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Abstract. The development of social network platforms such as Twitter
and Weibo has accelerated the generation and transmission of informa-
tion. Predicting the growth size of the information cascade is widely used
in the fields of preventing rumor spread, viral marketing, recommenda-
tion system and so on. However, most of the existing methods either
cannot fully capture the structural representation of the cascade graph,
or cannot effectively utilize the dynamic changes of information diffusion,
which often leads to poor prediction results. Therefore, in this paper, we
propose a novel deep learning model called SkipCas to predict the growth
size of the information cascade. First, we use the diffusion path and time
effect at each diffusion time in the cascade graph to obtain the dynamic
process of the information diffusion. Second, we put the sequence of
biased random walk sampling into the skip-gram model to obtain the
structural representation of the cascade graph. Finally, we combine the
dynamic diffusion process and the structural representation to predict
the growth size of the information cascade. Extensive experiments on
two real datasets show that our model SkipCas significantly improves
the prediction accuracy compared with the state-of-the-art models.

Keywords: Information cascade · Cascade size prediction · Structural
information · Random walk

1 Introduction

Online social networking platforms such as Twitter, Weibo and Facebook have
become the main sources of information in people’s daily life. Being able to accu-
rately predict the size of information diffusion after a certain period has attracted
widespread attention in the academic community, which plays a critical role in
suppressing rumors information diffusion, improving content recommendation
and other many down-stream applications [1,2].

Many approaches have been proposed for predicting information diffusion.
It mainly falls into three categories: 1) Feature-based approaches: They mainly
focus on identifying and incorporating hand-crafted features for cascade pre-
diction, such as temporal features [3,4], structural features [5,6], and content
features [7,8], etc. Their performance depends on extracted features, which are
difficult to generalize to new domains. 2) Generative approaches: The popularity
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of information cascades over time is considered as a dynamic time series fitting
problem [9], leading to the development of certain macroscopic distributions or
stochastic processes based on various strong assumptions. These approaches rely
heavily on the designed self-excited mechanisms and intensity functions [10,11].
This usually has a huge gap with the real world, resulting in poor predictive
power. 3) Deep learning-based approaches: In recent years, researchers leverage
various deep learning techniques to capture the temporal and sequential pro-
cesses of information diffusion. For example, DeepCas [12], Topo-LSTM [13],
and DeepCon+Str [14] model the network topology for information diffusion
prediction; DeepHawkes [15] and RNN-based CRPP [16] model the temporal
information for information diffusion prediction.

Despite obvious improvements in modeling cascade diffusion, existing deep
learning methods still face several key challenges: 1) The dynamics of infor-
mation diffusion are not effectively utilized in existing methods. 2) The struc-
tural representation of the cascade network are critical for accurately predicting
information cascades. However, most methods fail to fully obtain the structural
representation, resulting in unsatisfactory prediction results.

To address the above challenges, we propose a novel information cascade pre-
diction model called SkipCas, which attempts to capture the dynamic diffusion
process of the information cascade and obtain the structural representation of
the cascade network. To capture the dynamic diffusion process, we put the dif-
fusion path at each diffusion time in the cascade graph into GRU to obtain path
representations, weight path representations with diffusion time, and then pool
all path representations. To obtain the structural representation of the cascade
network, we represent the cascade graph as a set of biased random walk paths
and fed them into the skip-gram model to obtain node representations, and then
pool all node representations. Finally, we integrate the dynamic diffusion process
with the structural representation to predict the growth size of the information
cascade. Our main contributions can be summarized as follows:

1) We propose a novel deep learning model called SkipCas for information
growth size prediction.

2) We encode the diffusion path at each diffusion time in the cascade graph,
which can well preserve the dynamic diffusion process of information diffusion.

3) We leverage the skip-gram model to capture the network structure and obtain
the structural representation of the cascade graph.

4) Extensive experiments on several real-world cascade datasets show that Skip-
Cas can significantly improve the cascade size prediction performance com-
pared with the state-of-the-art approaches.

2 Related Works

2.1 Cascades Prediction

The existing methods on information cascade prediction fall into the following
three categories:
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Feature-based approaches extract various hand-crafted features from the orig-
inal data, usually including information temporal features [3,4], cascade struc-
tural features [5,6], content features [7,8] and user features [17], and then predict
its popularity through various machine learning models. However, their perfor-
mance relies heavily on the relevant features extracted by hand, and may not be
directly applied when they are not in a specific environment, thus the feature-
based approaches are not easy to generalize.

Generative approaches typically treat the growing size of the information
cascade as a cumulative stochastic process [18], modeling it as a parametric
model and then estimating the parameters for each event by maximizing the
probability of the event occurring at the observed time. [19] divided the observed
popularity into multiple stages at equal-sized time intervals, modeled them using
multiple linear regression and auto-regression, respectively. In addition to the
simple regression-based model, they also used different point processes, such
as Poisson [20,21] and Hawkes processes [10,22]. However, as mentioned in [1],
the Poisson process is too simple to capture the diffusion patterns, and Hawkes
usually overestimates their popularity, probably due to their underlying self-
excitation mechanism. In contrast, SkipCas enables incorporates both structural
and temporal information.

Deep learning-based approaches are inspired by deep neural networks and
have achieved significant performance improvements in many applications. Deep-
Cas [12] is the first deep learning-based information cascade prediction model,
which learns the representation of cascade graphs in an end-to-end manner.
DeepHawkes [15] inherits the high interpretability of the Hawkes process and
has the high predictive ability of deep learning methods. CasCN [23] samples
the cascade graph as cascade subgraphs and employs a dynamic multi-directional
convolutional network to learn the structural information of the cascade graph.
VaCas [24] extends the deterministic cascade embedding with random node rep-
resentation and diffuse uncertainty, enabling more robust cascade prediction.
In addition, methods such as CYAN-RNN [25], Topo-LSTM [13], and SNIDSA
[26] extract the full path of diffusion from sequential observations of information
infections, using recurrent neural networks and attention mechanisms to model
information growth and predict diffusion size. However, they lack better learning
ability in cascading structural information and dynamics modeling, due to the
bias of sampling methods and the inefficiency of local structure embedding.

2.2 Graph Representation

Learning node embeddings in graphs aims to learn low-dimensional latent repre-
sentations of nodes in the networks, and the learned feature representations can
be used as features for various graph-based tasks, such as classification, cluster-
ing, link prediction, and visualization. Word2vec [27] is an unsupervised learning
technique that given a word can guess its surrounding context. Inspired by it,
the DeepWalk [28] algorithm first introduced a word vector training model to
the network. To capture the diversity of network structures, node2vec [29] gen-
erated biased second-order random walk, rather than uniform ones. In addition,
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inspired by Convolutional Neural Networks, GCN [30] has also been developed to
learn representations of nodes in graphs from neighboring node representations,
such as GraphSage [31] and DiffPool [32]. We fuse dynamic diffusion processes
to predict the cascade growth size based on the skip-gram model.

3 Preliminaries

In this section, we will formally define the cascade prediction problem.

Definition 1. Social Graph. Given a snapshot of a social network graph G =
(V,E), where V is the set of vertices of the social graph and E ⊂ V × V is the
set of edges. A vertex can be a user of a social platform or a paper in the network
of academic papers, and an edge represents the relationship between two nodes,
such as retweeting or citing.

Definition 2. Cascade Graph. Suppose there are M messages in the social
network, for the i-th message we use the cascade graph Ci to represent. Each
cascade graph Ci corresponds to an evolution sequence, we use the cascade
gi(tj) =

{
V

tj
i , E

tj
i , tj

}
to represent the diffusion process of the cascade graph Ci

within time tj , where V
tj
i denotes the users participating in the cascade within

time tj , E
tj
i denotes the feedback relationship between users in V

tj
i (e.g., retweet-

ing or citation), tj is the time between retweets of the original post. The diffusion
process of the cascade graph is shown in Fig. 1, i.e., gi(t0) = {{A} , {�} , t0},
gi(t1) = {{A,B} , {(A,B)} , t1}, ... , and so on.

Definition 3. Growth Size. In this paper, the growth size of the cascade is
defined as the number of retweets or citations of a message or paper. Specifically,
given a cascade Ci, within the observation time window T , our research task is
to predict the growth size �Si of Ci at the fixed time interval �t, e.g., �Si =
|V T+�t

i | − |V T
i |.

Fig. 1. Diffusion cascade graph of a certain message.
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4 Model

The framework of our proposed SkipCas model takes the cascade as input and
predicts the growth size �Si of the cascade graph Ci as output. The model is
shown in Fig. 2. SkipCas consists of four main components: 1) Diffusion path
coding: the diffusion paths are coded by recurrent neural networks according
to the observed cascade diffusion order; 2) Time effect: the encoded diffusion
paths combine with temporal effects to further extract the cascade representa-
tion; 3) Structural modeling: the sequence of random walk sampling is used to
obtain the structural representation of the cascade graph through the skip-gram;
4) Prediction: the cascaded representation with time effect and the structural
representation are fed into the multilayer perceptron for cascade size prediction.

Fig. 2. Framework of SkipCas model.

4.1 Diffusion Path Encoding

Users participating in cascading diffusion will not only be affected by users who
have just occurred retweeting behavior, but also by previous users; similarly, pre-
vious participants will also influence their direct retweeters and indirect retweet-
ers. As shown in Fig. 1, user A published a message, user B retweeted the message
from user A, and D retweeted the message of user B, then the retweet path of
this message is A → B → D, user A still has influence on the delivery of the
message. This illustrates that each user in the cascade may have an impact on
the whole information transfer that follows it. Therefore, we encode the entire
cascaded diffusion path.

We use the Gated Recursive Unit (GRU) to encode the entire diffusion path.
Specifically, each user in the diffusion path is first represented by a one-hot
vector, and then according to the order of the diffusion path, the k-th in the
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diffusion path, denoted as xk ∈ Rd, is fed to the GRU unit. The hidden state
hk = GRU(xk, hk−1) is updated after the update operation on it, where the
output hk ∈ RH , the input xk ∈ Rd, hk−1 represents the hidden state before the
update, d is the dimension size of the user, and H is the dimension size of the
hidden state. The update formula of GRU is as follows:

The reset gate rk ∈ RH is calculated by

rk = σ(Wrxk + Urhk−1 + br). (1)

The update gate zk ∈ RH is calculated by

zk = σ(Wzxk + Uzhk−1 + bz). (2)

The actual activation of hidden state hk is calculated by

hk = zk · hk−1 + (1 − zk) · tanh(Whxk + Uhhk−1 + bh), (3)

where σ(·) is the sigmoid activation function, Wr ∈ RH×d, Wz ∈ RH×d, Wh ∈
RH×d, Ur ∈ RH×H , Uh ∈ RH×H , Uz ∈ RH×H and br ∈ RH , bz ∈ RH , bh ∈ RH

are independent trainable parameters.

4.2 Time Effect

The time effect is a common phenomenon of cascading information diffusion and
plays an important role in cascading prediction. For example, a post on Weibo
is usually frequently retweeted in the first period after it is published, and the
number of retweets decreases with time.

Suppose a cascade Ci whose duration after generation is t, then it is easy
to know how long the time interval between its generation and each retweet or
citation. Then we can get the time interval of each user’s retweet in the cascade
graph, e.g.,

{
t′v = trv − t0 | 0 ≤ t′v ≤ t, v ∈ V

tj
i

}
, where trv is the time when user

v retweets the message, and t0 is the original posting time of the post.
In order to learn the effect of time on the cascade, we employ the following

time decay effect. Supposing the time window of the observed cascade is [0,T ], we
divide the time window into l equal-sized time intervals as {[t0, t1), ..., (tl−1, tl]},
where t0 = 0, tl = T . It can assign a corresponding interval to each diffusion
time, thus we can compute the corresponding time interval β of the time decay
effect for a retweet at time t:

β = � t′v
T/l

	 (0 ≤ t′v ≤ t). (4)

The function of the time decay effect is:

λβ =
1

1 + t′
v

t0

. (5)
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Then we add the time decay effect to the obtained cascaded hidden state ht,
and further obtain

h′
t = λβht. (6)

Summation to obtain the representation vector for the cascade Ci:

h′(Ci) =
T∑

t=1

h′
t. (7)

4.3 Structural Modeling

The future size of the cascade depends heavily on who is the information “propa-
gator”, i.e., the nodes in the current cascade graph. Therefore, a straightforward
way to represent a graph is to treat it as a bag of nodes. However, this approach
ignores the structural information in the cascade graph, which is important in
predicting diffusion. The biased random walk considers the breadth-first and
depth-first sampling strategies, which can better capture the structural informa-
tion of the cascade graph. Therefore, we represent the cascade graph Ci as a set
of cascade paths sampled through multiple biased random walk processes. For
each random walk process, we first sample the starting node with the following
probability:

p(u) =
degCi

(u) + α∑
u∈VCi

(degG(u)+α)

, (8)

where α is the smoother, degCi
is the out-degree of node u in cascade Ci, and

degG(u) is the degree of u in the global graph G, VCi
is the set of nodes in

cascaded Ci. Then, after the starting node, the neighboring nodes are sampled
with the following probability:

p(u ∈ NCi
(v) | v) =

degCi
(u) + α∑

u∈NCi
(v)(degG(u)+α)

, (9)

where NCi
(v) represents the set of neighbors of v in the cascade graph Ci.

The number and length of random walk sampling sequences play a key role
in determining the representation of the cascade graph. Therefore, in order to
better perform the sampling process, we set two parameters L and K, where K
represents the number of sequences sampled, and L represents the length of each
sequence. We fix L and K as constants, the specific settings will be explained in
the next section of the experiment. Sampling of a sequence stops when we reach a
predefined length L or when we reach a node without any outgoing neighbors. If
the length of the one sequence is less than L, the sequence is filled with a special
node ‘+’. This process of sampling sequences continues until K sequences are
sampled.

The skip-gram model was originally proposed in [28] and has been applied to
deal with word representations in natural language. It aims to classify as many
words as possible based on another word in the same sentence. Specifically,
the representation of each given word is the input, and the model uses logistic
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regression to predict the words within a certain distance before and after the
input word in the sentence. Similarly, we use the sequence of nodes obtained
by random walk as input, and after the logarithmic function mapping of the
projection layer, we get the embedding vector of each node. Suppose NCi

(v)
is the neighborhood list of node v generated by the neighborhood sampling
strategy, and the embedding representation is denoted as Ĥ =

{
ĥ1, ĥ2, ..., ĥn

}
,

where n is the number of nodes. The following objective can be optimized by
the skip-gram model to maximize the log-probability of the node neighborhood
NCi

(v) for all v ∈ VCi
as follows:

max
Ĥ

∏
v∈VCi

P (NCi
(v) | ĥv). (10)

According to the conditional independence assumption, we get:

P (NCi
(v) | ĥv) =

∏
p∈NCi

(v)

P (ĥp | ĥv). (11)

According to the feature space symmetry assumption in Node2vec. We
assume that the source node and the neighbor nodes have symmetric effects
with each other in the embedding space, the conditional likelihood function for
each source-neighbor node pair can be modeled using a softmax function param-
eterized by the dot product of its features:

P (ĥq | ĥv) =
exp(ĥp · ĥv)∑

q∈VCi
exp(ĥq · ĥv)

. (12)

With the above assumptions, the final objective function can be simplified
to:

min
Ĥ

Sloss =
∑

v∈VCi

(log
∑

q∈VCi

exp(ĥq · ĥv) −
∑

p∈NCi
(v)

(ĥp · ĥv)). (13)

4.4 Prediction

We integrate the minimization of the squared loss between the predicted growth
size and the ground truth, where a multilayer perceptron is used as the predic-
tion, the formula is as follows:

min
θ

Oloss =
M∑
i=1

(log ΔSi − log ΔS̃i)2. (14)

ΔSi = MLP (h′(Ci) ⊕
∑

v∈VCi

ĥv). (15)

where θ denotes the trainable parameters of the MLP, ΔSi denotes the predicted
growth size for cascade Ci, and ΔS̃i denotes the ground truth.
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5 Experiments

In this section, we describe the details of the experiments performed on real-
world datasets and the analysis of the results between our proposed model and
baseline methods.

5.1 Datasets

We evaluate the effectiveness of the proposed model in two information cascade
prediction scenarios and compare it with previous work using publicly available
datasets, i.e., Weibo and APS. The statistics of the dataset are shown in Table 1.

Sina Weibo is a public dataset provided by [15], where each tweet and its
retweets can form a retweet cascade. We follow a similar experimental setup to
[15] with observation time windows of length T = 1 h, 2 h and 3 h. Due to the
effect of circadian rhythms, we focus on tweets posted between 8 am and 6 pm.
We randomly select 70% for training, 15% for validation, and the remaining 15%
for testing.

American Physical Society (APS) [20] contains scientific papers published by
APS journals. Each paper and its citations in the APS dataset form a citation
cascade, and the growth size of the cascade is the number of citations. We only
use papers published between 1893 and 1989, so that each paper has at least 20
years to develop its cascade. For the length T of the observation time window,
we choose T = 5 years, 7 years and 9 years. Similarly, the first 70% of the data
is used for training, 15% for validation, and 15% for testing.

Table 1. Statistics of datasets

Dataset Weibo APS

Number of Cascades All 119,311 207,685

Number of Nodes All 325,380 616,014

Number of Edges All 8,466,858 4,710,547

T 1 h 2 h 3 h 5 years 7 years 9 years

Trian 25,515 29,515 31,780 16,299 21,171 24,658

Cascades val 5,386 6,324 6,810 3,582 4,507 5,254

Test 5,386 6,324 6,810 3,475 4,589 5,279

5.2 Baselines

We compare the proposed model with some state-of-the-art cascade prediction
methods, including:

Feature-Based : Recent studies have shown that structural features, temporal
features, and other features (e.g., content features) are useful for information
cascade prediction. We select several features commonly used in cascade graphs
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(e.g., the number of nodes, the number of edges, average degree, edge density)
and predicted the size of the cascade through Feature-linear and Feature-Deep.

Node2vec [29]: It is the representative of node embedding methods. We perform
random walks on the cascade graph and generate an embedding vector for each
node. Then the embeddings of all nodes in the cascade graph are fed into the
MLP for prediction.

DeepCas [12]: The first deep learning architecture for information cascade pre-
diction, which represents the cascade graph as a set of random walk paths via
random walks, and uses GRU and attention mechanism to model and predict
cascade sizes in an end-to-end manner.

Topo-LSTM [13]: It uses a directed acyclic graph as the diffusion topology, the
LSTM is used to model the relationship between nodes in the graph. The hidden
state and cell of each node at a given time depends on the hidden state and cell
of each previous node that was infected before that time instant.

DeepHawkes [15]: It integrates the high predictive power of deep learning into
the interpretable factors of the Hawkes process for cascading size prediction.
Bridging the gap between predicting and understanding information cascades.

CasCN [23]: It samples the cascade graph as a sequence of sub-cascade graphs,
learns the local structure of each sub-cascade by graph convolution, and then
captures the evolution of the cascade structure using LSTM.

DeepCon+Str [14]: It learns the embeddings of the cascade as a whole. It first
constructs higher-order graphs based on content and structural similarity to
learn the low-dimensional representation of each cascade graph, and then makes
cascade predictions through a semi-supervised language model.

5.3 Experimental Settings

The models mentioned above involve several hyper-parameters. For example, the
L2 coefficient in Feature-linear is chosen to be 0.05. For Feature-deep, the param-
eters are similar to deep learning-based approaches. For the sampling sequence
of the cascade graph, we set K = 200 paths and the length of each path L = 10.
For Node2vec, we follow the work in [29].

For DeepCas, DeepHawkes, Topo-LSTM, CasCN, DeepCon+Str and our
model SkipCas all follow the settings of [12], where the user embedding dimension
size is 50, the hidden layer of each GRU is 32 units, and the hidden dimensions
of the two-layer MLP are 32 and 16, respectively. The learning rate is 0.005, the
batch size is set to 32, and the smoother α is set to 0.01.

5.4 Evaluation Metric

Following the existing work, we adopt mean squared log-transformed error
(MSLE) to evaluate the accuracy of predictions on the test set, which is widely
used in cascaded prediction evaluation. MSLE is defined as:
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MSLE =
1
M

M∑
i=1

(log ΔSi − log ΔS̃i)2, (16)

where M is the total number of messages, ΔSi denotes the predicted growth size
for cascade Ci, and ΔS̃i denotes the ground truth.

Table 2. Overall performance comparison of information cascades prediction among
different methods.

Datasets Weibo APS

Metric MSLE

T 1 h 2 h 3 h 5 years 7 years 9 years

Features-deep 3.682 3.361 3.296 1.593 1.514 1.465

Features-linear 3.501 3.435 3.324 1.582 1.508 1.456

Node2vec 3.795 3.523 3.513 2.278 2.003 1.982

DeepCas 3.649 3.250 3.056 1.629 1.538 1.467

Topo-LSTM 2.772 2.643 2.423 1.511 1.483 1.462

DeepHawkes 2.501 2.384 2.275 1.286 1.236 1.162

CasCN 2.348 2.243 2.066 1.455 1.353 1.222

DeepCon+Str 2.670 2.391 2.377 1.468 1.382 1.327

SkipCas 2.251 2.103 1.890 1.163 1.086 1.045

5.5 Experimental Results

We compare the performance of the proposed model with several baseline meth-
ods on the Weibo and APS datasets, and the results are shown in Table 2. Exper-
imental results show that the SkipCas model performs relatively well on infor-
mation cascade prediction for both datasets. It not only outperforms traditional
methods, but also state-of-the-art deep learning methods, with a statistically
significant drop in MSLE. We plot the training process of SkipCas on the Weibo
and APS datasets as shown in Fig. 3. It can be seen that the SkipCas loss grad-
ually converges to a lower result.

The performance gap between Feature-deep and Feature-linear is very small,
and Feature-linear outperforms Feature-deep on the APS dataset. This means
that deep learning does not always perform better than traditional prediction
methods if there is a representative set of information cascading features. How-
ever, the performance of these methods depends heavily on the relevant features
extracted by hand, and it is difficult to generalize to other domains.

For the embedding method, Node2vec performs poorly on both datasets. It
only uses the nodes in the graph to represent the network and ignores other
structural and content information in the cascade.

DeepCas shows better performance than feature-based methods on the Weibo
dataset, but it is inferior to feature-based methods on the APS dataset, which
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again shows that deep learning methods are not necessarily better than feature-
based methods. However, it still performs worse than other deep learning-based
methods because it ignores temporal features and topology of cascaded graphs;
similarly, Topo-LSTM lacks temporal features and cannot extract enough infor-
mation from the cascade, so that its performance is slightly worse compared to
our model. DeepHawkes does not consider the topological information of the cas-
cade, and its performance depends on the time series modeling ability. Although
CasCN utilizes the structure and time information of the cascade network at
the same time, its performance is not the best due to its weak ability to learn
structural information. DeepCon+Str utilizes the similarity of cascade graph
structure and content to obtain the embedding of the whole cascade graph, but
it does not consider the time factor, which affects the prediction performance.

Among these baselines, SkipCas has the best performance and achieves good
results on both datasets because it fully investigates the dynamic diffusion pro-
cess and structural representation of information cascades.

Fig. 3. Convergence of SkipCas on Weibo and APS datasets.

5.6 Ablation Study

To better investigate the effectiveness of each component of SkipCas, we pro-
pose four variants. Table 3 summarizes the performance comparison between the
models and variants.

SkipCas-LSTM : This method uses LSTM to replace the GRU of the proposed
model. Similar to GRU, the LSTM variant models the cascading information
through extra gating units.

SkipCas-Time: This method does not consider the time effect of the cascade
graph, and is to test the necessity of the time effect in the proposed model.

SkipCas-Path: This method uses a cascade sequence of random walk samples
instead of diffusion paths.

SkipCas-Skipgarm: This method does not consider the skip-gram component of
the proposed model and only uses GRU and temporal features for prediction,
which is to test the importance of the structure of the cascade graph.
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From Table 3, we can see that compared with other variants, the prediction
error of the original model SkipCas has a certain reduction. Although the error
of SkipCas-LSTM is not different from the original model, it can still show that
our choice of recurrent neural network is correct; by comparing SkipCas-Time,
we find that ignoring the time effect leads to a significant increase in prediction
error, which indicates that the time effect is essential in cascading predictions.
Similarly, the prediction performance of SkipCas-Path is also decreased signif-
icantly, which indicated that the diffusion path could better reflect the change
process of the cascade graph. In addition, compared with the original model,
the prediction effect of SkipCas-Skipgram is significantly reduced, which fully
shows that the structural information of the cascade graph is very important in
cascade prediction.

In summary, the time effect of the cascade and the structural information
of the cascade are important for future cascade prediction, and our experiments
also demonstrate the validity and necessity of the individual components of the
proposed model, which essentially improve the performance of the information
cascade prediction.

Table 3. Performance comparison between SkipCas and its variants.

Datasets Weibo APS

Metric MSLE

T 1 h 2 h 3 h 5 years 7 years 9 years

SkipCas-LSTM 2.301 2.194 1.958 1.325 1.166 1.088

SkipCas-Time 2.523 2.438 2.321 1.582 1.458 1.356

SkipCas-Path 2.332 2.286 2.147 1.465 1.364 1.229

SkipCas-Skipgram 2.495 2.423 2.348 1.529 1.328 1.267

SkipCas 2.251 2.103 1.890 1.163 1.086 1.045

5.7 Parameter Analysis

The observation time window T is an important parameter of the model. As
shown in Fig. 4, we can observe that the value of MSLE decreases continuously
with increasing observation time on the Weibo dataset, and the prediction error
improves by 16% for 3 h compared to 1 h; similarly, the same effect is observed
on the APS citation dataset, where the prediction performance continues to
improve with the increase of observation years, and the prediction error improves
by 10.1% for 9 years compared to 5 years. This shows that as the observation
time window T increases, the more information we can observe, the easier it is
to make more accurate predictions, which is also a natural result of the increase
in training data.

For the time interval l, we choose the datasets with Weibo of 2 h and APS
of 7 years for analysis. It can be seen from Fig. 5 (left) that with the increase of



SkipCas: Information Diffusion Prediction Model Based on Skip-Gram 271

the time interval, the prediction performance of the model gradually improves,
but when the time interval exceeds 8, the performance starts to decrease again.
Therefore, the experiment in this paper adopts the time interval l = 8.

For the user embedding dimension size d, we also choose the datasets with
Weibo of 2 h and APS of 7 years. The experimental results are shown in Fig. 5
(right). With the increase of dimension size d, the prediction performance of
the model improves. When d is 50, the minimum value of MSLE indicates that
the prediction effect is the best at this time. However, when the user dimension
size exceeds 50, the prediction performance does not improve but decreases.
Therefore, in this paper, the user embedding dimension size d is 50.

Fig. 4. The effect of observation window on the performance of Weibo (left) and APS
(right) datasets.

Fig. 5. The effect of time interval l (left) and user embedding dimension size d (right)
on datasets performance.

6 Conclusion

In this paper, we propose a novel information cascade prediction model called
SkipCas. Our model encodes the diffusion path at each diffusion time in the
cascade graph to obtain the dynamic process of information diffusion, uses the
sequence of random walk sampling to obtain the structural representation of
the cascade graph through skip-gram, and finally predicts the growth size of
the information cascade by combining the diffusion process and the structural
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representation. The experimental results on two real datasets show that SkipCas
significantly improves the cascade prediction performance. As for future works,
we plan to incorporate relevant message features such as text content to improve
prediction performance and explore more effective methods to further mine the
structural information between the cascades.
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