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Abstract. RDF knowledge base summarization produces a compact
and faithful abstraction for entities, relations, and ontologies. The sum-
mary is critical to a wide range of knowledge-based applications, such
as query answering and KB indexing. The patterns of graph structure
and/or association are commonly employed to summarize and reduce the
number of triples. However, knowledge coverage is low in state-of-the-art
techniques due to limited expressiveness of patterns, where variables are
under-explored to capture matched arguments in relations. This paper
proposes a novel summarization technique based on first-order logic rules
where quantified variables are extensively taken into account. We formal-
ize this new summarization problem to illustrate how the rules are used
to replace triples. The top-down rule mining is also improved to maximize
the reusability of cached results. Qualitative and quantitative analyses
are comprehensively done by comparing our technique against state-of-
the-art tools, with showing that our approach outperforms the rivals in
conciseness, completeness, and performance.

Keywords: Data summarization · RDF KB summarization ·
Knowledge graphs · Logic rule mining · Rule-based approaches

1 Introduction

Data summarization [1] is to extract, from the source, a subset or a compact
abstraction that includes the most representative features or contents. Sum-
marization of RDF Knowledge Bases (KBs) are also being studied for over a
decade [3], especially after the concepts of semantic web and linked data are
widely accepted, and the online data amount grows unexpectedly large.

To serve the purpose of concise and faithful summarization, structural meth-
ods [7,16] are among the first attempts where techniques are borrowed from gen-
eral graph mining approaches. Statistical and deep learning techniques [10,15]
are also welcome in the research to alleviate the impact of noise and cap-
ture latent correlations. However, the above methodologies cannot provide the
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overview in an interpretable way and, in the meantime, be dependable in rea-
soning and deduction. Thus, approaches based on association patterns and logic
rules are studied in more recent works [2,14,20].

Current pattern-based and rule-based methods summarize KGs and produce
schematic views of the data. A technique for Logical Linked Data Compres-
sion (LLC) [14] has been proposed to extract association rules that represent
repeated entities or relation-entity pairs at a lower cost. Labeled frequent graph
structures are encoded as bit strings in KGist [2] and summarized from the per-
spective of bit compression. Nevertheless, the extracted patterns fail to conclude
general patterns with arbitrary variables and thus cover only a tiny part of the
factual knowledge. First-order logic rules, such as Horn rules, are a promising
upgrade where universally and existentially quantified variables are extensively
supported, but the rules have not yet been used for the summarization purpose.
First-order logic rules have been proved useful to KGs in knowledge-based appli-
cations, such as KG completion [9], and show competitive capabilities. However,
the performance turns out to be the cost of expressiveness. For example, first-
/higher-order logic rule mining techniques [19,23] cannot scale to databases con-
sisting of thousands of records without parallelization [8,26]. Current techniques
usually limit the expressiveness for high performance [9], and this decreases the
completeness of induced semantics. Moreover, the selection of best semantics is
also challenging, for the number of applicable rules induced from a knowledge
base is much larger than required for the summarization.

This paper bridges the gap between RDF KB summarization and first-order
logic rule mining. We propose a novel summarization technique based on first-
order Horn rules where quantified variables are extensively taken into account.
The formal definitions illustrate a new summarization problem: inducing Horn
rules from an RDF KB, such that the KB is separated into two parts, where
one is inferable (thus removable) by the other with respect to the rules. The
top-down rule mining mechanism is also improved to maximize the reusability
of cached contents. Contributions of this paper include:

• We are the first to employ first-order Horn rules in RDF KB summarization.
Variables are explored to extend the coverage and the completeness of seman-
tic patterns. The new approach is also applicable to relational databases.

• We refine the extension operations in top-down rule mining to a smaller step
size, such that the conciseness and performance are both improved.

• We qualitatively analyze the superiority of our approach and demonstrate the
reasons with quantitative experimental results. The experiments show that
our technique summarizes a database to less than 40% of the size, covering
more than 70% contents with induced rules. The performance of our technique
is up to two orders faster than the rivals.

The remains of the paper are organized as follows: Sect. 2 reviews major
studies in RDF KB summarization. Definitions and details of our approach are
proposed in Sect. 3. Section 4 evaluates the performance of our technique and
shows evidence of the improvement from a quantitative perspective. Finally,
Sect. 5 concludes the entire paper.



190 R. Wang et al.

2 Related Work

RDF KB summarization aims to extract concise and precise abstraction from
facts and ontologies, providing a preview and overall understanding of large-scale
knowledge data. Structural, statistical, and pattern/rule-based approaches have
been studied for over a decade.

Structural approaches represent the summary as a smaller graph, where
vertices and edges are either fragments of the original graph or converted accord-
ing to some mapping criteria. Quotient Graphs [25] are widely applied in many
structural approaches. Vertices in a quotient graph represent collections of ver-
tices in the original graph according to an equivalence relation over the vertices.
An edge in the quotient graph represents shared edges between the adjacent ver-
tex collections. Forward and backward (bi)simulation [7] properties guarantee
that a query on the quotient summary of a knowledge graph returns non-empty
results if the results are non-empty from the original database. Indexing [16] is
the major benefit of the structural approaches.

Statistical approaches focus on quantitative summaries for visualiza-
tion [6], query answering [22], selective data access [13], and description gen-
eration [10]. The approaches are motivated by the source selection problem,
where quantitative statistics reports on how relevant a knowledge base is to a
query [13]. Query sensitive information, such as the existence or quantity of rele-
vant entities, triples, or schematic rules, is calculated and stored [22]. To evaluate
the relevance to a topic, centrality and frequency analyses within a neighborhood
are employed to entities and ontological schema [10]. Summarization techniques
for other data types, such as text, are also used to rank objects in different
circumstances [18].

Pattern/rule-based approaches employ data mining approaches to
extract frequent patterns, in the form of graph structures or rules, from the RDF
graph. [28] summarizes with a set of approximate graph patterns in accordance
with SPARQL query evaluations. KGist [2] encodes RDF graph structures into
bit strings and takes advantage of information theory to minimize the descrip-
tion length of the entire bit string. The codebook for bit compression represents
sub-structures in the original graph. Meier [17] studied an RDF minimization
problem under user-defined constraints via Datalog programs. The constrained
minimization problem has been proved intractable, and the author identifies a
tractable fragment solvable in polynomial time.

LLC [14] summarizes and compresses Linked Open Data (LOD) via associa-
tion rules, and Fig. 1 shows the overall workflow. LLC converts an RDF knowl-
edge base into a transactional database, and the itemsets consist of objects or
relation-object pairs for every subject in the graph. Then FP-growth [12] is
used to extract a list of frequent itemsets, and association rules are ranked and
selected according to a measure representing the capability of replacement. The
original graph is separated into two parts: GA and GD, by matching the rules on
each itemset. GD contains triples that cannot be replaced from the knowledge
base, and triples in GA are the replacement of those in R(GA). Thus, GA, GD,
and the set of rules R make up the summary. The recovery of the original KG is
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Fig. 1. LLC workflow

accomplished by applying R on
GA.

Rules (1) and (2) are two types of
association rules extracted by LLC:

∧n
i=1 < X, p, oi > ←< X, p, o > (1)

∧n
i=1 < X, pi, oi > ←< X, p, o > (2)

where < s, p, o > refers to a triple,
p, pi are relations, o, oi are entities,
and X is a universally quantified variable. The above rules can be converted
to the following Horn rules:

p(X, oi) ← p(X, o), i = 1, . . . , n (3)
pi(X, oi) ← p(X, o), i = 1, . . . , n (4)

Inductive Logic Programming (ILP) provides top-down [9,23,27] and
bottom-up [19] solutions to logic rule mining. Probability can also be used for
noise tolerance [24]. Parallelization is often employed when inducing from large-
scale databases [8,26].

3 Summarization via First-Order Horn Rules

This section presents the formal definition of the summarization with first-order
Horn rules and shows how the rules are used in the solution framework. The logic
rule mining process is also improved to extensively explore quantified variables
and maximize the reusability of cached contents. The advantages of our technique
are demonstrated by comparisons against LLC.

3.1 Preliminaries, Definitions and Notation Conventions

Let Σ be a finite set of constant symbols, e.g. {a, b, c, . . . }. Let Γ be a finite set
of variable symbols, e.g. {X,Y,Z, . . . }. Let Pn(n ≥ 0) be a finite set of n-ary
predicate symbols (i.e. relations), and P =

⋃
i≥0 Pi. A first-order predicate

(or simply, predicate) is composed of a predicate symbol and a list of arguments
enclosed in parentheses, written as p(t1, . . . , tk), where p ∈ Pk, ti ∈ Σ∪Γ. Let P
be a predicate, φ(P ) is the arity of P . P is a ground predicate if all arguments
are constants. The above definitions do not break those in First-order Predicate
Logic (FOL). In the context of RDF knowledge bases, all predicate symbols are
binary, although the formalization and solution to the summarization problem
fit in the broader domain of the relational data model.

Formally, an RDF knowledge base is a finite set of binary ground predicates.
In FOL, the truth value of a ground predicate is determined by the interpreta-
tion and domain. In this paper, the interpretation of non-logic symbols is the
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definition of relations in databases, and the domain is the set of relation names
and constant values. Therefore, a ground predicate P is True according to some
database D if and only if P ∈ D.

A first-order Horn rule is of the form: Q ← ∧iPi, where Q,Pi are atoms
(predicates or the negations). In this paper, only non-negative atoms are consid-
ered in the rules. Q is called the head of the rule, and predicates Pi make up the
body . Q is entailed by Pi if Pi are all True, that is,(∧iPi) ∧ (Q ← ∧iPi) |= Q.
Thus, by binding the variables in the entailment, the grounded predicate Q′ is
entailed by grounded predicates P ′

i w.r.t. the rule r and a database D if every
P ′
i ∈ D, written as {P ′

i} |=r Q′. Let S, T be sets of ground predicates, H be a set
of first-order Horn rules, S |=H T if ∀T ∈ T ,∃S ′ ⊆ S, r ∈ H, such that S ′ |=r T .
Suppose T is entailed by a set of predicates w.r.t. a rule r. If T ∈ D, T is said to
be positively entailed by S w.r.t. r; otherwise, T is negatively entailed . If a
predicate is positively entailed by some grounding of r, the grounding is called
an evidence of the predicate. The set of positive and negative entailments w.r.t.
rule r is denoted by E+

r and E−
r , and Er = E+

r ∪ E−
r .

Notation Conventions. Capital letters refer to variables, such as X,Y .
Unlimited Variables (UVs) are variables assigned to only one argument in
some rule; Limited Variables (LVs) are those assigned to at least two argu-
ments. A question mark (‘?’) refers to a unique UV in a rule. Uncapitalized
words as arguments refer to constants, e.g., tom. Uncapitalized words before the
parenthesis or a period are predicate symbols, and the number after the period
is the index of the argument in the predicate, starting from 0, such as father.0.
For example, the following two rules are the same. Variables X and Y are LVs,
while Z and W are UVs and can be simplified to two question marks.

p(X,Y,Z) ← q(X,Y ), s(Y,W ) (5)
p(X,Y, ?) ← q(X,Y ), s(Y, ?) (6)

Definition 1 (Knowledge Graph Summarization). Let D be an RDF KB.
The summarization on D is a triple (H,N , C) with minimal size, where H (for
“Hypothesis”) is a set of inference rules, both N (for “Necessaries”) and C (for
“Counterexamples”) are sets of predicates. D,H,N , C satisfies: 1) N ⊆ D; 2)
N |=H (D \ N ) ∪ C; 3) ∀e 
∈ D ∪ C, 
 ∃r ∈ H,N |=r e.

The size of (H,N , C) is ‖H‖ + |N | + |C|. |N | is the number of predicates in
N , and so be |C|. ‖H‖ is defined as the sum of lengths of all rules in it.

In LLC, the total size of the patterns is the number of rules-that is-the
length of each rule is one, no matter what form and pattern it describes. The
coarse definition does not reflect the complexity of identifying semantic patterns.
Other rule mining studies [11,23,27] intuitively count in the number of terms or
different variables, which emphasizes to some extent the complexity of identifying
a pattern, but it is still not convincing enough.

In our technique, the length of a Horn rule is measured by the total arity of
the rule and the number of different variables at the same time:

|r| =

(
∑

P∈r

φ(P )

)

− var(r) (7)
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Fig. 2. The workflow of our technique

Table 1. An example knowledge base

s p o

tom father jerry
bob father alice
matt father adam
daniel father felix

s p o

tom gender male
bob gender male
matt gender male
daniel gender male

s p o

tom type man
bob type man
matt type man
felix type man

var(r) is the number of different variables in rule r. Intuitively speaking, the
above definition reflects the minimum number of equivalence conditions that
identify the pattern in r. For example, the length of Rule (8) is 2, because the
pattern is characterized by two conditions: gender.0 = father.0, gender.1 =
male. The UV in Rule (8) is existentially quantified.

The size of every triple in Definition 1 is one no matter what relation and
entity are represented by the triple because the logic-rule-based summarization
cover and remove each triple as a whole. The comparison (Fig. 4a) between
summarization ratios and compression ratios has justified that it is proper to
define the size of a triple as one.

3.2 Summarization Workflow and the Recovery

Figure 2 shows the overall workflow of our technique. An RDF KB is converted
to a relational database, where the subjects and objects are the two arguments
in the relations. Each triple in the KB is converted to a single record in the
relational database. Labels and types are converted to unary relations where
relation names are from the label or type value. Then, logic rules are iteratively
induced from each relation until no proper rule is returned. Each Horn rule is
evaluated on the database to find the entailments and corresponding evidence.
Negatively entailed records are simply collected in the counterexample set C.
Positively entailed records and the corresponding evidence are further analyzed
to finally determine the set N , in case that there are circular entailments in the
summarization.
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Table 2. Converted Relational
Database of Table 1

tom jerry tom male tom
bob alice bob male bob
matt adam matt male matt
daniel felix daniel male felix

Table 1 shows an example RDF knowl-
edge base, and Table 2 shows the con-
verted version. The original size of the KB
is 12, and the following rules are induced
for the summarization:

gender(X,male) ← father(X, ?) (8)
man(X) ← father(X, ?) (9)

The total size of the rules is 3, and only 1
counterexample man(daniel) is generated by the rules. The 5 records in bold
font remain in N , and the others can be entailed from N w.r.t. the above rules
thus are removable. Therefore, the total size of the summarization is 9.

Fig. 3. An example of circular
entailment

The evidence of positively entailed triples can
be represented as a graph, where edges refer to the
inference dependency from the body to the head.
Therefore, circular dependencies occur as directed
cycles in the graph. Figure 3 shows an example
where the following rules are included in H and
cause the cycles:

man(X) ← gender(X,male)
gender(X,male) ← man(X)

Minimum Feedback Vertex Set (MFVS) [4] algo-
rithms can be used to break the cycles and vertices

in the MFVS solution should also be included in N to make sure every removed
record is inferable.

The recovery is simple in our technique: given that the circular dependencies
are resolved in the summarization, all removed records can be regenerated by
iteratively evaluating Horn rules in H until no record is added to the database.
Counterexamples should be excluded to keep data consistency.

Association rules adopt a limited number (usually one [14] or two [21]) of
universally quantified variables, and the patterns are only expressed by the co-
occurrences of entities. Thus, general correlations represented by more variables
and existential quantifiers are not captured. In the above example, the only
inducible association pattern by LLC is the following (or the reverse):

type(X,man) ← gender(X,male) (10)

The triples in relation gender (or type) are not removable. Thus, the conciseness,
coverage, and semantic completeness are low in LLC, even though part of the
schematic overview has been correctly induced from the data. It is possible to
hardcode various semantics into different association structures, such as varying
the variables from the subject to the object or even the relation. However, the
structures rely on human input and are often tedious to enumerate.
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3.3 First-Order Horn Rule Mining

The most critical component in our technique is the induction of first-order Horn
rules. Logic rule mining has been extensively studied in the Inductive Logic Pro-
gramming (ILP) community [5]. Both top-down and bottom-up methodologies
have been proposed and optimized for over three decades. The bottom-up strat-
egy regards facts as specific-most rules and merges correlated ones to general-
ize [19]. The top-down strategy operates in the inverse direction, where rules
are constructed from general to specific by imposing new restrictions on candi-
dates [23,27]. Top-down mining techniques are easier to understand and optimize
and are employed in more knowledge-based applications.

Our technique also follows the top-down methodology, and the specializa-
tion is refined to improve performance. In previous works, such as FOIL [23]
and AMIE [9], candidate rules are specialized by simply appending new atoms
to the body of Horn rules. The specialization in the pattern semantics is not
well-organized because some newly imposed conditions are repeatedly applied
to the candidates, and the number of applicable predicates in each step of spe-
cialization is exponential to the maximum arity of the relations if inducing on
relational databases. In our approach, a candidate rule is extended in a smaller
step size which corresponds to the equivalence between a column and another
or a constant value. For example, Rule (8) is constructed in the following order:

gender(?, ?) ←
gender(X, ?) ← father(X, ?)

gender(X,male) ← father(X, ?)

The benefit of this modification is three-fold: 1) The extension operations are
feasible to relations of arbitrary arities without increasing the difficulty of enu-
merating applicable predicates to the body. The number of applicable extensions
is polynomial to the rule length and the arity of relations. 2) The small-step
exploration employs existentially quantified variables with lower cost compared
to current logic rule mining techniques, no mention of the association ones. 3)
The specialization maximizes the reusability of intermediate results and is better
cooperated with caching techniques in relational databases, such as materializa-
tion. The reason is that the specialization by each newly imposed condition is
updated and stored only once during the induction. Together with pruning [27]
and parallelization techniques [8,26], the performance of logic rule mining will
no longer be the stopping reason for RDF KB summarization.

Searching for the best logic rule is accomplished with the beam search, similar
to the FOIL system, except that an RDF KB does not provide negative examples.
Therefore, the Closed World Assumption (CWA) is adopted in our technique to
enumerate the negative examples if necessary. The quality of a Horn rule r is
measured by the reduction of overall size:

δ(r) = |E+
r | − |E−

r | − |r| (11)
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Table 3. Dataset overview

Datasets Short #Rel. #Entity #Triple #Label

Elti E 10 47 318 –
Family.simple Fs 4 82 322 1
Dunur D 17 26 466 –
DBpedia.factbook DBf 2 335 880 Default
Family.medium Fm 9 142 1242 1
Student Loan S 9 1031 6317 –
UMLS U 46 135 6664 Default
WN18 WN 18 41K 193K Default
NELL N 1083 44K 278K 821
FB15K FB 1345 15K 607K Default

4 Evaluation

This section evaluates our technique and answers the following research ques-
tions:

Q1 To what extent are RDF KBs summarized by first-order Horn rules?
Q2 How and why does our technique outperform state-of-the-art methods?
Q3 How fast does our technique induce logic rules?

Datasets. We use ten open-access datasets, without deliberate selection, from
various domains, including relational databases, fragments of popular knowledge
graphs that are widely used as benchmarks, and two synthetic datasets. Table 3
shows statistics of these datasets.1 “E”, “D”, and “S” are relational databases them-
selves, and the others are converted to the corresponding relational form. Given
thatKGist requires entity labels in databases, we assign a default label to datasets
where the label information is unavailable. Datasets tested in LLC are outdated
and no longer accessible thus are not used in our tests. The datasets are not
extremely large because FOIL and KGist are not implemented in a parallel man-
ner, and we compare the speed in a single thread mode to demonstrate the impact
of the small-step specialization operations. More importantly, the datasets are suf-
ficient to emphasize the superiority of our technique.

Rivals and Settings. We compare our approach against four state-of-the-art
techniques: FOIL, LLC, AMIE, and KGist. The summarization quality is com-
pared mainly against LLC. KGist and AMIE are also compared for summa-
rization, as KGist is devoted to the same purpose via a graph-based approach,
and AMIE can be slightly modified, for a fair comparison, to summarize KGs by
selecting the rules useful for reducing the overall size. FOIL and AMIE are cho-
sen as the competitors for speed comparison, as both of them induce first-order
1 E, D, S are available at: https://relational.fit.cvut.cz/; Fm, Fs are synthetic, and the

generators are available with the project source code.

https://relational.fit.cvut.cz/;
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Horn rules and are the most similar to ours. However, neither the source code nor
compiled tool is available for LLC. Therefore, we reimplemented the algorithm
according to the instructions in [14]. The latest version of AMIE, AMIE3, is used
in the experiment, and Partial Completeness Assumption (PCA) is employed in
AMIE. Our technique is implemented in Java 11 and is open-source on GitHub2

All tests were carried out in a single thread on Deepin Linux (kernel: 5.10.36-
amd64-desktop) with Ryzen 3600 and 128GB RAM. The beamwidth for our
technique is 5.

Metrics. The quality of summarization is quantitatively reported by the sum-
marization ratio (θ), pattern/rule complexity (|r|) and connectivity (ρ), and
knowledge coverage (τ). The summarization ratio is defined as:

θ(D) = (‖H‖ + |N | + |C|)/|D| (12)

where ‖H‖, |N |, |C|, and |D| in LLC, AMIE, and our technique follow Defini-
tion 1. The components in KGist are measured by the length of bit strings. The
connectivity is the connection density in relations and reflects the completeness
of exhausting hidden semantics in a knowledge base:

ρ(H) = |{(p, q)|p, q ∈ P, p, q appear in the same rule r ∈ H}|/|P|2 (13)

In our technique, the converted “type” or “label” relations are counted as one
single relation, as is calculated in other techniques. The knowledge coverage is
the ratio of all inferable (not necessarily removable) triples over the entire set:

τ(D) = |{e ∈ D|D |=H e}|/|D| (14)

4.1 Summarization with Horn Rules

The results in this section answer Q1: The summarization and compression ratios
of our technique are up to 40%; Circular entailments frequently appear in the
summarization but are easy to resolve.

Figure 4 shows summarization statistics of our technique on the datasets.
Θ refers to the compression ratio measured by input/output files in Bytes. The
bars in three different colors in Fig. 4a add up to the total summarization ratio,
and it is shown that more than 60% contents are replaced by logic rules in
the datasets. Compared to the number of remaining triples, the sizes of rules
and counterexamples are negligible. The reason is that there are usually clear
topics and themes in modern knowledge bases, and within the topics, some rela-
tions extend details of complex concepts. Moreover, necessary redundancies are
included for high completeness of domain knowledge, as most facts are automat-
ically extracted from the open-source text and checked by human. For example,
the followings are some rules induced from the datasets:

part_of(X,Y ) ← has_part(Y,X) (15)
uncle(X,Y ) ← brother(X,Z), aunt(Z, Y ) (16)
aunt(X,Y ) ← sister(X,Z), uncle(Z, Y ) (17)

2 https://github.com/TramsWang/SInC.

https://github.com/TramsWang/SInC
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Fig. 4. Summarization detail

Relation aunt and uncle in dataset “Fm” can be mutually defined by each other
with some auxillary relations. Many relations, such as part_of and has_part
in “WN”, are symmetric, and this is a common circumstance in modern KGs.
Figure 4b shows the evidence by counting the sizes of Strongly Connected Com-
ponents (SCCs) in the graph that represents inference dependencies of triples.
The average sizes of SCCs in large-scale KGs, such as “FB”, “WN”, and “N”, are
approximately 2, which testifies the above analysis. Moreover, from the figure, we
can conclude that the cycles are not large in the datasets and can be efficiently
solved by MFVS algorithms, even in a greedy manner.

Figure 4a also shows that our technique successfully applies to relational
data-bases. Moreover, the summarization ratio is close to the file compression
ratio. It is proper to define the size of a triple as one. θ and Θ have an apparent
difference in “DBf” because the following induced rule eliminates entities after
triples are removed: sameAs(X,X) ←, and extra information for the entities
should be recorded for a complete recovery. However, the information is not
included in Definition 1, as the above case is rare in practice.

4.2 Quality of Summarizations

In this section, we compare our technique against the state-of-the-art tools: LLC,
AMIE, and KGist, and answer Q2: Our technique induces more expressive logic
rules than the state-of-the-art; Rules in our technique cover more triples, reflect
more comprehensive semantics, and are more representative.

Figure 5 shows the overall summarization ratios of the techniques. “E”, “D”,
and “S” are not compared as the competitors cannot handle relational databases.
Our technique outperforms the others in almost all datasets. Some of the ratios
by LLC are larger than 100% because many rules are induced but not used to
replace triples. For example, the following two rules are induced from “DBf” by
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Fig. 5. Summarization comparison

Table 4. Blocked rules (%) in LLC

Dataset Fs DBf Fm U WN N FB

Blocked rules (%) 52.63 48.39 68.46 60.00 44.23 42.90 45.00

LLC:

spokenIn(X,Russia) ∧ type(X, default) ← spokenIn(X,Kazakhstan) (18)
spokenIn(X,Russia) ∧ type(X, default) ← spokenIn(X,Uzbekistan) (19)

But Rule (19) is blocked from replacing the head triples if Rule (18) is applied.
According to Table 4, about half of the rules in LLC are blocked due to the
above reason.

However, excluding the size of rules (shown as “LLC (NR)” in Fig. 5) does
not change the fact that LLC is not competitive to logic-rule-based techniques.
The main reason is that association patterns are applicable to only a small part
of triples in the datasets. For example, Rule (18) is the most frequently used
in “DBf”, and it replaces only 18 triples, the proportion of which is only 2.05%,
in the dataset. Figure 6a compares the overall coverage of all techniques. The
association patterns induced by LLC cover only about 20% triples in a KG. The
low coverage is further explained by Fig. 6b. The figure shows that the num-
ber of itemsets, i.e., potential association patterns, exponentially decreases with
increasing size of the itemset. More importantly, the number is much smaller
than the matching arguments, represented by variables. Therefore, the associa-
tion patterns are not representative as first-order logic rules are.

Figure 6c compares the connectivity (see Eq. (13)) of induced patterns. Given
that the connectivity varies a lot in datasets, for a clear illustration, we compare
the connectivity of other techniques to ours. Therefore, the red line at value 1.0
denotes the connectivity of our technique, and the others are the relative values.
In most cases, our technique induces patterns that correlate the most relations,
thus reflecting the semantics more comprehensively in the data. Although LLC
combines more relations in “DBf” and “WN”, the average numbers of triples
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Fig. 6. Pattern comparison

inferable by the rules induced from the two datasets are 2.07 and 11.17, while
the numbers for our technique are 124 and 8358.22. Hence, the coverage of our
technique remains extensive even though the connectivity is occasionally low.

Fig. 7. Rule Lengths on NELL

Figure 7 compares the length of patterns
in the dataset “N” according to the measure
proposed in Sect. 3.1. The reason why LLC
induces longer patterns is that the associa-
tion patterns consist mainly of entities, each
of which is size 1 in the new length mea-
sure, while variables represent the matching
between arguments with much less cost.

The comparisons with other state-of-
the-art techniques also approve that logic-
rule-based approaches generalize better than
graph-pattern-based ones, thus producing
more concise summaries. The summarization
ratios for our technique and AMIE are smaller
than LLC and KGist. The knowledge cover-
age is also significantly more extensive than
the graph-pattern-based approaches. Most of
the rules in KGist are at length one because
the patterns it describes usually involve a sin-

gle relation and the direction, and this is also the reason for almost-zero connec-
tivity in KGist.

Our technique summarizes better than AMIE because rules induced in our
technique are longer and contain existentially quantified UVs. For example, the
following rule is simple but out of reach of AMIE, because it contains a UV:

gender(X, female) ← mother(X, ?)

Moreover, the rule evaluation metric adopted in AMIE is based on PCA, which
assumes the functionality of relations in knowledge bases. However, the PCA in
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Fig. 8. Rule mining speed comparison

AMIE is not suitable for the summarization purpose. For example, our technique
covers triples in relation produces with only 10 counterexamples, while AMIE
does with 97.

4.3 Rule Mining Speed

The results in this section answer Q3: The speed of our technique is up to two
orders faster than FOIL and AMIE, and the speed-up is mainly due to the
small-step specialization operations together with caching.

Both AMIE and FOIL induce first-order Horn rules and are the most similar
techniques to ours. AMIE restricts the length and applicable variables in the
rules, and it runs in multi-threads. The maximum length and the number of
threads in AMIE should be set to 5 and 1 to compare the performance under
approximately equal expressiveness. However, AMIE frequently ends up with
errors under the above setting. The adopted parameters for maximum length
and threads are 4 and 3, respectively. Therefore, the actual speed-up is larger
than the recorded numbers in Fig. 8a. In the figure, the missing numbers are
because of program failures due to program errors or memory issues in FOIL
and AMIE.

The results show that our technique performs one to two orders faster than
AMIE and FOIL. Although AMIE adopts an estimation metric for heuristically
selecting promising specializations of rules, it tends to repeatedly cover triples by
different rules. No more than 10% rules produced by AMIE are used in the sum-
marization. Although AMIE employs an in-memory database with combinatorial
indices, the caching is not fully explored due to the types of terms it appends to
the rules. For example, Rules (21) and (22) are two extensions of Rule (20) in
AMIE. The condition grandfather.0 = father.0 has been repeatedly imposed
on the base rule during the extension.

grandfather(X,Y ) ← (20)
grandfather(X,Y ) ← father(X,Y ) (21)
grandfather(X,Y ) ← father(X,Z) (22)
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FOIL finds the best description for relations under the metric “Information
Gain”. FOIL does not over-explore the search space of Horn rules as AMIE does,
but the tables are repeatedly joined, as FOIL does not cache the intermediate
result of candidate rules during the construction. Figure 8b shows the speed-up
by caching intermediate results, and this explains most of the difference between
FOIL and our technique. Moreover, Fig. 8b also shows that the speed-up by
caching is more significant in larger datasets.

5 Conclusion

This paper proposes a novel summarization technique on RDF KBs by inducing
first-order Horn rules. Horn rules significantly extend the coverage, completeness,
and conciseness due to extensive exploration of variables compared to the asso-
ciation and graph-structure patterns. The small-step specialization operations
also improve the performance of rule induction by maximizing the reusability of
cached contents. As shown in the experiments, our technique summarizes KBs
to less than 40% of the original size, covers more than 70% triples, and is up
to two orders faster than the rivals. Our technique not only produces a concise
and faithful summary of RDF KBs but is also applicable to relational databases.
Therefore, the new technique is practical for a broader range of knowledge-based
applications.
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