent study [11] has investigated this
technical line. However, only the “cleanness” criterion and the “balance” criterion
are considered. For the balance criterion in [11], if the number of samples for
a certain class is not enough, the authors simply repeat the samples to attain
balance. Theoretical guidance for how to compile meta data is still lacking up
till now. This study attempts to construct guidance with a theoretical basis.

2.3 Submodular Optimization

Submodular optimization provides an efficient framework to solve the NP-hard
combination problem with fast greedy optimization. A submodular optimiza-
tion instance LtLG [17] can achieve linear time complexity in the data size,
which is independent of the cardinality constraint in expectation. Submodular
optimization has been widely used in text summarization, sensor placement,
and speech recognition [18]. Joseph et al. [18] proposed an effective submodular
optimization-based method to construct a mini-batch in DNN training. Signifi-
cant improvements in convergence and accuracy with submodular mini-batches
have been observed.

When more sophisticated criteria are considered in automatic meta data
compiling, the optimizing is very likely to become NP-hard, and simple greedy
strategies are ineffective. Submodular optimization provides an effective solution.
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Training 
Data

Meta 
Data

Cleanness

Diversity

Balance

Submodular 
Optimization

Uncertainty 
Sampling

Fig. 1. Overview of our submodular meta data compiling. Our method is called sub-
modular optimization-based meta data compiling (denoted as SOMC for briefly).

3 Methodology

Figure 1 illustrates the proposed submodular compiling process for the meta data
set. The theoretical analysis for meta data construction is conducted firstly. And
then the meta data selection method is described.

3.1 Theoretical Analysis for Meta Data Construction

Ideally, the distribution of samples in a compiled meta set equals that of
testing samples. Bao et al. [15] infer a generalization gap for the meta opti-
mization associated with independent ideal (i.e., unbiased) meta data. Let X
be the sample space. Let ptr and pme be the distributions of training and
meta data, respectively. Let T be a set of n training samples, and Sme

m be a
set of m meta samples. Let R(A(T, Sme

m ), pme) = Ex∼pme [l(A(T, Sme
m ), x)] be

the expected risk for the learning on the meta set Sme, where l(·, x) is the
loss on x, A is a meta optimization method and A(T, Sme

m ) is the learned
hyper-parameters and model with the training set T and meta set Sme

m . Let
R̂(A(T, Sme

m ), Sme
m ) = 1

m

∑
x∈Sme

m
l(A(T, Sme

m ), x) be the empirical risk for the
learning on the meta set Sme

m .
The involved meta optimization method is assumed to be β-uniformly sta-

ble [15]. That is, for a randomized meta optimization algorithm A, if for two
arbitrary compiled meta sets Sme

m and S
′me
m such that they differ in at most one

sample, then ∀ T ∈ Xn,∀ x ∈ X, we have

|EA[l(A(T, Sme
m ), x) − l(A(T, S

′me
m ), x)]| ≤ β. (3)

The generalization gap is defined as

gap(T, Sme
m ) = R(A(T, Sme

m ), pme) − R̂(A(T, Sme
m ), Sme

m ). (4)

The expected generalization gap satisfies [15]

|EA,T,Sme
m

[gap(T, Sme
m )]| ≤ β. (5)
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We infer the expected generalization gap when a meta set is not ideal and
constructed from training data, including ours method. As the involved meta
optimization method is not changed in our study, the β-uniform stability is still
assumed. Let Ssme

m be the compiled meta set consisting of m samples. Let Pme
m

and P sme
m be the distributions of Sme

m and Ssme
m , respectively.

Definition 1. The distance between two distributions Pme
m and P sme

m is defined
as follow:

d(Pme
m ‖P sme

m ) =
∫

S∈Xm

|Pme
m (S) − P sme

m (S)|dS. (6)

For brevity, d(Pme
m ‖P sme

m ) is denoted as dm. If the two distributions are iden-
tical, then dm is zero. Let R̂(A(T, Ssme

m ), Ssme
m ) = 1

m

∑
x∈Ssme

m
l(A(T, Ssme

m ), x)
be the empirical risk for the learning on our compiled meta set Ssme

m . We first
define the generalization gap for Ssme

m as follows:

gap(T, Sme
m , Ssme

m ) = R(A(T, Sme
m ), pme) − R̂(A(T, Ssme

m ), Ssme
m ). (7)

We obtain the theorem for the expectation of the above generalization gap
as follows:

Theorem 1. Suppose a randomized meta optimization algorithm A is β-
uniformly stable on meta data in expectation, then we have

|EA,T,Sme
m ,Ssme

m
[gap(T, Sme

m , Ssme
m )]| ≤ β + bdm, (8)

where b is the upper bound of the losses of samples in the whole space (following
the assumption in [15]), and dm = d(Pme

m ‖P sme
m ).

The proof of Theorem 1 is presented in the supplementary material1. Compared
with the expected generalization gap for independent (ideal) meta sets given in
Eq. (5), our expected generalization gap for automatically compiled meta sets
contains an additional term bdm. Naturally, an ideal criterion for Ssme

m should
make sure both β and bdm as small as possible. Note that β = 2cL2

m [ 1κ ((
Ns(l)
2cL2 )κ −

1) + 1] (Theorem 2 in [15]), where m, c, L, γ, κ, and N remain unchanged and
only s(l) = b − a (the range of the loss) may change in terms of different meta
data selection criteria. As a → 0 when the cross-entropy loss is used, only b and
dm affect the upper bound of the gap (i.e., the value of the right-side of (8)).
Consequently, we explore the selection criteria according to the minimization of
both dm and b, separately2. First, we have the following conclusion.

Corollary 1. The optimal selected meta data distribution P sme
m (S) should sat-

isfy that dm = 0, i.e., P sme
m (S) = Pme

m (S).

1 The supplementary material is upploaded to https://github.com/ffgg11/
Submodular-Meta-Data-Compiling-for-Meta-Optimization.

2 The value of b affects both β and bdm, while dm only affects bdm.

https://github.com/ffgg11/Submodular-Meta-Data-Compiling-for-Meta-Optimization
https://github.com/ffgg11/Submodular-Meta-Data-Compiling-for-Meta-Optimization
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Accordingly, it is inappropriate to select training data uniformly at random
as meta data as the training data in many scenarios (e.g., imbalance learning)
is biased against the true meta data. In practice, the true distribution of meta
data is unknown. However, two requirements [3–6,8–10] are usually assumed to
be met for an arbitrary meta data set:

– Cleanness. As meta data are assumed to be drawn from the true distribution
without observation noises, meta data should be as clean as possible.

– Balance. The balance over categories is usually taken as a prior in previous
studies utilizing meta optimization. This study also inherits this assumption.

According to Corollary 1, to reduce the value of dm, cleanness and balance should
be leveraged as two selection criteria in our meta data compiling. We will show
that cleanness and balance may also reduce the value of b in the succeeding
discussion.

As dm cannot be guaranteed to be zero only with the two criteria mentioned
above, b should also be as small as possible. The value of b is determined by
both the ideal yet unknown meta set (actually the true distribution of meta
data) and the compiled meta set (actually the underlying distribution of our
compiled meta data). Considering that the ideal meta set is not given and our
selection criteria do not affect the distribution of the ideal meta set, the ideal
meta set can be ignored in the discussion for the reduction of b. To reduce the
value of b, the following selection criteria are beneficial:

– Cleanness. If there are noisy samples in the compiled meta set, then the
losses of clean samples will be larger as noisy samples usually damage the
generalization ability [38]. Therefore, keeping the compiled meta data as clean
as possible will also reduce the value of b in a high probability.

– Balance. Even though the balance prior does not hold in a specific learning
task, the balance over categories may reduce the maximum loss of the samples
of tail categories [5]. For this consideration, balance is still useful.

– Uncertainty. Pagliardini et al. [37] show that adding more samples with high
uncertainty will increase the classification margin. Accordingly, the maximum
loss may also be reduced if the meta data are noisy-free. Indeed, uncertainty
sampling [30–32] is prevalent in sample selection in active learning. It is proven
to be more data-efficient than random sampling [34].

– Diversity. Diversity can be seen as the balance prior for the samples within
a category. This balance prior may also reduce the maximum loss of each
category. The maximum loss may subsequently be reduced. Indeed, diversity-
aware selection has other merits. Madan et al. [36] find that using the same
amount of training data, increasing the number of in-distribution combina-
tions (i.e., data diversity) also significantly improves the generalization ability
to out-of-distribution data.

According to the above considerations, two more criteria, namely, uncertainty
and diversity3, are also considered in addition to the cleanness and balance
3 Indeed, Ren et al. [29] revealed that the uncertainty and the diversity criteria are

usually used together to improve the model performance in deep active learning.
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Fig. 2. An illustrative example of the four selection criteria. There are two classes and
five samples per class with a decision boundary. The samples {3, 7} are those with
noisy labels. The cleanness criterion prefers the samples {4, 6} to {3, 7}. The balance
criterion promotes to select the samples {4, 5, 6, 10} instead of {2, 4, 5, 6}. Diversity
prefers samples {6, 8, 10} to {8, 9, 10}. The uncertainty criterion promotes the selection
of samples {4, 5} instead of {1, 2}.

criteria. Figure 2 illustrates the roles of each of the four summarized selection
criteria in terms of the reduction of b. There are two classes of points with a
decision boundary between them. There are two noisy samples, 3 and 7. First,
if cleanness is not considered, then the noisy samples {3, 7} may appear in the
meta set. It is highly possible that the losses of clean samples near {3} and {7}
in the whole space are relatively high. Second, if the balance criterion is not
considered, the losses of the samples in the tail categories are high to a certain
extent. For example, if we choose the samples {1, 2, 4, 5, 6} as meta data, then
the losses of the samples near {9, 10} in Class B will become high with a high
probability. Third, if the diversity criterion is not considered, then the samples
{8, 9, 10} may be chosen. The samples around the sample {6} may have higher
loss values. Finally, if the uncertainty criterion is not considered (e.g., if {4, 5}
are not selected, the decision boundary will move in the direction of the dotted
line.), then the classification margin will decrease [37]. Consequently, the losses
of the samples near {4, 5} will increase. Further, uncertainty can avoid selecting
too many clean samples with small losses through Eq. (10), and thus can improve
the update efficiency of meta optimization. Based on the above analysis, if any
of the four summarized criteria are ignored, the losses of samples in specific local
regions of the whole space will increase. As a result, b will increase.

3.2 Details of the Four Selection Criteria

This subsection describes how the four selection criteria are applied in the meta
data compiling from a given training set. Considering that the training sizes in
deep learning tasks are usually large, it is inappropriate to run all four selection
criteria on each training sample. Therefore, sampling will firstly be performed
to reduce the size of candidate samples fed to other criteria.
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Uncertainty Criterion. Let Θ be the current model parameter. The output
entropy of a training sample xi is used to measure the uncertainty of xi. Let
C be the set of all classes. The calculation for the out entropy of xi is as follows:

u(xi) = −
∑

c∈C
P (c|xi, Θ) logP (c|xi, Θ), (9)

where P (c|xi, Θ) refers to the probability that the current model predicts the
sample xi as the c-th category. Generally, a sample near the decision boundary
has a high uncertainty score. In our implementation, we sample the data based
on the normalized uncertainty score for each class, respectively. That is, the sam-
pling probability of xi is u(xi)/

∑
j:yj=yi

u(xj). More details about uncertainty
sampling can be found in Algorithm 1 and the experimental implementation
details in supplementary materials.

Cleanness Criterion. This criterion aims to select data with clean labels or clean
features. Many metrics can be used to judge the noisy degree of a sample, includ-
ing loss (prediction) [11], loss variance [2], gradient norm [20], etc. Considering
that the loss metric is the most widely used, this study also adopts it. The
cleanness degree of a set is defined as follows:

C(S) =
∑

xi∈S
c(xi) =

∑

xi∈S
P (yi|xi, Θ), (10)

where yi is the label of xi, and Θ is the model parameter(s). If yi is a noisy label
or xi has non-trivial noisy features, then P (yi|xi, Θ) is usually small during
training.

Balance Criterion. Imbalance can cause the model to have a good performance
on the head categories but poor performance on the tail ones. Let ns

c be the
number of meta samples of the c-th category, and m be the total number of
meta samples. The balance score of a subset is formulated as follows:

B(S) =
∏

c∈C
I(� m

|C| � ≤ ns
c ≤ 	 m

|C| 
), (11)

where C is the category set. When B(S) = 1, the subset is balanced.

Diversity Criterion. The criterion selects samples with different features by con-
sidering the relationship among samples. The following approach is utilized to
measure the diversity of a subset. Given φ(·, ·) to be any distance metric between
the two data points, a larger value of the minimum distance among points would
imply more diversity in the subset.

D(S) =
∑

xi∈S

min
xj∈S:i�=j

φ(x̃i, x̃j), (12)

where x̃i is the output of the final feature encoding layer of xi. This score is
dependent on the choice of distance metric. In our implementation, Euclidean
distance (‖x̃i − x̃j‖2) is employed according to the performances of different
distance metrics reported in [18].
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3.3 Submodular Optimization

The four criteria are cooperated to construct an optimization problem for the
final meta data compiling. As previously described, the uncertainty criterion is
first utilized to reduce the candidate training data. The diversity and cleanness
criteria are then combined as follows:

F(S) = λD(S) + (1 − λ)C(S), (13)

where λ is a hyper-parameter. Let T be the candidate training data which is
passed through the uncertainty criterion. Consequently, an optimal meta set of
size m is selected by solving the following optimization problem:

S∗ = argmax
S⊆T

F(S)

s.t. |S| ≤ m; B(S) = 1
. (14)

The maximization of Eq. (14) is a NP-hard problem as the total diversity
score in Eq. (12) cannot be factorized into the sum of diversity scores of each
sample. The simple greedy method leveraged in [11] is inapplicable. Hence, to
conduct an efficient and effective maximization, the submodular optimization
manner is leveraged.

Submodular optimization guarantees a solution for a submodular objective
function which is at least (in the worst case) 1−1/e of the optimal solution [21],
where e is the base of the natural logarithm. Further, some fast submodular opti-
mization algorithms such as LtLG [17] have been put forward. An optimization
problem can be solved with submodular optimization if its objective function is
submodular and monotonically non-decreasing. Therefore, to apply submodular
optimization, we have two lemmas for the objective function.

Lemma 1. F(S) in Eq. (13) is submodular.

Lemma 2. F(S) in Eq. (13) is monotonically non-decreasing.

According to Lemmas 1 and 2, the submodular optimization technique can be
used directly to solve Eq. (14). Inspired by the general submodular optimization
framework SMDL [18], our method consists of three main processes shown in
Algorithm 1. First, a training subset T is obtained based on uncertainty sampling
and is randomly partitioned into K disjoint subsets. Secondly, a subset is further
generated from each of the K subset by maximizing the marginal gain F(a|S) =
F({a}∪S)−F(S). Lastly, the subsets are merged to generate the final meta data
set by considering the margin gain maximization and the balance constraint.

The time complexity of our proposed submodular optimization-based meta
data compiling (SOMC) is O((|T |+Km)md), where d is the feature dimension.
In practice, Algorithm 1 can be implemented in parallel and the time complexity
becomes approximately O((|T |/K + Km)md). When m is large, the time con-
sumption can be significantly reduced by first compiling a batch of small meta
sets and then merging them as the final meta set S. The entire algorithmic steps
and more details are presented in the supplementary material.
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Algorithm 1. SOMC
Input: Training set T , u(xi), i = 1, · · · , |T |, m, K, λ, and F(·) in Eq. (13).
Output: Meta data set S

1: S ←− ∅;
2: Obtain a subset (still marked as T ) of size |T |

2 based on uncertainty sampling;
3: Partition T into K disjoint sets T1, T2, ..., TK ;
4: Generate a subset Sk (m samples) from Tk using LtLG [17], k = 1, · · · ,K;
5: S̃ ←− ⋃K

k=1Sk;
6: While |S| < m
7: Select a sample (x∗, y∗) ∈ S̃ \ S using LtLG;
8: If ny∗ ≤ 	 m

|C|
 − 1
9: S ←− {(x∗, y∗)} ∪ S;

10: Return S.

4 Experiments

This section evaluates the performance of SOMC in benchmark image classifi-
cation corpora, including CIFAR [16], ImageNet-LT [22], iNaturelist [23], and
Clothing1M [24]. Details of these corpora and the source code are provided in
the supplementary material.

4.1 Evaluation on CIFAR10 and CIFAR100

Nearly all existing meta optimization studies utilize independent meta sets, and
thus they should be compared. In this part, the independent meta data used in
existing studies are replaced by the data compiled by our SOMC. In addition,
the only existing automatic meta data selection method FSR [11] is also com-
pared. FSR only uses cleanness and balance to select meta data in the training
set. Indeed, FSR also contains multiple data augmentation tricks and a novel
meta optimization method. For a fair comparison, only the module of meta data
compiling of FSR (denoted as “FSRC”) is compared in this experiment.

Results on Imbalance Classification. Following [25], we use CIFAR10
and CIFAR100 to build imbalance training sets by varying imbalance factors
μ ∈ {200, 100, 50, 20, 10}, namely, CIFAR10-LT and CIFAR100-LT. The origi-
nal balanced test sets are still used. The concrete hyper-parameters setting is
described in the supplementary material. The average accuracy of the three
repeated runs is recorded for each method. The meta set for all existing studies
contains ten images for each category. However, the numbers of images in some
tail categories in CIFAR10-LT and CIFAR100-LT are less than ten. Thus, data
augmentation techniques are used to generate more candidates for the successive
meta image selection for these categories for our SOMC and FSRC. ResNet-32
[26] is used as the base network. The parameter λ of our SOMC is searched
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in {0.3, 0.5, 0.7}, and K is searched in {2, 5}. More details are described in the
supplementary file.

Two meta optimization methods, namely, MCW [5] and MetaSAug [10], are
leveraged. Partial results on the early representative method MWNet [4] are
shown in the supplementary file. The original study of both methods provides
source codes and meta sets on the above data sets. Our experimental results are
obtained directly on these codes and hyper-parameter settings.

The classification accuracies of the three meta optimization methods with
independent meta sets, FSRC, and our proposed SOMC on CIFAR10-LT and
CIFAR100-LT are shown in Table 1. The results are organized into three distinct
groups according to the adopted loss functions (i.e., Cross-entropy (CE), Focal
loss (FL), and LDAM). SOMC can construct more effective meta data only from
training data than both independent meta sets and FSRC in nearly all the cases.

Results on Noisy Labels Learning. Two typical types of corrupted training
labels are constructed: 1) Uniform noise. The label of each sample is indepen-
dently changed to a random class with probability p. 2) Flip noise. The label
of each sample is independently flipped to similar classes with total probability
p. Details are described in the supplementary file. Two typical meta optimiza-
tion methods, MSLC [6] and MWNet [4], are used. In previous studies, the meta
data for these two methods consist of absolutely clean images. These clean images
will be replaced by the compiled images with our SOMC. ResNet-32 [26] and
WRN-28-10 [27] are used as the base network. The hyper-parameters setting is
presented in the supplementary file.

The classification results under different noise rates are shown in Tables 2
and 3. Our method outperforms the independent meta data in MWNet. As the
noise ratio increases, SOMC degrades more than the independent meta data
in MSLC. It is reasonable to require independent clean meta data in the case
of a high noise rate. Our method SOMC consistently outperforms FSRC under
different noise rates on both sets.

4.2 Evaluation of Large Data Sets

Four large data sets, iNaturalist2017 (iNat2017), iNaturalist2018 (iNat2018),
ImageNet-LT, and Clothing1M are used. The former three are leveraged for
imbalance learning, while the last is for noisy label learning. MCW and
MetaSAug are utilized for ImageNet-LT, INat 2017 and 2018. MSLC and
MWNet are utilized for Clothing1M. The experimental settings, including the
hyper-parameters, are presented in the supplementary material.

Tables 4 and 5 show the results of the competing methods on iNaturalist data
sets and ImageNet-LT. Although 25445 (for iNat2017), 16284 (for iNat2018),
and 10000 (for ImageNet-LT) independent meta data are used for MCW and
MetaSAug, their performances are worse than those of meta data compiled by
our SOMC. FSRC yields the lowest accuracies among the three meta data con-
struction methods for iNat2017 and 2018. In addition, MetaSAug+SOMC with
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the pre-trained BBN [28] yields the highest top-1 accuracy for iNat2017 and
2018. For ImageNet-LT, SOMC still yields the best results.

Table 6 shows the results on Clothing1M. It can be seen that SOMC achieves
better results than 7000 independent meta data and compiled meta data by
FSRC on MWNet. For MSLC, compared with 7000 independent meta data,
SOMC still achieves comparable results. However, FSRC yields the worst results.

Table 4. Test top-1 accuracy (%) on iNaturalist 2017 and 2018.

Method iNat2017 iNat2018

Base model (CE) 56.79 65.76
MCW+25445/16284 meta images 59.38 67.55
MCW+FSRC 58.76 67.52
MCW+SOMC 60.47 68.89
MetaSAug+25445/16284 meta images 63.28 68.75
MetaSAug+FSRC 62.59 68.28
MetaSAug+SOMC 63.53 69.05
MetaSAug+SOMC with BBN model 65.34 70.66

4.3 Discussion

The supplementary file provides more details (including results and analysis)
on the issues discussed in this part. The above comparisons suggest that the
meta data compiled by our SOMC are more effective than the independent
meta data in most cases (except the cases of high noise rate when MSLC is
used) and those compiled by FSRC in nearly all cases. This conclusion can be
explained by Theorem 1. We calculate the upper bounds of the test losses of
the models corresponding to the three meta data compiling methods, namely,

Table 5. Test top-1 accuracy (%) on ImageNet-LT.

Method ImageNet-LT

Base model (CE) 38.88
MCW+10000 meta images 44.92
MCW+FSRC 45.05
MCW+SOMC 45.97
MetaSAug+10000 meta images 46.21
MetaSAug+FSRC 45.77
MetaSAug+SOMC 46.68
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Table 6. Test top-1 accuracy (%) on on Clothing1M.

Method Clothing1M

Base model (CE) 68.94
MWNet+7000 meta images 73.72
MWNet+FSRC 73.01
MWNet+SOMC 73.89
MSLC+7000 meta images 74.02
MSLC+FSRC 73.23
MSLC+SOMC 73.67

Fig. 3. Effect of λ on CIFAR-10-LT under the different imbalance factors (IF) based
on MetaSAug+SOMC (LDAM).

FSRC, IDMD (independent meta data), and our method SOMC, respectively.
Figure 4 shows the recorded values. SOMC does achieve the minimum upper
bound of test losses (i.e., b) among the three methods. This is consistent with
the theoretical analysis in Sect. 3.1 that the four criteria mainly aim to reduce
dm and b. More comparisons of the upper bounds of test losses are presented in
the supplementary file.

There are two important hyper-parameters, namely, λ and K, in SOMC.
They are tuned with grid search in the experiments. Nevertheless, the perfor-
mances are usually satisfactory when λ ∈ {0.3, 0.5} (shown in Fig. 3) and K = 5.
In all the experiments, the parameter m in our SOMC equals the size of inde-
pendent meta data used in existing studies for a fair comparison. In addition,
the time cost of SOMC is recorded.

An ablation study is conducted for the importance of each criterion in SOMC.
The results on imbalance learning (ResNet-32) are shown in Table 7. Removing
each criterion causes a performance drop. This result indicates that each of the
four criteria is useful in SOMC.

We use different backbone networks (i.e., ResNet-50, ResNet-101, and
ResNet-152 [26]). The results indicate that our method still achieves compet-
itive performances. Comparisons with more competing methods and settings are
conducted in the supplementary file.
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Fig. 4. The upper bounds of test losses on CIFAR10-LT for the three meta data com-
piling methods under different imbalance factors (IF) based on MetaSAug (LDAM).

Table 7. Ablation study of MetaSAug+SOMC using CE loss on CIFAR-100-LT.

Imbalance factor 200 100 50

SOMC w/o Uncertainty 42.19 47.14 51.29
SOMC w/o Diversity 41.21 46.23 50.21
SOMC w/o Cleanness 41.37 46.42 50.13
SOMC w/o Balance 40.09 45.59 49.52
SOMC 43.32 48.03 52.36

5 Conclusions

This study has investigated the automatic compiling of meta data from training
data for meta optimization. A theoretical analysis is firstly conducted for the
generalization gap for automatic meta data compiling methods, and theoreti-
cal guidance for the construction of meta data is obtained. Four sophisticated
selection criteria, namely, cleanness, balance, diversity, and uncertainty, are sum-
marized to reduce the upper bound of the generalization gap. These criteria are
cooperated to construct an objective function for optimal subset selection from
training data. The submodular optimization technique is leveraged to search
for the optimal subset. Extensive experiments on six benchmark data sets verify
the effectiveness and competitive performance of the proposed method compared
with SOTA competing methods.

Acknowledgements. This study is supported by NSFC 62076178, TJF 19ZXAZNG
X00050, and Zhijiang Fund 2019KB0AB03.
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Abstract. In a typical few-shot action classification scenario, a learner
needs to recognize unseen video classes with only few labeled videos.
It is critical to learn effective representations of video samples and dis-
tinguish their difference when they are sampled from different action
classes. In this work, we propose a novel supervised contrastive learn-
ing framework for few-shot video action classification based on spatial-
temporal augmentations over video samples. Specifically, for each meta-
training episode, we first obtain multiple spatial-temporal augmentations
for each video sample, and then define the contrastive loss over the aug-
mented support samples by extracting positive and negative sample pairs
according to their class labels. This supervised contrastive loss is further
combined with the few-shot classification loss defined over a similarity
score regression network for end-to-end episodic meta-training. Due to
its high flexibility, the proposed framework can deploy the latest con-
trastive learning approaches for few-shot video action classification. The
extensive experiments on several action classification benchmarks show
that the proposed supervised contrastive learning framework achieves
state-of-the-art performance.

Keywords: Few-shot learning · Contrastive learning · Action
classification

1 Introduction

Recently, the metric-based meta-learning paradigm has led to great advances in
few-shot learning (FSL) and become the mainstream [7,10,36]. Following such
a paradigm, FSL models are typically trained via two learning stages [21]: (1)
They are first trained on base classes to learn visual representations, acquiring
transferable visual analysis abilities. (2) During the second stage, the models
learn to classify novel classes that are unseen before by using only a few labelled
samples per novel class. Similar to FSL, contrastive learning (CL) [21] is also
deployed to address the labelled data-hungry problem. Specifically, CL is defined
as unsupervised or self-supervised learning. The target of CL is to obtain better
visual representations to transfer the learned knowledge to downstream tasks
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. A typical contrastive learning framework for unsupervised image representation
learning. Specifically, two image views xi and xj are generated from the same family
of image augmentations (xi, xj ∼ Σ). A CNN-based encoder network f along with the
projection head g is applied to represent each sample effectively. After the network
parameters are trained based on a contrastive loss, the projection head g is put away,
and only the encoder network f and representations hi/hj are used for downstream
tasks.

such as image classification [8,29]. As illustrated in Fig. 1, a classic CL frame-
work [12–14,25] also follows the two learning stages (similar to metric-based
meta-learning): (1) An encoder named f and a predictor named g are first
trained with constructed positive and negative sample pairs; (2) The learned
latent embeddings hi/hj are further adapted to downstream tasks of interest.
Therefore, it is natural and indispensable to combine FSL and CL.

However, for few-shot action classification, the integration of CL and FSL
is extremely challenging because of the complicated video encoding methods.
Specifically, two typical methods are widely used: (1) Extracting frame features
and then aggregating them. For example, combined with long-short term mem-
ory (LSTM), 2D Convolutional Neural Networks (CNNs) are often used for video
encoding [5,20,32,40]); (2) Directly extracting spatial-temporal features using
3D CNNs [9,18,30,38,39] or their variants. For both video encoding practices,
the high-level semantic contexts among video frames are difficult to be aligned
either spatially or temporally [4,6].

In this work, we thus propose a novel supervised contrastive learning frame-
work to make a closer integration of CL and FSL for few-shot action classifica-
tion. Specifically, we first obtain multiple spatial-temporal augmentations from
each video sample for each meta-training episode. Further, we define a supervised
contrastive loss over the augmented support samples by constructing positive and
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negative pairs based on their class labels. Finally, the contrastive loss is com-
bined with a few-shot classification loss defined over a similarity score regression
network for the end-to-end episodic meta-training. In addition, the proposed
framework can deploy the latest CL methods for few-shot action classification
with high flexibility.

In summary, the major contributions of this paper are three-fold:

(1) We devise a spatial-temporal augmentation method to generate different
augmentations, facilitating CL to learn better video representations.

(2) We propose a novel supervised contrastive learning framework for few-shot
action classification. A similarity score network is shared by both CL and
FSL, resulting in a closer integration of the two paradigms.

(3) Extensive experiments on three benchmarks (i.e., HMDB51 [27],
UCF101 [34], and Something-Something-V2 [22]) show that the proposed
supervised contrastive learning framework achieves state-of-the-art perfor-
mance.

2 Related Work

Few-Shot Learning for Action Classification. Few-shot learning (FSL)
approaches are often divided into two main categories: (1) The goal of gradient-
based approaches [1,19,28,31] is to achieve rapid learning on a new task with
a limited number of gradient update steps while simultaneously avoiding over-
fitting (which can happen when few labelled samples are used). (2) Metric-based
approaches [2,4,6,21,42] first extract image/video features and then measure
the distances/similarities between an embedded query sample and embedded
support samples. It is essential to measure the distances in the latent space
to determine the class label of query samples. We examine the simplicity and
adaptability of the metric-based meta-learning framework in this paper. But
note that our proposed video augmentation methods and supervised contrastive
learning strategy are also compatible with other few-shot classification solutions.

Contrastive Learning. Contrastive learning (CL) is now a relatively new
paradigm for unsupervised or self-supervised learning for visual representations,
and it has shown some promising results [8,12–15,23,25,26,29]. It is custom-
ary for CL methods to learn representations by optimizing the degree to which
multiple augmented views of the same data sample agree with one another.
This is accomplished by suffering a contrastive loss in the latent embedding
space. For example, SimCLR [12] achieves the highest level of agreement possible
between various augmented views of the same data sample by obtaining repre-
sentations and employing a contrastive loss while operating in the latent space. It
comes with an improved version called SimCLR v2 [13] that explores larger-sized
ResNet models, boosts the performance of the non-linear network (multiple-layer
perception, MLP), and incorporates the memory mechanism. Momentum Con-
trast (MoCo) [25] approach creates a dynamic dictionary using a queue structure
and a moving-averaged encoder. It allows for the construction of an extensive and
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Fig. 2. Architecture of our proposed few-shot action classification framework boosted
by supervised contrastive learning. A set of effective spatial-temporal augmentation
methods are utilized to generate various video clips (views), which are subsequently
fed into the feature extractor (3D CNN) to obtain semantic representation vectors. All
these sampled video semantic vectors fr

i,j (i ∈ {0, 1, · · · , N − 1}, j ∈ {0, 1, · · · , K −
1}, r ∈ {0, 1, · · · , U − 1}) from the support set are exploited to train a similarity mea-
surement network M in a supervised way with the contrastive learning loss Lcl. Fur-
thermore, fr

i,j together with the representation vectors fr
Q, (r ∈ {0, 1, · · · , U −1}) of the

augmented views of query samples are used to train downstream few-shot classification
tasks with softmax loss Lcls.

consistent dictionary on-the-fly, which enables unsupervised contrastive learning
to take place more easily. In this second version [14], the authors apply an MLP-
based projection head and more kinds of data augmentation methods to establish
strong representations. By performing a stop-gradient operation on one of the
two encoder branches, SimSiam [15] is able to optimize the degree to which two
augmentations of the same image are similar to one another, which allows it to
obtain more meaningful representations even when none of the relevant factors
(negative sample pairs, larger batch sizes, or momentum encoders) are present.
In this paper, we also evaluate our proposed few-shot video action classification
framework with the latest/mainstream CL methods, verifying the flexibility and
the independence of our method.
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3 Methodology

3.1 Framework Overview

To increase the effectiveness of representation ability of the video encoder and
measure the similarity score more effectively via contrastive learning, we propose
a unified framework that integrates contrastive learning and few-shot learning
together in Fig. 2. For an N -way K-shot few-shot episode, video augmentations
considering both spatial and temporal dimensions are performed for each video.
Concretely, for the j-th input video (j ∈ {0, 1, · · · ,K − 1}) in the i-th class
(i ∈ {0, 1, · · · , N − 1}) in the support set (i.e., Si,j), we obtain U augmented
views/video clips Cr

i,j (r ∈ {0, 1, · · · , U − 1}). Subsequently, these views with
diversity are then followed by a CNN-based feature extractor so that the latent
representations can be learned, and outputting the embedded vectors fr

i,j . Sim-
ilarly, for each query sample, we can also obtain the representations of its dif-
ferent augmented views, denoted as fr

Q (r ∈ {0, 1, · · · , U − 1}). Since we have
label information for the support set, on the basis of the class labels, we are able
to generate positive and negative sample pairs for the purpose of engaging in
contrastive learning. That is, two latent vectors belonging to the same class are
considered as a positive pair, while they are negative to each other if they come
from different classes. In the N -way K-shot scenario with U augmentations, we
can generate N ×U × (U − 1) positive pairs and U2 ×N(N − 1)/2 negative ones
in total (as is illustrated in the dash-lined frame in Fig. 2). Then two branches
are extended with the latent vectors: the contrastive learning branch and the
few-shot classification branch. The positive and negative pairs are used to train
the feature extractor with supervised learning as the input for the contrastive
learning branch.

With the loss function defined as Lcl, contrastive learning aims to facili-
tate the feature extractor to generate more discriminative representations, which
make positive samples close and negative ones far away in the high-dimensional
latent space. As for a few-shot classification scenario, we make use of the mean
representation of the K shots for each class (denoted as a prototype) as the class
center for the nearest-neighbor search. And a similarity measurement neural net-
work M is intended to regress the distances between both query samples and
prototypes, with the classification softmax loss defined as Lcls.

3.2 Supervised Contrastive Learning

For each of the U data augmentation methods, we adopt a combination of tem-
poral and spatial augmentations. The spatial one is the same across all U aug-
mentations, i.e., we perform a random crop in each selected frame (as is shown
in Fig. 3(f)). As for the temporal augmentations, we use U = 5 methods to pro-
vide a diversity of visual representations: uniform sampling, random sampling,
speedup sampling, slow-down sampling, and Gaussian sampling. The augmented
video clips (views) are further exploited to generate positive and negative sample
pairs related to contrastive learning.
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Fig. 3. Demonstration of temporal-spatial view augmentations for an input original
video with D = 117 frames and sampling T = 32 frames: (a-e) temporal sampling
using uniform, random, speed-up, slow-down, and Gaussian methods, respectively; (f)
random spatial crop for each selected frame.

(1) For uniform sampling, let I(σ) denote the frame index of the selected
σ-th frame (σ ∈ {0, 1, · · · , T − 1}, and T is the quantity of selected frames)
from the original input video, which follows the distribution defined as:

I(σ) ∼ U(0,D), (1)

where D represents the total number of the original input video sample, and
U is the uniform distribution.

(2) For random sampling, we directly obtain T frames by independently
sampling T times from the original video without any replacement or sorting.

(3) As for speed-up or slow-down sampling, we are motivated by the
observation that sometimes meaningful behaviors happen at the front/end
along the time dimension in the original video, but which may be ignored
by the uniform/random sampling method. The sampled frame I(σ) in both
speedup and slow-down cases are defined as:

dI(σ)
dσ

= v, I(0) = 0, I(T ) = D, (2)

where v is the sampling velocity which is positive for speedup sampling while
negative for the slow-down case. Note that the initial state I(0) = 0 and I(T ) =
D limits the range of the sampled index. Speedup sampling samples more frames
at the beginning of the input video, and slow-down sampling focus more on
frames at the tail.

(4) Gaussian sampling, with slow-down as its first half part and speedup as
second half, i.e., it samples most intensively at the middle of a given video
sample. Its sampling formulation is the same with Eq. (2) but the border
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Algorithm 1 Supervised Contrastive Learning (SCL)
Require: N,K, video feature extractor g, a set of view augmentations T , batch

size B, sampled pair amount M in each batch, similarity measurement network
M

Ensure: contrastive learning loss Lcl

for b ∈ {0, 1, · · · , B − 1} do
for sampled video pairs {(xb,l,x

′
b,l)}M−1

l=0 do
Draw two augmentation functions t ∼ T , t′ ∼ T ;
Cb,l, C ′

b,l = t(xb,l), t′(x′
b,l); # clip generation

fb,l, f ′
b,l = g(Cb,l), g(C ′

b,l); # representation
if (xb,l,x

′
b,l) are sampled from the same class then

yb,l = 1.0;
else

yb,l = 0.0;
end if

end for
end for
for b ∈ {0, 1, · · · , B − 1}, l ∈ {0, 1, · · · ,M − 1} do

db,l = 1.0 − M(fb,l, f ′
b,l); # pairwise distance

end for
Update video clip representation network g and similarity measurement net-
work M by minimizing Lcl.

state should be initialized as I(0) = 0, I(T/2) = D/2 for the first half
and I(T/2) = D/2, I(T ) = D for the second half. Figure 3(a–e) illustrate
five examples with the same input video sample (D = 117) for the five
augmentations, respectively (T = 32, v = 4).

The supervised contrastive learning (SCL) algorithm is summarized in Algo-
rithm 1, where the similarity measurement network M is also shared in the
few-shot classification branch, which is used to reflect the distance within each
positive/negative pair (the details of M are described in Sect. 3.3). We follow
the contrastive loss function Lcl used in [11,16,24,35,44], which is defined as:

Lcl = − 1
BM

B−1∑

b=0

M−1∑

l=0

yb,ld
2
b,l + (1 − yb,l)max(m − db,l, 0)2, (3)

where M is the total constructed positive and negative pairs with a single mini-
batch, and db,l is the distance between two samples of the l-th pair in the b-th
input episode, and yb,l is the corresponding ground truth label (yb,l = 1 if the
pair consists of two views generated from the same class and yb,l = 1 otherwise).
Note that m is a margin that defines a radius, and the negative pairs affect the
loss only when the distance is within this radius.
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Fig. 4. The schematic illustration of the few-shot action classification process. For the
r-th augmented view in the i-th class, the class prototype fr

i is obtained by averaging
the latent representations fr

i,j along the shot dimension j. Together with each query
sample’s augmented view fr

Q, the prototype-query pairs are fed into the same similarity
measurement network M which is also used in supervised contrastive learning (see
Fig. 2) to obtain the final similarity score vector si,Q.

3.3 Few-Shot Classification

The integration process related to contrastive learning and few-shot learning is
reflected in two aspects: (1) The supervised contrastive learning loss is combined
with the few-shot classification loss during training. (2) There exists a similarity
measurement network M that is shared across the few-shot classification and
the contrastive learning branch to measure the latent distance/similarity between
two given augmented views. To exploit the few shots in the support set, we follow
Prototypical Network [33] and summarize all shots’ latent representations fr

i,j

(i ∈ {0, 1, · · · , N −1}, j ∈ {0, 1, · · · ,K −1}, r ∈ {0, 1, · · · , U −1}) by computing
their average response:

fr
i =

1
K

K−1∑

j=0

fr
i,j . (4)

Figure 4 illustrates the few-shot action classification network. For all the aug-
mented views for a specific class in the support set, the class prototypes fr

i

(i ∈ {0, 1, · · · , N − 1}, r ∈ {0, 1, · · · , U − 1}) are only concerned with the query
sample fr

Q coming from the same augmentation. The similarity measurement
network M is then utilized to predict the similarity score sri,Q between two
input views:

sri,Q = M(fr
i , fr

Q). (5)

It is worth mentioning that the similarity score vector si,Q of all views is further
weighted by a linear layer w ∈ R

1×U , to obtain the final predicted similarity
score si,Q between the i-th class prototype and the query sample:

si,Q = w · si,Q, (6)

where si,Q = [s0i,Q, s1i,Q, · · · , sU−1
i,Q ]T .
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Finally, a softmax layer maps N similarity scores to a classification distri-
bution vector for each query sample. And the few-shot classification loss Lcls is
defined as:

Lcls = − 1
BQ

B−1∑

b=0

Q−1∑

q=0

N−1∑

i=0

yb,q,i log(ŷb,q,i), (7)

where B is the batch size, yb,q,i is the label of the q-th query from the b-th input
episode, and ŷb,q,i is the corresponding predicted classification probability.

3.4 Total Learning Objective

We incorporate supervised contrastive learning to the few-shot classification task
by adding an auxiliary loss Lcl, i.e., the final weighted loss L is constructed as:

L = Lcls + αLcl, (8)

where α is the balance hyper-parameter.

4 Experiments

4.1 Datasets and Settings

Datasets. In this paper, the proposed supervised contrastive learning frame-
work is evaluated the performance on three different action recognition datasets:
HMDB51 [27], UCF101 [34] and Sth-Sth-V2 [22].HMDB51 totally contains 6,766
videos distributed in 51 action categories. UCF101 has included 13,320 videos
covering 101 different action-based categories. Sth-Sth-V2 includes 220,847
videos with 174 different classes. For UCF101 and Sth-Sth-V2, we follow the same
splits as in OTAM [6], and they are randomly sampling 64 classes for meta train-
ing, 12 classes for meta validation, and 24 classes for meta testing, respectively. For
HMDB51, we randomly select 32/6/13 classes for meta training, validation, and
testing.

Configuration. It is considered the few-shot scenarios with N = 5 and
K = 1, 3, 5. In each episode, we randomly select N categories, each consist-
ing of K samples as the support set and select another video for each class as
the query sample. We train our model over 2,000 episodes and check that the
validation set matches an early stopping criterion for every 128 episodes. We use
Adam optimizer, and the learning rate is set to 0.001. Furthermore, the average
classification accuracies are reported by evaluating 500 and 1000 episodes in the
meta-validation and meta-test split, respectively.

3D Backbones. To better demonstrate the generalizability of the proposed
framework, we perform extensive experiments with 5 different video feature
extraction backbones: C3D [38], R(2+1)D [39], P3D [30], I3D [41] and Slow-
Fast [18]. All backbones are trained with the input size of 224 × 224. The input
clip length for C3D, R(2+1)D, P3D, I3D, and SlowFast are 16, 16, 16, 32, and
40 frames, respectively. The global average pooling layer in 3D backbones are
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Table 1. Comparison to state-of-the-art video action classification
approaches on the HMDB51, UCF101, and Sth-Sth-V2 datasets. All backbones are
trained from scratch. Accuracy (%) are reported on average over 1, 000 episodes. Note
that Neg./Pos. pairs ratio is configured as 2.5.

Methods Backbone HMDB51 [27] UCF101 [34] Sth-Sth-V2 [22]
1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

ARN [43] C3D 45.53 53.60 59.82 66.60 78.40 84.48 33.44 38.80 45.74

TARN [3] C3D 66.52 73.30 75.50 85.40 86.72 93.40 38.43 44.54 48.63

ProtoGAN [17] C3D 35.41 49.89 52.90 61.73 75.89 79.70 33.90 40.72 44.68

FAN [37] C3D 69.90 71.48 78.20 77.56 87.62 90.80 37.20 43.32 45.82

OTAM [6] C3D 64.63 79.80 81.90 88.12 91.07 92.10 39.60 47.10 52.30

TAV [4] C3D 71.30 78.42 83.80 87.90 92.30 92.26 39.40 46.60 49.92

Ours (w/o SCL) C3D 70.04 77.62 80.51 86.00 90.60 91.20 34.75 41.75 46.28

Ours (full) C3D 75.78 86.89 89.84 92.19 94.96 95.31 41.42 49.22 53.12

remained, and the dimensions of the final clip representation vectors are 4096,
2048, 2048, 2048, and 2304, respectively. All the backbones are trained from
scratch. As for the similarity measurement network M, it consists of 5 fully
connected layers with 1024, 1024, 512, 512, and 1 neuron.

Contrastive Learning Loss. With contrastive learning enabled, its loss Lcl

contributes to the final loss with α = 1.0. For the 5-way few-shot action clas-
sification scenario, the maximum numbers of generated positive and negative
pairs are 100 and 250, respectively. Different positive and negative ratios can
be achieved via masking the selected pairs. The margin parameter m in Equa-
tion (3) is configured to 0.75 in our work. That is, the distance between two clips
of a negative pair is expected to be larger than it.

4.2 Main Results

Comparison to State-of-the-Art. In this paper, we evaluate our proposed
architecture with supervised contrastive learning against the action classification
methods on HMDB51 [27], UCF101 [34] and Sth-Sth-V2 [22] datasets. Frame-
level feature extraction based on 2D CNN and then aggregating them together
as the video descriptor is used in original OTAM [6]. For a fair comparison, we
change its backbone to C3D to extract feature vectors (each video is split into
16 segments, and each contains 16 frames (clip length)). As for TAV [4], we
also re-implement it and replace its 2D backbone with the C3D model, which is
then combined with the original temporal structure filter (TSF). For ARN [43],
TARN [3], ProtoGAN [17] and FAN [37], we follow the original configurations.
The only difference between them and our re-implementation versions is that
we train all 3D backbones from scratch rather than use pre-trained weights
(such as Kinetics-400) since there inevitably exists a category overlap between
mainstream pre-trained models and our evaluation datasets. In Table 1, we sum-
marizes the classification accuracy over 1/3/5 shot(s):
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Table 2. Comparison with different contrastive learning approaches on the
HMDB51, UCF101, and Sth-Sth-V2 datasets. All contrastive learning methods adopt
the C3D model (trained from scratch) as their backbones (clip length is 16) to extract
video feature vectors. Mean accuracies (%) are reported over 1, 000 episodes. Note that
Neg./Pos. pair ratio is configured as 2.5.

Methods HMDB51 [27] UCF101 [34] Sth-Sth-V2 [22]
1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

FSL 70.04 77.62 80.51 86.00 90.60 91.20 34.75 41.75 46.28

FSL+SCL (MoCo [4]) 74.26 78.12 83.22 88.74 91.20 92.51 37.54 44.85 48.96
FSL+SCL (MoCov2 [14] ) 74.88 85.90 88.60 91.19 93.86 94.30 39.40 48.60 52.04
FSL+SCL (SimCLR [12] ) 72.32 81.60 84.10 88.90 91.08 92.48 36.90 45.72 49.28
FSL+SCL (SimCLRv2 [13]) 74.92 85.20 89.28 91.16 93.66 94.37 40.06 48.90 53.00
FSL+SCL (SimSiam [15] ) 74.90 85.41 89.17 91.12 93.73 94.70 41.29 48.34 52.92
FSL+SCL (ours) 75.78 86.89 89.84 92.19 94.96 95.31 41.42 49.22 53.12

(1) With supervised contrastive learning disabled, our proposed few-shot clas-
sification architecture achieves better performance than ARN [43], Proto-
GAN [17] on all three datasets and achieves competitive performance w.r.t.
TARN [3] and FAN [37]. However, it performs weaker than OTAM [6] and
TAV [4] because both OTAM and TAV mine the temporal alignment infor-
mation between query and support samples in the latent space, which ben-
efits the subsequent distance measurement and classification.

(2) With supervised contrastive learning enabled, we achieve better classifica-
tion accuracy in all cases, surpassing prior methods with a significant mar-
gin. It illustrates that the auxiliary SCL loss can boost the representation
ability and similarity score measurement capacity, resulting in improved
final classification accuracy.

(3) Sth-Sth-V2 is much more difficult than HMDB51 and UCF101, as we can
observe that the classification results on Sth-Sth-V2 are much lower than
those on HMDB51/UCF101 with supervised contrastive learning enabled.
Improving classification results on a complex dataset is much more difficult
than on simple ones. The difficulty of Sth-Sth-V2 can be further explained by
the diversity of samples in each category. For example, the category “putting
something onto something” on Sth-Sth-V2 contains many different types of
video clips. Almost all labels are general descriptions rather than actions
with concrete object names (e.g., not like “putting a cup onto a table”?. The
general descriptions increase the classification difficulty significantly.

Contrastive Learning Framework Evaluation. The proposed few-shot
action classification architecture with supervised contrastive learning is designed
not only for high efficient video representations, but also for pairwise similarity
score regression. Therefore, it can adopt other mainstream contrastive learning
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Fig. 5. Model convergence analysis of our proposed supervised contrastive learning
algorithm for a few-shot action classification task. Experiments are performed in AWS
ml.g4dn.16xlarge EC2 instance (64 vCPU and 256G RAM).

Fig. 6. Comparison of different negative/positive pair ratios for contrastive learning
on HMDB51, UCF101, and Sth-Sth-V2 datasets with few-shot action classification.
SlowFast is adopted (the speed ratio α = 8, and the channel ratio β = 1/8) as the
backbone (clip length is 40).

methods. To demonstrate its generalization ability, MoCo [4], MoCov2 [14], Sim-
CLR [12], SimCLRv2 [13] and SimSiam [15] are compared with our supervised
contrastive learning algorithm. The batch size B is 128, and all these models are
trained up to 400 epochs. Table 2 shows the few-shot action classification results.
As shown in Fig. 5, we show the model convergence curves and training time
cost using our SCL algorithm. Experimental results demonstrate that adding
the supervised contrastive learning branch indeed improves the few-shot action
classification performance. Furthermore, since our proposed SCL algorithm con-
siders an additional similarity network M, it achieves competitive performance
boosting.

4.3 Further Evaluations

Different Pos./Neg. Pair Ratios. In the experiment, we evaluate the influ-
ence of negative/positive pair ratio in contrastive learning. We configure the
ratio to 0.2, 0.25, 0.4, 0.5, 1.0, 2.0, 2.5, 4.0, 6.0 and Fig. 6 plots the average
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Table 3. Comparison of different video representation backbones. The average
classification accuracy (%) with supervised contrastive learning enabled over 1, 000
episodes are reported. The values in parentheses represent the percentage improvements
over a baseline model with contrastive learning disabled. Note that Neg./Pos. pair ratio
is configured to 2.5.

Dataset K C3D ([38]) R(2+1)D ([39]) P3D ([30]) I3D ([41]) SlowFast ([18])

HMDB51 1-shot 75.78 (+5.74) 76.22 (+4.78) 76.84 (+5.40) 78.80 (+3.80) 78.91 (+2.10)
3-shot 86.89 (+9.27) 85.82 (+6.09) 86.30 (+7.60) 87.52 (+4.40) 87.50 (+3.26)
5-shot 89.84 (+9.33) 90.02 (+8.24) 90.40 (+6.29) 91.38 (+6.10) 91.41 (+5.32)

UCF101 1-shot 92.19 (+6.19) 92.60 (+5.80) 93.90 (+6.70) 94.60 (+4.65) 94.53 (+3.74)
3-shot 94.96 (+4.36) 95.00 (+5.96) 96.38 (+5.92) 96.88 (+5.46) 96.88 (+5.28)
5-shot 95.31 (+4.11) 96.48 (+3.70) 97.96 (+4.26) 98.50 (+4.80) 98.44 (+3.90)

Sth-Sth-V2 1-shot 41.42 (+6.67) 42.69 (+6.10) 43.50 (+3.29) 43.74 (+2.10) 43.75 (+2.80)
3-shot 49.22 (+7.47) 51.00 (+7.32) 52.28 (+3.50) 52.40 (+2.46) 52.34 (+2.45)
5-shot 53.12 (+6.84) 53.18 (+5.43) 53.93 (+3.00) 54.60 (+2.65) 54.78 (+1.58)

accuracy on 1,000 meta-test episodes using the SlowFast backbone as the video
feature extractor. For more details, the speed ratio α is set to 8, and the channel
ratio β is 1/8. It is a poor performance of the few-shot action classification when
negative/positive pair ratio is smaller than 0.5 on both HMDB51 and UCF101
datasets. On the Sth-Sth-V2 dataset, our model achieves the best results when
the ratio is configured to 2.5. From Fig. 6, we can also conclude that unlike Sim-
Siam, our proposed SCL indeed depends on negative samples. One reason is that:
not only the video representations are improved (i.e., more discriminative) by
contrastive learning, but also the distances between video clips that are essential
for few-shot classification are explicitly learned by the contrastive learning loss.

Influence of Different Backbones. To evaluate the generalisability of our
proposed framework, we further integrate different video feature extraction back-
bones. In Table 3, we summarize the few-shot action classification accuracies
respectively based on C3D [38], R(2+1)D [39], P3D [30], I3D [41] and Slow-
Fast [18] (the speed ratio α = 8, and the channel ratio β = 1/8) with supervised
contrastive learning enabled. The performance improvements are also given in
parentheses compared to a simple model with a single few-shot classification
branch without contrastive learning. It is clear to see that: (1) For all cases on
three different datasets, the proposed framework achieves better results with the
supervised contrastive learning branch enabled, which demonstrates the effec-
tiveness as well as the potential for generalization of the methodology that we
have developed, i.e., contrastive learning indeed improves the video representa-
tion capacity and benefits the distance measurement for classification. (2) The
performance improvements are less significant for high-capacity video extraction
backbones such as I3D and SlowFast.
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Table 4. Comparison of different combinations of spatial-temporal augmen-
tations on HMDB51 with C3D as the backbone. Few-shot classification accuracies (%)
are reported over 1, 000 episodes. Note that Neg./Pos. pair ratio is configured to 2.5.

Augmentation Method 1-shot 3-shot 5-shot

Uniform Samp. (US) 75.00 84.28 87.40
Random Samp. (RS) 74.84 84.10 87.26
Speedup Samp. (SS) 70.42 81.28 83.40
Slow-Down Samp. (SDS) 71.30 82.00 83.36
Gaussian Samp. (GS) 72.60 83.90 86.45
US+RS 74.89 85.27 88.31
US+RS+SS 75.18 85.63 88.99
US+RS+SS+SDS 75.34 86.74 89.70
US+RS+SS+SDS+GS 75.78 86.89 89.84

Effect of Spatial-Temporal Augmentations. To evaluate the effect of
spatial-temporal augmentation methods, we combine different temporal sam-
pling methods with the spatial random crop. In Table 4, we report the perfor-
mance on HMDB51 with the C3D backbone. We can observe from Table 4 that
uniform sampling and random sampling can achieve better performance than
speedup, slow-down, or gaussian sampling, which because uniform and random
sampling usually obtain the temporal information across the whole time dimen-
sion, while for speedup, slow-down, and gaussian sampling, they pay more atten-
tion to the beginning, the end and the middle of the video along the time dimen-
sion, respectively. Furthermore, combining all these sampling methods together
and using learnable weights (attentive) to get the final similarity score (see Fig. 3)
will help us mine the video features better.

5 Conclusions

This paper proposes a general few-shot action classification framework pow-
ered by supervised contrastive learning, where contrastive learning is deployed
to improve the representation quality of videos and a similarity score network
is shared by both contrastive learning and few-shot learning to make a closer
integration of the two paradigms. Besides, five spatial-temporal video augmen-
tation methods are designed for generating various video sample views in the
N -way K-shot few-shot classification scenarios. The significantly improvements
achieved by our proposed framework in few-shot action classification is mainly
due to: (1) The auxiliary supervised contrastive learning loss makes the video rep-
resentations more discriminative. (2) The distance measurement between clips
is reflected by the similarity score more precisely thanks to a shared similarity
score measurement network in both few-shot classification and contrastive learn-
ing branches. Importantly, our proposed framework shows strong generalization
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abilities when different video representation backbones are used. Our proposed
framework also has highly flexibility as it can achieve competitive performance
when other mainstream contrastive learning approaches are integrated.
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Abstract. Modern deep neural network models are known to erroneously clas-
sify out-of-distribution (OOD) test data into one of the in-distribution (ID) training
classes with high confidence. This can have disastrous consequences for safety-
critical applications. A popular mitigation strategy is to train a separate classifier
that can detect such OOD samples at test time. In most practical settings OOD
examples are not known at train time, and hence a key question is: how to aug-
ment the ID data with synthetic OOD samples for training such an OOD detector?
In this paper, we propose a novel Compounded Corruption (CnC) technique for
the OOD data augmentation. One of the major advantages of CnC is that it does not
require any hold-out data apart from training set. Further, unlike current state-of-
the-art (SOTA) techniques, CnC does not require backpropagation or ensembling
at the test time, making our method much faster at inference. Our extensive com-
parison with 20 methods from the major conferences in last 4 years show that
a model trained using CnC based data augmentation, significantly outperforms
SOTA, both in terms of OOD detection accuracy as well as inference time. We
include a detailed post-hoc analysis to investigate the reasons for the success of
our method and identify higher relative entropy and diversity of CnC samples
as probable causes. Theoretical insights via a piece-wise decomposition analysis
on a two-dimensional dataset to reveal (visually and quantitatively) that our app-
roach leads to a tighter boundary around ID classes, leading to better detection of
OOD samples.

Keywords: OOD detection · Open Set recognition · Data augmentation

1 Introduction

Deep neural network (DNN) models generalize well when the test data is independent
and identically distributed (IID) with respect to training data [42]. However, the con-
dition is difficult to enforce in the real world due to distributional drifts, covariate shift,
and/or adversarial perturbations. A reliable system based on a DNN model must be able
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to detect an OOD sample, and either abstain from making any decision on such samples,
or flag them for human intervention. We assume that the in-distribution (ID) samples
belong to one of the K known classes, and club all OOD samples into a new class called
a reject/OOD class. We do not attempt to identify which specific class (unseen label) the
unknown sample belongs to. Our goal is to build a classifier to accurately detect OOD
samples as the (K + 1)th OOD class, with an objective to reject samples belonging to
any novel class.

Most techniques for OOD detection assume the availability of validation samples
from the OOD set for tuning model hyper-parameters [2,19,31,33]. Based on the sam-
ples, the techniques either update the model weights so as to predict lower scores for
the OOD samples, or try to learn correlation between activations and the output score
vector [31]. Such approaches have limited utility as in most practical scenarios, either
the OOD samples are not available, or cover a tiny fraction of OOD sample space. Yet,
other class of techniques learn the threshold on the uncertainty of the output score using
deep ensembling [28] or MC dropout [9]. Understandably, OOD detection capability of
these techniques suffer when the samples from a different OOD domain are presented.

The other popular class of OOD detectors do not use representative samples from
OOD domain, but generate them synthetically [17,36,37]. The synthetic samples can be
used to train any of the earlier mentioned SOTA models in lieu of the real OOD sam-
ples. This obviates the need for any domain specific OOD validation set. Such methods
typically use natural corruptions (e.g. blur, noise, and geometric transformations etc.)
or adversarial perturbations to generate samples near decision boundary of a classifier.
This class also have limited accuracy on real OOD datasets, as the synthetic images gen-
erated in such a way are visually similar/semantically similar to the ID samples, and
the behavior of a DNN when shown natural OOD images much farther (in terms of �2
distance in RGB space) from the ID samples still remains unknown.

Recent theoretical works towards estimating or minimizing open set loss recom-
mend training with OOD samples covering as much of the probable input space as pos-
sible. For example, [24] show that a piece-wise DNNmodel shatters the input space into
a polyhedral complex, and prove that empirical risk of a DNNmodel in a region of input
space scales inversely with the density of training samples lying inside the polytope cor-
responding to the region. Similarly, [8] show that under an unknown OOD distribution,
the best way to minimize the open set loss is by choosing OOD samples uniformly from
the support set in the input space. Encouraged by such theoretical results, we propose
a data augmentation technique which does not focus on generating samples visually
similar to the ID samples but synthesizing OOD samples in two key regions of the input
space: (i) finely distributed at the boundary of ID classes, and (ii) coarsely distributed
in the inter-ID sample space (See Sect. 3.3 for details). We list the key contributions:

1. We propose a novel data augmentation strategy, Compounded Corruptions (CnC)
for OOD detection. Unlike contemporary techniques [12,19,31,33] the proposed
approach does not need a separate OOD train or validation dataset.

2. Unlike SOTA techniques which detect OOD samples by lowering the confidence of
ID classes [1,18,31,35], we classify OOD samples into a separate reject class. We
show empirically that our approach leads to clearer separation between ID and OOD
samples in the embedding space (Fig. 4).
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3. Our method does not require any input pre-processing at the test time, or a second
forward pass with perturbation/noise. This makes it significantly faster in inference
as compared to the other SOTA methods [22,33].

4. Visualization and analysis of our results indicate that finer granularity of the poly-
hedral complex around the ID regions learnt by a model is a good indicator of per-
formance of a OOD data augmentation technique. Based on our analysis, we also
recommend higher entropy and diversity of generated OOD samples as good predic-
tors for OOD detection performance.

2 Related Work

Our approach is a hyper-parameter-free OOD detection technique, which does not need
access to a validation OOD dataset. We review contemporary works below.

Hyper-parameter Tuning Using OOD Data. This class comprises of OOD detection
methods that fine-tune hyper-parameters on a validation set. ODIN [33] utilizes temper-
ature scaling with input perturbations using the OOD validation dataset to tune hyper-
parameters for calibrating the neural networks. However, hyper-parameters tuned with
one OOD dataset may not generalize to other datasets. Lee et al. [31] propose training
a logistic regression detector on the Mahalanobis distance vectors calculated between
test images’ feature representations and class conditional Gaussian distribution at each
layer.

Retraining a Model Using OOD Data. G-ODIN [22] decompose confidence score along
with modified input pre-processing for detecting OOD, whereas ATOM [2] essentially
makes a model robust to the small perturbations, and hard negative mining for OOD
samples. MOOD [34] introduce multi-level OOD detection based on the complexity of
input data, and exploit simpler classifier for faster OOD inference.

Using a Pre-trained Model’s Score for OOD Detection. Hendrycks and Gimpel [18]
use maximum confidence scores from a softmax output to detect OOD. Liu et al. [35]
use energy as a scoring function for OOD detection without tuning hyper-parameters.
Shastry and Oore [41] leverage pth-order Gram matrices to identify anomalies between
activity patterns and the predicted class. Blundell et al. [1] focus on a closed world
assumption which forces a DNN to choose from one of the ID classes, even for the
OOD data. OpenMax estimates the probability of an input being from an unknown class
using aWeibull distribution. G-OpenMax [10] explicitly model OOD samples and report
findings on small datasets like MNIST.

OOD Detection Using Uncertainty Estimation. OOD samples can be rejected by thresh-
olding on the uncertainty measure. Graves et al. [11], Wen et al. [46] propose anomaly
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detection based on stochastic Bayesian inference. Gal et al. [9] propose MC-dropout
to measure uncertainty of a model using multiple inferences. Deep Ensembles [28] use
multiple networks trained independently to improve uncertainty estimation.

Data Augmentation for OOD Detection. This line of research augments the training
set to improve OOD detection. Data augmentations like flipping and cropping generate
samples that can be easily classified by a pre-trained classifier. Generative techniques
based on VAEs, and GANs try to synthesize data samples near the decision bound-
ary [7,30,32,39,40,45,47]. Other data augmentation strategies do not directly target
OOD detection, but domain generalization: SaliencyMix [44], CutOut [6], GridMask
[3], AugMix [20], RandomErase [52], PuzzleMix [26], RandAugment [4], SuperMix
[5]. Mixup [51] generates new data through convex combination of training samples
and labels to improve DNN generalization. CutMix [48] which generates samples by
replacing an image region with a patch from another training image. The approach is
not directly suitable for OOD detection, as the generated samples lie on the line joining
the training samples, and may not cover the large input space [8,24].

3 Proposed Approach

Fig. 1. Creating augmented data samples using Compounded Corruptions (CnC). Pane (a) shows
block diagram of the training procedure: first we take a patch based convex combination (PBCC)
of patches chosen from image pair belonging to

(
K
2

)
labels; second, we apply corruptions on

the data points obtained using PBCC. This proxy OOD data is then used to train a (K + 1)
way classifier, where, first K classes correspond to the ID classes and (K + 1)th class contains
synthesized OOD samples corresponding to reject/OOD class. Pane (b) shows CnC synthesized
sample images from cat and dog classes. Intuitively, CnC gives two knobs for generating OOD
samples: a coarse exploration ability through linear combination of two ID classes achieved
through PBCC operation, and a finer warping capability through corruption of these images. The
order of the two operations (PBCC before corruption) is important, as we show later.
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3.1 Problem Formulation

We consider a training set, Dtrain
in , consisting of N training samples: (xn, yn)Nn=1, where

samples are drawn independently from a probability distribution: PX,Y . Here, X ∈ X
is a random variable defined in the image space, and Y ∈ Y = {1, . . . , K} represents
its label. Traditionally, a classifier fθ : X → Y is trained on in-distribution samples
drawn from a marginal distribution PX of X derived from the joint distribution PX,Y .
Let θ refers to model parameters and QX be another distinct data distribution defined
on the image space X . During testing phase, input images are drawn from a condi-
tional mixture distribution MX|Z where Z ∈ {0, 1}, such that MX|Z=0 = PX , and
MX|Z=1 = QX . We define all QX � PX as OOD distributions, and Z is a latent
(binary) variable to denote ID if Z = 0 and OOD if Z = 1.

One possible approach to detecting an OOD sample is if confidence of fθ for a given
input is low for all elements of Y . However, we use an alternative approach where
we learn to map OOD samples generated using our technique to an additional label
(K +1). Given any two ID samples x1, x2 ∼ PX , we generate the synthetic data using
the CnC operation C(x1, x2) : X × X → X . We then define an extended label set
Y+ = {1, . . . , K + 1}, and train a classifier f+

θ over Y+. The goal is to train f+
θ to

implicitly build an estimate Ẑ of Z, such that the output of f+
θ is (K +1) if Ẑ = 1, and

one of the elements of Y if Ẑ = 0.

a) Training Data b) PBCC c) Corr d) CnC

Fig. 2. Intuition with an illustrative plot of OOD synthesis on a toy dataset with four ID classes.
Each sample is in R

2. Consider p1 = (x1, y1), and p2 = (x2, y2) to be the two input samples
belonging to distinct classes 1 and 2, then p3 = (x3, y3) is the geometric convex combination
of p1 and p2 such that: p3 = λp1 + (1 − λ)p2, 0 ≤ λ ≤ 1. (a) training data corresponding to
4 distinct classes; Synthesised OOD points are in red; (b) PBCC generates OOD points through a
convex combination of ID points from different classes in

(
4
2

)
ways, whereas corruptions depicted

in (c) can generate OOD points around each cluster. Observe that points generated by CnC spans
wider OOD space including inter-ID-cluster area and outside the convex hull of ID points. (Color
figure online)

3.2 Synthetic OOD Data Generation

Our synthetic sample generation strategy consists of following two steps.

Step 1: Patch Based Convex Combination (PBCC). We generate synthetic samples by
convex combination of two input images. Let x ∈ R

W×H×C , and y denote a training
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image and its label respectively. Here, W,H,C denote width, height, channels of the
image respectively. A new sample, x̃, is generated by a convex combination of two
training samples (xA, yA), and (xB , yB):

x̃ = M � xA + (1 − M) � xB. (1)

Here, xA and xB do not belong to a same class (yA �= yB), and M ∈ {0, 1}W×H

denotes a rectangular binary mask that indicates which region to drop, or use from the
two images. 1 is a binary mask filled with ones, and � is element-wise multiplication.
To sample M, we first sample the bounding box coordinates B = (rx, ry, rw, rh),
indicating the top-left coordinates, and width, and height of the box. The region B in
xA is cut-out and filled in with the patch cropped from B of xB . The coordinates of
B is uniformly sampled according to: rx ∼ U(0,W ), rw = W

√
1 − λ and similarly,

ry ∼ U(0,H), rh = H
√
1 − λ. Here, λ ∈ [0, 1] denotes the crop area ratio, and is fixed

at different values for generating random samples. The cropping mask M is generated
by filling zeros within the bounding box B and ones outside. We generate the samples
by choosing each pair of labels in

(
K
2

)
ways, and then randomly selecting input images

corresponding to the chosen labels. This generates OOD samples spread across various
inter-class regions in the embedding space. For ablation on range of λ to ensure that a
large number of OOD samples are generated outside the ID clusters see supplementary.
We label all generated samples as that of the (K + 1)th reject class.

PBCC and CutMix [48]: Note that PBCC and CutMix [48] both rely on the same
basic operation convex combination of images, but for two very different objectives.
Whereas, CutMix uses the combination step to guide a model to attend on less dis-
criminative parts of objects e.g. leg as opposed to head of a person letting the network
generalize better on object detection. On the other hand, we use PBCC as a first step
for OOD data generation, where the operation generates samples in a large OOD space
between a pair of classes in

(
K
2

)
ways.

PBCC Shortcomings: Note that PBCC performs a convex combination of the two
ID images belonging to two distinct classes. Hence, unlike adversarial perturbations, it
is able to generate sample points far from the ID points in the RGB space. However, still
it can generate samples from only within the convex hull of the ID points corresponding
to all classes. Thus, as we show in our ablation studies, sample generated using this step
alone are insufficient to train a good OOD detector. Below we show how to improve upon
the shortcoming of PBCC.

Step 2: Compounded Corruptions. We aim to address the above shortcomings by using
corruptions on top of PBCC generated samples, thus increasing the sample density
in inter-class regions as well as generating samples outside the convex hull. We rea-
son that such compounded corruptions increase the spread of the augmented data to a
much wider region. Thus, a reasoning based on “per sample” generalisation error bound
from [24]: [Fig. 1, Eq. 11] could be utilized for our problem. [24] constructs an input-
dependent generalization error bound by analysing the subfunction membership of each
input, and show that generalisation error bound improves with smoother training sam-
ple density (as defined by number of samples in each region). Intuitively, corruptions
over PBCC produces a smoother approximation of ID classes with a finer fit at the ID



OOD Sample Detection Using Compounded Corruptions 535

class boundary. A detailed analysis is given in Sect. 3.3. To give an intuitive understand-
ing, Fig. 2 shows visualizations of the generated OOD samples in red using a 4 class toy
dataset in two dimensions.

Hendrycks et al. [17] benchmark robustness of a DNN using 15 algorithmically
generated image corruptions that mimic natural corruptions. Each corruption severity
ranges from 1 to 5 based on the intensity of corruption, where 5 is most severe. The
corruptions can be seen as perturbing a sample point in its local neighborhood, while
remaining in the support space of the probability distribution of valid images. We apply
these corruptions on the samples generated using PBCC step described earlier. Together,
PBCC, and corruptions, allow us to generate a synthetic sample far from, and outside
the convex hull of ID samples. At the same time, unlike pure random noise images, the
process maintains plausibility of the generated samples. Specifically we apply follow-
ing corruptions: Gaussian noise, Snow, Fog, Contrast, Shot noise/Poisson noise, Elastic
transform, JPEG compression, and blur such as Defocus, Motion etc.

Figure 1 gives a pictorial overview of the overall proposed scheme with a few OOD
image samples generated by our approach. CnC formulates the problem as (K + 1)
class classification which improves the model representation of underlying distribution,
and at the same time improves DNN calibration as seen in Sect. 5.2. Please see Suppl.
for the precise steps of our algorithm.

Fig. 3. Visualization of trained classifiers as a result of OOD augmentation. A ReLU type DNN is
trained on the two-dimensional half-moon data set shown in (a). The shattered neural networks
[16] show that CnC has the tightest fit around the ID regions, as measured by the area of the (white
colored) polytopes in which no training ID point is observed but a network predicts a point in
that region as ID. The measured areas for such polytopes are (b) Vanilla training without data
augmentation: 5.65, (c) PBCC: 8.20, (d) Corruption: 0.40, (e) r-CnC: 5.66, (f) CnC: 0.37.
Note: [24] state that the more densely supported a polytope is by the training set, the more reliable
the network is in that region. Hence, the samples declared ID in the regions where no ID sample
is observed may actually be OOD with high probability. We observe that PBCC/r-CnC/Vanilla, all
predict ID in many such polytopes. Note: r-CnC we reverse the order of PBCC and corruptions
Best viewed at 200%
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3.3 CnC Analysis via Polyhedral Decomposition of Input Space

While we validate the improved performance of CnC in Sect. 5, in this section we seek
to provide a plausible explanation for the CnC’s performance. We draw inspiration from
theoretical support provided in recent work by [24] who formally derive and empirically
test prediction unreliability for ReLU based neural networks.

Consider a ReLU network with n inputs and m neurons in total. [24] show that
parameters of a trained model partition the input space into a polyhedral complex (PC)
consisting of individual convex polytopes (also called activation regions in [24]). See
Fig. 3 for an example with a 2D input space. Each possible input corresponds to a unique
state (active or inactive) of each of the m ReLU neurons, and the interior of each poly-
tope corresponds to a unique combination of states of all m neurons. Thus a trained
network behaves linearly in the interior of corresponding polytopes. Each edge in the
PC corresponds to the state flip of a single neuron (active to inactive, or vice versa).

For the purpose of classification based on the final layer activation, a key corollary
from [24] is that the decision boundary between two classes must be a straight line
within a polytope, and can only turn at the vertices. This is an immediate consequence
of the observation that the decision boundary is the locus along which the two highest
activations (most probable labels) in the output layer remain equal to each other. This
implies that smaller polytopes near the decision boundary are needed for finer control
over the boundary between training samples from different classes. Note also that the
authors in [24]: [Eq. (11)] infer that (paraphrased) “the more a subfunction (polytope)
is surrounded by samples with accurate predictions, the lower its empirical error and
bound on generalization gap, and thus the lower its expected error bound”.

The key question from OOD detection perspective is, how do we force a network to
create tighter polytopes at the ID class decision boundaries? We believe the answer is to
distribute a large number of the augmented samples (over which we have control) with
contrasting OOD and ID labels all around each ID region, forcing the decision boundary
to form a tight bounding surface. At the same time, we must also retain a good fraction
of the augmented samples in the open space between ID classes, which can be covered
by relatively large polytopes (recall that the maximum number of polytopes is bounded
by the number of neurons, and thus small polytopes in one region may need to be traded
off by larger polytopes in another region). Neglecting the inter-ID space entirely would
run the risk of creating very large polytopes in this region, which increases the empirical
error bound ([24]: [Eqs. (5) and (11), large subfunctions have low probability mass and
hence higher error bound. Refer Supplementary for further details.]. CnC lets us achieve
this dual objective by using compounding to sample the space between ID classes, and
corruption to pepper the immediate neighborhoods around ID classes (especially for λ
values near 0 and 1).

In Fig. 3, we show polyhedral complex corresponding to the DNNmodels trained on
two-dimensional half-moon dataset [16,25], and OOD samples generated using various
techniques. The first plot shows the input space with training samples from two ID
classes (green and yellow semicircles). The learnt polytope structure for vanilla uses a
neural network of size [2, 32, 32, 2], while the remaining three plots use [2, 32, 32, 3]
(with an additional reject/OOD class).
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Recall from Fig. 2 that PBCC produces samples sparsely between the ID classes,
but not around the ID class boundaries. Pure corruptions produce samples only near
and on ID classes, but not in the inter-ID space. On the other hand, CnC produces
samples both near the ID boundaries as well as in the inter-ID space. In Fig. 3, we
define any polytope that is fully or partially (decision boundary crosses through it)
classified as ID, as an “ID classified polytope” and mark it in white color. Visually,
we can see that the white polytopes occupy a smaller total area when we compare
Vanilla to CnC, with the actual values noted in the caption. This indicates that the CnC
produces the tightest approximation of OD classes in our example, which in turn leads
to better OOD detection. Though we show for two-dimensional data, we posit that the
same generalizes to higher dimensional input data as well, and is the reason for success
of CnC based OOD detection.

CnC and Robustness to Adversarial Attacks: Note that, small polytopes in the input
space partitioned by a DNN may also provide better safety against black box adversar-
ial attacks as suggested by [16,25]. This is because the black box adversarial attacks
extrapolate the gradients based upon a particular test sample. Since the linearity of the
output, and thus the gradients is only valid inside a polytope, smaller polytopes near the
ID or in the OOD region makes it difficult for an adversary to extrapolate an output to a
large region. However, since adversarial robustness is not the focus of this paper, we do
not further explore this direction.

3.4 Training Procedure

We train a (K +1) class classifier network f+
θ , where first K classes correspond to the

multi-classification ID classes, and the (K + 1)th class label indicates the OOD class.
Our training objective takes the form:

L = minimize
θ

E(x,y)∼Dtrain
in

[LCE(x, y; f+
θ (x))]

+α · E(x,y)∼Dcorr
pbcc

[LCE(x,K + 1; f+
θ (x))], (2)

where LCE is the cross entropy loss, f+
θ (x) denotes the softmax output of neural net-

work for an input sample x. We use α = 1 in our experiments based on the ablation
study reported in the supplementary material. For above experiments setup we set the
ratio of IID:OOD training points as 1 : 1.

3.5 Inference

After training, we obtain a trained model F+. We use F+(x)[K + 1] as the OOD score
of x during testing, and define an OOD detector D(x) as:

D(x) =

{
0, if F+(x)[K + 1] > δ

1, if F+(x)[K + 1] ≤ δ
(3)
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where, D(x) = 0 indicates an OOD prediction, and D(x) = 1 implies an ID sample
prediction. δ is a threshold such that TPR, i.e., fraction of ID images correctly classified
as ID is 95%. For images which are characterized as ID by D(x), the labels are given
as:.

ŷ = argmax
i∈1,...,K

F+(x)i (4)

4 Dataset and Evaluation Methodology

In-Distribution Datasets: For ID samples, we use SVHN (10 classes) [38], CIFAR-
10 (10 classes), CIFAR-100 (100 classes) [27] containing images of size 32 ×
32. We also use TinyImageNet (200 classes) [29] containing images of resolution
64 × 64 images. Out-of-Distribution Datasets: For comparison, we use the following
OOD datasets: TinyImageNet-crop (TINc), TinyImageNet-resize (TINr), LSUN-crop
(LSUNc), LSUN-resize (LSUNr), iSUN, SVHN. Evaluation Metrics: We compare the
performance of various approaches using TNR@TPR95, AUROC and Detection Error.
See Suppl. for description on evaluation metrics.

5 Experiments and Results

To show that our data augmentation is effective across different feature extractors, we
train using both DenseNet-BC [23] and ResNet-34 [14]. DenseNet has 100 layers with
growth rate of 12. WideResNet [49] models have the same training configuration as
[35].

5.1 Comparison with State-of-the-art

OOD Detection Performance: Table 1 shows comparison of CnC with recent state-of-
the-art. The numbers indicate averaged OOD detection performance on 6 datasets as
mentioned in Sect. 4 (TinyImagenet, TinyImageNet-crop (TINc), TinyImageNet-resize
(TINr), LSUN-crop (LSUNc), LSUN-resize (LSUNr), iSUN, SVHN) with more details
included in the supplementary. We would like to emphasize that CnC does not need
any validation OOD data for fine-tuning. But ODIN [33] and Mahalanobis [31] require
OOD data for fine-tuning the hyper-parameters; the hyper-parameters for ODIN and
Mahalanobis methods [31,33] are set by validating on 1K images randomly sampled
from the test setDtest

in . Table 1 clearly shows that CnC outperforms the existing methods.
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Comparison with Other Data Generation Methods: Table 2 shows how CnC fairs
against recent OOD data generation methods. In each case we train a (K + 1) way
classier where first K classes correspond to ID and (K + 1)th class comprised of OOD
data generated by corresponding method. As seen from the table, CnC outperforms the
recent data augmentation schemes.

Table 1. Comparison of competing OOD detectors. TIN: TinyImageNet, and RN50: ResNet50,
WRN: WideResNet-40-2 Values are averaged over all OOD benchmark datasets. We give indi-
vidual dataset-wise results in the supplementary. Note that ATOM [2], and OE [19] require large
image datasets like 80-Million Tiny Images [43] as representative of OOD samples. However,
CnC synthesises its own OOD dataset using the ID training data. CnC models were trained using
the same configuration as defined by OE [19] and EBO [35] paper, with the exception that CnC
did not use any external auxiliary OOD dataset like [43] in training. CnC reasults are averaged
on 3 evaluation runs.

Dtrain
in Method TNR@TPR95 AUROC DetErr ID Acc.

↑↑↑ ↑↑↑ ↓↓↓ ↑↑↑
CIFAR-10 DenseNet-BC MSP (ICLR’17) [18] 56.1 93.5 12.3 95.3

ODIN (ICLR’18) [33] 92.4 98.4 5.8 95.3

Maha (NeurIPS’18) [31] 83.9 93.5 10.2 95.3

Gen-ODIN (CVPR’20) [22] 94.0 98.8 5.4 94.1

Gram Matrices (ICML’20) [41] 96.4 99.3 3.6 95.3

ATOM (ECML’21) [2] 98.3 99.2 1.2 94.5

CnC (Proposed) 98.4 ± 0.8 99.5 ± 1.2 2.7 ± 0.2 94.7

CIFAR-100 DenseNet-BC MSP (ICLR’17) [18] 21.7 75.2 31.4 77.8

ODIN (ICLR’18) [33] 61.7 90.6 16.7 77.8

Gen-ODIN (CVPR’20) [22] 86.5 97.4 8.0 74.6

Maha (NeurIPS’18) [31] 68.3 92.8 13.4 77.8

Gram Matrices(ICML’20) [41] 88.8 97.3 7.3 77.8

ATOM (ECML’21) [2] 67.7 93 5.6 75.9

CnC (Proposed) 97.1 ± 1.4 98.5 ± 0.4 4.6 ± 0.6 76.8

TIN RN50 MSP (ICLR’17) [18] 53.15 85.3 22.1 57.0

ODIN (ICLR’18) [33] 68.5 93.7 12.3 57.0

CnC (Proposed) 97.8 ± 0.8 99.6 ± 0.2 2.1 ± 0.2 60.5

C-10 WRN OE (ICLR’19) [19] 93.23 98.64 5.32 94.8

EBO (NeurIPS’20) [35] 96.7 99.0 3.83 95.2

CnC (Proposed) 96.2 ± 1.5 99.02 ± 0.1 4.5 ± 0.8 94.3

C-100 WRN OE (ICLR’19) [19] 47.35 86.02 21.24 75.6

EBO (NeurIPS’20) [35] 54.0 86.65 19.7 75.7

CnC (Proposed) 97.6 ± 0.9 99.5 ± 0.1 2.2 ± 0.3 75.1
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Table 2. Comparison with other synthetic data generation methods. We consider CIFAR10 as
ID. The values are averaged over all OOD benchmarks. We have used DenseNet [23] as the
architecture for all methods trained for (K + 1) class classification. Samples obtained through
the listed data augmentation schemes were assumed to be of (K+1)th class. Observe that CnC has
superior OOD detection performance. We report average and standard deviation of CnC trained
models computed over 3 runs.

Data augmentation methods TNR (95% TPR) AUROC Detection Err

↑↑↑ ↑↑↑ ↓↓↓
Mixup (ICLR’18) [51] 60.6 90.9 15.5

CutOut (arXiV’17) [6] 80.8 94.8 10

CutMix (ICCV’19) [48] 83.2 92.7 8.6

GridMask (arXiV’20) [3] 50.3 79.1 23.6

SaliencyMix (ICLR’21) [44] 85.3 95.7 8.0

AugMix (ICLR’20) [20] 81.3 94.6 11.2

RandomErase (AAAI’20) [52] 41.9 68.1 24.2

Corruptions (ICLR’19) [17] 98.0 99.4 2.8

PuzzleMix (ICML’20) [26] 66.8 84.1 15.2

RandAugment (NeurIPS’20) [4] 89.5 97.9 4.7

Fmix (ICLR’21) [13] 73 90.3 12.6

Standard Gaussian Noise 71.5 93.2 11.7

CnC (Proposed) 98.4 ± 0.8 99.5 ± 1.2 2.7 ± 0.2

Table 3. Detecting domain shift using CnC. A model trained with CnC data on CIFAR-100 as
the ID using DenseNet-BC [23] feature extractor can successfully detect the domain shift when
observing ImageNet-R at the test time.

Method TNR@0.95TPR AUROC DetErr

MSP (ICLR’17) [18] 24.4 80.1 26.5

ODIN (ICLR’18) [33] 46.0 88.6 18.9

Gen-ODIN (CVPR’20) [22] 45.0 88.7 18.8

Mahalanobis (NeurIPS’18) [31] 14.0 56.2 41.6

Gram Matrices (ICML’20) [41] 35.0 81.5 25.8

CnC (Proposed) 60.0 91.6 15.7
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Table 4. Using entropy/diversity of synthesized data to predict quality of OOD detection. Please
refer to text for more details.

Method TNR@
0.95TPR

AUROC DetErr Mean
diversity

Mean entropy

↑↑↑ ↑↑↑ ↓↓↓ ↑↑↑ ↑↑↑
PBCC 93.7 98.6 6.2 2.30 0.33

Corruptions 95.5 97.4 3.5 2.68 0.38

CnC 98.3 99.6 2.6 3.40 0.80

5.2 Other Benefits of CnC

Detecting Domain Shift as OOD: We analyze if a model trained with CnC augmented
data can detect non-semantic domain shift, i.e. images with the same label but differ-
ent distribution. For the experiments we use a model trained using CIFAR-100 as ID,
and ImageNet-O/ImageNet-R/Corrupted-ImageNet [21] as the OOD. While testing, we
downsample the images from ImageNet-O, ImageNet-R and TinyImageNet-C to a size
of 32×32. Table 3 shows results on ImageNet-R OOD dataset. We outperform the next
best technique by 14% on TNR@0.95TPR, 2.9% in AUROC, 3.1% in detection error.
See supplementary for results on ImageNet-O and Corrupted ImageNet.

Model Calibration. Another benefit of training with CnC is model calibration on ID
data as well. A classifier is said to be calibrated if the confidence probabilities matches
the empirical frequency of correctness [12,15], hence a crucial to measure of trust
in classification models. Tables in the supplementary show the calibration error for a
model trained on CIFAR-10, and CIFAR-100 as the ID data, with CnC samples as the
(K + 1)th class. Note that the calibration error is measured only for the ID test sam-
ples. We compare the error for a similar model, trained using only ID train data, and
calibrated using temperature scaling (TS) [12].

Time Efficiency. For applications demanding real-time performance, it is crucial to have
low latency in systems using DNN for inference. Supplementary reports the competative
performance of our method.

5.3 Ablation Studies

Rationale for Design choice of K vs. (K+1) Classifier. We empirically verify having
a separate class helps in better optimization/learning during training a model using
CnC augmentation. Figure 4 shows the advantages of using a (K + 1) way classifier
as compared to standard K class training with better ID-OOD separation. Supplemen-
tary material details the advantage of CnC with ACET [16] (CVPR’19) for uncertainty
quantification on a half-moon dataset.

Recommendation for a Good OOD Detector. We performed detailed comparison of var-
ious configurations of our technique to understand the quantitative scores which can
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predict the quality of an OOD detector. For the experiment we keep the input images
used same across configs, PBCC and corruptions applied are also fixed to remove any
kind of randomness. We use ResNet34 as feature extractor for all methods. CIFAR-
10 is used as ID dataset and TinyImageNet-crop as OOD dataset. We observe that the
quality of OOD detection improves as the diversity, and entropy of the synthesized data
increases (Table 4). Here, entropy is computed as the average entropy of the predicted
probability vectors by the K class model for the synthesized data. We adapt data diver-
sity from Zhang et al. [50] to measure diversity of OOD data. Refer supplementary for
Algorithm for diversity computation.

Fig. 4. We show sample t-SNE plots for K Vs. (K + 1) classifiers, where CIFAR-10 is used as
ID and SVHN is used as OOD(marked in red). The K-class classifier uses temperature scaling
(TS) [12], where T is tuned on SVHN test set. On the other hand, the (K + 1) class classifier
uses SVHN data for (K + 1)th class during training. The visualization shows that the OOD data
(marked in red) is better separated in a (K+1)-class classifier as compared to aK-class classifier
(Color figure online)

Limitations of CnC Data Augmentation: Introduction of additional synthetic data
indeed increases training time. For e.g., training a model with CnC data on TinyIm-
ageNet dataset takes 10min 23 s/epoch, whereas without CnC data it takes 5min
30 s/epoch on the same Nvidia V100 GPU. Performance gain the overhead of train-
ing time can be discounted as inference time remains same. We assume the absence
of adversarial intentions in this approach, Our method fails when tested against L∞
norm bounded perturbed image. In future we intend to look at OOD detection using
CnC variants for non-visual domains.

6 Conclusions

We have introduced Compounded Corruptions(CnC), a novel data augmentation tech-
nique for OOD detection in image classifiers. CnC outperforms all the SOTAOOD detec-
tors on standard benchmark datasets tested upon. The major benefit of CnC over SOTA
is absence of OOD exposure requirement for training or validation. We also show addi-
tional results for robustness to distributional drift, and calibration for CnC trained mod-
els. CnC requires just one inference pass at the test time, and thus has much faster infer-
ence time compared to SOTA. Finally, we also recommend high diversity and entropy
of the synthesized data as good measures to predict quality of OOD detection using it.
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Abstract. Significant advances in weakly-supervised semantic segmen-
tation (WSSS) methods with image-level labels have been made, but they
have several key limitations: incomplete object regions, object boundary
mismatch, and co-occurring pixels from non-target objects. To address
these issues, we propose a novel joint learning framework, namely Saliency
Map and Visual Word Encoder (SMVWE), which employs two weak
supervisions to generate the high-quality pseudo labels. Specifically, we
develop a visual word encoder to encode the localization map into semantic
words with a learnable codebook, making the network generate localiza-
tion maps containing more semantic regions with the encoded fine-grained
semantic words. Moreover, to obtain accurate object boundaries and elim-
inate co-occurring pixels, we design a saliency map selection mechanism
with the pseudo-pixel feedback to separate the foreground from the back-
ground. During joint learning, we fully utilize the cooperation relation-
ship between semantic word labels and saliency maps to generate high-
quality pseudo-labels, thus remarkably improving the segmentation accu-
racy. Extensive experiments demonstrate that our proposed method bet-
ter tackles above key challenges of WSSS and obtains the state-of-the-art
performance on the PASCAL VOC 2012 segmentation benchmark.

Keywords: Weakly-supervised semantic segmentation · Saliency
map · Visual word encoder · Pseudo labels

1 Introduction

Semantic segmentation aims to predict pixel-wise classification results on images,
which is one important and challenging task of computer vision. With the devel-
opment of deep learning, a variety of Convolutional Neural Network (CNN)
based semantic segmentation methods [7,8] have achieved promising successes.
However, they require a large number of training images annotated with pixel-
level labels, which is both expensive and time-consuming. Thus, various weakly
supervised semantic segmentation (WSSS) methods have attracted increasing
interest of researchers. Most existing WSSS studies adopt image-level labels as
the weak supervision of the segmentation model, in which a segmentation net-
work is trained on images with less comprehensive annotations that are cheaper
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to obtain than pixel-level labels. The image-level WSSS methods usually perform
semantic segmentation through generated pseudo-labels as weak supervision. In
general, using a classification network to generate class activation maps (CAM)
[46] containing object localization maps, which can be as initial pseudo labels
to achieve the semantic segmentation performance [4,35]. However, the classi-
fication network has the ability to classifity, which does not locate the integral
extents of target objects, leading to the generated CAM that typically only cover
the most discriminative parts of target objects. Thus, during the process of pro-
ducing pseudo labels, WSSS will be confronted with the following key challenges:
i) the extents of the target objects can not be covered completely [46], ii) the
localization map is unable to obtain accurate object boundaries [22], and iii)
the localization map contains co-occurring pixels between target objects and the
background [23]. These three aspects in pseudo labels are important to the final
semantic segmentation performance [4,35].

Recently, many WSSS methods have been proposed to focus on tackling
these issues. According to different issues, existing methods can be divided
into three categories. To address the incomplete object region issue of pseudo-
labels, researchers utilize the pixel-affinity based strategy [1,2] or erasing strategy
[10,22,25] to enlarge the receptive field and discover more discriminative parts
for target objects. However, they only focus on the object coverage extents,
and neglect that accurate object boundaries are benefit for semantic annota-
tion. Thus, in order to address the object boundary mismatch issue, researchers
propose to use the idea of explicitly exploring object boundaries from training
images [9,13] to keep coincidence of segmentation and boundaries. Due to some
co-occurring pixels exist in between the foreground and the background [11],
these methods still lack of the clue to explore the correlation between the fore-
ground and the background, thus they are unable to correctly separate the fore-
ground from the background. In order to alleviate the co-occurring pixels issue
between the foreground and the background, most existing WSSS methods use
the saliency map [15,19,23,26,34,36–38] to induce processing the background,
reducing the computation burden of the segmentation model and helping the
segmentation model distinguish coincident pixels of non-target objects from a
target object. However, these WSSS methods directly utilize the saliency maps
from off-the-shelf saliency detection models as the clue of co-occurring pixels,
which is easy to separate the foreground from the background, but such a way
is not beneficial to that the segmentation model generates self-saliency maps,
leading to a not end-to-end manner training process.

In this paper, our goal is to overcome these challenges of WSSS with image-
level labels by improving the performance of the localization map generated by
the classification network. For this purpose, we propose a novel joint learning
method for WSSS, namely saliency map and visual word encoder (SMVWE),
to simultaneously learn semantic word labels and saliency maps. As shown in
Fig. 1, we design a visual word encoder to help the classification network learn
the semantic word labels, leading to that the generated localization map could
cover more integral semantic extents of target objects. Due to the image-level



548 Y. Guo et al.

WSSS task is unable to directly use the semantic word labels, we use an unsu-
pervised way to generate their vector representations in each forward pass, i.e.,
each semantic word in a trainable codebook utilizes the manhattan distance to
encode the feature maps from the classification network. In such a way, it alle-
viates the sparse object region problem, but does not separate their boundaries
from the background effectively. Thus, we design a saliency map selection mech-
anism to address inaccurate object boundaries and co-occurring pixels among
objects, where the saliency maps from off-the-shelf saliency detection models are
used as pseudo-pixel feedback. Specifically, the classification network based on
image-level labels performs semantic segmentation for L target object classes and
one background class, thus generating L foreground localization maps and one
background localization map to represent the saliency maps. To obtain accurate
object boundaries and discard the co-occurring pixels, we compare our generated
saliency maps with off-the-shelf groundtruth saliency maps by a saliency loss,
producing more effective saliency maps to improve the quality of final pseudo
labels. Moreover, we also use the multi-label classification losses containing the
image-level label prediction and the semantic word label prediction, which com-
bine with the saliency loss to optimize our proposed model, thus generating
higher-quality pseudo-labels for training the semantic segmentation network.

In summary, our main contributions are three folds:

– We propose a novel joint learning framework for WSSS, namely saliency map
and visual word encoder (SMVWE), which learns from pseudo-pixel feed-
back by combining two weak supervisions, thereby effectively preventing the
localization map from producing wrong attention regions.

– We develop a visual word encoder to generate semantic word labels. By enforc-
ing the classification network to learn the generated semantic word labels,
more object extents could be discovered, thus alleviating the sparse object
region problem.

– We design a saliency map selection mechanism to separate the foreground
from the background, which could capture precise object boundaries and
discard co-occurring pixels of non-target objects, remarkably improving the
quality of pseudo-labels for training semantic segmentation networks.

2 Related Work

2.1 Weakly-Supervised Semantic Segmentation

Existing weakly-supervised semantic segmentation methods using image-level
labels mainly focus on two types of algorithms, including single- and multi-stage
methods. Single-stage methods [17,27,30,31] could achieve the semantic segmen-
tation of images through a high-speed and simple end-to-end process. For exam-
ple, RRM [43] proposes an end-to-end network to mine reliable and tiny regions
and use them as ground-truth labels, then combining a dense energy loss to
optimize the segmentation network. SSSS [3] adopts local consistency, semantic
fidelity, and completeness as guidelines, proposing a segmentation-based network
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and a self-supervised training scheme to solve the sparse object region problem
for WSSS. Though these methods are effective for semantic segmentation, they
barely achieve high-quality pseudo-labels to improve the segmentation accuracy.

Moreover, existing multi-stage methods generally perform the following three
steps: (i) generate an initial localization map to localize the target objects;
(ii) improve the initial localization map as the pseudo labels; and (iii) using
generated pseudo-labels to train the segmentation network. Recently, many
approaches [19,23,34] are devoted to alleviate the incomplete object region prob-
lem during generating pseudo-labels process. For example, adversarial erasing
methods [18,36] help the classification network learn non-salient regions fea-
tures and expand activation maps through erasing the most discriminative part
of CAMs. Instead of using the erasing scheme, SEAM [35] proposes the consis-
tency regularization on generated CAMs from various transformed images, and
designs a pixel correlation module to exploit the context appearance informa-
tion, leading to further improvement on CAMs consistency for semantic seg-
mentation. ScE [4] proposes to iteratively aggregate image features, helping the
network learn non-salient object parts, hence improving the quality of the initial
localization maps. To improve the network training, MCOF [34] mines common
object features from the initial localization and expands object regions with the
mined features, then using saliency maps to refine the object regions as super-
vision to train the segmentation network. Similarly, the DSRG approach [19]
proposes to train a semantic segmentation network starting from the discrim-
inative regions and progressively increase the pixel-level supervision using the
seeded region growing strategy. Moreover, MCIS [32] proposes to learn the cross-
image semantic relations to mine the comprehensive object pattern and uses the
co-attention to exploit context from other related images, thus improving local-
ization maps to benefit the semantic segmentation learning. In this work, we
also focus on semantic segmentation with image-level supervision and aim to
improve the quality of the initial pseudo labels.

2.2 Saliency Detection

Saliency detection (SD) methods generate the saliency map that separates the
foreground objects from the background in an image, which is benefit for many
computer vision tasks. Most existing WSSS [15,26,36–38] methods have greatly
benefited from SD that exploits the saliency map as the background cues of
pseudo-labels. For example, the MDC method [38] uses CAMs of a classifica-
tion network with different dilated convolutional rates to find object regions,
and uses saliency maps to find background regions for training a segmentation
model. STC [37] trains an initial segmentation network using the saliency maps
of simple images, and uses the image-level annotations as supervision informa-
tion to improve the initial segmentation network. Moreover, some methods [5,40]
integrate class-agnostic saliency priors into the attention mechanism and utilize
class-specific attention cues as an additional supervision to boost the segmenta-
tion performance. SSNet [42] jointly solves WSSS and SD using a single network,
and makes full use of segmentation cues from saliency annotations to improve
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Fig. 1. Overview of the proposed method. We develop a visual encoder module to
encode the feature map from the classification network into semantic words with a
learnable codebook, covering more object regions. Moreover, we design a saliency map
selection mechanism to separate the foreground from the background. The proposed
model is jointly trained based on the classification loss and the saliency loss.

the segmentation performance. Different from these saliency-guided methods,
our SMVWE method generates self-saliency maps using localization maps and
utilizes off-the-shelf saliency maps as their pseudo-pixel feedback, while most
existing methods directly use the off-the-shelf saliency map to guide the genera-
tion process of the pseudo labels, which is not benefit to tackle the co-occurring
pixel problem.

3 Proposed Method

3.1 Motivation

Our SMVWE mainly focus on these two comprehensive information containing
the target object location from the localization map and the boundary informa-
tion from the saliency map. Firstly, we explore more fine-grained labels in the
training procedure, namely semantic word labels, to supervise the classification
network, making the network discover more semantic regions, thus the generated
localization map could be more accurate for covering the object parts. Then, we
employ the saliency map as pseudo-pixel feedback to the localization maps from
both the foreground objects and the background. Next, we will explain how
SMVWE can tackle the sparse object coverage, inaccurate object boundary and
co-occurring pixel problems in image-level WSSS.

The image-level WSSS task is unable to directly use the semantic word labels,
so we use an unsupervised way to generate their vector representations in each
forward pass, i.e., each semantic word in a trainable codebook utilizes the man-
hattan distance to encode the feature maps from the classification network. In
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such a way, it alleviates the sparse object region problem, and improves the
accuracy of the generated localization map.

To tackle the inaccurate object boundary and co-occurring pixel problems,
we first use the L+ 1 localization maps encoded by the semantic word labels to
generate the foreground object map and the background map, then these gen-
erated saliency map are evaluated by a saliency loss using off-the-shelf saliency
maps, addressing the boundary mismatch and assigning the co-occurring pixels
of non-target objects to the background. Thus, our method can better separate
the foreground objects from the background.

Lastly, the objective function of SMVWE is formulated with three parts: two
multi-label classification losses from semantic word labels and image-level labels
respectively, and the saliency loss from the generation process of the saliency
map. By jointly training the three objectives, we can combine the localization
map encoded by semantic word labels with the saliency map to generate higher-
quality pseudo labels.

3.2 Semantic Word Learning

The localization map generated from the classification network only covers the
most discriminative extents of objects. The reason is that the goal of the clas-
sification network is essentially classification ability, not localization map gen-
eration. Thus, we propose a visual word encoder (VWE) module to enforce the
classification network to cover integral object regions via the semantic word
labels.

Due to only image-level labels in the WSSS task can be employed to annotate
pixels in images, no extra labels are available. For this reason, we employ the
codebook to encode the extracted convolutional feature map M ∈ RC×H×W to
specific semantic words, where C denotes the channels, W and H denote width
and height, respectively. Then, the manhattan distance is used to measure the
similarity between the pixel at position i in M and the j-th word in codebook
B ∈ RN×K , where N is the number of words and K is the feature dimension.
The similarity matrix D can be formulated as below:

Dij = manhattan(M i,Bj) = |M i − Bj | (1)

After obtained D, we use softmax to normalize row-wise, then computing
the j-th word in codebook B represents the semantic probability of the i-th pixel
in feature map M .

P ij = softmax(Di) =
exp(Dij)

∑N
n=1 exp(Din)

(2)

The semantic word Zi with the maximum probability will be denoted the
semantic word label for M i, where the index of the maximum value in the i-th
row of P ij is denoted as:

Zi = argmaxP ij (3)
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Then, we use a N -dimensional vector zword to denote the semantic word
label of the image I, where zword

j = 1 if the j-th word is in Z, and zword
j = 0,

otherwise. zword will make the classification network discover more semantic
extents of target objects during the training procedure.

If employing the histogram distributions of each semantic word generated
by counting their frequencies to represent the feature map, it will lead to non-
continuities and make the training process intractable [28]. Thus, we compute
the soft frequency of the j-th word by accumulating the probabilities in P :

eword
j =

1
H · W

H·W∑

i=1

P ij (4)

where eword
j denotes the appearance frequency of the j-th word in M . As shown

in Fig. 1, eword will model the mapping relations between semantic words and
image-level labels. Moreover, inspired by [28], we will set the codebook B as a
trainable parameter, which makes it could be learned automatically via the back
propagated gradients.

3.3 Saliency Map Feedback

In WSSS, utilizing the saliency map is a common practice to better provide the
information of object boundaries. Different from existing methods that make
full use of the off-the-shelf saliency map as a part of their feature maps, our
method generates the saliency maps using the foreground localization map and
the background localization map, where the off-the-shelf saliency map is only
used as the pseudo-pixel feedback by a saliency loss.

First, generating a foreground map F fg ∈ RH×W by aggregating the local-
ization maps of target objects, and performing the inversion of a background
map F bg ∈ RH×W generated by the background localization map to represent
the foreground map. Then, we use F fg and F bg to generate the saliency map
F s.

F s = (1 − μ)F fg + μ(1 − F bg) (5)

where μ ∈ [0, 1] is a hyper-parameter to adjust a weighted sum of the foreground
map and the inversion of the background map.

Moreover, our method also addresses the saliency bias during generating the
foreground map and the background map. Because the saliency detection model
obtains the saliency map via different datasets, the saliency bias is inevitable.
Thus, we introduce an overlapping ratio strategy [42] between the localization
map and the saliency map to address this issue, i.e., the i-th localization map
F i is overlapped with the groundtruth saliency map F

′
s more than δ%, which

is classified as the foreground, otherwise the background. The foreground map
and the background map are represented as follows:
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F fg =
L∑

i=1

zi · F i · 1[φ(F i,F
′
s) > δ] (6)

F bg =
L∑

i=1

zi · F i · 1[φ(F i,F
′
s) ≤ δ] (7)

where zi ∈ RL is the binary image-level label and φ(F i,F
′
s) is used to compute

the overlapping ratio between F i and F
′
s. We first use Ci and Cs to represented

the binarized maps corresponding to F i and F
′
s respectively. For example, at

the pixel Q in F , CN (Q) = 1 if FN (Q) > 0.5; CN (Q) = 0, otherwise. Then,
using φ(F i,F

′
s) = |Ci ∩Cs|/|Ci| to compute the overlapping ratio δ% between

F i and F
′
s.

3.4 Jointly Learning of Pseudo Label Generation

Our method generates the pseudo labels by two comprehensive information, i.e.,
semantic word encoding and saliency map, they respectively focus on different
issues in WSSS task. To tackle sparse object region problem, we train the classifi-
cation network on the localization map M through predicting the semantic word
label zword, where the global average pooling is used to compute the semantic
word score sword = conv(fgap,Wword), and Wword denotes the weight matrix.
We use the multi-label soft margin loss [29] to compute the classification loss for
semantic words as follows:

Lcls(s
word, zword) =

1

L

L∑

i=1

[zword
i log

exp(sword
i )

1 + exp(sword
i )

+ (1− zword
i )log

1

1 + exp(sword
i )

]

(8)
where zword is obtained by Eq. 3, L is the number of image classes.

To model the mapping relations between semantic words and image classes,
we use an 1 × 1 conv layer with weight matrix Ww2i to transfer the semantic
word frequency eword into the class probability space, where the predicted score
and the ground-truth image label are denoted by pw2i and zimg, respectively.
Thus, the loss function Lcls(pw2i,zimg) is formulated as the same form as Eq. 8.

Then, we utilize the saliency map to tackle inaccurate object boundaries and
co-occurring pixels, where the average pixel-level distance between the ground-
truth saliency map F

′
s and the generated saliency map F s is employed to cal-

culate the saliency loss.

Lsal =
1

H · W

∥
∥
∥F

′
s − F s

∥
∥
∥
2

(9)

where F
′
s is obtained from the off-the-shelf saliency detection model PFAN [45]

trained on DUTS dataset [33].
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The overall loss of our proposed method is finally represented as the sum of
the aforementioned loss terms.

Ltotal = Lcls(sword,zword) + Lcls(sw2i,zimg) + Lsal (10)

where Lsal mainly focuses on updating the parameters of L target object classes
and one background class, while Lcls only evaluates the label prediction for L
target object classes, excluding the background class.

4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Criteria. Following previous works [21,42], we
evaluate the proposed method on the PASCAL VOC 2012 semantic segmenta-
tion benchmark [12]. PASCAL VOC 2012 consists of 21 classes, i.e., 20 fore-
ground objects and the background. Following the common practice in semantic
segmentation, we use the augmented training set with 10,582 images [16], valida-
tion set with 1,449 images and testing set with 1,456 images. For all experiments,
the mean Intersection-over-Union (mIoU) is used as the evaluation criteria.

Implementation Details. The ResNet38 [39] is employed as the backbone net-
work to extract feature maps. The classification network is trained via the SGD
optimizer with a batch size of 4. Besides, we set the initial learning rate to 0.01
and decrease the learning rate every iteration with a polynomial decay strategy.
The number of semantic words is set to 256. The images are randomly rescaled
to 448×448. For the segmentation networks, we adopt DeepLab-LargeFOV (V1)
[6] and DeepLab-ASPP (V2) [7], where VGG16 and ResNet101 are their back-
bone networks, i.e., VGG16 based DeepLab-V1 and DeepLab-V2, and ResNet101
based DeepLab-V1 and DeepLab-V2.

4.2 Ablation Study and Analysis

To validate the effectiveness of our proposed method, we conduct several exper-
iments to analyze the effect of each component in the proposed method. For
all experiments in this section, we adopt the DeepLab-V1 with VGG-16 as the
segmentation network and measure the mIoU on the VOC 2012 validation set.

Dealing with Sparse Object Region
To validate whether the proposed VWE can cover more object regions in the
input images reasonably, we compute the mIoU of the semantic word labels on
the PASCAL VOC 2012 validation set. As shown in Table 1, it shows that the
codebook can distinguish different semantic words reasonably and the proposed
VWE can work effectively for encoding different objects of an image. Compared
with existing methods, our VWE module can obtain higher performance on
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Table 1. Comparison with representative methods on the sparse object region problem.
The best three results are in red, blue and green, respectively.

Method bkg aero bike bird boat bottle bus car cat chair cow table

AffinityNet [2] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2

MCOF [34] 87.0 78.4 29.4 68.0 44.0 67.3 80.3 74.1 82.2 21.1 70.7 28.2

SSNet [42] 90.0 77.4 37.5 80.7 61.6 67.9 81.8 69.0 83.7 13.6 79.4 23.3

SEAM [35] 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 75.5 48.1

CIAN [14] 88.2 79.5 32.6 75.7 56.8 72.1 85.3 72.9 81.7 27.6 73.3 39.8

Ours (VWE) 89.2 75.7 31.1 82.4 66.1 61.7 87.5 77.8 82.8 32.3 81.4 34.5

Ours (SMVWE) 90.8 77.9 31.6 89.4 56.9 57.8 86.4 77.9 82.9 32.3 76.9 52.5

Method dog horse mbk person plant sheep sofa train tv mIoU

AffinityNet [2] 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 58.4

MCOF [34] 73.2 71.5 67.2 53.0 47.7 74.5 32.4 71.0 45.8 60.3

SSNet [42] 78.0 75.3 71.4 68.1 35.2 78.2 32.5 75.5 48.0 63.3

SEAM [35] 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 64.5

CIAN [14] 76.4 77.0 74.9 66.8 46.6 81.0 29.1 60.4 53.3 64.3

Ours (VWE) 77.4 77.6 76.7 75.1 51.2 78.7 42.7 71.8 59.6 65.4

Ours (SMVWE) 80.7 80.3 81.8 74.3 44.5 80.7 54.7 68.8 60.5 67.5

Table 2. Comparison with representative methods on the inaccurate object boundary
problem using the SBD set of the VOC 2012 validation set.

Method Recall (%) Precision (%) F1-score (%)

CAM [46] 22.3 35.8 27.5
SEAM [35] 40.2 45.0 42.5
BES [9] 45.5 46.4 45.9
Our SMVWE 62.3 76.5 69.4

most objects for semantic segmentation, and brings an improvement of 0.9%
(65.4% vs 64.5%) compared to the state-of-the-art method [35]. Thus, under the
supervision of the generated semantic word labels, our proposed method can
cover more object extents, which effectively addresses the sparse object-region
problem and improves the performance of the localization map.

Dealing with Inaccurate Boundary and Co-occurring Pixel Inaccu-
rate Boundary Problem. To evaluate the boundary quality of pseudo-labels,
our method compares with representative methods [9,35,46] by using the SBD
set of the VOC 2012 validation set, where the SBD set containing boundary
annotations is benefit to test the boundary quality of pseudo labels through the
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(a) boat & water (b) train & railroad

Fig. 2. Comparison with representative methods on the co-occurring pixel problem.
The lower confusion ratio denotes the better, and the higher IoU denotes the better.

Laplacian edge detector [9]. As shown in Table 2, we use the evaluation metrics
of recall, precision, and F1-score to demonstrate that our method remarkably
outperforms other methods. Figure 3 shows our some visualization results, which
validate that our method works well on tackling the object boundary mismatch
problem (Table 3).

Fig. 3. Qualitative segmentation results on PASCAL VOC 2012 validation set. (a)
Original images, (b) groundtruth and (c) our SMVWE. Segmentation results are pre-
dicted by ResNet101 based DeepLab-V2 segmentation network.

Co-occurring Pixel Problem. To measure the ability of our method on
addressing the co-occurring pixels problem, we compare the performance of
our method with representative methods (i.e., CAM [46], SEAM [35], ICD [13],
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Table 3. Performance comparisons of our method with state-of-the-art WSSS methods
on PASCAL VOC 2012 dataset. All results are based on VGG16. S means the saliency
map is used for existing methods and ours.

Methods S val (%) test (%)
Segmentation network: DeepLab-V1 (VGG-16)
GAIN [25] ✓ 55.3 56.8
MCOF [34] ✓ 60.3 59.6
AffinityNet [2] ✗ 58.4 60.5
SeeNet [18] ✓ 61.1 60.8
OAA [20] ✓ 63.1 62.8
RRM [43] ✗ 60.7 61.0
ICD [13] ✓ 64.0 63.9
BES [9] ✗ 60.1 61.1
DRS [21] ✓ 63.5 64.5
NSRM [41] ✓ 65.5 65.3
Ours (SMVWE) ✓ 67.5 67.2
Segmentation network: DeepLab-V2 (VGG-16)
DSRG [19] ✓ 59.0 60.4
FickleNet [24] ✓ 61.2 61.9
Split and Merge [44] ✓ 63.7. 64.5
SGAN [40] ✓ 64.2 65.0
Ours (SMVWE) ✓ 68.2 68.1

SGAN [40]) by IoU and confusion ratio evaluation criteria, where the lower con-
fusion ratio denotes the better, and the higher IoU denotes the better. The IoU
measures how much the target classes are predicted correctly, and the confu-
sion ratio measures how much the co-occurring non-target class is incorrectly
predicted as the target class.

As shown in Fig. 2, we use two co-occurring pairs, i.e. boat with water,
train with railroad, to compare our method with existing methods. Our method
markedly outperforms other methods on the IoU evaluation criteria. Moreover,
compared to other methods, only SGAN [40] method has a same lower confu-
sion ratio with ours. For the following reasons, CAM [46] only captures the most
discriminative region of target objects; SEAM [35] and ICD [13] both ignore
the co-occurring pixels between target objects and non-target objects, while our
method proposes a semantic word labels to discover more object regions, and
designs a saliency map selection mechanism to obtain accurate object boundaries
and discard the co-occurring pixels of non-target objects. Thus, our method gen-
erates higher-quality pseudo labels to perform the semantic segmentation task.
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Table 4. Performance comparisons of our method with state-of-the-art WSSS methods
on PASCAL VOC 2012 dataset. All results are based on ResNet101. S means the
saliency map is used for existing methods and ours.

Methods S val (%) test (%)
Segmentation Network : DeepLab-V1 (ResNet-101)
MCOF [34] ✓ 60.3 61.2
SeeNet [18] ✓ 63.1 62.8
AffinityNet [2] ✗ 61.7 63.7
FickleNet [24] ✓ 64.9 65.3
OAA [20] ✓ 65.2 65.2
RRM [43] ✗ 66.3 65.5
ICD [13] ✓ 67.8 68.0
DRS[21] ✓ 66.5 67.5
Ours (SMVWE) ✓ 70.1 69.6
Segmentation Network : DeepLab-V2 (ResNet-101)
DSRG [19] ✓ 61.4 63.2
BES [9] ✗ 65.7 66.6
SGAN [40] ✓ 67.1 67.2
DRS [21] ✓ 70.4 70.7
Ours (SMVWE) ✓ 71.3 71.5

4.3 Comparison with State-of-the-Arts

We compare our SMVWE method with state-of-the-art WSSS methods using
only image-level labels. As shown in Table 4, our method remarkably outperforms
other methods on the same VGG16 backbone. Noting that our performance
improvement does not rely on a larger network structure and is superior to other
existing methods based on a more powerful backbone (i.e. ResNet101 in Table 5).
Because our method mainly relies on the cooperation of visual word encoder and
saliency map selection strategy, which generates better pseudo labels for the
semantic segmentation task. As shown in Table 5, our method achieves a new
state-of-the-art performance (71.3% on validation set and 71.5% on test set) with
the ResNet101 based DeepLab-V2 segmentation network. Figure 3 visualizes our
semantic segmentation results on the validation set. These results show that our
method can obtain more integral object regions and accurate object boundaries,
and discard co-occurring pixels between target objects and the background.

5 Conclusion

In this paper, we proposed a saliency map and visual word encoder (SMVWE)
method for image-level semantic segmentation. Particularly, we explored more
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fine-grained semantic word labels to supervise the classification network, mak-
ing the generated localization map could cover more integral object regions.
Moreover, we designed a saliency map selection mechanism to separate the fore-
ground from the background, where the saliency maps were used as pseudo-pixel
feedback. By joint learning of visual word encoder and saliency map feedback,
our SMVWE successfully tackles the sparse object regions, boundary mismatch
and co-occurring pixels problems, thus producing higher-quality pseudo labels
for WSSS task. Extensive experiments demonstrate the superiority of our pro-
posed method, and achieve the state-of-the-art performance using only image-
level labels.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (62072463, 71531012), and the National Social Science Foun-
dation of China (18ZDA309).
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Abstract. Recent research on the robustness of deep learning has shown
that Vision Transformers (ViTs) surpass the Convolutional Neural Net-
works (CNNs) under some perturbations, e.g., natural corruption, adver-
sarial attacks, etc. Some papers argue that the superior robustness of ViT
comes from the segmentation on its input images; others say that the
Multi-head Self-Attention (MSA) is the key to preserving the robustness
[30]. In this paper, we aim to introduce a principled and unified theo-
retical framework to investigate such argument on ViT’s robustness. We
first theoretically prove that, unlike Transformers in Natural Language
Processing, ViTs are Lipschitz continuous. Then we theoretically analyze
the adversarial robustness of ViTs from the perspective of Cauchy Prob-
lem, via which we can quantify how the robustness propagates through
layers. We demonstrate that the first and last layers are the critical fac-
tors to affect the robustness of ViTs. Furthermore, based on our theory,
we empirically show that unlike the claims from existing research, MSA
only contributes to the adversarial robustness of ViTs under weak adver-
sarial attacks, e.g., FGSM, and surprisingly, MSA actually comprises the
model’s adversarial robustness under stronger attacks, e.g., PGD attacks.
We release our code via https://github.com/TrustAI/ODE4RobustViT.

Keywords: Adversarial robustness · Cauchy problem · Vision
Transformer

1 Introduction

Since Transformers have been transplanted from Natural Language Processing
(NLP) to Computer Vision (CV), great potential has been revealed by Vision
Transformers for various CV tasks [19]. It is so successful that some papers even
argue that CNNs are just a special case of ViTs [9]. Recently, the robustness of
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ViTs has been studied, for example, some research showed that ViT has supe-
rior robustness than CNNs under natural corruptions [31]. Very recently, some
researchers have also begun to investigate the robustness of ViTs against adver-
sarial perturbations [26].

However, existing research on adversarial robustness for ViTs mainly focuses
on adversarial attacks. The main idea is to adopt the attacks on CNNs to ViTs,
e.g., SAGA [26] and IAM-UAP [18]. Meanwhile, some pioneering studies demon-
strate that ViTs are more robust than CNNs against adversarial patch attacks,
arguing that the dynamic receptive field of MSA is the key factor to its superior
robustness [30]. On the other hand, some others argue that the tokenization of
ViTs plays an essential role in adversarial robustness [1]. While some researchers
say the patch embedding method is a critical factor to contribute the adversar-
ial robustness of ViTs [28]. However, most existing works concerning the supe-
rior robustness of ViTs are purely based on empirical experiments in an ad-hoc
manner. A principled and unified theoretical framework that can quantify the
adversarial robustness of ViT is still lacking in the community.

In our paper, instead of analyzing the robustness of Vision Transformer
purely based on empirical evidence, a theoretical framework has been proposed
to examine whether MSA contributes to the robustness of ViTs. Inspired by
the fact that ViTs and ResNets share a similar structure of residual additions,
we show that, ViTs, under certain assumptions, can be regarded as a Forward
Euler approximation of the underlying Ordinary Differential Equations (ODEs)
defined as

dx

dt
= F(x, t).

With this approximation, each block in transformer can be modeled as the
nonlinear function F(x). Based on the assumption that function F(x) is Lip-
schitz continuous, we then can theoretically bridge the adversarial robustness
with the Cauchy Problem by first-order Taylor expansion of F(x). With the
proposed theoretical framework, this paper is able to quantify how robustness
is changing among each block in ViTs. We also observe that the first and last
layers are vital for the robustness of ViTs.

Furthermore, according to our theoretical and empirical studies, different to
the existing claim made by Naseer et al. [30] that MSA in ViTs strengthens the
robustness of ViTs against patch attacks. We show that MSA in ViTs is not
always improving the model’s adversarial robustness. Its strength to enhance
the robustness is minimal and even comprises the adversarial robustness against
strong Lp norm adversarial attacks. In summary, the key contributions of this
paper are listed below.

1. To our knowledge, this is the first work to formally bridge the gap between
the robustness problem of ViTs and the Cauchy problem, which provides a
principled and unified theoretical framework to quantify the robustness of
transformers.

2. We theoretically prove that ViTs are Lipschitz continuous on vision tasks,
which is an important requisite to building our theoretical framework.
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3. Based on our proposed framework, we observe that the first and last layers
in the encoder of ViTs are the most critical factors to affect the robustness of
the transformers.

4. Unlike existing claims, surprisingly, we observe that MSA can only improve
the robustness of ViTs under weak attacks, e.g., FGSM attack, and it even
comprises the robustness of ViTs under strong attacks, e.g., PGD attack.

2 Related Work

2.1 Vision Transformers and Its Variants

To the best of our knowledge, the first work using the transformer to deal with
computer vision tasks is done by Carion et al. [6], since then, it has quickly
become a research hotspot, though it has to be pre-trained on a larger dataset
to achieve comparable performance due to its high complexity and lack of ability
to encode local information. To reduce the model complexity, DeiT [36] leverages
the Knowledge Distillation [17] technique, incorporating information learned by
Resnets [15]; PvT [37] and BoTNet [34] adopt more efficient backbones; Swim
Transformer [24] and DeepViT [38] modifies the MSA. Other variants, e.g.,
TNT, T2T-ViT, CvT, LocalViT and CeiT manage to incorporate local infor-
mation to the ViTs [19].

2.2 Robustness of Vision Transformer

Many researchers focus on the robustness of ViTs against natural corruptions [16]
and empirically show that ViTs are more robust than CNNs [31]. The adversar-
ial robustness of ViTs has also been empirically investigated. Compared with
CNNs and MLP-Mixers under different attacks, it claims that for most of the
white-box attacks, some black-box attacks, and Universal Adversarial Pertur-
bations (UAPs) [29], ViTs show superior robustness [30]. However, ViTs are
more vulnerable to simple FGSM attacks [5]. The robustness of variants of ViTs
is also investigated and shown that the local window structure in Swim-ViT
harms the robustness and argues that positional embedding and the complete-
ness/compactness of heads are crucial for performance and robustness [27].

However, the reason for the superior robustness of ViTs is rarely investi-
gated. Most of the research concentrate on frequency analysis [31]. Benz et al.
argue that shift-invariance property [4] harms the robustness of CNNs. Naseer
et al. say the flexible receptive field is the key to learning more shape informa-
tion which strengthens the robustness of ViTs by studying the severe occlusions
[30]. And yet Mao et al. argue that ViTs are still overly reliant on the texture,
which could harm their robustness against out-of-distribution data [27]. Qin et
al. investigate the robustness from the perspective of robust features and argue
ViTs are insensitive to patch-level transformation, which is considered as non-
robust features [32].
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2.3 Deep Neural Network via Dynamic Point of View

The connection between differential equations and neural networks is first intro-
duced by S. Grossberg [14] to describe a continuous additive RNN model. After
ResNet had been proposed, new relations appeared that regard forward proroga-
tion as Euler discretization of the underlying ODEs [33]. And many variants of
ResNets can also be analyzed in the framework of numerical schemes for ODEs,
e.g., PolyNet, FracalNet, RevNet and LMResNet [25]. Instead of regarding neu-
ral networks as discrete methods, Neural ODE has been proposed [7], replacing
the ResNet with its Underlying ODEs, and the parameters are calculated by a
black-box ODE solver. However, E. Dupont et al. [11] argue that neural ODEs
hardly learn some representations. In addition to ODEs, PDEs and even SDEs
are also involved in analyzing the Neural Network [35].

3 Preliminaries

The original ViTs are generally composed of Patch Embedding, Transformer
Block and Classification Head. We follow the definition from [10]. Let x ∈
RH×W×C stands for the input image. Hence, Each image is divided equally into
a sequence of N = HW/P 2 patches, and each one is denoted as xp ∈ RN×(P 2·C).

z0 = [xclass,x
1
pE,x2

pE, ...,xN
p E] + Epos,

z
′
l = MSA(LN(zl−1)) + zl−1,

zl = MLP (LN(z
′
l)) + z

′
l ,

y = LN(z0
L),

where E ∈ R
P 2·C×D,Epos ∈ R

(N+1)×D and l = 1, 2, ..., L. LN denotes Layer
Normalization, MSA is Multihead Self-Attention and MLP represents Multilayer
Perceptron. MSA is the concatenation of Self-Attentions (SA) before linear trans-
formation by W (O) ∈ R

D×D defined by

MHA :=
(
SA1 SA2 ... SAH

)
W (O),

where H is the number of heads and SA is defined by

SA := PzW (V ) = softmax

(
zW (Q)W (K)T zT

)
W (V ),

where W (Q),W (K),W (V ) ∈ R
D×(D/H), and z ∈ R

N×D defines the inputs of
transformers.

4 Theoretically Analysis

4.1 Vision Transformers are Lipschitz

To model the adversarial robustness to Cauchy Problem, we first prove that
ViTs are Lipschitz functions. Unlike the conclusion drawn by Kim et al. [21]
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that Dot-product self-attention is not Lipschitz, it can be proved that Vision
Transformers are Lipchitz continuous since inputs are bounded between [0, 1].
We follow the same definition from [21] that a function f : X → Y is called
Lipschitz continuous if ∃K ≥ 0 such that ∀x ∈ X ,y ∈ Y we have

dY(f(x), f(x0)) ≤ KdX (x,x0), (1)

where (X , dX ), (Y, dY) are given metric spaces, and given p-norm distance, the
Lipschitz constant K is given by

Lipp(f) = sup
x �=x0

‖f(x) − f(x0)‖p

‖x − x0‖p
. (2)

Similar to the analysis by Kim et al. [20], since Linear transformation by W (V )

is Lipchitz and does not impact our analysis, we will drop it and focus on the
non-linear part of Pz.

Since Patch embeddings are conducted by convolutional operations and the
classification heads are fully connected layers, they are Lipchitz continuous [20].
Therefore as long as the transformer blocks are Lipschitz continuous, ViTs are
Lipschitz continuous because the composite Lipchitz functions, i.e., f ◦ g, are
also Lipschitz continuous [12]. To this end, we have the Theorem 1.

Theorem 1. (Transformer Blocks in ViTs are Lipschitz continuous) Given
vision transformer block with trained parameters w and convex bounded domain
Zl−1 ⊆ R

N×D, we show that the transformer block Fl : Zl−1 → R
N×D mapping

from zl−1 to zl is Lipchitz function for all l = 1, 2, ..., L.

Proof. For simplicity, we only prove the case that the number of heads H and
the dimension of patch embedding D are all equal to 1. The general case can be
found in Appendix.

Because the composition of the transformer block includes an MLP layer that
is Lipchitz continuous, as argued by Kim et al. [20], it is the non-linear part of
MSA that need to be proved Lipchitz continuous. We formulated the non-linear
part as mapping f : Z → R

N×1 shown in Eq. (3)

f(z) = softmax(azzT )z = Pz =

⎛

⎜
⎝

p1(u1) · · · pN (u1)
...

. . .
...

p1(uN ) · · · pN (uN )

⎞

⎟
⎠ z (3)

where a = W (Q)W (K)T ∈ R, z ∈ Z which is a bounded convex set and belongs
to R

N×1, P is defined by softmax operator. Each row in P defines a discrete
probability distribution. Therefore P can be regarded as the transition matrix
for a finite discrete Markov Chain with z1, ..., zn as observed value for random
valuables. Since f has continuous first deviates, Mean Value Inequality can be
used to find Lipchitz constant. Let z,z0 ∈ Z and ‖·‖p denote the p-norm distance
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for vectors and induced norm for matrices. Specifically, when p = 2, the induce
norm coincides with spectral norm, then we have

‖f(z) − f(z0)‖2 ≤ ‖Jf (ξ)‖2‖(z − z0)‖2, (4)

where ξ ∈ Z is on the line through x and x0, and Jf (·) denotes the Jacobian of
f . As long as the Jacobian Jf is bounded for Z, f is Lipschitz continuous. The
Jacobian Jf is shown in Eq. (5) (see detail in Appendix).

Jf (z) = a
{
diag(z)Pdiag(z) − Pdiag(z)diag(μ) + diag(σ2)

}
+ P, (5)

where μ = Pz define the mean vector for the Finite Markov Chain and the
variance are defined by

σ2 =

⎛

⎜
⎜
⎝

∑N
k=1 pk(u1)x2

k − ( ∑N
k=1 pk(u1)xk

)2

...
∑N

k=1 pk(uN )x2
k − ( ∑N

k=1 pk(uN )xk

)2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎝

σ2
1
...

σ2
N

⎞

⎟
⎠ , (6)

Since every component on the right-hand-side in (5) is bounded since z is
bounded. We conclude that Jf (z) is also bounded, therefore the Lipchitz con-
tinuous.

Remark 1. The use of the Mean Value Theorem requires the domain Z to be
convex, however as long as Z is bounded, we can always find a larger convex set
Z ′ ⊇ Z.

Remark 2. Different from the conclusion drawn by Kim et al. [20] that the trans-
former is not Lipschitz continuous, ViTs are Lipschitz continuous due to the
bounded input.

4.2 Model Adversarial Robustness as Cauchy Problem

Since there exists the Residual Structure in the Transformer Encoder, just like
ResNet, which can be formulated as Euler Method [25], the forward propagation
through Transformer Encoder can also be regarded as a Forward Euler Method
to approximate the underlying Ordinary Differential Equations (ODEs).

Let f : X → Y denote the ViTs, where X ⊆ R
n denotes the input space and

Y = {1, 2, ..., C} refers to the labels, and Fi, i = 1, ..., L denote the basic blocks.
Notice that for simplicity, let F1(x0;w0) + x0 refer to the patch embedding
and FL(xL−1;wL−1) + xL−1 be the classification head, the rest are transformer
blocks. Hence, the forward propagation can be described in Eq. (7).

⎧
⎪⎨

⎪⎩

xk = Fk(xk−1;wk−1) + xk−1, k = 1, ..., L
ylogit = softmax(LP (xL))
y = argmaxY ylogit,

(7)
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Fig. 1. Illustration of ρ�(f, x). For better illustration L1-norm is taken while calculating
the ρ(f, x).

where x0 ∈ X , LP (·) stands for Linear Projection, ylogit shows the likelihood
for each class and y ∈ Y denote the classification result. As argued by Liao,
et al. [23], the Transformer blocks in Eq. (7) can be regarded as Forward Euler
approximation of the underlying ODE shown below.

d

dt
x(t) = F(x, t), t ∈ [t0, T ] (8)

where F(·) corresponds to the basic blocks in ViTs and t ∈ [t0, T ] refers to the
continuous indexing of those blocks.

The backward-propagation of Eq. (8) can be regarded as an estimation prob-
lem for parameters w of given boundary conditions defined by X and Y, which
leads to Neural ODEs [7].

Before the main theorem that models the adversarial robustness as Cauchy
problem, we first define the adversarial robustness metrics. Given neural network
f , and the fixed input x ∈ X , the local Adversarial Robustness proposed by
Bastani et al. [3] is defined as

ρ(f,x)
def
= inf{ε > 0|∃x̂ : ‖x̂ − x‖ ≤ ε, f(x̂) �= f(x)},

where ‖·‖ defines the general Lp norm. Usually, p is taken as 1, 2 and ∞. The
adversarial robustness is defined as the minimum radius that the classifier can be
perturbed from their original corrected result. As illustrated in Fig. 1, considering
the fact that even in the final laryer Δx(T )1 < Δx(T )2, it is still possible that
softmax(LP (x(T ) + Δx(T )1)) has been perturbed but softmax(LP (x(T ) +
Δx(T )2)) is not, we use the minimal distortion to define the robustness as

ρ�(f,x)
def
= inf

‖x̂(T )−x(T )‖
ρ(f,x), (9)

where x̂(T ) − x(T ) = Δx(T ).

Lemma 1. (Existence and Uniqueness for the Solution of Underlying ODE)
Since the continuous mapping F defined in ODE (8) satisfies the Lipschitz con-
dition on z ∈ Z for t ∈ [t0, T ] as claimed in Theorem 1, where Z is a bounded
closed convex set. There exists and only exists one solution for the underlying
ODE defined in (8).
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Lemma 2. (Error Bound for Forward Euler approximation) Given Forward
Euler approximation shown in Eq. (7) and its underlying ODE in Eq. (8).
Let K > 0 denotes the Lipschitz constant for the underlying ODE, and
‖F̂(x, t) − F(x, t)‖ ≤ δ, hence the error of solution is given by

‖Δx‖ ≤ δ

K
(eK|t−t0| − 1)

Since F(x, t) is continuous, δ can be arbitrary small as long as step for Euler
approximation is small enough, namely, neural network is deep enough. The
proof of Lemma 1 and 2 can be found in [8].

Theorem 2. Let f and g be two neural networks defined in Eq. (7), which have
the underlying ODEs as shown in Eq. (8), and denote the basic blocks of g as
Gk, k = 1, ..., L

′
with its corresponding ODE defined as G to show the difference.

Given point x ∈ X and robustness metric ρ�(·) defined in (9), classifier f is
more robust than g, such that

ρ�(f,x) ≤ ρ�(g,x), (10)

if ∀t ∈ [t0, T ]
σmax(JF (t)) ≤ σmax(JG(t)) (11)

where Jf (t) and Jg(t) refers to the Jacobian of the basic blocks F and G w.r.t.
x and σmax(·) denotes the largest singular value.

Proof. Consider 2 solutions x(t), x̂(t) of ODE defined in (8) such that for ε > 0

‖x̂(t0) − x(t0)‖2 ≤ ε

and let Δx(t) = x̂(t) − x(t), t ∈ [t0, T ] hence

d

dt
Δx = F(x̂, t) − F(x, t) = JF (t)Δx + rF (Δx), (12)

where rF (Δx) is the residual of Taylor Expansion of F w.r.t. x, such that
‖rF (Δx)‖ = O(‖Δx‖2) [2]. Instead of Δx, ‖Δx‖2 is more of our interest, hence

d

dt
‖Δx‖2 ≤ ‖ d

dt
Δx‖2 ≤ ‖JF (t)‖2‖Δx‖2 + O(‖Δx‖22), (13)

since ‖Δx(t0)‖2 = 0 is trivial, we assume ‖Δx(t0)‖2 > 0. And because there
exist unique solution for the ODE system, we have ‖Δx(t)‖2 > 0, t ∈ [t0, T ]
therefore Eq. (13) becomes

1
‖Δx‖2

d

dt
‖Δx‖2 ≤ ‖JF (t)‖2 + O(‖Δx‖2). (14)
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After integral of the both sides from t0 to T we have
∫ T

t0

1
‖Δx‖2 d‖Δx‖2 ≤

∫ T

t0

‖JF (t)‖2 + Mεdt,

where M > 0 is a given large number. The integral for [t0, T ] is given by

‖Δx(T )‖2≤ εe
∫ T
t0

‖JF (t)‖2dt+(T−t0)Mε
. (15)

It is obvious that the perturbed output of neural network Δx(T ) is actu-
ally bounded by the right-hand-side of Eq. (15) which is determined by the
‖JF (t)‖2, t ∈ [t0, T ], namely the largest singular value of JF (t), denoted as
σmax(JF (t)). The rest of the proof is simple, since if ∀t ∈ [t0, T ] (11) holds and
(T − t0)Mε is negligible, we have

‖ΔxF (T )‖2≤ εe
∫ T
t0

‖JF (t)‖2dt ≤ εe
∫ T
t0

‖JG(t)‖2dt
,

therefore for any ‖ΔxF (t0)‖2 ≤ ρ�(g,x) the classification result will also not
change for f , hence the Eq. (10).

Remark 3. Theorem 2 is particularly useful for adversarial perturbation since
the approximation in Eq. (15) relies on the narrowness of ε. If it is too large, the
first-order approximation may fail.

Remark 4. Theorem 2 assumes that the approximation error induced in Lemma
2 is small enough to neglect. For very shallow models, e.g., ViT-S1, ViT-S2, the
relation is violated, as is shown in Table 2.

5 Empirical Study

In order to verify the proposed theorem and find out whether self-attention
indeed contributes to the adversarial robustness of ViTs, we replace the self-
attention with a 1-D convolutional layer, as shown in Fig. 2. And we name the
modified model CoViT, which stands for Convolutional Vision Transformer. We
use Average Pooling instead of the classification token since the classification
token can only learn the nearest few features rather than the whole feature
maps for CoViT.

Both ViTs and CoViTs are trained from sketches without any pertaining to
ensure that they are comparable. Sharpness-Aware Minimization (SAM) [13]
optimizer is used throughout the experiments to ensure adequate clear accurate.

5.1 Configuration and Training Result

The configurations for Both ViTs and CoViTs have an input resolution of 224
and embedding sizes of 128 and 512. The use of a smaller embedding size of 128 is
to calculate the maximum singular value exactly. An upper bound is calculated
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Fig. 2. Illustration of ViT and CoViTs. After Patch Embedding, the Transformer
Encoder is composed of L× Transformer Blocks, of which in each K,Q and V stands
for Key, Query and Value are computed as linear projection from former tokens zl−1,
hence Self-Attention is calculated as softmax(QKT

√
D

)V . In order to better understand
whether self-attention indeed contributes to adversarial robustness, it is replaced by
1-D convolution layers where different kernel are used and the intermediates, denoted
by z∗

l , are generated before concatenation and linearly projecting to z
′
l . The kernel size

can be different for each convolutional projection.

instead for models with a larger embedding size since the exact calculation is
intractable. We change the number of heads for ViTs, the kernels for CoViTs,
the depth, and the patch size for the experiment. All the models are divided
into four groups: S, M, L, T, standing for Small, Medium, Large, and Tiny of
parameter size. The tiny model uses an embedding size of 128. The detailed
configuration is shown in Appendix.

All the models are trained on CIFAR10, and the base optimizer for SAM is
SGD with the One-cycle learning scheduler of maximum learning rate equals to
0.1. In order to have a better performance, augmentations, including Horizontal
Flipping, Random Corp and Color Jitter, are involved during training. We resize
the image size to the resolution of 224×224. The model with an embedding size
of 512 is trained by 150 epochs, and the tiny model with an embedding size
of 128 is trained by 300 to achieve adequate performance. The performance of
models within the same group is similar, and the shallow networks, e.g., ViT-S1,
ViT-S2, CoViT-S1, CoViT-S2, are harder to train and may need extra training
to be converged. This may be due to the optimizer used, i.e., SAM, since SAM
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will try to find shallow-wide optima instead of a deep-narrow one, which requires
a stronger model capacity.

The experiments are conducted on Nvidia RTX3090 with python 3.9.7, and
realized by PyTorch 1.9.1. Torchattacks [20] is used for adversarial attacks.

5.2 Study for Small Scale Models

In order to find out whether MSA contributes to the adversarial robustness
of ViTs and verify Theorem 2, tiny models with an embedding size of 128 are
employed and attacked by L2-norm PGD-20 and CW. The threshed of successful
attacks for CW is set to 260. The corresponding average and standard deviation
of the exact maximum singular value for the Jacobian is calculated over layers
and images to indicate the overall magnitude of σmax(t) over the interval [t0, T ].
In other words, we calculate the mean value of

∫ T

t0
‖JF (t)‖2dt for 500 images to

indicate the global robustness of the classifier. The PGD-20(L2) and CW share
the same setting with large-scale experiments in Table 2, except that the total
iteration for PGD is 20 instead of 7.

Verification of Theorem. The result, as shown in Table 1, generally matches
our theoretic analysis since the most robust model has the lowest average maxi-
mum singular value. It is worth mentioning that the smaller value of σ̄max cannot
guarantee stronger robustness for ViTs in Table 1, since the standard deviations
of σmax are much larger, e.g., 11.66, than that of CoViTs.

Contribution of MSA. Another observation is that CoViTs are generally
more robust than ViTs. In other words, without enough embedding capacity,
Self-Attention could even hurt both the robustness and generalization power. In
addition, increasing the models’ depth will enhance both generalization power
and robustness.

Distribution of Maximum Singular Value in Each Layer. In order to
know which layer contributes most to the non-robustness, the distribution of
σmax is calculated. The layer that has the highest value of σmax may dominate
the robustness of the network. As is shown in Fig. 3, maximum singular values
for the CoViTs are much concentrated around the means, reflecting more stable
results for classification. And the maximum singular values for the first and last
layer of all tiny models are significantly higher than that for in-between layers,
indicating that the first and last layers in the transformer encoder are crucial
for adversarial robustness.

5.3 Contribution of MSA to Robustness for Large Scale Models

We attack both ViTs and CoViTs with FGSM, PGD, and CW for large-scale
models and compare the robust accuracy. And since it is intractable to compute
exact maximum singular value for the matrix of size (128 · 512)× (128 · 512), an
upper bound of maximum singular value is calculated as
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Table 1. Attack result and the average maximum singular value for tiny model. All
the models have embedding size of 128 with different depth and head or kernels. The
cleaning accuracy and the robust accuracy for PGD-20 and CW attack are shown in the
Table. The mean of exact maximum singular value σmax for over layers and 500 input
images are calculated with standard deviation shown in square. The highest accuracy
and lowest maximum singular value are marked in bold.

Net-name Depth #Head/ Kernel Clear Acc. PGD-20(L2) CW(L2) σ̄max

ViT-T1 4 1 0.819 0.397 0.0305 10.45(4.125)

ViT-T2 4 4 0.820 0.407 0.039 18.18(11.66)

CoViT-T1 4 K3 0.849 0.492 0.083 9.25(0.822)

CoViT-T2 4 4 × K3 0.852 0.492 0.036 9.186(1.088)

ViT-T3 8 1 0.836 0.442 0.040 7.17(1.52)

ViT-T4 8 4 0.834 0.463 0.048 10.03(2.73)

CoViT-T3 8 K3 0.860 0.514 0.076 6.413(0.562)

CoViT-T4 8 4 × K3 0.860 0.515 0.065 6.662(0.386)

Fig. 3. Violin plot for maximum singular value for each layer of the ViTs/CoViTs. The
y-axis shows the maximum singular value.

‖J‖2 ≤
(

‖J‖1‖J‖∞

) 1
2

, (16)

which is used as an approximation to the maximum singular value of the Jaco-
bian. ‖J‖1 and ‖J‖∞ denotes L1 and L∞ induced norm for the Jacobian. The
mean value for 50 images is taken.



574 Z. Wang and W. Ruan

Table 2. Summary of attacking results and corresponding estimated largest singular
value. The attacks are employed for both ViTs and CoViTs with FGSM, PGD-7 and
CW, and the robust accuracy are shown for each attack. The models with patch size
32× 32 are marked with ∗. ‖J‖1 and ‖J‖∞ are the L1 and L∞ norm respectively. The
highest accuracy and lowest estimated maximum singular value are marked in bold.

Clean Acc. FGSM PGD-7(L∞) PGD-7(L2) CW(L2) (‖J‖1‖J‖∞)
1
2

ViT-S1 0.676 0.213 0.135 0.267 0.059 812.69

ViT-S2 0.739 0.273 0.162 0.348 0.067 1003.20

CoViT-S1 0.734 0.254 0.173 0.341 0.144 242.78

CoViT-S2 0.737 0.244 0.163 0.328 0.143 206.78

ViT-S3 0.847 0.369 0.221 0.444 0.053 296.48

ViT-S4 0.863 0.392 0.240 0.448 0.065 462.12

CoViT-S3 0.882 0.320 0.179 0.413 0.104 146.48

CoViT-S4 0.876 0.306 0.170 0.401 0.088 150.02

CoViT-S5 0.868 0.341 0.192 0.424 0.082 163.50

ViT-M1 0.877 0.415 0.267 0.467 0.049 236.21

ViT-M2 0.861 0.415 0.260 0.461 0.053 294.06

*ViT-M3 0.853 0.478 0.356 0.519 0.103 139.23

CoViT-M1 0.881 0.336 0.185 0.422 0.051 93.21

CoViT-M2 0.882 0.337 0.197 0.417 0.086 109.79

CoViT-M3 0.870 0.337 0.194 0.424 0.072 131.94

CoViT-M4 0.875 0.357 0.208 0.427 0.093 99.57

*CoViT-M5 0.861 0.416 0.303 0.480 0.152 78.70

*ViT-L 0.848 0.461 0.347 0.499 0.094 111.38

*CoViT-L1 0.867 0.443 0.333 0.505 0.140 59.54

*CoViT-L2 0.853 0.466 0.357 0.528 0.096 37.26

The Robust Accuracy for both ViTs and CoViTs attacked by FGSM, PGD-7
and CW is shown in Table 2. For better comparison, we set ε = 2/225 for both
FGSM and PDG attack with L∞ norm. The step size for L∞ PGD attack is set
to α = 2/255 and it is iterated only for 7 times to represent the weak attack.
The L2 norm PGD-7 is parameterized by ε = 2, α = 0.2. The parameters set
for stronger CW attack is that c = 1, adversarial confidence level kappa = 0,
learning rate for Adam [22] optimizer in CW is set to 0.01 and the total iteration
number is set to 100.

As is shown in Table 2, for weak attacks, i.e., FGSM and PGD-7, ViTs are
generally exhibiting higher robust accuracy within the same group of similar
parameter sizes with only a few exceptions. Also, both for ViTs and CoViTs, the
robustness is strengthened as the model becomes deeper with more parameters.

For a stronger CW attack, the result is almost reversed, CoViT model shows
significantly better robustness and agrees with the approximation of the maxi-
mum singular value for the Jacobian. The ability of Self-Attention to avoid per-
turbed pixels is compromised as the attacking becomes stronger. And it seems
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that the translation invariance of CNNs has more defensive power against strong
attacks. In addition, a larger patch size always induces better adversarial robust-
ness for both ViTs and CoViTs.

6 Conclusion

This paper first proves that ViTs are Lipschitz continuous for vision tasks, then
we formally bridge up the local robustness of transformers with the Cauchy
problem. We theoretically proved that the maximum singular value determines
local robustness for the Jacobian of each block. Both small-scale and large-scale
experiments have been conducted to verify our theories. With the proposed
framework, we open the black box of ViTs and study how robustness changes
among layers. We found that the first and last layers impede the robustness of
ViTs. In addition, unlike existing research that argues MSA could boost robust-
ness, we found that the defensive power of MSA in ViT only works for the large
model under weak adversarial attacks. MSA even compromises the adversarial
robustness under strong attacks.

7 Discussion and Limitation

The major limitations in this paper are embodied by the several approximations
involved. The first one is the approximation of the underlying ODEs to the
forward propagation of neural networks with a residual addition structure. As is
shown in Lemma 2, the approximation is accurate only when the neural networks
are deep enough, and it is hard to know what depth is enough, given the required
error bound. One possible way to make it accurate is to consider the Difference
Equation, which is a discrete parallel theory to ODEs. The second one is the
approximation of the second-order term in Eq. (14). For small-size inputs, we
can say that the L2-norm of perturbations of adversarial examples is smaller
enough so that the second term is negligible. However, the larger inputs may
inflate the L2-norm of perturbations since simply up sampling could result in a
larger L2-norm. Therefore, including the second term or choosing a better norm
should be considered. The third approximation is shown in Eq. (16). Since the
size of the Jacobian depends on the size of the input image, making it impossible
to directly calculate the singular value of the Jacobian for larger images, hence,
we use an upper bound instead, which inevitably compromises the validation of
the experiment. Moreover, since the adversarial attack can only get the upper
bound of the minimal perturbations, it is also an approximation of the local
robustness, as shown in Table 2.

In the experimental part, we only take into account for the small to moderate
size models because it is necessary to rule out the influence of pre-training, and
we have to admit that the calculation for the singular value of Jacobian w.r.t.
inputs of too large size is hardly implemented.
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Abstract. The performance of machine learning models depends heav-
ily on the feature space and feature engineering. Although neural net-
works have made significant progress in learning latent feature spaces
from data, compositional feature engineering through nested feature
transformations can reduce model complexity and can be particularly
desirable for interpretability. To find suitable transformations automati-
cally, state-of-the-art methods model the feature transformation space by
graph structures and use heuristics such as ε-greedy to search for them.
Such search strategies tend to become less efficient over time because they
do not consider the sequential information of the candidate sequences
and cannot dynamically adjust the heuristic strategy. To address these
shortcomings, we propose a reinforcement learning-based automatic fea-
ture engineering method, which we call Monte Carlo tree search Auto-
matic Feature Engineering (mCAFE). We employ a surrogate model that
can capture the sequential information contained in the transformation
sequence and thus can dynamically adjust the exploration strategy. It
balances exploration and exploitation by Thompson sampling and uses
a Long Short Term Memory (LSTM) based surrogate model to estimate
sequences of promising transformations. In our experiments, mCAFE
outperformed state-of-the-art automatic feature engineering methods on
most common benchmark datasets.

Keywords: Data mining · Feature engineering · Monte Carlo tree
search · Reinforce learning

1 Introduction

In many applications, the success of machine learning is often attributed to
the experience of experts who use not only the best-fitting algorithms but also
extensive domain knowledge. This domain knowledge is often reflected in the pre-
processing of raw data: it is transformed step-by-step so that it can be optimally
processed by an automated machine learning pipeline. Most of this heuristic
search performed by an expert is commonly referred to as feature engineer-
ing. Due to limited human resources but ever-growing computing capabilities,
automating this search process is becoming increasingly attractive.
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Feature engineering can be understood as a combinatorial optimization that
attempts to maximize the utility of a subsequent optimization step, i.e., fitting
the model. By employing explicit feature engineering, as opposed to deep learning
(e.g., Long Short Term Memory (LSTM) [10] in [1]), we obtain a tighter control
over the model space.

Furthermore, good feature engineering can increase the robustness (general-
izability to unknown data) and interpretability (predictability of decisions based
on input features) of the overall machine learning architecture.

However, there are several challenges in automatically searching for useful
features made up of sequences of atomic mathematical transformations such as
addition (add), logarithm (log), or a sine function (sin). First, the search space
grows large very quickly, as the number of possible transformation sequences
grows exponentially with their length and the atomic transformations allowed.
Second, evaluating a potentially promising transformation sequence can be time-
consuming, as it requires training and evaluation of a machine learning model.
Both of these features make the search challenging and require methods that
search the space efficiently.

To address these challenges, Cognito [6] models the exploration of the trans-
formation space with a transformation tree and explores the tree with some
handcrafted heuristic traversal strategies such as depth-first, global traversal,
or balanced traversal. Furthermore, the recently proposed reinforcement-based
approach [7] applies a Q-learning algorithm and approximates the Q value with
linear approximation to automate feature engineering.

While these methods achieve good results, our hypothesis is that they can
be significantly improved by addressing two aspects, namely:

– Choice of search hyperparameters and dynamic adaptation of the
heuristic strategy: A serious problem with an approach that relies entirely
on guidance is the tendency to fall into local optima. Strategies like ε-greedy
and Upper Confidence Bound (UCB) [17] can mitigate this problem, however,
both need careful tuning of the initial hyperparameters that also control the
dynamic adaptation of their search strategy.

– Sequential information of the composite transformations: New fea-
tures can be transformations of existing features. Such compositions are sen-
sitive to the order in which the atomic transformations are applied. State
of the art feature engineering methods approximate the performance of a
given transformation sequence with a linear model [7] or a deep convolutional
neural network [8], which do not exploit the sequential information (order)
contained in the composite transformation.

To address these shortcomings, we present a novel algorithm called Monte
Carlo tree search for Automatic Feature Engineering (mCAFE). We choose
Thompson sampling as an automatically adjusting selection policy, in combina-
tion with an LSTM network to capture the sequential information in the feature
transformation sequences, while the main structure follows a Monte Carlo Tree
Search (MCTS) [9].
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Our contributions can be summarized as 1) we leverage Thompson sampling
to guide the exploration, thus avoiding the parameters initialization and strategy
dynamic adjustment problem. 2) we utilize sequential information of composed
transformations by training an LSTM-based surrogate model for predicting the
expected reward of a transformation sequence to a given dataset. 3) we evaluated
the algorithm on common benchmark datasets (see [7]) and achieved improve-
ments on most of them.

2 Related Work

In recent years, a large number of research results have emerged for domain-
specific feature engineering. The work of [2] investigates how to share infor-
mation through feature engineering in multi-task learning tasks, and [3] tries to
find suitable features to improve the class separation. However, less new research
has been done on feature engineering applicable to all data types. FCTree, pro-
posed in [12], uses the original and constructed features as the splitting point
to partition the data through a decision tree. It constructs local features where
the local error is high and the features constructed so far are not well pre-
dicted. FEADIS [13] uses a random combination of mathematical functions,
including ceiling, modulus, sin, and feature selection methods to construct new
features. Of these, features are then selected greedily and added it to the orig-
inal features. The Data Science Machine (DSM) [4] applies transformations to
all features at once. Then, feature selection and model optimization are per-
formed on the generated dataset. A similar procedure was also applied in [5].
In contrast, ExploreKit [14] increases the constructed features iteratively. To
overcome the exponential growth of the feature space, ExploreKit uses a novel
machine learning-based feature selection approach to predict the usefulness of
new candidate features. Similarly, Cognito [6] introduced the notion of a tree-like
exploration of the transformation space. Through a few handcrafted heuristics
traversal strategies, such as depth-first and global-first strategy, Cognito can
efficiently explore the set of available transformations. However, several factors,
such as episode budget constraints, are beyond the consideration of the strategy.
As an improvement, a reinforcement learning-based feature engineering method
was proposed in [7] to explore the available feature engineering choices under
a given budget. Finally, LFE [15] considers each feature individually and pre-
dicts the best transformation of each feature through the learning-based method.
However, none of these methods takes the order of the transformations of the
features into account. More recently, a graph-based method was proposed in
[8] that guides the exploration of the transformation space with a deep neural
network.

3 Methodology

We model the feature engineering problem as a classic episode-based reinforce-
ment learning problem consisting of an agent interacting with the environment.
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The search starts from the initial state representing the original dataset D0 ∈ D,
where D denotes the state space. From D0, a transformation t ∈ T (action) can
be chosen to transform the dataset (all the features contained in the dataset)
according to t. The new state D′ is then obtained by the concatenation of the
data of the old state D with t(D), i.e., D′ = [D, t(D)]. Through this, the new
state contains all information (data) from the previous states, which can be seen
as a Markov property. Finally, for each state D, a machine learning model can be
trained on D to obtain its n fold cross-validation performance. However, since
we seek to obtain the best sequence of length L, we further define a feature
engineering pipeline, as an ordered sequence (t1, · · · , ti, · · · , tL) consisting of L
transformations. The i-th entry of the sequence denotes the decision in the i-
th step, i.e., the transformation to apply to the data in order to generate new
features. Overall, the environment can be summarized with a 3-tuple (D, T , r),
denoting the state space D, the transformation (action) space T and the rewards
r ∈ {0, 1}. The reward thereby expresses whether a transformation pipeline of
length L improved over the best performing model found so far.

Monte-Carlo Tree Search (MCTS) defines a class sampling-based tree search
algorithms used to find optimal decisions in vast search domains and has been
successfully applied to related problems like feature subset selection [25]. To deal
with huge search spaces, MCTS models the search space as a tree structure and
explores the tree iteratively. It gradually favors the most promising regions in
the search tree given an arbitrary evaluation function.

Evidently, our search space of feature transformations can span such a tree,
which allows the application of MCTS to find a feature set that contains features
constructed by an optimal transformation pipeline on the original dataset. We
discuss the construction of the tree in the following, alongside the selection policy
(Thompson sampling) and a surrogate model-based (LSTM) expansion policy.
Finally, we will outline the overall mCAFE algorithm. In contrast to problems
like feature subset selection, the ordering of the nodes inside the tree is of critical
importance in our case.

3.1 The Transformation Tree

We illustrate the reinforcement task with a transformation tree of maximum
depth L, in which each node represents a state (dataset), each edge represents
an action (transformation) and each path from the root to a leaf node represents
a feature engineering pipeline. Additionally, each edge in the tree is associated
with a distribution, which shows the mean success (reward = 1) probability of
taking the action at its parent state. The nodes in the tree are divided into two
categories: (1) root node D0 is the initial state for each pipeline and represents
the original dataset; (2) derived nodes Di, where i > 0, has only one parent node
Dj , i > j ≥ 0 and the connecting edge responds to the action t ∈ T applied
to the parent node, i.e., Di = [Dj , t(Dj)]. In this way, we translate the feature
engineering problem into a problem of exploring the transformation tree to find
the node that maximizes the expected reward.
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Fig. 1. Representation of feature transformation with a tree structure. Here, each node
corresponds to a state D and each edge corresponds to a transformation (action). The
distributions on the edges display the distribution over the mean success (reward = 1)
probability when taking the action in the parent state.

Figure 1 shows a full transformation tree for a pipeline of L = 2 and two
available actions T = {log, add}. Each node in the tree is a candidate dataset
for the feature engineering problem. For example, the derived nodes D4 and D5,
represent

D4 = {D0, add(D0), log(D0), log(add(D0))} ,

D5 = {D0, log(D0), add(D0), add(log(D0))} .

Note that, although the transformations in D4 and D5 are the same, the resulting
dataset is not identical due to the order in which the transformations are applied.

We can find the optimal node by traversing this tree. However, the complexity
of this task grows exponentially as L and the number of available transforms |T |
becomes larger. Since traversing all possible nodes of the tree is prohibitive,
mCAFE focuses on optimizing the selection policy πs and expansion policy πe

to reduce the number of evaluations required to find a good transformation
sequence.

3.2 The Selection Policy

The selection policy πs determines the balance between exploration and exploita-
tion. It guides the selection for known parts of the MCTS. The UCB and ε-greedy
are the two most commonly used selection policies, for which also strong theoret-
ical guarantees on the regret1 can be proven. While they have proven successful
in various reinforcement learning settings, they are not ideal for the applica-
tion of feature engineering. This is mainly due to their requirement to explicitly
define the exploration and exploitation trade-off through ε in ε-greedy and λ
in the UCB. Additionally, ε greedy does not adapt the trade-off dynamically

1 The amount we lose for not selecting optimal action in each state.
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but always pursues ε % exploration. To address these problems, we make use of
the Thompson sampling as the selection policy. In the following, we introduce
Thompson sampling and adapt it to the feature engineering case.

Consider the state space D, the action space T and rewards r ∈ {0, 1}.
Thompson sampling selects an action based on the probability of it being the
optimal action. Representing the set of N observations O = {(r, t,D)}N , where
D ∈ D, t ∈ T , we model the probability of different rewards of each action with
a parametric likelihood distribution p(r|t,D, θ) depending on the parameters θ.
The prior distribution of these parameters is denoted by p(θ). Consequently, the
posterior distribution given a set of observations O can be calculated using Bayes
rule, i.e., p(θ|O) ∝ p(O|θ)p(θ). Thompson sampling implements the selection
policy πs by sampling a parameter θ from the posterior distribution p(θ|O), and
taking the action that maximizes the expected reward. Hence,

πs(D) = argmax
t∈T

E [r|t,D, θ] where θ ∼ p (θ|O) . (1)

Since, in the case of feature engineering, each state D ∈ D satisfies the
Markov property, we can simplify the problem of which action to take on state
D, to whether taking the action t ∈ T leads to a performance improvement.
This can be modeled as a classic Bernoulli bandit problem, where the variable
θ = (θ1, θ2, · · · ) denotes the expected values of a Bernoulli random variable
expressing the probability of taking the selected action in given a state (and
obtaining a reward of one). The distribution of the parameter θt can be modeled
through a beta distribution

p(θt|α, β) =
Γ (α + β)
Γ (α)Γ (β)

θα−1
t (1 − θt)β−1,

where Γ is the Gamma function. Γ (α+β)
Γ (α)Γ (β) serves as a normalisation constant that

ensures the integration of the density function over (0,1) is 1. The parameters α
and β control the shape of the distribution and the mean of the distribution is

α
α+β . It denotes the expectation that taking the corresponding action will lead
to performance improvement. The higher α, the larger the mean and therefore
the probability of the action to be selected. On the other hand, the larger β, the
lower the probability.

The beta distribution is conjugate to the Bernoulli distribution (i.e., the
posterior distribution p(θ|O) inherits the functional form the prior distribution
p(θ)). Given an observed sample O = (r, t,D), the posterior distribution of the
parameters θ is given by

θt′ ∼ Beta (α + 1r=1,t′=t, β + 1r=0,t′=t) , t′ ∈ T . (2)

The parameter α is incremented when the action led to an improvement
in performance. Otherwise, the parameter β is incremented. In this view, α
represents the number of successes in the Bernoulli trial and β represents the
number of failures. Furthermore, the support of the beta distribution is (0, 1),
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Fig. 2. The Surrogate network consist of 2 LSTM layers of size 32 and a two fully
connected layers of size 32 with a ReLU activation function.

independent of the parameterization. This ensures that there is always a nonzero
probability for each action to be selected. Consequently, there is always a nonzero
probability to take each path in the tree.

Figure 1 shows an example of the tree representation. Each edge in the tree
maintains a beta distribution Beta(α, β). By comparing the two transformations
on D0 with the same β, we can see that the higher the value of α the more
the distribution is shifted towards sampling larger values (higher probabilities
of success). In each step, an edge is selected based on the sampling result. This
ensures the priority of high-quality edges while also allowing inferior edges to
be selected occasionally. By using Thompson sampling as the selection policy,
we avoid choosing hyperparameters to balance the exploration and exploitation
trade-off. In contrast, the trade-off is adjusted dynamically through the posterior
distribution of the parameter θ, which is updated along with the observation.
Even though α and β represent hyperparameters, their choice is arguably more
intuitive as α = β = 1 describes a uniform distribution.

The requirement to construct and sample from a beta distribution for each
action may rise efficiency concerns, as this process is slow compared to an ε-
greedy selection. However, this is not an issue for feature engineering as in each
episode, the selection phase takes little time compared to the other phases of the
algorithm. This will be further explored in Sect. 4 (see Table 1).

3.3 The Expansion Policy

The selection policy πs guides the selection of actions in parts of the search space
that have been explored. Outside of the explored search space and beyond the
leaves of the MCTS, the expansion policy πe guides the selection of the actions
t. It expands the child nodes to the tree and selects the one with the maximum
expectation reward (Q value) as the next exploration candidate

πe(D) = argmax
t∈T

E [r|t,D, θ]

= argmax
t∈T

Q̂(D, t).
(3)
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Fig. 3. The mCAFE framework: each iteration (episode) includes four phases: selection,
expansion, roll-out, back-propagation. B is the number of iterations.

Since the state space D is huge and it is infeasible to calculate the expectation
directly, mCAFE models it with a surrogate network Q̂(D, t) as shown in Fig. 2.
This network takes the selected action t and the action sequence, which was
used to generate the leaf node state D as input, and outputs the expectation
reward of taking this action at the state. Considering the characteristic input
and order information in the sequence, the surrogate network consists of three
parts, namely a binary encoder which takes an action as input and outputs a
binary code, one LSTM layer with a hidden size of 32 to deal with different
lengths of the input sequence and capture their sequential information, and a
fully connected layer with an input size of 32 and ReLU activation function to
map the LSTM output to the expectation.

Since each edge in the tree maintains a beta distribution, we collect training
data from all the existing edges in the tree and update the surrogate model
after each iteration (episode). With the help of the surrogate model Q̂(D, t),
the expansion policy can be defined as selecting the action t that maximizes the
expectation reward predicted by the surrogate model.

3.4 The mCAFE Algorithm

The mCAFE applies MCTS to explore the target space, while the selection
policy gradually biases the actions taken towards the more promising regions
of search space in order to find the optimal sequence of actions. It follows the
general MCTS scheme, where the main four phases have been modified as follows
(Fig. 3):

Selection. Starting from the root node, mCAFE selects the child node according
to the selection policy πs iteratively until it reaches a leaf node.

Expansion. In a leaf node of the transformation tree, all the available child
nodes are expanded to the tree. One of these nodes is selected to explore accord-
ing to the expansion policy πe.

Roll-out. Instead of the performance of the current node, we are interested in
whether the expectation performance of its descendant nodes has been better
than the best performance so far. To achieve this, mCAFE combines the n-folds
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Fig. 4. Example of an episode of mCAFE. The beta distributions of the edges in the
selected path are displayed next to the corresponding edge. Blue denotes the distribu-
tion before back-propagation and orange after back-propagation. (Color figure online)

cross-validation and the general Roll-out process by the following: Assuming that
the current node is of depth l in the MCTS tree, mCAFE completes the feature
engineering pipeline by sampling L − l transformations from T randomly with
replacement, where L is the predefined length of the pipeline (transformation
sequence). This process is repeated n times to get n different pipelines (transfor-
mation sequences), where n is the number of iterations in n fold cross validation.
A reward of r = 1 is returned if the mean evaluation score of the transformation
sequences is higher, else r = 0.

Back-propagation. The reward from the roll-out process is back propagated
along the path from the node selected in the expansion process to the root node
in the tree, updating the parameters α, β in each edge on the path with the
update rule (see Sect. 3.2).

The algorithm stops after the computational budget is exhausted, e.g. the
algorithm stops when the number of episodes reaches 100 in the experiment.

Figure 4 shows an example of an episode of the mCAFE algorithm. Starting
from the root node D0, it selects explored nodes according to the selection policy
πs until reaching the leaf node D4. Then an unexplored node D7 is selected and
expanded to the tree according to the expansion policy πe. If the depth of the
current node l (expanded node D7) is smaller than the predefined pipeline length
L (max depth), an action is selected according to the random policy and applied
to the current node to create a new node, which is regarded as the new current
node. This process is repeated until the depth of the new node l is larger than the
pipeline length L. Finally, the current node is evaluated and its reward is back-
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propagated, updating the parameters of the beta distributions along the path
from D0 to D7. Since r = 1, the α of all edges along the path are incremented,
while the β remain unchanged. Correspondingly, the beta distribution of each
edge in the path is slightly shifted to the right, and the probability of selecting
the corresponding actions is increased.

4 Evaluation

In this section, we design six different experiments to address the following ques-
tions: 1) How well does the mCAFE approach compare to the state-of-the-art [7]?
2) Is the sampling-based selection policy necessary for the mCAFE algorithm?
3) Is the sequential information of the transformation sequence important for
the prediction of the Q value? 4) Is the surrogate-based expansion policy neces-
sary for the mCAFE algorithm? 5) How should the hyperparameter L (pipeline
length) be chosen in the mCAFE algorithm? 6) How does mCAFE perform for
different predictive models?

For the first five experiments, we use the same benchmarks as [7]. For this,
we tried to reproduce this previous work. Some datasets were removed from the
experiment since either the results of the base model differ considerably from
those in [7], e.g., ‘Amazon Employ’ and ‘Whine Quality Red’. Additionally, ‘Wine
Quality White’, ‘Higgs Boson’, ‘SVMGuide3’, ‘Bikeshare DC’ were removed as
they displayed a different dataset size compared to the one cited in [7]. To
overcome this problem for future work, we published our code and datasets
at https://github.com/HuangYiran/MonteCarlo-AFE.git.

We run the last experiment on the Automatic Machine Learning (AutoML)
benchmark datasets [24]. We keep the same hyperparameter setting as in the
first four experiments for both our work and the baseline.

In the experiments, we use episode budgets instead of time budgets for the
following three reasons. 1) Different from some other optimization tasks, the time
spent on candidate evaluation for feature engineering tasks dominates the overall
time spent. This time is inevitable for all the evaluation-oriented optimization
methods when dealing with feature engineering tasks. Table 1 shows the average
percentage of time taken by the mCAFE for each step in the first 20 episodes. The
roll-out phase, which consist of random transformation selection and candidate
evaluation, takes up an average of 97% of the overall time. 2) The run time varies
greatly across datasets. It is influenced by the size of the data and the sensitivity
of the data to different transformations. 3) The algorithm implementation and
operating environment have a significant impact on the run time.

For the first five experiments, we use the random forest model of the sklearn
package (version 0.24) with default parameters and an episode budget of B = 100
as in [7], in order to make the result more comparable.

We set the pipeline length to L = 4 according to the result of the third exper-
iment and all the beta distributions are initialized with (1, 1) for a uniform prior.
To reduce the computation time, we sub-sample to the dataset with a large num-
ber of data points. For the sub-sampling, up to 104 data points are considered.

https://github.com/HuangYiran/MonteCarlo-AFE.git
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Table 1. Average percentage of time for each process in the first 20 episodes.

Dataset Size Time spent in percentage (%)
Rows Feat Selection Expansion Roll-out Back-propagation

SpecFact 267 44 0.01 0.04 96.94 3.01

PimaIndian 768 8 0.02 0.05 97.29 2.66

Lymphography 148 18 0.01 0.04 96.98 2.97

Ionosphere 351 34 0.01 0.06 96.37 3.56

AP-omentum-ovary 275 10936 0.01 0.02 98.57 1.40

SpamBase 4601 57 0.01 0.01 98.74 1.24

To ensure comparability, we did not tune any hyperparameters of the feature
engineering algorithms to suit a concrete data set or prediction model (which we
changed for the last experiment). Considering the imbalanced datasets, we apply
the F1-score to assess the classification performance and use 1 - RAE (Relative
Absolute Error) as in [7] as the metric for the regression task. All performances
are obtained under 5-folds cross-validation, which also means the parameter n
in roll out process is set to 5.

In the experiment, we used the transformation functions T = {Log, Exp,
Square, Sin, Cos, TanH, Sigmoid, Abs, Negative, Radian, K-term, Difference,
Add, Minus, Product, Div, NormalExpansion, Aggregation, Normalization,
Binning}.

4.1 Performance of mCAFE

We evaluate the improvement of mCAFE algorithm in comparison with the
following methods, namely the original dataset (Base), a Reinforcement-Based
Model (RBM) with discount factor 0.99, learning rate 0.05 and B 100, a tree-
heuristic model (Cognito) with global search heuristic for 100 nodes, random
selection selecting a transformation from the available transformation set and
applying it to one or more features in the original dataset. If the addition of the
new features leads to an improved performance, we keep the new feature. This
process is repeated 100 times to get the final dataset.

We summarized the performance of the methods in Table 2. It can be seen
that, mCAFE achieves the best score in all the regression datasets against the
reinforcement-based model and achieved superior results on most of the classifi-
cation datasets. However, mCAFE performs worse than the reinforcement based
model in two datasets on ‘Credit Default’ and ‘SpamBase’. Among them, the
difference on ‘SpamBase’ is not significant. From these results, we conclude that
the proposed method performs better than the state-of-the-art automatic feature
engineering approaches.

4.2 Ablation Study

The proposed selection strategy and extension strategy are the most important
components supporting the performance of the algorithm. To verify their impor-
tance, we designed two ablation experiments.
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Table 2. Comparing performance of without feature engineering (Base), reinforcement-
based model (RBM) [7], Cognito [6], random selection and mCAFE in 100 episodes
using 15 open source datasets. Classification (C) tasks are evaluated with F1-score and
regression (R) tasks are evaluated with (1-relative absolute error).

Dataset C/R Rows Feat. Base RBM Cognito Random mCAFE

SpecFact C 267 44 0.686 0.788 0.790 0.748 0.855 ± 0.036
PimaIndian C 768 8 0.721 0.756 0.732 0.709 0.773 ± 0.026
German Credit C 1001 21 0.661 0.724 0.662 0.655 0.764 ± 0.026
Lymphography C 148 18 0.832 0.895 0.849 0.680 0.967 ± 0.016
Ionosphere C 351 34 0.927 0.941 0.941 0.934 0.962 ± 0.014
Credit Default C 30000 25 0.797 0.831 0.799 0.766 0.796 ± 0.006

AP-omentum-ovary C 275 10936 0.615 0.820 0.758 0.710 0.831 ± 0.036
SpamBase C 4601 57 0.955 0.961 0.959 0.937 0.953 ± 0.016

Openml_618 R 1000 50 0.428 0.589 0.532 0.428 0.743 ± 0.015
Openml_589 R 1000 25 0.542 0.687 0.644 0.571 0.776 ± 0.018
Openml_616 R 500 50 0.343 0.559 0.450 0.343 0.622 ± 0.010
Openml_607 R 1000 50 0.380 0.647 0.629 0.411 0.803 ± 0.010
Opemml_620 R 1000 25 0.524 0.683 0.583 0.524 0.765 ± 0.012
Openml_637 R 500 50 0.313 0.585 0.582 0.313 0.637 ± 0.021
Openml_586 R 1000 25 0.547 0.704 0.647 0.549 0.783 ± 0.020

Selection Policy. We apply the traditional UCB with ε-greedy policy as selec-
tion policy in the mCAFE algorithm (mCAFE-ucb) and compare its performance
with the proposed model, which uses Thompson sampling based selection policy
(mCAFE-ts). The parameter λ of UCB is set to 1.412 as proposed in [23], the
ε is set to 0.1 while the mCAFE algorithm keeps the same setting as the last
experiment. Performance of the classification task is measured with F1-score and
regression task is measured with (1- relative absolute error). Figure 5 divides the
results of the comparison into four categories. 1) mCAFE-ts gets better result:
the result performance measured is higher than with mCAFE-ucb. 2) mCAFE-
ts is faster: the number of episodes needed to obtain the same result is larger
on MCAFE-ucb. 3) Tie: mCAFE-ucb obtains the same result and requires the
similar number of epochs (difference smaller than 5). 4) mCAFE-ucb gets better
result: mCAFE-ucb obtains the same results and requires a smaller number of
episodes than mCAFE). The result in Fig. 5 demonstrates the importance of the
selection strategy. mCAFE achieved better performance on 64.7% of the datasets
and tied on 13.3%.

Expansion Policy. In the expansion process, we use an LSTM neural network
to approximate the expectation reward (Q value) of taking an action, since
it can capture the sequential information of the transformation sequence. To
prove that this information is important for the Q value prediction, we designed
an experiment to compare the performance of using MLP and LSTM as the
surrogate model in mCAFE.
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Fig. 5. Comparing the performance between mCAFE-ucb and mCAFE.

Fig. 6. Comparing the performance of MLP and LSTM model in predicting the Q
value.

To make the trained models comparable, the MLP model here contains two
76 dimension hidden layers so that it has a similar number of parameters as the
LSTM surrogate model mentioned above. We use the mean absolute error as
the evaluation criterion. A smaller value indicates a better model. Both models
are trained with 100 epochs. We can see from Fig. 6 that, the LSTM obtains
significantly better results than the MLP model in all datasets.

To evaluate its contribution to mCAFE, we compare the performance of the
following three models, namely mCAFE with LSTM-based expansion policy,
mCAFE with random expansion policy, mCAFE with greedy expansion policy,
which always expand the best action explored.

All three models used the same initial parameters as the last experiment.
Each model is evaluated 10 times on each dataset. The performance of the
models on the regression datasets is displayed with the box plot in Fig. 7.
We can see that mCAFE with neural network achieves best performances on
all datasets except two, where mCAFE with random policy performs better
on dataset ‘Openml_618’ and mCAFE with fixed expansion policy performs
better on dataset ‘Openml_586’. For all datasets except ‘Openml_618’ and
‘Openml_586’, mCAFE with neural network expansion policy also loses to
mCAFE with random expansion policy on dataset ‘AP-omentum-ovary’.

The main differences between these three expansion approaches are the
usages of previous observations and the dispersion of the selected actions.
mCAFE with a fixed expansion policy selects actions greedily according to the
performance of the actions in the first layer. This selection process is stable,
however, hinders the exploration of new transformations, which is likely the rea-
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Fig. 7. Comparing performance of mCAFE with neural network expansion policy (with
nn), mCAFE with random expansion policy (with random) and mCAFE with fix
expansion policy (with fix) on all the regression dataset. Classification task is eval-
uated with F1-score and regression task is evaluated with (1-relative absolute error).

Fig. 8. Comparing performance of mCAFE with different maximum pipeline length on
3 classification datasets (F1-score) and 3 regression datasets (1-relative absolute error).

son for its failure in most cases. mCAFE with neural network expansion policy
captures the performance information of previous observation and uses it in the
prediction of the reward expectation of future actions.

4.3 Length of Feature Engineering Pipeline

The length of the feature engineering pipeline L determines the number of actions
selected in each roll-out step, as well as the length of the final transformation
sequence. It influences the performance of mCAFE algorithm not only on the
final result but also on the time and memory consumption. In general, the larger
L, the larger the time and memory consumption and, at the same time, the larger
the number of features after the transformation. To achieve the best results with
limited resources, we conducted an experiment to find a suitable parameter L
by comparing the performance of the algorithm with different L values.
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Figure 8 shows the relationship between length L and the best performance
displayed by the mCAFE algorithm for six datasets. L = 0 signifies the perfor-
mance of the random forest model on the base dataset. We can see that some
achieve good results with L = 1, however, increasing L can further improve its
performance. Most of the datasets reach the maximum performance with L = 4,
while a small fraction shows a lower performance. This may be due to the ran-
dom selection in the starting process. The performance on ‘Dataset_10_lymph’
is worse for higher L, which is probably due to overfitting. From this experiment,
we can conclude that the optimal L depends on the dataset. However, L = 4
should be a suitable choice in most cases.

4.4 Performances of mCAFE on Different Predictive Models

Different predictive models differ in their performance and sensitivity to mCAFE
on the same dataset. To test this conjecture, we tested the performance of
the mCAFE with the following predictive models on the AutoML benchmark
datasets separately, namely Rbf-svm, Linear-svm, Linear model, Decision tree.

Table 3 summarizes the results of the experiment. We can see that mCAFE
brings performance improvements to most of the datasets. The value of feature
engineering is more prominent for linear and svm models. It is worth noting that
although the performance of each model on the original dataset varies greatly,
the performance obtained after mCAFE tends to be close.

5 Conclusion and Future Work

In this paper, we show that existing automatic feature engineering methods
can be significantly improved by building upon two simple observations. Our
results suggest that feature engineering should make use of sequence information,
incorporating composite transformations into the surrogate model. In addition,
a suitable selection policy should be chosen. The proposed novel MCTS-based
framework uses an LSTM neural network for the expansion policy to explore
the search space efficiently. Furthermore, Thompson sampling is employed to
address the trade-off between exploration and exploitation in the selection policy.
Through this, we manage to obtain superior results to state-of-the-art methods
for automatic feature engineering on the majority of commonly used benchmarks.
We believe that further improvements could be made to the algorithms by adding
transformations that might also reduce redundant and irrelevant feature during
the construction.
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Abstract. UNet [27] is widely used in semantic segmentation due to
its simplicity and effectiveness. However, its manually-designed architec-
ture is applied to a large number of problem settings, either with no
architecture optimizations, or with manual tuning, which is time con-
suming and can be sub-optimal. In this work, firstly, we propose Markov
Random Field Neural Architecture Search (MRF-NAS) that extends
and improves the recent Adaptive and Optimal Network Width Search
(AOWS) method [4] with (i) a more general MRF framework (ii) diverse
M-best loopy inference (iii) differentiable parameter learning. This pro-
vides the necessary NAS framework to efficiently explore network archi-
tectures that induce loopy inference graphs, including loops that arise
from skip connections. With UNet as the backbone, we find an architec-
ture, MRF-UNet, that shows several interesting characteristics. Secondly,
through the lens of these characteristics, we identify the sub-optimality
of the original UNet architecture and further improve our results with
MRF-UNetV2. Experiments show that our MRF-UNets significantly out-
perform several benchmarks on three aerial image datasets and two med-
ical image datasets while maintaining low computational costs. The code
is available at: https://github.com/zifuwanggg/MRF-UNets.

Keywords: Neural architecture search · Probabilistic graphical
models · Semantic segmentation

1 Introduction

Neural architecture search (NAS) has greatly improved the performance on var-
ious vision tasks, for example, classification [4,8,30], object detection [10,23,34]
and semantic segmentation [18,31,32,35] via automating the architecture design
process. UNet [27] is widely adopted to a large number of problem settings such
as aerial [9,28] and medical image segmentation [11,20,24] due to its simplicity
and effectiveness, but either with no architecture optimization, or with simple
manual tuning. A natural question is, can we improve its manually-designed
architecture with NAS?

AOWS [4] is a resource-aware NAS method and it is able to find effective
architectures that strictly satisfy resource constraints, e.g. latency or the num-
ber of floating-point operations (FLOPs). The main idea of AOWS is to model
the search problem as parameter learning and maximum a posteriori (MAP)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13715, pp. 599–614, 2023.
https://doi.org/10.1007/978-3-031-26409-2_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26409-2_36&domain=pdf
https://github.com/zifuwanggg/MRF-UNets
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inference over a Markov Random Field (MRF). However, the main limitation
of AOWS is the adoption of Viterbi inference. As a result, the approach is only
applicable to simple tree-structured graphs where the architecture cannot have
skip connections [14]. Skip connections are widely adopted in modern neural
networks as they can ease the training of deep models via shortening effective
paths [29]; skip connections have also played an important role in the success of
semantic segmentation where an encoder and a decoder are connected by long
skip connections to aggregate features at different levels, e.g. UNet.

Besides, MAP assignment over a weight-sharing network is usually sub-
optimal due to the discrepancy between the one-shot super-network and stand-
alone child-networks [36,42]. Restricting the search to a single MAP solution
also results in the search method having high variance [25], so one usually needs
to repeat the search process with different random seeds and hyper-parameters.
Furthermore, parameter learning of AOWS is non-differentiable, and this dis-
connects AOWS from recent advances in the differentiable NAS community
[7,25,37], despite its advantages in efficient inference.

The contributions of this paper are twofold. Firstly, we propose MRF-NAS,
which extends and improves AOWS with (i) a more general framework that
shows close connections with other NAS approaches and yields better repre-
sentation capability, (ii) loopy inference algorithms so we can apply it to more
complex search spaces, (iii) diverse M-best inference instead of a single MAP
assignment to reduce the search variance and to improve search results and
(iv) a novel differentiable parameter learning approach with Gibbs sampling
and Long-Short-Burnin-Scheme (LSBS) to save on computational cost. With
UNet as the backbone, we find an architecture, MRF-UNet, that shows several
interesting characteristics. Secondly, through the lens of these characteristics, we
identify the sub-optimality of the original UNet architecture and further improve
our results with MRF-UNetV2. We show the effectiveness of our approach on
three aerial image datasets: DeepGlobe Land, Road and Building [9] and two
medical image datasets: CHAOS [20] and PROMISE12 [24]. Compared with the
benchmarks, our MRF-UNets achieve superior performance while maintaining
low computational cost.

2 Related Works

Neural architecture search (NAS) [25,44] is a technique for automating the design
process of neural network architectures. The early attempt [44] trains a RNN
with reinforcement learning and costs thousands of GPU hours. In order to
reduce the search cost, one usually uses some proxy to infer an architecture’s
performance without training it from scratch. For example, the significance of
learnable architecture parameters [7,15,18,25,31,32,35,37] or validation accu-
racy from a super-network with shared weights [3,4,6,13].

Resource-aware NAS [4,8,38,40] focuses on architectures that achieve good
performance while satisfy resource targets such as FLOPs or latency. FBNet [8]
inserts a differentiable latency term into the loss function to penalize networks
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that consume high latency. However, the found architectures are not guaran-
teed to strictly satisfy the constraints. AutoSlim [38] trains a slimmable network
[39,41] as the super-network and applies a greedy heuristics to search for chan-
nel configurations under different FLOPs targets. AOWS [4] models resource-
aware NAS as a constrained optimization problem which can then be solved via
inference over a chain-structured MRF. Nevertheless, their method can only be
applied to simple search spaces which do not include skip connections.

3 Preliminaries

3.1 Markov Random Field

For an arbitrary integer n, let [n] be shorthand for {1, 2, ..., n}. We have a set
of discrete variables x = {xi|i ∈ [n]} and each xi takes value in a finite label
set Xi = {xj

i |j ∈ [ki]}. For a set S ⊆ [n], we use xS to denote {xi|i ∈ S}, and
XS =×i∈S

Xi, where× is the cartesian product.
A Markov Random Field (MRF) is an undirected graph G = (V,E) over

these variables, and equipped with a set of factors Φ = {φS |S ⊆ [n]} where
φS : XS → R, such that V = [n] and an edge ei,j ∈ E when there exists
some φS ∈ Φ and {i, j} ⊆ S [21]. It is common to employ a pairwise MRF where
Φ = {φS

∣
∣S ⊆ [n] and |S| ≤ 2}. A set of factors Φ explicitly defines a probabilistic

distribution PΦ(x) = 1
Z exp

(
∑

S φS(xS)
)

where Z is the normalizing constant.
The goal of MAP inference is to find an assignment x∗ so as to maximize a
real-valued energy function E(x):

x∗ = argmax
x∈XV

E(x) = argmax
x∈XV

exp
(∑

S

φS(xS)
)

. (1)

3.2 Diverse M-Best Inference

In MRFs, there exist optimization error (approximate inference), approximation
error (limitations of the model, e.g. a pairwise MRF can only represent pairwise
interactions), and estimation error (factors are learnt from a finite dataset). In
the context of NAS, in order to reduce the cost of searching, we often resort to
proxies [3,25] on a weight-sharing network and they can be inaccurate. Instead
of giving all our hope to a single MAP solution, diverse M-best inference [2] aims
to find a diverse set of highly probable solutions.

Given some dissimilarity function Δ(xp,xq) between two solutions and a
dissimilarity target kq, we denote x1 as the MAP, x2 the second-best solution
and so on until xm the mth-best solution. Then for each 2 ≤ p ≤ m, we have
the following constrained optimization problem

xp = argmax
x∈XV

E(x) (2)

s.t. Δ(xp,xq) ≥ kq for q = 1, ..., p − 1. (3)
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Therefore, we are interested in a diverse set of solutions {x1, ...,xp, ...,xm} such
that each xp maximizes the energy function, and is at least kq-units away from
each of the p − 1 previously found solutions. If we consider a pairwise MRF
and choose Hamming distance as the dissimilarity function, we can turn Eq. (2)
into a new MAP problem such that pairwise factors remain the same and unary
factors become φp

i (x
j
i ) = φi(x

j
i )−

∑p−1
q=1 λq ·1(x·

i
q = xj

i ) where λq is the Lagrange
multiplier and x·

i
q is the assignment of xi in the q-th solution [2].

3.3 AOWS

Having introduced the notations for MRFs, here we illustrate how AOWS mod-
els the NAS problem as a MRF. In NAS, there is a neural network N that has
n choice nodes, i.e. x = {xi|i ∈ [n]}, and each node xi can take some value
from a label set Xi, e.g. kernel size = 3 or 5. Therefore, we can use x to repre-
sent the architecture of a neural network. Let N(x) be a neural network whose
architecture is x. Given some task-specific performance measurement M, e.g.
classification accuracy, and a resource measurement R, e.g. latency or FLOPs,
resource-aware NAS can be represented as a constrained optimization problem

max
x

M(N(x)) s.t. R(N(x)) ≤ RT (4)

where RT is the resource target. Consider the following Lagrangian relaxation
of the problem

min
γ

max
x

M(N(x)) + γ(R(N(x)) − RT ) (5)

with γ a Lagrange multiplier. If the inner maximization problem can be solved
efficiently, then the minimization problem in Eq. (5) can be solved by binary
search over γ since the objective is concave in γ [4,28].

The key idea of AOWS [4] is to model Eq. (5) as parameter learning and MAP
inference over a pairwise MRF such that M(N(x)) =

∑

i φi and R(N(x)) =
∑

i,j φi,j . For M(N(x)), they assume φi(x
j
i ) = − 1

|Ti,j |
∑

t l(w|x(t)
i = j) where

l(w|x(t)
i = j) is the training loss when xi = j is sampled at iteration t, and |Ti,j |

is the total number of times xj
i is sampled. For R(N(x)), many resource models

have a pairwise form. For example, FLOPs can be calculated exactly as pairwise
sums; latency is usually modeled as a pairwise model due to sequential execu-
tion of the forward pass. Once these factors are known, the inner maximization
problem can be solved efficiently via Viterbi inference.

4 MRF-NAS

Here we generalize the idea of AOWS [4] to a broader setting. We assume that
there exists some non-decreasing mapping F : R → R such that

M(N(x)) = F(E(x)) (6)
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Therefore, we extend their framework and no longer require M(N(x)) = E(x),
but let PΦ be defined by a set of factors Φ such that PΦ(x1) ≥ PΦ(x2) ⇒
M(N(x1)) ≥ M(N(x2)). Then NAS becomes MAP inference over a set of
properly defined factors

x∗ = argmax
x

M(N(x)) = argmax
x

E(x). (7)

For resource-aware NAS, we follow [4] to introduce another set of factors

R(N(x)) = E ′(x) = exp
( ∑

i∈V

φ′
i(xi) +

∑

(i,j)∈E

φ′
i,j(xi, xj)

)

(8)

and combine these two energy functions as in Eq. (5). As discussed in Sect. 3.3,
many resource models can be represented exactly or approximately as a pairwise
model. Following [4], we focus on latency. We can populate each element φ′

i and
φ′

i,j through profiling the entire network on some target hardware and solving a
system of linear equations.

Many existing methods show close connections to our formulation. For exam-
ple, one-shot methods with weight sharing [3,6,13] define a single factor φV

whose scope includes all nodes in the graph where φV (x) is the validation
accuracy of the super-network evaluated with architecture x. Their formulation
imposes no factorization, and therefore the cardinality of φV (x) grows expo-
nentially in the order of n, the number of nodes in the graph, which makes
MAP inference impossible. On the contrary, AOWS [4] and differentiable NAS
approaches [7,25,37] introduce a set of unary factors Φ = {φi|i ∈ V } such that
in AOWS, φi(xi) is the averaged losses, and in differentiable NAS approaches,
φi(xi) is the learnable architecture parameter. With no higher order interac-
tion, MAP inference deteriorates to marginal maximization whose solution can
be derived easily. However, this model imposes strong local independence and
greatly limits the representation capability of the underlying graphical model.

Since we model the resource measurement as a pairwise model, for the ease
of joint inference in Eq. (5), we also consider E(x) to be pairwise

E(x) = exp
( ∑

i∈V

φi(xi) +
∑

(i,j)∈E

φi,j(xi, xj)
)

. (9)

Moreover, compared with methods that only use unary terms, our pairwise model
imposes weaker local independence and has more representation power. Although
the inclusion of pairwise terms increases the number of learnable factors from
O(|X|) to O(|X|2), where |X| is the cardinality of factors and is usually less
than 20, the added overhead is negligible compared with the number in learnable
parameters of modern neural networks.

4.1 Diverse M-Best Loopy Inference

The main limitation of AOWS [4] is the adoption of Viterbi inference, which
is only applicable to simple chain graphs such as MobileNetV1 [16]. When the
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computational graph forms loops, i.e. it includes skip connections [14], we need
to resort to loopy inference algorithms. Exact inference over a loopy graph can be
very expensive, especially when the graph is densely connected. In the worst case,
the complexity of exact inference can be exponential in n when the graph is fully
connected. Therefore, sometimes we can only hope for approximate solutions.
However, we find in practice that for realistic architectures, fast approximate
inference yields excellent performance on par with exact inference. The difference
between exact and approximate inference will be discussed in more detail in
Sect. 6.1.

Furthermore, MAP assignment on a weight-sharing network is usually of
poor quality, but we can still find architectures that achieve good performance
by examining other top solutions [36,42]. Therefore, instead of a single MAP
assignment x∗, we use diverse M-best inference [2] to find a set of diverse solu-
tions {x1, ...,xm} so as to reduce the variance in the search phase.

Diverse M-best inference requires a set of balanced dissimilarity constraints,
each with an associated Lagrange multiplier. In Eq. (2), it is crucial to choose a
dissimilarity target kq, and rather than searching via the diversity constraints, we
can directly perform model selection on the Lagrange multiplier λq [2]. We find
that the absolute value of φi can be very different across factors. Instead of using
a single scalar value λq for all i, we set it to be a vector λq = (λq

1, ..., λ
q
i , ..., λ

q
n)

such that

λq
i =

maxj φq
i (x

j
i ) − minj φq

i (x
j
i )

L
, (10)

where φq
i (·) is the modified unary factor. Then we can tune L instead.

4.2 Differentiable Parameter Learning

In the previous sections, we have discussed how to find optimal solutions if the
factors in MRF are already known. Here we propose a differentiable approach to
learn these factors so as to close the gap between AOWS and other differentiable
NAS approaches. Following the formulation in [1], the goal of differentiable NAS
is to maximize the following objective

− Ex∼PΦ(x)[l(w∗|x)] s.t. w∗ = argmin
w

l(w|x), (11)

where l(·) is some loss function and w encodes connection weights of the neural
network. In order to make Eq. (11) differentiable, we can approximate it through
Monte Carlo with nmc samples and use the Gumbel-Softmax reparameterization
trick [19] to smooth the discrete categorical distribution.

However, there is one more caveat in the aforementioned approach: to sample
from the joint probability distribution PΦ(x). When we only have unary factors
such as in [1], sampling from PΦ(x) is the same as independently sampling from
the marginal probability distribution Pφi

(xi):

PΦ(x) =
1
Z

exp
(∑

i

φi(xi)
)

=
∏

i

1
Z

exp
(

φi(xi)
)

=
∏

i

Pφi
(xi). (12)
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Fig. 1. Workflow of our differentiable parameter learning approach. Vanilla differen-
tiable NAS methods [1] with Monte Carlo approximation and Gumbel-Softmax trick
are shown in the blue rectangle. In our case, since the joint probability distribution
PΦ(x) cannot be decomposed as the product of only unary terms, we need to perform
an extra step of MCMC, e.g. Gibbs sampling.

When we have high-order interactions such as pairwise terms, sampling from the
joint usually involves the use of Markov Chain Monte Carlo (MCMC) methods.
Here we use Gibbs sampling for simplicity:

xt
i ∼ PΦ(xi|x−i) (13)

where the distribution of xi at t-th iteration is determined by x−i, all nodes
except i. In an MRF, x−i can be simplified to the Markov blanket of i. Since
PΦ(xi|x−i) is just the product of several factors, if we apply the Gumbel-Softmax
trick, the sampling process is differentiable with respect to these factors. A graph-
ical illustration of the overall procedure is shown in Fig. 1.

After a burn-in period with nburnin samples, Gibbs sampling will converge
to the stationary distribution. The length of burn-in period is theoretically
unknown and is often decided empirically. Gibbs sampling can be expensive
because every time we update Φ, we will have a new PΦ. Therefore, we need
to re-enter the burn-in period just to draw nmc samples where nmc 	 nburnin,
and then update Φ again. In order to mitigate this problem, we propose a Long-
Short-Burnin-Scheme (LSBS). Specifically, at the beginning of each epoch, we
run a long burn-in period nlong, but at each iteration within that epoch, we only
run a short burn-in period nshort. We can assume that PΦt ≈ PΦt+1 since Φ will
only change by a small amount. Starting from a sample xt ∼ PΦt , we can quickly
transit to a sample xt+1 ∼ PΦt+1 without running a long burnin period. As a
result, as opposed to nlong + nmc, we only need to draw nshort + nmc samples at
each iteration, where nmc ≈ nshort 	 nlong.

5 Experiments

5.1 Datasets

We choose five semantic segmentation datasets with diverse contents. Specifi-
cally, DeepGlobe challenge [9] provides three aerial image datasets: Land, Road
and Building. Land is a multi-class (urban, agriculture, rangeland, forest, water
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and barren) segmentation dataset and it contains 803 satellite images focusing
on rural areas. Road is a binary segmentation dataset and it consists of 6226
images captured over Thailand, Indonesia, and India. Building is also a binary
segmentation task with 10593 images taken from Las Vegas, Paris, Shanghai,
and Khartoum.

CHAOS [20] is medical image dataset including both computed tomography
(CT) and magnetic resonance imaging (MRI) scans of abdomen organs (liver,
right kidney, left kidney and spleen). We only use MRI scans, and it has 20 cases
and 1270 2D-slices. PROMISE [24] contains prostate MRI images, and it has 50
cases and 1377 2D-slices. For all datasets, only training sets are available. We
split 60%/20%/20% of the training set as train/val/test set. For simplicity, we
resize all images to 256 × 256.

5.2 Search Space

We use UNet [27] as the backbone. Generally speaking, UNet and other encoder-
decoder networks usually contain three types of operations: Normal, Down and
Up. We search for both size and width of the convolution kernel and summarize
the search space in Table 1. For the original UNet that has 26 layers, our search
space has about 4 × 1023 configurations in total.

For a fair comparison, for manually designed architectures, e.g. UNet [27],
UNet++ [43] and BiO-Net [33], we use their templates and implement the Nor-
mal/Up/Down operations in the same way as our search space, but fix the kernel
size to be 3. For automatically found architectures, e.g. NAS-UNet [32], MS-
NAS [35], and BiX-Net [31], we do not make any modification and use their
implementations directly. However, there exist discrepancies. For instance, we
use transposed convolution for up-sampling while NAS-UNet [32] uses dilated
transposed convolution and BiX-Net [31] uses bilinear interpolation.

Table 1. Search space with UNet as the backbone.

Type Size Width

Normal 3, 5 0.5, 0.75, 1.0, 1.25, 1.5
Down 3 0.5, 0.75, 1.0, 1.25, 1.5
Up 2 0.5, 0.75, 1.0, 1.25, 1.5

5.3 Implementation Details

In the search phase, we train a super-network using the sandwich rule [39] for
T = 50 epochs. Initially, factors are not updated until the super-network is
trained for a warmup period of 10 epochs. The learning rate of network weights



MRF-UNets: Searching UNet with Markov Random Fields 607

starts from 0.0005 and is then decreased by a factor of (1− t
T )0.9 at each epoch

t. We use the Adam optimizer with weight decay of 0.0001. The learning rate
of MRF factors is fixed at 0.0003 and we also use the Adam optimizer with the
same weight decay. For the sampling, we use nlong = 10000, nshort = 10 and
nmc = 1. The temperature parameter τ in Gumbel-Softmax is fixed at 1. For
inference, we choose m = 5 and L = 10 for diverse M-best inference, and the
number of binary search iterations is niter = 20. For simplicity, we search on
Deepglobe Land [9] and the found architectures are evaluated on other datasets.
Our results can be improved by searching on each dataset individually. In the
re-train phase, we use the same hyper-parameters as in the search phase, except
that we train for T = 100 epochs. We use the same hyper-parameters for both
architectures found by our methods as well as the baselines.

5.4 Computational Cost

The overhead of our method comes from Gibbs sampling and inference over a
complex loopy graph. Since we run a long burn-in period nlong only at the start
of each epoch, and a short burn-in period nshort+nmc at each training iteration,
the cost of sampling is negligible compared with a forward-backward pass of
the neural network. We will discuss the cost of loopy inference algorithms in
Sect. 6.1, and since we use approximate inference algorithm as a default, the
cost of inference is also minimal. In our experiments, the overhead takes up less
than 2% of the total search time.

5.5 MRF-UNets Architecture

MRF-UNet shows several interesting characteristics that differ from the origi-
nal UNet: (i) it has a larger encoder but a smaller decoder (ii) layers that are
connected by the long skip connections are shallower (iii) layers that need to
process these concatenated feature maps are wider and also have larger kernel
size. As a result, there exists a bottleneck pattern in the encoder and an inverted
bottleneck pattern in the decoder. Our observations show that the encoder and
decoder do not need to be balanced as in the original UNet and many other
encoder-decoder architectures [5,26,45]. They also demonstrate that the widely
adopted “half resolution, double width” principle might be sub-optimal in an
encoder-decoder network. Indeed, feature maps are concatenated by the long
skip connections and are processed by the following layer, which form the most
computationally extensive part in the whole network. Therefore, their widths
should be smaller to reduce complexity. However, layers that need to process
this rich information should be wider and have larger receptive fields.

Inspired by these observations, we propose MRF-UNetV2 to emphasize these
characteristics. As shown in Fig. 2, MRF-UNetV2 has a simpler architecture that
is easier for implementation, and we show that it can sometimes outperform
MRF-UNet in Table 2 and Table 3. We note that a recent trend in NAS is to
design a more and more complex search space to include as many candidates as
possible [30], but it becomes difficult to interpret the search results. We hope that
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our observations can inspire practitioners when designing other encoder-decoder
architectures.

Fig. 2. Architecture of MRF-UNetV2. Numbers inside rectangles are width ratios to
the original UNet. Rectangles surrounded by colored dashed lines use 5 × 5 kernels
while others use 3× 3 kernels. The gray dashed line on the left highlights an example
of a bottleneck block in the encoder, and the gray dashed line on the right shows an
example of an inverted bottleneck block in the decoder. (Color figure online)

5.6 Main Results

Our benchmarks include manually designed architectures: UNet [27], UNet++
[43], BiO-Net [33] and architectures found with NAS: NAS-UNet [32], MS-NAS
[35], BiX-Net [31]. The main results are in Table 2 and Table 3. We set the
latency target to 1.70ms which is the same as the original UNet, and we also
include FLOPs for comparison. Our MRF-UNets outperform benchmarks over
five datasets with diverse semantics, while require less computational resources.
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Table 2. mIoU (%) on DeepGlobe challenge. mean± std are computed over 5 runs.

Model Land (%) Road (%) Building (%) FLOPs (G) Latency (ms)

UNet 58.41± 0.52 57.05± 0.13 75.12± 0.09 4.84 1.70
UNet++ 59.53± 0.21 56.96± 0.08 74.27± 0.21 11.76 5.11
BiO-Net 58.10± 0.37 57.06± 0.22 74.29± 0.15 37.22 3.28

NAS-UNet 58.11± 0.91 57.73± 0.56 74.46± 0.19 30.44 4.25
MS-NAS 58.75± 0.68 57.34± 0.35 74.61± 0.17 24.28 3.96
BiX-Net 57.96± 0.94 57.74± 0.08 74.63± 0.12 13.28 1.87

MRF-UNet 59.64± 0.44 57.81± 0.17 75.50± 0.09 4.74 1.68
MRF-UNetV2 58.56± 0.25 57.90± 0.23 75.84± 0.13 4.66 1.70

Table 3. Dice scores (%) on CHAOS and PROMISE. mean± std are computed over
5 runs.

Model CHAOS (%) PROMISE (%) FLOPs (G) Latency (ms)

UNet 91.16± 0.23 84.60± 0.68 4.84 1.70
UNet++ 91.46± 0.15 86.29± 0.35 11.76 5.11
BiO-Net 91.80± 0.42 86.04± 0.77 37.22 3.28
NAS-UNet 91.30± 0.65 85.04± 0.90 30.44 4.25
MS-NAS 91.47± 0.35 85.42± 0.72 24.28 3.96
BiX-Net 91.22± 0.39 84.35± 0.91 13.28 1.87
MRF-UNet 92.03± 0.31 86.76± 0.32 4.74 1.68
MRF-UNetV2 92.14± 0.24 86.61± 0.36 4.66 1.70

6 Ablation Study

6.1 Exact vs. Approximate Loopy Inference

Without our loopy inference extension, AOWS fails on more complex loopy
graphs. However, inference on a loopy MRF is a NP-hard problem [21], so
we cannot always hope for exact solutions. Here we use Max-Product Clique
Tree algorithm (MPCT) for exact solutions, and Max-Product Linear Program-
ming (MPLP) for approximate inference [21]. We compare architectures found
by MPCT and MPLP in Table 4. They usually obtain very similar solutions
and their results are almost identical. The complexity of MPCT and in gen-
eral of exact inference is O(|X||C|) where |X| is the cardinality of factors and
in our experiments it is 10, and |C| is the size of the largest clique. Generally,
|C| increases when the graph is more densely connected, and in the worst case
|C| = n the number of nodes when the graph is fully connected, e.g. DenseNet
[17]. In Fig. 3, we show the size of the largest clique vs. the number nodes for
UNet [27], UNet+ [43] and UNet++ [43]. UNet++, being more densely con-
nected, has a much larger clique size than UNet. The clique size of the original
UNet is 5, and MPCT already takes several minutes on our MacBook Pro (14-
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inch, 2021). Note that we need to repeat the inference for m×niter = 100 times,
and it will soon become infeasible if we want to apply MPCT on deeper UNet or
UNet+/UNet++. Nevertheless, MPLP can converge within a few seconds. Since
they usually find similar solutions, we use MPLP as a default.

Table 4. Evaluating architectures found by MPCT and MPLP on DeepGlobe Land.
mean± std are computed over 5 runs.

Algorithm MPCT MPLP

mIoU (%) 59.56± 0.57 59.64± 0.44

Fig. 3. Size of the largest clique vs. the number of nodes for UNet [27], UNet+ [43]
and UNet++ [43]. Diamonds indicate the original architectures whose depth is 5.

6.2 Diverse Solutions

As shown in [36,42], there exists an inconsistency between the true rank of an
architecture and its rank on a weight-sharing network, but we can still find
architectures that are reasonably good by examining other top solutions. This
motivates us to apply diverse M-best inference [2]. In Table 5, we show the results
of diverse 5-best. The MAP solution is not the best quality and diverse M-best
inference can greatly improve our results. It also helps reduce the variance in the
search phase since we can evaluate m highly probable solutions at the same time,
and the total computational cost is thus decreased from m×(costsearch+costeval)
to costsearch + m × costeval.
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Calibration [12] is critical for medical diagnosis and deep ensembles [22] have
been shown to effectively reduce the calibration error. Compared with a deep
ensemble that consists of the same architecture from different initialization, we
can form an ensemble with a diverse set of solutions. As shown in Table 7, our
diverse ensemble achieves a lower Expected Calibration Error (ECE) on CHAOS.

Should we further increase m if it is so helpful? The answer is no: further
increasing m generally does not help us to find a better solution, and the majority
of solutions are often of sub-optimal performance so it does not help reduce the
variance. In Table 6, we show the result of diverse 10-best. We choose a higher
L = 20 and expect that the best solution will come later, since it leads to a
lower dissimilarity target in Eq. (10). Indeed, the best architecture is now the
5th one instead of the 3rd, but it does not show a better performance and many
solutions are of similar quality. Therefore, we do not benefit from increasing m,
while it adds the cost of both inference and evaluation.

Table 5. Evaluating architectures found by diverse 5-best on DeepGlobe Land (L =
10). mean± std are computed over 5 runs.

Solution 1 2 3 4 5

mIoU (%) 57.37± 0.61 57.41± 0.32 59.64± 0.44 59.43± 0.46 56.59± 0.70

Table 6. Evaluating architectures found by diverse 10-best on DeepGlobe Land (L =
20). mean± std are computed over 5 runs.

Solution 1 2 3 4 5

mIoU (%) 57.02± 0.53 58.37± 0.41 56.94± 0.55 59.37± 0.41 59.56± 0.22

Solution 6 7 8 9 10
mIoU (%) 57.86± 0.41 59.45± 0.92 57.82± 0.51 57.79± 0.48 57.84± 0.39

Table 7. Comparing deep ensemble [22] with our diverse deep ensemble on CHAOS.
Lower is better. mean± std are computed over 5 runs.

Model Deep ensemble Diverse deep ensemble

ECE (%) 0.7091± 0.0140 0.6872± 0.0126

6.3 Pairwise Formulation and Differentiable Parameter Learning

Except diverse M-best loopy inference, we make other two modifications: pair-
wise formulation and differentiable parameter learning. In Table 8, we compare
the architectures found by our MRF-NAS vs. MRF-NAS without pairwise fac-
tors and MRF-NAS without differentiable parameter learning.
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Table 8. Evaluating architectures found by A1: MRF-NAS w/o pairwise factors, A2:
MRF-NAS w/o differentiable parameter learning and MRF-UNet on DeepGlobe Land.
mean± std are computed over 5 runs.

Architecture A1 A2 MRF-UNet

mIoU (%) 59.17± 0.58 59.33± 0.31 59.64± 0.44

7 Conclusion

In this paper, we propose MRF-NAS that extends and improves AOWS [4]
with a more general framework based on a pairwise Markov Random Field
(MRF) formulation, which leads to applying various statistical techniques for
MAP optimization. With diverse M-best loopy inference algorithms and differ-
entiable parameter learning, we find an architecture, MRF-UNet, with several
interesting characteristics. Through the lens of these characteristics, we iden-
tify the sub-optimality of the original UNet and propose MRF-UNetV2 with a
simpler architecture that can further improve our results. MRF-UNets, albeit
requiring less computational resources, outperform several SOTA benchmarks
over three aerial image datasets and two medical image datasets that contain
diverse contents. This demonstrates that the found architectures are robust and
effective.
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Abstract. Popular few-shot Meta-learning (ML) methods presume that
a task’s support and query data are drawn from a common distribu-
tion. Recently, Bennequin et al. [4] relaxed this assumption to propose
a few-shot setting where the support and query distributions differ,
with disjoint yet related meta-train and meta-test support-query shifts
(SQS). We relax this assumption further to a more pragmatic SQS set-
ting (SQS+) where the meta-test SQS is anonymous and need not be
related to the meta-train SQS. The state-of-the-art solution to address
SQS is transductive, requiring unlabelled meta-test query data to bridge
the support and query distribution gap. In contrast, we propose a the-
oretically grounded inductive solution - Adversarial Query Projection
(AQP) for addressing SQS+ and SQS that is applicable when unlabeled
meta-test query instances are unavailable. AQP can be easily integrated
into the popular ML frameworks. Exhaustive empirical investigations on
benchmark datasets and their extensions, different ML approaches, and
architectures establish AQP’s efficacy in handling SQS+ and SQS.

Keywords: Meta-learning · Task · Support · Query · Projection ·
Shift

1 Introduction

Learning Deep neural networks (DNN) from limited training data is of increasing
relevance due to its ability to mitigate the challenges posed by the costly data
annotation process for various real-world problems. A popular framework for
learning with limited training data is few-shot learning, i.e., learning a model
from few shots (examples) of data. Meta-learning (ML) approaches for few-
shot learning have proven to be robust at handling data scarcity [1,10,24,27]. A
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typical ML setup follows an episodic training regimen. An episode or a task is an
N -way K-shot learning problem, where N is the number of classes in a task and
K is the number of examples per class. Each task comprises of a task-train data
(support set) and task-test data (query set), containing disjoint examples from
the same classes. Models are adapted separately for the tasks using the support
set. The adapted model’s loss on the query set is used to update the meta-model.
The model meta-trained in this fashion extracts rich class discriminative features
[14] that can quickly adapt to a new unseen test task.

The ML approach assumes that the meta-train and meta-test tasks are
drawn from a common distribution. The shared distribution assumption pre-
vents the use of meta-learned models in evolving test environments deviating
from the training set. Recent ML works attempt at relaxing this assumption
[26,29]. However, these ML approaches assume a common distribution inside
the tasks, i.e., the task-train and task-test data come from the same distri-
bution. But a distribution shift may exist between the support and query set
because of the evolving or deteriorating nature of real-world objects or envi-
ronments, differences in the data acquisition techniques from support to query
sets, extreme data deficiency from one distribution, etc. Addressing support
query shift (SQS) inside a task has gained attention very recently [4]. How-
ever, this pioneering work assumes the prior knowledge of SQS in the meta-
test set and induces a related although disjoint SQS in the meta-train set.
The model trained on such a meta-train set is accustomed to handle the SQS
and, to some extent, becomes robust to the related unseen meta-test SQS.

Fig. 1. Performance drop of a ProtoNet model due
to SQS. Case a) No SQS in meta-train/test set
Case b) Related but disjoint SQS in both meta-
train/test sets Case c) Meta-train set lacks SQS,
but meta-test set contains SQS.

In this paper, we con-
sider, SQS+, a more generic
SQS problem where the prior
knowledge of the meta-test
SQS is absent. We expect an
unknown SQS in the meta-
test set and therefore can-
not induce any related SQS in
the meta-train set. The earlier
work on addressing SQS [4] is
a limiting case of SQS+.

We illustrate the signifi-
cance of SQS+ in Fig. 1 on
a 5-way 5-shot problem: Case
a) miniImagenet with No
SQS [27] where both meta-
train and meta-test sets do
not contain SQS; Case b)
miniImagenet with SQS [4]
where meta-train and meta-
test sets have related but dis-
joint SQS and Case c) mini-
Imagenet with SQS+ (ours)



Adversarial Projections to Tackle Support-Query Shifts 617

where meta-train set lacks SQS, but meta-test set possesses SQS. The average
performance of a meta-trained prototypical network (ProtoNet) [24] for the cases
(a), (b), and (c) is 64.56%, 41.68%, and 35.17% respectively. The nearly 29%
performance drop from case a to case c indicates that the naive ML model is
vulnerable to SQS and cannot extrapolate its training experience to comparable
scenarios. Bennequin et al. [4] initiated the research on SQS to address the prob-
lem specified in case (b). We extend it to a more generic an challenging setting
where there is no SQS during meta-training, but meta-test tasks may contain
a distribution shift between the support and the query sets. The approximately
6% drop in the accuracy of the ProtoNets trained for settings case b and case c
reinforces our challenging problem setting.

The solution proposed by Bennequin et al. [4] uses optimal transport (OT)
to bridge the gap between support and query distributions, but assumes the
availability of labeled and unlabelled query data during meta-training and test-
ing respectively. While this solution can be adopted for our proposed problem,
access to unlabelled query data during meta-test may be unrealistic in many
real-world scenarios. Our solution to address the support query (SQ) shift prob-
lem - Adversarial Query Projection (AQP), does not require transduction during
meta-testing. During meta-training, we induce a distribution shift between sup-
port and query sets by adversarially perturbing the query sets to create more
“challenging” virtual query sets. New virtual tasks are constructed from the
original support and virtual query sets. Due to the disparity between the initial
and perturbed distributions, a distribution mismatch occurs between the sup-
port and query set of a virtual task. The adversarial perturbations are dynamic
and adaptive, seeking to inhibit the model’s learning. A model trained in such
a setup performs well only if it learns to be resilient to the SQS in a task. As
adversarial perturbations lack a static structure, the model is forced to learn var-
ious shift-invariant representations and thus becomes robust to various unknown
distribution shifts. Overall, we make the following contributions:

– We propose, SQS+, a practical SQS setting for few-shot meta-learning. The
shift between support and query sets during meta-testing is unknown while
meta-training the model.

– We contribute to the FewShiftBed [4] realistic datasets for evaluating methods
that address SQS and SQS+. In these datasets, meta-train data lacks SQS
while meta-test data contains SQS.

– We design an inductive solution for tackling SQS+ using adversarial query
projections (AQP). We theoretically justify the feasibility of meta-optimizing
the model using adversarially projected query sets and verify the existence
of an adversarial query projection for each query set. The AQP module is
standalone and could be integrated with any few-shot ML episodic training
regimen. We verify this capability by integrating AQP into ProtoNet and
Matching Networks (MatchingNet).

– Exhaustive empirical investigation validates the effectiveness of the AQP
on various settings and datasets, preventing a negative impact even in the
absence of SQS.
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2 Related Work

We segregate the discussion of the related work into approaches for cross-domain
few-shot learning and tackling support-query shift in few-shot learning.

2.1 Cross-Domain Few-shot Learning (CDFSL)

Classical few-shot learning (FSL) [7,15] does not expect distribution shifts
between train and test sets. Domain generalization approaches that generate
examples from a fictitious hard domain through adversarial training [28] or syn-
thesize virtual train and test domains to simulate a shift during the training
process using a critic network [17] aim to encourage generalization on unseen
target domain. Typical domain generalization setting assumes abundant train-
ing data and shared labels between train and test domains, which need not hold
in a cross domain FSL setup. The early approaches to bridge the domain shifts in
FSL relied on adaptive batch normalization [9] and batch spectral normalization
[19]. Recent work [4] suggests limitations of batch normalization as a strategy
for handling SQS. A common hypothesis among cross domain FSL approaches
is that a model’s over-reliance on the meta-train domain inhibits its generaliz-
ability to unseen test domains. While some cross domain FSL approaches relied
on model’s generalizability by enhancing diversity in the feature representations
[25,26], others have tried ensembles [19], large margin enforcement [30], and
adversarial perturbations [29]. Though these approaches handle domain discrep-
ancy between meta-train and meta-test sets, they assume a common distribution
over support and query sets. On the other hand, we focus on the scenarios where
support and query distributions vary.

2.2 Support-Query Shift in FSL

Transductive meta-learning approaches that utilize unlabeled query data in the
training process are effective baselines for handling SQS in FSL. Ren et al. [22]
introduce a transductive prototypical network that refines the learned prototypes
with cluster assignments of unlabelled query examples. Boudiaf et al. [6] induce
transduction by maximizing the mutual information between query features and
their predicted labels in conjunction with minimizing cross-entropy loss on the
support set. Minimizing the entropy of the unlabeled query instance predictions
during adaptation [8] also achieves a similar goal. Liu et al. [20] propose a graph
based label propagation from the support to the unlabeled query set that exploits
the data manifold properties to improve the efficiency of adaptation . Antoniou
et al. [2] show that minimizing a parameterized label-free loss function that
utilizes unlabelled query data during training can also bridge SQS. Inspired from
learning invariant representations [3,11,12], Bennequin et al. [4] use Optimal
Transport (OT) [21] during meta-training and meta-testing to address SQS.
In contrast, we propose an inductive method to tackle SQS in few-shot meta-
learning where access to the unlabelled meta-test query instances is not required.
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Inductive approaches to tackle train-test domain shifts have relied on adver-
sarial methods for data/task augmentations. Goldblum et al. [13] propose adver-
sarial data augmentation for few-shot meta-learning and demonstrate the robust-
ness of the model trained on augmented tasks to adversarial attacks at meta-test
time. Wang et al. [29] bridge the shift between meta-train and meta-test domains
by adversarial augmentation by constructing virtual tasks learned through adver-
sarial perturbations. A model trained on such virtual tasks becomes resilient to
meta-train and meta-test domain shifts. While adversarial perturbations are
central to our approach, we use it to tackle a different problem, support query
distribution shifts inside a task for few-shot meta-learning.

3 Methodology

3.1 Preliminaries

Notations. A typical ML setup has three phases - meta-train M , meta-
validation Mv and meta-test Mt. A model is trained on M and evaluated on Mt.
Mv is used for hyperparameter tuning and model selection. The dataset (C,D)
comprising of classes and domains is partitioned into (CM ,DM ), (CMv

,DMv
),

and (CMt
,DMt

) corresponding to the phases M , Mv and Mt, respectively. Each
phase is a collection of tasks and every task T0 is composed of a support set
TS0 and a query set TQ0 . The support set TS0 = {{xc

k, yc
k}K

k=1}N
c=1 and query

set TQ0 = {{x∗c
q , y∗c

q }Q
q=1}N

c=1 contain (example x, label y) pairs from N -classes
with K and Q examples per class, with the label of meta-test query instances
being used only for evaluation.

The classical few-shot learning setup does not consider diverse domains. The
tasks are sampled from a common distribution T0. A model meta-trained on
tasks sampled from T0 learns representations that extend to the disjoint meta-
test tasks from the same distribution. Given a task T0 (support-query pair
{TS0 , TQ0}), few-shot learning learns a classifier φ using TS0 , which correctly
categorizes instances of TQ0 . A model parameterized by θ is meta-trained on
a collection of tasks sampled from T0 using a bi-level optimization procedure.
First, θ is adapted on the tasks’ support set TS0 to obtain φ. Then φ is evaluated
on the query set TQ0 to estimate query loss L∗, which is used to update θ. The
model is meta-trained according to the objective min

θ∈Θ
E TQ0

[L∗(φ, TQ0)], where

φ ← θ − α∇θL(θ;TS0); L and L∗ are the losses of the model on the support
and query sets respectively. Note that ML approaches such as ProtoNet [16] and
MatchingNet [27] do not require adaptation, and hence θ = φ.

Support-Query Distribution Shift. In a classical few-shot learning setup,
the domain is constant across M,Mv,Mt phases and within the tasks. So, in
addition to a common distribution T0 over tasks, a shared distribution exists
even at the task composition level, i.e., TS0 = TQ0 , where TS0 and TQ0 are the
distributions on support and query sets respectively. A more pragmatic case is
that of SQS, wherein a distribution mismatch occurs between the support and
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query sets within a task. Let DM and DMt
be the set of domains for the M and

Mt phases. We skip Mv for convenience, but it follows the same characteristics
as M and Mt. We define our version of the support query shift problem termed
SQS+ illustrated in the Fig. 1 (case c) as follows.

Definition 1. (SQS+) The support and query sets of every meta-train task
come from the domain DM and share a common distribution TS0 = TQ0 . Let
DMt

S ,DMt

Q ∈ DMt
be the support and query domains for a meta-test task. The

SQS+ setting is characterized by an unknown shift in the support and query
domains of a meta-test task, DMt

S �= DMt

Q (introducing a shift in the support
and query distributions TS0 �= TQ0), along with the standard SQS assumption of
disjoint meta-train and meta-test domains - DM ∩ DMt

= ∅.

Bennequin et al. [4] identified the SQS problem, but assumed only a similar
but disjoint SQS in the meta-train and meta-test datasets. A model learned
on such a meta-train set is compelled to extract shift-invariant features during
adaptation on the support set to reduce L∗ on query sets. Although DM and
DMt

are disjoint, they share a latent structure that facilitates learning of shift-
invariant features on DM that can be extended to DMt

. This makes the learned
model impervious to SQS in the meta-test set. SQS+, on the other hand, is
more general and challenging. We neither anticipate the occurrence of SQS in
the meta-test set nor maintain a common structure between the meta-train and
meta-test SQS’s. Relaxing the shared structure constraint between DM and DMt

removes the need for prior access to the meta-test set (consequently its domains)
to imbibe SQS in meta-train tasks. Hence, we tackle a more challenging problem
of learning a resilient model for an unknown meta-test SQS.

A model trained using the classical ML objective has not encountered support
and query set shifts during meta-training. Thus the learned representations are
not shift-invariant, due to which the model does not generalize to the unknown
meta-test SQS. Bennequin et al.’s [4] transductive optimal transport (OT)-based
solution to bridge the gap between the support and query shifts could also be
adopted SQS+. However, the solution needs access to unlabeled query sets during
meta-training and meta-testing, which is unavailable in our setting. We propose
an inductive adversarial query projection (AQP) strategy to address SQS+ that
can also work in the vanilla SQS setting.

3.2 Adversarial Query Projection (AQP)

Without leveraging unlabelled meta-test query instances, our solution induces
the hardest distribution shift for the meta-model’s current state. For a task T0,
we simulate the worst distribution shift by adversarially perturbing its query
set TQ0 such that the model’s query loss L∗ maximizes. Let H be the task
composition space, i.e., H is the distribution of support and query distributions
such that TQ0 ∼ H and TQ ∼ H. Let TQ0 and TQ be the samples belonging to
TQ0 and TQ respectively (we occasionally denote TQ ∼ H because TQ ∼ TQ ∼ H,
to improve readability). Also, let Θ be the parameter space with θ, φ ∼ Θ, and
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d : H × H → R+ be the distance metric that satisfies d(TQ0 , TQ0) = 0 and
d(TQ, TQ0) ≥ 0. We consider a Wasserstein ball B centered at TQ0 with radius
ρ denoted by Bρ(TQ0) such that:

Bρ(TQ0) = {TQ ∈ H : Wd(TQ, TQ0) ≤ ρ}

where Wd(TQ, TQ0) = inf
M∈π(TQ,TQ0 )

EM [d(TQ, TQ0)] is the Wasserstein distance

that measures the minimum transportation cost required to transform TQ0 to
TQ, and π(TQ, TQ0) denotes all joint distributions for (TQ, TQ0) with marginals
TQ and TQ0 .

AQP aims to find the most challenging query distribution TQ for an original
query distribution TQ0 that lies within or on the Wasserstein ball Bρ(TQ0). The
hardest perturbation to the query distribution TQ0 is the one that maximizes
the model’s query loss L∗. Updating the model using such difficult query dis-
tribution TQ improves its generalizability. Further, the transformation of TQ0

into TQ induces a distributional disparity in a new virtual task comprising of
the original support set from TS0 and the projected query set from TQ. A model
adapted to such virtual tasks is compelled to extract the shift-invariant repre-
sentations from TS0 ∼ TS0 transferable to TQ ∼ TQ to reduce the query loss
L∗. As adversarial perturbations are adaptive to the model’s state, they do not
have a monotonic structure throughout the meta-training phase. The evolving
augmentations expose the model to diverse SQS. A model meta-trained on such
virtual tasks with different SQ shifts learns to extract diverse shift-invariant rep-
resentations increasing the model’s endurance to unknown meta-test SQS. The
simultaneous restrain of TQ to a Wasserstein ball radius ρ ensures TQ does not
deviate extensively from TQ0 , and TQ, TQ0 share the label space, and TQ0 , TQ ∈ H
is maintained. Thus the newly-framed meta-objective is:

min
θ∈Θ

sup
Wd(TQ,TQ0 )≤ρ

E(TQ∼ TQ) [L∗(φ, TQ)] (1)

where φ ← θ−α∇θL(TS0 ; θ). As Eq. 1 is intractable for an arbitrary ρ, we aim to
convert this constrained optimization problem to an unconstrained optimization
problem for a fixed penalty parameter γ ≥ 0 as given below:

min
θ∈Θ

sup
TQ

{
ETQ

[L∗(φ, TQ)] − γWd(TQ, TQ0)
}

(2)

We first show that the unconstrained objective is strongly concave and then
define a shift robust surrogate, ψγ(φ, TQ0), that is easy to optimize.

Theorem 1. For the loss function L∗(φ, TQ) smooth in TQ, a distance metric
d : H × H → R+ convex in TQ and a large penalty γ (by duality small ρ), the
function L∗(φ;TQ) − γd(TQ, TQ0) is γ − L strongly concave for γ ≥ L.

Proof. Deferred to the supplementary material.

We next define a robust surrogate inspired from Sinha et al. [23] for this
unconstrained objective that is the dual of the minimax problem in Eq. 1.
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Theorem 2. Let L∗ : Θ × H → R and d : H × H → R+ be continuous. Let
ψγ(φ;TQ0) = sup

TQ∈H
{L∗(φ, TQ) − γd(TQ, TQ0)} be a shift robust surrogate. For

any query set distribution TQ and any ρ > 0,

sup
TQ:Wd(TQ,TQ0 )≤ρ

ETQ∼TQ
[L∗(φ, TQ)] = inf

γ≥0

{
γρ + ETQ0

[ψγ(φ;TQ0)]
}

and for any γ ≥ 0,

sup
TQ

{
ETQ

[L∗(φ, TQ)] − γWd(TQ, TQ0)
}

= ETQ0
[ψγ(φ;TQ0)]

Using Theorem 2, we arrive at the following surrogate meta-objective:

min
θ∈Θ

{
ETQ0

[ψγ(φ;TQ0)]
}

(3)

Thus, meta-optimizing the robust surrogate involves maximizing the loss L∗

on adversarial query projections TQ while simultaneously restraining TQ to a ρ
distance from TQ0 . We now show the existence of the adversarial projection for
an original query set using the results from [5,29].

Theorem 3. Let L∗ : Θ × H → R be L-Lipshitz smooth and d(., TQ0) be a

μ-strongly convex for each TQ0 ∈ H. If γ >
L
μ

then there exists a unique T̂Q

satisfying

T̂Q = arg Sup
TQ∈H

{L∗(φ, TQ) − γd(TQ, TQ0)} (4)

and
∇θψγ(φ, TQ0) = ∇θL

∗(θ; T̂Q) (5)

Proof. Deferred to the supplementary material.

Remark 1. L∗(φ, TQ)−γd(TQ, TQ0) is a γ−L/μ strongly concave function for γ ≥
L/μ and so L∗(φ, TQ)−γd(TQ, TQ0) admits one and only one unique maximizer
T̂Q (μ = 1 for Euclidean distance).

Estimation of AQP. To find the adversarial query projection, we approximate
Eq. 4 by employing gradient ascent with early stopping on the query set. We
consider a task T0 = {TS0 ∪ TQ0} and let {X,Y } and {X∗, Y ∗} be the set of
all instance-label pairs in TS0 and TQ0 , respectively. We propose algorithm 1 to
induce SQS in the meta-train tasks. The original query instances X∗ initialize
the worst-case query augmentations X∗

w. We perform an iterative gradient ascent
on X∗ using L∗, resulting in an augmented query set X∗

w. This augmented query
set X∗

w has distributional disparity with original support set X. Early stopping
by Adv iter and initializing X∗

w with X∗ regularizes (−γd(TQ, TQ0)) and ensures
X∗

w does not deviate extensively from X∗. The algorithm returns a virtual task
with original support X and projected query X∗

w, which is used to update θ.
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Algorithm 1: Adversarial Query Projection AQP (TS0 , TQ0)
Input: Task Support and Query Sets - (TS0 = {X,Y }, TQ0 = {X∗, Y ∗}),
model parameters φ
X∗

w ← X∗

for i = 0 to Adv iter do
X∗

w ←− X∗
w + η∇X∗

w
L∗

i (φ,X∗
w)

end
TQ = {X∗

w, Y ∗}
return (TS0 ∪ TQ)

4 Experiments and Results

We design experiments to investigate the challenging nature of our proposed
SQS+ benchmark and empirically validate the efficacy of the proposed AQP
over the state-of-the-art approach [4] to address SQS in inductive settings. We
consider Cifar 100, miniImagenet, tieredImagenet, FEMNIST, and their state-
of-the-art SQS variants for evaluation. We also demonstrate the AQP’s efficiency
on our proposed datasets (introduced in Sect. 4.1 and elaborated in the supple-
mentary material). We used Conv4 models [4] for Cifar 100, FEMNIST and their
variants, and ResNet-18 [16] for miniImagenet, tieredImagenet, and their exten-
sions. We use 32×32 images for Cifar 100, 28×28 for FEMNIST, and 84×84 for
miniImagenet and tieredImagenet. We next present the implementation details,
followed by the contributions to FewShiftBed and empirical investigations.

4.1 Implementation Details

Following [4], we fix the meta-learning rate as 0.001 for all approaches (Ind OT,
AQP), models (ProtoNet, MatchingNet), and datasets (Cifar 100, miniImagenet,
tieredImagenet, FEMNIST, and their variants) and learn the models for 60,000
episodes. We perform a grid search using Ray over 35 configurations for 12000
episodes to find the optimal hyper-parameters. The search space is shared for
all approaches, datasets, and models. The hyper-parameters of regularization in
Ind OT and AQP’s adversarial learning rate are sampled from log uniform distri-
bution in the ranges [15, 50] and [0.001, 1.0], respectively. Further, the number of
iterations required to project data in AQP and Ind OT iterations are randomly
sampled from ranges [2,9] and [500, 1500] (increments of 100), respectively. How-
ever, for Ind OT, we obtained better results on default hyper-parameters than
tuned ones on miniImagenet and its SQS variants. So we fixed its parameters
as mentioned in [4] for all the cases. We report the hyper-parameters (learning
rate (η) and number of iterations (Adv iter)) for AQP in Table 1.
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Table 1. Hyperparameter details of AQP for different datasets and approaches.

Dataset ProtoNet MatchingNet

No SQS SQS SQS+ No SQS SQS SQS+

η Adv iter η Adv iter η Adv iter η Adv iter η Adv iter η Adv iter

Cifar 100 22.0 4 31.0 3 22.0 4 22.0 4 31.0 3 32.0 2

miniImagenet 22.0 4 31.0 3 22.0 4 22.0 4 41.0 8 24.5 5

tieredImagenet 22.0 4 17.0 4 22.0 4 22.0 4 41.0 9 22.0 4

FEMNIST 22.0 4 16.5 2 24.0 2 22.0 4 25.8 5 30.0 8

4.2 Contributions to FewShiftBed

We make significant contributions to the FewShiftBed [4]. Firstly, we have cre-
ated challenging datasets wherein SQS is present only at meta-test time (SQS+).
The SQS+ versions of Cifar 100, miniImagenet, and tieredImagenet datasets are
constructed from their SQS counterparts [4] by removing perturbations from
the meta-train datasets. Similarly, the SQS+ variant of FEMNIST also follows
its SQS counterpart, but the meta-train set contains alpha-numerals from users
randomly. We add these SQS+ versions of benchmark datasets to the testbed.
The perturbations applied to the tasks are entirely modular, i.e., a task may have
augmentation in support, query, both, or none. More details about the datasets
are available in the supplementary material. Secondly, we integrate our theoret-
ically grounded inductive solution, Adversarial Query Projections (AQP), into
the testbed. The AQP implementation is standalone and can be integrated with
any episodic training regimen. We have successfully integrated AQP with ML
approaches like Prototypical and Matching networks [24,27]. Thirdly, we have
also added a hyperparameter optimization module that uses RAY [18] for tun-
ing parameters. We believe these additions improve the usability and coverage
of FewShiftBed to study SQS. The modified FewShiftBed, which includes the
proposed solution, datasets, and experimental setup, is publicly available.1

4.3 Evaluation of SQS+

We first validate that SQS+ is more challenging than the SQS problem [4]. We
train Prototypical and Matching networks on Cifar 100, miniImagenet, tiered-
Imagenet, and FEMNIST on all three settings - No SQS, SQS, and SQS+. We
report the results in Table 2 and observe that for all the datasets, models trained
with both the approaches (Prototypical and Matching network) perform best
in the No SQS setting, followed by SQS and SQS+. In the classical few-shot
setting, meta-train and meta-test phases share the domain, due to which the
meta-knowledge is easily transferable across the phases. However, in SQS, each
task’s support and query set represent different domains, but share a latent
structure, during the meta-train and meta-test phases. In SQS versions of Cifar
100, miniImagenet, and tieredImagenet, both meta-train and meta-test SQS are
characterized by different types of data perturbations. However, in FEMNIST’s
1 https://github.com/Few-Shot-SQS/adversarial-query-projection.

https://github.com/Few-Shot-SQS/adversarial-query-projection
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Table 2. Comparison of ML methods with their Ind OT and AQP counterparts
across Cifar 100, miniImagenet, tieredImagenet, FEMNIST datasets, and their SQS
and SQS+ variants. The results are obtained on 5-way tasks with 5 support and 8
query instances per class except for FEMNIST and its variants, which contains only
one support and one query instance per class. The ± represents the 95% confidence
intervals over 2000 tasks. AQP outperforms classic, and Ind OT-based ML approaches
approximately on all datasets.

Method Test Accuracy

No SQS SQS SQS+ No SQS SQS SQS+

Cifar 100 miniImagenet

ProtoNeT 48.07 ± 0.44 43.15 ± 0.48 40.59 ± 0.69 64.56 ± 0.42 41.68 ± 0.76 35.17 ± 0.78

Ind OT+

ProtoNeT
48.62 ± 0.44 43.62 ± 0.49 41.74 ± 0.65 63.74 ± 0.42 39.84 ± 0.78 34.75 ± 0.80

AQP+

ProtoNeT
48.70 ± 0.42 45.09 ± 0.46 45.06 ± 0.46 66.81 ± 0.42 42.65 ± 0.57 40.61 ±0.60

MatchingNet 46.03 ± 0.42 39.89 ± 0.44 36.63 ± 0.45 59.68 ± 0.43 39.66± 0.54 35.40 ±0.52

Ind OT+

MatchingNet
45.77 ± 0.42 40.82 ± 0.45 37.13 ± 0.47 59.64 ± 0.44 38.25± 0.54 33.22± 0.50

AQP+

MatchingNet
46.53 ± 0.43 42.40 ± 0.46 41.26 ± 0.46 62.29 ± 0.42 42.32 ± 0.52 37.90 ± 0.53

tieredImagenet FEMNIST

ProtoNeT 71.04 ± 0.45 41.59 ± 0.57 38.57 ± 0.65 93.09 ± 0.51 84.36 ± 0.74 82.67 ± 0.77

Ind OT+

ProtoNeT
69.56 ± 0.46 40.08 ± 0.56 35.81 ± 0.58 91.66 ± 0.55 79.64 ± 0.80 76.37 ± 0.84

AQP+

ProtoNeT
69.62 ± 0.45 45.34 ± 0.60 40.94 ± 0.66 94.61 ± 0.45 85.92 ± 0.69 84.42 ± 0.74

MatchingNet 67.85 ± 0.46 43.30 ± 0.56 37.57 ± 0.57 93.69 ± 0.49 85.88 ± 0.69 83.48 ± 0.74

Ind OT+

MatchingNet
67.79 ± 0.46 44.27 ± 0.56 39.24 ± 0.59 93.76 ± 0.48 84.08 ± 0.71 83.09 ± 0.74

AQP+

MatchingNet
68.40 ± 0.45 45.26 ± 0.56 39.39 ± 0.58 93.69 +- 0.49 87.24 ± 0.67 84.98 ± 0.72

SQS variant, meta-train and meta-test SQS is induced due to different writers.
A meta-model trained in this setup becomes partially resilient to the related but
disjoint SQS during meta-testing. A common SQS structure across meta-train
and meta-test sets may not exist. Thus, SQS+ datasets are more challenging,
which is empirically validated by the baseline approach’s poor performance.

4.4 Evaluation of AQP

We compare the efficiency of the proposed AQP and optimal transport (OT)
based state-of-the-art solution for handling vanilla SQS and SQS+ on the bench-
mark datasets. A strong baseline for SQS+ is the inductive version of OT
(Ind OT), where we employ OT only in the meta-train phase to generate pro-
jected support sets using support and query instances of a task. We evaluate
ProtoNet and Matching Networks versions of Ind OT and AQP. Table 2 presents
the results for this evaluation. We observe that the models learned on projected
support data obtained by Ind OT are less robust to both SQS and SQS+ than
the models learned on AQP for all approaches and datasets. Hence, AQP is



626 A. Aimen et al.

better at addressing SQS+ (and SQS), when meta-test unlabeled query instances
are unavailable.

To inspect whether the proposed AQP negatively impacts the models’ gen-
eralization in the absence of meta-test SQS, we evaluate the ML approaches
and their Ind OT and AQP counterparts on classic datasets containing no sup-
port query shifts (No SQS). We observe from Table 2 that AQP does not lead
to degradation in the performance in the absence of SQS, instead improves the
generalizability of the model even when SQS is absent. We note that Ind OT
sometimes deteriorates the model’s performance when SQS is missing. AQP out-
performs both classic methods and their Ind OT versions in almost all cases.

Fig. 2. Impact of adversarially projecting support and query data in a task on the
model’s performance across No SQS and SQS and SQS+ variants of Cifar 100, mini-
Imagenet, tieredImagenet, and FEMNIST datasets.

Following [4], we used a Conv4 backbone for Cifar 100, FEMNIST and their
transformations, and a ResNet-18 [16] backbone for miniImagenet, tieredIm-
agenet, and their variants. Thus, Table 2 not only shows the robustness of a
model trained via AQP on different SQ shifts but also its thoroughness across
architectures. We randomly projecting 25% of the tasks with AQP to reduce
the computational cost. Extending this idea to Ind OT, resulted in a signifi-
cant decline in the performance. We thus maintain the standard-setting [4] for
Ind OT, wherein support sets of all the tasks are projected.

4.5 Ablations

We perform ablations to investigate the sensitivity of the proposed approach
to task characteristics (varying number of support and query shots) and design
choices (support vs query projections).
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Ablation on Projections. We study the impact of adversarially perturbing
support vs query set in a task and evaluate the model’s (ProtoNet) performance
across all settings and datasets. From Fig. 2 we observe perturbing query sets
is empirically more meritorious in 9 out of 12 settings. We measure the model’s
generalizability from in-distribution support to out-of distribution (OOD) query
set in a task by perturbing a query set. The magnitude of loss and hence gradi-
ents on the OOD query set is high, resulting in more meaningful meta-updates.
As performance on the query set directly impacts the meta-update, the model’s
invariance to SQS is directly reflected in the meta-update. On the other hand,
projecting support sets creates potent prototypes (robust adaptation) as adver-
sarial projections distort the images. However, the meta-update may not be
impactful due to the model’s good performance on clean query images.

Fig. 3. Ablation on the number of support and query instances per class on SQS and
SQS+ variants of Cifar 100 and miniImagenet datasets. In (a), we consider 5-way tasks
with 1 and 5 support instances with 16 query instances. In (b), we vary query instances
between 8 and 16 with 5 support instances per class.

Ablation on Support and Query Shots. We ablate the number of shots
per class in the support and query sets, limited to Cifar 100 and miniImagenet
datasets, to inspect the efficacy of our proposed AQP employing a ProtoNet.
AQP outperforms Ind OT when the number of query instances are fixed to 16
per class, and support shots per class vary from 1 to 5 (Fig. 3a). We also vary
the number of query instances per class from 8 to 16 and observe that AQP
surpasses Ind OT with varying query instances (Fig. 3b).
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4.6 Visual Analysis of AQP

We visualize the impact of AQP on the query instances across meta-training
iterations. We train a Prototypical network in a 5-way 5-shot setting on the
SQS+ version of miniImagenet for 150 epochs. Extended results on No SQS and
SQS versions of miniImagenet are presented in the supplementary material. For
better illustration, we fix one task and one instance per class and show the trans-
formation in the query images over meta-train iterations (Fig. 4). The images in
the top row are the original query set, the left column are the query images
impacted by AQP with increasing iterations, and the right column represents
the change mask (in the increasing order of iterations), which is the difference
between the pixel intensities of the original image and its adversarially perturbed
counterpart. We observe gradual increase in the distortions with increasing iter-
ations. This in turn makes the model robust to query instances’ degradation and
thus to the distribution shifts between support and query. As AQP is adaptive
and seeks to inhibit the model’s learning, it increases the degradation in the
query images to maximize the query loss with increasing iterations. This shows
that following an easy to hard curriculum to distort the query contributes to
AQP’s success.
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Fig. 4. Evolution of Adversarial Query Projections across training epochs for SQS+
version of miniImagenet.

However, this experiment also reflects the potential limitations of the pro-
posed AQP. We evaluated AQP in the cases where SQS is characterized by the
perturbations in data (SQS variants of Cifar 100, miniImagenet, and tieredIm-
agenet), and for a small-realistic dataset (FEMNIST and its variants) where
different writers characterize SQS. The masks (Fig. 4) reflect that AQP adds
varying noise to distort the images, which may not resemble complex SQ shifts.
Investigating AQP in more complex SQ shifts, e.g., real to sketch or caricature
pictures, is part of our future work.
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5 Conclusion and Future Directions

This paper proposes SQS+ - a more challenging distribution shift between the
support and query sets of a task in a few-shot meta-learning setup. SQS+
includes an unknown SQ shift in the meta-test tasks, and empirical evidence
suggests SQS+ is a complex problem than the prevalent SQS notion. We pro-
pose a theoretically grounded solution - Adversarial Query Projection (AQP) to
address SQS+ without leveraging unlabelled meta-test query instances. Exhaus-
tive experiments involving AQP on multiple benchmark datasets (Cifar 100,
miniImagenet, tieredImagenet, and FEMNIST - their SQS and proposed SQS+
variants), different architectures, and ML approaches demonstrate its effective-
ness. The future work lies in verifying the effectiveness of AQP in complex SQ
shifts, e.g., shift from real to sketch images and creating datasets corresponding
to these difficult SQ shifts, and integrating AQP with gradient and transduc-
tive ML approaches. We incorporate proposed AQP and SQS+ versions of Cifar
100, miniImagenet, tieredImagenet, and FEMNIST to FewShiftBed and make it
publicly available to encourage research in this direction.
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Abstract. The search for optimal neural network architecture is a well-
known problem in deep learning. However, as many algorithms have been
proposed in this domain, little attention is given to the analysis of wiring
properties that are beneficial or detrimental to the network performance.
We take a step at addressing this issue by performing a massive evalua-
tion of artificial neural networks with various computational architectures,
where the diversity of the studied constructions is obtained by basing the
wiring topology of the networks on different types of random graphs. Our
goal is to investigate the structural and numerical properties of the graphs
and assess their relation to the test accuracy of the corresponding neural
networks. We find that none of the classical numerical graph invariants by
itself allows to single out the best networks. Consequently, we introduce a
new numerical graph characteristic, called quasi-1-dimensionality, which
is able to identify the majority of the best-performing graphs.

Keywords: Deep learning · Artificial neural networks · Neural
architectures · Network analysis · Image classification

1 Introduction

Over the recent years many different neural architectures have been proposed,
varying from hand-engineered solutions [11,13,23] to very complicated, auto-
matically generated patterns produced by Neural Architecture Search (NAS)
algorithms [6,15,19,31]. However, in this vast panorama of searching methods
and benchmarking data, little focus is placed upon analyzing what specific struc-
tural properties of the architectures are related to the performance of the net-
work. Apart from studies revolving around residual connections [25] and the
impact of width or depth of the network [23,29], we still lack an understand-
ing of why certain wiring topologies work better than others. We believe that
addressing this issue would not only increase our knowledge about deep learning
systems but also provide guidelines and principles for constructing new, bet-
ter neural network architectures. Moreover, gathering empirical data linking the
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graph structure of the information flow with the performance could contribute
nontrivial benchmark data for the, yet to be developed, theory.

The aim of this paper is to perform a wide-ranging study of neural network
architectures for which the wiring pattern between the blocks of operations is
based on a variety of random graphs. We focus on analyzing the interrelation of
the structure of the graph with the performance of the corresponding neural net-
work in an image recognition task. This allows us to address some fundamental
questions for deep neural networks such as to what extent does the performance
of the network depends on the pattern of information flow encoded in its global
architecture. Is the performance basically independent of the structure or can
we identify quantitatively structural patterns which typically yield enhanced per-
formance? The goal of this work is to identify and analyze the discriminative
features of neural network architectures. We do not aim at constructing, nor
searching for, an optimal architecture.

Another motivation is the observation that artificial neural networks typically
have a quite rigid connectivity structure, yet in recent years significant advances
in performance have been made through novel global architectural changes like
ResNets, [11] or DenseNets [12]. This has been further systematically exploited
in the field of Neural Architecture Search (see [6] for a review). Hence there is
a definite interest in exploring a wide variety of possible global network struc-
tures. On the other hand, biological neural networks in the brain do not have
rigid structures and some randomness is an inherent feature of networks that
evolved ontogenetically [4]. Contrarily, we also do not expect these networks to
be uniformly random [17]. Therefore, it is very interesting to investigate the
interrelations of structural randomness and global architectural properties with
the network’s performance.

To this end, we explore a wide variety of neural network architectures for
an image recognition task, constructed accordingly to wiring topologies defined
by random graphs. This approach can efficiently produce many qualitatively
different connectivity patterns by alternating only the random graph genera-
tors [28]. The nodes in the graph correspond to a simple convolutional compu-
tational unit, whose internal structure is kept fixed. Apart from that, we do not
impose any restrictions on the overall structure of the neural network. In par-
ticular, the employed constructions allow for modeling arbitrary global (as well
as local) connectivity. We investigate a very diversified set of graph architec-
tures, which range from the quintessential random, scale-free, and small-world
families, through some edge-direction sensitive constructions, to graphs based
on fMRI data. Altogether we conduct an analysis of more than 1000 neural net-
works, each corresponding to a different directed acyclic graph1. Such a wide
variety of graphs is crucial for our goal of analyzing the properties of the net-
work architecture by studying various characteristics of the corresponding graph
and examining their impact on the performance of the model.

We find that among more than 50 graph-theoretical properties tested by us in
this study, none is able to distinguish, by itself, the best performing graphs. We

1 The code is available at https://github.com/rmldj/random-graph-nn-paper.

https://github.com/rmldj/random-graph-nn-paper
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are able to identify one group of the top graphs by introducing a new numerical
graph criterion, which we refer to as quasi-1-dimensionality. This criterion cap-
tures graphs characterized by mostly local connections with a global elongated
structure, providing guidelines for beneficial biases in the architectural design of
neural networks.

2 Related Work

Neural Architecture Search. Studies undertaken over the recent years indicate
a strong connection between the wiring of network layers and its generaliza-
tion performance. For instance, ResNet introduced by [11], or DenseNet pro-
posed in [12], enabled successful training of very large multi-layer networks, only
by adding new connections between regular blocks of convolutional operations.
The possible performance enhancement that can be gained by the change of
network architecture has posed the question, whether the process of discover-
ing the optimal neural network topology can be automatized. In consequence,
many approaches to this Neural Architecture Search (NAS) problem were intro-
duced over the recent years [6]. Among others, algorithms based on reinforcement
learning [2,31], evolutionary techniques [19] or differentiable methods [15]. Large
benchmarking datasets of the cell-operation blocks produced in NAS have been
also proposed by [29] and extended by [5].

The key difference between NAS approaches an the present work is that
we are not concentrating on directly optimizing the architecture of a neural
network for performance, but rather on exploring a wide variety of random graph
architectures in order to identify what features of a graph are related to good or
bad performance of the associated neural network. Thus we need to study both
strong and weak architectures in order to ascertain whether a given feature is,
or is not predictive of good performance. We hope that our findings will help to
develop new NAS search spaces.

Random Network Connectivity. There were already some prior approaches which
focused on introducing randomness or irregularity into the network connectivity
pattern. The work of [21] proposed stochastic connections between consecutive
feed-forward layers, while in [13] entire blocks of layers were randomly dropped
during training. However, the first paper which, to our knowledge, really inves-
tigated neural networks on random geometries was the pioneering work of [28].
This paper proposed a concrete construction of a neural network based on a
set of underlying graphs (one for each resolution stage of the network). Several
models based on classical random graph generators were evaluated on the Ima-
geNet dataset, achieving competitive results to the models obtained by NAS or
hand-engineered approaches. Using the same mapping, [20] investigated neural
networks based on the connectomics of the mouse visual cortex and the biolog-
ical neural network of C.Elegans, obtaining high accuracies on the MNIST and
FashionMNIST datasets.

Although the works discussed above showed that deep learning models based
on random or biologically inspired architectures can indeed be successfully
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trained without a loss in the predictive performance, they did not investigate
what kind of graph properties characterize the best (and worst) performing
topologies. The idea of analyzing the architecture of the network by investi-
gating its graph structure has been raised in [30]. However, this work focused
on exploring the properties of the introduced relational graph, which defined the
communication pattern of a network layer. Such a pattern was then repeated
sequentially to form a deep model. In addition, [16] have also analyzed machine
learning models with the tools of network science, but their research was devoted
to Restricted Boltzmann Machines.

The main goal of our work is to perform a detailed study of numerical graph
characteristics in relation to the associated neural network performance. Con-
trary to [30] we are not concentrating on exploring the fine-grained architecture
of a layer in a sequential network. Instead, we keep the low-level operation pat-
tern fixed and encapsulated in the elementary computational node. We focus on
the high-level connectivity of the network, by analyzing the graph characteristics
of neural network architectures based on arbitrary directed acyclic graphs.

3 From a Graph to a Neural Network

Fig. 1. The graph to neural network mapping. First, a graph is sampled from a pre-
defined set of random graph generators. Next, the graph is transformed to a DAG
by selecting a node ordering and enforcing the connections to be oriented accordingly
to that ordering. Such DAG is treated as a blueprint for a neural network architec-
ture. Nodes with different colors work on different resolutions of the feature maps. The
beige (interstage) edges indicate the connections on which a resolution reduction is per-
formed. The black edges (intrastage) link nodes that work within the same resolution.
Best viewed in color.

In order to transform a graph into a neural network, we adopt the approach
presented in [28]. In that paper, a graph is sampled from a predefined list of
generators and transformed into a directed acyclic graph (DAG). Next, the DAG
is mapped to a neural network architecture as follows:

The edges of the graph represent the flow of the information in the network
and the nodes correspond to the operations performed on the data. The com-
putation is performed accordingly to the topological order. In each node, the
input from the ingoing edges is firstly aggregated using a weighted sum. Next,
a ReLU - Conv2d - Batch-Norm block is applied. The result of this procedure is
then propagated independently by each outgoing edge. When the computations
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Fig. 2. (a): The node is represented by the green-shaded area. The black arrows illus-
trate the graph edges labeled with the associated weights. The gray arrows indicate the
ordering of the operations performed in the node as well as the residual connection.
(b): The gray nodes (orphan nodes) in the DAG either do not have an input from
previous stages of processing or do not have an output. Hence we add the red edges
from the immediately preceding node or to the immediately succeeding node.

leaves the last node, a global average pooling is performed, followed by a dense
layer with the number of output neurons equal to the target dimension.

The network nodes are divided into three sets of equal size, referred to as
stages (denoted by different colors in the figures). The first stage operates on the
original input resolution, with the number of channels C being set in the first
(input) node of the graph. The subsequent stages operate on a decreased input
resolution and increased number of output channels by a factor of 2, with respect
to the previous stage. In order to perform the downsampling, on every edge that
crosses two stages the same block of operations as in a standard node is executed,
but with the use of convolutions with stride 2 (when crossing subsequent stages)
or stride 4 (when crossing from the first stage to the last). In the figures in the
present paper, we represent such resolution-changing edges with beige color, and
refer to them as interstage. See Fig. 1 for a visualization of the above described
mapping. We introduce three modifications to this procedure:

Firstly, in [28] there were separate random graphs for each of the three stages
of the neural network. This means that subsequent stages were connected only by
one edge. In our case, we have a random graph for the whole network. Dimen-
sionality reduction is performed on a graph edge when necessary, by a node
with stride 2 or 4 convolution, as described above. In consequence, we do not
bias the model to have a single bottleneck connection between the computations
performed on different spatial resolutions. Moreover, we observe that the intro-
duction of such a bottleneck generally deteriorates the network performance (we
discuss this issue in Sect. 6.2).

Secondly, we introduce an additional residual connection from the aggregated
signal to the output of the triplet block in the node. The residual connection
always performs a projection (implemented by a 1×1-convolution, similar to
ResNet C-type connections of [11] — see Fig. 2a). The residual skip connection
shifts the responsibility of taking care of the vanishing gradient problem from
edges to the nodes, allowing the global connectivity structure to focus on the
information flow, with the low-level benefits of the residual structure already
built-in.
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Thirdly, we improve the method of transforming a graph into a DAG so
that it automatically takes into account the graph structure. This is achieved
by ordering the nodes accordingly to a 2D Kamada-Kawai embedding [14] and
setting the directionality of an edge from the lower to the higher node number.
Any arising orphan nodes like the ones in Fig. 2b are then fixed by adding a
connection from the node with the preceding number or adding a connection
to the node with the succeeding number. We observe that this approach leads
to approximately 2x fewer orphan nodes than the random ordering, and circa
1.5x less than the original ordering returned by the generator, which was used
in [28]. A detailed description of the DAG transformation process together with
a comparison of various node orderings can be found in Appendix B and C.

4 The Space of Random Graphs and DAGs

We performed a massive empirical study of over 1000 neural network architec-
tures based on 5 graph families and 2 auxiliary constructions. We summarize
below their main characteristics.

– Erdős-Rényi (er) – In this model, given a parameter p ∈ [0, 1], each possible
(undirected) edge arises independently of all the other edges with probabil-
ity p [7]. Small p usually results in sparse graphs, while increasing p increases
also the chance of obtaining a graph with dense connections.

– Barabási-Albert (ba) – Given a set of m initially connected nodes, new nodes
are added to the graph iteratively. In each step, a new node is connected with
at most m other nodes with probability proportional to the nodes’ degrees.
The Barabási-Albert model favors the formation of hubs, as the few nodes
with a high degree are more likely to get even more connections in each
iteration. Therefore graphs produced by this model are associated with scale-
free networks [3].

– Watts-Strogatz (ws) – The Watts-Strogatz model starts with a regular ring
of nodes, where each of the nodes is connected to k of its nearest neighbors.
Then, iteratively, every edge (u, v) which was initially present in the graph is
replaced with probability p by an edge (u,w), where the node w is sampled
uniformly at random from all the other nodes. The graphs obtained by this
method tend to have the small-world property [26].

– Random-DAG (rdag) – The models mentioned so far produce undirected
graphs, which need to be later transformed to DAGs. We choose to also study
models produced by an algorithm that directly constructs a random DAG.
An advantage of this algorithm over other existing DAG-generating methods
is that it allows to easily model neural networks with mostly short-range or
mostly long-range connections, which was the main reason for implementing
this construction. This procedure and its parameters are thoroughly explained
in Sect. 4.1.

– fMRI based (fmri) – In addition to the above algorithmic generators we also
introduce a family of graphs that are based on resting-state functional MRI
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data. We use the network connectomes provided by the Human Connectome
Project [24] obtained from the resting-state fMRI data of 1003 subjects [22].
As input for graph construction, we use the released (z-score transformed)
partial correlation matrix for 50- and 100-component spatial group-ICA par-
cellation. We describe in detail the exact method of deriving DAGs from the
fMRI partial correlation matrices in Appendix D. Apart from the number of
nodes, this family has a single thresholding parameter.

Moreover, we considered two auxiliary types of graphs:

– Bottleneck graphs (bottleneck) – For some graphs from the above fami-
lies, we introduced a bottleneck between the various resolution stages (see
Sect. 6.2).

– Composite graphs (composite) – We obtained these graphs by maximiz-

ing in a Monte-Carlo simulation the expression
(

log_num_paths
num_nodes

) 1
2 − 2grc −

avg_clustering where grc is the global reaching centrality of the graph. This
construction was motivated by a certain working hypothesis investigated at
an early stage of this work which was later discontinued. Nevertheless, we
kept the graphs for additional structural variety.

For each of the above families, we fix a set of representative parameters2.
Then for every family-parameters pair, we sample 5 versions of the model by
passing different random seeds to the generator. Using this procedure we create
475 networks with 30 nodes and 545 networks with 60 nodes. We train all net-
works for 100 epochs with the same settings on the CIFAR-10 dataset3. For each
network, we set the number of initial channels C in order to obtain approximately
the same number of parameters as in ResNet-56 (853k).

4.1 Direct Construction of Random DAGs

In order to study some specific questions, like the role of long-range versus short-
range connectivity, we implement a procedure for directly constructing random
DAGs that allows for more fine-grained control than the standard random graph
generators and is flexible enough to generate various qualitatively different kinds
of graph behaviors. As an additional benefit, we do not need to pass through the
slightly artificial process of transforming an arbitrary undirected graph to DAG.

We present the method in Algorithm 1. We start with N nodes, with a pre-
scribed ordering given by integers 0, . . . , N−1. For each node i, we fix the number
of outgoing edges nout

i (clearly nout
i < N−i). Here we have various choices leading

to qualitatively different graphs. For example, sampling nout
i from a Gaussian and

rounding to a positive integer (or setting nout
i to a constant) would yield approx-

imately homogeneous graphs. Taking a long-tailed distribution would yield some
outgoing hubs. One could also select the large outgoing hubs by hand and place
them in a background of constant and small nout

i .
2 Refer to Appendix I for a full list.
3 We provide a full description of the training procedure in Appendix A.
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Algorithm 1. Random DAG
1: Input: nodes i = 0, . . . , N − 1,

number of outgoing edges nout
i ,

size of a local neighbourhood B,
real α, function f(x)

2: for i = 0 to N − 2 do
3: if node i + 1 does not have an ingoing connection then
4: make an edge i → i + 1
5: end if
6: while not all nout

i outgoing edges chosen do
7: Make randomly the edge i → j with probability pj = wij∑

k>i wik

8: where the weight wij is given by
9: wij = (nout

j )αf
(� j−i

B �)
10: provided j > i and i → j does not exist so far
11: end while
12: end for

For each node i we then randomly choose (with weight wij given in Algo-
rithm1) nodes j > i to saturate the required nout

i connections. The freedom
in the choice of weight wij gives us the flexibility of preferential attachment
through the parameter α, and the possibility of imposing local or semi-local
structure through the choice of the weighting function f

(� j−i
B �).

Different choices of f lead to different connectivity structures of the DAG.
An exponential f(x) = exp(−Cx) results in short-range connections and local
connectivity. The power law scaling f(x) = 1/x produces occasionally longer
range connections, while f(x) = 1 does not imply any nontrivial spatial structure
at all. In this work, we investigated all three of the above possibilities. Since we
do not want the integer node labels i or j to be effectively a 1d coordinate, we
define a local neighborhood size B so that differences of node labels of order
B would not matter. This motivates the form of the argument of the weighting
function f(x) ≡ f

(� j−i
B �), where �a� denotes the floor of a. In the simulations

we set B = 5 or B = 10.
Through the choice of the function f(.), we can model graphs with varying

proportions of short- to long-range connections with the parameter B defining
the size of the local neighborhood. The choice of multiplicity distribution of nout

i

allows to model, within the same framework, a uniform graph, a graph with
power law outgoing degree scaling, or a graph with a few hubs with very high
multiplicity. Finally, the parameter α enables to control preferential attachment
of the connections. Consequently, the algorithm allows to produce DAGs with
diverse architectural characteristics well suited for neural network analysis.

Let us note that the presented procedure is somewhat similar to the latent
position random graph model [1] with graph features Xi = (i, nout

i ) and kernel
κ(Xi,Xj) = (nout

j )αf
(� j−i

B �). However, in such a case, the kernel would still
need to be normalized by the weights of all nodes smaller than j, as in line 7 of
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Fig. 3. (a): One of the worst networks with 30 nodes. The worst networks are typically
characterized by sparse connections and long chains of operations. For more examples
of the worst networks see Appendix J. (b): The test accuracy versus selected network
features. We indicate the best (equal or above 93.25%) models as red, the worst (below
92%) as blue, and the rest as gray. The first presented feature is the length of the
shortest path between the input and the output node. The second one is the Wiener
index [27], and the third is closeness centrality [8]. All features are rescaled using min-
max scaling (For more details on data processing refer to Appendix F).

Algorithm1. Moreover, such formulation could produce DAGs with disconnected
components, whereas in our setting we ensure that every node n > 0 has an
incoming connection (see lines 3–4).

5 Results

In this Section, we first exhibit the inadequacy of classical graph invariants to
select the best performing networks and describe the generic features of the worst
networks. Then we introduce a class of well-performing networks (which we call
quasi-1-dimensional or Q1D) and provide their characterization in terms of a
novel numerical graph invariant.

5.1 The Inadequacy of Classical Graph Characteristics

The key motivation for this work was to understand what features of the under-
lying graph are correlated with the test performance of the corresponding neural
network. To this end, for the analysis, we use 54 graph features, mostly provided
by the networkx library [10] as well as some simple natural ones, like the loga-
rithm of the total number of paths between the input and output or the relative
number of connections between stages with various resolutions. For a full list of
the features see Appendix F.

It turns out that none of the classical features by itself is enough to isolate the
best-performing networks. However, the worst networks form outliers for several
of the tested graph properties and thus can be more or less identified (see Fig. 3b
for a representative example and more plots in the Appendix H).

5.2 The Worst Networks

As mentioned before, several investigated network features seem to be able to
discriminate the worst networks. In Fig. 3b features: the minimal length of a path
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between the input and output node, the Wiener index [27], and the closeness
centrality [8] of the output node. The Wiener index is the sum of the lengths of
all-pair shortest paths and the closeness centrality of a node is the reciprocal of
the average shortest path distance to that node.

The above properties show that the worst networks are usually characterized
by long distances between any two nodes in the graph, resulting in long chains
of operations and sparse connections. An example of such a graph is presented
in Fig. 3a. In addition, we verified that purely sequential 1d chain graphs (node
i is connected only to node i + 1) gave indeed the worst performance.

Fig. 4. (a): The best network with 30 nodes (left), with 60 nodes (center) and an
example of a highly ranked fMRI based network. For more examples of the best net-
works see Appendix J. (b): The visualization of the Q1D criterion. The green triangles
indicate graphs without a global elongated structure and the gray diamonds are used
to represented the elongated graphs with bottlenecks. Networks with Q1D property are
drawn as red dots. The black vertical line illustrates the threshold τ = 0.25. The Q1D
criterion for this threshold successfully selects the best networks from the elongated
group.

5.3 The Best Networks

Crucial to our results is the observation that the best networks belonged pre-
dominantly to the Random DAG category with short-range connections (i.e.
exponential f(x)). One generic visual feature of these graphs is that they have
a definite global ordering in the feed-forward processing sequence defining the
1d structure, yet locally there are lots of interconnections that most probably
implement rich expressiveness of intermediate feature representations (see the
first two graphs in Fig. 4a). We call such graphs quasi-1-dimensional (quasi-1d
for short). These models have a very large number of paths between the input and
the output. This is, however, not the feature responsible for good performance,
as maximally connected DAGs that have the maximal possible number of paths
do not fall into this category and give worse results (see Fig. 8 in Appendix). In
contrast, filament-like, almost sequential models such as some Watts-Strogatz
networks (recall Fig. 3a) have in fact significantly worse performance, so sequen-
tiality by itself also does not ensure good generalization.

We would like to formally characterize these graphs purely in terms of some
numerical graph features without recourse to their method of construction. This
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is not a priori a trivial task. This is because one has to be sensitive to the globally
elongated structure. However, the filament-like, almost sequential graphs are
quite similar in this respect, yet they yield very bad performance. So numerical
graph properties which are positively correlated with a stretched topology tend
to have similar or even larger values for the very bad graphs. A condition that
can eliminate the filament-like graphs is nbottlenecks = 0, where a bottleneck edge
is defined by the property that cutting that edge would split the graph into two
separate components.

In order to numerically encode the elongated character of a network, we
perform PCA on the set of node coordinates returned by the Kamada-Kawai
embedding and require a sufficiently anisotropic explained variance ratio. Note
that despite appearances this is a quite complex invariant of the original abstract
graph, as the Kamada-Kawai embedding depends on the whole global adja-
cency structure through the spring energy minimization. Hence the nature of
the embedding encodes nontrivial relevant information about the structure of
the graph. We define then the elongation of the network as

pca_elongation = 2 · (variance_ratio − 0.5), (1)

where variance_ratio is the percentage of the variance explained by the compo-
nent corresponding to the largest eigenvalue computed during the PCA decom-
position. Networks with very large pca_elongation tend to have only one main
computational path, while small pca_elongation is associated with graphs with
many global inter-connections. For instance, almost purely sequential graphs
have pca_elongation close to 1.0, while for fully connected DAGs this property
is equal to 0. In order to use this continuous feature to define a discrete class
of graphs with a visible hierarchical structure of the Kamada-Kawai embed-
ding we need to specify a threshold τ and consider only graphs for which
pca_elongation > τ . Accordingly, we formally define the quasi-1d graphs (Q1D)
as satisfying the condition:

pca_elongation > τ and nbottlenecks = 0, (2)

This condition is visualized in Fig. 4b. The first term of the Q1D definition
accounts for networks that have a global one-dimensional order (like the two
first networks in Fig. 4a). The second condition eliminates graphs containing
bottlenecks which form the bulk of badly performing elongated graphs (denoted
by gray dots in Fig. 4b). In our analysis, we set τ = 0.25, which is a visual
estimate motivated by Fig. 4b. This value is of course not set in stone and could
just as well be a bit higher or lower. The rough choice of τ is also corroborated
by the fact that the Q1D criterion for this threshold is strongly correlated with
performance, as we discuss below.

We find that among the top 50 networks, 68% have the Q1D property. More-
over, out of the remaining 970 graphs, only 17% are Q1D. A breakdown of the
top-50 and bottom-50 by specific graph families and the Q1D property is pre-
sented in Table 1. One may observe that Q1D successfully selects almost every of
the best performing rdags and half of the fmri graphs (fourth column). Those
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Table 1. For each graph family we report in percentage the number of all graphs
having Q1D property, the number of graphs in top-50, the share of the given family
in top-50 and the number of Q1D graphs within the ones present in top-50, followed
by analogous statistics for the graphs in bottom-50. The Q1D criterion selects almost
every best performing rdag and more than half fmri graphs (fourth column), which are
the majority in top-50 (second column). None of the worst performing graph satisfies
the Q1D criterion (last column).

model with Q1D in share in Q1D in share in Q1D
property top-50 top-50 top-50 bot-50 bot-50 bot-50

ba 0.00 4.00 4.00 0.00 0.00 0.00 0.00
bottleneck 0.00 0.67 2.00 0.00 6.67 20.00 0.00
composite 0.00 0.00 0.00 0.00 0.00 0.00 0.00
er 1.33 2.67 4.00 0.00 2.67 4.00 0.00
fmri 32.86 12.86 18.00 55.56 1.43 2.00 0.00
rdag 66.98 13.95 60.00 93.33 0.93 4.00 0.00
ws 7.05 1.36 12.00 16.67 7.95 70.00 0.00
all 19.50 4.90 – 68.00 4.90 – 0.00

two families are also the most representative among the top-50. Furthermore,
none of the graphs in the bottom-50 has the Q1D property (last column).

The Q1D criterion is able to single out one type of the best performing net-
works, being at the same time agnostic about the details of the graph generation
procedure. This is especially important considering the failure of classical graph
features in this regard.

Finally, let us also mention that there are some qualitatively different net-
works (see for example the fmri network in Fig. 4a) in the fmri class as well
as in the ba class, which achieve good performance. Those networks are often
not elongated (as indicated by several green points with high test accuracy in
Fig. 4b) and therefore do not satisfy the Q1D criterion. It seems, however, quite
difficult to identify a numerical characterization that would pick out the best
networks from this category.

6 Impact on Architecture Design

The key components of the Q1D graphs are elongated structure and lack of
bottlenecks. In this section we further analyze the importance of those charac-
teristics as guidelines in the design of neural network connectivity. We start with
a study of the effect of short- vs. long-range connections in the rdag graphs and
follow with a commentary about the role of many resolution-changing pathways.
Finally, we also perform a comparison of the CIFAR-10 results with results on
CIFAR-100 in order to ascertain the consistency of the identification of the best
and worst-performing network families.
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Fig. 5. The CIFAR-10 test accuracy averaged over different versions (random seeds) of
random DAG models with 30 nodes and constant number (2–5) of output edges nout

i .
The symbol exp3 stands for exponential weighting function f(x), pow1 for a power
law and one for a constant. It may be observed that the networks with primarily local
connections (exp3 - the first bar in each set) have the best performance.

6.1 Long- vs. Short-range Connections

The algorithm for directly generating random DAGs allows for modifying, in a
controllable way, the pattern of long- versus short-range connectivity. This is
achieved by changing the function f(x) from an exponential, leading to local
connections, through a power law, which allows for occasional long-range con-
nections, to a constant function, which does not impose any spatial order and
allows connections at all scales. The results are presented in Fig. 5. We observe
that within this class of networks the best performance comes from networks
with primarily short-range connections and deteriorates with their increasing
length.

Fig. 6. The CIFAR-10 (y-axis)
and CIFAR-100 (x-axis) test accu-
racies. Each datapoint contains
results averaged over the ran-
dom versions of the models. The
results are strongly correlated,
yielding Pearson correlation coef-
ficient equal to 0.868.

This may at first glance seem counter-
intuitive, as skip connections are typically
considered beneficial. However, the effect of
long-range connections which is associated
with easier gradient propagation is already
taken care of by the residual structure of each
node in our neural networks (recall Sect. 3).
One can understand the deterioration of the
network performance with the introduction
of long-term connections as coming from an
inconsistency of the network with the natu-
ral hierarchical semantic structure of images.
This result leads also to some caution in rela-
tion to physical intuition from critical sys-
tems where all kinds of power law properties
abound. The dominance of short-range over
long-range connections is also consistent with
the good performance of quasi-1-dimensional
networks as discussed in Sect. 5.3.
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6.2 Influence of Bottlenecks

As noted in Sect. 3, one difference between the networks of [28] and our con-
struction was that in the former case, there were separate random graphs for
each processing stage of a specific resolution, which were connected with a single
gateway. In our case, we have a single graph, which encompasses all resolutions.
Thus generally there are many independent resolution-reducing edges in the net-
work instead of a single one. In order to verify whether such a single gateway
between different resolutions is beneficial or not, for a selected set of graphs,
we artificially introduced such a bottleneck by first erasing all inter-resolution
edges. Next, we create a single edge from the last node in the preceding stage
to the first node in the consequent stage and then fixing possible orphans as in
Fig. 2b4. We found that, systematically, the introduction of a bottleneck deterio-
rates performance (see Fig. 8. in Appendix). Hence multiple resolution reduction
pathways are beneficial. Let us note that this result is coherent with our find-
ings from Sect. 5.3, where bottleneck edges (also within a single resolution stage)
typically appear in badly performing networks.

6.3 CIFAR-10 Versus CIFAR-100 Consistency

In addition to the CIFAR-10 task, we trained all networks with 60 nodes (except
for the bottleneck ablations) on the CIFAR-100 dataset. We used the same train-
ing procedure as the one for CIFAR-10. The motivation for this experiment was
to verify whether the graph families which performed best in the first problem
achieve also high results in the second. Indeed, we observe a significant correla-
tion 0.868 (see Fig. 6) between the respective test accuracies (averaged over the
5 random realizations of each graph type). Especially noteworthy is the consis-
tency between the groups of best and worst graphs for the two datasets.

7 Conclusions and Outlook

We have performed an extensive study of the performance of artificial neural
networks based on random graphs of various types, keeping the training pro-
tocol fixed. One class of networks which had the best performance in our sim-
ulations were networks, which could be characterized as quasi-1-dimensional,
having mostly local connections with a definite 1-dimensional hierarchy in data
processing (one can dub this structure as local chaos and global order). These
were predominantly networks in the rdag family. We also introduced a very com-
pact numerical characterization of such graphs. It is worth noting, that some of
the fMRI-based graphs were also among the best-performing ones (together with
some ws and ba ones). We lack, however, a clear-cut numerical characterization
of these “good” graphs as there exist graphs with apparently similar structure
and numerical invariants but much worse performance.

4 See a visualization of a bottleneck graph in Appendix I.
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Among other structural observations made in this project, we noted that
long-range connections were predominantly negatively impacting network per-
formance. Similarly, artificially imposing a bottleneck between the processing
stages of various resolutions also caused the results to deteriorate. Thus, a gen-
eral guideline in devising neural network architectures which can be formed in
consequence of our study is to prefer networks with rich local connections com-
posed into an overall hierarchical computational flow, with multiple resolution-
reducing pathways and no bottleneck edges. These characteristics seem to con-
sistently lead to good performance among the vast panorama of connectivity
patterns investigated in the present paper.
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Abstract. In Internet of Things applications, data generated from
devices with different characteristics and located at different positions are
embedded into different contexts. This poses major challenges for decen-
tralized machine learning as the data distribution across these devices
and locations requires consideration for the invariants that characterize
them, e.g., in activity recognition applications, the acceleration recorded
by hand device must be corrected by the invariant related to the move-
ment of the hand relative to the body. In this article, we propose a
new approach that abstracts the exact context surrounding data gener-
ators and improves the reconciliation process for decentralized machine
learning. Local learners are trained to decompose the learned representa-
tions into (i) universal components shared among devices and locations
and (ii) local components that capture the specific context of device
and location dependencies. The explicit representation of the relative
geometry of devices through the special Euclidean Group SE(3) imposes
additional constraints that improve the decomposition process. Compre-
hensive experimental evaluations are carried out on sensor-based activ-
ity recognition datasets featuring multi-location and multi-device data
collected in a structured sensing environment. Obtained results show
the superiority of the proposed method compared with the advanced
solutions.

Keywords: Meta-learning · Federated learning · Internet of things

1 Introduction

In Internet of Things (IoT) applications, data generated from different devices
(or sensors) and locations are embodied with varying contexts. The devices offer
specific perspectives on the problem of interest depending on their location. The
movements of the area on which the devices are positioned generate data of
two different but complementary natures. For instance, in Fig. 1, the data of
the movement collected from the hand sensors combines data of the whole body
intertwined with data related to the movement of the hand in relation to the
body. In the case of human activity recognition (HAR), we notice, for example,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13715, pp. 647–663, 2023.
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Fig. 1. Example of phenomena surrounded by a structured sensing environment. The
hand sensor undergoes two types of movements. One is of the same nature as the
torso and linked to the translational movement of the body. The other is linked to the
movement of the hand locally relative to the body.

that the kinetics of the hand movements during a race can be decomposed into
a circular movement (CM) of the hand relative to the shoulder and a translation
movement (TM) associated with the whole body [23].

These characteristics pose significant challenges for decentralized machine
learning as the data distribution across these devices and locations is skewed.
Federated learning [16,22] is an appropriate framework that handles decentral-
ized and distributed settings. In particular, the locally learned weights are aggre-
gated into a central model during the conciliation phase. Decentralized machine
learning suffers from objective inconsistency caused by the heterogeneity in local
updates and by the interpretation of the locally collected data. Additional phe-
nomena like the evolution of the local variables over time (concept drift) [15] or
relativity of viewpoints (see Fig. 1) must also be considered.

Recent advances in machine learning literature, e.g., [31], seek the notions of
invariance and symmetries within the phenomena of interest. Symmetry is one
of the invariants that is leveraged for its powerful properties and its promising
ability to drastically reduce the problem size [4,6,27] by requiring fewer training
examples than standard approaches for achieving the same performance. Group
theory provides a useful tool for reasoning about invariance and equivariance. For
instance, in HAR [25,26], the acceleration recorded by the device held in hand
must be corrected by the invariant related to the movement of the hand relative
to the body so that the acceleration data related to the whole body is accurate.
More generally, when the sensors are placed in a structured environment that
exhibits regular dependencies between the locations of the sensors, it is possible
to devise models of data transformations to reduce biases such as position biases.
These models correspond to automatic changes in data representation to project
them onto the same space while minimizing the impact of structure and location
on the final data.

In this paper, we propose a novel approach that abstracts the exact con-
text surrounding the data generators and hence improves decentralized machine
learning. Local learners are trained to decompose the learned representations
into (i) universal components shared across devices and locations and (ii) local
components which capture the specific device- and location-dependent context.
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We introduce the notion of relativity between data generators and model it via
the special Euclidean group, denoted by SE(3), which encompasses arbitrary
combinations of translations and rotations. The relative contribution of a data
generator in the description of the phenomena of interest is expressed using
elements of this group and used to constrain the separation process. In particu-
lar, building on the symmetry-based disentanglement learning [12], the symme-
try structure induced by the relative data generators is reflected in the latent
space. This allows us to further leverage the notion of sharing which is reflected
into the conciliation process of the decentralized learning setting by promising
improvements. Comprehensive experimental evaluations are conducted to assess
the effectiveness of the proposed approach. Obtained results demonstrate the
superiority of the proposed method over more advanced solutions.

The main contributions of the paper are: (i) a novel approach that leverages
additional knowledge in the terms of symmetries and invariants that emerge
in these kinds of environments. These symmetries and invariants are explic-
itly represented in the form of group actions and incorporated into the learn-
ing process; (ii) a proposition of separation process of the data into universal
and position-specific components improves collaboration across the decentralized
devices materialized by the conciliation (or aggregation) process; (iii) extensive
experiments on two large-scale real-world wearable benchmark datasets featur-
ing structured sensing environments. Obtained results are promising noticeably
in terms of the quality of the conciliation which open-up perspectives for the
development of more efficient collaboration schemes in structured environments.

2 Background and Motivation

Here we provide a background on decentralized machine learning approaches
and highlight their key principles. Then we review the impact of the various
contexts surrounding the distributed data generators on the learning process in
real-world IoT applications and a priori knowledge can be leveraged to deal with
this challenge.

2.1 IoT Deployments

We consider settings where a collection S of M sensors (also called data sources),
denoted {s1, . . . , sM}, are positioned respectively at positions {p1, . . . , pM} on
the object of interest, e.g., human body. Each sensor si generates a stream
xi = (xi

1, x
i
2, . . . ) of observations of a certain modality like acceleration, gravity,

or video, distributed according to an unknown generative process. Furthermore,
each observation can be composed of channels, e.g. three axes of an accelerome-
ter. The goal is to continuously recognize a set of human activity target concepts
Y like running or biking. In the case of the SHL dataset, the data are gener-
ated from 4 smartphones, carried simultaneously at (hand, torso, hips, and bag
body locations. Sensors distributed in various positions of the space provide rich
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perspectives and contribute in different ways to the learning process, and the
decentralization of the sensors has the potential to offer better guarantees of the
quality of the generalization.

2.2 Decentralized Machine Learning

In the decentralized machine learning setting, a set of M clients, each corre-
sponding to a sensor of the above IoT deployment, aim to collectively solve the
following optimization problem:

min
w∈Rd

{
F (w) :=

M∑
p=1

αp · fp(wp)

}
, (1)

where fp(w) = 1
np

∑
ζ∈Dp

�p(x; ζ) is the local objective function at the p-th
client, with �p the loss function and ζ a random data sample of size np drawn
from local dataset Dp according to the distribution of position p. At each commu-
nication round r, each client runs independently τp iterations of the local solver,
e.g., stochastic gradient descent, starting from the current global model (set of
weights) w

(r,0)
p until the step w

(r,τp)
p to optimize its own local objective. Then

the updates of a subset of clients are sent to the central server where they are
aggregated into a global model. Only parameter vectors are exchanged between
the clients and the server during communication rounds while raw data are kept
locally which complies with privacy-preserving constraints. Various algorithms
were proposed for aggregating the locally learned parameter vectors into a global
model, including [22] which updates the shared global model as follows:

w(r+1,0) − w(r,0) = −
M∑

p=1

αp · η

τp−1∑
k=0

gp(w(r,k)
p ) (2)

where w
(r,k)
p denotes the model of client p after the k-th local update in the r-th

communication round. Also, η is the client learning rate and gp represents the
stochastic gradient computed over a mini-batch of samples.

2.3 IoT Deployments and Impact of the Context

Long lines of research studied the impact of the varying contexts on machine
learning algorithms and showed their fragility to viewpoint variations [14]. For
example, basic convolutional networks are found to fail when presented with
out-of-distribution category-viewpoint combinations, i.e., combinations not seen
during training. Similarly, in activity recognition, the diversity of users, their spe-
cific ways of performing activities, and the varying characteristics of the sensing
devices have a substantial impact on performances [10,29]. In these cases, the
conditional distributions may vary across clients even if the label distribution is
shared [15]. In decentralized approaches, several theoretical analyses bound this
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drift by assuming bounded gradients [36], viewing it as additional noise [17],
or assuming that the client optima are ε-close [19]. As a practical example,
SCAFFOLD [16] tries to correct for this client-drift by estimating the update
direction for the server model (c) and the update direction for each client cp.
Then, the difference (c− cp) is used as the estimator of the client-drift which is
used to correct the local update steps. The local models are, then, updated as
w

(r+1,0)
p − w

(r,0)
p = −η · (gp(wp) + c − cp).

The impact of varying contexts is not limited to a skewed distribution of
labels but is rather predominantly related to the aspects of the phenomenon
being captured by the sensing devices depending on their intrinsic characteris-
tics and locations. Depending on their disposition w.r.t. to the phenomena of
interest, the sensing devices generate different views of the same problem. The
heterogeneity brought by these configurations in terms of views is beneficial but
must be explicitly handled. Reconciling the various perspectives offered by these
deployments using decentralized learning approaches requires several relaxations
limiting their potential capabilities when the impact of the context on the data
generation process is essential. Indeed, how to reconcile these different points
of view which can potentially be redundant or even seemingly contradictory to
each other? When additional knowledge is available about the structure of the
sensing environment, these challenges can be handled efficiently.

2.4 Relativity of Viewpoints in Structured Sensing Environments

Very often, knowledge about the relative geometry of the sensing devices and
domain models describing the dynamics of the phenomena is available and can be
leveraged and incorporated into the learning process. For example, the spatial
structure of the sensors deployment and the induced views, sensors capabili-
ties and the perspectives (views) through which the data is collected (sensing
model, range, coverage, position in space, position on the body, and type of cap-
tured modality) [1,11,33]. A long line of research work around activity recogni-
tion reviewed in, e.g. [9,34], has focused on the problem of optimal placement
and combination of sensors on the body in order to improve a priori models’
performance. Additionally, domain models derived from biomechanical studies
like [3,23] are often used to describe body movements and the relative interac-
tions between various body parts in a structured manner. Alternatively, consid-
ering the structure of the sensing devices explicitly during the learning process
is more promising but challenging. An approach close to ours for the relativity of
perspectives is that of [5] which describes the different perspectives by discrete
subgroup of the rotation group.

Integrating these additional models into the learning process has promis-
ing implications noticeably on the conciliation process of decentralized machine
learning algorithms: one can exhibit the relative contribution of the individual
views to the bigger picture. The primary goal of this paper is to develop a robust
approach that integrates knowledge about the structure of sensing devices in a
principled way to achieve better collaboration.
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Fig. 2. Framework of the proposed approach. Explicitly representing the relative geom-
etry of the decentralized devices and their symmetries using elements of the special
Euclidean group SE(3) and leveraging them to constrain the learning process with the
goal of reducing the problem size and improving data efficiency.

3 FedAbstract Algorithm

We propose an original approach based on local abstraction of the position-
specific artifacts and aggregation of universal components in the data. We lever-
age knowledge about the structure of the sensing deployment by representing
the relative geometry of the sensing devices with group transformations. At a
given decentralized location, there are three different elements that are learned:
(1) the universal (or group-invariant) and (2) position-specific representations
(Sect. 3.1), and (3) the group of relative geometry representation (Sect. 3.2). The
generalization capabilities of the universal representation are improved collabo-
ratively across the decentralized sensing devices via the conciliation (or aggre-
gation) process (Sect. 3.3). Figure 2 summarizes the proposed approach.

3.1 Learning Group-Invariant and Position-Specific Representations

The idea is to express the data generated from a decentralized device (e.g., hand
sensors in the case of on-body sensor deployments) relative to the coordinate
system of a referential (e.g., torso.) This way, the exact relative contribution
of the sensing device is captured without the contextual artifacts. To do this,
we have to capture the variations due to the relative location of the decentral-
ized device w.r.t. a global coordinate system and capture invariant aspects that
are shared across the devices. The latter aspects are universal components that
are shared with the central model while the former ones are considered as spe-
cific components which add noise to the learning process, thus requiring to be
discarded from it.

Invariance. A mapping h(·) is invariant to a set of transformations G if when
we apply any transformation induced by g to the input of h, the output remains
unchanged. A common example of invariance in deep learning is the transla-
tion invariance of convolutional layers. In the structured sensing environments
considered here, the elements g of SE(3) act on the spatial disposition of the
data generators and ultimately the data they generate: if we translate the data
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representation learned at sensor position pi to position pj , the representation
remains unchanged. Formally, if h : A −→ A, and G is a set of transformations
acting on A, h is said to be invariant to G if ∀a ∈ A, ∀g ∈ G, h(ga) = h(a).

We construct at the level of each client i a representation that maps the
observation space X to a latent space V with hA : X −→ V (universal) and
hpi

: X −→ V (position-specific). The universal representation has to remain
invariant to the relative location of the decentralized nodes. We also ensure dur-
ing the learning process that the universal and location-specific transformations
are orthogonal to each other (hA ⊥ hpi

). In other words, we want these two trans-
formations to capture completely different factors of variations in the data. To
do that, we enforce hpi

to be insensitive to the factors of variations linked to the
representation hA using representation disentanglement techniques. We use in
our approach, a family of models based on variational autoencoders (VAEs) [18]
for their ability to deal with entangled representations.

Learning hA and hpi
Locally. The data xi captured at a given location i are

generated from two underlying factors: one reflecting the position-specific com-
ponents and the other the position-invariant (or universal) components. The task
here is to learn these factors of variation, commonly referred to as learning a
disentangled representation. In other words, we want these two transformations
to capture completely different factors of variations in the data. To do that,
we enforce hpi

to be insensitive to the factors of variations linked to the repre-
sentation hA using representation disentanglement techniques. It corresponds to
finding a representation where each of its dimensions is sensitive to the varia-
tions of exactly one precise underlying factor and not the others. Note that the
inputs to hA in the local learners are the raw sensory data xi generated locally.

At this point, we are left with two alternatives for jointly learning the univer-
sal transformation hA and the position-specific transformation hpi

at the local
learner level: (1) using a separate VAE for each transformation and training
each one of them jointly using the raw sensory data as inputs; (2) using a sin-
gle VAE and train it to automatically factorize the learned representation so
that each axis captures specific components. Recent advances in unsupervised
disentangling based on VAEs demonstrated noticeable successes in many fields
using the β-VAE, which leads to improved disentanglement [13]. It uses a unique
representation vector and assigns an additional parameter (β > 1) to the VAE
objective, precisely, on the Kullback-Leibler (KL) divergence between the vari-
ational posterior and the prior, which is intended to put implicit independence
pressure on the learned posterior. The improved objective becomes:

L(x; θ, ϕ) =Eqϕ(z|x)[log pθ(x|z)] (autoencoder reconstruction term)

− βDKL(qϕ(z|x)||p(z)) − αDKL(qϕ(z)||p(z)),

where the term controlled by α allows to specify a much richer class of properties
and more complex constraints on the dimensions of the learned representation
other than independence. Indeed, the proposed conciliation step is challenging
due to the dissimilarity of the data distributions across the local learners, leading
to discrepancies between their respective learned representations.
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One way to deal with this issue is by imposing sparsity on the latent represen-
tation in a way that only a few dimensions get activated depending on the learner
and activities. We ensure the emergence of such sparse representations using the
appropriate structure in the prior p(z) such that the targeted underlying factors
are captured by precise and homogeneous dimensions of the latent representa-
tion. We set the sparse prior as p(z) =

∏
d(1−γ)N (zd; 0, 1)+γN (zd; 0, σ2

0) with
N is the Gaussian distribution. This distribution can be interpreted as a mixture
of samples being either activated or not, whose proportion is controlled by the
weight parameter γ [21].

Now, we have to represent the notion of data generators relativity and its
induced symmetries in the form of group elements whose action on the data
leaves the universal component of the learned representation invariant.

3.2 Relative Geometry for Data Generators

We model the relative geometry of sensors and the perspectives they provide via
the special Euclidean group SE(3). Let xi and xj be the stream of observations
generated by the data sources si and sj . At each time step t, the observations xi

and xj generated by these data sources are related together via an element gi
j ∈

SE(3) of the group of symmetries, i.e., the observation xi is obtained by applying
gi

j on xj . Here, we want to learn a mapping hgi
for each decentralized device, so

that the biases that stem from the context (exact position) are corrected before
its contribution is communicated to the global model.

Special Euclidean Group SE(3). The special Euclidean group, denoted by SE(3),
encompasses arbitrary combinations of translations and rotations. The elements
of this group are called rigid motions or Euclidean motions and correspond to

the set of all 4 by 4 matrices of the form P (R,
−→
d ) =

(
R

−→
d

0 1

)
, with

−→
d ∈ R

3 a

translation vector, and R ∈ R
3×3 a rotation matrix. Members of SE(3) act on

points z ∈ R
3 by rotating and translating them:

(
R

−→
d

0 1

)(
z
1

)
=

(
Rz +

−→
d

1

)
.

Relative Geometry Representation. Given a pair of sensing devices si and sj

located at positions pi and pj , each having its own local coordinate system
attached to it. We represent the relative geometry of this pair by expressing
each of the devices in the local coordinate system of the other (see Fig. 3).
Similarly to [32], the local coordinate system attached to pi is the result of
a translation

−→
d j,i and a rotation Rj,i, where the subscript j, i denotes the sense

of the transformation being from pj to pi. While the translation corresponds
to the alignment of the origins of the two coordinate systems, the rotation is
obtained by rotating the global coordinate system such that the x-axis of the

two coordinate systems coincide:
(

gi
j1(t) gi

j2(t)
1 1

)
=

(
Rj,i(t)

−→
d j,i(t)

0 1

)⎛
⎜⎜⎝

0 lij
0 0
0 0
1 1

⎞
⎟⎟⎠ .
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The relative geometry of the data generators is considered to be elements of
SE(3) and supposed to capture the transformations acting on the data genera-
tors. Without explicit information about the exact locations of the data gener-
ators, these transformations have to be learned. For this, we parameterize the
transformation matrices used to represent the relative geometry of the data gen-
erators, with learnable weights. In particular, we parameterize as in [27] the
n-dimensional representation of a rotation R as the product of n(n−1)

2 rotations,
denoted Rv,w, each of which corresponds to the rotation in the v, w plane embed-
ded in the n-dimensional representation. For example, a 3-dimensional represen-
tation has three learnable parameters, g = g(θ1,2, θ1,3, θ2,3), each parameterizing

a single rotation, such as R1,3(θ1,3) =

⎛
⎝ cos θ1,3 0 sin θ1,3

0 1 0
− sin θ1,3 0 cos θ1,3

⎞
⎠.

Learning hA and hg in the Central Server. The referential learner (or cen-
tral server) happens also to be a learner similar to the local learners. The main
difference is that the referential learner is located in a particular position of the
sensors deployment, i.e., the referential coordinate system, which imposes it to
perform additional processing. Let’s denote the referential learner with subscript
ref (the orange data source in Fig. 3). The referential learner maintains the spe-
cific hg’s corresponding to each individual position of the sensors deployment
and ensures that:

hA(hgi
(xref)) = hA(xi),∀i (3)

where hgi
is the learned representation corresponding to the group action act-

ing on the data xi generated by the sensor located at position i and xref is
the data generated by the sensor located at the referential point. The hgi

transformation is learned by the referential learner using the raw data gener-
ated at the central server level. The constraint imposing the invariance, i.e.,
hA(hgi

(xref)) = hA(xi),∀i, is the pivotal element that makes it possible to effec-
tively learn this transformation.

By drawing a parallel with the construction of manifolds in latent spaces, this
transformation can be interpreted as an operator projecting the data, generated
by the data source positioned on ref, towards a latent space shifted by the action
of the group elements so that the universal components learned by the trans-
formation hA (at the referential) coincide with those transformations (hi

A,∀i)
learned by the local learners attached to the other positions. hg must there-
fore act on different subgroups of the latent space. We ensure that the learned
universal transformation hA is invariant to the action of the group SE(3), i.e.,
hA(gx) = hA(x), g ∈ SE(3). For this we map the group SE(3) to a linear repre-
sentation GL on V , i.e., ρ : SE(3) −→ GL(V ). Our goal is to map observations to
a vector space V and interactions to elements of GL(V ) to obtain a disentangled
representation of the relative geometry.

As there are many different group representations (one for each position
of the deployment of the sensors) at the referential learner’s level, we have to
ensure that the learned representation hg acts on specific subspaces of the latent
space. At the central server, each client is considered to generate a subgroup of
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Fig. 3. Network architecture of FedAbstract. The local learners (red and blue) perform
a set of updates on their proper version of the universal representation. The referen-
tial learner at position pref (in orange) maintains the specific hg’s corresponding to
each individual position of the sensors deployment and ensures that: hA(hgi(xref)) =
hA(xi), ∀i where hgi is the learned representation corresponding to the group elements
acting on the data xi generated at position i and xref the data generated at the ref-
erential point. Notice that only gradient updates are shared to the central server and
the data generated at a given location are processed exclusively by the local learner.
(Color figure online)

relative geometry. During the learning process, each subgroup of the symmetry
group is made to act on a specific subspace of the latent space. Formally, let
· : G × X −→ X be a group action such that the group G decomposes as a
direct product G = G1 ×G2. According to [12], the action is disentangled (w.r.t.
the decomposition of G) if there is a decomposition X = X1 × X2, and actions
·i : Gi×Xi −→ Xi, i ∈ {1, 2} such that: (g1, g2)·(v1, v2) = (g1 ·1v1, g2 ·2v2), where ·
denotes the action of the full group, and the actions of each subgroup as ·i. An G1

element is said to act on X1 but leaves X2 fixed, and vice versa. We end up here
in the same situation as in the disentanglement of universal and position-specific
components, i.e., either we use a separate VAE for each group transformation or a
single one for all the groups with the additional constraint stating that the action
of each subgroup act on specific regions of the latent space manifold and leave
the other regions fixed. This can be achieved via clustering of the latent space
using a Gaussian mixture prior [21] p(z) =

∑C
c=1 πc

∏
d N (zd|μc

d, σ
d
d), with C the

number of desired clusters and πc the prior probability of the c-th Gaussian.

3.3 Conciliation Process

At the local learner’s level, the proposed model is trained in an end-to-end
fashion. The generalization capabilities of the representation hA are improved
via the conciliation process performed across the nodes of the deployment.
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Algorithm 1: Multi-level abstraction of sensor position
Input : {xp}M

p=1 streams of annotated observations
1 w ← initWeights() ; % Initialize global learner’s weights
2 distributeWeights(w, S) ; % Weights distribution
3 while not converged do
4 foreach position p do
5 for t ∈ τp steps do
6 Sample mini-batch {xp

i }np

i=1

7 Evaluate ∇wp
�(wp) w.r.t. the mini-batch

8 Subject to J(zp
A, zrefA ) (e.g., correlation-based

alignment [2])
9 w

(t)
p ← w

(t−1)
p − η∇wp

�(wp)
10 Ensure hA ⊥ hpi

(see §3.1)
11 end
12 Communicate wA (with wp = [wA, wpi

])
13 end
14 wA ← wA +

∑M
p=1 αp · Δwp

A ; % Central updates
15 Enforce group action disentanglement
16 end

Result: Globally shared universal representation hA

Each local learner pursues its own version of the universal representation
but has not to diverge from the referential universal representation href

A , which
constitutes a consensus among all local learners. After a predefined number of
local update steps, we conduct a conciliation step (see the dotted arrows in
Fig. 3). Each conciliation step t produces a new version of the referential learner
w

(t)
ref and, a new version of the referential universal representation zrefA . The con-

ciliation step has to be performed on the learned representations zp
A via regu-

larization, for example. In our approach, the conciliation step is performed via
representation alignment, e.g., correlation-based alignment [2]. More formally,
we instrument the objective function of the local learners with an additional
term derived from the representation alignment [30]. The optimization problem
(1) becomes:

min
w∈Rd

{
F (w) =

1
M

M∑
p=1

αp(fp(wp) + λJ(zp
A, zrefA ))

}
, (4)

where J is a regularization term responsible for aligning the locally learned
universal components with the ones learned by the referential learner and λ ∈
[0, 1] is a regularization parameter that balances between the local objective and
the regularization term. Algorithm 1 summarizes the process of the proposed
approach and Fig. 3 illustrates its bigger picture.
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4 Experiments and Results

We perform an empirical evaluation of the proposed approach, consisting of two
major stages: (1) we verify the effectiveness of the proposed approach in the HAR
task via a comparative analysis which includes representative related baselines
(Sect. 4.1); (2) we also conduct extensive experiments and ablation analysis to
demonstrate the effectiveness of the various components of our proposed app-
roach (Sect. 4.2).

Experimental Setup. We evaluate our proposed approach on two large-scale real-
world wearable benchmark datasets featuring structured sensing environments:
SHL [8] and Fusion [28] datasets. We compare our approach with the following
closely related baselines.

– DeepConvLSTM [24]: a model encompassing 4 convolutional layers respon-
sible for extracting features from the sensory inputs and 2 long short-term
memory (LSTM) cells used to capture their temporal dependence.

– DeepSense [35]: a variant of the DeepConvLSTM model combining convo-
lutional and Gated Recurrent Units (GRU) in place of the LSTM cells.

– AttnSense [20]: features an additional attention mechanism on top of the
DeepSense model forcing it to capture the most prominent sensory inputs
both in the space and time domains to make the final predictions.

– GILE [26]: proposes to explicitly disentangle domain (or position)-specific
and domain-agnostic features using two encoders. To constrain the disentan-
glement process, their proposed additional classifier is trained in a supervised
manner with labels corresponding to the actual domain to which the learn-
ing examples belong. Here, we use the exact location of the data sources as
domain labels.

To make these baselines comparable with our models, we make sure to get the
same complexity, i.e., a comparable number of parameters. We use the f1-score
in order to assess performances of the architectures. We compute this metric
following the method recommended in [7] to alleviate bias that could stem from
unbalanced class distribution. In addition, to alleviate the performance over-
estimation problem due to neighborhood bias, we rely in our experiments on
meta-segmented partitioning.

4.1 Performance Comparison

We conduct extensive experiments to evaluate the performance of the proposed
algorithm in the following two settings: activity recognition (or classification)
task and representation disentanglement. For the activity recognition setting,
Table 1 summarizes the performance comparison of the baselines in terms of the
f1-score obtained on the SHL and Fusion datasets. Here we assess the usefulness
of the separated components per se by leveraging them in a traditional discrim-
inative setting. In other words, we take the learned representation and add a
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Table 1. Recognition performances (f1-score) of the baseline models on different rep-
resentative related datasets. Evaluation based on the meta-segmented cross-validation.

Model Fusion SHL (Acc.) SHL

DeepConvLSTM 68.5 ± .002 64.4 ± .0078 65.3 ± .0206

DeepSense 69.1 ± .0017 64.8 ± .0033 66.5 ± .006

AttnSense 70.3 ± .0027 69.6 ± .0072 68.4 ± .03

GILE 71.7 ± .014 71.1 ± .035 69.0 ± .001

FedAbstract 75.7 ± .047 75.7 ± .047 77.3 ± .017

simple dense layer on top of it. This additional layer is trained to minimize clas-
sification loss while the rest of the circuit is kept frozen. Experimental results
show that the proposed approach exhibits superior performance compared to the
baselines. The proposed method achieves promising improvements in terms of f1-
score over the baseline methods. In particular, our proposed approach improves
recognition performances by approximately 7–9% on Fusion and SHL, while
the improvement of attention-based methods is only about 1–2%. Compared to
GILE, our approach shows consistent improvement on the considered configura-
tions. This demonstrates that leveraging knowledge about the structure of the
deployment, instead of simply using domain labels corresponding to the exact
location of the data sources, improves disentanglement and ultimately activity
recognition.

In the representation disentanglement setting, we assess the separation qual-
ity between the universal and position-specific components as well as those
related to the actions of each subgroup. For this, the average latent magni-
tude computed for each dimension of the learned representations constitutes an
appropriate measure. Figure 4 illustrates the average latent magnitude computed
for the group of relative geometry representation. It shows the activated latent
dimensions depending on the subgroup of transformations (among Bag, Hand,
and Hips) acting on the data sources. We can see in particular that specific
dimensions are activated depending on the subgroup of transformations that are
used to stimulate the learned representation. These dimensions are also inde-
pendent of each other. Furthermore, in complementary experiments, one can
observe the evolution of the dimensions of the central learner’s latent represen-
tation where some of them are getting more activated than others, which is a
sign of the emergence of the desired universal components shared across the
learners.

4.2 Ablation Study

To demonstrate the generalization and effectiveness of each component of our
proposed approach, we further design and perform ablation experiments on the
SHL and Fusion datasets. We compare FedAbstract to FedAvg [22] and advanced
solutions which try to correct for client-drift including SCAFFOLD [16]. FedAvg
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Fig. 4. Average latent encoding magnitude in the SHL dataset. It shows the repartition
of the latent dimensions being activated between the different subgroups of transfor-
mations acting on the data sources (Bag, Hand, and Hips positions).

Fig. 5. Evolution of the loss during decentralized learning. (top) FedAbstract with
both the relativity and decomposition constraints. (bottom) FedAbstract without the
relativity representation constraints (FedAbstract, no SE(3)).

and SCAFFOLD do not perform explicit separation of the local data and thus
constitute suitable baselines to assess the impact of each of FedAbstract’s compo-
nents. The experimental results illustrated in Fig. 5 (top) are obtained using Fed-
Abstract with both the relativity and decomposition constraints. These results
suggest that the evolution of the loss in the case of FedAvg gets slower as we
increase the number of local steps, which corresponds to the common observation
that client-drift increases proportionally to the number of local steps, hindering
progress. At the same time, we observe that FedAbstract has excellent perfor-
mance, slightly better than SCAFFOLD, suggesting a close connection between
the estimate of the client-drift ci and the position-specific components obtained
via our proposed separation process.

Furthermore, we evaluate the effectiveness of explicitly representing the data
generators’ relativity via group actions while learning the universal and position-
specific transformations. For this, we evaluate the performance of our proposed
approach against a setting that does not specifically consider the relative geom-
etry of the data generators. Basically, in this setting, the constraint imposing
the relative geometry is not enforced during the learning process. Figure 5 (bot-
tom) illustrates the obtained results in terms of the loss evolution on both SHL
and Fusion datasets. We notice that compared to the basic setting, enforcement
of the relative geometry consistently improves the convergence by 5% on SHL



Context Abstraction to Improve Decentralized Machine Learning 661

and 3% on Fusion. We see that these differences correspond to the gap between
SCAFFOLD and our proposed approach. This demonstrates that the separation
process constrained by the explicit representation of relativity ultimately leads
to improving collaboration across the decentralized devices.

5 Conclusion and Future Work

In this work, we address the problem of decentralized learning in structured
sensing environments. We propose a novel approach that leverages additional
knowledge in terms of symmetries and invariants that emerge in these kinds of
environments. These symmetries and invariants are explicitly represented in the
form of group actions and incorporated into the learning process. Further, the
proposed separation process of the data into universal and position-specific com-
ponents improves collaboration across the decentralized devices materialized by
the conciliation (or aggregation) process. Obtained results on activity recogni-
tion, an example of real-world structured sensing applications, are encouraging
and open-up perspectives for studying more symmetries, invariants, and also
equivariants that emerge in these environments. Future work also includes lever-
aging these symmetries and invariants from a theoretical perspective like Lie
group and corresponding algebra, a special and large class of continuous groups
that includes many valuable transformations like translations, rotations, and
scalings and which also proposes a principled way for handling operations on
the transformations such as composition, inversion, differentiation, and interpo-
lation. The broader idea is that universal data is not directly accessible. On the
other hand, it can be attained through various decentralized points of view. Col-
laboration is not a confrontation but rather the addition of relevant symmetries
and complementary information from each viewpoint whose contribution can be
determined precisely. The model we propose achieves this.
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Abstract. Recent years have witnessed tremendously improved effi-
ciency of Automated Machine Learning (AutoML), especially Automated
Deep Learning (AutoDL) systems, but recent work focuses on tabular,
image, or NLP tasks. So far, little attention has been paid to general
AutoDL frameworks for time series forecasting, despite the enormous
success in applying different novel architectures to such tasks. In this
paper, we propose an efficient approach for the joint optimization of
neural architecture and hyperparameters of the entire data processing
pipeline for time series forecasting. In contrast to common NAS search
spaces, we designed a novel neural architecture search space covering var-
ious state-of-the-art architectures, allowing for an efficient macro-search
over different DL approaches. To efficiently search in such a large con-
figuration space, we use Bayesian optimization with multi-fidelity opti-
mization. We empirically study several different budget types enabling
efficient multi-fidelity optimization on different forecasting datasets. Fur-
thermore, we compared our resulting system, dubbed Auto-PyTorch-TS,
against several established baselines and show that it significantly out-
performs all of them across several datasets.

Keywords: AutoML · Deep learning · Time series forecasting ·
Neural architecture search

1 Introduction

Time series (TS) forecasting plays a key role in many business and industrial
problems, because an accurate forecasting model is a crucial part of a data-driven
decision-making system. Previous forecasting approaches mainly consider each
individual time series as one task and create a local model [3,7,26]. In recent
years, with growing dataset size and the ascent of Deep Learning (DL), research
interests have shifted to global forecasting models that are able to learn infor-
mation across all time series in a dataset collected from similar sources [20,41].
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Given the strong ability of DL models to learn complex feature representations
from a large amount of data, there is a growing trend of applying new DL models
to forecasting tasks [38,46,50,57].

Automated machine learning (AutoML) addresses the need of choosing the
architecture and its hyperparameters depending on the task at hand to achieve
peak predictive performance. The former is formalized as neural architecture
search (NAS) [14] and the latter as hyperparameter optimization (HPO) [17].
Several techniques from the fields of NAS and HPO have been successfully
applied to tabular and image benchmarks [15,18,33,62]. Recent works have also
shown that jointly optimizing both problems provides superior models that bet-
ter capture the underlying structure of the target task [61,62].

Although the principle idea of applying AutoML to time series forecast-
ing models is very natural, there are only few prior approaches addressing
this [32,37,43,52]. In fact, combining state-of-the-art AutoML methods, such as
Bayesian Optimization with multi-fidelity optimization [16,30,34,36], with state-
of-the-art time series forecasting models leads to several challenges we address
in this paper. First, recent approaches for NAS mainly cover cell search spaces,
allowing only for a very limited design space, that does not support different
macro designs [12,60]. Our goal is to search over a large variety of different
architectures covering state-of-the-art ideas. Second, evaluating DL models for
time series forecasting is fairly expensive and a machine learning practicioner
may not be able to afford many model evaluations. Multi-fidelity optimization,
e.g. [36], was proposed to alleviate this problem by only allocating a fraction of
the resources to evaluated configurations and promoting the most promising con-
figurations to give them additional resources. Third, as a consequence of applying
multi-fidelity optimization, we have to choose how different fidelities are defined,
i.e. what kind of budget is used. Examples for such budget types are number of
epochs, dataset size or time series length. Depending on the correlation between
lower and highest fidelity, multi-fidelity optimization can boost the efficiency of
AutoML greatly or even slow it down in the worst case. Since we are the first to
consider multi-fidelity optimization for AutoML on time series forecasting, we
studied the efficiency of different budget types across many datasets. Fourth, all
of these need to be put together; to that effect, we propose a new open-source
package for Automated Deep Learning (AutoDL) for time series forecasting,
dubbed Auto-PyTorch-TS.1 Specifically, our contributions are as follows:

1. We propose the AutoDL framework Auto-PyTorch-TS that is able to jointly
optimize the architecture and the corresponding hyperparameters for a given
dataset for time series forecasting.

2. We present a unified architecture configuration space that contains several
state-of-the-art forecasting architectures, allowing for a flexible and powerful
macro-search.

3. We provide insights into the configuration space of Auto-PyTorch-TS by
studying the most important design decisions and show that different archi-
tectures are reasonable for different datasets.

1 The code is available under https://github.com/automl/Auto-PyTorch.

https://github.com/automl/Auto-PyTorch
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4. We show that Auto-PyTorch-TS is able to outperform a set of well-known
traditional statistical models and modern deep learning models with an aver-
age relative error reduction of 19% against the best baseline across many
forecasting datasets.

2 Related Work

We start by discussing the most closely related work in DL for time series fore-
casting, AutoDL, and AutoML for time series forecasting.

2.1 Deep Learning Based Forecasting

Early work on forecasting focused on building a local model for each individ-
ual series to predict future values, ignoring the correlation between different
series. In contrast, global forecasting models are able to capture information
of multiple time series in a dataset and use this at prediction time [31]. With
growing dataset size and availability of multiple time series from similar sources,
this becomes increasingly appealing over local models. We will in the following
briefly introduce some popular forecasting DL models.

Simple feed-forward MLPs have been used for time series forecasting and
extended to more complex models. For example, the N-BEATS framework [46] is
composed of multiple stacks, each consisting of several blocks. This architectural
choice aligns with the main principle of modern architecture design: Networks
should be designed in a block-wise manner instead of layer-wise [63].

Additionally, RNNs [9,23] were proposed to process sequential data and thus
they are directly applicable to time series forecasting [22,57]. A typical RNN-
based model is the Seq2Seq network [9] that contains an RNN encoder and
decoder. Wen et al. [57] further replaced the Seq2Seq’s RNN decoder with a
multi-head MLP. Flunkert et al. [50] proposed DeepAR that wraps an RNN
encoder as an auto-regressive model and uses it to iteratively generate new sam-
ple points based on sampled trajectories from the last time step.

In contrast, CNNs can extract local, spatially-invariant relationships. Simi-
larly, time series data may have time-invariant relationships, which makes CNN-
based models suitable for time series tasks, e.g. WaveNet [6,45] and Temporal
Convolution Networks (TCN) [4]. Similar to RNNs, CNNs could also be wrapped
by an auto-regressive model to recursively forecast future targets [6,45].

Last but not least, attention mechanisms and transformers have shown supe-
rior performance over RNNs on natural language processing tasks [56] and over
CNNs on computer vision tasks [13]. Transformers and RNNs can also be com-
bined; e.g. Lim et al. [38] proposed temporal fusion transformers (TFT) that
stack a transformer layer on top of an RNN to combine the best of two worlds.

2.2 Automated Deep Learning (AutoDL)

State-of-the-art AutoML approaches include Bayesian Optimization (BO) [18],
Evolutionary Algorithms (EA) [44], reinforcement learning [63] or ensembles [15].
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Most of them consider AutoML system as a black-box optimization problem that
aims at finding the most promising machine learning models and their optimal
corresponding hyperparameters. Neural Architecture Search (NAS), on the other
hand, only contains one search space: its architecture. NAS aims at finding the
optimal architecture for the given task with a fixed set of hyperparameters.
Similar to the traditional approach, the architecture could be optimized with
BO [33,62], EA [49] or Reinforcement Learning [63] among others, but there
also exist many NAS-specific speedup techniques, such as one-shot models [59]
and zero-cost proxies [1]. In this work we follow the state-of-the-art approach
from Auto-PyTorch [62] and search for both the optimal architecture and its
hyperparameters with BO.

Training a deep neural network requires lots of computational resources.
Multi-fidelity optimization [16,30,36] is a common approach to accelerate
AutoML and AutoDL. It prevents the optimizer from investing too many
resources on the poorly performing configurations and allows for spending more
on the most promising ones. However, the correlation between different fidelities
might be weak [60] for DL models, in which case the result on a lower fidelity
will provide little information for those on higher fidelities. Thus, it is an open
question how to properly select the budget type for a given target task, and
researchers often revert to application-specific decisions.

2.3 AutoML for Time Series Forecasting

While automatic forecasting has been of interest in the research community in
the past [28], dedicated AutoML approaches for time series forecasting prob-
lems have only been explored recently [21,32,35,42,51]. Optimization methods
such as random search [55], genetic algorithms [10], monte carlo tree search and
algorithms akin to multi-fidelity optimization [51] have been used among oth-
ers. Paldino et al. [47] showed that AutoML frameworks not intended for time
series forecasting originally - in combination with feature engineering - were not
able to significantly outperform simple forecasting strategies; a similar approach
is presented in [10]. As part of a review of AutoML for forecasting pipelines,
Meisenbacher et al. [42] concluded that there is a need for optimizing the entire
pipeline as existing works tend to only focus on certain parts. We took all of these
into account by proposing Auto-PyTorch-TS as a framework that is specifically
designed to optimize over a flexible and powerful configuration space of forecast-
ing pipelines.

3 AutoPyTorch Forecasting

For designing an AutoML system, we need to consider the following components:
optimization targets, configuration space and optimization algorithm. The high-
level workflow of our Auto-PyTorch-TS framework is shown in Fig. 1; in many
ways it functions similar to existing state-of-the-art AutoML frameworks [17,62].
To better be able to explain unique design choice for time series forecasting, we
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Fig. 1. An overview of Auto-PyTorch-TS. Given a dataset, Auto-PyTorch-TS automat-
ically prepares the data to fit the requirement of a forecasting pipeline. The AutoML
optimizer will then use the selected budget type to search for desirable neural archi-
tectures and hyperparameters from the pipeline configuration space. Finally, we create
an ensemble out of the most promising pipelines to do the final forecasting on the test
sets.

first present a formal statement of the forecasting problem and discuss challenges
in evaluating forecasting pipelines before describing the components in detail.

3.1 Problem Definition

A multi-series forecasting task is defined as follows: given a dataset that con-
tains N series: D = {Di}Ni=1 and Di represents one series in the dataset:
Di = {yi,1:Ti

,x(p)
i,1:Ti

,x(f)
i,Ti+1:Ti+H}2, where T is the number of time steps until

forecasting starts; H is the forecasting horizon that the model is required to
predict; y1:T , x(p)

1:T and x(f)
Ti+1:Ti+H are the sets of observed past targets, past

features and known future features values, respectively. The task of time series
forecasting is to predict the possible future values with a model trained on D:

ŷT+1:T+H = f(y1:T ,x1:T+H ;θ) (1)

where x1:T+H := [x(p)
1:T ,x(f)

T+1:T+H ], θ are the model parameters that are opti-
mized with training losses Ltrain, and ŷT+1:T+H are the predicted future target
values. Depending on the model type, ŷT+1:T+H can be distributions [50] or
scalar values [46]. Finally, the forecasting quality is measured by the discrepancy
between the predicted targets ŷT+1:T+H and the ground truth future targets
yT+1:T+H according to a defined loss function L. The most commonly applied
metrics include mean absolute scaled error (MASE), mean absolute percentage
error (MAPE), symmetric mean absolute percentage error (sMAPE) and mean
absolute error (MAE) [19,29,46].

3.2 Evaluating Forecasting Pipelines

We split each sequence into three parts to obtain: a training set Dtrain =
{y1:T−H ,x1:T+H}, a validation set Dval = {yT−H+1:T ,xT−H+1:T } and a test
2 For the sake of brevity, we omit the sequence index i in the following part of this

paper unless stated otherwise.
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Fig. 2. Overview of the architectures that can be built by our framework. (a) shows
the main components of our architecture space. (b)–(d) are specific instances of (a)
and its data flow given different architecture properties.

set Dtest = {yT+1:T+H ,xT+1:T+H}, i.e., the tails of each sequences are reserved
as Dval. At each iteration, our AutoML optimizer suggests a new hyperparameter
and architecture configuration λλλ, trains it on Dtrain and evaluates it on Dval.

Both in AutoML frameworks [18,62] and in forecasting frameworks [46],
ensembling of models is a common approach. We combine these two worlds
in Auto-PyTorch-TS by using ensemble selection [8] to construct a weighted
ensemble that is composed of the best k forecasting models from the previ-
ously evaluated configurations Dhist. Finally, we retrain all ensemble members
on Dval ∪ Dtrain before evaluating on Dtest.

3.3 Forecasting Pipeline Configuration Space

Existing DL packages for time series forecasting [2,5] follow the typical structure
of traditional machine learning libraries: models are built individually with their
own hyperparameters. Similar to other established AutoML tools [15,18,44],
we designed the configuration space of Auto-PyTorch-TS as a combined algo-
rithm selection and hyperparameter (CASH) problem [53], i.e., the optimizer
first selects the most promising algorithms and then optimizes for their optimal
hyperparameter configurations, with a hierarchy of design decisions. Deep neural
networks, however, are built with stacked blocks [63] that can be disentangled
to fit different requirements [58]. For instance, Seq2Seq [9], MQ-RNN [57] and
DeepAR [50] all contain an RNN as their encoders. These models naturally share
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Table 1. An overview of the possible combinations and design decisions of the models
that exists in our configuration space. Only the TFT Network contains the optional
components presented in Fig. 2a.

Encoder Decoder Auto-regressive Architecture class

Flat encoder MLP MLP No Feed Forward Network
N-BEATS N-BEATS No N-BEATS [46]

Seq. encoder RNN/Transformer RNN/Transformer Yes Seq2Seq [9]
No TFT [38]

MLP Yes DeepAR [50]
No MQ-RNN [57]

TCN MLP Yes DeepAR [50]/WaveNet [45]
No MQ-CNN [57]

common aspects and cannot be simply treated as completely different models.
To fully utilize the relationships of different models, we propose a configuration
space that includes all the possible components in a forecasting network.

As shown in Fig. 2a, most existing forecasting architectures can be decom-
posed into 3 parts: encoder, decoder and forecasting heads: the encoder receives
the past target values and embeds them into the latent space. The latent embed-
ding, together with the known future features (if applicable), are fed to the
decoder network; the output of the decoder network is finally passed to the fore-
casting head to generate a sequence of scalar values or distributions, depending
on the type of forecasting head. Additionally, the variable selection, temporal
fusion and skip connection layers introduced by TFT [38] can be seamlessly
integrated into our networks and are treated as optional components.

Table 1 lists all possible choices of encoders, decoders, and their correspond-
ing architectures in our configuration space. Specifically, we define two types of
network components: sequential encoder (Seq. Encoder) and flat encoder (Flat
Encoder). The former (e.g., RNN, Transformer and TCN) directly processes
sequential data and output a new sequence; the latter (e.g., MLP and N-BEATS)
needs to flatten the sequential data into a 2D matrix to fuse the information from
different time steps. Through this configuration space, Auto-PyTorch-TS is able
to encompass the “convex hull” of several state-of-the-art global forecasting mod-
els and tune them.

As shown in Fig. 2, given the properties of encoders, decoders, and models
themselves, we construct three types of architectures that forecast the future
targets in different ways. Non-Auto-Regressive models (Fig. 2b), including MLP,
MQ-RNN, MQ-CNN, N-BEATS and TFT, forecast the multi-horizontal predic-
tions within one single step. In contrast, Auto-Regressive models do only one-step
forecasting within each forward pass. The generated forecasting values are then
iteratively fed to the network to forecast the value at the next time step. All
the auto-regressive models are trained with teacher forcing [22]. Only sequential
networks could serve as an encoder in auto-regressive models, however, we could
select both sequential and flat decoders for auto-regressive models. Sequential
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decoders are capable of independently receiving the newly generated predictions.
We consider this class of architectures as a Seq2Seq [9] model: we first feed the
past input values to the encoder to generate its output hx and then pass hx to
the decoder, as shown in Fig. 2c. Having acquired hx, the decoder then gener-
ates a sequence of predictions with the generated predictions and known future
values by itself. Finally, Auto-Regressive Models with flat decoders are classified
as the family of DeepAR models [50]. As the decoder could not collect more
information as the number of generated samples increases, we need to feed the
generated samples back to the encoder, as shown in Fig. 2d.

Besides its architectures, hyperparemeters also play an important role on the
performance of a deep neural network [61], for the details of other hyperparam-
eters in our configuration space, we refer to the Appendix.

3.4 Hyperparameter Optimization

We optimize the loss on the validation set LDval with BO [17]. It is known
for its sample efficiency, making it a good approach for expensive black-box
optimization tasks, such as AutoDL for expensive global forecasting DL models.
Specifically, we optimize the hyperparameters with SMAC [25]3 that constructs
a random forest to model the loss distribution over the configuration space.

Similar to other AutoML tools [18,62] for supervised classification, we utilize
multi-fidelity optimization to achieve better any-time performance. Multi-fidelity
optimizers start with the lowest budget and gradually assign higher budgets to
well-performing configurations. Thereby, the choice of what budget type to use is
essential for the efficiency of a multi-fidelity optimizer. The most popular choices
of budget type in DL tasks are the number of epochs and dataset size. For time
series forecasting, we propose the following four different types of budget:

– Number of Epochs (#Epochs)
– Series Resolution (Resolution)
– Number of Series (#Series)
– Number of Samples in each Series (#SMPs per Ser.)

A higher Resolution indicates an extended sample interval. The sample inter-
val is computed by the inverse of the fidelity value, e.g., a resolution fidelity of
0.1 indicates for each series we take every tenth point: we shrink the size of the
sliding window accordingly to ensure that the lower fidelity optimizer does not
receive more information than the higher fidelity optimizer. #Series means that
we only sample a fraction of sequences to train our model. Finally, #SMPs per
Ser. indicates that we decrease the expected value of the number of samples
within each sequence; see Sect. 3.2 for sample-generation method. Next to these
multi-fidelity variants, we also consider vanilla Bayesian optimization (Vanilla
BO) using the maximum of all these fidelities.

3 We used SMAC3 [39] from https://github.com/automl/SMAC3.

https://github.com/automl/SMAC3
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3.5 Proxy-Evaluation on Many Time Series

All trained models must query every series to evaluate Lval. However, the num-
ber of series could be quite large. Additionally, many forecasting models (e.g.,
DeepAR) are cheap to be trained but expensive during inference time. As a
result, rather than training time, inference time is more likely to become a bot-
tleneck to optimize the hyperparameters on a large dataset (for instance, with
10k series or more), where configuration with lower fidelities would no longer
provide the desirable speed-up when using the full validation set. Thereby, we
consider a different evaluation strategy on large datasets (with more than 1k
series) and lower budgets: we ask the model to only evaluate a fraction of the
validation set (we call this fraction “proxy validation set”) while the other series
are predicted by a dummy forecaster (which simply repeats the last target value
in the training series, i.e., yT , H times). The size of the proxy validation set
is proportional to the budget allocated to the configuration: maximal budget
indicates that the model needs to evaluate the entire validation set. We set the
minimal number of series in the proxy set to be 1k to ensure that it contains
enough information from the validation set. The proxy validation set is gener-
ated with a grid to ensure that all the configurations under the same fidelity are
evaluated on the same proxy set.

4 Experiments

We evaluate Auto-PyTorch-TS on the established benchmarks of the Monash
Time Series Forecasting Repository [20]4. This repository contains various
datasets that come from different domains, which allows us to assess the robust-
ness of our framework against different data distributions. Additionally, it
records the performance of several models, including local models [3,7,11,26,27],
global traditional machine learning models [48,54], and global DL mod-
els [2,6,46,50,56] on Dtest, see [20] for details. For evaluating Auto-PyTorch-TS,
we will follow the exact same protocol and dataset splits. We focus our compar-
ison of Auto-PyTorch-TS against two types of baselines: (i) the overall single
best baseline from [20], assuming a user would have the required expert knowl-
edge and (ii) the best dataset-specific baseline. We note that the latter is a very
strong baseline and a priori it is not known which baseline would be best for a
given dataset; thus we call it the theoretical oracle baseline. Since the Monash
Time Series Forecasting Repository does not record the standard deviation of
each method, we reran those baselines on our cluster for 5 times. Compared to
the repository, our configuration space includes one more strong class of algo-
rithms, TFT [38], which we added to our set of baselines to ensure a fair and
even harder comparison.

We set up our task following the method described in Sect. 3.2: HPO is only
executed on Dtrain/val while H is given by the original repository. As described
in Sect. 3.2, we create an ensemble with size 20 that collects multiple models
4 https://forecastingdata.org/.

https://forecastingdata.org/
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during the course of optimization. When the search finishes, we refit the ensem-
ble to the union of Dtrain/val and evaluate the refitted model on Dtest. Both
Lval and Ltest are measured with the mean value of MASE [29] across all the
series in the dataset. To leverage available expert knowledge, Auto-PyTorch-TS
runs an initial design with the default configurations of each model in Table 1.
Please note that this initial design will be evaluated on the smallest available
fidelity. All multi-fidelity variants of Auto-PyTorch-TS start with the cheapest
fidelity of 1/9, use then 1/3 and end with the highest fidelity (1.0). The runs of
Auto-PyTorch-TS are repeated 5 times with different random seeds.

We ran all the datasets on a cluster node equipped with 8 Intel Xeon Gold
6254@ 3.10GHz CPU cores and one NVIDIA GTX 2080TI GPU equipped with
PyTorch 1.10 and Cuda 11.6. The hyperparameters were optimized with SMAC3
v1.0.1 for 10 h, and then we refit the ensemble on Dtrain/val and evaluate it on
the test set. All the jobs were finished within 12 h.

4.1 Time Series Forecasting

Table 2 shows how different variants of Auto-PyTorch-TS perform against the
two types of baselines across multiple datasets. Even using the theoretical oracle
baseline for comparison, Auto-PyTorch-TS is able to outperform it on 18 out of
24 datasets. On the other 6 datasets, it achieved nearly the same performance
as the baselines. On average, we were able to reduce the MASE by up to 5%
against the oracle and by up to 19% against the single best baseline, establishing
a new robust state-of-the-art overall.

Surprisingly, the forecasting-specific budget types did not perform signifi-
cantly better than the number of epochs (the common budget type in classifi-
cation). Nevertheless, the optimal choice of budget type varies across datasets,
which aligns with our intuition that on a given dataset the correlation between
lower and higher fidelities may be stronger for certain budget types than for
other types. If we were to construct a theoretically optimal budget-type selec-
tor, which utilizes the best-performing budget type for a given dataset, we would
reduce the relative error by 2% over the single best (i.e., # SMPs per Ser.).

4.2 Hyperparameter Importance

Although HPO is often considered as a black-box optimization problem [17], it
is important to shed light on the importance of different hyperparameters to
provide insights into the design choice of DL models and to indicate how to
design the next generation of AutoDL systems.

Here we evaluate the importance of the hyperparameters with a global anal-
ysis based on fANOVA [24], which measures the importance of hyperparameters
by the variance caused by changing one single hyperparameter while marginal-
izing over the effect of all other hyperparameters. Results on individual datasets
can be found in appendix.

For each of the 10 most important hyperparameters in our configuration
space (of more than 200 dimensions), Fig. 3 shows a box plot of the importance
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Fig. 3. Hyperparameter importance with fANOVA across all datasets of Table 2

across our datasets. The most important hyperparameters are closely associ-
ated with the training procedure: 3 of them control the optimizer of the neural
network and its learning rate. Additionally, 4 hyperparameters (window_size,
num_batches_per_epoch, batch_size, target_scaler) contribute to the sampler
and data preprocessing, showing the importance of the data fed to the network.
Finally, the fact that two hyperparameters controlling the data distribution are
amongst the most important ones indicates that identifying the correct potential
data distribution might be beneficial to the performance of the model.

4.3 Ablation Study

Fig. 4. Validation losses over time with different
multi-fidelity approaches. We compute the area
under the curve (AUC) of our approach (PE) and
naive multi-fidelity optimizer (FE) and list them
in the figures.

In Sect. 3.5, we propose to par-
tially evaluate the validation set
on larger datasets to further
accelerate the optimization pro-
cess. To study the efficiency gain
of this approach, we compare
evaluation on the full valida-
tion set vs the proxy-evaluation
on parts of the validation set.
We ran this ablation study
on the largest dataset, namely
“Dominick” (115 704 series).

Figure 4 shows the results. It
takes much less time for our
optimizer (blue) to finish the
first configuration evaluations on
the lowest fidelity, improving effi-
ciency early on and showing the
need of efficient validation and



676 D. Deng et al.

not only training. We note that the final performance does not change substan-
tially between the different methods. Overall, Auto-PyTorch-TS achieves the
best any-time performance. We note that Auto-PyTorch-TS has not converged
after 10 h and will most likely achieve even better performance if provided with
more compute resources. The results on the other datasets show a similar trend
and can be found in the appendix.

5 Conclusion and Future Work

In this work, we introduced Auto-PyTorch-TS, an AutoDL framework for the
joint optimization of architecture and hyperparameters of DL models for time
series forecasting tasks. To this end, we propose a new flexible configuration space
encompassing several state-of-the-art forecasting DL models by identifying key
concepts in different model classes and combining them into a single framework.

Given the flexibility of our configuration space, new developers can easily
adapt their architectures to our framework under the assumption that they
can be formulated as an encoder-decoder-head architecture. Despite recent
advances and competitive results, DL methods have until now not been consid-
ered the undisputed best approach in time series forecasting tasks: Traditional
machine learning approaches and statistical methods have remained quite com-
petitive [20,40]. By conducting a large benchmark, we demonstrated, that our
proposed Auto-PyTorch-TS framework is able to outperform current state-of-
the-art methods on a variety of forecasting datasets from different domains and
even improves over a theoretically optimal oracle comprised of the best possible
baseline model for each dataset.

While we were able to show superior performance over existing methods, our
results suggest, that a combination of DL approaches with traditional machine
learning and statistical methods could further improve performance. The optimal
setup for such a framework and how to best utilize these model classes side by
side poses an interesting direction for further research. Our framework makes
use of BO and utilizes multi-fidelity optimization in order to alleviate the costs
incurred by the expensive training of DL models. Our experiments empirically
demonstrate, that the choice of budget type can have an influence on the quality
of the optimization and ultimately performance.

To the best of our knowledge there is currently no research concerning the
choice of fidelity when utilizing multi-fidelity optimization for architecture search
and HPO of DL models; not only for time series forecasting, but other tasks as
well. This provides a great opportunity for future research and could further
improve current state-of-the-art methods already utilizing multi-fidelity opti-
mization. Additionally, we used our extensive experiments to examine the impor-
tance of hyperparameters in our configuration space and were able to identify
some of the critical choices for the configuration of DL architectures for time
series forecasting. Finally, in contrast to previous AutoML systems, to the best
of our knowledge, time series forecasting is the first task, where not only efficient
training is important but also efficient validation. Although we showed empir-
ical evidence for the problem and took a first step in the direction of efficient
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validation, it remains an open challenge for future work. Auto-PyTorch-TS can
automatically optimize the hyperparameter configuration for a given task and
can be viewed as a benchmark tool that isolates the influence of hyperparameter
configurations of the model. This makes our framework an asset to the research
community as it enables researchers to conveniently compare their methods to
existing DL models.
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