
Massih-Reza Amini · Stéphane Canu ·
Asja Fischer · Tias Guns · Petra Kralj Novak ·
Grigorios Tsoumakas (Eds.)

LN
AI

 1
37

14

European Conference, ECML PKDD 2022
Grenoble, France, September 19–23, 2022
Proceedings, Part II

Machine Learning and
Knowledge Discovery
in Databases

Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 13714
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China

The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.

The series publishes state-of-the-art research results at a high level.Aswith theLNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.

Massih-Reza Amini · Stéphane Canu ·
Asja Fischer · Tias Guns · Petra Kralj Novak ·
Grigorios Tsoumakas
Editors

Machine Learning and
Knowledge Discovery
in Databases
European Conference, ECML PKDD 2022
Grenoble, France, September 19–23, 2022
Proceedings, Part II

Editors
Massih-Reza Amini
Grenoble Alpes University
Saint Martin d’Hères, France

Asja Fischer
Ruhr-Universität Bochum
Bochum, Germany

Petra Kralj Novak
Central European University
Vienna, Austria

Stéphane Canu
INSA Rouen Normandy
Saint Etienne du Rouvray, France

Tias Guns
KU Leuven
Leuven, Belgium

Grigorios Tsoumakas
Aristotle University of Thessaloniki
Thessaloniki, Greece

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-26389-7 ISBN 978-3-031-26390-3 (eBook)
https://doi.org/10.1007/978-3-031-26390-3

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023, corrected publication 2023
Chapters “On the Current State of Reproducibility and Reporting of Uncertainty for Aspect-Based Sentiment
Analysis” and “Contextualized Graph Embeddings for Adverse Drug Event Detection” are licensed under the
terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-26390-3
http://creativecommons.org/licenses/by/4.0/

Preface

The European Conference on Machine Learning and Principles and Practice of Knowl-
edgeDiscovery in Databases (ECML–PKDD2022) in Grenoble, France, was once again
a place for in-person gathering and the exchange of ideas after two years of completely
virtual conferences due to the SARS-CoV-2 pandemic. This year the conference was
hosted for the first time in hybrid format, and we are honored and delighted to offer you
these proceedings as a result.

The annual ECML–PKDD conference serves as a global venue for the most recent
research in all fields of machine learning and knowledge discovery in databases, includ-
ing cutting-edge applications. It builds on a highly successful run of ECML–PKDD
conferences which has made it the premier European machine learning and data mining
conference.

This year, the conference drew over 1080 participants (762 in-person and 318 online)
from 37 countries, including 23 European nations. This wealth of interest considerably
exceeded our expectations, and we were both excited and under pressure to plan a
special event. Overall, the conference attracted a lot of interest from industry thanks to
sponsorship, participation, and the conference’s industrial day.

The main conference program consisted of presentations of 242 accepted papers and
four keynote talks (in order of appearance):

– Francis Bach (Inria), Information Theory with Kernel Methods
– Danai Koutra (University of Michigan), Mining & Learning [Compact] Representa-

tions for Structured Data
– Fosca Gianotti (Scuola Normale Superiore di Pisa), Explainable Machine Learning

for Trustworthy AI
– Yann Le Cun (Facebook AI Research), From Machine Learning to Autonomous

Intelligence

In addition, there were respectively twenty three in-person and three online work-
shops; five in-person and three online tutorials; two combined in-person and one com-
bined online workshop-tutorials, together with a PhD Forum, a discovery challenge and
demonstrations.

Papers presented during the three main conference days were organized in 4 tracks,
within 54 sessions:

– Research Track: articles on research or methodology from all branches of machine
learning, data mining, and knowledge discovery;

– Applied Data Science Track: articles on cutting-edge uses of machine learning, data
mining, and knowledge discovery to resolve practical use cases and close the gap
between current theory and practice;

– Journal Track: articles that were published in special issues of the journals Machine
Learning and Data Mining and Knowledge Discovery;

vi Preface

– Demo Track: short articles that propose a novel system that advances the state of the
art and include a demonstration video.

We received a record number of 1238 abstract submissions, and for the Research
and Applied Data Science Tracks, 932 papers made it through the review process (the
remaining papers were withdrawn, with the bulk being desk rejected). We accepted 189
(27.3%) Research papers and 53 (22.2%) Applied Data science articles. 47 papers from
the Journal Track and 17 demo papers were also included in the program. We were able
to put together an extraordinarily rich and engaging program because of the high quality
submissions.

Research articles that were judged to be of exceptional quality and deserving of
special distinction were chosen by the awards committee:

– Machine LearningBest Paper Award: “Bounding the Family-Wise Error Rate in Local
Causal Discovery Using Rademacher Averages”, by Dario Simionato (University of
Padova) and Fabio Vandin (University of Padova)

– Data-Mining Best Paper Award: “Transforming PageRank into an Infinite-Depth
Graph Neural Network”, by Andreas Roth (TU Dortmund), and Thomas Liebig (TU
Dortmund)

– Test of Time Award for highest impact paper from ECML–PKDD 2012: “Fairness-
Aware Classifier with Prejudice Remover Regularizer”, by Toshihiro Kamishima
(National Institute of Advanced Industrial Science and Technology AIST), Shotaro
Akashi (National Institute of Advanced Industrial Science and Technology AIST),
Hideki Asoh (National Institute of Advanced Industrial Science and Technology
AIST), and Jun Sakuma (University of Tsukuba)

We sincerely thank the contributions of all participants, authors, PC members, area
chairs, session chairs, volunteers, and co-organizers who made ECML–PKDD 2022 a
huge success. We would especially like to thank Julie from the Grenoble World Trade
Center for all her help and Titouan from Insight-outside, who worked so hard to make
the online event possible. We also like to express our gratitude to Thierry for the design
of the conference logo representing the three mountain chains surrounding the Grenoble
city, as well as the sponsors and the ECML–PKDD Steering Committee.

October 2022 Massih-Reza Amini
Stéphane Canu
Asja Fischer

Petra Kralj Novak
Tias Guns

Grigorios Tsoumakas
Georgios Balikas

Fragkiskos Malliaros

Organization

General Chairs

Massih-Reza Amini University Grenoble Alpes, France
Stéphane Canu INSA Rouen, France

Program Chairs

Asja Fischer Ruhr University Bochum, Germany
Tias Guns KU Leuven, Belgium
Petra Kralj Novak Central European University, Austria
Grigorios Tsoumakas Aristotle University of Thessaloniki, Greece

Journal Track Chairs

Peggy Cellier INSA Rennes, IRISA, France
Krzysztof Dembczyński Yahoo Research, USA
Emilie Devijver CNRS, France
Albrecht Zimmermann University of Caen Normandie, France

Workshop and Tutorial Chairs

Bruno Crémilleux University of Caen Normandie, France
Charlotte Laclau Telecom Paris, France

Local Chairs

Latifa Boudiba University Grenoble Alpes, France
Franck Iutzeler University Grenoble Alpes, France

viii Organization

Proceedings Chairs

Wouter Duivesteijn Technische Universiteit Eindhoven,
the Netherlands

Sibylle Hess Technische Universiteit Eindhoven,
the Netherlands

Industry Track Chairs

Rohit Babbar Aalto University, Finland
Françoise Fogelmann Hub France IA, France

Discovery Challenge Chairs

Ioannis Katakis University of Nicosia, Cyprus
Ioannis Partalas Expedia, Switzerland

Demonstration Chairs

Georgios Balikas Salesforce, France
Fragkiskos Malliaros CentraleSupélec, France

PhD Forum Chairs

Esther Galbrun University of Eastern Finland, Finland
Justine Reynaud University of Caen Normandie, France

Awards Chairs

Francesca Lisi Università degli Studi di Bari, Italy
Michalis Vlachos University of Lausanne, Switzerland

Sponsorship Chairs

Patrice Aknin IRT SystemX, France
Gilles Gasso INSA Rouen, France

Organization ix

Web Chairs

Martine Harshé Laboratoire d’Informatique de Grenoble, France
Marta Soare University Grenoble Alpes, France

Publicity Chair

Emilie Morvant Université Jean Monnet, France

ECML PKDD Steering Committee

Annalisa Appice University of Bari Aldo Moro, Italy
Ira Assent Aarhus University, Denmark
Albert Bifet Télécom ParisTech, France
Francesco Bonchi ISI Foundation, Italy
Tania Cerquitelli Politecnico di Torino, Italy
Sašo Džeroski Jožef Stefan Institute, Slovenia
Elisa Fromont Université de Rennes, France
Andreas Hotho Julius-Maximilians-Universität Würzburg,

Germany
Alípio Jorge University of Porto, Portugal
Kristian Kersting TU Darmstadt, Germany
Jefrey Lijffijt Ghent University, Belgium
Luís Moreira-Matias University of Porto, Portugal
Katharina Morik TU Dortmund, Germany
Siegfried Nijssen Université catholique de Louvain, Belgium
Andrea Passerini University of Trento, Italy
Fernando Perez-Cruz ETH Zurich, Switzerland
Alessandra Sala Shutterstock Ireland Limited, Ireland
Arno Siebes Utrecht University, the Netherlands
Isabel Valera Universität des Saarlandes, Germany

Program Committees

Guest Editorial Board, Journal Track

Richard Allmendinger University of Manchester, UK
Marie Anastacio Universiteit Leiden, the Netherlands
Ira Assent Aarhus University, Denmark
Martin Atzmueller Universität Osnabrück, Germany
Rohit Babbar Aalto University, Finland

x Organization

Jaume Bacardit Newcastle University, UK
Anthony Bagnall University of East Anglia, UK
Mitra Baratchi Universiteit Leiden, the Netherlands
Francesco Bariatti IRISA, France
German Barquero Universität de Barcelona, Spain
Alessio Benavoli Trinity College Dublin, Ireland
Viktor Bengs Ludwig-Maximilians-Universität München,

Germany
Massimo Bilancia Università degli Studi di Bari Aldo Moro, Italy
Ilaria Bordino Unicredit R&D, Italy
Jakob Bossek University of Münster, Germany
Ulf Brefeld Leuphana University of Lüneburg, Germany
Ricardo Campello University of Newcastle, UK
Michelangelo Ceci University of Bari, Italy
Loic Cerf Universidade Federal de Minas Gerais, Brazil
Vitor Cerqueira Universidade do Porto, Portugal
Laetitia Chapel IRISA, France
Jinghui Chen Pennsylvania State University, USA
Silvia Chiusano Politecnico di Torino, Italy
Roberto Corizzo Università degli Studi di Bari Aldo Moro, Italy
Bruno Cremilleux Université de Caen Normandie, France
Marco de Gemmis University of Bari Aldo Moro, Italy
Sebastien Destercke Centre National de la Recherche Scientifique,

France
Shridhar Devamane Global Academy of Technology, India
Benjamin Doerr Ecole Polytechnique, France
Wouter Duivesteijn Technische Universiteit Eindhoven,

the Netherlands
Thomas Dyhre Nielsen Aalborg University, Denmark
Tapio Elomaa Tampere University, Finland
Remi Emonet Université Jean Monnet Saint-Etienne, France
Nicola Fanizzi Università degli Studi di Bari Aldo Moro, Italy
Pedro Ferreira University of Lisbon, Portugal
Cesar Ferri Universität Politecnica de Valencia, Spain
Julia Flores University of Castilla-La Mancha, Spain
Ionut Florescu Stevens Institute of Technology, USA
Germain Forestier Université de Haute-Alsace, France
Joel Frank Ruhr-Universität Bochum, Germany
Marco Frasca Università degli Studi di Milano, Italy
Jose A. Gomez Universidad de Castilla-La Mancha, Spain
Stephan Günnemann Institute for Advanced Study, Germany
Luis Galarraga Inria, France

Organization xi

Esther Galbrun University of Eastern Finland, Finland
Joao Gama University of Porto, Portugal
Paolo Garza Politecnico di Torino, Italy
Pascal Germain Université Laval, Canada
Fabian Gieseke Westfälische Wilhelms-Universität Münster,

Germany
Riccardo Guidotti Università degli Studi di Pisa, Italy
Francesco Gullo UniCredit, Italy
Antonella Guzzo University of Calabria, Italy
Isabel Haasler KTH Royal Institute of Technology, Sweden
Alexander Hagg Bonn-Rhein-Sieg University, Germany
Daniel Hernandez-Lobato Universidad Autónoma de Madrid, Spain
Jose Hernandez-Orallo Universidad Politecnica de Valencia, Spain
Martin Holena Neznámá organizace, Czechia
Jaakko Hollmen Stockholm University, Sweden
Dino Ienco IRSTEA, France
Georgiana Ifrim University College Dublin, Ireland
Felix Iglesias Technische Universität Wien, Austria
Angelo Impedovo Università degli Studi di Bari Aldo Moro, Italy
Frank Iutzeler Université Grenoble Alpes, France
Mahdi Jalili RMIT University, Australia
Szymon Jaroszewicz Polish Academy of Sciences, Poland
Mehdi Kaytoue INSA Lyon, France
Raouf Kerkouche Helmholtz Center for Information Security,

Germany
Pascal Kerschke Westfälische Wilhelms-Universität Münster,

Germany
Dragi Kocev Jožef Stefan Institute, Slovenia
Wojciech Kotlowski Poznan University of Technology, Poland
Lars Kotthoff University of Wyoming, USA
Peer Kroger Ludwig-Maximilians-Universität München,

Germany
Tipaluck Krityakierne Mahidol University, Thailand
Peer Kroger Christian-Albrechts-University Kiel, Germany
Meelis Kull Tartu Ulikool, Estonia
Charlotte Laclau Laboratoire Hubert Curien, France
Mark Last Ben-Gurion University of the Negev, Israel
Matthijs van Leeuwen Universiteit Leiden, the Netherlands
Thomas Liebig TU Dortmund, Germany
Hsuan-Tien Lin National Taiwan University, Taiwan
Marco Lippi University of Modena and Reggio Emilia, Italy
Daniel Lobato Universidad Autonoma de Madrid, Spain

xii Organization

Corrado Loglisci Università degli Studi di Bari Aldo Moro, Italy
Nuno Lourenço University of Coimbra, Portugal
Claudio Lucchese Ca’Foscari University of Venice, Italy
Brian MacNamee University College Dublin, Ireland
Davide Maiorca University of Cagliari, Italy
Giuseppe Manco National Research Council, Italy
Elio Masciari University of Naples Federico II, Italy
Andres Masegosa University of Aalborg, Denmark
Ernestina Menasalvas Universidad Politecnica de Madrid, Spain
Lien Michiels Universiteit Antwerpen, Belgium
Jan Mielniczuk Polish Academy of Sciences, Poland
Paolo Mignone Università degli Studi di Bari Aldo Moro, Italy
Anna Monreale University of Pisa, Italy
Giovanni Montana University of Warwick, UK
Gregoire Montavon Technische Universität Berlin, Germany
Amedeo Napoli LORIA, France
Frank Neumann University of Adelaide, Australia
Thomas Nielsen Aalborg Universitet, Denmark
Bruno Ordozgoiti Aalto-yliopisto, Finland
Panagiotis Papapetrou Stockholms Universitet, Sweden
Andrea Passerini University of Trento, Italy
Mykola Pechenizkiy Technische Universiteit Eindhoven,

the Netherlands
Charlotte Pelletier IRISA, France
Ruggero Pensa University of Turin, Italy
Nico Piatkowski Technische Universität Dortmund, Germany
Gianvito Pio Università degli Studi di Bari Aldo Moro, Italy
Marc Plantevit Université Claude Bernard Lyon 1, France
Jose M. Puerta Universidad de Castilla-La Mancha, Spain
Kai Puolamaki Helsingin Yliopisto, Finland
Michael Rabbat Meta Platforms Inc, USA
Jan Ramon Inria Lille Nord Europe, France
Rita Ribeiro Universidade do Porto, Portugal
Kaspar Riesen University of Bern, Switzerland
Matteo Riondato Amherst College, USA
Celine Robardet INSA Lyon, France
Pieter Robberechts KU Leuven, Belgium
Antonio Salmeron University of Almería, Spain
Jorg Sander University of Alberta, Canada
Roberto Santana University of the Basque Country, Spain
Michael Schaub Rheinisch-Westfälische Technische Hochschule,

Germany

Organization xiii

Erik Schultheis Aalto-yliopisto, Finland
Thomas Seidl Ludwig-Maximilians-Universität München,

Germany
Moritz Seiler University of Münster, Germany
Kijung Shin KAIST, South Korea
Shinichi Shirakawa Yokohama National University, Japan
Marek Smieja Jagiellonian University, Poland
James Edward Smith University of the West of England, UK
Carlos Soares Universidade do Porto, Portugal
Arnaud Soulet Université de Tours, France
Gerasimos Spanakis Maastricht University, the Netherlands
Giancarlo Sperli University of Campania Luigi Vanvitelli, Italy
Myra Spiliopoulou Otto von Guericke Universität Magdeburg,

Germany
Jerzy Stefanowski Poznan University of Technology, Poland
Giovanni Stilo Università degli Studi dell’Aquila, Italy
Catalin Stoean University of Craiova, Romania
Mahito Sugiyama National Institute of Informatics, Japan
Nikolaj Tatti Helsingin Yliopisto, Finland
Alexandre Termier Université de Rennes 1, France
Luis Torgo Dalhousie University, Canada
Leonardo Trujillo Tecnologico Nacional de Mexico, Mexico
Wei-Wei Tu 4Paradigm Inc., China
Steffen Udluft Siemens AG Corporate Technology, Germany
Arnaud Vandaele Université de Mons, Belgium
Celine Vens KU Leuven, Belgium
Herna Viktor University of Ottawa, Canada
Marco Virgolin Centrum Wiskunde en Informatica,

the Netherlands
Jordi Vitria Universität de Barcelona, Spain
Jilles Vreeken CISPA Helmholtz Center for Information

Security, Germany
Willem Waegeman Universiteit Gent, Belgium
Markus Wagner University of Adelaide, Australia
Elizabeth Wanner Centro Federal de Educacao Tecnologica de

Minas, Brazil
Marcel Wever Universität Paderborn, Germany
Ngai Wong University of Hong Kong, Hong Kong, China
Man Leung Wong Lingnan University, Hong Kong, China
Marek Wydmuch Poznan University of Technology, Poland
Guoxian Yu Shandong University, China
Xiang Zhang University of Hong Kong, Hong Kong, China

xiv Organization

Ye Zhu Deakin University, USA
Arthur Zimek Syddansk Universitet, Denmark
Albrecht Zimmermann Université de Caen Normandie, France

Area Chairs

Fabrizio Angiulli DIMES, University of Calabria, Italy
Annalisa Appice University of Bari, Italy
Ira Assent Aarhus University, Denmark
Martin Atzmueller Osnabrück University, Germany
Michael Berthold Universität Konstanz, Germany
Albert Bifet Université Paris-Saclay, France
Hendrik Blockeel KU Leuven, Belgium
Christian Böhm LMU Munich, Germany
Francesco Bonchi ISI Foundation, Turin, Italy
Ulf Brefeld Leuphana, Germany
Francesco Calabrese Richemont, USA
Toon Calders Universiteit Antwerpen, Belgium
Michelangelo Ceci University of Bari, Italy
Peggy Cellier IRISA, France
Duen Horng Chau Georgia Institute of Technology, USA
Nicolas Courty IRISA, Université Bretagne-Sud, France
Bruno Cremilleux Université de Caen Normandie, France
Jesse Davis KU Leuven, Belgium
Gianmarco De Francisci Morales CentAI, Italy
Tom Diethe Amazon, UK
Carlotta Domeniconi George Mason University, USA
Yuxiao Dong Tsinghua University, China
Kurt Driessens Maastricht University, the Netherlands
Tapio Elomaa Tampere University, Finland
Sergio Escalera CVC and University of Barcelona, Spain
Faisal Farooq Qatar Computing Research Institute, Qatar
Asja Fischer Ruhr University Bochum, Germany
Peter Flach University of Bristol, UK
Eibe Frank University of Waikato, New Zealand
Paolo Frasconi Università degli Studi di Firenze, Italy
Elisa Fromont Université Rennes 1, IRISA/Inria, France
Johannes Fürnkranz JKU Linz, Austria
Patrick Gallinari Sorbonne Université, Criteo AI Lab, France
Joao Gama INESC TEC - LIAAD, Portugal
Jose Gamez Universidad de Castilla-La Mancha, Spain
Roman Garnett Washington University in St. Louis, USA
Thomas Gärtner TU Wien, Austria

Organization xv

Aristides Gionis KTH Royal Institute of Technology, Sweden
Francesco Gullo UniCredit, Italy
Stephan Günnemann Technical University of Munich, Germany
Xiangnan He University of Science and Technology of China,

China
Daniel Hernandez-Lobato Universidad Autonoma de Madrid, Spain
José Hernández-Orallo Universität Politècnica de València, Spain
Jaakko Hollmén Aalto University, Finland
Andreas Hotho Universität Würzburg, Germany
Eyke Hüllermeier University of Munich, Germany
Neil Hurley University College Dublin, Ireland
Georgiana Ifrim University College Dublin, Ireland
Alipio Jorge INESC TEC/University of Porto, Portugal
Ross King Chalmers University of Technology, Sweden
Arno Knobbe Leiden University, the Netherlands
Yun Sing Koh University of Auckland, New Zealand
Parisa Kordjamshidi Michigan State University, USA
Lars Kotthoff University of Wyoming, USA
Nicolas Kourtellis Telefonica Research, Spain
Danai Koutra University of Michigan, USA
Danica Kragic KTH Royal Institute of Technology, Sweden
Stefan Kramer Johannes Gutenberg University Mainz, Germany
Niklas Lavesson Blekinge Institute of Technology, Sweden
Sébastien Lefèvre Université de Bretagne Sud/IRISA, France
Jefrey Lijffijt Ghent University, Belgium
Marius Lindauer Leibniz University Hannover, Germany
Patrick Loiseau Inria, France
Jose Lozano UPV/EHU, Spain
Jörg Lücke Universität Oldenburg, Germany
Donato Malerba Università degli Studi di Bari Aldo Moro, Italy
Fragkiskos Malliaros CentraleSupelec, France
Giuseppe Manco ICAR-CNR, Italy
Wannes Meert KU Leuven, Belgium
Pauli Miettinen University of Eastern Finland, Finland
Dunja Mladenic Jožef Stefan Institute, Slovenia
Anna Monreale Università di Pisa, Italy
Luis Moreira-Matias Finiata, Germany
Emilie Morvant University Jean Monnet, St-Etienne, France
Sriraam Natarajan UT Dallas, USA
Nuria Oliver Vodafone Research, USA
Panagiotis Papapetrou Stockholm University, Sweden
Laurence Park WSU, Australia

xvi Organization

Andrea Passerini University of Trento, Italy
Mykola Pechenizkiy TU Eindhoven, the Netherlands
Dino Pedreschi University of Pisa, Italy
Robert Peharz Graz University of Technology, Austria
Julien Perez Naver Labs Europe, France
Franz Pernkopf Graz University of Technology, Austria
Bernhard Pfahringer University of Waikato, New Zealand
Fabio Pinelli IMT Lucca, Italy
Visvanathan Ramesh Goethe University Frankfurt, Germany
Jesse Read Ecole Polytechnique, France
Zhaochun Ren Shandong University, China
Marian-Andrei Rizoiu University of Technology Sydney, Australia
Celine Robardet INSA Lyon, France
Sriparna Saha IIT Patna, India
Ute Schmid University of Bamberg, Germany
Lars Schmidt-Thieme University of Hildesheim, Germany
Michele Sebag LISN CNRS, France
Thomas Seidl LMU Munich, Germany
Arno Siebes Universiteit Utrecht, the Netherlands
Fabrizio Silvestri Sapienza, University of Rome, Italy
Myra Spiliopoulou Otto-von-Guericke-University Magdeburg,

Germany
Yizhou Sun UCLA, USA
Jie Tang Tsinghua University, China
Nikolaj Tatti Helsinki University, Finland
Evimaria Terzi Boston University, USA
Marc Tommasi Lille University, France
Antti Ukkonen University of Helsinki, Finland
Herke van Hoof University of Amsterdam, the Netherlands
Matthijs van Leeuwen Leiden University, the Netherlands
Celine Vens KU Leuven, Belgium
Christel Vrain University of Orleans, France
Jilles Vreeken CISPA Helmholtz Center for Information

Security, Germany
Willem Waegeman Universiteit Gent, Belgium
Stefan Wrobel Fraunhofer IAIS, Germany
Xing Xie Microsoft Research Asia, China
Min-Ling Zhang Southeast University, China
Albrecht Zimmermann Université de Caen Normandie, France
Indre Zliobaite University of Helsinki, Finland

Organization xvii

Program Committee Members

Amos Abbott Virginia Tech, USA
Pedro Abreu CISUC, Portugal
Maribel Acosta Ruhr University Bochum, Germany
Timilehin Aderinola Insight Centre, University College Dublin, Ireland
Linara Adilova Ruhr University Bochum, Fraunhofer IAIS,

Germany
Florian Adriaens KTH, Sweden
Azim Ahmadzadeh Georgia State University, USA
Nourhan Ahmed University of Hildesheim, Germany
Deepak Ajwani University College Dublin, Ireland
Amir Hossein Akhavan Rahnama KTH Royal Institute of Technology, Sweden
Aymen Al Marjani ENS Lyon, France
Mehwish Alam Leibniz Institute for Information Infrastructure,

Germany
Francesco Alesiani NEC Laboratories Europe, Germany
Omar Alfarisi ADNOC, Canada
Pegah Alizadeh Ericsson Research, France
Reem Alotaibi King Abdulaziz University, Saudi Arabia
Jumanah Alshehri Temple University, USA
Bakhtiar Amen University of Huddersfield, UK
Evelin Amorim Inesc tec, Portugal
Shin Ando Tokyo University of Science, Japan
Thiago Andrade INESC TEC - LIAAD, Portugal
Jean-Marc Andreoli Naverlabs Europe, France
Giuseppina Andresini University of Bari Aldo Moro, Italy
Alessandro Antonucci IDSIA, Switzerland
Xiang Ao Institute of Computing Technology, CAS, China
Siddharth Aravindan National University of Singapore, Singapore
Héber H. Arcolezi Inria and École Polytechnique, France
Adrián Arnaiz-Rodríguez ELLIS Unit Alicante, Spain
Yusuf Arslan University of Luxembourg, Luxembourg
André Artelt Bielefeld University, Germany
Sunil Aryal Deakin University, Australia
Charles Assaad Easyvista, France
Matthias Aßenmacher Ludwig-Maxmilians-Universität München,

Germany
Zeyar Aung Masdar Institute, UAE
Serge Autexier DFKI Bremen, Germany
Rohit Babbar Aalto University, Finland
Housam Babiker University of Alberta, Canada

xviii Organization

Antonio Bahamonde University of Oviedo, Spain
Maroua Bahri Inria Paris, France
Georgios Balikas Salesforce, France
Maria Bampa Stockholm University, Sweden
Hubert Baniecki Warsaw University of Technology, Poland
Elena Baralis Politecnico di Torino, Italy
Mitra Baratchi LIACS - University of Leiden, the Netherlands
Kalliopi Basioti Rutgers University, USA
Martin Becker Stanford University, USA
Diana Benavides Prado University of Auckland, New Zealand
Anes Bendimerad LIRIS, France
Idir Benouaret Université Grenoble Alpes, France
Isacco Beretta Università di Pisa, Italy
Victor Berger CEA, France
Christoph Bergmeir Monash University, Australia
Cuissart Bertrand University of Caen, France
Antonio Bevilacqua University College Dublin, Ireland
Yaxin Bi Ulster University, UK
Ranran Bian University of Auckland, New Zealand
Adrien Bibal University of Louvain, Belgium
Subhodip Biswas Virginia Tech, USA
Patrick Blöbaum Amazon AWS, USA
Carlos Bobed University of Zaragoza, Spain
Paul Bogdan USC, USA
Chiara Boldrini CNR, Italy
Clément Bonet Université Bretagne Sud, France
Andrea Bontempelli University of Trento, Italy
Ludovico Boratto University of Cagliari, Italy
Stefano Bortoli Huawei Research Center, Germany
Diana-Laura Borza Babes Bolyai University, Romania
Ahcene Boubekki UiT, Norway
Sabri Boughorbel QCRI, Qatar
Paula Branco University of Ottawa, Canada
Jure Brence Jožef Stefan Institute, Slovenia
Martin Breskvar Jožef Stefan Institute, Slovenia
Marco Bressan University of Milan, Italy
Dariusz Brzezinski Poznan University of Technology, Poland
Florian Buettner German Cancer Research Center, Germany
Julian Busch Siemens Technology, Germany
Sebastian Buschjäger TU Dortmund Artificial Intelligence Unit,

Germany
Ali Butt Virginia Tech, USA

Organization xix

Narayanan C. Krishnan IIT Palakkad, India
Xiangrui Cai Nankai University, China
Xiongcai Cai UNSW Sydney, Australia
Zekun Cai University of Tokyo, Japan
Andrea Campagner Università degli Studi di Milano-Bicocca, Italy
Seyit Camtepe CSIRO Data61, Australia
Jiangxia Cao Chinese Academy of Sciences, China
Pengfei Cao Chinese Academy of Sciences, China
Yongcan Cao University of Texas at San Antonio, USA
Cécile Capponi Aix-Marseille University, France
Axel Carlier Institut National Polytechnique de Toulouse,

France
Paula Carroll University College Dublin, Ireland
John Cartlidge University of Bristol, UK
Simon Caton University College Dublin, Ireland
Bogdan Cautis University of Paris-Saclay, France
Mustafa Cavus Warsaw University of Technology, Poland
Remy Cazabet Université Lyon 1, France
Josu Ceberio University of the Basque Country, Spain
David Cechák CEITEC Masaryk University, Czechia
Abdulkadir Celikkanat Technical University of Denmark, Denmark
Dumitru-Clementin Cercel University Politehnica of Bucharest, Romania
Christophe Cerisara CNRS, France
Vítor Cerqueira Dalhousie University, Canada
Mattia Cerrato JGU Mainz, Germany
Ricardo Cerri Federal University of São Carlos, Brazil
Hubert Chan University of Hong Kong, Hong Kong, China
Vaggos Chatziafratis Stanford University, USA
Siu Lun Chau University of Oxford, UK
Chaochao Chen Zhejiang University, China
Chuan Chen Sun Yat-sen University, China
Hechang Chen Jilin University, China
Jia Chen Beihang University, China
Jiaoyan Chen University of Oxford, UK
Jiawei Chen Zhejiang University, China
Jin Chen University of Electronic Science and Technology,

China
Kuan-Hsun Chen University of Twente, the Netherlands
Lingwei Chen Wright State University, USA
Tianyi Chen Boston University, USA
Wang Chen Google, USA
Xinyuan Chen Universiti Kuala Lumpur, Malaysia

xx Organization

Yuqiao Chen UT Dallas, USA
Yuzhou Chen Princeton University, USA
Zhennan Chen Xiamen University, China
Zhiyu Chen UCSB, USA
Zhqian Chen Mississippi State University, USA
Ziheng Chen Stony Brook University, USA
Zhiyong Cheng Shandong Academy of Sciences, China
Noëlie Cherrier CITiO, France
Anshuman Chhabra UC Davis, USA
Zhixuan Chu Ant Group, China
Guillaume Cleuziou LIFO, France
Ciaran Cooney AflacNI, UK
Robson Cordeiro University of São Paulo, Brazil
Roberto Corizzo American University, USA
Antoine Cornuéjols AgroParisTech, France
Fabrizio Costa Exeter University, UK
Gustavo Costa Instituto Federal de Goiás - Campus Jataí, Brazil
Luís Cruz Delft University of Technology, the Netherlands
Tianyu Cui Institute of Information Engineering, China
Wang-Zhou Dai Imperial College London, UK
Tanmoy Dam University of New South Wales Canberra,

Australia
Thi-Bich-Hanh Dao University of Orleans, France
Adrian Sergiu Darabant Babes Bolyai University, Romania
Mrinal Das IIT Palakaad, India
Sina Däubener Ruhr University, Bochum, Germany
Padraig Davidson University of Würzburg, Germany
Paul Davidsson Malmö University, Sweden
Andre de Carvalho USP, Brazil
Antoine de Mathelin ENS Paris-Saclay, France
Tom De Schepper University of Antwerp, Belgium
Marcilio de Souto LIFO/Univ. Orleans, France
Gaetan De Waele Ghent University, Belgium
Pieter Delobelle KU Leuven, Belgium
Alper Demir Izmir University of Economics, Turkey
Ambra Demontis University of Cagliari, Italy
Difan Deng Leibniz Universität Hannover, Germany
Guillaume Derval UCLouvain - ICTEAM, Belgium
Maunendra Sankar Desarkar IIT Hyderabad, India
Chris Develder University of Ghent - iMec, Belgium
Arnout Devos Swiss Federal Institute of Technology Lausanne,

Switzerland

Organization xxi

Laurens Devos KU Leuven, Belgium
Bhaskar Dhariyal University College Dublin, Ireland
Nicola Di Mauro University of Bari, Italy
Aissatou Diallo University College London, UK
Christos Dimitrakakis University of Neuchatel, Switzerland
Jiahao Ding University of Houston, USA
Kaize Ding Arizona State University, USA
Yao-Xiang Ding Nanjing University, China
Guilherme Dinis Junior Stockholm University, Sweden
Nikolaos Dionelis University of Edinburgh, UK
Christos Diou Harokopio University of Athens, Greece
Sonia Djebali Léonard de Vinci Pôle Universitaire, France
Nicolas Dobigeon University of Toulouse, France
Carola Doerr Sorbonne University, France
Ruihai Dong University College Dublin, Ireland
Shuyu Dong Inria, Université Paris-Saclay, France
Yixiang Dong Xi’an Jiaotong University, China
Xin Du University of Edinburgh, UK
Yuntao Du Nanjing University, China
Stefan Duffner University of Lyon, France
Rahul Duggal Georgia Tech, USA
Wouter Duivesteijn TU Eindhoven, the Netherlands
Sebastijan Dumancic TU Delft, the Netherlands
Inês Dutra University of Porto, Portugal
Thomas Dyhre Nielsen AAU, Denmark
Saso Dzeroski Jožef Stefan Institute, Ljubljana, Slovenia
Tome Eftimov Jožef Stefan Institute, Ljubljana, Slovenia
Hamid Eghbal-zadeh LIT AI Lab, Johannes Kepler University, Austria
Theresa Eimer Leibniz University Hannover, Germany
Radwa El Shawi Tartu University, Estonia
Dominik Endres Philipps-Universität Marburg, Germany
Roberto Esposito Università di Torino, Italy
Georgios Evangelidis University of Macedonia, Greece
Samuel Fadel Leuphana University, Germany
Stephan Fahrenkrog-Petersen Humboldt-Universität zu Berlin, Germany
Xiaomao Fan Shenzhen Technology University, China
Zipei Fan University of Tokyo, Japan
Hadi Fanaee Halmstad University, Sweden
Meng Fang TU/e, the Netherlands
Elaine Faria UFU, Brazil
Ad Feelders Universiteit Utrecht, the Netherlands
Sophie Fellenz TU Kaiserslautern, Germany

xxii Organization

Stefano Ferilli University of Bari, Italy
Daniel Fernández-Sánchez Universidad Autónoma de Madrid, Spain
Pedro Ferreira Faculty of Sciences University of Porto, Portugal
Cèsar Ferri Universität Politècnica València, Spain
Flavio Figueiredo UFMG, Brazil
Soukaina Filali Boubrahimi Utah State University, USA
Raphael Fischer TU Dortmund, Germany
Germain Forestier University of Haute Alsace, France
Edouard Fouché Karlsruhe Institute of Technology, Germany
Philippe Fournier-Viger Shenzhen University, China
Kary Framling Umeå University, Sweden
Jérôme François Inria Nancy Grand-Est, France
Fabio Fumarola Prometeia, Italy
Pratik Gajane Eindhoven University of Technology,

the Netherlands
Esther Galbrun University of Eastern Finland, Finland
Laura Galindez Olascoaga KU Leuven, Belgium
Sunanda Gamage University of Western Ontario, Canada
Chen Gao Tsinghua University, China
Wei Gao Nanjing University, China
Xiaofeng Gao Shanghai Jiaotong University, China
Yuan Gao University of Science and Technology of China,

China
Jochen Garcke University of Bonn, Germany
Clement Gautrais Brightclue, France
Benoit Gauzere INSA Rouen, France
Dominique Gay Université de La Réunion, France
Xiou Ge University of Southern California, USA
Bernhard Geiger Know-Center GmbH, Germany
Jiahui Geng University of Stavanger, Norway
Yangliao Geng Tsinghua University, China
Konstantin Genin University of Tübingen, Germany
Firas Gerges New Jersey Institute of Technology, USA
Pierre Geurts University of Liège, Belgium
Gizem Gezici Sabanci University, Turkey
Amirata Ghorbani Stanford, USA
Biraja Ghoshal TCS, UK
Anna Giabelli Università degli studi di Milano Bicocca, Italy
George Giannakopoulos IIT Demokritos, Greece
Tobias Glasmachers Ruhr-University Bochum, Germany
Heitor Murilo Gomes University of Waikato, New Zealand
Anastasios Gounaris Aristotle University of Thessaloniki, Greece

Organization xxiii

Antoine Gourru University of Lyon, France
Michael Granitzer University of Passau, Germany
Magda Gregorova Hochschule Würzburg-Schweinfurt, Germany
Moritz Grosse-Wentrup University of Vienna, Austria
Divya Grover Chalmers University, Sweden
Bochen Guan OPPO US Research Center, USA
Xinyu Guan Xian Jiaotong University, China
Guillaume Guerard ESILV, France
Daniel Guerreiro e Silva University of Brasilia, Brazil
Riccardo Guidotti University of Pisa, Italy
Ekta Gujral University of California, Riverside, USA
Aditya Gulati ELLIS Unit Alicante, Spain
Guibing Guo Northeastern University, China
Jianxiong Guo Beijing Normal University, China
Yuhui Guo Renmin University of China, China
Karthik Gurumoorthy Amazon, India
Thomas Guyet Inria, Centre de Lyon, France
Guillaume Habault KDDI Research, Inc., Japan
Amaury Habrard University of St-Etienne, France
Shahrzad Haddadan Brown University, USA
Shah Muhammad Hamdi New Mexico State University, USA
Massinissa Hamidi PRES Sorbonne Paris Cité, France
Peng Han KAUST, Saudi Arabia
Tom Hanika University of Kassel, Germany
Sébastien Harispe IMT Mines Alès, France
Marwan Hassani TU Eindhoven, the Netherlands
Kohei Hayashi Preferred Networks, Inc., Japan
Conor Hayes National University of Ireland Galway, Ireland
Lingna He Zhejiang University of Technology, China
Ramya Hebbalaguppe Indian Institute of Technology, Delhi, India
Jukka Heikkonen University of Turku, Finland
Fredrik Heintz Linköping University, Sweden
Patrick Hemmer Karlsruhe Institute of Technology, Germany
Romain Hérault INSA de Rouen, France
Jeronimo Hernandez-Gonzalez University of Barcelona, Spain
Sibylle Hess TU Eindhoven, the Netherlands
Fabian Hinder Bielefeld University, Germany
Lars Holdijk University of Amsterdam, the Netherlands
Martin Holena Institute of Computer Science, Czechia
Mike Holenderski Eindhoven University of Technology,

the Netherlands
Shenda Hong Peking University, China

xxiv Organization

Yupeng Hou Renmin University of China, China
Binbin Hu Ant Financial Services Group, China
Jian Hu Queen Mary University of London, UK
Liang Hu Tongji University, China
Wen Hu Ant Group, China
Wenbin Hu Wuhan University, China
Wenbo Hu Tsinghua University, China
Yaowei Hu University of Arkansas, USA
Chao Huang University of Hong Kong, China
Gang Huang Zhejiang Lab, China
Guanjie Huang Penn State University, USA
Hong Huang HUST, China
Jin Huang University of Amsterdam, the Netherlands
Junjie Huang Chinese Academy of Sciences, China
Qiang Huang Jilin University, China
Shangrong Huang Hunan University, China
Weitian Huang South China University of Technology, China
Yan Huang Huazhong University of Science and Technology,

China
Yiran Huang Karlsruhe Institute of Technology, Germany
Angelo Impedovo University of Bari, Italy
Roberto Interdonato CIRAD, France
Iñaki Inza University of the Basque Country, Spain
Stratis Ioannidis Northeastern University, USA
Rakib Islam Facebook, USA
Tobias Jacobs NEC Laboratories Europe GmbH, Germany
Priyank Jaini Google, Canada
Johannes Jakubik Karlsruhe Institute of Technology, Germany
Nathalie Japkowicz American University, USA
Szymon Jaroszewicz Polish Academy of Sciences, Poland
Shayan Jawed University of Hildesheim, Germany
Rathinaraja Jeyaraj Kyungpook National University, South Korea
Shaoxiong Ji Aalto University, Finland
Taoran Ji Virginia Tech, USA
Bin-Bin Jia Southeast University, China
Yuheng Jia Southeast University, China
Ziyu Jia Beijing Jiaotong University, China
Nan Jiang Purdue University, USA
Renhe Jiang University of Tokyo, Japan
Siyang Jiang National Taiwan University, Taiwan
Song Jiang University of California, Los Angeles, USA
Wenyu Jiang Nanjing University, China

Organization xxv

Zhen Jiang Jiangsu University, China
Yuncheng Jiang South China Normal University, China
François-Xavier Jollois Université de Paris Cité, France
Adan Jose-Garcia Université de Lille, France
Ferdian Jovan University of Bristol, UK
Steffen Jung MPII, Germany
Thorsten Jungeblut Bielefeld University of Applied Sciences,

Germany
Hachem Kadri Aix-Marseille University, France
Vana Kalogeraki Athens University of Economics and Business,

Greece
Vinayaka Kamath Microsoft Research India, India
Toshihiro Kamishima National Institute of Advanced Industrial Science,

Japan
Bo Kang Ghent University, Belgium
Alexandros Karakasidis University of Macedonia, Greece
Mansooreh Karami Arizona State University, USA
Panagiotis Karras Aarhus University, Denmark
Ioannis Katakis University of Nicosia, Cyprus
Koki Kawabata Osaka University, Tokyo
Klemen Kenda Jožef Stefan Institute, Slovenia
Patrik Joslin Kenfack Innopolis University, Russia
Mahsa Keramati Simon Fraser University, Canada
Hamidreza Keshavarz Tarbiat Modares University, Iran
Adil Khan Innopolis University, Russia
Jihed Khiari Johannes Kepler University, Austria
Mi-Young Kim University of Alberta, Canada
Arto Klami University of Helsinki, Finland
Jiri Klema Czech Technical University, Czechia
Tomas Kliegr University of Economics Prague, Czechia
Christian Knoll Graz, University of Technology, Austria
Dmitry Kobak University of Tübingen, Germany
Vladimer Kobayashi University of the Philippines Mindanao,

Philippines
Dragi Kocev Jožef Stefan Institute, Slovenia
Adrian Kochsiek University of Mannheim, Germany
Masahiro Kohjima NTT Corporation, Japan
Georgia Koloniari University of Macedonia, Greece
Nikos Konofaos Aristotle University of Thessaloniki, Greece
Irena Koprinska University of Sydney, Australia
Lars Kotthoff University of Wyoming, USA
Daniel Kottke University of Kassel, Germany

xxvi Organization

Anna Krause University of Würzburg, Germany
Alexander Kravberg KTH Royal Institute of Technology, Sweden
Anastasia Krithara NCSR Demokritos, Greece
Meelis Kull University of Tartu, Estonia
Pawan Kumar IIIT, Hyderabad, India
Suresh Kirthi Kumaraswamy InterDigital, France
Gautam Kunapuli Verisk Inc, USA
Marcin Kurdziel AGH University of Science and Technology,

Poland
Vladimir Kuzmanovski Aalto University, Finland
Ariel Kwiatkowski École Polytechnique, France
Firas Laakom Tampere University, Finland
Harri Lähdesmäki Aalto University, Finland
Stefanos Laskaridis Samsung AI, UK
Alberto Lavelli FBK-ict, Italy
Aonghus Lawlor University College Dublin, Ireland
Thai Le University of Mississippi, USA
Hoàng-Ân Lê IRISA, University of South Brittany, France
Hoel Le Capitaine University of Nantes, France
Thach Le Nguyen Insight Centre, Ireland
Tai Le Quy L3S Research Center - Leibniz University

Hannover, Germany
Mustapha Lebbah Sorbonne Paris Nord University, France
Dongman Lee KAIST, South Korea
John Lee Université catholique de Louvain, Belgium
Minwoo Lee University of North Carolina at Charlotte, USA
Zed Lee Stockholm University, Sweden
Yunwen Lei University of Birmingham, UK
Douglas Leith Trinity College Dublin, Ireland
Florian Lemmerich RWTH Aachen, Germany
Carson Leung University of Manitoba, Canada
Chaozhuo Li Microsoft Research Asia, China
Jian Li Institute of Information Engineering, China
Lei Li Peking University, China
Li Li Southwest University, China
Rui Li Inspur Group, China
Shiyang Li UCSB, USA
Shuokai Li Chinese Academy of Sciences, China
Tianyu Li Alibaba Group, China
Wenye Li The Chinese University of Hong Kong, Shenzhen,

China
Wenzhong Li Nanjing University, China

Organization xxvii

Xiaoting Li Pennsylvania State University, USA
Yang Li University of North Carolina at Chapel Hill, USA
Zejian Li Zhejiang University, China
Zhidong Li UTS, Australia
Zhixin Li Guangxi Normal University, China
Defu Lian University of Science and Technology of China,

China
Bin Liang UTS, Australia
Yuchen Liang RPI, USA
Yiwen Liao University of Stuttgart, Germany
Pieter Libin VUB, Belgium
Thomas Liebig TU Dortmund, Germany
Seng Pei Liew LINE Corporation, Japan
Beiyu Lin University of Nevada - Las Vegas, USA
Chen Lin Xiamen University, China
Tony Lindgren Stockholm University, Sweden
Chen Ling Emory University, USA
Jiajing Ling Singapore Management University, Singapore
Marco Lippi University of Modena and Reggio Emilia, Italy
Bin Liu Chongqing University, China
Bowen Liu Stanford University, USA
Chang Liu Institute of Information Engineering, CAS, China
Chien-Liang Liu National Chiao Tung University, Taiwan
Feng Liu East China Normal University, China
Jiacheng Liu Chinese University of Hong Kong, China
Li Liu Chongqing University, China
Shengcai Liu Southern University of Science and Technology,

China
Shenghua Liu Institute of Computing Technology, CAS, China
Tingwen Liu Institute of Information Engineering, CAS, China
Xiangyu Liu Tencent, China
Yong Liu Renmin University of China, China
Yuansan Liu University of Melbourne, Australia
Zhiwei Liu Salesforce, USA
Tuwe Löfström Jönköping University, Sweden
Corrado Loglisci Università degli Studi di Bari Aldo Moro, Italy
Ting Long Shanghai Jiao Tong University, China
Beatriz López University of Girona, Spain
Yin Lou Ant Group, USA
Samir Loudni TASC (LS2N-CNRS), IMT Atlantique, France
Yang Lu Xiamen University, China
Yuxun Lu National Institute of Informatics, Japan

xxviii Organization

Massimiliano Luca Bruno Kessler Foundation, Italy
Stefan Lüdtke University of Mannheim, Germany
Jovita Lukasik University of Mannheim, Germany
Denis Lukovnikov University of Bonn, Germany
Pedro Henrique Luz de Araujo University of Brasília, Brazil
Fenglong Ma Pennsylvania State University, USA
Jing Ma University of Virginia, USA
Meng Ma Peking University, China
Muyang Ma Shandong University, China
Ruizhe Ma University of Massachusetts Lowell, USA
Xingkong Ma National University of Defense Technology,

China
Xueqi Ma Tsinghua University, China
Zichen Ma The Chinese University of Hong Kong, Shenzhen,

China
Luis Macedo University of Coimbra, Portugal
Harshitha Machiraju EPFL, Switzerland
Manchit Madan Delivery Hero, Germany
Seiji Maekawa Osaka University, Japan
Sindri Magnusson Stockholm University, Sweden
Pathum Chamikara Mahawaga CSIRO Data61, Australia
Saket Maheshwary Amazon, India
Ajay Mahimkar AT&T, USA
Pierre Maillot Inria, France
Lorenzo Malandri Unimib, Italy
Rammohan Mallipeddi Kyungpook National University, South Korea
Sahil Manchanda IIT Delhi, India
Domenico Mandaglio DIMES-UNICAL, Italy
Panagiotis Mandros Harvard University, USA
Robin Manhaeve KU Leuven, Belgium
Silviu Maniu Université Paris-Saclay, France
Cinmayii Manliguez National Sun Yat-Sen University, Taiwan
Naresh Manwani International Institute of Information Technology,

India
Jiali Mao East China Normal University, China
Alexandru Mara Ghent University, Belgium
Radu Marculescu University of Texas at Austin, USA
Roger Mark Massachusetts Institute of Technology, USA
Fernando Martínez-Plume Joint Research Centre - European Commission,

Belgium
Koji Maruhashi Fujitsu Research, Fujitsu Limited, Japan
Simone Marullo University of Siena, Italy

Organization xxix

Elio Masciari University of Naples, Italy
Florent Masseglia Inria, France
Michael Mathioudakis University of Helsinki, Finland
Takashi Matsubara Osaka University, Japan
Tetsu Matsukawa Kyushu University, Japan
Santiago Mazuelas BCAM-Basque Center for Applied Mathematics,

Spain
Ryan McConville University of Bristol, UK
Hardik Meisheri TCS Research, India
Panagiotis Meletis Eindhoven University of Technology,

the Netherlands
Gabor Melli Medable, USA
Joao Mendes-Moreira INESC TEC, Portugal
Chuan Meng University of Amsterdam, the Netherlands
Cristina Menghini Brown University, USA
Engelbert Mephu Nguifo Université Clermont Auvergne, CNRS, LIMOS,

France
Fabio Mercorio University of Milan-Bicocca, Italy
Guillaume Metzler Laboratoire ERIC, France
Hao Miao Aalborg University, Denmark
Alessio Micheli Università di Pisa, Italy
Paolo Mignone University of Bari Aldo Moro, Italy
Matej Mihelcic University of Zagreb, Croatia
Ioanna Miliou Stockholm University, Sweden
Bamdev Mishra Microsoft, India
Rishabh Misra Twitter, Inc, USA
Dixant Mittal National University of Singapore, Singapore
Zhaobin Mo Columbia University, USA
Daichi Mochihashi Institute of Statistical Mathematics, Japan
Armin Moharrer Northeastern University, USA
Ioannis Mollas Aristotle University of Thessaloniki, Greece
Carlos Monserrat-Aranda Universität Politècnica de València, Spain
Konda Reddy Mopuri Indian Institute of Technology Guwahati, India
Raha Moraffah Arizona State University, USA
Pawel Morawiecki Polish Academy of Sciences, Poland
Ahmadreza Mosallanezhad Arizona State University, USA
Davide Mottin Aarhus University, Denmark
Koyel Mukherjee Adobe Research, India
Maximilian Münch University of Applied Sciences Würzburg,

Germany
Fabricio Murai Universidade Federal de Minas Gerais, Brazil
Taichi Murayama NAIST, Japan

xxx Organization

Stéphane Mussard CHROME, France
Mohamed Nadif Centre Borelli - Université Paris Cité, France
Cian Naik University of Oxford, UK
Felipe Kenji Nakano KU Leuven, Belgium
Mirco Nanni ISTI-CNR Pisa, Italy
Apurva Narayan University of Waterloo, Canada
Usman Naseem University of Sydney, Australia
Gergely Nemeth ELLIS Unit Alicante, Spain
Stefan Neumann KTH Royal Institute of Technology, Sweden
Anna Nguyen Karlsruhe Institute of Technology, Germany
Quan Nguyen Washington University in St. Louis, USA
Thi Phuong Quyen Nguyen University of Da Nang, Vietnam
Thu Nguyen SimulaMet, Norway
Thu Trang Nguyen University College Dublin, Ireland
Prajakta Nimbhorkar Chennai Mathematical Institute, Chennai, India
Xuefei Ning Tsinghua University, China
Ikuko Nishikawa Ritsumeikan University, Japan
Hao Niu KDDI Research, Inc., Japan
Paraskevi Nousi Aristotle University of Thessaloniki, Greece
Erik Novak Jožef Stefan Institute, Slovenia
Slawomir Nowaczyk Halmstad University, Sweden
Aleksandra Nowak Jagiellonian University, Poland
Eirini Ntoutsi Freie Universität Berlin, Germany
Andreas Nürnberger Magdeburg University, Germany
James O’Neill University of Liverpool, UK
Lutz Oettershagen University of Bonn, Germany
Tsuyoshi Okita Kyushu Institute of Technology, Japan
Makoto Onizuka Osaka University, Japan
Subba Reddy Oota IIIT Hyderabad, India
María Óskarsdóttir University of Reykjavík, Iceland
Aomar Osmani PRES Sorbonne Paris Cité, France
Aljaz Osojnik JSI, Slovenia
Shuichi Otake National Institute of Informatics, Japan
Greger Ottosson IBM, France
Zijing Ou Sun Yat-sen University, China
Abdelkader Ouali University of Caen Normandy, France
Latifa Oukhellou IFSTTAR, France
Kai Ouyang Tsinghua University, France
Andrei Paleyes University of Cambridge, UK
Pankaj Pandey Indian Institute of Technology Gandhinagar, India
Guansong Pang Singapore Management University, Singapore
Pance Panov Jožef Stefan Institute, Slovenia

Organization xxxi

Apostolos Papadopoulos Aristotle University of Thessaloniki, Greece
Evangelos Papalexakis UC Riverside, USA
Anna Pappa Université Paris 8, France
Chanyoung Park UIUC, USA
Haekyu Park Georgia Institute of Technology, USA
Sanghyun Park Yonsei University, South Korea
Luca Pasa University of Padova, Italy
Kevin Pasini IRT SystemX, France
Vincenzo Pasquadibisceglie University of Bari Aldo Moro, Italy
Nikolaos Passalis Aristotle University of Thessaloniki, Greece
Javier Pastorino University of Colorado, Denver, USA
Kitsuchart Pasupa King Mongkut’s Institute of Technology, Thailand
Andrea Paudice University of Milan, Italy
Anand Paul Kyungpook National University, South Korea
Yulong Pei TU Eindhoven, the Netherlands
Charlotte Pelletier Université de Bretagne du Sud, France
Jaakko Peltonen Tampere University, Finland
Ruggero Pensa University of Torino, Italy
Fabiola Pereira Federal University of Uberlandia, Brazil
Lucas Pereira ITI, LARSyS, Técnico Lisboa, Portugal
Aritz Pérez Basque Center for Applied Mathematics, Spain
Lorenzo Perini KU Leuven, Belgium
Alan Perotti CENTAI Institute, Italy
Michaël Perrot Inria Lille, France
Matej Petkovic Institute Jožef Stefan, Slovenia
Lukas Pfahler TU Dortmund University, Germany
Nico Piatkowski Fraunhofer IAIS, Germany
Francesco Piccialli University of Naples Federico II, Italy
Gianvito Pio University of Bari, Italy
Giuseppe Pirrò Sapienza University of Rome, Italy
Marc Plantevit EPITA, France
Konstantinos Pliakos KU Leuven, Belgium
Matthias Pohl Otto von Guericke University, Germany
Nicolas Posocco EURA NOVA, Belgium
Cedric Pradalier GeorgiaTech Lorraine, France
Paul Prasse University of Potsdam, Germany
Mahardhika Pratama University of South Australia, Australia
Francesca Pratesi ISTI - CNR, Italy
Steven Prestwich University College Cork, Ireland
Giulia Preti CentAI, Italy
Philippe Preux Inria, France
Shalini Priya Oak Ridge National Laboratory, USA

xxxii Organization

Ricardo Prudencio Universidade Federal de Pernambuco, Brazil
Luca Putelli Università degli Studi di Brescia, Italy
Peter van der Putten Leiden University, the Netherlands
Chuan Qin Baidu, China
Jixiang Qing Ghent University, Belgium
Jolin Qu Western Sydney University, Australia
Nicolas Quesada Polytechnique Montreal, Canada
Teeradaj Racharak Japan Advanced Institute of Science and

Technology, Japan
Krystian Radlak Warsaw University of Technology, Poland
Sandro Radovanovic University of Belgrade, Serbia
Md Masudur Rahman Purdue University, USA
Ankita Raj Indian Institute of Technology Delhi, India
Herilalaina Rakotoarison Inria, France
Alexander Rakowski Hasso Plattner Institute, Germany
Jan Ramon Inria, France
Sascha Ranftl Graz University of Technology, Austria
Aleksandra Rashkovska Koceva Jožef Stefan Institute, Slovenia
S. Ravi Biocomplexity Institute, USA
Jesse Read Ecole Polytechnique, France
David Reich Universität Potsdam, Germany
Marina Reyboz CEA, LIST, France
Pedro Ribeiro University of Porto, Portugal
Rita P. Ribeiro University of Porto, Portugal
Piera Riccio ELLIS Unit Alicante Foundation, Spain
Christophe Rigotti INSA Lyon, France
Matteo Riondato Amherst College, USA
Mateus Riva Telecom ParisTech, France
Kit Rodolfa CMU, USA
Christophe Rodrigues DVRC Pôle Universitaire Léonard de Vinci,

France
Simon Rodríguez-Santana ICMAT, Spain
Gaetano Rossiello IBM Research, USA
Mohammad Rostami University of Southern California, USA
Franz Rothlauf Mainz Universität, Germany
Celine Rouveirol Université Paris-Nord, France
Arjun Roy Freie Universität Berlin, Germany
Joze Rozanec Josef Stefan International Postgraduate School,

Slovenia
Salvatore Ruggieri University of Pisa, Italy
Marko Ruman UTIA, AV CR, Czechia
Ellen Rushe University College Dublin, Ireland

Organization xxxiii

Dawid Rymarczyk Jagiellonian University, Poland
Amal Saadallah TU Dortmund, Germany
Khaled Mohammed Saifuddin Georgia State University, USA
Hajer Salem AUDENSIEL, France
Francesco Salvetti Politecnico di Torino, Italy
Roberto Santana University of the Basque Country (UPV/EHU),

Spain
KC Santosh University of South Dakota, USA
Somdeb Sarkhel Adobe, USA
Yuya Sasaki Osaka University, Japan
Yücel Saygın Sabancı Universitesi, Turkey
Patrick Schäfer Humboldt-Universität zu Berlin, Germany
Alexander Schiendorfer Technische Hochschule Ingolstadt, Germany
Peter Schlicht Volkswagen Group Research, Germany
Daniel Schmidt Monash University, Australia
Johannes Schneider University of Liechtenstein, Liechtenstein
Steven Schockaert Cardiff University, UK
Jens Schreiber University of Kassel, Germany
Matthias Schubert Ludwig-Maximilians-Universität München,

Germany
Alexander Schulz CITEC, Bielefeld University, Germany
Jan-Philipp Schulze Fraunhofer AISEC, Germany
Andreas Schwung Fachhochschule Südwestfalen, Germany
Vasile-Marian Scuturici LIRIS, France
Raquel Sebastião IEETA/DETI-UA, Portugal
Stanislav Selitskiy University of Bedfordshire, UK
Edoardo Serra Boise State University, USA
Lorenzo Severini UniCredit, R&D Dept., Italy
Tapan Shah GE, USA
Ammar Shaker NEC Laboratories Europe, Germany
Shiv Shankar University of Massachusetts, USA
Junming Shao University of Electronic Science and Technology,

China
Kartik Sharma Georgia Institute of Technology, USA
Manali Sharma Samsung, USA
Ariona Shashaj Network Contacts, Italy
Betty Shea University of British Columbia, Canada
Chengchao Shen Central South University, China
Hailan Shen Central South University, China
Jiawei Sheng Chinese Academy of Sciences, China
Yongpan Sheng Southwest University, China
Chongyang Shi Beijing Institute of Technology, China

xxxiv Organization

Zhengxiang Shi University College London, UK
Naman Shukla Deepair LLC, USA
Pablo Silva Dell Technologies, Brazil
Simeon Simoff Western Sydney University, Australia
Maneesh Singh Motive Technologies, USA
Nikhil Singh MIT Media Lab, USA
Sarath Sivaprasad IIIT Hyderabad, India
Elena Sizikova NYU, USA
Andrzej Skowron University of Warsaw, Poland
Blaz Skrlj Institute Jožef Stefan, Slovenia
Oliver Snow Simon Fraser University, Canada
Jonas Soenen KU Leuven, Belgium
Nataliya Sokolovska Sorbonne University, France
K. M. A. Solaiman Purdue University, USA
Shuangyong Song Jing Dong, China
Zixing Song The Chinese University of Hong Kong, China
Tiberiu Sosea University of Illinois at Chicago, USA
Arnaud Soulet University of Tours, France
Lucas Souza UFRJ, Brazil
Jens Sparsø Technical University of Denmark, Denmark
Vivek Srivastava TCS Research, USA
Marija Stanojevic Temple University, USA
Jerzy Stefanowski Poznan University of Technology, Poland
Simon Stieber University of Augsburg, Germany
Jinyan Su University of Electronic Science and Technology,

China
Yongduo Sui University of Science and Technology of China,

China
Huiyan Sun Jilin University, China
Yuwei Sun University of Tokyo/RIKEN AIP, Japan
Gokul Swamy Amazon, USA
Maryam Tabar Pennsylvania State University, USA
Anika Tabassum Virginia Tech, USA
Shazia Tabassum INESCTEC, Portugal
Koji Tabata Hokkaido University, Japan
Andrea Tagarelli DIMES, University of Calabria, Italy
Etienne Tajeuna Université de Laval, Canada
Acar Tamersoy NortonLifeLock Research Group, USA
Chang Wei Tan Monash University, Australia
Cheng Tan Westlake University, China
Feilong Tang Shanghai Jiao Tong University, China
Feng Tao Volvo Cars, USA

Organization xxxv

Youming Tao Shandong University, China
Martin Tappler Graz University of Technology, Austria
Garth Tarr University of Sydney, Australia
Mohammad Tayebi Simon Fraser University, Canada
Anastasios Tefas Aristotle University of Thessaloniki, Greece
Maguelonne Teisseire INRAE - UMR Tetis, France
Stefano Teso University of Trento, Italy
Olivier Teste IRIT, University of Toulouse, France
Maximilian Thiessen TU Wien, Austria
Eleftherios Tiakas Aristotle University of Thessaloniki, Greece
Hongda Tian University of Technology Sydney, Australia
Alessandro Tibo Aalborg University, Denmark
Aditya Srinivas Timmaraju Facebook, USA
Christos Tjortjis International Hellenic University, Greece
Ljupco Todorovski University of Ljubljana, Slovenia
Laszlo Toka BME, Hungary
Ancy Tom University of Minnesota, Twin Cities, USA
Panagiotis Traganitis Michigan State University, USA
Cuong Tran Syracuse University, USA
Minh-Tuan Tran KAIST, South Korea
Giovanni Trappolini Sapienza University of Rome, Italy
Volker Tresp LMU, Germany
Yu-Chee Tseng National Yang Ming Chiao Tung University,

Taiwan
Maria Tzelepi Aristotle University of Thessaloniki, Greece
Willy Ugarte University of Applied Sciences (UPC), Peru
Antti Ukkonen University of Helsinki, Finland
Abhishek Kumar Umrawal Purdue University, USA
Athena Vakal Aristotle University, Greece
Matias Valdenegro Toro University of Groningen, the Netherlands
Maaike Van Roy KU Leuven, Belgium
Dinh Van Tran University of Freiburg, Germany
Fabio Vandin University of Padova, Italy
Valerie Vaquet CITEC, Bielefeld University, Germany
Iraklis Varlamis Harokopio University of Athens, Greece
Santiago Velasco-Forero MINES ParisTech, France
Bruno Veloso Porto, Portugal
Dmytro Velychko Carl von Ossietzky Universität Oldenburg,

Germany
Sreekanth Vempati Myntra, India
Sebastián Ventura Soto University of Cordoba, Portugal
Rosana Veroneze LBiC, Brazil

xxxvi Organization

Jan Verwaeren Ghent University, Belgium
Vassilios Verykios Hellenic Open University, Greece
Herna Viktor University of Ottawa, Canada
João Vinagre LIAAD - INESC TEC, Portugal
Fabio Vitale Centai Institute, Italy
Vasiliki Voukelatou ISTI - CNR, Italy
Dong Quan Vu Safran Tech, France
Maxime Wabartha McGill University, Canada
Tomasz Walkowiak Wroclaw University of Science and Technology,

Poland
Vijay Walunj University of Missouri-Kansas City, USA
Michael Wand University of Mainz, Germany
Beilun Wang Southeast University, China
Chang-Dong Wang Sun Yat-sen University, China
Daheng Wang Amazon, USA
Deng-Bao Wang Southeast University, China
Di Wang Nanyang Technological University, Singapore
Di Wang KAUST, Saudi Arabia
Fu Wang University of Exeter, UK
Hao Wang Nanyang Technological University, Singapore
Hao Wang Louisiana State University, USA
Hao Wang University of Science and Technology of China,

China
Hongwei Wang University of Illinois Urbana-Champaign, USA
Hui Wang SKLSDE, China
Hui (Wendy) Wang Stevens Institute of Technology, USA
Jia Wang Xi’an Jiaotong-Liverpool University, China
Jing Wang Beijing Jiaotong University, China
Junxiang Wang Emory University, USA
Qing Wang IBM Research, USA
Rongguang Wang University of Pennsylvania, USA
Ruoyu Wang Shanghai Jiao Tong University, China
Ruxin Wang Shenzhen Institutes of Advanced Technology,

China
Senzhang Wang Central South University, China
Shoujin Wang Macquarie University, Australia
Xi Wang Chinese Academy of Sciences, China
Yanchen Wang Georgetown University, USA
Ye Wang Chongqing University, China
Ye Wang National University of Singapore, Singapore
Yifei Wang Peking University, China
Yongqing Wang Chinese Academy of Sciences, China

Organization xxxvii

Yuandong Wang Tsinghua University, China
Yue Wang Microsoft Research, USA
Yun Cheng Wang University of Southern California, USA
Zhaonan Wang University of Tokyo, Japan
Zhaoxia Wang SMU, Singapore
Zhiwei Wang University of Chinese Academy of Sciences,

China
Zihan Wang Shandong University, China
Zijie J. Wang Georgia Tech, USA
Dilusha Weeraddana CSIRO, Australia
Pascal Welke University of Bonn, Germany
Tobias Weller University of Mannheim, Germany
Jörg Wicker University of Auckland, New Zealand
Lena Wiese Goethe University Frankfurt, Germany
Michael Wilbur Vanderbilt University, USA
Moritz Wolter Bonn University, Germany
Bin Wu Beijing University of Posts and

Telecommunications, China
Bo Wu Renmin University of China, China
Jiancan Wu University of Science and Technology of China,

China
Jiantao Wu University of Jinan, China
Ou Wu Tianjin University, China
Yang Wu Chinese Academy of Sciences, China
Yiqing Wu University of Chinese Academic of Science,

China
Yuejia Wu Inner Mongolia University, China
Bin Xiao University of Ottawa, Canada
Zhiwen Xiao Southwest Jiaotong University, China
Ruobing Xie WeChat, Tencent, China
Zikang Xiong Purdue University, USA
Depeng Xu University of North Carolina at Charlotte, USA
Jian Xu Citadel, USA
Jiarong Xu Fudan University, China
Kunpeng Xu University of Sherbrooke, Canada
Ning Xu Southeast University, China
Xianghong Xu Tsinghua University, China
Sangeeta Yadav Indian Institute of Science, India
Mehrdad Yaghoobi University of Edinburgh, UK
Makoto Yamada RIKEN AIP/Kyoto University, Japan
Akihiro Yamaguchi Toshiba Corporation, Japan
Anil Yaman Vrije Universiteit Amsterdam, the Netherlands

xxxviii Organization

Hao Yan Washington University in St Louis, USA
Qiao Yan Shenzhen University, China
Chuang Yang University of Tokyo, Japan
Deqing Yang Fudan University, China
Haitian Yang Chinese Academy of Sciences, China
Renchi Yang National University of Singapore, Singapore
Shaofu Yang Southeast University, China
Yang Yang Nanjing University of Science and Technology,

China
Yang Yang Northwestern University, USA
Yiyang Yang Guangdong University of Technology, China
Yu Yang The Hong Kong Polytechnic University, China
Peng Yao University of Science and Technology of China,

China
Vithya Yogarajan University of Auckland, New Zealand
Tetsuya Yoshida Nara Women’s University, Japan
Hong Yu Chongqing Laboratory of Comput. Intelligence,

China
Wenjian Yu Tsinghua University, China
Yanwei Yu Ocean University of China, China
Ziqiang Yu Yantai University, China
Sha Yuan Beijing Academy of Artificial Intelligence, China
Shuhan Yuan Utah State University, USA
Mingxuan Yue Google, USA
Aras Yurtman KU Leuven, Belgium
Nayyar Zaidi Deakin University, Australia
Zelin Zang Zhejiang University &Westlake University, China
Masoumeh Zareapoor Shanghai Jiao Tong University, China
Hanqing Zeng USC, USA
Tieyong Zeng The Chinese University of Hong Kong, China
Bin Zhang South China University of Technology, China
Bob Zhang University of Macau, Macao, China
Hang Zhang National University of Defense Technology,

China
Huaizheng Zhang Nanyang Technological University, Singapore
Jiangwei Zhang Tencent, China
Jinwei Zhang Cornell University, USA
Jun Zhang Tsinghua University, China
Lei Zhang Virginia Tech, USA
Luxin Zhang Worldline/Inria, France
Mimi Zhang Trinity College Dublin, Ireland
Qi Zhang University of Technology Sydney, Australia

Organization xxxix

Qiyiwen Zhang University of Pennsylvania, USA
Teng Zhang Huazhong University of Science and Technology,

China
Tianle Zhang University of Exeter, UK
Xuan Zhang Renmin University of China, China
Yang Zhang University of Science and Technology of China,

China
Yaqian Zhang University of Waikato, New Zealand
Yu Zhang University of Illinois at Urbana-Champaign, USA
Zhengbo Zhang Beihang University, China
Zhiyuan Zhang Peking University, China
Heng Zhao Shenzhen Technology University, China
Mia Zhao Airbnb, USA
Tong Zhao Snap Inc., USA
Qinkai Zheng Tsinghua University, China
Xiangping Zheng Renmin University of China, China
Bingxin Zhou University of Sydney, Australia
Bo Zhou Baidu, Inc., China
Min Zhou Huawei Technologies, China
Zhipeng Zhou University of Science and Technology of China,

China
Hui Zhu Chinese Academy of Sciences, China
Kenny Zhu SJTU, China
Lingwei Zhu Nara Institute of Science and Technology, Japan
Mengying Zhu Zhejiang University, China
Renbo Zhu Peking University, China
Yanmin Zhu Shanghai Jiao Tong University, China
Yifan Zhu Tsinghua University, China
Bartosz Zieliński Jagiellonian University, Poland
Sebastian Ziesche Bosch Center for Artificial Intelligence, Germany
Indre Zliobaite University of Helsinki, Finland
Gianlucca Zuin UFM, Brazil

Program Committee Members, Demo Track

Hesam Amoualian WholeSoft Market, France
Georgios Balikas Salesforce, France
Giannis Bekoulis Vrije Universiteit Brussel, Belgium
Ludovico Boratto University of Cagliari, Italy
Michelangelo Ceci University of Bari, Italy
Abdulkadir Celikkanat Technical University of Denmark, Denmark

xl Organization

Tania Cerquitelli Informatica Politecnico di Torino, Italy
Mel Chekol Utrecht University, the Netherlands
Charalampos Chelmis University at Albany, USA
Yagmur Gizem Cinar Amazon, France
Eustache Diemert Criteo AI Lab, France
Sophie Fellenz TU Kaiserslautern, Germany
James Foulds University of Maryland, Baltimore County, USA
Jhony H. Giraldo Télécom Paris, France
Parantapa Goswami Rakuten Institute of Technology, Rakuten Group,

Japan
Derek Greene University College Dublin, Ireland
Lili Jiang Umeå University, Sweden
Bikash Joshi Elsevier, the Netherlands
Alexander Jung Aalto University, Finland
Zekarias Kefato KTH Royal Institute of Technology, Sweden
Ilkcan Keles Aalborg University, Denmark
Sammy Khalife Johns Hopkins University, USA
Tuan Le New Mexico State University, USA
Ye Liu Salesforce, USA
Fragkiskos Malliaros CentraleSupelec, France
Hamid Mirisaee AMLRightSource, France
Robert Moro Kempelen Institute of Intelligent Technologies,

Slovakia
Iosif Mporas University of Hertfordshire, UK
Giannis Nikolentzos Ecole Polytechnique, France
Eirini Ntoutsi Freie Universität Berlin, Germany
Frans Oliehoek Delft University of Technology, the Netherlands
Nora Ouzir CentraleSupélec, France
Özlem Özgöbek Norwegian University of Science and Technology,

Norway
Manos Papagelis York University, UK
Shichao Pei University of Notre Dame, USA
Botao Peng Chinese Academy of Sciences, China
Antonia Saravanou National and Kapodistrian University of Athens,

Greece
Rik Sarkar University of Edinburgh, UK
Vera Shalaeva Inria Lille-Nord, France
Kostas Stefanidis Tampere University, Finland
Nikolaos Tziortziotis Jellyfish, France
Davide Vega Uppsala University, Sweden
Sagar Verma CentraleSupelec, France
Yanhao Wang East China Normal University, China

Organization xli

Zhirong Yang Norwegian University of Science and Technology,
Norway

Xiangyu Zhao City University of Hong Kong, Hong Kong, China

Sponsors

Contents – Part II

Networks and Graphs

Algorithmic Tools for Understanding the Motif Structure of Networks 3
Tianyi Chen, Brian Matejek, Michael Mitzenmacher,
and Charalampos E. Tsourakakis

Anonymity can Help Minority: A Novel Synthetic Data Over-Sampling
Strategy on Multi-label Graphs . 20

Yijun Duan, Xin Liu, Adam Jatowt, Hai-tao Yu, Steven Lynden,
Kyoung-Sook Kim, and Akiyoshi Matono

Understanding the Benefits of Forgetting When Learning on Dynamic
Graphs . 37

Julien Tissier and Charlotte Laclau

Summarizing Labeled Multi-graphs . 53
Dimitris Berberidis, Pierre J. Liang, and Leman Akoglu

Inferring Tie Strength in Temporal Networks . 69
Lutz Oettershagen, Athanasios L. Konstantinidis,
and Giuseppe F. Italiano

Joint Learning of Hierarchical Community Structure and Node
Representations: An Unsupervised Approach . 86

Ancy Sarah Tom, Nesreen K. Ahmed, and George Karypis

Knowledge Graphs

ProcK: Machine Learning for Knowledge-Intensive Processes 107
Tobias Jacobs, Jingyi Yu, Julia Gastinger, and Timo Sztyler

Enhance Temporal Knowledge Graph Completion via Time-Aware
Attention Graph Convolutional Network . 122

Haohui Wei, Hong Huang, Teng Zhang, Xuanhua Shi, and Hai Jin

Start Small, Think Big: On Hyperparameter Optimization for Large-Scale
Knowledge Graph Embeddings . 138

Adrian Kochsiek, Fritz Niesel, and Rainer Gemulla

xliv Contents – Part II

Multi-source Inductive Knowledge Graph Transfer . 155
Junheng Hao, Lu-An Tang, Yizhou Sun, Zhengzhang Chen,
Haifeng Chen, Junghwan Rhee, Zhichuan Li, and Wei Wang

MULTIFORM: Few-Shot Knowledge Graph Completion via Multi-modal
Contexts . 172

Xuan Zhang, Xun Liang, Xiangping Zheng, Bo Wu, and Yuhui Guo

RDF Knowledge Base Summarization by Inducing First-Order Horn Rules 188
Ruoyu Wang, Daniel Sun, and Raymond Wong

Social Network Analysis

A Heterogeneous Propagation Graph Model for Rumor Detection Under
the Relationship Among Multiple Propagation Subtrees . 207

Guoyi Li, Jingyuan Hu, Yulei Wu, Xiaodan Zhang, Wei Zhou,
and Honglei Lyu

DeMis: Data-Efficient Misinformation Detection Using Reinforcement
Learning . 224

Kornraphop Kawintiranon and Lisa Singh

The Burden of Being a Bridge: Analysing Subjective Well-Being
of Twitter Users During the COVID-19 Pandemic . 241

Ninghan Chen, Xihui Chen, Zhiqiang Zhong, and Jun Pang

SkipCas: Information Diffusion Prediction Model Based on Skip-Gram 258
Dedong Ren and Yong Liu

Probing Spurious Correlations in Popular Event-Based Rumor Detection
Benchmarks . 274

Jiaying Wu and Bryan Hooi

Graph Neural Networks

Self-supervised Graph Learning with Segmented Graph Channels 293
Hang Gao, Jiangmeng Li, and Changwen Zheng

TopoAttn-Nets: Topological Attention in Graph Representation Learning 309
Yuzhou Chen, Elena Sizikova, and Yulia R. Gel

SEA: Graph Shell Attention in Graph Neural Networks . 326
Christian M. M. Frey, Yunpu Ma, and Matthias Schubert

Contents – Part II xlv

Edge but not Least: Cross-View Graph Pooling . 344
Xiaowei Zhou, Jie Yin, and Ivor W. Tsang

GNN Transformation Framework for Improving Efficiency and Scalability 360
Seiji Maekawa, Yuya Sasaki, George Fletcher, and Makoto Onizuka

Masked Graph Auto-Encoder Constrained Graph Pooling 377
Chuang Liu, Yibing Zhan, Xueqi Ma, Dapeng Tao, Bo Du, and Wenbin Hu

Supervised Graph Contrastive Learning for Few-Shot Node Classification 394
Zhen Tan, Kaize Ding, Ruocheng Guo, and Huan Liu

A Piece-Wise Polynomial Filtering Approach for Graph Neural Networks 412
Vijay Lingam, Manan Sharma, Chanakya Ekbote, Rahul Ragesh,
Arun Iyer, and Sundararajan Sellamanickam

NE-WNA: A Novel Network Embedding Framework Without
Neighborhood Aggregation . 453

Jijie Zhang, Yan Yang, Yong Liu, and Meng Han

Transforming PageRank into an Infinite-Depth Graph Neural Network 469
Andreas Roth and Thomas Liebig

Learning to Solve Minimum Cost Multicuts Efficiently Using
Edge-Weighted Graph Convolutional Neural Networks . 485

Steffen Jung and Margret Keuper

Natural Language Processing and Text Mining

AutoMap: Automatic Medical Code Mapping for Clinical Prediction
Model Deployment . 505

Zhenbang Wu, Cao Xiao, Lucas M. Glass, David M. Liebovitz,
and Jimeng Sun

Hyperbolic Deep Keyphrase Generation . 521
Yuxiang Zhang, Tianyu Yang, Tao Jiang, Xiaoli Li, and Suge Wang

On the Current State of Reproducibility and Reporting of Uncertainty
for Aspect-Based Sentiment Analysis . 537

Elisabeth Lebmeier, Matthias Aßenmacher, and Christian Heumann

An Ion Exchange Mechanism Inspired Story Ending Generator
for Different Characters . 553

Xinyu Jiang, Qi Zhang, Chongyang Shi, Kaiying Jiang, Liang Hu,
and Shoujin Wang

xlvi Contents – Part II

Vec2Node: Self-Training with Tensor Augmentation for Text Classification
with Few Labels . 571

Sara Abdali, Subhabrata Mukherjee, and Evangelos E. Papalexakis

“Let’s Eat Grandma”: Does Punctuation Matter in Sentence
Representation? . 588

Mansooreh Karami, Ahmadreza Mosallanezhad,
Michelle V. Mancenido, and Huan Liu

Contextualized Graph Embeddings for Adverse Drug Event Detection 605
Ya Gao, Shaoxiong Ji, Tongxuan Zhang, Prayag Tiwari,
and Pekka Marttinen

Bi-matching Mechanism to Combat Long-tail Senses of Word Sense
Disambiguation . 621

Junwei Zhang, Ruifang He, and Fengyu Guo

FairDistillation: Mitigating Stereotyping in Language Models 638
Pieter Delobelle and Bettina Berendt

Self-distilled Pruning of Deep Neural Networks . 655
James O’ Neill, Sourav Dutta, and Haytham Assem

MultiLayerET: A Unified Representation of Entities and Topics Using
Multilayer Graphs . 671

Jumanah Alshehri, Marija Stanojevic, Parisa Khan, Benjamin Rapp,
Eduard Dragut, and Zoran Obradovic

Conversational Systems

MFDG: A Multi-Factor Dialogue Graph Model for Dialogue Intent
Classification . 691

Jinhui Pang, Huinan Xu, Shuangyong Song, Bo Zou, and Xiaodong He

Contextual Information and Commonsense Based Prompt for Emotion
Recognition in Conversation . 707

Jingjie Yi, Deqing Yang, Siyu Yuan, Kaiyan Cao, Zhiyao Zhang,
and Yanghua Xiao

Do You Know My Emotion? Emotion-Aware Strategy Recognition
Towards a Persuasive Dialogue System . 724

Wei Peng, Yue Hu, Luxi Xing, Yuqiang Xie, and Yajing Sun

Contents – Part II xlvii

Customized Conversational Recommender Systems . 740
Shuokai Li, Yongchun Zhu, Ruobing Xie, Zhenwei Tang, Zhao Zhang,
Fuzhen Zhuang, Qing He, and Hui Xiong

Correction to: On the Current State of Reproducibility and Reporting
of Uncertainty for Aspect-Based Sentiment Analysis . C1

Elisabeth Lebmeier, Matthias Aßenmacher, and Christian Heumann

Author Index . 757

Networks and Graphs

Algorithmic Tools for Understanding
the Motif Structure of Networks

Tianyi Chen1, Brian Matejek2,3, Michael Mitzenmacher2,
and Charalampos E. Tsourakakis1,2,4(B)

1 Boston University, Boston, MA, USA
tsourolampis@gmail.com

2 Harvard University, Cambridge, MA, USA
3 Computer Science Laboratory, SRI International, Washington D.C., USA

4 ISI Foundation, Turin, Italy

Abstract. Motifs are small subgraph patterns that play a key role
towards understanding the structure and the function of biological and
social networks. The current de facto approach towards assessing the sta-
tistical significance of a motif M relies on counting its occurrences across
the network, and comparing that count to its expected count under some
null generative model. This approach can be misleading due to combi-
natorial artifacts. That is, there may be a large count for a motif due
to multiple copies sharing many vertices and edges connected to a sub-
graph, such as a clique, that completes the multiple copies of the motif.

In this work we introduce the novel concept of an (f, q)-spanning motif.
A motif M is (f, q)-spanning if there exists a q-fraction of the nodes that
induces an f -fraction of the occurrences of M in G. Intuitively, when f is
close to 1, and q close to 0, most of the occurrences of M are localized in
a small set of nodes, and thus its statistical significance is likely to be due
to a combinatorial artifact. We propose efficient heuristics for finding the
maximum f for a given q and minimum q for a given f for which a motif
is (f, q)-spanning and evaluate them on real-world datasets. Our methods
successfully identify combinatorial artifacts that otherwise go undetected
using the standard approach for assessing statistical significance.

Finally, we leverage the motif structure of a network to design Motif-
Scope, an algorithm that takes as input a graph and two motifs M1,M2,
and finds subgraphs of the graph where M1,M2 occur infrequently and
frequently respectively. We show that a good selection of M1,M2 allows
us to find anomalies in large networks, including bipartite cliques in social
graphs, and subgraphs rated with distrust in Bitcoin markets.

Keywords: Motifs · Graph mining · Statistical significance · Anomaly
detection

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26390-3 1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 3–19, 2023.
https://doi.org/10.1007/978-3-031-26390-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_1
https://doi.org/10.1007/978-3-031-26390-3_1

4 T. Chen et al.

1 Introduction

Network motifs, or small induced subgraph patterns, are known to play a key
role in understanding the structure and function of various real-world networks,
especially biological [28,40], and social networks [47]. For example the feed-
forward loop (FFL) is one of the most significant subgraphs in the transcription
network of the bacteria Escherichia coli. The FFL has three nodes corresponding
to transcription factors. The transcription factor X regulates a second transcrip-
tion factor Y, and together they bind the regulatory region of a target gene Z,
jointly modulating its transcription rate [27]. In social networks, triangles (K3s)
are known to appear frequently despite the edge sparsity of the network [49].
Ugander, Backstrom, and Kleinberg [47] showed that on the other hand social
networks have very few cycles of length 4 (C4s). This sheer contrast in the counts
of K3s and C4s relates to human nature. Specifically, friends of friends are typi-
cally friends themselves, thus introducing edges that create K3s but remove C4s
[49]. An FFL and a C4 are shown in Fig. 1(a).

Fig. 1. (a) A feed-forward loop (FFL, top) and a C4 (bottom). (b) Figure source [17]:
the subgraph M on the left appears to be statistically significant in the network G on
the right due to the presence of a large independent set, and a large clique in G. The
independent set creates

(
12
3

)
stars with three leaves, while the large clique creates

(
9
4

)

smaller cliques of order 4, resulting in a total count of
(
12
3

) × (
9
4

)
occurrences, leading

to the misleading conclusion that M is a statistically significant motif. We refer to this
phenomenon as a combinatorial artifact, see also [17,32].

The de facto current approach towards assessing the statistical significance
of a motif M involves two steps: (i) counting the occurrences of M in the input
graph, and (ii) comparing that count to the expected number of occurrences of
M under a null generative model. This approach has been widely used in the
literature since the early 2000s [28,40], but nonetheless has significant drawbacks.
The proper choice of the null model is a concern that was raised soon after the
publication of the seminal work of Milo et al. [28], see the comment by Artzy et
al. [1]. A suitable null model should generate networks similar to the input graph,
as otherwise there is a danger of incorrectly assessing a motif as statistically
significant (or not) due to an ill-posed null hypothesis. Also importantly, the
current approach suffers from combinatorial artifacts. As observed originally

Algorithmic Tools for Understanding the Motif Structure of Networks 5

by Lior Pachter in his blog [32], as well as by Grochow and Kellis [17], the
existence of large independent sets and large cliques can obfuscate the relevance
of the count of a motif. Consider the motif M with fifteen nodes corresponding
to proteins shown in Fig. 1(b) on the left as originally shown in [17]. A node
connected with a line to a set of nodes enclosed by a circle/oval denotes that the
node is connected to all the nodes within that set. The closed circle/oval shows
the topology of the set of nodes within it. For example, we observe that the node
in the middle left is connected to three isolated nodes, whereas the two nodes
in the middle (both left and right) are connected to four nodes that form a K4.
Figure 1(b) on the right shows the input network. Due to the existence of a large
independent set, and a large clique, the number of occurrences of M is equal to(
12
3

) × (
9
4

)
. Such a high count may lead to the misleading assessment that M is

statistically significant. Indeed, combinatorial artifacts occur frequently in real-
world networks, which often contain large cliques and independent sets, similar
to Fig. 1(b).

In this work we contribute towards understanding the motif structure of a
network (directed or undirected) in the following ways:

• We propose the novel concept of an (f, q)-spanning motif. Specifically, a motif
is (f, q)-spanning if there exists a subset of nodes S that induces an f -fraction
of the motifs, while being a q-fraction of the node set V . Intuitively, if f is close
to 1, and q is close to 0, the motif is likely to be a combinatorial artifact. Based
on dense subgraph discovery tools [15], we propose a heuristic algorithm that
allows us to test in near-linear time whether a motif is (f, q)-spanning.

• We propose MotifScope, a novel framework that leverages frequently and
infrequently appearing motifs to find anomalies in real-world networks. Our
framework uses heuristics to find a subgraph that induces many copies of a
motif M2 and few copies of a motif M1. We show that our framework allows
us to find anomalies in social and trust networks.

• We perform an extensive experimental evaluation of various classical and
state-of-the-art generative models as null models for assessing statistical sig-
nificance, which highlights their similarities and differences, as well as the
importance of choosing the models.

2 Related Work

Motifs. A motif is typically a subgraph of constant size. The goal of understand-
ing the motif structure of a network spans numerous disciplines, ranging from
systems biology [51] to social network analysis [47] and socio-economics [55], as
it sheds light into the building blocks of networks [28]. Motifs have found vari-
ous algorithmic and machine learning applications, under the umbrella of higher
order methods [2,23,46,52].

Assessing the Statistical Significance of a Motif. The de facto approach for decid-
ing if a motif M is statistically significant or not relies on comparing its frequency

6 T. Chen et al.

fM to its expected frequency in a null random graph model [28]. While other
approaches to assessing the statistical significance of motifs have been proposed,
e.g., [4]; in this work we focus on the prevalent approach as introduced by Milo
et al. [28]. Given the null model, one samples a large number of networks with
the same number of nodes, and counts the frequency of M; let f̄M, σM be
the average number of occurrences of M and the sample standard deviation,
respectively. The z-score is defined as

z-score(M) = zM =
fM − f̄M

σM
.

Observe that the z-score of a motif can be negative; motifs that have a large
negative score, and thus appear less often than expected, are sometimes referred
in the literature as anti-motifs [28,29].

An important issue is the choice of the null model. A common choice is
the configuration model, or one of its variants [5,10,14]. This family of models
generates a random (di)graph with a given (in-, out-)degree sequence(s). The
configuration model was used in the influential works of Milo et al. [28,29].
However, their approach has received valid critique for a variety of reasons, such
as the lack of spatial characteristics [1,20].

The densest subgraph problem aims to find the subgraph with the maximum
average degree over all possible subgraphs [8,16]. Higher-order extensions have
been recently proposed that maximize the average density of a small motif such
as a triangle [30,44]. For this problem, as long as the number of nodes in the
small subgraph is constant, there exist both efficient polynomial time exact algo-
rithms [44], and faster greedy approximation algorithms [6,8].

Graph-based Anomaly Detection is an intensively active area of graph mining
[31], with diverse industrial and scientific applications. We discuss related works
in greater detail in the Appendix.

3 How to Address Combinatorial Artifacts?

Problem Definition. As discussed in Fig. 1(b), the significance of the motif on the
left hand side does not truly represent statistically significant recurring indepen-
dent motifs, but rather this motif arises because of a combinatorial artifact [32].
It appears around 30 000 times in a PPI network of S. cerevisiae, while its occur-
rences are concentrated into less than 30 nodes. To help clarify such situations,
we provide the following definition.

Definition 1. A motif M is (f, q)-spanning in graph G(V,E) if there
exists a set of nodes S ⊆ V such that |S| ≤ q|V | and the induced subgraph
G[S] contains an (at least) f -fraction of the occurrences of M in G.

Algorithmic Tools for Understanding the Motif Structure of Networks 7

We will (loosely) say the statistical significance of a motif M according to
some null generative model is a combinatorial artifact if it is an (f, q)-spanning
motif in G(V,E) with q � 1, and f close to 1.1

Our definition of an (f, q)-spanning motif naturally introduces the following
optimization problem.

Problem 1. Given a motif M and a graph G(V,E), what is the largest
possible fraction f of occurrences of M among all subgraphs with (at
most) q|V | nodes for a given value of q?

We implicitly assume that the motif M appears frequently in the graph,
and has been assessed statistically significant according to some null generative
model; our goal is to understand whether its (apparent) significance is due to a
combinatorial artifact or not.

Hardness. Problem 1 is NP-hard, and this holds both when we require S ⊆ V
to have exactly k = q|V | nodes, and at most k nodes. The reduction is straight-
forward, and we omit all details. The idea of the proof is that if we could solve
Problem 1, then by setting the motif M to be a simple undirected edge, we would
be able to solve densest-k-subgraph (DkS) problem, and the densest-at-most-k-
subgraph (DamkS) problems respectively. Furthermore, we know that these two
problems are close in terms of approximation guarantees: if there exists an α-
approximation algorithm for the DamkS problem, then there exists an O(α2)
approximation algorithm for the DkS problem. The best known approximation
factor for the DkS is O(n−1/4) due to Bhaskara et al. [3].

Theorem 1. Problem 1 is NP-hard.

We also provide a formulation which aims to optimize q for a given f , stated
as the next problem.

Problem 2. Given a motif M with m(V) total occurrences in a graph
G(V,E), what is the smallest possible size q|V | of the union of a set of
f · m(V) occurrences for a given value of f?

The results of Chlamtač et al. [9] yield the following corollary.

1 It is worth outlining that forcing f = 1, and thus simplifying the definition above to
a (1, q)- or just q-spanning motif is not a robust in the following sense. Consider a
graph that is the union of a linear number of node disjoint triangles, and a clique of
order

√
n. Each node in the graph participates in a triangle, and thus when f = 1,

then q = 1. However, notice that most of the triangle occurrences appear in the

small clique, i.e., O(
√
n)3) = O(n3/2) � O(n). Thus for f = O(n3/2

n+n3/2) = 1 − o(1),

q suddenly becomes O(
√

n
n

) = o(1). Similarly, a graph could have multiple distinct
smaller combinatorial artifacts, in which case f might be a constant further from 1
(e.g., 3 small subgraphs with each around 1/3 of the motif copies).

8 T. Chen et al.

Corollary 1 (Theorem 1.1 [9]). Problem 2 is NP-hard. Furthermore, there
exists an O(

√
m(V))-approximation algorithm that runs in polynomial time.

This corollary relates to their results for the minimum p-union prob-
lem (MpU). Consider a hypergraph where each hyperedge corresponds to an
occurrence of a motif. Problem 2 can be restated as a minimum p-union
problem (MpU), with p = f · m(V). However, their approximation algo-
rithm is not practical for our purposes as it relies on computing maximum
flows or solving linear programs, and we are interested in motifs with a
large number of occurrences. We therefore propose a more efficient heuristic
that works for both problem variants.

Algorithm 1: CombArt(G(V,E),M, f)

1 Initialize S∗
f = ∅ ;

2 Count the total number m of occurrences of M in G;
3 while m(S�

f)/m < f ∧ m(V) > 0 do
4 S ← GreedyPeeling(G,M);
5 S�

f ← S�
f ∪ S;

6 E ← E\E[S∗
f] ;

7 Update the motif count m(V);
8 Compute m(S�

f);

9 / ∗ E[S�
f] is the set of edges in the induced subgraph G[S�

f] ∗ / ;
10 q ← |S�

f |/|V | ;
11 return q ;

Proposed Heuristic. Our heuristic is based on the polynomially time solv-
able higher-order extension of the densest subgraph problem (DSP) due to
Tsourakakis et al. [30,44]. Our algorithm is shown in pseudocode as Algorithm 1.
The algorithm2 runs as a black-box a greedy peeling algorithm until an f -fraction
of the motif occurrences in the graph have been covered by the subgraph S�

f . In
each round, the greedy algorithm provides a 1

|V (M)| -approximation to the opti-

mization problem ρ� = maxS⊆V
m(S)
|S| , see Appendix for its pseudocode. Here,

m(S) is the number of induced occurrences of motif M in S. Once the algorithm
has covered an f -fraction of M-occurrences in G, we compute q as |S�

f |/n where
n is the number of nodes in G.

4 MotifScope: Anomaly Detection via Motif Contrasting

A reason statistical significance of motifs is considered a worthwhile issue for
study is because it gives us important information about graph structure. Indeed,
2 While it aims to solve Problem 2, with minor changes it becomes a heuristic for

Problem 1.

Algorithmic Tools for Understanding the Motif Structure of Networks 9

the existence of subgraphs that occur either frequently or infrequently can have
interesting algorithmic implications and applications. Here we consider the prob-
lem of using motif counts to determine anomalies in a graph structure, such as
a social network. Our results utilize the following natural problem.

Problem 3 Given a frequent motif M1, and an occurring but infrequent
motif M2 in a graph G, find the subset of nodes S ⊆ V that maximizes
the average density difference

max
S⊆V

m2(S)
|S| − m1(S)

|S| .

Intuitively, an induced subgraph G[S] that contains many induced copies of
M2, but few induced copies of M1 differs significantly from the global network
G with respect to those two motifs, and therefore possibly in other interesting
ways. To solve Problem 3, we use the dense subgraph discovery framework of
Tsourakakis et al. [45] with negative weights. We provide an extension of this
approach for contrast of motif structures as follows: each node v is associated
with a score score(v) that is equal to m2(v) − m1(v). Intuitively, we want to
remove nodes that have a large negative score, and keep nodes with a high
positive score. The pseudocode is shown in Algorithm 2. Assuming a method
MotifCount with time complexity f(M) for motif M, our algorithm runs in
O(n log n + m + f(M)) time in the standard RAM model.

Algorithm 2: MotifScope (G,M1,M2)

1 mi(v) =# motifs of type Mi node v is contained in (i = 1, 2, v ∈ V (G));
2 n ← |V |;
3 Hn ← G;
4 for i ← n to 2 do
5 Let v be the vertex of Gi of minimum score, i.e.,

score(v) = m2(v) − m1(v) (break ties arbitrarily);
6 Hi−1 ← Hi\v;
7 Update counts m1(v),m2(v) for all v ∈ V ;

8 return Hj that achieves maximum average density m2(S)−m1(S)
|S| among

His, i = 1, . . . , n.;

Implications and Applications. As a specific and important example of the
MotifScope algorithm, we explain how it can be used to find dense (near)-
bipartite subgraphs. In general, the problem of detecting a dense bipartite sub-
graph in a graph is NP-hard [25]. Finding such subgraphs is important in prac-
tice since large bipartite subgraphs in social and trust networks are known to be
rare, and frequently correspond to anomalies, such as a collection of manufac-
tured accounts for illicit uses such as money laundering [33,43]. To attack this

10 T. Chen et al.

problem using MotifScope we leverage the fact that a bipartite subgraph does
not contain any triangles (K3s), which are otherwise common in social networks,
but will probably contain several induced cycles of length 4 (C4s), which are oth-
erwise rare in social networks [47]. Therefore we set M1 = K3 and M2 = C4.
While our approach is not guaranteed to output a bipartite graph (or even a
near-bipartite graph), we show that on real data optimizing for minimizing K3s
while maximizing C4s often yields a bipartite subgraph in practice. As a rule-of-
thumb for using MotifScope for anomaly detection applications, we propose
either using prior knowledge of important subgraphs (such as with the K3 and
C4 example above), or by choosing M1 to be one of the motifs with high z-score
and M2 to be one of the motifs with low z-score.

5 Experiments

Datasets and Code. Table 1 summarizes the datasets that we use. We use pub-
licly available datasets from a variety of domains, including biological, social,
power, and trust networks. The code was written in Python3. We provide both
the code and the datasets anonymously at https://github.com/tsourakakis-lab/
motifscope.

Table 1. Summary of datasets.

Dataset |V | |E| Description Directed

S. cerevisiae [54] 759 1 593 PPI ×
C. elegans-PPI [54] 2 018 2 930 PPI ×
C. elegans-brain [51] 219 2 416 Connectome �
hamsterster [36] 2 426 1 593 Social ×
Eris1176 [36] 1 176 18 552 Power ×
Bitcoin-OTC [22] 5 881 35 592 Trust �
Bitcoin-Alpha [21] 3 783 24 186 Trust �
LastFM [38] 7 624 27 806 Social ×
Twitch-EN [37] 7 126 35 324 Social ×

Experimental Setup. The experiments are performed on a single machine, with
an Intel i7-10850H CPU @ 2.70 GHz and 32 GB of main memory. The motif list-
ing algorithm we use is due to Wernicke [50]. We focus on small-sized subgraphs.
Figure 2 presents the 13 possible directed motifs of order 3; we shall refer to
each motif with their id, for example motif13 is the triangle with all six possible
directed edges.

5.1 Combinatorial Artifacts

Table 2 summarizes the performance of CombArt algorithm on five different
networks. The second column of the table visualizes a motif of interest M. We

https://github.com/tsourakakis-lab/motifscope
https://github.com/tsourakakis-lab/motifscope

Algorithmic Tools for Understanding the Motif Structure of Networks 11

Fig. 2. There exist 13 possible directed motifs of order 3.

use a similar notation as [17], where a large node annotated as S − c (K − c)
represents an independent set (clique) with c nodes. We observe that real-world
networks typically contain large cliques and independent sets, and thus there
exist various motifs whose significance will be a combinatorial artifact. The third
column summarizes the subgraph which causes the combinatorial artifact, while
the fourth and fifth columns show the motif count which happens to be also the
global count (f = 1), and the (f, q) values. As we observe, our novel definition
sheds light into assessing the significance of those motifs, by noting that f = 1
and q is a small fraction of the node set. In contrast, the FFL motif, which
is known to play a biological role, is (0.8, 0.61)-spanning, indicating statistical
significance is not due to a combinatorial artifact. We believe these examples
show our proposed method can be a significant enhancement to the current
approach of assessing the statistical significance of motifs.

5.2 MotifScope Case Studies

We show two case studies of MotifScope. The first is an algorithmic application
that attacks an NP-hard problem using prior knowledge about the appearance
of motifs M1,M2, while the second application first analyzes the network to
choose M1,M2.

Bipartite Subgraphs in Social Networks. As we mentioned in Sect. 4, we
run MotifScope using M1 = K3,M2 = C4, aiming to find a subgraph that
induces many cycles of length 4, and few triangles. Our results are summarized
in Table 3 for four datasets. We report the total number of induced edges, and
the number of nodes in the bi-partition (L,R) of the output node set. Even
though our method is not guaranteed to output bipartite subgraphs, the output
subgraphs here were in fact all bipartite, i.e., all reported edges having one
endpoint in L and one in R.

Anomaly Detection in Trust Networks. We use the Bitcoin-OTC net-
work to illustrate the use of MotifScope for anomaly detection on real-world
networks. In the Appendix we provide additional results for the Bitcoin-alpha
network and camouflage behaviors discovered by MotifScope. Since we have
no prior knowledge about the motifs in Bitcoin-OTC, we consider all motifs of
order 3, and we compute their z-scores. Figure 3a shows the z-scores of all 13

12 T. Chen et al.

Table 2. Motifs that are statistically significant from different networks due to com-
binatorial artifacts. Subgraphs the motifs are clustered in are also listed together with
other statistics.

Table 3. Bipartite subgraph found by contrasting C4 and K3.

Dataset # edges # nodes in L # nodes in R

LastFM 124 21 37

Bitcoin-Alpha 24 5 9

Bitcoin-OTC 31 6 10

Twitch-EN 61 7 23

motifs. We observe that motif 3 has the most negative z-score indicating that it
appears significantly less often than what we would expect in the directed con-
figuration model. On the contrary, motifs 11, and 13 appear significantly more
often. Thus, we use each of motifs 11 and 13 for M1, and motif 3 for M2.

The whole Bitcoin-OTC network contains 11% negative edges, which denote
distrust. Figure 3b shows the precision and recall for MotifScope, and popu-
lar graph anomaly detection methods that use dense subgraph discovery meth-
ods, including Core-A and Truss-A from Corescope [41], EigenSpokes [34], Holo-
scope [26], and Fraudar [18]. Here, we measure the quality of a subgraph S,
using: (i) the precision, namely the fraction of negative edges induced by S over
the total number of edges in S, and (ii) the recall, namely the fraction of negative

Algorithmic Tools for Understanding the Motif Structure of Networks 13

Fig. 3. Results on the Bitcoin-OTC network. (a) When no prior knowledge is available,
we use the z-scores. Here, we show the z-scores of the 13 motifs of order 3. (b) Preci-
sion and recall for various anomaly detection methods and MotifScope (MS) using
as (M1,M2) motifs (motif11,motif3), and (motif13,motif3), see Fig. 2 for the actual
motifs. (c) Subgraph found by MotifScope for (motif11,motif3). Distrust relations
are colored red, and trust relations are colored green. (Color figure online)

edges in S over the number of negative edges in the whole graph. We observe
that our method outperforms competitors, finding subgraphs that induce a lot
of distrust. Figure 3c visualizes one such subgraph. It is worth noting that motifs
11 and 13 are strongly connected, indicating that in this dataset reciprocal edges
correlate with trust, whereas motif 3 is a directed chain that lacks reciprocity
and correlates with distrust.

Running Times. Since our graphs are small to medium size, the main computa-
tional bottleneck comes from computing motifs on a large ensemble of sampled
graphs from the null models. For instance, for Bitcoin-OTC, listing all motifs of
order 3 takes around 20 s per sampled graph, and the dense subgraph discovery
process (greedy peeling [8]) takes around 17 s.

6 Motif Significance and Null Models

As we have seen, the calculation of statistical significance depends on an under-
lying null model. In this section we study the following questions, to better
understand similarities and differences among frequently used null models.

Q1. How robust is the significance (or lack thereof) of a given motif M across
different null models? Is there a consensus between different null models
on whether a motif is significant or not?

Q2. What are the sets of motifs that are statistically significant for different
null models, and how do these sets compare to each other? How similar
are they with respect to ranking motifs according to their z-scores?

Q3. How many samples do we need to generate from a null model, in order to
obtain a concentrated estimate of the expected motif count? Is this sample
size motif-dependent?

14 T. Chen et al.

In looking at these questions, We consider seven null models summarized in
Table 4 and all 13 motifs of order three in Fig. 2. The answer for Q3 is provided in
the Appendix due to space constraints. We compare the null models to the well
studied C. elegans connectome. The network consists of 219 neurons and 2 416
synapses that are represented as nodes and edges respectively, see also Table 1.
The network we use corresponds to the adulthood of the C. elegans, and was
obtained via high-resolution electron microscopy by [51]. All seven generative
models we use are well-established in the literature, and they span a period of
time from the origins of random graph theory to the most recent advances that
involve deep-learning inspired models. Furthermore, we use graph models with
independent edge probabilities and dependent edge probabilities. Considering
both types of models is important as it was recently shown that random graph
models where each edge is added to the graph independently with some proba-
bility are inherently limited in their ability to generate graphs with high triangle
and other subgraph densities [7]. Furthermore, for any sparse graph, the config-
uration model is unlikely to generate a large clique. In contrast, it is known that
biological networks tend to contain cliques and independent sets [32]. For this
reason, we also use state-of-the-art non-independent models including the pre-
scribed k-core model (KC) [48], and GraphRNN [53]. For a detailed description
of the models, see the Appendix (supplementary material).

Table 4. Null models used in our experiments, along with their abbreviation. The
first five models are edge independent, i.e., each edge {i, j} exists independently from
the rest with some probability pij , while KC and GRNN are not.

Null Models

Directed Erdős-Rényi model (ER) [13]

Edge swap configuration model (ES) [19]

Chung-Lu model (CL) [11]

Partially directed configuration model (PD) [42]

Stochastic Kronecker graphs (KG) [24]

Prescribed k-core model (KC) [48]

GraphRNN (GRNN) [53]

Is there Consensus Among Null Models? Mostly no. We use the de facto app-
roach as described in Sect. 2 to test whether a motif M appears more often than
expected (i.e., M is a statistically significant motif), or less often than expected
(i.e., M is a statistically significant anti-motif) with respect to each of the seven
null models. For each null model, we ensure that we have obtained enough sam-
ples for a concentrated estimate of the expectation of each motif M in Fig. 2,
by requiring that the coefficient of variation CV 2 = σ2

M
f̄M

is at most 10−2; the
weak law of large numbers guarantees concentration, and is a direct application
of Chebyshev’s inequality.

Algorithmic Tools for Understanding the Motif Structure of Networks 15

Fig. 4. (a) Histogram of models report each subgraph of size 3 as motif or anti-motif.
(b)-(h) Motif significance with respect to z-score by different random graph models.
Plots are clipped at a max value of 40. (i) Pairwise Spearman’s correlation coefficient
of motif z-scores of seven models.

For each motif motifi, i = 1, . . . , 13 we compute the percentage of the null
models that assess it as a statistically significant motif (type A), and anti-motif
(type B) respectively. Figure 4(a) summarizes our results. For example, motif
11 is assessed as a type A motif by one model, and similarly as type B by one
model. According to the five other models, it is not statistically significant in
either sense. Figures 4(b)–(g) provide a detailed overview of the assessment of
each model. Perhaps surprisingly, motif 8 is the single motif that is assessed
as statistically significant by all seven models. Previous research on other C.
elegans datasets have identified motif 8 as statistically significant in both the
male and hermaphrodite sexes [12]. One can construct motif 8 from motif 4,
the feedforward loop (FFL), by introducing one reciprocal connection. Analysis
of several species has shown that reciprocal connections are over-represented
in connectomes [39]. Interestingly, we do not find feedforward loops [28] being
statistically significant by several null models, and this can serve as a criterion for
the quality of null models but with caution. The absence of several motor neurons
in the analyzed connectomes could in part explain the reduced significance of
FFLs. There is a general hierarchy of neurons in C. elegans with sensory neurons
often connecting to interneurons and interneurons often connecting to motor

16 T. Chen et al.

neurons. Although prior research finds the significance of FFLs within each layer,
many of the FFLs did contain one neuron of each type [35].

Do Null Models’ Rankings Agree? Figure 4(i) shows Spearman’s correlation coef-
ficient of the z-scores respectively for all pairs of null models. The results are
illustrated as a heatmap with the similarity scale on the right. We see that the
partially directed configuration model is distinctively different from the rest of
the 6 models. We explain this difference due to the fact that C. elegans has
lots of reciprocal directed arcs, i.e., undirected edges, and thus it can model
this aspect better than other models in sparse graphs. We observe that variants
of the configuration model are not necessarily similar, a point raised by [14].
GraphRNN produces qualitatively similar results to the partially directed con-
figuration model, but the z-scores are larger due to the fact that the directed
version does not capture the frequency of reciprocal edges, despite the wide
search of hyperparameters we performed (all details are included in the code).

In a nutshell, caution is required when choosing a null model. Non-
independent models, such as the KC and GRNN models, can possibly model
complex dependencies that create independent sets and cliques, as described
in [7]. GraphRNN seems to be a promising null model for modeling connec-
tomes, although it may not scale well to larger graphs.

7 Conclusion

Understanding the importance of motifs in networks is a key problem in connec-
tomics, with a wide range of applications ranging from social network analysis
to machine learning. In this work we introduce the novel concept of an (f, q)-
spanning motif that addresses the major issue of combinatorial artifacts. We
show that determining the smallest value of q for which there exists a node set
of cardinality (at most) q|V | that induces an f fraction of the motifs is NP-
hard, and we design an efficient heuristic based on dense subgraph discovery
methods. Furthermore, we provide new insights into the importance of the null
model choice by an extensive empirical analysis of classic and state-of-the-art
generative models. Finally, we design the MotifScope framework that uses the
motif structure of a graph to detect anomalies.

Our work opens several interesting directions. What are the best non-
independent edge models as a null model choice? There is an ongoing line of
research, with graph RNNs being a recent example [7,53]. Can we develop new
generative models that leverage motifs for C. Elegans and model its temporal
evolution, see also [47]?

Algorithmic Tools for Understanding the Motif Structure of Networks 17

References

1. Artzy-Randrup, Y., Fleishman, S.J., Ben-Tal, N., Stone, L.: Comment on “network
motifs: simple building blocks of complex networks” and “superfamilies of evolved
and designed networks”. Science 305(5687), 1107–1107 (2004)

2. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex
networks. Science 353(6295), 163–166 (2016)

3. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: an o(n−1/4) approximation for densest k-subgraph. In: Proceed-
ings of STOC 2010, pp. 201–210 (2010)

4. Bloem, P., de Rooij, S.: Large-scale network motif analysis using compression. Data
Min. Knowl. Disc. 34(5), 1421–1453 (2020). https://doi.org/10.1007/s10618-020-
00691-y

5. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs. Eur. J. Comb. 1(4), 311–316 (1980)

6. Boob, D., et al.: Flowless: extracting densest subgraphs without flow computations.
In: Proceedings of TheWebConf 2020, pp. 573–583 (2020)

7. Chanpuriya, S., Musco, C., Sotiropoulos, K., Tsourakakis, C.: On the power of
edge independent graph models. Adv. Neural Inf. Process. Syst. 34, 24418–24429
(2021)

8. Charikar, M.: Greedy approximation algorithms for finding dense components in
a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp.
84–95. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X 10

9. Chlamt’ač, E., Dinitz, M., Konrad, C., Kortsarz, G., Rabanca, G.: The densest
k-subhypergraph problem. arXiv preprint arXiv:1605.04284 (2016)

10. Chung, F., Chung, F.R., Graham, F.C., Lu, L., Chung, K.F., et al.: Complex graphs
and networks, no. 107, American Mathematical Society (2006)

11. Chung, F., Lu, L.: The average distances in random graphs with given expected
degrees. PNAS 99(25), 15879–15882 (2002)

12. Cook, S.J., et al.: Whole-animal connectomes of both caenorhabditis elegans sexes.
Nature 571(7763), 63–71 (2019)

13. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci 5(1), 17–60 (1960)

14. Fosdick, B.K., Larremore, D.B., Nishimura, J., Ugander, J.: Configuring random
graph models with fixed degree sequences. Siam Rev. 60(2), 315–355 (2018)

15. Gionis, A., Tsourakakis, C.E.: Dense subgraph discovery: KDD 2015 tutorial. In:
Proceedings of KDD 2015, pp. 2313–2314 (2015)

16. Goldberg, A.V.: Finding a maximum density subgraph. University of California
Berkeley, CA (1984)

17. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration
and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS,
vol. 4453, pp. 92–106. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71681-5 7

18. Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos, C.: Fraudar: bound-
ing graph fraud in the face of camouflage. In: Proceedings of KDD 2016, pp. 895–
904 (2016)

19. Kannan, R., Tetali, P., Vempala, S.: Simple markov-chain algorithms for generating
bipartite graphs and tournaments. Random Struct. Algor. 14(4), 293–308 (1999)

20. King, O.D.: Comment on “subgraphs in random networks”. Phys. Rev. E 70(5),
058101 (2004)

https://doi.org/10.1007/s10618-020-00691-y
https://doi.org/10.1007/s10618-020-00691-y
https://doi.org/10.1007/3-540-44436-X_10
http://arxiv.org/abs/1605.04284
https://doi.org/10.1007/978-3-540-71681-5_7
https://doi.org/10.1007/978-3-540-71681-5_7

18 T. Chen et al.

21. Kumar, S., Hooi, B., Makhija, D., Kumar, M., Faloutsos, C., Subrahmanian, V.:
Rev2: fraudulent user prediction in rating platforms. In: Proceedings of WSDM
2018, pp. 333–341. ACM (2018)

22. Kumar, S., Spezzano, F., Subrahmanian, V., Faloutsos, C.: Edge weight prediction
in weighted signed networks. In: ICDM, pp. 221–230. IEEE (2016)

23. Lee, J.B., Rossi, R.A., Kong, X., Kim, S., Koh, E., Rao, A.: Graph convolutional
networks with motif-based attention. In: Proceedings of CIKM 2019, pp. 499–508
(2019)

24. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-
necker graphs: an approach to modeling networks. J. Mach. Learn. Res (JMLR)
11, 985–1042 (2010)

25. Lin, B.: The parameterized complexity of the k-biclique problem. J. ACM (JACM)
65(5), 1–23 (2018)

26. Liu, S., Hooi, B., Faloutsos, C.: Holoscope: topology-and-spike aware fraud detec-
tion. In: Proceedings of CIKM 2017, pp. 1539–1548 (2017)

27. Mangan, S., Alon, U.: Structure and function of the feed-forward loop network
motif. PNAS 100(21), 11980–11985 (2003)

28. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: simple building blocks of complex networks. Science 298(5594), 824–827
(2002). https://doi.org/10.1126/science.298.5594.824

29. Milo, R., et al.: Superfamilies of evolved and designed networks. Science 303(5663),
1538–1542 (2004). https://doi.org/10.1126/science.1089167

30. Mitzenmacher, M., Pachocki, J., Peng, R., Tsourakakis, C., Xu, S.C.: Scalable large
near-clique detection in large-scale networks via sampling. In: Proceedings of KDD
2015, pp. 815–824. ACM (2015)

31. Noble, C.C., Cook, D.J.: Graph-based anomaly detection. In: Proceedings of KDD
2003, pp. 631–636 (2003)

32. Pachter, L.: Why i read the network nonsense papers. https://liorpachter.
wordpress.com/2014/02/12/why-i-read-the-network-nonsense-papers/

33. Pandit, S., Chau, D.H., Wang, S., Faloutsos, C.: Netprobe: a fast and scalable
system for fraud detection in online auction networks. In: WWW (2007)

34. Prakash, B.A., Sridharan, A., Seshadri, M., Machiraju, S., Faloutsos, C.: Eigen-
Spokes: surprising patterns and scalable community chipping in large graphs. In:
Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI),
vol. 6119, pp. 435–448. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13672-6 42

35. Reigl, M., Alon, U., Chklovskii, D.B.: Search for computational modules in the c.
elegans brain. BMC Biol. 2(1), 1–12 (2004)

36. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAI (2015). https://networkrepository.com

37. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding
(2019)

38. Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: birds of a feather,
from statistical descriptors to parametric models. In: Proceedings of CIKM 2020,
pp. 1325–1334 (2020)

39. Scheffer, L.K., et al.: A connectome analysis of the adult drosophila central brain.
Elife 9, e57443 (2020)

40. Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional
regulation network of escherichia coli. Nat. Genet. 31, 64–8 (2002)

41. Shin, K., Eliassi-Rad, T., Faloutsos, C.: Corescope: graph mining using k-core
analysis: patterns, anomalies and algorithms. In: ICDM 2016, pp. 469–478 (2016)

https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.1089167
https://liorpachter.wordpress.com/2014/02/12/why-i-read-the-network-nonsense-papers/
https://liorpachter.wordpress.com/2014/02/12/why-i-read-the-network-nonsense-papers/
https://doi.org/10.1007/978-3-642-13672-6_42
https://doi.org/10.1007/978-3-642-13672-6_42
https://networkrepository.com

Algorithmic Tools for Understanding the Motif Structure of Networks 19

42. Spricer, K., Britton, T.: The configuration model for partially directed graphs. J.
Stat. Phys. 161, 965–985 (2015)

43. Starnini, M., et al.: Smurf-based anti-money laundering in time-evolving trans-
action networks. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds.)
ECML PKDD 2021. LNCS (LNAI), vol. 12978, pp. 171–186. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86514-6 11

44. Tsourakakis, C.: The k-clique densest subgraph problem. In: Proceedings of WWW
2015, pp. 1122–1132 (2015)

45. Tsourakakis, C.E., Chen, T., Kakimura, N., Pachocki, J.: Novel dense subgraph
discovery primitives: risk aversion and exclusion queries. In: Brefeld, U., Fromont,
E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019.
LNCS (LNAI), vol. 11906, pp. 378–394. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-46150-8 23

46. Tsourakakis, C.E., Pachocki, J., Mitzenmacher, M.: Scalable motif-aware graph
clustering. In: Proceedings of WWW 2017, pp. 1451–1460 (2017)

47. Ugander, J., Backstrom, L., Kleinberg, J.: Subgraph frequencies: mapping the
empirical and extremal geography of large graph collections. In: Proceedings of
WWW 2013, pp. 1307–1318 (2013)

48. Van Koevering, K., Benson, A., Kleinberg, J.: Random graphs with prescribed k-
core sequences: a new null model for network analysis. In: Proceedings of TheWe-
bConf 2021, pp. 367–378 (2021)

49. Wasserman, S., Faust, K., et al.: Social network analysis: methods and applications
(1994)

50. Wernicke, S., Rasche, F.: Fanmod: a tool for fast network motif detection. Bioin-
formatics 22(9), 1152–1153 (2006)

51. Witvliet, D.E.A.: Connectomes across development reveal principles of brain mat-
uration. Nature 596(7871), 257–261 (2021)

52. Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-order graph clus-
tering. In: Proceedings of KDD 2017, pp. 555–564 (2017)

53. You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J.: Graphrnn: generating
realistic graphs with deep auto-regressive models. In: ICML (2018)

54. Yu, H., et al.: High-quality binary protein interaction map of the yeast interactome
network. Science (New York, N.Y.) 322, 104–110 (2008)

55. Zhang, X., Shao, S., Stanley, H., Havlin, S.: Dynamic motifs in socio-economic
networks. EPL (Europhys. Lett.) 108, 58001 (2014)

https://doi.org/10.1007/978-3-030-86514-6_11
https://doi.org/10.1007/978-3-030-46150-8_23
https://doi.org/10.1007/978-3-030-46150-8_23

Anonymity can Help Minority: A Novel
Synthetic Data Over-Sampling Strategy

on Multi-label Graphs

Yijun Duan1(B), Xin Liu1, Adam Jatowt2, Hai-tao Yu3, Steven Lynden1,
Kyoung-Sook Kim1, and Akiyoshi Matono1

1 AIRC, AIST, Tosu, Japan
{yijun.duan,xin.liu,steven.lynden,ks.kim,a.matono}@aist.go.jp

2 Department of Computer Science, University of Innsbruck, Innsbruck, Austria
jatowt@acm.org

3 Faculty of Library, Information and Media Science, University of Tsukuba,
University of Tsukuba, Japan
yuhaitao@slis.tsukuba.ac.jp

Abstract. In many real-world networks (e.g., social networks), nodes
are associated with multiple labels and node classes are imbalanced, that
is, some classes have significantly fewer samples than others. However,
the research problem of imbalanced multi-label graph node classification
remains unexplored. This non-trivial task challenges existing graph neu-
ral networks (GNNs) because the majority class could dominate the loss
functions of GNNs and result in overfitting to those majority class fea-
tures and label correlations. On non-graph data, minority over-sampling
methods (such as SMOTE and its variants) have been demonstrated to
be effective for the imbalanced data classification problem. This study
proposes and validates a new hypothesis with unlabeled data oversam-
pling, which is meaningless for imbalanced non-graph data; however, fea-
ture propagation and topological interplay mechanisms between graph
nodes can facilitate representation learning of imbalanced graphs. Fur-
thermore, we determine empirically that ensemble data synthesis through
the creation of virtual minority samples in the central region of a minor-
ity, and the generation of virtual unlabeled samples in the boundary
region between a minority and majority is the best practice for the imbal-
anced multi-label graph node classification task. Our proposed novel data
over-sampling framework is evaluated using multiple real-word network
datasets, and it outperforms diverse, strong benchmark models by a large
margin.

Keywords: Imbalanced learning · Graph representation learning ·
Data over-sampling · Generative adversarial network

1 Introduction

Graphs are becoming ubiquitous across a large spectrum of real-world appli-
cations in the forms of social networks, citation networks, telecommunication
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 20–36, 2023.
https://doi.org/10.1007/978-3-031-26390-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_2

Anonymity can Help Minority 21

networks, biological networks, etc. [32]. For a considerable number of real-world
graph node classification tasks, the training data follows a long-tail distribution,
and the node classes are imbalanced. In other words, a few majority classes have
a significant fraction of samples, while most classes only contain a handful of
instances. Taking the NCI chemical compound graph as an example, only about
5% of molecules are labeled as active in the anticancer bioassay test [25]. On the
other hand, graph nodes are associated with multiple labels in many real-world
networked data instead of a single one. Many social media sites, such as Flickr
and YouTube, allow users to join diverse groups representing their various inter-
ests. A person can join several interest groups on Flickr, such as Landscape and
Travel, and different video genres on YouTube, such as Cooking and Wrestling.

To date, a large body of work has been focused on the representation learn-
ing of graphs with balanced node classes and simplex labels [8,11,23,29]. How-
ever, these models do not perform well on the widely-existing imbalanced and
multi-label graphs because of the following reasons. (1) Problem caused by the
imbalanced setting : The imbalanced data makes the classifier overfit the major-
ity class, and the features of the minority class cannot be sufficiently learned
[9]. Furthermore, the above problem is aggravated by the presence of the topo-
logical interplay effect [25] between graph nodes, making the feature propaga-
tion dominated by the majority classes. (2) Problem caused by the multi-label
setting : Multi-label graph architectures typically encode significantly more com-
plex interactions between nodes with shared labels [25], which is challenging to
capture. Therefore, it is essential to develop a specific graph learning method for
class imbalanced multi-label graph data. However, research in this direction is
still in its infancy. Thus, in this study, we propose imbalanced multi-label graph
representation learning to address this challenge while also contributing to graph
learning theory.

Many past studies [2,34,35] have demonstrated that for imbalanced data,
minority over-sampling is an effective measure to improve classification accu-
racy. This strategy has recently been confirmed to be still effective for graph
data [33]. Traditional over-sampling techniques mainly consist of two steps: (1)
selecting some minority instances as “seed examples”; (2) generating synthetic
data with features and label similar to the seed examples and adding them
into the training set. For example, the most popular over-sampling technique
SMOTE [2] addresses the problem of minority generation by performing interpo-
lation between randomly-selected minority instances and their nearest neighbors.
However, mainstream over-sampling techniques have the following shortcomings
when applied to graph data: (1) the selection of seed examples prioritizes global
minority nodes while ignoring local minority nodes; (2) each synthetic instance
is always assigned a label based on some specific strategy, which may be incor-
rect. Different from i.i.d. non-graph data, because the relationship between graph
nodes are explicitly expressed by the edge connecting them, the representation
learning of a node can be heavily dependent on its neighboring unlabeled nodes
through the feature propagation mechanism on graphs.

22 Y. Duan et al.

Motivated by the observations above, we propose and validate the follow-
ing assumption. In addition to synthetic minority samples, synthetic unlabeled
samples can also facilitate the debiasing of GNNs on an imbalanced training
set. In particular, for nearby global minority samples which are a local majority,
we can “safely” produce virtual samples of the same class and add them into
the training sets to balance class distribution. Global minority samples, which
are also a local minority, are more likely to be local outliers and thus risky for
selection as seed examples for further over-sampling; for nearby global minor-
ity samples whose neighbors are class-balanced, it is difficult to determine the
labels of virtual samples. Thus, the production of unlabeled virtual nodes should
be encouraged, which can help minorities by “blocking” the over-aggregation
of majority features delivered through edges. This idea is illustrated in Fig. 1.
We argue that the key to over-sampling on an imbalanced multi-label
graph is to flexibly combine the synthesis of both labeled and unla-
beled instances enriched by label correlations.

Fig. 1. A comparison between our method and the current state-of-the-art graph over-
sampling method GraphSMOTE [33]. The latter’s idea is to generate new minority
instances near randomly selected minority nodes and create virtual edges (dotted lines
in the figure) between those synthetic nodes and real nodes. Instead, we synthesize
minority instances in safe areas (i.e., A1), generate unlabeled instances in locally bal-
anced areas (i.e., A2), and do not conduct data over-sampling near minority nodes
which are outliers (i.e., A3). For the simplicity of illustration, only a single-label sce-
nario is shown.

We extend the existing over-sampling algorithms to a novel framework for
the imbalanced multi-label graph node classification task based on the above
considerations. We extend the classic global minority-based seed examples selec-
tion to the local minority perspective (see Sect. 4.1). Distinct from interpolation
that is commonly-used in mainstream over-sampling techniques [18], we use a
generative adversarial network (GAN) [7] to generate new instances. As a repre-
sentative deep generative model, GAN can capture label correlation information

Anonymity can Help Minority 23

by estimating the probability distribution of seed examples [31]. We propose an
ensemble architecture of GAN and cGAN [16] for the flexible generation of both
unlabeled and labeled synthetics (see Sect. 4.2). To make use of the graph topol-
ogy information, we propose to obtain new edges between generated samples
and existing data with an edge predictor (see Sect. 4.3). The augmented graph
is finally sent to a graph convolutional network (GCN) [11] for representation
learning, together with the learned label correlations (see Sect. 4.4). We name
our proposed framework as SORAG, which is abbreviated from Synthetic data
Oversampling StRAtegy on Graph.

In summary, our contribution is three-fold:

– We advance the traditional simplex-label graph learning to an imbalanced
multi-label graph learning setting, which is more general and common in
real-world applications. To the best of our knowledge, this study is the first
to focus on this task.

– We propose a novel and general framework which extends a previous over-
sampling algorithm to adapt to graph data. It flexibly ensembles the synthesis
of labeled and unlabeled nodes to support the minority classes and leverage
label correlations to generate more natural nodes.

– Extensive experiments on multiple real-world datasets demonstrate the high
effectiveness of our approach. Compared with the current state-of-the-art
model GraphSMOTE [33], our method has an improvement of 1.5% in terms
of Micro-F1 and 3.3% in terms of Macro-F1 on average.

2 Related Works

2.1 Graph Neural Networks

Graph representation learning (GRL) has evolved considerably in recent years.
GNN can be broadly regarded as the third (and latest) generation of GRL after
traditional graph embedding and modern graph embedding [15]. GNNs can be
classified into spatial and spectral types based on their graph filter. Spatial-
based graph filters explicitly leverage the graph structure. Representative works
in this field include the GraphSAGE filter [8], GAT-filter [29], the ECC-filter
[26], GGNN-filter [12], Mo-filter [17], and so on. Spectral-based graph filters use
graph spectral theory to design filtering operations in the spectral domain. An
early work [1] deals with the eigendecomposition of the Laplacian matrix and
the matrix multiplication between dense matrices, thus being computationally
expensive. To overcome this problem, the Poly-Filter [3], Cheby-Filter [3], and
GCN-Filter [11] have been successively proposed. In particular, our task is semi-
supervised, which means we need to learn the representation of all nodes from
a small portion of labeled nodes. Some recent works on semi-supervised graph
node classification can be found in [15].

24 Y. Duan et al.

2.2 Imbalanced Learning

Learning from imbalanced data has been a long-standing challenge in machine
learning. With an imbalanced class distribution, existing methods addressing this
issue can be grouped into three categories [9]: (1) pre-processing the training
data, (2) post-processing the output, and (3) direct learning methods. Data
pre-processing aims to make the classification results on the new training set
equivalent to imbalance-aware classification decisions on the original training set,
typically like sampling [5] and weighting [35]. Post-processing the output makes
the classifier biased toward minority classes by adjusting the classifier decision
threshold [4,24]. Direct learning methods embed class distribution information
into the component (e.g., objective function) of the learning algorithm, with
typical methods being cost-sensitive decision tree [14], cost-sensitive SVM [19],
and so on. Studies on multi-class single-label imbalanced GRL have emerged
only recently [25,30,33]. However, different from these works, our proposal is
the first to utilize synthetic unlabeled nodes to weaken the tendency of GNNs to
overfit to majority without introducing contradictory labels. Additionally, our
proposed model is also applicable to multi-label datasets.

3 Problem Formulation

Input. The input is a graph G = {V,A,X,L,B}. V = {v1, v2, ..., vn} denotes
the set of nodes. A ∈ R

n×n is the adjacency matrix. Aij = 1 when there is an
undirected edge between nodes vi and vj ; otherwise Aij = 0. The self-loops in
G have been removed, so Aii = 0, i ∈ {1, 2, ..., n}. X ∈ R

n×k is the feature
matrix, where xi ∈ R

1×k is the feature vector of node vi. L = {c1, c2, ..., cm} is
a set of unique labels. B is a n × m affiliation matrix of labels with Bij = 1 if
vi has label cj ; otherwise Bij = 0. Our task is in a semi-supervised transductive
manner. Only a tiny portion of the nodes is used for training, which we denote
as V train.

Output. Our goal is to learn a graph neural network f that maps the input
graph G into a dense vector representation Z ∈ R

n×d, where zi ∈ R
1×d is the

vector of node vi, and predicts the class labels for the test nodes set V test.

Imbalanced Learning. Let |ci| represent the number of samples associated
with the label ci. The distribution of {|c1|, |c2|, ..., |cm|} is imbalanced. That is,
a few labels contain most samples, and most labels contain only a few sam-
ples. When presented with imbalanced data, existing GNNs tend to bias toward
majority groups, leaving minority instances under-trained. We aim to learn a
neural network classifier f that can work well for both majority and minority
classes.

4 Methodology

An illustration of the proposed framework is shown in Fig. 2. We elaborate on
each component as follows.

Anonymity can Help Minority 25

Fig. 2. Overview of the proposed method.

4.1 Imbalance Measurement

In multi-label learning, a commonly used measure that evaluates the global
imbalance of a particular label is IRLbl. Let |Ci| be the number of instance
whose i-th label value is 1; IRLbl is then defined as follows.

IRLbli =
max {|c1|, |c2|, ..., |cm|}

ci
. (1)

Therefore, the larger the value of IRLbl for a label, the more minority class
it is. For a node vi, its GMD is defined as follows.

GMDi =
IRLblj · [Bij = 1]
∑m

j=1 [Bij = 1]
, (2)

where [Bij = 1] means vi has the j-th label, and
∑m

j=1 [Bij = 1] counts the
number of labels vi has.

The local minority degree (LMD) of a node can be measured by the propor-
tion of opposite class values in its local neighborhood. For vi, let Nk

i denote its
K-hop neighbor nodes. Then, for label cj , the proportion of neighbors having an
opposite class to the class of vi is computed as

Sij =

∑
vm∈Nk

i
[Bij �= Bmj]

|Nk
i | , (3)

where S ∈ R
n×m is a matrix defined to store the local imbalance of all nodes for

each label. Given S, a straightforward way to compute LMD for vi is to average
its Sij for all labels as follows.

LMDi =

∑m
j=1 Sij [Bij = gj]

m
, (4)

where gj ∈ {0, 1} denotes the minority class of j-th label. Namely, if |cj | ≥
0.5 · n, gj = 1; else, gj = 0. Here, n is the total number of vertices. Further, we

26 Y. Duan et al.

group global minority nodes into different types based on LMD, and each type is
identified correctly by the classifier with different difficulties. Following [13,20],
we discretize the range [0,1] of LMDi to define four types of nodes, namely
safe (SF), borderline (BD), rare (RR) and outlier (OT), according to their local
imbalance.

– SF: 0 ≤ LMDi < 0.3. Safe nodes are basically surrounded by nodes contain-
ing similar labels.

– BD: 0.3 ≤ LMDi < 0.7. Borderline nodes are located in the decision bound-
ary between different classes.

– RR: 0.7 ≤ LMDi < 1.0. Rare nodes are located in the region overwhelmed
by different nodes and distant from the decision boundary.

– OT: LMDi = 1.0. Outliers are totally connected to different nodes.

Furthermore, for vi, we define two metrics: labeled seed probability (LSP) and
unlabeled seed probability (USP) to describe the probability of being selected
as a seed example to generate labeled synthetic nodes and unlabeled synthetic
nodes, respectively. The LSP and USP are calculated as follows.

LSPi = GMDi · LMDi, vi ∈ SF (5)

USPi = GMDi · LMDi, vi ∈ BD (6)

We compute the LSP and USP scores for all nodes and sort them in descend-
ing order. The top-ranked nodes (controlled by the hyper-parameter seed exam-
ple rate ρ) will be selected as seed examples. A min-max normalization processes
all the GMD and LMD scores to improve the computation stability.

4.2 Node Generator

We denote the joint distribution of node feature x and label y in SF region
as PSF (x, y), the marginal distribution of y as PSF (y), and the marginal dis-
tribution of x in BD region as PBD(x). Generator Gl is expected to gen-
erate labeled instances in the SF region, while generator Gu should output
unlabeled synthetics in the BD region. Let the data distribution produced by
Gl and Gu be denoted as Pl(x, y) and Pu(x), respectively; then, we expect
PBD(x) ≈ Pu(x) and PSF (x, y) ≈ Pl(x, y). Furthermore, a more flexible goal is to
have PBD(x) ≈ α·Pu(x)+(1−α)·Pl(x), PSF (x, y) ≈ β ·Pl(x, y)+(1−β)·Pu(x, y),
α ≈ 1, β ≈ 1. By adjusting the values of α and β, we can control Gl and Gu to
produce various data distributions to fit the original data. Here, Pu(x, y) is the
joint distribution of Pu(x) and PSF (y), and Pl(x) is the marginal distribution
of Pl(x, y).

To achieve the above goal, we propose a node generator, which is essentially
an ensemble of a GAN [7] and a conditional GAN (cGAN) [16]. The GAN is

Anonymity can Help Minority 27

responsible for generating unlabeled synthetic nodes, whose generator and dis-
criminator are respectively denoted as Gu and Du. The cGAN is used for gen-
erating labeled synthetic instances, where its generator and discriminator are
denoted as Gl and Dl, respectively. Our loss function for training the GAN is

min
Gu

max
Du

LGAN = Ex∼PBD(x)logDu(x) + α · Ex∼Pu(x)log(1 − Du(x)) (7)

For cGAN, our objective is given as

min
Gl

max
Dl

LcGAN = E(x,y)∼PSF (x,y)logDl(x, y)+β ·E(x,y)∼Pl(x,y)log(1−Dl(x, y))

(8)
To achieve flexible control over Gl and Gu, we design the following loss func-

tion based on the interaction of GAN and cGAN

min
Gu,Gl

max
Du,Dl

LGAN−cGAN = (1 − α) · Ex∼Pl(x)log(1 − Du(x))

+ (1 − β) · E(x,y)∼Pu(x,y)log(1 − Dl(x, y))
(9)

Putting all these together, our final loss for node generation Lnode is

Lnode = min
Gu,Gl

max
Du,Dl

LGAN + LcGAN + LGAN−cGAN (10)

For our proposed generator, the following theoretical analysis is performed.

Proposition 1. For any fixed Gu and Gl, the optimal discriminator Du and
Dl of the game defined by Lnode is

D∗
u(x) =

PBD(x)
PBD(x) + Pα(x)

,D∗
l (x, y) =

PSF (x, y)
PSF (x, y) + Pβ(x, y)

(11)

where Pα(x) = α · Pu(x) + (1 − α) · Pl(x), and Pβ(x, y) = β · Pl(x, y) + (1 − β) ·
Pu(x, y).

Proof. We have

Lnode =

∫
x

PBD(x)logDu(x)dx +

∫
x,y

PSF (x, y)logDl(x, y)dxdy

+ α ·
∫

x

Pu(x)log(1 − Du(x))dx + β ·
∫

x,y

Pl(x, y)log(1 − Dl(x, y))dxdy

+ (1 − α) ·
∫

x

Pl(x)log(1 − Du(x))dx + (1 − β) ·
∫

x,y

Pu(x, y)log(1 − Dl(x, y))dxdy

=

∫
x

PBD(x)logDu(x) + Pα(x) · log(1 − Du(x))dx

+

∫
x,y

PSF (x, y)logDl(x, y) + Pβ(x, y) · log(1 − Dl(x, y))dxdy

(12)

28 Y. Duan et al.

For any (a, b) ∈ R
2\{0, 0}, the function f(y) = alogy + blog(1 − y) achieves

its maximum in [0, 1] at a
a+b . This concludes the proof.

Proposition 2. The equilibrium of Lnode is achieved if and only if PBD(x) =
Pα(x) and PSF (x, y) = Pβ(x, y) with D∗

u(x) = D∗
l (x, y) = 1

2 , and the optimal
value of Lnode is –4log2.

Proof. When Du(x) = D∗
u(x),Dl(x, y) = D∗

l (x, y), we have

Lnode =

∫
x
PBD(x)log

PBD(x)

PBD(x) + Pα(x)
dx+

∫
x,y

PSF (x, y)log
PSF (x, y)

PSF (x, y) + Pβ(x, y)
dxdy

+

∫
x
Pα(x)log

Pα(x)

PBD(x) + Pα(x)
dx+

∫
x,y

Pβ(x, y)log
Pβ(x, y)

PSF (x, y) + Pβ(x, y)
dxdy

= −4log2 + 2 · JSD(PBD(x)||Pα(x)) + 2 · JSD(PSF (x, y)||Pβ(x, y))

≥ −4log2

(13)

where the optimal value is achieved when the two Jensen-Shannon divergences
are equal to 0, namely, PBD(x) = Pα(x), and PSF (x, y) = Pβ(x, y). When
α = β = 1, we have PBD(x) = Pu(x), PSF (x, y) = Pl(x, y).

In the implementation, both Gu and Gl are designed as a 3-layer feed-forward
neural network. In contrast, Du and Dl are designed with a relatively weaker
structure: a 1-layer feed-forward neural network for facilitating the training.

4.3 Edge Generator

The edge generator described in this section is responsible for estimating the rela-
tion between virtual nodes and real nodes, which facilitates feature propagation,
feature extraction, and node classification. Such edge generators will be trained
on real nodes and existing edges. Following a previous work [33], the inter-node
relation is embodied in the weighted inner product of node features. Specifically,
for two nodes vi and vj , let Eij denote the probability of the existence of an
edge between them, which is computed as

Eij = σ(xi · W edge · xT
j) (14)

where xi and xj are the feature vectors of vi and vj , respectively. W edge ∈ R
k×k

is the weight parameter matrix to be learned, and σ = Sigmoid(). Then, the
extended adjacency matrix A′ is defined as follows

A′
ij =

{
Aij , if vi and vj are real nodes
Eij , if vi or vj is synthetic node (15)

Compared to A, A′ contains new information about virtual nodes and edges,
which will be sent to the node classifier in Sect. 4.4. As the edge generator
is expected to be partially trained based on the final node classifier (see Sect.
4.5), predicted edges should be set as continuous so that the gradient can be

Anonymity can Help Minority 29

calculated and propagated from the node classifier. Thus, Eij is not discretized
to some value in {0,1}. The edge generator should be capable of predicting real
edges accurately to generate realistic virtual nodes. Then, the pre-trained loss
function for training the edge generator is

Ledge = ‖E − A‖2 (16)

where E refers to predicted edges between real nodes.

4.4 Node Classifier

We now obtain an augmented balanced graph G′ = {V ′, A′,X ′, B′}, where V ′

consists of both real nodes and synthetic labeled and unlabeled nodes; further,
A′, X ′, and B′ denote the edge, feature, and label information of the enlarged
vertex set, respectively. A classic two-layer GCN structure [11] is adopted for
node classification, given its high accuracy and efficiency. Its first and second
layers are denoted as L1 and L2, respectively, and their corresponding outputs
{O1, O2} are

O1 = ReLU(D̃− 1
2 Ã′D̃− 1

2 X ′W 1) (17)

O2 = σ(FD̃− 1
2 Ã′D̃− 1

2 O1W 2) (18)

where Ã′ = A′ + I, I is an identity matrix of the same size as A′. D̃ is
a diagonal matrix and D̃ii =

∑
j Ã′

ij . D̃− 1
2 Ã′D̃− 1

2 is the normalized adja-
cency matrix. Further, W 1 and W 2 are the learnable parameters in the first
and second layers, respectively. ReLU and σ are the respective activation
functions of the first and the second layer, where ReLU(Z)i = max(0, Zi),
σ(Z)i = Sigmoid(Z)i = 1

1+exp(−Zi)
. O2 is the posterior probability of the class

to which the node belongs. F is the label correlation matrix that is computed in
the same way as in [25], which provides helpful extra-label correlation and inter-
action information. Eventually, given the training labels Btrain, we minimize
the following cross-entropy error to learn the classifier, where p is the number of
training samples, m is the size of the label set, and nc stands for node classifier.

Lnc = −
p∑

i=1

m∑

j=1

Btrain
ij lnO2

ij (19)

4.5 Optimization Objective

Based on the above content, the final objective function of our framework is
given as

min
Θ,Φ,Ψ

Lnc + λ · Lnode + μ · Ledge (20)

30 Y. Duan et al.

where Θ, Φ, and Ψ are the sets of parameters for the synthetic node generator
(Sect. 4.2), edge generator (Sect. 4.3) and node classifier (Sect. 4.4), respectively.
λ and μ are weight parameters. The best training strategy in our experiments is
to pre-train the node generator and the edge generator first, and then minimize
Eq. (20) to train the node classifier and fine-tune the node generator and edge
generator at the same time. Our entire framework is easy to implement, general,
and flexible. Different structural choices can be adopted for each component,
and different regularization terms can be enforced to provide prior knowledge.

4.6 Training Algorithm

The 1 algorithm illustrates the proposed framework. SORAG is trained through
the following components: (1) the selection of seed examples based on node LSP
and USP scores; (2) the pre-training of the node generator (i.e., the ensemble of
GAN and cGAN) for synthetic data generation; (3) the pre-training of the edge
generator to produce new relation information; and finally, (4) the training of
the node classifier on top of the over-sampled graph and the fine-tuning of node
generator and edge generator.

5 Experimental Settings

5.1 Datasets

We use three multi-label networks: BlogCatalog3, Flickr, and YouTube as
benchmark datasets. In Table 1, we list the statistical information of all datasets
used, including the number of nodes, the number of edges, the number of node
classes, and the tuned optimal value of key parameters of SORAGF : {learning
rate, weight decay, dropout rate, k (Sect. 4.1), ρ (Sect. 4.1), α (Sect. 4.2), β (Sect.
4.2), λ (Sect. 4.5), μ (Sect. 4.5)}. For each dataset, we assume that a majority
class is one with more samples than the average class size, while a minority class
is one with less samples. Below is a brief description of each dataset used.

– BlogCatalog3 [27] is a network of social relationships provided by blogger
authors. The labels represent the topic categories provided by the authors,
such as Education, Food, and Health. This network contains 10,312 nodes,
333,983 edges, and 39 labels.

– Flickr [27] is a network of contacts between users of the photo-sharing web-
site. The labels represent the interest groups of the users, such as black and
white photos. This network contains 80,513 nodes, 5,899,882 edges, and 195
labels.

– YouTube [28] is a social network between users of the popular video sharing
website. The labels represent groups of viewers that enjoy common video
genres such as anime and wrestling. This network contains 1,138,499 nodes,
2,990,443 edges and 47 labels.

Anonymity can Help Minority 31

Algorithm 1 Full Training Algorithm
Inputs: Graph data: G = {V,A,X,L,B}
Outputs: Network parameters, node representations, and predicted node class
1: Initialize the node generator, edge generator, and node classifier
2: Compute the node LSP and USP scores based on Eq. (5) and Eq. (6), respec-

tively
3: Select the fraction of nodes with the highest LSP and USP scores as seed

examples for Dl and Du, respectively
4: while Not Converged do
 Pre-train the node generator
5: Update Dl by ascending along its gradient based on Lnode (Eq. (10))
6: Update Gl by descending along its gradient based on Lnode

7: Update Du by ascending along its gradient based on Lnode

8: Update Gu by descending along its gradient based on Lnode

9: end while
10: while Not Converged do
 Pre-train the edge generator
11: Update the edge generator by descending along its gradient based on

Ledge (Eq. (16))
12: end while
13: Construct label-occurrence network and extract label correlations [25]
14: while Not Converged do
 Train the node classifier and pre-train the other

components
15: Generate new unlabeled nodes using Gu

16: Generate new labeled nodes using Gl

17: Generate the new adjacency matrix A′ using the edge generator
18: Update the full model based on Lnc + λ · Lnode + μ · Ledge (Eq. (20))
19: end while
20: Predict the test set labels with the trained model

For all datasets, we attribute each node with a 64-dim embedding vector
obtained by performing dimensionality reduction on the adjacency matrix using
PCA [6], similar to [25,33]. All of the above datasets are available at http://
zhang18f.myweb.cs.uwindsor.ca/datasets/.

5.2 Analyzed Methods and Metrics

To validate the performance of our approach, we compare it against a num-
ber of state-of-the-art and representative methods for multi-label graph learn-
ing and imbalanced graph learning, which include GCN [11], ML-GCN [25],
SMOTE [2], GraphSMOTE [33], and RECT [30]. Additionally, three vari-
ants of our proposed method are implemented, which are SORAGF (the full
model), SORAGL (only labeled nodes are generated), and SORAGU (only
unlabeled nodes are generated).

It is necessary to mention that all the baselines above except ML-GCN
(which is intrinsically designed as a multi-label classifier) are manually set to

http://zhang18f.myweb.cs.uwindsor.ca/datasets/
http://zhang18f.myweb.cs.uwindsor.ca/datasets/

32 Y. Duan et al.

Table 1. Dataset statistics.

Dataset BlogCatalog3 Flickr YouTube

#Nodes 10,312 333,983 39

#Edges 80,513 5,899,882 195

#Classes 1,138,499 2,990,443 47

Learning rate 0.05 0.01 0.1

Weight decay 5e–4 1e–4 1e–3

Dropout rate 0.5 0.5 0.9

k 2 2 2

ρ 0.5 0.5 0.5

α 0.9 0.5 0.8

β 0.8 0.9 0.8

λ 0.1 1 1

μ 1 1 1

conduct the multi-label node classification by modifying the last layer of their
network structure. The implementation of the baseline approaches relies on pub-
licly released code from relevant sources1234. We adopt Micro-F1 and Macro-F1
to evaluate the model performance, which are commonly used in imbalanced
data classification.

5.3 Training Configurations

Following the semi-supervised learning setting, we randomly sample a portion of
the labeled nodes (i.e., sampling ratio) of each dataset and use them for evalua-
tion. Then, we randomly split the sampled nodes into 60%/20%/20% for train-
ing, validation, and testing, respectively. Similar to [22], the sampling ratios for
the BlogCatalog3 network, the Flickr network, and the YouTube network
are set as 10%, 1%, and 1%, respectively. To make the class size balanced, we
experiment with different over-sampling rates, and finally they are set as those
in Table 2. All the analyzed models are trained using Adam optimizer [10] in
PyTorch (2020.2.1, community edition) [21]. Each result is presented as a mean
based on 10 replicated experiments. All models are trained until they converge,
with a typical number of training epochs as 200.

1 SMOTE: https://github.com/analyticalmindsltd/smote variants.
2 GraphSmote: https://github.com/TianxiangZhao/GraphSmote.
3 RECT: https://github.com/zhengwang100/RECT.
4 GCN: https://github.com/tkipf/pygcn.

https://github.com/analyticalmindsltd/smote_variants
https://github.com/TianxiangZhao/GraphSmote
https://github.com/zhengwang100/RECT
https://github.com/tkipf/pygcn

Anonymity can Help Minority 33

Table 2. The optimal over-sampling rates for the synthetic unlabeled nodes (denoted
as RateU) and the synthetic labeled nodes (denoted as RateL) on each dataset. N/A
abbreviates for “not applicable”.

BlogCatalog3 Flickr YouTube

RateU RateL RateU RateL RateU RateL

SORAGU 0.9 N/A 0.6 N/A 0.7 N/A

SORAGL N/A 0.1 N/A 0.3 N/A 0.6

SORAGF 0.1 0.9 0.2 0.9 0.2 0.4

6 Experimental Results

6.1 Imbalanced Multi-label Classification Performance

Table 3 shows the performance of all methods in terms of Micro-F1 and Macro-
F1. The results are presented as a mean based on 10 repeated experiments. Based
on the results, we reach the following conclusions.

Table 3. Imbalanced multi-label classification comparison. The 1st and 2nd best results
are boldfaced and underscored, respectively.

Metrics Micro-F1 (%) Macro-F1 (%)

Methods\Datasets BlogCatalog3 Flickr YouTube BlogCatalog3 Flickr YouTube

GCN 37.36 34.03 36.19 30.27 21.17 26.53

ML-GCN 37.51 38.91 37.64 30.39 21.56 27.52

SMOTE 40.24 39.30 39.01 30.65 23.08 28.53

GraphSMOTE 42.82 40.01 43.70 35.58 24.25 33.81

RECT 41.72 41.23 42.66 38.66 24.47 33.94

SORAGL 44.58 41.61 41.98 38.45 26.48 35.01

SORAGU 43.21 37.92 40.83 37.28 26.15 32.53

SORAGF 44.89 43.13 42.86 40.01 26.85 36.57

– When compared with the GCN and ML-GCN methods, which do not consider
class distribution, the three variants of SORAG show significant improve-
ments. For example, compared with ML-GCN, the improvement brought by
SORAGF is 7.4%, 4.2%, and 5.2% in terms of Micro-F1 and 9.6%, 5.3%,
and 9.1% in terms of Macro-F1, respectively. This demonstrates that our
proposed data over-sampling strategy effectively enhances the classification
performance of GNNs on imbalanced multi-label graph data.

– SORAG provides much more benefits than when applying the previous
imbalanced graph node classifier (SMOTE, GraphSMOTE, RECT). On aver-
age, it outperforms earlier methods by 3.3%, 3.0%, and 1.1% in terms of

34 Y. Duan et al.

Micro-F1 and 2.5%, 2.9%, and 4.5% in terms of Macro-F1, respectively. This
result validates the advantage of SORAG over previous over-sampling tech-
niques in combining the generation of minority and unlabeled samples.

– Both minority over-sampling and unlabeled data over-sampling can improve
classification performance. In particular, the former is more effective. A com-
bination of the two strategies works the best. As a supporting evidence,
SORAGF is the best performer in 5/6 tasks and the second-best performer
in the remaining task.

7 Conclusions

This study investigated a new research problem: imbalanced multilabel graph
node classification. In contrast to existing oversampling algorithms, which only
generate new minority instances to balance the class distribution, we proposed a
novel data generation strategy named SORAG which ensembles the synthesis
of labeled instances in minority class centers and unlabeled instances in minor-
ity class borders. The new supervision information brought about by labeled
synthetics and the blocking of over-propagated majority features by unlabeled
synthetics facilitates balanced learning between different classes, taking advan-
tage of the strong topological interdependence between nodes on a graph.

We conducted extensive comparative studies to evaluate the proposed frame-
work on diverse naturally imbalanced multilabel networks. The experimental
results demonstrated the high effectiveness and robustness of SORAG in han-
dling imbalanced data. In the future, we will work on developing graph neural
network models that are more adapted to the nature of real-world networks (e.g.,
scale-free and small-world features, etc.).

Acknowledgements. This paper is based on results obtained from a project,
JPNP20006, commissioned by the New Energy and Industrial Technology Develop-
ment Organization (NEDO). We would also like to acknowledge partial support from
JSPS Grant-in-Aid for Scientific Research (Grant Number 21K12042).

References

1. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

2. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic
minority over-sampling technique. JAIR 16, 321–357 (2002)

3. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst. 29,
3844–3852 (2016)

4. Domingos, P.: Metacost: a general method for making classifiers cost-sensitive. In:
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 155–164 (1999)

5. Elkan, C.: The foundations of cost-sensitive learning. In: International Joint Con-
ference on Artificial Intelligence, vol. 17, pp. 973–978. Lawrence Erlbaum Asso-
ciates Ltd. (2001)

http://arxiv.org/abs/1312.6203

Anonymity can Help Minority 35

6. F.R.S., K.P.: Liii. on lines and planes of closest fit to systems of points in space.
Lond. Edinburgh, Dublin Phil. Maga. J. Sci. 2(11), 559–572 (1901). https://doi.
org/10.1080/14786440109462720

7. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst.
27 (2014)

8. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems, pp. 1025–1035 (2017)

9. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. 21(9), 1263–1284 (2009)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

12. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493 (2015)

13. Liu, B., Blekas, K., Tsoumakas, G.: Multi-label sampling based on local label
imbalance. Pattern Recogn. 122, 108294 (2022)

14. Lomax, S., Vadera, S.: A survey of cost-sensitive decision tree induction algorithms.
ACM Comput. Surv. (CSUR) 45(2), 1–35 (2013)

15. Ma, Y.T.: Deep Learning on Graphs. Cambridge University Press, Cambridge
(2021)

16. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

17. Monti, F., Bronstein, M.M., Bresson, X.: Geometric matrix completion with recur-
rent multi-graph neural networks. arXiv preprint arXiv:1704.06803 (2017)

18. More, A.: Survey of resampling techniques for improving classification performance
in unbalanced datasets. arXiv preprint arXiv:1608.06048 (2016)

19. Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a
knowledge-based approach: a case study in intensive care monitoring. Technical
Report (1999)

20. Napierala, K., Stefanowski, J.: Types of minority class examples and their influence
on learning classifiers from imbalanced data. J. Intell. Inf. Syst. 46(3), 563–597
(2016)

21. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019)

22. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

23. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

24. Sheng, V.S., Ling, C.X.: Thresholding for making classifiers cost-sensitive. In:
AAAI, vol. 6, pp. 476–481 (2006)

25. Shi, M., Tang, Y., Zhu, X., Liu, J.: Multi-label graph convolutional network rep-
resentation learning. IEEE Trans. Big Data 8, 1169–1181 (2020)

26. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3693–3702 (2017)

27. Tang, L., Liu, H.: Relational learning via latent social dimensions. In: Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 817–826 (2009)

https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1704.06803
http://arxiv.org/abs/1608.06048

36 Y. Duan et al.

28. Tang, L., Liu, H.: Scalable learning of collective behavior based on sparse social
dimensions. In: Proceedings of the 18th ACM Conference on Information and
Knowledge Management, pp. 1107–1116 (2009)

29. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

30. Wang, Z., Ye, X., Wang, C., Cui, J., Yu, P.: Network embedding with completely-
imbalanced labels. IEEE Trans. Knowl. Data Eng. 33, 3634–3647 (2020)

31. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular
data using conditional gan. In: Advances in NIPS (2019)

32. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey.
IEEE Trans. Big Data 6(1), 3–28 (2018)

33. Zhao, T., Zhang, X., Wang, S.: Graphsmote: imbalanced node classification on
graphs with graph neural networks. In: Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, pp. 833–841 (2021)

34. Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods
addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1),
63–77 (2005)

35. Zhou, Z.H., Liu, X.Y.: On multi-class cost-sensitive learning. Comput. Intell. 26(3),
232–257 (2010)

http://arxiv.org/abs/1710.10903

Understanding the Benefits of Forgetting
When Learning on Dynamic Graphs

Julien Tissier and Charlotte Laclau(B)

Univ. Lyon, UJM Saint-Etienne CNRS, Lab Hubert Curien UMR 5516,
42023 Saint-Etienne, France

{julien.tissier,charlotte.laclau}@univ-st-etienne.fr

Abstract. In order to solve graph-related tasks such as node classifica-
tion, recommendation or community detection, most machine learning
algorithms are based on node representations, also called embeddings,
that allow to capture in the best way possible the properties of these
graphs. More recently, learning node embeddings for dynamic graphs
attracted significant interest due to the rich temporal information that
they provide about the appearance of edges and nodes in the graph over
time. In this paper, we aim to understand the effect of taking into account
the static and dynamic nature of graph when learning node representa-
tions and the extent to which the latter influences the success of such
learning process. Our motivation to do this stems from empirical results
presented in several recent papers showing that static methods are some-
times on par or better than methods designed specifically for learning on
dynamic graphs. To assess the importance of temporal information, we
first propose a similarity measure between nodes based on the time dis-
tance of their edges with an explicit control over the decay of forgetting
over time. We then devise a novel approach that combines the proposed
time distance with static properties of the graph when learning tempo-
ral node embeddings. Our results on 3 different tasks (link prediction,
node and edge classification) and 6 real-world datasets show that finding
the right trade-off between static and dynamic information is crucial for
learning good node representations and allows to significantly improve
the results compared to state-of-the-art methods.

Keywords: Node vectors · Embedding · Dynamic graph

1 Introduction

Data in the form of graphs have become ubiquitous for describing complex infor-
mation or structures from a large variety of domains of application such as a
social network where users can follow and communicate with each other; web-
pages linking to other webpages; a group of cities connected by roads or rails;
protein-protein interaction network to study genetic interactions in biology. In
all these examples, a graph is defined by a set of entities (named nodes or ver-
tices) and a set of pairs of related nodes (named edges or links). For instance,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 37–52, 2023.
https://doi.org/10.1007/978-3-031-26390-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_3

38 J. Tissier and C. Laclau

Fig. 1. A dynamic graph representing working relationships.

in the case of a social network, the nodes represent users and the edges can
be any relation between two nodes such as sending messages to one another or
being friends. Many different problems can be solved with graph modelization:
searching for the most relevant webpages given a query, being able to predict
whether two people will start a relationship [33] or finding who should collabo-
rate together [3,8]. A common approach to solve these kinds of problems is to
associate each node of the graph with an embedding, a numeric vector reflecting
the properties of this node such as its neighborhood, and more generally the
structure of the overall graph. Node embeddings are then fed into a downstream
machine learning model which is trained and optimized for a given task, e.g.,
link prediction [5,10] or node classification [4]. Several methods have been pro-
posed to learn node embeddings directly from a graph [9,12,14,27]. Most of these
methods are designed for static graphs, where there is no temporal information
about the relations between nodes. However, most of real-world problems are
represented by dynamic or time-evolving graphs where edges are ordered in time
and nodes can be added or removed. Therefore, not using the temporal infor-
mation during training prevents from capturing the evolution of the interactions
between nodes inside their embeddings and can lead to poor predictions.

To illustrate this, let us consider a group of people and their work relation-
ships where our task is to suggest a new collaboration to John based on Fig. 1.
One may see that a good suggestion here for John’s new collaboration is Mary
as she is the most recent collaboration (2019) of John’s only connection James.
However, a static method that doesn’t take into account the information about
the temporal evolution of this graph (i.e., years over edges) will suggest Amanda,
Richard, Steve and Mary to John as they are connected to his sole connection
James. On the other hand, a dynamic method will take into account the tempo-
ral information over all timestamps even though only timestamp Fig. 1b provides
helpful information in this case, while Fig. 1a is uninformative to this task. While
for one uninformative timestamp this may not lead to a failure of the model,
real-world graphs may have thousands of timestamps and attributing the same
importance to all of them may have a dramatic effect on the overall performance.
Ideally, one would like to have a method that allows to control the forgetting

Understanding the Benefits of Forgetting 39

and its speed when learning node representations in dynamic graphs to take into
account only relevant information contained in them.

This paper addresses the problem of learning node representations in dynamic
graphs where the temporal information is encoded inside their embeddings. We
use the intuition presented above to provide a model with a way to forget the past
timestamps with an explicit control over the speed of this forgetting. The main
contributions are: (1) a novel approach to compute similarities between nodes
based on static or dynamic information, suitable for both continuous and discrete
dynamic graphs; (2) a model that learns nodes embeddings using the computed
similarities and generates vectors that reflect the temporal characteristics of the
graph; (3) an evaluation on 6 real-world datasets and 3 different tasks showing
that a good trade-off between static and dynamic parts of the graph lead to the
best performance in most cases.

2 Related Work

2.1 Node Embeddings in Static Graphs

In a static graph, all nodes and edges exist at the same time and no new edges
appear over time. In this context, the goal of a node embedding method is
to learn a function that takes a network as an input and maps each node to
a low-dimensional vector. The learned vectors should reflect the structure of
the network and the relations between nodes, i.e., similar nodes in the graph
have similar vectors. In [27], authors simulate random walks from one node to
another using the edges and optimize node embeddings such that nodes that
co-occur often in random walks of fixed length should be close in the embedding
space. Node2Vec [9] uses a similar approach to build walks in the graph but it
selects the next node based on a biased sampling. The generated paths are then
fed into a Word2Vec model [21]. In the same vein, [1] propose to extend another
word embedding model, namely GloVe [26], to learn node representations. Other
methods factorize the adjacency matrix to learn a vector representation for each
node with either SGD or SVD [2,23] , or train a model that learns how to
combine the features of a node and its neighborhood [11]. For more details on
this topic, we refer the interested reader to [12].

2.2 Node Embeddings in Dynamic Graphs

In dynamic graphs, edges and nodes can appear (or disappear) over time. They
can be separated into two categories: time-continuous graphs, where each change
in the graph happens at a specific time t, and discrete graphs where a batch of
changes happens during a time interval. The former can be transformed into the
latter by grouping together all the changes that happen during [t, t + T] where
T is the duration of the interval, but not the other way around. A naive way to

40 J. Tissier and C. Laclau

learn node embeddings from a dynamic graph would be to use static methods on
the final state of the graph, but the temporal information would not be captured
in this case.

Several temporal node embedding techniques directly follows Node2Vec
[22,35]. CTDNE generates paths in a time-continuous graph where the order of
visited nodes respects the order of appearance of edges [22]. tNodeEmbed uses
Node2Vec on each interval of a dynamic graph, aligns the node embeddings and
passes them into a LSTM to obtain a unique vector for each node [30]. DynGEM
trains autoencoders to reconstruct the adjacency matrix of each interval but ini-
tializes their weights with the weights of the autoencoder trained on the previous
interval. The embedding of a node is the latent layer of the autoencoder after the
final interval [7]. This method was extended in dyngraph2vec [6] where the adja-
cency matrices of multiple previous intervals are passed into the autoencoder.
Finally, recent approaches such as EvolveGCN [25] or GAEN [29] learn embeddings
at each timestep with Graph Convolution Networks or Attention models, and
combine it with RNN or GRU to capture the graph evolution.

Although these methods operate on dynamic graphs, they do not take into
account the activity history of an edge, i.e., how often an edge appeared in the
past and whether or not an edge has recently been used between two nodes. With
the example in Fig. 1, learning embeddings with those methods would make the
vector of James close to the vectors of Richard, Mary and John, but the vectors
of Mary and John should be closer because their relation with James is more
recent. That is, since new edges appear over time, they should have more weight
during training. The method we propose uses time difference between edges to
select and weight more importantly the most recent edges during training.

Another drawback of these approaches is that they only focus on the tem-
poral aspect of the graph and do not allow one to balance between static and
dynamic structural aspects. As a result, they can be outperformed by purely
static approaches on graphs where the dynamics do not carry as much informa-
tion as the original structure of the graph. To tackle this problem, JODIE was
proposed by [19]. This model focuses on bipartite graphs and learns two embed-
dings (a static and a dynamic one) for each node separately using RNNs. In
this article, we are interested in non-bipartite graphs and we devise an objective
function that allows one to learn node embeddings using both the static and
the temporal information simultaneously, with an explicit control on the weight
given to each part during the training.

3 Learning Node Embeddings Using Time Distance

Below, we present the learning setup considered in this paper and our general
framework that learns node embeddings by taking into account both static and
dynamic information of a graph. This latter is then equipped with a forgetting
mechanism that attributes more relevance to recent events.

Understanding the Benefits of Forgetting 41

3.1 Problem Setup

Given a graph G = (V, E) where V = v1, · · · , vn is the set of vertices (|V| = n)
and E ⊆ V × V is the set of edges, we aim to learn a function that maps vertices
v ∈ V into a d-dimensional vector space, with d � n. This mapping function
outputs a node embedding vector denoted by z ∈ R

d,∀v ∈ V. Z ∈ R
(n×d)

is the matrix storing all node embeddings. In the context of dynamic graphs,
we further assume that each edge eij ∈ E is characterized by both static and
temporal attributes: the static attribute, denoted by aij , corresponds to the
number of edges which occurred between a pair of nodes (vi, vj); the temporal
attribute, denoted by tij = t

(1)
ij , · · · , t

(aij)
ij , is a list containing the timestamps

associated with each link.

3.2 General Framework

Our first goal is to design a general framework for learning node embeddings
from both static and temporal attributes simultaneously. Given two nodes (vi,
vj), we propose to minimize the error between their similarity given by the dot
product of their embeddings and their static simS : V × V → R and temporal
simT : V × V → R similarities in the original graph. As for each edge associated
to a pair of nodes, these nodes can either be seen as the source or as the target
node (i.e., either eij or eji), we learn two vectors for each node and store them
in two matrices, Z and Z̃. When the graph is undirected, both matrices are
equivalent; when the graph is directed, the two embedding vectors allow one
to differentiate edges for which a given node is the source node from edges for
which it is a target node. In the end, we take the average of these embeddings to
obtain one single vector for each node. Putting it all together, we consider the
following optimization objective:

J =
n∑

i,j=1

λ
[
zT
i · z̃j − log(simS(vi, vj)

]2
+ (1 − λ)

[
zT
i · z̃j − log(simT (vi, vj))

]2
,

(1)
where λ is a hyperparameter allowing us to control the balance between the static
and the temporal component in the final node embeddings. Since the log function
is not defined for 0, we discard the zero-values of simS(vi, vj) and simT (vi, vj)
to be used in the objective function. If two nodes have a static or a temporal
similarity of 0, it means there is no edge between them and therefore their vectors
should not be trained to be moved closer. We now proceed to defining the last
two missing ingredients simS(vi, vj) and simT (vi, vj).

3.3 Static and Temporal Similarities Between Nodes

To illustrate our proposal for static and dynamic similarity functions, we use a
running example given in Fig. 2 throughout this section. The latter is given by
a small dynamic graph composed of 7 nodes (n = 7). In this dynamic graph, an

42 J. Tissier and C. Laclau

Fig. 2. Example of a temporal graph. In red, the number of edges between nodes. In
blue, the times at which they appear. (Color figure online)

edge between two nodes can appear multiple times (e.g., two people can send
several emails to the other one). For instance, between A and B, there are 2
edges, that appear at time t = 103 and t = 108 (blue numbers). Red numbers in
Fig. 2 correspond to the number of edges between two related nodes (which does
not depend on the time of appearance of edges). We are now ready to define
simS(vi, vj) and simT (vi, vj).

Static Similarities. Given the abundance of different node embedding tech-
niques for static graphs, one can define simS(vi, vj) in many different ways. In
this work, we propose to define a similarity based on the normalized adjacency
matrix similar to the LINE embedding model [31] where simS(vi, vj) denotes
the probability of going from a node vi to a node vj in a random walk. These
probabilities rely on both first and second-order proximity statistics and are
computed using the static edge attributes. We have, ∀i, j = 1, · · · , n:

simS(vi, vj) =

⎧
⎪⎨

⎪⎩

aij

ai
if eij ∈ E

∑
k

aik

ai
· akj

(ak−aik)
if eij /∈ E ∩ ∃vk : eik, ekj ∈ E

0 otherwise,

(2)

where aij is the number of edges that occur between a pair of nodes vi and
vj ; ai =

∑
j aij . This similarity can be easily computed for either directed or

undirected graphs. One should note that the role of the first term is to capture
first-order proximity between two nodes in the graph (i.e., the existence of an
edge between two nodes) while the second term captures second-order proximity
for pair of nodes separated by a distance of 2 in the graph.

In Fig. 2, we have sCA = 7/13 and sAC = 7/10. One should note that static
similarities are not symmetric. For nodes with a distance of 2, we have sCB =
sCA × sAB = 14/39. When several paths are available to join vi and vj , we sum
the probabilities of all paths (so sCD = 10/39).

Understanding the Benefits of Forgetting 43

We want to stress out that the first part of the objective function is versatile
(see [32]), as one can define the static similarity using other popular methods
such as, for instance, Personalized PageRank [24] or SimRank [13].

Temporal Similarities. As explained above, the temporal similarity should
take into account the information from different timestamps of a dynamic graph
but also allow the model to forget the past that became irrelevant. To this end,
we propose to define simT as a function of the time delta between the most
recent and the other edges of a node and its neighbors. Formally, it is defined
as:

simT (vi, vj) =

{∑
k f(Δ

t
(k)
ij

) if eij ∈ E
0 otherwise,

(3)

where f is a decreasing function, allowing us to give more weight to recent edges
(i.e., when Δ is small) and Δtij = maxj(tij) − tij (i.e., the time difference
between the timestamp tij and the most recent timestamp among all edges
starting from node vi). Choosing f to be a decreasing function indicates that
we assume that as times passes, the strength of the relation between two nodes
becomes weaker. We believe that for social networks, or co-citation networks this
is a reasonable assumption. However for applications such as Protein-Protein
interaction where this assumption might not be ideal, one can easily relax this
condition and choose a function f that suits best their need.

Going back to our example, blue numbers in Fig. 2 are the times at which
edges appear between the nodes. A model learning node embeddings using only
static information would make the vector of C more similar to A than to E
because it has more edges with A (7 > 4). However, edges between C and E
are more recent than between C and A (t = 114, 115, 116 vs. t = 110, 112).
The intuition behind temporal similarities is to bring closer the vectors of nodes
having the most recent interactions. In Fig. 2, we have dCE = f(Δ111)+f(Δ114)+
f(Δ115) + f(Δ116). The most recent edge of C appears at t = 118, so Δ111 =
118 − 111 = 7 and therefore dCE = f(7) + f(4) + f(3) + f(2). One should note
that temporal similarities are also not symmetric. Indeed, for dEC , the most
recent edge of E appears at t = 116, so we would have Δ111 = 116 − 111 = 5.

In the following, we choose f to be a survival function of the form:

f : x → e[−α∗(x/xmax)
2],

where α is a hyperparameter that controls the decay rate of this weight function
and xmax is the maximum value that can be passed to f (i.e., the largest time
distance). This function models the probability for a given relation (i.e. an edge)
to survive past a certain time, here represented by time-steps (see Fig. 3). For
high values of α this probability decreases faster to 0, than for small values
of α. In that case, our model strongly favors the short-term rather than the
long-term dynamic of the graph, a reasonable assumption when dealing with a
graph presenting important structural changes between two time-steps. On the
other hand, as α decreases, our model will take into account all the edges from

44 J. Tissier and C. Laclau

the past, hence capturing long-term dynamics. This particular setting will suit
graphs presenting a smooth evolution over time, with all edges being relevant at
any time. In the asymptotic limit, this function can be “flat” enough to behave
as a dynamic model that takes into account all timestamps of a dynamic graph.

Fig. 3. Survival function f : x → exp[−α∗(x/xmax)2] for different values of α and with
xmax = 16. (b) satisfies the Pareto’s law meaning that 20% most recent edges have a
weight among the highest 80%, i.e., f(0.2 ∗ Δtimax

) = 0.8.

3.4 Complexity Analysis

For simT , we have to compute at most |E| values (corresponding to the non-zero
entries of the adjacency matrix) because only direct edges. For simS we have to
compute on average |V| × κ2 values where κ is the average node degree in the
graph (so each node can reach on average κ2 other nodes with a distance of 2).
Therefore, the complexity of our model is O(|V| × κ2 + |E|) because it iterates
only over the non-zero similarities.

4 Experiments

4.1 Datasets

We evaluate our hypothesis about the importance of combining both static and
dynamic information for learning good node embeddings on 6 real-world datasets
representing dynamic graphs: messages sent between people (Radoslaw1 [28],
ENRON2 [16]), links between webpages (Subreddit3 [17]), network of routers

1 https://networkrepository.com/ia-radoslaw-email.php.
2 https://networkrepository.com/ia-enron-employees.php.
3 https://snap.stanford.edu/data/soc-RedditHyperlinks.html.

https://networkrepository.com/ia-radoslaw-email.php
https://networkrepository.com/ia-enron-employees.php
https://snap.stanford.edu/data/soc-RedditHyperlinks.html

Understanding the Benefits of Forgetting 45

(Autonomous Systems4 [20]), rating of Bitcoin users (BTC-Alpha5 and BTC-
OTC6 [18]). As explained in Subsect. 2.2, dynamic graphs can be continuous or
discrete. We use both types of graphs in our experiments to demonstrate that
our model works regardless of the nature of the dynamic graph. Table 1 reports
statistics about each dataset. For some datasets, we use a smaller version because
some baselines were not able to run on the full version (for Subreddit, we consider
only nodes with at least 10 edges; for Autonomous Systems (AS), we use only
the 100 first steps).

Table 1. Statistics about the datasets used for experiments. (∗) indicates datasets
that have been shrunk. deg(vi) (resp. Ci coef.) is the average degree (resp. clustering
coefficient) of all nodes.

Dataset Nodes Edges Type deg(vi) Ci coef

Radoslaw 167 82,876 Continuous 992.5 0.592

ENRON 150 47,088 Continuous 627.8 0.521

Subreddit (∗) 6,340 223,457 Continuous 70.5 0.364

Auto. Sys. (∗) 3,569 561,139 Discrete 314.5 0.257

BTC-Alpha 3,783 24,186 Continuous 12.8 0.177

BTC-OTC 5,881 35,592 Continuous 12.1 0.178

4.2 Evaluation Tasks

Link predictions. This task consists in predicting if a link between two nodes
exists or not in the graph. We follow the same protocol as in [15]. For each edge
(u, v) in T , the set of all unique test edges, we generate the list Nv (resp. Nu) of
negative edges obtained by replacing v (resp. u) by another node from the graph
such that the negative edge does not exist. Then, the cosine similarity between
the embeddings of u and v is computed, as well as its rank rv (resp. ru) against
the cosine similarities of all edges in Nv (resp. Nu).

The Mean Reciprocal Rank (MRR) is the mean of the inverse of rv and ru

for all edges (u, v) in T :

MRR =
1

2 × |T |
∑

(u,v)∈T

(1
ru

+
1
rv

)
.

In addition to the MRR, we also compute Hits@K metrics (the percentages of
ranks rv or ru which are less than K).

4 https://snap.stanford.edu/data/as-733.html.
5 https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html.
6 https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html.

https://snap.stanford.edu/data/as-733.html
https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

46 J. Tissier and C. Laclau

Node classification. This task only applies to the Subreddit dataset. It consists
in predicting the correct label of nodes in the graph. Plenty of graphs with
labeled nodes exist in the static configuration (i.e. when there is no evolution
in the network over time) but dynamic graphs with node class information are
almost non-existent. To overcome this problem, we generate labels for each node
in the Subreddit dataset. It contains 6,340 nodes. We use an automatic method
to generate the labels for similar nodes with a clustering algorithm and manu-
ally verify that related subreddits are within the same cluster. Each node in this
dataset represents a subreddit, the name of a topic-specific discussion forum (e.g.
chess, Olympics). Using the property of word embeddings to encapsulate seman-
tic information, we generate the word embedding of each subreddit name using
Fasttext library7. Since subreddits such as ”skiing“or”skateboarding“ are words
related to the same semantic field, their respective word embeddings should be
similar thanks to the Fasttext learning scheme. We then use a K-Means cluster-
ing algorithm to group together similar word embeddings, thus grouping related
subreddit. We try different values for K, from 20 to 80. When K is too low, there
are not enough clusters and unrelated subreddits fall into the same category
when they should not. When K is too high, related subreddits are often sepa-
rated into different groups. We find that using 50 clusters is a good trade-off.
Each node is then associated with the ID of the group it belongs to. Table 2
shows some examples of subreddits with the same label.

Table 2. Examples of subreddits with the Autona for the node classification

Label = 3 Label = 17 Label = 32 Label = 41 Label = 43

Altcoin Judo Blizzard Albania Amazon

Bitcoin Olympics Blood borne Finland Ebay

Bitcoin mining Skate boarding Counter strike Italy Netflix

Crypto currency Skiing Halo Poland Silkroad

Dogecoin Swimming Overwatch Spain Spotify

Ethereum Tennis Streetfighter Usa Tumblr

For the node classification task, we train a logistic regression classifier on
the learned node embeddings (the embeddings learned from our dynamic graph
method, not those generated with Fasttext) to predict their corresponding class.
We report the accuracy.

Edge classification. This task only applies to the Bitcoin datasets and consists in
predicting the class of edges. In BTC-Alpha and BTC-OTC, an edge indicates
that one user of the Bitcoin trading platform rated another user on a scale
from -10 to +10. We generate a binary label for each edge: 0 if the rating is
negative, 1 otherwise. We compute an embedding for each edge by averaging
the embeddings of the involved nodes. We train a linear regression classifier on

7 https://fasttext.cc/.

https://fasttext.cc/

Understanding the Benefits of Forgetting 47

the edge embeddings to predict their corresponding binary label. The dataset is
unbalanced, about 90% of edges have a label of 1. We report the F1 score.

4.3 Training Settings

Each graph is split into a train (75%) and a test set (25%) according to times-
tamps. The same train and test sets are used for all models. We train vectors
of 20 dimensions for small datasets (ENRON, Radoslaw) and 100 dimensions
otherwise (same as in [7]). Our hyperparameters are tuned with a grid search to
maximize the MRR on the train set, with α ranging from 2 to 60 with steps of 3,
λ ranging from 0 to 1 with steps of 0.05 and the number of epochs ranging from
20 to 300 by steps of 20. All experiments are done with an Intel Xeon E3-1246
CPU, a NVIDIA Titan X GPU and 32 GB of RAM.

4.4 Baselines

Our model uses both static and temporal information during training. Therefore,
we compare it against methods that learn node embeddings from static graphs
(Node2Vec, GraphSage [11]) and other methods from dynamic graphs (CTDNE,
tNodeEmbed, DynGEM, dyngraph2vec (AERNN version), EvolveGCN). We set a
walk length of 40 for Node2Vec and CTDNE, and a length of 5 for GraphSage. We
generate 10 walks per node for these methods. Other hyperparameters are set as
indicated in their respective papers. For GraphSage, we use one-hot vectors as a
replacement for node feature vectors when they are not present, as advised by
the authors. We do not use DynamicTriad [34] as a baseline because it has been
reported to have lower scores than tNodeEmbed and dyngraph2vec. Baselines
are trained on the same machine as our model.

5 Results and Analysis of the Model

In this section8, our goal is to answer two following questions:

Q1. Does learning from both static and dynamic information lead to better node
embeddings?
To this end, we compare our method with several static and dynamic node
embedding methods on 6 real-world datasets and on 3 different tasks.

Q2. What insights such framework can provide about the graphs on which it is
applied?
To answer this question, we analyze the optimal values of λ and α revealing
the importance of static component for learning node embeddings and the
effect of forgetting when taking into account temporal information.

The proposed method has both a static and a dynamic component. We first
compare its results against dynamic methods as we are working with dynamic
graphs, and then against static methods. Thereafter, we analyze the role of each
component depending on the dataset and we evaluate its complexity.
8 Code to reproduce our results and access datasets can be found here:

https://github.com/laclauc/DynSimilarity.

https://github.com/laclauc/DynSimilarity

48 J. Tissier and C. Laclau

Table 3. MRR and Hits@K metrics on 5 datasets for our method and other baselines
on a link prediction task. Bold and underline results indicate respectively the best and
the second best value for each metric.

Radoslaw ENRON Subreddit AS

MRR Hits@5 Hits@50 MRR Hits@5 Hits@50 MRR Hits@5 Hits@50 MRR Hits@5 Hits@50

Static

Node2Vec .088 15.82% 62.18% .247 52.65% 91.27% .123 21.07% 37.04% .221 44.94% 70.12%

GraphSage .100 17.42% 71.12% .230 48.85% 86.24% .100 15.60% 31.21% .146 27.79% 56.04%

Dynamic

CTDNE .111 19.28% 82.46% .235 48.32% 86.80% .112 18.11% 31.34% .215 42.53% 69.88%

tNodeEmbed .169 33.93% 71.22% .228 47.24% 86.35% .105 16.32% 31.29% .020 2.24% 6.19%

DynGEM .123 16.93% 55.62% .177 34.18% 74.44% .080 9.29% 11.56% .077 8.37% 11.10%

dyngraph2vec .180 36.51% 81.02% .145 27.46% 72.05% .088 9.69% 17.79% .031 3.84% 8.19%

EvolveGCN .097 16.96% 64.43% .124 22.54% 67.01% .053 6.02% 10.40% .017 1.64% 4.48%

Our 0.329 69.33% 96.71% 0.298 62.24% 92.16% 0.132 22.54% 37.58% 0.146 28.47% 50.80%

5.1 Against Dynamic Graph Methods

Table 3 reports the scores of all modelsfor the task of link prediction. The MRR
is the average of the inverse rank of a true edge against false random edges.
Higher scores indicate that a model is able to better differentiate true edges
against negative ones. On 3 out of 5 datasets, our method strongly outperforms
all the other dynamic methods in terms of MRR. The Hits@K metrics in Table 3
indicate the percentage of true edges whose rank is among the first K when
compared to several hundreds negative edges. We observe similar results as for
the MRR. For instance, on Radoslaw, our method is able to retrieve almost 70%
of true edges in the top 5 while other methods can only retrieve 36% at best. This
means that our method ranks the majority of true edges with a much better rank
than the other methods (top 5 vs. top 50), which is useful in a recommendation
task. Note that Radoslaw and ENRON are the two datasets with the highest
clustering coefficient and average degree (Table 1). The temporal information is
crucial in these datasets because a change in the network topology spreads faster
than for other datasets as they both represent email communications between
people of a company, and are well suited to evaluate dynamic methods [5]. Our
method outperforms other dynamic methods on those graphs, demonstrating
that it is well appropriate for graphs where temporal information is important.

Results on the two other tasks are reported in Table 4. For node classification,
the proposed model improves the classification accuracy over the other dynamic
baselines. The results notably show an important improvement over the auto-
encoder and GCN-based approaches, with results almost 4 times better than
EvolveGCN for instance. Finally, for the edge classification task, we outperform
all dynamic baselines on both Bitcoin datasets by an important margin.

Understanding the Benefits of Forgetting 49

Table 4. Results on a node classification task (accuracy of correct predictions among
50 classes) and an edge binary classification task (F1 score).

Node classif Edge classif.

Subreddits BTC-Alpha BTC-OTC

Static methods

Node2Vec 18.24% 0.254 0.290

GraphSage 19.67% 0.293 0.312

Dynamic methods

CTDNE 19.21% 0.192 0.251

tNodeEmbed 22.20% 0.173 0.280

DynGEM 7.03% 0.080 0.321

Dyngraph2vec 8.24% 0.398 0.273

EvolveGCN 6.04% 0.361 0.268

Our 22.86% 0.429 0.360

5.2 Against Static Graph Methods

Table 3 reports the scores of static baselines (Node2Vec and GraphSage). Our
method outperforms GraphSage and Node2Vec on 4 out of 5 graphs in terms of
MRR (e.g. 0.329 vs. 0.100 on Radoslaw), and Hits@5 (e.g. 62.24% vs. 52.65% on
Subreddit). It is on par on AS against GraphSage but looses against Node2Vec.

One should note that AS and Subreddits are the biggest graphs among the
datasets, and most of the edges do not vary over time. Therefore, their behavior
is similar to a static graph, which explains why Node2Vec is only slightly under
or better than our dynamic method for them. Our best results for these datasets
are obtained when the dynamic component of our model driven by 1-λ is almost
zero , validating the assumption that they have a static behavior. However, our
method doing better on the other datasets demonstrates that the dynamic com-
ponent in our model is important to learn embeddings when the dataset evolves
greatly over time, which Node2Vec cannot achieve. Our conclusions on node and
edge classification are similar to the one made against dynamic approaches.

Overall, the obtained results demonstrate that our model is able to produce
node embeddings capturing both the dynamic and the static aspects of an evolv-
ing graph. They are versatile, as we obtain consistently good results for various
tasks, including link prediction, node classification and edge classification. Our
approach is also robust to various graphs topology as we either outperform all
other baselines or rank second at worst on all datasets. This shows the benefit
brought by the two components of our objective function.

5.3 Influence of the Hyperparameters of the Model

We are now ready to address the second question. Our model naturally provide
a way to gain insights regarding the dynamic of the graphs, through its two

50 J. Tissier and C. Laclau

Fig. 4. Evolution of MRR versus static coefficient used in our model.

hyper-parameters λ and α. Our model has both a static and a dynamic com-
ponent, each one with its own coefficient in the objective function (resp. λ and
(1-λ)). The two coefficients are inter-dependent: increasing one decreases the
other. Therefore, they behave as a cursor that one can set to favour the static
or the dynamic part of the method. We notice in our experiments that the value
of λ must be selected depending on the nature of the dataset. Figure 4(b) shows
the evolution of the MRR according to the value of λ on some datasets. We can
see that when λ increases, the MRR drops for most datasets. Indeed, a value
of λ close to 1 means that the dynamic part in our objective function is almost
non-existent, which is detrimental for dynamic graphs. Unsurprisingly, the high-
est decrease is on Radoslaw, two datasets with a strong evolution over time that
therefore require a large dynamic component in the model to capture temporal
information. For Subreddit, the drop is smaller because this dataset does not
vary a lot over time, so the static part is more important in this case. This is
confirmed by Fig. 4(a), which reports the λ and α hyperparameters that gives
the best scores for each dataset. Radoslaw needs a dynamic oriented model ((1-
λ) close to 1) while Subreddit needs a dominant static part (λ = 0.7) to achieve
good results. We also notice that a large value of α makes the temporal simi-
larities more focused on very short-term interactions while a smaller α allows to
consider a longer history of previous events.

5.4 Training Times

Table 5 reports the time required by each method to train on all 6 datasets. Due
to its simplicity (no complex architectures like RNN/LSTM nor convolution
networks), our method only needs 40 min, which makes it the fastest among all
the dynamic methods (e.g. 6h36 for DynGEM, 24h01 for dyngraph2vec).

Understanding the Benefits of Forgetting 51

Table 5. Times required to train all models on the 6 graphs. Minimum time is high-
lighted by boldface.

Node2vec GraphSage tNodeEmbed CTDNE DynGEM dyngraph2vec EvolveGCN Our

Training time 48:53 14:43:27 1:34:08 4:00:56 6:36:10 24:01:18 5:33:11 40:36

6 Conclusion

This paper studies the importance of combining both static and dynamic infor-
mation when learn node embeddings in dynamic graphs. It introduces a novel
temporal similarity measure between nodes based on time distance of edges and
a model that uses it in addition to static similarities to learn embeddings that
reflect the structure of the dynamic graph. This method allows one to empha-
size either the static or the dynamic component of the model to adapt to dif-
ferent kinds of graphs. It obtains better scores than other dynamic methods
on 6 real-world datasets for various tasks thus suggesting that fully dynamic
approaches may be too rigid for efficient learning in dynamic graphs. Further
research directions of this work are many. First, we would like to explore new
types of node similarities to train on different specific graphs such as bipartite
graphs or knowledge-based graphs. tasks. We also plan to investigate how to
integrate temporal node attributes into this framework by leveraging adapted
Graph Neural Networks (GNN) architectures [36].

References

1. Brochier, R., Guille, A., Velcin, J.: Global vectors for node representations. In:
WWW, pp. 2587–2593. ACM (2019)

2. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global struc-
tural information. In: CIKM, pp. 891–900 (2015)

3. Chuan, P.M., Ali, M., Khang, T.D., Dey, N., et al.: Link prediction in co-authorship
networks based on hybrid content similarity metric. Appl. Intell. 48(8), 2470–2486
(2018)

4. Dalmia, A., Gupta, M.: Towards interpretation of node embeddings. In: Companion
Proceedings of the The Web Conference 2018, pp. 945–952 (2018)

5. De Winter, S., Decuypere, T., Mitrović, S., Baesens, B., De Weerdt, J.: Combining
temporal aspects of dynamic networks with node2vec for a more efficient dynamic
link prediction. In: ASONAM, pp. 1234–1241. IEEE (2018)

6. Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: capturing network dynamics
using dynamic graph representation learning. KBS 187, 104816 (2020)

7. Goyal, P., Kamra, N., He, X., Liu, Y.: DynGEM: deep embedding method for
dynamic graphs. arXiv preprint arXiv:1805.11273 (2018)

8. Goyal, P., Sapienza, A., Ferrara, E.: Recommending teammates with deep neural
networks. In: Hypertext and Social Media, pp. 57–61 (2018)

9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: KDD,
pp. 855–864 (2016)

10. Haghani, S., Keyvanpour, M.R.: A systemic analysis of link prediction in social
network. Artif. Intell. Rev. 52(3), 1961–1995 (2019)

http://arxiv.org/abs/1805.11273

52 J. Tissier and C. Laclau

11. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS (2017)

12. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: meth-
ods and applications. IEEE Data Eng. Bull. 40(3), 52–74 (2017)

13. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: Pro-
ceedings KDD, pp. 538–543 (2002)

14. Kazemi, S.M., et al.: Representation learning for dynamic graphs: a survey. JMLR
21(70), 1–73 (2020)

15. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge
graphs. In: NeurIPS (2018)

16. Klimt, B., Yang, Y.: Introducing the enron corpus. In: CEAS (2004)
17. Kumar, S., Hamilton, W.L., Leskovec, J., Jurafsky, D.: Community interaction and

conflict on the web. In: WWW, pp. 933–943 (2018)
18. Kumar, S., Spezzano, F., Subrahmanian, V., Faloutsos, C.: Edge weight prediction

in weighted signed networks. In: ICDM, pp. 221–230. IEEE (2016)
19. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in

temporal interaction networks. In: KDD, pp. 1269–1278 (2019)
20. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,

shrinking diameters and possible explanations. In: KDD, pp. 177–187 (2005)
21. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-

sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)
22. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-

time dynamic network embeddings. In: WWW (2018)
23. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving

graph embedding. In: KDD, pp. 1105–1114 (2016)
24. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:

bringing order to the web. Technical Report 1999–66, Stanford InfoLab (1999)
25. Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic

graphs. In: AAAI, pp. 5363–5370 (2020)
26. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-

sentation. In: EMNLP, pp. 1532–1543. ACL (2014)
27. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-

tations. In: KDD, pp. 701–710 (2014)
28. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph

analytics and visualization. In: AAAI (2015). http://networkrepository.com
29. Shi, M., Huang, Y., Zhu, X., Tang, Y., Zhuang, Y., Liu, J.: GAEN: graph attention

evolving networks. In: IJCAI, pp. 1541–1547 (2021)
30. Singer, U., Guy, I., Radinsky, K.: Node embedding over temporal graphs. In: IJCAI,

pp. 4605–4612 (2019)
31. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale infor-

mation network embedding. In: Proceedings of WWW, pp.. 1067–1077 (2015)
32. Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: Verse: versatile graph embeddings

from similarity measures. In: Proceedings of WWW, pp. 539–548 (2018)
33. Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-

of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015)
34. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by

modeling triadic closure process. In: AAAI (2018)
35. Haddad, M., Bothorel, C., Lenca, P., Bedart, D.: TemporalNode2vec: temporal

node embedding in temporal networks. In: Complex Networks (2019)
36. Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., Bronstein, M.: Tem-

poral graph networks for deep learning on dynamic graphs. In: arxiv

http://arxiv.org/abs/1301.3781
http://networkrepository.com

Summarizing Labeled Multi-graphs

Dimitris Berberidis1, Pierre J. Liang2, and Leman Akoglu1(B)

1 Carnegie Mellon University,
Heinz College of Information Systems and Public Policy, Pittsburgh, USA

{dbermper,lakoglu}@andrew.cmu.edu
2 Carnegie Mellon University, Tepper School of Business, Pittsburgh, USA

liangj@tepper.cmu.edu

Abstract. Real-world graphs can be difficult to interpret and visual-
ize beyond a certain size. To address this issue, graph summarization
aims to simplify and shrink a graph, while maintaining its high-level
structure and characteristics. Most summarization methods are designed
for homogeneous, undirected, simple graphs; however, many real-world
graphs are ornate; with characteristics including node labels, directed
edges, edge multiplicities, and self-loops. In this paper we propose TG-
sum, a versatile yet rigorous graph summarization model that (to the
best of our knowledge, for the first time) can handle graphs with all the
aforementioned characteristics (and any combination thereof). Moreover,
our proposed model captures basic sub-structures that are prevalent in
real-world graphs, such as cliques, stars, etc. Experiments demonstrate
that TG-sum facilitates the visualization of real-world complex graphs,
revealing interpretable structures and high-level relationships. Further-
more, TG-sum achieves better trade-off between compression rate and
running time, relative to existing methods (only) on comparable settings.

Keywords: Graph summarization · Super graph · Labeled
multi-graph

1 Introduction

Given a directed labeled multi-graph G, how can we construct a small sum-
mary graph g that reflects the high-level structures and relationships in G? How
can we find a succinct g that is yet an accurate representation, which requires
a small amount of corrections to recover the original G? With the advent of
technology, not only the size but also the complexity of real-world graphs have
grown immensely. Today graph data often contains node labels, multi-edges,
etc. Graph summarization aims to find high-level structural patterns and most
salient information in large complex graphs to enable efficient storage, process-
ing, visualization and interpretation.

A large body of existing graph summarization techniques is for plain graphs
with homogeneous unlabeled nodes [14–16,20,23,24,26]. However there exist

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26390-3 4.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 53–68, 2023.
https://doi.org/10.1007/978-3-031-26390-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_4&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_4
https://doi.org/10.1007/978-3-031-26390-3_4

54 D. Berberidis et al.

numerous real-world graphs with multiple node labels; including transaction net-
works containing nodes (i.e. accounts) of various types (cash, revenue, expense,
etc.) or heterogeneous graphs such as publication records among entities of var-
ious types (paper, author, venue, etc.). We refer to both kinds as node-labeled,
or simply labeled graphs. Moreover, a vast majority of prior work are for summa-
rizing simple [9,14–16,19,20,24,25,28] undirected [14–16,20,23–26,28] graphs,
whereas the edges in real-world graphs may repeat (e.g., multiple transactions
between two accounts, multiple exchanges between two email addresses, etc.)
which are called multi-graphs. As is the case for transaction and email graphs,
among others, the edges can also be directed.

In this work we propose (to the best of our knowledge; see, Table ??) the
first method called TG-sum, for multi -Type (i.e. node-labeled) multi -Graph
Summarization, with directed edges and possible self-loops. (See Sect. 2, and a
recent comprehensive survey [18].) Besides, TG-sum is versatile in that it can
also handle graphs with any combination of those properties (i.e., (un)directed,
plain/labeled, simple/multi- or weighted graphs).

1

1

1
1

1 11111
1

1

1

10

1

1
1

11

1
1

10

1

1
3

1
5

5

5
2

1
1

4

3

33

4

1 1

11

1

1 111 1
1

1
1

3

4

1
1

3

3

10

1

2

33

33

4

3

1

1

1

1

1

1111
1

1

1
1

111
1

1

1

1

1

1 11
1 1

2

2

2
2

2

2

1

1
1 1

1

1 1

1

1

1

3

1

Fig. 1. (best in color) Ex. input graph (left), its summary/super-graph (middle), and
the decompressed graph (right) w/ edge corrections in red , where dashed (solid

) are edges that need to be added (removed) for lossless reconstruction. See text for
description of the scalars, node color, size, and shape. (Color figure online)

Our goal is to output a small yet representative summary that facilitates the
visualization, by which, improves the understanding of the overall structure of
an input graph. To this end, we model a summary graph (or super-graph) as
a collection of labeled super-nodes and weighted super-edges. As illustrated in
Fig. 1, we merge structurally similar nodes of the same type/label (depicted by
color) into super-nodes (size reflecting the number of constituent nodes). Super-
nodes capture prevalent structural constructs found in real-world graphs, such
as stars and cliques [15] (depicted by shape). A super-node is also marked with
a scalar (i.e., weight), representative of the edge multiplicities among its nodes.
A super-edge is placed between two super-nodes whose constituent nodes are

Summarizing Labeled Multi-graphs 55

sufficiently well-connected, and is also marked with a scalar (i.e., weight) that
best represents the edge multiplicities inbetween.

We aim to construct a small summary graph, which accurately reflects the
input graph. Here, succinctness and accuracy are in trade-off; the coarser the
summary graph, the more information about the original graph is lost. We design
a novel two-part lossless encoding scheme, describing (i) the summary graph and
(ii) the corrections required to reconstruct the input graph losslessly. Treating
the total number of encoding bits as a cost function, we design algorithms to
find a summary with a small total cost. In summary, our main contributions are:

– The first method for Summarizing LMDS-Graphs.
– A Novel Super-graph Model, in Sect. 3.1
– A Novel Two-part Lossless Encoding Scheme, in Sect. 3.2.
– Efficient Search Algorithms, in Sect. 4.
– Extensive experiments on real-world graphs, in Sect. 5

Reproducibility: Source code for TG-sum and all public-domain datasets are
shared at https://bit.ly/3d4vogt.

2 Related Work

Graph summarization and graph compression techniques, while related, exhibit
a key distinction. The former typically aims to simplify an input graph into a
coarser one, while reflecting its prominent structure. On the other hand, the lat-
ter aims at reducing the storage requirements of a graph, often enabling speedy
querying, while maintaining a certain level of query accuracy [2,6,7,13,17]. (See
[5] for a recent survey.) In this work we focus on graph summarization, with a goal
to extract a simplified overview of key structural patterns within an input graph.
Most graph summarization techniques are designed for unlabeled, undirected,
and simple graphs without edge multiplicities, weights, or self-loops [14–16,24].
Closely-related are graph-pooling methods used within graph neural networks to
gradually reduce the dimension of the layers; see. e.g. [27]. Riondato et al. [23]
and Toivonen et al. [26] are some of the few summarization methods that can
accommodate weighted edges, but not labeled nodes or directed edges. Among
the methods that can handle graphs with multiple node labels, CoSum [28], Liu
et al. [19], and SNAP [25] build a coarser graph by only merging the nodes of
the same label into super-nodes. Differently, Subdue [9] replaces frequent sub-
graphs that potentially contain different labels with a super-node, which makes
the interpretation of the summary graph harder. Closest to our work is the app-
roach by Navlakha et al. [20], which iteratively merges nodes into super-nodes
as long as the description length of the input graph decreases. Thanks to its
simple model and algorithm, it can be modified to handle labeled graphs, specif-
ically by restricting the node merges to same-label nodes. However, its model is
unable, nor is it trivial to modify, to accommodate edge weights/multiplicities.
All in all, there is no existing work that can summarize labeled multi-graphs
– with labeled nodes, directed and multi-edges and self-loops. (See [18] for an

https://bit.ly/3d4vogt

56 D. Berberidis et al.

extended survey and Table 1 therein.) While our TG-sum is the first of its kind,
it is versatile in that it can also accommodate graphs with any combination of
those properties. Besides input graph properties, prior work can also be classified
w.r.t. the properties of the summary. Here, we focus on summaries where the
output is itself a (coarser) graph, called the summary or super graph. VoG [15]
identifies key sub-structures (stars, (near)cliques, etc.) however does not provide
any super-edges, i.e., its summary graph is disconnected. Second, the summary
may be lossy; including only the coarse summary graph [9,19,23,25,26,28], or
lossless; consisting of both the summary and the corrections necessary to fully
reconstruct the input graph [14–16,20,24]. Finally, a desired characteristic of
a summary is multi-granularity; where the coarseness or resolution of the sum-
mary graph can be adjusted on demand [9,16,19,20,23,25,26], via appropriately
altering some of the model parameters. Notably, TG-sum exhibits all of these
three properties: super graph output, lossless and multi-resolution summary.

3 Graph Summary Design and Encoding

3.1 Summary and Decompression

Given a directed graph G = {V, E , T } with edge multiplicities m(e) ∈ N,∀e ∈ E ,
node labels/types �(u) ∈ T ,∀u ∈ V, and self-loops, we define the summary and
decompressed graphs as follows.

3.1.1 Summary Graph (or Super-Graph) Model
Let Gs = {Vs, Es} be the sets of super-nodes and directed super-edges that define
the summary graph topology. Each super-node v ∈ Vs is annotated by four
components: (i) its label �(v) (depicted by color), (ii) the number |Sv|, Sv ⊂ V,
of nodes it contains (depicted by size), (iii) the glyph μ(v) ∈ M it represents
(depicted by shape), and (iv) the representative multiplicity m(v) of the edges it
summarizes (depicted as a scalar inside the glyph). For each super-edge e ∈ Es,
we let m(e) be the representative multiplicity of the edges it captures, depicted
as a scalar on the super-edge. (We describe how to find the “representative”
multiplicity of a set of edges in Sect. 4.2.)

Figure 1 (left) and (middle) respectively depict an example input graph and
its corresponding summary graph. Apart from unmerged simple nodes that are
depicted as plain circles, the set M of possible glyphs that TG-sum supports
contains: 1) Clique (square), 2) In-star (triangle), 3) Out-star (triangle), and
4) Disconnected set (hexagon). Such structures are commonly found in real-
word graphs [15]. For instance, a clique can represent a tightly-knit group of
friends in a social network, while an out-star can capture spam-like activity in
an email or call network. Moreover, using glyphs has been shown to yield easily
interpretable visualizations [10].

Summarizing Labeled Multi-graphs 57

3.1.2 Decompression
The summary graph Gs decompresses uniquely and unambiguously into G′ =
dec(Gs) = {V, E ′} according to simple and intuitive rules (e.g., Fig. 1 (right)).
First, every super-node expands to the set of nodes it contains, all of which
also inherit the super-node’s label. The nodes are then connected according to
the super-node’s glyph: for out(in)-stars a node defined as the hub points to
(is pointed by) all other nodes, for cliques all possible directed edges are added
between the nodes, and for disconnected sets no edges are added. Moreover,
a super-node self-loop expands to self-loops on every node it contains. On the
other hand, super-edges expand to sets of edges that have the same direction.

Apart from enabling a clear interpretation of a given summary, the decom-
pression rules help quantify how well the summary represents the original graph.
For example, the pink triangle with representative multiplicity 3 in Fig. 1 (mid-
dle) expands to an in-star with all edges having multiplicity 3 as shown in Fig. 1
(right). While the topology is perfectly captured (pink nodes form a perfect in-
star), the expanded multiplicities are not always equal to the original ones. On
the other hand, expanding the green triangle perfectly captures the edge mul-
tiplicities (all are 1), but only approximates the topology, as the original green
subgraph also contains some edges between the spokes of the hub node.

3.2 Model Encoding

Following the two-part Minimum Description Length paradigm [12], we aim to
identify a summary graph Gs that minimizes the total description cost of the full
graph, that is,

G∗
s := arg min

Gs
L(Gs) + L(G|G′), s.t. G′ = dec(Gs) (1)

where L(Gs) measures the number of bits required to encode the summary graph,
and L(G|G′) the bits needed to encode the corrections (or extra-information)
for reconstructing the original graph G from the (uniquely and unambiguously)
decompressed G′. These costs can be quantified as follows.

3.2.1 Encoding the Summary Graph
We first encode the size of the summary graph LN(|Vs|), and the number of labels
LN(|T |).1 For each super-node, log2 |T | bits are used to record its label, log2 |M|
for its glyph, LN(|Sv|) for its size, LN(m(v)) for the within-glyph representative
multiplicity, log2(|Vs|) for the number of super-nodes in Gs that it points to, and
log2

(|Vs|
|N (v)|

)
to identify the specific set of super-nodes it points to, where N (v)

denotes the set of direct (out)neighbors. For each super-edge, LN(m(e)) bits are
used for the representative multiplicity. In total, the number of bits required to
encode a summary graph is given as
1 LN(k) = 2 log k + 1 bits are required to encode an arbitrarily large natural number

k, using the variable-length prefix-free encoding; see, Ex. 2.4 in [12].

58 D. Berberidis et al.

L(Gs) =LN(|Vs|) + LN(|T |) +
∑

v∈Vs

LSNODE(v) , (2)

where

LSNODE(v) = log2 |T | + log2 |M| + LN(|Sv|) + LN(m(v)) + log2(|Vs|)

+ log2

(
|Vs|

|N (v)|

)
+

∑

z∈N (v)

LN(m(v, z)) (3)

3.2.2 Encoding the Corrections
For the overall cost for corrections, we first compute the number of bits used to
correct the topology of the expanded (i.e., decompressed) graph, followed by the
number of bits needed to represent the true multiplicities. Regarding the topol-
ogy, we first map the expanded nodes back to the original node-set V. This costs
LMAP(v) = log2

(|V|
|Sv|

)
+ 1{µ(v)=STAR} log2 |Sv| bits per super-node v (the lat-

ter term identifying the hub of a star). Subsequently, we have two types of edge
corrections: Either adding edges that exist in the original graph but not in the
expanded graph (i.e., positive corrections) or removing edges from the expanded
graph because they do not exist in the original graph (i.e., negative corrections).

These costs are compactly encoded for every expanded super-edge and
every expanded super-node (glyph), using the binomial encoding L(ECOR) =
LN(|ECOR|) + log2

(|Emax
COR|

|ECOR|
)
, where ECOR denotes the possible set of corrections

(positive or negative), and Emax
COR the largest set that ECOR can possibly be. For

example, for positive edge corrections in a disconnected set, we have Emax
COR =

Sv × Sv, and similarly for negative edge corrections in a clique. For super-edges,
corrections are computed according to the decompression rules (see Sect. 3.1). For
the (few) edges in the original graph between super-nodes v and z that are not rep-
resented by a super-edge, the corrections are always positive, and Emax

COR = Sv×Sz.
The binomial encoding arises from using the uniform code over all the lexico-

graphically ordered subsets of possible corrections. An alternative to this, as sug-
gested in [16,23], would be to encode each correction individually using an opti-
mal prefix code. Then, interpreting p = |ECOR|/|Emax

COR| as the “probability” of
each correction, we would need LENTR = H(Ber[p]) · |Emax

COR| bits, where H(·)
is the Shannon entropy, and Ber[p] is a Bernoulli with parameter p. Denoting
|ECOR| = n′ and |Emax

COR| = n, we can show that our binomial encoding is more
efficient.

Theorem 1. It holds that LENTR ≥ log2

(
n
n′

)
, for all n > n′ > 0.

Proof. See Appendix.

Theorem 1 establishes that the binomial encoding always gives a more com-
pact measure of information required for corrections. Having corrected the edge
topology, we compute the cost of correcting the edge multiplicities. Since any
edge e not included in a glyph or super-edge does not have a representative mul-
tiplicity, its multiplicity correction is encoded by LN(m(e)), encoding its true

Summarizing Labeled Multi-graphs 59

value. The reason for using LN(·) to encode multiplicities is the fact that, for
most real graphs, multiplicities follow a power-law distribution. Since the vast
majority has small values, LN(·) will generally be a more “compact” encoding
compared to a uniform code based on the maximum multiplicities. For expanded
super-nodes and super-edges with representative multiplicity m, we obtain the
cost of correcting the multiplicities as

LDIFF(Esup,m) =
∑

e∈Esup

�diff(m(e),m), (4)

where Esup in this context is the set of all edges contained in said super-node or
super-edge, and

�diff(m′, m) =

{
1 , m = m′

2 log2(|m − m′|) + 3 , m �= m′ , (5)

bits are needed to encode the difference between a true multiplicity m′ and its
representative m. Note that, since LN(·) only holds for natural numbers (see
footnote 3), one extra bit is required to indicate whether the difference is 0, and
one more for the sign of the difference.

4 Graph Summary Search

The discrete optimization problem in (1) has a very large set of feasible solutions,
and needs to be approximated efficiently. Towards this goal, we follow a two-step
process, where we first generate a list of (possibly overlapping) groups of nodes,
which we term candidate node-sets (see Sect. 4.1), and then decide which ones
to merge into super-nodes. These candidates have varying size and quality (i.e.,
structural-similarity). Larger candidates with low quality compress the graph
more (reduced L(Gs)), but also typically require more corrections (increased
L(G|G′)). Clearly, the best candidates have both high quality and large size. For
this reason, we first sort the candidate sets in descending order with respect to
the product of their size and quality. We then process the sorted list from top to
bottom, and merge the candidate sets into super-nodes, updating the summary
graph accordingly (see Sect. 4.2). To ensure the quality of summarization, we
only monitor the overall total cost, and only commit to a given candidate if
Δcost = Cost After−Cost Before < 0. This offers two benefits: (1) We avoid the
cumbersome process of merging nodes in pairs (i.e. two at a time) and instead
merge in groups, and (2) We achieve ability to summarize at multiple resolutions.
The overview is given in Algorithm 1.

4.1 Candidate Set Generation

4.1.1 Measuring Candidate Quality
To quantify a candidate set’s quality, we first need to define a proper metric of
structural node similarity. For undirected graphs, the Jaccard similarity between

60 D. Berberidis et al.

Algorithm 1. TG-sum: Summarizing Labeled Multi-Graphs

Input: directed labeled multi-graph G
1 Construct candidate node-sets (Sect. 4.1);
2 Sort candidates w.r.t. (size × quality);
3 for every candidate set in list do
4 Merge unmarked nodes in set and decide glyph (Sect. 4.2.1);
5 Decide super-edges (Sect. 4.2.2) ;
6 Compute representative multiplicities (Sect. 4.2.3);
7 Mark candidate node-set as merged;
8 if Δcost < 0 then
9 Commit to merged super-node and its super-edges;

10 Return summary graph Gs ;

two nodes v and v′ is given as JU (v, v′) = |NU (v)∩NU (v′)|
|NU (v)∪NU (v′)| , and simply measures

the proportion of common neighbors that they share. Näıvely using JU (·, ·) on
directed graphs is straightforward by ignoring the directions of the edges, however,
it may yield misleading results by often over-estimating the true node similarity.
To mitigate such inconsistencies, we introduce the following extension of Jaccard
that may also accommodate directed graphs, by taking into account the similarity
of both Incoming and Outgoing edges.

Definition 1. The directed Jaccard similarity between any two pair of nodes
v, v′ of a directed graph is given as

JD(v, v′) =
|N I(v) ∩ N I(v′)| + |NO(v) ∩ NO(v′)|
|N I(v) ∪ N I(v′)| + |NO(v) ∪ NO(v′)| (6)

First, it can easily be observed that for undirected graphs, JD(v, v′) = JU (v, v′),
since N I(v) = NO(v) = NU (v). Note however, that in our example, JD(v, v′)
becomes 0 for all cross-pairs between {B,C,D} and {E,F}, effectively creat-
ing two separate groups. In general for directed graphs, JD(v, v′) will be more
“informed” than JU (v, v′), typically yielding lower similarity scores. We then
define

Definition 2. Any set C ⊆ V, is t−bounded if JD(v, v′) ≥ t ∀(v, v′) ∈ C×C.

We use the t−bounded-ness of a candidate to serve as a pessimistic valuation of
its quality. In addition, given that we are interested in a collection of candidate
sets, we would like the sets to be non-redundant defined as follows.

Definition 3. Let CS be a collection of candidate sets, each one accompanied by
a bound t. We call CS non-redundant, if for any C ∈ CS that is t−bounded, there
exists no t′−bounded C′ ∈ CS, such that t′ ≥ t and C ⊂ C′.

Simply put, non-redundancy ensures that none of the candidate sets is a strict
subset of another set of higher or equal quality.

Summarizing Labeled Multi-graphs 61

4.1.2 Incremental LSH
To group nodes according to their similarity, we first utilize Locality Sensitive
Hashing (LSH) [4]. Specifically for every node v, we generate a set of r minhash
signatures

hj(v) := min
z∈ND(v)

fj(z) ∀j = 1, . . . , r (7)

where fj ’s are independent and uniform hash functions (see, e.g., [4] for imple-
mentation details), and ND(v) := N I(v)‖NO(v) is the concatenated adjacency
list of node v that includes all incoming and outgoing neighbors separately. It
can then be shown that Pr

{
hj(v) = hj(v′)

}
= JD(v, v′); that is, two nodes

share a minhash signature with probability proportional to their directed Jac-
card similarity. Since the r hash functions are independent, it follows that
Pr

{
h(v) = h(v′)

}
=

(
JD(v, v′)

)r, where h(v) := [h1(v), . . . , hr(v)]T is the
r−length minhash signature vector of node v. If the nodes are hashed into buck-
ets according to their r minhash signatures, the equality gives the probability
that two nodes hash into the same bucket. By collecting b hash-tables corre-
sponding to b bands of r minhash signatures, the probability that v and v′ hash
to the same bucket at least once is

Pr
{
hi(v) = hi(v′) ∃i = 1, . . . , b

}
= 1 −

(
1 −

(
JD(v, v′)

)r)b

(8)

Interestingly, for sufficiently large r and b, the RHS expression in Eq. (8) when
viewed as a function of

(
JD(v, v′)

)
approximates a step function around the

threshold t =
(

1
b

) 1
r ∈ (0, 1], meaning that with high probability v and v′ will

belong in a t−bounded set. To avoid repeating the entire process for different
values of b, we incrementally generate and add more bands of minhash node
signatures, that in turn hash nodes into new buckets. The new buckets are
then merged with any overlapping existing buckets, gradually coalescing into
larger clusters that are approximately t−bounded, with t =

(
1
b

) 1
r decreasing as

b increases. This is exactly how we obtain larger candidate sets, albeit of lower
quality, incrementally by the addition of new bands.

4.1.3 Filtered LSH
While the incremental LSH described in the previous section efficiently guides
the process of forming candidate sets, merged buckets are not guaranteed to be
t−bounded due to the false alarm probability. For this purpose, we maintain an
undirected similarity graph Gsim, where an edge (v, v′) is guaranteed to appear if
and only if JD(v, v′) ≥ t. Intuitively, Gsim serves as a data structure where large
t−bounded candidates appear as maximal cliques. As new LSH buckets appear
and clusters are updated, we compute JD(v, v′) for newly coalesced pairs of nodes
(v, v′), and add the latter as an edge to Gsim if JD(v, v′) ≥ t. If the threshold is
not satisfied, the computed value JD(v, v′) is not discarded, but cached into a
max-heap since it may satisfy a lower t in one of the subsequent iterations as b is
increased.

62 D. Berberidis et al.

As mentioned earlier, candidate sets are collected as maximal cliques in Gsim.
To ensure that the set of candidates is non-redundant (cf. Def.n 3), we maintain
for every node the size of the maximum clique that it has been found to belong
in. Every time a new clique is discovered, we update the maximum-sizes for all
the nodes it contains using the clique’s size. As new edges are added to Gsim, we
examine every node for newly emerged cliques, and we rely on the heuristic in
[22] to prune the search by avoiding the evaluation of cliques that cannot exceed
the size of the previously-found maximum clique.

4.2 Merging Candidates: Glyphs, Super-Edges, Multiplicities

Every time a candidate set C is tested, we deploy subroutines that efficiently
update the summary graph, by making decisions regarding (1) the glyph that
will be assigned to the merged set of nodes, (2) super-edges that emerge (or
disappear) due to the merging, as well as (3) representative multiplicities for the
set of edges summarized by the glyph and its super-edges.

4.2.1 Glyph Decision Rules
To preserve super-node label homogeneity, a candidate set that contains nodes of
different labels is first split into same-label subsets. Each subset is merged into
a separate super-node using the procedure described below. Hereafter, the term
candidate set refers to such a label-homogeneous subset. For the glyph decision,
we first identify the number of directed edges EC that are included in the sub-
graph induced on nodes that corresponds to C in the candidate set. Consequently,
if EC ≥ |C|(|C| − 1)/2, i.e., at least half of all possible directed edges are present,
then we decide Clique since it most likely is the best glyph in terms of number
of edge corrections. For sparsely-edged candidate sets that do not pass the clique
threshold, we proceed to test for the presence of stars. If there is a suitable out-
/in-star present in C, then its hub will be the highest out/in-degree node in C. We
use the followin proxy correction cost for encoding an in-star

CostIN = (|C| − 1 − dImax) + (EC − dImax) , (9)

and similarly CostOUT for out-star using dOmax. Intuitively, the first term of Eq.
(9) is the number of edges that will have to be removed from the full decom-
pressed star, while the second part is the number of edges that cannot be
“explained” by the star and will have to be added. We then compare CostIN
and CostOUT with EC , i.e., the number of edges that will have to be added if we
decide that C is a disconnected set. If only CostIN (or only CostOUT) is smaller
than EC , then we decide In-star (or Out-star). If both CostIN and CostOUT

are smaller than EC , then we choose the smallest of the two. Finally, if neither
CostIN nor CostOUT are smaller than EC , we decide C is a Disconnected set.

4.2.2 Super-edge Decision Rule
Having decided the glyph of C, we merge any outgoing and incoming edges and/or
super-edges into “bundles” of edges and their corresponding multiplicities.

Summarizing Labeled Multi-graphs 63

We then obtain the topology-based correction costs of merging or not merg-
ing each bundle into a super-edge (recall Sect. 3.2). If the total cost (topology
and multiplicities) of representing each bundle of edges with a super-edge is lower
than the cost of not representing it, then the corresponding super-edge (and its
representative multiplicity) is added to the summary.

4.2.3 Finding Representative Multiplicities
For every newly-formed super-node as well as each potential super-edge, we find
the representative multiplicity m∗ as m∗ := arg minm LDIFF(Esup,m) where
LDIFF(Esup,m) is defined in Eq. (4), and Esup is the set of all edges contained in
a given super-node or bundled by a super-edge. Although this 1D-optimization
problem is not convex, we find that the dichotomous search algorithm [8] finds
the optimal solution in most cases, and runs in O(|Esup| log2 R) time, where
R = maxe∈Esup m(e) − mine∈Esup m(e), i.e., the dynamic range of multiplicities.

5 Experiments

5.1 Setup

We experimented with real-world graphs of a wide variety of sizes and charac-
teristics, including a senator-to-senator network extracted from the 2009–2010
US Congress dataset [3] and the Political Blogs network [1], both with political
affiliation labels; the Cora and Citeseer citation networks [11] that are labeled by
publication venue; and finally, transaction networks from 3 (anonymous) corpo-
rations that we collaborated with. See Table 1 for a summary of network char-
acteristics. There is no existing method for LMDS-graph summarization, thus
we compare only under simplified settings, w.r.t. running time and compression
rate. Moreover, TG-sum is only comparable to lossless methods. We modify the
Randomized algorithm of Navlakha et al. [20] to accommodate node labels and
edge directions, and compare on all graphs, ignoring the edge multiplicities.

Table 1. Real-world graphs used in experiments. ∗ depicts naturally directed graphs
that are typically treated as undirected. For SH, HW, KD #labels is given for EB/FS
labeling.

Name #nodes #m-edges #labels Lbl. Dir. Mult. S-loop

senate 0.1K 2.4K 2 �

polblogs 1.5K 19K 2 � ∗

cora 2.7K 10.6K 6 � ∗

citeseer 3.3K 9.2K 7 � ∗

SH trans 0.25K 301K 11/27 � � � �

HW trans 0.32K 268K 11/60 � � � �

KD trans 2.3K 648K 10/29 � � � �

64 D. Berberidis et al.

Clinton

Biden

Clinton & Biden

Mel Mart inez

Fig. 2. (left) original US Senate graph, (middle) high resolution (b = 2) summary,
(right) low resolution (b = 5) summary. (Color figure online)

5.2 Qualitative Evaluation: TG-sum at Work

The US Senate dataset contains the (positive or negative) votes of 108 sena-
tors for 696 congressional bills. The senators are labeled as Republicans (red),
Democrats (blue), or independent (green). We construct an undirected graph
where two senators are connected by an edge if the cosine similarity of their votes
is larger than 0.3. The graph is plotted in Fig. 2, along with two summaries at
different resolutions, leading to the following observations. Interestingly, while
most democratic senators eventually form a clique, there is a smaller group of
East coast senators, including prominent Democratic figures such as Joe Biden,
Hillary Clinton, and Ted Kennedy that do not merge with the main body and
form their own separate clique. Furthermore, this clique of Democrats is directly
linked to certain Republicans, such as the Florida-based Mel Martinez, who has
most recently opposed Trump openly and explicitly expressed his preference for
Joe Biden2. The second observation is that Republican senators overall exhibit
a more fragmented voting behavior, splitting into multiple cliques of comparable
size. This is corroborated by computing the entropies of the votes for all the bills,
for Democrats and Republicans separately. Intuitively, bills with high entropy
indicate a low degree of agreement on the subject. By plotting the histograms of
the voting entropies (see Fig. 2 (right)) for the two groups, it becomes apparent
that Republican votes exhibit higher entropy (median = 0.21) than Democrats
(median = 0.16).

2 https://bit.ly/3qwc9zu.

https://bit.ly/3qwc9zu

Summarizing Labeled Multi-graphs 65

5.3 Quantitative Evaluation: Evaluating Financial Accounts
Labeling

In this section, we show how we employed TG-sum to quantitatively address
a domain-specific problem, specifically, evaluating a pre-existing labeling, i.e.,
the set of types pre-assigned to the nodes in an accounting network that con-
nects business accounts via credit/debit transaction relations. A business entity’s
Chart of Accounts (COA) lists, and also pre-assigns a label to, each distinct
account used in its ledgers. Such labeling helps companies prepare their aggre-
gate financial statements (FS). For example, the FS caption “Cash and Cash
Equivalents” is used to describe the total sum of all liquid assets tracked in
a number of accounts; e.g., currencies, checking accounts, etc. In the US, FS
captions are not uniform across corporations. In fact, the data we have from 3
different companies (anonymized as SH, HW, and KD in Table 1) each contains
different FS captions.

How suitable is a given FS labeling? Can a different labeling be shown to be
quantitatively better than another?

To this end, our collaborator (an accounting expert) designed a new label-
ing (referred as EB for economic bookkeeping), relabeling the accounts based
on their primary economic nature. Specifically, EB organizes them into oper-
ating versus financing and long- versus short-term accounts. Expert knowledge
suggests that EB improves over FS captions by categorizing the accounts such
that accounts of the same label should “behave” similarly in the system. This
behavior can be discerned from the real-world usage data, in particular the
transactions graph, where accounts are connected through credit/debit relations.
Under a more suitable labeling, the accounts with the same label should have
more structural similarity and yield better compression.

Table 2. Evaluating account labelings in financial networks

Dataset Labeling Shuffled Actual Norm. gain (%)

SH EB 0.28 0.32 5.6 %

FS 0.25 0.27 2.7 %

HW EB 0.36 0.47 17.0 %

FS 0.16 0.27 13.0 %

KD EB 0.33 0.42 13.7 %

FS 0.31 0.39 12.0 %

To compare EB vs. FS, we employ TG-sum on each graph using one or the
other labeling separately, and record the compression rate. Next, we shuffle the
labels (within each setting) randomly, and employ TG-sum again. “Shuffled” and
“Actual” compression rates are reported in Table 2 (the former averaged over 20
random shuffles). EB rates are higher—this is not surprising as EB has fewer
labels as compared to FS (See |T | in Table 1), and hence TG-sum has higher

66 D. Berberidis et al.

degree of freedom to merge nodes on EB-labeled graphs. As such, Actual values
are not directly comparable. What is comparable is the difference from Shuffled,
that is, how much the labeling can improve on top of the random assignment
of the same set of labels. Here, the absolute difference is always equal or larger
for EB. However, even the absolute difference of compression rates is not fair to
compare—it is harder to compress a graph that has been compressed quite a bit
even further. For EB, Shuffled rates are already high. Improving over Shuffled
even by the same amount proves EB superior to FS. Therefore, we report the
normalized gain; defined as (Actual−Shuffled)/(1−Shuffled), which shows that
our expert-designed EB labeling is better, for the aforementioned reasons.

5.4 Quantitative Evaluation: Compression Rate, Running Time,
Scalability

Quantitatively, we measure summarization performance in terms of both (1)
running time, as well as (2) the size reduction achieved in terms of bits (including
bits required for correction). Specifically, upon obtaining the total number of bits
(as given by the encoding scheme of each method), we measure the compression
ratio as Compress Ratio = Bits Before−Bits After

Bits Before ∈ [0, 1), that is the fraction of
the encoding cost that has been reduced by summarization. We compare with
the Navlakha algorithm [20], which we modified to handle edge directions and
node labels. We run TG-sum by gradually increasing b, to increase the number
of candidate sets and obtain multi-resolution summaries. A larger number of
candidates is expected to yield higher compression ratio, albeit at the cost of
increased running time—hence enabling the user to choose a suitable trade-off
in practice.

Fig. 3. Compression ratio vs. runtime on undirected graphs

Results are given in Fig. 3, where TG-sum remarkably outperforms the alter-
native in terms of compression ratio in almost all cases. In absolute terms, it
achieves roughly 30–60% compression across these various real-world graphs
with up to hundreds of thousands of edges and tens of distinct labels. Finally,
we measure the scalability of TG-sum by first generating an increasing size syn-
thetic directed k-out graph, where nodes are incrementally added and connected
to k = 10 of the existing nodes, simulating a preferential attachment process.
Results in Fig. 4 (left) show that, unlike the modified Navlakha, the runtime of
TG-sum grows in a near-linear fashion.

Summarizing Labeled Multi-graphs 67

Fig. 4. TG-sum complexityscales linearly with the number of edges.

6 Conclusion

We introduced TG-sum, a versatile graph summarization algorithm that (for
the first time) can handle directed, node-labeled, multi -graphs with possible self-
loops (or any combination). Built on a novel encoding scheme, TG-sum seeks
to minimize the total encoding cost of (i) a summary graph, and (ii) the correc-
tions to reconstruct the input graph losslessly. It efficiently finds structurally-
similar nodes to create super-nodes of larger sizes incrementally, producing multi-
resolution summaries. Extensive experiments show that TG-sum (1) provides
insights into the high-level structure of real-world graphs, (2) achieves better
trade-off between compression and runtime relative to baselines (only) on com-
parable settings, and (3) scales linearly in the number of edges.

Acknowledgements. This work has been sponsored by the U.S. National Science
Foundation CAREER 1452425 and the PwC Risk and Regulatory Services Innovation
Center at Carnegie Mellon University. Any conclusions expressed in this material are
those of the author and do not necessarily reflect the views, expressed or implied, of
the funding parties.

References

1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 us election:
divided they blog. In: Proceedings of the 3rd International Workshop on Link
Discovery, pp. 36–43 (2005)

2. Adler, M., Mitzenmacher, M.: Towards compressing web graphs. In: Data Com-
pression Conference IEEE Computer Society (2001)

3. Akoglu, L.: Quantifying political polarity based on bipartite opinion networks. In:
ICWSM (2014)

4. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM, pp. 117–122 (2008)

5. Besta, M., Hoefler, T.: Survey and taxonomy of lossless graph compression and
space-efficient graph representations (2018). arxiv:1806.01799

6. Boldi, P., Vigna, S.: The webgraph framework i: compression techniques. In:
WWW, pp. 595–602 (2004)

7. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph
compression with communities. In: WSDM, pp. 95–106. ACM (2008)

http://arxiv.org/abs/1806.01799

68 D. Berberidis et al.

8. Chong, E.K., Zak, S.H.: An introduction to optimization. John Wiley & Sons
(2004)

9. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length
and background knowledge. J. Artif. Intell. Res. 1, 231–255 (1993)

10. Dunne, C., Shneiderman, B.: Motif simplification: improving network visualization
readability with fan, connector, and clique glyphs. In: SIGCHI, pp. 3247–3256
(2013)

11. Giles, C.L., Bollacker, K.D., Lawrence, S.: CiteSeer: an automatic citation indexing
system. In: Proceedings of the Conference on Digital Libraries, pp. 89–98 (1998)

12. Grünwald, P.D.: The Minimum Description Length Principle. The MIT Press,
Cambridge, MA (2007)

13. Kang, U., Faloutsos, C.: Beyond ‘caveman communities’: hubs and spokes for graph
compression and mining. In: ICDM, pp. 300–309 (2011)

14. Khan, K.U., Nawaz, W., Lee, Y.K.: Set-based approximate approach for lossless
graph summarization. Computing 97(12) (2015)

15. Koutra, D., Kang, U., Vreeken, J., Faloutsos, C.: Summarizing and understanding
large graphs. Statist. Anal. Data Min. 8(3), 183–202 (2015)

16. LeFevre, K., Terzi, E.: Grass: graph structure summarization. In: SDM, pp. 454–
465. SIAM (2010)

17. Liakos, P., Papakonstantinopoulou, K., Sioutis, M.: Pushing the envelope in graph
compression. In: CIKM, pp. 1549–1558 (2014)

18. Liu, Y., Safavi, T., Dighe, A., Koutra, D.: Graph summarization methods and
applications: a survey. ACM Comput. Surv. 51(3), 1–34 (2018)

19. Liu, Z., Yu, J.X., Cheng, H.: Approximate homogeneous graph summarization.
Info. Media Tech. 7(1), 32–43 (2012)

20. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded
error. In: SIGMOD, pp. 419–432. ACM (2008)

21. Oughtred, R., et al.: The biogrid interaction database 47(D1), D529–D541 (2019)
22. Pattabiraman, B., Patwary, M.M.A., Gebremedhin, A.H., Liao, W.K., Choudhary,

A.: Fast algorithms for the maximum clique problem on massive sparse graphs. In:
International Workshop. AMWG (2013)

23. Riondato, M., Garćıa-Soriano, D., Bonchi, F.: Graph summarization with quality
guarantees. Data Min. Knowl. Disc. 31(2), 314–349 (2017)

24. Shin, K., Ghoting, A., Kim, M., Raghavan, H.: SWeG: lossless and lossy summa-
rization of web-scale graphs. In: WWW, pp. 1679–1690. ACM (2019)

25. Tian, Y., Hankins, R., Patel, J.: Efficient aggregation for graph summarization. In:
SIGMOD (2008)

26. Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A.: Compression of weighted
graphs. In: KDD (2011)

27. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: NeurIPS, pp. 4800–
4810 (2018)

28. Zhu, L., Ghasemi-Gol, M., Szekely, P., Galstyan, A., Knoblock, C.A.: Unsupervised
entity resolution on multi-type graphs. In: International Semantic Web Conference,
pp. 649–667 (2016)

Inferring Tie Strength in Temporal
Networks

Lutz Oettershagen1(B), Athanasios L. Konstantinidis2,
and Giuseppe F. Italiano2

1 Institute of Computer Science, University of Bonn, Bonn, Germany
lutz.oettershagen@cs.uni-bonn.de

2 Luiss University, Rome, Italy
{akonstantinidis,gitaliano}@luiss.it

Abstract. Inferring tie strengths in social networks is an essential task
in social network analysis. Common approaches classify the ties as weak
and strong ties based on the strong triadic closure (STC). The STC states
that if for three nodes, A, B, and C, there are strong ties between A and
B, as well as A and C, there has to be a (weak or strong) tie between B
and C. So far, most works discuss the STC in static networks. However,
modern large-scale social networks are usually highly dynamic, providing
user contacts and communications as streams of edge updates. Temporal
networks capture these dynamics. To apply the STC to temporal net-
works, we first generalize the STC and introduce a weighted version such
that empirical a priori knowledge given in the form of edge weights is
respected by the STC. The weighted STC is hard to compute, and our
main contribution is an efficient 2-approximative streaming algorithm
for the weighted STC in temporal networks. As a technical contribution,
we introduce a fully dynamic 2-approximation for the minimum weight
vertex cover problem, which is a crucial component of our streaming algo-
rithm. Our evaluation shows that the weighted STC leads to solutions
that capture the a priori knowledge given by the edge weights better than
the non-weighted STC. Moreover, we show that our streaming algorithm
efficiently approximates the weighted STC in large-scale social networks.

Keywords: Triadic closure · Temporal network · Tie strength
inference

1 Introduction

Due to the explosive growth of online social networks and electronic commu-
nication, the automated inference of tie strengths is critical for many applica-
tions, e.g., advertisement, information dissemination, or understanding of com-
plex human behavior [11,20]. Users of large-scale social networks are commonly

Giuseppe F. Italiano is partially supported by MUR, the Italian Ministry for Univer-
sity and Research, under PRIN Project AHeAD (Efficient Algorithms for HArnessing
Networked Data).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 69–85, 2023.
https://doi.org/10.1007/978-3-031-26390-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_5

70 L. Oettershagen et al.

connected to hundreds or even thousands of other participants [26,30]. It is the
typical case that these ties are not equally important. For example, in a social
network, we can be connected with close friends as well as casual contacts. Since
a pioneering work of Granovetter [12], the topic of tie strength inference has
gained increasing attention fueled by the advent of online social networks and
ubiquitous contact data. Nowadays, ties strength inference in social networks is
an extensively studied topic in the graph-mining community [10,20,38]. A recent
work by Sintos and Tsaparas [39] introduced the strong triadic closure (STC)
property, where edges are classified as either strong or weak—for three persons
with two strong ties, there has to be a weak or strong third tie. Hence, if person
A is strongly connected to B, and B is strongly connected to C, A and C are at
least weakly connected. The intuition is that if A and B are good friends, and
B and C are good friends, A and C should at least know each other.

A B

C

D
10 1

1 2

(a) Example for optimal weighted STC.
The edge weights correspond the amount
of communications.

A B

C

D
0

(b) Example for optimal non-weighted
STC. Ignoring the weights leads to three
strong edges.

Fig. 1. Example for the difference between weighted and non-weighted STC. Strong
edges are highlighted in red, and weak edges are dashed. (Color figure online)

We first generalize the ideas of [39] such that edge weights representing
empirical tie strength are included in the computation of the STC. The idea
is to consider edge weights that correspond to the empirical strength of the tie,
e.g., the frequency or duration of communication between two persons. If this
weight is high, we expect the tie to be strong and weak otherwise. However, we
still want to fulfill the STC, and simple thresholding would not lead to correct
results. Figure 1 shows an example where we have a small social network con-
sisting of four persons A, B, C, and D. In Fig. 1a, the edge weights correspond
to some empirical a priori information of the tie strength like contact frequency
or duration, e.g., A and B chatted for ten hours and B and D for only one
hour. The optimal weighted solution classifies the edges between A and B as
well as between C and D as strong (highlighted in red). However, if we ignore
the weights, as shown in Fig. 1b, the optimal (non-weighted) solution has three
strong edges. Even though the non-weighted solution has more strong edges,
the weighted version agrees more with our intuition and the empirical a priori
knowledge.

We employ this generalization of the STC for inferring the strength of ties
between nodes in temporal networks. A temporal network consists of a fixed set
of vertices and a chronologically ordered stream of appearing and disappearing
temporal edges, i.e., each temporal edge is only available at a specific discrete

Inferring Tie Strength in Temporal Networks 71

point in time. Temporal networks can naturally be used as models for real-
life scenarios, e.g., communication [4,7], contact [33], and social networks [14,
17,31]. In contrast to static graphs, temporal networks are not simple in the
sense that between each pair of nodes, there can be several temporal edges,
each corresponding to, e.g., a contact or communication at a specific time [18].
Hence, there is no one-to-one mapping between edges and ties. Given a temporal
network, we map it to a weighted static graph such that the edge weights are
a function of the empirical tie strength. We then classify the edges using the
weighted STC, respecting the a priori information given by the edge weights.

A major challenge is that the weighted STC is hard to compute and real-
world temporal networks are often provided as large or possibly infinite streams
of graph updates. To tackle this computational challenge, we employ a sliding
time window approach and introduce a streaming algorithm that can efficiently
update a 2-approximate of the minimum weighted STC, i.e., the problem that
asks for the minimum total weight of weak edges. Our contributions are:

1. We generalize the STC for weighted graphs and apply the weighted STC for
determining tie strength in temporal networks. To this end, we use temporal
information to infer the edge strengths of the underlying static graph.

2. We provide a streaming algorithm to efficiently approximate the weighted
STC over time with an approximation factor of two. As a technical contri-
bution, we propose an efficient dynamic 2-approximation for the minimum
weighted vertex cover problem, a key ingredient of our streaming algorithm.

3. Our evaluation shows that the weighted STC leads to strong edges with higher
weights consistent with the given empirical edge weights. Furthermore, we
show the efficiency of our streaming algorithm, which is orders of magnitude
faster than the baseline.

Omitted proofs and the appendix can be found in the extended version [32].

2 Related Work

There are various studies on predicting the strength of ties given different fea-
tures of a network, e.g., [10,44]. However, these works do not classify edges with
respect to the STC. In contrast, our work is based on the STC property, which
was introduced by Granovetter [12]. An extensive analysis of the STC can be
found in the book of Easley and Kleinberg [6]. Recently, Sintos and Tsaparas [39]
proposed an optimization problem by characterizing the edges of the network
as strong or weak using only the structure of the network. They proved that
the problem of maximizing the strong edges is NP-hard, although they provided
two approximation algorithms to solve the dual problem of minimizing the weak
edges. In the following works, the authors of [13,24,25] focused on restricted
networks to further explore the complexity of STC maximization.

Rozenshtein et al. [38] discuss the STC with additional community connectiv-
ity constraints. Adriaens et al. [1] proposed integer linear programming formula-
tions and corresponding relaxations. Very recently, Matakos et al. [29] proposed

72 L. Oettershagen et al.

a new problem that uses the strong ties of the network to add new edges and
increase its connectivity. The mentioned works only consider static networks
and do not include edges weights in the computation of the STC. We propose a
weighted variant and use it to infer ties strength in temporal networks.

Even though temporal networks are a quite recent research field, there are
some comprehensive surveys introduce the notation, terminology, and applica-
tions [18,27]. Additionally, there are systematic studies into the complexity of
well-known graph problems on temporal networks (e.g. [16,21]). The problem of
finding communities and clusters, which can be considered as a related problem,
has been studied on temporal networks [5,41]. Furthermore, Zhou et al. [45]
studied dynamic network embedding based on a model of the triadic closure
process, i.e., how open triads evolve into closed triads. Huang et al. [19] studied
the formation of closed triads in dynamic networks. The authors of [2] introduce
a probabilistic model for dynamic graphs based on the triadic closure.

Wei et al. [42] introduced a dynamic (2+ ε)-approximation for the minimum
weight vertex cover problem with O(log n/ε2) amortized update time based on a
vertex partitioning scheme [3]. However, the algorithm does not support updates
of the vertex weights, which is an essential operation in our streaming algorithm.

3 Preliminaries

An undirected (static) graph G = (V,E) consists of a finite set of nodes V
and a finite set E ⊆ {{u, v} ⊆ V | u �= v} of undirected edges. We use V (G)
and E(G) to denote the sets of nodes and edges, respectively, of G. The set
δ(v) = {e = {v, w} | e ∈ E(G)} contains all edges incident to v ∈ V (G),
and we use d(v) = |δ(v)| to denote the degree of v ∈ V . An edge-weighted
undirected graph G = (V,E,wE) is an undirected graph with additional weight
function w : E → R. Analogously, we define a vertex-weighted undirected graph
G = (V,E,wV) with a weight function for the vertices w : V → R. If the context
is clear, we omit the subscript of the weight function.

A wedge is defined as a triplet of nodes u, v, w ∈ V such that
{{u, v}, {v, w}} ⊆ E and {u,w} /∈ E. We denote such a wedge by (v, {u,w}),
and with W(G) the set of wedges in a graph G. Next, we define the weighted
wedge graph. The non-weighted version is also known as the Gallai graph [8].

Definition 1. Let G = (V,E,wE) be a edge-weighted graph. The weighted
wedge graph W (G) = (U,H,wV) consists of the vertex set U = {nuv | {u, v} ∈
E}, the edges set H = {{nuv, nvw} | (v, {u,w}) ∈ W(G)}, and the vertex weight
function wV (nuv) = wE({u, v}).

Temporal Networks. A temporal network G = (V, E) consists of a finite set
of nodes V , a possibly infinite set E of undirected temporal edges e = ({u, v}, t)
with u and v in V , u �= v, and availability time (or timestamp) t ∈ N. For ease of
notation, we may denote temporal edges ({u, v}, t) with (u, v, t). We use t(e) to
denote the availability time of e. We do not include a duration in the definition

Inferring Tie Strength in Temporal Networks 73

of temporal edges, but our approaches can easily be adapted for temporal edges
with duration parameters. We define the underlying static, weighted, aggregated
graph Aφ(G) = (V,E,w) of a temporal network G = (V, E) with the edges
set E = {{u, v} | ({u, v}, t) ∈ E} and edge weight function w : E → R. The
edge weights are given by the function φ : 2E → R such that w(e) = φ(Fe) with
Fe = {e | (e, t) ∈ E}. We discuss various weighting functions in Sect. 5.1. Finally,
we denote the lifetime of a temporal network G = (V, E) with T (G) = [tmin, tmax]
with tmin = min{t | e = (u, v, t) ∈ E} and tmax = max{t | e = (u, v, t) ∈ E}.

Strong Triadic Closure. Given a (static) graph G = (V,E), we can assign
one of the labels weak or strong to each edge in e ∈ E. We call such a labeling a
strong-weak labeling, and we specify the labeling by a subset S ⊆ E. Each edge
e ∈ S is called strong, and e ∈ E \ S weak. The strong triadic closure (STC) of
a graph G is a strong-weak labeling S ⊆ E such that for any two strong edges
{u, v} ∈ S and {v, w} ∈ S, there is a (weak or strong) edge {u,w} ∈ E. We
say that such a labeling fulfills the strong triadic closure. In other words, in a
strong triadic closure there is no pair of strong edges {u, v} and {v, w} such that
{u,w} /∈ E. Consequently, a labeling S ⊆ E fulfills the STC if and only if at
most one edge of any wedge in W(G) is in S, i.e., there is no wedge with two
strong edges [39]. The decision problem for the STC is denoted by MaxSTC
and is stated as follows: Given a graph G = (V,E) and a non-negative integer
k. Does there exist S ⊆ E that fulfills the strong triadic closure and |S| ≥ k?

See Fig. 1 in Appendix C.1 for examples of a temporal, aggregated, and wedge
graph, and the STC.

4 Weighted Strong Triadic Closure

Let G = (V,E,w) be a graph with edge weights reflecting the importance of the
edges. We determine a weighted strong triadic closure that takes the weights of
the edges by the importance given by w into account. To this end, let S ⊆ E be
a strong-weak labeling. The labeling S fulfills the weighted STC if (1) for any
two strong edges {u, v}, {v, w} ∈ S there is a (weak or strong) edge {u,w} ∈ E,
i.e., fulfills the unweighted STC, and (2) maximizes

∑
e∈S w(e).

The corresponding decision problem WeightedMaxSTC has as input a
graph G = (V,E) and U ∈ R, and asks for the existence of a strong-weak
labeling that fulfills the strong triadic closure and for which

∑
e∈S w(e) ≥ U .

Sintos and Tsaparas [39] showed that MaxSTC is NP-complete using a reduc-
tion from Maximum Clique. The reduction implies that we cannot approximate
the MaxSTC with a factor better than O(n1−ε). Because MaxSTC is a special
case of WeightedMaxSTC, these negative results also hold for the latter.

Instead of maximizing the weight of strong edges, we can equivalently mini-
mize the weight of weak edges resulting in the corresponding problem Weight-
edMinSTC1. Here, we search a strong-weak labeling that fulfills the STC and
1 We use WeightedMinSTC for the decision and the optimization problem in the

following if the context is clear.

74 L. Oettershagen et al.

minimizes the weight of the edges not in S. Both the maximation and the mini-
mization problems can be solved exactly using integer linear programming (ILP).
We provide the corresponding ILP formulations in Appendix A. The advantage
of WeightedMinSTC is that we can obtain a 2-approximation.

To approximate WeightedMinSTC in an edge-weighted graph G =
(V,E,w), we first construct the weighted wedge graph W (G) = (VW , EW , wVW

).
Solving the minimum weighted vertex cover (MWVC) problem on W (G) leads
then to a solution for the minimum weighted STC of G, where MWVC is defined
as follows. Given a vertex-weighted graph G = (V,E,w), the minimum weighted
vertex cover asks if there exists a subset of the vertices C ⊆ V such that each
edge e ∈ E is incident to a vertex v ∈ C and the sum

∑
v∈C w(v) is minimal.

Lemma 1. Solving the MWVC on W (G) leads to a solution of the minimum
weight STC on G.

Proof. It is known that a (non-weighted) vertex cover C ⊆ V (W) in W (G)
is in one-to-one correspondence to a (non-weighted) STC in G, see [39]. The
idea is the following. Recall that the wedge graph W (G) contains for each edge
{i, j} ∈ E(G) one vertex nij ∈ V (W). Two vertices nuv, nuw in W (G) are only
adjacent if there exists a wedge (u, {v, w}) ∈ W(G). If we choose the weak edges
E \ S to be the edges {i, j} ∈ E such that nij ∈ C each wedge has at least
one weak edge. Now for the weighted case, by definition, the weight of the STC∑

e∈E\S w(e) equals the weight of a minimum vertex cover
∑

v∈C wVW
(v). ��

Lemma 1 implies that an approximation for MWVC yields an approximation
for WeightedMinSTC. A well-known 2-approximation for the MWVC is the
pricing method which we briefly describe in the following. The idea of the pricing
algorithm is to assign to each edge e ∈ E a price p(e) initialized with zero. We
say a vertex is tight if the sum of the prices of its incident edges equals the
weight of the vertex. We iterate over the edges, and if for e = {u, v} both u and
v are not tight, we increase the price of p(e) until at least one of u or v is tight.
Finally, the vertex cover is the set of tight vertices. See, e.g., [22] for a detailed
introduction. In Sect. 5.3, we generalize the pricing algorithm for fully dynamic
updates of edge insertions and deletions, and vertex weight updates.

5 Strong Triadic Closure in Temporal Networks

We first present meaningful weighting functions to obtain an edge-weighted
aggregated graph from the temporal network. Next, we discuss the approxima-
tion of the WeightedMinSTC in the non-streaming case. Finally, we introduce
the 2-approximation streaming algorithm for temporal networks.

5.1 Weighting Functions for the Aggregated Graph

A key step in the computation of the STC for temporal networks is the aggrega-
tion and weighting of the temporal network to obtain a weighted static network.

Inferring Tie Strength in Temporal Networks 75

Recall that the weighting of the aggregated graph Aφ(G) is determined by the
weighting function φ : 2E → R such that w(e) = φ(Fe) with Fe = {e | (e, t) ∈ E}.
Naturally, the weighting function φ needs to be meaningful in terms of tie
strength; hence, we propose the following variants of φ.

– Contact frequency: We set φ(Fe) = |Fe|, i.e., the weight w(e) of edge e in
the aggregated graph equals the number of temporal edges between the end-
points of e. Contact frequency is a popular and common substitute for tie
strength [10,12,28].

– Exponential decay: The authors of [28] proposed to measure tie strength in
terms of the recency of contacts. We propose the following weighting variant to
capture this property where φ(Fe) =

∑|Fe|−1
i=1 e−(t(ei+1)−t(ei)) if |Fe| ≥ 2 and

else φ(Fe) = 0. Here, we interpret Fe as a chronologically ordered sequence
of the edges.

– Duration: Temporal networks can include durations as an additional param-
eter of the temporal edges, i.e., each temporal edge e has an assigned value
λ(e) ∈ N that describes, e.g., the duration of a contact [18]. The duration is
also commonly used as an indicator for tie strength [10]. We can define φ in
terms of the duration, e.g., φ(Fe) =

∑
f∈Fe

λ(f).

Other weighting functions are possible, e.g., combinations of the ones above or
weighting functions that include node feature similarities.

5.2 Approximation of WeightedMinSTC

Before introducing our streaming algorithm, we discuss how to compute and
approximate the WeightedMinSTC in a temporal network G = (V, E) in the
non-streaming case. Consider the following algorithm:

1. Compute Aφ(G) = (V,E,w) using an appropriate weighting function φ.
2. Compute the vertex-weighted wedge graph W (Aφ(G)) = (VW , EW , wVW

).
3. Compute an MWVC C on W (Aφ(G)).

The nodes nuv in C then correspond to the weak ties {u, v} in G. Depending
on how we solve step three, we can either compute an optimal or approximate
solution, e.g., using the pricing approximation for the MWVC, we obtain a 2-
approximation for WeightedMinSTC. Using the pricing approximation, we
have linear running time in the number of edges in the wedge graph. The problem
with this direct approach is its limited scalability. The reason is that the number
of vertices in the wedge graph |VW | = |E(Aφ(G))| and the number of edges equals
the number of wedges in A, which is bounded by O(|V |3), see [36], leading to a
total running time and space complexity of O(|V |3).

5.3 Streaming Algorithm for WeightedMinSTC

In the previous section, we saw that the size of the wedge graph could render the
direct approximation approach infeasible for large temporal networks. We use a

76 L. Oettershagen et al.

Fig. 2. Example for computing the weighted STC of a sliding time window.

sliding time window of size Δ ∈ N to compute the changing STC for each time
window to overcome this obstacle. The advantage is two-fold: (1) By considering
limited time windows, the size of the wedge graphs for which we have to compute
the MWVC is reduced because usually not all participants in a network have
contact in the same time window. (2) If we consider temporal networks spanning
a long (possibly infinite) time range, the relationships, and thus, tie strengths,
between participants change over time. Using the sliding time window approach,
we are able to capture such changes.

The following discussion assumes the weighting function φ to be linear in the
contact frequency, and we omit the subscript. But, our results are general and
can be applied to other weighting functions. Let τ be a time interval and let
A(G(τ)) be the aggregated graph of G(τ), i.e., the temporal network that only
contains edges starting and arriving during the interval τ . For a time window
size of Δ ∈ N, we define the sliding time window τt at timestamp t with t ∈
[1, T (G) − Δ + 1] as τt = [t, t + Δ − 1].

Figure 2 shows an example of our streaming approach for Δ = 3. The first
seven timestamps of temporal network G are shown as static slices. The time
window τ2 of size three starts at t = 2. First, the static graph A(G(τ2)) is
aggregated, and the wedge graph W (A(G(τ2))) is constructed. The wedge graph
is used to compute the weighted STC. After this, the time window is moved
one time stamp further, i.e., it starts at t = 3 and ends at t = 5, and the
aggregation and STC computation are repeated (not shown in Fig. 2). In the
following, we describe how the aggregated and wedge graphs are updated when
the time window is moved forward, how the MWVC is updated for the changes
of the wedge graph, and how the final streaming algorithm proceeds.

Updating the Aggregated and Wedge Graphs. Let τt1 and τt2 be to
consecutive time windows, i.e., t2 = t1 + 1. Furthermore, let Ai = A(G(τti))
and Wi = W (A(G(τti))) with i ∈ {1, 2} be the corresponding aggregated and
wedge graphs. The sets of edges appearing in the time windows G(τt1) and G(τt2)
might differ. For each temporal edge that is in G(τt1) but not in G(τt2), we reduce
the weight of the corresponding edge in the aggregated graph A1. If the weight
reaches zero, we delete the edge from A1. Analogously, for each temporal edge
that is in G(τt2) but not in G(τt1), we increase the weight of the corresponding
edge in A1. If the edge is missing, we insert it. This way, we obtain A2 from A1 by
a sequence of update operations. Now, we map these edge removals, additions,

Inferring Tie Strength in Temporal Networks 77

and edge weight changes between A1 and A2 to updates on W1 to obtain W2.
For each edge removal (addition) e = {u, v} between A1 and A2, we remove
(add) the corresponding vertex (and incident edges) in W1. We also have to add
or remove edges in W1 depending on newly created or removed wedges. More
precisely, for every new wedge in A1, we add an edge between the corresponding
vertices in W1, and for each removed wedge, i.e., by deleting an edge or creating
a new triangle, in A1, we remove the edges between the corresponding vertices in
W1. Furthermore, for each edge weight change between A1 and A2, we decrease
(increase) the weight of the corresponding vertex in W1. Hence, the wedge graph
W1 is edited by a sequence σ of vertex and edge insertions, vertex and edge
removals, and weight changes to obtain W2. Because we only need to insert or
remove a vertex in the wedge graph W1 if the degree changes between zero and a
positive value, we do not consider vertex insertion and removal in W1 as separate
operations in the following. The number of vertices and edges in W1 is bounded
by the current numbers of edges and wedges in A1. Furthermore, we bound the
number of changes in W1 after inserting or deleting edges from A1.

Lemma 2. The number of new edges in W1 after inserting {v, w} into A1 is
at most d(v) + d(w), and the number of edges removed from W is at most
min(d(v), d(w)). The number of new edges in W1 after removing {v, w} from
A1 is at most min(d(v), d(w)), and the number of edges removed from W1 is at
most d(v) + d(w).

Updating the MWVC. If the sliding time window moves forward, the current
wedge graph W is updated by the sequence σ. We consider the updates occur-
ring one at a time and maintain a 2-approximation of an MWVC in W . Algo-
rithm 1 shows our dynamic pricing approximation based on the non-dynamic
2-approximation for the MWVC. The algorithm supports the needed opera-
tions of inserting and deleting edges, as well as increasing and decreasing vertex
weights. When called for the first time, an empty vertex cover C and wedge
graph W are initialized (line 1f.), which will be maintained and updated in sub-
sequent calls of the algorithm. In the following, we show that our algorithm gives
a 2-approximation of the MWVC after each of the update operations.

Definition 2. We assign to each edge e ∈ E(W) a price p(e) ∈ R. We call
prices fair, if s(v) =

∑
e∈δ(v) p(e) ≤ w(v) for all v ∈ V (W). And, we say a

vertex v ∈ V (W) is tight if s(v) = w(v).

Let W be the current wedge graph and σ a sequence of dynamic update
requests, i.e., inserting or deleting edges and increasing or decreasing vertex
weights in W . Algorithm 1 calls for each request r ∈ σ a corresponding procedure
to update W and the current vertex cover C (line 35f.). We show that after each
processed request, the following invariant holds.

Invariant 1. The prices are fair, i.e., s(v) ≤ w(v) for all vertices v ∈ V (W),
and C ⊆ V (W) is a vertex cover.

Lemma 3. If Invariant 1 holds, after calling one of the procedures InsEdge,
DelEdge, DecWeight, or IncWeight Invariant 1 still holds.

78 L. Oettershagen et al.

Theorem 1. Algorithm 1 maintains a vertex cover with w(C) ≤ 2w(OPT).

Proof. Lemma 3 ensures that C is a vertex cover and after each dynamic update
the prices are fair, i.e.,

∑
e∈δ(v) p(e) ≤ w(v). Furthermore, (1) for an optimal

MWVC OPT and fair prices, it holds that
∑

e∈E(W) p(e) ≤ w(OPT), and
(2) for the vertex cover C and the computed prices, it holds that 1

2w(C) ≤∑
e∈E(W) p(e). Hence, the result follows. ��
We now discuss the running times of the dynamic update procedures. For

each of the four operations, the running time is in O(F), i.e., the size of the set
for which we call the Update procedure.

Theorem 2. Let dmax be the largest degree of any vertex in V (W). The running
time of InsEdge is in O(1), and DelEdge is in O(dmax). DecWeight is in
O(d2max), and IncWeight is in O(dmax).

Algorithm 1: Dynamic Pricing Approximation
Input: Sequence σ of dynamic update requests
Output: Algorithm maintains a 2-approximation of MWVC C

1 Initialize and maintain vertex cover C
2 Initialize and maintain wedge graph W

3 Procedure Update(set of edges F):
4 foreach e = {u, v} ∈ F do
5 if u or v is tight then
6 continue

7 increase p(e) until u or v tight
8 add newly tight vertices to C

9 Procedure DecWeight(v, wn):
10 w(v) ← wn

11 C ← C \ {v}
12 F ′ ← δ(v)
13 initialize F = ∅
14 foreach e = {v, x} ∈ F ′ do
15 p(e) ← 0
16 if x not tight then
17 C ← C \ {x}
18 F ← F ∪ {{x, y} ∈ E(G) |

y is not tight } ∪ {e}

19 Update(F)

20 Procedure
DelEdge(ed = {u, v} ∈ E(W)):

21 E(W) ← E(W) \ {ed}
22 update s(u) and s(v)
23 C ← C \ ed
24 F ← {{x, y} ∈ E(W) | y ∈

ed and x is not tight}
25 Update(F)

26 Procedure InsEdge(en = {u, v}):
27 E(W) ← E(W) ∪ {en}
28 Update({en})

29 Procedure IncWeight(v, wn):
30 w(v) ← wn

31 if v ∈ C then
32 C ← C \ {v}
33 F ← {{x, v} ∈ E(W) |

x is not tight}
34 Update(F)

35 foreach update request r ∈ σ do
36 Call the to r corresponding funct.

f ∈ {InsEdge,DelEdge,
IncWeight,DecWeight}.

Inferring Tie Strength in Temporal Networks 79

The Streaming Algorithm. Algorithm 2 shows the final streaming algorithm
that expects as input a stream of chronologically ordered temporal edges and the
time window size Δ. As long as edges are arriving, it iteratively updates the time
windows and uses Algorithm 1 to compute the MinWeightSTC approximation
for the current time window τt with t ∈ [1, T (G) − Δ]. Algorithm 2 outputs the
strong edges based on the computed vertex cover Ct in line 9. It skips lines 7–9
if there are no changes in Eτ .

Theorem 3. Let dW
t (dA

t) be the maximal degree in W (A, resp.) after iteration
t of the while loop in Algorithm 2. The running time of iteration t is in O(ξ ·
dA

t · (dW
t)2), with ξ = max{|E−

t |, |E+
t |}.

Algorithm 2: Streaming algorithm for the STC in temporal networks
Input: Stream of edges arriving in chronological order, Δ ∈ N

Output: 2-Approx. of MinWeightSTC for each time window of size Δ

1 Initialize ts = 1, te = ts + Δ − 1
2 Initialize empty list of edges Eτ and empty aggregated graph A
3 while temporal edges are incoming do
4 Update Eτ for time window τt = [ts, te] such that ∀e ∈ Eτ it holds

t(e) ∈ τt

5 Let E−
τ (E+

τ) be the edges removed from (inserted to) Eτ

6 if E−
τ �= ∅ or E+

τ �= ∅ then
7 Use E−

τ and E+
τ to update A and to obtain the update sequence σt

8 Call Algorithm 1 with σt to obtain the the MWVC approximation
Ct

9 Output St = {{u, v} ∈ E(A) | nu,v �∈ Ct}
10 Move time window forward by increasing ts and te

6 Experiments

We compare the weighted and unweighted STC on real-world temporal networks
and evaluate the efficiency of our streaming algorithm. We use the following
algorithms for computing the weighted STC.

– ExactW is the weighted exact computation using the ILP (see Appendix A).
– Pricing uses the non-dynamic pricing approximation in the wedge graph.
– DynAppr is our dynamic streaming Algorithm 2.
– STCtime is a baseline streaming algorithm that recomputes the MWVC with

the pricing method for each time window.

Moreover, we use the following algorithms for computing the non-weighted STC.

80 L. Oettershagen et al.

– ExactNw is the exact computation using an ILP (see [1]).
– Matching is the matching-based approximation of the unweighted vertex

cover in the (non-weighted) wedge graph, see [39].
– HighDeg is a O(log n) approximation by iteratively adding the highest degree

vertex to the vertex cover, and removing all incident edges, see [39].

We implemented all algorithms in C++, using GNU CC Compiler 9.3.0 with the
flag --O2 and Gurobi 9.5.0 with Python 3 for solving ILPs. All experiments ran
on a workstation with an AMD EPYC 7402P 24-Core Processor with 3.35 GHz
and 256 GB of RAM running Ubuntu 18.04.3 LTS, and with a time limit of
twelve hours. Our source code is available at https://gitlab.com/tgpublic/tgstc.

Data Sets. Table 1 shows the statistics of the real-world data set used for our
experiments. Note that for a wedge graph W of an aggregated graph A, |V (W)| =
|E(A)|, and the number of edges |E(W)| equals the number of wedges in A. For
Reddit and StackOverflow the size of |E(W)| and the number of triangles are
estimated using vertex sampling from [43]. Further details of the data sets are
available in Appendix B.

Table 1. Statistics of the data sets (*estimated).

Data set Properties

|V | |E| |T (G)| |V (W)| |E(W)| #Triangles Domain Ref.

Malawi 86 102 293 43 438 347 2 254 441 Human contact [34]

Copresence 219 1 283 194 21 536 16 725 549 449 713 002 Human contact [9]

Primary 242 125 773 3 100 8 317 337 504 103 760 Human contact [40]

Enron 87 101 1 147 126 220 312 298 607 45 595 540 1 234 257 Communication [23]

Yahoo 100 001 3 179 718 1 498 868 594 989 18 136 435 590 396 Communication [37]

StackOverflow 2 601 977 63 497 050 41 484 769 28 183 518 *33 898 217 240 *110 670 755 Social network [35]

Reddit 5 279 069 116 029 037 43 067 563 96 659 109 *86 758 743 921 *901 446 625 Social network [15]

6.1 Comparing Weighted and Non-weighted STC

First, we count the number of strong edges and the mean edge weight of strong
edges of the first five data sets. StackOverflow and Reddit are too large for
the direct computation. We use the contact frequency as the weighting func-
tion for the aggregated networks. Table 2a shows the percentage of strong edges
computed using the different algorithms. The exact computation for Enron and
Yahoo could not be finished within the given time limit. For the remaining data
sets, we observe for the exact solutions that the number of strong edges in the
non-weighted case is higher than for the weighted case. This is expected, as for
edge weights of at least one, the number of strong edges in the non-weighted
STC is an upper bound for the number of strong edges in the weighted STC.
However, when we look at the quality of the STC by considering how the strong
edge weights compare to the empirical strength of the connections, we see the
benefits of our new approach.

https://gitlab.com/tgpublic/tgstc

Inferring Tie Strength in Temporal Networks 81

Table 2. Comparison of the weighted and non-weighted STC (OOT—out of time)

(a) Percentage of strong edges in aggregated graph.

Data set Weighted Non-weighted

ExactW Pricing ExactNw Matching HighDeg

Malawi 30.83 29.97 37.75 27.38 36.31

Copresence 31.12 21.37 37.95 29.20 35.31

Primary 27.17 21.94 27.83 18.99 27.35

Enron OOT 2.75 OOT 3.28 4.61

Yahoo OOT 9.86 OOT 9.98 14.29

(b) Mean edge weights.

Data set Weighted Non-weighted

ExactW Pricing ExactNw Matching HighDeg

Weak Strong Weak Strong Weak Strong Weak Strong Weak Strong

Malawi 23.87 902.46 24.40 926.58 218.08 421.27 255.33 399.48 242.84 385.92

Copresence 20.30 78.32 46.13 189.31 27.22 56.56 58.85 120.07 57.13 112.63

Primary 2.73 20.48 6.58 45.50 3.34 18.49 9.32 39.88 6.19 38.84

Enron OOT OOT 3.69 9.33 OOT OOT 3.77 6.01 3.76 5.50

Yahoo OOT OOT 4.37 14.23 OOT OOT 4.78 10.42 4.60 9.84

An STC labeling with strong edges with high average weights and weak edges
with low average weights is favorable. The mean weights of the strong and weak
edges are shown in Table 2b. Pricing leads to the highest mean edge weight
for strong edges in almost all data sets. The mean weight of the strong edges
for the exact methods is always significantly higher for ExactW than ExactNw.
The reason is that ExactNw does not consider the edge weights. Furthermore, it
shows the effectiveness of our approach and indicates that the empirical a priori
knowledge given by the edge weights is successfully captured by the weighted
STC. To further verify this claim, we evaluated how many of the highest-weight
edges are classified as strong. To this end, we computed the precision and recall
for the top-100 weighted edges in the aggregated graph and the set of strong
edges. Let H be the set of edges with the top-100 highest degrees. The precision
is defined as p = |H∩S|/|S| and the recall as r = |H∩S|/|H|. Figure 3 shows the
results. Note that the y-axis of precision uses a logarithmic scale. The results
show that the algorithms for the weighted STC lead to higher precision and
recall values for all data sets.

6.2 Efficiency of the Streaming Algorithm

In order to evaluate our streaming algorithm, we measured the running times on
the Enron, Yahoo, StackOverflow, and Reddit data sets with time window sizes Δ

82 L. Oettershagen et al.

ExactW Pricing ExactNw Matching HighDeg

Mala
wi

Cop
rese

nce

Pri
ma

ry
Enr

on
Yah

oo

10−2

100

P
re
ci
si
on

Mala
wi

Cop
rese

nce

Pri
ma

ry
Enr

on
Yah

oo
0.00

0.25

0.50

0.75

R
ec
al
l

Fig. 3. Precision and recall for classifying the top-100 highest weighted edges in the
aggregated graph as strong edges. The y-axis of precision is logarithmic.

Table 3. Running times in seconds of the streaming alg. (OOT—out of time).

Data set Δ = 1 hour Δ = 1 day Δ = 1 week

DynAppr STCtime DynAppr STCtime DynAppr STCtime

Enron 264.74 89.18 306.13 1 606.09 352.01 20 870.77

Yahoo 15.99 767.40 91.46 OOT 144.52 OOT

StackOverflow 170.38 2 298.58 971.22 OOT 16 461.53 OOT

Reddit 1 254.66 13 244.84 37 627.79 OOT OOT OOT

of one hour, one day, and one week, respectively. Table 3 shows the results. In
almost all cases, our streaming algorithm DynAppr beats the baseline STCtime
with running times that are often orders of magnitudes faster. The reason is that
STCtime uses the non-dynamic pricing approximation, which needs to consider
all edges of the current wedge graph in each time window. Hence, the baseline
is often not able to finish the computations within the given time limit, i.e., for
seven of the twelve experiments, it runs out of time. The only case in which the
baseline is faster than DynAppr is for the Enron data set and a time window size of
one hour. Here, the computed wedge graphs of the time windows are, on average,
very small (see Fig. 2 (a) in Appendix C.2), and the dynamic algorithm can not
make up for its additional complexity due to calling Algorithm 1. However, we
also see for Enron that for larger time windows, the running times of the baseline
strongly increase, and for DynAppr, the increase is slight. In general, the number
of vertices and edges in the wedge graphs increases with larger time window
sizes Δ (see Fig. 2 in Appendix C.2). Hence, the running times increase for both
algorithms with increasing Δ. In the case of Reddit and a time window size of
one week, the sizes of the wedge graphs are too large to compute all solutions
within the time limit, even for DynAppr.

7 Conclusion and Future Work

We generalized the STC to a weighted version to include a priori knowledge
in the form of edge weights representing empirical tie strength. We applied our

Inferring Tie Strength in Temporal Networks 83

new STC variant to temporal networks and showed that we obtained meaningful
results. Our main contribution is our 2-approximative streaming algorithm for
the weighted STC in temporal networks. We empirically validated its efficiency
in our evaluation. Furthermore, we introduced a fully dynamic 2-approximation
of the MWVC problem with efficient update routines as part of our streaming
algorithm. It might be of interest in itself.

As an extension of this work, discussion of further variants of the STC can
be interesting. For example, [39] introduced variants with edge additions and
multiple relationship types. Efficient streaming algorithms for weighted versions
of these variants are planned as future work.

References

1. Adriaens, F., De Bie, T., Gionis, A., Lijffijt, J., Matakos, A., Rozenshtein, P.:
Relaxing the strong triadic closure problem for edge strength inference. Data Min.
Knowl. Disc. 34, 1–41 (2020)

2. Ahmadian, S., Haddadan, S.: A theoretical analysis of graph evolution caused by
triadic closure and algorithmic implications. In: International Conference on Big
Data (Big Data), pp. 5–14. IEEE (2020)

3. Bhattacharya, S., Henzinger, M., Italiano, G.F.: Deterministic fully dynamic data
structures for vertex cover and matching. J. Comput. 47(3), 859–887 (2018)

4. Candia, J., González, M.C., Wang, P., Schoenharl, T., Madey, G., Barabási, A.L.:
Uncovering individual and collective human dynamics from mobile phone records.
J. Phys. A Math. Theor. 41(22), 224015 (2008)

5. Chen, J., Molter, H., Sorge, M., Suchý, O.: Cluster editing in multi-layer and
temporal graphs. In: International Symposium on Algorithms and Computation,
ISAAC, LIPIcs, vol. 123, pp. 24:1–24:13. Schloss Dagstuhl-LZI (2018)

6. Easley, D.A., Kleinberg, J.M.: Networks, Crowds, and Markets - Reasoning About
a Highly Connected World. Cambridge University Press, Cambridge (2010)

7. Eckmann, J.P., Moses, E., Sergi, D.: Entropy of dialogues creates coherent struc-
tures in e-mail traffic. Proc. Natl. Acad. Sci. 101(40), 14333–14337 (2004)

8. Gallai, T.: Transitiv orientierbare graphen. Acta M. Hung. 18(1–2), 25–66 (1967)
9. Génois, M., Barrat, A.: Can co-location be used as a proxy for face-to-face contacts?

EPJ Data Sci. 7(1), 11 (2018)
10. Gilbert, E., Karahalios, K.: Predicting tie strength with social media. In: Pro-

ceedings of the 27th International Conference on Human Factors in Computing
Systems, CHI, pp. 211–220. ACM (2009)

11. Gilbert, E., Karahalios, K., Sandvig, C.: The network in the garden: an empirical
analysis of social media in rural life. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 1603–1612 (2008)

12. Granovetter, M.S.: The strength of weak ties. A. J. Soc. 78(6), 1360–1380 (1973)
13. Grüttemeier, N., Komusiewicz, C.: On the relation of strong triadic closure and

cluster deletion. Algorithmica 82, 853–880 (2020)
14. Hanneke, S., Xing, E.P.: Discrete temporal models of social networks. In: Airoldi,

E., Blei, D.M., Fienberg, S.E., Goldenberg, A., Xing, E.P., Zheng, A.X. (eds.)
ICML 2006. LNCS, vol. 4503, pp. 115–125. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73133-7 9

https://doi.org/10.1007/978-3-540-73133-7_9
https://doi.org/10.1007/978-3-540-73133-7_9

84 L. Oettershagen et al.

15. Hessel, J., Tan, C., Lee, L.: Science, askscience, and badscience: on the coexis-
tence of highly related communities. In: Proceedings of the International AAAI
Conference on Web and Social Media, vol. 10, pp. 171–180 (2016)

16. Himmel, A., Molter, H., Niedermeier, R., Sorge, M.: Adapting the bron-kerbosch
algorithm for enumerating maximal cliques in temporal graphs. Soc. Netw. Anal.
Min. 7(1), 35:1–35:16 (2017)

17. Holme, P., Edling, C.R., Liljeros, F.: Structure and time evolution of an internet
dating community. Social Netw. 26(2), 155–174 (2004)

18. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
19. Huang, H., Tang, J., Wu, S., Liu, L., Fu, X.: Mining triadic closure patterns in

social networks. In: International Conference on World Wide Web, WWW, pp.
499–504. ACM (2014)

20. Kahanda, I., Neville, J.: Using transactional information to predict link strength
in online social networks. In: Proceedings of the International AAAI Conference
on Web and Social Media, vol. 3, pp. 74–81 (2009)

21. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for
temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

22. Kleinberg, J., Tardos, E.: Algorithm Design. Pearson Education, Noida (2006)
23. Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification

research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30115-8 22

24. Konstantinidis, A.L., Nikolopoulos, S.D., Papadopoulos, C.: Strong triadic closure
in cographs and graphs of low maximum degree. Theor. Comp. Sci. 740, 76–84
(2018)

25. Konstantinidis, A.L., Papadopoulos, C.: Maximizing the strong triadic closure in
split graphs and proper interval graphs. Disc. Appl. Math. 285, 79–95 (2020)

26. Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science
311(5757), 88–90 (2006)

27. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the mod-
eling of interactions over time. Soc. Netw. Anal. Min. 8(1), 61:1–61:29 (2018)

28. Lin, N., Dayton, P.W., Greenwald, P.: Analyzing the instrumental use of relations
in the context of social structure. Sociol. Meth. Res. 7(2), 149–166 (1978)

29. Matakos, A., Gionis, A.: Strengthening ties towards a highly-connected world. Data
Min. Knowl. Disc. 36(1), 448–476 (2022)

30. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, pp. 29–42 (2007)

31. Moinet, A., Starnini, M., Pastor-Satorras, R.: Burstiness and aging in social tem-
poral networks. Phys. Rev. Lett. 114(10), 108701 (2015)

32. Oettershagen, L., Konstantinidis, A.L., Italiano, G.F.: Inferring tie strength in
temporal networks (2022). https://arxiv.org/abs/2206.11705

33. Oettershagen, L., Kriege, N.M., Morris, C., Mutzel, P.: Classifying dissemination
processes in temporal graphs. Big Data 8(5), 363–378 (2020)

34. Ozella, L., et al.: Using wearable proximity sensors to characterize social contact
patterns in a village of rural malawi. EPJ Data Sci. 10(1), 46 (2021)

35. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Pro-
ceedings of the tenth ACM International Conference on Web Search and Data
Mining, pp. 601–610 (2017)

36. Pyatkin, A., Lykhovyd, E., Butenko, S.: The maximum number of induced open
triangles in graphs of a given order. Optim. Lett. 13(8), 1927–1935 (2019)

https://doi.org/10.1007/978-3-540-30115-8_22
https://arxiv.org/abs/2206.11705

Inferring Tie Strength in Temporal Networks 85

37. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAI (2015). https://networkrepository.com/

38. Rozenshtein, P., Tatti, N., Gionis, A.: Inferring the strength of social ties: a
community-driven approach. In: Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1017–1025.
ACM (2017)

39. Sintos, S., Tsaparas, P.: Using strong triadic closure to characterize ties in social
networks. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1466–1475 (2014)

40. Stehlé, J., et al.: High-resolution measurements of face-to-face contact patterns in
a primary school. PloS One 6(8), e23176 (2011)

41. Tantipathananandh, C., Berger-Wolf, T.Y.: Finding communities in dynamic social
networks. In: International Conference on Data Mining, ICDM, pp. 1236–1241.
IEEE (2011)

42. Wei, H.T., Hon, W.K., Horn, P., Liao, C.S., Sadakane, K.: An O(1)-
approximation algorithm for dynamic weighted vertex cover with soft capacity.
In: Approximation, Random, and Combinatorial Optics Algorithm and Techniques
(APPROX/RANDOM 2018). LIPIcs, vol. 116, pp. 27:1–27:14. Schloss Dagstuhl-
LZI (2018)

43. Wu, B., Yi, K., Li, Z.: Counting triangles in large graphs by random sampling.
IEEE Trans. Knowl. Data Eng. 28(8), 2013–2026 (2016)

44. Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social
networks. In: International Conference on World Wide Web, WWW, pp. 981–990.
ACM (2010)

45. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding
by modeling triadic closure process. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, pp. 571–578. AAAI Press (2018)

https://networkrepository.com/

Joint Learning of Hierarchical
Community Structure and Node

Representations: An Unsupervised
Approach

Ancy Sarah Tom1(B), Nesreen K. Ahmed2, and George Karypis1

1 University of Minnesota, Twin Cities, MN, USA
{tomxx030,karypis}@umn.edu

2 Intel Labs, Santa Clara, CA, USA
nesreen.k.ahmed@intel.com

Abstract. Graph representation learning has demonstrated improved
performance in tasks such as link prediction and node classification across
a range of domains. Research has shown that many natural graphs can
be organized in hierarchical communities, leading to approaches that
use these communities to improve the quality of node representations.
However, these approaches do not take advantage of the learned repre-
sentations to also improve the quality of the discovered communities and
establish an iterative and joint optimization of representation learning
and community discovery. In this work, we present Mazi, an algorithm
that jointly learns the hierarchical community structure and the node
representations of the graph in an unsupervised fashion. To account for
the structure in the node representations, Mazi generates node repre-
sentations at each level of the hierarchy, and utilizes them to influence
the node representations of the original graph. Further, the communities
at each level are discovered by simultaneously maximizing the modular-
ity metric and minimizing the distance between the representations of a
node and its community. Using multi-label node classification and link
prediction tasks, we evaluate our method on a variety of synthetic and
real-world graphs and demonstrate that Mazi outperforms other hierar-
chical and non-hierarchical methods.

Keywords: Networks · Network embedding · Unsupervised learning ·
Graph representation learning · Hierarchical clustering · Community
detection

1 Introduction

Representation learning in graphs is an important field, demonstrating good per-
formance in many tasks in diverse domains, such as social network analysis,

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26390-3 6.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 86–103, 2023.
https://doi.org/10.1007/978-3-031-26390-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_6
https://doi.org/10.1007/978-3-031-26390-3_6

Joint Learning of Hierarchical Community Structure 87

user modeling and profiling, brain modeling, and anomaly detection [7]. Graphs
arising in many domains are often characterized by a hierarchical community
structure [13], where the communities (i.e., clusters) at the lower (finer) levels of
the hierarchy are better connected than the communities at the higher (coarser)
levels of the hierarchy. For instance, in a large company, the graph that captures
the relations (edges) between the different employees (nodes) will tend to form
communities at different levels of granularity. The communities at the lowest lev-
els will be tightly connected corresponding to people that are part of the same
team or project, whereas the communities at higher levels will be less connected
corresponding to people that are part of the same product line or division.

In recent years, researchers have conjectured that when present, the hierarchi-
cal community structure of a graph can be used as an inductive bias in unsuper-
vised node representation learning. This has led to various methods that learn
node representations by taking into account a graph’s hierarchical community
structure. HARP [3] advances from the coarsest level to the finest level to learn the
node representations of the graph at the coarser level, and then uses it as an initial-
ization to learn the representations of the finer level graph. LouvainNE [1] uses a
modularity-based [13] recursive decomposition approach to generate a hierarchy
of communities. For each node, it then proceeds to generate representations for
the different sub-communities that it belongs to. These representations are sub-
sequently aggregated in a weighted fashion to form the final node representation,
wherein the weights progressively decrease with coarser levels in the hierarchy.
SpaceNE [11] constructs sub-spaces within the feature space to represent differ-
ent levels of the hierarchical community structure, and learns node representa-
tions that preserves proximity between vertices as well as similarities within com-
munities and across communities. Further, in recent times, certain GNN-based
approaches [10,18] have also been proposed which exploit the hierarchical com-
munity structure while learning node representations. However, these methods
use supervised learning and require more information to achieve good results.

Though all of the above methods are able to produce better representations
by taking into account the hierarchical community structure, the information
flow is unidirectional—from the hierarchical communities to the node repre-
sentations. We postulate that the quality of the node representations can be
improved if we allow information to also flow in the other direction—from the
node representations to hierarchical communities—which can be used to improve
the discovered hierarchical communities. Moreover, this allows for an iterative
and joint optimization of both the hierarchical community structure and the
representation of the nodes.

We present Mazi1, an algorithm that performs a joint unsupervised learning
of the hierarchical community structure of a graph and the representations of its
nodes. The key difference between Mazi and prior methods is that the commu-
nity structure and the node representations help improve each other. Mazi esti-
mates node representations that are designed to encode both local information
and information about the graph’s hierarchical community structure. By tak-
ing into account local information, the estimated representations of nodes that

1 Mazi is Greek for together.

88 A. S. Tom et al.

are topologically close will be similar. By taking into account the hierarchical
community structure, the estimated representations of nodes that belong to the
same community will be similar and that similarity will progressively decrease
for nodes that are together only in progressively coarser-level communities.

Mazi forms successively smaller graphs by coarsening the original graph using
the hierarchical community structure such that the communities at different
levels represent nodes in the coarsened graphs. Then, iterating over all levels,
Mazi learns node representations at each level by maximizing the proximity of
the representation of a node to that of its adjacent nodes while also drawing it
closer to the representation of its community. Furthermore, at each level, Mazi
learns the communities by taking advantage both of the graph topology and the
node representations. This is done by simultaneously maximizing the modularity
of the communities, maximizing the affinity among the representations of near-by
nodes by using a Skip-gram [12] objective, and minimizing the distance between
the representations that correspond to a node and its parent in the next-level
coarser graph.

We evaluate Mazi on the node classification and the link prediction tasks
on synthetic and real-world graphs. Our experiments demonstrate that Mazi
achieves an average gain of 215.5% and 9.3% over competing approaches on the
link prediction and node classification tasks, respectively. The contributions of
our paper are the following:

1. We develop an unsupervised approach to simultaneously organize a graph
into hierarchical communities and to learn node representations that account
for that hierarchical community structure. We achieve this by introducing
and jointly optimizing an objective function that contains (i) modularity-
and skip-gram-based terms for each level of the hierarchy and (ii) inter-level
node-representation consistency terms.

2. We present a flexible synthetic generator for graphs that contain hierarchically
structured communities and community-derived node properties. We use this
generator to study the effectiveness of different node representation learning
algorithms.

3. We show that our method learns node representations that outperform com-
peting approaches on synthetic and real-world datasets for the node classifi-
cation and link prediction tasks.

2 Definitions and Notation

Let G = (V,E) be an undirected graph where V is its set of n nodes and E is its
set of m edges. Let X ∈ R

n×d store the representation vector xi at the ith row
for vi ∈ V . A community refers to a group of nodes that are better connected
with each other than with the rest of the nodes in the graph. A graph is said
to have a community structure, if it can be decomposed into communities. In
many natural graphs, communities often exist at different levels of granularity.
At the upper (coarser) levels, there is a small number of large communities,

Joint Learning of Hierarchical Community Structure 89

Table 1. Summary of notation.

Notation Description

l A level in the hierarchical structure

L The number of levels in the hierarchical communities

G The graph G = (V, E, W), where V is the set of n nodes, E is the set
of m edges, and W stores the edge weights

vi A vertex in G

deg(vi) The degree of node vi

X The node representations of G

C A community decomposition of G

H The community membership indicator vector of G

Ci A community in C

degint(Ci) The internal degree of community Ci, i.e., the number of edges that
connect nodes in Ci to other nodes in Ci

degext(Ci) The external degree of community Ci, i.e., the number of edges that
connect Ci to nodes in other communities

deg(Ci) The overall degree of community Ci, i.e., the sum of degint(Ci) and
degext(Ci)

ID An array containing the vertex internal degrees

ED An array containing the vertex external degrees

Q The modularity of G for a given C (cf. Eq. 1)

Gl The graph Gl = (V l, El, W l) at level l

Xl The node representations at level l

Hl The community structure at level l

d The dimension of Xl, where l ∈ 1, . . . , L

nel The number of epochs at level l

lrl The learning rate at level l

k The context size extracted from walks

wl The length of random-walk

r The number of walks per node

α The weight of the contribution of node neighborhood to the overall loss

β The weight of the contribution of proximity to a node’s community to
the overall loss

γ The weight of the contribution of Q to the overall loss

whereas at the lower (finer) levels, there is a large number of small communities.
In general, the communities at the coarser levels are less well-connected than the
finer level communities. When the communities at different levels of granularity
form a hierarchy, that is, a community at a particular level is fully contained
within a community at the next level up, then we will say that the graph has a
hierarchical community structure.

Let C = {C0, . . . , Ck−1}, with V = ∪iCi and Ci ∩Cj = ∅ for 0 ≤ i, j < k be a
k-way community decomposition of G with Ci indicating its ith community. Let
H be the community membership indicator vector where 0 ≤ H[vi] < k indicates
vi’s community. Given a k-way community decomposition C of Gl = (V l, El),
its coarsened graph Gl+1 = (V l+1, El+1) is obtained by creating k vertices—one

90 A. S. Tom et al.

for each community in C—and adding an edge (vi, vj) ∈ El+1 if there are edges
(up, uq) ∈ El such that up ∈ Ci and uq ∈ Cj . The weight of the (vi, vj) edge is
set equal to the sum of the weights of all such (up, uq) edges in El. In addition,
each vi ∈ V l+1 is referred to as the parent node to all u ∈ Ci. Given C, the
modularity of G is defined as

Q =
1

2m

(∑
Ci∈C

(
degint(Ci) − deg(Ci)2

2m

))
. (1)

Q measures the difference between the actual number of edges within Ci and
the expected number of edges within Ci, aggregated over all Ci ∈ C. Q ranges
from −0.5, when all the edges in G are between Ci and Cj , where i �= j, and
approaches 1.0 if all the edges are within any Ci and k is large.

Let the hierarchical community structure of G, with L levels, be represented
by a sequence of successively coarsened graphs, denoted by G,G2, · · · , GL, such
that |V | > |V 2| > · · · > |V L|, wherein at each l ∈ L, the communities in Gl are
collapsed to form the nodes in Gl+1. Every vl

i ∈ V l is collapsed to a single parent
node, vl+1

j , in the next level coarser graph, Gl+1. Let us denote a model that
takes the hierarchical community structure into account as hierarchical models
and those that do not as flat models. Finally, we summarize all the notations in
Table 1.

Fig. 1. A visualization of a synthetic 3K-node graph with a hierarchical community
structure created by the proposed generator in Sect. 4. A common-ratio of 3.0 and
a max. degree of 7.5 are used. A branching factor of 5 is used except at the finest
level, which uses 30. Nodes in the hierarchical community structure are depicted using
communities. A community in Level 3 and a sub-community in Level 2 are marked. A
node’s Level 1 community is itself.

Joint Learning of Hierarchical Community Structure 91

3 Mazi

Given a graph G, Mazi seeks to jointly learn its node representations and its hier-
archical community structure organized in L levels. Mazi coarsens the graphs
at all levels of the hierarchy and learns representations for all nodes. At any
given level, the node representation is learned such that it is similar to those of
the nodes in its neighborhood, to its community and to the nodes it serves as
a community to. This ensures the node representations at all levels align with
the hierarchical community structure. Further, the communities at all levels are
learned by utilizing node representations along with the graph topology. Mazi
utilizes Skip-gram to model the similarity in the representations of a node and
its neighbors. To model the similarity in the representations of node and its
associated community, Mazi minimizes the distance between the respective two
representations. Finally, to learn the communities, Mazi maximizes the modu-
larity metric along with the above objectives.

Figure 1 illustrates a graph with a hierarchical community structure. From
the figure, we see that the original graph (nodes of the graph is level 1 in the
hierarchical structure) contains 5 large communities (level 3) in its coarsest level,
each of which can be further split into 5 sub-communities (level 2). The nodes
in the graph are marked such that the figure illustrates the level it belongs to
in the hierarchical community structure. Mazi learns the representation of a
node belonging to the level 2 community such that it will be similar to other
nodes in that community over others. Furthermore, it will also be similar in
representation to the nodes in its upper-level community at level 3, although
this similarity value will be progressively lower as compared to that of the nodes
in the level 2 community.

3.1 Objective Function

Mazi defines the objective function used for learning node representations using
three major components. First, at each level, for each node, Mazi maximizes the
proximity of its representation to the representation of the nodes belonging to
its neighborhood using the Skip-gram objective. Second, iterating over all levels,
the proximity of the representation of a node to that of its direct lineage in the
embedding space is maximized. Third, the communities at each level are learned
and refined by maximizing the modularity metric.

Modeling Node Proximity to its Neighborhood. As previously studied, see [6], to
capture the neighbourhood of a node in the representations, we seek to maxi-
mize the log-likelihood of observing the neighbors of a node conditioned on its
representation using the Skip-gram model with negative sampling. Utilizing the
concept of sequence-based representations, neighboring nodes of a node vi, rep-
resented by N(vi), are sampled to form its context. Let the negative sampling
distribution of vi be denoted by Pn and the number of negative samples con-
sidered for training the loss be denoted by R. We use Lnbr pos and Lnbr neg to

92 A. S. Tom et al.

denote the loss of vi to its neighbors and to its negative samples, respectively.
Using the above, we define

Lnbr pos =
1

|N(vi)|
∑

vj∈N(vi)

log σ(x�
i xj), (2a)

Lnbr neg = R · Evn∼Pn(vi) log(1 − σ(x�
i xj)). (2b)

Taken together, we model the neighbourhood proximity of vi as:

Lnbr = Lnbr pos + Lnbr neg. (3)

Modeling Node Proximity to its Community. In many domains, nodes belonging
to a community tend to be functionally similar to each other in comparison to
nodes lying outside the community [4]. As a consequence, we expect the rep-
resentation of a node to be similar to the representation of its lineage in the
hierarchy. Consider a level, l, in the hierarchical community structure of G. At
l, for vl

i, with representation xl
i, we let the representation of its associated com-

munity (parent-node), H l(vl
i), in the next level coarser graph, Gl+1, be denoted

by xl+1
Hl(vl

i)
. To model the relationship between vl

i and H l(vl
i), we use:

Ll
comm = log σ

(
xl

i

�
xl+1

Hl(vl
i)

)
. (4)

As we iterate over the levels in the hierarchy of the graph, we bring together
nodes in each level closer to its parent node in the next-level coarser graph in
the embedding space. Consequently, the representation of a node is influenced
by the communities the node belongs to at different levels.

Jointly Learning the Hierarchical Community Structure and Node Representa-
tions. Typically, community detection algorithms utilize the topological struc-
ture of a graph to discover communities. However, we may also take advantage
of the information contained within the node representations while forming the
communities at each level in the hierarchy. Mazi discovers the communities in
the graph by jointly maximizing the modularity metric, described in Eq. 1, at
each level and minimizing the distance between the representations of a node and
its community in the next level coarser graph. The communities that we learn at
each level, thus, better align with the structural and the functional components
of the graph at that level. At each level in the hierarchical community structure,
we use Eq. 3 and Eq. 4 to model and learn the node representations.

Consequently, putting all the components together, we get the following cou-
pled objective function:

max
θ

L∑
l=1

(
1

|V l|
(
Ll

nbr pos + αlLl
nbr neg + βlLl

comm

)
+ γlQl

)
,

θ = xl
i,H

l, i ∈ 1 . . . |V |l ∀l ∈ 1 . . . L.

(5)

Joint Learning of Hierarchical Community Structure 93

Since the order of the three terms that contribute to the overall objective
is different, the terms are normalized with its respective order of contribution.
Further, αl, βl and γl serve as regularization parameters and are added to Sub-
Eqs. (2b), (4) and (1) in the overall objective for each level l, respectively.

3.2 Algorithm

An initial hierarchical community structure of the graph at level 1, denoted by
G1 = (V 1, E1,W 1), is constructed and node representations are computed for
all the levels in the hierarchy. Then, using an alternating optimization approach
in a level-by-level fashion, the objective, defined previously, is optimized. The
optimization updates step through the levels from the finest level graph to the
coarsest level graph and then from the coarsest level graph to the finest level
graph in multiple iterations. This enables the node representations at each level
to align itself to its direct lineage in the embedding space, additionally refining
the community structure by the information contained within this space. An
outline of the overall algorithm and its complexity can be found in Algorithm 1,
Appendix A.1 and Appendix A.3, respectively, in the supplementary materials.

Initializing the Hierarchical Community Structure and Node Representations.
A hierarchical community structure with L levels and their associated commu-
nity membership vectors for G is initialized by successively employing existing
community detection algorithms, such as Metis [9] at each level l ∈ L. The
node representations at the finest level of the graph, denoted by X1, are ini-
tialized by using existing representation learning methods such as node2vec,
DeepWalk [6,14]. Node representations of coarser level graphs are then initial-
ized by computing the average of the representations of nodes that belong to a
community in the previous level finer graph, Gl−1.

Optimization Strategy. At each level, Mazi utilizes an alternating optimization
(AO) approach to optimize its objective function. Mazi performs AO in a level-
by-level fashion, by fixing variables belonging to all the levels except one, say
denoted by l, and optimizing the variables associated with that level. At l, the
community membership vector, H l, is held fixed and the node representations,
X l, is updated. Then, X l is fixed, and H l is updated. Let us denote the node
representation update as the X l sub-problem, and the community membership
update as the H l sub-problem for further reference.

Node Representation Learning and Community Structure Refinement. At each
level l, Mazi computes the gradient updates for the X l sub-problem. By holding
H l fixed, Mazi updates xl

i to be closer to the representation of vj ∈ N(vl
i), xl

j ,
and its parent node, xl+1

Hl(vl
i)

(see Eq. 3 and 4). The H l sub-problem is then opti-

mized using the updated X l at l. To maximize the modularity objective (Ql) in
the H l sub-problem, Mazi utilizes an efficient move-based approach. Consider
reassigning vl

i from its existing community Cl
a to a candidate destination com-

munity Cl
b. We note that Ql, in Eq. 1, depends on degint(Cl

i) and degext(Cl
i),

94 A. S. Tom et al.

where Cl
i ∈ C. Instead of computing the contribution of each community to

determine Ql, we only modify the internal and the external degrees of Cl
a and

Cl
b by computing how the contribution of vl

i to Cl
a and Cl

b changes. Utilizing this,
the new community of vl

i is determined such that it maximizes Ql and minimizes
the distance between xl

i and xl+1
Hl(vi)

.
After alternatively solving for the sub-problems X l and H l at level l, Mazi

optimizes level l + 1. These steps proceed up the hierarchy in this fashion until
it reaches level L − 1. Starting at L − 1, the sub-problems XL−1 and HL−1 is
optimized in the backward direction level-by-level using the updated represen-
tations, that is, l = L − 1, L − 2, . . . , 1. By performing the optimization in the
backward direction such as above, the node representations at the finer levels
of the hierarchy are influenced by the updated representations at the coarser
levels. After W such iterations, the refined node representations and community
membership vectors for all levels are returned as the result of the algorithm.

4 Experiments

In order to evaluate the proposed algorithm, Mazi, we design experiments on
real-world as well as synthetic graphs. We test Mazi on two major tasks: (i) link
prediction and (ii) node classification. We compare Mazi against the following
state-of-the-art baseline methods: (i) node2vec [6], a flat embedding model, (ii)
ComE [2], a model respecting only a single-level in the hierarchy, (iii) HARP [3],
(iv) LouvainNE [1], which are both hierarchical models, and (v) variations of
the above mentioned models.

4.1 Experimental Setup

Link Prediction Task Setup. We divide the original graph into validation (sample
5% of the edges) and test ((sample 10% of the edges)) sets, and train graph. For
each positive sample (existent edge in the graph), we sample 99 negative samples
(non-existent edges). We use the train graph to generate node representations.
Then, for every edge in the validation and test sets, we compute its prediction
score using the representations of the edge’s node pairs along with that of its cor-
responding negative samples and determine the mean average precision. Further,
to test our algorithm on link prediction using learnable decoders, we implement
the DistMult model [16] and a 2-layer multi-layer perceptron (MLP). We provide
the element-wise product of the representations of the nodes that comprise an
edge as input to train the above models. We use 2% of the edges as the train set
and 1% each for the validation and test set, with 20 negative samples for each
positive edge, and report the average precision (AP) score of the test set for the
best performing score on the validation set.

We run an elaborate search on the random-walk hyper-parameters. In
node2vec, context size, walk length, walks per node, p, q, and #epochs
select values between {2 − 5}, {4 − 10}, {5 − 60}, {0.1 − 10}, {0.1 − 10}, and,
{1 − 4}, respectively. For ComE and HARP, the context size, walk length

Joint Learning of Hierarchical Community Structure 95

Table 2. Real-world graph dataset statistics. Experiments are conducted on the
induced subgraph formed by the nodes in the largest connected component in the
graph. Label rate is the fraction of nodes in the training set. The #communities in each
coarsened level is equal to

√
n, where, n is the current level graph’s number of nodes.

We stop coarsening when #communities ≤ 10. The last level is the all-encompassing
node.

Dataset #nodes #edges #labels #communities in coarsened levels Label rate

BlogCatalog 10312 667966 39 {100, 10, 1} 0.17

CS-CoAuthor 18333 163788 15 {135, 12, 1} 0.08

DBLP 20111 115016 4 {142, 12, 1} 0.49

and walks per node is chosen from {2−6}, {5−50}, and {5−30}, respectively.
We choose parameters specific to Mazi, β and γ, from {0.25−2.5} and {1.0−3.0},
respectively. We use the stochastic variation of LouvainNE, which is reported to
obtain the best performance. We search all partitioning schemes of LouvainNE,
used for generating the hierarchy, and use values 0.0001, 0.001, 0.01, 0.1, 1.0 for
the damping parameter. The #dimensions for all methods is 128.

Multi-label Classification Task Setup. We use a One-vs-Rest Logistic Regression
model (implemented using LibLinear [5]) with L2 regularization. We split the
nodes in a graph (real-world and synthetic datasets) into train, validation and
test sets. We sample a fixed number of instances, s, from each class to form a
representative train set. The validation and the test set is, thereafter, formed by
almost equally splitting the remaining samples. In Table 2, we detail the exact
fraction of nodes (label rate) in the real-world graphs that were used to the train
the model. In case of synthetic datasets, we choose 45 samples per class, leading
to a label rate of 0.6. We choose the regularizer weight from the range {0.1, 1.0,
10.0}, such that it gives the best average macro F1 score on the validation set for
the different methods. To generate the best performing model of the approaches
for evaluation, we conduct a search over the different hyper-parameters for the
synthetic and the real-world graphs.

For the synthetic graphs, in node2vec, context size, walk length, walks
per node, and #epochs are chosen from {5, 10, 15}, {10, 20, 30}, {10, 20, 30},
and 1, 2, respectively. p and q are chosen from {0.25 − 4}. ComE, HARP
and Mazi also use the above for its parameters. #clusters in ComE has
been chosen from

√
#nodes and #labels. Additionally, specific to Mazi, we

choose both β and γ from {0.0, 1.0, 2.0}. For the real world graphs, the
context size, walk length, and walks per node parameters have been var-
ied between {5, 10, 15}, {10, 20, 30, 40}, and {10, 20, 30, 40}. p and q are chosen
from {0.25, 0.50, 1, 2, 4}. The #dimensions for all methods is 128.

96 A. S. Tom et al.

Table 3. Link prediction on real-world graphs. Link prediction task performance of
the methods is listed in the table. All HARP variants use node2vec as the base model.
The mean average precision score is reported. The results are the average of 3 runs.
The observed standard deviation was less than 0.01.

Method Mean average precision

BlogCatalog CS-CoAuth DBLP

node2vec 0.534 0.797 0.914

HARP w. 2 lvls 0.532 0.755 0.881

HARP w. 3 lvls 0.460 0.732 0.874

HARP w. all lvls 0.126 0.647 0.769

LouvainNE 0.035 0.270 0.397

ComE 0.389 0.745 0.896

Mazi 0.587 0.824 0.930

4.2 Evaluation

Real World Datasets. We evaluate the proposed algorithm on three real world
networks: BlogCatalog, CS-CoAuthor, and DBLP. BlogCatalog is a social network
illustrating connections between bloggers while CS-CoAuthor and DBLP are
co-authorship networks. Both DBLP and CS-CoAuthor exhibit high values of
modularity, that is, 0.83 and 0.75, respectively, while BlogCatalog has a relatively
lower modularity value of 0.23. More information about each dataset is detailed
in Table 2.

Evaluation on the Link Prediction Task. Mazi demonstrates good performance
over competing approaches as shown in Table 3 on the real-world datasets. We
observe, in general, that Mazi demonstrates higher gains on datasets with higher
modularity values. Over node2vec, the gains observed by Mazi in mean average
precision (MAP) varies between 1.6% in DBLP to 10% in BlogCatalog. In com-
parison to HARP, referred to as HARP w. all lvls in Table 3, Mazi shows gains
as high as 366% in BlogCatalog. To further study the behaviour of HARP, we
evaluate its performance by restricting the total number of levels to 2 (HARP
w. 2 lvls), and 3 (HARP w. 3 lvls). We note that both these approaches demon-
strate higher MAP scores in comparison to HARP. We reason that since HARP
collapses random edges and star-like structures to coarsen the graph in multiple
levels, the coarsened graph in the last level may not be indicative of the global
structure of the network and could serve as poor initializations. Mazi demon-
strates gains between 3.79% and 50.89% against ComE. ComE, using gaussian
mixtures to model its single-level communities, may not well capture the defin-
ing structural characteristics of the graph while generating representations. Lou-
vainNE ’s best performing version, as per the authors, uses random vectors for
node representations at all levels in the graph’s extracted hierarchy. Although
LouvainNE may capture the hierarchical structure in a node’s representation

Joint Learning of Hierarchical Community Structure 97

Table 4. Link prediction using learnable decoders on BlogCatalog. We report average
precision score on link prediction task of the methods using learnable decoders -
DistMult and 2-layer multi-layer perceptron. σ is short for the sigmoid function.

Method σ Using DistMult 2-layer MLP

node2vec 0.62 0.62 0.59

HARP w. 2 lvls 0.62 0.62 0.62

HARP w. 3 lvls 0.05 0.56 0.57

HARP w. all lvls 0.05 0.32 0.43

LouvainNE 0.07 0.08 0.12

ComE 0.47 0.47 0.46

Mazi 0.70 0.70 0.69

by performing a weighted aggregation of vectors belonging to its hierarchy, we
note that it may not well capture its local neighborhood. Thus, nodes that are in
close proximity may not be represented similarly, and may indicate its low perfor-
mance on the task. In Table 4, we report the average precision (AP) scores using
learnable models, DistMult and a 2-layer MLP, on BlogCatalog. We note very
similar trends as in Table 3 and observe that despite using learnable decoders,
Mazi outperforms all other approaches in this task.

Evaluation on the Multi-label Node Classification Task. Table 5 reports micro
and macro F1 score obtained by the methods on real-world datasets. We note
that Mazi obtains a gain of up to 4.19% and 7.55% in macro F1 on BlogCatalog
against node2vec and HARP, respectively. Against LouvainNE, Mazi achieves
great gains on BlogCatalog (137%) and CS-CoAuthor (13%), respectively. While
the gain obtained in CS-CoAuthor against node2vec and HARP is 0.43% and
0.85%, respectively, in macro F1, we observe that in DBLP, with a higher mod-
ularity value, the performance of Mazi is comparable with other approaches.
ComE obtains a slightly better micro F1 score in BlogCatalog. Its choice of
using gaussian mixtures to model community distributions appears to capture
the weak community structure in BlogCatalog (modularity value of 0.23) well.

Synthetic Datasets. We design a novel synthetic graph generator that is capa-
ble of generating graphs with a hierarchical community structure and real-world
structural properties. This is achieved by modeling the hierarchical community
structure using a hierarchical tree (see Fig. 2). Each level in the hierarchical tree
is a level in the hierarchical community structure, wherein the nodes of the tree
forms the communities in the graph at that level. The nodes in the last level form
the nodes of the generated graph. A node in the graph is generated such that, in
expectation, it is able to form edges with other nodes in communities in the upper
levels of the hierarchical community structure. For this, we accept a parameter,
referred to as common-ratio, to generate L terms in geometric progression, for

98 A. S. Tom et al.

Table 5. Multi-label node classification performance. Multi-label classification perfor-
mance of the different methods are listed. The micro and macro F1 scores are reported.
We report the scores achieved on the test set such that it achieves the best macro F1
score in the validation set chosen from the relevant hyper-parameters associated with
each method. The results report the average of 3 runs. The standard deviation up to
2 decimal points is reported within the parentheses.

Method BlogCatalog CS-CoAuth DBLP

Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

node2vec 0.3718 (0.00) 0.2430 (0.00) 0.8670 (0.00) 0.8213 (0.00) 0.2499 (0.00) 0.2314 (0.00)

HARP (n2v) 0.3602 (0.00) 0.2418 (0.00) 0.8634 (0.00) 0.8153 (0.00) 0.2515 (0.00) 0.2326 (0.00)

LouvainNE 0.2275 (0.00) 0.1051 (0.00) 0.7790 (0.00) 0.7317 (0.00) 0.2578 (0.01) 0.2367 (0.01)

Mazi 0.3874 (0.00) 0.2499 (0.00) 0.8708 (0.00) 0.8266 (0.00) 0.2510 (0.00) 0.2317 (0.00)

ComE 0.4016 (0.00) 0.2464 (0.00) 0.8696 (0.00) 0.8238 (0.00) 0.2517 (0.00) 0.2323 (0.00)

each level in the hierarchical community structure (refer to Appendix A.2 for
detailed descriptions). With these terms, we compute a probability distribution
for a node to form an edge with another. Higher values of the common-ratio
result in fewer edges between nodes belonging to different communities and thus,
increases modularity of the graph as computed by the communities in the second
last level. Further, we use a power distribution to model the graph’s node degrees
to capture the behavior of real-world networks. Other properties that we tune
are the maximum degree, number of levels, branching factor of nodes, number of
leaves, among others. To aid us in the node classification task, we generate labels
for nodes such that they correlate with the hierarchical structure of the graph.
We discuss further details of the proposed generator in the Appendix A.2.

Level 1

Level 2

Level 3

75 nodes

Level 4

Fig. 2. The hierarchical tree structure used to generate our syn-
thetic datasets. It has 4 levels. While the finest level uses a
branching factor of 75, all other levels use 5.

In our experi-
ments, we create
a 5-level hierarchi-
cal tree with a
branching factor of
5 in most levels.
The branching fac-
tor in the level
before the leaves is
75, thus, resulting
in a total of 9375

nodes. We range common-ratio between {1.05, 1.2, 1.4, 1.6, 1.8, 2.0}. On aver-
age, the modularity of the graph for the corresponding common-ratio is
0.23, 0.28, 0.33, 0.37, 0.41, 0.44. The power-law distribution parameter is 4.5 for
the node degree. The maximum and the average degree of a node in the (directed)
graphs we study are 187 and 33, respectively.

Evaluation on the Multi-label Node Classification Task. Figure 3 plots the micro
and macro F1 scores obtained by the methods on the synthetic datasets on node

Joint Learning of Hierarchical Community Structure 99

Fig. 3. Average micro and macro F1 scores on the synthetic graphs. Results are
obtained over 3 runs with standard deviation. HARP method is built on the node2vec
model, Mazi (Prior) uses the community structure generated by the hierarchical clus-
tering tree, and Mazi uses the community structure generated by Metis. Mazi (Metis),
uses 4 levels in the hierarchy. The #communities in next coarser level is generated
using

√
n, where, n is the number of nodes in the graph in the current level.

classification. The average gains observed in the macro F1 scores by Mazi (Prior)
against node2vec range from over 50% to 5% for the common-ratio value of 1.05
to 2.0. As the modularity of the graph, as defined by the finest level community
structure, decreases, the random-walks in node2vec will tend to stray outside
the community. The labels are, however, distributed in accordance with the
community structure, and thus, could indicate its lowered performance. Mazi
(Metis) achieves similar performance as Mazi (Prior) against node2vec, rang-
ing from 42% to 5% for common-ratio 1.05 to 2.0. Further, Mazi (Prior) and
Mazi (Metis) both are able to demonstrate significant benefits in comparison to
HARP for graphs with common-ratio ranging from 1.05 to 1.6. The average gain
obtained by Mazi (Prior) and Mazi (Metis) are as high as 19% and 9.5%, respec-
tively, for common-ratio 1.05. We reason that for the graphs whose modularity,
as defined by the prior hierarchical community structure is low, the coarsening
scheme of HARP may not be able to capture a fitting hierarchical community
structure. Thus, the representations learnt on the coarsest level may not serve as
good initializations for finer levels. Against ComE, we observe similar gains at
about 20% with commmon-ratio 1.05 in the F1 scores. We also observe similar
trends with Mazi over LouvainNE. For the lower values of common ratio, and
thus, the modularity, we believe that LouvainNE may not be able to capture the
local neighborhood of a node well.

4.3 Ablation Study

We study the effect of two important parameters, β and γ, in the performance of
Mazi. We set β = 0.0 to fully ignore the contribution of the proximity between

100 A. S. Tom et al.

Table 6. Ablation study on node classification. Macro F1 scores and %gain achieved
by Mazi (Prior) and Mazi against respective versions without Ql (Eq. 1) and without
Ll

comm (Eq. 4) are reported for the synthetic graphs over 3 runs. The standard deviation
up to 2 decimal points is reported in the parentheses.

CR Mazi (Prior) Mazi

γ = 0.0 %gain w/o Ql β = 0.0 %gain w/o Ll
comm β, γ �= 0.0 γ = 0.0 %gain w/o Ql β = 0.0 %gain w/o Ll

comm β, γ �= 0.0

1.2 0.267 –0.42 (0.61) 0.256 4.26 (0.56) 0.266 0.258 0.28 (0.89) 0.256 0.97 (0.91) 0.259

1.4 0.321 0.07 (0.10) 0.316 1.83 (1.12) 0.321 0.314 0.63 (0.04) 0.314 0.69 (0.08) 0.316

1.6 0.374 –0.10 (0.13) 0.369 1.14 (0.10) 0.373 0.371 0.03 (0.55) 0.369 0.49 (1.01) 0.371

1.8 0.394 0.09 (0.12) 0.387 1.77 (0.98) 0.394 0.388 0.27 (0.41) 0.387 0.39 (0.58) 0.389

2.0 0.444 0.00 (0.00) 0.437 1.48 (0.63) 0.444 0.439 0.20 (0.33) 0.438 0.35 (0.02) 0.440

Table 7. Ablation study on link prediction. Mean average precision and %gain, aver-
aged over 3 runs, achieved by Mazi on link prediction over Mazi without Ql (Eq. 1)
and Mazi without Ll

comm (Eq. 4) is reported for the real-world graphs. The standard
deviation up to 2 decimal points is reported in the parentheses.

γ = 0.0 %gain w/o Ql β = 0.0 %gain w/o Ll
comm β, γ �= 0.0

BlogCatalog 0.586 0.15 (0.03) 0.564 4.09 (0.09) 0.587

CS CoAuthor 0.823 0.03 (0.12) 0.821 0.29 (0.09) 0.824

DBLP 0.930 –0.02 (0.08) 0.929 0.08 (0.17) 0.930

the node and its community representations while optimizing the objective. We
set γ = 0.0 to fix the hierarchical community structure to its initial value and
optimize only the node representations. In node classification, a non-zero value
of β plays a crucial role in ensuring Mazi ’s good performance (see Table 6). Since
the representations learned are benefited by the knowledge of a hierarchical com-
munity structure, performance achieved by β = 0.0 is consistently lower than
when β �= 0.0. The effect of γ is more apparent in Mazi using the Metis commu-
nity structure. Since the hierarchical community structure generated using Metis
does not fully conform to the prior community structure and the label distribu-
tion on the synthetic graphs correlate with the finest level community structure,
we note that refining the hierarchical community structure and thereby, using it
to improve the representations lead to better performance of the model.

We also report the effectiveness of β and γ in link prediction in Table 7. All
the datasets achieve better performance when accounting for non-zero values
of the β. This is especially evident in the BlogCatalog dataset, wherein Mazi
shows a gain as high as 4.09%. Further, the community structure refinement
in BlogCatalog and CS CoAuthor leads to better performance when γ �= 0.0,
whereas in DBLP, the results obtained are comparable in both cases.

5 Related Work

Several methods model node representations using deep learning losses in super-
vised, semi-supervised and unsupervised settings. Amongst the unsupervised

Joint Learning of Hierarchical Community Structure 101

methods, the Skip-gram model is a popular approach used in the literature [6,14]
to model the local neighborhood of a node using random walks while learning its
representation. However, unlike our method, these representations are inherently
flat and do not account for the hierarchical community structure that is present
in the network.

Existing methods have also explored jointly learning communities at a single
level and the representations of the nodes in the graph [2,15]. ComE [2] models
the community and the node representations using a gaussian mixture formu-
lation. vGraph [15] assumes each node to belong to multiple communities and
a community to contain multiple nodes, and parametrizes the node-community
distributions using the representations of the nodes and communities. Unlike
these approaches, our approach utilizes the inductive bias introduced by the
hierarchical community structure in the representations.

Recently, many unsupervised hierarchical representation learning methods,
such as HARP [3] and LouvainNE [1], have been explored that leverage the
multiple levels formed by hierarchical community structure in the graph. HARP
uses an existing methods, such as node2vec, to generate node representations for
graphs at coarser levels and initializes node representations at finer levels using
these. LouvainNE recursively partitions each community in a graph to form sub-
communities. The representations for a node in all the different sub-communities
are generated and subsequently aggregated in a weighted fashion to form the final
node representation. SpaceNE [11] represents the hierarchical community struc-
ture using sub-spaces in the feature space and learns node representations that
preserves proximity between nodes as well as similarities within communities and
across communities. However, all these approaches consider a static hierarchical
community structure to influence the representations. In comparison, we jointly
learn the node representations and the hierarchical community structure that
is influenced by the node representations. In a parallel line, some GNN-based
methods have been suggested to model the hierarchical structure present in the
graphs while learning network representations [8,10,17,18]. While DiffPool [17]
and AttPool [8] learn graph representations, HC-GNN [18] and GXN [10] target
node representation learning. However, these are supervised methods and use
task specific losses while considering static hierarchical community structures.

6 Conclusion

This paper develops a novel algorithm, Mazi, for joint unsupervised learning of
a given graph’s node representations and hierarchical community structure. At
each level in the hierarchy, Mazi coarsens the graph and learns its node repre-
sentations and leverages them to discover communities in the hierarchy. In turn,
Mazi uses the hierarchy to learn the representations. Experiments conducted on
synthetic and real-world graph datasets in the node classification and link predic-
tion demonstrate the competitive performance of Mazi compared to competing
approaches.

102 A. S. Tom et al.

Acknowledgements. This work was supported in part by NSF (1447788, 1704074,
1757916, 1834251), Army Research Office (W911NF1810344), Intel Corp, and the Dig-
ital Technology Center (DTC) at the University of Minnesota. Many thanks to the
reviewers for their helpful inputs. Also, many thanks to Saurav Manchanda for his
helpful discussions. Access to research facilities was provided by the DTC & the Min-
nesota Supercomputing Institute.

References

1. Bhowmick, A.K., Meneni, K., Danisch, M., Guillaume, J.L., Mitra, B.: Louvainne:
hierarchical louvain method for high quality and scalable network embedding. In:
Proceedings of 13th International Conference on Web Search and Data Mining
(2020)

2. Cavallari, S., Zheng, V.W., Cai, H., Chang, K.C.C., Cambria, E.: Learning com-
munity embedding with community detection & node embedding on graphs. In:
Proceedings of 2017 ACM on CIKM (2017)

3. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: Harp: hierarchical representation learning
for networks. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

4. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction
of missing links in networks. Nature 453(7191), 98–101 (2008)

5. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library
for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

6. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD Conference on KDD, pp. 855–864 (2016)

7. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: meth-
ods and applications. arXiv:1709.05584 (2017)

8. Huang, J., Li, Z., Li, N., Liu, S., Li, G.: Attpool: towards hierarchical feature
representation in graph convolutional networks via attention mechanism. In: Pro-
ceedings of the IEEE ICCV, pp. 6480–6489 (2019)

9. Karypis, G., Kumar, V.: Multilevel graph partitioning schemes. In: ICPP, no. 3
(1995)

10. Li, M., Chen, S., Zhang, Y., Tsang, I.W.: Graph cross networks with vertex infomax
pooling. arXiv preprint arXiv:2010.01804 (2020)

11. Long, Q., Wang, Y., Du, L., Song, G., Jin, Y., Lin, W.: Hierarchical community
structure preserving network embedding: subspace approach. In: 28th ACM CIKM
(2019)

12. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv:1301.3781 (2013)

13. Newman, M.E.: Modularity and community structure in networks. Proc. Natl.
Acad. Sci. 103(23), 8577–8582 (2006)

14. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2014)

15. Sun, F.Y., Qu, M., Hoffmann, J., Huang, C.W., Tang, J.: vgraph: a generative
model for joint community detection and node representation learning. arXiv
preprint arXiv:1906.07159 (2019)

16. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

http://arxiv.org/abs/1709.05584
http://arxiv.org/abs/2010.01804
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1906.07159
http://arxiv.org/abs/1412.6575

Joint Learning of Hierarchical Community Structure 103

17. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: Advances in Neural
Information Processing Systems, pp. 4800–4810 (2018)

18. Zhong, Z., Li, C.T., Pang, J.: Hierarchical message-passing graph neural networks.
arXiv preprint arXiv:2009.03717 (2020)

http://arxiv.org/abs/2009.03717

Knowledge Graphs

ProcK: Machine Learning
for Knowledge-Intensive Processes

Tobias Jacobs1(B) , Jingyi Yu1,2 , Julia Gastinger1 , and Timo Sztyler1

1 NEC Laboratories Europe GmbH, Heidelberg, Germany
{tobias.jacobs,julia.gastinger,timo.sztyler}@neclab.eu

2 Faculty of Electrical Engineering and Information Technology, RWTH Aachen,
Aachen, Germany

jingyi.yu@rwth-aachen.de

Abstract. We present a novel methodology to build powerful predictive
process models. Our method, denoted ProcK (Process & Knowledge),
relies not only on sequential input data in the form of event logs, but
can learn to use a knowledge graph to incorporate information about
the attribute values of the events and their mutual relationships. The
idea is realized by mapping event attributes to nodes of a knowledge
graph and training a sequence model alongside a graph neural network
in an end-to-end fashion. This hybrid approach enhances the flexibility
and applicability of predictive process monitoring, as both the static and
dynamic information residing in the databases of organizations can be
taken as input data. We demonstrate the potential of ProcK by apply-
ing it to a number of predictive process monitoring tasks, including tasks
with knowledge graphs available as well as an existing process monitoring
benchmark where no such graph is given. The experiments provide evi-
dence that our methodology achieves state-of-the-art performance and
improves predictive power when a knowledge graph is available.

Keywords: Predictive process management · Neural networks

1 Introduction

We introduce ProcK (Process & Knowledge), a pipeline for predictive process
monitoring. ProcK combines the usage of two complementary data representa-
tions in a novel way.

Predictive process monitoring deals with the task of forecasting properties of
business processes that are currently under execution. This includes the type and
occurrence time of future events as well as the process outcome. The primary
input to predictive process models are logs recorded during process execution,
and it is best practice in the process mining community to model them as sets of
discrete events. Each event is characterized by its case identifier, activity type,
timestamp, and potentially further data; see Van Der Aalst et al. (2012).

Machine learning methods for predictive process monitoring described in lit-
erature can be separated into two main approaches. The more traditional app-
roach is to hand-engineer a set of feature extraction functions that operate on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 107–121, 2023.
https://doi.org/10.1007/978-3-031-26390-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_7&domain=pdf
http://orcid.org/0000-0002-8130-4211
http://orcid.org/0000-0002-1144-9765
http://orcid.org/0000-0003-1914-6723
http://orcid.org/0000-0001-8132-5920
https://doi.org/10.1007/978-3-031-26390-3_7

108 T. Jacobs et al.

top of event sequences. The set of features, after some further pre-processing, is
then used as input to train a machine learning model like e.g. an SVM (Leontjeva
et al. 2016). The second approach relies on deep learning, feeding the raw event
log directly into a deep neural network which builds meaningful features auto-
matically during training. Because of the sequential nature of the input data, it
is a natural choice to apply a recurrent neural network, like done by Tax et al.
(2017). More recently, feedforward networks have been demonstrated by Mauro
et al. (2019) and other authors to achieve superior performance in many cases.

Our work follows the deep learning paradigm, and, to the best of our knowl-
edge, we are the first to complement the event sequence data model with an
additional representation of the available input data as a knowledge graph. This
idea is rooted in the first fundamental step of typical practical process mining
projects: to extract the event log from the data lake of an organization (see
Reinkemeyer 2020), which is often structured in the form of one or more rela-
tional databases. When selecting data with the goal of building a high-quality
prediction model, the limitations of the event sequence view become apparent:
only a subset of the relevant data can be naturally expressed in the form of
events with case identifier and timestamp.

Example 1. For predicting the success of a loan repayment process at the time
when the first rate has been paid, it might be relevant to take into account the
bank account from which the rate was transferred. Specifically, the economic
stability of the bank account’s country might be an indicator.

In Example 1, the relevant piece of information (economic stability) is not an
event, and it is neither a primary attribute of the event. It is rather an indirect
attribute of the transfer event, which has to be derived via a specific semantic
path (transfer → bank → country → economic stability). Domain experts could
re-define such derived attributes by hand as primary event information, but this
counteracts the benefit of deep learning to be applicable on top of the raw data.

To address that issue, ProcK takes a knowledge graph as additional input.
It stacks a sequence model for events on top of a graph neural network in order
to compute meaningful event representations. In Example 1, information about
the economic stability can be propagated backwards across the path economic
stability ← country ← bank ← transfer, where economic stability, bank, country
are knowledge graph nodes and transfer is a time-stamped event of a particular
process. Having been integrated into the representation of transfer, the informa-
tion is then further processed by the event sequence model in order to predict
the success probability of the repayment process.

The contributions of this work are summarized as follows: (1) We present the
conceptual architecture of ProcK, which combines the usage of two complemen-
tary data representations in a novel way. (2) We describe an implementation of
ProcK based on deep learning models for graph-structured and sequential data.
(3) We document an experimental study based on four datasets, three of them
including a knowledge graph, from different application domains. Our experi-
ments demonstrate that ProcK achieves state-of-the-art predictive performance,
which is further improved by utilizing the additional knowledge graph input.

ProcK: Machine Learning for Knowledge-Intensive Processes 109

2 Related Work

2.1 Predictive Process Monitoring

Our work presents a new approach for predictive process monitoring, the task
to predict future properties of processes from their execution logs. A consid-
erable range of machine learning techniques have been studied in the context
of process predictions. A review of seven methods that fall into the category
of traditional machine learning (decision trees, random forests, support-vector
machines, boosted regression, all with heavy feature engineering) has been pub-
lished by Teinemaa et al. (2019).

Considering deep learning methods, due to the sequential nature of process
logs, it is a straightforward approach to apply models designed for sequences.
Tax et al. (2017) study the usage of LSTM neural networks for various predic-
tion tasks, including the next activities and the remaining process time. Further
approaches based on RNN and LSTM networks have been presented by Ever-
mann et al. (2017), Tello-Leal et al. (2018), Camargo et al. (2019), Lin et al.
(2019).

More recently, it has been demonstrated that feedforward networks often
outperform recurrent neural networks for predictive process monitoring tasks.
Al-Jebrni et al. (2018) employ 1D-convolutional networks, Mauro et al. (2019)
study stacked inception CNNs, and Pasquadibisceglie et al. (2019) present a
method where traces and their prefixes are first mapped onto a 2D image-like
structure and then 2-dimensional CNNs are applied. Finally, Taymouri et al.
(2020) present a prediction approach leveraging generative adversarial networks.

Although the main idea presented and evaluated in this work is independent
from the particular choice of the sequence processing model, we share the expe-
rience of Al-Jebrni et al. (2018) and other authors that feedforward networks
are more reliable to achieve good results in the process monitoring domain.

A direction that has been followed by several researchers is to make use of
explicit process models. More than two decades of research on process mining has
yielded sophisticated algorithms to create graph-shaped models of processes from
event log data, often in the form of Petri nets (Van Der Aalst et al. 2012). From
the viewpoint of such a process model, events trigger state changes of process
instances, and predictive process monitoring models can take the current process
state as input. Van der Aalst et al. (2011) propose a solution to the problem
of predicting the completion time, simply by calculating the mean remaining
time for each state. Prediction from a combination of partial process models
and event annotations has been performed by Ceci et al. (2014). Folino et al.
(2014) combine some of the aforementioned ideas, first clustering events and
processes to achieve more abstract process models and then applying cluster-
specific prediction models. Recently, Theis and Darabi (2019) have presented a
methodology to annotate states with time and other information, and use this
information as input to a deep learning model.

What makes the idea of using a graphical process model powerful is that it
builds upon a mature topic in the process mining domain, where the graph can

110 T. Jacobs et al.

be constructed on top of the existing event log. Our work, in contrast, is built on
the hypothesis that, in concrete applications, additional non-sequential data is
available, and that data is naturally modeled as a graph. In other words, process
modeling is a specific type of feature pre-processing, while our approach taps a
previously unused resource of data.

While there is a large body of work on predictive process mining, the
task of prescriptive process mining is less well-studied. In a very recent work,
Fahrenkrog- Petersen et al. (2022) propose a framework to prevent the undesired
process outcomes based on formalized notions of alarms and interventions.

2.2 Combined Sequence and Graph Models

The machine learning model we employ in our work uses a combination of graph-
structured and sequential data as input. To our knowledge, we are the first to
apply this approach to the domain of predictive process monitoring. Neverthe-
less, the benefits of combining such complementary views have been demon-
strated in other domains. Fang et al. (2018) construct a graph based on spatial
distances between mobile cells. Their model for cellular demand prediction uses
an LSTM to compute a feature vector for each cell based on its demand his-
tory, then a graph convolutional network is used to model influences between
nearby cells. Hu et al. (2019) address the problem of predicting the freezing-
of-gaits symptom of Parkinson disease patients from video segments, where the
first layer of their model is used to compute a representation of anatomic joints
and their interactions as a graph. The authors introduce specialized LSTM cells
to model both time-based interactions between subsequent video segments and
interactions between joints. Wang et al. (2022) combine the graph-based repre-
sentation of molecules with the SMILES string representation. Two individual
models are trained for those two input representations, and the models are com-
bined using ensemble techniques. An application in the retail domain has been
proposed by Chang et al. (2021). Here the first step is to convert the sequence
of past user interactions with items into a graph with nodes representing items,
and graph-based models are then applied to predict the interest of users.

While a variety of approaches to combine graphical and sequential input have
been proposed in the body of work mentioned above, our approach has some
unique and novel features. Firstly, each of the above methods performs some
sort of node or graph classification which is only assisted by the sequential input.
In our work, event sequences constitute the primary input, and the knowledge
graph is used to assist the model to interpret the event data. Secondly and
most importantly, the knowledge graph is used in our work to capture overall
knowledge about the domain and application context, while information about
each instance of the prediction problem is represented by its event sequence.

Another direction of related work is machine learning for dynamic knowl-
edge graphs, called temporal knowledge graphs, where nodes, attributes, or rela-
tions change over time. The area of temporal knowledge graph reasoning can
be divided into the interpolation and the extrapolation setting. As described by
Jin et al. (2020), in the interpolation setting, new facts are predicted for time
steps up until the current time step, taking into account time information from

ProcK: Machine Learning for Knowledge-Intensive Processes 111

past and current time steps; see Garćıa-Durán et al. (2018). The methods in
the extrapolation setting predict facts for future time steps. Recent work in the
extrapolation setting includes RE-NET by Jin et al. (2020) and CluSTeR by Li
et al. (2021).

The predictive process management application in our work requires to treat
events as independent input. Modeling each event as a knowledge graph element
would be technically possible, but only at the price of scalability, as typical
applications include tens or hundreds of millions of events. Thus, in our work
events do not have a direct interpretation as nodes or edges, but they instead
contain attributes in the form of references to graph nodes. Conversely, triples
in our knowledge graphs are in general not necessarily interpretable as events.

To summarize the discussion of our work in light of state-of-the-art, we are
the first to utilize a knowledge graph as additional input to predictive process
monitoring models to help interpreting the event data. The idea is realized by
a new type of neural network architecture which takes events as primary input
and learns to utilize an additional knowledge graph to interpret the event data.

3 Preliminaries

Following the process mining terminology, an event log L = (L,C, T,A) consists
of an event set L, a set C of cases, a set T of possible event types, and a set A
of additional event attributes. Each event � = (c�, t�, τ�, α�) ∈ L is a 4-tuple
characterized by its case identifier c� ∈ C, its event type t� ∈ T , a timestamp
τ� ∈ N, and a partial assignment function α� : A → V which specifies the values
of a subset of attributes. For each case c ∈ C we define Lc := {� ∈ L | c� = c} as
the subset of events belonging to case c.

The domain V of possible attribute values is arbitrary in general; in this work
it will be assumed that V is the node set of a knowledge graph. This assumption
represents only a mild limitation, because categorical attribute values that do
not appear in the given knowledge graph can simply be interpreted as isolated
nodes. In fact, our experimental study includes one dataset where no knowledge
graph is given at all. Extending ProcK with the ability to incorporate numer-
ical attributes directly (i.e. without discretizing them to categorical attributes)
remains for future work.

A knowledge graph (also called knowledge base) G = (V,R,E) is a directed
graph defined by the node set V , relation types R, and edges E, where each edge
(v, r, v′) ∈ E is a triple containing the head node v ∈ V , relation type r ∈ R,
and tail node v′ ∈ V .

As mentioned above, in typical practical applications, the input data will
originate from the databases of the organization that performs predictive pro-
cess monitoring. Relational databases are likely to contain time-stamped records
that can become events. At the same time, mutual references between different
tables are a fundamental element of relational data models, which makes it
straightforward to interpret a part of the database as a knowledge graph. For
the purpose of our experimental study we have developed tools to extract both
event data and a knowledge graph from a database dump.

112 T. Jacobs et al.

Fig. 1. ProcK conceptual architecture. From relational or tabular data, an event log
and a knowledge graph is extracted. Then, the four components GNN, F, f, and SM of
the neural network model subsequently compute node embedding H, event embeddings
Φ, and the final prediction.

4 ProcK Architecture

We first specify, in Sect. 4.1, the conceptual architecture which is composed of
four functional components GNN, f, F, and SM. Then, in Sect. 4.2, our imple-
mentation of each of the components is described.

4.1 Conceptual Architecture

The architecture of ProcK, depicted in Fig. 1, combines a graph neural network
with a model for sequential data. From the bottom to the top of the network,
input elements like nodes, edges, timestamps, and events will be encoded by
embedding vectors. We employ a fixed embedding dimensionality d ∈ N across
all layers.

The first component of the ProcK model is a graph neural network GNN
which computes embedding vectors H = (hv)v∈V containing an embedding hv ∈
R

d for every node v of the knowledge graph. Formally,

hv := GNN(G, v), v ∈ V, (1)

where G = (V,R,E) is the given knowledge graph.
Next, consider a single event � = (c�, t�, τ�, α�) from the event log L. Let F

be an aggregation function for sets of d-dimensional vectors. The first step of
constructing the event embedding is to compute

β� := F ({hv | v ∈ α�(A)}) ∈ R
d. (2)

Recall from the previous section that α� is a partial assignment function which
specifies values for a subset of the attributes from A. In the above equation,
a�(A) is the set of those attribute values.

ProcK: Machine Learning for Knowledge-Intensive Processes 113

Further, we employ a timestamp embedding function f : N → R
d and com-

pute the final event embedding as

φ� := β� + f(τ�). (3)

Having computed the sequence representation as a series of d-dimensional
vectors Φ = (φ�)�∈Lc

for the given case c ∈ C, we feed the event representations
into a sequence model SM to compute the prediction for the given case:

Pc := SM({φ� | � ∈ Lc}). (4)

The structure of Pc depends on the prediction target; e.g. it can be a single
real number for regression tasks or a vector of probabilities for a classification
task. All four functions GNN, F, f,SM are potentially parameterized by trainable
vectors ΘGNN, ΘF , Θf , ΘSM, respectively.

4.2 Implementation

The bottom layer of our GNN implementation is a trainable embedding vector
h0

v ∈ R
d for each node v ∈ V , as well as an embedding vector h0

r ∈ R
d for

every relation r ∈ R. We compute higher-level node embeddings using graph
convolution layers, where we adopt a simplified version of the compGCN archi-
tecture proposed by Vashishth et al. (2020) as described below. Given the layer i
embeddings (hi

v)v∈V , (hi
r)r∈R, two transformations are applied for each v ∈ V :

hi+1
v,self := W i+1

self · hi
v (5)

hi+1
v,adj := W i+1

adj ·
∑

(v,r,v′)∈E

cmp(hi
r, h

i
v′), (6)

where cmp : Rd × R
d → R

d is the composition operator. Our implementation
supports the composition operators of addition and element-wise multiplication;
we employ the latter throughout our experiments. The node and relation embed-
dings on layer i + 1 are then computed via

hi+1
v = relu(hi+1

v,self + hi+1
v,adj), v ∈ V (7)

hi+1
r = W i+1

rel · hi
r, r ∈ R. (8)

The computations on each layer are parameterized by W i+1
self ,W i+1

adj ,W i+1
rel ∈

R
d×d. Equation 6 specifies backward flow across the edges of the directed graph.

In Vashishth et al. (2020), forward flow with independent parameterization is
additionally specified. This is also supported by our implementation, but we only
consider backward flow in our experiments. The reason is that the knowledge
graphs in our datasets contain nodes with a huge number of incoming links, and
we experienced that summing up over them during the calculation of forward
flow de-stabilizes the model and does not scale well.

114 T. Jacobs et al.

Having computed k layers of graph convolution, the final node embeddings
are the GNN output:

hv = GNN(G, v) := hk
v , v ∈ V. (9)

For the aggregation function F we employ mean pooling across the nodes refer-
enced in each event:

β� = F ({hv | v ∈ α�(A)}) :=
1

|α�(A)|
∑

v∈α�(A)

hv. (10)

For the timestamp embedding function f our implementation supports param-
eterized embedding and non-parameterized embedding based on sinusoids as
described by Vaswani et al. (2017). We have however found that, for the pre-
diction tasks included by our experimental study, the timestamp input is not
essential; thus we applied the constant zero function there for most datasets.

We now describe our implementation of the sequence model SM. First, a
linear transformation is applied to the embeddings (φ�)�∈Lc

:

φ′
� = W1 · φ�, � ∈ Lc. (11)

After this initial transformation, we aggregate over the events of the sequence
using mean pooling:

φ′′ =
1

|Lc|
∑

�∈Lc

φ′
�. (12)

A final fully connected hidden layer connects the aggregated events with the
output:

φ′′′ = relu (W2 · φ′′) , (13)

Pc = SM({φ� | � ∈ Lc}) := g(W3 · φ′′′). (14)

The dimensionality of the matrices is W1,W2 ∈ R
d×d and W3 ∈ R

o×d. For
binary classification problems, o = 1, and g is the sigmoid activation function.
For multi-class classification, o corresponds to the number of classes and g is the
softmax function. Finally, for regression problems, o = 1 and g is the identity
function.

We remark that the design choice of the sequence model is a result of
exploratory experiments with various architectures. During those experiments
we observed that, throughout the datasets, more sophisticated architectures
(recurrent networks, transformer) did not lead to better results and introduced
stability problems. This is in line with the finding, reported by Al-Jebrni et
al. (2018) and Mauro et al. (2019), that feedforward networks outperform the
LSTM architecture for predictive process monitoring tasks.

5 Experiments

5.1 Data

Our experiments encompass six prediction tasks using four datasets; see
Table 1. Three tasks are based on the Open University Learning Analytics

ProcK: Machine Learning for Knowledge-Intensive Processes 115

Table 1. Summary of the event logs and knowledge graphs extracted from the datasets.

Dataset Knowledge graph Event log Reference

OULAD 240K nodes, 1.1M edges 33K cases, 11M events Kuzilek et al. (2017)

PKDD99 200K nodes, 1,1M edges 4.5K cases, 1M events Berka (1999)

BPI12 – 13K cases, 180K events van Dongen (2012)

DBLP 370K nodes, 1.2M edges 29K cases, 1.7M events Tang et al. (2008)

(OULAD) dataset provided by Kuzilek et al. (2017). The dataset has the struc-
ture of a relational database dump, consisting of seven tables that represent
information about students registering for courses, interacting with the study
material, taking assessments and exams. From this data we extracted a knowl-
edge graph as described in Fig. 2. We further extracted an event log where each
case c ∈ C represents one student taking part in one course. There are five event
types: case info, containing links to student, module, and semester, assessment,
containing the submission date as the timestamp, and a link to the correspond-
ing student assessment node in the knowledge graph, student registration and
deregistration, containing the date of (de)registration as the timestamp, and a
link to the student registration node, and finally VLE interaction, containing as
timestamp the time of interaction with material of the Virtual Learning Environ-
ment (VLE), and a link to the knowledge graph node representing the material.

Fig. 2. Schema of the knowledge graph generated from the OULAD dataset. Box-
shaped meta-nodes represent nodes generated from table rows, single-lined oval meta-
nodes originate from categorical values, and double-lined meta-nodes represent dis-
cretized numerical values. Each arrow represents a distinct relation type (sometimes
two); annotations have been added only where the type is not self-explanatory.

For the OULAD dataset we distinguish between three prediction targets:
dropout (predict whether the student will drop out from the course), success
(predict whether the student will finish the course successfully), and exam score
(regression task to predict the final exam score, a number between 0 and 100). We
further consider three different time horizons: late prediction is a variant of the

116 T. Jacobs et al.

prediction task where all events that happened during the course (except for the
final exam and the deregistration event) are available as input. Early prediction
refers to predictions taking into account only the events that happened before
the 60th day of the course (all course modules take between 234 and 269 days),
while in very early prediction no events have been recorded and only the case
info is available. Across all tasks and variants, we uniformly selected 20% of the
data for validation and 5% for testing, like implemented by Jha et al. (2019).

A dataset from the financial domain was provided by Berka (1999) for the
PKDD99 challenge. This dataset also comes in the form of multiple inter-
connected tables, representing bank accounts, financial transactions, clients, geo-
graphical districts, and loans. The task is to predict the status of a loan (non-
critical or critical) given the history of transactions and information about the
loan and the client. The triples of the knowledge graph relate loans to accounts,
accounts to districts, and bank orders as well as transactions to banks. Cate-
gorical and numerical attributes (after discretization) of those entities are addi-
tionally represented as neighbor nodes of them. The two event types extracted
from the dataset are case info, including links to the loan and the account node,
and transaction, containing a link to the node representing the transaction in
the knowledge graph. We chose 20% of the data for validation and another 20%
for testing. Because the number of samples in this dataset is comparably small
and the dataset is rather imbalanced with only 10% of the loans having a critical
status, we used stratified sampling to enforce the same balance of positive and
negative examples in the training, validation, and test set.

Our second dataset from the financial domain represents an established pro-
cess mining benchmark, but it comes only with an event log. The events con-
tained in the BPI12 dataset (van Dongen 2012) were recorded during the appli-
cation procedure at a financial institution. Due to the lack of a knowledge graph,
we treat all event attributes as isolated nodes of a graph without edges. To make
our experiments comparable to Tax et al. (2017), we only consider events that
are marking the completion of manually executed subprocesses, and we used the
latest 30% among the sequences as the test set. Another 20% of the sequences
were chosen as the validation set uniformly at random. We treat every prefix of
every sequence as one sample where the task is to predict the type of the next
event. This step was done separately for the training, validation, and test set.

Our final prediction problem is the number of future citations of papers
published in the year 2000 as reported in the DBLP dataset introduced by Tang
et al. (2008). We extracted a knowledge graph consisting of relations between
papers, authors, and venues. To prevent information leakage, events related to a
publication after 2000 are not considered for the knowledge graph construction.
For each paper, the history of previous publications of all authors is used as the
event sequence. We selected 20% of the data for validation and 5% for testing.

5.2 Setup

The machine learning models were implemented in Tensorflow 2.5.0, and the
computational experiments were performed on GPUs (Nvidia GeForce GTX

ProcK: Machine Learning for Knowledge-Intensive Processes 117

Table 2. Hyperparameters used in the experiments. Note that the LSTMmodel implic-
itly takes into account the event position by design.

Task Dropout rate l2-weight GC layers Time embedding

OULAD (dropout) 0.1 0.01 1 None

OULAD (success) 0.1 0.01 1 None

OULAD (score) 0.7 0 1 None

PKDD99 0.1 0.03 3 None

BPI12 0.1 0.01 1 Parameterized

DBLP 0.5 0 0 None

All tasks, LSTM model 0.25 0.01 – Implicit

1080 Ti). For all classification tasks we used the cross-entropy loss function for
training and selected the model having the highest accuracy on the validation set
among all 200 training epochs. The learning rate was set to 0.01, and we chose
an embedding width of d = 100. We also applied dropout and l2-regularization,
which required different strategies for different tasks. Our implementation sup-
ports dropout with uniform rate after each aggregation layer in the graph convo-
lutional network and after the final fully-connected dense layer. Table 2 lists the
chosen strategy used for ProcK for every task, as well as for the LSTM baseline,
where we found a different configuration to work best.

5.3 Results

The results of our experiments are displayed in Table 3. The top part con-
tains results for classification problems, where the accuracy and the Area Under
the Curve (AUC, only for binary classification) metric are reported. On most
datasets a knowledge graph is available, enabling us to compare models trained
with such a graph to models trained without one. As a baseline we also evaluated
an LSTM model which was trained using the event sequence as input. Whenever
available, the table also contains the best results reported in literature.

For the AUC metric, it turns out that the availability of additional data in
form of a graph improves the ability of the model to correctly separate positive
and negative test samples, both in comparison with ProcK without knowledge
graph and the LSTM model. The improvement is observable across most of the
problems. For dropout prediction on the OULAD dataset, all three deep learning
models outperform the results of Gradient Boosting Machine (GMB), reported
by Jha et al. (2019), while GBM performs better for the success prediction task.

When looking at the accuracy metric, the advantage of the knowledge graph
input is not that clearly visible; only on two out of seven problems the full ProcK
model with knowledge graph exhibits the best performance, on one problem it
is outperformed by ProcK without knowledge graph input, and two tasks the
LSTM model performs best. The only classification problem with more than two
classes is next event type prediction on the BPI12 dataset. Here no knowledge

118 T. Jacobs et al.

Table 3. Experimental results

Prediction task Model Accuracy AUC

OULAD (dropout, late) ProcK 0.86 0.93

ProcK (no KG) 0.86 0.93

LSTM 0.86 0.92

GBM (Jha et al. 2019) – 0.91

OULAD (dropout, early) ProcK 0.83 0.84

ProcK (no KG) 0.81 0.82

LSTM 0.81 0.82

OULAD (dropout, very early) ProcK 0.68 0.58

ProcK (no KG) 0.69 0.60

LSTM 0.70 0.57

OULAD (success, late) ProcK 0.87 0.91

ProcK (no KG) 0.88 0.88

LSTM 0.86 0.86

GBM (Jha et al. 2019) – 0.93

OULAD (success, early) ProcK 0.73 0.74

ProcK (no KG) 0.73 0.73

LSTM 0.75 0.73

OULAD (success, very early) ProcK 0.69 0.58

ProcK (no KG) 0.69 0.56

LSTM 0.68 0.57

PKDD99 ProcK 0.89 0.71

ProcK (no KG) 0.89 0.71

LSTM 0.89 0.50

BPI12 (KG not available) ProcK 0.83 –

LSTM 0.71 –

LSTM (Tax et al. 2017) 0.76 –

Prediction target Model RMSE

OULAD (score, late) ProcK 18.93

ProcK (no KG) 18.95

LSTM 20.35

OULAD (score, early) ProcK 19.88

ProcK (no KG) 19.88

LSTM 21.08

OULAD (score, very early) ProcK 20.10

ProcK (no KG) 20.44

LSTM 20.13

DBLP ProcK 3.98

LSTM 4.01

ProcK: Machine Learning for Knowledge-Intensive Processes 119

graph is given, and ProcK outperforms the LSTM model by a large margin. This
finding is consistent to results found in other works e.g. by Mauro et al. (2019).

We are the first to study variants of OULAD with different points of predic-
tion time (early and very early prediction). It turns out that the length of the
event log makes a significant difference, with AUC values decreasing to less than
0.60 when only the initial case information is available. However, the benefit of
using knowledge graph input does not seem to depend on the length of the event
log, which can be explained with the fact that less event input also means less
information from the knowledge graph.

The bottom part of Table 3 contains the results for regression problems,
including exam score (OULAD dataset) and number of citations (DBLP
dataset). We do not include ProcK without knowledge graph input for the latter,
because here the number of graph convolution layers is set to zero (see Table 2),
making models with and without knowledge graph input equivalent. The table
reports the root mean square error, and here again the benefits of the knowledge
graph input can be demonstrated across the variants of the score prediction task.

6 Summary and Conclusion

In this work, we introduced ProcK, a novel machine learning pipeline for data
from knowledge-intensive processes. Within the pipeline, two complementary
views of the available information are first extracted from raw tabular data and
then re-combined as input to the downstream prediction model. We implemented
prototypes of each pipeline component, and we tested their interplay on six
prediction tasks on four datasets. We could demonstrate on the majority of
classification tasks that ProcK achieves improved AUC values when having a
knowledge graph available as input, but further investigation of the accuracy
metric remains a task for future work. Also for regression tasks ProcK exhibits
a small but consistent advantage in terms of the RMSE metric.

One interesting future question from a practical viewpoint is how machine
learning can be employed to extract the knowledge base and event log from the
source databases in a configuration-free manner. Furthermore, while ProcK has
been applied for prediction tasks so far, the ability to compute recommendations
to positively influence processes will be an important next step.

Ethics Discussion. All experiments reported in this work are based on anonymized

datasets (OULAD, PKDD, BPI12) or data actively published by the data subjects

(DBLP). Nevertheless, the presented technology is applicable to ethically sensitive

tasks, including assessment of loan applications and performance prediction of humans.

A careful assessment of potential ethical issues has to be carried out prior to bringing

this work to application.

120 T. Jacobs et al.

References

Al-Jebrni, A., Cai, H., Jiang, L.: Predicting the next process event using convolutional
neural networks. In: 2018 IEEE International Conference on Progress in Informatics
and Computing (PIC), pp. 332–338. IEEE (2018)

Berka, P.: Workshop Notes on Discovery Challenge, PKDD 1999 (1999)
Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM models of

business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling,
J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26619-6 19

Ceci, M., Lanotte, P.F., Fumarola, F., Cavallo, D.P., Malerba, D.: Completion time and
next activity prediction of processes using sequential pattern mining. In: Džeroski,
S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777,
pp. 49–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3 5

Chang, J., et al.: Sequential recommendation with graph neural networks. In: Proceed-
ings of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 378–387 (2021)

Evermann, J., Rehse, J.-R., Fettke, P.: Predicting process behaviour using deep learn-
ing. Decis. Support Syst. 100, 129–140 (2017)

Fahrenkrog-Petersen, S.A., et al.: Fire now, fire later: alarm-based systems for pre-
scriptive process monitoring. Knowl. Inf. Syst. 64(2), 559–587 (2022). https://doi.
org/10.1007/s10115-021-01633-w

Fang, L., Cheng, X., Wang, H., Yang, L.: Mobile demand forecasting via deep graph-
sequence spatiotemporal modeling in cellular networks. IEEE Internet Things J.
5(4), 3091–3101 (2018)

Folino, F., Guarascio, M., Pontieri, L.: Mining predictive process models out of low-
level multidimensional logs. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 533–547. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6 36

Garćıa-Durán, A., Dumancic, S., Niepert, M.: Learning sequence encoders for temporal
knowledge graph completion. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 4816–4821. Association for
Computational Linguistics (2018)

Hu, K., et al.: Graph sequence recurrent neural network for vision-based freezing of
gait detection. IEEE Trans. Image Process. 29, 1890–1901 (2019)

Jha, N.I., Ghergulescu, I., Moldovan, A.-N.: OULAD MOOC dropout and result pre-
diction using ensemble, deep learning and regression techniques. In: CSEDU (2), pp.
154–164 (2019)

Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure
inference over temporal knowledge graphs. In: Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 6669–6683
(2020)

Kuzilek, J., Hlosta, M., Zdrahal, Z.: Open university learning analytics dataset. Sci.
Data 4(1), 1–8 (2017)

Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex
symbolic sequence encodings for predictive monitoring of business processes. In:
Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253,
pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4 21

https://doi.org/10.1007/978-3-030-26619-6_19
https://doi.org/10.1007/978-3-030-26619-6_19
https://doi.org/10.1007/978-3-319-11812-3_5
https://doi.org/10.1007/s10115-021-01633-w
https://doi.org/10.1007/s10115-021-01633-w
https://doi.org/10.1007/978-3-319-07881-6_36
https://doi.org/10.1007/978-3-319-23063-4_21

ProcK: Machine Learning for Knowledge-Intensive Processes 121

Li, Z., et al.: Search from history and reason for future: two-stage reasoning on temporal
knowledge graphs. In: Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021 (Volume 1: Long Papers), pp. 4732–4743.
Association for Computational Linguistics (2021)

Lin, L., Wen, L., Wang, J.: MM-Pred: a deep predictive model for multi-attribute
event sequence. In: Proceedings of the 2019 SIAM International Conference on Data
Mining, pp. 118–126. SIAM (2019)

Di Mauro, N., Appice, A., Basile, T.M.A.: Activity prediction of business process
instances with inception CNN models. In: Alviano, M., Greco, G., Scarcello, F.
(eds.) AI*IA 2019. LNCS (LNAI), vol. 11946, pp. 348–361. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35166-3 25

Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using convolutional
neural networks for predictive process analytics. In: 2019 International Conference
on Process Mining (ICPM), pp. 129–136. IEEE (2019)

Reinkemeyer, L.: Process Mining in Action. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-40172-6

Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining
of academic social networks. In: Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008)

Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring
with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS,
vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59536-8 30

Taymouri, F., Rosa, M.L., Erfani, S., Bozorgi, Z.D., Verenich, I.: Predictive business pro-
cess monitoring via generative adversarial nets: the case of next event prediction. In:
Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168,
pp. 237–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9 14

Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive pro-
cess monitoring: review and benchmark. ACM Trans. Knowl. Discov. Data (TKDD)
13(2), 1–57 (2019)

Tello-Leal, E., Roa, J., Rubiolo, M., Ramirez-Alcocer, U.M.: Predicting activities in
business processes with LSTM recurrent neural networks. In: 2018 ITU Kaleidoscope:
Machine Learning for a 5G Future (ITU K), pp. 1–7. IEEE (2018)

Theis, J., Darabi, H.: Decay replay mining to predict next process events. IEEE Access
7, 119787–119803 (2019)

van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28108-2 19

Van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process
mining. Inf. Syst. 36(2), 450–475 (2011)

van Dongen, B.: BPI challenge 2012, April 2012
Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational

graph convolutional networks. In: 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net
(2020)

Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

Wang, Z., et al.: Advanced graph and sequence neural networks for molecular property
prediction and drug discovery. Bioinformatics 38(9), 2579–2586 (2022)

https://doi.org/10.1007/978-3-030-35166-3_25
https://doi.org/10.1007/978-3-030-40172-6
https://doi.org/10.1007/978-3-030-40172-6
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-030-58666-9_14
https://doi.org/10.1007/978-3-642-28108-2_19

Enhance Temporal Knowledge Graph
Completion via Time-Aware Attention

Graph Convolutional Network

Haohui Wei, Hong Huang(B), Teng Zhang, Xuanhua Shi, and Hai Jin

National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,

School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China

{weihh77,honghuang,tengzhang,xhshi,hjin}@hust.edu.cn

Abstract. Previous works on knowledge graph representation learning
focus on static knowledge graph and get fully developed. However, task
on temporal knowledge graph is far from consummation because of its
late start. Recent researches have shifted to the temporal knowledge
graph relying on the extension of static ones. Most of these methods seek
approaches to incorporate temporal information but neglect the poten-
tial adjacent impact merged in temporal knowledge graphs. Meanwhile,
different temporal information of involved facts evoke impact with dif-
ferent extent on the concerned entity, which is always overlooked in the
previous works. In our paper, we propose a Time-aware Attention Graph
Convolutional Network, named TAGCN, for temporal knowledge graph
completion. Entity completion can be turned into interactions between
entity and associated neighborhood. We utilize a graph convolutional
network with a novel temporal attention layer to obtain neighboring
information at all timestamps to avoid diachronic sparsity. We conduct
extensive experiments on various datasets to evaluate our model perfor-
mance. The results illustrate that our model outperforms the state-of-
the-art baselines on entity prediction.

Keywords: Temporal knowledge graph · Representation learning ·
Graph neural networks

1 Introduction

Temporal Knowledge Graph (TKG) stores structured data in quadruples to
extract interactions between entities on specific timestamps to represent fact,
which is the information of events that have occurred in the reality. Temporal
information is a crucial element in the real world because some facts are only
valid at some timestamps. Due to its capability to contain rich information, TKG
benefits numerous downstream applications, like transaction recommendation,
social relation inferring, and event process prediction, all of which are dependent
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 122–137, 2023.
https://doi.org/10.1007/978-3-031-26390-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_8

TAGCN 123

Fig. 1. A toy example for entity prediction in TKG, and the deep green candidate
is the most probable entity for the query (Keanu Reeves, cooperate, ?, 22/12/2021).
(Color figure online)

on the quality of the knowledge graph. Nonetheless, TKG is inevitably incom-
plete and sparse due to corruption and some other irresistible factors, which will
undermines the performance of downstream tasks. Therefore, there is a growing
need of valid approaches for completion in TKG.

Recently, more and more works pay attention to TKG completion. Majority
of researches, like TTransE [1], TNTComplEx [2], neglect rich information that is
inherent within the vicinity of entities and limit their semantic capturing because
they expand to TKG domain through a straightforward extension from static
methods, such as TransE [3], focusing on independent validation of each quadru-
ple. Taking Fig. 1 as an example, our purpose is to predict who Keanu Reeves
would cooperate with on 22/12/2021. It is obvious that Carrie-Anne Moss and
Halle Berry share the same entity interaction cooperate with Keanu Reeves.
However, the neighborhood of Carrie-Anne Moss is quite different from that
of Halle Berry. Characterizing this would provide abundant information when
predicting the missing tail entity in (Keanu Reeves, cooperate, ?, 22/12/2021).
To conclude, neighboring information has large impact on representation learn-
ing because learning quadruples independently would lose the huge amount of
interactions among entities from the neighboring structure of TKG.

Furthermore, fact in TKG relies on long-term dependency which means fact
with long interval may still determine the future prediction. Using the same
query in Fig. 1, although Halle Berry has closer interactive behavior cooperate
with Keanu Reeves than Carrie-Anne Moss, it is not definite that Halle Berry
has a bigger chance to be the correct prediction in the query (Keanu Reeves,
cooperate, ?, 22/12/2021). But due to the difficulty of simulating complex tem-
poral influence in TKG, some of relevant works, like RE-NET [4] and RTFE [5],
only pay more attention to recent fact.

124 H. Wei et al.

Considering the aforementioned features, it is prominent to comprehend TKG
both from the neighbor structure and the temporal dependency of TKG. There-
fore, it evokes several challenges when tackling these features. First, how to
extract temporal neighboring information from the neighbor structure of TKG?
The significance of neighborhood encoding has been revealed in several static KG
methods [6], but the extension to TKG is difficult due to the additional time
dimension. Utilizing the Message Passing Process approaches, it is critical to
integrate temporal information with interactions between relations and entities
when encapsulating the neighborhood surrounding entities.

The second challenge is how to encode time to maintain long-term depen-
dency? Encoding time by separating time snapshots and training through the
temporal order may give rise to the same consequence of sequence-based models
mentioned above. It is also difficult to comprehend the influence of all time on
prediction by simply projecting time into the same space of entity and relation.
Therefore, to distinguish different temporal influence on a certain timestamp,
it is needed to implement a specific approach to learn the dependency between
temporal information and the certain timestamp of the concerned query.

To this end, we propose our Time-aware Attention Graph Convolutional
Network (TAGCN). We decouple temporal knowledge graph completion into
two phase, neighboring temporal message aggregation and entity temporal focus
attachment. To alleviate the above two challenges, TAGCN is used to encode
neighboring information to contextualize the representation of entities. Inspired
by self-attention mechanism [7], we devise a novel temporal self-attention (TeA)
layer to locally extract the temporal influence between timestamps and involved
fact on concerned query. The temporal message aggregation (TMA) module is
used to extract neighborhood structure in TKG. Moreover, a time-aware decoder
is applied and uses a simple way to activate different attention to neighboring
impact regarding to the time of query. Our contributions can be summarized as
follows:

1. We propose TAGCN, which introduces a knowledge graph convolutional net-
work to learn the representation of entity capturing temporal dependency
and complex interactions between entities and temporal facts. We decouple
temporal knowledge graph completion into two phases, neighboring temporal
message aggregation and entity temporal focus attachment.

2. Our work initiates a well-designed temporal self-attention layer, which is
leveraged to encode locally temporal impact between target entity and
involved facts. Thus, enhancing the estimation of the temporal influence of
neighborhood.

3. We conduct extensive experiments on several real-world datasets. Experimen-
tal results show that the proposed method has achieved the state-of-the-art
results in the task of entity prediction for TKG.

TAGCN 125

2 Related Works

2.1 Static KG Completion

There have been a large number of researches giving insight into static knowl-
edge graph completion. Traditional KG completion methods map entities and
relations into a low-dimensional vector with a score function measuring the pos-
sibility of the candidates. They can be classified into three categories in general:
translational models, factorization based models, and convolutional neural net-
work (CNN) models. TransE [3] is the most well-known method using transla-
tion to embed entities and relations. Following TransE, several methods [8–10]
using different mapping methodology come out in succession and achieve better
results. Rescal [11] and DistMult [12] are two factorization based models. Simul-
taneously, ComplEx [13] also projects entities and relations into different spaces
using the above-mentioned evaluation function. In this way, these models can
further develop the expressiveness beyond the limitation of Euclidean space and
learn more complex interaction between entities and relations. Besides these
works, ConvE [14] applies convolutional filters to process the vector of entity
and relation. Its success ignites further application of other neural networks [15].
However, completion task on TKG reaps poor effect with static methods because
of the lack of temporal information processing.

2.2 Temporal KG Completion

Lots of previous works on TKG mainly pay attention to the independent valida-
tion of quadruples and lay more focus on the incorporation of static methods and
temporal information. The main distinction lies in the representation of times-
tamps. As mentioned in the above section, TTransE [1] views time as a new ele-
ment and adds timestamp embedding into the relation embedding to fulfill the
conventional score function TransE [3]. HyTE [16] adopts the idea of TransH [8],
viewing different hyperplanes as different temporal spaces. Then it projects enti-
ties and relations to these hyperplanes and uses static score function to measure
the possibility. TA-DistMult [17] learns time embedding by encoding the times-
tamp string sequence while DE-SimplE [18] leverages diachronic embedding by
concatenating it with enduring one. TNTComplEx [2] makes a decomposition
of 4 tensors in complex domain, adding the timestamp representation compared
with ComplEx [13]. Although these methods extend to TKG successfully, none of
them considers the neighborhood information within knowledge graph. RTFE [5]
proposes a new training framework to enhance the further boost of conventional
methods. T-GAP [19] adopts query-relevant temporal displacement to process the
whole TKG, but the time overhead is too high to follow.

3 Proposed Model

3.1 Problem Definition

Temporal knowledge graph G is composed of quadruples G = {(h, r, t, τ) | h, t ∈
E , r ∈ R, τ ∈ T }, where h refers to head entity, r denotes the relation, t is the

126 H. Wei et al.

Fig. 2. Overview of our work. Arrows in gray refer to inverse directions, and self loop
is omitted for clarity. All entities in E are considered as candidates.

tail entity, and τ is the timestamp. E , R represent the entity set and relation set
contained in G, and T stands for the known timestamps. To distinguish different
concept, we use lower-case letters to represent object in dataset, e to represent
specific entity in TKG, such as e1, e2 ∈ E in Fig. 2, z to represent embedding
of each object, like zr,zh ∈ R

d where d is the embedding dimension, and zτ
x to

represent entity embedding zx under timestamp τ .
The aim of TKGC is to find the missing entity of an incomplete query. Given

a query lacking in tail entity, such as (h, r, ?, τ) where τ is within the observed
set T , we hope to learn a mapping function fmap: e → R

d, where e ∈ E and d
represents the dimension of embedding d � |E| and a score function fscore to
infer the most probable t ∈ E to fulfill the missing component in the query based
on the known information of G. What’s more, the mapping function fmap not
only needs to consider the temporal information of each fact but also consolidate
neighbor structure.

3.2 Model Overview

In this section, we describe our proposed model TAGCN, which can simultane-
ously extracts structural information and temporal dependency. Our model is
in the architecture of encoder-decoder, and the framework is shown in Fig. 2.
Quadruple sets in TKG are mapped into low-dimensional spaces at the begin-
ning. Then, two stages are entailed for entity prediction. With the novel temporal
attention layer (TeA), we capture the temporal dependency of the neighboring
fact locally and dispose with temporal message aggregation (TMA) to increase

TAGCN 127

the expressiveness of entities. Last, the time-aware decoder integrates temporal
information to model the temporal impact on entity and gives the probability
of candidates.

3.3 TAGCN

Preprocess. To best improve the connectivity and information transmission
efficiency, we allow information in TKG flows along three directions: original,
inverse, and self-loop. Among which, self-loop loope is constructed for each entity
e ∈ E , quadruple with self-loop is extended with a self-loop relevant timestamp
τloop. Therefore, TKG G grows into G′,

G′ = G ∪ {(t, r−1, h, τ) | (h, r, t, τ) ∈ G} ∪ {(e, loope, e, τloop) | e ∈ E}. (1)

R and T are also extended to R′ = R ∪ Rinv ∪ {loope}, T ′ = T ∪ {τloop}.
Meanwhile, since d(rel) short for the direction of relations is divided into three
types, we adopt three different filters, and the relational direction filter is defined
as follows:

Wd(rel) =

⎧
⎪⎨

⎪⎩

Wori rel ∈ R,

Winv rel ∈ Rinv,

Wloop rel ∈ {loope}.

(2)

Temporal Attention Layer. Attention is of great importance in nowadays
researches. In order to encode temporal dependency between entity and fact,
we utilize self-attention layer for better usage of adequate information among
available edge attributes. We compute the implicit attention score when an entity
concerns its surrounding neighborhood. We treat neighboring messages as two
part for decoupling the structural and temporal information. For a corresponding
fact (h, r, t, τ), we use a linear layer to combine the representations of head entity
and relation for semantic information ms

h,r of the fact:

ms
h,r = Ws([zh|zr]), (3)

where [·|·] denotes concatenate operation, and Ws is to project the embedding
size to the standard dimension space.

Then we use two weight matrices to get the query and key of ms and zτ . The
intermediate representation m̂ refers to the combination of temporal information
τ and semantic information of the fact, which could be explored in the following
step. Following previous work [7], the scaling operation is employed to alleviate
the over inflation of dot products, thus avoiding the extremely small gradient:

m̂τ
h,r =

WK(zτ) ⊗ WQ(ms
h,r)√

d
, (4)

where WK , WQ are weight matrices. m̂τ
h,r is an implicit temporal representa-

tion of neighborhood. Thus we get the temporal fact attention generated from

128 H. Wei et al.

temporal and semantic representation after softmax. To strengthen the potential
impact of fact on specific timestamp, we model the temporal attention by using
temporal information and the fact temporal representation:

mτ
h,r = softmax(m̂τ

h,r)WV (zτ). (5)

Up to now, we obtain the temporal mτ
h,r information of neighboring fact.

To enhance the semantic influence, we utilize the residual network for numerical
stability. The neighboring message of the certain fact is formulated as follows:

mf = FCN(mτ
h,r + ms

h,r), (6)

where FCN denotes the fully connected net with norm and dropout layer to
enhance the generalization. We also use a residual layer to maintain layer wise
fact information to deal with some long maintaining facts.

Temporal Message Aggregation Module. With the process of TeA layer, we
obtain the input message by modeling the temporal dependency with semantic
and temporal information when concerning the central entity e. To improve
the representation, we adopt the aggregation and take the relation direction into
account. The new entity feature is computed by combining all incoming messages
to e:

ze =
∑

f∈Ne

Wd(r)mf , (7)

where Ne is the neighboring facts with e as the tail entity, and the facts are all
in the original temporal knowledge graph G.

After conducting TAGCN, we use the output as the ultimate representations
of entities. These representations well integrate the temporal dependency on
certain facts with interactions between entities and the involved facts from the
neighboring structure of the knowledge graph.

3.4 Time-Aware Decoder

Using the encoder, we obtain representations with perception of the whole TKG.
When considering one query, the temporal effect on entity should be activated
in decoder for better comprehension. To implement conventional decoders, we
combine the entity and timestamp embedding with weight matrix W ∈ R

2d×d,
which enables the entity embedding to comprehend diversity of fact influence on
different timestamps:

zτ
h = W[zh|zτ], (8)

where zh and zt are the embeddings of head entity and timestamp selected from
embedding matrix according to the query.

In our work, we choose ConvE [14] as decoder to estimate probability for
quadruples. ConvE employs convolutional and fully-connected layers to model

TAGCN 129

the interactions between entities and relations input. It stacks the embeddings
of head entity and relation, uses convolution operation to acquire the score of
quadruple as follows:

p(h,r,t,τ) = ReLU(vec(ReLU([zτ
h|zr] ∗ ω))W)ET, (9)

where vec(·) represents flattening tensor into vector, ∗ is the convolution opera-
tion, ω is the convolutional filter, and W denotes a parameter matrix to project
the flattened result to the embedding dimension. E is the entity embedding
matrix without temporal embedding, so that all entities are treated as candi-
dates.

The model is trained using standard cross entropy loss:

L = − 1
N

∑

i∈G
(ti · log(pi) + (1 − ti) log(1 − pi)), (10)

where ti is the gold label of fact i while pi is the inferred probability. At last, we
train our model using the optimizer Adam.

4 Experimental Setup

4.1 Datasets

In our work, we evaluate the proposed model on several public datasets for TKG
completion, namely, ICEWS14, ICEWS05-15, YAGO11k, and Wikidata12k.
iCEWS14 and ICEWS05-15 both come from the Integrated Crisis Early Warning
System (ICEWS)1. ICEWS14 covers facts occurred in 2014, while ICEWS05-15
collects facts occurred between 2005 and 2015. ICEWS datasets are stored in
the form of (h, r, t, τ). Wikidata12k and YAGO11k are subsets of Wikidata2

and YAGO3, formatted as (h, r, t, τstart, τend). Following the same data splitting
strategy in HyTE [16], we discretize them into each snapshot. The details of
above-mentioned datasets are listed in Table 1.

4.2 Evaluation Metrics

Generated from reality, facts may evolve over time. Two quadruples may appear
sharing same factors, like (h, r, t, τ) and (h, r, t′, τ). However, results can be
flawed once one quadruple end up with testing ones, while the other is from the
training set. To avoid the misleading of these corrupted facts, we remove from the
dataset the corrupted facts, corresponding to the former work [18]. Thus all met-
rics in our work are filtered ones. Mean reciprocal rank (MRR), Hits@1, Hits@3,
and Hits@10 are formally used in knowledge graph entity prediction to compare
the performance against other baselines. In our work, we evaluate TAGCN in
1 https://dataverse.harvard.edu/dataverse/icews.
2 https://www.wikidata.org.
3 https://yago-knowledge.org/.

https://dataverse.harvard.edu/dataverse/icews
https://www.wikidata.org
https://yago-knowledge.org/

130 H. Wei et al.

Table 1. Statistics of datasets. |E|, |R|, and |T | are the total number of entities, rela-
tions, and timestamps. Meanwhile, #train, #test, and #valid refer to the quadruple
numbers of train, test, and valid set respectively.

Dataset |E| |R| |T | #train #test #valid Granularity

ICEWS14 7,128 230 365 72,826 8,941 8,963 1 day

ICEWS05-15 10,488 251 4,017 368,962 46,275 46,092 1 day

YAGO11k 10,623 10 60 203,858 21,763 21,159 1 year

Wikidata12k 12,254 24 77 239,928 18,633 17,616 1 year

tail and head entity prediction respectively. The test set is represented by stest,
MRR is defined as MRRx = 1

|stest|
∑

(h,r,t,τ)∈stest
1

rankx
, where x ∈ {h, t}, and we

calculate both rankings of head entity rankh and tail entity rankt, consisting
with the evaluation method of previous work. Meanwhile, Hits@n, n = 1, 3, 10, is
defined as Hits@nx = 1

|stest|
∑

(h,r,t,τ)∈stest
I(rankx ≤ n), where I(·) is an indicator

function equaling to one if the condition holds, and zero otherwise.

4.3 Baselines

To show the competitiveness of our model, we make a comparison with numbers
of temporal and static KG completion models. In order to meet the requirements
of static models, we ignore the time information when training these models. T-
GAP [19] is not set as our baseline because of the high time overhead, and
it only uses tail prediction as its results in the paper, while the tail predic-
tion performance is usually better than the head one. Sequence-based models
like RE-NET [4] and RE-GCN [20] are excluded because they are assigned for
extrapolation task.

Static Baselines are Listed as Follows

– TransE [3]. In TransE, entities and relations are mapped into the same embed-
ding space, and use translation method to infer the tuples.

– DistMult [12]. With the same projection as TransE, this work uses factoriza-
tion method to calculate the score of each tuple.

– ComplEx [13]. ComplEx proposes a method based on complex representation.
It divides the embeddings of entities and relations into real and imaginary
parts. Lastly it adopts a complex multiplication, and maintains the real part
as the final score.

– ConvE [14]. This method construct the score function with the same pro-
jection as TransE, and uses convolution operation to obtain the interactions
between entities and relations.

Temporal Baselines are Listed as Follows

– TTransE [1]. TTransE is an extension of TransE with an additional dimen-
sion of timestamp, it uses a linear add operation to encode the temporal
information into relation.

TAGCN 131

– HyTE [16]. Using the same projection as TTransE, but HyTE projects all
entities and relations to the space of timestamps by linear transition associ-
ated with timestamps.

– TA-DistMult [17]. TA-DistMult treats timestamp as a string, and maps each
character to a vector. When dealing with a tuple, the temporal relation
embedding zr,τ is generated by feeding r and characters in τ as a sequence
into a LSTM to encode temporal information.

– DE-SimplE [18]. Focusing on temporal encoding, DE-SimplE puts forward
a novel entity embedding function by considering that entities are combined
with temporal and static features, using diachronic embeddings to estimate
the probability of the incomplete tuples.

– TNTComplEx [2]. This work focuses on the integration of timestamp with
ComplEx, and projects timestamps the same way as other objects in Com-
plEx. To be more clear, TNTComplEx embeds temporal features through
linear representation in complex space.

– RTFE [5]. RTFE is a framework to enhance the performance of existing
methods. It chooses a method f̂ , and trains along time after pretraining with
setting the embedding of former snapshot Gn−1 as the initial embedding of
the latter one Gn, where snapshots are separated on account of timestamps.

4.4 Implementation Details

We conduct all experiments of our model and baselines using Pytorch on a
Intel(R) Xeon(R) Gold 5117 CPU, Tesla V100 GPUs, and 250 GB Memory
server. The software of experiment environment is Ubuntu 18.04 with CUDA
11.4. We evaluate our model with setting the learning rate of Adam as 0.001,
batch size as 512 in ICEWS05-15 and 128 in other datasets. Moreover, the ini-
tiate embedding dimension is set as 100 for both entities and timestamps while
output dimension is set as 200, label smooth in two datasets of ICEWS is set as
0 and 0.01 in the other datasets. We use the released code of baselines and the
parameters in baselines are set as their default settings.

4.5 Results and Comparison

In this part, we show our performance against other baselines and make an
analysis on the results.

Table 2 demonstrates entity prediction results comparing with other models
on the popular datasets for TKG completion task. Different from previous works,
we use respective head and tail entity prediction to evaluate for rigorous compar-
ison. For saving space, H@1, H@3, and H@10 are used to replace Hits@1, Hits@3,
Hits@10 in this section. Our work shows outstanding performance against other
baselines on ICEWS14 and ICEWS05-15. TAGCN delivers an increment of 2%
on MRR on these two datasets. Although we still observe that TAGCN does
not always achieve the best results from Table 2 on YAGO11k, we achieve the
best results in mean metrics. Further analysis shows that this attributes to the

132 H. Wei et al.

Table 2. Entity prediction results on several popular datasets. The best results of each
metric are in bold, and the second ones are underlined. The percent sign is omitted for
all data.

Metrics MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

t h t h t h t h t h t h t h Tail Head

ICEWS14 ICEWS05-15

TransE 33.4 29.4 17.2 12.0 45.3 38.1 67.2 61.0 34.2 30.8 17.5 13.3 45.7 40.3 68.4 62.6

DistMult 50.7 37.1 36.4 28.6 52.1 46.5 73.1 59.9 47.1 44.1 36.9 30.7 55.1 47.9 71.9 66.3

ComplEx 50.7 37.7 42.4 37.6 45.7 40.1 68.9 64.1 49.5 42.9 36.8 32.2 54.9 49.7 72.7 66.1

ConvE 51.2 40.8 37.2 31.0 54.2 49.4 74.1 65.7 48.9 44.5 37.3 31.1 56.2 49.6 73.1 68.1

TTransE 27.2 23.8 11.1 3.7 43.7 37.2 62.1 57.9 32.0 22.2 10.0 6.8 42.8 38.6 64.1 59.1

HyTE 30.5 25.7 12.8 7.3 45.1 36.7 65.4 63.5 33.9 28.1 15.2 8.1 46.9 40.5 70.5 65.8

TA-DistMult 49.1 46.3 38.4 34.2 46.7 40.9 71.1 66.1 50.2 44.6 38.3 30.9 50.1 44.9 75.8 69.8

DE-SimplE 52.1 47.5 40.1 37.3 59.7 52.9 75.5 66.9 54.3 48.7 43.2 37.8 60.3 56.5 74.2 69.8

TNTComplEx 59.1 53.9 54.1 40.1 66.1 57.7 78.1 69.9 62.1 58.3 54.7 45.9 66.8 59.2 77.3 70.7

RTFE 62.1 56.5 56.8 43.8 68.4 58.8 78.9 70.0 64.2 61.2 56.7 53.1 70.4 61.0 81.7 76.9

TAGCN 63.7 59.1 58.3 49.9 70.4 61.8 80.1 71.9 66.3 62.0 57.2 53.4 71.2 65.7 85.1 77.3

Wikidata12k YAGO11k

TransE 21.1 17.3 12.4 8.2 21.2 17.0 42.4 25.2 14.2 6.4 1.9 0.7 18.2 9.2 36.2 13.4

DistMult 24.1 20.1 13.8 10.1 27.1 20.3 48.1 44.3 17.2 13.4 12.4 8.8 19.7 12.7 33.3 20.1

ComplEx 25.6 21.2 14.9 10.0 28.3 22.1 47.7 39.3 18.1 14.5 12.8 8.2 17.5 13.5 34.4 21.8

ConvE 24.3 20.7 14.8 10.6 25.9 18.7 42.1 39.7 15.8 11.8 10.1 7.3 15.4 11.6 33.2 17.4

TTransE 21.1 13.3 11.4 7.8 22.8 14.0 40.9 24.9 14.0 7.1 3.2 0.8 22.3 7.7 34.6 15.6

HyTE 21.2 15.1 11.5 7.7 24.1 13.5 40.9 27.1 14.0 6.5 2.8 0.7 21.5 8.0 35.2 11.7

TA-DistMult 24.5 18.9 14.1 10.3 25.7 20.7 47.1 42.7 18.4 14.2 13.1 9.5 22.9 10.5 39.7 19.3

DE-SimplE 31.3 19.7 17.9 11.7 27.4 22.8 55.6 42.6 17.3 13.5 10.1 6.5 31.9 14.0 33.8 19.6

TNTComplEx 45.1 26.7 28.7 24.3 57.2 30.0 66.9 49.6 31.7 18.3 21.9 11.8 34.5 16.3 50.9 26.8

RTFE 52.5 37.3 41.9 29.3 58.7 41.8 68.3 54.8 32.5 18.3 23.4 14.2 35.3 16.9 51.9 27.6

TAGCN 53.4 37.3 43.2 29.5 59.5 41.9 70.3 55.4 33.4 18.5 23.7 14.3 35.7 17.1 53.1 27.4

continuity of these two datasets. YAGO11k contains facts with their starting
and ending time. This characteristic accommodates for the snapshot separation
of RTFE. To be more specific, the continuity makes the timestamps between
the time span have a better understanding of the maintaining facts. While our
model only aggregate the temporal information after the preprocessing of tem-
poral data, our training strategy brings out the fluctuations. To conclude, the
properties of dataset have a large impact on the processing procedure.

Meanwhile, it is also interesting to find that methods for static knowledge
graph are better than the previous temporal knowledge graph [1,16]. From our
analysis, it is explicit that encoding temporal information into the same space of
entities with linear function cannot help the integration. It is crucial to improve
the expressiveness, and the temporal effect should be emphasized.

TAGCN 133

Table 3. Ablation experiments on ICEWS14. TAGCN is implemented with TeA layer,
1-layer GCN, and temporal modified decoder.

Method MRR H@1 H@3 H@10

TMA + time-aware decoder 56.0 43.1 61.3 72.6

Only time-aware decoder 54.8 42.8 60.7 71.3

TAGCN with conventional decoder 48.1 37.8 55.7 70.7

TAGCN 61.8 54.1 66.1 76.0

4.6 Ablation Study

To examine the effect of our model, we further conduct ablation study on each
module. The results are displayed in Table 3. For saving place, we use mean
metrics of head and tail entity predictions as the final results in the further
experiments. Consisted of encoder-decoder framework shown in the Fig. 2, we
assign the ablation study as follows:

Firstly, we hide the TeA layer and only use a linear function to integrate
timestamp, relation, and head entity embeddings as the neighbor message to
update all representations of entities, it is obvious that performance on ICEWS14
degrades about 10% in H@1. The result attests that our proposed temporal
information integration method has a better comprehension on facts impact and
encodes temporal dependency more effectively.

Secondly, we construct a model only utilizing the time-aware decoder to train
for representation learning. From Table 3, we can find that the performance
is behind the best performance of TAGCN, which denotes that the temporal
encoder could definitely capture neighboring structure information and lift the
expressive capability. Meanwhile, the accuracy reduces slightly comparing with
the former study, we can interpret that temporal dependency in TKG has greater
impact than adjacent information.

Lastly, to analyse the importance of our decoder, we resort to a new structure
of TAGCN with a conventional decoder. In other words, we use the original
ConvE [14] as the decoder, thus overlooking the temporal impact on entity.
The result in Table 3 implies that the modification on decoder helps the entity
concentrates on the within-time facts impact and chooses the most appropriate
candidate.

4.7 Parameter Analysis

Besides, to evaluate our model, we analyze important parameters in TAGCN:
number of aggregation layers l, the embedding dimension d, and temporal inte-
gration variant operation ope. We conduct these experiments on ICEWS14 and
ICEWS05-15.

Number of Layers l . Considering multi-hop neighbors could enhance full graph
perception and increase the global understanding. The results are shown in Fig. 3.

134 H. Wei et al.

Fig. 3. Experimental results of influence with layer numbers, we conduct this experi-
ment on ICEWS14 (a) and ICEWS05-15 (b). The X-axis represents epochs, while the
Y-axis is the MRR of entity prediction on each dataset.

We show how the layer of aggregation can influence TAGCN. Experimental
results in Fig. 3 indicate that training with two layers undermines the accuracy
in both datasets. More training layers only bring little gain at the cost of time
overhead and mainly accelerate the convergence in the early stage of the model.

The Embedding Dimension d . It is obvious that the expressiveness is related
to the embedding dimension d. As shown in Fig. 4(a), TAGCN does not need too
little or too superfluous embedding dimension to capture the features in TKG.
Therefore, the proper size of embedding dimension is around 200.

Temporal Integration Operation ope. Further, we evaluate the effectiveness
of TAGCN with different operations, such as linear calculations and convolution
operation, to integrate timestamp and entity embeddings in the decoder. The
experimental results are listed in Fig. 4(b), Sum and Mult have better perfor-
mance than Conv, which denotes that too complex approach will sabotage the
representation and integration. To balance the performance and the complexity,
we use MLP as temporal integration operation.

4.8 Further Analysis

As mentioned in the former section, we hypothesize that the temporal change
in the relation is too small. Considering the example mentioned in Sect. 1, the
meaning and usage of relation cooperate has been maintained for a long time.
However, the characteristics of figures change with time. It is obvious that Keanu
Reeves was the actor in different movie in 31/3/1999 and 17/5/2019. So the
temporal change in entity is explicitly more significant than that in relation. To
verify this point, we employ the temporal embedding in three approaches respec-
tively to compare the accuracy. This experiment is conducted on ICEWS14. The
result is shown in Table 4.

From Table 4, we can confirm that decoder with only temporal embedding on
entities outperforms the other approaches. Temporal embedding only on enti-
ties is 2% ahead of that on relations. Temporal embeddings on both entities
and relations is 1.8% behind because the temporal changes in relations mislead

TAGCN 135

Fig. 4. Comparison of different parameters: the embedding dimension (a), temporal
integration operation (b). The X-axis represents different datasets, while the Y-axis is
the MRR of entity prediction.

Table 4. Further analysis of temporal embedding

Method MRR H@1 H@3 H@10

Temporal embedding on both relations and entities 60.0 52.1 64.3 74.6

Temporal embedding on relations only 59.8 51.8 64.7 73.3

Temporal embedding on entities only 61.8 54.1 66.1 76.0

the representation learning for entity prediction. This experiment corroborates
the hypothesis we suggest: entity is more sensitive to temporal impact while
relation may evolve at a very low rate, and forcing relations to give reflect to
temporal information will only degrade the performance. Thus only using static
representations to model relations is more sufficient.

4.9 Time Prediction

The visualization of time prediction on three facts is shown in Table 5. For all
timestamps in the time set T , we calculate the probability of the object entity
among all candidates. For a more intuitive comparison, we reserve the non-zero
position in the same order of magnitude. We only pick the top three scores for
display to save place.

From Table 5, it is explicit that the true timestamp has the highest score
in the second fact and among the top three scores in the other two facts.
We collate the dataset and find that in ICEWS14, some facts appear in dif-
ferent timestamps, which is consistent with our results. For example, the fact
(Angela Merkel, Express intent to cooperate,Barack Obama) occurred three
times corresponding to listed timestamps in ICEWS14 and same for the other
facts. So our model can obviously focus on the appropriate timestamps and
improve the decoder performance.

136 H. Wei et al.

Table 5. Case study of three time prediction on ICEWS14

Gold facts Timestamps Scores

(Merkel, Intent to cooperate, Obama, 19/03/2014) 03/07/2014 5.1949

19/03/2014 4.6959

09/08/2014 3.6903

(Portugal, Consult, European Central Bank, 24/10/2014) 24/10/2014 3.9880

21/10/2014 1.7212

21/02/2014 1.0325

(Juan Carlos I, Make statement, Felipe de Borbon, 03/06/2014) 03/06/2014 3.6341

03/06/2014 2.5742

11/02/2014 1.3227

5 Conclusion

In this paper, we propose a time-aware attention graph convolutional network
TAGCN for link prediction in TKG. Inspired by self-attention layer in Trans-
former, we bring out a novel message generator for neighboring temporal mes-
sage. To accomplish entity prediction in temporal knowledge graph, we decouple
this task into two phases, using the encoder to aggregate neighboring semantic
and temporal information, and acquire different temporal impact in decoding
phase on account of the query. The proposed TeA layer is used to capture the
neighboring information of all involved facts when considering the central entity.
We conduct abundant experiments on real-world datasets, and the results show
that TAGCN achieves best performance. In the future, we will investigate the
better approach to encode potential temporal information from a novel angle.

Acknowledgements. The work is supported by the National Key Research and
Development Program of China (Grant No. 2020AAA0108501) and the National Nat-
ural Science Foundation of China (Grant No. 62172174, 62127808).

References

1. Jiang, T., et al.: Towards time-aware knowledge graph completion. In: Proceedings
of COLING, pp. 1715–1724 (2016)

2. Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowl-
edge base completion. In: Proceedings of ICLR (2020)

3. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Proceedings of NeurIPS (2013)

4. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure
inference over temporal knowledge graphs. In: Proceedings of EMNLP, pp. 6669–
6683 (2020)

5. Xu, Y., et al.: RTFE: a recursive temporal fact embedding framework for tempo-
ral knowledge graph completion. In: Proceedings of NAACL-HLT, pp. 5671–5681
(2021)

TAGCN 137

6. Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embed-
dings for relation prediction in knowledge graphs. In: Proceedings of ACL, pp.
4710–4723 (2019)

7. Vaswani, A., et al.: Attention is all you need. In: Proceedings of NeurIPS (2017)
8. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating

on hyperplanes. In: Proceedings of AAAI, pp. 1112–1119 (2014)
9. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic

mapping matrix. In: Proceedings of ACL, pp. 687–696 (2015)
10. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings

for knowledge graph completion. In: Proceedings of AAAI, pp. 2181–2187 (2015)
11. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on

multi-relational data. In: Proceedings of ICLR, pp. 809–816 (2011)
12. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations

for learning and inference in knowledge bases. In: Proceedings of ICLR (2015)
13. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-

dings for simple link prediction. In: Proceedings of ICML, pp. 2071–2080 (2016)
14. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge

graph embeddings. In: Proceedings of AAAI, pp. 1811–1818 (2018)
15. Vashishth, S., Sanyal, S., Nitin, V., Agrawal, N., Talukdar, P.: InteractE: improving

convolution-based knowledge graph embeddings by increasing feature interactions.
In: Proceedings of AAAI, pp. 3009–3016 (2020)

16. Dasgupta, S., Ray, S., Talukdar, P.: HyTE: hyperplane-based temporally aware
knowledge graph embedding. In: Proceedings of EMNLP, pp. 2001–2011 (2018)

17. Garćıa-Durán, A., Dumancic, S., Niepert, M.: Learning sequence encoders for tem-
poral knowledge graph completion. In: Proceedings of EMNLP, pp. 4816–4821
(2018)

18. Goel, R., Kazemi, S., Brubaker, M., Poupart, P.: Diachronic embedding for tempo-
ral knowledge graph completion. In: Proceedings of AAAI, pp. 3988–3995 (2020)

19. Jung, J., Jung, J., Kang, U.: Learning to walk across time for interpretable tem-
poral knowledge graph completion. In: Proceedings of KDD (2021)

20. Li, Z., et al.: Temporal knowledge graph reasoning based on evolutional represen-
tation learning. In: Proceedings of SIGIR (2021)

Start Small, Think Big: On
Hyperparameter Optimization for

Large-Scale Knowledge Graph Embeddings

Adrian Kochsiek(B) , Fritz Niesel , and Rainer Gemulla

University of Mannheim, Mannheim, Germany
{akochsiek,fniesel,rgemulla}@uni-mannheim.de

Abstract. Knowledge graph embedding (KGE) models are an effective
and popular approach to represent and reason with multi-relational data.
Prior studies have shown that KGE models are sensitive to hyperparam-
eter settings, however, and that suitable choices are dataset-dependent.
In this paper, we explore hyperparameter optimization (HPO) for very
large knowledge graphs, where the cost of evaluating individual hyper-
parameter configurations is excessive. Prior studies often avoided this
cost by using various heuristics; e.g., by training on a subgraph or by
using fewer epochs. We systematically discuss and evaluate the quality
and cost savings of such heuristics and other low-cost approximation
techniques. Based on our findings, we introduce GraSH, an efficient
multi-fidelity HPO algorithm for large-scale KGEs that combines both
graph and epoch reduction techniques and runs in multiple rounds of
increasing fidelities. We conducted an experimental study and found
that GraSH obtains state-of-the-art results on large graphs at a low
cost (three complete training runs in total). Source code and auxiliary
material at https://github.com/uma-pi1/GraSH.

Keywords: Knowledge graph embedding · Multi-fidelity
hyperparameter optimization · Low-fidelity approximation

1 Introduction

A knowledge graph (KG) is a collection of facts describing relationships between
a set of entities. Each fact can be represented as a (subject, relation, object)-
triple such as (Rami Malek, starsIn, Mr. Robot). Knowledge graph embedding
(KGE) models [4,8,16,21,23,28] represent each entity and each relation of the
KG with an embedding, i.e., a low-dimensional continuous representation. The
embeddings are used to reason about or with the KG; e.g., to predict missing
facts in an incomplete KG [15], for drug discovery in a biomedical KG [14], for
question answering [18,19], or visual relationship detection [2].

Prior studies have shown that embedding quality is highly sensitive to the
hyperparameter choices used when training the KGE model [1,17]. Moreover,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 138–154, 2023.
https://doi.org/10.1007/978-3-031-26390-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_9&domain=pdf
http://orcid.org/0000-0003-1972-1425
http://orcid.org/0000-0003-2441-0381
http://orcid.org/0000-0003-2762-0050
https://github.com/uma-pi1/GraSH
https://doi.org/10.1007/978-3-031-26390-3_9

Start Small, Think Big: On HPO for Large-Scale KGEs 139

the search space is large and hyperparameter choices are dataset- and model-
dependent. For example, the best configuration found for one model may perform
badly for a different one. As a consequence, we generally cannot transfer suitable
hyperparameter configurations from one dataset to another or from one KGE
model to another. Instead, a separate hyperparameter search is often necessary
to achieve high-quality embeddings.

While using an extensive hyperparameter search may be feasible for smaller
datasets—e.g., the study of Ruffinelli et al. [17] uses 200 configurations per
dataset and model—, such an approach is generally not cost-efficient or even
infeasible on large-scale KGs, where KGE training is expensive in terms of run-
time, memory consumption, and storage cost. For example, the Freebase KG
consists of ≈ 86M entities and more than 300M triples. A single training run of
a 512-dimensional ComplEx embedding model on Freebase takes up to 50min
per epoch utilizing 4 GPUs and requires ≈ 164GB of memory to store the model.

To reduce these excessive costs, prior studies on large-scale KGE models
either avoid hyperparameter optimization (HPO) altogether or reduce runtime
and memory consumption by employing various heuristics. The former approach
leads to suboptimal quality, whereas the impact in terms of quality and cost of
the heuristics used in the latter approach has not been studied in a principled
way. The perhaps simplest of such heuristics is to evaluate a given hyperparam-
eter configuration using only a small number of training epochs (e.g., [11] uses
only 20 epochs for HPO on the Wikidata5M dataset). Another approach is to use
a small subset of the large KG (e.g., the small FB15k benchmark dataset instead
of full Freebase) to obtain a suitable hyperparameter configuration [11,13,30] or
a set of candidate configurations [29]. The general idea behind these heuristics is
to employ low-fidelity approximations (fewer epochs, smaller graph) to compare
the performance of different hyperparameter configuration during HPO, before
training the final model on full fidelity (many epochs, entire graph).

In this paper, we explore how to effectively use a given HPO budget to
obtain a high-quality KGE model. To do so, we first summarize and analyze both
cost and quality of various low-fidelity approximation techniques. We found that
there are substantial differences between techniques and that a combination of
reducing the number of training epochs and the graph size is generally preferable.
To reduce KG size, we propose to use its k-core subgraphs [20]; this simple
approach worked best throughout our study.

Building upon these results, we present GraSH, an efficient HPO algorithm
for large-scale KGE models. At its heart, GraSH is based on successive halv-
ing [10]. It uses multiple fidelities and employs several KGE-specific techniques,
most notably, a simple cost model, negative sample scaling, subgraph validation,
and a careful choice of fidelities. We conducted an extensive experimental study
and found that GraSH achieved state-of-the-art results on large-scale KGs with
a low overall search budget corresponding to only three complete training runs.
Moreover, both the use of multiple reduction techniques simultaneously and of
multiple fidelity levels was key for reaching high quality and low resource con-
sumption.

140 A. Kochsiek et al.

2 Preliminaries and Related Work

A general discussion of KGE models and training is given in [15,25]. Here we
summarize key points and briefly discuss prior approaches to HPO.

Knowledge Graph Embeddings. A knowledge graph G = (E ,R,K) consists of
a set E of entities, a set R of relations, and a set K ⊆ E × R × E of triples.
Knowledge graph embedding models [4,8,16,21,23,28] represent each entity i ∈ E
and each relation p ∈ R with an embedding ei ∈ R

d and ep ∈ R
d, respectively.

They model the plausibility of each subject-predicate-object triple (s, p, o) via
a model-specific scoring function f(es,ep,eo), where high scores correspond to
more, low scores to less plausible triples.

Training and Training Cost. KGE models are trained [25] to provide high scores
for the positive triples in K and low scores for negative triples by minimizing a
loss such as cross-entropy loss. Since negatives are typically unavailable, KGE
training methods employ negative sampling to generate pseudo-negative triples,
i.e., triples that are likely but not guaranteed to be actual negatives. The number
N− of generated pseudo-negatives per positive is an important hyperparameter
influencing both model quality and training cost. In particular, during each epoch
of training a KGE model, all positives and their associated negatives are scored,
i.e., the overall number of per-epoch score computations is (|K| + 1)N−. We
use this number as a proxy for computational cost throughout. The size of the
KGE model itself scales linearly with the number of entities and relations, i.e.,
O(|E|d + |R|d) if all embeddings are d-dimensional.

Evaluation and Evaluation Cost. The standard approach to evaluate KGE model
quality for link prediction task is to use the entity ranking protocol and a filtered
metric such as mean reciprocal rank (MRR). For each (s, p, o)-triple in a held-out
test set Ktest, this protocol requires to score all triples of form (s, p, ?) and (?, p, o)
using all entities in E . Overall, |Ktest||E| scores are computed so that evaluation
cost scales linearly with the number of entities. Since this cost can be substantial,
sampling-based approximations have been used in some prior studies [13,30]. We
do not use such approximations here since they can be misleading in that they
do not reflect model quality faithfully [11].

Hyperparameters. The hyperparameter space for KGE models is discussed in
detail in [1,17]. Important hyperparameters include embedding dimensionalities,
training type, number N− of negatives, sampling type, loss function, optimizer,
learning rate, type and weight of regularization, and amount of dropout.

Full-Fidelity HPO. Recent studies analyzed the impact of hyperparameters and
training techniques for KGE models using full-fidelity HPO [1,17]. In these stud-
ies, the vast hyperparameter search space was explored using a random search
and Bayesian optimization with more than 200 full training runs per model
and dataset. The studies focus on smaller benchmark KGs, however; such an
approach is excessive for large-scale knowledge graphs.

Start Small, Think Big: On HPO for Large-Scale KGEs 141

Low-Fidelity HPO. Current work on large-scale KGE models circumvented the
high cost of full-fidelity HPO by relying on low-fidelity approximations such
as epoch reduction [5,11] and using smaller benchmark graphs [11,13,30] in a
heuristic fashion. The best performing hyperparameters in low-cost approxima-
tions were directly applied to train a single full-fidelity model. Our experimental
study suggests that such an approach may neither be cost-efficient nor produce
high-quality results.

Two-Stage HPO. AutoNE [24] is an HPO approach for training large-scale net-
work embeddings that optimizes hyperparameters in two stages. It first approx-
imates hyperparameter performance on subgraphs created by random walks, a
technique that we will explore in Sect. 4. Subsequently, AutoNE transfers these
results to the full graph using a meta learner. In the context of KGs, this app-
roach was outperformed by KGTuner [29],1 which uses a multi-start random
walk (fixed to 20% of the entities) in the first stage and evaluates the top-
performing configurations (fixed to 10) at full fidelity in the second stage. Such
fixed heuristics often limit flexibility in terms of budget allocation and lead to an
expensive second stage on large KGs. In contrast, GraSH makes use of multi-
ple fidelity levels, carefully constructs and evaluates low-fidelity approximations,
and adheres to a prespecified overall search budget. These properties are key for
large KGs; see Sect. 5.3 for an experimental comparison with KGTuner.

3 Successive Halving for Knowledge Graphs (GRASH)

GraSH is a multi-fidelity HPO algorithm for KGE models based on succes-
sive halving [10]. As successive halving, GraSH proceeds in multiple rounds
of increasing fidelity; only the best configurations from each round are trans-
ferred to the next round. In contrast to the HPO techniques discussed before,
this approach allows to discard unpromising configurations at very low cost.
GraSH differs from successive halving mainly in its parameterization and its
use of KG-specific reduction and validation techniques.

Parameterization. GraSH is summarized as Alg. 1. Given knowledge graph G,
GraSH outputs a single optimized hyperparameter configuration. GraSH is
parameterized as described in Alg. 1; default parameter values are given in paren-
theses if applicable. The most important parameters are the maximal number
E of epochs and the overall search budget B. The search budget B is relative
to the cost of a full training run, which in turn is determined by E. The default
choice B = 3, for example, corresponds to an overall search cost of three full
training runs. We chose this parameterization because it is independent of uti-
lized hardware and both intuitive and well-controllable. The reduction factor η
controls the number of configurations (starts at n, decreases by factor of η per
round) and fidelity (increases by factor of η) of each round. Note that GraSH
does not train at full fidelity, i.e., its final configuration still needs to be trained

1 KGTuner was proposed in parallel to this work.

142 A. Kochsiek et al.

Algorithm 1. GraSH: Successive Halving for Knowledge Graph Embeddings
Require:

KG G = (E ,R,K), max. epochs E, search budget B (=3), num. configura-
tions n (=64), reduction factor η (=4), variant v ∈ {epoch, graph, combined}
(=combined)

Ensure: Hyperparameter configuration
1: s ← �logη(n)� � Number of rounds
2: R ← B/s � Per-round budget
3: Λ1 ← {λ1, ..., λn} � Generate n hyperparameter configurations
4: for i ∈ {1, ..., s} do � i-th round
5: fi ← R/|Λi| if v �= combined else R/

√|Λi| � Target fidelity
6: Ei ← fiE if v �= graph else E � Epochs in round i
7: Gi ← reduced KG with fi|K| triples if v �= epoch else G � Graph in

round i
8: Gtrain

i ,Gvalid
i ← random train-valid split of Gi

9: Vi ← train each λ ∈ Λi on Gtrain
i for Ei epochs and validate using Gvalid

i

10: Λi+1 ← best �|Λi|/η� configurations from Λi according to Vi

11: end for
12: return Λs+1 � Only single configuration left

on the full KG (not part of budget B). Finally, GraSH is parameterized by a
variant v. This parameter controls which reduction technique to use (only epoch,
only graph, or combined).

Algorithm Overview. Like successive halving, GraSH proceeds in rounds. Each
round has approximately the same overall budget, but differs in the number of
configurations and fidelity. For example, using the default settings of B = 3, n =
64 and η = 4, GraSH uses three rounds with 64, 16, and 4 configurations and a
fidelity of 1/64, 1/16, 1/4, respectively. The hyperparameter configurations in the
first round are sampled randomly from the hyperparameter space. Depending on
the variant being used, GraSH reduces the number of epochs, the graph size, or
both to reach the desired fidelity. If no reduced graph corresponds to the fidelity,
the next smaller one is used. After validating each configuration (see below), the
best performing 1/η-th of the configurations is passed on to the next round. This
process is repeated until only one configuration remains.

Validation on Subgraphs. Care must be taken when validating a KGE model
trained on a subgraph, e.g., Gi = (Ei,Ri,Ki) in round i. Since Gi typically
contains a reduced set of entities Ei ⊆ E , a full validation set for G cannot be
used. This is because no embedding is learned for the “unseen” entities in E \ Ei,
so that we cannot score any triples containing these entities (as required by the
entity ranking protocol). To avoid this problem, we explicitly create new train
and valid splits Gtrain

i and Gvalid
i in round i. Here, Kvalid

i is sampled randomly
from Ki and Ktrain

i = Ki\Kvalid
i . Although this approach is very simple, it worked

Start Small, Think Big: On HPO for Large-Scale KGEs 143

well in our study. An alternative is the construction of “hard” validation sets as
in [22]. We leave the exploration of such techniques to future work.

Negative Sample Scaling. Recall that the number N− of negative samples is
an important hyperparameter for KGE model training. Generally (and assum-
ing without-replacement sampling), each entity is sampled as a negative with
probability N−/|E|. When we use a subgraph Gi as in GraSH, this probability
increases to N−/|Ei|, i.e., each entity is more likely to act as a negative sample
due to the reduction of the number of entities. To correctly assess hyperparame-
ter configurations in such cases, GraSH scales the number of negative examples
and uses N−

i = |Ei|
|E| N− in round i. This choice preserves the probability of sam-

pling each entity as a negative and provides additional cost savings since the
total number of scored triples is further reduced in low-fidelity experiments.

Cost Model and Budget allocation. To distribute the search budget B over the
rounds, we make use of a simple cost model to estimate the relative runtime
of low-fidelity approximations. This cost model drives the choice of fi in Algo-
rithm 1. In particular, we assume that training cost is linear in both the number
of epochs (Ei) and the number of triples (|Ki|). For example, this implies that
training five configurations for one epoch has the same cost as training one con-
figuration for five epochs. Likewise, training five configurations with 20% of the
triples has the same cost as training one configuration on the whole KG. Using
this assumption, the relative cost of evaluating a single hyperparameter configu-
ration in round i is given by Ei

E
|Ki|
|K| . More elaborate cost models are conceivable,

but this simple approach already worked well in our experimental study. Note,
for example, that our simple cost model neglects negative sample scaling and
thus tends to overestimate (but avoids underestimation) of training cost.

4 Low-fidelity Approximation Techniques

In this section, we summarize and discuss various low-fidelity approximation
techniques. As discussed previously, the two most common types are graph reduc-
tion (i.e. training on a reduced graph) and epoch reduction (i.e., training for fewer
epochs). Note that although graph reduction is related to dataset reduction tech-
niques used in other machine learning domains, it represents a major challenge
since the relationships between entities need to be taken into account.

Generally, good low-fidelity approximations satisfy the following criteria:

1. Low cost. Computational and memory costs for model training (including
model initialization) and evaluation should be low. Recall that computational
costs are mainly determined by the number of triples, whereas memory and
evaluation cost are determined by the number of entities. Ideally, both quan-
tities are reduced.

2. High transferability. Low-fidelity approximations should transfer to the
full KG in that they provide useful information. E.g., rankings of low-fidelity
approximations should match or correlate with the rankings at full-fidelity.

144 A. Kochsiek et al.

Table 1. Comparison of low-fidelity approximation techniques.

Technique Low
Cost

High
Transferability

Flexibility

Triple sampling ◦ − +
Random walk ◦ ◦ +
k-core decomposition + + ◦
Epoch reduction − ◦ +

Fig. 1. Schematic illustration of selected graph reduction techniques. All reduced
graphs contain 6 of the 10 original triples but a varying number of entities.

3. Flexibility. It should be possible to flexibly trade-off computational cost and
transferability.

All three points are essential for cost-effective and practical multi-fidelity HPO.
In the following, we present the graph reduction approaches triple sampling,

multi-start random walk, and k-core decomposition, as well as epoch reduction. A
high-level comparison of these approaches w.r.t. the above desiderata is provided
in Table 1. The assessment given in the table is based on our experimental results
(Sect. 5.2).

4.1 Graph Reduction

Graph reduction techniques produce a reduced KG Gi = (Ei,Ri,Ki) from the full
KG G = (E ,R,K). This is commonly done by first determining the reduced set
Ki of triples and subsequently retaining only those entities (in Ei) and relations
(in Ri) that occur in Ki.2 A reduction in triples thus may lead to a reduction in
the number of entities and relations as well. This consequently results in further
savings in computational cost, evaluation cost, and memory consumption. The
graph reduction techniques discussed here are illustrated in Fig. 1.

Triple Sampling (Fig. 1a). The perhaps simplest approach to reduce graph size
is to sample triples randomly from the graph. As shown in Fig. 1a, many entities

2 All other entities/relations do not occur in the reduced training data so that we
cannot learn useful embeddings for them.

Start Small, Think Big: On HPO for Large-Scale KGEs 145

with sparse interconnections can remain in the resulting subgraphs (e.g., the two
entities at the top right) so that Ei tends to be large. The cost in terms of model
size and evaluation time is consequently only slightly reduced. We also observed
(see Sect. 5.2) that triple sampling leads to low transferability, most likely due
to this sparsity. Triple sampling does offer very good flexibility, however, since
triple sets of any size can be constructed easily.

Random Walk (Fig. 1b). In multi-start random walk, which is used in
AutoNE [24], a set of s random entities is samples from E . A random walk
of length l is started from each of these entities and the resulting triples form
Ki. Empirically, many entities may ultimately remain so that the reduction of
memory consumption and evaluation cost is limited. Although the resulting sub-
graph tends to be better connected than the ones obtained by triple sampling,
transferability is still low and close to triple sampling (again, see Sect. 5.2). As
triple sampling, the approach is very flexible though. KGTuner [29] improves
on the basic random walk considered here by using biased starts and adding all
connections between the retained entities (even if they do not occur in a walk).
The k-core decomposition, which we discuss next, offers a more direct approach
to obtain such a highly-connected graph.

k-core Decomposition (Fig. 1c). The k-core decomposition [20] allows for the
construction of subgraphs with increasing cohesion. The k-core subgraph of K,
where k ∈ N is a parameter, is defined as the largest induced subgraph in which
every retained entity (i.e., Ei) occurs in at least k retained triples (i.e., in Ki). The
computation of k-cores is cheap and supported by common graph libraries. Gen-
erally, k-cores contain only a small number of entities because long-tail entities
with infrequent connections are removed. Moreover, they are highly intercon-
nected by construction. As a consequence, we found that computational cost
and memory consumption is low and transferability high. The approach is less
flexible than the other graph reduction techniques, as the choice of k and the
graph structure determines the resulting fidelity. One may interpolate between
k-cores for improved flexibility but we do not explore this approach in this work.

4.2 Epoch Reduction

Epoch reduction is the most common form of fidelity control used in HPO [3,26].
As the set E of entities does not change with varying fidelity, memory and evalua-
tion cost are very large even when using low-fidelity approximations. We observed
good transferability as long as the number of epochs is not too small (Sect. 5.2);
otherwise, transferability is often considerably worse than graph reduction tech-
niques. This limits flexibility: Especially on large-scale graphs, the overall train-
ing budget often consists of only a small number of epochs in the first place
(e.g., 10 as in [11,30]). Note that the available budget in low-fidelity approxi-
mations can be smaller than the cost of one complete epoch (when fi < 1/E in
Algorithm 1). Although partial epochs can be used easily, epoch reduction then
corresponds to a form of triple sampling (with the additional disadvantage of
not reducing the set of entities).

146 A. Kochsiek et al.

Table 2. Dataset statistics.

Scale Dataset Entities Relations |Train| |Valid| |Test|
Small Yago3-10 123 182 37 1 079 040 5 000 5 000
Medium Wikidata5M 4 594 485 822 21 343 681 5 357 5 321
Large Freebase 86 054 151 14 824 304 727 650 1 000 10 000

4.3 Summary

In summary, as long the desired fidelity is sufficiently high, epoch reduction offers
high-quality approximations and high flexibility. It does not improve memory
consumption and evaluation cost, however, and it leads to high cost and low
quality on large-scale graphs with limited budget. Graph reduction approaches,
on the other hand, reduce the number of entities and hence memory consumption
and evaluation cost. Compared to triple sampling and random walks, the k-core
decomposition has the highest transferability and lowest cost. In GraSH, we use
a combination of epoch reduction and k-core decomposition by default to avoid
training for partial epochs and the use of very small subgraphs with low-fidelity.

5 Experimental Study

We conducted an experimental study to investigate (i) to what extent hyperpa-
rameter rankings obtained with low-fidelity approximations correlate with the
ones obtained at full fidelity (Sect. 5.2); (ii) the performance of GraSH in terms
of quality (Sect. 5.3), resource consumption (Sect. 5.4) and robustness (Sect. 5.5).
In summary, we found that:

1. GraSH was cost-effective and produced high-quality hyperparameter con-
figurations. It reached state-of-the-art results on a large-scale graph with a
small overall search budget of three complete training runs (Sect. 5.3).

2. Using multiple reduction techniques was beneficial. In particular, a combina-
tion of graph- and epoch-reduction performed best (Sect. 5.2 and 5.3).

3. Low-fidelity approximations correlated best to full fidelity for graph reduction
using the k-core decomposition and, as long as the budget was sufficiently
large, second-best for epoch reduction (Sect. 5.2).

4. Graph reduction was more effective than epoch reduction in terms of reducing
computational and memory cost. Evaluation using small subgraphs had low
memory consumption and short runtimes (Sect. 5.4).

5. Using multiple rounds with increasing fidelity levels was beneficial (Sect. 5.5).
6. GraSH was robust to changes in budget allocation across rounds (Sect. 5.5).

5.1 Experimental Setup

Source code, search configurations, resulting hyperparameters, and an online
appendix can be found at https://github.com/uma-pi1/GraSH.

https://github.com/uma-pi1/GraSH

Start Small, Think Big: On HPO for Large-Scale KGEs 147

Datasets. We used common KG benchmark datasets of varying sizes with a focus
on larger datasets; see Table 2. Yago3-10 [8] is a subset of Yago 3 containing only
entities that occur at least ten times in the complete graph. Wikidata5M [27] is
a large-scale benchmark and the induced graph of the five million most-frequent
entities of Wikidata. The largest dataset is Freebase as used in [11,30]. For all
datasets except Freebase, we use the validation and test sets that accompany
the datasets to evaluate the final model. For Freebase, we used the sub-sampled
validation (1 000 triples) and test sets (10 000 triples) from [11].3

Hardware. All runtime, GPU memory, and model size measurements were taken
on the same machine (40 Intel Xeon E5-2640 v4 CPUs @ 2.4GHz; 4 NVIDIA
GeForce RTX 2080 Ti GPUs).

Implementation and Models. GraSH uses DistKGE [11] for parallel training
of large-scale graphs and HpBandSter [9] for the implementation of SH. We
considered the models ComplEx [23], RotatE [21] and TransE [4]. ComplEx and
RotatE are among the currently best-performing KGE models [1,12,17,21] and
represent semantic matching and translational distance models, respectively. All
three models are commonly used for large-scale KGEs [11,13,30].

Hyperparameters. We used the hyperparameter search space of [11]. The search
space consists of nine continuous and two categorical hyperparameters. The
upper bound on the number of negative samples for ComplEx is 10 000 and
for RotatE and TransE 1 000 (since these models are more memory-hungry).
We set the maximum training epochs on Yago3-10 to 400, on Wikidata5M to
64, and on Freebase to 10.

Methodology. For the GraSH search, we used the default settings (B = 3, η = 4,
n = 64). Apart from the upper bound of negatives, we used the same 64 initial
hyperparameter settings for all models and datasets to allow for a fair compari-
son. For graph reduction, we used k-core decomposition unless mentioned other-
wise. Subgraph validation sets generated by GraSH consisted of 5 000 triples.
The resulting best configurations are published along with our online appendix.

Metrics. We used the common filtered MRR metric to evaluate KGE model
quality on the link prediction task as described in Sect. 2. Results for Hits@k
are given in our online appendix.

5.2 Comparison of Low-Fidelity Approximation Techniques (Fig. 2)

In our first experiment, we studied and compared the transferability of low-
fidelity approximations to full-fidelity results. To do so, we first ran a full-
fidelity hyperparameter search consisting of 30 pseudo-randomly generated trials.
3 The original test set contains ≈17M triples, which leads to excessive evaluation

costs. For the purpose of MRR computation, a much smaller test set is sufficient.

https://github.com/uma-pi1/GraSH
https://github.com/uma-pi1/GraSH

148 A. Kochsiek et al.

Fig. 2. Comparison of low-fidelity approximations techniques. Shows Spearman’s rank
correlation between low-fidelity approximations and a full-fidelity baseline. Budget (log-
scale) corresponds to the relative amount of epochs and/or triples.

We then trained and evaluated the same 30 trials using the approximation tech-
niques described in Sect. 4 at various budgets. To keep computational cost fea-
sible, this experiment was only performed on the two smaller datasets and with
a smaller number of epochs.

Since the validation sets used with graph reductions differ from the one used
at full fidelity (see Sect. 3), we compared the ranking of hyperparameter config-
urations instead of their MRR metrics. In particular, we used Spearman’s rank
correlation coefficient [31] between the low-fidelity and the high-fidelity results.
A higher value corresponds to a better correlation.

Our results on Yago3-10 are visualized in Fig. 2a. We found high transferabil-
ity for the k-core decomposition and epoch reduction. Graph reduction based
on triple sampling and random walks led to clearly inferior results and was not
further considered. A combination of k-core subgraphs and reduced epochs (each
contributing 50% to the savings) further improved low-budget results.

To investigate the behavior on a larger graph, we evaluated the three best
techniques on Wikidata5M, see Fig. 2b. Recall that due to the high cost, a small
number of epochs is often used for training on large KGs. This has a detrimental
effect on the transferability of epoch reduction, as partial epochs need to be
used for low-fidelity approximations (see Sect. 4.2). In particular, there is a
considerable drop in transferability for epoch reduction below the 10% budget.
This drop in performance is neither visible for the k-core approximations nor for
the combined approach.

Note that even for the best low-fidelity approximation, the rank correlation
increased with budget. This suggests that using multiple fidelities (as in GraSH)
instead of a single fidelity is beneficial. In our study, this was indeed the case
(see Sect. 5.5).

5.3 Final Model Quality (Table 3)

In our next experiment, we analyzed the performance of GraSH in terms of the
quality of its selected hyperparameter configuration. Table 3a shows the test-data

Start Small, Think Big: On HPO for Large-Scale KGEs 149

Table 3. Model quality in terms of MRR. State-of-the-art results underlined. Best
reduction variant in bold. Note that best prior results often use a considerably larger
budget and/or model dimensionality.

(a) GraSH with default settings (B = 3, n = 64, η = 4).

Dataset
Variant →
Model ↓

Epoch

Dim 128

Graph

Dim 128

Comb.

Dim 128

Comb.

Dim 512

S
m

al
l Yago

3-10

ComplEx 0.536 0.463 0.528 0.552

RotatE 0.432 0.432 0.434 0.453a

(E = 400) TransE 0.499 0.422 0.499 0.496

M
ed

iu
m Wiki-

data5M

ComplEx 0.300 0.300 0.300 0.294

RotatE 0.241 0.232 0.241 0.261

(E = 64) TransE 0.263 0.263 0.268 0.249

L
ar

ge

Free-

base

ComplEx 0.572 0.594 0.594 0.678

RotatE 0.561 0.613 0.613 0.615

(E = 10) TransE 0.261 0.553 0.553 0.559

(b) Prior results

MRR Dim Epochs

0,551 128 400 [5]b

0,495a 1 000 ? [21]

0,510c 350 4 000 [6]

0,308 128 300 [11]

0,290 512 1 000 [27]

0,253 512 1 000 [27]

0,612 400 10 [11]

0,567 128 10 [11]

- - -
a RotatE benefits from self-adversarial sampling as used in [21]. We did not use this technique to keep
the search space consistent across all models. An adapted GraSH search space led to an MRR of 0.494
(combined, d = 512), matching the prior result.
b Published in the online appendix of [5].
c Published with the AmpliGraph library [6], which ignores unseen entities during evaluation. This inflates
the MRR so that results are not directly comparable.

performance of this resulting configuration trained at full fidelity. We report results
for different datasets, different reduction techniques, different KGE models, and
different model dimensionalities.

Results (Table 3a). The combined variant of GraSH offered best or close to
best results across all datasets and models. In comparison to the other variants,
it avoided the drawbacks of training partial epochs (e.g., epoch reduction on
Freebase) as well as using subgraphs that are too small (e.g., graph reduction
on Yago3-10).

Comparison to prior results (Table 3b). We compared the results obtained by
GraSH to the best published prior results known to us, see Table 3b. Note that
prior models were often trained at substantially higher cost. For example, on
Wikidata5M, GraSH used an overall budget of 4 · 64 = 256 epochs for HPO
and training, whereas some prior methods used 1 000 epochs for a single training
run. Likewise, dimensionalities of up to 1 000 were sometimes used. For a slightly
more informative comparison, we performed a GraSH search with an increased
dimensionality of 512, but kept the low search and training budgets. Even with
this low budget, we found that on small to midsize graphs, GraSH performed
either similarly (ComplEx, Yago3-10 & Wikidata5M) and sometimes slightly
worse (RotatE, Wikidata5M) than the best prior results. On the large-scale
Freebase KG, where low-fidelity hyperparameter search is a necessity, GraSH
outperformed state-of-the-art results by a large margin.

150 A. Kochsiek et al.

Table 4. Resource consumption per round (ComplEx). The time needed to compute
the k-core decompositions is excluded. It is negligible compared to the overall search
time (e.g., ≈ 28min for Freebase with igraph [7]).

Round Time (min) Model Size (MB)
Epoch Graph Comb. Epoch Graph Comb.

Yago3-10 Round 1 43.9 24.7 15.9 60.2 0.3 2.0
Round 2 34.8 13.3 27.1 60.2 0.4 6.3
Round 3 38.7 28.1 33.5 60.2 6.3 16.7
Total 117.4 66.1 76.5

Wikidata5M Round 1 182.3 60.1 82.3 2 353.3 1.0 71.3
Round 2 134.2 87.4 88.6 2 353.3 36.0 182.0
Round 3 126.9 92.5 95.3 2 353.3 182.0 454.7
Total 443.4 240.0 266.2

Freebase Round 1 915.9 250.7 179.7 42 025.9 87.3 1 322.2
Round 2 507.9 172.0 151.2 42 025.9 520.1 2 667.7
Round 3 423.4 197.5 207.0 42 025.9 2 667.7 6 571.3
Total 1 847.2 620.2 537.9

Comparison to KGTuner. KGTuner [29] was developed in parallel to this work
and follows similar goals as GraSH. We compared the two approaches on the
smaller Yago3-10 KGE with ComplEx; a comparison on the larger datasets was
not feasible since KGTuner has large computational costs. We ran both GraSH
and KGTuner with the default settings of KGTuner (n = 50 trials, E = 50
epochs, dim. 1 000) to obtain a fair comparison. KGTuner reached an MRR of
0.505 in about 5 d (its search budget corresponds to B ≈ 20). GraSH reached
an MRR of 0.530 in about 1.5 hours (B = 3, sequential search on 1 GPU), i.e.,
a higher quality result at lower cost. The high computational cost of KGTuner
mainly stems from its inflexible and inefficient budget allocation (e.g., always
10 full-fidelity evaluations). The higher quality of GraSH stems from its use of
multiple fidelities (vs. two in KGTuner) and by using a combination of k-cores
and epoch reduction (vs. random walks in KGTuner).

5.4 Resource Consumption (Table 4)

Next, we investigated the computational cost and memory consumption of each
round of GraSH. We used 4 GPUs in parallel, evaluating one trial per GPU with
the same settings as used in Sect. 5.3. Our results are summarized in Table 4.

Start Small, Think Big: On HPO for Large-Scale KGEs 151

Table 5. Influence of the number of rounds on model quality in terms of MRR (Com-
plEx, graph reduction, n = 64 trials, B = 3). The number of rounds is directly con-
trolled by the choice of n and η.

Dataset η = 2 η = 4 η = 8 η = 64 η = 64

6 rounds 3 rounds 2 rounds 1 round 1 round
(default) B = 3 B = 1

Yago3-10 0.463 0.463 0.485 0.427 0.427
Wikidata5M 0.300 0.300 0.300 0.300 0.285
Freebase 0.594 0.594 0.594 0.572 0.572

Memory Consumption. Epoch reduction was less effective than graph reduction
and a combined approach in terms of memory usage. With epoch reduction,
training is performed on the full graph in every round and therefore performed
with full model size. Due to the large model sizes on the largest graph Freebase,
the model could not be kept in GPU memory introducing further overheads for
parameter management. Graph reduction with k-core decomposition reduced
the number of entities contained in a subgraph considerably. As the model size
is mainly driven by the number of entities, the resulting model sizes were small.

Runtime. Similarly to memory consumption, a GraSH search based on epoch
reduction was less effective in terms of runtime compared to graph reduction and
a combined approach. With epoch reduction, runtime was mainly driven by the
cost of model evaluation and model initialization (see Sect. 2 and 4.2). This is
especially visible in the first round of the search on large graphs. Here, the num-
ber of trials and therefore the number of model initializations and evaluations
is high. Additionally, on the largest graph, the overhead for parameter manage-
ment for training on the full KG increased runtime further. In contrast, small
model sizes and low GPU utilization with graph reduction would even allow
further performance gains. For example, improving on the presented results, the
runtime of the first round on Wikidata5M can be reduced from 60.1 to 22.9
minutes by training three models per GPU instead of one.

5.5 Influence of Number of Rounds (Table 5)

In our final experiment, we investigated the sensitivity of GraSH with respect
to the number of rounds being used as well as whether using multi-fidelity opti-
mization is beneficial. Our results are summarized in Table 5. All experiments
were conducted at the same budget (B = 3) and number of trials (n = 64). Note
that the number of rounds used by GraSH is given by logη(n), where n denotes
the number of trials and η the reduction factor. The smaller η, the more rounds
are used and the lower the (initial) fidelity.

152 A. Kochsiek et al.

We found that on the two larger graphs, the search was robust to changes
in budget allocation and η did not influence the final trial selection (as long
as at least 2 rounds were used). Only on the smaller Yago3-10 KG, the final
model quality differed with varying values of η. Here, low-fidelity approximation
(small η) was riskier since the subgraphs used in the first rounds were very small.

To investigate whether multi-fidelity HPO—i.e., multiple rounds—are ben-
eficial, we (i) used the best configuration of the first round directly (η = 64,
B = 1) and (ii) performed an additional single-round search with a comparable
budget to all other settings (η = 64, B = 3). As shown in Table 5, both settings
did not reach the performance achieved via multiple rounds. We conclude that
the use of multiple fidelity levels is essential for cost-effective HPO.

6 Conclusion

We first presented and experimentally explored various low-fidelity approxima-
tion techniques for evaluating hyperparameters of KGE models. Based on our
findings, we proposed GraSH, an open-source, multi-fidelity hyperparameter
optimizer for KGE models based on successive halving. We found that GraSH
often reproduced or outperformed state-of-the-art results on large knowledge
graphs at very low overall cost, i.e., the cost of three complete training runs. We
argued that the choice of low-fidelity approximation is crucial (k-core reduction
combined with epoch reduction worked best), as is the use of multiple fidelities.

References

1. Ali, M., et al.: Bringing light into the dark: a large-scale evaluation of knowledge
graph embedding models under a unified framework. IEEE Trans. Pattern Anal.
Mach. Intell. (2021)

2. Baier, S., Ma, Y., Tresp, V.: Improving visual relationship detection using semantic
modeling of scene descriptions. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS,
vol. 10587, pp. 53–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68288-4_4

3. Baker, B., Gupta, O., Raskar, R., Naik, N.: Accelerating neural architecture search
using performance prediction. In: International Conference on Learning Represen-
tations (Workshop) (2018)

4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. Adv. Neural. Inf. Process. Syst. 26,
2787–2795 (2013)

5. Broscheit, S., Ruffinelli, D., Kochsiek, A., Betz, P., Gemulla, R.: Libkge a knowl-
edge graph embedding library for reproducible research. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (2020)

6. Costabello, L., Pai, S., Van, C.L., McGrath, R., McCarthy, N., Tabacof, P.: Ampli-
Graph: a Library for Representation Learning on Knowledge Graphs (Mar 2019)

7. Csardi, G., Nepusz, T., et al.: The igraph software package for complex network
research. Int. J. Complex Syst. 1695(5), 1–9 (2006)

https://doi.org/10.1007/978-3-319-68288-4_4
https://doi.org/10.1007/978-3-319-68288-4_4

Start Small, Think Big: On HPO for Large-Scale KGEs 153

8. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge
graph embeddings. In: Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, pp. 1811–1818 (2018)

9. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter
optimization at scale. In: International Conference on Machine Learning, pp. 1437–
1446. PMLR (2018)

10. Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and hyperpa-
rameter optimization. In: Artificial Intelligence and Statistics, pp. 240–248. PMLR
(2016)

11. Kochsiek, A., Gemulla, R.: Parallel training of knowledge graph embedding models:
a comparison of techniques. Proc. VLDB Endowment 15(3), 633–645 (2021)

12. Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowl-
edge base completion. In: Proceedings of 35th International Conference on Machine
Learning, pp. 2863–2872. PMLR (2018)

13. Lerer, A., et al.: PyTorch-BigGraph: a large-scale graph embedding system. In:
Proceedings of the 2nd SysML Conference (2019)

14. Mohamed, S.K., Nounu, A., Nováček, V.: Drug target discovery using knowledge
graph embeddings. In: Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, pp. 11–18 (2019)

15. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. In: Proceedings of the IEEE (2015)

16. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning
on multi-relational data. In: Proceedings of the 28th International Conference on
Machine Learning, vol. 11, pp. 809–816 (2011)

17. Ruffinelli, D., Broscheit, S., Gemulla, R.: You CAN teach an old dog new tricks! on
training knowledge graph embeddings. In: International Conference on Learning
Representations (2020)

18. Saxena, A., Kochsiek, A., Gemulla, R.: Sequence-to-sequence knowledge graph
completion and question answering. In: Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2814–2828 (2022)

19. Saxena, A., Tripathi, A., Talukdar, P.: Improving multi-hop question answering
over knowledge graphs using knowledge base embeddings. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 4498–
4507 (2020)

20. Seidman, S.B.: Network structure and minimum degree. Social Netw. 5(3), 269–287
(1983)

21. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph embedding
by relational rotation in complex space. In: International Conference on Learning
Representations (2019)

22. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and
text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space
Models and Their Compositionality, pp. 57–66 (2015)

23. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: International Conference on Machine Learning,
pp. 2071–2080. PMLR (2016)

24. Tu, K., Ma, J., Cui, P., Pei, J., Zhu, W.: AutoNE: hyperparameter optimization
for massive network embedding. In: Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, pp. 216–225 (2019)

154 A. Kochsiek et al.

25. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017)

26. Wang, R., Chen, X., Cheng, M., Tang, X., Hsieh, C.J.: RANK-NOSH: efficient
predictor-based architecture search via non-uniform successive halving. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp.
10377–10386 (2021)

27. Wang, X., Gao, T., Zhu, Z., Liu, Z., Li, J., Tang, J.: KEPLER: a unified model
for knowledge embedding and pre-trained language representation. Trans. Assoc.
Comput. Linguist. (2021)

28. Yang, B., Yih, S.W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations
for learning and inference in knowledge bases. In: Proceedings of the International
Conference on Learning Representations (2015)

29. Zhang, Y., Zhou, Z., Yao, Q., Li, Y.: Efficient hyper-parameter search for knowledge
graph embedding. In: Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 2715–2735 (2022)

30. Zheng, D., et al.: DGL-KE: training knowledge graph embeddings at scale. In:
Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval (2020)

31. Zwillinger, D., Kokoska, S.: CRC standard probability and statistics tables and
formulae. CRC Press (1999)

Multi-source Inductive Knowledge Graph
Transfer

Junheng Hao1(B), Lu-An Tang2, Yizhou Sun1, Zhengzhang Chen2,
Haifeng Chen2, Junghwan Rhee3, Zhichuan Li4, and Wei Wang1

1 University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
{jhao,yzsun,weiwang}@cs.ucla.edu

2 NEC Laboratories America, Inc. (NEC Labs), Princeton, NJ 08540, USA
{ltang,zchen,haifeng}@nec-labs.com

3 University of Central Oklahoma, Edmond, OK 73034, USA
jrhee2@uco.edu

4 Stellar Cyber, Santa Clara, CA 95054, USA

Abstract. Large-scale information systems, such as knowledge graphs
(KGs), enterprise system networks, often exhibit dynamic and complex
activities. Recent research has shown that formalizing these information
systems as graphs can effectively characterize the entities (nodes) and
their relationships (edges). Transferring knowledge from existing well-
curated source graphs can help construct the target graph of newly-
deployed systems faster and better which no doubt will benefit down-
stream tasks such as link prediction and anomaly detection for new sys-
tems. However, current graph transferring methods are either based on
a single source, which does not sufficiently consider multiple available
sources, or not selectively learns from these sources. In this paper, we
propose MSGT-GNN, a graph knowledge transfer model for efficient graph
link prediction from multiple source graphs. MSGT-GNN consists of two
components: the Intra-Graph Encoder, which embeds latent graph fea-
tures of system entities into vectors; and the graph transferor, which uti-
lizes graph attention mechanism to learn and optimize the embeddings
of corresponding entities from multiple source graphs, in both node level
and graph level. Experimental results on multiple real-world datasets
from various domains show that MSGT-GNN outperforms other baseline
approaches in the link prediction and demonstrate the merit of attentive
graph knowledge transfer and the effectiveness of MSGT-GNN.

Keywords: Knowledge graphs · Graph neural network · Transfer
learning

1 Introduction

Various large-scale information systems, such as knowledge bases (KBs), enter-
prise security systems, IoT computing systems and social networks [4], exhibit

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26390-3 10.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 155–171, 2023.
https://doi.org/10.1007/978-3-031-26390-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_10
https://doi.org/10.1007/978-3-031-26390-3_10

156 J. Hao et al.

comprehensive interactions and complex relationships among entities from mul-
tiple different and interrelated domains. For example, knowledge bases, such as
DBpedia [1], contain rich information of real-world entities (people, geographic
locations, etc.), normally from multiple domains and languages; and IoT sys-
tems contain thousands of mobile interrelated computing devices, mechanical
and digital machines with various functions that constantly record surround-
ing physical environments and interact with each other. These systems can be
formulated as heterogeneous graphs with nodes as system entities and edges as
activities. Considering an enterprise security system as one example shown in
Fig. 1 (right), processes, internet sockets, and files can be treated as different
types of nodes. Activities between entities, such as a process accessing a destina-
tion port or importing system libraries, are treated as edges in the graph. They
can be utilized for many downstream tasks including identifying active entities
or groups in social networks, inferring new knowledge in KBs and detecting
abnormal behaviors [3].

Fig. 1. Two examples of multi-source graph transfer in knowledge bases (left) and
enterprise systems (right). By leveraging the entities and relations from sources GS(1)

and GS(2) , we can estimate the target graph ĜT based on the current observation GT .

Grey nodes/links in ĜT denote new predictions from graph knowledge transfer. (Best
viewed in color)

Due to the complex nature of real-world systems, it normally takes a long
time, sometimes even months for newly-deployed information systems to con-
struct a reliable graph “profile” to identify featured entities and activities. There-
fore, there is a need to transfer and migrate knowledge (potential entities with
corresponding high-confidence interactions) from other available sources pro-
vided by existing multiple well-developed systems. However, directly transferring
existing nodes and links by copying is not reasonable and reliable enough since
the source and target systems are not necessary for the exact same domains (e.g.,
transferring knowledge from existing departments to a new department in a cor-
poration). It may transfer irrelevant or even incorrect entities and activities to
the target graph. Existing research work [15] mostly focuses on design learning
frameworks for effective graph knowledge transfer between one source system

Multi-source Inductive Knowledge Graph Transfer 157

and one target system and shows promising results on graph knowledge trans-
fer. But in reality, it is quite common that multiple system sources are available.
Simply using single-source graph knowledge transfer has its own limits: (1) the
information from a single source is not sufficient in most cases; and (2) using
only one source may lack generalization ability especially when the source and
target are largely different, which leads to potential transfer failure. Learning
graphs for newly-deployed systems through multi-source graphs will no doubt
provide more comprehensive coverage of system entities and activities in multi-
ple domains, and it will be more robust for downstream applications relying on
learned target graph after selectively adapting knowledge from source graphs1.
Two application scenarios are shown in Fig. 1. In the case of multi-lingual KBs,
low-resource KB (such as Japanese) can be enriched and improved with other
KBs, and especially in the case of Pablo Alboran (Spanish pop singer), Spanish
KBs can provide better and more accurate knowledge facts than others. Simi-
larly in the example of enterprise systems, after the observation that the system
has similar patterns of .dll connections of SVCHOST.EXE, a reasonable interpre-
tation is that the target graph GT will more likely grow more closely related
patterns shown in source graphs.

However, the aforementioned selective multi-source transfer faces several
challenges: (i) How to represent multiple source graphs and target graphs effec-
tively i.e. set up connections to leverage the graph knowledge in source graphs
to the target graphs. Not all sources are equally related to the target and it is
required to differentiate multiple input source graphs in the transferring process,
which is a difficult but important task to handle and will significantly affect the
transfer performance. (ii) How to handle potential conflicts on entities and inter-
actions observed in multiple graphs. The same interactions may be observed in
some sources, but are not in others. In other words, there are potentially con-
flicting observations that cannot be easily tackled by simple transfer. In other
words, if all sources are credited equally (for example, using one combined graph
to include all the nodes and edges) and other methods that concatenate multiple
graphs, one inductive bias is incorrectly assumed that nodes and/or edges are
transferred and learned without selectivity and the approaches are subject to
noise and misinformation on part of the sources.

To address the aforementioned tasks and corresponding challenges, we pro-
posed a novel type of graph neural network designed for Multi-Source Graph
Knowledge Transfer named MSGT-GNNwhich contains two model components:
Intra-Graph Encoder and Attention-based Cross-graph Transfer. The high-level
idea is that the knowledge transfer between the source and target graphs is done
in a controllable manner where they are selectively learned. We employ self graph
encoder model to a variety of state-of-the-art graph neural networks (GNNs) to
obtain the node representations, that is, node embeddings learned from the node
features itself and neighborhood in the context of the same source/target graph.

1 In this paper, we use the source graph as the graph profiles for existing well-observed
systems and target graph as the graph profile for new systems, which is relatively
smaller than source graphs in graph size (e.g. number of nodes/edges). We assume
that the number of source graphs is at least 2 and that of the target graph is 1.

158 J. Hao et al.

On top of the encoder model, the Cross-graph Transfer module adopts a novel
attention mechanism based on both node level and graph level. This module can
better learn the representations by attentively aggregating nodes in the broader
context, which later applies in the graph decoder for link prediction. As a result,
not only can we accelerate the process of graph enlargement to fast characterize
the target graph, but we can also selectively and effectively leverage multiple
sources in the information systems to estimate more reliable and accurate tar-
get graphs. Experimental results on target graph link prediction confirm that
the effectiveness of MSGT-GNN and the performance of knowledge transfer signif-
icantly outperforms other state-of-the-art models including TINET.

2 Problem Statement

Given n multiple source domains D(i)
S (i = 1, 2, . . . ,m) and one target domain

DT as input graphs have been on source domain for and these source graphs G
(i)
S

are stable already. Meanwhile, the system in DT is possibly newly deployed and
therefore the target graph GT incomplete and of relatively small size. Our goal
is to transfer the graph knowledge (entity and edges) from G

(i)
S (i = 1, 2, . . . , n)

to GT , and then help quickly enlarge and estimate an estimated complete graph
ĜT to fit the domain of DT , which should be as close to the ground truth ḠT as
possible. Note that in this paper, we assume that alignments of the same entity
among source and target graphs are well established, though such alignments are
not fully feasible especially in knowledge bases. Under such formulation, we also
point out that our proposed problem focuses on the graph enhancement from
its incomplete status, different from temporal graph modeling where graphs are
dynamically changed with multiple timestamps. Notations of all symbols used in
this paper are summarized in Table 1. Scalars, vectors and matrices are denoted
with lowercase unbolded letters, lowercase bolded letters and uppercase bolded
letters, if not explicitly specified.

We acknowledge that entity alignment may not be flawlessly given in many
real-world applications and there are many existing research works lying on the
direction of entity disambiguation, etc. As mentioned in Sect. 2, we point out that
in this paper we do not cover the scope of the entity alignments [22,24] (or entity
resolution, entity conflation), which essentially predicts the correspondences of
the same entity among different graphs. For example, in enterprise graphs, enti-
ties are generally identifiable with their IDs; in encyclopedic KGs, some labeled-
property graphs are equipped with UID (universal identifier), which significantly
reduces the alignment challenge. However, we believe such assumption can be
relaxed, that is, MSGT-GNN can be further adapted to partially-given alignment
or cross-graph alignment can be jointly learned, corrected, and/or enhanced,
which is left as one direction of our future work.

3 Methodology

In this section, we formally propose MSGT-GNN to tackle multi-source graph
knowledge transfer problem inspired by multi-task learning. As the model archi-

Multi-source Inductive Knowledge Graph Transfer 159

Table 1. Summary of important notations.

Notation Description

D(i)
S i-th source domain

DT Target domain

G
(i)
S The graph of the i-th source from D(i)

S

ḠT , GT , ĜT The ground-truth complete/incomplete/estimated complete
graph of the target system from DT

A
(i)
S , AT The adjacency matrix of the i-th source graph G

(i)
S /the target

graph GT

Z, Z
(i)
S Embedding table for all N entities, or for N

(i)
S entities from the

i-th source graph (as output of graph encoders)

hl
S(m)

i
,hl

Ti
Embedding of the i-th node in the m-th source graph (or target
graph) at the l-th layer of GNN (node embeddings, with node
index)

hl
S(m) ,h

l
T Embedding of the m-th source graph (or target graph), at the

l-th layer of GNN (graph embeddings, without node index)

tecture of MSGT-GNN shown in Fig. 2, it breaks down into two components: Intra-
graph encoder and Cross-Graph transfer, which are explained in Sect. 3.1 and
Sect. 3.2 respectively.

3.1 Intra-graph Encoder

Generally, a graph encoder serves a function to represent nodes by their embed-
dings, from the original node features (categorical attributes, textual descrip-
tions, etc.), based on the graph features. Our proposed Intra-Graph Encoder,
as the first component in MSGT-GNN, aims to learn the node features in the con-
text of its own graph (source or target), i.e. the graph to which it originally
belongs. As discussed in Sect. 5, graph neural networks (GNNs), deep learning
based approaches that operate on graph-structured data, have recently shown
effective for various applications such as node classification, link prediction and
community detection. A generalized framework of GNNs consists of such a graph
encoder, taking as input an adjacency matrix A, as well as original (optional)
node features X = {XN}. A typical graph encoder parameterized by Θenc com-
bines the graph structure with node features to produce node embeddings as,
Z = ENC (A,X,Θenc), where Z is the learned comprehensive representation
from GNNs and is used for downstream tasks with designated graph decoders.

More specifically, in MSGT-GNN, for homogeneous graphs, we choose the Intra-
Graph Encoder as standard GCN [12], which can be described as,

H(l+1)
i = σ

(
D̂− 1

2 ÂGD̂− 1
2 H(l)

i W (l)
)

, (1)

where H(l)
i ∈ R

n×d are embedding of after l-th GCN layers and ÂG = AG + I

where I is the identity matrix, AG is adjacency matrix of given graph G, D̂ is the

160 J. Hao et al.

Fig. 2. Model architecture overview for MSGT-GNN (two source graphs are shown). Node
embeddings across multiple graphs are learned through two-module framework, i.e.
Intra-graph encoder, which learns node embeddings of its own graph context from ini-
tial node features; and Cross-Graph transfer, which enables learning through mulitple
graphs and node embeddings are updated by its corresponding nodes in other source
as well as the graph-level information.

diagonal node degree matrix of Â, as defined in [12]. Note that G can be either
any source graph GS(i) or target graph GT . For multi-relational heterogeneous
graphs such as knowledge graphs and enterprise systems, we adopt R-GCN [18],
which utilizes relation-wise weight matrix,

h(l+1)
i = σ

⎛
⎝Wl

0h
(l)
i +

∑
r∈R

∑
j∈N r

i

1
ci,r

Wl
rh

(l)
j

⎞
⎠ , (2)

where Wl
0 is the weight matrix for the node itself and Wl

r is used specifically
for the neighbors having relation r, i.e., N r

i , R is the relation set and ci,r is
for normalization. Similarly, R-GCN applies both in the source graphs and the
target graph. In both cases, the number of GNN layers L is one hyperparameter2.

3.2 Attention-Based Cross-Graph Transfer

The goal of our proposed Cross-graph Transfer is to provide a valid transfer
mechanism in the entity embedding space for multi-source graphs. It is built
on top of the Intra-Graph Encoder to enable the node embeddings selectively
updated by the cross-graph “neighborhood” in both node level and graph level
attention mechanism. Details of Cross-graph Transfer are shown in Fig. 3.

To prepare for cross-graph transfer, one necessary module is Graph-level
Aggregator, which takes the set of node representations and compute graph level
representation, as hG = fG({hG

i }) where hG ∈ R
d, for both source and target

2 In this work, the performance is relatively insensitive to L where we fix L = 2 for
GNN modules including baselines.

Multi-source Inductive Knowledge Graph Transfer 161

Fig. 3. Details about Cross-Graph Transfer Layer operating on the Node Ti, updated
by itself and its corresponding cross-graph neighbors (node-level embeddings), atten-
tively learned from graph-level embeddings (Best viewed in color)

graphs3. We use the MLP aggregator following the implementation in [13]. The
aggregation function operating on a node i of the target graph is defined as,

hl+1
Ti

= σ

(
Wl

0h
l
Ti

+
∑
m

αmWl
nhl

S(m)
i

)
, (3)

where Wl
0 is the weight matrix for the node itself and W l

n is used specifically for
the cross-graph neighbors (from the given alignments), of the l-th layer. hl

S(m)i
denotes the l-th layer’s hidden representation of node i in GS(m) . αm is attention
weight computed over all m cross-graph neighbors as,

αm = softmax
([

h
S(m)
i ;hGS(m)

]T

· Watt · hl
Ti

)
, (4)

where Watt ∈ R
2d×d and

[
h

S(m)
i ;hG

S(m)

]
is the concatenation of node-level

cross-graph neighbor embedding and the graph-level embedding. By such cross-
graph transfer, the node in one graph will be consequently updated and opti-
mized attentively by nodes from other associated graphs. It is noteworthy to
point out that our proposed MSGT-GNN does not explicitly differentiate source
graphs and target graphs, which means the learned embeddings are not limited
to make predictions over the target graph.

3 Theoretically the embedding dimension of graph-level representation can be different
from that of the node-level. For simplicity, we choose both dimensions are the same,
that is, dim (hG) = dim

(
hl
Gi

)
, where G refers to either source or target graph.

162 J. Hao et al.

3.3 Graph Decoder

Graph Decoder and Training Objective. The graph decoder use the learned
representation from MSGT-GNN for link prediction during the inference stage. For
homogeneous graph, we apply inner product to represent the edge plausibility,
which is DEC(Z) = hT

i hj where hi,hj ∈ Z (h is the learned embedding table
for all nodes). For multi-relational graph, we apply DistMult score function [32]
to represent the edge plausibility, which is DEC(Z) = hT

i Dhj where hi,hj ∈ Z
and Dr is a diagonal matrix for relation r. Therefore, the training objective is,

LG(ZG) =
(
ZGDrZG

T − AG

)θ

+ Ω(ZG), (5)

where θ = 2 in practice and Ω (ZG,w) = λ ||ZG||F is regularization term. Dr = I
for homogeneous graph.

3.4 Training, Inference and Complexity

Joint Training on Source and Target Graphs. Considering all the source
and target graphs, MSGT-GNN minimizes the joint loss with meta-path similarity
matrices for multiple graphs, L = μ

∑
i LS(i) + (1 − μ)LT , where μ ∈ (0, 1) is

a hyperparameter that explicitly balances the importance of source and target
graphs. We use the Adam [11] to optimize the joint loss.

Inference. During the inference stage, similar to other graph neural networks
with downstream link prediction task, two steps of graph encoders (intra-graph
and cross-graph) encodes pairs of nodes (from the target graph only for valid
testing) into their representations through the trained GNN with the neighbor
nodes (both inside its own graph and other sources) weighted by the graph-level
representations. Later such embeddings are forwarded to graph decoder for link
prediction which outputs plausibility scores of the given potential edges, as link
prediction results.

Complexity Analysis. For MSGT-GNN with the direct encoder, the overall run-
time complexity is O(tnd|E|), which is linear to the size of total edges in mul-
tiple source graphs (|E| is the total number of links in source/target graph).
As for model parameter complexity, including all embeddings and transforma-
tion functions, the result is O(|V |d + nd2) (|V | is the total number of nodes in
source/target graphs).

4 Experiments

4.1 Datasets

Three datasets on the knowledge bases, enterprise security and academic scholar
community are used in the experiments. Data from a real-world enterprise system
are collected from 145 machines from 4 departments (3 used as sources and 1

Multi-source Inductive Knowledge Graph Transfer 163

Table 2. Dataset statistics.

Dataset Scholar Enterprise DBpedia

Windows Linux

Graphs 3 5 5 5

Rel. Types 1 3 3 96

Nodes 2.1k 10.7k 8.9k 12.5k

Edges 9.0k 87.9k 62.5k 278.1k

used as a target) in a period of 30 days, with a size of 3.45 GB after integration
and filtering. The entire enterprise security system contains both Windows and
Linux machines and we consider they are disjoint graphs as datasets (named as
Windows and Linux Dataset). Similar to the example in Fig. 1, the entities
(nodes) in all graphs are processes, internet sockets and libraries (mostly .dll
files) and interactions (edges) between the process to file, process to process and
process to internet sockets are observed as links in the dataset.

We also consider alternative datasets that are publicly available and from
diverse domains are, (i) encyclopedia knowledge bases i.e. DBpedia [1]4,
extracted from five languages (en, es, de, fr, ja) of variant graph sizes and com-
pleteness; and (ii) Aminer, as one academic scholar community dataset [23]5

from Aminer on five data mining/machine learning related research communities
in the past years. The nodes are authors and links are simply co-author rela-
tionships, which is essentially a homogeneous graph. More specifically dataset,
we consider different languages as different domains in the context of MSGT-GNN,
and given the graph size of these languages, we adopt two disjoint settings: {en,
fr, de}→ja6 and {en, fr, de}→es. This results in a total of 5 datasets from 3
domains in our experiments. More details are listed in Table 2.

4.2 Baseline Methods

We compare our proposed model MSGT-GNN with the following baseline methods:

No Transfer (NT) directly uses the original observed incomplete target graph
without any knowledge transfer, that is, ĜT = GT .

Direct Union Transfer (DUT) directly combines all source graphs and the
incomplete target graph, as prediction (“union” graph). That is, DUT outputs
a union set on entities and links from all observed graphs without any selection,
which means, ĜT = GT +

(⋃
i G

(i)
S

)
.

4 Processed DBpedia dataset are downloadable at: Link.
5 We use a subset of the co-author networks, which is available at https://aminer.org/

data#Topic-coauthor.
6 {en, fr, de}→es means the source graphs are from DBpedia English, French and

German KBs and the target is Spanish KB.

https://www.dropbox.com/sh/0mg1255453ddg6a/AAB61AEv3npDS6h3RSdxzBPxa?dl=0
https://aminer.org/data#Topic-coauthor
https://aminer.org/data#Topic-coauthor

164 J. Hao et al.

Table 3. Results of target graph completion task on 5 different transfer settings from 3
different domains (scholar, enterprise and encyclopedia). The best scores are bolded.

Dataset Scholar Enterprise Encyclopedia

Windows Linux {en, fr, de}→ja {en, fr, de}→es

NT 0.526 ± 0.000 0.664 ± 0.000 0.656 ± 0.000 0.475 ± 0.000 0.545 ± 0.000

DT 0.398 ± 0.000 0.480 ± 0.000 0.578 ± 0.000 0.299 ± 0.000 0.408 ± 0.000

C-TINET 0.635 ± 0.009 0.727 ± 0.008 0.759 ± 0.009 0.596 ± 0.010 0.764 ± 0.013

U-TINET 0.618 ± 0.015 0.718 ± 0.012 0.733 ± 0.008 0.617 ± 0.014 0.750 ± 0.012

W-TINET 0.644 ± 0.017 0.739 ± 0.011 0.772 ± 0.017 0.645 ± 0.022 0.779 ± 0.018

O-TINET 0.622 ± 0.014 0.715 ± 0.012 0.740 ± 0.010 0.620 ± 0.009 0.766 ± 0.011

UT-GCN/RGCN 0.606 ± 0.025 0.700 ± 0.030 0.722 ± 0.019 0.576 ± 0.022 0.756 ± 0.026

UT-GAT/KGAT 0.635 ± 0.018 0.744 ± 0.023 0.750 ± 0.015 0.559 ± 0.012 0.710 ± 0.014

Insta-Only GCN/RGCN 0.597 ± 0.014 0.745 ± 0.012 0.734 ± 0.014 0.661 ± 0.015 0.739 ± 0.021

Insta-Only GAT/KGAT 0.624 ± 0.020 0.742 ± 0.018 0.738 ± 0.021 0.656 ± 0.016 0.724 ± 0.016

UDA-GCN 0.652 ± 0.017 0.735 ± 0.013 0.727 ± 0.016 0.610 ± 0.024 0.688 ± 0.022

MSGT-GNN 0.668 ± 0.016 0.776 ± 0.021 0.768 ± 0.018 0.685 ± 0.018 0.801 ± 0.028

TINET applies the single graph knowledge transfer framework [15]. To fit the
multi-source setting, we choose three variations about TINET models: (i) to
use the closest7 source graph as the transfer source, named C-TINET; (ii) to
use the union graph as defined in DUT, as the single transfer source, named
U-TINET; iii to use TINET iteratively on multiple sources, i.e. transferring
one source once in an order, named O-TINET. Best performance is reported
among all transfer orders.

W-TINET. This method uses the weighted version of TINET for source and
target graphs. Extending the single-source graph knowledge transfer model to
multi-source, we adopt the same sub-model components (EEM, DCM) but adjust
the objective function to be the sum of all source graphs.

Intra-Only GNN only uses Intra-Graph Encoder component in MSGT-GNN and
discards the Cross-Graph Transfer. That is, standard GCN [12] is applied for
homogeneous graphs and R-GCN [18] is applied for multi-relational graphs which
preceded the graph decoder. Alternatively, we also consider existing attention-
based graph neural networks (applied on a single graph) i.e. GAT [26]/KGAT [28]
as replacement of GCN/R-GCN (Denoted as “Intra-Only GCN/RGCN” and
“Intra-Only GAT/KGAT” respectively).

UT-GNN. Similar to Intra-Only GNN, this method applies Intra-Graph
Encoder component only on the “union graph” from the DUT method which
forms one combined graph instead of multiple sources and target graphs. Two
options (GCN/RGCN, GAT/KGAT) are still considered except the different
graph inputs (Denoted as “UT-GCN/RGCN” and “UT-GAT/KGAT” respec-
tively).

UDA-GCN. It develops a dual attention-based graph convolutional network
component and domain adaptive learning module, which jointly exploits local
7 Default similarity between the source and target graph is based on the Jaccard index.

Multi-source Inductive Knowledge Graph Transfer 165

and global consistency for feature aggregation to produce unified representation
for nodes. We replace the decoder module8 for link prediction instead of node
classification in the original paper [30].

4.3 Experiment Setup

Evaluation Protocol. Similar to [15], we adopt F1 score to evaluate the accu-
racy of the graph completion task on the target system instead of Hit@K or MRR
score in knowledge graph completion9. In our experiment for multi-graph knowl-
edge transfer, the main result is reported as the average and standard deviation
of link prediction (edge) F1 score. As F1 score generally is the harmonic mean
of precision and recall, we hereby define the precision and recall by comparing
the estimated links between entities with the ground truth. The precision and
recall are defined as: Precision = NC/NE and Recall = NC/NT , where NC is
the number of correctly estimated links, NE is the number of estimated links
in total, and NT is the number of the ground-truth links. For training, as men-
tioned in Sect. 2, we choose one incomplete target graph as the “new” system
and complete source graphs from the rest as “old” systems and for training. In
addition, e use m = l/lfull as an index of “graph maturity”, which is defined as
the observed number of edges (in training set) l of the target graph and the total
number of edges lfull recorded in the ground truth target graph.

Hyperparameters. In the experiment, we set m = 0.4 and d = 128 if not speci-
fied. The number of GCN/R-GCN layers in Intra-Graph Encoder is set as 2 and
The number of Cross-Graph Transfer layers is set as 1. Default node embed-
dings are initialized by either node categorical features (scholar and enterprise
dataset) or BERT sentence embeddings from entity descriptions (KB datasets).
Hyperparameters are discussed in Sect. 4.5 and the supplementary material.

4.4 Results

In this section, we investigate the sensitivity of target graph input maturity
m, embedding dimension d and balance weight μ between the source and tar-
get graphs, as three key hyperparameters of MSGT-GNN, compared with some of
the strongest baseline methods. Results on the target graph completion task are
shown in Table 3. We observe that MSGT-GNN outperforms other baselines in terms
of average F-1 score. Especially compared with non-transfer, MSGT-GNN achieves
an average increase of 0.05 on F1 score among all datasets, which proves that

8 Original code implementation: https://github.com/GRAND-Lab/UDAGCN.
9 We point out the thread of KG embedding in Sect. 5, including TransE and recent

variants [27]. The limitation of such methods is that they are transductive methods.
This is generally not applicable to our inductive learning and its downstream link
prediction. However, as for evaluation metrics, we follow the metrics adopted in
previous work [15] for target-adapted edge prediction instead of MRR or Hit score
for a different triple completion task.

https://github.com/GRAND-Lab/UDAGCN

166 J. Hao et al.

MSGT-GNN transfers useful graph knowledge to the target. Also, MSGT-GNN out-
performs all the TINET variants in the average F1 score especially on U-TINET
and W-TINET which indicates that MSGT-GNN adopts a more effective strategy
to use multiple sources and learn better latent feature representations of entities
with the process graph encoding and domain transferring. Since TINET follows a
two-stage (entity selection and edge prediction), the performances significantly
decrease when wrong or incomplete entity set is selected for subsequent link
prediction. Unlike TINET and its variants, MSGT-GNN adopt end-to-end model
architecture without explicit steps of entity/node selection. Comparing MSGT-GNN
and standard GCN/R-GCN or GAT/KGAT, we also observe that MSGT-GNN
achieves better link prediction performance with a relative gain of 4.9%, which
shows the benefit of Cross-Graph Attention Transfer, which can better char-
acterize node latent representations from actively and selectively aggregating
useful information from the cross-graph neighborhood. It is noteworthy that NT
directly uses the currently observed target graph (incomplete) as output; DT
means the union set of all GS and GT without any selection. Typically DT
includes much more noise and unwanted information into the target graph com-
pared “beneficial section of transfer”, i.e., lots of links/edges are falsely predicted
as positive. A similar observation is also reported in one of our baselines, TINET.
Furthermore, we observe that GAT/KGAT variants almost have similar perfor-
mance on the task (sometimes even worse). We hypothesize that the attention
mechanism adopted by the original GAT/KGAT cannot best selectively learn
the knowledge transfer in the cross-graph setting, although recent research shows
that they outperform GCN/RGCN on the intra-graph node classification task.
It is also noticed that UT-GNN generally performs worse than the Insta-Only
setting which indicates that the union graph which equally combines the source
graphs without selection has inductive biases which compromise the knowledge
transfer in link prediction on the target graph.

4.5 Hyperparameters

In this section, we primarily investigate the sensitivity of target graph input
maturity m. Other hyperparameters such as embedding dimension d and balance
weight μ between the source and target graphs are discussed in the supplemen-
tary material.

Graph Maturity m. We vary the target graph input by controlling the graph
maturity m (let m = {0.2, 0.4, 0.6, 0.8, 1.0}). From Fig. 4, we observe that, for
both Windows and DBpedia: {en, fr, en}→es graph, the performance of all
models increases when the graph maturity m increases. As other approaches
achieve F1 score of 1 when m gets close to 1, direct transfer only achieves around
0.60 as F-1 score, which seems not effective because all the irrelevant entities and
links are adopted in the output target graph prediction. On the other hand, given
the same level of graph maturity, MSGT-GNN achieves the best performance among
all other methods on all datasets.

Multi-source Inductive Knowledge Graph Transfer 167

Fig. 4. Performances with graph maturity. Most models achieve average F1 score close
to 1 as the maturity of input observed target graph grows, while MSGT-GNN outperforms
other baselines.

5 Related Work

Transfer Learning, Graph Transfer and Multi-source Adaption. Trans-
fer learning, domain adaption, and translation [29] have been widely studied
in the past decade and played an important role in real-life applications [19]
especially on deep transfer learning [14]. Existing transfer learning research is
mostly done on the numeric, grid and sequential data, especially image (spe-
cific domain classification, style transfer) and text (translation), but research on
graphs, networks, or structured data, whose format are relatively less ordered.
Some representative work includes TrGraph [5], which leverages information via
common signature subgraphs. [15] is state-of-the-art and most related research
aligned with this direction with two-step learning on entity estimation and
dependency reconstruction. The aforementioned methods are mostly based on
single-graph knowledge transfer. Note that there is some related work on multi-
source adaption that has the same goal of reliable knowledge transfer from mul-
tiple sources [16]. However, they are still limited within the domain of images
and text rather than graphs. Thus their frameworks cannot be directly applied
on graph knowledge transfer. Despite the usage of an attention-based model
in transfer, one related work [30] focuses on the node classification task and
substantial changes are necessary to make for link prediction in target graphs.
We clarify the term of “graph transfer” in Sect. 2 and distinguish it from other
research on the concept of “knowledge transfer” to avoid confusion.

Representation Learning on Knowledge Graphs. Graph link prediction is
a basic research topic on network analysis. For transfer purposes, [33] presented
a transfer learning algorithm to address the edge sign prediction problem using

168 J. Hao et al.

latent topological features from the target and sources. Collective matrix factor-
ization [20] is another major technique. However, these methods are not suitable
for dynamics among multiple different domains and the target domain. Another
important branch of research related to graph link prediction is network embed-
ding (network representation learning) and similarity search. By representing
high-dimensional structured data with embedding vectors, link prediction can
be easily performed by node similarity search. These methods can be categorized
as meta-path based [21], random walk based [6], matrix factorization based [17]
and graph neural networks based methods [7,9]. Similar techniques are applied
in multi-relational heterogeneous graphs, i.e. knowledge graphs [25] and their
applications [8–10]. These embedding based methods (for example [25]) pro-
vide insights for representing node features by gathering neighborhood (multi-
relational) connections and/or meta-paths and designing graph encoders and
decoders. It is worth noted that the most common task over knowledge graphs is
triple completion, different from link prediction where focuses on the existence
of relations over pairs of nodes in the graph. Another recent research thread
along this direction increasingly focuses more on temporal/dynamic graph rep-
resentation learning [31], which specifically models the graph evolving patterns
over time. However, we emphasize that in this work, though it is assumed that
the target graphs are relatively incomplete and sparse, we temporarily do not
incorporate the time information, as one of the future directions.

Multitask Learning. Multitask learning [34] is one emerging active research
topic with the rise of artificial intelligence. With the goal of “one model for
all tasks”, it is widely applied in the area of computer vision and natural lan-
guage processing. One of the most common approaches in multitask learning
is parameter sharing [2]. MSGT-GNN is inspired by the similar multi-task learn-
ing mechanism considering each graph as one “task”, however these frameworks
themselves in multitask learning is not applicable for our settings.

6 Conclusion and Future Work

In this paper, we formulate a challenging problem on the necessity and benefits
of transferring from multi-source graphs into the target graph and then pro-
pose MSGT-GNN, with the intra-graph Encoder and attention-based cross-graph
transfer as major model components. MSGT-GNN addresses the challenges and
accelerates high-quality knowledge transfer and graph enhancement in the tar-
get newly-observed system. Experiments show that MSGT-GNN can successfully
transfer useful graph knowledge from multiple sources and enable fast target
graph construction. For future improvements, one important extension is to tem-
poral graph modeling where we can dive deep into how target graphs grow on
newly-deployed systems can grow with the development from multiple sources,
which significantly improves explainability on the graph knowledge transfer.

Multi-source Inductive Knowledge Graph Transfer 169

Acknowledgement. This work was primarily done and supported during the intern-
ship at NEC Laboratories America, Inc (NEC Labs). We thank Dr. Zong Bo for research
discussions. We also would like to thank the anonymous reviewers for their insightful
and constructive comments.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

2. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
3. Cheng, W., Zhang, K., Chen, H., Jiang, G., Chen, Z., Wang, W.: Ranking causal

anomalies via temporal and dynamical analysis on vanishing correlations. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 805–814 (2016)

4. Dong, B., et al.: Efficient discovery of abnormal event sequences in enterprise secu-
rity systems. In: Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pp. 707–715 (2017)

5. Fang, M., Yin, J., Zhu, X., Zhang, C.: TrGraph: cross-network transfer learning via
common signature subgraphs. IEEE Trans. Knowl. Data Eng. 27(9), 2536–2549
(2015)

6. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864 (2016)

7. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

8. Hao, J., Ju, C.J.T., Chen, M., Sun, Y., Zaniolo, C., Wang, W.: Bio-JOIE: joint rep-
resentation learning of biological knowledge bases. In: Proceedings of the 11th ACM
International Conference on Bioinformatics, Computational Biology and Health
Informatics, pp. 1–10 (2020)

9. Hao, J., et al.: MEDTO: medical data to ontology matching using hybrid graph
neural networks. In: Proceedings of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery & Data Mining, pp. 2946–2954 (2021)

10. Hao, J., et al.: P-companion: a principled framework for diversified complementary
product recommendation. In: Proceedings of the 29th ACM International Confer-
ence on Information & Knowledge Management, pp. 2517–2524 (2020)

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (2017)

13. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for
learning the similarity of graph structured objects. In: International Conference on
Machine Learning, pp. 3835–3845. PMLR (2019)

14. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adap-
tation networks. In: International Conference on Machine Learning, pp. 2208–2217.
PMLR (2017)

15. Luo, C., et al.: TINET: learning invariant networks via knowledge transfer. In:
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1890–1899 (2018)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
http://arxiv.org/abs/1412.6980

170 J. Hao et al.

16. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation with multiple
sources. In: Advances in Neural Information Processing Systems, vol. 21 (2008)

17. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix
factorization: unifying DeepWalk, LINE, PTE, and node2vec. In: Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining, pp.
459–467 (2018)

18. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

19. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detec-
tion: CNN architectures, dataset characteristics and transfer learning. IEEE Trans.
Med. Imaging 35(5), 1285–1298 (2016)

20. Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization.
In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 650–658 (2008)

21. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k sim-
ilarity search in heterogeneous information networks. Proc. VLDB Endow. 4(11),
992–1003 (2011)

22. Sun, Z., et al.: A benchmarking study of embedding-based entity alignment for
knowledge graphs. Proc. VLDB Endow. 13(11), 2326–2340 (2020)

23. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale net-
works. In: Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 807–816 (2009)

24. Trivedi, R., Sisman, B., Dong, X.L., Faloutsos, C., Ma, J., Zha, H.: LinkNBed:
multi-graph representation learning with entity linkage. In: Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 252–262 (2018)

25. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-
relational graph convolutional networks. In: ICLR (2020)

26. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018)

27. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017)

28. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention
network for recommendation. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 950–958 (2019)

29. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big
Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

30. Wu, M., Pan, S., Zhou, C., Chang, X., Zhu, X.: Unsupervised domain adaptive
graph convolutional networks. In: Proceedings of the Web Conference 2020, pp.
1457–1467 (2020)

31. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2020)

32. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations
for learning and inference in knowledge bases. In: International Conference on
Learning Representations (2015)

https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1186/s40537-016-0043-6

Multi-source Inductive Knowledge Graph Transfer 171

33. Ye, J., Cheng, H., Zhu, Z., Chen, M.: Predicting positive and negative links in
signed social networks by transfer learning. In: Proceedings of the 22nd Interna-
tional Conference on World Wide Web, pp. 1477–1488 (2013)

34. Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Trans. Knowl. Data
Eng. 34(12), 5586–5609 (2021)

MULTIFORM: Few-Shot Knowledge
Graph Completion via Multi-modal

Contexts

Xuan Zhang, Xun Liang(B), Xiangping Zheng, Bo Wu, and Yuhui Guo

Renmin University of China, Beijing, China
{zhangxuanalex,xliang,xpzheng,wubochn,yhguo}@ruc.edu.cn

Abstract. Knowledge Graphs (KGs) have been applied to many down-
stream applications such as semantic web, recommender systems, and
natural language processing. Previous research on Knowledge Graph
Completion (KGC) usually requires a large number of training instances
for each relation. However, considering the accelerated growth of online
information, there can be some relations that do not have enough training
examples. In fact, in most real-world knowledge graph datasets, instance
frequency obeys a long-tail distribution. Existing knowledge embedding
approaches suffer from the lack of training instances. One approach to
alleviating this issue is to incorporate few-shot learning. Despite the
progress they bring, they sorely depend on entities’ local graph struc-
ture and ignore the multi-modal contexts, which could make up for the
lack of training information in the few-shot scenario. To this end, we
propose a multi-modal few-shot relational learning framework, which uti-
lizes the entities’ multi-modal contexts to connect few instances to the
knowledge graphs. For the first stage, we encode entities’ images, text
descriptions, and neighborhoods to acquire well-learned entity represen-
tations. In the second stage, our framework learns a matching metric to
match the query triples with few-shot reference examples. The experi-
mental results on two newly constructed datasets show the superiority
of our framework against various baselines.

Keywords: Few-shot learning · Meta-learning · Knowledge graphs ·
Attention aggregation function · Multi-modal contexts

1 Introduction

Knowledge Graphs (KGs) encode structured information of entities and their
relations in the form of triples (h, r, t), where h represents some head entity and
r represents some relation that connects h to some tail entity t. For example,
a statement like “Isaac Newton worked at the University of Cambridge” can be
represented as (Isaac Newton, Work location, University of Cambridge). KGs
are the key components of various practical applications such as visual trans-
fer learning [19], recommender systems [32] and so on. Despite their usefulness

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 172–187, 2023.
https://doi.org/10.1007/978-3-031-26390-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_11&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_11

MULTIFORM: Few-Shot Knowledge Graph Completion 173

Fig. 1. (a) The distribution of relation frequencies in FB15K. (b) An example of multi-
modal contexts of KGs: The left presents the images and textual descriptions of the
entities in the triple (Issac Newton, Work location, University of Cambridge); The right
presents the one-hop graph structure of the entity Issac Newton.

and popularity, KGs are often highly incomplete. Extensive research, termed
as knowledge embedding [2,24,29], has made great progress in automatically
completing missing links in KGs.

However, research on Knowledge Graph Completion (KGC) for KGs usually
assume that sufficient training examples for each relation are available and can-
not cope with few-shot relations. In the real world, the KGs evolve quickly with
new entities and relations being added by the second and some new relations
may not have enough training examples. Even in the classic knowledge graph
FB15K, long-tail relations (few-shot relations), which have very few training
triples, are actually very common as shown in Fig. 1(a). To be more specific,
FB15K contains 1345 relations and about 0.6 million instances, but over 36% of
these relations contain no more than 10 instances.

There are also some few-shot learning methods, such as GMatching [37] and
FAAN [21], concentrating on alleviating the challenge of the lack of training
examples for the long-tail relations. These models aim at predicting new links
given only few training triples in a meta-learning scenario. Their main ideas
are devising a neighbor encoder to acquire well-represented entities from the
neighbors, and then represent few-shot relations with the learned entities. One
of the key challenges is to learn the accurate entity representations with very
few training information available.

While the few-shot learning models focus on developing various complicated
algorithms, they depend on limited training information sorely from the entities’
neighborhoods and ignore other crucial multi-modal contexts widely existing in
KGs and Freebase [1], such as images and the text descriptions. As Fig. 1(b)
shows, these additional multi-modal contexts contain abundant information,
which could be helpful during training and make up for the lack of training
information in the few-shot scenario.

With the aforementioned statements, we go back to the original KGs, and
extract the entities’ images, text descriptions and neighborhoods as additional
visual, textual and topological information respectively. To predict new links
with only few-shot given instances, we propose a MULTI-modal Few-shOt

174 X. Zhang et al.

Fig. 2. Multi-modal context encoder for entities: (a) Image encoder; (b) Text encoder;
(c) Neighbor encoder; (d) Multi-modal embedding fusion model.

Relational learning fraMework (MULTIFORM). In contrast to previous few-shot
learning models sorely depending on entities’ neighborhoods, MULTIFORM is
able to benefit from all multi-modal contexts. MULTIFORM consists of a multi-
modal context encoder and a metric learning module. The multi-modal con-
text encoder produces well-learned representations of entities via multi-modal
contexts. We separately encode image embedding, text descriptions and one-
hop neighbors of entities and leverage an ensemble function to produce new
accurate embeddings containing multi-modal information of entities. Our metric
learning module aims at learning a matching function that can be used to dis-
cover more similar triples given few-shot reference triples. With two newly con-
structed datasets, i.e., MM-FB15K and MM-DBpedia, we show that our model
can achieve consistent improvements over various state-of-the-art baselines on
the few-shot KGC task. In summary, the present work makes the following con-
tributions:

• As far as we know, this paper is the first to study few-shot KGC tasks with
multi-modal contexts. We design three encoders to extract crucial information
from different multi-modal data.

• We explore the impact of different multi-modal contexts, which is empirically
important but ignored by the previous studies on multi-modal KGs.

• We construct two new datasets MM-FB15K and MM-DBpedia from FB15K
and DBpedia for multi-modal few-shot KGC evaluation. We evaluate our
model in the few-shot scenario and the experimental results show the superi-
ority of our model against various state-of-the-art baselines.

2 Related Work

Here we survey three topics relevant to our research: unimodal knowledge embed-
ding models, multi-modal knowledge embedding models, and few-shot learning.

MULTIFORM: Few-Shot Knowledge Graph Completion 175

2.1 Unimodal Knowledge Embedding Models

Unimodal knowledge embedding models aim at modeling multi-relational data
and automatically inferring missing facts in KGs. Many of them encode both
entities and relations into a continuous low dimensional vector space. RESCAL
[17] utilizes tensor operations to model relations. TransE [2] is a classic work that
encodes both entities and relations into a 1-D vector space. Following this line
of research, more effective models such as DistMult [38], ComplEx [29], ConvE
[5], Rotate [25], and Rot-Pro [24] have been proposed for further improvements.
These embedding-based models heavily rely on extensive collections of training
examples, and they are not qualified to deal with sparse triples, as presented in
[2] and [37].

2.2 Multi-modal Knowledge Embedding Models

Multi-modal knowledge embedding models mainly focus on encoding visual and
structural contexts. IKRL [36] separately trains visual information and struc-
tural information on TransE [2]. Mousselly et al. [15] uses three different ensem-
ble function, i.e., simple concatenation, DeViSE [8], and Imagined [4] to fuse
multi-modal context embeddings. TransAE [34] utilizes an auto-encoder to inte-
grate them. RSME [33] evaluates different image encoders for multi-modal KGC
and verify the effectiveness of Visual Transformer (ViT), so we adopt ViT as
image encoder in this paper. There are several models [22,35] taking rich text
descriptions into consideration to handle unseen entities.

2.3 Few-Shot Learning

Few-shot learning methods seek to learn novel concepts with only a small number
of labeled examples. Recent deep learning based few-shot learning models can
be classified into three groups. The first group is model-based approaches, which
depend on a specially designed part like memory to quickly optimize the model
parameters given few-shot training examples. MetaNet [16], a typical model-
based approach, learns meta knowledge across tasks and generalizes rapidly via
its fast parameterization. The second group is metric-based approaches, which
try to learn a generalizable metric and the corresponding matching functions
among a set of training examples. For example, prototypical networks [23] clas-
sify each instance by calculating the similarity to prototype representation of
each class, whose idea is similar to some nearest neighbor algorithms. GMatch-
ing [37], FSRL [39], and FAAN [21] can also be considered as a metric-based
approach. The third group is optimization-based approaches [7,13,20], which
aim to learn faster by changing the optimization methods on few-shot reference
instances. One example is model-agnostic meta-learning (MAML) [7], which first
proposed the framework of updating parameters of a task-specific learner and
performing meta optimization across tasks by using the above updated parame-
ters. MetaR [3], which transfers relation-specific meta information from support
set to query set, can also be regarded as an optimization-based approach for
knowledge graph.

176 X. Zhang et al.

Previous few-shot learning research mainly focuses on vision [27], sentiment
analysis [12] domains. As for few-shot learning on KGC, Bordes et al. [2] first
realized the number of training examples for each relation in KGs have a great
impact on the accuracy of the embedding model. However, he did not formulate
it as a few-shot learning task. Existing few-shot learning models [21,37,39] on
KGC tasks all sorely depend on local graph structures. In contrast to their
approaches, we intend to leverage visual, textual and topological context to
improve the quality of entity embeddings.

3 Preliminaries

3.1 Task Formulation

Here we give the definition of the few-shot KGC task via multi-modal contexts
as follows:

Definition 1. Given an incomplete KG G = (E,R,T), where E, R and T are
the entity set, relation set, and triple set, respectively, the few-shot KGC task
completes G by finding a set of missing triples T′ = {(h, r, t) | (h, r, t) /∈ T, h, t ∈
E, r ∈ R} when only few-shot entity pairs (h, t) and their multi-modal contexts
are known for each relation r.

In Definition 1, it is also called the K-shot KGC task when K training examples
are given for each relation. In contrast to previous work, which usually assumes
the availability of enough triples for training, this work studies the case where
only few training triples are available. To be more specific, the goal is to rank
the true tail entity higher than other candidate entities, given only K example
triples (h′

i, r, t
′
i)

K
i=1 for relation r. The candidate set is constructed using the

entity type constraint [28].

3.2 Few-Shot Learning Settings

Following the standard meta-learning pipelines [7,20], we describe the settings
for training and evaluation of our few-shot learning model. We have different sets
for meta-training, meta-validation, and meta testing (Dmeta-train, Dmeta-validation,
and Dmeta-test) respectively. Note that none of the above share the same relation
label space. On Dmeta-train, we are interested in training a learning procedure
(the meta-learner) that can take few examples as input and produce a matching
metric (the learner) that could be used to predict new facts. Using Dmeta-validation

we can perform hyper-parameter selection of the meta-learner and evaluate its
generalization performance on Dmeta-test.

More specifically, a Dmeta-train corresponding to a certain relation r ∈ R,
consists of support and query triples: Dr = {Ds r,Dq r}. There are K triples in
Ds r for K-shot KGC tasks. Dq r = {hi, r, ti, Chi,r} consists of the query triples of
r with ground-truth tail entities ti for each query (hi, r), and the corresponding
tail entity candidates Chi,r = {tij} where each tij is an entity in the KGs.

MULTIFORM: Few-Shot Knowledge Graph Completion 177

Then the metric model can be tested on this set by ranking the candidate set
Chi,r, given the test query (hi, r) and the labeled triple in Ds r. Dmeta-validation

and Dmeta-test are composed of Ds r, Dq r. We denote the ranking loss of relation
r as �θ (hi, r, ti | Chi,r,Ds r), where θ represents the parameters of our model.
Thus, the objective of model training can be defined as:

min
θ

EDr

⎡
⎢⎣

∑

(hi,r,ti,Chi,r)∈Dq r

�θ (hi, r, ti | Chi,r,Ds r)
|Dq r|

⎤
⎥⎦ (1)

where Dr is sampled from the meta-training set Dmeta-train and |Dq r| denotes
the number of tuples in Dq r.

After sufficient training, we are able to predict facts of each new relation
r′ ∈ R′. Due to the assumption of K-shot learning, the relation label space of
the above meta-sets is disjoint with each other, i.e., R ∩ R′ = φ. Otherwise,
the metric model will actually see more than K-shot labeled data during meta-
testing, thus the few-shot assumption is violated. Finally, we construct a subset
G∗ from G by removing all relations in Dmeta-train, Dmeta-validation and Dmeta-test

to construct entities’ neighborhoods.

4 Model

Our model MULTIFORM consists of two modules: a multi-modal context
encoder and a metric learning module. The core of our proposed model is a
similarity function fS ((h, t), (h′, t′) | V∗, T ∗,G∗), where V∗, T ∗,G∗ is the set of
entities’ visual context, textual context, and topological context, respectively.
Given K known facts (h′

i, r, t
′
i)

K
i=1 for any query relation r, the model could

predict the likelihood of testing triples {(hi, r, tij) | tij ∈ Chi,r}, based on the
matching score between each (hi, tij) and its semantic average of (h′

i, t
′
i)

K
i=1. The

implementation of the above matching function involves two sub-tasks: (1) the
representations of entity pairs; and (2) the comparison function between two
entity-pair representations.

4.1 Multi-modal Context Encoder

Multi-modal context encoder aims at utilizing the multi-modal contexts to learn
well-represented entities. Specifically, it can be split into four parts: an image
encoder, a text encoder, a neighbor encoder and a multi-modal embedding fusion
model as illustrated in Fig. 2. The image encoder aims to extract the visual repre-
sentations of entities’ images and acquire visual embeddings for entities. The text
encoder takes textual descriptions as input and output entities’ textual embed-
dings. The neighbor encoder learns from entities’ neighborhoods and produces
topological embedding. The multi-modal embedding fusion model concatenates
on integrating various multi-modal context embeddings and acquiring the accu-
rate entity embeddings.

178 X. Zhang et al.

Image Encoder. Since most entities have more than one image collected in var-
ious scenarios, the image set is very possible to contain wrong images, which do
not match the corresponding entities. It is essential to find out which images
better represent their corresponding entities and filter out the noisy images. [33]
shows that incorrect images account for only a small proportion of all images
in KGs. Inspired by [33], we utilize a filter gate based on the empirical anal-
ysis that the incorrect images have low similarity with the right images. To
be more specific, given an entity h, its multiple images can be presented as
V = {v1, v2, . . . , vn}, where V ∈ V∗. The filter gate selects the image with the
highest similarity to the other images of the given entity to learn the visual
embeddings:

vh = arg max
vi∈V

∥∥∥∥∥∥
∑

j

S (vi, vj)

∥∥∥∥∥∥
, (2)

where S is the function to measure the visual similarity of two images. We
adopt pHash [18] for simplicity. As ViT achieves the best performance over the
Convolutional Neural Network (CNN) based models according to [33], we adopt
ViT to encode the selected right images to obtain the corresponding embeddings
of images in V as {zv1 , zv2 , . . . , zvn

}. Finally, we devise an attention aggregation
function faggre to model representations of different images of the given entity
and obtain the visual embedding zV :

faggre(V) = σ

(∑
i

αizvi

)
, (3)

αi =
exp

{
uT

v (Wvzvi
+ bv)

}
∑

j exp
{
uT

v

(
Wvzvj

+ bv

)} , (4)

where sigma denotes activation unit (we use Tanh); zvi
∈ R

d×1 is the out-
put representations of ViT and d is dimension of representation vectors; uv ∈
R

d×1,Wv ∈ R
d×d, bv ∈ R

d×1 are learnable parameters.

Text Encoder. Given a certain entity and its text description X =
{x1, x2, . . . , xn} where x is the word in the sentence, we first use BERT [6] to gen-
erate the word embedding {zx1 , zx2 , . . . , zxn

}. Similarly, we adopt the attention
aggregation function faggre to obtain the textual embedding zX :

faggre(X) = σ

(∑
i

βizxi

)
, (5)

βi =
exp

{
uT

x (Wxzxi
+ bx)

}
∑

j exp
{
uT

x

(
Wxzxj

+ bx

)} , (6)

where zxi
∈ R

d×1 is the output representations of BERT and d is dimension
of word embedding vectors; ux ∈ R

d×1,Wx ∈ R
d×d, bx ∈ R

d×1 are learnable
parameters.

MULTIFORM: Few-Shot Knowledge Graph Completion 179

Neighbor Encoder. Recently, Xiong et al. [37] and Zhang et al. [39] have demon-
strated the effectiveness of encoding local graph structures as entity represen-
tations. Following their researches and inspired by the progress in Graph Con-
volutional Network (GCN), we consider CompGCN [30] to model the local het-
erogeneous feature of the neighborhoods. Specifically, for each given head entity
h, its neighborhoods forms a set of {relation, tail entity} tuples. As shown in
Fig. 2(c), for the entity Issac Newton, one of such tuples is {Occupation, Mathe-
matician}. Thus, the neighbor set can be denoted as Nh = {ri, ti}I

i=1, where ri

and ti represent the i-th relation and corresponding tail entity of h, respectively.
I is the number of such neighbors and (h, ri, ti) ∈ G∗.

Our CompGCN-based neighbor encoder aims at encoding Nh and generating
a well-learned vector as the feature representation of local connections of h. The
details are as follows:

y
(k)
h = σ

⎛
⎝ ∑

(ri,ti)∈Nh

W
(k)
λ(r)ψ

(
y(k−1)

ri
, y

(k−1)
ti

)
⎞
⎠ , (7)

where W
(k)
λ(r) is a relation-specific shared parameter to learn; ψ a composition

function of the relation ri with its respective tail entity ti. The composition
ψ : R

d × R
d → R

d can be any entity-relation function akin to TransE [2] or
RotatE [25] (We choose RotatE according to experimental results); yh, yr, yt is
the embeddings of h, r, t respectively and can random initialized or pretrained
by existing embedding-based models; y

(k)
h is the final topological embedding.

Multi-modal Entity Embedding Fusion Model. With multi-modal context infor-
mation encoded, an embedding fusion model is developed to improve the repre-
sentations of the given entity. Among various ensemble functions, [15] point out
that simple concatenation works better than DeViSE [8] and Imagined [4] on
multi-modal KGC tasks, and taking limited computational resources and scal-
ability of MULTIFORM, we use simple concatenation to aggregate the visual
embedding, textual embedding and topological embedding.

4.2 Metric Learning Module

This module is designed to do effective similarity matching given the output of
feature fusion module. For K-shot learning scenario, we get two sets of entity
pairs: the query entity pair set (hi, tij) and the support pair set (h′

i, t
′
i)

K
i=1. We

obtain well represented entity embeddings for each set:
[
o (Nhi

) ; o
(
Ntij

)]
and

[o (Nh′) ; o (Nt′)] via the multi-modal context encoder. When K > 1, we employ
a simple sematic averaging function to get Nh′ and Nt′ :

Nh′ =

∑K
i=1 Nh′

i

K
(8)

Nt′ =

∑K
i=1 Nt′

i

K
. (9)

180 X. Zhang et al.

Table 1. Statistics of the Datasets. # Entities denotes the number of unique entities
and # Relations denotes the number of all relations. # Tasks denotes the number of
relations we use as few-shot tasks.

Dataset #Entities # Relations # Triples # Tasks

MM-FB15K 14951 1345 592,213 356

MM-DBpedia 12842 279 297,084 69

We can simply concatenate o(Nh′) and o(Nt′) and calculate similarity between
pairs in the two sets. For our model’s scalability, we use the same multi-step
matching processor as [37]. Every process step is defined as follows:

h′
k+1, ck+1 = LSTM (p, [hk ⊕ s, ck]) (10)

hk+1 = h′
k+1 + p (11)

scorek+1 =
hk+1 � s

|hk+1| |s|
(12)

where s = o (Nh′)⊕o (Nt′), p = o (Nhi
)⊕o

(
Ntij

)
are concatenated well-learned

embeddings of the support pair and query pair. After n processing steps, we use
scorek as the final similarity score between the query and support entity pair.

4.3 Loss Function

For a selected query relation r and its support triples (h′
i, r, t

′
i)

K
i=1, we employ

negative sampling methods to construct query triples, i.e., we collect a group of
positive query triples

{(
hi, r, t

+
i

)
|
(
hi, r, t

−
i

)
/∈ G

}
and corrupt the tail entities

to construct another group negative query triples {
(
hi, r, t

−
i

)
|
(
hi, r, t

−
i

)
/∈ |G}.

Following previous few-shot learning models, we utilize a hinge loss function for
our model:

lθ = max
(
0, γ + score−

θ − score+θ
)

(13)

where score+θ and score−
θ are scalars calculated by comparing the query triple(

hi, r, t
+
i /t−i

)
with the support triples (h′

i, r, t
′
i)

K
i=1 using our metric learning

model, and the margin γ is a hyperparameter to tune. For each training episode,
we first sample Dr from the meta-training set Dmeta-train. Then we sample K
triple as the support triple Ds r and a batch of other triples as the positive
query/test triples Dq r from all known triples in Dr.

5 Experiments

With MULTIFORM, we investigate three issues: (1) Will the incorporation of
multi-modal contexts help the few-shot KGC tasks? (2) How much visual con-
text, textual context and topological context contribute to MULTIFORM’s per-
formance, respectively? (3) Does the number of multi-modal training triples

MULTIFORM: Few-Shot Knowledge Graph Completion 181

affect the performance of MULTIFORM? To explore these questions, we conduct
a series of experiments on two few-shot multi-modal knowledge graph datasets
and systematically analyze the corresponding results.

5.1 Datasets

Our constructed multi-modal datasets MM-FB15K and MM-DBpedia are based
on FB15K [1,2] and DBpedia [11,14,22]. The dataset statistics are shown in
Table 1. Figure 1(b) shows an example of visual and textual contexts. Each entity
in MM-FB15K and MM-DBpedia has at least one image and a description of no
less than 15 words. Following [37], we construct few-shot multi-modal KGs by
selecting those relations that do not have too many training triples. Specifically,
to guarantee enough triples for evaluation, we select the relations with less than
500 but more than 50 triples as few-shot tasks, i.e., we obtain 356 and 69 few-shot
relations in MM-FB15K and MM-DBpedia, respectively. The rest of the relations
are referred to as background relations and their triples provide neighborhoods to
learn topological information. In addition, For MM-FB15K, we use 267/18/71
and 51/6/12 task relations for training/validation/testing in MM-FB15K and
MM-DBpedia, respectively. The division ratio is about 15:1:4, similar to the
data split in [37,39].

5.2 Baseline Methods

For fair comparison, we select three kinds of baseline methods including uni-
modal knowledge embedding models, multi-modal knowledge embedding mod-
els, and few-shot learning models.

• Unimodal Knowledge Embedding Models. This line of research models
multi-relational structures in KGs and encodes both entities and relations into
a continuous low dimensional vector space. We consider the four widely used
baseline methods as follows: TransE [2], DistMult [38], ComplEx [29] and Rot-
Pro [24]. For implementation, we use an Open Toolkit [9] released by Xu Han
et al. which provides the above knowledge embedding models. We also select
RotatE [25], which has been reported very robust under different evaluation
protocols in the extensive conducted experiments, comparing with a series
of state-of-the-art knowledge embedding methods [26]. For fair comparison,
all triples of background relations, training triples, and support triples of
validation and test relations, are used during training.

• Multi-modal Knowledge Embedding Models. The models mainly focus
on encoding visual and structural contexts. We select two state-of-the-art
methods, i.e., TransAE [34] and RSME [33] as our baselines.

• Few-Shot Learning Models. This type of model concentrates on predicting
new facts in KGs with only few-shot reference triples. For fair comparison,
we select three typical neighbor encoder based models, i.e., GMatching [37],
FSRL [39], FAAN [21].

182 X. Zhang et al.

Table 2. The 5-shot KGC results on the testing dataset. The best baseline results are
indicated by underline and the best results of all methods are highlighted in bold.

Model MM-FB15K MM-DBpedia

MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

TransE 0.116 0.164 0.139 0.089 0.103 0.155 0.120 0.077

DistMult 0.083 0.132 0.095 0.037 0.091 0.141 0.118 0.088

ComplEx 0.067 0.147 0.089 0.05 0.121 0.17 0.123 0.109

RotatE 0.131 0.189 0.160 0.101 0.150 0.242 0.179 0.120

Rot-Pro 0.099 0.145 0.112 0.061 0.139 0.200 0.154 0.107

TransAE 0.130 0.243 0.155 0.116 0.156 0.237 0.185 0.131

RSME 0.188 0.308 0.249 0.152 0.177 0.280 0.219 0.145

GMatching 0.261 0.377 0.340 0.189 0.176 0.293 0.231 0.116

FSRL 0.162 0.289 0.197 0.085 0.158 0.304 0.220 0.071

FAAN 0.341 0.458 0.382 0.279 0.195 0.310 0.217 0.136

MULTIFORM 0.437 0.550 0.461 0.305 0.303 0.425 0.334 0.279

Table 3. Results of model variants on MM-FB15K dataset. The best results are high-
lighted in bold.

Model variants MRR Hits@10 Hits@5 Hits@1

AS 1 0.401 0.499 0.450 0.293

AS 2 0.383 0.482 0.443 0.288

AS 3 0.351 0.472 0.397 0.282

MULTIFORM 0.437 0.550 0.461 0.305

5.3 Implementation Details

The embedding size d is set to 128 and 256 for MM-FB15K and MM-DBpedia
datasets, respectively. The number of local neighbors used in the neighbor
encoder is set to 45, which works the best for both datasets. As for image encoder
and text encoder, we use the open resource from huggingface to implement ViT1

and BERT2 and keep their default settings about transformer layers. Besides,
the LSTM cell is utilized in the matching function as a matching processor.
The dimension of LSTM’s hidden state is set to 128 and 256 for MM-FB15K
and MM-DBpedia datasets, respectively. The optimal matching step is 2. For
parameter updates, we use Adam [10] with the initial learning rate of 0.001 and
we have the learning rate decay 0.2 for each 50k training step. The margin γ
used in the base loss function is 5.0.

1 https://huggingface.co/docs/transformers/model doc/bert.
2 https://huggingface.co/docs/transformers/model doc/vit.

https://huggingface.co/docs/transformers/model_doc/bert
https://huggingface.co/docs/transformers/model_doc/vit

MULTIFORM: Few-Shot Knowledge Graph Completion 183

5.4 Results

We first evaluate our model on the few-shot KGC task, which predicts new facts
on a query set given only few support triples and their multi-modal contexts.
As shown in Table 2, MULTIFORM shows a significant margin over all three
types of baselines in the 5-shot scenario. Taking the experimental results (test-
ing MRR and Hits@10) on MM-FB15K as an example, the relative improvement
(%) of MULTIFORM against RotatE (the best-performing knowledge embed-
ding models) is up to 233.59% and 191.01%; MULTIFORM outperforms RSME
(the best-performing multi-modal knowledge embedding models) by 132.45%
and 78.37%; MULTIFORM shows a significant improvement margin over FAAN
(the best-performing few-shot learning models) by 28.15% and 20.09%. These
results, to some extent, confirm the effectiveness of the idea that incorporat-
ing multi-modal contexts can be helpful to few-shot KGC tasks since multi-
modal contexts shape more accurate and well-represented entities’ embeddings.
Thus, we have so far answered the first question, i.e., MULTIFORM can be well
adapted into the few-shot KGC task and produce consistent improvements over
all types of baselines by incorporating multi-modal contexts. We also observe
that most multi-modal knowledge embedding models have better performance
than unimodal knowledge embedding models, which verifies the benefit of uti-
lizing multi-modal contexts. We also noticed that unimodal/multi-modal knowl-
edge embedding models have a big gap in performance compared with few-shot
learning models. We guess unimodal/multi-modal knowledge embedding models
are designed for transductive learning with sufficient training data and can not
be adapted into the few-shot scenario where only few training data are available.
By the way, this demonstrates that the few-shot KGC task is a very challenging
problem.

5.5 Ablation Study

Here We seek the answer to our second question in this section, i.e., investigating
the effectiveness of each context of the proposed model. We consider the following
ablation studies:

• (AS 1) We evaluate the effectiveness of images. We use randomly initialized
vectors as visual embeddings and keep the other two encoders.

• (AS 2) We use randomly initialized vectors as the output of the text encoder
to verify the effectiveness of text descriptions.

• (AS 3) We use randomly initialized vectors as topological embeddings to
evaluate the effectiveness of entities’ graph structure.

As shown in Table 3, our model has better performance than all model variants.
The comparison between MULTIFORM and AS 1, AS 2, and AS 3 indicates
that all visual context, textual context and topological context contribute to
improvements of our model. By comparison among AS 1, AS 2, and AS 3, we
also notice that topological context contributes most to the model’s performance,

184 X. Zhang et al.

Fig. 3. Impact of few-shot size K.

since MULTIFORM shows the largest decrease when randomly initializing topo-
logical embeddings (refer to AS 3); We think it is because the knowledge of the
same modality can be absorbed by neural networks more easily. The next largest
contribution is made by textual context (refer to AS 2). We guess it is because
KGs are originally extracted from the text so there exists semantic similarity.
In summary, these results demonstrate that all contexts are important and con-
tribute to MULTIFORM (Fig. 3).

5.6 Impact of Few-Shot Size

Since this work studies few-shot learning for KGC tasks, we conduct experiments
to analyze the impact of few-shot size K. MULTIFORM consistently outper-
forms all few-shot baselines under different K, indicating the effectiveness of our
model on few-shot link prediction on KGs. We also notice that as K increases,
MULTIFORM gets relatively stable improvements compared to GMatching and
FSRL, which demonstrates MULTIFORM’s stability and robustness.

6 Conclusion and Future Work

In the present work, we introduce a multi-modal few-shot learning framework
named MULTIFORM for KGC tasks. MULTIFORM aims at predicting new
facts with only several training data and their multi-modal contexts, which is
a challenging problem. MULTIFORM leverages visual, textual, and topological
information of entities to produce well-learned representations and uses a metric
learning method to match entity pairs. The experiment results demonstrate that
MULTIFORM can outperform the state-of-the-art baselines. We also analyze the
impact of few-shot size and conduct ablation studies on multi-modal contexts,
which verify the effectiveness of each context. The goal of our future work is
to incorporate external text content of relations and try more feature fusion
methods to extend our model in the zero-shot scenario.

Acknowledgement. This work was supported by the National Natural Science Foun-
dation of China (62072463, 71531012), and the National Social Science Foundation of
China (18ZDA309).

MULTIFORM: Few-Shot Knowledge Graph Completion 185

References

1. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabora-
tively created graph database for structuring human knowledge. In: Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data (2008)

2. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a Meeting Held 5–8 December 2013, Lake Tahoe,
Nevada, United States (2013)

3. Chen, M., Zhang, W., Zhang, W., Chen, Q., Chen, H.: Meta relational learning for
few-shot link prediction in knowledge graphs. In: Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (2019)

4. Collell, G., Zhang, T., Moens, M.: Imagined visual representations as multimodal
embeddings. In: Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, San Francisco, California, USA, 4–9 February 2017 (2017)

5. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowl-
edge graph embeddings. In: Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI-2018), the 30th Innovative Applications of Artificial
Intelligence (IAAI-2018), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-2018), New Orleans, Louisiana, USA, 2–7 February
2018 (2018)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
(2019)

7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017. Proceedings of
Machine Learning Research (2017)

8. Frome, A., et al.: DeViSE: a deep visual-semantic embedding model. In: Advances
in Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a Meeting Held 5–8 Decem-
ber 2013, Lake Tahoe, Nevada, United States (2013)

9. Han, X., et al.: OpenKE: an open toolkit for knowledge embedding. In: Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations (2018)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
7–9 May 2015, Conference Track Proceedings (2015)

11. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted
from Wikipedia. Semant. Web 6(2), 167–195 (2015)

12. Li, Z., Li, X., Wei, Y., Bing, L., Zhang, Y., Yang, Q.: Transferable end-to-end
aspect-based sentiment analysis with selective adversarial learning. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP) (2019)

186 X. Zhang et al.

13. Li, Z., Zhou, F., Chen, F., Li, H.: Meta-SGD: learning to learn quickly for few-shot
learning. arXiv preprint arXiv:1707.09835 (2017)

14. Liu, Y., Li, H., Garcia-Duran, A., Niepert, M., Onoro-Rubio, D., Rosenblum, D.S.:
MMKG: multi-modal knowledge graphs. In: Hitzler, P., et al. (eds.) ESWC 2019.
LNCS, vol. 11503, pp. 459–474. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21348-0 30

15. Mousselly-Sergieh, H., Botschen, T., Gurevych, I., Roth, S.: A multimodal
translation-based approach for knowledge graph representation learning. In: Pro-
ceedings of the Seventh Joint Conference on Lexical and Computational Semantics
(2018)

16. Munkhdalai, T., Yu, H.: Meta networks. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6–11 August 2017. Proceedings of Machine Learning Research (2017)

17. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on
multi-relational data. In: Proceedings of the 28th International Conference on
Machine Learning, ICML 2011, Bellevue, Washington, USA, 28 June–2 July 2011
(2011)

18. Niu, X., Jiao, Y.: An overview of perceptual hashing. Acta Electronica Sin. 36(7),
1405 (2008)

19. Peng, Z., Li, Z., Zhang, J., Li, Y., Qi, G., Tang, J.: Few-shot image recognition with
knowledge transfer. In: 2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), 27 October–2 November 2019 (2019)

20. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
24–26 April 2017, Conference Track Proceedings (2017)

21. Sheng, J., et al.: Adaptive attentional network for few-shot knowledge graph com-
pletion. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP) (2020)

22. Shi, B., Weninger, T.: Open-world knowledge graph completion. In: Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-2018), the
30th Innovative Applications of Artificial Intelligence (IAAI-2018), and the 8th
AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-2018),
New Orleans, Louisiana, USA, 2–7 February 2018 (2018)

23. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning.
In: Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4–9 December 2017, Long Beach,
CA, USA (2017)

24. Song, T., Luo, J., Huang, L.: Rot-Pro: modeling transitivity by projection in knowl-
edge graph embedding. In: Advances in Neural Information Processing Systems
(2021)

25. Sun, Z., Deng, Z., Nie, J., Tang, J.: RotatE: knowledge graph embedding by rela-
tional rotation in complex space. In: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019 (2019)

26. Sun, Z., Vashishth, S., Sanyal, S., Talukdar, P., Yang, Y.: A re-evaluation of knowl-
edge graph completion methods. In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (2020)

27. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H.S., Hospedales, T.M.: Learning
to compare: relation network for few-shot learning. In: 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
18–22 June 2018 (2018)

http://arxiv.org/abs/1707.09835
https://doi.org/10.1007/978-3-030-21348-0_30
https://doi.org/10.1007/978-3-030-21348-0_30

MULTIFORM: Few-Shot Knowledge Graph Completion 187

28. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Rep-
resenting text for joint embedding of text and knowledge bases. In: Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing (2015)

29. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: Proceedings of the 33nd International Con-
ference on Machine Learning, ICML 2016, New York City, NY, USA, 19–24 June
2016. JMLR Workshop and Conference Proceedings (2016)

30. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-
relational graph convolutional networks. In: 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020 (2020)

31. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching
networks for one shot learning. In: Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016,
Barcelona, Spain, 5–10 December 2016 (2016)

32. Wang, H., et al.: RippleNet: propagating user preferences on the knowledge graph
for recommender systems. In: Proceedings of the 27th ACM International Con-
ference on Information and Knowledge Management, CIKM 2018, Torino, Italy,
22–26 October 2018 (2018)

33. Wang, M., Wang, S., Yang, H., Zhang, Z., Chen, X., Qi, G.: Is visual context really
helpful for knowledge graph? A representation learning perspective. In: Proceedings
of the 29th ACM International Conference on Multimedia (2021)

34. Wang, Z., Li, L., Li, Q., Zeng, D.: Multimodal data enhanced representation learn-
ing for knowledge graphs. In: 2019 International Joint Conference on Neural Net-
works (IJCNN). IEEE (2019)

35. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge
graphs with entity descriptions. In: Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, Phoenix, Arizona, USA, 12–17 February 2016 (2016)

36. Xie, R., Liu, Z., Luan, H., Sun, M.: Image-embodied knowledge representation
learning. In: Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017
(2017)

37. Xiong, W., Yu, M., Chang, S., Guo, X., Wang, W.Y.: One-shot relational learn-
ing for knowledge graphs. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (2018)

38. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations
for learning and inference in knowledge bases. In: 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015,
Conference Track Proceedings (2015)

39. Zhang, C., Yao, H., Huang, C., Jiang, M., Li, Z., Chawla, N.V.: Few-shot knowl-
edge graph completion. In: The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 Febru-
ary 2020 (2020)

RDF Knowledge Base Summarization
by Inducing First-Order Horn Rules

Ruoyu Wang1,2, Daniel Sun1,3(B), and Raymond Wong1

1 University of New South Wales, Sydney, Australia
ruoyu.wang2@unsw.edu.au, wong@cse.unsw.edu.au

2 Shanghai Jiao Tong University, Shanghai, China
wang.ruoyu@sjtu.edu.cn

3 Enhitech LLC., Shanghai, China
danielwsun@gmail.com

Abstract. RDF knowledge base summarization produces a compact
and faithful abstraction for entities, relations, and ontologies. The sum-
mary is critical to a wide range of knowledge-based applications, such
as query answering and KB indexing. The patterns of graph structure
and/or association are commonly employed to summarize and reduce the
number of triples. However, knowledge coverage is low in state-of-the-art
techniques due to limited expressiveness of patterns, where variables are
under-explored to capture matched arguments in relations. This paper
proposes a novel summarization technique based on first-order logic rules
where quantified variables are extensively taken into account. We formal-
ize this new summarization problem to illustrate how the rules are used
to replace triples. The top-down rule mining is also improved to maximize
the reusability of cached results. Qualitative and quantitative analyses
are comprehensively done by comparing our technique against state-of-
the-art tools, with showing that our approach outperforms the rivals in
conciseness, completeness, and performance.

Keywords: Data summarization · RDF KB summarization ·
Knowledge graphs · Logic rule mining · Rule-based approaches

1 Introduction

Data summarization [1] is to extract, from the source, a subset or a compact
abstraction that includes the most representative features or contents. Sum-
marization of RDF Knowledge Bases (KBs) are also being studied for over a
decade [3], especially after the concepts of semantic web and linked data are
widely accepted, and the online data amount grows unexpectedly large.

To serve the purpose of concise and faithful summarization, structural meth-
ods [7,16] are among the first attempts where techniques are borrowed from gen-
eral graph mining approaches. Statistical and deep learning techniques [10,15]
are also welcome in the research to alleviate the impact of noise and cap-
ture latent correlations. However, the above methodologies cannot provide the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 188–204, 2023.
https://doi.org/10.1007/978-3-031-26390-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_12&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_12

RDF Knowledge Base Summarization by Inducing First-Order Horn Rules 189

overview in an interpretable way and, in the meantime, be dependable in rea-
soning and deduction. Thus, approaches based on association patterns and logic
rules are studied in more recent works [2,14,20].

Current pattern-based and rule-based methods summarize KGs and produce
schematic views of the data. A technique for Logical Linked Data Compres-
sion (LLC) [14] has been proposed to extract association rules that represent
repeated entities or relation-entity pairs at a lower cost. Labeled frequent graph
structures are encoded as bit strings in KGist [2] and summarized from the per-
spective of bit compression. Nevertheless, the extracted patterns fail to conclude
general patterns with arbitrary variables and thus cover only a tiny part of the
factual knowledge. First-order logic rules, such as Horn rules, are a promising
upgrade where universally and existentially quantified variables are extensively
supported, but the rules have not yet been used for the summarization purpose.
First-order logic rules have been proved useful to KGs in knowledge-based appli-
cations, such as KG completion [9], and show competitive capabilities. However,
the performance turns out to be the cost of expressiveness. For example, first-
/higher-order logic rule mining techniques [19,23] cannot scale to databases con-
sisting of thousands of records without parallelization [8,26]. Current techniques
usually limit the expressiveness for high performance [9], and this decreases the
completeness of induced semantics. Moreover, the selection of best semantics is
also challenging, for the number of applicable rules induced from a knowledge
base is much larger than required for the summarization.

This paper bridges the gap between RDF KB summarization and first-order
logic rule mining. We propose a novel summarization technique based on first-
order Horn rules where quantified variables are extensively taken into account.
The formal definitions illustrate a new summarization problem: inducing Horn
rules from an RDF KB, such that the KB is separated into two parts, where
one is inferable (thus removable) by the other with respect to the rules. The
top-down rule mining mechanism is also improved to maximize the reusability
of cached contents. Contributions of this paper include:

• We are the first to employ first-order Horn rules in RDF KB summarization.
Variables are explored to extend the coverage and the completeness of seman-
tic patterns. The new approach is also applicable to relational databases.

• We refine the extension operations in top-down rule mining to a smaller step
size, such that the conciseness and performance are both improved.

• We qualitatively analyze the superiority of our approach and demonstrate the
reasons with quantitative experimental results. The experiments show that
our technique summarizes a database to less than 40% of the size, covering
more than 70% contents with induced rules. The performance of our technique
is up to two orders faster than the rivals.

The remains of the paper are organized as follows: Sect. 2 reviews major
studies in RDF KB summarization. Definitions and details of our approach are
proposed in Sect. 3. Section 4 evaluates the performance of our technique and
shows evidence of the improvement from a quantitative perspective. Finally,
Sect. 5 concludes the entire paper.

190 R. Wang et al.

2 Related Work

RDF KB summarization aims to extract concise and precise abstraction from
facts and ontologies, providing a preview and overall understanding of large-scale
knowledge data. Structural, statistical, and pattern/rule-based approaches have
been studied for over a decade.

Structural approaches represent the summary as a smaller graph, where
vertices and edges are either fragments of the original graph or converted accord-
ing to some mapping criteria. Quotient Graphs [25] are widely applied in many
structural approaches. Vertices in a quotient graph represent collections of ver-
tices in the original graph according to an equivalence relation over the vertices.
An edge in the quotient graph represents shared edges between the adjacent ver-
tex collections. Forward and backward (bi)simulation [7] properties guarantee
that a query on the quotient summary of a knowledge graph returns non-empty
results if the results are non-empty from the original database. Indexing [16] is
the major benefit of the structural approaches.

Statistical approaches focus on quantitative summaries for visualiza-
tion [6], query answering [22], selective data access [13], and description gen-
eration [10]. The approaches are motivated by the source selection problem,
where quantitative statistics reports on how relevant a knowledge base is to a
query [13]. Query sensitive information, such as the existence or quantity of rele-
vant entities, triples, or schematic rules, is calculated and stored [22]. To evaluate
the relevance to a topic, centrality and frequency analyses within a neighborhood
are employed to entities and ontological schema [10]. Summarization techniques
for other data types, such as text, are also used to rank objects in different
circumstances [18].

Pattern/rule-based approaches employ data mining approaches to
extract frequent patterns, in the form of graph structures or rules, from the RDF
graph. [28] summarizes with a set of approximate graph patterns in accordance
with SPARQL query evaluations. KGist [2] encodes RDF graph structures into
bit strings and takes advantage of information theory to minimize the descrip-
tion length of the entire bit string. The codebook for bit compression represents
sub-structures in the original graph. Meier [17] studied an RDF minimization
problem under user-defined constraints via Datalog programs. The constrained
minimization problem has been proved intractable, and the author identifies a
tractable fragment solvable in polynomial time.

LLC [14] summarizes and compresses Linked Open Data (LOD) via associa-
tion rules, and Fig. 1 shows the overall workflow. LLC converts an RDF knowl-
edge base into a transactional database, and the itemsets consist of objects or
relation-object pairs for every subject in the graph. Then FP-growth [12] is
used to extract a list of frequent itemsets, and association rules are ranked and
selected according to a measure representing the capability of replacement. The
original graph is separated into two parts: GA and GD, by matching the rules on
each itemset. GD contains triples that cannot be replaced from the knowledge
base, and triples in GA are the replacement of those in R(GA). Thus, GA, GD,
and the set of rules R make up the summary. The recovery of the original KG is

RDF Knowledge Base Summarization by Inducing First-Order Horn Rules 191

Fig. 1. LLC workflow

accomplished by applying R on
GA.

Rules (1) and (2) are two types of
association rules extracted by LLC:

∧n
i=1 < X, p, oi > ←< X, p, o > (1)

∧n
i=1 < X, pi, oi > ←< X, p, o > (2)

where < s, p, o > refers to a triple,
p, pi are relations, o, oi are entities,
and X is a universally quantified variable. The above rules can be converted
to the following Horn rules:

p(X, oi) ← p(X, o), i = 1, . . . , n (3)
pi(X, oi) ← p(X, o), i = 1, . . . , n (4)

Inductive Logic Programming (ILP) provides top-down [9,23,27] and
bottom-up [19] solutions to logic rule mining. Probability can also be used for
noise tolerance [24]. Parallelization is often employed when inducing from large-
scale databases [8,26].

3 Summarization via First-Order Horn Rules

This section presents the formal definition of the summarization with first-order
Horn rules and shows how the rules are used in the solution framework. The logic
rule mining process is also improved to extensively explore quantified variables
and maximize the reusability of cached contents. The advantages of our technique
are demonstrated by comparisons against LLC.

3.1 Preliminaries, Definitions and Notation Conventions

Let Σ be a finite set of constant symbols, e.g. {a, b, c, . . . }. Let Γ be a finite set
of variable symbols, e.g. {X,Y,Z, . . . }. Let Pn(n ≥ 0) be a finite set of n-ary
predicate symbols (i.e. relations), and P =

⋃
i≥0 Pi. A first-order predicate

(or simply, predicate) is composed of a predicate symbol and a list of arguments
enclosed in parentheses, written as p(t1, . . . , tk), where p ∈ Pk, ti ∈ Σ∪Γ. Let P
be a predicate, φ(P) is the arity of P . P is a ground predicate if all arguments
are constants. The above definitions do not break those in First-order Predicate
Logic (FOL). In the context of RDF knowledge bases, all predicate symbols are
binary, although the formalization and solution to the summarization problem
fit in the broader domain of the relational data model.

Formally, an RDF knowledge base is a finite set of binary ground predicates.
In FOL, the truth value of a ground predicate is determined by the interpreta-
tion and domain. In this paper, the interpretation of non-logic symbols is the

192 R. Wang et al.

definition of relations in databases, and the domain is the set of relation names
and constant values. Therefore, a ground predicate P is True according to some
database D if and only if P ∈ D.

A first-order Horn rule is of the form: Q ← ∧iPi, where Q,Pi are atoms
(predicates or the negations). In this paper, only non-negative atoms are consid-
ered in the rules. Q is called the head of the rule, and predicates Pi make up the
body . Q is entailed by Pi if Pi are all True, that is,(∧iPi) ∧ (Q ← ∧iPi) |= Q.
Thus, by binding the variables in the entailment, the grounded predicate Q′ is
entailed by grounded predicates P ′

i w.r.t. the rule r and a database D if every
P ′
i ∈ D, written as {P ′

i} |=r Q′. Let S, T be sets of ground predicates, H be a set
of first-order Horn rules, S |=H T if ∀T ∈ T ,∃S ′ ⊆ S, r ∈ H, such that S ′ |=r T .
Suppose T is entailed by a set of predicates w.r.t. a rule r. If T ∈ D, T is said to
be positively entailed by S w.r.t. r; otherwise, T is negatively entailed . If a
predicate is positively entailed by some grounding of r, the grounding is called
an evidence of the predicate. The set of positive and negative entailments w.r.t.
rule r is denoted by E+

r and E−
r , and Er = E+

r ∪ E−
r .

Notation Conventions. Capital letters refer to variables, such as X,Y .
Unlimited Variables (UVs) are variables assigned to only one argument in
some rule; Limited Variables (LVs) are those assigned to at least two argu-
ments. A question mark (‘?’) refers to a unique UV in a rule. Uncapitalized
words as arguments refer to constants, e.g., tom. Uncapitalized words before the
parenthesis or a period are predicate symbols, and the number after the period
is the index of the argument in the predicate, starting from 0, such as father.0.
For example, the following two rules are the same. Variables X and Y are LVs,
while Z and W are UVs and can be simplified to two question marks.

p(X,Y,Z) ← q(X,Y), s(Y,W) (5)
p(X,Y, ?) ← q(X,Y), s(Y, ?) (6)

Definition 1 (Knowledge Graph Summarization). Let D be an RDF KB.
The summarization on D is a triple (H,N , C) with minimal size, where H (for
“Hypothesis”) is a set of inference rules, both N (for “Necessaries”) and C (for
“Counterexamples”) are sets of predicates. D,H,N , C satisfies: 1) N ⊆ D; 2)
N |=H (D \ N) ∪ C; 3) ∀e
∈ D ∪ C,
 ∃r ∈ H,N |=r e.

The size of (H,N , C) is ‖H‖ + |N | + |C|. |N | is the number of predicates in
N , and so be |C|. ‖H‖ is defined as the sum of lengths of all rules in it.

In LLC, the total size of the patterns is the number of rules-that is-the
length of each rule is one, no matter what form and pattern it describes. The
coarse definition does not reflect the complexity of identifying semantic patterns.
Other rule mining studies [11,23,27] intuitively count in the number of terms or
different variables, which emphasizes to some extent the complexity of identifying
a pattern, but it is still not convincing enough.

In our technique, the length of a Horn rule is measured by the total arity of
the rule and the number of different variables at the same time:

|r| =

(
∑

P∈r

φ(P)

)

− var(r) (7)

RDF Knowledge Base Summarization by Inducing First-Order Horn Rules 193

Fig. 2. The workflow of our technique

Table 1. An example knowledge base

s p o

tom father jerry
bob father alice
matt father adam
daniel father felix

s p o

tom gender male
bob gender male
matt gender male
daniel gender male

s p o

tom type man
bob type man
matt type man
felix type man

var(r) is the number of different variables in rule r. Intuitively speaking, the
above definition reflects the minimum number of equivalence conditions that
identify the pattern in r. For example, the length of Rule (8) is 2, because the
pattern is characterized by two conditions: gender.0 = father.0, gender.1 =
male. The UV in Rule (8) is existentially quantified.

The size of every triple in Definition 1 is one no matter what relation and
entity are represented by the triple because the logic-rule-based summarization
cover and remove each triple as a whole. The comparison (Fig. 4a) between
summarization ratios and compression ratios has justified that it is proper to
define the size of a triple as one.

3.2 Summarization Workflow and the Recovery

Figure 2 shows the overall workflow of our technique. An RDF KB is converted
to a relational database, where the subjects and objects are the two arguments
in the relations. Each triple in the KB is converted to a single record in the
relational database. Labels and types are converted to unary relations where
relation names are from the label or type value. Then, logic rules are iteratively
induced from each relation until no proper rule is returned. Each Horn rule is
evaluated on the database to find the entailments and corresponding evidence.
Negatively entailed records are simply collected in the counterexample set C.
Positively entailed records and the corresponding evidence are further analyzed
to finally determine the set N , in case that there are circular entailments in the
summarization.

194 R. Wang et al.

Table 2. Converted Relational
Database of Table 1

tom jerry tom male tom
bob alice bob male bob
matt adam matt male matt
daniel felix daniel male felix

Table 1 shows an example RDF knowl-
edge base, and Table 2 shows the con-
verted version. The original size of the KB
is 12, and the following rules are induced
for the summarization:

gender(X,male) ← father(X, ?) (8)
man(X) ← father(X, ?) (9)

The total size of the rules is 3, and only 1
counterexample man(daniel) is generated by the rules. The 5 records in bold
font remain in N , and the others can be entailed from N w.r.t. the above rules
thus are removable. Therefore, the total size of the summarization is 9.

Fig. 3. An example of circular
entailment

The evidence of positively entailed triples can
be represented as a graph, where edges refer to the
inference dependency from the body to the head.
Therefore, circular dependencies occur as directed
cycles in the graph. Figure 3 shows an example
where the following rules are included in H and
cause the cycles:

man(X) ← gender(X,male)
gender(X,male) ← man(X)

Minimum Feedback Vertex Set (MFVS) [4] algo-
rithms can be used to break the cycles and vertices

in the MFVS solution should also be included in N to make sure every removed
record is inferable.

The recovery is simple in our technique: given that the circular dependencies
are resolved in the summarization, all removed records can be regenerated by
iteratively evaluating Horn rules in H until no record is added to the database.
Counterexamples should be excluded to keep data consistency.

Association rules adopt a limited number (usually one [14] or two [21]) of
universally quantified variables, and the patterns are only expressed by the co-
occurrences of entities. Thus, general correlations represented by more variables
and existential quantifiers are not captured. In the above example, the only
inducible association pattern by LLC is the following (or the reverse):

type(X,man) ← gender(X,male) (10)

The triples in relation gender (or type) are not removable. Thus, the conciseness,
coverage, and semantic completeness are low in LLC, even though part of the
schematic overview has been correctly induced from the data. It is possible to
hardcode various semantics into different association structures, such as varying
the variables from the subject to the object or even the relation. However, the
structures rely on human input and are often tedious to enumerate.

RDF Knowledge Base Summarization by Inducing First-Order Horn Rules 195

3.3 First-Order Horn Rule Mining

The most critical component in our technique is the induction of first-order Horn
rules. Logic rule mining has been extensively studied in the Inductive Logic Pro-
gramming (ILP) community [5]. Both top-down and bottom-up methodologies
have been proposed and optimized for over three decades. The bottom-up strat-
egy regards facts as specific-most rules and merges correlated ones to general-
ize [19]. The top-down strategy operates in the inverse direction, where rules
are constructed from general to specific by imposing new restrictions on candi-
dates [23,27]. Top-down mining techniques are easier to understand and optimize
and are employed in more knowledge-based applications.

Our technique also follows the top-down methodology, and the specializa-
tion is refined to improve performance. In previous works, such as FOIL [23]
and AMIE [9], candidate rules are specialized by simply appending new atoms
to the body of Horn rules. The specialization in the pattern semantics is not
well-organized because some newly imposed conditions are repeatedly applied
to the candidates, and the number of applicable predicates in each step of spe-
cialization is exponential to the maximum arity of the relations if inducing on
relational databases. In our approach, a candidate rule is extended in a smaller
step size which corresponds to the equivalence between a column and another
or a constant value. For example, Rule (8) is constructed in the following order:

gender(?, ?) ←
gender(X, ?) ← father(X, ?)

gender(X,male) ← father(X, ?)

The benefit of this modification is three-fold: 1) The extension operations are
feasible to relations of arbitrary arities without increasing the difficulty of enu-
merating applicable predicates to the body. The number of applicable extensions
is polynomial to the rule length and the arity of relations. 2) The small-step
exploration employs existentially quantified variables with lower cost compared
to current logic rule mining techniques, no mention of the association ones. 3)
The specialization maximizes the reusability of intermediate results and is better
cooperated with caching techniques in relational databases, such as materializa-
tion. The reason is that the specialization by each newly imposed condition is
updated and stored only once during the induction. Together with pruning [27]
and parallelization techniques [8,26], the performance of logic rule mining will
no longer be the stopping reason for RDF KB summarization.

Searching for the best logic rule is accomplished with the beam search, similar
to the FOIL system, except that an RDF KB does not provide negative examples.
Therefore, the Closed World Assumption (CWA) is adopted in our technique to
enumerate the negative examples if necessary. The quality of a Horn rule r is
measured by the reduction of overall size:

δ(r) = |E+
r | − |E−

r | − |r| (11)

196 R. Wang et al.

Table 3. Dataset overview

Datasets Short #Rel. #Entity #Triple #Label

Elti E 10 47 318 –
Family.simple Fs 4 82 322 1
Dunur D 17 26 466 –
DBpedia.factbook DBf 2 335 880 Default
Family.medium Fm 9 142 1242 1
Student Loan S 9 1031 6317 –
UMLS U 46 135 6664 Default
WN18 WN 18 41K 193K Default
NELL N 1083 44K 278K 821
FB15K FB 1345 15K 607K Default

4 Evaluation

This section evaluates our technique and answers the following research ques-
tions:

Q1 To what extent are RDF KBs summarized by first-order Horn rules?
Q2 How and why does our technique outperform state-of-the-art methods?
Q3 How fast does our technique induce logic rules?

Datasets. We use ten open-access datasets, without deliberate selection, from
various domains, including relational databases, fragments of popular knowledge
graphs that are widely used as benchmarks, and two synthetic datasets. Table 3
shows statistics of these datasets.1 “E”, “D”, and “S” are relational databases them-
selves, and the others are converted to the corresponding relational form. Given
thatKGist requires entity labels in databases, we assign a default label to datasets
where the label information is unavailable. Datasets tested in LLC are outdated
and no longer accessible thus are not used in our tests. The datasets are not
extremely large because FOIL and KGist are not implemented in a parallel man-
ner, and we compare the speed in a single thread mode to demonstrate the impact
of the small-step specialization operations. More importantly, the datasets are suf-
ficient to emphasize the superiority of our technique.

Rivals and Settings. We compare our approach against four state-of-the-art
techniques: FOIL, LLC, AMIE, and KGist. The summarization quality is com-
pared mainly against LLC. KGist and AMIE are also compared for summa-
rization, as KGist is devoted to the same purpose via a graph-based approach,
and AMIE can be slightly modified, for a fair comparison, to summarize KGs by
selecting the rules useful for reducing the overall size. FOIL and AMIE are cho-
sen as the competitors for speed comparison, as both of them induce first-order
1 E, D, S are available at: https://relational.fit.cvut.cz/; Fm, Fs are synthetic, and the

generators are available with the project source code.

https://relational.fit.cvut.cz/;

RDF Knowledge Base Summarization by Inducing First-Order Horn Rules 197

Horn rules and are the most similar to ours. However, neither the source code nor
compiled tool is available for LLC. Therefore, we reimplemented the algorithm
according to the instructions in [14]. The latest version of AMIE, AMIE3, is used
in the experiment, and Partial Completeness Assumption (PCA) is employed in
AMIE. Our technique is implemented in Java 11 and is open-source on GitHub2

All tests were carried out in a single thread on Deepin Linux (kernel: 5.10.36-
amd64-desktop) with Ryzen 3600 and 128GB RAM. The beamwidth for our
technique is 5.

Metrics. The quality of summarization is quantitatively reported by the sum-
marization ratio (θ), pattern/rule complexity (|r|) and connectivity (ρ), and
knowledge coverage (τ). The summarization ratio is defined as:

θ(D) = (‖H‖ + |N | + |C|)/|D| (12)

where ‖H‖, |N |, |C|, and |D| in LLC, AMIE, and our technique follow Defini-
tion 1. The components in KGist are measured by the length of bit strings. The
connectivity is the connection density in relations and reflects the completeness
of exhausting hidden semantics in a knowledge base:

ρ(H) = |{(p, q)|p, q ∈ P, p, q appear in the same rule r ∈ H}|/|P|2 (13)

In our technique, the converted “type” or “label” relations are counted as one
single relation, as is calculated in other techniques. The knowledge coverage is
the ratio of all inferable (not necessarily removable) triples over the entire set:

τ(D) = |{e ∈ D|D |=H e}|/|D| (14)

4.1 Summarization with Horn Rules

The results in this section answer Q1: The summarization and compression ratios
of our technique are up to 40%; Circular entailments frequently appear in the
summarization but are easy to resolve.

Figure 4 shows summarization statistics of our technique on the datasets.
Θ refers to the compression ratio measured by input/output files in Bytes. The
bars in three different colors in Fig. 4a add up to the total summarization ratio,
and it is shown that more than 60% contents are replaced by logic rules in
the datasets. Compared to the number of remaining triples, the sizes of rules
and counterexamples are negligible. The reason is that there are usually clear
topics and themes in modern knowledge bases, and within the topics, some rela-
tions extend details of complex concepts. Moreover, necessary redundancies are
included for high completeness of domain knowledge, as most facts are automat-
ically extracted from the open-source text and checked by human. For example,
the followings are some rules induced from the datasets:

part_of(X,Y) ← has_part(Y,X) (15)
uncle(X,Y) ← brother(X,Z), aunt(Z, Y) (16)
aunt(X,Y) ← sister(X,Z), uncle(Z, Y) (17)

2 https://github.com/TramsWang/SInC.

https://github.com/TramsWang/SInC

198 R. Wang et al.

Fig. 4. Summarization detail

Relation aunt and uncle in dataset “Fm” can be mutually defined by each other
with some auxillary relations. Many relations, such as part_of and has_part
in “WN”, are symmetric, and this is a common circumstance in modern KGs.
Figure 4b shows the evidence by counting the sizes of Strongly Connected Com-
ponents (SCCs) in the graph that represents inference dependencies of triples.
The average sizes of SCCs in large-scale KGs, such as “FB”, “WN”, and “N”, are
approximately 2, which testifies the above analysis. Moreover, from the figure, we
can conclude that the cycles are not large in the datasets and can be efficiently
solved by MFVS algorithms, even in a greedy manner.

Figure 4a also shows that our technique successfully applies to relational
data-bases. Moreover, the summarization ratio is close to the file compression
ratio. It is proper to define the size of a triple as one. θ and Θ have an apparent
difference in “DBf” because the following induced rule eliminates entities after
triples are removed: sameAs(X,X) ←, and extra information for the entities
should be recorded for a complete recovery. However, the information is not
included in Definition 1, as the above case is rare in practice.

4.2 Quality of Summarizations

In this section, we compare our technique against the state-of-the-art tools: LLC,
AMIE, and KGist, and answer Q2: Our technique induces more expressive logic
rules than the state-of-the-art; Rules in our technique cover more triples, reflect
more comprehensive semantics, and are more representative.

Figure 5 shows the overall summarization ratios of the techniques. “E”, “D”,
and “S” are not compared as the competitors cannot handle relational databases.
Our technique outperforms the others in almost all datasets. Some of the ratios
by LLC are larger than 100% because many rules are induced but not used to
replace triples. For example, the following two rules are induced from “DBf” by

RDF Knowledge Base Summarization by Inducing First-Order Horn Rules 199

Fig. 5. Summarization comparison

Table 4. Blocked rules (%) in LLC

Dataset Fs DBf Fm U WN N FB

Blocked rules (%) 52.63 48.39 68.46 60.00 44.23 42.90 45.00

LLC:

spokenIn(X,Russia) ∧ type(X, default) ← spokenIn(X,Kazakhstan) (18)
spokenIn(X,Russia) ∧ type(X, default) ← spokenIn(X,Uzbekistan) (19)

But Rule (19) is blocked from replacing the head triples if Rule (18) is applied.
According to Table 4, about half of the rules in LLC are blocked due to the
above reason.

However, excluding the size of rules (shown as “LLC (NR)” in Fig. 5) does
not change the fact that LLC is not competitive to logic-rule-based techniques.
The main reason is that association patterns are applicable to only a small part
of triples in the datasets. For example, Rule (18) is the most frequently used
in “DBf”, and it replaces only 18 triples, the proportion of which is only 2.05%,
in the dataset. Figure 6a compares the overall coverage of all techniques. The
association patterns induced by LLC cover only about 20% triples in a KG. The
low coverage is further explained by Fig. 6b. The figure shows that the num-
ber of itemsets, i.e., potential association patterns, exponentially decreases with
increasing size of the itemset. More importantly, the number is much smaller
than the matching arguments, represented by variables. Therefore, the associa-
tion patterns are not representative as first-order logic rules are.

Figure 6c compares the connectivity (see Eq. (13)) of induced patterns. Given
that the connectivity varies a lot in datasets, for a clear illustration, we compare
the connectivity of other techniques to ours. Therefore, the red line at value 1.0
denotes the connectivity of our technique, and the others are the relative values.
In most cases, our technique induces patterns that correlate the most relations,
thus reflecting the semantics more comprehensively in the data. Although LLC
combines more relations in “DBf” and “WN”, the average numbers of triples

200 R. Wang et al.

Fig. 6. Pattern comparison

inferable by the rules induced from the two datasets are 2.07 and 11.17, while
the numbers for our technique are 124 and 8358.22. Hence, the coverage of our
technique remains extensive even though the connectivity is occasionally low.

Fig. 7. Rule Lengths on NELL

Figure 7 compares the length of patterns
in the dataset “N” according to the measure
proposed in Sect. 3.1. The reason why LLC
induces longer patterns is that the associa-
tion patterns consist mainly of entities, each
of which is size 1 in the new length mea-
sure, while variables represent the matching
between arguments with much less cost.

The comparisons with other state-of-
the-art techniques also approve that logic-
rule-based approaches generalize better than
graph-pattern-based ones, thus producing
more concise summaries. The summarization
ratios for our technique and AMIE are smaller
than LLC and KGist. The knowledge cover-
age is also significantly more extensive than
the graph-pattern-based approaches. Most of
the rules in KGist are at length one because
the patterns it describes usually involve a sin-

gle relation and the direction, and this is also the reason for almost-zero connec-
tivity in KGist.

Our technique summarizes better than AMIE because rules induced in our
technique are longer and contain existentially quantified UVs. For example, the
following rule is simple but out of reach of AMIE, because it contains a UV:

gender(X, female) ← mother(X, ?)

Moreover, the rule evaluation metric adopted in AMIE is based on PCA, which
assumes the functionality of relations in knowledge bases. However, the PCA in

RDF Knowledge Base Summarization by Inducing First-Order Horn Rules 201

Fig. 8. Rule mining speed comparison

AMIE is not suitable for the summarization purpose. For example, our technique
covers triples in relation produces with only 10 counterexamples, while AMIE
does with 97.

4.3 Rule Mining Speed

The results in this section answer Q3: The speed of our technique is up to two
orders faster than FOIL and AMIE, and the speed-up is mainly due to the
small-step specialization operations together with caching.

Both AMIE and FOIL induce first-order Horn rules and are the most similar
techniques to ours. AMIE restricts the length and applicable variables in the
rules, and it runs in multi-threads. The maximum length and the number of
threads in AMIE should be set to 5 and 1 to compare the performance under
approximately equal expressiveness. However, AMIE frequently ends up with
errors under the above setting. The adopted parameters for maximum length
and threads are 4 and 3, respectively. Therefore, the actual speed-up is larger
than the recorded numbers in Fig. 8a. In the figure, the missing numbers are
because of program failures due to program errors or memory issues in FOIL
and AMIE.

The results show that our technique performs one to two orders faster than
AMIE and FOIL. Although AMIE adopts an estimation metric for heuristically
selecting promising specializations of rules, it tends to repeatedly cover triples by
different rules. No more than 10% rules produced by AMIE are used in the sum-
marization. Although AMIE employs an in-memory database with combinatorial
indices, the caching is not fully explored due to the types of terms it appends to
the rules. For example, Rules (21) and (22) are two extensions of Rule (20) in
AMIE. The condition grandfather.0 = father.0 has been repeatedly imposed
on the base rule during the extension.

grandfather(X,Y) ← (20)
grandfather(X,Y) ← father(X,Y) (21)
grandfather(X,Y) ← father(X,Z) (22)

202 R. Wang et al.

FOIL finds the best description for relations under the metric “Information
Gain”. FOIL does not over-explore the search space of Horn rules as AMIE does,
but the tables are repeatedly joined, as FOIL does not cache the intermediate
result of candidate rules during the construction. Figure 8b shows the speed-up
by caching intermediate results, and this explains most of the difference between
FOIL and our technique. Moreover, Fig. 8b also shows that the speed-up by
caching is more significant in larger datasets.

5 Conclusion

This paper proposes a novel summarization technique on RDF KBs by inducing
first-order Horn rules. Horn rules significantly extend the coverage, completeness,
and conciseness due to extensive exploration of variables compared to the asso-
ciation and graph-structure patterns. The small-step specialization operations
also improve the performance of rule induction by maximizing the reusability of
cached contents. As shown in the experiments, our technique summarizes KBs
to less than 40% of the original size, covers more than 70% triples, and is up
to two orders faster than the rivals. Our technique not only produces a concise
and faithful summary of RDF KBs but is also applicable to relational databases.
Therefore, the new technique is practical for a broader range of knowledge-based
applications.

References

1. Ahmed, M.: Data summarization: a survey. Knowl. Inf. Syst. 58(2), 249–273 (2019)
2. Belth, C., Zheng, X., Vreeken, J., Koutra, D.: What is normal, what is strange,

and what is missing in a knowledge graph: Unified characterization via inductive
summarization. In: The Web Conference (WWW) (2020)

3. Čebirić, Š, et al.: Summarizing semantic graphs: a survey. VLDB J. 28(3), 295–327
(2019)

4. Chen, J., Liu, Y., Lu, S., O’sullivan, B., Razgon, I.: A fixed-parameter algorithm for
the directed feedback vertex set problem. In: Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing, pp. 177–186 (2008)

5. Cropper, A., Dumancic, S., Muggleton, S.H.: Turning 30: New ideas in inductive
logic programming. In: IJCAI (2020)

6. Dudáš, M., Svátek, V., Mynarz, J.: Dataset summary visualization with LODSight.
In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann,
A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 36–40. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25639-9_7

7. Fan, W., Li, J., Wang, X., Wu, Y.: Query preserving graph compression. In: Pro-
ceedings of the 2012 ACM SIGMOD International Conference on Management of
Data, pp. 157–168 (2012)

8. Fonseca, N.A., Srinivasan, A., Silva, F., Camacho, R.: Parallel ILP for distributed-
memory architectures. Mach. Learn. 74(3), 257–279 (2009)

https://doi.org/10.1007/978-3-319-25639-9_7
https://doi.org/10.1007/978-3-319-25639-9_7

RDF Knowledge Base Summarization by Inducing First-Order Horn Rules 203

9. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)

10. Gunaratna, K., Thirunarayan, K., Sheth, A.: Faces: diversity-aware entity sum-
marization using incremental hierarchical conceptual clustering. In: Twenty-Ninth
AAAI Conference on Artificial Intelligence (2015)

11. Hammer, P.L., Kogan, A.: Quasi-acyclic propositional horn knowledge bases: opti-
mal compression. IEEE Trans. Knowl. Data Eng. 7(5), 751–762 (1995)

12. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
ACM SIGMOD Rec. 29(2), 1–12 (2000)

13. Hose, K., Schenkel, R.: Towards benefit-based RDF source selection for SPARQL
queries. In: Proceedings of the 4th International Workshop on Semantic Web Infor-
mation Management, pp. 1–8 (2012)

14. Joshi, A.K., Hitzler, P., Dong, G.: Logical Linked data compression. In: Cimiano,
P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS,
vol. 7882, pp. 170–184. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38288-8_12

15. Kushk, A., Kochut, K.: Esdl: Entity summarization with deep learning. In: The
10th International Joint Conference on Knowledge Graphs, pp. 186–190 (2021)

16. Luo, Y., Fletcher, G.H., Hidders, J., Wu, Y., De Bra, P.: External memory k-
bisimulation reduction of big graphs. In: Proceedings of the 22nd ACM Interna-
tional Conference on Information & Knowledge Management, pp. 919–928 (2013)

17. Meier, M.: Towards rule-based minimization of RDF graphs under constraints. In:
Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 89–103. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88737-9_8

18. Motta, E., et al.: A novel approach to visualizing and navigating ontologies. In:
Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 470–486. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-25073-6_30

19. Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive
learning: application to grammatical inference. Mach. Learn. 94(1), 25–49 (2014)

20. Palmonari, M., Rula, A., Porrini, R., Maurino, A., Spahiu, B., Ferme, V.: ABSTAT:
linked data summaries with ABstraction and STATistics. In: Gandon, F., Guéret,
C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015.
LNCS, vol. 9341, pp. 128–132. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25639-9_25

21. Pan, J.Z., Pérez, J.M.G., Ren, Y., Wu, H., Wang, H., Zhu, M.: Graph pattern based
rdf data compression. In: Supnithi, T., Yamaguchi, T., Pan, J.Z., Wuwongse, V.,
Buranarach, M. (eds.) JIST 2014. LNCS, vol. 8943, pp. 239–256. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-15615-6_18

22. Pires, C.E., Sousa, P., Kedad, Z., Salgado, A.C.: Summarizing ontology-based
schemas in pdms. In: 2010 IEEE 26th International Conference on Data Engi-
neering Workshops (ICDEW 2010), pp. 239–244. IEEE (2010)

23. Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5(3), 239–
266 (1990)

24. Raedt, L.D., Kersting, K.: Statistical relational learning. In: Sammut, C., Webb,
G.I. (eds.) Encyclopedia of Machine Learning, pp. 916–924. Springer (2010).
https://doi.org/10.1007/978-0-387-30164-8_786

25. Sanders, P., Schulz, C.: High quality graph partitioning. Graph Partition. Graph
Cluster. 588(1), 1–17 (2012)

26. Srinivasan, A., Faruquie, T.A., Joshi, S.: Data and task parallelism in ILP using
mapreduce. Mach. Learn. 86(1), 141–168 (2012)

https://doi.org/10.1007/978-3-642-38288-8_12
https://doi.org/10.1007/978-3-642-38288-8_12
https://doi.org/10.1007/978-3-540-88737-9_8
https://doi.org/10.1007/978-3-642-25073-6_30
https://doi.org/10.1007/978-3-319-25639-9_25
https://doi.org/10.1007/978-3-319-25639-9_25
https://doi.org/10.1007/978-3-319-15615-6_18
https://doi.org/10.1007/978-0-387-30164-8_786

204 R. Wang et al.

27. Zeng, Q., Patel, J.M., Page, D.: Quickfoil: scalable inductive logic programming.
Proc. VLDB Endow. 8(3), 197–208 (2014)

28. Zneika, M., Lucchese, C., Vodislav, D., Kotzinos, D.: Summarizing linked data
RDF graphs using approximate graph pattern mining. In: EDBT 2016., pp. 684–
685 (2016)

Social Network Analysis

A Heterogeneous Propagation Graph
Model for Rumor Detection Under the

Relationship Among Multiple
Propagation Subtrees

Guoyi Li1,2, Jingyuan Hu1,2, Yulei Wu3, Xiaodan Zhang1,2(B), Wei Zhou1,2,
and Honglei Lyu1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{liguoyi,hujingyuan,zhangxiaodan,zhouwei,lvhonglei}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 Department of Computer Science, University of Exeter, Exeter, UK

Y.L.Wu@exeter.ac.uk

Abstract. Pervasive rumors in social networks have significantly
harmed society due to their seditious and misleading effects. Exist-
ing rumor detection studies only consider practical features from a
propagation tree, but ignore the important differences and potential
relationships of subtrees under the same propagation tree. To address
this limitation, we propose a novel heterogeneous propagation graph
model to capture the relevance among different propagation subtrees,
named Multi-subtree Heterogeneous Propagation Graph Attention Net-
work (MHGAT). Specifically, we implicitly fuse potential relationships
among propagation subtrees using the following three methods: 1) We
leverage the structural logic of a tree to construct different types of prop-
agation subtrees in order to distinguish the differences among multi-
ple propagation subtrees; 2) We construct a heterogeneous propagation
graph based on such differences, and design edge weights of the graph
according to the similarity of propagation subtrees; 3) We design a prop-
agation subtree interaction scheme to enhance local and global informa-
tion exchange, and finally, get the high-level representation of rumors.
Extensive experimental results on three real-world datasets show that
our model outperforms the most advanced method.

Keywords: Rumor detection · Heterogeneous graph · Propagation
subtrees · Local and global relations · Message passing

1 Introduction

Due to the popularity of Twitter, Facebook and other social media in recent
years, a growing number of rumor generating methods have emerged. Taking
the COVID-19 pandemic as an example, there were growing concerns about
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 207–223, 2023.
https://doi.org/10.1007/978-3-031-26390-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_13

208 G. Li et al.

the spread of misinformation about the pandemic, known as the “information
epidemic” [27]. Social media have been widely used to facilitate the spread of
misinformation. These issues are even more pressing in that atmosphere since
the information flowing through social media is directly related to human health
and safety. It is therefore of paramount importance to effectively identify rumors.

Most existing efforts mainly focus on using linguistic features from text to
detect rumors, ranging from deceptive clues to writing styles. For example, Li
et al. [12] combined user information and text features to train an LSTM to
capture their potential associations. Other algorithms such as the Bayesian net-
work were applied to compute text-similarity of microblogs [11]. This kind of
rumor detection methods was mainly to capture text features of rumors, which
is vulnerable to the negative influence of forged text because the language used
in social media is highly informal, ungrammatical, and dynamic.

To address the above issue, studies of rumor propagation structures have
been carried out. For instance, Kumar et al. [10] proposed a new way to repre-
sent social-media conversations as propagation trees and used Tree LSTM models
to capture conversation features. Ma et al. [19] proposed recursive neural models
based on a bottom-up and a top-down tree-structured neural networks, to learn
discriminative features from tweet’s content by following their non-sequential
propagation structures. Since temporal structural characteristics only concern
the sequence of spreading rumors but ignore the consequence of rumor spread-
ing, these approaches have significant limitations in terms of effectiveness. The
structure of rumor dispersion also reflects important features of rumor spreading.

To consider such crucial features, researchers have started to apply graph
convolution methods to detect rumors. Yu et al. [25] used GCN to realize the
fusion of rumors in the propagation tree, the user information, and text fea-
tures of retweets. Choi et al. [3] proposed a dynamic GCN to construct a time
graph and utilized the characteristics of tweets published in adjacent times to
strengthen the structural features of rumor propagation.

While the above methods have shown effectiveness of introducing the graph
structure of data into a model, these approaches face two major shortcomings
which make the rumor representation vulnerable to the local structural relation-
ships and the characteristics of adjacent nodes. First, existing studies only
consider the aggregated information of each tweet and its neighbour,
but ignore the important correlation of all retweets in the same prop-
agation subtree. Second, the graphical structure of data ignores the
potential impact among different propagation subtrees.

To facilitate the understanding, Fig. 1 exemplifies the propagation structure
of a (rumor) tweet “Says Bill O’Reilly wrote a post claiming that the coronavirus
was created as a bioweapon by the Chinese government.” In the first case, tweets
x1 and x2 have the same characteristics [“article”, “criminal acts”]; they have a
certain correlation but no real connection. In fact, x2 negates the basis of x1. In
the second case, x1 and x11 incline that s is true and has a positive impact on the
s. Even though x12 deems s was wrong and had more common characteristics
with s, it can only affect s along the x1, while x1 and x11 prefer s is false
and cannot well incorporate the features of the deeper retweets. The above two

A Heterogeneous Propagation Graph Model 209

 []:
Says Bill O'Reilly wrote a post claiming that the
coronavirus was created as a bioweapon by the

Chinese government.(false)

[]: Is it really true? This is horrible!
The author of the article clearly records

the criminal acts of the Chinese
government.(s is true)

 []: The crimes acts in this
article have no clear evidence! I

can't believe!
(s is false)

 []: Agree, and the website of
this post is false.

(s is false)
[]: It must true! The website
and the author of this article is
very authoritative!

(s is true) []: This must be false.
This is not the author's writing

style at all!
(s is false)

 []: No! The author didn't
mention coronavirus

and bioweapon!
(s is false)

Fig. 1. An example of a false rumor.

situations are common in rumor detection, and their cumulative impact may
lead to unexpected errors. Therefore, in this paper we propose to enhance the
effect of rumor detection by constructing a local representation.

The starting point of our approach is an observation: tweets in a similar prop-
agation location show certain relevance (such as [x1, x11, x12], [x2, x21, x211] in
Fig. 1). Thus, we propose a new way of message passing to obtain the high-level
representation of rumor propagation: (1) According to the structural logic of a
tree and the spatial relationship among nodes, we model the different propaga-
tion subtrees of the tree where the nodes are located. We construct a heteroge-
neous propagation graph model with the weights of edges designed according to
the propagation subtrees’ similarity. (2) We initialize each node to integrate the
relative temporal information carried by the parent tweet and the source post
information, and apply structure-aware self-attention to propagation subtrees.
(3) We design a two-layer attention mechanism to realize the interaction among
propagation subtrees.

The main contribution of this paper can be summarized as follows:

– We propose a novel MHGAT model, which applies the propagation subtree
as the computing unit to construct the heterogeneous propagation graph. It
improves the performance of rumor detection by distinguishing the differences
of local structures on the propagation tree.

– The model utilizes the heterogeneous propagation graph to guide the direc-
tion of message transmission. Moreover, the interaction between local infor-
mation and global information is constructed to obtain the high-level rumor
representation.

– The model fuses the parent tweet text features with the corresponding time
information and the source text feature in appropriate places, to make the
representation of the local structure more accurate.

– We conduct extensive experiments using three public real-world datasets.
Experimental results show that our model significantly outperforms the state-
of-the-art models in rumor classification and early detection tasks.

210 G. Li et al.

2 Related Work

Rumor detection aims to detect whether a tweet is a rumor according to the
relevant information of the tweet published on the social media platform, such
as text content and propagation mode.

Content-Based Classification Methods: Content-based classification methods
[7,24] generally detect rumors based on linguistic clues such as writing style
[20], bag-of-words [4], temporal characteristics [17], etc. However, these methods
relying only on the text content to detect rumors, ignore the correlation between
tweets, and its accumulative effect on a large number of tweets can affect the
performance of detection.

Propagation-Based Classification Methods: Recent studies can be divided into
two groups: Attention-based and GCN-based models. Attention-based models
primarily utilize the attention mechanism to focus on pairs or sequences of posts
with some inherent order [8,10,15,19]. Several recent works applied the trans-
former to enhance the representation learning for responsive tweets [8,15]. The
difference lies in that Khoo et al. [8] defined time delay (the time interval between
the tweet and retweet) as the intrinsic order, while Ma et al. [15] applied the
topological order of the propagation tree as the inherent order. However, these
methods are susceptible to the negative impact of unrelated tweets and require
more time cost for detection. GCN-based models enhance the tweet representa-
tion by aggregating the features of related retweets [1,25]. For example, BiGCN
[1] applied graph convolution to strengthen root features and learn local struc-
ture information. To better weight different types of neighbor nodes, in recent
years several studies have applied heterogeneous graph model Graph Attention
Network (GAT) that combines attention mechanism and GCN for rumour detec-
tion [13,26]. For example, Lin et al. [13] represented the propagation tree as an
undirected interaction graph and utilized GAT aggregating information from
parent and sibling nodes, taking the average representation as rumor represen-
tation that makes it difficult to distinguish the global structure of the rumor.

However, the above methods treat a tree’s substructures as independent
units, ignoring their differences and potential global associations. Our model
will take advantage of the propagation tree structure and the heterogeneous
graph model to construct the interaction between local and global information
in order to enhance the representation of tweets in rumor detection.

3 Multi-subtree Heterogeneous Propagation Graph
Attention Network Model

This section details the proposed MHGAT algorithm as shown in Fig. 2. Our
algorithm can be divided into four parts. First, we construct the heterogeneous
propagation graph to refine different subtrees (substructures) of the ordinary

A Heterogeneous Propagation Graph Model 211

HL
Node(5)

ŷ

Propagation Subtrees
Interaction Module

Heterogeneous
Propagation

Graph Edge Table

Structure
Level

Attention

Node
Level

Attention

H l
Node

H l+1
Node

Construct Heterogeneous
Propagation Graph

0

Propagation Tree

Heterogeneous Propagation
Graph

111
1

3 3 4 3

5

11
2

Propagation Tree
Edge Table

Aggregate Neighbor
Information and Simple
Fusion of Source Text

GCL

GCL

n dX

X

Calculate the Initial
Representations

n cH

n cH

C
ontact

Parent

Root

A
ttention

Self-ATT

5

4

3

2

1

0

Heterogeneous Propagation Graph Edge Table

Fig. 2. Our proposed rumor detection model.

 []:
Says Mike Pence was
caught on a hot mic

delivering empty boxes
of PPE to a nursing

home and pretended
they were heavy. (false)

 [[]: This video looks
like a composite!

(s is false)

 [[]:
Agree! Don't fallg
for edited

f
 videos!

(s is false)

 []: As if it were a
fragment modified from

somewhere!
(s is false)

[]: Really?
Has anyone checked
the source of this
video? (neutral)

 []: I don't know yet.
I can't get into

this source website! (neutral)

 []:
Nope! The source website does not
have the information of this post!

(s is false)

[]: It must
true! The source website and

the author of this post is
very authoritative!

(s is true)

Fig. 3. Propagation tree of a false rumor.

propagation tree (Sect. 3.1). Second, to obtain a direct local representation, we
utilize GCN to aggregate neighbor’s features of the ordinary propagation tree
(Sect. 3.2). Third, we get the initial representation of different subtrees in the
heterogeneous propagation graph (Sect. 3.3). Finally, we design a heterogeneous
graph convolution algorithm to realize the interaction between local and global
information to enhance the rumor representation (Sect. 3.4).

Formally, let each node represent a tweet. The source node denotes the source
tweet, and the children nodes are retweets that have responded to it directly.
First, based on the retweet and the response relationships, we construct the
origin event tree for a rumor ci. In each training period, a propagation subtree
has the probability p, of being discarded to reduce overfitting [1]. The probability
of subtree pruning is positively correlated with the depth of the tree: Pdrop ∝
dep(root of subtree). We denote the event tree after being discarded as 〈V,E〉
(see Fig. 3).

3.1 Construct Heterogeneous Propagation Graph

The heterogeneous propagation graph 〈V ′, E′〉 is designed to distinguish the
differences of propagation subtrees better and address the two limitations men-
tioned above. This process is implemented with a general tree structure data pro-
cessing method Depth-First-Search [21]. Our heterogeneous propagation graph

212 G. Li et al.

Fig. 4. The heterogeneous propagation graph is constructed by classifying the nodes
of the original propagation tree in the first layer and building the nodes and edges of
propagation subtrees in the last two layers. In addition, each node has a self-connected
edge.

includes six types of structural nodes as shown in Fig. 4: (1) Root node (Node(0)):
Source tweet. (2) Single-branch node (Node(1)): Leaf or the node with the single
child except for the root node. (3) Multi-branch node (Node(2)): The node with
multiple branches except for the root node. (4) Single-thread node (Node(3)):
the node representing the single propagation thread without other branches. (5)
Multi-branch tree node (Node(4)): a propagation subtree with multiple branches.
(6) Tree node (Node(5)): a complete tree. Intuitively, we exemplify a false rumor
claim and illustrate its propagation on twitter in Fig. 3. We observe that a group
of tweets in the single-chain from r1, [r1, r2, r3] tend to a point of view or a
content, and construct their local representation S1 in Fig. 3 to enhance features
like [“composite”, “edited”, “modified”]. Moreover, we refer M1 to the repre-
sentation of {r4, r41, r411, r42} which contains a stronger collection of different
opinions about one content arising from the multi-branch node r4. Essentially,
multi-branch nodes have a broader direct impact influence than single-branch
nodes. Finally, we refer to the tree node as the global representation to enhance
rumor representation by realizing the interaction between the local information
in the first five structure nodes and the global information.

In addition to the connection of nodes within the propagation subtree, we
have added two effective connecting edges between Node(3) and Node(4):

(1) Considering that the nodes of a thread in the propagation tree have the cor-
responding time relationship (like s → r1 in Fig. 3), we now extend this fea-
ture to propagation subtrees in the heterogeneous propagation graph (such
as s → S1 in Fig. 4). We define: when u and v are propagation subtrees of
the type Node(3) or Node(4), ri and rj are retweet nodes in the propagation
subtrees u and v respectively, where i �= j, u �= v. If ri connects to rj , u has
a directed edge to v.

(2) Considering that two retweets forwarding the same tweet (the parent of ri

and rj is the same node) may have similar characteristics (for example r42
and {r41, r411} have common features [“source”, “author”] in Fig. 3), and the
propagation subtrees (u, v) are also related (S2 and S3 in Fig. 4), we define:
when u and v are propagation subtrees of the type Node(3) or Node(4), ri

A Heterogeneous Propagation Graph Model 213

and rj are retweet nodes in propagation subtrees u and v respectively, where
i �= j. If Father(ri) = Father(rj), u has a undirected edge to v.

Normalization: Considering the large difference in the number of nodes of the
same type connecting different nodes, it may have an adverse impact on model
learning. We normalize the weights of the edges of the starting nodes of the same
type. Among the neighbors pointing to node u, the node set of type i is marked as
N i

(u), and the set size is marked as Num(N i
(u)). The edge regularization weight

from any v ∈ N i
(u) to u is normalized to: (Num(N i

(u)))
−1. Thus, we get the

normalized adjacency matrix Ã of heterogeneous propagation graph 〈V ′, E′〉.

3.2 Aggregate Neighbour Information and Simple Fusion of Root
Features

This module aims to strengthen the representation of nodes in the propagation
tree 〈V,E〉 by aggregating adjacent nodes and the source tweet. Graph convo-
lution is an essential operation for aggregating neighbor information to extract
local features. In addition, the source tweet can enhance the effect of rumor
texts on retweets. As for nodes, let A ∈ R

n×n denote the normalized adjacency
matrix, and X ∈ R

n×d represent the input signals of nodes of the propagation
tree 〈V,E〉. First, we aggregate neighbour’s features from node embedding X:

H = ReLU(AXW0). (1)

Second, the aggregated features are fused with the root,

H′ = concat(H,Hroot). (2)

Last, we perform another layer of graph convolution to get a high-level repre-
sentation of the node:

X̃ = ReLU(AH′W1), (3)

where H, X̃ ∈ R
n×d are the hidden feature matrices computed by the Graph

Conventional Layer (GCL), W0 ∈ R
d×c,W1 ∈ R

(c+c)×d. W0,W1 are the filter
parameter matrices of graph convolution layer, and Hroot represents the root
representation after first-layer graph convolution. X̃ is the node representation
after two layers of graph convolutional layers.

3.3 Calculate the Initial Representation

We apply the attention mechanism to fuse parent node and source text feature
(root node) to enhance the representation of propagation subtrees in heteroge-
neous propagation graph 〈V ′, E′〉, which can fuse the corresponding time and
the source text information. For the root node (Node(0)) and the tree node
(Node(5)): the node is initialized to the representation of the processed root

214 G. Li et al.

embedding: H(Node(0)) = H(Node(5)) = Xroot. For single-branch nodes and multi-
branch nodes, we fuse the source text feature and the parent tweet text feature,
and these embeddings are calculated as:

H(Node(1)∼(2)) = ATTN(X̃(Node(1)∼(2)),Hpr), (4)

where
Hpr = concat(Hparent,Hroot). (5)

where ATTN is a function f : Xkey ×ϕ → Xval, which maps the feature vector
Xkey and candidate feature vector set ϕ to the weighted sum of elements in Xval

[22].
For the single-thread node (Node(3)) and the multi-branch tree node

(Node(4)), these two types of nodes represent point sets, and we utilize attention
mechanism to fuse the point sets into one representation:

H(node(3)∼(4)) = Self-ATT(X̃(Node(3)∼(4))), (6)

where Self-ATT(.) includes the fusion process of self-attention and attention
fusion [22]. Moreover, the gated mechanism is applied to strengthen the root
features to get a high-level representation:

α = σ(WrH(node(3)∼(4)) + WrootX̃root + b), (7)

H(Node(3)∼(4)) = α × H(node(3)∼(4)) + (1 − α)X̃root, (8)

where σ(·)= 1
1+exp(·) is sigmoid activation function, and Wr,Wroot ∈ R

d×1, b ∈ R

are parameters of the fusion gate.

Weight Introduction: In addition to the regularized weights that eliminate quan-
titative differences, since these new potential links may introduce noise where not
all neighbors are equal in contributing important information for the aggregation
when modelling the propagation subtrees, we shall calculate the weight of links
between propagation subtrees in heterogeneous propagation graph 〈V ′, E′〉. To
this end, we first use the cosine similarity s(u, v) = hu ·hT

v /(|hu| · |hv|) between
nodes u and v to measure their similarity, where h is the embedding of the node.
To properly define node’s similarity, we introduce an asymmetric regularization
term to balance the difference of the sum of similarity on every neighbor node:

Ru(s(u, v)) = s(u, v)/
n∑

t

s(u, t), (9)

where n is the set of u neighbor nodes. Combining the topology and attribute
information, the similarity between u and v is

w(u, v) = Wτuτv (b(u, v) + β · Ru(hu · hT
v / (|hu| · |hv|)), (10)

where β is a parameter to make a tradeoff between network topology and
attributes, and Wτuτv represents the trainable similarity relationship between

A Heterogeneous Propagation Graph Model 215

propagation subtree type τu and τv. b(u, v) is a network topology term: (1) If
τu, τv ∈ [Node(0∼2)], b(u, v) = 0, which regards the points are the same in the
topology. (2) If τu ∈ [Node(0∼2)], τv ∈ [Node(3∼5)], b(u, v) = (−1)δ(u,v)γτuτv ,
δ(u, v) = 1 where γ is a trainable parameter, if u is a point in propagation sub-
tree v, δ(u, v) = 0. (3) If τu, τv ∈ [Node(3∼4)], b(u, v) = nunv/2e, nu represents
the number of points in propagation subtree u.

Therefore, for propagation subtrees, let Ã′ represent the matrix Ã with
weights introduced, and Ã′

s ∈ R
|n| ×|ns| denote the submatrix of Ã′, whose

rows represent all the nodes and columns denote their neighboring nodes with
the type s.

3.4 Propagation Subtree Interaction Module

This module is designed to realize the interaction between local and global
structral features in the heterogeneous propagation graph. In other words, tree
nodes aggregate local structural information in each iteration while other struc-
tural nodes aggregate local and global structural information. It consists of two
attention layers to aggregate various types of subtrees. First, we calculate the
structure-level attention scores based on the node embedding hu and the prop-
agation subtree type embedding hs:

αs = softmax(LeakyRelu(wT
s [hu||hs]), (11)

s =
∑

v′∈Nu

Ã′
uu′hu′ , (12)

where hs is the sum of neighbouring node features, and hu′ refers to the embed-
ding of nodes u′ ∈ Nu with the same propagation subtree type s.

Then, as for the node-level attention part, given a specific node v with the
structure type s and its neighboring node u′ ∈ Nu with the structure type s′, we
compute the node-level attention scores based on the node embeddings hu and
hu′ with the structure-level attention weight αs for the node u:

vuu′ = softmax(LeakyRelu(wT
node · αs[hu||hu′]), (13)

where wT
node is the attention vector. Then, we merge structure-level and node-

level attention into heterogeneous propagation graph convolution.

H(l+1) = σ(
∑

s∈Node(∗)

Is · H(l)
s · W (l)

s). (14)

Here, Is represents the attention matrix, whose element in the uth row u′th

column is vuu′ .
Finally, after going through an L times propagation subtree interaction pro-

cess, the label of the event S̃ is calculated as:

216 G. Li et al.

ỹ = softmax(FC(HL
Node(5)

)), (15)

where ỹ ∈ R
1×C is a vector of probabilities for all the classes used to predict the

label of the rumor.

4 Experiments

4.1 Datasets

Almost all prevalent datasets for experimental evaluation in the field of rumor
detection come from two source platforms: Twitter and Sina Weibo. We evalu-
ate the proposed model on three real-world datasets: Twitter15 [18], Twitter16
[18] and Weibo [14]. In all the three datasets, nodes refer to source tweets and
retweets, edges represent response relationships, and features are the extracted
top-5000 words in terms of the TF-IDF values. The Twitter15 and Twitter16
datasets contain four different labels, namely “false rumor” (FR), “non-rumor”
(NR), “unverified” (UR), and “true rumor” (TR). Moreover, the Weibo dataset
only contains binary labels, i.e., “true rumor” and “false rumor”. Details of the
three datasets are shown in Table 1.

4.2 Baselines and Evaluations Metrics

We compare our proposed model with the following baseline and state-of-the-
art models. ClaHi-GAT [13]: An undirected interaction graph model utilizes
GAT to capture interactions between posts with responsive parent-child or sib-
ling relationships. BiGCN [1]: A bottom-up and a top-down tree-structured
fusion model based on GCN for rumor detection. PLAN [8]: A transformer-
based rumour detection model that can capture the interaction between any
pair of tweets, even irrelevant ones. RvNN [19]: A bottom-up and a top-down
tree-structured model based on recursive neural networks for rumor detection on
Twitter. SVM-TK [18]: A SVM model uses Tree kernel to capture the propaga-
tion structure. SVM-TS [17]: A linear SVM classifier that uses content features
to build a time-series model. DTC [2]: A decision tree-based model that utilizes
a combination of news characteristics.

Table 1. Details of the datasets

Statistic Twitter15 Twitter16 Weibo

of source tweets 1490 818 4664

of posts 331,612 204,820 3,805,656

of users 276,663 173,487 2,746,818

True rumors 374 205 2351

False rumors 370 205 2313

Unverified rumors 374 203 0

Non-rumors 372 205 0

A Heterogeneous Propagation Graph Model 217

Table 2. Experimental results on Weibo dataset.

Metric Class DTC SVM-TS SVM-TK RvNN PLAN BiGCN ClaHi-GAT MHGAT

Acc. – 0.767 0.756 0.786 0.794 0.831 0.863 0.852 0.914

Prec. F 0.735 0.732 0.916 0.833 0.823 0.971 0.953 0.978

T 0.685 0.714 0.613 0.727 0.885 0.775 0.754 0.841

Rec. F 0.763 0.804 0.819 0.783 0.841 0.717 0.739 0.853

T 0.786 0.821 0.753 0.833 0.766 0.971 0.952 0.985

F1 F 0.749 0.774 0.864 0.812 0.832 0.824 0.861 0.868

T 0.732 0.717 0.773 0.808 0.821 0.862 0.842 0.897

Table 3. Experimental results on Twitter15 and Twitter16.

Twitter15 Twitter16

Method Acc. N F T U Acc. N F T U

F1 F1 F1 F1 F1 F1 F1 F1

DTC 0.625 0.716 0.519 0.642 0.523 0.607 0.652 0.432 0.573 0.739

SVM-TS 0.581 0.394 0.520 0.463 0.549 0.645 0.546 0.638 0.654 0.668

SVM-TK 0.705 0.619 0.756 0.485 0.835 0.732 0.814 0.713 0.745 0.801

RvNN 0.759 0.714 0.765 0.814 0.714 0.722 0.628 0.712 0.833 0.714

PLAN 0.795 0.784 0.810 0.793 0.802 0.825 0.846 0.803 0.774 0.832

BiGCN 0.814 0.772 0.827 0.830 0.786 0.816 0.751 0.839 0.904 0.781

ClaHi-GAT 0.823 0.805 0.843 0.894 0.807 0.838 0.763 0.864 0.892 0.816

MHGAT 0.862 0.836 0.872 0.925 0.823 0.874 0.836 0.896 0.912 0.852

For a fair comparison, we adopt the same evaluation metrics that have already
been widely used in existing work [5,6]. Thus, for the Weibo dataset, we evaluate
the Accuracy (Acc.), Precision (Prec.), Recall (Rec.) and F1 measure (F1) on
each class. For the two Twitter datasets, we evaluate the Accuracy (Acc.) and
F1 on each class.

4.3 Data Processing and Experiments Setup

To be more realistic, we randomly select 15% of the instances as the development
dataset that the model has not seen at all, and split the remaining instances into
training and test datasets at a ratio of 4:1 in all datasets; this similar to the set-
tings in existing studies [16,26]. In order to reduce the randomness, we repeat the
experiments fifty times and take the average value as the result. We optimize the
model using the Adam algorithm [9]. The dimension of each node’s hidden feature
vector is 128. The number of head K of self-attention is set to 8. The dropping

218 G. Li et al.

MHGAT ClaHi
-GAT BiGCN PLAN RvNN SVM

-TK
SVM
-TS DTC

Nu
m
be
r

(a) Weibo Dataset

MHGAT

Nu
m
be
r

ClaHi
-GAT BiGCN PLAN RvNN SVM

-TK
SVM
-TS DTC

(b) Twitter15 Dataset

MHGAT ClaHi
-GAT BiGCN PLAN RvNN SVM

-TK
SVM
-TS DTC

Nu
m
be
r

(c) Twitter16 Dataset

Fig. 5. Comparison of the number of correctly detected rumor data (the vertical axis),
where each rumor data is a propagation tree consisting of one source tweet and a
number of retweets. The horizontal axis represents the proposed model and the various
baselines.

rate in Subtree Drop is 0.1 for all three datasets. The training process is iterated
upon 150 epochs and early stopping [23] is applied when the validation loss stops
decreasing by 10 epochs.

4.4 Results and Analysis

Tables 2 and 3 show the performance of the proposed method and all comparison
methods on Weibo and Twitter datasets. Compared with the content-based meth-
ods like DTC, SVM-TS, the propagation-based methods considering the propa-
gation structure’s characteristics, are generally more effective. The success rate
of PLAN is higher than that of SVM-TK and RVNN that focus on propagation
characteristics, because the potential relevance of all posts is considered in PLAN,
but it tends to cause noises weakening the topological structure of the propaga-
tion tree. BiGCN and ClaHi-GAT pay more attention to the topology of propa-
gation trees and aggregate the local characteristics of the propagation tree. The
former demonstrates the effectiveness of incorporating the structure of dispersion
and the source text features enhancement into rumor detection, while the latter
shows the effectiveness of considering potentially associated tweets based on topo-
logical structures. However, these two methods can only take the averageof all local

A Heterogeneous Propagation Graph Model 219

representations as rumor representation, ignoring the differences among local rep-
resentations and the impact of the global structure.

MHGAT considers the influence of the dispersion and the sequence structure
of rumor propagation, the difference among local structures, and the interaction
between local and global information. In addition, it strengthens the rumor rep-
resentation by incorporating the source text feature and the parent text feature
where appropriate. Thus, MHGAT outperforms all the baselines and state-of-
the-art methods on all three datasets, especially in the large-scale Weibo dataset.

In order to further illustrate the detection performance of the model, we
compare the number of correctly detected rumor data by different methods as
shown in Fig. 5. By comparing box sizes and the upper and lower bounds, we
found that methods (PLAN, BiGCN, ClaHi-GAT, MHGAT) that consider the
local propagation structure and the potential correlation of posts tend to work
better with most data than the other methods. Clearly, MHGAT has a wider
upper and lower limit and can cover a broader range of data than the other meth-
ods. It proves that our method does not need a large amount of complex data to
learn and can cope with the high-flow hot spot rumor, showing its outstanding
performance in a more complex real-world scenario.

4.5 Ablation Study

To analyze the effect of each module of MHGAT, we conduct a series of ablation
studies on different parts of the model. The ablation study is conducted in the
following order: w/o SBN: Removing single-branch subtree nodes (SBN) and
the related edges, and utilizing the remaining information on the graph for rumor
detection. w/o MBN: Removing multi-branch subtree nodes (MBN) and the
related edges, and utilizing the remaining information on the graph for rumor
detection. w/o STN: Removing single-thread subtree nodes (STN) and the
related edges, and utilizing the remaining information on the graph for rumor
detection. w/o MBTN: Removing multi-branch subtree nodes (MBTN) and the
related edges, and utilizing the remaining information on the graph for rumor
detection. w/o TN: Removing the tree node (TN) and the related edges, and
taking the mean representation of all nodes in the heterogeneous propagation
graph as the final representation of the rumour for rumor detection.

We can observe the effect of removing all kinds of propagation subtrees cov-
ering local information in Table 4, which proves the universality of propaga-
tion subtrees and the necessity of classifying differences among local structures.
Specifically, removing STN has the most significant impact on the results, and
the accuracy on the Weibo, Twitter15 and Twitter16 datasets has dropped by
7.2%, 4.7% and 4.7%, respectively. This result is predictable. The information
carried by the SBN is fragmented, whereas the information carried by the STN
is able to cover the local relevance better and still has a better effect without
SBN. Furthermore, there is a decrease in the accuracy rate without TN, but it
is still higher than the baselines and the other variants of the ablation study due
to the interaction among local subtrees in the interaction process, confirming
the importance of local information interaction and the effect of the interaction

220 G. Li et al.

Table 4. The ablation study results on the Weibo, Twitter15 and Twitter16 datasets.

Models Weibo accuracy Twitter15 accuracy Twitter16 accuracy

MHGAT 0.914 0.862 0.874

w/o SBN 0.853 0.829 0.813

w/o MBN 0.871 0.837 0.849

w/o STN 0.842 0.815 0.827

w/o MBTN 0.883 0.841 0.845

w/o TN 0.889 0.847 0.853

between local and global information. Since the proposed method is integrated
with the source text feature and the parent text feature, it is necessary to analyze
the effects of each component. As shown in Fig. 6, we compare the results of the
complete model and its variants and find that the complete model is better than
the ones without the fusion of source text feature or parent text feature. This
shows incorporating the source text feature and the corresponding time infor-
mation of the parent node in appropriate places can improve the performance
of our model.

Moreover, when the model introduces implicit links between subtrees, not
all neighbors can contribute important information to the aggregation. Thus we
introduce weights for subtree aggregation. As shown in Fig. 6, the model with
added weight is better than the model without weight, which proves that the
weight we designed reasonably solves the noise problem introduced by implicit
links and further enhances the effect of our rumor detection model.

4.6 Early Detection

One of the most crucial tasks in rumor detection is the early detection of
rumors. In the early rumor detection task, we compare different detection meth-
ods at elapsed time checkpoints. As shown in Fig. 7, from the performance of
our method and the baseline method on different time delays in the Twitter

Fig. 6. Comparison of MHGAT and its variants.

A Heterogeneous Propagation Graph Model 221

(a) Weibo Dataset (b) Twitter15 Dataset (c) Twitter16 Dataset

Fig. 7. Results of early rumor detection.

and Weibo datasets, it can be seen that our method achieves higher accuracy
very quick as soon as the initial broadcast of the source and can still maintain
higher accuracy as the time delay goes up. It is worth noting that some baselines
decrease slightly when the time delay increases. This is because as the rumor is
propagated, more similar structural and semantic information shows, and more
noises are introduced simultaneously. The results show that our model is more
suitable for a complex real-world case and has a better stability.

5 Conclusions

This paper proposed a novel Multi-subtree Heterogeneous Propagation Graph
Attention Network, which is used for social media rumor detection. This method
refined propagation subtrees of the rumor propagation tree, strengthened the
interaction between local and global structure information, and improved the
ability to learn high-level rumor representation, hence achieving the best perfor-
mance. Extensive experiments proved the superiority of the proposed method.
However, one of the existing obstacles of rumor detection is the performance
degradation caused by data uncertainty. To address this issue, in future we will
study how to use uncertainty estimation to explain the model’s performance in
rumor propagation.

References

1. Bian, T., et al.: Rumor detection on social media with bi-directional graph convolu-
tional networks. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, pp. 549–556 (2020)

2. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Pro-
ceedings of the 20th International Conference on World Wide Web, pp. 675–684
(2011)

3. Choi, J., Ko, T., Choi, Y., Byun, H., Kim, C.k.: Dynamic graph convolutional
networks with attention mechanism for rumor detection on social media. Plos One
16(8), e0256039 (2021)

222 G. Li et al.

4. Enayet, O., El-Beltagy, S.R.: Niletmrg at semeval-2017 task 8: determining rumour
and veracity support for rumours on twitter. In: Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-2017), pp. 470–474 (2017)

5. Fuller, C.M., Biros, D.P., Wilson, R.L.: Decision support for determining veracity
via linguistic-based cues. Decis. Supp. Syst. 46(3), 695–703 (2009)

6. Giudice, K.D.: Crowdsourcing credibility: the impact of audience feedback on web
page credibility. Proc. Am. Soc. Inf. Sci. Technol. 47(1), 1–9 (2010)

7. Jin, Z., Cao, J., Zhang, Y., Luo, J.: News verification by exploiting conflicting social
viewpoints in microblogs. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30 (2016)

8. Khoo, L.M.S., Chieu, H.L., Qian, Z., Jiang, J.: Interpretable rumor detection in
microblogs by attending to user interactions. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 34, pp. 8783–8790 (2020)

9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

10. Kumar, S., Carley, K.M.: Tree lstms with convolution units to predict stance and
rumor veracity in social media conversations. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 5047–5058 (2019)

11. Li, C., Liu, F., Li, P.: Text similarity computation model for identifying rumor
based on bayesian network in microblog. Int. Arab J. Inf. Technol. 17(5), 731–741
(2020)

12. Li, Q., Zhang, Q., Si, L.: Rumor detection by exploiting user credibility informa-
tion, attention and multi-task learning. In: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pp. 1173–1179 (2019)

13. Lin, H., Ma, J., Cheng, M., Yang, Z., Chen, L., Chen, G.: Rumor detection on
twitter with claim-guided hierarchical graph attention networks. arXiv preprint
arXiv:2110.04522 (2021)

14. Liu, X., Nourbakhsh, A., Li, Q., Fang, R., Shah, S.: Real-time rumor debunk-
ing on twitter. In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, pp. 1867–1870 (2015)

15. Ma, J., Gao, W.: Debunking rumors on twitter with tree transformer. In: ACL
(2020)

16. Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks
(2016)

17. Ma, J., Gao, W., Wei, Z., Lu, Y., Wong, K.F.: Detect rumors using time series of
social context information on microblogging websites. In: Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management,
pp. 1751–1754 (2015)

18. Ma, J., Gao, W., Wong, K.F.: Detect rumors in microblog posts using propagation
structure via kernel learning. Association for Computational Linguistics (2017)

19. Ma, J., Gao, W., Wong, K.F.: Rumor detection on twitter with tree-structured
recursive neural networks. Association for Computational Linguistics (2018)

20. Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., Stein, B.: A stylometric
inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638 (2017)

21. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

22. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30,
5998–6008 (2017)

23. Yao, Y., Rosasco, L., Caponnetto, A.: On early stopping in gradient descent learn-
ing. Constr. Approx. 26(2), 289–315 (2007)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2110.04522
http://arxiv.org/abs/1702.05638

A Heterogeneous Propagation Graph Model 223

24. Yu, F., Liu, Q., Wu, S., Wang, L., Tan, T., et al.: A convolutional approach for
misinformation identification. In: IJCAI, pp. 3901–3907 (2017)

25. Yu, K., Jiang, H., Li, T., Han, S., Wu, X.: Data fusion oriented graph convolution
network model for rumor detection. IEEE Trans. Netw. Serv. Manag. 17(4), 2171–
2181 (2020)

26. Yuan, C., Ma, Q., Zhou, W., Han, J., Hu, S.: Jointly embedding the local and global
relations of heterogeneous graph for rumor detection. In: 2019 IEEE International
Conference on Data Mining (ICDM), pp. 796–805. IEEE (2019)

27. Zarocostas, J.: How to fight an infodemic. The Lancet 395(10225), 676 (2020)

DeMis: Data-Efficient Misinformation
Detection Using Reinforcement Learning

Kornraphop Kawintiranon(B) and Lisa Singh

Georgetown University, Washington, DC, USA
{kk1155,lisa.singh}@georgetown.edu

Abstract. Deep learning approaches are state-of-the-art for many nat-
ural language processing tasks, including misinformation detection. To
train deep learning algorithms effectively, a large amount of training data
is essential. Unfortunately, while unlabeled data are abundant, manually-
labeled data are lacking for misinformation detection. In this paper, we
propose DeMis, a novel reinforcement learning (RL) framework to detect
misinformation on Twitter in a resource-constrained environment, i.e.
limited labeled data. The main novelties result from (1) using reinforce-
ment learning to identify high-quality weak labels to use with manually-
labeled data to jointly train a classifier, and (2) using fact-checked claims
to construct weak labels from unlabeled tweets. We empirically show the
strength of this approach over the current state of the art and demon-
strate its effectiveness in a low-resourced environment, outperforming
other models by up to 8% (F1 score). We also find that our method is
more robust to heavily imbalanced data. Finally, we publish a package
containing code, trained models, and labeled data sets.

Keywords: Reinforcement learning · Misinformation detection

1 Introduction

Social media sites allow users to share different types of online content. Unfortu-
nately, there is no requirement that the content be true. As a result, we are seeing
varying levels of accuracy in shared content. False information (fake information,
misinformation, and disinformation) detection is not a new problem, and a sig-
nificant amount of research has emerged (see [1,7] for surveys). Most research
studies focus on detecting the spread of fake news by news sources [16,17], e.g.
CNN and Washington Post. Some researchers have also worked on utilizing fact-
checked information to verify the truth of social media content generated by
users [4,19]. While this previous research can effectively identify false informa-
tion on Twitter, in practice, the methods either requires a large amount of train-
ing data for each false claim or myth being detected, or expect balanced training
data.

To mitigate these challenges, we propose a novel reinforcement learning (RL)
framework for detecting misinformation on Twitter in a constrained environ-
ment, i.e. where data labels are limited and imbalanced. Our approach, DeMis,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 224–240, 2023.
https://doi.org/10.1007/978-3-031-26390-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_14

DeMis: Data-Efficient Misinformation Detection Using RL 225

uses fact-checking articles (FC-articles) as background knowledge. The frame-
work requires a small number of FC-articles related to the target myth theme.
Then it weakly labels the unlabeled tweets given the chosen FC-articles. We
design the RL mechanism to select high-quality tweets. These weak-labeled
tweets are then used to help train the detector. While the joint training of
classifier and selector [21] is often used to maximize the model performance, we
partially train the classifier before jointly training the classifier and selector. This
guides the classifier to gain knowledge about the manually-labeled data prior to
learning from the weak and manually labeled data together.

Our Contributions Are as Follows: (1) We propose a novel data-efficient RL
framework in which state, action and reward are exclusively designed for mis-
information detection. (2) We propose an approach (DeMis) to incorporate FC-
articles as expert knowledge as a form of weak supervision. (3) We integrate
multiple learning paradigms (reinforcement learning, multi-source joint learn-
ing, neural learning) into a framework for identifying misinformation. (4) We
compare our model to multiple classic, neural, and reinforcement models and
show that our model generally performs better. (5) We demonstrate the effec-
tiveness of our framework when the training data is heavily imbalanced. (6)
We release a package for misinformation detection using reinforcement learning,
including the code, trained models and data sets.1

2 Related Works

Misinformation detection is an active area of research (see [1] for a recent sur-
vey). Because fake information can be produced by bots or humans, our work
and review focuses on post-level misinformation instead of user-level and rein-
forcement learning approaches for generating additional training data.

Misinformation Detection: Research on misinformation detection typically
falls into two categories based on types of information used to train a classifier [1],
content-based and social context-based. Content-based approaches use informa-
tion extracted from the content of posts such as text, images, and videos. Social
context-based approaches use human-content interaction data such as retweets,
replies, and likes. While using both types of information achieves slightly better
results [10,13,26], because of the additional cost of data collection and the need
for timely identification of misinformation, we focus on content-based methods.

Many studies use the lexical and syntactic features extracted from textual
data [2,14]. Jin et al. [5] convert the detection problem into a text matching prob-
lem. They classify misinformation tweets based on the similarity scores between
input tweets and the original verified-false posts. Their best algorithm is BM25
with an accuracy of 0.799. Recently, deep learning models have been shown to be
state of the art for misinformation detection [1]. Wang et al. [20] propose EANN,
a model that uses convolution neural networks (CNN) to learn latent semantic

1 https://github.com/GU-DataLab/misinformation-detection-DeMis.

https://github.com/GU-DataLab/misinformation-detection-DeMis

226 K. Kawintiranon and L. Singh

text representations and use it along with image data to train a classification
layer. Their models are evaluated on Twitter and Weibo data that have both
text and images, achieving F1 scores of 0.719 and 0.829, respectively. A CNN
model with an attention mechanism has also been proposed [24], improving the
state of the art by 9 and 12% on the same data sets. These data sets are balanced
and pseudo-labeled using keywords. Hossain et al. [4] introduced COVIDLIES,
a manually-labeled Twitter data set about COVID-19 misinformation. It con-
sists of 86 myths and 6761 tweets. Their approach has two sub-tasks including
related-myth retrieval and stance detection. Using a BERT-based sentence sim-
ilarity algorithm [25], they achieve the best Hit@k of 60.8 to 96.9 for different
k values on the related-myth retrieval task but they obtain an F1 score of only
50.2 on the stance detection task because the data are imbalanced. Recently,
Vo et al. [19] proposed a framework to search for fact-checking articles given a
tweet, using a large amount of labeled training data (over 10K tweets and 2K
FC-articles).

Data-Efficient and Reinforcement Learning. Generally, a large amount of
labeled data is required to train a reasonably accurate neural network (NN)
model. Weak supervision aims to reduce human effort by automatically gener-
ating labels given unlabeled data. The quality of labels then heavily relies on
the labeling algorithms [23]. An automatic data annotator based on the sources
of news articles was proposed in [3]. Each tweet containing at least one URL
to a news article was labeled true or false based on trustworthy or untrustwor-
thy sources. Reinforcement learning (RL) techniques [18] have been adopted in
many classification tasks to learn a high-quality data selector [21,23]. A model
with a RL-based selector in [22] achieves an average F1 score of 0.692 on the
Twitter click-bait classification task. Yoon and colleagues [23] propose a RL-
based algorithm that quantifies the quality of labeled data. Their experimental
results show that removing low-quality data from the training process improves
the overall model performance on several classification tasks with accuracy scores
ranging from 0.448 to 0.903. Mosallanezhad et al. [11] propose RL-based domain-
adaptive learning which learns domain-invariant features and utilizes auxiliary
information for fake news detection. Recently, WeFEND [21] was proposed for
fake news detection on WeChat. The model trains a weak-labeling annotator
using private user reports attached to each news article then selects the high-
quality samples using a reinforced selector for training. The model obtains an
F1 score of 0.81 on balanced WeChat data. Conceptually, we take a similar app-
roach, building a model using reinforcement learning to identify weak labels.
However, our annotator and joint learning paradigm are different.

3 Background and Problem Definition

Misinformation has many definitions. One common feature of these definitions is
that misinformation must contain a piece of false information. Kumar et al. [7]
define misinformation as false information spread without the intent to deceive,
while others [26] define it as any false or inaccurate information regardless of

DeMis: Data-Efficient Misinformation Detection Using RL 227

Fig. 1. Examples of misinformation tweets and supporting evidence.

intention. In this paper, we follow the later and refer to a misinformation tweet
as a tweet containing a piece of myth-related information. A myth is a false
claim verified by trustworthy fact-checkers. This task is different from fake news
detection which focuses on detecting a news article published by a news outlet
that is verifiably false, and rumor detection which aims to determine if a story
or online post is a rumor or non-rumor regardless of its veracity [8]. Figure 1
demonstrates how tweets are determined to be misinformation. For example, a
claim saying “boiled garlic water could kill the coronavirus” is false. A tweet
containing such information (even if it is being refuted) is classified as misinfor-
mation conversation, regardless of the user stance. In other words, our goal is to
identify that misinformation is being discussed on social media, not the intent or
the position of the poster. A tweet that does not is labeled as true information.

Generally, fact checkers provide a set of FC-article that each contain a claim,
truth label, and fact. A claim is a truth-verifiable statement that may be true,
false, partially true or have insufficient information to determine whether or not
it is true. A truth label is the factual state of the related claim at a particular time.
It is manually verified by experts in the relevant areas. Different fact checkers
have different rating schemes. For example, PolitiFact claims are usually rated
using six level of falseness. The fact is the supporting information that provides
context about the claim and explains details about why a particular truth label
is assigned. Different claims of FC-articles may be in the same myth theme as
shown in Fig. 1. In this paper, the goal is to predict whether a tweet contains the
same piece of misinformation as in the claims of interest. We only use claims and
truth labels verified as false since our goal is to detect misinformation discussion.

More formally, the problem we investigate is content-based misinformation.
Let M represent a set of myths and C represent a set of claims from FC-articles.
Suppose we are given a set of target claims C̄p that are related to the pre-defined
myth theme Mp. Our task is to determine a class label yr for a tweet tr from
Twitter data T using claim information (c̄pq ∈ C̄p) related to Mp. If tr contains
misinformation, (yr = 1), otherwise, (yr = 0). We assume that claims across
myths in M are non-overlapping,

⋂|M|
p=1 C̄p = ∅. For example, claims C̄1 under

the myth theme M1 about a specific weather condition killing coronavirus, and

228 K. Kawintiranon and L. Singh

claims C̄2 under the myth theme M2 about COVID home-remedies, are not
overlapped (C̄1 ∩ C̄2 = ∅).

4 Methodology

We propose DeMis, a framework for misinformation detection on Twitter. An
overview of the framework is presented in Sect. 4.1. The main components of the
framework are presented in Sect. 4.2 and 4.3. Section 4.4 presents the integration
of all the components.

4.1 Overview of DeMis

The overview of the framework is shown in Fig. 2. We begin by extracting claims
C and target claims C̄p related to the myth themes of interest from existing
FC-articles. Each theme of interest Mp has a small number of manually-labeled
tweets. We refer to these tweets as strong-labeled tweets. The automatic annota-
tor (Sect. 4.2) uses a sentence similarity algorithm to calculate similarity scores
between all claims C and unlabeled tweets in T. The scores are used to generate
labels for the unlabeled tweets using our proposed labeling function. We refer to
tweets with labels generated by the automatic annotator as weak-labeled tweets.
Once the reinforced selector (Sect. 4.3) chooses high-quality weak-labeled tweets,
they are combined with the strong-labeled tweets for training the misinformation
detector. The samples that are selected by the reinforced selector are referred to
as selected tweets. The reward is computed based on the model performance and
used to update the selector for the next iteration. The updated selector selects
high-quality weak-labeled tweets to train the detector until the detection clas-
sifier converges. The misinformation detector Dn(·; θn) is a transformer-based
model with a neural network on top as a classifier layer, where θn denotes its
parameters. We now present the details.

4.2 Automatic Annotation Based on Claims

We propose an unsupervised approach for automatically labeling tweets.2 There
are two main components: sentence similarity ranking and labeling. First, among
all claims C, there are claims C̄p ⊂ C belonging to the target myth theme Mp

that we are interested in. We calculate the similarity scores between each tweet
tr and all claims cq ∈ C. For each tweet, we obtain a list of all claims Lr

ranked by the similarity scores. If at least one of the target claims c̄pq ∈ C̄p

appears in the top K of the list, then the tweet is labeled as positive (about
misinformation). Otherwise, the label is negative (not about misinformation).
Any similarity score is reasonable. Given that we are using short texts, we use a
sentence transformer [15] in our empirical evaluation. We convert a claim and a
tweet into vectors and compute the final similarity score using cosine similarity.

2 We use the term unsupervised because we do not use any labeled data at this stage.

DeMis: Data-Efficient Misinformation Detection Using RL 229

Fig. 2. The architecture of our proposed misinformation detection framework.

4.3 Data Selection via Reinforcement Learning

The goal of the data selection component is to select high-quality weak-labeled
samples that improve the detector performance. We propose a performance-
driven data selector that uses the policy-gradient reinforcement learning mech-
anism called the reinforced selector. It takes weak-labeled data as input, selects
high-quality samples, and then sends them to the classifier to use during training.
The reward is computed based on the model performance and used to update the
policy network. Because the reward is computed after the data selection process
is finished, the policy update is delayed. This is inefficient. To obtain rewards and
train the policy network more efficiently, we split the input data X = {x1, ..., xn}
into N bags B = {B1, ..., BN}. Each bag Bk contains a sequence of unlabeled
samples {xk

1 , x
k
2 , ..., x

k
|Bk|}. Each bag is fed into the reinforced selector. For each

sample in the bag, the reinforced selector decides on an action to retain or
remove. The action of the current sample xk

i is based on the current state vec-
tor and all the actions of previous samples in the current bag {xk

1 , x
k
2 , ..., x

k
i−1}.

The reward is computed based on the change in performance of the misinforma-
tion detector. The remainder of this subsection presents the details of the main
components of the RL mechanism: state, action, reward and optimization.

State. sk
i represents the state vector of sample xk

i . The action ak
i is decided based

on the current and selected samples in the same bag, Bk. The state vector sk
i

consists of two major components, including the representation of the current
sample and the average representation of selected samples. We consider quality
and diversity for a representation of a sample. For the quality of the sample,
we consider a prediction output from the misinformation detector and a small
number of elements from the sentence similarity algorithm (Sect. 4.2). For the
current sample, these elements include: (i) the highest similarity score between
the current sample and all claims C, (ii) the K-th highest similarity score,

230 K. Kawintiranon and L. Singh

(iii) the highest similarity score between the current sample and the target claims
C̄p, (iv) the subtraction of (i) and (iii), and (v) the subtraction of (iii) and (ii).
For diversity, we calculate the cosine similarity between the current sample and
all selected samples in the bag, and then the maximum similarity score is used
as the representation of the diversity of the current sample among the selected
samples. The weak label of the current sample is also included in the repre-
sentation vector as a signal for the class distribution. The final current state
representation vector contains eight elements: 1) the output probability from
the detector, 2) the maximum cosine similarity score between the current sam-
ple and the selected samples, 3) the weak label of the current sample, and five
elements from the sentence similarity described above. Once we have the current
representation vector, we concatenate it with the average of previously selected
representation vectors to form the final state vector sk

i .

Action. An action value of the reinforced selector for any sample is either 1 rep-
resenting an action to retain, or 0 representing an action to remove the sample
from the training set. We train a policy network P (·; θs) to determine action
values, where θs indicates its parameters. The policy network is a neural net-
work of two fully-connected layers with the sigmoid (σ) and ReLU activation
functions and is defined as P (sk

i ; θs) = σ(W2 · ReLU(W1 · sk
i)), where W1 and

W2 are randomly initialized weights. The network outputs the probability of
the retain action pk

i for the sample xk
i given the corresponding state vector sk

i .
Next, the policy πθs

(sk
i , ak

i) determines the action ak
i by sampling using the

output probability pk
i as follows πθs

(sk
i , ak

i) = ak
i pk

i + (1 − ak
i)(1 − pk

i).

Reward. As previously mentioned, we use the performance changes of the mis-
information detector Dn(·; θn) as the reward function. To determine the initial
baseline performance Fbase, we train the detector on the strong-labeled training
set and evaluate it on the validation set. For the k-th bag, the reinforced selec-
tor chooses high-quality samples. They are used to re-train the detector, then
the performance Fk for the k-th bag is obtained by evaluating the re-trained
detector on the validation set. Formally, the reward Rk for the k-th bag is the
subtraction of Fbase and Fk as shown in the equation Rk = Fbase − Fk.

Optimization. The goal is to maximize the expected total reward for each bag
Bk. However, the magnitude of reward Rk is undoubtedly small because a
performance change ranges from zero to one. Therefore, we use the summa-
tion of reward Rk weighted by policy values πθs

(sk
i , ak

i) from every sample in

the bag {xk
i }|Bk|

i=1 . Finally, the objective function for the k-th bag is defined

as: J(θs) =
∑|Bk|

i=1 πθs
(sk

i , ak
i)Rk, and its derivative function is: ∇θJ(θs) =

Eθs
[
∑|Bk|

i=1 Rk ∇θs
log πθs

(sk
i , ak

i)].
Since we are using policy-gradient reinforcement learning [18], we update the

policy network using the gradient ascend: θs ← θs + α
∑|Bk|

i=1 Rk ∇θs
log πθs

(sk
i ,

ak
i), where α is the learning rate.

DeMis: Data-Efficient Misinformation Detection Using RL 231

Algorithm 1: The Overall Training Process of DeMis
Input : Misinformation detector Dn(·; θn), policy network P (·; θs) of

reinforced selector with random weights, strong-labeled data D
1. Pre-train the detector Dn(·; θn) to predict misinformation using the

strong-labeled training data Dt.
2. Pre-train the policy network P (·; θs) by running Algorithm 2 with the

misinformation detector Dn(·; θn) fixed.
3. Re-initialize the parameters of the detector Dn(·; θn) with random

weights.
4. Warm up the detector Dn(·; θn) by training for L epochs.
5. Jointly train Dn(·; θn) and P (·; θs) using Algorithm 2 until convergence.

Output: The trained models Dn(·; θn) and P (·; θs).

4.4 Model Training

The overall training process is described in Algorithm 1. First, we randomly
initialize weights of the misinformation detector and policy network of the rein-
forced selector. The detection classifier Dn(·; θn) is a neural network model:
p(y|x; θn) = Softmax(WL2(tanh(WL1xt + b1)) + b2), where p(y|x; θn) represents
the output probability of being class y given input x from the linear classifier,
x represents a contextual representation vector of tweet t from the pre-trained
language model (BERTweet) after the dropout layer, WLi is a weight vector at
layer i randomly initialized, and bi is a bias vector at layer i where i ∈ {1, 2}.
The weights of the classifier are updated using the cross-entropy loss function.
We use the softmax function to normalize the values of the output vector from
the classifier in order to obtain a probability score for each class.

Second, we get the baseline performance Fbase by training the detector using
the strong-labeled training data Dt and evaluating it on the validation set Dv.
Next, because the joint-training technique can result in a detector over-fitting
the small data set, we re-initialize the weights of the detector model and train
it for L epochs instead of training it until convergence (Algorithm 1, step 4–5).
This makes the detector under-fit, leaving some room for joint-training. Finally,
we jointly train the detector and reinforced selector together until convergence.

Algorithm 2 explains how to train the detector and reinforced selector jointly.
The detector provides the mechanism to compute the reward based on its
evaluation performance. The selector uses the reward to refine its ability to
select high-quality samples that potentially enhance the detector performance.
To improve the training stability we update the target policy network slowly:
θ′

s = τ θs + (1 − τ)θ′
s.

232 K. Kawintiranon and L. Singh

Algorithm 2: Learning Algorithm of Reinforced Selector
Input : Strong-labeled training data Dt. N bags of weak-labeled

training data B = {B1, ..., BN}. A misinformation detector
Dn(·; θn) and a policy network P (·; θs). Epoch number L.

Initialize the target networks as: θ′
n ← θn and θ′

s ← θs

for epoch � ← 1 to L do
Shuffle B to get a sequence of bags {B1, B2, ..., BN} foreach bag
Bk ∈ B do

/* We omit superscript k for clarity */
Sample actions for each data sample in B with θ′

s:
A = {a1, ..., a|B|}, ai ∼ πθ′

s
(si, ai)

Train the detector Dn(·; θn) using selected samples based on
actions A and update weights θn

Compute delayed reward Rk

Update the parameters θs of reinforced selector:
θs ← θs + α

∑|B|
i=1 Rk ∇θs

log πθs
(si, ai)

end
Update the weights of target policy network: θ′

s = τ θs + (1 − τ)θ′
s

Train the target detector using the selected samples from the target
selector then update weights θ′

n

Reset the weights of detector: θn ← θ′
n

end
Output: The trained models Dn(·; θn) and P (·; θs).

5 Experimental Design

5.1 Data Collection

Our empirical evaluation uses one large unlabeled and three manually-labeled
Twitter data sets: COVIDLIES [4], COMYTH-W and COMYTH-H. These
data sets have different characteristics in terms of myth diversity and train-
ing data imbalance. The sizes of positive samples in a training set range
from only 40 to 200. In COVIDLIES, misinformation tweets contain claims
belonging to multiple myth themes (high-diversity) and have class-imbalances
(high-imbalance). In COMYTH-W and H, misinformation tweets contain claims
belonging to one myth theme (low-diversity), COVID-weather and COVID-
home-remedies, respectively. While COMYTH-W is a balanced data set (low-
imbalance), COMYTH-H is not (high-imbalance). Table 1 presents the statistics
of these data.

Unlabeled Twitter Data. Our research team collected English tweets related to
COVID-19 using hashtags and keywords through the Twitter Streaming API.
Between March 2020 and August 2020, we collected over 20 million tweets, not

DeMis: Data-Efficient Misinformation Detection Using RL 233

including quotes and retweets. These unlabeled tweets were used to train all
models that require unlabeled data.3

COVILDLIES. This data set, shared by Hossain et al. [4], contains 62 claims,
along with 6591 tweet-claim pairs. Each tweet has at least one related claim and
an annotated stance of the tweet content towards the claims (agree, disagree,
no stance). We follow the labeling approach of the original paper [4] and label a
tweet as misinformation if and only if the tweet contains a stance. A tweet with
no stance is labeled as no misinformation. Among 62 claims, only four claims
(of different themes) have more than 100 tweets containing a stance towards
them, indicating high diversity. There are 811 annotated tweets, 136 containing
misinformation and 675 regular tweets.

COMYTH. To conduct experiments on data sets with specific myth themes, we
created a data set of COVID-myth-related tweets and claims from a random sam-
ple of tweets. We focus on two myth themes, weather and home-remedies. Our
data were labeled using Amazon Mechanical Turk (MTurk). The labeling choices
were yes, no, and unsure. Each tweet has three annotations from three different
MTurk workers. We compute inter-annotator agreement scores to assess the qual-
ity of our labeled data. The task-based and worker-based metrics are recommended
by the MTurk official site4, given their annotating mechanism. All scores range
from 85% up to 97%, indicating the high inter-rater reliability for these data sets.
The majority voting among three annotators is used to determine a label for each
tweet (containing related myths or not). Finally, there are 930 labeled tweets for
the weather theme (COMYTH-W), of which 459 tweets contain weather myths.
For the home-remedies theme (COMYTH-H), there are 779 labeled tweets, of
which 101 tweets contain home-remedies myths. To build a data set of COVID-
related claims, we collected claims from PolitiFact, FactCheck.org and Snopes.
Our research team manually identified 3 COVID-weather-related claims and 12
COVID-home-remedies-related claims as target claims for our framework.

5.2 Data Preparation

Data sets are split into train, validation and hold out sets with an approximate
ratio of 5/2/3. Each tweet is preprocessed by replacing mentions with @USER
and links with HTTPURL. To build weak-labeled data sets, we run our weak
annotator as described in Sect. 4.2 on the unlabeled data set and sample 10K
tweets for each class (myth/not-myth).

5.3 Baselines

Our baseline models are categorized into four algorithm groups. The first
group contains classic machine learning models, including Naive Bayes (NB),
3 Our unlabeled tweets do not overlap with any of our labeled data.
4 https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/

ApiReference HITReviewPolicies.html. Amazon Mechanical Turk - HIT Review
Policies.

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_HITReviewPolicies.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_HITReviewPolicies.html

234 K. Kawintiranon and L. Singh

Table 1. Data set details.

Data Set Myth
theme

Split # Tweets # Myth # Not-myth Myth ratio

COVIDLIES COVID-
mixed

Train 380 64 316 ∼17%

Val 163 27 136

Test 268 45 223

COMYTH-W COVID-
weather

Train 436 213 223 ∼50%

Val 187 96 91

Test 307 150 157

COMYTH-H COVID-
home-
remedies

Train 365 48 317 ∼13%

Val 156 26 130

Test 258 27 231

Myth theme indicates whether the data set is for a specific myth or mixed myth
themes. Myth ratio indicates the ratio of misinformation.

k-Nearest-Neighbor (kNN), Logistic Regression (LR), Support Vector Machine
(SVM), Decision Tree (DT), Random Forest (RF) and Elastic Net (EN). We
adopt the implementations in [6] because their approaches are shown to be
highly accurate for detecting low-quality textual content on Twitter. Their fea-
ture sets include simple counting properties in a tweet content (Count), Bag-
of-Words (BoW) and Term-Frequency-Inverse Document-Frequency (TF-IDF).
All the models are trained using different combinations of these features. The
second baseline group contains neural network models, including a vanilla neu-
ral network (NN) and a convolution neural network (CNN). We follow the setup
used in EANN [20]. The third group consists of transformer-based models. We
use RoBERTa (RB), BERTweet (BT) and BERTweet-covid (BTC). RoBERTa
is an optimized version of BERT. BERTweet is RoBERTa trained on Twitter
data, and BERTweet-covid is BERTweet additionally trained on COVID-related
tweets. The classification layer is a single layer neural network. The last group
contains RL-based models including DVRL [23] and WeFEND [21].

We use DVRL to select high-quality weak-labeled samples. We run the model
to estimate the quality of our weak-labeled data. We combine the top v percent
of weak-labeled data, sorted by the quality scores with the strong-labeled data,
where v ∈ {10, 20, ..., 100} as used in the original paper. In addition, we also use
smaller values for v ∈ {0.5, 1, ..., 5} in order to have a more complete stability
and sensitivity analysis. Using v = 100 means we combine all weak-labeled
data with the strong-labeled data for training. For each combination, we train
the same misinformation detector as used in our model (Sect. 4.1) and report
the best results based on F1 scores. We implement the WeFEND framework
as described in the original paper since the code was not available. Because the
original framework uses user reports to generate weak labels but there is no such
report publicly available for Twitter, we modify the framework by substituting
the weak label annotation part with our weak label annotator to investigate its
potential to use public accessible expert knowledge (FC-articles). The rest of the
framework remains the same.

DeMis: Data-Efficient Misinformation Detection Using RL 235

Table 2. Experimental results. The best results are bolded.

COVIDLIES (multiple myth themes) COMYTH-W (one myth theme) COMYTH-H (one myth theme)
Type Algorithm

Acc Pr Re F1 Acc Pr Re F1 Acc Pr Re F1

Count [6] 0.7724 0.3095 0.2889 0.2989 0.6645 0.6158 0.8333 0.7082 0.7985 0.2093 0.3333 0.2571

+BoW [6] 0.8396 0.5200 0.5778 0.5474 0.9414 0.9400 0.9400 0.9400 0.9031 0.5500 0.4074 0.4681
Classic

ML
+TFIDF [6] 0.8545 0.5682 0.5556 0.5618 0.9479 0.9467 0.9467 0.9467 0.9070 0.5600 0.5185 0.5385

NN [6] 0.8408 0.5484 0.2963 0.3845 0.8795 0.7565 0.7862 0.7672 0.9160 0.6149 0.5309 0.5696
DL

CNN [20] 0.3340 0.1508 0.7183 0.2446 0.7492 0.7275 0.9003 0.7816 0.2313 0.1295 0.5565 0.1953

RB [9] 0.8756 0.6550 0.5481 0.5964 0.9739 0.9755 0.9711 0.9733 0.9328 0.6541 0.7901 0.7132

BT [12] 0.8557 0.5891 0.5185 0.5450 0.9511 0.9272 0.9778 0.9515 0.9160 0.5936 0.6790 0.6248
Trans-

former
BTC [12] 0.8595 0.5733 0.6370 0.6035 0.9631 0.9531 0.9733 0.9627 0.9367 0.6995 0.7037 0.6990

DVRL [23] 0.8333 0.5204 0.6444 0.5667 0.9577 0.9369 0.9800 0.9578 0.9057 0.5752 0.7654 0.6323

WeFEND [21] 0.4378 0.1991 0.6765 0.2553 0.9338 0.9323 0.9346 0.9328 0.6460 0.4733 0.7509 0.4995RL

DeMis (ours) 0.8483 0.5644 0.7226 0.6210 0.9750 0.9638 0.9894 0.9762 0.9406 0.7353 0.8991 0.7887

vs. best scores –0.0273 –0.0906 +0.0043 +0.0175 +0.0011 –0117 +0.0094 +0.0029 +0.0039 +0.0358 +0.1090 +0.0755Compare

DeMis vs. best model –0.0113 –0.0089 +0.0856 +0.0175 +0.0011 –0117 +0.0183 +0.0029 +0.0078 +0.0812 +0.1090 +0.0755

5.4 Evaluations and Hyperparameter Tuning

We evaluate all models using accuracy, precision, recall and F1 scores based on
positive class (misinformation). We evaluate all models on the test set three times
with different random seeds to determine the stability of the results. The average
results are reported. For our classic ML models, we conduct a sensitivity analysis
using a grid-search on influential parameters. The best parameters varied by
classifiers, data sets, and feature sets. For neural network and transformer-based
models, we use different learning rates (1e–4, 1e–5, 2e–5, 3e–5, 1e–6). We report
the best results based on F1 scores from the parameter tuning step. We present
results for the learning rate of 1e–5 for DeMis and use a learning rate for target
network τ of 0.001.

6 Results and Analysis

Table 2 shows the experimental results on the test sets, averaged over three
runs. The models from four different categories are evaluated on all data sets.
The variances of results from different models are not significantly different. Our
proposed model outperforms the best baselines F1 scores by ∼2%, ∼1% and
∼8% on COVIDLIES, COMYTH-W and COMYTH-H, respectively. The last
two rows of the table show the comparison of DeMis result with the best scores
in the same column, and with the second best models based on F1 score.

6.1 Experimental Results

We hypothesize that the most complicated data set is COVIDLIES because of
the high diversity of the myth themes and the data imbalance. The baseline mod-
els have F1 scores ranging from 0.2446 (CNN) to 0.6035 (BERTweet-covid). Our
proposed model outperforms the baselines with an F1 score of 0.6210, slightly
better than BERTweet-covid. The difficulty of this data set is two-fold. First,
with 136 positive training samples for different myth themes, there are only 10

236 K. Kawintiranon and L. Singh

to 42 samples for each myth theme. This is insufficient for training deep learn-
ing models; therefore, the transformer models (RoBERTa and BERTweet-covid)
and two of the classic models (Count+Bow and Count+TFIDF) perform better
than the deep learning models. The second complexity is the mix of multiple
myth themes, each having different contexts, signal words, and writing styles.
These signals from different myth themes can mislead the classifiers, resulting in
inefficient learning of the positive class. For example, in a batch size of 32, there
are likely samples from at least two myth themes. If their characteristics are
completely different, then the loss computed using the error from the samples
in the batch could be misleading, resulting in under-fitting. While our models
perform comparably to the state-of-the-art ones on this high diversity and imbal-
anced data (COVIDLIES), our model performs better on data sets containing
one myth and possible imbalances.

We anticipate that the least complicated data set for this task is COMYTH-
W since it contains one myth theme and is balanced data. On this data set, the
baseline models perform reasonably with F1 scores ranging from 0.7082 (a classic
model with Count features) to 0.9733 (RoBERTa). The notably high F1 score
from RoBERTa shows that the data set is uncomplicated for the misinformation
detection task and implies marginal room for improvement. Our model performs
comparably with RoBERTa, having an F1 score of 0.9762.

Fig. 3. The model performance of DeMis
with and without RL (DeMis–).

We anticipate that the COMYTH-
H data set is the second most com-
plicated because it contains one myth
theme but has a similar level of imbal-
ance as COVIDLIES (the myth ratios
of both data sets are around 10%,
see Table 1). The baseline models have
F1 scores ranging from 0.1953 (CNN-
based model) to 0.7132 (RoBERTa),
indicating that this data set is mod-
erately complex for the task. We see

that the lowest and highest F1 scores of baseline models on COMYTH-H are
much lower than COVIDLIES (0.19/0.71 vs. 0.70/0.97) due to class imbalance
and the nature of the myth themes. While there are only three claims related to
COVID-weather, there are 12 claims about COVID-home-remedies, leading to a
more diverse set of topics about home-remedies, i.e. higher content (vocabulary)
diversity. Our model significantly outperforms all baselines with an F1 score of
0.7887 on COMYTH-H, an approximate 8% improvement over RoBERTa (sec-
ond best).

To better understand the characteristics of the misclassified samples, we look
at their distribution. We find that from 20 misclassified samples by RoBERTa
and 14 misclassified samples by our model, 12 samples are the same. Our model
corrects six false positives and two false negatives that the RoBERTa model
misclassifies, but we have two additional false negatives, meaning that our model
tends to error on the side of false negative, not false positives.

DeMis: Data-Efficient Misinformation Detection Using RL 237

To investigate the advantage of the reinforced selector, we train our DeMis
without RL by substituting it with a random selector (DeMis–). It randomly
selects samples instead of selecting only high-quality samples. The results are
shown in Fig. 3. On COMYTH-W, the F1 score (yellow) of DeMis without RL is
10% lower than DeMis with RL. Similarly, F1 scores are substantially higher for
DeMis with RL on the other two data sets. We observe that recall scores stay
the same between DeMis with and without RL because the model without RL
still learns good positive examples from the strong-labeled samples. However,
the precision scores drop significantly, producing more false positives when low-
quality samples are selected. These empirical results suggest that incorporating
RL is beneficial for improving the data selection process.

6.2 Robustness of Model

Fig. 4. The model performance of
RoBERTa, RoBERTa+, and DeMis.

We further investigate the robustness of
our model on two imbalanced data sets,
COMYTH-H and COVIDLIES. We com-
pare our model with RoBERTa since
it is the second-best performer on
COMYTH-H and performs comparably to
BERTweet-covid on COVIDLIES. A ran-
dom oversampling algorithm is used to
balance the class distribution of these two
data sets. We train RoBERTa on these
balanced data sets separately and report the results (RoBERTa+). We see that
making the data sets more balanced for RoBERTa slightly increases the F1 scores
by 0.39% and 2.03% on COMYTH-H and COVIDLIES, respectively. Without
any data modification, our model that used imbalanced training data outper-
forms RoBERTa+ by 7.16% and 0.43%, further highlighting our model’s robust-
ness to data imbalances.

We also investigate the robustness of our model when smaller sizes of training
data are provided. We randomly sample training data of sizes 200 and 300 while
keeping the same level of imbalance. Figure 5 shows the F1 scores of the top
performers. Our model outperforms other baselines on smaller sizes of all training
data sets. However, we see that smaller sizes of data lead to larger performance
deterioration on both imbalanced data sets (COMYTH-H and COVIDLIES) by
all the models. In other words, when there are less than 300 training samples,
the models underfit the data.

238 K. Kawintiranon and L. Singh

(a) COMYTH-W (b) COMYTH-H (c) COVIDLIES

Fig. 5. The performance of top models on different sizes of training data.

(a) COVID-related tweet count (b) Proportion of misinformation

Fig. 6. Daily tweet counts and proportion of COVID-weather per 10,000 tweets.

6.3 Analysis on Big Data

We conduct a small case study to better understand the prevalence of misinfor-
mation on Twitter, we run our model on data containing Covid-related hashtags
(Sect. 5.1) to predict levels of misinformation conversation. We find over 20K
misinformation tweets about COVID-weather between March 1 to August 31,
2020. Figure 6 illustrates the daily number of tweets and the diffusion of mis-
information on Twitter related to COVID-weather by DeMis. Misinformation
conversation was spreading before March and reached its peak on April 24th
(red arrow), the day after the White House promoted new lab results suggesting
heat and sunlight slow coronavirus on April 23rd5. This small analysis high-
lights the level of misinformation on a public health related data stream and
demonstrates the role prominent leaders play in spreading and/or reinforcing it.

7 Conclusions

This paper proposes DeMis, a novel RL-based framework for misinformation
detection that requires only a small amount of labeled training data. We design
a novel RL mechanism, inspired by policy-gradient reinforcement learning, that
provides high-quality data selection, improving our overall detection perfor-
mance. We evaluate models on three data sets, and show that they outperforms
other baselines by up to 8% (F1 score). Our approach is particularly strong in
the presence of class imbalances and comparable to other models when there
is high diversity in the myth themes. Finally, we release a resource package to
support the community to studying misinformation.
5 News on Washington Posts.

DeMis: Data-Efficient Misinformation Detection Using RL 239

Acknowledgement. This research was funded by National Science Foundation
awards #1934925 and #1934494, and the Massive Data Institute (MDI) and McCourt
Institute at Georgetown University. We would like to thank our funders, the MDI staff,
and the Georgetown DataLab for their support.

References

1. Guo, B., Ding, Y., Yao, L., Liang, Y., Yu, Z.: The future of false information
detection on social media: new perspectives and trends. ACM Comput. Surv. 53(4),
1–36 (2020)

2. Haber, J., et al.: Lies and presidential debates: How political misinformation spread
across media streams during the 2020 election. Harv. Kennedy School Misinform.
Rev. (2021)

3. Helmstetter, S., Paulheim, H.: Weakly supervised learning for fake news detection
on twitter. In: ASONAM (2018)

4. Hossain, T., Logan IV, R.L., Ugarte, A., Matsubara, Y., Young, S., Singh, S.:
COVIDLies: detecting COVID-19 misinformation on social media. In: Workshop
on NLP for COVID 2019 (Part 2) at EMNLP (2020)

5. Jin, Z., Cao, J., Guo, H., Zhang, Y., Wang, Y., Luo, J.: Detection and analysis of
2016 us presidential election related rumors on twitter. In: SBP-BRiMS (2017)

6. Kawintiranon, K., Singh, L., Budak, C.: Traditional and context-specific spam
detection in low resource settings. Mach. Learn. 111, 2515–2536 (2022)

7. Kumar, S., Shah, N.: False Information on Web and Social Media: A Survey. CRC
Press, Boca Raton (2018)

8. Li, Q., Zhang, Q., Si, L., Liu, Y.: Rumor detection on social media: datasets,
methods and opportunities. In: NLP4IF Workshop at EMNLP (2019)

9. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv
preprint (2019)

10. Min, E., et al.: Divide-and-conquer: Post-user interaction network for fake news
detection on social media. In: WWW (2022)

11. Mosallanezhad, A., Karami, M., Shu, K., Mancenido, M.V., Liu, H.: Domain adap-
tive fake news detection via reinforcement learning. In: WWW (2022)

12. Nguyen, D.Q., Vu, T., Nguyen, A.T.: BERTweet: a pre-trained language model for
english tweets. In: EMNLP: System Demonstrations (2020)

13. Nielsen, D.S., McConville, R.: Mumin: a large-scale multilingual multimodal fact-
checked misinformation social network dataset. In: SIGIR (2022)

14. Pérez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of
fake news. In: COLING (2018)

15. Reimers, N., Gurevych, I.: Sentence-BERT: sentence Embeddings using Siamese
BERT-Networks. In: EMNLP (2019)

16. Singh, L., et al.: A first look at Covid-19 information and misinformation sharing
on twitter. arXiv preprint (2020)

17. Singh, L., Bode, L., Budak, C., Kawintiranon, K., Padden, C., Vraga, E.: Under-
standing high-and low-quality URL sharing on covid-19 twitter streams. J. Com-
put. Social Sci. 3(2), 343–366 (2020)

18. Sutton, R.S., Barto, A.G.: RL: An Introduction. MIT Press, London (2018)
19. Vo, N., Lee, K.: Where are the facts? searching for fact-checked information to

alleviate the spread of fake news. In: EMNLP (2020)
20. Wang, Y., et al.: Event adversarial neural networks for multi-modal fake news

detection. In: KDD (2018)

240 K. Kawintiranon and L. Singh

21. Wang, Y., et al.: Weak supervision for fake news detection via reinforcement learn-
ing. In: AAAI (2020)

22. Wu, J., Li, L., Wang, W.Y.: Reinforced co-training. In: NAACL (2018)
23. Yoon, J., Arik, S., Pfister, T.: Data valuation using reinforcement learning. In:

ICML (2020)
24. Yu, F., Liu, Q., Wu, S., Wang, L., Tan, T.: Attention-based convolutional approach

for misinformation identification from massive and noisy microblog posts. Comput.
Secur. 83, 106–121 (2019)

25. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: evalu-
ating text generation with bert. In: ICLR (2020)

26. Zhou, X., Zafarani, R.: A survey of fake news: fundamental theories, detection
methods, and opportunities. ACM Comput. Surv. 53(5), 1–40 (2020)

The Burden of Being a Bridge: Analysing
Subjective Well-Being of Twitter Users

During the COVID-19 Pandemic

Ninghan Chen1, Xihui Chen2, Zhiqiang Zhong1, and Jun Pang1,2(B)

1 Faculty of Science, Technology and Medicine, University of Luxembourg,
Esch-sur-Alzette, Luxembourg

{ninghan.chen,zhiqiang.zhong,jun.pang}@uni.lu
2 Interdisciplinary Centre for Security, Reliability and Trust,

University of Luxembourg, Esch-sur-Alzette, Luxembourg
xihui.chen@uni.lu

Abstract. The outbreak of the COVID-19 pandemic triggers infodemic
over online social media, which significantly impacts public health around
the world, both physically and psychologically. In this paper, we study
the impact of the pandemic on the mental health of influential social
media users, whose sharing behaviours significantly promote the diffu-
sion of COVID-19 related information. Specifically, we focus on subjec-
tive well-being (SWB), and analyse whether SWB changes have a rela-
tionship with their bridging performance in information diffusion, which
measures the speed and wideness gain of information transmission due
to their sharing. We accurately capture users’ bridging performance by
proposing a new measurement. Benefiting from deep-learning natural
language processing models, we quantify social media users’ SWB from
their textual posts. With the data collected from Twitter for almost two
years, we reveal the greater mental suffering of influential users during
the COVID-19 pandemic. Through comprehensive hierarchical multiple
regression analysis, we are the first to discover the strong relationship
between social users’ SWB and their bridging performance.

Keywords: Subjective well-being · COVID-19 · Information diffusion

1 Introduction

Since its outbreak, COVID-19 has become an unprecedented global health cri-
sis and incited a worldwide infodemic. The term “infodemic” outlines the per-
ils of misinformation during disease outbreaks mainly on social media [7,15].
Apart from accelerating virus transmission by distracting social reactions, the
infodemic increases cases of psychological diseases such as anxiety, phobia and
depression during the pandemic [10]. As a result, the infodemic impairs the UN’s

This work is supported by Luxembourg National Research Fund via grants
DRVIVEN (PRIDE17/12252781), Spsquared (PRIDE15/10621687), and HETERS
(CORE/C21/IS/16281848).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 241–257, 2023.
https://doi.org/10.1007/978-3-031-26390-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_15&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_15

242 N. Chen et al.

sustainable development goals (SDGs), especially SDG3 which aims to promote
mental health and well-being.

To combat infodemic, both governments and healthcare bodies have launched
a series of social media campaigns to diffuse trustworthy information. To amplify
the speed and wideness of information spread, users with a large number of
followers are invited to help share messages [1,33]. Healthcare professionals and
social activists also voluntarily and actively participate in relaying information
they deem as useful with their social media accounts. All these people actually
play a bridging role on social media delivering information to the public, although
their bridging performance differs. We use bridging performance as an analogy
to estimate how efficient and wide information can spread across social media
due to the sharing of a user.

Subjective well-being (SWB), one important indicator of SDG3, evaluates
individuals’ cognitive (e.g., life satisfaction) and affective (i.e., positive and neg-
ative) perceptions of their lives [19]. Since the onset of the COVID-19 pandemic,
the decrease of SWB has been unanimously recognised across the world. With
studies for various sub-populations [12,17], many factors have been discovered
correlating to SWB changes such as professions, immigration status and gen-
der. In this paper, we concentrate on influential social media users who play the
bridging role in diffusing COVID-19 information, and study the impact of the
pandemic on their SWB. We further examine whether their active participation
in diffusing COVID-19 information is a predictor of the SWB changes. To the
best of our knowledge, we are the first to study the mental health of this specific
group of people during the pandemic.

We identify two main challenges to overcome before conducting our analysis.
First, there are no measurements available that can accurately quantify users’
real bridging performance in diffusing COVID-19 related information. The mea-
surements, widely used in crisis communications and online marketing, rely on
social connections, and have been found insufficient in capturing users’ actual
bridging performance, especially in such a global health crisis [27]. For instance,
although some healthcare professionals are not super tweeters with thousands of
followers, their professional endorsement significantly promotes the popularity
of the posts they retweeted [27]. The second challenge is the access to the SWB
levels of a large number of social media users whose bridging performance is
simultaneously available.

In this paper, we take advantage of the information outbreak on social
media incurred by the COVID-19 pandemic and the advances of artificial intel-
ligence to address the two challenges. For the first challenge, we propose a new
bridging performance measurement based on information cascades [29] which
abstract both information spread processes and social connections. To address
the second challenge, we leverage the success of deep learning in Natural Lan-
guage Processing (NLP) and estimate users’ SWB by referring to the sentiments
expressed in their textual posts. In spite of the inherent biases, the power of social
media posts has been shown in recent studies [19] for robust extraction of well-
being with supervised data-driven methods. In this paper, instead of manually

The Burden of Being a Bridge 243

constructed features, we use the state-of-the-art transformer-based text embed-
ding to automatically learn the representative features of textual posts.

Our Contributions. We collect data from Twitter generated from the Greater
Region of Luxembourg (GR). GR is a cross-border region centred around Luxem-
bourg and composed of adjacent regions of Belgium, Germany and France. One
important reason to select this region is its intense inter-connections of inter-
national residents from various cultures, which is unique as a global financial
centre. Moreover, they well represent the first batch of countries administering
COVID vaccines. Our collection spans from October 2019 to the end of 2021 for
over 2 years, including 3 months before the outbreak of the COVID-19 pandemic.
Our contributions are summarised as follows:

– We propose a new measurement to capture the actual bridging performance
of individual users in diffusing COVID-19 related information. Compared to
existing social connection-based measurements, it is directly derived from infor-
mation diffusion history. Through manual analysis of the collected dataset, our
measurement allows for identifying the accounts of influential health profession-
als and volunteers that are missed before in addition to super tweeters.

– Through deep learning-based text embedding methods, we implement a clas-
sification model which can accurately extract the sentiments expressed in
social media messages. With the sentiments of posts, we quantitatively esti-
mate individual users’ SWB, and confirm the greater suffering of influential
users in their SWB during the pandemic.

– Through the hierarchical multiple regression model, we reveal that users’ SWB
has a strong negative relationship with their bridging performance in COVID-
19 information diffusion, but weak relationship with their social connections.

Our research provides policy makers with an effective method to identify
influential users in the fight against infodemic. Moreover, we contribute to the
realisation of SDG3 by highlighting the necessity to pay special attention to the
mental well-being of people who actively participate in transmitting information
in health crises like COVID-19.

2 Related Work

2.1 Measuring Bridging Performance

A considerable amount of literature has been published quantifying users’ bridg-
ing performance based on social connections to identify amplifiers in social
media. We can divide the measurements into two types. The first type of mea-
surements implicitly assume that influential users are likely to hold certain topol-
ogy properties on social networks such as large degrees, strong betweenness cen-
trality or community centrality [14]. The second type of measurements assume
that influential users tend to be more likely reachable from other users through
random walks. PageRank [25] and its variant TwitterRank [30] among the rep-
resentative benchmarks of this type of measurements. PageRank is calculated

244 N. Chen et al.

only with network structures while TwitterRank additionally takes into account
topic similarities between users. All the two categories of measurements have
been widely applied in practice, from public health crisis communication [23] to
online marketing [21]. However, recent studies pointed out that they may not
truly capture users’ actual bridging performance in information diffusion during
a specific public healthy crisis [23]. Although new measurements are proposed
by extending existing ones with fusion indicators, their poor efficiency prevents
them from being applied to real-world large-scale networks like Twitter and
Facebook [18].

2.2 Subjective Well-Being Extraction

Subjective well-being is used to measure how people subjectively rate their lives
both in the present and in the near future [9]. Many methods have been used
to assess subjective well-being, from traditional self-reporting methods [8] to
the recent ones exploiting social media [32]. Studies have cross-validated SWB
extracted from social media data with the Gallup-Sharecare Well-Being Index
survey,1 a classic reference used to investigate public SWB, and found that SWB
extracted from social media is a reliable indicator of SWB [19]. Twitter-based
studies usually calculate SWB as the overall scores of positive or negative emo-
tions (i.e., sentiment or valence) [19]. Sentiment analysis has developed from the
original lexicon-based approaches [3] to the data-driven ones which ensure better
performance [19]. We adopt the recent advances of the latter approaches, and
make use of the pre-trained XLM-RoBERTa [24], a variant of RoBERTa [22],
to automatically learn the linguistic representation of textual posts. As a deep
learning model, RoBERTa and its variants have been shown to overwhelm tra-
ditional machine learning models in capturing the linguistic patterns of multi-
lingual texts [2].

3 The GR-Ego Twitter Dataset

In this section, we describe how we build our Twitter dataset, referred to as GR-
ego. In addition to its large number of active users, we have another two consid-
erations to select Twitter as our data source. First, the geographical addresses
of posters are attached with tweets and thus can be used to locate users. Second,
tweet status indicates whether a tweet is retweeted. If a tweet is retweeted, the
corresponding original tweet ID is provided. Together with the time stamps, we
can track the diffusion process of an original tweet. Our GR-ego dataset consists
of two components: (i) the social network of GR users recording their following
relations; (ii) the tweets posted or retweeted by GR users during the pandemic.
We follow three sequential steps to collect our GR-ego dataset. Table 1 sum-
marises its main statistics.

1 https://www.gallup.com/175196/gallup-healthways-index-methodology.aspx.

https://www.gallup.com/175196/gallup-healthways-index-methodology.aspx

The Burden of Being a Bridge 245

Table 1. Statistics of the GR-ego dataset.

Social network #node 5,808,938

#edge 12,511,698

Average degree 2.15

Timeline tweets #user 14,756

#tweet before COVID 5,661,949

#tweet during COVID 18,523,099

#tweet per user before COVID 388.44

#tweet per user during COVID 1255.29

Step 1. Meta Data Collection. Our purpose of this step is to collect seed users
in GR who actively participate in COVID-19 discussions. Instead of directly
searching by COVID-19 related keywords, we make use of a publicly available
dataset of COVID-19 related tweets for the purpose of efficiency [4]. Restricted
by Twitter’s privacy policies, this dataset only consists of tweet IDs. We extract
the tweet IDs posted between October 22nd, 2019, which is about three months
before the start of the COVID-19 pandemic, and December 31st, 2021. Then with
these IDS, we download the corresponding tweet content. On Twitter, geograph-
ical information, i.e., the locations of tweet posters and original users if tweets
are re-tweeted, is either maintained by Twitter users, or provided directly by
their positioning devices. We stick to the device-input positions, and only use
user-maintained ones when such positions are unavailable. Due to the ambiguity
of user-maintained positions, we leverage the geocoding APIs, Geopy and ArcGis
Geocoding to regularise them into machine-parsable locations. With regularised
locations, we filter the crawled tweets and only retain those from GR. In total,
we obtain 128,310 tweets from 8,872 GR users.

Step 2. Social Network Construction. In this step, we search GR users from
the seed users and construct the GR-ego social network. We adopt an iterative
approach to gradually enrich the social network. For each seed user, we obtain
his/her followers and only retain those who have a mutual following relation
with the seed user, because such users are more likely to reside in GR [6]. We
then extract new users’ locations from their profile data and regularise them.
Only users from GR are added to the social network as new nodes. New edges
are added if there exist users in the network with following relationships with
the newly added users. After the first round, we continue going through the
newly added users by adding their mutually followed friends that do not exist
in the current social network. This process continues until no new users can be
added. Our collection takes 5 iterations before termination. In the end, we take
the largest weakly connected component as the GR-ego social network.

Step 3. COVID-19 Related Timeline Tweets Crawling. In this step, we collect
tweets originally posted or re-tweeted by the users in our dataset. These tweets
will be used to extract users’ SWB. Thus, the collected tweets are not limited to

246 N. Chen et al.

Fig. 1. Example of a cascade.

those relevant to the COVID-19 pandemic. Due to the constraints of Twitter, it
is not tractable to download all the users’ past tweets. We select a sufficiently
large number of representative users who actively participated in retweeting
COVID-19 related messages, and then crawl their history tweets. In detail, we
choose 14,756 users who (re)tweeted at least three COVID-19 related messages.
With the newly released Twitter API which allows for downloading 500 tweets
of any given month for each user, we collect 37, 281, 824 tweets spanning between
October 22nd, 2019 and December 31st, 2021. This period also contains the last
three months before the pandemic is officially claimed. We release the IDs of our
collected tweets via Github.2

4 Data Processing

4.1 Cascade Computation

A cascade records the process of the diffusion of a message. It stores all activated
users and the time when they are activated. In our dataset, a user is activated in
diffusing a message when he/she retweets the message. In this paper, we adopt
the widely accepted cascade tree to represent the cascade of a message [5,6,29].

The first user who posted the message is regarded as the root of the cas-
cade tree. Users who retweeted the message, but received no further retweeting
comprise the leaf nodes. Note that a tweet with the quotation to another tweet
is also considered as a retweet of the quoted message. An edge from u to u′

is added to the cascade if u′ follows u and u′ re-tweeted the message after u,
indicating u activated u′. If many of the users who u′ follows ever retweeted
the message, meaning u′ may be activated by any of them, we select the one
who lastly retweeted as the parent node of u′. Figure 1(b) shows a cascade of
the social network in Fig. 1(a). In this example, user u4 can be activated by the
messages retweeted by either u1 or u3. Since u3 retweeted after u1, we add the
edge from u3 to u4 indicating that the retweeting of u3 activated u4.

We denote the root node of a cascade C by r(C). We call a path that connects
the root and a leaf node a cascade path, which is actually a sequence of nodes
ordered by their activation time. For instance, (u1, u3, u4) is a cascade path
in our example indicating that the diffusion of a message started from u1 and
2 https://github.com/NinghanC/SWB4Twitter.

https://github.com/NinghanC/SWB4Twitter

The Burden of Being a Bridge 247

reached u4 in the end through u3. In this paper, we represent a cascade tree as
a set of cascade paths. For instance, the cascade in Fig. 1(b) is represented by
the following set {(u1, u2, u7, u8), (u1, u3, u4), (u1, u3, u6)}.

For our study, we follow the method in [20] to construct tweet cascades. Recall
that when a tweet’s status is ‘Retweeted’, the ID number of the original tweet is
also recorded. We first create a set of original tweets with all the ones labelled in
our meta data as ‘Original’. Second, for each original tweet, we collect the IDs of
users that have retweeted the message. At last, we generate the cascade for every
original tweet based on the following relations in our GR-ego social network and
their retweeting time stamps. We eliminate cascades with only two users where
messages are just retweeted once. In total, 614,926 cascades are built and the
average size of these cascades is 7.13.

4.2 Sentiment Analysis

Previous works [34] leverage user-provided mood (e.g., angry, excited) or status
to extract users’ sentiment (i.e., positive or negative) and use them to approxi-
mately estimate affective subjective well-being. However, such information is not
available on Twitter. We refer to the sentiments expressed in textual posts to
extract users’ SWB. In this paper, we treat sentiment extraction as a tri-polarity
sentiment analysis for short texts, and classify a tweet as negative, neutral or
positive. In order to deal with the multilingualism of our dataset, we benefit from
the advantages of deep learning in sentiment analysis [2], and build an end-to-
end deep learning model to conduct the classification. Our model is composed of
three components. The first component uses a pre-trained multilingual language
model, i.e., XLM-RoBERTa [24], to calculate the representation of tweets. The
representations are then sent to the second component, a fully-connected ReLU
layer with dropout. The last component is a linear layer added on the top of
the second component’s outputs with sigmoid as the activation function. We use
cross-entropy as the loss function and optimise it with the Adam optimiser.

Model Training and Testing. We train our model on the SemEval-2017 Task 4A
dataset [26], which has been used for sentiment analysis on COVID-19 related
messages [11]. The dataset contains 49,686 messages which are annotated with
one of the three labels, i.e., positive, negative and neutral. We shuffle the dataset
and take the first 80% for training and the rest 20% for testing. We assign other
training parameters following the common principles in existing works. We run
10 epochs with the maximum string length as 128 and dropout ratio as 0.5.
When tested with macro-average F1 score and accuracy metrics, we achieve an
accuracy of 70.09% and macro-average F1 score of 71.31%.

Despite its effectiveness on classifying SemEval-2017 Task 4A data, in order
to check whether such performance will persist on our GR-ego dataset, we con-
struct a new testing dataset. This dataset consists of 500 messages, 100 for each
of the top 5 most popular languages. We hire two annotators to manually label
the selected tweets and the annotated labels are consistent between them with

248 N. Chen et al.

Fig. 2. Sentiment distribution of users’ timeline tweets.

Cohen’s Kappa coefficient k = 0.93. When applied on this new manually anno-
tated dataset, our trained model achieves a similar accuracy of about 87%.

Analysing our GR-ego Dataset. Before applying our sentiment classification
model on our GR-ego dataset, we clean tweet contents by removing all URLs,
and mentioned usernames. Figure 2 summarises the statistics obtained from user
timeline tweets before and during the pandemic. The numbers of users’ timeline
tweets are consistent with previous studies. For instance, users tend to become
more negative after the outbreak of the COVID-19 pandemic [12,17].

5 Bridging Performance of Users in Information Diffusion

We devote this section to addressing the first challenge regarding identifying
users that play the bridging role in transmitting COVID-19 related information.

5.1 Measuring User Bridging Performance

We evaluate users’ overall performance in the diffusion of observed COVID-19
related tweets. As a user can participate in diffusing a number of tweets, we first
focus on her/his importance in the diffusion of one single tweet and then combine
her/his importance in all tweets into one single measurement. We consider a
user more important in diffusing a tweet when his/her retweeting behaviour
activates more users, or leads to a given number of activated users with fewer
subsequent retweets. In other words, a more important user promotes wider
acceptance of the information or accelerates its propagation. Given a cascade
path S =(u1, u2, . . . , un), we use S∗(ui) (1 ≤ i < n) to denote the subsequence
composed of the nodes after ui (including ui), i.e., (ui, ui+1, . . . , un). For any
u that does not exist in S, we have S∗(u) = ε where ε represents an empty
sequence and its length |ε| = 0.

The Burden of Being a Bridge 249

Definition 1 (Cascade bridging value). Given a cascade tree C and a user
u (u �= r(C)), the cascade bridging value of u in C is calculated as:

αC(u) =

(∑
S∈C

| S∗(u) |
| S |

)
/|C|.

Note that our purpose is to evaluate the importance of users as transmitters of
messages. Therefore, the concept of cascade bridging value is not applicable to
the root user, i.e., the message originator.

Example 1. In Fig. 1(b), u3 participated in two cascade paths, i.e., S1 =
(u1, u3, u4) and S2 = (u1, u3, u6). Thus, S∗

1 = (u3, u4) and S∗
2 = (u3, u6). We

then have αC(u3) = 2/3+2/3
3 ≈ 0.44.

In Definition 1, we do not simply use the proportion of users activated by a user
in a cascade to evaluate her/his bridging performance. This is because it only
captures the number of activated users and ignores the speed of the diffusion.
Taking u2 in Fig. 1(b) as an example, according to our definition, αC(u2) = 0.25
which is smaller than αC(u3). This is due to the fact that u2 activated two users
through two retweets while u3 only used one. However, if we only consider the
proportion of activated users, the values of these two users will be the same.

With a user’s bridging value calculated in each cascade, we define user bridg-
ing magnitude to evaluate her/his overall importance in the diffusion of a given
set of observed messages. Intuitively, we first add up the bridging values of a
user in all his/her participated cascades and then normalise the sum by the
maximum number of cascades participated by a user. This method captures not
only the bridging value of a user in each participated cascade, but also the num-
ber of cascades she/he participated in. This indicates that, a user who is more
active in sharing COVID-19 related information is considered more important
in information diffusion.

Definition 2 (User bridging magnitude (UBM)). Let C be a set of cas-
cades on a social network and U be the set of users that participate in at least
one cascade in C. A user u’s user bridging magnitude (UBM) is calculated as:

ωC(u) =
∑

C∈C αC(u)
maxu′∈U |{C ∈ C|αC(u′) > 0}| .

With this measurement, we can compare the UBM values of any two given users,
and learn which one plays a more important role in information diffusion.

5.2 Validation of UBM

Experimental Results. We compare the effectiveness of our UBM to five
widely used topology-based measurements in the literature, i.e., in-degree,
PageRank [25], TwitterRank [30], betweenness centrality [14] and community
centrality [14]. We randomly split the set of cascades into two subsets. The first

250 N. Chen et al.

Table 2. Comparison of bridging performance with benchmarks.

in-degree PageRank TwitterRank Betweenness

centrality

Community

centrality

UBM

Avg. #activated user/minute 0.042 0.057 0.064 0.043 0.056 0.104

Avg. #activated users 13.99 16.84 17.68 15.54 17.00 23.81

%impacted user 32.17 52.54 57.44 43.44 56.54 71.66

Fig. 3. Profile distribution of the top 30 accounts with highest bridging performance

subset accounts for 80% of the cascades and is used to calculate the bridging per-
formance of all users. Then we select the top 20% users with the highest bridging
performance in every adopted measurement and use the other subset to compare
their actual influences in information diffusion. We adopt three measurements
to quantitatively assess the effectiveness of UBM and the benchmarks. We use
the average number of activated users per minute to evaluate the efficiency of
the information diffusion. The more users activated in a minute, the faster infor-
mation can be spread when it is shared by the influential users. The average
number of activated users counts the users who received the information after
the retweeting behaviour of an identified influential user. It is meant to evaluate
the expected wideness of the spread once an influential user retweets a message.
The percentage of impacted users gives the proportion of users that have ever
received a message due to the sharing behaviours of identified influential users.
This measurement is to compare the overall accumulated influence of all the
selected influential users. We show the results of UBM and other benchmark
measurements in Table 2. We can observe that it takes less time on average for
the influential users identified according to UBM to activate an additional user,
with 0.104 users activated a minute due to their retweets. With 23.81 users acti-
vated, UBM allows for finding the users whose retweeting action can reach more
than 35% users than those identified by the benchmarks. In the end, the top
20% influential users identified by UBM spread their shared information to 71%
users in our dataset, which overwhelms that of the best benchmark by about
15%. From the above analysis in terms of the three measurements, we can see
that our UBM can successfully identify influential users whose sharing on social
media manages to promote both the wideness and the speed of the diffusion of
COVID-19 related information.

The Burden of Being a Bridge 251

Manual Analysis. In order to understand the profiles of the calculated influ-
ential users by the measurements, we select the top 30 users with the highest
bridging performance of each measurement. We identify four types of user pro-
files: private, media, politicians and emergency management agencies (EMA).
Figure 3 shows the distributions of their profiles. We can observe that the dis-
tributions vary due to the different semantics of social connections captured by
the measurements. For instance, due to the large numbers of followers, Twitter
accounts managed by traditional media are favoured by in-degree. This obviously
underestimates the importance of accounts such as those of EMAs in publishing
pandemic updates. With reachability and importance in connecting users and
communities considered, more accounts of politicians and EMAs stand out. The
proportion of private accounts also starts to increase. When UBM is applied,
the percentage of private accounts becomes dominant. A closer check discovers
that 10 out of the 11 private accounts belong to health professionals and celebri-
ties. This is consistent with the literature [16] which highlights the importance
of health professionals and individuals in broadcasting useful messages about
preventive measures and healthcare suggestions in the pandemic.

6 Impact of COVID-19 on the SWB of Influential Users

6.1 Measuring SWB

We extend the definition proposed in [34] to measure the level of subjective well-
being of users based on the sentiment expressed in their past tweets. Specifically,
we extend it from bi-polarity labels, i.e., negative and positive affection, to tri-
polarity with neutral sentiment by multiplying a scaling factor to simulate the
trustworthiness of the bi-polarity SWB.

Definition 3 (Social media Subjective well-being value (SWB)). We
use Np(u), Nneg(u) and Nneu(u) to denote the number of positive, negative
and neutral posts of a user u, respectively. The subjective well-being value of
u, denoted by swb(u), is calculated as:

Np(u) − Nneg(u)
Np(u) + Nneg(u)

·
(

Np(u) + Nneg(u)
Np(u) + Nneg(u) + Nneu(u)

) 1
2

.

If all messages are neutral, then swb(u) is 0.

Discussion. Note that i) consistent with [34], we focus on affective SWB (i.e.,
positive and negative) in this paper, while ignoring its cognitive dimension;
ii) users’ SWB is evaluated based on their original messages: originally posted
tweets and quotations; iii) for tweets with quotations to other messages, only the
texts are considered without the quoted messages. As retweets may not explicitly
include users’ subjective opinions, we exclude them from the SWB calculation.

252 N. Chen et al.

Fig. 4. SWB changes after the outbreak of the pandemic.

6.2 Analysing SWB Changes of Influential Users

With the proposed SWB measurement, we study how users’ subjective well-
being changes due to the outbreak of the COVID-19 pandemic. We calculate the
UBM values of the users in our collected dataset and order them descendingly.
Then we select the top 20% users as well as the bottom 20% users and compare
the two groups’ responses to the pandemic. For each group, we calculate users’
SWBs according to their posts before the pandemic and after the pandemic to
capture the changes. Note that we only consider the users with more than 5
posts in each time period. In Fig. 4, we show the SWB distributions of the two
user groups. On average, the users with high UBM have positive SWB of 0.11
before the pandemic while the users with low UBM are negative. The SWB of
both user groups decreases after the pandemic but the SWB of the top 20% users
drops more significantly. Specifically, their SWB falls by 0.33, which is two times
as much as that of the bottom 20% users. The lowest value of the top 20% users’
SWB slightly decreases after the pandemic, while the lowest value of the bottom
20% of users does not change significantly. Note that the minimum values here
do not include outliers that lie outside the box whiskers. This indicates that the
top 20% users become even more negative than the bottom 20% users, in terms
of mean and minimum values. To sum up, the pandemic causes more negative
mental impacts on the social media users who play a more important bridging
role in transmitting COVID-19 related information.

6.3 Relation Between SWB and Bridging Performance

We conduct the first attempt to study if a user’s bridging performance has a rela-
tionship with the SWB changes of the users actively participating the diffusion
of COVID-19 related information. In addition to UBM and the five benchmark
measurements used in Sect. 5.2, we consider two additional variables: out-degree
and activity. Out-degree is used to check whether the number of accounts a user
follows correlates with SWB changes. The activity variable evaluates how active
a user is engaged in the online discourse and is quantified by the number of
messages he/she posted. In order to isolate the impacts of these variables, we
adopt the method of hierarchical multiple regression [28]. The intuitive idea is

The Burden of Being a Bridge 253

to check whether the variables of interest can explain the SWB variance after
accounting for some variables.

To check the validity of applying hierarchical multiple regression, we conduct
first-line tests to ensure a sufficiently large sample size and independence between
variables. We identify the variables corresponding to community centrality and
TwitterRank fail to satisfy the multi-collinearity requirement. We thus ignore
them in our analysis. The ratio of the number of variables to the sample size
is 1:2108, which is well below the requirement of 1:15 [28]. This indicates the
sample size is adequate. We iteratively input the variables into the model with
three stages. The results are shown in Table 3. In the first stage, we input the
variables related to network structures, i.e., in-degree, out-degree, Pagerank and
Betweenness centrality. The combination of the variables can explain 4.30% of
the SWB variance (F = 4.379, p < 0.05). Note that an F-value of greater than
4 indicates the linear equation can explain the relation between SWB and the
variables. This demonstrates that there exists a positive relationship between
the topology-based variables and SWB, but this relationship is rather weak. A
closer check on the t-values show that out-degree is irrelevant to SWB and the
rest three variables are weakly related. In the second stage, we add the variable
of activity to the model. After controlling all the variables of the first stage, we

Table 3. Hierarchical multiple regression model examining variance in SWB explained
by independent variables, ∗p < 0.05; ∗ ∗ p < 0.001

Variable B SEB b t R R2 ΔR2

Stage 1 –0.207 0.043 0.043

In-degree 0.234 0.103 0.160 2.272*

Out-degree 0.861 0.680 0.054 1.267

Pagerank 3.081 0.148 0.180 2.082*

Betweenness centrality –3.287 0.728 –1.453 –4.515**

Stage 2 –0.312 0.097 0.054

In-degree 0.228 0.102 0.158 2.239*

Out-degree 0.075 0.080 0.050 0.945

Pagerank 0.307 0.150 0.180 2.049*

Betweenness centrality –3.268 0.723 –1.390 –4.520**

Activity 0.861 0.123 0.037 0.716

Stage 3 –0.579 0.335 0.238

In-degree 0.158 0.123 0.107 1.125*

Out-degree 0.516 0.45 0.050 1.147

Pagerank 0.191 0.143 0.168 1.338*

Betweenness centrality –1.105 0.541 –0.509 –2.066**

Activity 0.067 0.133 0.053 0.508

UBM –2.254 –0.196 –1.797 –11.469**

254 N. Chen et al.

observe that user activity does not significantly contribute to the model with
t-value of 0.716. This suggests that user activity is not a predictor of SWB. In
the third stage, we introduce UBM to the model. The addition of UBM, with the
variables in the previous two stages controlled, reduces the R value from –0.219
to –0.579. UBM contributes significantly to the overall model with F = 147.82
(p < 0.001) and increases the predicted SWB variance by 23.8%. Together with
the t-value of –11.469 (p < 0.001), we can see there exists a strong negative
relation between UBM and SWB, and UBM is a strong predictor for SWB.

Discussion. The results illustrate that UBM is strongly related to SWB, while in-
degree, Pagerank and betweenness centrality are weakly related. This difference
further shows that UBM can more accurately capture users’ behaviour changes
after the outbreak of the pandemic while topology features remain similar to
those before the pandemic. This may be explained by the recent studies [17]
that once considered as a change in life after the pandemic outbreak, this extra
bridging responsibility in diffusing COVID-19 related messages is likely to asso-
ciate with lower life satisfaction.

7 Conclusion and Limitation

In this paper, we concentrated on the social media users whose sharing
behaviours significantly promote the popularity of COVID-19 related messages.
By proposing a new measurement for bridging performance, we identified these
influential users. With our collected Twitter data of an international region, we
successfully show the influential users suffer from more decrease in their subjec-
tive well-being compared to those with smaller bridging performance. We then
conducted the first research to reveal the strong relationship between a user’s
bridging performance in COVID-19 information diffusion and his/her SWB. Our
research provides a cautious reference to public health bodies that some users
can be mobilised to help spread health information, but special attention should
be paid to their psychological health.

This paper has a few limitations that deserve further discussion. First, we
only focused on the affective dimension of subjective well-being while noticing
its multi-dimensional nature. This allows us to follow previous SWB studies to
convert the calculation of SWB to sentiment analysis, but does not compre-
hensively evaluate users’ cognitive well-being, such as life satisfaction. In our
following research, we will attempt to leverage more advanced AI models to
investigate cognitive aspects such as happy and angry. Second, extracting SWB
from users’ online disclosure inevitably incurs bias compared to social surveys
although it supports analysis of an unprecedented large number of users. Third,
socio-demographic information of users is not taken into account in this paper.
It is known that SWB varies among different socio-demographic groups, and
such variation may have an impact on the results of the hierarchical multiple
regression [19]. Currently deep learning based models exist for socio-demographic
inference. In our future work, we will use the models to extract users’ socio-
demographic information such as age, gender, income and political orientation

The Burden of Being a Bridge 255

to ascertain whether the regression results will change due to the variations
of socio-demographic information. Last, we notice that the region we targeted
at may introduce additional bias in our results. As a continuous work, we will
extend our study to a region of multiple European countries and cross-validate
our findings with other published results in social science.

Ethical Considerations. This work is based completely on public data and does
not contain private information of individuals. Our dataset is built in accordance
with the FAIR data principles [31] and Twitter Developer Agreement and Policy
and related policies. Meanwhile, there have been a significant amount of stud-
ies on measuring users’ subjective well-being through social media data. It has
become a consensus that following the terms of service of social media networks
is adequate to respect users’ privacy in research [13]. To conclude, we have no
ethical violation in the collection and interpretation of data in our study.

References

1. Banerjee, D., Meena, K.S.: COVID-19 as an “Infodemic” in public health: Critical
role of the social media. Front. Public Health 9, 231–238 (2021)

2. Barbieri, F., Camacho-Collados, J., Espinosa Anke, L., Neves, L.: TweetEval: uni-
fied benchmark and comparative evaluation for tweet classification. In: Proceed-
ings of 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1644–1650. Association for Computational Linguistics (2020)

3. Bradley, M.M., Lang, P.J.: Affective norms for English words (ANEW): Instruction
manual and affective ratings. Tech. rep., the Centre for Research in Psychophysi-
ology, University of Florida (1999)

4. Chen, E., Lerman, K., Ferrara, E.: Tracking social media discourse about the
COVID-19 pandemic: development of a public coronavirus Twitter data set. JMIR
Public Health Surveill. 6(2), e19273 (2020)

5. Chen, N., Chen, X., Zhong, Z., Pang, J.: From #jobsearch to #mask: improv-
ing COVID-19 cascade prediction with spillover effects. In: Proceedings of 2021
International Conference on Advances in Social Networks Analysis and Min-
ing(ASONAM), pp. 455–462. ACM (2021)

6. Chen, N., Chen, X., Zhong, Z., Pang, J.: Exploring spillover effects for COVID-19
cascade prediction. Entropy 24(2) (2022)

7. Cinelli, M., et al.: The COVID-19 social media infodemic. Sci. Rep. 10(1), 1–10
(2020)

8. Diener, E., Emmons, R.A., Larsen, R.J., Griffin, S.: The satisfaction with life scale.
J. Pers. Assess. 49(1), 71–75 (1985)

9. Diener, E., Oishi, S., Lucas, R.E.: Personality, culture, and subjective well-being:
Emotional and cognitive evaluations of life. Annu. Rev. Psychol. 54(1), 403–425
(2003)

10. Dubey, S., et al.: Psychosocial impact of COVID-19. Diab. Metabol. Synd. Clin.
Res. Rev. 14(5), 779–788 (2020)

11. Duong, V., Luo, J., Pham, P., Yang, T., Wang, Y.: The ivory tower lost: how college
students respond differently than the general public to the COVID-19 pandemic.
In: Proceedings 2020 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), pp. 126–130. IEEE (2020)

256 N. Chen et al.

12. Engel de Abreu, P.M., Neumann, S., Wealer, C., Abreu, N., Coutinho Macedo,
E., Kirsch, C.: Subjective well-being of adolescents in Luxembourg, Germany, and
Brazil during the COVID-19 pandemic. J. Adolesc. Health 69(2), 211–218 (2021)

13. Fernando, S., López, J.A.D., Şerban, O., Gómez-Romero, J., Molina-Solana, M.,
Guo, Y.: Towards a large-scale Twitter observatory for political events. Futur.
Gener. Comput. Syst. 110, 976–983 (2020)

14. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw.
1(3), 215–239 (1978)

15. Guarino, S., Pierri, F., Giovanni, M.D., Celestini, A.: Information disorders during
the COVID-19 infodemic: the case of Italian Facebook. Online Soc. Netw. Media
22, 100124 (2021)

16. Hernandez, R.G., Hagen, L., Walker, K., O’Leary, H., Lengacher, C.: The COVID-
19 vaccine social media infodemic: healthcare providers’ missed dose in addressing
misinformation and vaccine hesitancy. Hum. Vacc. Immunother. 17(9), 2962–2964
(2021)

17. Hu, Z., Lin, X., Kaminga, A.C., Xu, H.: Impact of the COVID-19 epidemic on
lifestyle behaviors and their association with subjective well-being among the gen-
eral population in mainland China: Cross-sectional study. J. Med. Internet Res.
22(8), e21176 (2020)

18. Huang, S., Lv, T., Zhang, X., Yang, Y., Zheng, W., Wen, C.: Identifying node role
in social network based on multiple indicators. PLoS ONE 9(8), e103733 (2014)

19. Jaidka, K., Giorgi, S., Schwartz, H.A., Kern, M.L., Ungar, L.H., Eichstaedt, J.C.:
Estimating geographic subjective well-being from Twitter: a comparison of dictio-
nary and data-driven language methods. Proc. Natl. Acad. Sci. 117(19), 10165–
10171 (2020)

20. Kupavskii, A., et al.: Prediction of retweet cascade size over time. In: Proc. 2012
International Conference on Information and Knowledge Management (CIKM),
pp. 2335–2338. ACM (2012)

21. Li, Y.M., Lai, C.Y., Chen, C.W.: Discovering influencers for marketing in the
blogosphere. Inf. Sci. 181(23), 5143–5157 (2011)

22. Liu, Y., et al.: RoBERTa: A robustly optimized BERT pretraining approach. In:
ICLR (2019)

23. Mirbabaie, M., Bunker, D., Stieglitz, S., Marx, J., Ehnis, C.: Social media in times
of crisis: learning from Hurricane Harvey for the coronavirus disease 2019 pandemic
response. J. Inf. Technol. 35(3), 195–213 (2020)

24. Ou, X., Li, H.: Ynu oxz @ haspeede 2 and AMI : XLM-RoBERTa with ordered
neurons LSTM for classification task at EVALITA 2020. In: Proceedings of 2020
Evaluation Campaign of Natural Language Processing and Speech Tools for Italian
(EVALITA), vol. 2765 (2020)

25. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Tech. rep, Stanford InfoLab (1999)

26. Rosenthal, S., Farra, N., Nakov, P.: Semeval-2017 task 4: Sentiment analysis in
Twitter. In: Proceedings of 2017 International Workshop on Semantic Evaluation
(SemEval), pp. 502–518 (2017)

27. Struweg, I.: A twitter social network analysis: the South African health insurance
bill case. In: Hattingh, M., Matthee, M., Smuts, H., Pappas, I., Dwivedi, Y.K.,
Mäntymäki, M. (eds.) I3E 2020. LNCS, vol. 12067, pp. 120–132. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45002-1 11

28. Tabachnick, B.G., Fidell, L.S., Ullman, J.B.: Using Multivariate Statistics. Pearson
Education (2007)

https://doi.org/10.1007/978-3-030-45002-1_11

The Burden of Being a Bridge 257

29. Wang, Y., Shen, H., Liu, S., Gao, J., Cheng, X.: Cascade dynamics modeling with
attention-based recurrent neural network. In: Proceedings of 2017 International
Joint Conference on Artificial Intelligence (IJCAI), pp. 2985–2991. IJCAI (2017)

30. Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influ-
ential twitters. In: Proceedings of 2010 ACM International Conference on Web
Search and Data Mining (WSDM), pp. 261–270 (2010)

31. Wilkinson, M.D., et al.: The fair guiding principles for scientific data management
and stewardship. Sci. Data 3(1), 1–9 (2016)

32. Yang, C., Srinivasan, P.: Life satisfaction and the pursuit of happiness on Twitter.
PLoS ONE 11(3), e0150881 (2016)

33. Zarocostas, J.: How to fight an infodemic. Lancet 395(10225), 676 (2020)
34. Zhou, X., Jin, S., Zafarani, R.: Sentiment paradoxes in social networks: why your

friends are more positive than you? In: Proceedings of 2020 International Confer-
ence on Web and Social Media (ICWSM), pp. 798–807. AAAI Press (2020)

SkipCas: Information Diffusion Prediction
Model Based on Skip-Gram

Dedong Ren and Yong Liu(B)

School of Computer Science and Technology, Heilongjiang University, Harbin, China

2201840@s.hlju.edu.cn, liuyong123456@hlju.edu.cn

Abstract. The development of social network platforms such as Twitter
and Weibo has accelerated the generation and transmission of informa-
tion. Predicting the growth size of the information cascade is widely used
in the fields of preventing rumor spread, viral marketing, recommenda-
tion system and so on. However, most of the existing methods either
cannot fully capture the structural representation of the cascade graph,
or cannot effectively utilize the dynamic changes of information diffusion,
which often leads to poor prediction results. Therefore, in this paper, we
propose a novel deep learning model called SkipCas to predict the growth
size of the information cascade. First, we use the diffusion path and time
effect at each diffusion time in the cascade graph to obtain the dynamic
process of the information diffusion. Second, we put the sequence of
biased random walk sampling into the skip-gram model to obtain the
structural representation of the cascade graph. Finally, we combine the
dynamic diffusion process and the structural representation to predict
the growth size of the information cascade. Extensive experiments on
two real datasets show that our model SkipCas significantly improves
the prediction accuracy compared with the state-of-the-art models.

Keywords: Information cascade · Cascade size prediction · Structural
information · Random walk

1 Introduction

Online social networking platforms such as Twitter, Weibo and Facebook have
become the main sources of information in people’s daily life. Being able to accu-
rately predict the size of information diffusion after a certain period has attracted
widespread attention in the academic community, which plays a critical role in
suppressing rumors information diffusion, improving content recommendation
and other many down-stream applications [1,2].

Many approaches have been proposed for predicting information diffusion.
It mainly falls into three categories: 1) Feature-based approaches: They mainly
focus on identifying and incorporating hand-crafted features for cascade pre-
diction, such as temporal features [3,4], structural features [5,6], and content
features [7,8], etc. Their performance depends on extracted features, which are
difficult to generalize to new domains. 2) Generative approaches: The popularity
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 258–273, 2023.
https://doi.org/10.1007/978-3-031-26390-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_16&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_16

SkipCas: Information Diffusion Prediction Model Based on Skip-Gram 259

of information cascades over time is considered as a dynamic time series fitting
problem [9], leading to the development of certain macroscopic distributions or
stochastic processes based on various strong assumptions. These approaches rely
heavily on the designed self-excited mechanisms and intensity functions [10,11].
This usually has a huge gap with the real world, resulting in poor predictive
power. 3) Deep learning-based approaches: In recent years, researchers leverage
various deep learning techniques to capture the temporal and sequential pro-
cesses of information diffusion. For example, DeepCas [12], Topo-LSTM [13],
and DeepCon+Str [14] model the network topology for information diffusion
prediction; DeepHawkes [15] and RNN-based CRPP [16] model the temporal
information for information diffusion prediction.

Despite obvious improvements in modeling cascade diffusion, existing deep
learning methods still face several key challenges: 1) The dynamics of infor-
mation diffusion are not effectively utilized in existing methods. 2) The struc-
tural representation of the cascade network are critical for accurately predicting
information cascades. However, most methods fail to fully obtain the structural
representation, resulting in unsatisfactory prediction results.

To address the above challenges, we propose a novel information cascade pre-
diction model called SkipCas, which attempts to capture the dynamic diffusion
process of the information cascade and obtain the structural representation of
the cascade network. To capture the dynamic diffusion process, we put the dif-
fusion path at each diffusion time in the cascade graph into GRU to obtain path
representations, weight path representations with diffusion time, and then pool
all path representations. To obtain the structural representation of the cascade
network, we represent the cascade graph as a set of biased random walk paths
and fed them into the skip-gram model to obtain node representations, and then
pool all node representations. Finally, we integrate the dynamic diffusion process
with the structural representation to predict the growth size of the information
cascade. Our main contributions can be summarized as follows:

1) We propose a novel deep learning model called SkipCas for information
growth size prediction.

2) We encode the diffusion path at each diffusion time in the cascade graph,
which can well preserve the dynamic diffusion process of information diffusion.

3) We leverage the skip-gram model to capture the network structure and obtain
the structural representation of the cascade graph.

4) Extensive experiments on several real-world cascade datasets show that Skip-
Cas can significantly improve the cascade size prediction performance com-
pared with the state-of-the-art approaches.

2 Related Works

2.1 Cascades Prediction

The existing methods on information cascade prediction fall into the following
three categories:

260 D. Ren and Y. Liu

Feature-based approaches extract various hand-crafted features from the orig-
inal data, usually including information temporal features [3,4], cascade struc-
tural features [5,6], content features [7,8] and user features [17], and then predict
its popularity through various machine learning models. However, their perfor-
mance relies heavily on the relevant features extracted by hand, and may not be
directly applied when they are not in a specific environment, thus the feature-
based approaches are not easy to generalize.

Generative approaches typically treat the growing size of the information
cascade as a cumulative stochastic process [18], modeling it as a parametric
model and then estimating the parameters for each event by maximizing the
probability of the event occurring at the observed time. [19] divided the observed
popularity into multiple stages at equal-sized time intervals, modeled them using
multiple linear regression and auto-regression, respectively. In addition to the
simple regression-based model, they also used different point processes, such
as Poisson [20,21] and Hawkes processes [10,22]. However, as mentioned in [1],
the Poisson process is too simple to capture the diffusion patterns, and Hawkes
usually overestimates their popularity, probably due to their underlying self-
excitation mechanism. In contrast, SkipCas enables incorporates both structural
and temporal information.

Deep learning-based approaches are inspired by deep neural networks and
have achieved significant performance improvements in many applications. Deep-
Cas [12] is the first deep learning-based information cascade prediction model,
which learns the representation of cascade graphs in an end-to-end manner.
DeepHawkes [15] inherits the high interpretability of the Hawkes process and
has the high predictive ability of deep learning methods. CasCN [23] samples
the cascade graph as cascade subgraphs and employs a dynamic multi-directional
convolutional network to learn the structural information of the cascade graph.
VaCas [24] extends the deterministic cascade embedding with random node rep-
resentation and diffuse uncertainty, enabling more robust cascade prediction.
In addition, methods such as CYAN-RNN [25], Topo-LSTM [13], and SNIDSA
[26] extract the full path of diffusion from sequential observations of information
infections, using recurrent neural networks and attention mechanisms to model
information growth and predict diffusion size. However, they lack better learning
ability in cascading structural information and dynamics modeling, due to the
bias of sampling methods and the inefficiency of local structure embedding.

2.2 Graph Representation

Learning node embeddings in graphs aims to learn low-dimensional latent repre-
sentations of nodes in the networks, and the learned feature representations can
be used as features for various graph-based tasks, such as classification, cluster-
ing, link prediction, and visualization. Word2vec [27] is an unsupervised learning
technique that given a word can guess its surrounding context. Inspired by it,
the DeepWalk [28] algorithm first introduced a word vector training model to
the network. To capture the diversity of network structures, node2vec [29] gen-
erated biased second-order random walk, rather than uniform ones. In addition,

SkipCas: Information Diffusion Prediction Model Based on Skip-Gram 261

inspired by Convolutional Neural Networks, GCN [30] has also been developed to
learn representations of nodes in graphs from neighboring node representations,
such as GraphSage [31] and DiffPool [32]. We fuse dynamic diffusion processes
to predict the cascade growth size based on the skip-gram model.

3 Preliminaries

In this section, we will formally define the cascade prediction problem.

Definition 1. Social Graph. Given a snapshot of a social network graph G =
(V,E), where V is the set of vertices of the social graph and E ⊂ V × V is the
set of edges. A vertex can be a user of a social platform or a paper in the network
of academic papers, and an edge represents the relationship between two nodes,
such as retweeting or citing.

Definition 2. Cascade Graph. Suppose there are M messages in the social
network, for the i-th message we use the cascade graph Ci to represent. Each
cascade graph Ci corresponds to an evolution sequence, we use the cascade
gi(tj) =

{
V

tj
i , E

tj
i , tj

}
to represent the diffusion process of the cascade graph Ci

within time tj , where V
tj
i denotes the users participating in the cascade within

time tj , E
tj
i denotes the feedback relationship between users in V

tj
i (e.g., retweet-

ing or citation), tj is the time between retweets of the original post. The diffusion
process of the cascade graph is shown in Fig. 1, i.e., gi(t0) = {{A} , {�} , t0},
gi(t1) = {{A,B} , {(A,B)} , t1}, ... , and so on.

Definition 3. Growth Size. In this paper, the growth size of the cascade is
defined as the number of retweets or citations of a message or paper. Specifically,
given a cascade Ci, within the observation time window T , our research task is
to predict the growth size �Si of Ci at the fixed time interval �t, e.g., �Si =
|V T+�t

i | − |V T
i |.

Fig. 1. Diffusion cascade graph of a certain message.

262 D. Ren and Y. Liu

4 Model

The framework of our proposed SkipCas model takes the cascade as input and
predicts the growth size �Si of the cascade graph Ci as output. The model is
shown in Fig. 2. SkipCas consists of four main components: 1) Diffusion path
coding: the diffusion paths are coded by recurrent neural networks according
to the observed cascade diffusion order; 2) Time effect: the encoded diffusion
paths combine with temporal effects to further extract the cascade representa-
tion; 3) Structural modeling: the sequence of random walk sampling is used to
obtain the structural representation of the cascade graph through the skip-gram;
4) Prediction: the cascaded representation with time effect and the structural
representation are fed into the multilayer perceptron for cascade size prediction.

Fig. 2. Framework of SkipCas model.

4.1 Diffusion Path Encoding

Users participating in cascading diffusion will not only be affected by users who
have just occurred retweeting behavior, but also by previous users; similarly, pre-
vious participants will also influence their direct retweeters and indirect retweet-
ers. As shown in Fig. 1, user A published a message, user B retweeted the message
from user A, and D retweeted the message of user B, then the retweet path of
this message is A → B → D, user A still has influence on the delivery of the
message. This illustrates that each user in the cascade may have an impact on
the whole information transfer that follows it. Therefore, we encode the entire
cascaded diffusion path.

We use the Gated Recursive Unit (GRU) to encode the entire diffusion path.
Specifically, each user in the diffusion path is first represented by a one-hot
vector, and then according to the order of the diffusion path, the k-th in the

SkipCas: Information Diffusion Prediction Model Based on Skip-Gram 263

diffusion path, denoted as xk ∈ Rd, is fed to the GRU unit. The hidden state
hk = GRU(xk, hk−1) is updated after the update operation on it, where the
output hk ∈ RH , the input xk ∈ Rd, hk−1 represents the hidden state before the
update, d is the dimension size of the user, and H is the dimension size of the
hidden state. The update formula of GRU is as follows:

The reset gate rk ∈ RH is calculated by

rk = σ(Wrxk + Urhk−1 + br). (1)

The update gate zk ∈ RH is calculated by

zk = σ(Wzxk + Uzhk−1 + bz). (2)

The actual activation of hidden state hk is calculated by

hk = zk · hk−1 + (1 − zk) · tanh(Whxk + Uhhk−1 + bh), (3)

where σ(·) is the sigmoid activation function, Wr ∈ RH×d, Wz ∈ RH×d, Wh ∈
RH×d, Ur ∈ RH×H , Uh ∈ RH×H , Uz ∈ RH×H and br ∈ RH , bz ∈ RH , bh ∈ RH

are independent trainable parameters.

4.2 Time Effect

The time effect is a common phenomenon of cascading information diffusion and
plays an important role in cascading prediction. For example, a post on Weibo
is usually frequently retweeted in the first period after it is published, and the
number of retweets decreases with time.

Suppose a cascade Ci whose duration after generation is t, then it is easy
to know how long the time interval between its generation and each retweet or
citation. Then we can get the time interval of each user’s retweet in the cascade
graph, e.g.,

{
t′v = trv − t0 | 0 ≤ t′v ≤ t, v ∈ V

tj
i

}
, where trv is the time when user

v retweets the message, and t0 is the original posting time of the post.
In order to learn the effect of time on the cascade, we employ the following

time decay effect. Supposing the time window of the observed cascade is [0,T], we
divide the time window into l equal-sized time intervals as {[t0, t1), ..., (tl−1, tl]},
where t0 = 0, tl = T . It can assign a corresponding interval to each diffusion
time, thus we can compute the corresponding time interval β of the time decay
effect for a retweet at time t:

β = � t′v
T/l

	 (0 ≤ t′v ≤ t). (4)

The function of the time decay effect is:

λβ =
1

1 + t′
v

t0

. (5)

264 D. Ren and Y. Liu

Then we add the time decay effect to the obtained cascaded hidden state ht,
and further obtain

h′
t = λβht. (6)

Summation to obtain the representation vector for the cascade Ci:

h′(Ci) =
T∑

t=1

h′
t. (7)

4.3 Structural Modeling

The future size of the cascade depends heavily on who is the information “propa-
gator”, i.e., the nodes in the current cascade graph. Therefore, a straightforward
way to represent a graph is to treat it as a bag of nodes. However, this approach
ignores the structural information in the cascade graph, which is important in
predicting diffusion. The biased random walk considers the breadth-first and
depth-first sampling strategies, which can better capture the structural informa-
tion of the cascade graph. Therefore, we represent the cascade graph Ci as a set
of cascade paths sampled through multiple biased random walk processes. For
each random walk process, we first sample the starting node with the following
probability:

p(u) =
degCi

(u) + α∑
u∈VCi

(degG(u)+α)

, (8)

where α is the smoother, degCi
is the out-degree of node u in cascade Ci, and

degG(u) is the degree of u in the global graph G, VCi
is the set of nodes in

cascaded Ci. Then, after the starting node, the neighboring nodes are sampled
with the following probability:

p(u ∈ NCi
(v) | v) =

degCi
(u) + α∑

u∈NCi
(v)(degG(u)+α)

, (9)

where NCi
(v) represents the set of neighbors of v in the cascade graph Ci.

The number and length of random walk sampling sequences play a key role
in determining the representation of the cascade graph. Therefore, in order to
better perform the sampling process, we set two parameters L and K, where K
represents the number of sequences sampled, and L represents the length of each
sequence. We fix L and K as constants, the specific settings will be explained in
the next section of the experiment. Sampling of a sequence stops when we reach a
predefined length L or when we reach a node without any outgoing neighbors. If
the length of the one sequence is less than L, the sequence is filled with a special
node ‘+’. This process of sampling sequences continues until K sequences are
sampled.

The skip-gram model was originally proposed in [28] and has been applied to
deal with word representations in natural language. It aims to classify as many
words as possible based on another word in the same sentence. Specifically,
the representation of each given word is the input, and the model uses logistic

SkipCas: Information Diffusion Prediction Model Based on Skip-Gram 265

regression to predict the words within a certain distance before and after the
input word in the sentence. Similarly, we use the sequence of nodes obtained
by random walk as input, and after the logarithmic function mapping of the
projection layer, we get the embedding vector of each node. Suppose NCi

(v)
is the neighborhood list of node v generated by the neighborhood sampling
strategy, and the embedding representation is denoted as Ĥ =

{
ĥ1, ĥ2, ..., ĥn

}
,

where n is the number of nodes. The following objective can be optimized by
the skip-gram model to maximize the log-probability of the node neighborhood
NCi

(v) for all v ∈ VCi
as follows:

max
Ĥ

∏
v∈VCi

P (NCi
(v) | ĥv). (10)

According to the conditional independence assumption, we get:

P (NCi
(v) | ĥv) =

∏
p∈NCi

(v)

P (ĥp | ĥv). (11)

According to the feature space symmetry assumption in Node2vec. We
assume that the source node and the neighbor nodes have symmetric effects
with each other in the embedding space, the conditional likelihood function for
each source-neighbor node pair can be modeled using a softmax function param-
eterized by the dot product of its features:

P (ĥq | ĥv) =
exp(ĥp · ĥv)∑

q∈VCi
exp(ĥq · ĥv)

. (12)

With the above assumptions, the final objective function can be simplified
to:

min
Ĥ

Sloss =
∑

v∈VCi

(log
∑

q∈VCi

exp(ĥq · ĥv) −
∑

p∈NCi
(v)

(ĥp · ĥv)). (13)

4.4 Prediction

We integrate the minimization of the squared loss between the predicted growth
size and the ground truth, where a multilayer perceptron is used as the predic-
tion, the formula is as follows:

min
θ

Oloss =
M∑
i=1

(log ΔSi − log ΔS̃i)2. (14)

ΔSi = MLP (h′(Ci) ⊕
∑

v∈VCi

ĥv). (15)

where θ denotes the trainable parameters of the MLP, ΔSi denotes the predicted
growth size for cascade Ci, and ΔS̃i denotes the ground truth.

266 D. Ren and Y. Liu

5 Experiments

In this section, we describe the details of the experiments performed on real-
world datasets and the analysis of the results between our proposed model and
baseline methods.

5.1 Datasets

We evaluate the effectiveness of the proposed model in two information cascade
prediction scenarios and compare it with previous work using publicly available
datasets, i.e., Weibo and APS. The statistics of the dataset are shown in Table 1.

Sina Weibo is a public dataset provided by [15], where each tweet and its
retweets can form a retweet cascade. We follow a similar experimental setup to
[15] with observation time windows of length T = 1 h, 2 h and 3 h. Due to the
effect of circadian rhythms, we focus on tweets posted between 8 am and 6 pm.
We randomly select 70% for training, 15% for validation, and the remaining 15%
for testing.

American Physical Society (APS) [20] contains scientific papers published by
APS journals. Each paper and its citations in the APS dataset form a citation
cascade, and the growth size of the cascade is the number of citations. We only
use papers published between 1893 and 1989, so that each paper has at least 20
years to develop its cascade. For the length T of the observation time window,
we choose T = 5 years, 7 years and 9 years. Similarly, the first 70% of the data
is used for training, 15% for validation, and 15% for testing.

Table 1. Statistics of datasets

Dataset Weibo APS

Number of Cascades All 119,311 207,685

Number of Nodes All 325,380 616,014

Number of Edges All 8,466,858 4,710,547

T 1 h 2 h 3 h 5 years 7 years 9 years

Trian 25,515 29,515 31,780 16,299 21,171 24,658

Cascades val 5,386 6,324 6,810 3,582 4,507 5,254

Test 5,386 6,324 6,810 3,475 4,589 5,279

5.2 Baselines

We compare the proposed model with some state-of-the-art cascade prediction
methods, including:

Feature-Based : Recent studies have shown that structural features, temporal
features, and other features (e.g., content features) are useful for information
cascade prediction. We select several features commonly used in cascade graphs

SkipCas: Information Diffusion Prediction Model Based on Skip-Gram 267

(e.g., the number of nodes, the number of edges, average degree, edge density)
and predicted the size of the cascade through Feature-linear and Feature-Deep.

Node2vec [29]: It is the representative of node embedding methods. We perform
random walks on the cascade graph and generate an embedding vector for each
node. Then the embeddings of all nodes in the cascade graph are fed into the
MLP for prediction.

DeepCas [12]: The first deep learning architecture for information cascade pre-
diction, which represents the cascade graph as a set of random walk paths via
random walks, and uses GRU and attention mechanism to model and predict
cascade sizes in an end-to-end manner.

Topo-LSTM [13]: It uses a directed acyclic graph as the diffusion topology, the
LSTM is used to model the relationship between nodes in the graph. The hidden
state and cell of each node at a given time depends on the hidden state and cell
of each previous node that was infected before that time instant.

DeepHawkes [15]: It integrates the high predictive power of deep learning into
the interpretable factors of the Hawkes process for cascading size prediction.
Bridging the gap between predicting and understanding information cascades.

CasCN [23]: It samples the cascade graph as a sequence of sub-cascade graphs,
learns the local structure of each sub-cascade by graph convolution, and then
captures the evolution of the cascade structure using LSTM.

DeepCon+Str [14]: It learns the embeddings of the cascade as a whole. It first
constructs higher-order graphs based on content and structural similarity to
learn the low-dimensional representation of each cascade graph, and then makes
cascade predictions through a semi-supervised language model.

5.3 Experimental Settings

The models mentioned above involve several hyper-parameters. For example, the
L2 coefficient in Feature-linear is chosen to be 0.05. For Feature-deep, the param-
eters are similar to deep learning-based approaches. For the sampling sequence
of the cascade graph, we set K = 200 paths and the length of each path L = 10.
For Node2vec, we follow the work in [29].

For DeepCas, DeepHawkes, Topo-LSTM, CasCN, DeepCon+Str and our
model SkipCas all follow the settings of [12], where the user embedding dimension
size is 50, the hidden layer of each GRU is 32 units, and the hidden dimensions
of the two-layer MLP are 32 and 16, respectively. The learning rate is 0.005, the
batch size is set to 32, and the smoother α is set to 0.01.

5.4 Evaluation Metric

Following the existing work, we adopt mean squared log-transformed error
(MSLE) to evaluate the accuracy of predictions on the test set, which is widely
used in cascaded prediction evaluation. MSLE is defined as:

268 D. Ren and Y. Liu

MSLE =
1
M

M∑
i=1

(log ΔSi − log ΔS̃i)2, (16)

where M is the total number of messages, ΔSi denotes the predicted growth size
for cascade Ci, and ΔS̃i denotes the ground truth.

Table 2. Overall performance comparison of information cascades prediction among
different methods.

Datasets Weibo APS

Metric MSLE

T 1 h 2 h 3 h 5 years 7 years 9 years

Features-deep 3.682 3.361 3.296 1.593 1.514 1.465

Features-linear 3.501 3.435 3.324 1.582 1.508 1.456

Node2vec 3.795 3.523 3.513 2.278 2.003 1.982

DeepCas 3.649 3.250 3.056 1.629 1.538 1.467

Topo-LSTM 2.772 2.643 2.423 1.511 1.483 1.462

DeepHawkes 2.501 2.384 2.275 1.286 1.236 1.162

CasCN 2.348 2.243 2.066 1.455 1.353 1.222

DeepCon+Str 2.670 2.391 2.377 1.468 1.382 1.327

SkipCas 2.251 2.103 1.890 1.163 1.086 1.045

5.5 Experimental Results

We compare the performance of the proposed model with several baseline meth-
ods on the Weibo and APS datasets, and the results are shown in Table 2. Exper-
imental results show that the SkipCas model performs relatively well on infor-
mation cascade prediction for both datasets. It not only outperforms traditional
methods, but also state-of-the-art deep learning methods, with a statistically
significant drop in MSLE. We plot the training process of SkipCas on the Weibo
and APS datasets as shown in Fig. 3. It can be seen that the SkipCas loss grad-
ually converges to a lower result.

The performance gap between Feature-deep and Feature-linear is very small,
and Feature-linear outperforms Feature-deep on the APS dataset. This means
that deep learning does not always perform better than traditional prediction
methods if there is a representative set of information cascading features. How-
ever, the performance of these methods depends heavily on the relevant features
extracted by hand, and it is difficult to generalize to other domains.

For the embedding method, Node2vec performs poorly on both datasets. It
only uses the nodes in the graph to represent the network and ignores other
structural and content information in the cascade.

DeepCas shows better performance than feature-based methods on the Weibo
dataset, but it is inferior to feature-based methods on the APS dataset, which

SkipCas: Information Diffusion Prediction Model Based on Skip-Gram 269

again shows that deep learning methods are not necessarily better than feature-
based methods. However, it still performs worse than other deep learning-based
methods because it ignores temporal features and topology of cascaded graphs;
similarly, Topo-LSTM lacks temporal features and cannot extract enough infor-
mation from the cascade, so that its performance is slightly worse compared to
our model. DeepHawkes does not consider the topological information of the cas-
cade, and its performance depends on the time series modeling ability. Although
CasCN utilizes the structure and time information of the cascade network at
the same time, its performance is not the best due to its weak ability to learn
structural information. DeepCon+Str utilizes the similarity of cascade graph
structure and content to obtain the embedding of the whole cascade graph, but
it does not consider the time factor, which affects the prediction performance.

Among these baselines, SkipCas has the best performance and achieves good
results on both datasets because it fully investigates the dynamic diffusion pro-
cess and structural representation of information cascades.

Fig. 3. Convergence of SkipCas on Weibo and APS datasets.

5.6 Ablation Study

To better investigate the effectiveness of each component of SkipCas, we pro-
pose four variants. Table 3 summarizes the performance comparison between the
models and variants.

SkipCas-LSTM : This method uses LSTM to replace the GRU of the proposed
model. Similar to GRU, the LSTM variant models the cascading information
through extra gating units.

SkipCas-Time: This method does not consider the time effect of the cascade
graph, and is to test the necessity of the time effect in the proposed model.

SkipCas-Path: This method uses a cascade sequence of random walk samples
instead of diffusion paths.

SkipCas-Skipgarm: This method does not consider the skip-gram component of
the proposed model and only uses GRU and temporal features for prediction,
which is to test the importance of the structure of the cascade graph.

270 D. Ren and Y. Liu

From Table 3, we can see that compared with other variants, the prediction
error of the original model SkipCas has a certain reduction. Although the error
of SkipCas-LSTM is not different from the original model, it can still show that
our choice of recurrent neural network is correct; by comparing SkipCas-Time,
we find that ignoring the time effect leads to a significant increase in prediction
error, which indicates that the time effect is essential in cascading predictions.
Similarly, the prediction performance of SkipCas-Path is also decreased signif-
icantly, which indicated that the diffusion path could better reflect the change
process of the cascade graph. In addition, compared with the original model,
the prediction effect of SkipCas-Skipgram is significantly reduced, which fully
shows that the structural information of the cascade graph is very important in
cascade prediction.

In summary, the time effect of the cascade and the structural information
of the cascade are important for future cascade prediction, and our experiments
also demonstrate the validity and necessity of the individual components of the
proposed model, which essentially improve the performance of the information
cascade prediction.

Table 3. Performance comparison between SkipCas and its variants.

Datasets Weibo APS

Metric MSLE

T 1h 2 h 3 h 5 years 7 years 9 years

SkipCas-LSTM 2.301 2.194 1.958 1.325 1.166 1.088

SkipCas-Time 2.523 2.438 2.321 1.582 1.458 1.356

SkipCas-Path 2.332 2.286 2.147 1.465 1.364 1.229

SkipCas-Skipgram 2.495 2.423 2.348 1.529 1.328 1.267

SkipCas 2.251 2.103 1.890 1.163 1.086 1.045

5.7 Parameter Analysis

The observation time window T is an important parameter of the model. As
shown in Fig. 4, we can observe that the value of MSLE decreases continuously
with increasing observation time on the Weibo dataset, and the prediction error
improves by 16% for 3 h compared to 1 h; similarly, the same effect is observed
on the APS citation dataset, where the prediction performance continues to
improve with the increase of observation years, and the prediction error improves
by 10.1% for 9 years compared to 5 years. This shows that as the observation
time window T increases, the more information we can observe, the easier it is
to make more accurate predictions, which is also a natural result of the increase
in training data.

For the time interval l, we choose the datasets with Weibo of 2 h and APS
of 7 years for analysis. It can be seen from Fig. 5 (left) that with the increase of

SkipCas: Information Diffusion Prediction Model Based on Skip-Gram 271

the time interval, the prediction performance of the model gradually improves,
but when the time interval exceeds 8, the performance starts to decrease again.
Therefore, the experiment in this paper adopts the time interval l = 8.

For the user embedding dimension size d, we also choose the datasets with
Weibo of 2 h and APS of 7 years. The experimental results are shown in Fig. 5
(right). With the increase of dimension size d, the prediction performance of
the model improves. When d is 50, the minimum value of MSLE indicates that
the prediction effect is the best at this time. However, when the user dimension
size exceeds 50, the prediction performance does not improve but decreases.
Therefore, in this paper, the user embedding dimension size d is 50.

Fig. 4. The effect of observation window on the performance of Weibo (left) and APS
(right) datasets.

Fig. 5. The effect of time interval l (left) and user embedding dimension size d (right)
on datasets performance.

6 Conclusion

In this paper, we propose a novel information cascade prediction model called
SkipCas. Our model encodes the diffusion path at each diffusion time in the
cascade graph to obtain the dynamic process of information diffusion, uses the
sequence of random walk sampling to obtain the structural representation of
the cascade graph through skip-gram, and finally predicts the growth size of
the information cascade by combining the diffusion process and the structural

272 D. Ren and Y. Liu

representation. The experimental results on two real datasets show that SkipCas
significantly improves the cascade prediction performance. As for future works,
we plan to incorporate relevant message features such as text content to improve
prediction performance and explore more effective methods to further mine the
structural information between the cascades.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (No. 61972135), the Natural Science Foundation of Heilongjiang
Province in China (No. LH2020F043), and the Foundation of Graduate Innovative
Research of Heilongjiang University in China (No. YJSCX2022-236HLJU).

References

1. Gao, X., Cao, Z., Li, S., Yao, B., Chen, G., Tang, S.: Taxonomy and evaluation for
microblog popularity prediction. In: TKDD, pp. 1–40 (2019)

2. Zhou, F., Xu, X., Trajcevski, G., Zhang, K.: A Survey of information cascade
analysis: models, predictions, and recent advances. ACM Comput Surv. 54(2),
1–36 (2021)

3. Szabo, G., Huberman, B.A.: Predicting the popularity of online content. Commun.
ACM 53(8), 80–88 (2010)

4. Pinto, H., Almeida, J.M., Gonçalves, M.A.: Using early view patterns to predict
the popularity of youtube videos. In: WSDM, pp. 365–374 (2013)

5. Bao, P., Shen, H., Huang, J., Cheng, X.: Popularity prediction in microblogging
network: a case study on sina weibo. In: WWW, pp. 177–178 (2013)

6. Weng, L., Menczer, F., Ahn, Y.: Predicting successful memes using network and
community structure. In: ICWSM (2014)

7. Tsur, O., Rappoport, A.: What’s in a hashtag? Content based prediction of the
spread of Ideas in microblogging communities. In: WSDM,, pp. 643–652 (2012)

8. Ma, Z., Sun, A., Cong, G.: On predicting the popularity of newly emerging hashtags
in Twitter. Assoc. Inf. Sci. Technol. 64(7), 1399–1410 (2013)

9. Bao, Z., Liu, Y., Zhang, Z., Liu, H., Cheng, J.: Predicting popularity via a gener-
ative model with adaptive peeking window. Phys. A 522, 54–68 (2019)

10. Zhao, Q., Erdogdu, M.A., He, H.Y., Rajaraman, A., Leskovec, J.: SEISMIC: a
self-Exciting point process model for predicting tweet popularity. In: SIGKDD,
pp. 1513–1522 (2015)

11. Rizoiu, M., Xie, L., Sanner, S., Cebrian, M., Yu, H., Hentenryck, P.V.: Expecting
to be HIP: Hawkes intensity processes for social media popularity. In: WWW, pp.
735–744 (2017)

12. Li, C., Ma, J., Guo, X., Mei, Q.: DeepCas: an end-to-end predictor of information
cascades. In: WWW, pp. 577–586 (2017)

13. Wang, J., Zheng, V.W., Liu, Z., Chang, K.C.: Topological recurrent neural network
for diffusion prediction. In: ICDM, pp. 475–484 (2017)

14. Feng, X., Zhao, Q., Liu, Z.: Prediction of information cascades via content and
structure proximity preserved graph level embedding. Inf. Sci. 560, 424–440 (2021)

15. Cao, Q., Shen, H., Cen, K., Ouyang, W.R., Cheng, X.: DeepHawkes: bridging the
gap between prediction and understanding of information cascades. In: CIKM, pp.
1149–158 (2017)

16. Saha, A., Samanta, B., Ganguly, N., De, A.: CRPP: competing recurrent point
process for modeling visibility dynamics in information diffusion. In: CIKM, pp.
537–546 (2018)

SkipCas: Information Diffusion Prediction Model Based on Skip-Gram 273

17. Cui, P., Jin, S., Yu, L., Wang, F., Zhu, W., Yang, S.: Cascading outbreak prediction
in networks: a data-driven approach. In: SIGKDD, pp. 901–909 (2013)

18. Yu, L., Cui, P., Wang, F., Song, C., Yang, S.: From micro to macro: uncovering and
predicting information cascading process with behavioral dynamics. In: ICDM, pp.
559–568 (2015)

19. Pinto, H., Almeida, J.M., Gonçalves, M.A.: Using early view patterns to predict
the popularity of youtube videos. In: WSDM, pp. 365–374 (2013)

20. Shen, H., Wang, D., Song, C., Barabasi, A.L.: Modeling and predicting popularity
dynamics via reinforced poisson processes. In: AAAI, pp. 291–297 (2014)

21. Iwata, T., Shah, A., Ghahramani, Z.: Discovering latent influence in online social
activities via shared cascade poisson processes. In: SIGKDD, pp. 266–274 (2013)

22. Zaman, T., Fox, E.B., Bradlow, E.T.: A Bayesian approach for predicting the
popularity of tweets. Ann. Appl. Stat. 8(3), 1583–1611 (2014)

23. Chen, X., Zhou, F., Zhang, K., Trajcevski, G., Zhong, T.: Information diffusion
prediction via recurrent cascades convolution. In: ICDE, pp. 770–781 (2019)

24. Zhou, F., Xu, X., Zhang, K., Trajcevski, G., Zhong, T.: Variational information dif-
fusion for probabilistic cascades prediction. In: INFOCOM, pp. 1618–1627, (2020)

25. Wang, Y., Shen, H., Liu, S., Gao, J., Cheng, X.: Cascade dynamics modeling with
attention-based recurrent neural network. In: IJCAI, pp. 2985–2991 (2017)

26. Wang, Z., Chen, C., Li, W.: A sequential neural information diffusion model with
structure attention. In: CIKM, pp. 1795–1798 (2018)

27. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S.: Distributed representations of
words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

28. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: SIGKDD, pp. 701–710 (2014)

29. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In:
SIGKDD, pp. 855–864 (2016)

30. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional net-
works. In: ICLR, (2017)

31. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS, pp. 1025–1035 (2017)

32. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: NeurIPS, pp. 4800–
4810 (2018)

Probing Spurious Correlations in Popular
Event-Based Rumor Detection

Benchmarks

Jiaying Wu(B) and Bryan Hooi

School of Computing, National University of Singapore, Singapore, Singapore

jiayingwu@u.nus.edu, bhooi@comp.nus.edu.sg

Abstract. As social media becomes a hotbed for the spread of mis-
information, the crucial task of rumor detection has witnessed promis-
ing advances fostered by open-source benchmark datasets. Despite being
widely used, we find that these datasets suffer from spurious correla-
tions, which are ignored by existing studies and lead to severe over-
estimation of existing rumor detection performance. The spurious cor-
relations stem from three causes: (1) event-based data collection and
labeling schemes assign the same veracity label to multiple highly sim-
ilar posts from the same underlying event; (2) merging multiple data
sources spuriously relates source identities to veracity labels; and (3)
labeling bias. In this paper, we closely investigate three of the most
popular rumor detection benchmark datasets (i.e., Twitter15, Twitter16
and PHEME), and propose event-separated rumor detection to eliminate
spurious cues. Under the event-separated setting, we observe that the
accuracy of existing state-of-the-art models drops significantly by over
40%, becoming only comparable to a simple neural classifier. To better
address this task, we propose Publisher Style Aggregation (PSA), a gen-
eralizable approach that aggregates publisher posting records to learn
writing style and veracity stance. Extensive experiments demonstrate
that our method outperforms existing baselines in terms of effectiveness,
efficiency and generalizability.

Keywords: Rumor detection · Spurious correlations · Benchmarks ·
Text mining · Social network

1 Introduction

In the battle against escalating online misinformation, recent years have wit-
nessed growing interest in automatic rumor detection on social media. Numer-
ous real-world rumor detection datasets including Twitter15 [13], Twitter16
[13] and PHEME [15] have emerged as valuable resources fueling continuous
development in this field. From early feature engineering models [1] to recent
content-based [5,20] and propagation-based [6,29] methods, the ever-evolving
approaches have achieved promising advances.

However, most existing methods ignore the spurious attribute-label correla-
tions induced by dataset construction pitfalls, which arise from dataset-related
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 274–290, 2023.
https://doi.org/10.1007/978-3-031-26390-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_17&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_17

Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks 275

artifacts instead of relationships generalizable to practical real-world settings.
The commonly adopted event-based data collection framework first fact-checks
newsworthy events, and then automatically scrapes a large number of highly sim-
ilar microblogs (e.g., tweets) containing the same event keywords. Some bench-
mark datasets also merge data samples from multiple existing sources to bal-
ance their class distribution. These factors consequently induce event-label and
source-label correlations, which may not hold in practice.

Negligence of spurious cues can lead to unfair over-predictions that limit
model generalization and adaptability. Similar issues have been identified in
several natural language processing tasks including sentiment classification [17],
argument reasoning comprehension [18] and fact verification [35], but the task
of social media rumor detection remains underexplored.

Hence, in this paper, we make an effort to thoroughly investigate the causes
of spurious correlations in existing rumor detection benchmark datasets, and
take solid steps to counteract their impact. Specifically, we identify three causes
of spurious correlations: (1) event-based data collection and labeling strategies
associate event keywords with veracity labels; (2) merging data sources for label
balancing creates correlations between source-specific propagation patterns and
microblog veracity; and (3) event-level annotation strategies give rise to labeling
bias. Under the post-level data splitting scheme commonly adopted by existing
approaches, the prevalence of spurious cues can bring about numerous shared
spurious correlations between the training and test data. For instance, the train-
ing and test data might even contain identical microblog texts, leading to data
leakage (see examples in Fig. 1). If left unchecked, these correlations can lead to
severe overestimation of model performance.

To offset the impact of spurious cues, we study a more practical task, namely
event-separated rumor detection, where the test data contains microblogs from a
set of events unseen during training. Without prior knowledge of event-specific
cues in the test set, we empirically demonstrate stark performance deteriora-
tion of existing approaches, e.g. state-of-the-art rumor detection accuracy plum-
mets from 90.2% to 44.3% on Twitter16 [13], one of the most widely adopted
datasets.

Striving for reliable rumor detection, we propose Publisher Style Aggrega-
tion (PSA), a novel method inspired by human fact-checking logic (i.e. reading
through a user’s homepage to determine user stance and credibility). Specifically,
our approach (1) encodes the textual features of source posts and user comments;
(2) learns publisher-specific features based on multiple microblog instances pro-
duced by each source post publisher; and (3) augments each local microblog
representation with its corresponding global publisher representation.

We evaluate PSA on the event-separated rumor detection task using 3 real-
world benchmark datasets and compare it against 8 state-of-the-art baselines.
Extensive experiments show that PSA outperforms its best competitors by a
significant margin, respectively boosting test accuracy and F1 score by 14.18%
and 15.26% on average across all 3 datasets. Furthermore, we empirically demon-
strate the efficiency and generalizability of PSA via two experimental objectives,
namely early rumor detection and cross-dataset rumor detection. Our code is
publicly available at: https://github.com/jiayingwu19/PSA.

https://github.com/jiayingwu19/PSA

276 J. Wu and B. Hooi

Fig. 1. Automated event-based scraping results in numerous duplicate microblog texts
in benchmark datasets Twitter15 and Twitter16, causing data leakage under ran-
dom splitting. The highlighted words are event keywords obtained from the Snopes
fact-checking website, in line with the datasets’ data collection scheme (see Sect. 3.1).

2 Related Work

Social Media Rumor Detection. Real-world rumor detection datasets, with
microblog posts and propagation patterns retrieved from social media platforms
such as Twitter [12,13,15] and Weibo [4], form the bedrock of rapidly evolving
approaches.

Recent advances in automated rumor detection typically adopt neural net-
work based frameworks. Content-based approaches utilize microblog and com-
ment features. For instance, [4,9] respectively employ Recurrent Neural Net-
works and Convolutional Neural Networks to model the variations of text and
user representations over time. Hierarchical attention networks [10] and pre-
trained language models [11] have also proven effective. Another line of work
leverages propagation-based information diffusion patterns to encode informa-
tion flow along user interaction edges. Some inject structural awareness into
recursive neural networks [20] and multi-head attention [21–23], while others
achieve success with Graph Neural Networks [6,40].

Closely related to our topic is fake news detection. [38] trains an event dis-
criminator to overlook domain-specific knowledge under the multi-modal setting,
[39] formulates domain-agnostic fake news detection as a continual learning prob-
lem, [37] studies the case with limited labeling budget, and [7,36] take advantage
of auxiliary user descriptions and large-scale user corpus.

Existing methods either overlook the publisher-microblog relationship or
require external knowledge (e.g. images and additional user description). In
contrast, we seek to achieve generalizable rumor detection by capturing rumor-
indicative publisher characteristics based on aggregation of multiple microblog
data samples.

Investigation of Spurious Correlations. Despite the promising performance
of deep learning models, reliance on dataset-related cues has been observed in
a wide range of tasks including text classification [17], natural language infer-
ence [32] and visual question answering [30]. In fact-checking scenarios, language
models can capture underlying identities of news sites [19], and rumor instances

Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks 277

can possess time-sensitive characteristics [11]. Spurious artifacts lead to model
failure on out-of-domain test instances, as empirically observed by [23,29,41].

However, systematic investigation into social media rumor detection remains
unexplored. We bridge this gap by discussing three types of spurious correlations
specific to this topic, and provide a solution to offset the impact of spurious
correlations (i.e. event-separated rumor detection).

3 Spurious Correlations in Event-Based Datasets

3.1 Event-Based Data Collection

In this subsection, we outline the event-based data collection scheme adopted by
benchmark datasets.

Newsworthy Event Selection: Newsworthy events serve as vital information
sources, from which rumors and non-rumors arise and diffuse on social media.
Existing studies either collect events from leading fact-checking websites (e.g.,
Snopes, Emergent, and PolitiFact) [4,12,14], or obtain candidate events identi-
fied by professionals [15].

Keyword-Based Microblog Retrieval: To facilititate mass collection, exist-
ing datasets typically adopt automated event-based data collection strategies,
i.e. for each event, (1) extract keywords from its claim; (2) scrape microblogs via
keyword-based search; and (3) select influential microblogs. Event keywords are
mostly neutral (e.g. places, people or objects), carrying little or no stance.

Microblog Labeling Scheme: Existing rumor detection datasets conduct
fact-checking at either event-level [4,12,14] or post-level [15]. While event-level
labeling assigns all source posts under an event with the same event-level fact-
checking label, post-level labeling annotates every source post independently.
Although both event- and post-level annotations are performed by trained pro-
fessionals, the former is more vulnerable to data selection pitfalls, on which we
elaborate in Sect. 3.2.

3.2 Possible Causes of Spurious Correlations

We investigate three of the most popular event-based rumor detection bench-
mark datasets containing source posts, propagation structures and conversation
threads, namely Twitter15 [13], Twitter16 [13] and PHEME [15], and sum-
marize the dataset statistics in Table 1. As Twitter15 and Twitter16 both
consist of class-balanced tweets with abundant interactions, we also sample class-
balanced tweets involving at least 10 users in PHEME for a fair comparison.

Intra-Event Textual Similarity: Under each event, the automated keyword-
based microblog retrieval framework collects a large number of highly similar
keyword-sharing samples with the same label, even obtaining identical microblog
texts (Fig. 1). Consequently, the correlations between event keywords and class
labels result in strong textual cues that generalize poorly beyond the current event.

278 J. Wu and B. Hooi

Table 1. Dataset statistics.

Dataset Twitter15 Twitter16 PHEME

Labeling scheme Event-level Event-level Post-level

of Events 298 182 9

of Source Posts 1490 818 973

of Non-Rumors 374 205 245

of False Rumors 370 205 241

of True Rumors 372 207 244

of Unverified Rumors 374 201 243

of Distinct Users 480,984 289,675 12,905

of User Interactions 622,927 362,713 21,169

Ev
en

t S
ize

80

60

46 44 42

51
48

39
35

26

261
235

167
137 135

“paul walker” Non-Rumor False True Unverified
train 0 0 56 0
dev 0 0 5 0
test 0 0 17 0

Fig. 2. The size of largest events in three datasets; “paul walker” directly correlates
with “True” label in the post-level random splits adopted by the SOTA method [22].

Under the post-level data splitting scheme adopted by existing works, these cues
would scatter into different splits, creating shared correlations between the train-
ing and test data that do not hold in the real world. We illustrate such correla-
tions via Twitter15’s largest event about the death of Paul Walker (Fig. 2). All
80 microblogs reporting this event are assigned the “True” label, among which
78 contain the keywords “paul walker”. These event-specific keywords produce a
strong correlation between “paul walker” and the “True” label. Under post-level
random splitting, these samples spread across different data splits, creating unde-
sirable textual similarity between the training and test data. As shown in Fig. 2,
the datasets are dominated by such large-size events. Specifically, the top-5 largest
events cover 96.09% of data samples in PHEME, while large-size events (contain-
ing more than 5 keyword-sharing tweets) cover more than 70% of samples inTwit-
ter15 and Twitter16. Large event sizes lead to the prevalence of event-specific
keyword-label correlations, further exacerbating the problem.

Merge of Data Sources: For label balancing purposes, Twitter15 and
Twitter16 merge tweets from multiple sources including [4,12,16], and scrape
additional news events from verified media accounts. While the events covered by

Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks 279

Source Avg. # of
Interactions / Post

Avg.
Time Range (hours)

news_accounts 623.11 867.17
IJCAI 439.59 1214.65
PLOS_ONE 308.12 184.95
snopes 337.65 566.76

Non-Rumor

False

True

Unverified

of source posts

172

Fig. 3. Source-label correlations in Twitter16 suggest underlying spurious properties.
IJCAI and PLOS ONE refer to [4,16], respectively.

Claim: Photograph shows debris scene of
shot-down Malaysia Airlines Flight 17.

Fact-checking: Picture is deliberately fabricated
Event Label: FALSE RUMOR

Tweet Mislabel: FALSE RUMOR

Fig. 4. One mislabeled instance from Twitter15, where the source tweet, inconsistent
with the Snopes claim, is wrongly assigned the same event-level label.

different sources do not overlap, direct 1-1 correlations between data sources and
labels can possibly induce spurious correlations between data source features and
the labels. As demonstrated in Fig. 3, the user interaction count (comments and
reposts) and interaction time range of tweets from each source form distinctive
patterns. For instance, all tweets from PLOS ONE [16] are “True”, spread very
quickly and tend to arouse less interactions. These source-specific propagation
patterns could possibly be exploited by graph- or temporal-based models, which
we empirically demonstrate in Sect. 6.5 (Table 4).

Labeling Bias: While automated event-based data retrieval and event-level
annotations allow for easier construction of large-scale benchmark datasets, the
lack of post-level scrutiny induces vulnerability to labeling bias. For instance,
as shown in Fig. 4, Snopes marked a MH17-related event claim as “False” due
to image fabrication. However, in view of highly similar keywords “Malaysian
Airlines” and “photo”, the data collection framework retrieved an MH17-relevant
tweet linking to an authentic photo by Reuters and mistakenly labeled it as
“False” in Twitter15. Such mislabelings exacerbate our previously mentioned
problem of intra-event textual similarity, making the resulting keyword-label
correlations stronger but more deceptive. To make the best use of valuable data
resources, we suggest that future approaches incorporate techniques that are
robust to label noise (e.g. noise-tolerant training [34]).

280 J. Wu and B. Hooi

4 Event-Separated Rumor Detection

4.1 Problem Formulation

Social media rumor detection aims to learn a classification model that is able
to detect and fact-check rumors. Let T = {T1, T2, . . . , TN} be a rumor detection
dataset of size N , and Y = {y1, y2, . . . , yN} be the corresponding ground-truth
labels, with yi ∈ C = {1, . . . , C}. Each microblog instance Ti consists of a source
post publisher ui, a source post pi, and related comments c1i , . . . , c

k
i . pi (cji) has a

corresponding textual feature vector ri (rji). Denote the event behind microblog
instance Ti as ei. Consequently, training data Ttr and test data Tte respectively
contain events Etr = {ei|Ti ∈ Ttr} and Ete = {ei|Ti ∈ Tte}.

Most existing approaches ignore the underlying microblog-event relationship
and adopt event-mixed post-level data splits, resulting in significant overlap
between Etr and Ete. However, prior knowledge of test data is not always guar-
anteed in practice (e.g. the model’s performance gains from duplicate tweets in
the training and test data are unlikely to generalize), and previous assumptions
can lead to performance overestimation caused by intra-event textual similarity
(see Sect. 3.2).

In order to eliminate these confounding event-specific correlations, we pro-
pose to study a more practical problem, namely event-separated rumor
detection, where Etr ∩ Ete = ∅. This task is challenging due to the underlying
event distribution shift, and it thereby provides a means to evaluate debiased
rumor detection performance.

4.2 Existing Approaches

We compare the event-mixed and event-separated rumor detection perfor-
mance of representative approaches on Twitter15, Twitter16 and PHEME
datasets to investigate the impact of event-specific spurious correlations.

Propagation-Based:(1) TD-RvNN [20]: a recursive neural model that
encodes long-distance user interactions with gated recurrent units. (2) GLAN
[21]: a global-local attentive model based on microblog-user heterogeneous
graphs. (3) BiGCN [6]: a GCN-based model that encodes augmented bi-
directional rumor propagation patterns. (4) SMAN [22]: a multi-head attention
model that enhances training with user credibility modeling.

Content-Based: (1) BERT [24]: a deep language model that encodes bidirec-
tional context with Transformer blocks. (2)XLNet [27]: a generalized autoregres-
sive approach that trains on all possible permutations of word factorizations. (3)
RoBERTa [25]: a refined BERT-like approach that adopts dynamic masking for
varied masking patterns over different epochs. (4) DistilBERT [26]: a distilled
model that maintains 97% of BERT’s performance with 60% less parameters.

Data Splitting. For all three datasets, we sample 10% instances for validation,
then split the remainder 3:1 into training and test sets. Specifically, we obtain
the event-separated splits based on the publicly available event IDs released in
Twitter15 [13], Twitter16 [13] and PHEME [15], respectively.

Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks 281

Fig. 5. Existing rumor detection approaches fail to generalize across events. Comparing
between event-mixed and event-separated settings, mean accuracy based on 20 different
runs of each approach demonstrates drastic performance deterioration. (Over 40% drop
on Twitter15 & 16, and over 20% on PHEME.)

4.3 SOTA Models’ Performance Is Heavily Overestimated

Figure 5 reveals a stark contrast between event-mixed and event-separated rumor
detection performance. More specifically, test accuracy plummets from 74.0%–
89.2% to 30.5%–42.8% on Twitter15, from 72.7%–90.2% to 28.8%–44.3% on
Twitter16, and from 58.3%–69.2% to 37.3%–43.4% on PHEME. Further-
more, despite the consistency of best event-separated performance across all
three datasets, all models achieve significantly higher event-mixed performance
on Twitter15 and Twitter16 than on PHEME, where the former adopts
event-level labeling and the latter adopts post-level labeling (see Sect. 3.1). This
gap is in line with our hypothesis that direct event-label correlations induce
additional bias.

Results imply the heavy reliance of existing methods on spurious event-
specific correlations. Despite performing well under the event-mixed setting,
these models cannot generalize to unseen events, resulting in poor real-world
adaptability.

5 Proposed Method

To tackle the challenges of event-separated rumor detection, we propose Pub-
lisher Style Aggregation (PSA), a novel approach that learns generalizable pub-
lisher characteristics based on each publisher’s aggregated posts, as illustrated
in Fig. 6.

5.1 Consistency of Publisher Style

Source post publishers are highly influential users who produce claims towards
newsworthy events. Therefore, each publisher’s unique credibility stance and
writing style can exhibit distinctive traits that help determine the veracity of
their statements. For a more intuitive view, we illustrate the Twitter15 pub-
lisher tendency towards each class in Fig. 7. Specifically, for publisher u, we
define u’s tendency score under class c as (# microblogs posted by u under class

282 J. Wu and B. Hooi

Fig. 6. Overview of our proposed PSA framework.

Fig. 7. Publishers tend to post tweets of the same credibility type, as exemplified by
Twitter15 publisher behavior patterns.

c)/(# microblogs posted by u). Figure 7 shows that most publishers have scores
either approaching 0 or approaching 1 towards one particular class, i.e., most
publishers tend to post microblogs under a single veracity label, which verifies
our hypothesis of publisher style consistency.

5.2 Content-Based Microblog Encoding

We first propose two simple neural classifiers, namely RootText and MeanText,
to study the importance of source post and comment features in social media
rumor detection. In each dataset, all source posts and comments constitute a
vocabulary of size |V |. Following [6,13], we formulate each source post feature
ri ∈ R

|V | and its related comment features rji ∈ R
|V | as the sum of all one-hot

word vectors within the corresponding source post or comment.

RootText: Source posts contain the claims to be fact-checked. Therefore, we
propose to encode each microblog instance Ti solely based on its source post
textual feature ri, i.e., hi := ri.

Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks 283

MeanText: We also propose to consider the user comments of source posts for
more robust credibility measurement. Here, we adopt mean-pooling to condense
source post and comment features into microblog representations:

hi :=
ri + ∑k

j=1r
j
i

k + 1
. (1)

We obtain the encoding hi ∈ R
|V | of microblog Ti based on either RootText

or MeanText, and extract high-level features h̃i ∈ R
n via a two-layer fully-

connected neural network with the ReLU activation function. Then, we employ
dropout to prevent overfitting before passing h̃i through the final fully-connected
layer with output dimensionality |C| for veracity prediction.

5.3 Publisher Style Aggregation

As shown in Sect. 5.1, the writing stance and credibility of highly influential
source post publishers remain relatively stable in a fixed timeframe. Inspired by
this observation, we further propose Publisher Style Aggregation (PSA), a gener-
alizable method that jointly leverages multiple microblog instances produced by
each publisher and extracts distinctive publisher traits to enhance local features
learned within each individual microblog. More specifically, PSA (1) looks up a
set of microblog instances produced by each publisher, (2) learns publisher style
representations based on these source posts’ aggregated textual features, and (3)
augments the representation of each microblog (i.e. h̃i learned via RootText /
MeanText) with its corresponding publisher style representation s̃i.

Publisher Style Modeling: Assume that publisher ui has produced mi ≥ 1
microblog instances, with the corresponding source posts denoted as P(ui) =
{pk|uk = ui, k = 1, . . . , N}; note that only accessible data are used during train-
ing. We treat the j-th post pji ∈ P(ui) as a word token sequence with maximum
length L. Then, we construct an embedding matrix Wj

i ∈ R
L×d for pji based

on trainable d-dimensional word embeddings. We aggregate all post embed-
ding matrices {Wj

i }mi
j=1 of ui, and obtain the corresponding publisher matrix

Hi ∈ R
L×d as follows:

Hi = AGGR({Wj
i }mi

j=1), (2)

where the AGGR operator can be either MEAN or SUM.
To capture high-level publisher characteristics, we apply convolution on each

Hi to extract latent publisher style features. Specifically, we use three convo-
lutional layers with different window sizes to learn features with varied gran-
ularity. Each layer consists of F filters, and each filter outputs a feature map
f∗ = [f1

∗ , f2
∗ , . . . , fL−k+1

∗], with

f j
∗ = ReLU (Wf · Hi[j : j + k − 1] + b) , (3)

284 J. Wu and B. Hooi

where Wf ∈ R
k×d the convolution kernel, k the window size and b ∈ R a bias

term. We perform max-pooling to extract the most prominent value of each
f∗, and stack these values to form a style feature vector s ∈ R

F . Then, we
concatenate the s∗ produced by each of the three CNN layers to obtain the
publisher style representation s̃i ∈ R

3F :

s̃i = Concat[s1; s2; s3]. (4)

Microblog Veracity Prediction: We augment microblog representation h̃i ∈
R

n with the corresponding publisher style representation s̃i. Finally, we utilize
a fully connected layer to predict the microblog veracity label ŷi:

ŷi = Softmax(WT
2 (h̃i + WT

1 s̃i)), (5)

where transformations W1 ∈ R
3F×n and W2 ∈ R

n×|C|. We also apply dropout
before the final layer to prevent overfitting.

Model parameters are optimized by minimising the cross-entropy loss
between ŷi and ground truth yi.

6 Experiments

In this section, we review our experiments for answering the following questions:

Q1 (Model Performance): Does PSA outperform the existing baselines on
event-separated rumor detection?

Q2 (Early Rumor Detection): Does PSA work well under temporal rumor
detection deadlines?

Q3 (Model Generalization): Is PSA effective under cross-dataset settings?

6.1 Experimental Setup

We implement our proposed PSA model and its variants based on PyTorch 1.6.0
with CUDA 10.2, and train them on a server running Ubuntu 18.04 with NVIDIA
RTX 2080Ti GPU and Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz. We adopt
an Adam optimizer with (β1, β2) = (0.9, 0.999), learning rate of 10−4 (0.005), and
weight decay 10−5 (10−4) for Twitter15/16 (PHEME). We obtain microblog
representations via a 2-layer neural network with layer sizes of 128 and 64. We
utilize the 300-dimensional word vectors from [21] to form publisher matrices,
employ three CNN layers with the same filter number F = 100 but different
window sizes k ∈ {3, 4, 5}, concatenate their outputs and use a fully-connected
layer to extract publisher style representations with the size of 64. We implement
AGGR in Eq. 2 as both SUM and MEAN, and report average performance over
20 different runs on the event-separated data splits presented in Sect. 4.2.

Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks 285

Table 2. PSA significantly improves event-separated rumor detection accuracy (%)
and Macro F1 Score (%) (S stands for SUM and M for MEAN; averaged over 20 runs).

Method Twitter15 Twitter16 PHEME

Acc. F1 Acc. F1 Acc. F1

TD-RvNN [20] 38.62± 1.85 36.40±2.38 36.15±1.90 35.66± 1.89 37.30± 2.54 34.17± 2.56

GLAN [21] 38.56± 3.38 35.52± 5.31 33.13± 4.54 27.93± 5.53 38.10± 2.85 34.60± 3.04

BiGCN [6] 42.83± 2.27 38.17± 3.04 44.28± 3.39 42.31± 3.77 43.36± 1.71 37.93± 2.16

SMAN [22] 30.52± 2.62 28.80± 3.30 41.42± 2.65 40.62± 2.95 40.74± 1.36 36.02± 1.62

BERT [24] 40.95± 4.80 37.47± 7.56 37.89± 6.68 34.76± 9.22 40.90± 3.22 36.33± 4.02

XLNet [27] 32.05± 6.78 26.00± 9.20 28.82± 4.08 20.59± 7.06 39.14± 5.14 34.35± 6.65

RoBERTa [25] 35.30± 5.65 28.41± 7.93 34.84± 6.69 27.90± 9.74 42.25± 4.47 37.67± 5.70

DistilBERT [26] 38.09± 4.48 33.74± 5.21 38.02± 4.24 33.98± 5.56 43.33± 3.62 38.37± 4.16

RootText(RT) 33.80± 2.74 30.56± 2.92 30.54± 1.72 28.87± 2.32 42.75± 1.25 38.74± 1.47

MeanText(MT) 48.68± 1.80 47.18± 1.63 45.19± 1.86 44.23± 1.72 32.57± 1.70 30.48± 1.51

RT+PSA(S) 47.85± 5.64 45.26± 5.13 57.88± 3.16 55.30± 4.64 43.52± 0.93 37.81± 1.22

RT+PSA(M) 45.67± 0.82 38.55± 0.89 47.28± 2.87 42.74± 4.15 46.30± 1.28 41.57± 1.49

MT+PSA(S) 61.83± 1.43 58.75± 2.08 64.89± 1.75 64.31± 1.70 37.43± 1.05 32.36± 1.25

MT+PSA(M) 54.73± 1.04 50.85± 1.56 60.16± 2.76 58.16± 3.13 40.19± 1.20 35.98± 1.45

6.2 Q1. Model Performance

We compare PSA (base classifier: RootText/MeanText) with existing approaches
in Table 2.

Importance of Textual Features: We observe that MeanText outperforms
existing methods on Twitter15&16, while RootText only achieves 0.6% lower
accuracy than the best baseline on PHEME. This implies severe degradation
of overparameterized models when the spurious attribute-label correlations (i.e.
event-specific cues) in the training data do not apply to the test data, in line with
prior work [41]. Comparing between RootText and MeanText, we also observe
that the former performs better on PHEME but otherwise on Twitter15 and
Twitter16. Different labeling schemes may account for such differences; as
PHEME labels each microblog independently, the source posts would contain
the most distinctive features. While the source post content is not as distinc-
tive in Twitter15 and Twitter16, both datasets exhibit more complicated
propagation patterns (see Table 1). Therefore, adopting MeanText to aggregate
comment features proves more effective in these cases.

Effectiveness of PSA: Our proposed PSA approach, with AGGR implemented
as either SUM or MEAN, significantly enhances the base classifiers RootText
and MeanText. The best PSA combinations outperform the best baseline by a
large margin; they boost event-separated rumor detection accuracy by 19.00%
on Twitter15, 20.61% on Twitter16, and 2.94% on PHEME. Unlike exist-
ing methods, PSA explicitly aggregates publisher style features across microblog
instances from multiple events, thereby enhancing the model’s capability to learn

286 J. Wu and B. Hooi

Fig. 8. Early rumor detection accuracy (%) of PSA models against the best
propagation-based baselines for varying detection deadlines on Twitter15, Twit-
ter16 and PHEME under the event-separated setting (averaged over 20 runs).

Table 3. Cross-dataset rumor detection accuracy (%) and Macro F1 Score (%) of
PSA between T15 (Twitter15) and T16 (Twitter16), compared with the best
propagation- and content-based baseline methods (averaged over 20 runs).

Train Test Method Acc. F1

T15 T16 DistilBERT 40.70± 4.78 39.98± 5.02

BiGCN 36.80± 3.79 35.76± 3.92

MeanText 46.55± 1.33 44.11± 1.71

+ PSA (Sum) 63.99± 1.53 61.95± 1.86

T16 T15 DistilBERT 41.66± 4.95 37.07± 6.06

BiGCN 44.39 ± 1.89 42.41± 2.23

MeanText 48.00 ± 1.70 44.83± 1.63

+ PSA (Sum) 60.82± 1.47 57.97± 2.07

event-invariant features. As a result, PSA is able to capture stance and style
pertaining to distinctive publisher characteristics, leading to substantial perfor-
mance improvements.

6.3 Q2. Early Rumor Detection

Accurate and timely misinformation detection is of vital importance. Given only
partial propagation information, we compare the best PSA combinations and
their corresponding base classifiers with their best propagation-based competi-
tors. Figure 8 shows the consistent superiority of PSA over baseline methods
at all detection deadlines. Even with only the earliest 10% of comments, PSA
achieves 57.53% accuracy on Twitter15, 60.65% on Twitter16, and 46.30%
on PHEME. Note that RootText (+PSA) models maintain stable performance
across all deadlines, as they provide instant predictions solely based on source
posts. The results demonstrate that augmenting rumor detection models with
publisher style representations achieves both efficiency and effectiveness.

Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks 287

Table 4. Classification accuracy (%) based on user interaction count and interaction
time range suggests potential source-specific correlations.

Feature Twitter15 Twitter16 PHEME

A: Interaction Count 43.03 43.32 23.15

B: Time Range 37.09 44.92 27.31

A + B 44.21 55.61 26.85

6.4 Q3. Cross-Dataset Rumor Detection

To study the generalization ability of PSA, we conduct cross-dataset experiments
on Twitter15 and Twitter16, where the model is trained on one dataset and
tested on the other. For a fair comparison, we utilize the same event-separated
data splits adopted in Sects. 6.2 and 6.3. If overlapping events exist between
the training set from dataset A and the test set from dataset B, we remove all
instances related to these events in the training set, and replace them with the
same number of non-overlapping instances randomly sampled from A’s test set.

The cross-dataset setting is inherently more challenging, as the training and
test events stem from different timeframes, which can create temporal concept
shifts. However, Table 3 shows that PSA continues to excel and enhances the
base classifier (our MeanText method) by 17.44% on Twitter15 and 12.82%
on Twitter16, which further demonstrates PSA’s generality to unseen events.

6.5 Discussion: Source-Specific Spurious Cues

In Table 4, we empirically show the potential impact of source-specific spurious
cues (Sect. 3.2). Under the event-separated setting, we construct a simple Ran-
dom Forest classifier based on each microblog’s user interaction count and the
time range covered by these interactions. Surprisingly, the classifier outperforms
existing baseline methods on both Twitter15 and Twitter16, and achieves
comparable performance even with only one feature. In contrast, the single-
source PHEME remains unaffected. Although neither our proposed approaches
nor existing methods exploit these features, we nevertheless suggest the integra-
tion of debiasing techniques in future graph- and temporal-based models.

7 Conclusion

In this paper, we systematically analyze how event-based data collection schemes
create event- and source-specific spurious correlations in social media rumor
detection benchmark datasets. We study the task of event-separated rumor
detection to remove event-specific correlations, and empirically demonstrate
severe limitations on existing methods’ generalization ability. To better address
this task, we propose PSA to augment microblog representations with aggregated

288 J. Wu and B. Hooi

publisher style features. Extensive experiments on three real-world datasets show
substantial improvement on cross-event, cross-dataset and early rumor detection.

For future work, we suggest (1) event-separated rumor detection performance
as a major evaluation metric; (2) same-source samples and post-level expert
annotations in dataset construction; and (3) integration of causal reasoning and
robust learning techniques in model design, in the hope that our findings could
motivate and measure further progress in this field.

Acknowledgements. This work was supported in part by NUS ODPRT Grant R252-
000-A81-133.

References

1. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In:
WWW (2011)

2. Ma, J., Gao, W., Wei, Z., Lu, Y., and Wong, K.-F.: Detect rumors using time series
of social context information on microblogging websites. In: CIKM (2015)

3. Kwon, S., Cha, M., Jung, K., Chen, W., Wang, Y.: Prominent features of rumor
propagation in online social media. In: ICDM (2013)

4. Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B.J., Wong, K.-F., Cha, M.: Detect-
ing rumors from microblogs with recurrent neural networks. In: IJCAI (2016)

5. Zhang, J., Dong, B., Yu, P.S.: FakeDetector: effective fake news detection with
deep diffusive neural network. In: ICDE (2020)

6. Bian, T., et al.: Rumor detection on social media with bi-directional graph convo-
lutional networks. In: AAAI (2020)

7. Nguyen, V.-H., Sugiyama, K., Nakov, P., Kan, M.-Y.: FANG: leveraging social
context for fake news detection using graph representation. In: CIKM (2020)

8. Shu, K., Wang, S., Liu, H.: Beyond news contents: the role of social context for
fake news detection. In: WSDM (2019)

9. Liu, Y. Wu, Y.-F.: Early detection of fake news on social media through prop-
agation path classification with recurrent and convolutional networks. In: AAAI
(2018)

10. Shu, K., Cui, L., Wang, S., Lee, D., Liu, H.: DEFEND: explainable fake news
detection. In: KDD (2019)

11. Pelrine, K., Danovitch, J., Rabbany, R.: The surprising performance of simple
baselines for misinformation detection. In: WWW (2021)

12. Liu, X., Nourbakhsh, A., Li, Q., Fang, R., Shah, S.: Real-time rumor debunking
on twitter. In: CIKM (2015)

13. Ma, J., Gao, W., Wong, K.-F.: Detect rumors in microblog posts using propagation
structure via kernel learning. In: ACL (2017)

14. Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: FakeNewsNet: A Data
Repository with News Content, Social Context and Dynamic Information for
Studying Fake News on Social Media. arXiv preprint arXiv:1809.01286 (2018)

15. Kochkina, E., Liakata, M., Zubiaga, A.: All-in-one: multi-task learning for rumour
verification. In: COLING (2018)

16. Zubiaga, A., Liakata, M., Procter, R., Wong, S.H.G., Tolmie, P.: Analysing How
People Orient to and Spread Rumours in Social Media by Looking at Conversa-
tional Threads. Public Library of Science, PLOS ONE (2016)

http://arxiv.org/abs/1809.01286

Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks 289

17. Wang, Z., Culotta, A.: Identifying spurious correlations for robust text classifica-
tion. In: Findings of EMNLP (2020)

18. Niven, T., Kao, H.-Y.: Probing neural network comprehension of natural language
arguments. In: ACL (2019)

19. Zhou, X., Elfardy, H., Christodoulopoulos, C., Butler, T., Bansal, M.: Hidden
biases in unreliable news detection datasets. In: EACL (2021)

20. Ma, J., Gao, W., Wong, K.-F.: Rumor detection on twitter with tree-structured
recursive neural networks. In: ACL (2018)

21. Yuan, C., Ma, Q., Zhou, W., Han, J., Hu, S.: Jointly embedding the local and
global relations of heterogeneous graph for rumor detection. In: ICDM (2019)

22. Yuan, C., Ma, Q., Zhou, W., Han, J., Hu, S.: Early detection of fake news by
utilizing the credibility of news, publishers, and users based on weakly supervised
learning. In: COLING (2020)

23. Khoo, L.M.S., Chieu, H.L., Qian, Z., Jiang, J.: Interpretable rumor detection in
microblogs by attending to user interactions. In: AAAI (2020)

24. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: NAACL (2019)

25. Liu, Y., et al.: RoBERTa: A Robustly Optimized BERT Pretraining Approach.
arXiv preprint arXiv: 1907.11692 (2019)

26. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv: 1910.01108
(2019)

27. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R. Le, Q.V.: XLNet:
Generalized Autoregressive Pretraining for Language Understanding. In: Advances
in Neural Information Processing Systems (2019)

28. Wolf, T., Debut, L., et al.: Transformers: state-of-the-art natural language process-
ing. In: EMNLP (2020)

29. Huang, Y.-H., Liu, T.-W., Lee, S.-R., Alvarado, C., Henrique, F. Chen, Y.-S.:
Conquering cross-source failure for news credibility: learning generalizable repre-
sentations beyond content embedding. In: WWW (2020)

30. Agarwal, V., Shetty, R., Fritz, M.: Towards causal vqa: revealing and reducing
spurious correlations by invariant and covariant semantic editing. In: CVPR (2020)

31. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel W.:
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves
accuracy and robustness. In: ICLR (2019)

32. McCoy, T., Pavlick, E., Linzen, T.: Right for the wrong reasons: diagnosing syn-
tactic heuristics in natural language inference. In: ACL (2019)

33. Srivastava, M., Hashimoto, T.B., Liang, P.: Robustness to Spurious Correlations
via Human Annotations. In: ICML (2020)

34. Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.S.: Learning to Learn from noisy labeled
data. In: CVPR (2019)

35. Schuster, T., Shah, D., Yeo, Y.J.S., Filizzola, D., Santus, E., Barzilay, R.: Towards
debiasing fact verification models. In: EMNLP-IJCNLP (2019)

36. Dou, Y., Shu, K., Xia, C., Yu, P.S. Sun, L.: User preference-aware fake news detec-
tion. In: SIGIR (2021)

37. Silva, A., Luo, L., Karunasekera, S., Leckie, C.: Embracing Domain differences in
fake news: cross-domain fake news detection using multi-modal data. In: AAAI
(2021)

38. Wang, Y., et al.: EANN: event adversarial neural networks for multi-modal fake
news detection. In: KDD (2018)

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1910.01108

290 J. Wu and B. Hooi

39. Han, Y., Karunasekera, S., Leckie, C.: Graph neural networks with continual learn-
ing for fake news detection from social media. arXiv preprint arXiv: 2007.03316
(2020)

40. Huang, Q., Yu, J., Wu, J., Wang, B.: Heterogeneous Graph Attention Networks
for Early Detection of Rumors on Twitter. arXiv preprint arXiv:2006.05866 (2020)

41. Sagawa, S., Raghunathan, A., Koh, P. W., Liang, P.: An investigation of why
overparameterization exacerbates spurious correlations. In: ICML (2020)

http://arxiv.org/abs/2007.03316
http://arxiv.org/abs/2006.05866

Graph Neural Networks

Self-supervised Graph Learning
with Segmented Graph Channels

Hang Gao1,2, Jiangmeng Li1,2, and Changwen Zheng2(B)

1 University of Chinese Academy of Sciences, Zhongguancun East Road. 80,
Haidian District, Beijing 100081, China

2 Science and Technology on Integrated Infomation System Laboratory,
Institute of Software Chinese Academy of Sciences, Zhongguancun South Fourth

Street. 4, Haidian District, Beijing 100083, China
{Hang,Jiangmeng}@iscas.ac.cn, changwen@iscas.ac.cn

https://www.ucas.ac.cn/, http://www.iscas.cn/

Abstract. Self-supervised graph learning adopts self-defined signals as
supervision to learn representations. This learning paradigm solves the
critical problem of utilizing unlabeled graph data. Conventional self-
supervised graph learning methods rely on graph data augmentation to
generate different views of the input data as self-defined signals. How-
ever, the views generated by such an approach contain amounts of iden-
tical node features, which leads to the learning of redundant information.
To this end, we propose Self-Supervised Graph Learning with Segmented
Graph Channels (SGL-SGC) to address the issue. SGL-SGC divides the
input graph data across the feature dimensions as Segmented Graph Chan-
nels (SGCs). By combining SGCs with data augmentation, SGL-SGC can
generate views that vastly reduce the redundant information. We further
design a feature-level weight-sensitive loss to jointly accelerate optimiza-
tion and avoid the model falling into a local optimum. Empirically, the
experiments on multiple benchmark datasets demonstrate that SGL-SGC
outperforms the state-of-the-art methods in contrastive graph learning
tasks. Ablation studies verify the effectiveness and efficiency of different
parts of SGL-SGC.

Keywords: Graph neural network · Self-supervised learning ·
Unsupervised learning · Contrastive learning · Node classification

1 Introduction

Graph representation learning (GRL) aims to learn effective representations of
graph-structured data. Such representations play an important role in a variety
of real-world applications, including knowledge graphs [33], molecules [5], social
networks [12], physical processes [19], and codes [1]. Recently, Graph Neural
Networks (GNNs) emerged as a powerful approach to conducting graph rep-
resentation learning. Various GNNs, including Graph Convolutional Networks

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26390-3 18.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 293–308, 2023.
https://doi.org/10.1007/978-3-031-26390-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_18&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_18
https://doi.org/10.1007/978-3-031-26390-3_18

294 H. Gao et al.

(GCN) [12], Graph Attention Networks (GAT) [27], and Graph Isomorphism
Networks (GIN) [31], achieve eye-catching success in graph representation learn-
ing. These approaches require labeled graph data for training. However, labeling
graph data is a rather challenging task as it requires large amounts of onerous
work, particularly with large-scale graphs.

A

C

B

D

(a) Original input graph
data

A

C

B

D

A

C

B

Identical Node
Features

(b) Views generated with
data augmentation alone

A’

B’

C’ D’

A’’

B’’

C’’

None Identical
Node Feature

(c) Views generated with
SGCs and data augmenta-
tion

Fig. 1. Examples of views generated using different methods. View generated with
graph data augmentation contain identical node features. SGCs help eliminate them

To reduce the dependence on labeled data, recent research efforts are dedi-
cated to developing self-supervised learning for GNNs. In computer vision (CV),
self-supervised learning utilizing unlabeled data has already made significant
progress [4,7,10]. Viewing its success in CV, some researchers combine self-
supervised learning with graph learning and propose a variety of powerful self-
supervised graph learning (SGL) methods [8,17,28]. SGL methods rely on views,
i.e., human-defined data transformations that preserve the invariance of intrin-
sic properties of graph data, as training signals to conduct representation learn-
ing [34]. Previous works leverage the mutual information maximization princi-
ple (InfoMax) [15] and obtain graph representations by maximizing the mutual
information between representations of different views. However, the InfoMax
principle can be risky. It only encourages the maximization of mutual informa-
tion while this mutual information may contain redundancy. Based on the infor-
mation bottleneck principle [25,26,30] points out that when the task-related
information contained in the views is not damaged, the redundant mutual infor-
mation between views should be minimized. To minimize such redundancy, the
choice of views is critical [30,34].

In recent years, researchers proposed various view generation methods in
graph self-supervised learning, including node dropping, edge perturbation,
attribute masking, and subgraph [35]. These methods can be summarized as
graph data augmentation that generates different views by making minor changes
to the graph data without damaging the task-related information of the graph.
We analyze the graph data augmentation methods and propose that they can
be expressed as perturbing the original graph data with a specific form of noise.
Views generated with such a mechanism contain a large number of identical node
features, which will lead to learning redundant information. Considering Fig. 1,

Self-supervised Graph Learning with Segmented Graph Channels 295

Fig. 1(b) demonstrates the different views of an input graph (Fig. 1(a)) gen-
erated with data augmentation. The data augmentation drop nodes and delete
edges but leaves the features of node features A, B, and C unmodified, leav-
ing identical node features (marked with red) between the views. However, we
cannot reduce such redundant information with more perturbation, i.e., adding
more noise. Otherwise, the task-related information of the original graph may be
corrupted or even completely changed. The conventional graph view generation
methods show limitations here.

To address such limitations, we look to the view generation methods in CV for
inspiration. Self-supervised methods generate different views by splitting input
image data across channels, e.g., an RGB image can be split into three views for
R, G, and B channels [24]. The advantage of this view generation method is that
there is no identical feature between different views. Furthermore, it does not
introduce more noises. Since each channel provides a relatively condensed and
expressive view, this method allows the neural network to pay more attention to
task-related semantic information instead of redundant information. We believe
that a similar approach can also be applied to graph learning. Suppose we regard
each node in the graph as a pixel on the picture and artificially divide the node
features into different channels. In that case, we can generate ”channels” on the
graph, which we denote as Segmented Graph Channels (SGCs).

With SGCs, we propose the Self-Supervised Graph Learning with Segmented
Graph Channel (SGL-SGC) to enhance graph representation learning. We com-
bine SGCs with conventional graph data augmentation methods to generate
views for self-supervised learning. Figure 1(c) gives an example. Due to combin-
ing two different view generation methods, our method can generate amounts of
views without introducing more noise. We design an objective function named
feature-level weight-sensitive loss to train the encoders with these views. This
loss function helps reduce the computational burden while avoiding the model
falling into a local optimum. Furthermore, it can assign different weights to dif-
ferent samples according to their importance, further enhancing the learning
capability of SGL-SGC.

We summarize our contributions as follows:

– We propose a novel view generate method based on segmented graph channels
to generate views with less redundant information. These views strengthen
the ability of our proposed method to perform representation learning.

– We design a feature-level weight-sensitive loss as an objective function for
training the encoders with the generated views. Feature-level weight-sensitive
loss reduces computational burden while avoiding the model falling into a
local optimum. Furthermore, our loss function emphasizes the samples with
more importance.

– We conduct experiments to compare our method with state-of-the-art graph
self-supervised learning approaches on benchmark datasets, and the results
prove the superiority of our method.

296 H. Gao et al.

2 Related Works

This section reviews some representative works on graph learning and self-
supervised graph learning, as they are related to this article.

Graph Neural Networks (GNNs). GNNs learn the representation of the
graph nodes through aggregating the neighboring information. The learned rep-
resentations can then be applied to different downstream tasks. Varieties of
GNN frameworks have been raised since the concept of GNNs was proposed.
Graph Convolutional Networks (GCNs) [12] extend convolution neural networks
to graph data. As a widely used GNN, GCN adopts convolution operation to
aggregate the features from a node’s graph neighborhood. Graph Attention Net-
works (GATs) [27] introduce attention mechanisms into graph learning. GATs
measure the importance of the neighboring features before aggregating them. By
comparing the GNNs with the WL test, [31] proposes that GNNs are most pow-
erful as the WL test in distinguishing graphs and proposed Graph Isomorphism
Networks (GIN). Our proposed SGL-SGC adopts GCNs as the basic encoder.

Self-supervised Learning. Self-supervised learning, which aims to learn data
representations without labels, is a thriving learning approach with multi-
ple applications. Contrastive Predictive Coding (CPC) [16] proposes a self-
supervised framework that contrasts predictive features with original features.
CMC [24] conducts self-supervised learning by contrasting different views of
an image. Similar frameworks were later applied to graph learning. This self-
supervised learning approach successfully improves the utilization of unlabeled
data. Given the success of these approaches, [2,14] conduct theoretical analy-
sis on the reason behind them. [6,11,15] elaborates on the objectives of self-
supervised learning from the perspective of information theory.

With the proposal of GNNs, neural networks based on self-supervised graph
learning have become a research hotspot. [35] propose a framework that adopts
graph data augmentation to generate different views and maximize the agree-
ment between different representations of different views. [32] propose an app-
roach that adopts the EM algorithm to enhance the representation learning of
local and global structures. Our method focuses on reducing the redundancy of
information in the learned representations.

3 Methods

This section introduces our proposed Self-supervised Graph Learning with Seg-
mented Graph Channels (SGL-SGC). The architecture of SGL-SGC is illustrated
in Fig. 2. SGL-SGC adopts a novel view generator to acquire more independent
views than conventional unsupervised graph learning methods. We utilize multi-
ple encoders for representation learning to process these views and a feature-level
weight-sensitive loss function for fast and effective training.

Self-supervised Graph Learning with Segmented Graph Channels 297

Segment
channels

Weight-
sensitive
Barlow-

twins
Loss

...

...

Add
noises

... ...

View generation Encoders Representaions

Fig. 2. The structure of SGL-SGC. SGL-SGC can be divided into three parts, includ-
ing view generation, encoders, and loss function. In conventional self-supervised graph
learning, the view generation part usually only consists of data augmentation opera-
tions. We, on the other hand, adopt a two-phase method, including segmenting channels
and adding noise. SGL-SGC generates multiple expressive views with less redundancy.
We also use a feature-level weight-sensitive loss to train the encoders to learn better
representations of these views.

3.1 Preliminary

We first recap some preliminary concepts and notations for further exposition.
In graph learning, the input attribute graphs can be denoted as G = (V,E),
where V is a node set and E is an edge set. V have attributes {Xv ∈ R

F |v ∈ V }.
For each node v, its neighbors are denoted as Nv.

Learning Graph Representations. Given a set of graphs Gi, i = 1, 2, ..., n,
in some universe G, our objective is to learn the latent representation zi. zi

preserves the network structures and node attributes of Gi. It can be further
used for downstream tasks such as label predicting. Typically, the graph data is
fed into graph neural networks (GNNs) to acquire zi:

zi = GNNs(Gi). (1)

Graph Neural Networks. As described earlier, GNNs developed multiple
variants, yet their structures still share large similarity. For a graph G = (V,E),
a graph neural network layer can be expressed as:

h(k+1)
v = combine(k)

(
hk

v , aggregate(k)(hk
u,∀u ∈ Nv)

)
,

where h(k+1) is the representation of node v, acquired by passing the initial
node features of v through k layers of graph neural networks. update(·) and

298 H. Gao et al.

aggregate(·) are trainable functions. The graph representation z can be obtained
by pooling the node representations of the last layer:

z = pool(hk
v , v ∈ V), (2)

Mutual Information Theory. Graph contrastive learning, one of the most
popular self-supervised graph learning approaches, defines its learning objective
as maximizing the mutual information between the graph and its representation,
which is known as the mutual information maximization principle:

max
f

I(G; f(G)), where G ∼ PG . (3)

I(·) denotes the mutual information between variables. In general, graph
contrastive learning achieves mutual information maximization by maximizing
the mutual information between different views generated with data augmenta-
tion [9,34,35]. Such learning objectives can be expressed as follows:

max
f1,f2

I
(
f1(V1); f2(V2)

)
, where V1, V2 are different views of G, G ∼ PG (4)

f1(·) and f2(·) are encoders corresponding to each view. In some methods,
the encoders share the same set of parameters. We follow the same learning
objective as graph contrastive learning.

3.2 Segmented Graph Channels

We follow [35] and categorize the data augmentation approaches for view gen-
eration into four different kinds. Node dropping drops a certain amount of
nodes along with the edges linked to them. Edge perturbation changes the
connectivity of the graph by deleting or adding some edges. Attribute masking
masks are part of the node features. Subgraph sampling samples a subgraph
from the original graph.

These augmentation methods can be summarized as changing the graph
structures or node features. They can be seen as imposing some noise signal
S on the original graph data. Depending on the specific content, S could lead
to node dropping, edge perturbation, some parts of the features being masked,
and making the influenced graph a subgraph of the original one.

Definition 1. (Graph Data Augmentation with Noise). For a graph G, q(G,S)
denote a graph data augmentation of G, where S is a noise signal and q(·) denote
the function modifying G according to S. S can be randomly generated or created
according to specific rules.

As we follow the learning objective of graph contrastive learning, with Defi-
nition 1 and Eq. 4, we define our learning objective as:

max
f1,f2

I
(
f1

(
q(G,S1)

)
; f2

(
q(G,S2)

))
, where G ∼ PG . (5)

Self-supervised Graph Learning with Segmented Graph Channels 299

S1 and S2 are different noise signals corresponding to different views. e.g.,
S1 and S2 could represent the nodes and edges to be dropped, and q(·) could be
the operation that drops them. The mechanism of data augmentation results in
that there will still be a large amount of identical node features between q(G,S1)
and q(G,S2). We denote the optimal choices for the noise signals as S∗

1 and S∗
2 .

Following [23], we propose that:

(S∗
1 , S∗

2) = arg min
S1,S2

I
(
q(G,S1); q(G,S2)

)

s.t. I(q(G,S1);Y) = I(q(G,S2);Y) = I(G;Y),
where (G,Y) ∼ PG×Y .

(6)

Ideally, the values of S1 and S2 should be chosen to minimize the redun-
dant mutual information between views, which means more modifications will
be made to the input graph, e.g., more nodes dropped or edges deleted. Such
modifications will lead to an increase in input noises, which will inevitably lead
to the corruption of the original input graph. When the graphs get corrupted
and changed, they may represent different things. e.g., one node feature of a
graph might represent“movie”. After the graph is changed, the new node fea-
ture might be the same as those representing “paper”. Thus, the changed graph
has a different set of labels. We denote such labels as Y ′. We measure the mutual
information between Y and Y ′ with the following theorem:

Theorem 1. The mutual information between the original graph label Y and
distorted label Y ′ decreases as the amount of information of input noises S
increases.

Please see Appendix B for proof. Unfortunately, in the task of self-supervised
learning, Y ′ is not available. We have to conduct the training under the assump-
tion that Y is almost the same as Y ′. However, suppose we rely on increasing
the input noises S to decrease the mutual information between views. In that
case, the mutual information between Y ′ and Y will drop significantly, making
the learning meaningless. On the other hand, If we do not increase the input
noises that much, there are bound to be identical node features between differ-
ent views, which will lead to learning redundant information. An alternative is
required.

Inspired by contrastive learning algorithms in the computer vision
domain [24], we propose the concept of the Segmented Graph Channel (SGC)
to generate different views.

Definition 2. (Segmented Graph Channel). For graph G = (V,E) with
attributed node features {Xv ∈ R

F |v ∈ V }, we denote SGCs of G as C,
C = (V ′, E), V ′ is a node set that is the same as V except for attributed node
features {Xv′ ∈ R

F ′ |v′ ∈ V ′}. Xv′ is a feature vector that consists of part of the
data extracted out of Xv, F ′ ≤ F . The feature vectors of graph G are split into
different parts to get different SGCs. During the generation of Xv′ , the extraction
location on each node feature is the same.

300 H. Gao et al.

Different from graph augmentations, SGCs generate new views without dam-
aging any graph information. However, SGCs alone can’t serve as different views
because of their lack of deformation of the graph structure. We combine the SGCs
with the data augmentation method and propose our new learning objective:

max
f1,f2

I
(
f1

(
q(C1, S1)

)
; f2

(
q(C2, S2)

))
, (7)

where C1 and C2 are two SGCs of G. We can completely eliminated iden-
tical node features between q(C1, S1) and q(C2, S2) as we extract different
parts of node features. The edge features can be augmented using conventional
approaches. Thus, our new learning objective can effectively reduce the redun-
dant mutual information between views compared to conventional data augmen-
tation methods. Furthermore, we achieve such a goal without further introducing
noise.

3.3 Network Structure

The network structure of SGL-SGC is demonstrated in Fig. 2. We first adopt
SGCs and data augmentation with noise to generate multiple views of the orig-
inal graph. We will combine each SGC with multiple noise signals to generate
different views. We use the same encoder to process the views generated with
the same SGC. Parameters are not shared between these encoders.

With k different SGCs C = {Ci}k
i=1 and m different noise signals S =

{Sj}m
j=1, we could get k ∗ m different views, these views will go through the

corresponding encoders to get the representations. For single input graph G =
(V,E) with n nodes, we will acquire k ∗ m ∗ n different representations for all
nodes. We denote the output representation as zvij . zvij can be formulated as:

zv,i,j = fi

(
q(Ci, Sj)

)
. (8)

These representations will be processed with a loss function. In our task,
we want to make use of all of them. Nevertheless, the conventional contrastive
loss will require contrasting negative samples with all of the k ∗ m ∗ n different
representations for a single input graph, which will cost too much computing
resources. Moreover, these representations will contribute differently to training.
We want to emphasize those that contribute more.

3.4 Feature-Level Weight-Sensitive Loss

In order to solve the problems mentioned above, we need a loss function that can
process the representations in a negative-sample-free way. Inspired by [36], we
adopt a feature level learning objective so as to avoid calculating a large amount
of negative samples. Given graph G with n nodes, k segmented graph channels,
and m augmenters, we will acquire representations {z1,1,1, ...,zv,i,j , ...,zn,k,m}.
Then, we define matrix set M = {M1,1,2, ...,Mv,h,h′ , ...Mn,k∗m−1,k∗m}.

Self-supervised Graph Learning with Segmented Graph Channels 301

The subscript v refers to different nodes, and h, h′ refer to different views.
Mv,h,h′ can be formulated as follows:

Mv,h,h′ = zT
v,i,j × zv,i′,j′ , i �= i′ or j �= j′ (9)

zv,i,j and zv,i′,j′ are representations of the same node but under different
views. Our loss function can be formulated as:

Lfl =
∑
h′

∑
h

∑
v

(
OnDiag(Mv,h,h′) + λ OffDiag(Mv,h,h′)

)
, h �= h′ (10)

where λ is a hyperparameter that trades off the importance of two terms,
OnDiag(Mv,h,h′) and OffDiag(Mv,h,h′), we define them as follows:

OnDiag(M) =
∑

a

(1 − ma,a)2,

OffDiag(M) =
∑

a

∑
a�=b

(ma,b)2. (11)

where ma,a is the element on the diagonal of matrix M , ma,b represents the rest
elements. Subscripts a and b are the coordinates. OnDiag(M) implements the
optimization objective we described in Eq. 7 at the feature level. As we built
our optimization objective without the usage of negative samples, we adopt
OffDiag(M) to prevent trivial solutions from optimization.

Following [20], we consider the samples that are further away from the opti-
mal goals more crucial. We adopt weight factors ωv,h,h′ to measure the impor-
tance of the representations that are used to calculate Mv,h,h′ . ωv,h,h′ can be
denoted as:

ωv,h,h′ =
((

OnDiag(Mv,h,h′) + λ OffDiag(Mv,h,h′)
) − O

)τ

, (12)

where O is the optimal value of the sum of the first two terms, in our task,
O = 0. τ is a hyperparameter that controls the effect of ω. We use ωv,h,h′ to help
emphasize the more crucial samples. Substituting Eq. 12 into Eq. 10, we have:

Lwsfl =
∑
h′

∑
h

∑
v

ωv,h,h′
(
OnDiag(Mv,h,h′) + λ OffDiag(Mv,h,h′)

)
, h �= h′

(13)
The new loss function is weight-sensitive, which emphasizes representations

that are considered more crucial.

4 Experiments

This section demonstrates the effectiveness of our proposed SGL-SGC by con-
ducting extensive experiments on various benchmark datasets.

302 H. Gao et al.

4.1 Comparison with the State-of-the-Art Methods

Datasets. We select five widely used graph datasets, including three cita-
tion network datasets: Cora, Citeseer, and PubMed [3,21], and two relation-
ship datasets: Amazon-Computers and Amazon-Photo [37]. We download all the
datasets with DGL APIs, which can be found at https://www.dgl.ai/. For the
experimental protocol, we follow [9,37], and adopt the same train/validation/test
splits. We report the mean classification accuracy with standard deviation over
ten runs of training.

Baselines. For baselines, we select supervised, semi-supervised and unsuper-
vised graph learning approaches. The supervised approaches include GCN [12]
and GAT [27]. The semi-supervised approaches include CG3 [29]. The unsu-
pervised graph learning approaches include Deepwalk [18], GAE [13], DGI [28],
MVGRL [9], GCA [37], and InfoGCL [30].

Table 1. Classification accuracy of compared methods on Cora, CiteSeer, PubMed,
Amazon Computers, and Amazon Photos. According to different learning strategies,
the records are divided into two groups. The records that are not associated with
standard deviations due to the reason that they are directly taken from [22], which did
not report their standard deviations. Bold denotes the best records.

Methods Cora CiteSeer PubMed Amazon Amazon

Computers Photo

Supervised & Semi-Supervised Approaches

GCN 81.5 70.3 79.0 87.0 ± 0.3 92.6 ± 0.4

GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 86.5 ± 0.5 92.4 ± 0.2

CG3 83.4 ± 0.7 73.6 ± 0.8 80.2 ± 0.8 79.9 ± 0.6 89.4 ± 0.5

Unsupervised Approaches

DeepWalk 70.7 ± 0.6 51.4 ± 0.5 74.3 ± 0.9 85.7 ± 0.1 89.4 ± 0.1

GAE 71.5 ± 0.4 65.8 ± 0.4 72.1 ± 0.5 85.3 ± 0.2 91.6 ± 0.1

DGI 83.8 ± 0.5 72.0 ± 0.6 77.9 ± 0.3 84.0 ± 0.5 91.6 ± 0.2

MVGRL 83.2 ± 0.6 72.9 ± 0.3 79.8 ± 0.6 87.5 ± 0.1 91.7 ± 0.1

GCA 82.1 ± 0.4 71.7 ± 0.2 78.9 ± 0.7 87.9 ± 0.3 92.5 ± 0.2

InfoGCL 83.5 ± 0.3 73.5 ± 0.4 79.1 ± 0.2 – –

SGL-N 83.1 ± 0.7 73.2 ± 0.5 79.5 ± 0.2 85.6 ± 0.3 91.6 ± 0.2

SGL-SGC 84.2 ± 0.5 74.0 ± 0.3 80.8 ± 0.4 88.7 ± 0.2 93.1 ± 0.3

Evaluation Protocol. For evaluation protocol, we follow [28] and pre-train the
model on all the nodes in the graph without supervision. Then, we freeze the
parameters and feed the acquired node representations into a logistic regression

https://www.dgl.ai/

Self-supervised Graph Learning with Segmented Graph Channels 303

model for label prediction. We only use nodes from the training set to train the
logistic regression model, and we report the classification accuracy on testing
sets.

We adopt the Adam optimizer with an initial learning rate of 10−3 for model
training. For view generation, we used a total of three SGCs. Each SGC is
followed by two data augmentations with different noise signals. SGL-SGC gen-
erates six views in total. We adopt three different encoders, each corresponding
to an SGC. Each encoder consists of a 2-layer GCN with a hidden dimension of
512. Their outputs are concatenated together for downstream tasks. For Cora,
Citeseer, and PubMed datasets, the pre-training epochs were 100, 20, and 100.
For Amazon-Computers and Amazon-Photo, the pre-training epochs were set
as 60. The hyperparameter that controls the effect of ω is set to 0.2. All of our
experiments were conducted on an Nvidia RTX 5000. For the ablation study,
we built a network with the same structure as SGL-SGL except for the SGCs.
We remove them and generate the same amount of views as SGL-SGC with
conventional data augmentations. The new network is named SGL-N.

Results. The classification results are reported in Table 1 . We highlight the
highest records in bold. As we can see from the table, SGL-SGC outperforms
all the other methods across all datasets. The results demonstrate our method’s
potential to outperform supervised, semi-supervised, and unsupervised methods
on various datasets. We attribute this potential to the fact that SGL-SGC can
generate views that contain less redundant information. Moreover, we design a
feature-level weights-sensitive loss function that can be used to train the encoders
better to learn from these views.

Another observable phenomenon is that SGL-N can only achieve comparable
results to other methods, while SGL-SGC outperforms it. This outcome proves
that only utilizing six different views generated with graph data augmentation
does not help produce better performances. Furthermore, it proves the necessity
of our proposed SGCs in helping increase the performance of self-supervised
representation learning.

4.2 Comparison of Computing Resource Consumption

To analyze the computational resource overhead of our method, we conduct a
set of comparative experiments. For comparison, We built a graph contrastive
learning framework utilizing conventional InfoNCE loss instead of feature-level
weight-sensitive loss, named I-GCL. I-GCL adopts two-layer GCNs as elemental
encoders, the same as SGL-SGC. We use the same augmenter for each framework.

The results are demonstrated in Table 2. It shows that SGL-SGC costs much
less memory than I-GCL under six views, which proves our proposed feature-
level weight-sensitive loss can vastly reduce computing costs. Another interesting
phenomenon is that SGL-SGC with six views still costs less memory than I-GCL
with two views. Such records prove that, in our task, SGL-SGC does not cost
more computing resources than conventional graph contrastive methods. We can

304 H. Gao et al.

also see from the table that when the amount of views increases, the memory
cost of I-GCL rises by 47%. On the other hand, the memory cost of SGL-SGC
only rises by 16%. Such results suggest that increasing the number of segmented
graph channels does not significantly increase the computational cost when using
a feature-level weight-sensitive loss. Furthermore, the time cost of SGL-SGC is
also less than those of I-GCL.

Table 2. Memory costs and time costs of different methods under different conditions.
Since the network width of each layer is the same, a single column of hidden dimensions
is used to represent them. Views and SGCs represent the number of graph views and
SGCs we used. We conduct all the experiments on an Nvidia RTX 5000.

Methods Hidden Views SGCs Memory Time costs

dimension costs (GB) per Epoch (second)

I-GCL 512 2 1 2.82 0.13

I-GCL 512 6 3 5.35 0.16

SGL-SGC 512 2 1 1.78 0.08

SGL-SGC 512 6 3 2.12 0.09

I-GCL 256 2 1 1.96 0.10

I-GCL 256 6 3 3.89 0.11

SGL-SGC 256 2 1 1.34 0.06

SGL-SGC 256 6 3 1.73 0.08

4.3 Evaluation of the Weight Factors

In this part, we further evaluate the weight factor ω that we introduced in our
proposed loss function. We modify the value of hyperparameter τ that controls
the effectiveness of ω and observe how the performance changes. We perform
such experiments on multiple datasets. The results are shown in Fig. 3.

As we can see, the performance peaks when the value of τ is 0.2 on all three
datasets. As τ decreases, ω will hold less influence on training. It is observ-
able that the performance of SGL-SGC drops when τ decreases from 0.2 to 0,
which indicates that the influence of ω does improve the representation learning
ability of SGL-SGC. We believe ω help emphasize the samples that contribute
more to training, thus improving the overall performance. Another observable
phenomenon is that when τ takes a larger value than 0.2, the performance of
SGL-SGC also drops. This phenomenon shows that the effect of ω cannot be
expanded indefinitely, and it is necessary to use the hyperparameter τ to limit it.

Self-supervised Graph Learning with Segmented Graph Channels 305

Fig. 3. Results of SGL-SGC’s performance on Cora, CiteSeer, and PubMed datasets
with different values of τ . The ordinates in the figure represent different accuracy rates,
while the abscissas represent different values of τ .

4.4 Representation Capability Analysis

For further analysis of the representation capability of our proposed method,
we visualize the outputs to make an intuitive observation. For comparison, we
adopt a deformation of SGL-SGC with InfoNCE loss and only two different views
without SGCs. The new framework is named IN-GCL.

Figure 4 demonstrates the results. We can see that the untrained encoder
output features without much distinguishability. We can observe many vertical
lines running through multiple blocks of different labels. These lines represent
similar representations, indicating there are common features shared between
different classes. The output of SGL-SGC under ten epochs of training shows
some interesting developments. The vertical lines of each block become clearer
than in the previous column, and there is still not much distinguishability. For

Output
reprensentaions of
randomly initialize

encoder without
training

Output
reprensentaions of
SCL-SC under 10
epochs of training

Output
reprensentaions of
SCL-SC under 100
epochs of training

Output
reprensentaions of
IN-GCL under 100
epochs of training

Class
Label

0

1

2

3

4

5

6

feature

sa
m

pl
e

Fig. 4. Visualized output representations of different frameworks. Each horizontal line
in each small block represents an output representation. In each small block, the hori-
zontal axis represents different dimensions of the output representation, and the vertical
axis represents different samples. All representations are grouped by category.

306 H. Gao et al.

the outputs of SGL-SGC after 100 epochs of training, we can see much difference
between each class. We believe that SGL-SGC will first increase the indepen-
dence of each dimension of the feature during the training process, making the
output more expressive. After that, the distinction between the various classes
appears, indicating that the encoders have learned meaningful information.

The last column of Fig. 4 shows the output of IN-GCL without feature-level
weight-sensitive loss and SGCs. It can be seen that after the same 100 rounds of
training, SGL-SGC can learn more discriminative features than IN-GCL, which
demonstrate the superiority of our method.

5 Conclusions

This paper proposed a self-supervised graph learning method with segmented
graph channels. We enhance the conventional view generation with segmented
graph channels to reduce the redundant mutual information between multiple
views while avoiding introducing more noises. We also proposed a feature-level
weight-sensitive loss as our training objective. This loss function can emphasize
samples with more contribution to training and reduce consumption of comput-
ing resources. We conducted multiple experiments to prove the superiority of
our proposed method.

Acknowledgements. This work is supported by the National Key Research and
Development Program of China (No. 2019YFB1405100).

References

1. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs
with graphs. In: International Conference on Learning Representations (2018)

2. Arora, S., Khandeparkar, H., Khodak, M., Plevrakis, O., Saunshi, N.: A theoreti-
cal analysis of contrastive unsupervised representation learning. In: 36th Interna-
tional Conference on Machine Learning, ICML 2019, pp. 9904–9923. International
Machine Learning Society (IMLS) (2019)

3. Bojchevski, A., Günnemann, S.: Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. In: International Conference on Learning Represen-
tations (2018)

4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International conference on machine
learning, pp. 1597–1607. PMLR (2020)

5. Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular
fingerprints. In: Advances in neural information processing systems, vol. 28 (2015)

6. Federici, M., Dutta, A., Forré, P., Kushman, N., Akata, Z.: Learning robust repre-
sentations via multi-view information bottleneck. In: International Conference on
Learning Representations (2019)

7. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised
learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

Self-supervised Graph Learning with Segmented Graph Channels 307

8. Grover, A., Zweig, A., Ermon, S.: Graphite: Iterative generative modeling of
graphs. In: International conference on machine learning, pp. 2434–2444. PMLR
(2019)

9. Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on
graphs. In: International Conference on Machine Learning, pp. 4116–4126. PMLR
(2020)

10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

11. Hjelm, R.D., et al.: Learning deep representations by mutual information estima-
tion and maximization. In: International Conference on Learning Representations
(2018)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

13. Kipf, T.N., Welling, M.: Variational graph auto-encoders. In: Bayesian Deep Learn-
ing Workshop@NIPS (2016)

14. Lee, J.D., Lei, Q., Saunshi, N., Zhuo, J.: Predicting what you already know helps:
Provable self-supervised learning. In: Advances in Neural Information Processing
Systems, vol. 34 (2021)

15. Linsker, R.: Self-organization in a perceptual network. Computer 21(3), 105–117
(1988)

16. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748 (2018)

17. Peng, Z., et al.: Graph representation learning via graphical mutual information
maximization. In: Proceedings of The Web Conference 2020, pp. 259–270 (2020)

18. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 701–710 (2014)

19. Sanchez-Gonzalez, A., et al.: Graph networks as learnable physics engines for infer-
ence and control. In: International Conference on Machine Learning, pp. 4470–
4479. PMLR (2018)

20. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 815–823 (2015)

21. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93–93 (2008)

22. Sun, F.Y., Hoffman, J., Verma, V., Tang, J.: Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximiza-
tion. In: International Conference on Learning Representations (2020)

23. Suresh, S., Li, P., Hao, C., Neville, J.: Adversarial graph augmentation to improve
graph contrastive learning. In: Advances in Neural Information Processing Systems,
vol. 34 (2021)

24. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A.,
Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp.
776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8 45

25. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv
preprint physics/0004057 (2000)

26. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle.
In: 2015 IEEE Information Theory Workshop (itw), pp. 1–5. IEEE (2015)

27. Veličković, et al.: Graph attention networks. arXiv preprint arXiv:1710.10903
(2017)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1807.03748
https://doi.org/10.1007/978-3-030-58621-8_45
http://arxiv.org/abs/1710.10903

308 H. Gao et al.

28. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep
graph infomax. ICLR (Poster) 2(3), 4 (2019)

29. Wan, S., Pan, S., Yang, J., Gong, C.: Contrastive and generative graph convolu-
tional networks for graph-based semi-supervised learning. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 35, pp. 10049–10057 (2021)

30. Xu, D., Cheng, W., Luo, D., Chen, H., Zhang, X.: Infogcl: Information-aware graph
contrastive learning. In: Advances in Neural Information Processing Systems, vol.
34 (2021)

31. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: International Conference on Learning Representations (2018)

32. Xu, M., Wang, H., Ni, B., Guo, H., Tang, J.: Self-supervised graph-level repre-
sentation learning with local and global structure. In: International Conference on
Machine Learning, pp. 11548–11558. PMLR (2021)

33. Xu, X., Feng, W., Jiang, Y., Xie, X., Sun, Z., Deng, Z.H.: Dynamically pruned mes-
sage passing networks for large-scale knowledge graph reasoning. In: International
Conference on Learning Representations (2019)

34. Yang, L., Zhang, L., Yang, W.: Graph adversarial self-supervised learning. In:
Advances in Neural Information Processing Systems, vol. 34 (2021)

35. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learn-
ing with augmentations. Adv. Neural. Inf. Process. Syst. 33, 5812–5823 (2020)

36. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: Self-supervised
learning via redundancy reduction. In: International Conference on Machine Learn-
ing, pp. 12310–12320. PMLR (2021)

37. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning
with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp.
2069–2080 (2021)

TopoAttn-Nets: Topological Attention
in Graph Representation Learning

Yuzhou Chen1,4(B), Elena Sizikova2, and Yulia R. Gel3,5

1 Department of Electrical and Computer Engineering, Princeton University,
Princeton, USA

yc0774@princeton.edu
2 Center for Data Science, New York University, New York, USA

es5223@nyu.edu
3 Department of Mathematical Sciences, University of Texas at Dallas, Dallas, USA

ygl@utdallas.edu
4 Lawrence Berkeley National Laboratory, Berkeley, USA

5 National Science Foundation, Virginia, USA

Abstract. Topological characteristics of graphs, that is, properties that
are invariant under continuous transformations, have recently emerged
as a new alternative form of graph descriptors which tend boost perfor-
mance of graph neural networks (GNNs) on a wide range of graph learning
tasks, from node classification to link prediction. Furthermore, GNNs cou-
pled with such topological information tend to be more robust to attacks
and perturbations. However, all prevailing topological methods for GNNs
consider a scenario of a fixed learning approach and do not allow for dis-
tinguishing between topological noise and topological signatures of the
graph which might be the most valuable for the current learning task. To
exploit the inherent task-specific topological graph descriptors, we pro-
pose a new versatile framework known as Topological Attention Neural
Networks (TopoAttn-Nets) (Our code is available at https://github.com/
TopoAttn-Nets/TopoAttn-Nets.git). As the first meta-representation of
topological knowledge, TopoAttn-Nets employs the attention operation on
both local and global data properties and offers their geometric augmenta-
tion. We derive theoretical guarantees of the proposed topological learning
framework and evaluate TopoAttn-Nets in conjunction with graph classi-
fication. TopoAttn-Nets delivers the highest accuracy, outperforming 26
state-of-the-art classifiers on benchmark datasets.

Keywords: Meta-representation · Topological signatures ·
Representation learning · Graph classification

1 Introduction

Accurately classifying graphs by inferring their geometric and topological prop-
erties has recently witnessed an ever increasing interest in many data science

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26390-3_19.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 309–325, 2023.
https://doi.org/10.1007/978-3-031-26390-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_19&domain=pdf
https://github.com/TopoAttn-Nets/TopoAttn-Nets.git
https://github.com/TopoAttn-Nets/TopoAttn-Nets.git
https://doi.org/10.1007/978-3-031-26390-3_19
https://doi.org/10.1007/978-3-031-26390-3_19

310 Y. Chen et al.

applications [6,10,33]. In particular, an emerging sub-field of geometric deep
learning (GDL) aims to generalize the concept of deep learning (DL) to data in
non-Euclidean spaces by bridging the gap between graph theory and deep neural
networks [3]. In turn, many recent studies indicate that integration of topolog-
ical descriptors, i.e., systematic shape characteristics, into graph learning often
results in noticeable performance gains in such tasks as graph classification, link
prediction, and anomaly detection [6,12,18,33,46,47]. Furthermore, incorporat-
ing the topological signatures into GDL enhances robustness of graph learning
to perturbations and attacks. This phenomenon can be explained by important
complementary information and deeper insight into the intrinsic graph organiza-
tional structure provided by topological data summaries, as compared to conven-
tional non-topological descriptors. Here we aim to further advance topological
approaches to graph learning by offering a systematic and versatile framework
for extracting the essential task-specific shape information.

In particular, topological data analysis (TDA) offers rigorous mathematical
tools to explore structural shape properties of the graph-structured data [4,9,14].
Here by shape we broadly understand data properties which are invariant under
continuous transformations such as stretching, bending, and twisting. Persis-
tence homology (PH) is a methodology under the TDA framework that ana-
lyzes evolution of various patterns in a graph G as we vary certain user-selected
(dis)similarity threshold (i.e., a scale). As such, we can say that PH studies the
observed graph G at multiple resolutions or evaluates its structural properties
through multiple lenses. All extracted shape patterns can be then summarized
in a form of multi-set in R, known as a persistence diagram (PD). PDs record a
type of the topological patterns we detect as well as how long we observe each
topological feature as a function of the scale parameter. We are particularly
interested in topological features with a longer lifespan, since such features tend
to contain valuable information about hidden mechanisms behind graph orga-
nization and as such, play a more important role in graph learning. Features
with a longer lifespan are said to persist. In turn, features with shorter lifespans
are likely to be attributed to topological noise. However, there exists a num-
ber of interlinked fundamental challenges on the way of successful integration
of topological information into graph learning. The first key problem is how to
distinguish important topological features from topological noise [8,9,15]. Sec-
ond, since PDs are point multi-sets, there exists no straightforward approach to
combine the extracted topological summaries in a form of PDs with DL mod-
els, as DL often requires input data in vector form. As such, there are multiple
approaches to make PDs compatible with DL inputs [1,18,24]. One of the most
popular PD representations allowing for construction of a fully trainable topo-
logical layer is adaptively kernelization of PDs. However, existing kernel repre-
sentations of PDs assume that influence of persistent features on the learning
process is fixed. Furthermore, typically only a single PD is computed from the
graph G–, either upon extracting topological features directly from G, referred
to as the topological domain, or from the spectral signatures of G, (e.g., Heat
Kernel Signatures (HKS) with a single (fixed) diffusion parameter t), referred
to as the spectral domain. As such, the current kernel representations of PDs do

TopoAttn-Nets: Topological Attention in Graph Representation Learning 311

not allow for distinguishing topological graph characteristics which are the most
valuable for the current learning task, from topological noise.

New Topological Meta-Representation Paradigm. We propose a new flex-
ible and unified framework, TopoAttn-Nets, for meta-representation topological
signatures of the graph G extracted from its PDs. That is, we instill topologi-
cal signatures from different domains and embed them into meta-representation
with attention mechanism which shows an end-to-end learning approach that
in turn can be used to learn multiple persistence representations. Furthermore,
inspired by the recent meta-learning mechanisms in deep neural networks [20],
we combine all kernel-based representation of PDs in various domains into a
joint aggregated attention layer, where attention mechanism is used to explicitly
encode the structural information of G from a global perspective. The result-
ing TopoAttn-Nets represents a trainable, task-specific framework to extract the
most informative topological signatures of graph G from multiple domains in an
efficient and provably stable manner.

Contributions. Contrary to all conventional TDA methods in DL where a
given task is tackled using a fixed learning approach, this paper aims to enhance
the topological learning algorithm itself, thereby being the first step toward the
paradigm of topological meta-learning. The ultimate idea of TopoAttn-Nets is
to systematically integrate joint topological features, persistence-based informa-
tion from multiple domains, and PD transform learning. Specifically, compared
to all previous approaches for topological features/kernels/layers, our meta-
representation: (1) is not restricted to a particular type of input data and a
fixed parametrization map of topological summaries, (2) is more robust to per-
turbations, (3) allows for learning relationships among topological signatures by
providing their geometric augmentation. As a part of the new topological meta-
representation, the attention mechanism learns to focus on the most essential
topological characteristics of the data and learning algorithms. This is particu-
larly important for web-based data, e.g., usage graphs from social media or other
web sources, that exhibit variation at different scales. Capturing both finer scale
and larger scale variations using a fixed learning model is challenging. In con-
trast, TopoAttn-Nets offers a representation that captures both local and global
properties, and as a result, improved tractability and generalization performance.
Our extensive numerical results indicate that TopoAttn-Nets is competitive in
graph classification in comparison to the state of the art: it outperforms 26 top
methods in accuracy and is more robust under graph perturbations.

2 Related Work

Kernels for Graph Classification. Traditionally, one of the most popular
graph classification tools over the past two decades were graph kernel approaches.
There is a wide variety of graph kernel frameworks, including marginalized ker-
nel [21], shortest-path kernel [2], graphlet kernel [35], Weisfeiler-Lehman graph
kernel [34], and Weisfeiler-Lehman hash graph kernel [29]. These more classi-
cal graph-based kernels only consider generating graph level features through

312 Y. Chen et al.

aggregating node representations. While powerful and expressive, the existing
kernel-based techniques suffer from limited ability to capture similarities among
higher order graph properties of local neighborhoods which in contrast can be
inferred from topological structures. To address this limitation, we propose a
new flexible topological meta-representation neural network model which cou-
pled with attention mechanism, enables the graph-based learning framework to
systematically incorporate higher order graph information both at the local and
global levels.

Neural Networks for Graph Classification. There generally exist three
neural network-based approaches for graph classification: (i) GNN architectures
that encode both local graph structure and features of nodes [22,26,28,39,41],
(ii) stable vectorizations of PDs within GNNs [1,46] or embedding multiple
graph filtrations [19], and (iii) kernelization of topological information within
GNNs [19,24,45,47]. In contrast, our approach is built upon meta-representation
of multiple kernelized PDs, that is, choice of topological meta-knowledge to meta-
learn. Armed with the proposed meta-representation machinery, we can then
exploit the relations between tasks or domains, and learning algorithms.

3 Background on Persistent Homology

Let G = (V, E) be the observed graph, where V denotes the set of nodes, E denotes
the set of edges, and euv ∈ E denoting an edge between nodes u, v ∈ V. The
fundamental postulate is to view G as a sample from some metric space M whose
intrinsic topological structure has been lost due to sampling. Our goal is then to
regain knowledge on the lost structural properties of M via characterizing shape
of the observed graph G. The key approach here is to first associate G with some
filtration of G: let G1 ⊆ G2 ⊆ . . . ⊆ Gk = G be a nested sequence of subgraphs, and
let Ci be the simplicial complex induced by the subgraph Gi (e.g., clique complex).
Then, the nested sequence of these simplicial complexes C1 ⊆ C2 ⊆ . . . ⊆ Ck is
called a filtration of G. We then can track lifespan of shape characteristics of
G throughout this nested sequence of simplicial complexes. Such shape features
include connected components, loops, cavities, and more generally k-dimensional
holes. We detect them by means of a homology, an algebraic topological invariant.
To define the lifespan of a topological feature, we say that the feature is born
at Gb if it does not come from Gb−1, and it dies at Gd (d ≥ b) if the feature
disappears entering Gd [5]. Hence, its corresponding lifespan, or persistence is
d − b. The resulting persistent homology can be then coded as a multi-set D
of points in R

2, called a PD, with x and y coordinates being the birth and
death of each topological feature, respectively. Since d ≥ b, all points in D are
in the half-space on or above y = x. The multiplicity of a point (b, d) ∈ Ω =
{(x, y) ∈ R

2 : y > x} is the number of k-dimensional topological features that
are born at b and die at d, while points at the diagonal Δ = {(b, b)|b ∈ R}
have infinite multiplicities. Finally, there exist multiple approaches to construct
a filtration of G [9]. One common method is to use a descriptor function (usually
conveys domain information) f : V → R and a sequence of real numbers a1 <

TopoAttn-Nets: Topological Attention in Graph Representation Learning 313

a2 < · · · < ak, one can define a nested sequence of subgraphs with Gi = (Vi, Ei)
where Vi = {v ∈ V|f(v) ≤ ai} and Gi is the induced subgraph of G by Vi, i.e.,
Ei = {euv ∈ E|u, v ∈ Vi}. Similarly, for a weighted graph G = (V, E , w) and a
sequence of real numbers a′

1 < a′
2 < · · · < a′

s, one can use the weights to define
Gj = (Vj , Ej) with Ej = {euv ∈ E|wuv ≤ a′

j} and Vj = {v ∈ V|euv ∈ Ej}.

4 Learnable Topological Meta-Representation for Deep
Attention Networks

4.1 Persistence Meta-Representation

In spirit of recent approaches to learnable PD vectorizations [6,18,24], we define
an individual representation function s of D as a composite function of three
point transformations in R

2: s = k ◦ τη ◦ ρ : Θ → {
f : Ω ∪ Δ → R

}
, where k is

a parametrized functional (e.g., the Gaussian kernel) such that k(x,−∞) = 0,
ρ : R2 → R

2 is a linear birth-lifetime coordinate transform such that ρ(x, y) =
(x, y−x), τη is a rationally stretched birth-lifetime, or spike point transform τη :
R×[0,∞] → R×(R∪{−∞}), η > 0, and Θ is a parameter space. Representation
of s as a composite function allows us to study PD parametrization over R2 and,
hence, enables a more tractable mathematical formalism and application of a
broader range of weighting functions to distinguish topological features in terms
of their contribution to the learning task.

Based on the PH framework, we can obtain a set of different represen-
tation of topological signatures for the same input graph G by (i) consider-
ing different choices of simplicial complexes, (ii) using different filtering func-
tions, and (iii) defining G on different domains. Our idea is to harness com-
plementary information from multiple PDs and their learnable representations,
hence, capitalizing on the concepts of meta-analysis. In particular, here we
focus on representation learning of persistence diagrams with respect to two
domains. Armed with the set of learnable representations s = {s1, s2, . . . , sQ}
and a collection of PDs D = {D1,D2, . . . ,DQ}, we propose an aggregated,
i.e., a meta-representation, of multiple PDs. We first assign each dimension
i ∈ {1, · · · ,Q} a 2-dimensional base representation si(x, y) (where (x, y)
belongs to Di) and construct an aggregated representation with n-th order as:
saggn

(x, y) = I
1≤i1<i2<···<in≤Q

[
ωi1,...,in

×φ(si1 , . . . , sin
)
]
, where Q is the dimension

of the input space; I[·] refers to the aggregation scheme such as sum and aver-
age; function φ(·) takes multiple base representations as input and outputs to
a new representation – meta-representation; ω is a weight controlling the effect
of corresponding meta-representation. For the sake of notation, we omit indices
of the base representation as si(·). In particular, when n = Q, the Q-th order
meta-representation can be written of the form: saggQ(x, y) = φ(s1, . . . , sQ).

To extract topological signatures from a graph G, we can compute persistent
homology directly from the observed graph G and from spectral descriptors of G.
The resulting persistence-based summaries contain complementary information
and can be plugged into compatible learning representations via different kernel
types.

314 Y. Chen et al.

Option 1. Spectral domain: Following [6,32], we compute D for graph by replac-
ing original filtration with HKS for fixed diffusion parameter t as the feature
function. Given a real-valued function h(·; ·) : R2

+ → R, set h(t;λk) = e−tλk .
The HKS p(·; ·) : R

2 → R is defined as pt(x, y) =
∑∞

i=0 e−λitϕi(x)ϕi(y),
where λi and ϕi are the i-th eigenvalue and the i-th eigenfunction of the
Laplace-Beltrami operator, respectively. HKS on a graph G can be represented
as p : v → ∑n

i=1 e−λitϕ2
i (v), where v is a node of G, λi and ϕi are eigenvalues

and eigenvectors of the normalized graph Laplacian. Since the heat kernel can be
viewed as a low-pass filter, HKS contains information mainly from low frequen-
cies (and hence higher frequencies are suppressed by increasing t). To capture
all the low and high frequencies in G, we use a meta-representation to include
multiple PDs extracted from HKS with various diffusion parameters.

Option 2. Topological domain: To make the model invariant to changes in posi-
tion and orientation, rotation has been shown to significantly increase classifica-
tion and segmentation performance [13,23]. The key operation in the topological
domain is to produce transformed training samples of PDs and feed them to the
DL model. For a persistence diagram D, rotation augmentations are done by
rotating the points on the x- and y-coordinates by θ degrees. In machine learn-
ing terminology, these coordinates can be referred to as features. This allows us
to characterize the D generated by each data point as a compact feature vector.
The application of rotation augmentation to D allows us to encode importance
of different topological summaries in a vector representation.

Learnable PD Representation in the Topological Domain. Let Rθ : R2 →
R

2 be a rotational operator for rotation by an angle θ. Applying Rθ to D results
in Rθ(D) = Dθ =

{(
cos(θ)x + sin(θ)y, cos(θ)y − sin(θ)x

) ∈ R
2|(x, y) ∈ D}

. A
PD can be rotated by multiple angles θ = {θ1, . . . , θℵ}, ℵ ≥ 2, where either θi is
sampled from the uniform distribution U(0, π) or θ is a deterministic sequence
of angles. Number of rotated angles ℵ is user-specified to meet computational
constraints. This rotational procedure provides a set of candidate latent features
for meta-learning [7,20].

What are Advantages of the PD Random Rotation? Random rotation of
a PD achieves two interlinked goals: (i) improves the extraction of prominent topo-
logical information from PDs and (ii) enhances learning the ring of algebraic func-
tions on PDs. On (i), topological features near the diagonal Δ exhibit a higher level
of uncertainty but may still contain useful information for classification tasks [27].
Indeed, since we cannot explicitly define how close a feature ought to be to Δ in
order to be viewed as topological noise, we aim to extract the signal out of such
features under uncertainty. Note that since θ ∼ U(0, π), the range of topologi-
cal feature lifespan in the rotation image Rθ(D) is (y − x,−y + x). As a result,
features with a shorter lifespan in the original unrotated space are stretched in the
rotated space and may have a longer lifespan. That is, intuitively, while we still give
a higher weight to more persistent features in the original space, upon rotation with
a random angle θ, we attempt to assign topological features whose original lifes-
pan may be shorter due, e.g., to various uncertainties, a chance to contribute to the

TopoAttn-Nets: Topological Attention in Graph Representation Learning 315

topological learning. Since E[θ] = π/2 and, hence, the expected rotated lifespan of
each topological feature translates to its mean point in the unrotated space, and
vice versa, we still incorporate the conventional lifespan characterization of PD.
As a result, we extract more signal out of all available topological features than
the standard TDA tools (i.e., in (i)), while the attention mechanism mitigates the
impact of including the potential topological noise. On (ii), random sampling of
θ in the rotation operator Rθ allows us to enrich the set of elements of the affine
coordinate ring (i.e., functions on the coordinatized PD space), thereby improv-
ing learning of the associated algebraic variety under uncertainties. Such random
rotation may be also viewed as a semi-parametric bootstrap of lifespans of each
topological feature. To infer potential long-range and periodic relations in the rota-
tional transformation of PDs, we propose the generalized locally periodic (GLP)
kernel for rotated PDs.

Definition 1. Let pi, li, μi, αi ∈ R, i = 1, 2. Then the generalized locally periodic
(GLP) kernel is nonnegative function R

2 → R+ is defined as:

kGLP (x, y) = σ2e

{
−2 sin2

(
π(x−α1)2

p1

)
− (x−μ1)2

2l21

}

× e

{
−2 sin2

(
π(y−α2)2

p2

)
− (y−μ2)2

2l22

}

.

(1)

The advantages of the generalized locally periodic (GLP) kernel are as fol-
lows: (i) compared to the Gaussian kernel, it is more appropriate to adopt a
periodic kernel that can reflect the similarities between different PDs and (ii)
strict periodicity is too rigid (i.e., the purely periodic kernel) since variance
exists.

Lemma 1. The GLP kernel kGLP (x, y) is (a) Lipschitz continuous on R
2, and

(b) positive semidefinite.

Proof. See Appendix A.1.

Furthermore, here we extend the rationally stretched birth-lifetime transform
of [18] and consider a generalized spike transform:

τm
η (x, y) =

⎧
⎪⎨

⎪⎩

(x, y), y ∈ [η,∞),
(x, m

m−1η − 1
m−1

ηm

ym−1), y ∈ (0, η),
(x,−∞), y = 0,

(2)

where m ∈ Z,m ≥ 2.

Lemma 2. Let m ∈ Z and m ≥ 2, then τη is continuous on R×R+ and belongs
to a class C1 of continuously differentiable functions on R × R+.

Proof. See Appendix A.2.

Armed with Lemmas 1 and 2, we now show the key result needed to derive
stability of sROT = kGLP ◦ τm

η ◦ ρ.

316 Y. Chen et al.

Lemma 3. lim
y→0

∣
∣(kGLP ◦ τη

)′

y

∣
∣ < C for R × [0, ε), C > 0.

Proof. See Appendix A.3.

Lemma 3 implies that kGLP ◦ τη is Lipschitz continuous and, hence, we can
derive stability of rotationally transformed PD representations.

Corollary 1 (Stability of Rotationally Transformed PD Representa-
tions). Following the rotational operator procedure, let Dθ1 and Dθ2 be two
rotated persistence diagrams by two angles (i.e., θ1, θ2) and let sROT =
kGLP ◦ τm

η ◦ ρ where τm
η is defined by (2) and ρ : Ω ∪ Δ → R × R≥0. Then∣

∣sROT (Dθ1) − sROT (Dθ2)
∣
∣ ≤ CW q

1 (Dθ1 ,Dθ2), where C > 0 and

W q
1 (Dθ1 ,Dθ2) = inf

γ
(

∑

x∈Dθ1

‖x − γ(x)‖q)

is 1-Wasserstein distance with q ∈ Z
+, γ ranging over all bijections between

Dθ1 ∪ Δ and Dθ2 ∪ Δ, and ||z||∞ = maxi |zi|.
Proof. See Appendix A.4.

Learnable PD Representation in the Spectral Domain. Based on the
multi-scale property of the heat kernel, for small values of t, the function pi(t)
is mainly determined by small neighborhoods of node i, and heat diffuses to
larger and larger neighborhoods as t increases. This means pi(t) can capture
both local and global information from the view point of node i when varying
t. Let Dt be a PD obtained from graph G by using the multiscale heat kernel
p(t) with diffusion parameter t. Similar to [17,24,32], we consider the Gaussian-
based kernel as a representation for PD, but we utilize a higher-order Gaussian
kernel which can be beneficial for better distinguishing topological signals from
topological noise [36].

Definition 2. Let μ = (μ1, μ2)
	 ∈ R

2, σ = (σ1, σ2) ∈ R
2, and ρ = (ρ1, ρ2) ∈

R
2
+. We define the higher-order Gaussian (HOG) kernel through the following

equation:

kHOG(x, y) = e

(
−

(
(x−μ1)2

σ2
1

)ρ1
−

(
(y−μ2)2

σ2
2

)ρ2
)
. (3)

Note that kHOG(x, y) belongs to class C∞(R2) and is Lipschitz continuous on
R

2.

Similar to sROT , we derive the following theoretical properties on the learn-
able PD representation in the spectral domain, i.e., Lipschitz continuity in
Lemma 4 and stability of the PD representation using the HOG kernel.

Lemma 4. lim
y→0

∣
∣(kHOG ◦ τη

)′

y

∣
∣ < C for R × [0, ε), C > 0.

Proof. See Appendix A.5.

TopoAttn-Nets: Topological Attention in Graph Representation Learning 317

Corollary 2 (Stability of PD Representations in the Spectral
Domain). Let Dt1 and Dt2 be two persistence diagrams over two diffusion
parameters (e.g., t1, t2) and let sTOP = kHOG◦τm

η ◦ρ, where τm
η is defined by (2)

and ρ : Ω ∪ Δ → R × R≥0. Then
∣
∣sTOP (Dt1) − sTOP (Dt2)

∣
∣ ≤ CW q

1 (Dt1 ,Dt2).

Proof. See Appendix A.6.

Persistence-Based Weight Mechanism. Recall that points d = (x, y) ∈
D with a longer persistence (y − x) are likelier to contain intrinsic structural
information on the graph G, while points with shorter persistence tend to be
topological noise [?]. As such, assigning a higher weight to more persistent points
in D tends to improve classification performance. Here we consider a weighting
function F(x, y) = arctan

(
C((y − x))ζ

)
, where C > 0 and ζ ∈ Z

+.

Theorem 1 (Stability of the Weighted Kernel Embedding). Let D1 and
D2 be two persistence diagrams. Let h(x, y) = F(x, y)s(x, y), where F(x, y) =
arctan

(
C((y − x))ζ

)
, C > 0 and ζ ∈ Z

+, and s : Ω
⋃

Δ → R where s is either
sROT (1) or sTOP (2). Then, for ζ = 1,

||
∑

(x,y)∈D1

h(x, y) −
∑

(x′,y′)∈D2

h(x′, y′)|| ≤ CW q
1 (D1,D2).

Proof. See Appendix A.7.

4.2 Aggregated Attention Layer

We now proceed to construction of TopoAttn-Nets. First, note that HKS at lower
and higher values of t capture high- and low-frequency information, respectively.
Since higher frequencies are more sensitive to changes of t than lower frequencies,
in a bid to capture the global and local information of input graph G, we propose
a new model, TopoAttn-Nets, that can learn relationships between spectral and
geometric information, including mixing feature representations of different fre-
quencies and transformations. As discussed earlier, aggregated representations
in machine learning constitute a powerful architecture allowing for automatic
combination of multi-source information. Contrary to [18,24,32], all key con-
stituents in the proposed TopoAttn-Nets framework – kernel locations, kernel
lengths, kernel scales, and the stretched parameter (i.e., parameters defined for
a meta-representation) are learnable during training. For any domain, we use
Dϑi

= {D1
ϑi

, · · · ,DN
ϑi

}, where i = {1, 2, · · · , I} and N is the number of PDs,
to represent a set of PDs over HKS diffusion scale ti (i.e., ϑi ← ti) or rotation
angle θi (i.e., ϑi ← θi). Finally, the TopoAttn-Nets can be formulated as:

H(l+1) =

⎧
⎨

⎩

⊕iσ(αis(Dϑi
) · Θ

(l)
i), 1st-order

⊕i
=j
i<j

σ
(
αij

[
s(Dϑi

); s(Dϑj
)
]
Θ

(l)
ij

)
, 2nd-order (4)

318 Y. Chen et al.

where ⊕ denotes concatenation of vectors, H(l+1) is the first-order feature vec-
tor, Θ

(l)
i and Θ

(l)
ij are trainable weights in the layer, and σ(·) is the activa-

tion function, e.g., ReLU(·) = max(0, ·). Notice that function s(·) is either
sROT (·) or sTOP (·), which depends on the type of Dϑi

. To make learn-
able weights comparable across different components, we normalize them by
a softmax operation. That is, (i) 1st-order: αi = exp (ωi) /

∑
i exp (ωi), where

ωi = diag
(
F(D1

ϑi
), · · · ,F(DN

ϑi
)
)
; (ii) 2nd-order: αij = exp (ωij) /

∑
j exp (ωij),

where ωij = diag
(∑2

κ=1 F(Dκ
ϑi
), · · · ,

∑N
κ=N−1 F(Dκ

ϑi
)
)

and F(Dκ
ϑi
) =(F(x1, y1)κϑi

,F(x2, y2)κϑi
, · · · ,F(xm, ym)κϑi

)
(where F(Dκ

ϑi
) is the arctangent

function for k-th PD Dκ
ϑi

and F(x, y) = arctan
(
C((y − x))ζ

)
(every point

(x, y) ∈ Dκ
ϑi

, C > 0, ζ ∈ Z
+)). Here m is the number of points in Dκ

ϑi
. The

relative architectures of the feature vectors based on HKS at various diffusion
parameters with the A-th order and rotation by different angles with the B-th
order can be written as H

(l+1)
hksA

and H
(l+1)
rotB

, respectively (where A,B ∈ {1, 2}).
We can now rewrite the output Zl+1 = {H

(l+1)
hksA

,H
(l+1)
rotB

} of the TopoAttn-Nets
using column-wise concatenation as Z(l+1) = ⊕jH

(l+1)
j , where j ∈ {hksA, rotB}.

Fig. 1. Architecture of TopoAttn-Nets. A detailed description is given in Appendix C.

5 Experiments

For graph classification, we validate our method on the following standard graph
benchmarks: (i) biological frameworks MUTAG and PTC, where nodes represent
mutable and carcinogenic molecules, (ii) internet movie collaborations IMDB-
B and IMDB-M, where nodes are actors/actresses and edges are common movie
occurrences, and (iii) Reddit (an online aggregation and discussion website) dis-
cussion threads REDDIT-5K and REDDIT-12K, where nodes are Reddit users
and edges are direct replies in the discussion threads. Each dataset includes mul-
tiple graphs of each class, and we aim to classify graph classes. For all graphs,
we use the split setting of [18], that is, a 90/10 random training/test split. Fur-
thermore, we perform a one-sided two-sample t-test between the best result and

TopoAttn-Nets: Topological Attention in Graph Representation Learning 319

Table 1. Performance summary (accuracy with standard deviation) on the graph
classification tasks.

Method MUTAG PTC IMDB-B IMDB-M REDDIT-5K REDDIT-12K

GK [35] 83.5 (0.6) 59.2 (0.5) 65.9 (0.3) 43.9 (0.4) 41.0 (0.2) 31.8 (0.1)

RetGK [44] 90.3 (1.1) 62.5 (1.6) 71.9 (1.0) 47.7 (0.3) 56.1 (0.5) 48.7 (0.2)

DGK [42] 87.4 (2.7) 60.1 (2.5) 67.0 (0.6) 44.6 (0.4) 41.3 (0.2) 32.2 (0.1)

RF [17] 89.0 (3.8) 61.5 (2.7) 71.5 (0.8) 50.7 (0.7) 50.9 (0.3) 42.7 (0.3)

WL [34] 84.4 (1.5) 55.4 (1.5) 70.8 (0.5) 49.8 (0.5) 51.2 (0.3) 32.6 (0.3)

Deep-WL [42] 82.9 (2.7) 60.1 (2.5) – – – –
WWL [37] 87.3 (1.5) 66.3 (1.2) – – – –
P-WL [33] 86.3 (1.4) 63.1 (1.7) 72.8 (0.5) – – –
P-WL-C [33] 90.5 (1.3) 64.0 (0.8) 73.2 (0.8) – – –
P-WL-UC [33] 85.2 (0.3) 63.5 (1.6) 73.0 (1.0) – – –
PF [25] 85.6 (1.7) 62.4 (1.8) 71.2 (1.0) 48.6 (0.7) 56.2 (1.1) 47.6 (0.5)

WKPI [45] 88.3 (2.6) 68.1 (2.4) 75.1 (1.1) 49.5 (0.4) 59.5 (0.6) 48.4 (0.5)

TopoGNN [19] – – 72.0 (2.3) – – –
TopoGNN(stat) [19] – – 72.8 (5.4) – – –
sPBoW [47] - - - - 45.6 (5.4) 31.6 (2.8)

PI(NN) [18] 89.8 (2.5) 63.5 (2.6) 71.2 (2.5) 48.8 (2.8) 46.7 (0.5) 35.1 (0.5)

Essential(NN) [18] 90.0 (1.7) 63.0 (2.3) 73.5 (2.0) 52.0 (1.8) 54.5 (0.6) 44.5 (0.4)

DGCNN [43] 85.8 (5.5) 58.6 (7.1) 70.0 (0.8) 47.8 (3.4) 48.7 (4.5) –
GAT [38] 87.4 (5.3) 63.7 (8.2) 72.3 (5.1) 50.1 (3.6) 57.2 (2.2) –
GraphSAGE [16] 85.7 (4.7) 63.9 (7.7) 72.3 (5.3) 50.9 (2.2) - –
CapsGNN [40] 86.7 (6.9) 66.0 (5.9) 71.7 (3.4) 48.5 (4.1) 52.9 (2.2) –
PSCN [30] 89.0 (4.4) 62.3 (5.7) 71.0 (2.3) 45.2 (2.8) 49.1 (0.7) 41.3 (0.4)

GIN [41] 90.0 (8.8) 66.6 (6.9) 75.1 (5.1) 52.3 (2.8) 57.5 (1.5) –
GCN [22] 85.6 (5.8) 64.2 (4.3) 74.0 (3.4) 51.9 (3.8) 56.7 (1.7) –
PersLay [6] 89.8 (1.5) - 71.2 (2.5) 48.8 (1.0) 55.6 (1.1) 47.7 (0.9)

FC [31] 87.3 (0.7) 65.1 (3.9) 73.8 (0.4) 46.8 (0.4) 52.4 (0.4) –
TopoAttn-Nets (ours)

∗∗∗92.4 (1.5) 68.3 (5.1) 75.2 (2.1) ∗∗∗54.2 (0.6) 59.5 (0.5) 45.0 (0.5)

the best performance achieved by the runner-up, where *, **, *** denote signifi-
cant, statistically significant, highly statistically significant results, respectively.
The statistics of data we used in the Experiments section are summarized in
Appendix B, Table 1.

Baselines. For graph classification, we perform an expansive evaluation the
performance of TopoAttn-Nets with respect to the 26 most recent state-of-
the-art (SOA) approaches: (i) graph kernel-based approaches: graphlet ker-
nel (GK) [35], deep graphlet kernel (DGK) [42], Weisfeiler-Lehman kernel
(WL) [34], deep variant of subtree features (Deep-WL) [42], graph-feature +
random forest approach (RF) [17], Wasserstein Weisfeiler-Lehman (WWL) [37],
probability-based graph kernel (RetGK) [44], persistent Weisfeiler-Lehman ker-
nels (P-WL, P-WL-C, P-WL-UC) [33], and Persistence Fisher kernel (PF) [25];
(ii) topological information in kernel-based methods: Stable Persistence Bag
of Words (sPBoW) [47], weighted-kernel for persistence images (WKPI) [45],
and Filtration Curves (FC) [31]; (iii) graph neural networks: PATCHYSAN
(PSCN) [30], Graph Convolutional Network (GCN) [22], Graph attention net-
works (GAT) [38], GraphSAGE [16], Deep Graph CNN (DGCNN) [43], Graph
Isomorphism Network (GIN) [41], and Capsule Graph Neural Network (Caps-
GNN) [40]; (iv) topological-based deep neural networks: persistence images
(PI) combined with a convolutional neural network [17,18], essential features

320 Y. Chen et al.

(Essential) combined with a convolutional neural network [18], GNN augmented
with global graph persistence yielded from multiple filtrations (TopoGNN) [19],
and the generic neural network layer for persistence diagrams (PersLay) [6].

Parameters Setting. In our experiments, We adopt the Adam optimizer for
our TopoAttn-Nets model training with an initial learning rate lr = 1 × 10−3.

Table 2. Analysis of kernel hyperparame-
ters, attention mechanism, numbers of PDs
as input, and rotation angles. Classification
accuracy (st. dev.) on IMDB-B.

Kernel kH OG

ρ = 1.0 ρ = 2.0
72.0 (3.4) 75.2 (2.1)

Framework Attention mechanism
W/o Attn With Attn
74.0 (3.7) 76.2 (2.1)

The number of PDs
1 PD 3 PDs
71.0 (2.2) 75.2 (2.1)

Rotation Rotation angles
θ = 45◦ θ = 90◦

71.1 (1.1) 71.2 (4.6)

We fix the number of training epoch
to 500 for all datasets. We train
the model using early stopping with
a window size of 200. To pre-
vent over-fitting, we use 1 × 10−4

L2 regularization on the weights,
and dropout input and hidden lay-
ers. To analyze behavior of HKS,
i.e., p(t, x) =

∑∞
i=0 e−λitϕi(x)2

(where λi and ϕi(x) are the i-
th eigenvalue and the i-th eigen-
function of the Laplace-Beltrami
operator, respectively) under differ-
ent time values t and to cap-
ture all of the information contained
in the heat kernel, we set t =
{0.1, 1, 5, 10, 50, 100, 150, 200, 1000}. We
then conduct a random combination
method to determine the best combination of local and global information.
For topological signature rotation, the rotation could be implemented by
infinite angles among the range [0◦, 180◦]. To avoid repetition and redun-
dancy, we rotate topological signatures at the set of angles θ, i.e., θ =
[0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 150◦, 180◦] and find an optimal combination of
topological information through random combination method. Since points near
the diagonal in the persistence diagram D have shorter lifetimes (i.e., y − x)
and are considered “topological noise”, we determine the number of persis-
tent pairs for model training through argsort(f(D))[−num_pairs :], where
f(D) = (y1 −x1, y2 −x2, · · · , ym −xm) and num_pairs is the minimum number
of persistent pairs in PDs {D1, · · · ,DN} for each graph in the dataset.

Graph Classification. Table 1 reports results of mean accuracy and stan-
dard deviation across all models tested. The proposed model outperforms 26
SOAs on 5 benchmark datasets, except for REDDIT-12K. Compared to baseline
methods, which extract PDs from only one domain, TopoAttn-Nets combines
multi-frequencies and topological information across different domains in a sin-
gle framework. RetGK outperforms our proposed model on the REDDIT-12K
dataset may be due to REDDIT-12K has the weakest structural information, i.e.,
with very few links per node on average (its average density ≈ 2× 10−6 which is
too sparse to deliver sufficient information on higher-order topological properties.
In addition, for attributed graphs (i.e., MUTAG and PTC), TopoAttn-Nets still
outperforms GCN-based approaches which use additional node features/labels,

TopoAttn-Nets: Topological Attention in Graph Representation Learning 321

because kernel-based meta-representation equipped with neural network archi-
tecture can extract aggregated information from different scales that greatly
benefits graph classification tasks.

Ablation Study. To better evaluate the performance of TopoAttn-Nets, we
conduct a comprehensive ablation study on IMDB-B (see Table 2) by testing
(i) kernel hyperparameters, (ii) attention mechanism (Attn), (iii) the num-
ber of PDs as input to our TopoAttn-Nets model, and (iv) rotation angle.

Table 3. Learned attention weights αhks

and αrot of TopoAttn-Nets for multi-
frequency and topological features.

Dataset Learned value
Attention weights αhks αrot
IMDB-B 0.53 0.47
IMDB-M 0.60 0.40
REDDIT-5K 0.42 0.58
REDDIT-12K 0.32 0.68

The performances of TopoAttn-Nets
with different (kernel) hyperparam-
eters indicate that kernel hyperpa-
rameters enable control the effect of
persistence, i.e., extracting meaning-
ful information via a good approxi-
mation of the kernel. The compari-
son between with and without atten-
tion mechanism shows that adding
attention mechanism can help capture
importance of different PDs. Examining the results of different PDs as input,
we can observe that a large improvement brought by applying multiple PDs to
the input of TopoAttn-Nets. Comparison among different rotation angles under-
scores contribution of rotations to variability.

Sensitivity and Robustness. We evaluate robustness of TopoAttn-Nets w.r.t.
adversarial attacks on REDDIT-5K. Here we consider graph structural pertur-
bations of [48]) and present a comparison against two runner-ups which are the
closest competitors of TopoAttn-Nets, namely, WKPI [45] and GIN [41]. Table 4
indicates that TopoAttn-Nets outperforms SOAs both in terms of accuracy and
standard deviation under all attacks. Hence, TopoAttn-Nets may be viewed as
the most reliable and accurate alternative under perturbations.

Table 4. Classification accuracy (st. dev.) under adversarial attack on REDDIT-5K.

Method Perturbation rate
0% 5% 10% 15%

WKPI [45] 59.5 (0.6) 51.3 (3.3) 50.5 (2.2) 50.0 (2.0)
GIN [41] 57.5 (1.5) 51.2 (3.5) 49.0 (1.5) 47.7 (1.6)
TopoAttn-Nets 59.5 (0.5) 51.9 (2.9) 51.2 (2.3) 50.1 (1.4)

Relative Importance of Features. Table 3 reports the TopoAttn-Nets
learned attention weights. Interestingly, we notice the attention weight of the
multi-frequency feature is larger than that of topological feature for smaller
graphs (i.e., biological and internet movie collaboration graphs). That is, the

322 Y. Chen et al.

attention component reveals the relative importance of intrinsic finer- or coarser-
grain variability in the data shape. For example, in learning tasks for sparser
graphs, local variability often tends to be the key factor. Table 3 shows that
indeed topological features addressing finer-grain shape properties of very sparse
REDDIT-5K and REDDIT-12K, with average diameters of 11.96 and 10.91 and
densities of 0.90 and 1.79, respectively, tend to be more valuable for classification.
This also implies that importance of multi-frequency or topological information
might depend more on the graph size rather than the specific type of data.

Computational Costs. Complexity of computing distances among PDs is
O(m3), where m is the number of points. All experiments are compiled and
tested on a Tesla V100-SXM2-16GB GPU. Table 5 reports average running time
to generate PDs and mean training time per epoch of TopoAttn-Nets on IMDB-B
and REDDIT-5K, respectively.

Table 5. Complexity of TopoAttn-Nets: average time (in sec) to generate PD and
training time per epoch.

Dataset Avg. points in PD Avg. time taken
PD generation Train per epoch

IMDB-B 84.51 6×10−3 1.15
REDDIT-5K 521.35 5×10−1 0.53

6 Conclusion

We have developed a new flexible framework for meta-representation of per-
sistence information in graphs, which may be viewed as the first step toward
topological meta-learning on graphs. We have derived stability guarantees of the
proposed approach and assessed its robustness to perturbations. The exhaus-
tive experimental validation has indicated high competitiveness of the proposed
meta-representation ideas in respect to the benchmarks. Future research include
multiple directions. First, we will explore few shot concepts for topological
meta-learning on graphs. Second, we will investigate utility of topological meta-
representation for link prediction. Third, we will explore the proposed meta-
representation and attention ideas in conjunction with multiparameter persis-
tence [11] and local topological algorithms [10,46].

Acknowledgements. This work is sponsored by the National Science Foundation
under award numbers ECCS 2039701, INTERN supplement for ECCS 1824716, DMS
1925346 and the Department of the Navy, Office of Naval Research under ONR award
number N00014-21-1-2530. Part of this material is also based upon work supported
by (while serving at) the National Science Foundation. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s)

TopoAttn-Nets: Topological Attention in Graph Representation Learning 323

and do not necessarily reflect the views of the National Science Foundation and/or the
Office of Naval Research. The authors are grateful to Baris Coskunuzer for insightful
discussions.

References

1. Adams, H., et al.: Persistence images: a stable vector representation of persistent
homology. JMLR 18(1), 218–252 (2017)

2. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: ICDM (2005)
3. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric

deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4),
18–42 (2017)

4. Carlsson, G.: Topology and data. BAMS 46(2), 255–308 (2009)
5. Carlsson, G.: Topological pattern recognition for point cloud data. Acta Numerica

23, 289–368 (2014)
6. Carrière, M., Chazal, F., Ike, Y., Lacombe, T., Royer, M., Umeda, Y.: Perslay: A

simple and versatile neural network layer for persistence diagrams. In: AISTATS
(2020)

7. Charles, C.K., Taylor, C., Keller, J.: Meta-analysis: From data characterisation for
meta-learning to meta-regression. In: PKDD Workshop on data mining, decision
support, meta-learning and ILP (2000)

8. Chazal, F., Fasy, B., Lecci, F., Michel, B., Rinaldo, A., Wasserman, L.: Robust
topological inference: Distance to a measure and kernel distance. J. Mach. Learn.
Res. 18, 1–40 (2017)

9. Chazal, F., Michel, B.: An introduction to topological data analysis: fundamental
and practical aspects for data scientists. Front. Artif. Intell. 4 667963 (2021)

10. Chen, Y., Coskunuzer, B., Gel, Y.: Topological relational learning on graphs. In:
NeurIPS. vol. 34, pp. 27029–27042 (2021)

11. Chen, Y., Segovia-Dominguez, I., Coskunuzer, B., Gel, Y.: TAMP-S2GCNets:
coupling time-aware multipersistence knowledge representation with spatio-supra
graph convolutional networks for time-series forecasting. In: ICLR (2022)

12. Chen, Y., Segovia-Dominguez, I., Gel, Y.R.: Z-GCNETs: Time zigzags at graph
convolutional networks for time series forecasting. In: ICML (2021)

13. Dieleman, S., Willett, K.W., Dambre, J.: Rotation-invariant convolutional neural
networks for galaxy morphology prediction. MNRAS 450(2), 1441–1459 (2015)

14. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. Discrete Comput. Geom. 28, 511–533 (2002)

15. Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., Singh, A.:
Confidence sets for persistence diagrams. AoS 42(6), 2301–2339 (2014)

16. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS, pp. 1024–1034 (2017)

17. Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological
signatures. In: NeurIPS, pp. 1634–1644 (2017)

18. Hofer, C.D., Kwitt, R., Niethammer, M.: Learning representations of persistence
barcodes. J. Mach. Learn. Res. 20(126), 1–45 (2019)

19. Horn, M., De Brouwer, E., Moor, M., Moreau, Y., Rieck, B., Borgwardt, K.: Topo-
logical graph neural networks. In: ICLR (2022)

20. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural
networks: A survey. arXiv:2004.05439 (2020)

http://arxiv.org/abs/2004.05439

324 Y. Chen et al.

21. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs.
In: ICML, pp. 321–328 (2003)

22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NeurIPS, pp. 1097–1105 (2012)

24. Kusano, G., Fukumizu, K., Hiraoka, Y.: Kernel method for persistence diagrams
via kernel embedding and weight factor. J. Mach. Learn. Res. 18(1), 6947–6987
(2017)

25. Le, T., Yamada, M.: Persistence fisher kernel: A Riemannian manifold kernel for
persistence diagrams. In: NeurIPS, pp. 10007–10018 (2018)

26. Levie, R., Monti, F., Bresson, X., Bronstein, M.M.: Cayleynets: Graph convolu-
tional neural networks with complex rational spectral filters. IEEE Signal Process.
Mag. 67(1), 97–109 (2018)

27. Maroulas, V., Mike, J.L., Oballe, C.: Nonparametric estimation of probability den-
sity functions of random persistence diagrams. J. Mach. Learn. Res. 20(151), 1–49
(2019)

28. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geo-
metric deep learning on graphs and manifolds using mixture model CNNs. In:
CVPR, pp. 5115–5124 (2017)

29. Morris, C., Kriege, N.M., Kersting, K., Mutzel, P.: Faster kernels for graphs with
continuous attributes via hashing. In: IEEE ICDM, pp. 1095–1100 (2016)

30. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for
graphs. In: ICML. pp. 2014–2023 (2016)

31. O’Bray, L., Rieck, B., Borgwardt, K.: Filtration curves for graph representation.
In: ACM SIGKDD, pp. 1267–1275 (2021)

32. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for
topological machine learning. In: CVPR, pp. 4741–4748 (2015)

33. Rieck, B., Bock, C., Borgwardt, K.: A persistent Weisfeiler-Lehman procedure for
graph classification. In: ICML, pp. 5448–5458 (2019)

34. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12(77), 2539–2561
(2011)

35. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-
cient graphlet kernels for large graph comparison. In: AISTATS, pp. 488–495 (2009)

36. Tashev, I., Acero, A.: Statistical modeling of the speech signal. In: IWAENC (2010)
37. Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., Borgwardt, K.: Wasserstein

Weisfeiler-Lehman graph kernels. In: NeurIPS, pp. 6436–6446 (2019)
38. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph

attention networks. In: ICLR (2018)
39. Verma, S., Zhang, Z.L.: Hunt for the unique, stable, sparse and fast feature learning

on graphs. In: NeurIPS, pp. 88–98 (2017)
40. Xinyi, Z., Chen, L.: Capsule graph neural network. In: ICLR (2018)
41. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?

In: ICLR (2019)
42. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: ACM SIGKDD, pp. 1365–

1374 (2015)
43. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-

tecture for graph classification. In: AAAI (2018)
44. Zhang, Z., Wang, M., Xiang, Y., Huang, Y., Nehorai, A.: Retgk: Graph kernels

based on return probabilities of random walks. In: NeurIPS, pp. 3964–3974 (2018)

TopoAttn-Nets: Topological Attention in Graph Representation Learning 325

45. Zhao, Q., Wang, Y.: Learning metrics for persistence-based summaries and appli-
cations for graph classification. In: NeurIPS, pp. 9855–9866 (2019)

46. Zhao, Q., Ye, Z., Chen, C., Wang, Y.: Persistence enhanced graph neural network.
In: AISTATS, pp. 2896–2906 (2020)

47. Zieliński, B., Lipiński, M., Juda, M., Zeppelzauer, M., Dłotko, P.: Persistence bag-
of-words for topological data analysis. In: IJCAI, pp. 4489–4495 (2019)

48. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural net-
works for graph data. In: ACM SIGKDD, pp. 2847–2856 (2018)

SEA: Graph Shell Attention in Graph
Neural Networks

Christian M. M. Frey1,2(B) , Yunpu Ma2 , and Matthias Schubert2

1 Christian-Albrecht University of Kiel, Kiel, Germany
cfr@informatik.uni-kiel.de

2 Ludwig Maximilian University of Munich, Munich, Germany
{ma,schubert}@dbs.ifi.lmu.de

Abstract. A common problem in Graph Neural Networks (GNNs) is
known as over-smoothing. By increasing the number of iterations within
the message-passing of GNNs, the nodes’ representations of the input
graph align and become indiscernible. The latest models employing
attention mechanisms with Graph Transformer Layers (GTLs) are still
restricted to the layer-wise computational workflow of a GNN that are
not beyond preventing such effects. In our work, we relax the GNN
architecture by means of implementing a routing heuristic. Specifically,
the nodes’ representations are routed to dedicated experts. Each expert
calculates the representations according to their respective GNN work-
flow. The definitions of distinguishable GNNs result from k-localized
views starting from the central node. We call this procedure Graph
She ll Attention (SEA), where experts process different subgraphs in
a transformer-motivated fashion. Intuitively, by increasing the number
of experts, the models gain in expressiveness such that a node’s repre-
sentation is solely based on nodes that are located within the receptive
field of an expert. We evaluate our architecture on various benchmark
datasets showing competitive results while drastically reducing the num-
ber of parameters compared to state-of-the-art models.

1 Introduction

Graph Neural Networks (GNNs) have been proven to be an important tool in
a variety of real-world applications building on top of graph data [22]. These
range from predictions in social networks over property predictions in molecu-
lar graph structures to content recommendations in online platforms. From a
machine learning perspective, we can categorize them into various theoretical
problems that are known as node classification, graph classification/regression -
encompassing binary decisions or modeling a continuous-valued function -, and
relation prediction. In our work, we propose a novel framework and show its
applicability on graph-level classification and regression, as well as on node-level
classification tasks.

The high-level intuition behind GNNs is that by increasing the number of
iterations l = 1, . . . , L, a node’s representation contains, and therefore relies
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 326–343, 2023.
https://doi.org/10.1007/978-3-031-26390-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_20&domain=pdf
http://orcid.org/0000-0003-2458-6651
http://orcid.org/0000-0001-6112-8794
http://orcid.org/0000-0002-6566-6343
https://doi.org/10.1007/978-3-031-26390-3_20

SEA: Graph Shell Attention in Graph Neural Networks 327

successively more on its k-hop neighborhood. However, a well-known issue with
the vanilla GNN architecture refers to a problem called over-smoothing [23].
In simple words, the information flow in GNNs between two nodes u, v ∈ V,
where V denotes a set of nodes, is proportional to the reachability of node v
on a k-step random walk starting from u. By increasing the layers within the
GNN architecture, the information flow of every node approaches the stationary
distribution of random walks over the graph [7]. As a consequence, the localized
information flow is getting lost, i.e., increasing the number of iterations within
the message-passing of GNN results in representations for all the nodes in the
input graph that align and become indiscernible [15]. One strategy for increas-
ing a GNN’s effectiveness is adding an attention mechanism. An adaption of the
Transformer model [19] on graph data has been introduced as Graph Trans-
former Layer (GTL) [3]. Generally, multi-headed attention shows competitive
results whenever we have prior knowledge to indicate that some neighbors might
be more informative than others. Our framework further improves the represen-
tational capacity by adding an expert heuristic into the GTL architecture. More
specifically, to compute a node’s representation, a routing module first decides
upon an expert that is responsible for a node’s computation. The experts differ
in how their k-hop localized neighborhood is processed and they capture indi-
vidually various depths of GNNs/GTLs. We refer to different substructures that
experts process as Graph Shells. As each expert attends to a specific subgraph
of the input graph, we introduce the concept of Graph She ll Attention (SEA).
Hence, whereas a vanilla GNN might suffer from over-smoothing the nodes’ rep-
resentations, we introduce additional degrees of freedom in our architecture to
simultaneously capture short- and long-term dependencies being processed by
respective experts. In summary, our contributions are as follows:

– Integration of expert-routing into graph neural nets;
– Novel Graph Shell Attention (SEA) models capturing short- and long-term

dependencies, simultaneously;
– Experiments showing a reduction in the number of model parameters com-

pared to SOTA models;

2 Related Work

In recent years, the AI community proposed various forms of (self-)attention
mechanisms in numerous domains. Attention itself refers to a mechanism in
neural networks where a model learns to make predictions by selectively attend-
ing to a given set of data. The success of applying attention heuristics was
further boosted by introducing the Transformer model [19]. It relies on scaled
dot-product attention, i.e., given a query matrix Q, a key matrix K, and a
value matrix V , the output is a weighted sum of the value vectors, where the
dot-product of the query with corresponding keys determines the weight that is
assigned to each value.

Transformer architectures have also been successfully applied to graph data.
The work by Dwivedi et al. [3] evaluates transformer-based GNNs. They conclude

328 C. M. M. Frey et al.

that the attention mechanism in Transformers applied on graph data should only
aggregate the information from local neighborhoods, ensuring graph sparsity. As
in Natural Language Processing (NLP), where a positional encoding is applied,
they propose to use Laplacian eigenvectors as the positional encodings for further
improvements. In their results, they outperform baseline GNNs on the graph rep-
resentation task. A similar work [13] proposes a full Laplacian spectrum to learn
the position of each node within a graph. Yun et al. [25] proposed Graph Trans-
former Networks (GTN) that are capable of learning on heterogeneous graphs.
The target is to transform a given heterogeneous input graph into a meta-path-
based graph and apply a convolution operation afterwards. Hence, the focus
of their attention framework is on interpreting generated meta-paths. Another
transformer-based architecture that has been introduced by Hu et al. [9] is Het-
erogeneous Graph Transformer (HGT). Notably, their architecture can capture
graph dynamics w.r.t the information flow in heterogeneous graphs. Specifically,
they take the relative temporal positional encoding into account based on dif-
ferences of temporal information given for the central node and the message-
passing nodes. By including the temporal information, Zhou et al. [26] built a
transformer-based generative model for generating temporal graphs by directly
learning from the dynamic information in networks. The work of Ngyuen et al.
[14] proposes another idea for positional encoding. The authors of this work intro-
duced a graph transformer for arbitrary homogeneous graphs with a coordinate
embedding-based positional encoding scheme. In [24], the authors introduced
a transformer motivated architecture where various encodings are aggregated
to compute the hidden representations. They propose graph structural encod-
ings subsuming a spatial encoding, an edge encoding, and a centrality encoding.
Furthermore, a work exploring the effectiveness of large-scale pre-trained GNN
models is proposed by the GROVER model [16]. The authors include an addi-
tional GNN operating in the attention sublayer to produce vectors for Q, K, and
V . Moreover, they apply single long-range residual connections and two branches
of feedforward networks to produce node and edge representations separately. In
a self-supervised fashion, they first pre-train their model on 10 million unlabeled
molecules before using the resulting node representations in downstream tasks.
Typically, all the models are built in a way such that the same parameters are
used for all inputs. To gain more expressiveness, the motivation of the mixture
of experts (MoE) heuristic [18] is to apply different parameters w.r.t the input
data. Recently, Google proposed Switch Transformer [5], enabling training above
a trillion parameter networks but keeping the computational cost in the infer-
ence step constant. We provide an approach how a similar routing mechanism
can be integrated in GNNs.

3 Preliminaries

3.1 Notation

Let G = (V, E) be an undirected graph where V denotes a set of nodes and
E denotes a set of edges connecting nodes. We define Nk(u) to be the k-hop

SEA: Graph Shell Attention in Graph Neural Networks 329

neighborhood of a node u ∈ V, i.e., Nk(u) = {v ∈ V : dG(u, v) ≤ k}, where
dG(u, v) denotes the hop-distance between u and v on G. For N1(u) we will
simply write N(u) and omit the index k. The induced subgraph by including
the k-hop neighbors starting from node u is denoted by Gk

u. Moreover, in the
following we will use a real-valued representation vector hu ∈ R

d for a node u,
where d denotes the embedding dimensionality.

3.2 Recap: Graph Transformer Layer

As formalized in [3], a Graph Transformer Layer (GTL) update for layer l ∈
[1..L] including edge features is defined as:

ĥl+1
u = Ol

h

H�

i=1

(
∑

v∈N(u)

wi,l
uvV

i,lhl
v) , (1)

êl+1
uv = Ol

e

H�

i=1

(ŵi,l
uv),where , (2)

wi,l
uv = softmaxv(ŵi,l

uv) , (3)

ŵi,l
uv = (

Qi,lhl
u · Ki,lhl

v√
di

) · Ei,leluv , (4)

where Qi,l,Ki,l, V i,l, Ei,l ∈ R
di×d, and Ol

h, Ol
e ∈ R

d×d. The operator
�

denotes
the concatenation of attention heads i = 1, . . . , H. Subsequently, the outputs
ĥl+1
u and êl+1

uv are passed to feedforward networks and succeeded by residual
connections and normalization layers yielding the representations hl+1

u and el+1
uv .

A graph’s embedding hG is derived by a permutation-invariant readout func-
tion w.r.t. the nodes in G:

hG = readout({hu|u ∈ V}) (5)

A common heuristic for the readout function is to choose a function
readout(·) ∈ {mean(·), sum(·),max(·)}.

4 Methodology

In this section, we introduce our Graph She ll Attention (SEA) architecture for
graph data. SEA builds on top of the message-passing paradigm of Graph Neural
Networks (GNNs) while integrating an expert heuristic.

4.1 Graph Shells Models

In our approach, we implement Graph Transformer Layers (GTLs) [3] and
extend our framework by a set of experts. A routing layer decides which expert is
most relevant for computing a node’s representation. An expert’s calculation for

330 C. M. M. Frey et al.

Fig. 1. Three variants of SEA models; for each model, the respective fields of 3 experts
are shown from left to right.

a node representation differs in how k-hop neighbors are stored and processed
within GTLs.

Generally, starting from a central node, Graph Shells refer to subgraphs that
include only nodes that have at maximum a k-hop distance (k-neighborhood).
Formally, the i-th expert comprises the information given in the i-th neighbor-
hood Ni(u) = {v ∈ V : dG(u, v) ≤ i)}, where u ∈ V denotes the central node. We
refer to the subgraph Gi

u as the expert’s receptive field. Notably, increasing the
number of iterations within GTLs/GNNs correlates with the number of experts
being used. In the following, we introduce three variants on how experts process
graph shells:

SEA: Graph Shell Attention in Graph Neural Networks 331

• SEA-gtl. The first graph shell model exploits the vanilla architecture of
GTLs for which shells are defined by the standard graph neural net construction.
For a maximal number of L iterations, we define a set {Ei(u)}Ni=1 of N = L
experts. The embeddings after the l-th iteration are fed to the l-th expert, i.e.,
according to Eq. 1, the information of nodes in Gl

u for a central node u have been
processed. Figure 1a illustrates this model. From left to right, the information of
nodes being reachable by more hops is processed. Experts processing information
in early iterations refer to short-term dependencies, whereas experts processing
more hops yield information of long-term dependencies.

• SEA-aggregated. For the computation of the hidden representation hl+1
u

for node u on layer l + 1, the second model employs an aggregated value from
the preceding iteration. Following Eq. 1, the aggregation function (sum) in GLT
considers all 1-hop neighbors N1(u). For SEA-aggregated, we propagate the
aggregated value back to all of u’s 1-hop neighbors. For a node v ∈ N1(u),
the values received by v are processed according to an aggregation function
Agg ∈ {mean(·), sum(·),max(·)}. Formally:

hl+1
u = Aggl({hl+1

v : v ∈ N(u)}) (6)

Figure 1b illustrates this graph shell model. In the first iteration, there are
no preceding layers, hence, the first expert processes the information in the same
way as in the first model. In succeeding iterations, the aggregated representations
are first sent to neighboring nodes, which in turn process the incoming repre-
sentations. These aggregated values define the input for the current iteration.
Full-colored shells illustrate aggregated values from previous iterations.

• SEA-k-hop. For this model we relax the aggregate function defined in Eq. 1.
Given a graph G, we also consider k-hop linkages in the graph connecting a node
u with all entities having a maximum distance of dG(u, v) = k. The relaxation
of Eq. 1 is formalized as:

(7)

where Nk(u) denotes the k-hop neighborhood set. This approach allows
for processing each N1(u), . . . , Nk(u) by own submodules, i.e., for each k-hop
neighbors we use respective feedforward networks to compute Q,K, V in GTLs.
Notably, Eq. 7 can be interpreted as a generalization of the vanilla architecture,
which is given by setting k = 1. Figure 1c shows the k-hop graph shell model
with k = 2.

332 C. M. M. Frey et al.

Fig. 2. Routing mechanism to N experts

4.2 SEA: Routing Mechanism

By endowing our models with experts referring to various graph shells, we gain
variable expressiveness for short- and long-term dependencies. Originally intro-
duced for language modeling and machine translation, Shazeer et al. [18] pro-
posed a Mixture-of-Experts (MoE) layer. A routing module decides to which
expert the attention is steered. We use a single expert strategy [5].

The general idea relies on a routing mechanism for a node u’s representation
to determine the best expert from a set {Ei(u)}Ni=1 of N experts processing graph
shells as described in the previous Sect. 4.1. The router module consists of a linear
transformation whose output is normalized via softmaxing. The probability of
choosing the i-th expert for node u is defined as:

pi(u) =
exp(r(u)i)∑N
j exp(r(u)j)

, r(u) = hT
uWr + br , (8)

where r(·) denotes the routing operation with Wr ∈ R
d×N being the routing’s

learnable weight matrix, and br denotes a bias term. The idea is to select the
winner expert Ew(·) that is the most representative for a node’s representation,
i.e., where w = argmax

i=1,...,N
pi(u)1. A node’s representation calculated by taking

the winner’s graph shells into account is then used as input for the expert’s
individual linear transformation:

hw
u = Ew(u)TWw + bw , (9)

1 In DL libraries, the argmax(·) operation implicitly calls argmax(·) forwarding the
maximum of the input. Hence, it is differentiable w.r.t to the values yielded by the
max op., not to the indices.

SEA: Graph Shell Attention in Graph Neural Networks 333

where Ww ∈ R
d×d denotes the weight matrix of expert Ew(·), bw denotes the

bias term. The node’s representation according to expert Ew(·), is denoted by
hw
u . Figure 2 shows how the routing is integrated into our architecture.

4.3 Shells vs. Over-smoothing

Over-smoothing in GNNs is a well-known issue [23] and exacerbates the prob-
lem when we build deeper graph neural net models. Applying the same number
of iterations for each node inhibits the simultaneous expressiveness of short-
and long-term dependencies. We gain expressiveness by routing each node rep-
resentation towards dedicated experts processing only nodes in their k-localized
receptive field.

Let G = (V, E) be an undirected graph. Following the proof scheme of [15],
let A = (1(i,j)∈E)i,j∈[N]:={1,...,N} ∈ R

N×N be the adjacency matrix and D :=
diag(deg(i)i∈[N]) ∈ R

N×N be the degree matrix of G where deg(i) := |{j ∈ V |
(i, j) ∈ E}| is the degree of node i. Let Ã := A + IN , D̃ := D + IN be the
adjacent and the degree matrix of graph G augmented with self-loops, where IN
denotes the identity matrix of size N . The augmented normalized Laplacian of
G is defined by Δ̃ := IN − D̃− 1

2 ÃD̃− 1
2 and set P := IN − Δ̃. Let L,C ∈ N+

be the layer and channel sizes, respectively. W.l.o.g, for weights Wl ∈ R
C×C(l ∈

[L] := {1, . . . , L}), we define a GCN associated with G by f = fL ◦ . . . ◦ f1
where fl : RN×C → R

N×C is defined by fl(X) = σ(PXWl), where σ(·) denotes
the ReLU activation function. For M ≤ N , let U be a M -dimensional subspace
of R

N . Furthermore, we define a subspace M of R
N×C by M = U ⊗ R

C =
{∑M

m=1 em ⊗ wm | wm ∈ R
C}, where (em)m∈[M] is the orthonormal basis of

U . For an input X ∈ R
N×C , the distance between X and M is denoted by

dM = inf{‖X − Y ‖F | Y ∈ M}.
Considering G as M connected components, i.e. V = V1 ∪ . . . ∪ Vm, where

an indicator vector of the m-th connected component is denoted by um =
(1{n∈Vm})n∈[N] ∈ RN . The authors of [15] investigated the asymptotic behavior
of the output XL of the GCN when L → ∞:

Proposition 1. Let λ1 ≤ . . . ≤ λN be the eigenvalue of P sorted in ascending
order. Then, we have −1 < λ1, λN−M < 1, and λN−M+1 = . . . = λN = 1.
In particular, we have λ = maxn=1,...N−M |λn| < 1. Further, em = D̃

1
2 um for

m ∈ [M] are the basis of the eigenspace associated with the eigenvalue 1.

334 C. M. M. Frey et al.

Table 1. Summary dataset statistics

Domain Dataset #Graphs Task

Chemistry ZINC 12K Graph Regression
OGBG-MOLHIV 41K Graph Classification

Mathematical Modeling PATTERN 14K Node Classification

Let s = supl∈N+
sl with sl denoting the maximum singular value of Wl, the

major theorem and their implications for GCNs is stated as follows:

Theorem 1. For any initial value X(0), the output of l-th layer X(l) satisfies
dM(X(l)) ≤ (sλ)ldM(X(0)). In particular, dM(X(l)) exponentially converges to
0 when sλ < 1.

Proofs of Proposition 1 and Theorem 1 are formulated in [15].
Intuitively, the representations X align subsequently with the subspace M,

where the distance between both converges to zero. Therefore, it can also be
interpreted as information loss of graph neural nets in the limit of infinite layers.

The theoretical justification for the routing mechanism applied in our SEA
models comes to light when we exploit the monotonous behavior of the expo-
nential decay where the initial distance dM(X(0)) is treated as a constant value.
The architecture includes the experts in a cascading manner, where the routing
mechanism allows to point to each of the (dM(fl(X)))l=1,...,L, separately. From
Theorem 1, we get:

dM(X(L)) ≤ (sλ)LdM(X(0)) ≤ (sλ)L−1dM(X(0))

≤ . . . ≤ (sλ)1dM(X(0)),

where each inequality is supported by the output of the l-th expert, separately:

L-th expert: dM(X(L)) ≤ (sλ)LdM(X(0))

L-1-th expert: dM(X(L−1)) ≤ (sλ)L−1dM(X(0))
. ≤ . . .

1-st expert: dM(X(1)) ≤ (sλ)1dM(X(0))

Hence, our architecture does not suffer from overs-smoothing the same way as
standard GNNs, as each captures a different distance dM compared to using a
GNN where a pre-defined number of layer updates is applied for all nodes equally
and potentially leading to an over-smoothed representation.

SEA: Graph Shell Attention in Graph Neural Networks 335

5 Evaluation

5.1 Experimental Setting

Datasets
ZINC [10] is one of the most popular real-world molecular dataset consisting
of 250K graphs. A subset consisting of 10K train, 1K validation, and 1K test
graphs is used in the literature as benchmark [4].

We also evaluate our models on ogbg-molhiv [8]. Each graph within the data-
set represents a molecule, where nodes are atoms and edges are chemical bonds.

A benchmark dataset generated by the Stochastic Block Model (SBM) [1] is
PATTERN. The graphs within this dataset do not have explicit edge features.
The benchmark datasets are summarized in Table 1.

Implementation Details
Our implementation uses PyTorch, Deep Graph Library (DGL) [21], and OGB
[8]. The models are trained on an NVIDIA GeForce RTX 2080 Ti.2

Model Configuration
We use the Adam optimizer [11] with an initial learning rate ∈ {1e-3, 1e-4}. We
apply the same learning rate decay strategy for all models that half the learning
rate if the validation loss does not improve over a fixed number of 5 epochs.
We tune the pairing (#heads,hidden dimension) ∈ {(4, 32), (8, 56), (8, 64))} and
use readout ∈ {sum} as function for inference on the whole graph informa-
tion. Batch Normalization and Layer Normalization are disabled, whereas resid-
ual connections are activated per default in GTLs. For dropout, we tuned the
value to be ∈ {0, 0.01, 0.05, 0.07, 0.1} and a weight decay ∈ {5e-5, 5e-7}. For the
number of graph shells, i.e., number of experts being used, we report values
∈ {4, 6, 8, 10, 12}. As aggregation function we use Agg ∈ {mean} for Eq. 6. As
laplacian encoding, the 8 smallest eigenvectors are used.

5.2 Prediction Tasks

In the following series of experiments, we investigate the performance of the
Graph Shell Attention mechanism on graph-level prediction tasks for the datasets
ogbg-molhiv [8] and ZINC [10], and a node-level classification task on PATTERN
[1]. We use commonly used metrics for the prediction tasks as they are used in [4],
i.e., mean absolute error (MAE) for ZINC, the ROC-AUC score on ogbg-molhiv,
and the accuracy on PATTERN.

Competitors. We evaluate our architectures against state-of-the-art GNN mod-
els achieving competitive results. Our report subsumes the vanilla GCN [12],
GAT [20] that includes additional attention heuristics, or more recent GNN
architectures building on top of Transformer-enhanced models like SAN [13]
and Graphormer [24]. Moreover, we include GIN [23] that is more discrimina-
tive towards graph structures compared to GCN [12], GraphSage [6], and DGN
[2] being more discriminative than standard GNNs w.r.t the Weisfeiler-Lehman
1-WL test.
2 Code: https://github.com/christianmaxmike/SEA-GNN.

https://github.com/christianmaxmike/SEA-GNN

336 C. M. M. Frey et al.

Table 2. Comparison to state-of-the-art; results are partially taken from [4,13]; color
coding (gold/silver/bronze)

ZINC

Model #params. MAE

GCN [12] 505K 0.367
GIN [23] 509K 0.526
GAT [20] 531K 0.384
SAN [13] 508K 0.139

Graphormer-Slim [24] 489K 0.122

Vanilla GTL 83K 0.227
SEA-GTL 347K 0.212

SEA-aggregated 112K 0.215
SEA-2-hop 430K 0.159

SEA-2-hop-aug 709K 0.189

(a) ZINC [10]

OGBG-MOLHIV

Model #params. %ROC-AUC

GCN-GraphNorm [12] 526K 76.06
GIN-VN [23] 3.3M 77.80

DGN [2] 114K 79.05
Graphormer-Flag [24] 47.0M 80.51

Vanilla GTL 386K 78.06
SEA-GTL 347K 79.53

SEA-aggregated 133K 80.18
SEA-2-hop 511K 80.01

SEA-2-hop-aug 594K 79.08

(b) ogbg-molhiv [8]

PATTERN

Model #params. % ACC

GCN [12] 500K 71.892
GIN [23] 100K 85.590
GAT [20] 526K 78.271

GraphSage [6] 101K 50.516
SAN [13] 454K 86.581

Vanilla GTL 82K 84.691
SEA-GTL 132K 85.006

SEA-aggregated 69K 57.557
SEA-2-hop 48K 86.768

SEA-2-hop-aug 152K 86.673

(c) PATTERN [1]

SEA: Graph Shell Attention in Graph Neural Networks 337

Results. Tables 2a, b, and c summarize the performances of our SEA models
compared to baselines on ZINC, ogbg-molhiv, and PATTERN. Vanilla GTL
shows the results of our implementation of the GNN model including Graph
Transformer Layers [3]. SEA-2-hop includes the 2-hop connection within the
input graph, whereas SEA-2-hop-aug process the input data the same way as
the 2-hop heuristic, but uses additional feedforward networks for computing Q,
K, V values for the 2-hop neighbors.

For PATTERN, we observe the best result using the SEA-2-hop model,
beating all other competitors. On the other hand, distributing an aggregated
value to neighboring nodes according to SEA-aggregated yields a too coarse
view for graphs following the SBM and loses local graph structure.

In the sense of Green AI [17] that focuses on reducing the computational
cost to encourage a reduction in resources spent, our architecture reaches state-
of-the-art performance on ogbg-molhiv while drastically reducing the number
of parameters being trained. Comparing SEA-aggregated to the best result
reported for Graphormer [24], our model economizes on 99.71% of the number
of parameters while still reaching competitive results.

The results on ZINC enforces the argument of using individual experts com-
pared to vanilla GTLs, where the best result is reported for SEA-2-hop.

5.3 Number of Shells

Next, we examine the performance w.r.t the number of experts. Notably, increas-
ing the number of experts correlated with the number of Graph Shells which are
taken into account. Table 3 summarizes the results where all other hyperparam-
eters are frozen, and we only have a variable size in the number of experts. We
train each model for 500 epochs and report the best-observed metrics on the
test datasets. We apply an early stopping heuristic, where we stop the learn-
ing procedure if we have not observed any improvements w.r.t the evaluation
metrics or if the learning rate scheduler reaches a minimal value which we set
to 10−6. Each evaluation on the test data is conducted after 5 epochs, and
the early stopping is effective after 10 consecutive evaluations on the test data
with no improvements. First, note that increasing the number of experts also
increases the model’s parameters linearly. This is due to additional routings and
linear layer being defined for each expert separately. Secondly, we report also the
average running time in seconds [s] on the training data for each epoch. By con-
struction, the running time correlates with the number of parameters that have
to be trained. The number of parameters differs from one dataset to another
with the same settings due to a different number of nodes and edges within
the datasets and slightly differs if biases are used or not. Note that we observe
better results of SEA-aggregated by decreasing the embedding size from 64
to 32, which also applies for the PATTERN dataset in general. The increase of
parameters of the augmented 2-hop architecture SEA-2-hop-aug is due to the
additional feedforward layers being used for the k-hop neighbors to compute the
inputs Q,K, V in the graph transformer layer. Notably, we also observe that
similar settings apply for datasets where the structure is an important feature

338 C. M. M. Frey et al.

T
ab

le
3.

In
flu

en
ce

of
th

e
nu

m
be

r
of

ex
pe

rt
s

ap
pl

ie
d

on
va

ri
ou

s
SE

A
m

od
el

s;
be

st
co

nfi
gu

ra
ti

on
s

ar
e

hi
gh

lig
ht

ed
in

gr
ee

n

Z
IN

C
O
G
B
G
-M

O
L
H
IV

P
A
T
T
E
R
N

M
od

el
#

ex
p
er

ts
#

p
ar

am
s

M
A
E

ti
m

e/
ep

oc
h

#
p
ar

am
s.

%
R
O
C
-A

U
C

ti
m

e/
ep

oc
h

#
p
ar

am
s.

%
A
C
C

ti
m

e/
ep

oc
h

SE
A
-G

T
L

4
18

3K
0.
38

5
13

.6
0

18
2K

79
.2
4

49
.2
1

48
K

78
.9
75

58
.1
4

6
26

6K
0.
36

8
20

.9
3

26
3K

78
.2
4

68
.6
7

69
K

82
.1
17

82
.4
6

8
34

9K
0.
21

2
26

.2
4

34
5K

79
.5
3

84
.3
5

90
K

82
.9
83

10
8.
41

10
43

3K
0.
26

4
31

.6
3

42
8K

79
.3
5

10
7.
11

11
1K

84
.0
41

13
3.
73

12
51

6K
0.
24

9
38

.2
6

51
1K

79
.1
8

12
2.
99

13
2K

85
.0
06

16
8.
47

SE
A
-a
g
g
r
eg

at
ed

4
49

K
0.
25

7
31

.2
4

48
K

77
.8
7

60
.9
8

48
K

57
.4
90

99
.1
0

6
70

K
0.
30

8
44

.6
1

69
K

79
.2
1

86
.2
6

69
K

57
.5
57

10
6.
79

8
91

K
0.
24

9
57

.8
9

90
K

77
.1
9

86
.9
3

90
K

54
.3
85

13
1.
57

10
11

2K
0.
21

5
73

.4
9

11
1K

77
.4
8

10
2.
40

11
1K

57
.2
21

17
3.
74

12
13

3K
0.
22

5
87

.0
8

13
2K

80
.1
8

12
4.
08

13
2K

57
.2
70

20
6.
73

SE
A
-2
-h

o
p

4
18

2K
0.
30

9
14

.2
8

18
0K

76
.3
0

43
.5
1

48
K

86
.7
68

94
.0
4

6
26

5K
0.
21

3
20

.1
3

26
3K

77
.2
7

59
.8
2

69
K

86
.7
06

13
8.
10

8
34

7K
0.
18

5
24

.9
1

34
5K

76
.6
1

79
.5
6

90
K

86
.7
07

17
8.
64

10
43

0K
0.
15

9
32

.6
8

42
8K

78
.3
8

95
.6
9

11
1K

86
.6
80

23
2.
91

12
51

3K
0.
18

8
38

.7
3

51
1K

80
.0
1

11
2.
93

13
2K

86
.6
99

26
9.
71

SE
A
-2
-h

o
p-
au

g
4

24
8K

0.
44

4
16

.8
6

24
8K

77
.2
1

48
.6
5

65
K

84
.8
89

12
4.
96

6
36

3K
0.
35

0
24

.8
4

36
3K

75
.1
9

70
.0
5

94
K

85
.1
41

20
3.
38

8
47

8K
0.
28

5
31

.4
8

47
6K

76
.5
5

90
.7
8

12
3K

86
.6
60

27
0.
85

10
59

4K
0.
20

5
39

.2
5

59
4K

79
.0
8

10
9.
91

15
2K

86
.6
73

36
3.
58

12
70

9K
0.
18

9
46

.5
1

70
7K

77
.5
2

13
3.
48

18
1K

86
.6
14

42
1.
46

SEA: Graph Shell Attention in Graph Neural Networks 339

Table 4. Influence of parameter k for the SEA-k-hop model; best configuration for
each model is highlighted in green

ZINC OGBG-MOLHIV PATTERN
Model #exp. k #prms MAE #prms %ROC-

AUC
#prms %ACC

SEA-k-hop

6
2 265K 0.213 263K 77.27 69K 86.768
3 266K 0.191 263K 76.15 69K 86.728
4 266K 0.316 263K 73.48 69K 86.727

10
2 430K 0.159 428K 78.38 111K 86.680
3 433K 0.171 428K 74.67 111K 86.765
4 433K 0.239 428K 73.72 111K 86.725

of the graph, like in molecules (ZINC + ogbg-molhiv). In contrast to that is the
behavior on graphs following the stochastic block model (PATTERN). On the
latter one, the best performance could be observed by including k-hop informa-
tion, whereas an aggregation yields too simplified features to be competitive. For
the real-world molecules (ZINC + ogbg-molhiv) datasets, we observe that more
experts boost the performance for the various SEA extensions.

5.4 Stretching Locality in SEA-K-HOP

Lastly, we investigate the influence of the parameter k for the SEA-k-hop model.
Generally, by increasing the parameter k, the model diverges to the full model
being also examined for the SAN architecture explained in [13]. In short, the
full setting takes edges into account that is given by the input data and also
sends information over non-existent edges, i.e., the argumentation is on a full
graph setting. In our model, we smooth the transition from edges being given
in the input data to the full setting that naturally arises when k, the number
of hops, is set to a sufficiently high number. Table 4 summarizes the results for
the non-augmented model, i.e., no extra linear layers are used for each k-hop
neighborhood. The number of parameters stays the same by increasing k.

5.5 Distribution of Experts

We evaluate the distributions of the experts being chosen to compute the nodes’
representations in the following. We set the number of experts to 8. Figure 3
summarizes the relative frequencies of the experts being chosen on the datasets
ZINC, ogbg-molhiv, and PATTERN. Generally, the performance of the shell
attention heuristic degenerates whenever we observe expert collapsing. In the
extreme case, just one expert expresses the mass of all nodes, and the capabil-
ity to distribute nodes’ representations over several experts is not leveraged. To
overcome expert collapsing, we can use a heuristic where in the early stages of

340 C. M. M. Frey et al.

Fig. 3. Distribution of 8 experts for models SEA-GNN, SEA-aggregated, SEA-2-
hop, and SEA-2-hop-aug for datasets ZINC, ogbg-molhiv and PATTERN. Relative
frequencies are shown for values ≥ 1%. Numbers attached to the slices refer to the
respective experts.

SEA: Graph Shell Attention in Graph Neural Networks 341

the learning procedure, an additional epsilon parameter ε introduces random-
ness. Like a decaying greedy policy in Reinforcement Learning (RL), we choose
a random expert with probability ε and choose the expert with the highest prob-
ability according to the routing layer with a probability of 1 − ε. The epsilon
value slowly decays over time. This ensures that all experts’ expressiveness is
being explored to find the best matching one w.r.t to a node u and prevents get-
ting stuck in a local optimum. The figure shows the distribution of experts that
are relevant for the computation of the nodes’ representations. For illustrative
purposes, values below 1% are omitted. Generally, nodes are more widely dis-
tributed over all experts in the molecular datasets - ZINC and ogbg-molhiv - for
all models compared to PATTERN following a stochastic block model. Therefore,
various experts are capable of capturing individual topological characteristics of
molecules better than vanilla graph neural networks for which over-smoothing
might potentially occur. We also observe that the mass is distributed to only
a subset of the available experts for the PATTERN dataset. Hence, the spe-
cific number of iterations is more expressive for nodes within graph structures
following SBM.

6 Conclusion

We introduced the theoretical foundation for integrating an expert heuristic
within transformer-based graph neural networks. This opens a fruitful direction
for future works that go beyond successive message-passing to develop even more
powerful architectures in graph learning. We provide an engineered solution that
allows selecting the most representative experts for nodes in the input graph. For
that, our model exploits the idea of a routing layer steering the nodes’ represen-
tations towards the individual expressiveness of dedicated experts. As experts
process different subgraphs starting from a central node, we introduce the ter-
minology of Graph She ll A ttention (SEA), where experts solely process nodes
that are in their respective receptive field. Therefore, we gain expressiveness by
capturing varying short- and long-term dependencies expressed by individual
experts. In a thorough experimental study, we show on real-world benchmark
datasets that the gained expressiveness yields competitive performance com-
pared to state-of-the-art results while being more economically. Additionally, we
report experiments that stress the number of graph shells that are taken into
account.

Acknowledgements. This work has been funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18050C (MLWin) and Grant
No. 01IS18036A (MCML). The authors of this work take full responsibilities for its
content.

References

1. Abbe, E.: Community detection and stochastic block models. Found. Trends Com-
mun. Inf. Theory (2018). https://doi.org/10.1561/0100000067

https://doi.org/10.1561/0100000067

342 C. M. M. Frey et al.

2. Beaini, D., Passaro, S., Létourneau, V., Hamilton, W.L., Corso, G., Liò, P.: Direc-
tional graph networks. CoRR (2020). https://arxiv.org/abs/2010.02863

3. Dwivedi, V.P., Bresson, X.: A generalization of transformer networks to graphs
(2021)

4. Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y., Bresson, X.: Benchmarking
graph neural networks. arXiv preprint arXiv:2003.00982 (2020)

5. Fedus, W., Zoph, B., Shazeer, N.: Switch transformers: scaling to trillion parameter
models with simple and efficient sparsity. CoRR (2021). https://arxiv.org/abs/
2101.03961

6. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on
large graphs. In: Guyon, I., et al. (eds.) Advances in Neural Informa-
tion Processing Systems (2017). https://proceedings.neurips.cc/paper/2017/file/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

7. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Amer. Math. Soc. (2006). https://doi.org/10.1090/s0273-0979-06-01126-8

8. Hu, W., et al.: Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687 (2020)

9. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: Pro-
ceedings of the Web Conference 2020, WWW 2020 (2020). https://doi.org/10.
1145/3366423.3380027

10. Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., Coleman, R.G.: Zinc: a
free tool to discover chemistry for biology. J. Chem. Inf. Model. 52(7), 1757–1768
(2012)

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (ICLR) (2015)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: Proceedings of the 5th International Conference on Learning Repre-
sentations, ICLR 2017 (2017). https://openreview.net/forum?id=SJU4ayYgl

13. Kreuzer, D., Beaini, D., Hamilton, W.L., Létourneau, V., Tossou, P.: Rethinking
graph transformers with spectral attention (2021)

14. Nguyen, D.Q., Nguyen, T.D., Phung, D.: Universal self-attention network for graph
classification. arXiv preprint arXiv:1909.11855 (2019)

15. Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power
for node classification. arXiv: Learning (2020)

16. Rong, Y., et al.: Self-supervised graph transformer on large-scale molecular data.
In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances
in Neural Information Processing Systems (2020). https://proceedings.neurips.cc/
paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf

17. Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green AI. Commun. ACM
(2020). https://doi.org/10.1145/3381831

18. Shazeer, N., et al.: Outrageously large neural networks: the sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538 (2017)

19. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems, NIPS 2017 (2017)

20. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: 6th International Conference on Learning Representations
(2017)

21. Wang, M., et al.: Deep graph library: a graph-centric, highly-performant package
for graph neural networks. arXiv preprint arXiv:1909.01315 (2019)

https://arxiv.org/abs/2010.02863
http://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://doi.org/10.1090/s0273-0979-06-01126-8
http://arxiv.org/abs/2005.00687
https://doi.org/10.1145/3366423.3380027
https://doi.org/10.1145/3366423.3380027
https://openreview.net/forum?id=SJU4ayYgl
http://arxiv.org/abs/1909.11855
http://arxiv.org/abs/Learning
https://proceedings.neurips.cc/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf
https://doi.org/10.1145/3381831
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1909.01315

SEA: Graph Shell Attention in Graph Neural Networks 343

22. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://
doi.org/10.1109/TNNLS.2020.2978386

23. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
CoRR (2018). http://arxiv.org/abs/1810.00826

24. Ying, C., et al.: Do transformers really perform bad for graph representation? arXiv
preprint arXiv:2106.05234 (2021)

25. Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph transformer networks.
In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems (2019).
https://proceedings.neurips.cc/paper/2019/file/9d63484abb477c97640154d40595a
3bb-Paper.pdf

26. Zhou, D., Zheng, L., Han, J., He, J.: A Data-Driven Graph Generative Model for
Temporal Interaction Networks (2020). https://doi.org/10.1145/3394486.3403082

https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/2106.05234
https://proceedings.neurips.cc/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://doi.org/10.1145/3394486.3403082

Edge but not Least: Cross-View Graph
Pooling

Xiaowei Zhou1,3, Jie Yin2(B), and Ivor W. Tsang1,4

1 Australian Artificial Intelligence Institute (AAII), University of Technology
Sydney, Ultimo, NSW 2007, Australia

Xiaowei.Zhou@student.uts.edu.au, ivor.tsang@uts.edu.au
2 Discipline of Business Analytics, The University of Sydney, Camperdown,

NSW 2006, Australia
jie.yin@sydney.edu.au

3 Data61, CSIRO, Eveleigh, NSW 2015, Australia
4 Center for Frontier AI Research A*STAR, Singapore, Singapore

Abstract. Graph neural networks have emerged as a powerful repre-
sentation learning model for undertaking various graph prediction tasks.
Various graph pooling methods have been developed to coarsen an input
graph into a succinct graph-level representation through aggregating
node embeddings obtained via graph convolution. However, because most
graph pooling methods are heavily node-centric, they fail to fully lever-
age the crucial information contained in graph structure. This paper
presents a cross-view graph pooling method (Co-Pooling) that explicitly
exploits crucial graph substructures for learning graph representations.
Co-Pooling is designed to fuse the pooled representations from both node
view and edge view. Through cross-view interaction, edge-view pooling
and node-view pooling mutually reinforce each other to learn informa-
tive graph representations. Extensive experiments on one synthetic and
15 real-world graph datasets validate the effectiveness of our Co-Pooling
method. Our results and analysis show that (1) our method is able to
yield promising results over graphs with various types of node attributes,
and (2) our method can achieve superior performance over state-of-the-
art pooling methods on graph classification and regression tasks.

Keywords: Graph pooling · Graph representation learning

1 Introduction

With widespread digitization occurring in various domains, a significant portion
of data takes the form of graphs, such as social networks, chemical molecular
graphs, and financial transaction networks. As such, learning effective graph
representations plays a crucial role in a variety of tasks, such as drug discovery,
molecule property prediction, and traffic forecast, etc. Recently, graph neural
networks (GNNs) have emerged as state-of-the-art models for graph represen-
tation learning, including graph convolutional network (GCN) [9], graph atten-
tion network (GAT) [20], graph isomorphism network (GIN) [22], and Graph-
SAGE [8]. Most of these GNN models rely on message passing to learn the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 344–359, 2023.
https://doi.org/10.1007/978-3-031-26390-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_21&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_21

Edge but not Least: Cross-View Graph Pooling 345

Fig. 1. Classification accuracy on PROTEINS with different edge ratios. Accuracy does
not significantly drop when different ratios of edges are (a) randomly dropped from
original graphs, or (b) randomly added from no-edge graphs.

embedding of each node by aggregating and transforming the features of its
neighbouring nodes. To obtain the representation of the entire graph, node
embeddings are aggregated via a readout function or graph pooling meth-
ods [15,24–26]. Graph pooling methods coarsen an input graph into a compact
vector-based representation for the entire graph, which is then used for graph
prediction tasks, such as graph classification or graph regression.

To learn expressive graph representations, various graph pooling methods
have been proposed in recent years. Sampling based methods (e.g., SAGPool [10],
ASAP [15], HGPSL [26], and gPool [6]) calculate an importance score for each
node and then select the top K important nodes to generate an induced sub-
graph. For example, SAGPool [10] selects nodes by learning importance scores
via a self-attention mechanism. HGPSL [26] samples important nodes and uses
an additional structure learning mechanism to learn new graph connectivity for
the sampled nodes. Clustering based methods, like differentiable graph pooling
(DiffPool) [24], learn an assignment matrix to cluster nodes into several super-
nodes level by level. Then, a hierarchy of the induced subgraphs can be generated
for representing the whole graph. Nonetheless, we argue that the existing pool-
ing methods focus primarily on aggregating node-level information, so they fail
to exploit key graph substructures for learning graph-level representations. The
loss of information present in graph structure would hinder message passing in
subsequent layers and consequently jeopardize the graph representation expres-
siveness.

To verify our argument, we select four state-of-the-art pooling methods: SAG-
Pool [10], ASAP [15], DiffPool [24], and HGPSL [26], and analyze the influence
of changing graph topological structure on the graph classification accuracy. We
use PROTEINS, a macromolecule dataset containing rich structural informa-
tion, as a case study, where we change graph topological structure by randomly
dropping or adding edges with different ratios. As shown in Fig. 1, we find that
the random edge manipulation does not cause a significant drop in the graph
classification accuracy. Surprisingly, when there are no edges at all, i.e., dropping
100% edges in Fig. 1(a) and adding 0% edges (no edges) in Fig. 1(b), the classifi-
cation accuracy still retains at the same level as other edge ratios. In particular,
for HGPSL (which implicitly uses edge information), the classification accuracy

346 X. Zhou et al.

Fig. 2. (a) Illustration of substructure (triangle) preserved by Co-Pooling. (b) Overview
of our proposed Co-Pooling framework. Co-Pooling is composed of two complementary
components – edge-view pooling and node-view pooling – that reinforce each other to
better learn informative graph-level representations.

is the highest when all edges are removed. Our empirical studies indicate that
current graph pooling methods are heavily node-centric and lack the ability to
fully leverage the crucial information contained in graph structure.

To fill this research gap, we propose a novel cross-view graph pooling method
(Co-Pooling) that explicitly exploits graph substructures for learning graph-level
representations. Our main motivations are twofold. First, we would like to cap-
ture crucial graph substructures through explicitly pruning unimportant edges in
the graph. Key substructures, such as functional groups (e.g., triangles, rings) in
molecular networks, or cliques in protein-protein interaction networks and social
networks, have been widely recognized as a crucial source for graph prediction
tasks [13]. For example, in molecular chemistry, certain patterns of atoms (e.g.,
triangles) are considered highly indicative for predicting certain molecule’s prop-
erties [17]. As illustrated in Fig. 2(a), we need to preserve circular connectivity
among three nodes in order to capture a triangle substructure. The crux is that,
if graph pooling operates in a node-centric way or on the pairwise adjacency
matrix, such higher-order, triangle circular connectivity cannot be properly pre-
served. Thus, we propose to preserve key substructures through learning higher-
order proximity weights, which are then used to prune unimportant edges for
substructure extraction. Second, apart from structural information, real-world
graphs often have various types of node properties, such as one-hot attributes,
real-valued attributes, or even no attributes (see Table 2). Hence, it is highly
desirable for our pooling method to fuse useful information from both edge and
node views and to make the best of node-level attributes when available.

Co-Pooling is composed of two key components: edge-view pooling and node-
view pooling. Figure 2(b) shows the overview of Co-Pooling. Edge-view pooling
aims to preserve crucial graph substructures, which are informative for subse-
quent graph prediction tasks. This is achieved by capturing high-order structural
and attribute proximity via generalized PageRank and then pruning the edges
with lower proximity weights. For node-view pooling, an importance score is cal-
culated for each node, and top-ranked important nodes are selected for pooling.
The learning of graph pooling from the edge and node views mutually reinforces
each other through exchanging proximity weights and the selected important

Edge but not Least: Cross-View Graph Pooling 347

nodes. The final pooled graph is obtained by fusing graph representations learned
from these two views. Through cross-view interaction, Co-Pooling enables edge-
view pooling and node-view pooling to complement each other towards learning
expressive graph representations. Our contributions are summarised as follows:

– We investigate the ineffectiveness of the existing node-centric graph pooling
methods in fully leveraging graph structure.

– We propose a novel graph pooling method (Co-Pooling) to learn graph rep-
resentations by fusing the pooled graph from both node view and edge view.
Co-Pooling has the ability to preserve crucial graph substructures and to
handle different types of graphs (node-labeled/attributed/plain graphs).

– We validate the effectiveness of Co-Pooling in graph classification and regres-
sion tasks across one synthetic and 15 real-world graph datasets, demonstrat-
ing its competitive performance over state-of-the-art pooling methods.

2 Related Work

Graph pooling is a key component of GNNs for learning a vector representation
of an input graph. The existing graph pooling methods can be divided into two
categories: sampling based pooling and clustering based pooling.

Sampling based pooling methods generate a smaller induced graph by select-
ing the top important nodes according to certain importance scores of nodes.
SortPooling [27] ranks the nodes according to node embeddings learned from
graph convolution and stacks the embeddings of selected nodes as graph repre-
sentation. SAGPool [10] uses a self-attention mechanism to calculate an impor-
tance score for each node and then chooses top-ranked nodes to induce the pooled
graph. Ranjan et al. [15] propose adaptive structure aware pooling (ASAP) that
updates node embeddings by aggregating the features of nodes in a local region
and then calculates a fitness score for each node to select the top-K nodes.
Gao et al. [7] propose neighborhood information gain as a criterion to select top
important nodes and then construct a coarsened graph from selected nodes. The
above mentioned methods, however, do not fully leverage the crucial informa-
tion contained in graph structure in the pooling process. HGPSL [26] takes one
step forward to learn new connections between the selected nodes, but fails to
capture crucial substructures contained in the original graph.

Clustering based pooling methods learn an assignment matrix to cluster
nodes into super-nodes. DiffPool [24] learns a differentiable soft cluster assign-
ment, which is used to group nodes into several clusters in the subsequent layer.
HaarPooling [21] relies on compressive Haar transform filters to generate the
induced graph of smaller size. HAP [11] uses master-orthogonal attention to
learn a soft assignment to cluster nodes. SUGAR [18] samples several subgraphs
from the input graph and clusters the top important subgraphs into super-nodes
via reinforcement learning. However, this method is highly dependent on the
sampling strategy used to obtain useful subgraph candidates.

Most of current graph pooling methods operate on a single node view;
they are unable to fully leverage crucial graph structure. Although preliminary

348 X. Zhou et al.

attempts (e.g., EdgePool [3] and EdgeCut [5]) have been made to pool the input
graph from an edge view, these methods simply rely on local connectivity to cal-
culate pairwise edge scores. In contrast, our edge-view pooling leverages higher-
order structural and attribute proximity to measure the importance of edges,
which is fed to further guide the selection of important nodes for node-view
pooling. To the best of our knowledge, we are the first to propose a cross-view
graph pooling method, which enables pooling to fuse useful information from
both edge and node views towards learning informative graph representations.

3 Methodology

In this section, we first introduce preliminaries and notations, and then present
the details of our proposed cross-view graph pooling method.

3.1 Preliminaries and Notations

Suppose we are given m input graphs G = {G(0), G(1), · · · , G(m)} and their
corresponding targets Y = {y(0), y(1), · · · , y(m)}. For graph classification, y(i) is a
discrete class label; for graph regression, y(i) is a continuous target variable y(i) ∈
R. An arbitrary graph G(g) is represented as (V(g), E(g),X(g)). For simplicity,
(V(g), E(g),X(g)) is also noted as (V, E ,X), where V is the node set and E is the
edge set. X ∈ R

n×d denotes the node attribute matrix, where n = |V| is the
number of nodes and d is the dimension of node attributes; A is the adjacent
matrix. If there is an edge between node i and j, Aij = 1; otherwise Aij = 0.
Â = A + I denotes the adjacent matrix with self-loops.

In this work, we use graph convolution network (GCN) as our backbone to
learn representations for graphs. The graph convolution operation is defined as:

H = D̂−1/2ÂD̂−1/2XΘ (1)

where H ∈ R
n×f is node embedding after convolution, f is the dimension of node

embedding; D̂ii =
∑

j=0

Âij is diagonal degree matrix; Θ is a learnable parameter.

After node embeddings are learned, graph pooling aims to generate a vector
representation for the whole graph. To facilitate downstream graph prediction
tasks, the learned graph representation is expected to preserve the information
conveyed by both graph structure and node attributes.

3.2 Cross-View Graph Pooling: Co-Pooling

The key idea of Co-Pooling is to preserve crucial “signals” that are beneficial
to downstream graph prediction tasks. Unlike previous studies that dominantly
focus on node-level information, we take both node and edge views to preserve
crucial substructures reflected by graph structure and node attributes. To this
end, we propose to perform graph pooling from both edge and node views.

Edge but not Least: Cross-View Graph Pooling 349

As shown in Fig. 2(b), our proposed Co-Pooling framework consists of two
complementary components: edge-view pooling and node-view pooling. Edge-
view pooling prunes unimportant edges to capture meaningful substructures
(e.g., triangles). Node-view pooling, on the other hand, further selects top-ranked
important nodes. Through cross-view interaction, edge-view pooling and node-
view pooling reinforce each other to induce informative graph representations.

Edge-View Pooling. The key objective of edge-view pooling is to preserve
crucial substructures contained in the original graph. Extracting useful substruc-
tures requires to incorporate high-order structural and node attribute informa-
tion. Thus, we propose to use generalized PageRank (GPR) [2] to jointly optimize
node attribute and topological information extraction.

To be specific, we first update node embeddings via GPR to capture the
information from multi-hop neighbours. As shown in Eq. (2), node embeddings
are updated by multiplying a GPR weight βt at each step t. When t = 0, we
have H0 = H; when t > 0, we have Ht = D̂−1/2ÂD̂−1/2Ht−1. Through GPR,
node embeddings propagate T steps, and the GPR weight βt is learned at each
step. Thus, the contribution of each propagation step towards node embeddings
can be learned adaptively. The GPR operation of T steps helps incorporate the
information from multi-hop neighbours to learn expressive node embeddings.

O =
∑T

t=0
βtHt. (2)

After updating node embeddings via GPR, we calculate pairwise proximity
weights that reflect high-order structural and attribute proximity between nodes.
This process can be illustrated using Eq. (3), where Oi and Oj are the updated
embeddings of node i and node j by GPR. We first transform node embeddings
Oi and Oj via a linear transformation parameterized with W. Then, the trans-
formed embeddings are concatenated and fed to another linear transformation
with learnable parameters a. Finally, the proximity weight Pij between node i
and node j is obtained via a Sigmoid function. To preserve the original adjacency
of graphs, we multiply the proximity weight with the adjacent matrix A.

Pij = σ(aT [WOi‖WOj]) � Aij , (3)

where Pij is the proximity weight between node i and node j; σ is Sigmoid func-
tion; ‖ represents the concatenation operation; a and W are learnable param-
eters; � represents matrix element-wise multiplication; Aij = 1 or 0 indicates
whether or not there is an edge connecting node i and node j.

According to the proximity weight Pij of each node pair, we can obtain the
proximity matrix P for all node pairs. For undirected graphs, we average the
proximity weights at symmetric positions by Psym = (P̂ + P̂T)/2.

For a specific prediction task, the edges constituting discriminative substruc-
tures are expected to have higher proximity weights. Conversely, less important
edges would have lower proximity weights. Thus, we prune unimportant edges

350 X. Zhou et al.

with low proximity weights during edge-view pooling. For a given edge preserv-
ing ratio γ, we have the pruned proximity matrix Pprune = Topγ(Psym), where
Topγ() is the operation that preserves the top γ percentage of edges with high
proximity weights. Accordingly, we update the adjacent matrix to reflect the
removal of edges. The pruned proximity matrix signifies certain crucial substruc-
tures preserved by pruning unimportant edges. The pruned proximity matrix is
further fed to node-view pooling to guide the selection of important nodes.

Node-View Pooling. For node-view pooling, the aim is to select the top K
important nodes for coarsening the input graph. To better exploit the connectiv-
ity between nodes, we take the pruned proximity matrix from edge-view pooling
to compute an importance score for each node, given by

s = D̂−1/2
pruneP̂pruneD̂

−1/2
pruneH1T , (4)

where s is the score vector for all nodes; D̂prune is the diagonal degree matrix of
P̂prune, P̂prune = Pprune + I; and 1T is a vector with all entries as one.

Based on node importance scores, we select the top K = �n×ε� nodes, where
ε is the node pooling ratio. For selected nodes, we can obtain their indices and
corresponding node embeddings.

Edge-Node View Interaction. To enable edge-view pooling and node-view
pooling to reinforce each other, Co-Pooling exchanges the pruned proximity
matrix and the indices of selected nodes, which serve as the mediator for the
interaction between two views.

For node-view pooling, the pruned proximity matrix from edge-view pooling
is used to calculate the important score for each node. The pruned proximity
matrix better reflects higher-order structural and attribute proximity between
nodes, thus providing a better measure than the original adjacent matrix to
quantify the importance of nodes contained in certain substructures. After
obtaining the node scores, we select the top-K important nodes as the pooled
graph, i.e., H(indices, :), where (indices, :) indicates the index selection opera-
tion.

For edge-view pooling, the indices of selected nodes obtained from node-view
pooling are used to aggregate node embeddings from neighborhoods based on
the pruned proximity matrix. The pooled representation from edge-view pooling
is obtained as Pprune(indices, :)H. This enables to extract meaningful substruc-
tures centered on important nodes and perform neighborhood aggregation over
important edges only.

Lastly, the pooled representations from node-view pooling and edge-view
pooling are fused to form the final graph representation as:

Z = W[Pprune(indices, :)H‖H(indices, :)] (5)

where W is a learnable parameter of linear transformation; ‖ indicates the con-
catenation operator; and Z is the graph representation after pooling. Through
edge-node view interaction, Co-Pooling enables edge-view pooling and node-view
pooling to complement each other for learning informative graph representations.

Edge but not Least: Cross-View Graph Pooling 351

4 Experiments

We evaluate the performance of Co-Pooling on three graph prediction tasks,
including substructure counting, graph classification, and graph regression. For
substructure counting (Sect. 4.1), we empirically assess the performance of Co-
Pooling in preserving important substructures. For graph classification, we com-
pare Co-Pooling against several state-of-the-art pooling methods under two
settings: attribute-complete graphs (Sect. 4.2) and attribute-incomplete graphs
(Sect. 4.3). Furthermore, we compare Co-Pooling against baseline pooling meth-
ods on graph regression (Sect. 4.5). The source code of Co-Pooling is available
at: https://github.com/zhouxiaowei1120/Co-Pooling.

Baselines. As our focus is upon designing new graph pooling methods, we
compare Co-Pooling with five state-of-the-art graph pooling methods rather
than specially designed GNNs for graph classification. These baseline methods
include: SAGPool [10], ASAP [15], DiffPool [24], HGPSL [26], and EdgePool [3].
When training DiffPool, we use the auxiliary link prediction loss function with
entropy regularization as in the original paper. For comparison, all graph pooling
methods are built on top of the same GCN architecture for downstream tasks.

4.1 Substructure Counting on Random Graphs

To verify the capacity of Co-Pooling in preserving graph substructures, we con-
sider a substructure counting task, with the aim to count the number of triangles
contained in random graphs.

Dataset. For substructure counting task, we use the synthetic Syn-triangle
dataset [1], consisting of 5,000 Erdös-Renyi random graphs. Each graph contains
10 nodes and p = 0.3 is the probability that an edge exists. Akin to [1], we use
30%-20%-50% graphs as training-validation-test sets.

Table 1. Normalized MSE for sub-
structure counting on Syn-triangle.

Methods Syn-triangle

SAGPool 0.849 ± 0.061
ASAP 0.701 ± 0.140
DiffPool 0.762 ± 0.194
HGPSL 0.878 ± 0.079
EdgePool 0.704 ± 0.009
Co-Pooling 0.448±0.046

Experimental Setup. For training a
regression model on Syn-triangle, we use
GCN as the backbone and inject two pool-
ing layers before an MLP layer. Adam
optimizer with learning rate decay is
used to train the model. The optimiza-
tion stops if the validation loss does not
decrease after 50 epochs. Following [1], we
use L2 loss and set the initial learning
rate and weight decay as 0.02 and 0.001,
respectively. The GPR operation step T
is set as 3. We train the regression model
with four different random seeds. The results are measured by normalized mean
square error (MSE) on the test set (i.e., MSE divided by the variance of the
ground truth counts of the triangles over all graphs in the test set).

https://github.com/zhouxiaowei1120/Co-Pooling

352 X. Zhou et al.

Fig. 3. Illustration of the pooled graphs by Co-Pooling.

Results. The results on triangle counting are given in Table 1. As can be seen,
Co-Pooling outperforms all baseline methods, yielding markedly smaller errors
than the second best performer ASAP. This empirically verifies that Co-Pooling
is able to preserve crucial substructures during the pooling process.

Figure 3 gives an example to illustrate two pooling operations of Co-Pooling.
For a given graph, the proximity weights of edges and the pooled graphs are
shown in the figure. During the first pooling operation, four edges with lower
proximity weights (marked in red dashed ellipse) are removed, and afterwards,
nodes 7, 8, and 9 with lower importance scores are further removed to generate
the pooled graph. It is clear to find that the triangle substructure is preserved
after the first pooling layer (see Fig. 3(b)). A similar process can be observed
during the second pooling operation, where the triangle substructure is also pre-
served in the pooled graph (see Fig. 3(d)), which is highly indicative for triangle
counting.

4.2 Graph Classification on Attribute-Complete Graphs

Datasets. We undertake graph classification on a total of 13 benchmark graph
datasets with various attribute properties, including three attributed graph
datasets with real-valued node attributes, five labeled graph datasets with only
one-hot node attributes, and five plain graph datasets without node attributes.
The detailed statistics about these datasets are listed in Table 2.

– BZR-A [19] is a dataset of chemical compounds for classifying biological
activities. The node attributes are 3D coordinates of compound structures.

– AIDS-A [16] is composed of graphs representing molecular compounds. It
contains two classes of graphs, which are against HIV or not.

– FRANKENSTEIN [14] consists of molecules as mutagens or non-mutagens
for binary classification. The node attributes are 780-dimensional MNIST
image vectors of pixel intensities, representing chemical atom symbols.

– D&D [12] and PROTEINS [12] include macromolecules as graph datasets
in bioinformatics, which are for enzyme and non-enzyme classification task.

Edge but not Least: Cross-View Graph Pooling 353

Table 2. Details of graph datasets for graph classification evaluation.

Dataset # Graphs # Classes Avg. |V | Avg. |E| Node Attributes Type

BZR-A 405 2 35.75 38.36 Real-valued Attributed

AIDS-A 2,000 2 15.69 16.20 Real-valued Attributed

FRANKENSTEIN 4,337 2 16.90 17.88 Real-valued Attributed

PROTEINS 1,113 2 39.06 72.82 Node label Labeled

D&D 1,178 2 284.32 715.66 Node label Labeled

NCI1 4,110 2 29.87 32.30 Node label Labeled

NCI109 4,127 2 29.68 32.13 Node label Labeled

MSRC 21 563 20 77.52 198.32 Node label Labeled

COLLAB 5,000 3 74.49 2457.78 None Plain

IMDB-B 1,000 2 19.77 96.53 None Plain

IMDB-M 1,500 3 13.00 65.94 None Plain

REDDIT-B 2,000 2 429.63 497.75 None Plain

REDDIT-M 11,929 11 391.41 456.89 None Plain

– NCI1 [12] and NCI109 [12] contain chemical compounds as small molecules,
which are used for anticancer activity classification task.

– MSRC 21 [12] is a graph dataset constructed by semantic images. Each
image is represented as a conditional Markov random field graph. Nodes in
a graph represent the segmented superpixels in an image. If the segmented
superpixels are adjacent, the corresponding nodes are connected. Each node
is assigned a semantic label as node attribute.

– COLLAB [23] is a collection of scientific collaboration graphs, where the
task is to classify the graphs into different research fields.

– IMDB-B [23] and IMDB-M [23] are two datasets for classifying graphs into
movie genres. Each graph is an ego-network for each actor/actress.

– REDDIT-B and REDDIT-M [23] are two datasets generated from online
discussions. Each graph represents a discussion thread where nodes indicate
different users. If one user responds to another one, there is an edge between
them. The task is to classify which section each discussion belongs to.

Baselines. Apart from other graph pooling baselines, we also compare with two
ablated variants of Co-Pooling: Co-Pooling w/o GPR that removes generalized
PageRank and Co-Pooling w/o NV that removes node-view pooling.

Experimental Setup. For all datasets, we use the same GNN architecture for
a fair comparison. The GNN consists of three GCN layers, two pooling layers
(constructed by different pooling methods), and three linear transformation lay-
ers. A softmax layer is then connected after the last linear transformation layer.
Note that, the input to the first linear transformation layer is the concatenated
features after each pooling layer.

Akin to prior work [24], we perform 10-fold cross-validation to train the GNN
model. We randomly partition each dataset into training, validation, and test
sets using a 80%-10%-10% split. We use Adam optimizer with early stopping;

354 X. Zhou et al.

Table 3. Graph classification accuracy on 13 graph datasets.

Dataset SAGPool ASAP DiffPool HGPSL EdgePool
Co-Pooling Co-Pooling

Co-Pooling
(w/o GPR) (w/o NV)

BZR-A 82.95± 4.91 83.70± 6.00 83.93± 4.41 83.23± 6.51 83.43± 6.00 81.00± 5.82 81.69± 5.80 85.67± 5.29

AIDS-A 98.85± 0.78 99.00± 0.74 99.40± 0.58 99.10± 0.66 99.05± 0.69 98.85± 0.71 98.90± 0.58 99.45± 0.42

FRANK 60.94± 2.90 66.73± 2.76 65.08± 1.50 62.19± 1.74 62.99± 2.21 64.01± 1.70 67.00± 2.37 64.15± 1.34

D&D 76.91± 3.42 77.84± 3.41 78.01± 2.70 77.33± 4.22 76.66± 2.05 75.81± 3.81 77.00± 5.04 77.85± 2.21

PROTEINS 73.68± 4.63 74.85± 5.18 75.11± 2.95 74.13± 4.12 77.01± 5.41 73.68± 2.33 76.28± 5.09 76.19± 4.13

NCI1 71.51± 4.51 76.59± 1.71 74.14± 1.43 73.48± 2.42 78.39± 2.43 77.25± 2.11 79.15± 2.04 78.66± 1.48

NCI109 69.69± 3.27 74.73± 3.48 72.04± 1.43 72.30± 2.18 77.01± 2.39 75.60± 1.46 78.07± 1.77 77.08± 2.03

MSRC 21 90.22± 2.82 90.41± 3.91 90.41± 3.58 88.97± 4.78 90.05± 3.02 91.64± 2.79 91.29± 3.70 92.54± 2.63

COLLAB 70.58± 2.31 72.84± 1.84 72.18± 1.68 74.20± 2.72 - 74.82± 2.10 68.90± 5.59 77.30± 2.29

IMDB-B 60.90± 2.34 65.50± 2.80 58.27± 5.92 62.50± 3.50 60.30± 5.08 70.40± 3.85 70.80± 3.60 72.10± 4.44

IMDB-M 39.80± 3.39 45.93± 4.03 40.00± 4.52 40.53± 4.88 44.27± 4.50 47.60± 4.55 44.80± 3.94 49.07± 3.28

REDDIT-B 83.55± 4.53 - 84.61± 2.42 - 88.35± 2.31 88.90± 2.00 88.00± 4.69 89.35± 1.25

REDDIT-M 40.56± 3.30 - 41.21± 1.96 - - 46.84± 2.26 49.02± 1.56 46.85± 2.62

“-” means the results can not be obtained in an acceptable time, i.e. 24 h.

the optimization stops if the validation loss does not improve after 50 epochs.
The maximum epoch number is set as 300. Following [10], we use grid search
to obtain optimal hyperparameters for each method. The ranges of different
hyperparameters are set as follows: learning rate in {0.005, 0.0005, 0.001}, weight
decay in {0.0001 0.001}, node pooling ratio in {0.5, 0.25}, hidden size in {128,
64}, dropout ratio in {0, 0.5}, and edge preserving ratio γ in {0.3, 0.6, 1.0}. Akin
to [2], step T of GPR is set to 10. To implement the convolution operation on
plain graphs without node attributes, we follow the implementation of DiffPool
to pad each node with a constant vector, i.e. an all-one vector of 10 dimensions.

Comparison with State-of-the-Art. Table 3 shows graph classification accu-
racy of all methods averaged over 10-fold cross-validation on 13 datasets. For
a fair comparison, all baseline methods and our method are trained using the
same training strategy. As we can observe, among all methods, our Co-Pooling
method achieves the best performance on all datasets except on D&D and PRO-
TEIN, where Co-Pooling achieves the second best performance. In particular,
Co-Pooling significantly improves the best baseline method by 6.6%, 3.14%,
7.81%, 2.13%, and 1.74% on IMDB-B, IMDB-M, REDDIT-M, MSRC 21, and
BZR-A, respectively. This proves the effectiveness of Co-Pooling in predicting
different types of graphs with various attribute properties. It is worth noting
that Co-Pooling achieves the best performance on all five datasets without node
attributes. This shows the superiority of our method to complement node-view
pooling with edge-view pooling, when node attributes are not informative.

When comparing different variants of our method, Co-Pooling consistently
outperforms Co-Pooling w/o GPR on all datasets. This shows the importance
of using generalized PageRank to capture higher-order structural information.
Co-Pooling yields higher accuracy than Co-Pooling w/o NV on most (8/13) of
the datasets. This demonstrates the effectiveness of Co-Pooling in combining two
complementary views. In particular, its performance gains on attributed graphs
with real-valued node attributes are more significant than those on labeled graphs

Edge but not Least: Cross-View Graph Pooling 355

Fig. 4. Graph classification accuracy on (a) labeled graph dataset (MSRC 21) and
(b)attributed graph dataset (AIDS-A) under attribute-incomplete settings.

with one-hot attributes. This is because real-valued node attributes provide more
accurate information to select important nodes for node-view pooling as opposed
to one-hot attributes. This in turn reinforces edge-view pooling more effectively
for learning the final graph representations.

4.3 Graph Classification on Attribute-Incomplete Graphs

Next, we compare the performance of our method and all baselines on attribute-
incomplete graphs. For attribute-incomplete graphs, a portion of nodes has com-
pletely missing attributes. This set of experiments are used to evaluate the effec-
tiveness of our method in real-world scenarios, where attribute information for
some nodes is inaccessible due to privacy or legal constraints.

Experimental Setup. We perform experiments on attributed graph dataset
(AIDS-A) and labeled graph dataset (MSRC 21) as a case study. For each graph
from the two datasets, we randomly select different ratios of nodes and remove
their original node attributes, while keeping the rest of nodes unchanged. We
define the ratio of nodes with all their attributes removed as the incomplete
ratio. For example, if we remove all attributes for 10% of nodes, the incomplete
ratio is 10%. The resulting attribute-incomplete graph datasets are randomly
divided into training set (80%), validation set (10%), and test set (10%). We
train the GNN model with different pooling methods on training set. The GNN
model architecture and the best hyperparameters are the same as in Sect. 4.2.
We report graph classification accuracy averaged over 10-fold cross-validation.

Comparison with State-of-the-Art. Figure 4 (a) compares the classification
accuracy of all methods on attribute-incomplete MSRC 21 datasets. For all base-
line methods, the classification accuracy drops significantly as the incomplete
ratio increases from 0% to 50%. In contrast, the accuracy of Co-Pooling and
its variants decreases at a much lower rate. Especially for DiffPool, HGPSL,
and EdgePool, the classification accuracy drops down to 3.73%, 12.33%, and
4.61%, respectively, although only 10% nodes have their attributes missing.
With the 10% incomplete ratio, Co-Pooling and its variants can still achieve
at least 77.93% accuracy. Compared with the best baseline method ASAP, Co-
Pooling achieves an average of 8.62% accuracy increase on attribute-incomplete
MSRC 21 datasets with different incomplete ratios (from 0% to 50%).

356 X. Zhou et al.

Fig. 5. Graph classification accuracy with different edge preserving ratios (γ).

Figure 4(b) compares graph classification accuracy of all methods on
attribute-incomplete AIDS-A datasets. We can see that, for SAGPool, DiffPool,
and EdgePool, the classification accuracy drops by 3.25%, 5.45%, and 3.2%,
respectively, when the incomplete ratio increases from 0% to 50%. On the con-
trary, the accuracy of Co-Pooling and its variants drops by around 1.15% only.
Our methods beat ASAP with all incomplete ratios. Compared with HGPSL,
our methods achieve better performance with 0%, 10%, 20%, and 40% incom-
plete ratios, with higher average accuracy on all attribute-incomplete AIDS-A
datasets.

The comparisons on attribute-incomplete graph datasets demonstrate the
effectiveness of our method in handling graphs with missing node attributes. This
further testifies the complementary advantage of our method by fusing node-view
and edge-view pooling, especially when node attributes are less informative.

4.4 Parameter Sensitivity

The Co-Pooling method has the edge preserving ratio (γ) as an important param-
eter to determine the percentages of edges preserved during edge-view pooling.
To investigate the effect of the edge preserving ratio (i.e., γ) on the graph clas-
sification accuracy of Co-Pooling, we conduct empirical studies on six repre-
sentative graph datasets, including two labeled graph datasets, two attributed
graph datasets, and two plain graph datasets. On each dataset, we train the
GNN model with an edge preserving ratio ranging from 10% to 100%. All other
hyperparameters are set as the best values obtained in Sect. 4.2. We also use the

Edge but not Least: Cross-View Graph Pooling 357

same GNN model architecture and training strategy as in Sect. 4.2. We report
the average classification accuracy on 10-fold cross-validation.

Figure 5 plots the change in classification accuracy with respect to γ on the
six datasets. On the two labeled graph datasets (PROTEINS and D&D), we find
that keeping all edges (γ = 1.0) is not the best choice for graph classification.
As shown in Fig. 5 (a) and (b), Co-Pooling achieves the highest classification
accuracy when γ = 0.7 on PROTEIN, and γ = 0.6 on D&D, respectively. A
similar phenomenon can also be observed on the two attributed graphs (BZR-
A and AIDS-A). As shown in Fig. 5 (c) and (d), Co-Pooling yields the best
performance when γ is set to 0.6 on the two datasets. The results on the four
datasets indicate that not all edges are useful for graph classification when graphs
have informative node attributes. Again, this confirms the effectiveness of our
method in preserving crucial edge information through edge-view pooling and
using this knowledge to further guide node-view pooling. On the other hand,
on the two plain graph datasets (IMDB-B and REDDIT-M), keeping all edges
renders the highest classification accuracy. As shown in Fig. 5 (e) and (f), Co-
Pooling achieves the best performance on both graphs when keeping all edges
(γ = 1.0). This is what we have expected, because when graphs have no node
attributes, preserving all graph structures would best benefit graph classification.

4.5 Graph Regression

Lastly, we carry out experiments to evaluate the efficacy of our method on the
graph regression task. We compare Co-Pooling with the same state-of-the-art
pooling methods on the following two graph datasets:

– ZINC [12] contains 250,000 molecules. The task is to regress the properties
of molecules. We focus on predicting one specific graph property, contained
solubility. Following the setting in [4], we use 10,000 graphs from ZINC for
training, 1,000 graphs for validation, and 1,000 graphs for testing.

– QM9 [12] is a graph dataset consisting of 13,000 molecules with 19 regression
targets. We focus on regressing dipole moment μ, one of 19 molecular proper-
ties. All 13,000 molecules are randomly divided into training-validation-test
sets using a 80%-10%-10% split.

For training a regression model on each dataset, we use the same GNN archi-
tecture and training strategy as in Sect. 4.1. Following [4], we use L1 loss to
train each model. The initial learning rate and weight decay are set as 0.001
and 0.0001, respectively. We train regression models with four different random
seeds and report the average mean absolute error (MAE) on the test set.

We compare our Co-Pooling method with SAGPool, ASAP, DiffPool,
HGPSL, and EdgePool on the two datasets. As shown in Table 4, Co-Pooling
consistently yields lower error than other baseline methods. Particularly, Co-
Pooling outperforms DiffPool and HGPSL by a large margin on both datasets.
These results indicate that our method effectively learns a better graph-level
representation by fusing edge-view pooling and node-view pooling, leading to
competitive performance on graph regression tasks as well.

358 X. Zhou et al.

Table 4. MAE results of graph regression on ZINC and QM9. Lower is better.

Methods ZINC QM9

GCN+SAGPool 0.378± 0.031 0.545± 0.010

GCN+ASAP 0.372± 0.026 0.500± 0.017

GCN+DiffPool 1.641± 0.026 1.331± 0.014

GCN+HGPSL 1.326± 0.096 1.035± 0.049

GCN+EdgePool 0.382± 0.030 0.489± 0.022

GCN+Co-Pooling (ours) 0.340± 0.036 0.439± 0.009

5 Conclusion

We proposed a new graph pooling method (Co-Pooling) for learning graph-level
representations. We argued that most of current graph pooling methods are
highly node-centric and fail to leverage crucial graph substructures, which are in
fact beneficial to various prediction tasks. Our proposed Co-Pooling method fuses
the pooled graph information from two views. From the edge view, generalized
PageRank is used to aggregate valuable structural information from multi-hop
neighbours. The proximity weights between node pairs are then calculated to
prune less important edges. From the node view, the node importance scores
are computed through the proximity matrix to select the top important nodes.
Through cross-view interaction, edge-view pooling and node-view pooling com-
plement each other to effectively learn informative graph representations. Exten-
sive experiments on 16 graph datasets demonstrate the superior performance of
Co-Pooling on both graph classification and regression tasks.

Acknowledgements. Xiaowei Zhou is supported by a Data61 PhD Scholarship from
CSIRO. Ivor W. Tsang is supported by the Center for Frontier AI research, A*STAR,
and ARC under grants DP200101328. This work is partially supported by the USYD-
Data61 Collaborative Research Project grant.

References

1. Chen, Z., Chen, L., Villar, S., Bruna, J.: Can graph neural networks count sub-
structures? NeurIPS 33, 10383–10395 (2020)

2. Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized pagerank
graph neural network. In: ICLR (2021)

3. Diehl, F.: Edge contraction pooling for graph neural networks. arXiv preprint
arXiv:1905.10990 (2019)

4. Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y., Bresson, X.: Benchmarking
graph neural networks. arXiv preprint arXiv:2003.00982 (2020)

5. Galland, A.: Graph pooling by edge cut (2021)
6. Gao, H., Ji, S.: Graph u-nets. In: ICML, pp. 2083–2092. PMLR (2019)

http://arxiv.org/abs/1905.10990
http://arxiv.org/abs/2003.00982

Edge but not Least: Cross-View Graph Pooling 359

7. Gao, X., Dai, W., Li, C., Xiong, H., Frossard, P.: iPool-information-based pooling
in hierarchical graph neural networks. IEEE TNNLS 33, 1–13 (2021)

8. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS, pp. 1025–1035 (2017)

9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

10. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: ICML, pp. 3734–3743
(2019)

11. Liu, N., Jian, S., Li, D., Zhang, Y., Lai, Z., Xu, H.: Hierarchical adaptive pooling by
capturing high-order dependency for graph representation learning. IEEE TKDE
(2021)

12. Morris, C., Kriege, N., Bause, F., Kersting, K., Mutzel, P., Neumann, M.:
Tudataset: a collection of benchmark datasets for learning with graphs.
arXiv:2007.08663 (2020)

13. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

14. Orsini, F., Frasconi, P., De Raedt, L.: Graph invariant kernels. In: IJCAI, pp.
3756–3762 (2015)

15. Ranjan, E., Sanyal, S., Talukdar, P.: ASAP: adaptive structure aware pooling for
learning hierarchical graph representations. In: AAAI, pp. 5470–5477 (2020)

16. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern
recognition and machine learning. In: da Vitoria Lobo, N., et al. (eds.) SSPR
/SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89689-0 33

17. Shang, J., et al.: Assembling molecular sierpiński triangle fractals. Nat. Chem.
7(5), 389–393 (2015)

18. Sun, Q., et al.: Sugar: subgraph neural network with reinforcement pooling and self-
supervised mutual information mechanism. In: Proceedings of the Web Conference
2021, pp. 2081–2091 (2021)

19. Sutherland, J.J., O’brien, L.A., Weaver, D.F.: Spline-fitting with a genetic algo-
rithm: a method for developing classification structure-activity relationships. J.
Chem. Inf. Comput. Sci. 43(6), 1906–1915 (2003)

20. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

21. Wang, Y.G., Li, M., Ma, Z., Montufar, G., Zhuang, X., Fan, Y.: Haar graph pooling.
In: ICML, pp. 9952–9962 (2020)

22. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: ICLR (2019)

23. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: SIGKDD, pp. 1365–1374
(2015)

24. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: NIPS, pp. 4805–4815
(2018)

25. Yuan, H., Ji, S.: Structpool: structured graph pooling via conditional random fields.
In: ICLR (2020)

26. Zhang, Z., et al.: Hierarchical graph pooling with structure learning. arXiv preprint
arXiv:1911.05954 (2019)

27. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: AAAI, pp. 4438–4445 (2018)

http://arxiv.org/abs/2007.08663
https://doi.org/10.1007/978-3-540-89689-0_33
https://doi.org/10.1007/978-3-540-89689-0_33
http://arxiv.org/abs/1911.05954

GNN Transformation Framework
for Improving Efficiency and Scalability

Seiji Maekawa1(B), Yuya Sasaki1, George Fletcher2, and Makoto Onizuka1

1 Osaka University, 1–5 Yamadaoka, Suita, Osaka, Japan
{maekawa.seiji,sasaki,onizuka}@ist.osaka-u.ac.jp

2 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

g.h.l.fletcher@tue.nl

Abstract. We propose a framework that automatically transforms non-
scalable GNNs into precomputation-based GNNs which are efficient and
scalable for large-scale graphs. The advantages of our framework are two-
fold; 1) it transforms various non-scalable GNNs to scale well to large-
scale graphs by separating local feature aggregation fromweight learning in
their graph convolution, 2) it efficiently executes precomputation on GPU
for large-scale graphs by decomposing their edges into small disjoint and
balanced sets. Through extensive experiments with large-scale graphs, we
demonstrate that the transformed GNNs run faster in training time than
existing GNNs while achieving competitive accuracy to the state-of-the-
art GNNs. Consequently, our transformation framework provides simple
and efficient baselines for future research on scalable GNNs.

Keywords: Graph Neural Networks · Large-scale graphs ·
Classification

1 Introduction

Graph is a ubiquitous structure that occurs in many domains, such as Web and
social networks. As a powerful approach for analyzing graphs, Graph Neural Net-
works (GNNs) have gained wide research interest [25,30]. Many GNNs have been
proposed for node classification and representation learning including GCN [15],
which is the most popular GNN variant. Most existing GNNs adopt graph con-
volution that performs three tasks; 1) feature aggregation, 2) learnable weight
multiplication, and 3) activation function application (e.g., ReLU, a non-linear
function). By stacking multiple graph convolutional layers, they propagate node
features over the given graph topology. However, these existing GNNs cannot be
efficiently trained on large-scale graphs since the GNNs need to perform three
tasks in graph convolution every time learnable weights are updated. In addition,
large-scale graphs cannot be put on GPU memory for efficient matrix operations.
As a result, graph convolution is not efficient and scalable for large-scale graphs.

A major approach to apply GNNs to large-scale graphs is to separate feature
aggregation from graph convolution so that GNNs can precompute aggregated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 360–376, 2023.
https://doi.org/10.1007/978-3-031-26390-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_22&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_22

GNN Transformation Framework for Improving Efficiency and Scalability 361

features [8,18,24]. These methods are called precomputation-based GNNs. In
detail, they remove non-linearity, i.e., activation functions, from graph convolu-
tion so that feature aggregation is separated from weight learning. Thanks to the
independence of feature aggregation and weight learning, precomputation-based
GNNs are efficient in learning steps by precomputing feature aggregation before
training learnable weights.

Though some existing works tackle the scalability problem of GNNs as dis-
cussed above, most widely studied GNNs are not scalable to large-scale graphs
for the following two reasons. First, existing studies on precomputation-based
GNNs [8,18,24] focus on introducing several specific GNN architectures that are
manually designed. So, it is laborsome to apply the same precomputation idea to
other GNNs. An interesting observation is that they share the common motiva-
tion: precomputation of feature aggregation is indispensable for high scalability.
To our best knowledge, there are no works that study a general framework that
transforms non-scalable GNNs to scalable precomputation-based GNNs. Second,
existing precomputation schemes are not scalable because they need to put com-
plete graphs (e.g., graphs with one billion edges [12]) on GPU memory. Since the
size of large graphs typically exceeds the memory size of general GPU, existing
works precompute feature aggregation on CPU.

To tackle the above issues, we address two research questions: Q1: Can we
design a general procedure that transforms non-scalable GNNs to efficient and scal-
able precomputation-based GNNs while keeping their classification performance?
and Q2: Can we efficiently execute the precomputation on GPU? There are two
technical challenges which must be overcome to answer our questions. First, we
need to automatically transform non-scalable GNNs to precomputation-based
GNNs.We should develop a common transformation procedure that canbe applied
to various non-scalable GNNs while preserving their expressive power. Second, we
need to decompose large graphs into small groups each of which can be handled
efficiently with GPU. Typically, graph decomposition suffers from an imbalance
problem since node degree distributions usually followpower lawdistributions [19].
Hence, we should divide graphs into balanced groups and select an appropriate
group size so that precomputation time is optimized.

In this paper, we propose a framework1 that automatically transforms non-
scalable GNNs into precomputation-based GNNs with a scalable precomputation
schema. As for the first challenge, we develop a new transformation procedure,
called Linear Convolution (LC) transformation, which can be applied to various
non-scalable GNNs so that transformed GNNs work efficiently and scale well
to large-scale graphs. Our transformation procedure removes non-linear func-
tions from graph convolution, but incorporates non-linear functions into weight
learning. This idea is derived from our hypothesis that it is not crucial to incor-
porate non-linearity into graph convolutional layers but into weight learning for
prediction. Since our transformation preserves the major functionality of graph
convolution and a similar expressive power to original GNNs, the transformed
GNNs can achieve competitive prediction performance to the original ones while
improving their scalability. As for the second challenge, we develop a block-

1 Our codebase is available on (https://github.com/seijimaekawa/LCtransformation).

https://github.com/seijimaekawa/LCtransformation

362 S. Maekawa et al.

wise precomputation scheme which optimally decomposes large-scale graphs into
small and balanced blocks each of which can fit into GPU memory. We introduce
a simple decomposition approach to ensure that blocks are balanced and give
minimization formulas that decide the optimal block size under limited GPU
memory.

Through extensive experiments, we validate that our transformation proce-
dure and optimized block-wise precomputation scheme are quite effective. First,
we show that our LC transformation procedure transforms non-scalable GNNs to
efficient and scalable precomputation-based GNNs while keeping their node clas-
sification accuracy. Second, we show that our precomputation scheme is more effi-
cient than that of existing precomputation-based GNNs. In summary, our trans-
formation procedure provides simple and efficient baselines for future research
on scalable GNNs by shining a spotlight on existing non-scalable methods.

The rest of this paper is organized as follows. We describe notations and fun-
damental techniques for our method in Sect. 2. Section 3 proposes our framework.
We give the purpose and results of experiments in Sect. 4. Section 5 describes the
details of related work. Finally, we conclude this paper in Sect. 6.

2 Preliminaries

An undirected attributed graph with class labels is a triple G = (A,X,C) where
A ∈ {0, 1}n×n is an adjacency matrix, X ∈ R

n×d is an attribute matrix assigning
attributes to nodes, and a class matrix C ∈ {0, 1}n×y contains class information
of each node, and n, d, y are the numbers of nodes, attributes and classes, respec-
tively. If there is an edge between nodes i and j, Aij and Aji are set to one. We
define the degree matrix D = diag(D1, . . . , Dn) ∈ R

n×n as a diagonal matrix,
where Di expresses the degree of node i. We also define an identity matrix
I = diag(1, . . . , 1) ∈ R

n×n and an adjacency matrix extended with self-loops
Ã = A + I. We define node embeddings H ∈ R

n×h, where h is the dimension
of a hidden layer. We summarize notation and their definitions in Table 1.

2.1 Graph Convolutional Networks

Multi-layer GCN is a standard GCN model which was proposed in [15]. GCNs
learn a feature representation for the feature of each node over layers. For the
k-th graph convolutional layer, we denote the input node representations of all
nodes by the matrix H(k−1) and the output node representations by H(k). The
initial node representations are set to the input features, i.e., H(0) = X. Let S
denote the normalized adjacency matrix

S = D̃− 1
2 ÃD̃− 1

2 . (1)

This normalized adjacency matrix is commonly used as a graph filter for graph
convolution. The graph filter is known as a low-pass filter that filters out noise

GNN Transformation Framework for Improving Efficiency and Scalability 363

Table 1. Notation and definitions

n Number of nodes

d Dimension of features

y Number of classes

h Dimension of hidden layer

K Number of hidden layers

A ∈ R
n×n Adjacency matrix

Ã ∈ R
N×N Extended adjacency matrix

S ∈ R
n×n Normalized adjacency matrix

X ∈ R
n×d Feature matrix

C ∈ R
n×y Class matrix

D ∈ R
n×n Degree matrix

H ∈ R
n×h Node embeddings

W1 ∈ R
d×h,W2, . . . ,WK−1 ∈ R

h×h,WK ∈ R
h×y Weight matrices

Y ∈ R
n×y Predicted label matrix

in node features [15]. For each layer, GCN propagates the embedding of a node
to its neighbors as follows:

H(k) = σ(SH(k−1)Wk), (2)

where Wk denotes the weight matrix of the k-th layer and σ denotes a non-linear
function, e.g., ReLU. In the output layer, K-layer GCN outputs a predicted label
matrix Y ∈R

n×y as:

Y = softmax(SH(K−1)WK), (3)

where softmax(P)ij = exp(Pij)∑y
j=1 exp(Pij)

for a matrix P . The number of layers is

typically set to K = 2 [15].

2.2 Precomputation-Based GNNs

Several precomputation-based GNNs have been proposed recently [8,18,24].
Their fundamental and common idea is to remove non-linear functions between
each layer in order to precompute feature aggregation. We explain Simplifying
Graph Convolution (SGC for short) [24] which is the simplest precomputation-
based GNN. Thanks to the removal, K-layer GCN can be rewritten as follows
by unfolding the recursive structure:

Y = softmax(S . . .SXW1 . . .WK). (4)

The repeated multiplication with the normalized adjacency matrix S can be
simplified into a K-th power matrix SK and the multiple weight matrices can
be reparameterized into a single matrix W = W1 . . .WK . The output becomes

Y = softmax(SKXW). (5)

364 S. Maekawa et al.

Fig. 1. Example of LC transformation. Upper part: non-scalable GNNs operate K-layer
graph convolution combining feature aggregation, weight multiplication, and activation
function application (ReLU). This example corresponds to K-layer GCN if COMB
outputs only HK . Lower part: LC transformation separates feature aggregation and
weight learning while keeping the similar architectures with the original GNNs. LC
versions avoid recomputing feature aggregation whenever learnable weights are updated
at each learning step. (Color figure online)

By separating graph feature aggregation and weight learning, SGC precomputes
SKX before learning W . The other methods also follow the same idea: sepa-
rating feature aggregation and weight learning and precomputing feature aggre-
gation.

3 GNN Transformation Framework

We propose a general framework that automatically transforms non-scalable
GNNs to efficient and scalable precomputation-based GNNs and efficiently exe-
cutes precomputation of feature aggregation on GPU. We first introduce a trans-
formation procedure that automatically rewrites the formulations of non-scalable
GNNs so that the transformed GNNs run efficiently and scale well to large-scale
graphs (Sect. 3.1). We also describe a limitation of our transformation, namely,
that it does not support GNNs that require dynamical changes of graph filters
during weight learning. Our transformation procedure is applicable not only to
GCN [15] but also to the state-of-the-art GNNs, such as JKNet [27], H2GCN [32]
and GPRGNN [7]. Next, we introduce a block-wise precomputation scheme that
efficiently computes feature aggregation for large-scale graphs (Sect. 3.2). The
core idea is to decompose an adjacency matrix and feature matrix into disjoint
and balanced blocks each of which can be handled on GPU. Also, we formu-
late and solve an optimization problem that decides the optimal size of blocks.
Note that this scheme is a general approach since it can be applied to existing
precomputation-based GNNs [8,18,24].

GNN Transformation Framework for Improving Efficiency and Scalability 365

3.1 Linear Convolution Transformation

LC transformation is the first concrete procedure that transforms non-scalable
GNNs to efficient and scalable precomputation-based GNNs, which have a sim-
ilar functionality to the input GNNs. We call the output the LC version of
the input GNN. LC transformation is motivated by the effectiveness of SGC
and Multi-Layer Perceptron (MLP). SGC preserves the major benefit of graph
convolution with efficient training by precomputing feature aggregation, but it
degrades the accuracy due to the lack of non-linearity [7]. Beside, MLP outper-
forms linear regression in classification task by using non-linear functions but
does not capture the structures of graphs. LC version of GNN leverages both
the strengths of SGC and MLP by precomputing feature aggregation and then
learning weights with non-linearity.

Figure 1 demonstrates an example of LC transformation by comparing it with
non-scalable GNNs. Intuitively, LC transformation separates feature aggregation
from graph convolution that performs 1) feature aggregation, 2) weight multipli-
cation, and 3) activation function application (e.g., ReLU, a non-linear function).
Notice that a normalized adjacency matrix S is adjacent to the feature matrix
X in the formulation of LC versions (see the left part of the red box of the
figure). So, we can precompute SkX in the same way as SGC [24]. Thanks to
the separation, LC versions can avoid computing feature aggregation whenever
learnable weights are updated at each learning step (see the right part of the
red box of the figure). Hence, LC versions efficiently work and scale well to
large-scale graphs.

Discussion. We discuss why LC versions work from two aspects, feature aggre-
gation and weight learning. As in the discussion on the spectral analysis [24],
feature aggregation acts as a low-pass filter that produces smooth features over
the graph, which is the major benefit of graph convolution. In this sense, LC
versions are expected to have the same functionality as the input GNNs since LC
transformation preserves feature aggregation within multi-hops. As for weight
learning, LC versions have a similar learning capability to their original GNNs
since they have a similar model architecture of multi-layer neural networks. As a
result, LC versions can achieve a similar prediction performance to their original
GNNs while scaling to large-scale graphs.

Procedure. Next, we describe the procedure of LC transformation, which
removes non-linear functions from graph convolution, but incorporates non-
linear functions into weight learning. We first give the definition of LC transfor-
mation below:

Definition 1 (LC transformation). Given a non-scalable GNN algorithm, LC
transformation iteratively applies a function fLC to the formulation of the input
GNN since non-scalable GNNs have multiple graph convolutional layers. fLC

commutes matrix multiplication of S and a non-linear function σ as follows:

fLC : g2(Sσ(g1(X))) −−→
fLC

g2(σ(Sg1(X))), (6)

366 S. Maekawa et al.

where g1 and g2 indicate any functions that input and output matrices. The
iteration continues until the formulation does not change. LC transformation
outputs a precomputation-based GNN having the transformed formulation, i.e.,
the LC version of the input GNN.

To intuitively explain the details, we use JKNet [27] as an example, which is a
widely used GNN. The formulation of JKNet (GCN-based) is as follows:

H = COMBK
k=1(Sσ(Sσ(. . . (SXW1) . . .)Wk−1)Wk), (7)

where COMB expresses a skip connection between different layers, such as con-
catenation of intermediate representations or max pooling. By applying a soft-
max function to feature representations H, JKNet outputs a prediction result Y ,
i.e., Y = softmax(H). We apply fLC to it in order to transform the formulation
of an input GNN. To this end, we assign g1(X) = Sσ(. . . (SXW1) . . .)Wk−1

and g2(Sσ(g1(X))) = COMBK
k=1(Sσ(g1(X))Wk). By utilizing fLC , g1, and g2,

we transform Eq. (7) as follows:

H −−→
fLC

COMBK
k=1(σ(S2σ(. . . (SXW1) . . .)Wk−1)Wk). (8)

Then, we iteratively apply fLC to the formulation by appropriately assigning g1
and g2 for each iteration. Finally, we obtain the formulation of the LC version
of the input GNN, HLC , as follows:

HLC = COMBK
k=1(σ(σ(. . . (SkXW1) . . .)Wk−1)Wk). (9)

Then, in the same way as the input GNN, the LC version outputs a predicted
label matrix Y = softmax(HLC).

The LC transformation procedure is applicable not only to JKNet but also
to general non-scalable GNNs including APPNP [16], MixHop [1], H2GCN [32],
and GPRGNN [7]. We give another example of applying LC transformation in
Appendix A.

Limitation. Precomputation-based GNNs can use multiple graph filters such
as an exact 1-hop away adjacency matrix and Personalized PageRank diffusion
matrix [16]. Those GNNs do not dynamically control the propagation of features
during weight learning, since they use constant graph filters in order to precom-
pute feature aggregation. Since our framework also leverages a precomputation
scheme, it cannot support those existing GNNs [21,22,26] which dynamically
sample edges or modify the importance of edges during weight learning. For
example, Dropedge [21] randomly reduces a certain number of edges at each
iteration. A possible future research direction is that we simulate random edge
reduction by utilizing the deviations of feature aggregation.

3.2 Efficient Precomputation

Existing precomputation-based GNNs need to use CPUs to compute feature
aggregations for large-scale graphs since they do not fit on GPU memory. This
CPU computation has large cost and a deteriorating effect on efficiency.

GNN Transformation Framework for Improving Efficiency and Scalability 367

To tackle this problem, we propose a simple yet efficient block-wise precom-
putation scheme and provide a formulation for optimal decomposition for our
block-wise precomputation scheme. The core idea is to decompose the edge set
of a given graph into disjoint and balanced groups, while existing approaches [31]
decompose the node set into groups, i.e., row/column wise decomposition. Our
scheme is inspired by edge partitioning [9,17], which aims to decompose a graph
into groups having similar numbers of edges such that communication costs for
graph operations are minimized in distributed environments. Our scheme con-
sists of three steps. First, it decomposes an adjacency matrix and feature matrix
into small disjoint blocks each of which can be put on GPU memory. Second, the
scheme computes block-wise matrix operations for the disjoint blocks on GPU.
Third, it aggregates the results of the block-wise matrix operations and obtains
the whole matrix operation result.

Precomputation on GPU. There are two matrix operations to be pre-
computed, adjacency matrix normalization and feature aggregation. First, we
describe the computation of adjacency matrix normalization shown by Eq. (1).
Since an adjacency matrix is typically sparse, we utilize adjacency list (i, j) ∈ E ,
where Ãij = 1. To obtain small blocks each of which can be loaded on GPU
memory, we decompose E into disjoint sets that include similar numbers of edges,
E(1) ∪ · · · ∪ E(a), where a is a number of sets and E(p) ∩ E(q) = ∅ if p �= q.
Note that the sizes of the sets E(1), . . . , E(a) are balanced. Then, we decompose
Ã = Ã(1) + · · ·+ Ã(a), where Ã(1), . . . , Ã(a) ∈ R

n×n and Ã
(l)
ij = 1 if (i, j) ∈ E(l).

Then, we can rewrite Eq. (1) as follows:

S = D̃− 1
2 ÃD̃− 1

2 =
∑a

l=1 D̃
− 1

2 Ã(l)D̃− 1
2 . (10)

By appropriately selecting the number of blocks a, D̃− 1
2 Ã(l)D̃− 1

2 can be exe-
cuted on GPU. We sum the results of the block-wise matrix computations. This
summation can be efficiently computed on CPU by disjoint union of edge lists
since E(l), i.e., Ã(l), is disjoint each other. Since our decomposition is agnostic on
nodes, the decomposed blocks can be easily balanced while row/column(node)-
wise decomposition approaches suffer from an imbalance problem. Further dis-
cussion on Limitations follows below in this subsection.

Next, we introduce a block-wise computation for feature aggregation on GPU.
Algorithm 1 describes the procedure of the computation. To obtain small blocks
of a normalized adjacency matrix S, we decompose it into S(1), . . . ,S(b) ∈ R

n×n

where b is a number of blocks (line 2). Similarly to the decomposition of
A, each corresponding edge list is disjoint and includes similar numbers of
edges. Also, in order to obtain small blocks of a feature matrix X, we decom-
pose it into X(1), . . . ,X(c), where c is a number of blocks (line 5). Since we
assume that X is a dense matrix, we adopt column-wise decomposition, i.e.,
X = concat(X(1), . . . ,X(c)). Then, we compute matrix multiplication S(j)X(i)

for each pair on GPU (line 9). We aggregate S(j) by summation (line 10) and
aggregate Xtmp by concatenation (lines 11–14). Xprev is updated by the aggre-
gated features Xconc (line 16). We repeat this aggregation K times (lines 4–16).

368 S. Maekawa et al.

Algorithm 1 Block-wise feature aggregation.
Require: normalized adjacency matrix S, feature matrix X , number of layers K
Ensure: aggregated feature list SX list
1: SX list = []
2: S(1),S(2), . . . ,S(b) = split(S) � disjoint edge sets
3: Xprev = X
4: for k = 1 to K do
5: X (1),X (2), . . . ,X (c) = split(Xprev)
6: for i = 1 to c do
7: Xtmp = [0]n×�d/c� � same size to X (i)

8: for j = 1 to b do
9: Ztmp = S(j)X (i) � on GPU

10: Xtmp = Xtmp + Ztmp � on GPU
11: if i == 1 then
12: Xconc = Xtmp � on CPU
13: else
14: Xconc = concat(Xconc,Xtmp) � on CPU
15: SX list .append(Xconc)
16: Xprev = Xconc

Optimal Graph Decomposition. We discuss an optimal decomposition for
our block-wise precomputation scheme. We have two requirements to decompose
large matrices into disjoint blocks. First, each matrix operation for disjoint blocks
can be executed on GPU. Second, the number of disjoint blocks is as small as
possible to reduce the number of block-wise matrix operations. To simplify the
discussion, we assume that the running time of a matrix operation on GPU is
the same regardless of the matrix size.

As for the block-wise adjacency matrix normalization, we minimize a number
of disjoint blocks, a. We formulate the minimization as follows:

min(a), subject to αA BA +αS BS

a + αDBD ≤ BGPU, (11)

where αA , αS , αD indicate coefficients for executing matrix operations regarding
A,S,D, respectively, and BA , BS , BD , BGPU indicate the volume of an adja-
cency matrix, the volume of a normalized adjacency matrix, the volume of a
degree matrix, and the available volume of a GPU, respectively. As for block-
wise feature aggregation, we minimize the number of pairs of disjoint blocks, bc.
We formulate the minimization as follows:

minb,c(bc), subject to βS BS

b + βX BX

c ≤ BGPU, (12)

GNN Transformation Framework for Improving Efficiency and Scalability 369

Table 2. Summary of datasets.

Dataset Nodes Edges Features Classes

Flickr 89,250 899,756 500 7

Reddit 232,965 11,606,919 602 41

arxiv 169,343 1,166,243 128 40

papers100M 111,059,956 1,615,685,872 128 172

where βS , βX indicate coefficients for executing matrix operations regarding
S,X, respectively, and BX indicates the volume of a feature matrix. Note that
αA , αS , αD , βS , and βX depend on execution environments2.

Next, we discuss optimization regarding Eq. (11) and (12). As for Eq. (11),
it is trivial to find the minimum number of blocks a since there are no other
parameters. As for Eq. (12), an exhaustive search is applicable since the number
of combinations of b and c (natural numbers) is not large. Consequently, these
optimization problems can be easily solved.

Limitation. Our precomputation scheme focuses on feature aggregation on a
whole graph. This indicates that our scheme is not suitable for node-wise opera-
tions since it may decompose the edge set of the same node into different groups.
However, accelerating feature aggregation on a whole graph is still crucial since
many graph neural networks [8,15,18,24] adopt it.

4 Experiments

We design our experiments to answer the following questions; Q1: Can our LC
transformation improve the efficiency and scalability of GNNs? Q2: Can our
block-wise precomputation scheme accelerate precomputation?

Dataset. We use four commonly used datasets, Flickr [29], Reddit [10],
ogbn-arxiv (arxiv for short), and ogbn-papers100M (papers100M for
short) [12]. Table 2 provides the summary of the datasets. The sizes of the
datasets range from 9K nodes to 110M.

In the Flickr dataset, nodes represent images uploaded to Flickr. If two images
share common properties such as same geographic location, same gallery, com-
ments by the same users, there is an edge between the nodes. Node features repre-
sent the 500-dimensional bag-of-words associated with the image (node). As for
node labels, the authors of [29] scan over 81 tags of each image and manually
merged them to 7 classes. In the Reddit dataset, nodes represent posts. If the same
user left comments on two posts, then there is an edge between the two posts. Node
features are the embedding of the contents of the posts. The labels of nodes indicate

2 In real environments, users can measure αA , αS , αD , βS , and βX by monitoring the
memory usage on small graphs, even if users do not know the details of their own
environments.

370 S. Maekawa et al.

communities which the nodes belong to. In the ogbn-arxiv dataset, nodes represent
ARXIV papers and edges indicate that one paper cites another one. Node features
represent 128-dimensional feature vectors obtained by averaging the embeddings
of words in titles and abstracts. Node labels indicate subject areas of ARXIV CS
papers3. In the ogbn-papers100M (papers100M) dataset, its graph structure and
node features are constructed in the same way as ogbn-arxiv. Among its nodes,
approximately 1.5 million nodes are labeled with one of ARXIV’s subject areas.
As in [28], Flickr and Reddit are under the inductive setting. ogbn-arxiv and ogbn-
papers100M are under the transductive setting.

Baseline. We compare three types of existing methods as baselines; non-scalable
GNNs, precomputation-based GNNs, and sampling-based GNNs which are scal-
able but inefficient (we discuss the details in Sect. 5). As for non-scalable GNNs,
we use GCN4 [15], JKNet5 [27], and GPRGNN6 [7]. As for precomputation-
based GNNs, we use SGC7 [24] and FSGNN8 [18]. As for sampling-based GNNs,
we use ShaDow-GNN9 [28]. FSGNN and ShaDow-GNN are the state-of-the-art
precomputing-based and sampling-based GNNs, respectively. We note that we
use our block-wise precomputation to the precomputation-based GNNs instead
of using its original CPU computation for a fair comparison.

Setup. We tune hyperparameters on each dataset by Optuna [2] and use Adam
optimizer [14]. We adopt mini-batch training for precomputation-based GNNs,
sampling-based GNNs, and LC-versions to deal with large-scale graphs10. As for
ShaDow-GNN, we use the best hyperparameter sets provided by the authors
and adopt GAT [22] as a backbone model since ShaDow-GAT achieves the best
accuracy in most cases reported in the paper. We measure training time on a
NVIDIA Tesla V100S GPU (32 GB) and Intel(R) Xeon(R) Gold 5220R CPUs
(378 GB).

4.1 Effectiveness of LC Transformation (Q1)

Table 3 shows the test accuracy of LC versions and the baselines. LC versions
(GCN LC, JKNet LC, and GPRGNN LC) achieve comparable test accuracy
with their original GNNs (GCN, JKNet, and GPRGNN) for all datasets. Next,
Table 4 shows the training time of LC versions and the baselines. The LC versions
run faster than their original GNNs. Note that LC versions tend to stop earlier
than non-scalable GNNs since LC versions train their models more times due
3 https://arxiv.org/archive/cs.
4 https://github.com/tkipf/pygcn.
5 Since official codes of JKNet from the authors are not provided, we simply implement

JKNet based on the implementation of GCN.
6 https://github.com/jianhao2016/GPRGNN.
7 https://github.com/Tiiiger/SGC.
8 https://github.com/sunilkmaurya/FSGNN.
9 https://github.com/facebookresearch/shaDow GNN.

10 We will provide hyperparameter search space and the best parameters to reproduce
experiments on our codebase that will be publicly available on acceptance.

https://arxiv.org/archive/cs
https://github.com/tkipf/pygcn
https://github.com/jianhao2016/GPRGNN
https://github.com/Tiiiger/SGC
https://github.com/sunilkmaurya/FSGNN
https://github.com/facebookresearch/shaDow_GNN

GNN Transformation Framework for Improving Efficiency and Scalability 371

Table 3. Comparison on test accuracy. We report the average values (standard devi-
ation) over 5 runs.

Flickr Reddit arxiv

GCN 0.525(0.003) 0.945(0.000) 0.702(0.005)

JKNet 0.526(0.004) 0.941(0.006) 0.712(0.001)

GPRGNN 0.494(0.006) 0.918(0.012) 0.694(0.006)

SGC 0.494(0.037) 0.948(0.001) 0.692(0.004)

FSGNN 0.513(0.001) 0.964(0.001) 0.722(0.003)

ShaDow-GAT 0.531(0.003) 0.947(0.003) 0.716(0.004)

GCN LC 0.515(0.003) 0.947(0.001) 0.710(0.001)

JKNet LC 0.517(0.004) 0.951(0.000) 0.710(0.003)

GPRGNN LC 0.513(0.001) 0.961(0.000) 0.720(0.004)

Table 4. Comparison on training time (per epoch/total). Note that total training time
includes precomputation time for SGC, FSGNN, ShaDow-GAT, GCN LC, JKNet LC,
and GPRGNN LC. We report the average values over 5 runs.

Flickr Reddit arxiv

GCN 64.62 [ms]/129.24 [s] 654.70 [ms]/1309.40 [s] 210.81 [ms]/421.63 [s]

JKNet 170.43 [ms]/253.25 [s] 1428.51 [ms]/2552.45 [s] 529.05 [ms]/1058.10 [s]

GPRGNN 272.86 [ms]/539.48 [s] 1456.01 [ms]/2806.62 [s] 523.08 [ms]/961.76 [s]

SGC 51.18 [ms]/30.31 [s] 141.68 [ms]/285.43 [s] 50.27 [ms]/42.23 [s]

FSGNN 346.97 [ms]/133.63 [s] 1066.66 [ms]/1793.91 [s] 284.73 [ms]/382.67 [s]

ShaDow-GAT 120.85e3 [ms]/3634.65 [s] 376.42e3 [ms]/11321.09 [s] 163.67e3 [ms]/4913.29 [s]

GCN LC 56.75 [ms]/49.85 [s] 165.73 [ms]/212.16 [s] 62.59 [ms]/120.60 [s]

JKNet LC 144.78 [ms]/78.24 [s] 430.41 [ms]/865.71 [s] 138.52 [ms]/277.63 [s]

GPRGNN LC 287.54 [ms]/164.88 [s] 818.13 [ms]/1645.49 [s] 219.66 [ms]/204.56 [s]

to mini-batch training. For example, in Flickr data LC versions more efficiently
train than non-scalable GNNs even if they have similar training time per epoch.
These results indicate that our framework transforms non-scalable GNNs to effi-
cient precomputation-based GNNs with the comparable classification accuracy
to the original GNNs.

Comparison on Large-Scale Graph. Table 5 shows the performance compar-
ison on papers100M having more than 100 million nodes and one billion edges.
Non-scalable GNNs (GCN, JKNet, and GPRGNN) cannot work on papers100M
since the whole graph cannot be put on GPU memory. GPRGNN LC achieves
comparable accuracy (approximate one percent difference) with FSGNN, which
is the state-of-the-art precomputation-based GNN while GPRGNN LC runs
faster than FSGNN. Though ShaDow-GAT achieves the highest accuracy, it
requires more than 10× total training time than other models. This is because
it needs to operate graph convolutions on many enclosing subgraphs extracted
from the whole graph. SGC obtains lower accuracy than GCN LC. This result

372 S. Maekawa et al.

Table 5. Results on papers100M. We show test/validation accuracy (standard devia-
tion) and training time (per epoch/total). Total training time includes precomputation
time. OOM indicates that the execution is out of memory.

Test accuracy Val accuracy Time (epoch/total)

GCN OOM OOM OOM

JKNet OOM OOM OOM

GPRGNN OOM OOM OOM

SGC 0.623(0.007) 0.667(0.002) 425.15 [ms]/2211.23 [s]

FSGNN 0.665(0.003) 0.706(0.001) 3550.82 [ms]/8612.48 [s]

ShaDow-GAT 0.666(0.003) 0.703(0.001) 2948.50e3 [ms]/92264.76 [s]

GCN LC 0.647(0.006) 0.688(0.002) 611.90 [ms]/2477.55 [s]

JKNet LC 0.641(0.003) 0.689(0.004) 1488.80 [ms]/3396.69 [s]

GPRGNN LC 0.658(0.002) 0.696(0.001) 2749.27 [ms]/7410.47 [s]

Fig. 2. Validation accuracy over training time (precomputation and weight learning
time) on papers100M. Plots indicate epochs. LC versions (GCN LC, JKNet LC, and
GPRGNN LC) are faster than FSGNN and ShaDow-GAT while achieving competitive
accuracy.

validates that non-linearity contributes to weight learning for better classifica-
tion.

In order to analyze the results on papers100M in details, we show the vali-
dation accuracy at each epoch over total training time in Fig. 2. Note that total
training time consists of precomputation and weight learning time. We observe
that GCN LC, JKNet LC, and GPRGNN LC are plotted in the upper left corner
of the figure. This observation indicates that they require less total training time
than FSGNN and ShaDow-GAT. The LC versions achieve competitive perfor-
mance with them. Through these experiments, we demonstrate that LC versions
are efficient and scalable for large-scale graphs.

GNN Transformation Framework for Improving Efficiency and Scalability 373

Fig. 3. Precomputation time comparison between a naive CPU computation and our
block-wise computation.

4.2 Precomputation Efficiency (Q2)

To validate the efficiency of our block-wise precomputation, we compare it with
naive CPU computation adopted by existing works [12,18]. We use a large-scale
graph, papers100M, which requires a 67 GB normalized adjacency matrix and a
57 GB feature matrix. For adjacency matrix normalization, we set the number of
disjoint blocks of an adjacency matrix to a = 3, which satisfies Eq. (11). Also, for
feature aggregation we set numbers of disjoint blocks of a normalized adjacency
matrix and feature matrix to b = 10, c = 16, respectively, which satisfy Eq. (12).

Figure 3 shows the precomputation time for normalization and feature aggre-
gation on CPU and GPU. The result demonstrates that our block-wise precom-
putation is 20× faster than CPU computation for normalization. Also, the result
indicates that our precomputation is up to twice faster than CPU computation
for feature aggregation. Hence, we conclude that our precomputation is more
efficient than CPU computation on a single machine.

5 Related Work

Relationship Between Non-scalable GNNs and LC Versions. We discuss
the background of non-scalable GNNs and their LC versions. Graph convolution
is motivated by the 1-dim Weisfeiler-Lehman (WL-1) algorithm [23] which is
used to test graph isomorphism; two graphs are called isomorphic if they are
topologically identical. WL-1 iteratively aggregates the labels of nodes and their
neighbors, and hashes the aggregated labels into unique labels. The algorithm
decides whether two graphs are isomorphic or not by using the labels of nodes at
some iteration. Non-scalable GNNs such as GCN [15] replace the hash function
of WL-1 with a graph convolutional layer which consists of feature aggregation,
weight multiplication, and non-linear function application. As for LC versions,
they replace the hash function of WL-1 with feature aggregation. These obser-
vations indicate that WL-1 is analogous to feature aggregation of LC versions,
similarly to graph convolution of non-scalable GNNs.

374 S. Maekawa et al.

Sampling-Based GNNs. Sampling-based GNNs [5,6,10,28,29] avoid keeping
a whole graph on GPU by computing node representations from enclosing sub-
graphs of the input graph. The major drawback of the sampling-based GNNs is
that they need costly training time since they need to operate graph convolutions
on many enclosing subgraphs extracted from the input graph.

GNNs Dynamically Modifying the Importance of Edges. As we discussed
in Sect. 3.1, our transformation cannot support GNNs which dynamically control
the propagation of features during weight learning. An example of such GNNs is
GAT [22], which learns attention parameters controlling the importance of edges
for each iteration. Another example is GIN [26] learns a parameter controlling a
weight between self features and features from neighbors. One possible direction
is that we first determine the parameters by training on a subset of an input
graph, then fix them in order to precompute feature aggregation.

Distributed Matrix Operations. Matrix operations can be parallelized for
distributed computing [3,4]. For example, the authors of [11] proposed Mars
which is an approach for hiding the programming complexity of MapReduce
on GPU. Also, MR-Graph [20] is a customizable and unified framework for
GPU-based MapReduce. It allows its users to implement their applications more
flexibly. As for distributed graph neural network training, DistDGL [31] has
proposed mini-batch training on graphs, which scales beyond a single machine.
It suffers from an imbalance problem since it uses a typical graph clustering
algorithm METIS [13] to partition large-scale graphs into subgraphs, while our
scheme can partition an edge set into balanced subsets. For further scale up
of graphs, it would be important to combine distributed computing and our
block-wise precomputation for graphs.

6 Conclusion

We presented a framework that automatically transforms non-scalable GNNs to
efficient and scalable precomputation-based GNNs. There are two major charac-
teristics of our framework: 1) it supports a novel transformation procedure that
transforms non-scalable GNNs to efficient and scalable precomputation-based
GNNs having a similar functionality to the original GNNs, 2) the precompu-
tation of the transformed GNNs can be efficiently executed by our block-wise
precomputation scheme that decomposes large-scale graphs into disjoint and
balanced blocks each of which can be handled on GPU memory. Through our
experiments, we demonstrated that the transformed GNNs run more efficiently
than their original GNNs and can be scaled to graphs with millions of nodes
and billions of edges. Due to the strong performance of LC versions, we argue
that LC versions will be beneficial as baseline comparisons for future research
on scalable GNNs.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Numbers
JP20H00583 and JST PRESTO Grant Number JPMJPR21C5.

GNN Transformation Framework for Improving Efficiency and Scalability 375

A LC Version of GPRGNN

We show an example of LC transformation for the state-of-the-art GNN model,
GPRGNN [7]. We give the formulation of GPRGNN as follows:

H =
∑K

k=0 γkS
k(σ(. . . σ(XW1) . . .)WT), (13)

where γk is an attention parameter learning the importance of k-th layer and
T is the number of layers for Multi-layer perceptrons. Note that Sk cannot
be efficiently precomputed since the number of non-zero elements significantly
increases when k ≥ 2 for large-scale graphs. By iteratively applying fLC to
Eq. (13), we obtain the formulation of its LC version as follows:

HLC =
∑K

k=0 γk(σ(. . . σ(SkXW1) . . .)WT). (14)

SkX can be precomputed since it does not need to be updated when learnable
weights W1 . . .WT and a parameter γ are updated.

References

1. Abu-El-Haija, S., et al.: MixHop: higher-order graph convolutional architectures
via sparsified neighborhood mixing. In: ICML (2019)

2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation
hyperparameter optimization framework. In: KDD (2019)

3. Awaysheh, F.M., Alazab, M., Garg, S., Niyato, D., Verikoukis, C.: Big data resource
management & networks: taxonomy, survey, and future directions. IEEE Commun.
Surv. Tutor. 23(4), 2098–2130 (2021)

4. Boehm, M., et al.: SystemML: declarative machine learning on spark. PVLDB
9(13), 1425–1436 (2016)

5. Chen, J., Ma, T., Xiao, C.: FastGCN: fast learning with graph convolutional net-
works via importance sampling. arXiv preprint (2018)

6. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-GCN: an
efficient algorithm for training deep and large graph convolutional networks. In:
KDD (2019)

7. Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized
pagerank graph neural network. In: ICLR (2021). https://openreview.net/forum?
id=n6jl7fLxrP

8. Frasca, F., Rossi, E., Eynard, D., Chamberlain, B., Bronstein, M., Monti, F.: Sign:
scalable inception graph neural networks. In: ICML 2020 Workshop on Graph
Representation Learning and Beyond (2020)

9. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed
graph-parallel computation on natural graphs. In: 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2012), pp. 17–30 (2012)

10. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS (2017)

11. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a mapreduce
framework on graphics processors. In: PACT (2008)

12. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs.
arXiv preprint (2020)

https://openreview.net/forum?id=n6jl7fLxrP
https://openreview.net/forum?id=n6jl7fLxrP

376 S. Maekawa et al.

13. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
(2014)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

16. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural
networks meet personalized pagerank. In: ICLR (2019)

17. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Distributed GraphLab: a framework for machine learning in the cloud. PVLDB
5(8), 716–727 (2012)

18. Maurya, S.K., Liu, X., Murata, T.: Improving graph neural networks with simple
architecture design. arXiv preprint (2021)

19. Newman, M.E.: Networks: An Introduction. Oxford University Press, Oxford
(2010)

20. Qiao, Z., Liang, S., Jiang, H., Fu, S.: A customizable mapreduce framework for
complex data-intensive workflows on GPUs. In: IPCCC (2015)

21. Rong, Y., Huang, W., Xu, T., Huang, J.: DropEdge: towards deep graph convolu-
tional networks on node classification. arXiv preprint (2019)

22. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint (2017)

23. Weisfeiler, B., Lehmann, A.A.: A reduction of a graph to a canonical form and an
algebra arising during this reduction. Nauchno-Technicheskaya Informatsia 2(9),
12–16 (1968)

24. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph
convolutional networks. In: ICML (2019)

25. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2020)

26. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826 (2018)

27. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.I., Jegelka, S.: Represen-
tation learning on graphs with jumping knowledge networks. In: ICML (2018)

28. Zeng, H., et al.: Deep graph neural networks with shallow subgraph samplers.
CoRR abs/2012.01380 (2020). https://arxiv.org/abs/2012.01380

29. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: GraphSAINT: graph
sampling based inductive learning method. In: International Conference on Learn-
ing Representations (2020). https://openreview.net/forum?id=BJe8pkHFwS

30. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. IEEE TKDE 34(1),
249–270 (2020)

31. Zheng, D., et al.: DistDGL: distributed graph neural network training for billion-
scale graphs. In: 2020 IEEE/ACM 10th Workshop on Irregular Applications: Archi-
tectures and Algorithms (IA3), pp. 36–44. IEEE (2020)

32. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily
in graph neural networks: current limitations and effective designs. In: NeurIPS,
vol. 33 (2020)

http://arxiv.org/abs/1810.00826
https://arxiv.org/abs/2012.01380
https://openreview.net/forum?id=BJe8pkHFwS

Masked Graph Auto-Encoder
Constrained Graph Pooling

Chuang Liu1, Yibing Zhan2, Xueqi Ma3, Dapeng Tao4, Bo Du1,
and Wenbin Hu1(B)

1 School of Computer Science, Wuhan University, Wuhan, China
{chuangliu,dubo,hwb}@whu.edu.cn

2 JD Explore Academy, Beijing, China
zhanyibing@jd.com

3 School of Software, Tsinghua University, Beijing, China
xueqima@s.upc.edu.cn

4 Yunnan University, Kunming, China
dptao@ynu.edu.cn

Abstract. The node drop pooling is a significant type of graph pool-
ing that is required for learning graph-level representations. However,
existing node drop pooling models still suffer from the information loss
problem, impairing their effectiveness in graph classification. To mitigate
the detrimental effect of the information loss, we propose a novel and flex-
ible technique called Masked Graph Auto-encoder constrained Pooling
(MGAP), which enables vanilla node drop pooling methods to retain suf-
ficient effective graph information from both node-attribute and network-
topology perspectives. Specifically, MGAP reconstructs the original node
attributes of the graph using a graph convolutional network and the node
degree of the graph (i.e., structural information) using a feedforward neu-
ral network with exponential neurons from the pooled (masked) graphs
generated by the vanilla node drop pooling models. Notably, MGAP is
a plug-and-play technique that can be directly adopted in the current
node drop pooling methods. To evaluate the effectiveness of MGAP, we
conduct extensive experiments on eleven real-world datasets by applying
MGAP to three commonly-used methods, i.e., TopKPool, SAGPool, and
GSAPool. The experimental results reveal that MGAP has the capac-
ity to consistently improve the performance of all the three node drop
pooling models in the graph classification task.

Keywords: Graph Neural Nnetworks · Graph pooling · Graph
auto-encoder · Graph classification

1 Introduction

Graph Neural Networks (GNNs) have demonstrated their significant effective-
ness in a variety of graph classification tasks [2,6], including molecular property

C. Liu—This work has been done when Chuang Liu was an intern at JD Explore
Academy.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 377–393, 2023.
https://doi.org/10.1007/978-3-031-26390-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_23&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_23

378 C. Liu et al.

Fig. 1. Graph reconstruction with two typical node drop pooling operators. The point
locations in the figure above represent the node attributes.

prediction [1], cancer diagnosis [26], and brain-data analysis [17]. In contrast to
node-level tasks (e.g., the node classification), which mainly leverage the graph
convolutional network (GCN) to generate node representations for downstream
tasks [13], graph classification requires obtaining holistic graph-level representa-
tions. Therefore, for graph classification, the pooling mechanism is an essential
component that condenses the input graph with GCN-learned node representa-
tions into a single vector or a coarser graph with a smaller size.

Early adopted graph pooling techniques such as average and maximum pool-
ing disregard node correlations, hence restricting overall performance [5,40]. Sub-
sequently, graph pooling utilizes hierarchical architecture to model the node cor-
relations [20,34] and can be roughly classified into node clustering pooling and
node drop pooling. Node clustering pooling requires clustering nodes into new
nodes, which is time-and space-consuming [3,37,38]. In comparison, node drop
pooling preserves only representative nodes by assessing their importance, and
is hence more efficient and suitable for large-scale networks [7,14,39].

Although efficient and effective, the current node drop pooling methods are
affected by information loss, resulting in suboptimal graph-level representations
and unsatisfactory performance in the graph classification task. To substantiate
the above idea, we conduct experiments on graph reconstruction to directly quan-
tify the amount of retained information after pooling. Specifically, we employ two
node drop pooling algorithms (i.e., TopKPool [7] and SAGPool [14]) on 10 syn-
thetic point cloud graphs. The experimental settings are consistent with those
proposed in prior research [1,3]. Figure 1 depicts the reconstructed results of the
point cloud’s original attributes (i.e., coordinates) from its pooled graph, which
is generated by the node drop pooling operators. As shown in Fig. 1, node drop
pooling approaches frequently fail to recover the original graph signal, indicating
that they discard part of critical graph information, which explains their inferior
performance in graph classification.

We provide an intuitive explanation for the aforementioned phenomenon as
follows. Indeed, nodes connected in a graph typically share similar attributes [22],
and their similarity rises further after message propagation using GNNs (such
as GCN [13] or GAT [33]). Node drop pooling methods, such as TopKPool
and SAGPool, generate node scores based on the node attributes, resulting in

Masked Graph Auto-Encoder Constrained Graph Pooling 379

Fig. 2. Illustration of the constraint mechanism. Visualization of node selection results
with and without (Base) constraints. The reserved nodes are highlighted in Red. (Color
figure online)

a high potential for most selected nodes to share similar attributes or to be
connected. Consequently, node drop pooling models may be stuck in signifi-
cant local structures, thus selecting redundant nodes and ignoring significant
nodes from other substructures. To empirically validate our analysis, we test the
SAGPool model [14] on a real-world dataset (i.e., IMDB-BINARY). The exper-
imental conditions are identical to those for the graph classification problem,
which is described in detail in Sect. 4.1. In this example study, 40% of the nodes
that are selected as significant nodes by the first pooling layer are marked in
red. As shown in Fig. 2 (a), SAGPool (i.e., Base) is more likely to select nodes
concentrated in the same area, confirming our hypothesis. As a result, existing
node drop pooling methods may overlook critical information in other parts of
a graph, causing loss of critical information and the lower performance in the
graph classification task.

To address the limitations of existing node drop pooling methods, we design
a masked graph auto-encoder constrained strategy called Masked Graph Auto-
encoder constrained Pooling (MGAP), which mitigates the information-loss
impact associated with graph pooling. Specifically, we incorporate a graph auto-
encoder layer with two decoders into graph pooling models in order to impose
implicit restrictions on the pooled graphs from two perspectives. Firstly, from the
node-attribute perspective, we apply GCN layers to the embeddings of pooled
nodes to reconstruct the original node attributes (Sect. 3.1), aiming to prevent
the pooled graph from losing excessive critical attribute information. Secondly,
from the network-topology perspective, we adopt a feedforward neural network
to rebuild the node degree (Sect. 3.2), which enables the node drop pooling
models to reserve more important nodes with regard to the topology aspect. As
illustrated in Fig. 2 (b) and (c), the selected nodes are distributed across dif-
ferent substructures or cover the fundamental nodes in the graph, demonstrat-
ing that the proposed attribute- and topology-view constraints enable models
to reserve significant nodes from the attribute and topology aspects (retaining
more attribute and topological information), respectively. Additionally, Fig. 2
(d) illustrates the effect of combining constraints from the two views. Subse-
quently, we describe how to integrate MGAP with the present architecture for

380 C. Liu et al.

node drop pooling (Sect. 3.3). To further demonstrate the practical efficiency of
our MGAP, we provide an in-depth analysis of time efficiency (Sect. 3.4).

Furthermore, we extensively examine MGAP across three backbone mod-
els and eleven benchmark datasets, which vary in content domains and dataset
sizes. The experimental results demonstrate that MGAP generally and consis-
tently improves the performance of the current node drop pooling models (e.g.,
TopKPool, SAGPool, and GSAPool). Our contributions are summarized as fol-
lows.

– We propose MGAP to alleviate the information-loss effect in graph pooling
from the perspectives of attribute space and topology space.

– We demonstrate that MGAP is a plug-and-play and easy-to-compute module,
which can be combined with node drop pooling methods to enhance their
performance in the graph classification task. Furthermore, MGAP maintains
controllable time and memory complexities.

– We conduct extensive experiments using three typical node drop pooling
methods with and without MGAP in the graph classification task across
eleven real-world datasets. The experimental results comprehensively demon-
strate the effectiveness of MGAP.

2 Preliminaries and Related Works

2.1 Notations

Let G = (V, E) denote a graph with the node set V and edge set E . The node
attributes are denoted by X ∈ R

n×d, where n is the number of nodes and d
is the dimension of node attributes. The graph topology is represented by an
adjacency matrix A ∈ {0, 1}n×n.

2.2 Problem Statement

Definition 1 (Graph Classification). The task of graph classification is to
learn a mapping function f :

f : G → Y, (1)

where G = {G1, G2, . . . , Gt} is the set of input graphs, Y = {y1, y2, . . . , yt} is the
set of labels associated with the graphs, and t is the number of graphs.

2.3 Graph Convolutional Networks

Recently, numerous studies have been conducted based on Graph Convolutional
Networks, which generalize convolutional operation in graph data. The basic
idea behind such methods as Graph Convolutional Network (GCN) [13], Graph-
SAGE [10], Graph Attention Network (GAT) [33], and Graph Isomorphism Net-
work (GIN) [36], is to update the embedding of each node with messages from

Masked Graph Auto-Encoder Constrained Graph Pooling 381

its neighbor nodes. Formally, the above message-passing mechanism in the l-th
layer can be formalized as follows:

h(l+1)
v = COM(l)

({
h(l)
v ,AGG(l)

({
h
(l)
v′ : v′ ∈ Nv

})})
, (2)

where Nv is the set of neighbors of node v. h(l)
v ∈ R

c is the representation vector
for node v in the l-layer, where c is the dimension of the node embeddings.
AGG and COM refer to the aggregation and combination functions, respectively.
The methods mentioned above have achieved excellent performance in the node
classification and link prediction tasks. However, an additional pooling operation
is required to obtain a representation of the entire graph for downstream graph-
level tasks (for example, the graph classification).

2.4 Graph Pooling

Definition 2 (Graph Pooling). Let a graph pooling operator be defined as any
function POOL that maps a graph G to a new pooled graph G′ = (V ′, E ′) :

G′ = POOL(G), (3)

where |V ′| < |V| and |V| is the number of nodes1. The generic goal of graph
pooling is to reduce the number of nodes in a graph while preserving its semantic
information.

Graph pooling, which plays a crucial role in representing the entire graph,
could be roughly divided into global pooling and hierarchical pooling. Global
pooling performs global sum/average/max-pooling [5] or more sophisticated
operations [36,40] on all node attributes to produce graph-level representations,
which disregard the topology of graphs. Contrarily, hierarchical pooling models
are later proposed considering the graph topology, which could be classified into
node clustering pooling and node drop pooling. 1) Node clustering pooling
considers the graph pooling problem as a node clustering problem to map the
nodes into a set of clusters [3,20,37,38], which is limited by time and memory
complexities caused by the dense soft-assignment matrix computation. Addition-
ally, as discussed in previous studies [9,23], clustering-enforcing regularization
that enforces clustering is typically ineffective. 2) Node drop pooling exploits
learnable scoring functions to eliminate nodes with relatively lower significance
scores [7,8,14,16,39,41]. While the node drop pooling is more economical and
suitable to large-scale networks than node clustering pooling, it suffers from an
inevitable information loss. For a detailed description of graph pooling, please
refer to the recent review [19].

1 In some very specific cases, there exists |V ′| ≥ |V|, causing the graph to be up scaled
by pooling.

382 C. Liu et al.

2.5 Graph Auto-Encoder

Recent years have seen a surge of interest in studying the framework of auto-
encoder for graph embedding. The non-probabilistic graph auto-encoder model
(GAE) [12] consists of a GCN encoder, integrating the graph topology and node
attributes, and a nonlinear inner product decoder, reconstructing the adjacency
matrix. Formally, the auto-encoder can be summarized as:

Â = σ(ZZ�), with Z = GCN(X,A), (4)

where Â ∈ {0, 1}n×n is the reconstructed adjacency matrix, and σ is the logis-
tic sigmoid function. Z ∈ R

n×c is the node embedding matrix, where c is the
dimension of the node embeddings.

Instead of reconstructing the graph topology in GAE, some methods attempt
to design a decoder to reconstruct the node attributes [15,25] or both the topol-
ogy and attributes [31]. However, these methods are unsuitable for large-scale
graphs. Therefore, some methods [27,28] have introduced general frameworks to
scale GAE to large-scale graphs. Unlike the above methods, which perform auto-
encoder in the Euclidean space, some recent studies [21,24] have attempted to
encode and decode graphs in the hyperbolic space. Furthermore, Salha et al. [30]
extended the GAE frameworks to address link prediction in directed graphs using
gravity-inspired decoder scheme. Due to the space limitation, some other GAE
methods, such as linear GAE [29], permutation-invariant GAE [35], and adaptive
GAE [18], are not presented here in detail. Compared with the above studies, our
manuscript heuristically exploits auto-encoder to constrain the pooled graphs of
node drop pooling methods.

3 MGAP: Masked Graph Auto-Encoder Constrained
Pooling

The whole structure of the proposed MGAP is illustrated in Fig. 3, which con-
tains two parts: the constraint from the perspective of attribute (Sect. 3.1)
and the constraint from the perspective of topology (Sect. 3.2). Addition-
ally, we discuss how to integrate the present node drop pooling methods with
MGAP (Sect. 3.3). Finally, we conduct an extensive investigation of complexity
(Sect. 3.4).

3.1 Constraint in Attribute Space

The node attribute in a graph is essential for graph representation learning
because each node attribute depicts partial characteristics of the graph. How-
ever, as illustrated in Fig. 1, current node drop pooling methods tend to discard
a large amount of node attribute information, which may cause the decreased
performance in the graph classification task. Therefore, we suggest compensating
for this information loss through the use of an auto-encoder system. Specifically,

Masked Graph Auto-Encoder Constrained Graph Pooling 383

Fig. 3. The illustration of the proposed MGAP, which includes two parts: the attribute-
view constrained module and the topology-view constrained module.

given the hidden representations of partially pooled nodes, we attempt to recon-
struct the original node attributes of all nodes in the graph. In the proposed
approach, there are three Components: (C1) the node drop pooling encoder,
(C2) the designed decoder in attribute space, and (C3) the reconstruction tar-
get, the details of which are introduced as below.

(C1) Node Drop Pooling Encoder. Instead of following the standard GAE
approaches [12], which adopt the well-established GNN models shown in Eq. (2)
as an encoder, we employ one-layer GCN with graph pooling (GNN and NDP in
Fig. 3 (a)) as the encoder. The objective of the encoder is to learn the embeddings
of each node and to select which partial nodes to discard (mask). The embeddings
of these masked nodes will not be observed by the decoder. As shown in Fig. 3
(a), the encoder first performs message propagation on the graphs to generate
node embeddings using Eq. (2), and then generates coarsened graphs using node
drop pooling methods. We used the SAGPool model [14] to describe the process
of node drop pooling encoder, which consists of three disjoint parts:

1) Generating Scores. SAGPool predicts the significance scores for each node
by using graph convolution as follows:

S(l) = GCN(Z(l),A(l)) ∈ R
n(l)×1, (5)

where S(l) ∈ R
n(l)×1 is the score matrix for the nodes, A(l) ∈ {0, 1}n(l)×n(l)

is the
adjacency matrix of the coarsened graph in the layer l, and n(l) is the number
of reserved nodes in the coarsened graph.

384 C. Liu et al.

2) Selecting Nodes. Subsequently, SAGPool selects the nodes with the top-k
significance scores as follows:

idx(l) = TOPk(S(l)), (6)

where TOPk ranks values and returns the indices of the largest k values in S(l),
and idx(l) indicates the reserved node indices for new graphs.

3) Coarsening Graphs. With the selected nodes, a new graph coarsened from
the original one is obtained by learning new attribute and adjacency matrices:

Z(l+1) = Z
(l)

idx(l) � S
(l)

idx(l) ∈ R
n(l+1)×1;

A(l+1) = A
(l)

(idx(l),idx(l))
∈ {0, 1}n(l+1)×n(l+1)

,
(7)

where ·idx is an indexing operation, Z(l)

idx(l) is the row-wise indexed embedding

matrix, � is the broadcast elementwise product, and A
(l)

(idx(l),idx(l))
is the row-

wise and column-wise indexed adjacency matrix. Z(l+1) and A(l+1) are the new
attribute and corresponding adjacency matrices, respectively.

(C2) Decoder in Attribute Space. Unlike traditional GAE, MGAP, with the
embeddings of pooled nodes, aims to recover the original attributes of graphs
containing pooled nodes and masked (dropped) nodes. In particular, follow-
ing [7], we first initialize an empty attribute matrix X̂0 ∈ R

n×c for the new
graph. Subsequently, we insert the pooled node embeddings Z(l) ∈ R

n(l)×c into
X̂0 to obtain a new embedding matrix X̂(l) ∈ R

n×c (the zero padding opera-
tion in Fig. 3 (b)). The other row vectors (embeddings of the dropped nodes)
remain zero. Then, we adopt graph convolution as the decoder, as introduced
in Eq. (2), on the new node embedding matrix X̂ and the original adjacency
matrix A(0) = A ∈ R

n×n to reconstruct the node attributes:

ψa

(
X̂(l)

)
= GCN

(
X̂(l),A(0)

)
∈ R

n×d. (8)

(C3) Reconstruction Target. The constraint in attribute space aims to
improve the power of pooling methods to preserve node information; that is,
the learned embeddings of reserved nodes can recover the original attributes of
the whole graph. Therefore, we directly measure the Euclidean distance between
the reconstructed attribute matrix ψa(X̂(l)) and the original input attribute
matrix X ∈ R

n×d, and consider it as the loss function, which is formalized as
follows:

L(l)
a =

∥∥∥X − ψa(X̂(l))
∥∥∥
2

F
, (9)

where L(l)
a is the attribute-view constrained loss in the layer l, which enables

pooling models to reserve additional important nodes from the perspective of
node attributes, and ‖ · ‖F is the Frobenius norm.

Masked Graph Auto-Encoder Constrained Graph Pooling 385

3.2 Constraint in Topology Space

In addition to the attribute information discussed previously (Sect. 3.1), topolog-
ical information in a graph is essential in graph representation learning. There-
fore, it is logical and critical to ensure that the pooled nodes can reassemble
the network topology. We propose to reconstruct the node degree, motivated by
NWR-GAE [32], with the goal of capturing topological information. Specifically,
our solution consists of three Components: (C1) the node drop pooling encoder,
which is the same as the encoder in attribute-view constraint and will not be
given any further details here, (C2) the designed decoder in topology space, and
(C3) the reconstruction target, all of which are described in detail below.

(C2) Decoder in Topology Space. The decoders in existing graph auto-
encoders are designed to drive the embeddings of the linked nodes similar, which
appears away from our motivation that enables models to capture the topologi-
cal information. Therefore, we suggest reconstructing the node degree, which is a
typical graph topological feature that reflects the receptive field of a node. Specif-
ically, given the embedding of the pooled nodes, we adopt an FNN layer with
an activation function ReLU(·), which makes the predicted value non-negative,
to reconstruct the node degree in the l-th layer:

ψt

(
Z(l)

)
= ReLU

(
FNN

(
Z(l)

))
∈ R

n(l)×1. (10)

(C3) Reconstruction Target. We measure the Euclidean distance between
the truth degree D(l) ∈ R

n(l)×1 and the predict degree ψt(Z(l)), which is for-
malized as follows:

L(l)
t =

∥∥∥D(l) − ψt

(
Z(l)

)∥∥∥
2

F
, (11)

where L(l)
t is the topology-view constrained loss in the layer l. With this loss, a

fraction of important nodes from the perspective of the topology can be reserved.

3.3 Node Drop Pooling Framework with MGAP

Figure 3 (a) illustrates in detail how to apply MGAP to the node drop pooling
framework. Concretely, we view a GCN layer followed by a node drop pool-
ing layer, such as TopKPool or SAGPool, as a pooling function unit and name
it GCN-Pool layer for convenience. A GCN-Pool layer takes a graph as input
and outputs a pooled graph that is represented by an embedding matrix and
a new adjacency matrix. The two decoders ψa (Decoder (a) in Fig. 3) and ψt

(Decoder (t) in Fig. 3) are trained to simultaneously reconstruct the original
node attributes and network topology, which generates two losses, La and Lt.
The pooled graph is then fed into the next GCN-Pool layer and, simultaneously,
a readout module, in which the node embeddings are added up as the graph
embedding in this layer. Finally, the graph embeddings in all layers are added

386 C. Liu et al.

up to the final graph representation, that is taken as the input of an Multi-
layer Perceptron (MLP) classifier for predicting the label of the original graph.
Classification error is defined by the cross-entropy loss Lclass.

By combining the classification loss Lclass and two constrained losses in
Eq. (9) and (11), we obtained the total loss:

Ltotal = Lclass + λaLa + λtLt, (12)

where λa and λt are the trade-off weight parameters, and La and Lt are the
average attribute- and topology-view constrained losses of all layers, respectively.
Notably, the graph classification task is performed by GCN-Pool layer in the
proposed framework, and the decoders were only used for constraining the pooled
nodes and their embeddings in GCN-Pool. Thus, the decoders are used only in
the training phase. After obtaining the trained model, we apply GCN-Pool to
perform graph classification in the test set without decoders.

3.4 Complexity Analysis

Our proposed MGAP is highly efficient because the major operations involved
in it are only GCN and FNN, as shown in Fig. 3 (b) and (c), respectively. The-
oretically, the time complexity of GCN layer is O (

L‖A‖0d + Lnd2
)
, where L

is the number of layers, n is the number of nodes, and ‖A‖0 is the number of
nonzeros in the adjacency matrix A. The time complexity of FNN layer is O(1).
The time complexity for calculating La by Eq. 9 is O(nd) and calculating Lt by
Eq. 11 is O(n′), where n′ is the number of the pooled nodes. Thus, the total time
complexity of the proposed method is O (

L‖A‖0d + Lnd2
)
, which is on par with

the neighborhood aggregation operation in node drop pooling methods.

4 Experiments

In this section, we study the effectiveness of MGAP for graph classification.
Specifically, we would like to answer the following questions:
Q1. How often and how much does MGAP improve the performance of the base
node drop pooling methods? (Sect. 4.2)
Q2. Does each component of MGAP contribute to the improvements in perfor-
mance? (Sect. 4.3)
Q3. How much extra computation time and memory does MGAP
incur?(Sect. 4.4)
Q4. How would the parameters affect the performance? (Sect. 4.5)

4.1 Experimental Settings

Datasets. To answer Q1, we use 11 publicly available and well-known
benchmark datasets, including bioinformatics datasets (D&D, PROTEINS, and
ENZYMES), molecule datasets (NCI1, NCI109, PTC-MR, MUTAG, MUTA-
GENICITY, and FRANKENSTEIN), and social network datasets (IMDB-
BINARY and IMDB-MULTI). The above 11 real-world datasets vary in content
domains and dataset sizes, and the dataset statistics are summarized in Table 1.

Masked Graph Auto-Encoder Constrained Graph Pooling 387

Table 1. Statistics and properties of benchmark datasets (TUdatasetsa).

Datasets # Graphs # Classes Avg. # Nodes Avg. # Edges

Bioinformatics D&D 1,178 2 284.32 715.66

PROTEINS 1,113 2 39.06 72.82

ENZYMES 600 6 32.63 124.20

Molecules NCI1 4,110 2 29.87 32.30

NCI109 4,127 2 29.68 32.13

PTC-MR 344 2 14.30 14.69

MUTAG 188 2 17.93 19.79

MUTAGENICITY 4,337 2 30.32 30.77

FRANKENSTEIN 4,337 2 16.90 17.88

Social Networks IMDB-BINARY 1,000 2 19.77 96.53

IMDB-MULTI 1,500 3 13.00 65.94
aTUDatasets: https://chrsmrrs.github.io/datasets/docs/datasets/

Backbone Models. We select three representative node drop pooling models
as the backbone: TopKPool [7]. This method selects the top k nodes based on
the scores generated by a learnable function that only considers node attributes.
SAGPool [14]. This method selects the important nodes with higher scores
that are generated by a graph convolution layer, which involves node attributes
and network topology. Particularly, this method has two variants: 1) SAGPool
(G) is a global node drop pooling method that drops unimportant nodes at
one time at the end of the architecture. 2) SAGPool (H) is a hierarchical node
drop pooling method that sequentially drops unimportant nodes with multiple
graph convolution layers. We use SAGPool (H) in this study. GSAPool [39].
This method predicts scores from two perspectives: 1) using an MLP layer to
capture the significant node attributes and 2) using a GNN layer to capture the
significant network topology. Subsequently, the model linearly combines the two
scores mentioned above.

Implementation Details. For a fair comparison, we adopt the same settings
on all datasets and models. Specifically, we evaluate the model performance
with a 10-fold cross validation setting, and the dataset split is based on the
conventionally used training/test splits [1,36]. Each convolution layer consists
of 128 hidden neurons, and the pooling ratio in each pooling layer is set as 0.5,
i.e., removing 50% of nodes per graph after a pooling operation. We employ
Adam [11] to optimize the parameters with learning rate as 5e−4 and weight
decay as 1e−4, and adopt early stopping to control the training epochs based on
validation loss with patience set as 50. We then report the average performance
on the test sets, by performing overall experiments 100 times with different seeds
from 42 to 51.

https://chrsmrrs.github.io/datasets/docs/datasets/

388 C. Liu et al.

Table 2. MGAP performance across three backbone models and 11 datasets in the
graph classification task. The reported results are mean and standard deviation over
100 different runs.

Molecules

NCI1 NCI109 MUTAG PTC-MR MUTAGE. FRANK.

SAGPool 71.71±0.75 70.70±0.95 72.56±3.09 56.41±1.63 74.27±1.04 58.74±0.61

+ MGAP 73.02±1.00 71.95±0.63 73.72±1.88 58.80±2.29 74.99±1.22 59.06±0.81

Gain 1.83% ↑ 1.76% ↑ 1.60% ↑ 4.23% ↑ 0.97% ↑ 0.54% ↑
TopKPool 71.90±1.22 70.69±1.00 71.83±1.66 57.15±3.14 75.10±0.94 58.84±0.80

+ MGAP 72.83±1.24 72.35±1.03 73.06±2.77 58.35±2.70 76.46±1.05 58.96±0.53

Gain 1.29% ↑ 2.35% ↑ 1.71% ↑ 2.10% ↑ 1.81% ↑ 0.0% ↑
GSAPool 73.70±0.89 71.83±1.65 72.56±2.41 56.10±1.83 76.65±1.12 59.11±0.69

+ MGAP 75.36±1.68 74.10±1.95 72.44±3.42 57.59±2.81 77.94±1.03 59.57±0.32

Gain 2.25% ↑ 3.16% ↑ 0.16% ↓ 2.66% ↑ 1.68% ↑ 0.78% ↑

Bioinformatics Social Networks
Average

D&D PROT. ENZYM. IMDB-B IMDB-M

SAGPool 74.21±1.23 72.65±1.26 47.42±1.54 70.71±1.36 48.43±0.81 65.25

+ MGAP 76.20±0.73 74.53±1.04 48.93±3.69 72.88±1.22 49.71±0.80 66.70

Gain 2.68% ↑ 2.58% ↑ 3.18% ↑ 3.07% ↑ 2.64% ↑ 2.22% ↑
TopKPool 73.71±1.04 72.81±0.74 46.02±3.53 70.96±1.15 48.97±0.60 65.27

+MGAP 75.97±0.96 73.95±1.23 49.58±2.01 72.05±0.50 49.52±0.79 66.64

Gain 3.06% ↑ 1.56% ↑ 7.73% ↑ 1.53% ↑ 1.12% ↑ 2.10% ↑
GSAPool 74.19±1.32 73.20±1.11 49.08±2.02 71.06±1.15 49.03±0.50 66.00

+ MGAP 76.24±1.03 73.49±1.39 55.05±2.86 72.34±1.26 49.68±0.61 67.59

Gain 2.76% ↑ 0.40% ↑ 12.16% ↑ 1.80% ↑ 1.32% ↑ 2.40% ↑

Hyper-parameter tuning. As described in Sect. 3.3, two hyper-parameters
λa and λt are used in our MGAP, which serve as trade-off weights in the loss
function. We utilize a grid search to tune the above two hyper-parameters with
a search space {1, 1e−1, 1e−2}.

Environments. 1) Software. All models are implemented with Python 3.7,
PyTorch 1.9.0 or above (which further requires CUDA 10.2 or above), and
PyTorch-Geometric 1.7.3 or above. 2) Hardware. Each experiment was run
on a single GPU (NVIDIA V100 with a 16 GB memory size), and the experi-
ments were run on the server at any given time2.
2 The source code is available at https://github.com/liucoo/mgap.

https://github.com/liucoo/mgap

Masked Graph Auto-Encoder Constrained Graph Pooling 389

Table 3. Ablation study results. Bold: the best performance per backbone model and
dataset. Underline: the second best performance per backbone model and dataset.

PTC-MR IMDB-BINARY

SAGPool TopKPool GSAPool SAGPool TopKPool GSAPool

Base 56.41±1.6 57.15±3.1 56.10±1.8 70.71±1.4 70.96±1.2 71.06±1.2

MGAP 58.80±2.2 58.35±2.7 57.59±2.8 72.88±1.2 72.05±0.5 72.34±1.3

w/o attr-const 58.44±1.9 57.21±3.5 56.21±3.1 72.43±0.9 71.87±0.9 71.89±0.9

w/o topo-const 58.35±2.6 57.76±1.6 56.56±2.0 71.72±1.1 71.29±0.85 71.50±0.9

4.2 Overall Results

To answer Q1, we conduct extensive experiments for graph classification on 11
datasets using three backbone models. The accuracy results of all models summa-
rized in Table 2 are averaged over 100 runs with random weight initializations
(10 different seeds through the 10-fold cross validation). We highlight the best
performance in bold per backbone model and dataset. In Table 2, we report
the improvement achieved by MGAP on each backbone model and each dataset.
We obtain the following findings. 1) Evidently, MGAP consistently improves the
accuracy of all three node drop pooling models on all datasets in most cases,
sometimes by large margins. 2) Specifically, MGAP achieves improvements over
three node drop pooling models (averaged across datasets): 2.22% (SAGPool),
2.10% (TopKPool), and 2.40% (GSAPool). 3) MGAP obtains more significant
enhancement on bioinformatics datasets and increases the accuracy by up to
12.16%. Intuitively, this may be because the information loss, caused by the
condensation of selected nodes into the local structure, makes a greater impact
on bioinformatics datasets. In summary, the above results indicate that MGAP
is a general framework for improving the performance of base node drop pooling
methods.

4.3 Ablation Study

To answer Q2, we conduct ablation studies on the dataset PTC-MR (social
domain) and IMDB-BINARY (biochemical domain) using the SAGPool model.
For convenience, we name the methods without attribute-view and topology-
view constraints as w/o attr-const and w/o topo-const, respectively. Note
that except the selected component, the rest remain the same as the complete
model. From Table 3, we obtain that all variants with some components removed
exhibit clear performance drops compared to the complete model, indicating that
each component contributes to the improvements. Furthermore, MGAP without
the topology-view constraint performs poorly on the IMDB-BINARY dataset,
thereby demonstrating the significance of the proposed topology-view constraint
for datasets in social domain, where network topology plays an important role.

390 C. Liu et al.

Fig. 4. Memory and time efficiency of MGAP compared with three backbone models.
(a) The reported values are the average per-epoch training time on all 11 datasets. (b)
The reported values are the average GPU memory usage on all 11 datasets.

Fig. 5. Parameter analysis on the PTC-MR dataset. Left. Model performance varying
with the pooling ratio. Right. Parameter sensitivity of trade-off weights λa and λt.

4.4 Efficiency Analysis

To answer Q3, we compare the time and memory efficiency of MGAP with
that of three backbone models. 1) Time Efficiency. Fig. 4 (a) illustrates the
average per-epoch training time on all 11 datasets. We fix the training epochs
to 10 with 10 different random seeds. It is observed that the additional time
consumption keeps relatively low. 2) Memory Efficiency. The experimental
settings are the same as those in measuring the time efficiency. Figure 4 (b) shows
that our MGAP is efficient in terms of memory. The above results confirm that
our MGAP is practically efficient.

4.5 Parameter Analysis

To answer Q4, we investigate the sensitivity of the parameters of two types
on the PTC-MR dataset using the SAGPool model. 1) Inherent Parameter
Sensitivity. We study how the graph pooling ratio would affect the graph clas-
sification performance. As shown in the left part of Fig. 5, SAGPool equipped

Masked Graph Auto-Encoder Constrained Graph Pooling 391

with MGAP (+MGAP) performs better in all cases, suggesting that the pro-
posed method enable node drop pooling methods to select the nodes that are
essential for graph-level representation learning regardless of the pooling ratio.
2) Introduced Parameter Sensitivity. We investigate the effects of two new
parameters, λa and λt, which serve as the trade-off weights in the loss func-
tion. In this parameter sensitivity study, both parameters are searched within
the range of {10, 1, 1e−1, 1e−2, 1e−3, 1e−4, 1e−5, 0}. Note that the search space
is only {1, 1e−1, 1e−2} in the graph classification experiments. As shown in the
right part of Fig. 5, the method performs best when λa is 1e−4 and λt is 10,
demonstrating the importance of combining attribute and topology constraints
of the pooled graphs. The results of the above two experiments further validate
the robustness and effectiveness of the proposed MGAP.

5 Conclusion and Future Work

Conclusion. In this study, we empirically verify the information-loss problem
of current node drop pooling models and propose MGAP, a novel plug-in and
easy-to-compute module, to solve this problem from the perspectives of attribute
space and topology space. Through extensive experiments, we demonstrate that
MGAP generally improves common node drop pooling methods across various
benchmark datasets in the graph classification task.

Future Work. For future directions, 1) choose various formulas of GNNs, such
as attention mechanism [33], as a decoder, in addition to GCN, for reconstruct-
ing the original attributes of nodes. 2) Consider other topological features, such
as triangle count, local clustering score, eigenvector centrality, and between-
ness, in addition to node degrees. 3) Further design other evaluation criteria for
topological information loss, such as some criteria studied in graph coarsening
algorithms [4]. 4) Explore the effects of MGAP on other tasks such as graph
reconstruction, graph compression, and node classification, and further design
more reasonable constraints for these tasks.

Acknowledgements. This work was supported in part by the Natural Science Foun-
dation of China (Nos. 61976162, 82174230, 62002090), Artificial Intelligence Innovation
Project of Wuhan Science and Technology Bureau (No.2022010702040070), Science
and Technology Major Project of Hubei Province (Next Generation AI Technologies)
(No. 2019AEA170), and Joint Fund for Translational Medicine and Interdisciplinary
Research of Zhongnan Hospital of Wuhan University (No. ZNJC202016).

References

1. Baek, J., Kang, M., Hwang, S.J.: Accurate learning of graph representations with
graph multiset pooling. In: ICLR (2021)

2. Bai, L., Jiao, Y., Cui, L., Hancock, E.R.: Learning aligned-spatial graph convolu-
tional networks for graph classification. In: ECML-PKDD, pp. 464–482 (2019)

392 C. Liu et al.

3. Bianchi, F.M., Grattarola, D., Alippi, C.: Spectral clustering with graph neural
networks for graph pooling. In: ICML. vol. 119, pp. 874–883 (2020)

4. Cai, C., Wang, D., Wang, Y.: Graph coarsening with neural networks. In: ICLR
(2021)

5. Duvenaud, D., et al.: Convolutional networks on graphs for learning molecular
fingerprints. In: NeurIPS, pp. 2224–2232 (2015)

6. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neural
networks for graph classification. In: ICLR (2020)

7. Gao, H., Ji, S.: Graph u-nets. In: ICML, pp. 2083–2092 (2019)
8. Gao, X., Dai, W., Li, C., Xiong, H., Frossard, P.: ipool-information-based pooling in

hierarchical graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33(9),
5032–5044 (2021)

9. Grattarola, D., Zambon, D., Bianchi, F.M., Alippi, C.: Understanding pooling in
graph neural networks. arXiv:2110.05292 (2021)

10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS, vol. 30 (2017)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization.
arXiv:1412.6980 (2014)

12. Kipf, T.N., Welling, M.: Variational graph auto-encoders. In: NeurIPS Workshop
on Bayesian Deep Learning (2016)

13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

14. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: ICML, pp. 3734–3743
(2019)

15. Li, J., Li, J., Liu, Y., Yu, J., Li, Y., Cheng, H.: Deconvolutional networks on graph
data. In: NeurIPS (2021)

16. Li, M., Chen, S., Zhang, Y., Tsang, I.: Graph cross networks with vertex infomax
pooling. In: NeurIPS, vol. 33, pp. 14093–14105 (2020)

17. Li, X., et al.: Braingnn: Interpretable brain graph neural network for fmri analysis.
Med. Image Anal. 73, 102233 (2021)

18. Li, X., Zhang, H., Zhang, R.: Adaptive graph auto-encoder for general data clus-
tering. IEEE Trans. Patt. Anal. Mach. Intell. 44(12), 9725–9732 (2021)

19. Liu, C., Zhan, Y., Li, C., Du, B., Wu, J., Hu, W., Liu, T., Tao, D.: Graph pooling for
graph neural networks: Progress, challenges, and opportunities. arXiv:2204.07321
(2022)

20. Ma, Y., Wang, S., Aggarwal, C.C., Tang, J.: Graph convolutional networks with
eigenpooling. In: SIGKDD, pp. 723–731 (2019)

21. Mathieu, E., Le Lan, C., Maddison, C.J., Tomioka, R., Teh, Y.W.: Continuous
hierarchical representations with poincaré variational auto-encoders. In: NeurIPS
(2019)

22. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in
social networks. Ann. Rev. sociol. 27(1), 415–444 (2001)

23. Mesquita, D., Souza, A., Kaski, S.: Rethinking pooling in graph neural networks.
In: NeurIPS. vol. 33, pp. 2220–2231 (2020)

24. Park, J., Cho, J., Chang, H.J., Choi, J.Y.: Unsupervised hyperbolic representation
learning via message passing auto-encoders. In: CVPR, pp. 5516–5526 (2021)

25. Park, J., Lee, M., Chang, H.J., Lee, K., Choi, J.Y.: Symmetric graph convolutional
autoencoder for unsupervised graph representation learning. In: ICCV, pp. 6519–
6528 (2019)

http://arxiv.org/abs/2110.05292
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2204.07321

Masked Graph Auto-Encoder Constrained Graph Pooling 393

26. Rhee, S., Seo, S., Kim, S.: Hybrid approach of relation network and localized graph
convolutional filtering for breast cancer subtype classification. In: IJCAI, pp. 3527–
3534 (2018)

27. Salha, G., Hennequin, R., Remy, J.B., Moussallam, M., Vazirgiannis, M.: Fastgae:
scalable graph autoencoders with stochastic subgraph decoding. Neural Netw. 142,
1–19 (2021)

28. Salha, G., Hennequin, R., Tran, V.A., Vazirgiannis, M.: A degeneracy framework
for scalable graph autoencoders. In: IJCAI, pp. 3353–3359 (2019)

29. Salha, G., Hennequin, R., Vazirgiannis, M.: Simple and effective graph autoen-
coders with one-hop linear models. In: ECML-PKDD, pp. 319–334 (2020)

30. Salha, G., Limnios, S., Hennequin, R., Tran, V.A., Vazirgiannis, M.: Gravity-
inspired graph autoencoders for directed link prediction. In: CIKM, pp. 589–598
(2019)

31. Sun, D., Li, D., Ding, Z., Zhang, X., Tang, J.: Dual-decoder graph autoencoder
for unsupervised graph representation learning. Knowl.-Based Syst. 234, 107564
(2021)

32. Tang, M., Li, P., Yang, C.: Graph auto-encoder via neighborhood wasserstein
reconstruction. In: ICLR (2022)

33. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

34. Wang, Z., Ji, S.: Second-order pooling for graph neural networks. IEEE Trans.
Pattern Anal. Mach. Intell. (2020, early access). https://doi.org/10.1109/TPAMI.
2020.2999032

35. Winter, R., Noé, F., Clevert, D.A.: Permutation-invariant variational autoencoder
for graph-level representation learning. In: NeurIPS, vol. 34 (2021)

36. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: ICLR (2019)

37. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: NeurIPS. pp. 4805–
4815 (2018)

38. Yuan, H., Ji, S.: Structpool: Structured graph pooling via conditional random
fields. In: ICLR (2020)

39. Zhang, L., et al.: Structure-feature based graph self-adaptive pooling. In: WWW,
pp. 3098–3104 (2020)

40. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: AAAI (2018)

41. Zhang, Z., et al.: Hierarchical multi-view graph pooling with structure learning.
IEEE Trans. Knowl. Data Eng. 34(1), 545–559 (2021)

https://doi.org/10.1109/TPAMI.2020.2999032
https://doi.org/10.1109/TPAMI.2020.2999032

Supervised Graph Contrastive Learning
for Few-Shot Node Classification

Zhen Tan1(B), Kaize Ding1, Ruocheng Guo2, and Huan Liu1

1 Arizona State University, Tempe, AZ, USA
{ztan36,kding9,huanliu}@asu.edu
2 Bytedance AI Lab, London, UK

Abstract. Graphs present in many real-world applications, such as
financial fraud detection, commercial recommendation, and social net-
work analysis. But given the high cost of graph annotation or labeling,
we face a severe graph label-scarcity problem, i.e., a graph might have a
few labeled nodes. One example of such a problem is the so-called few-
shot node classification. A predominant approach to this problem resorts
to episodic meta-learning. In this work, we challenge the status quo by
asking a fundamental question whether meta-learning is a must for few-
shot node classification tasks. We propose a new and simple framework
under the standard few-shot node classification setting as an alternative
to meta-learning to learn an effective graph encoder. The framework
consists of supervised graph contrastive learning with novel mechanisms
for data augmentation, subgraph encoding, and multi-scale contrast on
graphs. Extensive experiments on three benchmark datasets (CoraFull,
Reddit, Ogbn) show that the new framework significantly outperforms
state-of-the-art meta-learning based methods.

Keywords: Few-shot learning · Graph Neural Networks · Graph
contrastive learning

1 Introduction

Graphs are ubiquitous in many real-world applications. Graph Neural Networks
(GNNs) [20,30,35] have been applied to model a myriad of network-based sys-
tems in various domains, such as social networks [13], citation networks [18],
and knowledge graphs [24]. Despite these breakthroughs, it has been noticed
that conventional GNNs fail to make accurate predictions when the labels are
scarcely available [6,7,40]. One such problem is so-called few-shot node classifi-
cation. It consists of two disjoint phases: In the first phase (train), classes with
substantial labeled nodes (i.e., base classes) are available to learn a GNN model;
and in the second phase (test), the GNN classifies nodes of unseen or novel
classes with few labeled nodes. A few-shot node classification task is called N -
way K-shot node classification if a node is classified into N classes and each
class contains only a few K labeled nodes in the test phase.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 394–411, 2023.
https://doi.org/10.1007/978-3-031-26390-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_24&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_24

Supervised Graph Contrastive Learning for Few-Shot Node Classification 395

This shortage of labeled training data for the novel classes poses a great
challenge to learning effective GNNs. A prevailing paradigm to tackle this prob-
lem is episodic meta-learning [7,12,23,33,41]; its representative algorithms are
Matching Network [31], MAML [10], and Prototypical Network [25]. Episodic
meta-learning is inspired by how humans learn unseen classes with few samples
via utilizing previously learned prior knowledge. During the training phase, it
generates numerous meta-train tasks (or episodes) by emulating the test tasks,
following the same N -way K-shot node classification structure. An example of
episodic meta-learning is shown in Fig. 1. In each episode, K labeled nodes are
randomly sampled from N base classes, forming a support set, to train the GNN
model while emulating the N -way K-shot node classification in the test phase.
The GNN then predicts labels for an emulated query set of nodes randomly sam-
pled from the same classes as the support set. A Cross-Entropy Loss is used for
backpropagation to update the GNN. Current research [7,9,12,33,41] has shown
that via numerous such episodic emulations across different sampled meta-tasks
on bases classes, the trained encoder can extract transferable meta-knowledge
to fast adapt to unseen novel classes.

Fig. 1. Episodic meta-learning for few-shot node classification (epi is the ith episode).
Colors indicate different classes. Specially, grey nodes mean those nodes are not sam-
pled. Different types of nodes indicate if nodes are from a support set or a query set.
(Color figure online)

These episodic meta-learning based methods entail the following steps:
(1) random sampling in each episode for meta-train in order to acquire the
topological knowledge crucial for learning representative node embeddings. Since
only a small portion of the nodes and classes are randomly selected per episode,
the topological knowledge learned with those nodes is piecemeal and insufficient
to train expressive GNN encoder, especially if the selected nodes share little
correlation. (2) To boost accuracy, those meta-learning based methods have to
rely on a large number of episodes. In other words, a large number of samples
from the original graph is required for meta-train to capture the topological
knowledge that can be transferred for use in the test phase. Consequently, these
meta-learning algorithms can take time to converge with their emulation-based
meta-train. The two problems are closely related. The piecemeal knowledge from
emulation-based meta-learning unique for few-shot node classification entails the

396 Z. Tan et al.

need for large numbers of episodes to acquire better topological knowledge. In
this paper, we investigate if an alternative approach to episodic meta-learning
can be developed so that the two problems can be addressed from their root
causes for better performance of few-shot node classification. We posit that the
key to few-shot node classification is to learn a generalizable GNN encoder that
can produce discriminative representation on novel classes by learning transfer-
able topological patterns implied in bases classes. If we can address the piecemeal
knowledge problem, we can better use the few labeled nodes from novel classes
to fine-tune another simple classifier (e.g., Logistic Regression, SVM, shallow
MLP, etc.) to predict labels for other unlabeled nodes.

As an alternative to episodic meta-learning, we propose a novel approach for
few-shot node classification, supervised graph contrastive learning [11,19]. Graph
contrastive learning is proven effective in training powerful GNNs [14,38,42].
Multiple views of the original graph are first created through predefined trans-
formations [8,14,38,42] (e.g., randomly dropping edges, randomly perturbing
node attributes). Then a contrastive loss is applied to maximize feature consis-
tency under differently augmented views. However, none of those existing meth-
ods accommodate the unique characteristics of few-shot node classification. In
this paper, we propose a novel graph contrastive learning method especially
designed for few-shot node classification. We will present technical details on
how the new supervised contrastive learning can avoid the two problems with
the episodic meta-learning after a formal problem statement is given.

Contributions. Our contributions include: (1) we are the first to investigate an
alternative to the prevailing meta-learning paradigm for graph few-shot learning;
(2) we propose a supervised graph contrastive learning method tailored for few-
shot node classification by developing novel mechanisms for data augmentation,
subgraph encoding, and multi-scale contrast on a graph; and (3) we conduct
systematic experiments to assess the proposed framework in comparison with the
existing meta-learning based graph few-shot learning methods and representative
graph contrastive learning methods in terms of accuracy and efficiency.

2 Problem Formulation

In this paper, we focus on few-shot node classification on a single graph. Formally,
given an attributed network G = (V, E ,X) = (A,X), where V, E , A and X
denote the nodes, edges, adjacency matrix and node attributes, respectively.
The few-shot node classification problem assumes the existence of a series of
homogeneous node classification tasks T = {Di}I

i=1 = {(ACi ,XCi)}I
i=1, where

Di denotes the given dataset of a task, I denotes the number of such tasks, XCi

denotes the attributes of nodes whose labels belong to the label space Ci, and ACi

similarly. Following the literature [7,12,23,33,41], we call the classes available
during training as base classes, Cbase, and the classes for target test phase as
novel classes, Cnovel, Cbase ∩ Cnovel = ∅. Conventionally, there are substantial
gold-labeled nodes for Cbase, but few labeled nodes for novel classes Cnovel. We
can formally define the problem of few-shot node classification as follows:

Supervised Graph Contrastive Learning for Few-Shot Node Classification 397

Definition 1. Few-shot Node Classification: Given an attributed graph G =
(A,X) with a divided node label space C = {Cbase, Cnovel}, we have substantial
labeled nodes from Cbase, and few-shot labeled nodes (support set S) for Cnovel.
The task is to predict the labels for unlabeled nodes (query set Q) from Cnovel.

3 Methodology

In graph representation learning, usually a GNN encoder gθ is employed to model
the high dimensional graph knowledge and project the node attributes to a low
dimensional latent space. The classifier fψ is then applied to the latent node rep-
resentations for node classification. The essence of few-shot node classification
is to learn a encoder gθ that can transfer the topological and semantic knowl-
edge learned from substantial data of base classes to generate discriminative
embeddings for nodes from novel classes with limited supervisory information.

As a prevailing paradigm, meta-learning is adopted [7,33,41] to jointly learn
gθ and fψ by episodically optimizing the Cross-Entropy Loss (CEL) on sampled
meta-tasks. However, optimizing CEL over sampled piecemeal graph structures
will engender node embeddings excessively discriminative against the current
sampled nodes, rendering them sub-optimal for nodes classification in the test
phase where the nodes are sampled arbitrarily from unseen novel classes. To
mitigate such issues, those meta-learning based methods rely on a large num-
ber of episodes to train the model on numerous differently sampled meta-tasks
to learn more transferable node embeddings, which makes the training process
highly unscalable, especially for large graphs.

As a remedy, in this paper, we propose a decoupled method to learn the
graph encoder gθ and the final node classifier fψ separately. We put forward
a supervised graph contrastive learning to firstly pretrain the GNN encoder gθ

to generate more transferable node embeddings. With such high-quality node
embeddings, we can fine-tune a simple linear classifier to perform the final few-
shot node classification. As shown in Fig. 2, our framework consists of the fol-
lowing key components:

– An augmentation function T (·) that transforms a sampled centric node into a
correlated view. We propose a node connectivity based augmentation mecha-
nism to sample nodes that are highly correlated to the centric nodes to form
a subgraph as its augmented view (Sect. 3.1).

– A GNN encoder gθ that encodes the subgraphs rather than the whole graph
like all the existing meta-learning methods do. In such a manner, our model
will consume much less time to converge (Sect. 3.2).

– A contrastive mechanism that enables the encoder gθ to discriminates embed-
dings between differently augmented views by capturing structural patterns
across base classes and extrapolating such knowledge onto unseen novel
classes (Sect. 3.3).

– A linear classifier fψ fine-tuned by a few labeled nodes from novel classes and
is tasked to predict labels for those unlabeled nodes (Sect. 3.4).

398 Z. Tan et al.

Fig. 2. Colors indicate different classes. Specially, grey nodes mean those nodes are not
sampled. Different types of nodes indicate if nodes are from a support set or a query
set, or sampled as centric nodes. Ombré nodes indicate the nodes are sampled non-
centric nodes for the subgraphs. Crisscross nodes are node embeddings from the GNN
encoder. (a) Supervised graph contrastive training framework. (b) Fine-tuning on few-
shot labeled nodes from novel classes. (c) Node connectivity based subgraph sampling
strategy samples nodes that are strongly connected to the centric nodes. (Color figure
online)

3.1 Data Augmentation

Given a graph G = (V, E ,X) = (A,X), following the conventions in contrastive
learning methods [4,15], a transformation T (·) is used to generate a new view x′

j

for a node j (∀j ∈ {1, ...,M}, M is the number of nodes) with node attributes
X and the adjacency matrix A:

x′
j = T (A,X, j) (1)

There are multiple transformations for graph data, such as node masking or fea-
ture perturbation. However, such methods can introduce extra noise that impairs
the learned node representations. In this paper, we propose a node connectiv-
ity based subgraph sampling strategy as the data augmentation mechanism.
Connectivity score is a family of metrics that measures the connection strength
between a pair of nodes in a graph without using the node attributes [3,18].
Notably, since only the adjacency matrix is needed for calculation, such aug-
mentation can be pre-computed before training:

S = Connect(V, E) = Connect(A), (2)

where each column sj of S contains the scores between node j and all nodes in
the graph. We set the score between a node and itself as a constant value γ = 0.3
for better performance. Intuitively, nodes that share more semantic similarities
tend to have more correlations. However, such nodes may not be geologically
close to each other. Node connectivity can capture the correlation between nodes

Supervised Graph Contrastive Learning for Few-Shot Node Classification 399

by considering both the global and local graph structures [3,17]. As shown in
Fig. 2(c), for any given node, we treat it as the centric node and sample other
nodes that have the highest connectivity scores with the centric node to build
a contextualized subgraph as its augmented view. Now the transformation for
data augmentation can be defined as:

x′
j = T (A,X, j)

= X[top rank(S[j, :], α)]
= X[top rank(Connect(A)[j, :], α)]
= (A′

j ,X
′
j) = Gs(j)

(3)

where top rank is a function that returns the indices of the top α values, α is
a hyperparameter that controls the augmented subgraph size (α + 1), and Gs(j)
is the augmented subgraph for node j with adjcency matrix A′

j and sampled
node attributes X′

j . In this paper, we present two methods to calculate the
node connectivity scores: Node Algebraic Distance (NAD) [3] and Personalized
PageRank (PPR) [17].

Node Algebraic Distance (NAD). Following [3], we first randomly assign
a random value ui (0 < ui < 1) to any node i in the graph to form a vector
u ∈ R

M . Then, we iteratively updates the value of a node by aggregating its
neighboring weighted values: At the t-th iteration, for node i we have:

ût
i =

∑

j

A(i, j)ut−1
j /

∑

j

A(i, j), (4)

ut = (1 − η)ut−1 + ηût, (5)

where η is a parameter set to 0.5. After a few iterations, the difference between
the values of node i and j indicates the coupling between them. The smaller
difference stands for a stronger connection. The final score matrix is:

S = {S(i, j)}M
i,j=1 =

1
|ui − uj | + ε

(6)

where ε is a parameter set to 0.01. We column-normalize S and then set the
value of S(i, i), (∀i ∈ M) to γ.

Personalized PageRank (PPR). For PPR we have:

S = φ · (I − (1 − φ) · AD−1) (7)

where φ is a parameter usually set as 0.15, and D is a diagonal matrix with:
D(i, i) =

∑
j A(i, j). We column-normalize the scores S to make the scores on

the diagonal equal to γ = 0.3 as in NAD.

400 Z. Tan et al.

3.2 Subgraph Encoder

With the pre-computed connectivity score matrix, for each node j, we sample
the top α nodes with the highest connectivity scores to construct a subgraph
Gs(j) = (A′

j ,X
′
j). The larger α is, the richer context is given in the subgraph

(We set α = 19 for memory limitation). Then, as shown in Fig. 2(a), we feed
the resulting subgraph into a GNN encoder gθ. In particular, as the size of the
subgraphs is a fixed small number (20 in our case) as opposed to the original
graph, compared to the existing methods where the encoder encodes the whole
graph, our method reduces the dimension for neighborhood aggregation to a
much smaller magnitude and makes it highly scalable and faster to converge:

Z′
j = gθ(x′

j) = gθ(A′
j ,X

′
j), (8)

where Z′
j ∈ R

(α+1)×F and F is the embedding size. We normalize the latent
features for better performance. To enable the contrastive learning across differ-
ent scales (e.g. nodes and subgraphs), we propose a readout function R(·) which
maps the representation of all nodes in the subgraph, Z′

j , to a vector z′
j as the

summarized subgraph representation. Intuitively, z′
j is a weighted average of the

representations of all nodes in the subgraph. The weights are their normalized
connectivity scores ŝj ∈ R

α to node j. We set the connectivity score of a node j
to itself as a constant value γ (as defined in Sect. 3.1) before normalization:

z′
j = R(Z′, ŝj) = σ(ŝT

j · Z′) (9)

where σ is the sigmoid function, and z′
j ∈ R

F is the subgraph representation.
The centric node embedding zj ∈ R

F can be directly indexed from Z′
j .

3.3 Multi-scale Graph Contrastive Learning with Augmented Views

Since the augmented subgraphs contain topological information crucial for learn-
ing expressive encoder, we propose to use multi-scale contrastive learning that
combines three categories of contrastive pairs to enforce the model to learn from
both individual attributes and contextualized knowledge from sampled views: the
contrast between (1) nodes and nodes (zi & zj), (2) subgraphs and subgraphs
(z′

i & z′
j), and (3) nodes and subgraphs (zi & z′

j), where i, j are arbitrary node
indices. For any node, the nodes in the same class together with their correspond-
ing subgraphs are viewed as positives, and all the rest are viewed as negatives.
Now, given the batch size B, we define a duo-viewed batch, consisting of the
representations of both nodes and their corresponding augmented subgraphs:

{(hb, yb)}2B
b = {(z′

b, yb), (zb, yb)}B
b . (10)

Loss Function. To better suit the setting of few-shot node classification, we
adapt the Supervised Contrastive loss (SupCon) from [19] to pretrain the GNN
encoders. We term the proposed loss G-SupCon for convenience. Compared to

Supervised Graph Contrastive Learning for Few-Shot Node Classification 401

unsupervised contrastive loss (e.g. Deep InfoMax (DIM) [1], SimCLR [4], Margin
Loss [18] etc.), and Cross-Entropy Loss (CEL), G-SupCon utilizes the ground-
truth label to sample mini-batches to help to better align the representation
of nodes in the same class more closely and push nodes from different classes
further apart. Such learning patterns can be easier to transfer to unseen novel
classes to generate highly discriminative representations. To ensure the balance
in training data, we sample B/|Ctr| nodes per class as centric nodes in each
mini-batch for training, where |Ctr| is the number of classes for pretraining (i.e.,
base classes). We term it Balanced Sampling (BS) for convenience. Then, the
loss function is defined as:

L =
∑

b∈B

−1
|P (b)|

∑

p∈P (b)

log
exp (hb · hp/τ)∑

a∈A(b) exp (hb · ha/τ)
, (11)

where A(b) is the set of indices from 1 to 2B excluding b, and P (b) is the set of
indices of all positives in a duo-viewed batch excluding b. This contrastive loss
includes all the three categories of contrastive pairs mentioned before. Addition-
ally, τ ∈ R

+ is a scalar temperature parameter defined as τ = β/
√

degree(G),
where degree(G) is the average degree of the graph, and β is a hyperparameter.
The temperature parameter controls the sensitivity of the trained model to the
hard negative samples. As nodes in different classes also share some correlation
with the centric nodes, especially for more complex graphs with higher average
degrees, we do not want them to be fully separated apart in the representation
space. So, we add the degree as a penalty for the temperature parameter to guide
the separateness.

Under this fully-supervised setting, we pretrain our GNN encoder with all
the base node labels and fix it during fine-tuning.

3.4 Linear Classifier Fine-Tuning

As indicated in Fig. 2(b), with a pretrained GNN encoder, when fine-tuning on a
target few-shot node classification dataset Di on novel classes, we tune a separate
linear classifier fψ, (e.g. logistic regression, SVM, a linear layer, etc.) with the
few labeled nodes in the support set Si, and task it to predict the labels for nodes
in the query set Qi. The representations of nodes in Di are obtained through
the same procedure: treat each node as centric node to retrieve a contextualized
subgraph, and then feed the sampled subgraphs to the pretrained GNN encoder,
and the centric node embedding can be directly indexed and used to fine-tune
the classifier fψ by optimizing a naive Cross-Entropy Loss.

4 Experiments

In this section, we design experiments to evaluate the proposed framework by
comparing with three categories of methods for few-shot node classification:
(1) naive supervised pretraining using GNNs, (2) state-of-the-art meta-learning

402 Z. Tan et al.

based methods, and (3) by going one step further to compare with contrastive
learning methods. For the third category, to our best knowledge, we are the first
to implement state-of-the-art self-supervised graph contrastive methods to few-
shot node classification and compare them with the proposed graph supervised
contrastive learning.

4.1 Experimental Settings

Table 1. Statistics of the commonly used datasets

Nodes # Edges # Features # Labels Base Novel

CoraFull 19,793 126,842 8,710 70 42 28

Reddit 232,965 11,606,919 602 41 24 17

Ogbn-arxiv 169,343 1,166,243 128 40 24 16

Evaluation Datasets. We conduct our experiments on three widely used graph
few-shot learning benchmark datasets where a sufficient number of node classes
are available for sampling few-shot node classification tasks: CoraFull [2], Red-
dit [13], and Ogbn-arxiv [35]. Their statistics are given in Table 1.

Baseline Methods. In this work, we compare our framework with the following
3 categories of methods.

– Naive supervised pretraining. We use GCN [20] as a naive encoder and pre-
train it with all nodes from the base classes, and following convention, we
fine-tune a single linear layer as the classifier for each few-shot node classi-
fication task. Also, we implement an initialization strategy, TFT [5] for the
classifier by setting its weight as a matrix consisting of concatenated proto-
type vectors of novel classes.

– State-of-the-art meta-learning methods for few-shot node classification on
a single graph: MAML based Meta-GNN [41], Matching Network [31] based
AMM-GNN [33], and Prototypical Network based GPN [7]. We do not include
methods like [34,36] in the baselines because they require extra auxiliary
graph data, nor methods like [21,23] because they have similar performance
with the chosen baselines according to their original papers.

– State-of-the-art self-supervised pretraining methods on a single graph:
MVGRL [14], SUBG-Con [18], GraphCL [38], and GCA [42]. These meth-
ods pretrain a GNN encoder with nodes from base classes without using the
labels. The classifiers are then fine-tuned on novel support nodes and their
accuracy is reported on predicting labels for novel query nodes.

Evaluation Protocol: To make fair comparison, all the scores reported are accu-
racy values averaged over 10 random seeds and all the baselines share the same
splits of base classes and novel classes as shown in Table 1.

Supervised Graph Contrastive Learning for Few-Shot Node Classification 403

Implementation Details: In Table 1, the specific data splits are listed for
each dataset. For a fair comparison, we adopt the same encoder for all compared
methods. Specifically, the graph encoder gθ consists of one GCN layer [20] with
PReLU activation. The effect of the encoder architecture are further explored
in Sect. 4.4. We choose logistic regression as the linear classifier for fine-tuning.
The encoder is trained with Adam optimizers whose learning rates are set to be
0.001 initially with a weight decay of 0.0005. And the coefficients for computing
running averages of gradient and square are set to be β1 = 0.9, β2 = 0.999. The
default values of batch size B and graph temperature parameter β are set to 500
and 1.0, respectively. For the baseline methods, we use the default parameters
provided in their implementations.

4.2 Overall Evaluation

We present the comparative results between our framework and three categories
of baseline methods described earlier. It is worth mentioning that, this work is
the first to investigate the necessity of episodic meta-learning for Few-shot Node
Classification (FNC) problems. For a fair comparison, all methods share the same
GCN encoder architecture as the proposed framework. Also, when experimented
on each dataset, they share the same random seeds for data split, leading to
identical evaluation data. The results are shown in Table 2. We summarize our
findings next.

Necessity of employing episodic meta-learning style methods for graph few-
shot learning. First and foremost, we find that almost all the contrastive pre-
training based methods outperform the existing meta-learning based FNC algo-
rithms. Even the most straightforward one, TFT, which only leverages a simple
initialization to the separate classifier, can produce comparable scores to the best
meta-learning based FNC method, GPN. We have shown that through appro-
priate pretraining, including self-supervised and supervised training, adding a
simple linear classifier can outperform the existing meta-learning based frame-
work by a significant margin.

Effectiveness of our framework to learn discriminative node embeddings
for FNC problems. Compared with other existing meta-learning based methods,
our framework outperforms them by a large margin under different settings.
We attribute this to the following facets: (1) The effectiveness of the proposed
node-connectivity-based sampling strategy that can provide highly correlated
context-specific information for the centric node by considering both global and
local information. Besides, NAD and PPR can provide similar outcomes. NAD
can perform better on graphs with a higher average degree; and (2) The super-
vised contrastive learning loss function G-SupCon can utilize label information
to further enforce the GNN encoder to generate more discriminative represen-
tations by minimizing the distances among nodes from the same classes while
segregating nodes from different classes in the representation space.

Robustness to various N -way K-shot settings. Similar to the meta-learning
based FNC methods, the performance of contrastive pretraining based methods
also degrades when the K decreases or N increases. However, from the results

404 Z. Tan et al.

T
a
b
le

2
.
C

o
m

p
a
ra

ti
v
e

re
su

lt
s:

th
re

e
d
a
ta

se
ts

u
n
d
er

d
iff

er
en

t
N

-w
ay

K
-s

h
o
t

se
tt

in
g
s

M
e
th

o
d
s

L
o
ss

C
o
ra

F
u
ll

(%
)

R
e
d
d
it

(%
)

O
g
b
n
-a
rx

iv
(%

)

1
0
-w

a
y
5
-s
h
o
t
5
-w

a
y
5
-s
h
o
t
3
-w

a
y
1
-s
h
o
t
1
0
-w

a
y
5
-s
h
o
t
5
-w

a
y
5
-s
h
o
t
3
-w

a
y
1
-s
h
o
t
1
0
-w

a
y
5
-s
h
o
t
5
-w

a
y
5
-s
h
o
t
3
-w

a
y
1
-s
h
o
t

G
C
N

C
E
L

3
7
.2
5

4
5
.6
8

4
3
.2
3

3
6
.2
8

4
4
.3
4

3
9
.6
2

3
0
.8
3

3
8
.4
0

3
5
.4
1

T
F
T

C
E
L

6
3
.5
0

7
0
.1
8

6
6
.4
1

5
9
.7
5

6
9
.8
0

5
8
.3
2

4
7
.6
8

6
2
.2
5

6
0
.4
8

M
e
ta

-G
N
N

C
E
L

5
5
.2
3

6
6
.2
5

6
0
.2
5

4
8
.6
2

6
5
.5
0

5
5
.7
8

4
1
.2
0

5
8
.6
7

5
5
.6
8

A
M

M
-G

N
N

C
E
L

6
0
.8
0

7
0
.5
2

6
5
.2
7

5
3
.2
8

6
7
.2
0

5
5
.8
4

4
4
.3
3

6
1
.0
2

5
8
.6
4

G
P
N

C
E
L

6
2
.0
2

7
3
.4
0

6
7
.0
7

5
9
.2
0

6
9
.3
1

6
0
.2
0

5
0
.5
8

6
4
.1
2

6
2
.2
0

G
ra

p
h
C
L

S
im

C
L
R

7
9
.6
8

8
7
.3
5

8
4
.8
0

8
2
.5
1

8
7
.3
4

8
4
.1
6

5
7
.3
0

6
7
.3
4

6
2
.2
7

M
V
G
R
L

D
IM

8
1
.3
4

8
8
.4
0

8
5
.0
3

8
4
.7
8

8
9
.6
5

8
6
.2
9

5
7
.8
2

6
8
.2
4

6
3
.3
6

S
U
B
G
-C

o
n

M
a
rg

in
L
o
ss

8
0
.7
1

8
8
.0
2

8
6
.2
6

8
3
.7
0

8
9
.5
5

8
5
.5
7

5
6
.2
9

6
6
.3
6

6
2
.1
0

G
C
A

S
im

C
L
R

8
2
.4
3

9
0
.5
2

8
7
.8
9

8
5
.6
1

9
0
.9
6

8
7
.2
6

5
9
.0
3

6
9
.5
3

6
5
.4
9

O
u
r
s
(
N

A
D
)
G

-S
u
p
C
o
n

8
6
.1

3
9
3
.6

5
8
9
.4
2

8
8
.5
2

9
3
.3
6

9
1
.7
0

6
2
.2

4
7
3
.2
5

7
1
.6
3

O
u
r
s
(
P
P
R
)

G
-S

u
p
C
o
n

8
5
.3
4

9
3
.6
2

9
0
.5

6
8
9
.1

0
9
4
.1

2
9
2
.3

1
6
1
.8
5

7
3
.6

5
7
2
.9

0

Supervised Graph Contrastive Learning for Few-Shot Node Classification 405

shown in Table 2, we find that those methods are more robust to settings with
decreasing K and increasing N . This means that the encoder can better extrap-
olate to novel classes by generating more discriminative node representations.
To a large extent, the degradation lies in the less accurate classifier due to fewer
training nodes. Learning to better measure the classifier under scenarios with
extremely scarce support nodes (very small K) is also worth further research.

4.3 Further Experiments

To further evaluate our framework, we conduct more experiments next. The
default setting for the following experiments is 5-way 5-shot, where we set β =
1.0, B = 500, and use a single GCN layer as the encoder.

Efficiency Study. As discussed in Sect. 3.2, our method is scalable and has
much less convergence time because we construct a GNN encoder for the sampled
subgraph rather than the whole graph. Also, Sect. 4.2 shows that performance
is not sacrificed for achieving scalability. On the contrary, due to the effective
sampling strategy, only fine-grained data are fed into the encoder, resulting in a
considerable boost in accuracy. We show the actual time consumption for a single
run of training of our model and typical meta-learning and pretraining baselines.
The experiment is conducted on a single RTX 3090 GPU. In Table 3, we show
that our method can achieve excellent performance and consume much less train-
ing time. Note that here we only consider the training time, excluding the time
for computing the node connectivity scores S which can be pre-calculated.

Table 3. Training time of GPN, GCA, and Ours (proposed method)

Methods CoraFull Reddit Ogbn-arxiv

GPN 1352 s 3248 s 2562 s

GCA 584 s 3651 s 3237 s

Ours 10 s 21 s 54 s

Representation Clustering. This experiment is designed to demonstrate the
high-quality representation generated by the encoder in the proposed framework.
We show the clustering results of the representation of the query nodes in 5
randomly sampled novel classes in Table 4 and visualize the embedding in Fig. 3
(without fine-tuning on support set). It can be observed that an encoder trained
by the proposed pretraining strategy possesses a stronger extrapolation ability
to generate highly discriminative boundaries for unseen novel classes.

406 Z. Tan et al.

Table 4. Performance on novel classes query node embedding clustering, reported in
Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI)

Methods CoraFull Reddit Ogbn-arxiv

NMI ARI NMI ARI NMI ARI

GPN 0.5134 0.4327 0.3690 0.3115 0.2905 0.2235

GCA 0.7531 0.7351 0.7824 0.7756 0.3786 0.3219

Ours 0.8567 0.8229 0.8890 0.8720 0.5280 0.4485

Fig. 3. t-SNE embedding visualization on CoraFull data: (a) GPN (b) GCA (C) Ours

4.4 Ablation and Parameter Analysis

In this section we study how sensitive the proposed framework is to the design
choice of its components. In particular, we consider the architecture of encoder
gθ, graph temperature parameter β, and batch size B.

Analysis on Encoder Architecture. Our framework is independent of the
encoder architecture. We evaluate our framework with three widely-used GNNs:
GCN [20], GAT [30], and GIN [35], as shown in Table 5. The difference between
encoder architectures is insignificant, so we choose GCN as the default encoder.

Analysis on Loss Function. To better demonstrate the effectiveness of our
G-SubCon loss, we design an experiment to compare different loss functions. The
SimCLR loss does not consider the label information, so the Balance Sampling
(BS) strategy we proposed in Sect. 3.3 is not feasible for it. But in order to
explicitly show the influence from the loss function, we also show the result of
SimCLR with the same sampled data splits from BS as our G-SubCon. We list
the results from all the candidate loss functions under both settings in Table 6.
It can be observable that all the losses suffer from the class imbalance issue, and
the simple BS scheme can improve performance. Also, our proposed G-SupCon
outperforms all others even with identical data splits. In short, both the BS
scheme and the G-SupCon loss function are effective in terms of accuracy on
few-shot node classification tasks.

Analysis on Graph Temperature Parameter and Batch Size. As pre-
sented in Fig. 4(a), we test the sensitivity of our framework regarding the graph
temperature parameter β and batch size B. Observably, our framework is not
that sensitive to these two hyperparameters. The best value of β is 1.0 and we

Supervised Graph Contrastive Learning for Few-Shot Node Classification 407

Table 5. Results of our model with different encoders

Encoder CoraFull (%) Reddit (%) Ogbn-arxiv (%)

GCN 93.62 94.12 73.65

GAT 92.05 94.04 73.46

GIN 93.25 93.86 74.10

set it as default. Generally speaking, the larger batch size can produce higher
scores because more contrast can be made in each batch. We choose 500 as the
default batch size for computational efficiency and its decent performance.

Table 6. Results of our model trained with different loss functions

Loss function BS CoraFull (%) Reddit (%) Ogbn-arxiv (%)

Cross Entropy No 70.18 69.80 62.25

Cross Entropy Yes 73.86 74.08 63.67

SimCLR No 87.54 89.60 66.34

SimCLR Yes 89.48 92.88 69.98

G-SupCon Yes 93.62 94.12 73.65

Fig. 4. (a) Accuracy vs Graph temperature parameter β (b) Accuracy vs Batch size
B on the three datasets

5 Related Work

Few-shot Node Classification. Graph Neural Networks (GNNs) [20,30,35]
are a family of deep neural network models for graph-structured data, which
exploits recurrent neighborhood aggregation to preserve the graph structure
information and transform the node attributes simultaneously. Recently, increas-
ing attention has been paid to few-shot node classification problems, episodic

408 Z. Tan et al.

meta-learning [10] has become the most dominant paradigm. It trains the GNN
encoders by explicitly emulating the test environment for few-shot learning [10],
where the encoders are expected to gain the adaptability to extrapolate onto
new domains. Meta-GNN [41] applies MAML [10] to learn directions for opti-
mization with limited labels. AMM-GNN [33] deploys Matching Network [31]
to learn transferable metric among different meta-tasks. GPN [7] adopts Proto-
typical Networks [25] to make the classification based on the distance between
the node feature and the prototypes. MetaTNE [21] and RALE [23] also use
episodic meta-learning to enhance the adaptability of the learned GNN encoder
and achieve similar results. Furthermore, HAG-Meta [27] extends the problem to
incremental learning setting. Recently, people in the image domain argue that
the reason for the fast adaptation in the existing works lies in feature reuse
rather than those complicated mate-learning algorithms [5,28]. In other words,
with a carefully pretrained encoder, decent performance can be obtained through
direct fine-tuning a simple classifier on the target domain. Since then, various
pretraining strategies [22,28] have been put forward to tackle the few-shot image
classification problem. However, no research has been done in the graph domain
with its crucial distinction from images that nodes in a graph are not i.i.d. data.
Their interactive relationships are reflected by both the topological and semantic
information. Our work here is the first attempt to bridge the gap by developing
a novel graph supervised contrastive learning for few-shot node classification.

Graph Contrastive Learning. Contrastive learning has become popular
representation learning paradigm in image [4], text [32], and graph [14,42]
domains. Starting from the self-supervised setting, contrastive learning methods
are proved to learn discriminative representation by contrasting a predefined
distance between positive and negative samples. Usually, those samples are aug-
mented through some heuristic transformations from original data. Specifically,
in the graph domain, the transformations can be categorized into the following
types: (1) graph structure based augmentation, e.g., randomly drop edges or
nodes [14,42], randomly sample subgraphs [18]. (2) graph feature based aug-
mentation, e.g., randomly mask or perturb attributes of nodes or edges [29].
[42] further improves those augmentations by adding masks according to feature
importance. Some works [26,37,39] try to explore different ways to automatically
generate augmented views. Recently, for image [19] and text [11] domains, peo-
ple notice that by injecting label information to the contrastive loss to compact
or enlarge the distances of augmentations of instances within the same or dif-
ferent classes, supervised contrastive loss outperforms the original unsupervised
version and even cross-entropy loss in the setting of transfer learning, by provid-
ing highly discriminative representation learned from texts or images. However,
no existing work has focused on its extrapolation ability for graphs, especially,
under an extremer few-shot situation.

Supervised Graph Contrastive Learning for Few-Shot Node Classification 409

6 Conclusion, Limitations and Outlook

In this work, we question the fundamental question whether episodic meta-
learning is necessary for few-shot node classification. To answer the question, we
propose a graph supervised contrastive learning tailored for the few-shot node
classification problem and demonstrate its superb adaptability to extrapolate
onto novel classes by fine-tuning a simple linear classifier. Through extensive
experiments on benchmark datasets, we demonstrate that our framework can
surpass episodic meta-learning methods for few-shot node classification in terms
of both accuracy and efficiency. Therefore, this work offers the answer: episodic
meta-learning is not a must for few-shot node classification.

Due to limited space, limitations of our work need to be acknowledged.
(1) Limited strategy consideration. To pretrain the GNN encoder on base classes,
we only consider naive supervised training and graph contrastive training. There
are many other pretraining strategy that worth further investigation (e.g. [16]).
(2) Lack of theoretical justification. Our work mainly presents empirical studies
which may throw up many questions in need of further theoretical justification,
for instance, to what magnitude contrastive pretraining surpasses meta-learning
and the reason behind it.

We hope our work will shed new light on few-shot node classification tasks.
There are many promising directions worth further research. For example, when
base classes also have very limited labeled nodes or even no label at all, from
Table 4.2, we can see that self-supervised pretraining can also help improve the
performance. So it would be interesting to investigate the pretraining strategy
under semi-supervised or unsupervised settings. In addition, since the pretraining
phase may involve extra noise through data sampling or augmentation, methods
to calibrate the learned embedding or refine the obtained prototypes are also
potential directions for research.

Acknowledgments. This work is partially supported by Army Research Office
(ARO) W911NF2110030 and Army Research Lab (ARL) W911NF2020124.

References

1. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximiz-
ing mutual information across views. arXiv preprint arXiv:1906.00910 (2019)

2. Bojchevski, A., Günnemann, S.: Deep Gaussian embedding of graphs: unsupervised
inductive learning via ranking. arXiv preprint arXiv:1707.03815 (2017)

3. Chen, J., Safro, I.: A measure of the connection strengths between graph vertices
with applications. arXiv preprint arXiv:0909.4275 (2009)

4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: ICML (2020)

5. Dhillon, G.S., Chaudhari, P., Ravichandran, A., Soatto, S.: A baseline for few-shot
image classification. In: ICLR (2019)

6. Ding, K., Wang, J., Caverlee, J., Liu, H.: Meta propagation networks for graph
few-shot semi-supervised learning. In: AAAI (2022)

http://arxiv.org/abs/1906.00910
http://arxiv.org/abs/1707.03815
http://arxiv.org/abs/0909.4275

410 Z. Tan et al.

7. Ding, K., Wang, J., Li, J., Shu, K., Liu, C., Liu, H.: Graph prototypical networks
for few-shot learning on attributed networks. In: CIKM (2020)

8. Ding, K., Xu, Z., Tong, H., Liu, H.: Data augmentation for deep graph learning: a
survey. arXiv preprint arXiv:2202.08235 (2022)

9. Ding, K., Zhou, Q., Tong, H., Liu, H.: Few-shot network anomaly detection via
cross-network meta-learning. In: TheWebConf (2021)

10. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML (2017)

11. Gunel, B., Du, J., Conneau, A., Stoyanov, V.: Supervised contrastive learning for
pre-trained language model fine-tuning. In: ICLR (2020)

12. Guo, Z., et al.: Few-shot graph learning for molecular property prediction. In:
WWW (2021)

13. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS (2017)

14. Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on
graphs. In: ICML (2020)

15. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: CVPR (2020)

16. Hu, W., et al.: Strategies for pre-training graph neural networks. In: ICLR (2020)
17. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW (2003)
18. Jiao, Y., Xiong, Y., Zhang, J., Zhang, Y., Zhang, T., Zhu, Y.: Sub-graph contrast

for scalable self-supervised graph representation learning. In: ICDM (2020)
19. Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS (2020)
20. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907 (2016)
21. Lan, L., Wang, P., Du, X., Song, K., Tao, J., Guan, X.: Node classification on

graphs with few-shot novel labels via meta transformed network embedding. In:
NeurIPS (2020)

22. Liu, C., et al.: Learning a few-shot embedding model with contrastive learning. In:
AAAI (2021)

23. Liu, Z., Fang, Y., Liu, C., Hoi, S.C.: Relative and absolute location embedding for
few-shot node classification on graph. In: AAAI (2021)

24. Park, N., Kan, A., Dong, X.L., Zhao, T., Faloutsos, C.: Estimating node importance
in knowledge graphs using graph neural networks. In: KDD (2019)

25. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning
(2017)

26. Suresh, S., Li, P., Hao, C., Neville, J.: Adversarial graph augmentation to improve
graph contrastive learning. In: NeurIPS (2021)

27. Tan, Z., Ding, K., Guo, R., Liu, H.: Graph few-shot class-incremental learning. In:
WSDM (2022)

28. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot
image classification: a good embedding is all you need? In: Vedaldi, A., Bischof,
H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 266–282.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6 16

29. Tong, Z., Liang, Y., Ding, H., Dai, Y., Li, X., Wang, C.: Directed graph contrastive
learning. In: NeurIPS (2021)

30. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

31. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for
one shot learning. In: NeurIPS (2016)

http://arxiv.org/abs/2202.08235
http://arxiv.org/abs/1609.02907
https://doi.org/10.1007/978-3-030-58568-6_16
http://arxiv.org/abs/1710.10903

Supervised Graph Contrastive Learning for Few-Shot Node Classification 411

32. Wang, D., Ding, N., Li, P., Zheng, H.: Cline: contrastive learning with semantic
negative examples for natural language understanding. In: ACL (2021)

33. Wang, N., Luo, M., Ding, K., Zhang, L., Li, J., Zheng, Q.: Graph few-shot learning
with attribute matching. In: CIKM (2020)

34. Wen, Z., Fang, Y., Liu, Z.: Meta-inductive node classification across graphs. In:
SIGIR (2021)

35. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826 (2018)

36. Yao, H., et al.: Graph few-shot learning via knowledge transfer. In: AAAI (2020)
37. You, Y., Chen, T., Shen, Y., Wang, Z.: Graph contrastive learning automated. In:

ICML (2021)
38. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learn-

ing with augmentations. In: NeurIPS (2020)
39. You, Y., Chen, T., Wang, Z., Shen, Y.: Bringing your own view: graph contrastive

learning without prefabricated data augmentations. In: WSDM (2022)
40. Zhang, C., et al.: Few-shot learning on graphs: a survey. In: IJCAI (2022)
41. Zhou, F., Cao, C., Zhang, K., Trajcevski, G., Zhong, T., Geng, J.: Meta-GNN: on

few-shot node classification in graph meta-learning. In: CIKM (2019)
42. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning

with adaptive augmentation. In: WWW (2021)

http://arxiv.org/abs/1810.00826

A Piece-Wise Polynomial Filtering
Approach for Graph Neural Networks

Vijay Lingam(B), Manan Sharma, Chanakya Ekbote, Rahul Ragesh,
Arun Iyer, and Sundararajan Sellamanickam

Microsoft Research India, Bengaluru, India
vijaylingam0810@gmail.com,

{t-cekbote,rahulragesh,ariy,ssrajan}@microsoft.com

Abstract. GraphNeuralNetworks (GNNs) exploit signals fromnode fea-
tures and the input graph topology to improve node classification task per-
formance. Recently proposed GNNs work across a variety of homophilic
andheterophilic graphs.Among these,models relying onpolynomial graph
filters have shown promise. We observe that polynomial filter models need
to learn a reasonably high degree polynomials without facing any over-
smoothing effects. We find that existing methods, due to their designs,
either have limited efficacy or can be enhanced further. We present a spec-
tral method to learn a bank of filters using a piece-wise polynomial app-
roach, where each filter acts on a different subsets of the eigen spectrum.
The approach requires eigendecomposition only for a few eigenvalues at
extremes (i.e., low and high ends of the spectrum) and offers flexibility to
learn sharper and complex shaped frequency responses with low-degree
polynomials. We theoretically and empirically show that our proposed
model learns a better filter, thereby improving classification accuracy. Our
model achieves performance gains of up to ∼6% over the state-of-the-
art (SOTA) models while being only ∼2x slower than the recent spectral
approaches on graphs of sizes up to ∼169K nodes.

Keywords: Graph Neural Networks · Representation learning ·
Polynomial filtering

1 Introduction

We are interested in the problem of classifying nodes in a graph where a graph
with features for all nodes, and labels for a few nodes are made available for
learning. Inference is done using the learned model for the remaining nodes (aka
transductive setting). Graph Neural Networks (GNNs) perform well on such
problems [1]. Most GNNs predict a node’s label by aggregating information from
its neighbours in a certain way, making them dependent on some correlation

V. Lingam, M. Sharma and C. Ekbote—Equal contribution. Work done while author
was at Microsoft Research India.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 412–452, 2023.
https://doi.org/10.1007/978-3-031-26390-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_25&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_25

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 413

between the structure and the node labels1. For example, in the simplest case,
GNNs work well when the node and its neighbours share similar labels. However,
the performance can be poor if this criterion is not satisfied. Recently, several
modeling approaches have been proposed to build/learn robust GNN models.
Some modify the aggregation mechanism [3–5], while others propose to estimate
and leverage the label-label compatibility matrix as a prior [6].

More recent approaches have tackled this problem from a graph filter learn-
ing perspective [7,8,32,36–38]. With eigenvalues having frequency interpreta-
tions [26], one or more filters (i.e., a bank of filters) that selectively accentuates
and suppresses various spectral components of graph signals are learned using
task-specific available information. The filtering operation enables learning bet-
ter node representation which translates to improved classification accuracy.

Designing effective graph filters is a challenging problem, and most recent
methods [8,10,36,37] suggest interesting ways to learn polynomial filters hav-
ing finite impulse response (FIR) characteristics. These models are efficient and
attractive, as they make use of local neighborhood (i.e., using sparse adjacency
matrix repeatedly) and do not require to pre-compute eigendecomposition, which
is expensive (when done over the entire spectrum, i.e., for all eigenpairs). Though
these models are able to learn better filters and give good performance gains,
they are still unable to learn richer and complex frequency responses, which
require higher-order polynomials. One key reason for their inability to learn
effective high-order polynomials is that they only mitigate the over-smoothing
problem. This aspect of the problem becomes clear when we analyze a general
class of FIR filters (GFIR) and find that the over-smoothing problem exists
for the whole class, of which simplified GCN [16], GPR-GNN [8] and several
other models are special cases. We also find that while constraining the model
space of GFIR (e.g., [8]) helps to mitigate over-smoothing, it is still unable to
learn complex-shaped and sharper frequency responses. Considering this back-
ground, our interest lies in learning a bank of effective filters in spectral domain
to model complex shaped frequency responses, as needed for graphs with diverse
label correlations. Our contributions are:

1. We propose a novel piece-wise polynomial filtering approach to learn a filter
bank tuned for the task at hand. Since full eigendecomposition is expensive,
we present an efficient method that makes use of only a few extremal eigen-
pairs and leverages GPR-GNN to learn multiple filters. (While computing
the extremal eigenpairs does lead to an increased computational cost, we show
in A.9 that such a cost is indeed managable, i.e. the model is only ∼2x slower
than recent spectral SOTA methods.)

2. We analyze, theoretically and experimentally, the shortcomings of a general
class of FIR (GFIR) filters. We show that the proposed piece-wise polynomial

1 Characterizing the correlation between the graph structure and node features/labels
is an active area of research. Several metrics have been proposed including edge
homophily [5,13], node homophily [4], class homophily [27]. All these metrics show
that standard GNNs perform well when the graphs and node labels are positively
correlated.

414 V. Lingam et al.

GNN (PP-GNN) solution is more expressive and is capable of modeling richer
and complex frequency responses.

3. We conduct a comprehensive experimental study to compare PP-GNN with
a wide range of methods (∼20), covering both spatial and spectral convolu-
tion based methods on nearly a dozen datasets. Experimental results show that
PP-GNN performs significantly better, achieving up to ∼6% gains on several
datasets.

2 Related Work

Graph Neural Networks (GNNs) have become increasingly popular models for
semi-supervised classification with graphs. [11] set the stage for early GNN mod-
els, which was then followed by various modifications [1,2,9,12] and improve-
ments along with several different directions such as improved aggregation
and attention mechanisms [2,3,9], efficient implementation of spectral convo-
lution [12,16], incorporating random walk information [13–15], addressing over-
smoothing [10,13–15,28–30], etc.

Another line of research explored the question of where GNNs help. The key
understanding is that the performance of GNN is dependent on the correlation
of the graphs with the node labels. Several approaches [5,13,31] considered edge
homophily and proposed a robust GNN model by aggregating information from
several higher-order hops. [3] also considered edge homophily and mitigated the
issue by learning robust attention models. [4] talks about node homophily and
proposes to aggregate information from neighbours in the graph and neighbours
inferred from the latent space. [6] proposes to estimate label-label compatibility
matrix and uses it as a prior to update posterior belief on the labels.

Recent approaches motivated by the developments in graph signal process-
ing [25], focus on learning graph filters with filter functions that operate on the
eigenvalues of the graph directly or indirectly, adapting the frequency response
of graph filters for the desired task. [7] models the filter function as an attention
mechanism on the edges, which learns the difference in the proportion of low-pass
and high-pass frequency signals. [8] proposes a polynomial filter on the eigenval-
ues that directly adapts the graph for the desired task. [32] decompose the graph
into low-pass and high-pass frequencies, and define a framelet based convolutional
model. [37] propose to learn graph filters using Bernstein approximation of arbi-
trary filtering function. [36] suggest to learn adaptive graph filters for different
feature channels and frequencies by stacking multiple layers. Our work is closely
related to these lines of exploration. All these works still need high-degree poly-
nomials when sharper frequency responses are needed; however, though improved
performance is observed and over-smoothing is mitigated, further improvements
seem possible. Another class of Infinite Impulse Response (IIR) filters have been
proposed to learn complex filter responses. ARMA [38] achieves this by using auto-
regressive moving average, but empirically have been found to have limited effec-
tiveness. Implementing precise ARMA filters for graphs is a challenging problem
and has high computation costs. [38] proposes several approximations to mitigate
the issues, but these come with limited efficacy. In our work, we propose to learn a

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 415

filter function as a sum of polynomials over different subsets of the eigenvalues (in
essence, a bank of filters) by operating directly in the spectral domain, enabling
design of effective filters to model task-specific complex frequency responses with
compute trade-offs.

3 Problem Setup and Motivation

We focus on the problem of semi-supervised node classification on a simple
graph G = (V, E), where V is the set of vertices and E is the set of edges. Let
A ∈ {0, 1}n×n be the adjacency matrix associated with G, where n = |V| is the
number of nodes. Let Y be the set of all possible class labels. Let X ∈ R

n×d be
the d-dimensional feature matrix for all the nodes in the graph. Given a training
set of nodes D ⊂ V whose labels are known, along with A and X, our goal is
to predict the labels of the remaining nodes. Let AI = A + I where I is the
identity matrix. Let DAI

be the degree matrix of AI and ˜A = D−1/2
AI

AID
−1/2
AI

.
Let ˜A = UΛUT be the eigendecomposition. The spectral convolution of X on
the graph A can be defined via the reference operator ˜A and a general Finite
Impulse Response (FIR) filter [39], parameterized by Θ as:

Z =
k

∑

j=1

˜AjXΘj (1)

The term, ˜AjX uniformly converges to a stationary value as the value of j
increases, making the node features indistinguishable (often referred to as the
problem of over-smoothing), thereby reducing the importance of the correspond-
ing term for the task at hand. We formalize the argument via commenting on
the Dirichlet energy of the higher-order terms [40]. Dirichlet energy reveals the
embedding smoothness with the weighted node pair distance. A smaller value is
highly related to over-smoothing [41]. Under some conditions, the upper bound
of Dirichlet energy of higher terms is theoretically proved to converge to 0 in
the limit of infinite layers. In other words, all nodes converge to a trivial fixed
point in the embedding space and hence do not contribute to the discriminative
signals. This is formalized as follows:

Proposition 3.1: The upper bound of Dirichlet energy for the higher-order
terms in the general FIR model exponentially decreases to 0 with the order,
k. Formally, with S as any graph shift operator (in our case, the normalized
adjacency), and Θk be the set of parameters, indexed by k:

E(SkXΘk) ≤ (1 − λ)2ksΘk
E(X)

where, λ is the positive eigenvalue of the graph Laplacian Δ that is closest to 0; sΘk

is the largest singular value of Θk. We relegate the proof of the corollary as well
as the formal definition of a few terms in Sect.A.3 of the supplementary material.

The family of general FIR filters is ubiquitous and gives rise to various other
filter families (e.g. polynomial) simply by placing constraint on the form of

416 V. Lingam et al.

parameterization. We experiment with placing simple constraints on the bare
GFIR model in Sect. A.7 of supplementary and observe that while constraining
helps improving the performance, it does not help in learning complex responses.
It is not difficult to see that the models of [8,12], etc. are just instantiations of
the GFIR family. Particularly, by restricting Θj = αjI, we recover the linear
model (without MLP) of [8], which can now be interpreted as the polynomial
filter function h operating on the eigenvalues, in the Fourier domain [8,25] as,

Z =
k

∑

j=1

αj
˜AjX = Uh(Λ)UT X (2)

with h : R → R is defined as h(λ; α) =
∑k

i=1 αiλ
i where αi’s are coefficients of

the polynomial, k is the order of the polynomial and λ is any eigenvalue from Λ.
h() is applied element-wise across Λ in Eq. 2. In this process, the filter function
is essentially adapting the graph for the desired task at hand.

It is well-known that polynomial filters can approximate any graph filter [25,
26]. Since polynomial filters are a class of the GFIR filter family, they inherit the
same problem of over-smoothing as the order of the polynomial becomes higher.
[8] show that they achieve the diminishing of the contribution of higher-order
terms by showing that their coefficients converge to zero during training. While
this mitigates the over-smoothing problem, use of lower-order polynomials results
in an imprecise approximation when the dataset requires a complex spectral filter
for obtaining a superior performance, which we will show is the case for certain
datasets (See Fig. 1 and supplementary’s A.6). Empirical results demonstrating
the key points discussed in this section: a) smoothening of the higher-order
terms (can be found in Fig. 5a of the supplementary material) and b) their effect
on the test performance on a few datasets (can be found in Fig. 5b and 5c of
supplementary material). These problems indicate the need for a method that
can approximate arbitrarily complex filters better and at the same time mitigate
the effects of over-smoothing.

4 Proposed Approach

We propose to learn a bank of polynomial filters with each filter operating on
different parts of the spectrum, taking task-specific requirements into account.
We show that our proposed filter design can approximate the latent optimal
graph filter better than a single polynomial, and the resultant class of learnable
filters is richer.

4.1 Piece-Wise Polynomial Filters

We start with the expression (2) for node embedding rewritten with an MLP
network transforming input features, X:

Z =
n

∑

i=1

h(λi)uiuT
i Zx(X;Θ) (3)

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 417

where ui is the eigenvector corresponding to the eigenvalue, λi, and Zx(X;Θ)
is an MLP network with parameters Θ. Our goal is to learn a filtering function,
h(λ) jointly with MLP network, using which we compute the node embedding, Z.
We model h(λ) as a piece-wise polynomial or spline function where each polyno-
mial is of a lower degree (e.g., a cubic polynomial). We partition the spectrum in
[−1, 1] (or [0, 2] as needed) into contiguous intervals and approximate the desired
frequency response by fitting a low degree polynomial in each interval. This pro-
cess helps us to learn a more complex shaped frequency response as needed for
the task. Let S = {σ1, σ2, . . . , σm} denote a partition of the spectrum, containing
m contiguous intervals and hi,ki

(λ; αi) denote a ki-degree polynomial filter func-
tion defined over the interval σi (and 0 elsewhere) with polynomial coefficients
αi. We define piece-wise polynomial GNN (PP-GNN) filter function as:

h(λ) =
∑

σi∈S
hi,ki

(λ; αi) (4)

and learn a smooth filter function by imposing additional constraints to maintain
continuity between polynomials of contiguous intervals at different endpoints
(aka knots). This class of filter functions is rich, and its complexity is controlled
by choosing intervals (i.e., endpoints and number of partitions) and polynomial
degrees. Given the filter function, we compute the PP-GNN node embedding
matrix as:

Z =
∑

σi∈S
Uih(λσi

)UT
i Zx(X;Θ) (5)

where Ui is a matrix with columns as eigenvectors corresponding to eigenvalues
that lie in σi and h(λσ) is the diagonal matrix with diagonals containing the
hi evaluated at the eigenvalues lying in σi. Thus, the node embedding, Z, is
computed as a sum of outputs from a bank of polynomial filters with each filter
operating over a spectral interval, σi.

4.2 Practical and Implementation Considerations

The filter function (5) requires computing full eigendecomposition of ˜A and is
expensive, therefore, not scalable for very large graphs. We address this prob-
lem by performing eigendecomposition only for a few extreme values (i.e., at low
and high ends of the spectrum) for sparse matrices, for which efficient algorithms
exist [42] with corresponding off-the-shelf implementations. The primary moti-
vation is that many recent works including GPR-GNN investigated the problem
of designing robust graph neural networks that work well across homophilic and
heterophilic graphs, and, they found that graph filters that amplify or attenu-
ate low and high-frequency components of signals (i.e., low-pass and high-pass
filters) are critical to improving performance on several benchmark datasets.
However, there is still one question: how do we extract signals from the remain-
ing (middle) portion of the spectrum, and that too efficiently? We answer this
question as follows. Using the observation that the GPR-GNN method learns a

418 V. Lingam et al.

graph filter but operates on the entire spectrum by sharing the filter coefficients
across the spectrum, our proposal is to use an efficient variant of (4) as:

h̃(λ) = ηl

∑

σi∈Sl

h
(l)
i (λ; γ(l)

i) + ηh

∑

σi∈Sh

h
(h)
i (λ; γ(h)

i) + ηgprhgpr(λ; γ) (6)

where Sl consists of partitions over low-frequency components, Sh consists of
partitions over high-frequency components, the first and second terms fit piece-
wise polynomials2 in low/high-frequency regions, as indicated through super-
scripts. We refer PP-GNN models using only filters corresponding to the first
and second terms alone in (6) as PP-GNN (Low) and PP-GNN (High), respec-
tively. We extract any useful information from other frequencies in the middle
region by adding the GPR-GNN filter function, hgpr(λ; γ) (the final term in 6),
which is computationally efficient. Since hgpr(λ; γ) is a special case of (4) and
the terms in (6) are additive, it is easy to see that (6) is same as (4) with a modi-
fied set of polynomial coefficients. Furthermore, we can control the contributions
from each term by setting or optimizing over hyperparameters, ηl, ηh and ηgpr.
Thus, the proposed model offers richer capability and flexibility to learn complex
frequency response and balance computation costs over GPR-GNN. Please see
Sect. A.3 for implementation details.

Model Training. Like GPR-GNN, we apply Softmax activation function on
(5) and use the standard cross-entropy loss function to learn the sets of polyno-
mial coefficients (γ) and classifier model parameters (Θ) using labeled data. To
ensure smoothness of the learned filter functions, we add a regularization term
that penalizes squared differences between the function values of polynomials
of contiguous intervals at each other’s interval end-points. More details can be
found in the supplementary material (A.3).

Discussion. In our model (4), we alleviate the over-smoothing problem using
low-order polynomials, and learning complex and sharper frequency responses
is feasible as we approximate higher-order polynomial functions effectively using
several low-order piece-wise polynomials. However, this comes with eigende-
composition compute cost for a few (k) extreme eigenvalues, but is control-
lable by choosing k in an affordable way3. We observe this cost is (one time)
pre-training cost and can be amortized over multiple rounds of model train-
ing required for the optimization of hyperparameters. Also, we need to com-
pute each filter specific embedding with non-local eigen-graphs (via the opera-
tions, UiHi(γi)UT

i Zx(X;Θ)); thus, we lose (spatial) local neighborhood prop-
erty of conventional methods like GPR-GNN. We compute node embeddings
afresh whenever the model parameters are updated, thereby incurring an addi-
tional cost (over GPR-GNN) of O(nkL) where k and L denote the number of

2 For brevity, we dropped the polynomial degree dependency.
3 Most algorithms for this task utilize Lanczos’ iteration, convergence bounds of which

depends on the input matrix’ spectrum [33,34], which although have superlinear
convergence, but are observed to be efficient in practice.

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 419

selected low/high eigenvalues and classes, respectively. We conduct a compre-
hensive experimental study to assess the time taken by our method, compare
against other state-of-the-art methods and present our findings in the experi-
ment section.

4.3 Analysis

This section is arranged as follows: (a) Theorem 1 establishes superior capabili-
ties of our model in approximating arbitrary filters than a standard polynomial
filter; (b) Theorem 2 demonstrates the new space of filters that our model learns
from, each region of which induces a controllable, strong bias towards certain
parts of the spectrum while at the same time has dimension of the same order
as the corresponding polynomial family.

Theorem 1. For any frequency response h∗, and an integer K ∈ N, let h̃ :=
h + hf , with hf having a continuous support over a subset of the spectrum,
σf . Assume that h and hf are parameterized by independent K and K ′-order
polynomials, p and pf , respectively, with K ′ ≤ K. Then there exists h̃, such
that min ‖h̃ − h∗‖2 ≤ min ‖h − h∗‖2, where the minimum is taken over the
polynomial parameterizations. Moreover, for multiple polynomial adaptive filters
hf1 , hf2 , ..., hfm

parameterized by independent K ′-degree polynomials with K ′ ≤
K but having disjoint, contiguous supports, the same inequality holds for h̃ =
h +

∑m
i=1 hfi

.

For a detailed proof please refer to A.3 of the supplementary. We also con-
ducted an experiment to illustrate the main conclusion of the above theorem in
Sect. A.2 of the supplementary material.

Next, we note that since an actual waveform is not observed in practice and
instead, we estimate it by optimizing over the observed labels via learning a
graph filter, we theoretically show that the family of filters that we learn is a
strict superset of the polynomial filter family. The same result holds for the
families of the resulting adapted graphs.

Theorem 2. Define H := {h(·) | ∀ possible K-degree polynomial parameteriza-
tions of h} to be the set of all K-degree polynomial filters, whose arguments are
n×n diagonal matrices, such that a filter response over some Λ is given by h(Λ)
for h(·) ∈ H. Similarly H

′ := {h̃(·) | ∀ possible polynomial parameterizations of
h̃} is set of all filters learnable via PP-GNN , with h̃ = h+hf1 +hf2 , where h is
parameterized by a K-degree polynomial supported over entire spectrum, hf1 and
hf2 are localized adaptive filters parameterized by independent K ′-degree polyno-
mials which only act on top and bottom t diagonal elements respectively, with
t < n/2 and K ′ ≤ K; then H and H

′ form a vector space, with H ⊂ H
′. Also,

dim(H′)
dim(H) = K+2K′+3

K+1 .

Corollary 1. The corresponding adapted graph families G := {Uh(·)UT |
∀h(·) ∈ H} and G

′ := {Uh̃(·)UT |∀h̃(·) ∈ H
′} for any unitary matrix U form a

vector space, with G ⊂ G
′ and dim(G′)

dim(G) = K+2K′+3
K+1 .

420 V. Lingam et al.

The above theorem can be trivially extended to an arbitrary number of adap-
tive filters with arbitrary support. The presence of each adaptive filter induces
a bias in the model towards learning a bank of filters that operate only on the
corresponding support. Since the number of filters and their support sizes are
hyperparameters, tuning them offers control and flexibility to model richer fre-
quency responses over the entire spectrum. Thus, our model learns from a more
diverse space of filters and the corresponding adapted graphs. The result also
implies that our model learns from a space of filters that is only O(1)-fold greater
than that of polynomial filters4. Note that learning from this diverse region is
feasible. This observation comes from the proofs of Theorem 4.2 and Corollary
4.2.1 (A.3 and A.3 in supplementary). Using the localized adaptive filters with-
out any filter with the entire spectrum as support results in learning a set of
adapted graphs, Ĝ. This set is disjoint from G, with G

′ = G ⊕ Ĝ. We conduct
various ablative studies where we demonstrate the effectiveness of learning from
Ĝ and G

′.
Our model formulation is a generalization of the formulation by [8], and we

show in Sect. A.3 of the supplementary material by extending their analysis to
our model that it still inherits their property of mitigating oversmoothing effects
when high degree polynomial is used. Our experiments show that we are able to
obtain superior performance without needing the higher-order polynomials.

4.4 Comparison Against Other Filtering Methods

General FIR filter are a generalization of the polynomial filter family and thus
a precursor to the models based on the latter. As per the study conducted in
Sect. A.7 of the supplementary, constraining the model is required to obtain
better performance. Restricting to polynomial filters can be seen as having an
implicit regularization on the same and we also empirically observe that such
a restriction (restricting to polynomial filters) gives much better performance
than constraining GFIR (see Sect. 5.1 and A.7) by simpler regularization meth-
ods such as L2 and/or dropout. We have also shown in Theorem 2 that PP-
GNN increases the space of graph filters (over GPR-GNN) and we observe
in 5.1 that this increase in graph space results in an increased performance,
over other polynomial filter methods. Thus, it requires a careful balance of the
constraints imposed on the filter family, while also appropriately increasing the
graph space to obtain better performance. A comprehensive study of this bal-
ance is beyond the scope of this work and we leave that as future work. Below,
we first show the different ways of constraining the space (via polynomial filters)
and compare them against PP-GNN.

Polynomial filters are a class of filters constructed and evaluated from poly-
nomials. These filters can be constructed via multiple bases (for instance mono-
mial, Bernstein) in the polynomial vector space. APPNP, GPR-GNN, and
BernNet are all instances of polynomial graph filters defined in different bases

4 We leave the formal bias-variance analysis for adapted graph families as future work.

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 421

and with different constraints. Below, we illustrate the differences between these
three methods and also discuss the shortcomings of each of them.

APPNP: One of the early works, APPNP [10], can be interpreted as a fixed
polynomial graph filter that works with monomial basis. The polynomial coeffi-
cients correspond to Personalised PageRank (PPR) [43]. The node embeddings
are learnt by APPNP as described in A.8. The main shortcoming of this method
is the assumption that the optimal coefficients for the polynomial filter (for all
tasks) are PPR coefficients, which need not necessarily be the case.

GPR-GNN: GPR-GNN builds on APPNP by overcoming this shortcoming by
making the coefficients γk (see A.8) learnable. [8] identified that negative coef-
ficients allows the model to exploit high frequency signals required for better
performance on heterophilic graphs. GPR-GNN, like APPNP, uses the mono-
mial basis. The node embeddings are learnt by GPR-GNN as described in A.8.
While this method is an improvement over APPNP, adapting an arbitrary fil-
ter response which requires a high-order polynomial is difficult due to the over-
smoothing problem. GPR-GNN mitigates oversmoothing by showing that the
higher order terms’ coefficients uniformly converge to zero during training. Miti-
gating the oversmoothing problem limits the complexity of the filter learnt, and
therefore makingGPR-GNN ineffective at learning complex frequency responses.

BernNet: While oversmoothing is one shortcoming of GPR-GNN, Bern-
Net identified another shortcoming that GPR-GNN and other polynomial fil-
tering based methods can result in ill-posed solutions and face optimization
issues (converging to saddle points) by not constraining the filter response to
non-negative values. [37] proposed a model that learns a non-negative frequency
response, a constraint that can be easily enforced by modifying the learning prob-
lem from learning the coefficients of the monomial basis functions to learning
the coefficients of the Bernstein basis functions, since the latter are non-negative
in their standard domain. [37] argue that constraining coefficients to take on
non-negative values is required for stability and interpretability of the learned
filters and is the main reason for performance improvements. The node embed-
dings are learnt as described in A.8. Note that in the expression referenced,
θk(∀k) are learnable coefficients and are constrained to non-negative values. We
first replace 1

2K

(

K
r

)
∑q

p=0

(

K−r
q−p

)(

r
p

)

(−1)p with αrq and then subsequently replace
∑K

r=0 θrαrq with wq. Such an exercise was done to show that the filter defined
by BernNet does indeed fall into the class of polynomial filters. We tabulate
the important attributes of each of the polynomial filters described above in
Table 11 of the supplementary material.

All of these approaches run into the oversmoothing issue with an increase in
the degree of the polynomial filter (A.1 of supplementary). PP-GNN, owing to
its piece-wise definition, can model more complex shaped responses better with-
out the need to increase the degree. Our proposed model only requires extremal
eigendecomposition (i.e. computing only the extreme eigenpairs), for which there
exists efficient algorithms to compute [44,45]. Further, as mentioned earlier, this
is a one time pre-training cost, that can be amortized over training multiple

422 V. Lingam et al.

models for hyper-parameter tuning. We illustrate this through a comprehensive
empirical study in Sect. A.9 of the supplementary material. In the next section,
we experimentally show the benefits of PP-GNN.

5 Experiments

We conduct extensive experiments to demonstrate the effectiveness and compet-
itiveness of the proposed method over standard baselines and state-of-the-art
(SOTA) GNN methods. We conduct ablative studies to demonstrate the use-
fulness of different filters and the number of eigenpairs required in PP-GNN.
We also compare the quality of the embeddings learned and the time to train
different models. We first describe our experimental setup along with baselines
and information on hyper-parameter tuning.

We evaluate our model on several real-world heterophilic and homophilic
datasets. We resort detailed descriptions of dataset statistics, preprocessing
steps, and baselines to the Appendix (A.4). We report the mean and standard
deviation of test accuracy over splits to compare model performance.

5.1 PP-GNN Versus SOTA Models

Table 1. Results on a few heterophilic and homophilic datasets. GFIR-1 corresponds to
unconstrained setting. GFIR-2 corresponds to constrained setting. For a more detailed
comparison and description please refer to Appendix A.5

Squirrel Chameleon Cora Computer Photos

GFIR-1 36.50± 1.12 51.71± 3.11 87.93± 0.90 78.39± 1.09 89.26± 1.00

GFIR-2 41.12± 1.17 61.27± 2.42 87.46± 1.26 79.57± 2.12 89.38± 1.03

FAGCN [7] 42.59± 0.79 55.22± 3.19 88.21± 1.37 82.16± 1.48 90.91± 1.11

APPNP [10] 39.15± 1.88 47.79± 2.35 88.13± 1.53 82.03± 2.04 91.68± 0.62

LGC [22] 44.26± 1.49 61.14± 2.07 88.02± 1.44 83.44± 1.77 91.56± 0.74

GPRGNN [8] 46.31± 2.46 62.59± 2.04 87.77± 1.31 82.38± 1.60 91.43± 0.89

AdaGNN [36] 53.50± 0.96 65.45± 1.17 86.72± 1.29 81.27± 2.10 89.93± 1.22

BernNET [37] 52.56± 1.69 62.02± 2.28 88.13± 1.41 83.69± 1.99 91.61± 0.51

ARMA [38] 47.37± 1.63 60.24± 2.19 87.37± 1.14 78.55± 2.62 90.26± 0.48

UFG [32] 42.06± 1.55 56.29± 1.58 87.93± 1.52 80.01± 1.78 90.20± 1.41

PP-GNN 59.15± 1.91 69.10± 1.37 89.52± 0.85 85.23± 1.36 92.89± 0.37

Heterophilic Datasets. We perform comprehensive experiments to show the
effectiveness of PP-GNN on several Heterophilic graphs and tabulate the results
in Table 5 in the Appendix (A.5). Datasets like Texas, Wisconsin, and Cornell
contain graphs with high levels of Heterophily and rich node features. Stan-
dard non-graph baselines like LR and MLP perform competitively or better
on these datasets compared to many spatial and spectral-based methods. PP-
GNN offers significant lifts in performance with gains of up to ∼6%. The node

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 423

features in datasets like Chameleon and Squirrel are not adequately discrimi-
native, and significant improvements are possible via convolutions, as we com-
pare non-graph and graph-based methods in Table 5. Spatial GNN methods, in
general, offer improvements over non-graph counterparts. In specific, methods
like GCN, which also have a spectral connotation, show better performance on
these datasets. We observe from the Table that Spectral methods offer additional
improvements over models like GCN. The difference in performance among spec-
tral methods majorly comes from their ability to learn better frequency responses
of graph filters. Our proposed model shows significant lifts over all the baselines
with gains up to ∼6% and ∼4% on the Squirrel and Chameleon datasets. These
improvements empirically support the efficacy of PP-GNN’s filter design.

Homophilic Datasets. The input graphs for these datasets contain informa-
tive signals, and one can expect competitive task performance from even basic
spatial-convolution based methods as observed in Table 7 present in Appendix
(A.5). We can see that spatial models are among the top performers for several
Homophilic datasets. Existing spectral methods marginally improve over spatial
methods on a few datasets. Not surprisingly, our PP-GNN model with effective
filter design can exploit additional discriminatory signals from an already rich
informative source of signals. PP-GNN offers additional gains up to 1.3% over
other baselines.

Due to space constraints we have shown a small subset of our results in
Table 1. For a more detailed comparison please refer to the Appendix A.5 section,
where we compare against more SOTA methods and on other datasets as well.

(a) Squirrel (b) Citeseer

Fig. 1. Learned filter responses of PP-GNN, GPR-GNN, and BernNet.

5.2 PP-GNN Model Investigation

We conducted several experimental studies to understand and illustrate how the
PP-GNN model works. Our studies include: (a) how does the frequency response
of PP-GNN look like?, (b) what happens when we learn only individual sub-filter
banks (e.g., PP-GNN (Low), PP-GNN (Low + GPR-GNN)? and (c) does PP-
GNN learn better embeddings?

424 V. Lingam et al.

Frequency Response. In Fig. 1a and 1b, we show the learned frequency
responses (i.e., h(λ)) of the overall PP-GNN model, GPR-GNN component of
PP-GNN (PP-GNN (GPR-GNN)), stand-alone (GPR-GNN) model and Bern-
Net model on the Squirrel and Citeseer datasets. For Squirrel (a heterophilic
dataset), we can observe that while GPR-GNN and BernNet learns the impor-
tance of low and high-frequency signals, it is unable to capture their rela-
tive strengths/importance adequately, and this happens due to the restriction
of learning a single polynomial globally. PP-GNN learns sharper and richer
responses at different parts of the spectrum, thereby improving classification
accuracy. For Citeseer (a homophilic dataset) we can observe that all the models
in comparison learn a smooth polynomial, GPR-GNN is not able to capture
the complex transition that can be seen at the lower end of the spectrum, while
BernNet is doing it some degree. This inability to capture the complex tran-
sition leads to a lower classification accuracy. A similar trend can be found on
two other datasets in A.6.

Quality of Learned Embeddings: We qualitatively assess the difference in
the learned embedding of PP-GNN, GPR-GNN and BernNet. Towards this,
we generated t-SNE plots of the learned node embeddings and visually inspected
them. From Fig. 2a, 2b and 2c, we observe that PP-GNN discovers more dis-
criminative features resulting in discernible clusters on the Squirrel dataset com-
pared to GPR-GNN and BernNet, enabling PP-GNN to achieve significantly
improved performance.

Fig. 2. t-SNE plots of learned embeddings on the Squirrel dataset

5.3 Additional Experiments

We summarize a list of experiments that can be found in the supplementary
material. Studies on varying the number of eigenvectors used by PP-GNN and
the importance of MLP can be found in Sect.A.6. Analysis on the effect of vary-
ing the order of GPR-GNN’s polynomial on performance is presented in A.1.
Experimental details for PP-GNN with boundary regularization is in A.3.

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 425

6 Conclusion

Several recently proposed methods attempt to build robust models for diverse
graphs exhibiting different correlations between graph and node labels. We build
on the filter-based approach of GPR-GNN which can be extended further with
Generalized FIR models. This work proposed an effective polynomial filter bank
design using a piece-wise polynomial filtering approach. We combine GPR-
GNN with additional polynomials resulting in a bank of filters that adapt to
low and high-end spectrums using multiple polynomial filters. While our method
makes an unconventional choice of extremal eigendecomposition, it does help to
get improved performance, albeit with some additional but manageable cost. Our
experiments demonstrate that the proposed approach can learn effective filter
functions that improve node classification accuracy significantly across diverse
graphs. While our work shows merit, it is still founded upon the polynomial for-
mulation, and even though piecewise polynomial filters are more expressive than
conventional polynomial filters, they still retain the properties of the polynomial
filters locally. Hence, there is still room for even more expressive filter formulations
that are well motivated, and we leave their exploration as future work.

A Appendix

The appendix is structured as follows. In Sect.A.1, we present additional evidence
of the limitations of GPR-GNN. In Sect. A.2, we show a representative experi-
ment that motivates Sect. 4. In Sect. A.3, we provide proofs for theorems, propo-
sitions and corollaries defined in Sect. 3 and 4.3. In Sect. A.4, we provide more
details regarding the baselines, datasets, their respective splits and additional
implementation details including hyper-parameter ranges. We also provide details
and results of additional experiments. In Sect.A.5, we provide detailed compari-
son of PP-GNN against numerous SOTA models. In Sect.A.7, we provide details
on GFIR and compare our proposed model against it. SectionA.8 provides addi-
tional information on differences between our model and other polynomial filtering
methods. In Sect. A.9, we provide a comprehensive timing analysis.

A.1 Motivation

Node Feature Indistinguishably Plots. In the main paper (Fig. 5), we plot
the average of pairwise distances between node features for the Cora dataset,
after computing ˜AjX for increasing j values, and showed that the mean pairwise
node feature distance decreases as j increases. We observe that this is consistent
across three more datasets: Citeseer, Chameleon and Squirrel. This is observed
in Fig. 3.

426 V. Lingam et al.

(a) Chameleon (b) Squirrel (c) Citeseer

Fig. 3. Average of pairwise distances between node features, after computing ˜AjX, for
increasing j values

We also observed the mean of the variance of each dimension of node features,
after computing ˜AjX, for increasing j values. We observe that this mean does
indeed reduce as the number of hops increase. We also observe that the variance
of each dimension of node features reduces for Cora, Squirrel and Chameleon
as the number of hops increase; however, we don’t observe such an explicit
phenomenon for Citeseer. See Fig. 4.

Fig. 4. Variance of each dimension of node features

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 427

Fig. 5. In (a), we plot the average of pairwise distances between node features for the

Cora dataset, after computing ˜AjX for increasing j values. X-axis represents the various
powers j and the Y-axis represents the average of pairwise distances between node fea-
tures. In (b) and (c), we plot the test accuracies of the model in [8] for increasing order of
polynomials for Cora and Chameleon dataset respectively. X-axis represents the order
of the polynomial and Y-axis represents the test accuracy achieved for that order.

Effect of Varying the Order of the GPR-GNN Polynomial. In the main
paper (Fig. 5a), we plot the test accuracies of the GPR-GNN model while
increasing the order of the polynomials for the Cora and Chameleon dataset,
respectively. We observe that on increasing the polynomial order, the accuracies
do not increase any further. We can show a similar phenomenon on two other
datasets, Squirrel and Citeseer, in Fig. 6.

Fig. 6. Accuracy of the GPR-GNN model on inceasing the order of the polynomial

In Sect. 3 of the main paper, we claim that due to the over-smoothing effect,
even on increasing the order of the polynomial, there is no improvement in
the test accuracy. Moreover, in Fig. 1 we can see that our model can learn a
complicated filter polynomial while GPR-GNN cannot. This section shows that

428 V. Lingam et al.

even on increasing the order of the GPR-GNNpolynomial, neither does the test
accuracy increase nor does the waveform become as complicated as PP-GNN.
See Fig. 7.

A.2 Fictitious Polynomial

In Sect. 4, we claim that having multiple disjoint low order polynomials can
approximate a complicated waveform more effectively than a single higher-order
polynomial. To demonstrate, we create a representative experiment that shows
this phenomenon by creating a fictitious complicated polynomial and try to fit it
using a single unconstrained polynomial (representative of GPR-GNN), a single
constrained polynomial (indicative of BernNet, where the coefficients should
be non-negative) and a disjoint piece-wise polynomial (indicative of PP-GNN).
We setup a least square optimization problem to obtain the coefficients for these
different polynomial variants. We evaluate and plot these polynomials in Fig. 8.
To quantify the effectiveness of different polynomial variants, we compute the
approximation error (RMSE) with respect to the optimal waveform. We observe
that piece-wise polynomials achieve much lower RMSE (1.5053) compared to
constrained polynomial (3.9659) and unconstrained polynomial (3.3854)

Fig. 7. Varying polynomial order in GPR-GNN

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 429

A.3 Proposed Approach

Details Regarding Boundary Regularization. To induce smoothness in the
learned filters, we add a regularization term that penalizes squared differences
between function values of polynomials at knots (endpoints of contiguous bins).
Our regularization term looks as follows:

m−1
∑

i=1

exp−(σmax
i −σmin

i+1)2(hi(σmax
i) − hi+1(σmin

i+1))2 (7)

In Eq. 7, σmax
i and σmin

i refer to the maximum and minimum eigenvalues in
σi (Refer to Sect. 4). This regularization term is added to the Cross-Entropy loss.
We perform experiments with this model and report the performance in Table 2.
We observe that we are able to reach similar performance even without the
presence of this regularization term. Therefore, majority of the results reported
in our Main paper are without this regularization term.

Implementing the Filter in Practice. We provide more details to explain
the filtering operation. An Equation similar to Eq. 2 can be derived for our model
by substituting Eq. 6 from the paper into Eq. 5. On substitution, we get:

Fig. 8. To demonstrate the effectiveness of adaptive polynomial filter, we try to approx-
imate a complex waveform (green dashed line) via (a) 10 disjoint adaptive polynomial
filters of order 4 (colored blue) (b) a single constrained order 10 polynomial (colored
red), (c) an unconstrained order 10 polynomial (colored purple). The corresponding
RMSE values are: (a) 1.5053, (b) 3.9659, (c) 3.3854 (Color figure online)

430 V. Lingam et al.

Table 2. Results with and without boundary regularization

Test Acc Computer Chameleon Citeseer Cora Squirrel

PPGNN (with reg) 83.53 (1.67) 67.92 (2.05) 76.85 (2) 88.19 (1.19) 55.42 (2.1)

PPGNN 85.23 (1.36) 69.10 (1.37) 78.25 (1.76) 89.52 (0.85) 59.15 (1.91)

Z = ηl

∑

σi∈Sl

k1
∑

j=1

γ
(l)
ij U (l)

σi

(

Λ(l)
σi

)j

U (l)T
σi

Z0(X; θ)

+ ηh

∑

σi∈Sh

k2
∑

j=1

γ
(h)
ij U (h)

σi

(

Λ(h)
σi

)j

U (h)T
σi

Z0(X; θ)

+ ηgpr

k3
∑

j=1

γj
˜AjZ0(X; θ) (8)

where
˜A
(l)
i = U (l)

σi
Λ(l)

σi
U (l)T

σi
, σi ∈ Sl

˜A
(h)
i = U (h)

σi
Λ(h)

σi
U (h)T

σi
, σi ∈ Sh

U
(l)
(σi)

, Λ
(l)
(σi)

are the matrices containing eigenvectors and eigenvalues correspond-

ing to the partition σi of the low frequency components and U
(h)
(σi)

, Λ
(h)
(σi)

are the
matrices containing eigenvectors and eigenvalues corresponding to the partition
σi of the high frequency components and Ã (See Eq. 1 in the main paper) where
U(σi) ∈ R

n×|σi| and Λ(σi) ∈ R
|σi|×|σi| with latter being a diagonal matrix.

The way we have implemented the filter is that we pre-compute the top and
bottom eigenvalues/vectors of Ã and use them to compute partition specific node
embeddings. Note that Eq. 8 can be rewritten as:

Z = ηl

∑

σi∈Sl

U (l)
σi

H(l)
σi

U (l)T
σi

Z0(X; θ)

+ ηh

∑

σi∈Sh

U (h)
σi

H(h)
σi

U (h)T
σi

Z0(X; θ)

+ ηgpr

k3
∑

j=1

γj
˜AjZ0(X; θ)

(9)

where H
(l)
σi =

∑k1
j=1 γ

(l)
ij

(

Λ
(l)
σi

)j

and H
(h)
σi =

∑k2
j=1 γ

(h)
ij

(

Λ
(h)
σi

)j

form the effective
low and high frequency component filters. Thus, a weighted combination of low
and high frequency component based embeddings (i.e., the first and second term
in Equation above) and the GPR-GNN term based embedding (i.e., third term)
is computed. We implement our model based on Eq. 9.

Note that the following discussion is just for illustration purpose and we do
not explicitly calculate the newer terms introduced here: We can also interpret

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 431

the GPR-GNN term in terms of piece-wise polynomial filters defined on a mutu-
ally exclusive partition of the spectrum, with a difference that the coefficients
and the order of the polynomial are shared across all partitions:

ηgpr

k3
∑

j=1

γj
˜AjZ0(X; θ) = ηgpr(

∑

σi∈Sl

U (l)
σi

H(gpr)
σi

U (l)T
σi

+
∑

σi∈Sh

U (h)
σi

H(gpr)
σi

U (h)T
σi

+
∑

σi∈Smid

U (mid)
σi

H(gpr)
σi

U (mid)T
σi

)Z0(X; θ) (10)

where Smid := S − (Sl ∪ Sh), and H
(gpr)
σi =

∑k3
j=1 γj

(

Λ
(mid)
σi

)j

. Hence, we can
club the respective terms of the partitions and obtain the final embeddings as:

Z =
∑

σi∈Sl

U (l)
σi

(ηlH
(l)
σi

+ ηgprH
(gpr)
σi

)U (l)T
σi

Z0(X; θ)

+
∑

σi∈Sh

U (h)
σi

(ηhH(h)
σi

+ ηgprH
(gpr)
σi

)U (h)T
σi

Z0(X; θ)

+ ηgpr

∑

σi∈Smid

U (mid)
σi

H(gpr)
σi

U (mid)T
σi

Z0(X; θ)

(11)

From Eq. 11, it is clear that PP-GNN also adapts the responses from the
middle parts of the spectrum, albeit by a single polynomial. One can also inter-
pret each term of Eq. 11 as an effective polynomial filter acting only on the
corresponding part of the spectrum, with each effective polynomial filter can be
influenced by a shared polynomial filter.

Notation Used. Vectors are denoted by lower case bold Roman letters such
as x, and all vectors are assumed to be column vectors. In the paper, h with
any sub/super-script refers to a frequency response, which is also considered
to be a vector. A superscript T denotes the transpose of a matrix or vector;
Matrices are denoted by bold Roman upper case letters, such as M. A field is
represented by K; sets of real and complex numbers are denoted by R and C

respectively. K[x1, . . . , xn] denotes a multivariate polynomial ring over the field
K, in indeterminates x1, . . . , xn. Set of n × n square matrices with entries from
some set S are denoted by Mn(S). Moore-Penrose pseudoinverse of a matrix A
is denoted by A†. Eigenvalues of a matrix are denoted by λ, with λ1, λ2, . . .
denoting a decreasing order when the eigenvalues are real. A matrix Λ denotes a
diagonal matrix of eigenvalues. Set of all eigenvalues, i.e., spectrum, of a matrix
is denoted by σA or simply σ when the context is clear. Lp norms are denoted
by ‖ · ‖p. Frobenius norm over matrices is denoted by ‖ · ‖F . Norms without
a subscript default to L2 norms for vector arguments and Frobenius norm for
matrices. ⊕ denotes a direct sum. For maps fi defined from the vector spaces

432 V. Lingam et al.

V1, · · · , Vm, with a map of the form f : V �→ W , with V = V1 ⊕ V2 ⊕ · · · ⊕ Vm,
the phrase “f : V �→ W by mapping f(vi) to fi(g(vi))” means that f maps a
vector v = v1 + . . . + vm with vi ∈ Vi to f1(g(v1)) + . . . + fm(g(vm)).

Proof of Theorem 1

Theorem. For any desired frequency response h∗, and an integer K ∈ N, let
h̃ := h + hf , with hf having a continuous support over a subset of the spec-
trum, σf . Assuming h and hf to be parameterized by independent K and K ′-
order polynomials p and pf respectively, with K ′ ≤ K, then there exists h̃, such
that min ‖h̃ − h∗‖2 ≤ min ‖h − h∗‖2, where the minimum is taken over the
polynomial parameterizations. Moreover, for multiple polynomial adaptive fil-
ters hf1 , hf2 , ..., hfm

parameterized by independent K ′-degree polynomials with
K ′ ≤ K but having disjoint, contiguous supports, the same inequality holds for
h̃ = h +

∑m
i=1 hfi

.

Proof. We make the following simplifying assumptions:

1. |σfi
| > K, ∀i ∈ [m], i.e., that is all support sizes are lower bounded by K

(and hence K ′)
2. All eigenvalues of the reference matrix are distinct

For methods that use a single polynomial filter, the polynomial graph filter,
hK(Λ) = diag(Vγ) where γ is a vector of coefficients (i.e., γ parameterizes h),
with eigenvalues sorted in descending order in components, and V is a Vander-
monde matrix:

V =

⎡

⎢

⎢

⎢

⎣

1 λ1 λ2
1 · · · λK

1

1 λ2 λ2
2 · · · λK

2
...

...
...

. . .
...

1 λn λ2
n · · · λK

n

⎤

⎥

⎥

⎥

⎦

And to approximate a frequency response h∗, we have the following objective:

min ‖h − h∗‖2
2 := min

γ
‖diag(h∗) − diag(Vγ)‖2

F

= min
γ

‖h∗ − Vγ‖2
2

= min
γ

‖ep(γ)‖2
2

where ‖‖F and ‖‖2 are the Frobenius and L2 norms respectively. Due to the
assumptions, the system of equations h∗ = Vγ is well-defined and has a unique
minimizer, γ∗ = V†h∗, and thus ‖ep(γ∗)‖ = minγ ‖ep(γ)‖. Next we break this
error vector as:

ep(γ∗) := h∗ − Vγ∗

=
m

∑

i=1

(h∗
i − Viγ

∗) + (h∗
L − VLγ∗)

:=
m

∑

i=1

e∗
pi

+ e∗
pL

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 433

where e∗
pi

:= (h∗
i − Viγ

∗) with similar definition for epL
; h∗

i is a vector whose
value at components corresponding to the set σ(hfi

) is same as that of h∗ and
rest are zero. Similarly, V∗

i is a matrix whose rows corresponding to the set σ(hfi
)

are same as that of V with other rows being zero. Also, VL = V−
∑m

i=0 Vi and
h∗

L = h∗ −
∑m

i=0 h∗
i . Note that as a result of this construction, [ep∗

i
] ∪ ep∗

L
is a

linearly independent set since the supports [σ(hfi
)] form a disjoint set (note the

theorem statement). We split the proof in two cases:

Case 1: K ′ = K. We now analyze the case where we have m polynomial adaptive
filters added, all having an order of K, where the objective is min ‖h̃−h∗‖, which
can be written as:

min
γ,[γi]

‖diag(h∗) − diag

(

Vγ +
m

∑

i=0

Viγi

)

‖2
F

= min
γ,[γi]

‖h∗ − Vγ −
m

∑

i=0

Viγi‖2
2

= min
γ,[γi]

‖eg(γ, [γi])‖2
2

Before characterizing the above system, we break a general error vector as:

eg(γ, [γi]) := h∗ − Vγ −
m

∑

i=0

Viγi

=
m

∑

i=1

(h∗
i − Vi(γ + γi)) + (h∗

L − VLγ)

:=
m

∑

i=1

egi
+ egL

where egi
:= (h∗

i −Vi(γ+γi)) with similar definition for egL
. Clearly, the systems

of equations, egi
= 0, ∀i and egL

= 0 are well-defined due to the assumptions
1 and 2. Since all the systems of equations have independent argument, unlike
in the polynomial filter case where the optimization is constrained over a single
variable; one can now resort to individual minimization of squared norms of egi

which results in a minimum squared norm of eg. Thus, we can set:

γ = V†
Lh∗

L = γ∗
g γi = V†

i h
∗
i − V†

Lh∗
L = γ∗

i , ∀i ∈ [m]

to minimize squared norms of egi
and egL

. Note that [egi
] ∪ egL

is a lin-
early independent set since the supports [σ(hfi

)] form a disjoint set and by
the above construction, this is also an orthogonal set, and hence we have
‖eg‖2 =

∑m
i=1‖egi

‖2 + ‖egL
‖2, and hence the above assignment implies:

‖eg(γ∗
g , [γ∗

i])‖ = min
γ,[γi]

‖eg(γg, [γi])‖ := min ‖h̃ − h∗‖2

434 V. Lingam et al.

Hence, it follows that, minx ‖h∗
i − Vix‖2 = ‖e∗

gi
‖2 ≤ ‖e∗

pi
‖2 = ‖h∗

i − Viγ
∗‖2

and minx ‖h∗
L − VLx‖2 = ‖e∗

gL
‖2 ≤ ‖e∗

pL
‖2 = ‖h∗

L − VLγ∗‖2. Hence,

m
∑

i=1

‖e∗
gi

‖2 + ‖e∗
gL

‖2 ≤
m

∑

i=1

‖e∗
pi

‖2 + ‖e∗
pL

‖2

min ‖h̃ − h∗‖ ≤ min ‖h − h∗‖

Case 2: K ′ < K. We demonstrate the inequality showing the existence of an h̃
that achieves a better approximation error. By definition, the minimum error too
will be bounded above by this error. For this, we fix γ, the parameterization of h
as γ = V†h∗ = γ∗

p (say). Note that γp∗ = arg minγ ‖ep(γ)‖. Now our objective
function becomes

eg(γ∗
p , [γi]) := h∗ − Vγ∗

p −
m

∑

i=0

V′
iγi

=
m

∑

i=1

(h∗
i − Viγ

∗
p + V′

iγi) + (h∗
L − VLγ∗

p)

=
m

∑

i=1

e′
gi

+ e′
gL

where h∗
i , h

∗
L,Vi,VL have same definitions as that in case 1 and V′

i is a matrix
containing first K ′ + 1 columns of Vi as its columns (and hence has full column
rank), and, γi ∈ R

K′+1. By this construction, we have

‖eg(γ∗
p ,0)‖ = min

γ
‖ep(γ)‖ = ‖ep(γ∗

p)‖

Our optimization objective becomes min[γi] ‖eg(γ∗
p , [γi])‖, which is easy since the

problem is well-posed by assumption 1 and 2. The unique minimizer of this is
obtained by setting

γi = V′†
i (h∗

i − Viγ
∗
p) = γ∗

i (say) ∀i ∈ [m]

Now,
‖eg(γ∗

p , [γ∗
i])‖ = min

[γi]
‖eg(γ∗

p , [γi])‖ ≤ ‖eg(γ∗
p ,0)‖

and,

‖eg(γ∗
p ,0)‖ = min

γ
‖ep(γ)‖ = min ‖h − h∗‖

By the definition of minima, minγ,[γi] ‖eg(γ, [γi])‖ ≤ min[γi] ‖eg(γ∗
p , [γi])‖,

and by the definition, min ‖h̃ − h∗‖ = minγ,[γi] ‖eg(γ, [γi])‖, we have:

min ‖h̃ − h∗‖ ≤ min ‖h − h∗‖

�

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 435

Proof of Theorem 2

Theorem. Define H := {h(·) | ∀ possible K-degree polynomial parameterizations
of h} to be the set of all K-degree polynomial filters, whose arguments are n × n
diagonal matrices, such that a filter response over some Λ is given by h(Λ) for
h(·) ∈ H. Similarly H

′ := {h̃(·) | ∀ possible polynomial parameterizations of h̃}
is set of all filters learn-able via PP-GNN, with h̃ = h + hf1 + hf2 , where h is
parameterized by a K-degree polynomial supported over entire spectrum, hf1 and
hf2 are adaptive filters parameterized by independent K ′-degree polynomials which
only act on top and bottom t diagonal elements respectively, with t < n/2 and K ′ ≤
K; then H and H

′ form a vector space, with H ⊂ H
′. Also, dim(H′)

dim(H) = K+2K′+3
K+1 .

Proof. We start by constructing the abstract spaces on top of the polynomial vec-
tor space. Consider the set of all the univariate polynomials having degree at most
K in the vector space over the ring K

x
n := K[x1, . . . , xn] where K is the field

of real numbers. Partition this set into n subsets, say V1, . . . , Vn, such that for
i ∈ [n], Vi contains all polynomials of degree up to K in xi. It is easy to see that
V1, . . . , Vn are subspaces of K[x1, . . . , xn]. Define V = V1 ⊕ V2 ⊕ · · · ⊕ Vn where
⊕ denotes a direct sum. Define the matrix Di[c] whose (i, i)th entry is c and all
the other entries are zero. For i ∈ [n], define linear maps φi : Vi → Mn (Kx

n) by
f(xi) �→ Di[f(xi)]. Im(φi) forms a vector space of all diagonal matrices, whose
(i, i) entry is the an element of Vi. Generate a linear map φ : V → Mn(Kx

n)
by mapping φ(f(xi)) to φi(f(xi)) for all i ∈ [n] as the components of the direct
sum present in its argument. Note that φi for i ∈ [n] are injective maps, mak-
ing φ an injective map. This implies that H ⊂ Im(φ) is a subspace with basis
Bh := {φ(x0

1 + · · · + x0
n), φ(x1 + · · · + xn), . . . , φ(xK

1 + · · · + xK
n)}, making

dim(H) = K + 1. Similarly we have, H′ ⊂ Im(φ), a subspace with basis Bh′ :=
Bh

⋃

{φ(x0
1 + · · · + x0

t + 0 + · · · + 0), φ(x1 + · · · + xt + 0 + · · · + 0), . . . , φ(xK′
1 +

· · · + xK′
t + 0 + · · · + 0)}

⋃

{φ(0 + · · · + 0 + x0
n−t+1 + · · · + x0

n), φ(0 + · · · + 0 +
xn−t+1 + · · · + xn), . . . , φ(0 + · · · + 0 + xK′

n−t+1 + · · · + xK′
n)} where x0

i and 0 are
the corresponding multiplicative and additive identities of Kx

n, implying H ⊂ H
′

and dim(H′) = K + 2K ′ + 3. �

Proof of Corollary 1

Corollary. The corresponding adapted graph families G := {Uh(·)UT | ∀h(·) ∈
H} and G

′ := {Uh̃(·)UT | ∀h̃(·) ∈ H
′} for any unitary matrix U form a vector

space, with G ⊂ G
′ and dim(G′)

dim(G) = K+2K′+3
K+1 .

Proof. Consider the injective linear maps f1, f2 : Mn(Kx
n) → Mn(Kx

n) as f1(A) =
UT A and f2(A) = AU. Define f3 : H → Mn(Kx

n) and f4 : H′ → Mn(Kx
n) as

f3(A) = (f1 ◦ f2)(A) for A ∈ H and f4(A) = (f1 ◦ f2)(A) for A ∈ H
′. Since U

is given to be a unitary matrix, f3 and f4 are monomorphisms. Using this with
the result from Theorem 4.2, H ⊂ H

′, we have G ⊂ G
′. �

PPGNN Mitigates Oversmoothing. For showing that our model mitigates
oversmoothing for the higher orders, we extend a few results by [8].

436 V. Lingam et al.

Lemma 1. Assume that the nodes in an undirected and connected graph G have
one of C labels. Then, for k large enough, we have,

Hk
:j = βjπ + ok(1)

(Hk
σi

):j =

{

βjπ + ok(1), if ± 1 ∈ σi

0, otherwise

for j ∈ [C]. Here πi =
√

D̃ii√∑
v∈V D̃vv

and βT = πT H0.

Proof. The first equality is a standard result. For the second equality, note that
all Sσi

have nullspace of dimension n − |σi|, and rest eigenvalues have their
absolute values ≤ 1. By definition, Â is a doubly stochastic matrix, the stationary
distribution for Sσi

can only be reached if it contains an eigenvalue of absolute
value 1. (easily seen that the largest eigenvalue of Â is 1). �
Thus, whenever the label prediction is dominated by higher order Hk

(), all nodes
have a representation proportional to τβ, giving same label prediction for each
node.

Definition 1 (Oversmoothing). If oversmoothing occurs in PPGNN for K suf-
ficiently large, we have Z:j = c1βjπ, ∀j ∈ [C] for some c1 > 0 if τk > 0 and
Z:j = −c1βjπ, ∀j ∈ [C] for some c1 > 0 if τk < 0.

Following lemma is the extended from the corresponding lemma of [8].

Lemma 2. Let L =
∑

i∈T Li =
∑

i∈T − log(〈PT
i: ,Y

T
i: 〉) be the cross-entropy

loss and T be the training set. The gradient of τk for k large enough is ∂L
∂τk

=
∑

i∈T πi〈Pi: − Yi:,β〉 + ok(1).

Now the main result follows in same way as [8] from the above lemmas:

Theorem 3 (Extension of Theorem 4.2 of [8]). If the training set contains
nodes from each of C classes, then PP-GNN can always avoid over-smoothing.
That is, for a large enough k and for a parameter associated with a k-order term,
τ ∈ [γi] ∪ [γ(h)

i] ∪ [γ(l)
i], i ∈ [K] ∪ {0}, we have:

∂L

∂τ
=

{

∑

i∈T πi

(

maxj∈[C] βj − β1[Yi:]

)

+ ok(1), τ > 0
∑

i∈T πi

(

minj∈[C] βj − β1[Yi:]

)

+ ok(1), τ < 0

where, πi =
√

D̃ii√∑
v∈V D̃vv

and βT = πT H0. This implies that all parameters, τ

and their gradients ∂L
∂τ are of same sign for sufficiently high orders. Since the

gradients are bounded, higher order parameters τ will approach to 0 until we
escape oversmoothing.

A.4 Experiments

Datasets. We evaluate on multiple benchmark datasets to show the effec-
tiveness of our approach. Detailed statistics of the datasets used are provided

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 437

in Table 3. We borrowed Texas, Cornell, Wisconsin from WebKB5, where
nodes represent web pages and edges denote hyperlinks between them. Actor
is a co-occurrence network borrowed from [17], where nodes correspond to
an actor, and edge represents the co-occurrence on the same Wikipedia page.
Chameleon, Squirrel are borrowed from [18]. Nodes correspond to web pages
and edges capture mutual links between pages. For all benchmark datasets, we
use feature vectors, class labels from [3]. For datasets in (Texas, Wisconsin, Cor-
nell, Chameleon, Squirrel, Actor), we use 10 random splits (48%/32%/20% of
nodes for train/validation/test set) from [4]. We borrowed Cora, Citeseer, and
Pubmed datasets and the corresponding train/val/test set splits from [4]. The
remaining datasets were borrowed from [3]. We follow the same dataset setup
mentioned in [3] to create 10 random splits for each of these datasets. We also
experiment with two slightly larger datasets Flickr [20] and OGBN-arXiv [21].
We use the publicly available splits for these datasets.

Table 3. Dataset Statistics.

Properties Texas Wisconsin Actor Squirrel Chameleon Cornell Flickr Cora-Full

Homophily Level 0.11 0.21 0.22 0.22 0.23 0.30 0.32 0.59

#Nodes 183 251 7600 5201 2277 183 89250 19793

#Edges 492 750 37256 222134 38328 478 989006 83214

#Features 1703 1703 932 2089 500 1703 500 500

#Classes 5 5 5 5 5 5 7 70

#Train 87 120 3648 2496 1092 87 446625 1395

#Val 59 80 2432 1664 729 59 22312 2049

#Test 37 51 1520 1041 456 37 22313 16349

Properties OGBN-arXiv Wiki-CS Citeseer Pubmed Cora Computer Photos

Homophily Level 0.63 0.68 0.74 0.80 0.81 0.81 0.85

#Nodes 169343 11701 3327 19717 2708 13752 7650

#Edges 1335586 302220 12431 108365 13264 259613 126731

#Features 128 300 3703 500 1433 767 745

#Classes 40 10 6 3 7 10 8

#Train 90941 580 1596 9463 1192 200 160

#Val 29799 1769 1065 6310 796 300 240

#Test 48603 5487 666 3944 497 13252 7250

Hyperparameter Tuning. We provide the methods in comparison along with
the hyper-parameters ranges for each model. For all the baseline models, we
sweep the common hyper-parameters in the same ranges. Learning rate is swept
over [0.001, 0.003, 0.005, 0.008, 0.01], dropout over [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
weight decay over [1e − 4, 5e − 4, 1e − 3, 5e − 3, 1e − 2, 5e − 2, 1e − 1], and hid-
den dimensions over [16, 32, 64]. For model-specific hyper-parameters, we tune
over author prescribed ranges. We use undirected graphs with symmetric nor-
malization for all graph networks in comparison. For all models, we report test

5 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb

438 V. Lingam et al.

accuracy for the configuration that achieves the highest validation accuracy. We
report standard deviation wherever applicable.

The hyper-parameter search space as described above, was prescribed in [46]
where the authors have shown that with thorough tuning, GCN(s) thoroughly
outperform several existing SOTA models. Training and observing the results of
all the models on this hyper-parameter search space, while also maintaining a
consistent number of Optuna Trials (per SOTA model, per dataset, per split),
is a convincing indicator of the fact that our proposed method does hold merit,
and is not attributed to a statistical anomaly.

LR and MLP: We trained Logistic Regression classifier and Multi Layer Per-
ceptron on the given node features. For MLP, we limit the number of hidden
layers to one.

GCN: We use the GCN implementation provided by the authors of [8].

SGCN: SGCN [16] is a spectral method that models a low pass filter and uses a
linear classifier. The number of layers in SGCN is treated as a hyper-parameter
and swept over [1, 2].

SuperGAT: SuperGAT [3] is an improved graph attention model designed
to also work with noisy graphs. SuperGAT employs a link-prediction based
self-supervised task to learn attention on edges. As suggested by the authors, on
datasets with homophily levels lower than 0.2 we use SuperGATSD. For other
datasets, we use SuperGATMX. We rely on authors code for our experiments.

Geom-GCN: Geom-GCN [4] proposes a geometric aggregation scheme that
can capture structural information of nodes in neighborhoods and also capture
long range dependencies. We quote author reported numbers for Geom-GCN. We
could not run Geom-GCN on other benchmark datasets because of the unavail-
ability of a pre-processing function that is not publicly available.

H2GCN: H2GCN [5] proposes an architecture, specially for heterophilic set-
tings, that incorporates three design choices: i) ego and neighbor-embedding
separation, higher-order neighborhoods, and combining intermediate represen-
tations. We quote author reported numbers where available, and sweep over
author prescribed hyper-parameters for reporting results on the rest datasets.
We rely on author’s code for our experiments.

FAGCN: FAGCN [7] adaptively aggregates different low-frequency and high-
frequency signals from neighbors belonging to same and different classes to learn
better node representations. We rely on author’s code for our experiments.

APPNP: APPNP [10] is an improved message propagation scheme derived
from personalized PageRank. APPNP’s addition of probability of teleporting
back to root node permits it to use more propagation steps without oversmooth-
ing. We use GPR-GNN’s implementation of APPNP for our experiments.

LinearGCN (LGC): LinearGCN (LGC) [22] is a spectrally grounded GCN
that adapts the entire eigen spectrum of the graph to obtain better node feature
representations.

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 439

GPR-GNN: GPR-GNN [8] adaptively learns weights to jointly optimize node
representations and the level of information to be extracted from graph topology.
We rely on author’s code for our experiments.

TDGNN: TDGNN [31] is a tree decomposition method which mitigates feature
smoothening and disentangles neighbourhoods in different layers. We rely on
author’s code for our experiments.

ARMA: ARMA [38] is a spectral method that uses K stacks of ARMA1 filters
in order to create an ARMAK filter (an ARMA filter of order K). Since [38]
do not specify a hyperparameter range in their work, following are the ranges
we have followed: GCS stacks (S): [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], stacks’ depth(T):
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. However we only select configurations such that the
number of learnable parameters are less than or equal to those in PP-GNN.
The input to the ARMAConv layer are the node features and the output is the
number of classes. This output is then passed through a softmax layer. We use
the implementation from the official PyTorch Geometric Library6

BernNet: BernNet [37] is a method that approximates any filter over the nor-
malised Laplacian spectrum of a graph, by a Kth Order Bernstein Polynomial
Approximation. We use the model specific hyper-parameters prescribed by the
authors of the paper. We vary the Propagation Layer Learning Rate as follows:
[0.001, 0.002, 0.01, 0.05]. We also vary the Propagation Layer Dropout as follows:
[0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]. We rely on the authors code for our experiments.

AdaGNN: AdaGNN [36] is a method that captures the different importance’s
for varying frequency components for node representation learning. We use the
model specific hyper-parameters prescribed by the authors of the paper. The
No. of Layers hyper-parameter is varied as follows: [2, 4, 8, 16, 32, 128]. We rely
on the authors code for our experiments.

UFG: UFG [32] decompose the graph into low-pass and high-pass frequencies,
and define a framelet based convolutional model. We use the model specific
hyper-parameters as prescribed by the authors of the paper. We rely on the
authors code for our experiments.

GFIR - Unconstrained Setting: In this setting, we do not impose any regu-
larization constraints such as dropout and L2 regularization.

GFIR - Constrained Setting: In this setting, we impose dropouts as well as
L2 regularization on the GFIR model. Both dropouts and L2 regularization were
applied on the Hk’s (the learnable filter matrices from the above equation).

Links to the authors’ codebases can be found in Table 4.

6 https://pytorch-geometric.readthedocs.io/en/latest/ modules/torch geometric/nn/
conv/arma conv.html#ARMAConv.

https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/arma_conv.html#ARMAConv
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/arma_conv.html#ARMAConv

440 V. Lingam et al.

Table 4. Links to the codebases of certain baselines.

Method Code links Commit ID

GCN https://github.com/jianhao2016/GPRGNN dc246833865af87ae5d4e965d189608f8832ddac

SuperGAT https://github.com/dongkwan-kim/SuperGAT 2d3f44acbb10af5850aa17a3903dea955a29d2e2

H2GCN https://github.com/GemsLab/H2GCN 08011c5199426e1c49b80ee2944d338dfd55e2b5

FAGCN https://github.com/bdy9527/FAGCN 23bb10f6bf0b1d2e5874140cd4b266c60a7c63f3

APPNP https://github.com/jianhao2016/GPRGNN dc246833865af87ae5d4e965d189608f8832ddac

GPRGNN https://github.com/jianhao2016/GPRGNN dc246833865af87ae5d4e965d189608f8832ddac

TDGNN https://github.com/YuWVandy/TDGNN 505b1af90255aace255744ec81a7033a5d682b90

BernNet https://github.com/ivam-he/BernNet 7b9c1652dbe43730f52d647957761bf6d3f17425

AdaGNN https://github.com/yushundong/AdaGNN f178d3144921c8845027234cac68a7f0dd057fe2

UFG https://github.com/YuGuangWang/UFG 229acd89b33f4f4e1bab2c0d92fb93d146127fd1

Implementation Details. In this subsection, we present several important
points that are useful for practical implementation of our proposed method and
other experiments related details. Our approach is based on adaptation of a
few eigen graphs constructed using eigen components. Following [1], we use a
symmetric normalized version (Ã) of adjacency matrix A with self-loops: Ã =
D̃− 1

2 (A + I)D̃− 1
2 where D̃ii = 1 + Dii, Dii =

∑

j Aij and D̃ij = 0, i �= j. We
work with eigen matrix and eigen values of Ã.

To reduce the learnable hyper-parameters, we separately partition the low-
end and high-end eigen values into several contiguous bins and use shared filter
parameters for each of these bins. The number of bins, which can be interpreted
as number of filters, is swept in the range [2, 4, 5]. The orders of the polynomial
filters are swept in the range [2, 4, 6]. The number of EVD components are swept
in the range [256, 1024]. In our experiments, we set ηl = ηh and we vary the ηl

parameter in range (0, 1) and ηgpr = 1 − ηl. The range of ηl, ηh and ηgpr is
kept between (0, 1) in order to have a bounded and weighted contribution of
every term. Since previous works either use directly or use a variant of the GPR
term, these ranges make it feasible to carry out an analysis of how the term
contributes to the learning of the representations and also to compare it with
the contribution of the terms of the proposed model, as keeping parameters
between (0, 1), adding to 1 provides room for a weighted contribution of each
term.

For optimization, we use the Adam optimizer [19]. We set early stopping
to 200 and the maximum number of epochs to 1000. We utilize learning rate
with decay, with decay factor set to 0.99 and decay frequency set to 50. All our
experiments were performed on a machine with Intel Xeon 2.60 GHz processor,
112 GB Ram, Nvidia Tesla P-100 GPU with 16 GB of memory, Python 3.6, and
PyTorch 1.9.0 [24]. We used Optuna [23] and set the number of trials to 20 to
optimize the hyperparameter search for PP-GNN. For other baseline models,
we set the number of trials to 100.

Note: Several baselines report elevated results on some of our benchmark
datasets. This difference is because of the difference in splits. We use the splits

https://github.com/jianhao2016/GPRGNN
https://github.com/dongkwan-kim/SuperGAT
https://github.com/GemsLab/H2GCN
https://github.com/bdy9527/FAGCN
https://github.com/jianhao2016/GPRGNN
https://github.com/jianhao2016/GPRGNN
https://github.com/YuWVandy/TDGNN
https://github.com/ivam-he/BernNet
https://github.com/yushundong/AdaGNN
https://github.com/YuGuangWang/UFG

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 441

from [4]. Baselines including BernNet, GPR-GNN evaluate on random splits
with 60/20/20 distribution for train/val/test labels.

A.5 PP-GNN v/s SOTA Models (Extension)

Comparison Against Other Baslines. We compare our method against
three category of methods: (a) standard LR (Logistic Regression) and MLP
(Multi-Layer Perceptron), (b) traditional and spatial convolution-based GNN
models including GCN, SGCN, SuperGAT, TDGNN, H2GCN, and Geom-
GCN, and (c) recent spectral convolution-based methods (with emphasis
on graph filters) such as GPR-GNN, FAGCN, APPNP, LGC, ARMA,
AdaGNN, BernNet, GFIR, and UFG. Our tabular results are organized as
per this grouping, along with references. In some cases, the grouping of spa-
tial convolution-based methods is somewhat overlapping with spectral filtering
based-methods since spectral interpretations are available for the former. The
results for Heterophilic graphs are tabulated in Table 5, and Homophilic graphs
are reported in Table 7.

Large Datasets. We also observe gains on moderately large datasets like Flickr
and perform competitively on the OGBN-arXiv dataset. Please note that our
latter numbers are slightly inferior for baselines like GCN compared to the
leaderboard7 numbers. These differences are because we turn off the optimization
tricks like Batch Normalization.

A.6 Additional Experiments

Role of Different Filter-Banks. Recall that the PP-GNN model is a filter-
bank model comprising several polynomial filters operating at different parts of
the spectrum. We evaluate PP-GNN’s performance by learning each group of
filters alone (e.g., PP-GNN(Low), PP-GNN(High)) and report results on several
datasets in Table 6. We see that the Heterophilic datasets (like Squirrel and
Chameleon) largely benefit from high-frequency signals. In contrast, Homophilic
datasets (Cora and Citeseer) exhibit a reverse trend. Incorporating the GPR-
GNN filter as part of the PP-GNN filter helps to get improved performance over
individual filters (PP-GNN(Low) or PP-GNN (High)) and shows considerable
improvements over a wide variety of datasets.

Adaptable Frequency Responses. In Fig. 1 of the main paper, we observe
that PP-GNN learns a complicated frequency response for a heterophilic dataset
(Squirrel) and a simpler frequency response for a homophilic dataset (Cite-
seer). We observe that this trend follows for two other datasets Chameleon
(heterophilic) and Computer (homophilic). See Fig. 9.

7 https://tinyurl.com/oarxiv.

https://tinyurl.com/oarxiv

442 V. Lingam et al.

Table 5. Results on Heterophilic Datasets. ‘*’ indicates that the results were borrowed
from the corresponding papers. Bold indicates the best performing model; underline
for second-best.

Texas Wisconsin Squirrel Chameleon Cornell

LR 81.35 (6.33) 84.12 (4.25) 34.73 (1.39) 45.68 (2.52) 83.24 (5.64)

MLP 81.24 (6.35) 84.43 (5.36) 35.38 (1.38) 51.64 (1.89) 83.78 (5.80)

SGCN [16] 62.43 (4.43) 55.69 (3.53) 45.72 (1.55) 60.77 (2.11) 62.43 (4.90)

GCN [1] 61.62 (6.14) 58.82 (4.89) 47.78 (2.13) 62.83 (1.52) 62.97 (5.41)

SuperGAT [3] 61.08 (4.97) 56.47 (3.90) 31.84 (1.26) 43.22 (1.71) 57.30 (8.53)

Geom-GCN [4] 67.57* 64.12* 38.14* 60.90* 60.81*

H2GCN [5] 84.86 (6.77)* 86.67 (4.69)* 37.90 (2.02)* 58.40 (2.77) 82.16 (4.80)*

TDGNN [31] 83.00 (4.50)* 85.57 (3.78)* 43.84 (2.16) 55.20 (2.30) 82.92 (6.61)*

GFIR-1a 73.24 (6.91) 77.84 (3.21) 36.50 (1.12) 51.71 (3.11) 72.43 (7.62)

GFIR-2b 74.59 (4.45) 79.41 (3.10) 41.12 (1.17) 61.27 (2.42) 74.05 (7.77)

FAGCN [7] 82.43 (6.89) 82.94 (7.95) 42.59 (0.79) 55.22 (3.19) 79.19 (9.79)

APPNP [10] 81.89 (5.85) 85.49 (4.45) 39.15 (1.88) 47.79 (2.35) 81.89 (6.25)

LGC [22] 80.20 (4.28) 81.89 (5.98) 44.26 (1.49) 61.14 (2.07) 74.59 (3.42)

GPR-GNN [8] 81.35 (5.32) 82.55 (6.23) 46.31 (2.46) 62.59 (2.04) 78.11 (6.55)

AdaGNN [36] 71.08 (8.55) 77.70 (4.91) 53.50 (0.96) 65.45 (1.17) 71.08 (8.36)

BernNET [37] 83.24 (6.47) 84.90 (4.53) 52.56 (1.69) 62.02 (2.28) 80.27 (5.41)

ARMA [38] 79.46 (3.65) 82.75 (3.56) 47.37 (1.63) 60.24 (2.19) 80.27 (7.76)

UFG-ConvR [32] 66.22 (7.46) 68.63 (4.98) 42.06 (1.55) 56.29 (1.58) 69.19 (6.40)

PP-GNN 89.73 (4.90) 88.24 (3.33) 59.15 (1.91) 69.10 (1.37) 82.43 (4.27)
a GFIR-1: unconstrained setting
b GFIR-2: constrained setting

Table 6. Performance of different filters

Test Acc Squirrel Chameleon Citeseer Cora

PP-GNN (Low) 45.75 (1.69) 56.73 (4.03) 76.23 (1.54) 88.03 (0.79)

PP-GNN (High) 58.70 (1.60) 69.19 (1.88) 55.50 (6.38) 73.76 (2.03)

PP-GNN (GPRa+Low) 50.96 (1.26) 63.71 (2.69) 78.07 (1.71) 89.56 (0.93)

PP-GNN (GPR+High) 60.39 (0.91) 67.83 (2.30) 78.30 (1.60) 89.42 (0.97)

GPR-GNN 42.06 (1.55) 56.29 (1.58) 76.74 (1.33) 87.93 (1.52)

PP-GNN 59.15 (1.91) 69.10 (1.37) 78.25 (1.76) 89.52 (0.85)
a GPR here refers to GPR-GNN

Effect of Number of Eigenvalues/Vectors (EVs). Since the number of EVs
to adapt might not be known apriori, we conducted a study to assess the effect
of using different number of EVs on test performance. We report results on a few
representative datasets. From Fig. 10, we see that Homophilic datasets can ben-
efit by adapting as small as 32 eigen components. Heterophilic datasets achieve
peak performance by adapting (∼250–500) number of eigen components. These
results indicate that the number of EVs required to get competitive/superior per-
formance is typically small, therefore, computationally feasible and affordable.

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 443

Does the MLP Even Matter? In PP-GNN there is a two layered MLP (that
transforms the input node features) followed by a single graph filtering layer
similar to GPR-GNN.

To understand MLP’s significance, we ran an additional experiment, where
we have used a single linear layer, instead of the two layered MLP. We continue
to observe competitive (with respect to our original PP-GNN model) perfor-
mance, across most datasets. The results can be found in Table 9. Also, the
two layer MLP is not the significant contributor towards performance. This can
also be seen by comparing GPR-GNN’s performance with that of LGC’s. LGC
can be interpreted as a linear version of GPR-GNN, and achieves comparable
performance as GPR-GNN.

Table 9 seems to suggest that PP-GNN (Linear) is competitive to PP-GNN
(Original).

We can infer that adding MLP may give marginal improvements over the
linear version. This phenomenon is also observed in GPR-GNN. To illustrate
this, we can compare GPR-GNN with LGC (linear version of GPR-GNN). We
can observe in Table 9 that GPR-GNN and LGC are comparable in performance.

A.7 Comparison Against General FIR Filters

Instead of using a polynomial filter, we can use a general FIR filter (GFIR)
which is described by the following equation (Table 8):

Z =
K

∑

k=0

SkXHk

Table 7. Results on homophilic datasets.

Cora-Full Wiki-CS Citeseer Pubmed Cora Computer Photos

LR 39.10 (0.43) 72.28 (0.59) 72.22 (1.54) 87.00 (0.40) 73.94 (2.47) 64.92 (2.59) 77.57 (2.29)

MLP 43.03 (0.82) 73.74 (0.71) 73.83 (1.73) 87.77 (0.27) 77.06 (2.16) 64.96 (3.57) 76.96 (2.46)

SGCN 61.31 (0.78) 78.30 (0.75) 76.77 (1.52) 88.48 (0.45) 86.96 (0.78) 80.65 (2.78) 89.99 (0.69)

GCN 59.63 (0.86) 77.64 (0.49) 76.47 (1.33) 88.41 (0.46) 87.36 (0.91) 82.50 (1.23) 90.67 (0.68)

SuperGAT 57.75 (0.97) 77.92 (0.82) 76.58 (1.59) 87.19 (0.50) 86.75 (1.24) 83.04 (1.02) 90.31 (1.22)

Geom-GCN NA NA 77.99* 90.05* 85.27* NA NA

H2GCN 57.83 (1.47) OOM 77.07 (1.64)* 89.59 (0.33)* 87.81 (1.35)* OOM 91.17 (0.89)

TDGNN OOM 79.58 (0.51) 76.64 (1.54)* 89.22 (0.41)* 88.26 (1.32)* 84.52 (0.92) 92.54 (0.28)

GFIR (unconstrained) 60.87 (0.78) 79.15 (0.65) 75.83 (1.94) 88.47 (0.45) 87.93 (0.90) 78.39 (1.09) 89.26 (1.00)

GFIR (constrained) 60.92 (0.80) 79.15 (0.63) 76.24 (1.43) 88.47 (0.39) 87.46 (1.26) 79.57 (2.12) 89.38 (1.03)

FAGCN 60.07 (1.43) 79.23 (0.66) 76.80 (1.63) 89.04 (0.50) 88.21 (1.37) 82.16 (1.48) 90.91 (1.11)

APPNP 60.83 (0.55) 79.13 (0.50) 76.86 (1.51) 89.57 (0.53) 88.13 (1.53) 82.03 (2.04) 91.68 (0.62)

LGC 61.84 (0.90) 79.82 (0.49) 76.96 (1.73) 88.78 (0.51) 88.02 (1.44) 83.44 (1.77) 91.56 (0.74)

GPR-GNN 61.37 (0.96) 79.68 (0.50) 76.84 (1.69) 89.08 (0.39) 87.77 (1.31) 82.38 (1.60) 91.43 (0.89)

AdaGNN 59.57 (1.18) 77.87 (4.95) 74.94 (0.91) 89.33 (0..57) 86.72 (1.29) 81.27 (2.10) 89.93 (1.22)

BernNET 60.77 (0.92) 79.75 (0.52) 77.01 (1.43) 89.03 (0.55) 88.13 (1.41) 83.69 (1.99) 91.61 (0.51)

ARMA 60.23 (1.21) 78.94 (0.32) 78.15 (0.74) 88.73 (0.52) 87.37 (1.14) 78.55 (2.62) 90.26 (0.48)

UFG-ConvR 60.98 (0.82) 78.56 (0.43) 76.74 (1.33) 85.68 (0.62) 87.93 (1.52) 80.01 (1.78) 90.20 (1.41)

PP-GNN 61.42 (0.79) 80.04 (0.43) 78.25 (1.76) 89.71 (0.32) 89.52 (0.85) 85.23 (1.36) 92.89 (0.37)

444 V. Lingam et al.

Table 8. Results on large datasets.

LR MLP GCN SGCN SuperGAT H2GCN TDGNN PP-GNN

Flickr 46.51 46.93 53.40 50.75 53.47 OOM OOM 55.30

OGBN-arXiv 52.53 54.96 69.37 68.51 55.1* OOM OOM 69.28

Table 9. Comparision of linear GPR-GNN and linear PP-GNN with respect to other
pertinent baselines.

Computers Chameleon Citeseer Cora Squirrel Texas Wisconsin

GPR-GNN 82.38 (1.60) 62.59 (2.04) 76.84 (1.69) 87.77 (1.31) 46.31 (2.46) 81.35 (5.32) 82.55 (6.23)

LGC 83.44 (1.77) 61.14 (2.07) 76.96 (1.73) 88.02 (1.44) 44.26 (1.49) 80.20 (4.28) 81.89 (5.98)

PP-GNN (Original) 85.23 (1.36) 69.10 (1.37) 78.25 (1.76) 89.52 (0.85) 59.15 (1.91) 89.73 (4.90) 88.24 (3.33)

PP-GNN (Linear) 84.27 (1.19) 67.88 (1.62) 77.86 (1.74) 88.43 (0.69) 55.11 (1.72) 85.58 (4.70) 86.24 (3.23)

Table 10. Comparing PP-GNN and GPR-GNN against the GFIR filter models.

Train Acc/Test Acc Computers Chameleon Citeseer Cora Squirrel Texas Wisconsin

GFIR (Unconstrained) 78.39 (1.09) 51.71 (3.11) 75.83 (1.94) 87.93 (0.90) 36.50 (1.12) 73.24 (6.91) 77.84 (3.21)

GFIR (Constrained) 79.57 (2.12) 61.27 (2.42) 76.24 (1.43) 87.46 (1.26) 41.12 (1.17) 74.59 (4.45) 79.41 (3.10)

GPR-GNN 82.38 (1.60) 62.59 (2.04) 76.84 (1.69) 87.77 (1.31) 46.31 (2.46) 81.35 (5.32) 82.55 (6.23)

PP-GNN 85.23 (1.36) 67.74 (2.31) 78.25 (1.76) 89.52 (0.85) 56.86 (1.20) 89.73 (4.90) 88.24 (3.33)

Table 11. Different polynomial filtering based methods. Note that the coefficients
of APPNP are fixed (not learnable) PPR coefficients (γk ∀ k) and the coefficients of
GPR-GNN (γk ∀k)and BernNet (θk ∀k) are learnable.

Method Polynomial basis Filter response Constraints

APPNP Monomial h(λ) =
∑K

k=0 γkλk γk = α(1 − α)k; γK = (1 − α)K ; α is a hyper-parameter

GPR-GNN Monomial h(λ) =
∑K

k=0 γkλk γk are unconstrained

BernNet Bernstein h(λ) =
∑K

k=0
θk
2K

(

K
k

)

(2 − λ)K−kλk θk ≥ 0

where S is the graph shift operator (which in our case is ˜A), X is the node feature
matrix and Hk’s are learnable filter matrices. One can see GCN, SGCN, GPR-
GNN as special cases of this GFIR filter, which constrain the Hk in different
ways.

We first demonstrate that constraint on the GFIR filter is necessary for get-
ting improvement in performance, particularly on heterophilic datasets. Towards
this, we build two versions of GFIR: one with regularization (constrained), and
the other without regularization (unconstrained). We ensure that the number of
trainable parameters in these models are comparable to those used in PP-GNN.
We provide further details of the versions of the GFIR models below and report
the results in Table 10 below:

– Unconstrained Setting: In this setting, we do not impose any regulariza-
tion constraints such as dropout and L2 regularization.

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 445

Fig. 9. Learnt frequency responses

– Constrained Setting: In this setting, we impose dropouts as well as L2
regularization on the GFIR model. Both dropouts and L2 regularization were
applied on the Hk’s (the learnable filter matrices from the above equation).

We also compare PP-GNN (the proposed model) as well as GPR-GNN to
the General FIR filter model (GFIR).

Fig. 10. Analyzing varying number of eigenvalues on performance

446 V. Lingam et al.

We can make the following observation from the results reported in Table 10:

– Firstly, constrained GFIR performs better than the unconstrained version,
with performance lifts of up to ∼10%. This suggests that regularization is
important for GFIR models.

– GPR-GNN outperforms the constrained GFIR version. It is to be noted that
GPR-GNN further restricts the space of graphs explored as compared to
GFIR. This suggests that regularization beyond simple L2/dropout kind of
regularization (polynomial filter) is beneficial.

– PP-GNN performs better than GPR-GNN. Our model slightly expands the
space of graphs explored (as compared to GPR-GNN, but lesser than GFIR),
while retaining good performance. This suggests that there is still room for
improvement on how regularization is done.

PP-GNN has shown one possible way to constrain the space of graphs
while improving performance on several datasets, however, it remains to be seen
whether there are alternative methods that can do even better. We hope to study
and analyze this aspect in the future.

A.8 More Details on Comparison Against Polynomial Filtering
Methods

More details on Sect. 4.4 are given below:

APPNP: The node embeddings are learnt by APPNP as described below:

Z =
K

∑

k=0

γkÃk
symZx(X,Θ)

APPNP uses fixed γk = α(1 − α)k with γK = (1 − α)K where α is a
hyper-parameter, Zx(X,Θ) are the node features transformed by MLP with
parameter Θ.

GPR-GNN: The node embeddings are learnt by GPR-GNN as described
below:

Z =
K

∑

k=0

γkÃk
symZx(X,Θ)

where γk(∀k) are now learnable parameters, Zx(X,Θ) are the node features
transformed by MLP with parameter Θ.

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 447

BernNet: The node embeddings for BernNet are learnt as described below:

Z =
K

∑

k=0

θk

2K

(

K

k

)

(2I − L)K−kLkZx(X,Θ)

=
K

∑

k=0

θk

2K

(

K

k

)

(Asym + I)K−k(I − Asym)kZx(X,Θ)

=
K

∑

q=0

[
K

∑

r=0

θk

2K

(

K

r

) q
∑

p=0

(

K − r

q − p

)(

r

p

)

(−1)p]Aq
symZx(X,Θ)

=
K

∑

q=0

[
K

∑

r=0

θrαrq]Aq
symZx(X,Θ)

=
K

∑

q=0

wqA
q
symZx(X,Θ)

The following table summarizes recent key polynomial filtering based methods
and a short description of the constraints/variant they employ.

A.9 Training Time Analysis

In the following subsections, we provide comprehensive timing analysis.

Computational Complexity: Listed below is the computational complexity for
each piece in our model for a single forward pass. Notation n: number of nodes,
|E|: the number of edges, A: symmetric normalized adjacency matrix, F : features
dimensions, d: hidden layer dimension, C: number of classes, e∗ denotes the cost
of EVD, K: polynomial/hop order, l: number of eigenvalues/vectors in a single
partition of spectrum (for implementation, we keep l same for all such intervals),
m: number of partitions of a spectrum.

– MLP: O(nFd + ndC)
– GPR-term: O(K|E|C) + O(nKC). The first term is the cost for computing

AKf(X) for sparse A. The second term is the cost of summation
∑

k Akf(X).
– Excess terms for PP-GNN: O(mnlC). This is obtained by the optimal matrix

multiplication present in Eq. 5 of the main paper (Ui is n × l, Hi(γi) is
l × l, Z0() is n × C). The additional factor m is because we have m different
contiguous intervals/different polynomials. Typically n is much larger than l.

– EVD-term: e∗, the complexity for obtaining the eigenvalues/vectors of the
adjacency matrix, which is usually very sparse for the observed graphs. Most
publicly available solvers for this task utilize Lanczos’ algorithm (which is
a specific case of a more general Arnoldi iteration). However, the conver-
gence bound of this iterative procedure depends upon the starting vectors
and the underlying spectrum (particularly the ratio of the absolute differ-
ence of two largest eigenvalues to the diameter of the spectrum) [33–35].

448 V. Lingam et al.

Lanczos’ algorithm is shown to be a practically efficient way for obtain-
ing extreme eigenpairs for a similar and even very large systems. We use
ARPACK’s built-in implementation to precompute the eigenvalues/vectors
for all datasets before training, thus amortizing this cost across training with
different hyper-parameters configuration.

Per Component Timing Breakup: In Table 12, we provide a breakdown of cost
incurred in seconds for different components of our model. Since the eigenpairs’
computation is a one time cost, we amortize this cost over the total hyper-
parameters configurations and report the effective training time in the last col-
umn on of Table 12.

Average Training Time: In Table 13, we report the training time averaged
over 20 hyper-parameter configurations for several models. To understand the
relative performance of our model with respect to GCN, we compute the relative
time taken and report it in Table 14. We can observe in Table 14 that PP-GNN
is ∼4x slower than GCN, ∼2X slower than GPR-GNN and BernNET, and ∼2X
faster than AdaGNN. However, it is important to note that in our average train-
ing time, the time taken to compute K top and bottom eigenvalues/vectors is
amortized across the number of trials (Table 15).

Table 12. PP-GNN’s per component timing cost. Training Time refers to the
end to end training time (without eigen decomposition) averaged across 20 trials. EVD
cost refers to the time taken to obtain x top and bottom eigenvalues. This x can be
found in the ‘Number of EV’s obtained’ column. Since EVD is a one time cost, we
average this cost over the total number of trials and add it to the training time. We
refer to this cost as the Effective Training Time (ETT).

PP-GNN Training time EVD cost #EV’s obtained ETT

Texas 11.89 0.00747 183 (All EVs) 11.89

Cornell 11.63 0.03271 183 (All EVs) 11.63

Wisconsin 12.08 0.01225 251 (All EVs) 12.08

Chameleon 21.44 3.71883 2048 21.63

Squirrel 31.38 15.8152 2048 32.17

Cora 22.46 54.3684 2048 25.18

Citeseer 20.51 56.9744 2048 23.36

Cora-full 63.98 155.304 2048 71.75

Pubmed 52.54 256.71 2048 65.38

Computers 28.63 76.2738 2048 32.44

Photo 19.3 48.3683 2048 21.72

Flickr 161.16 304.114 2048 176.37

ArXiv 189.94 412.504 1024 210.57

WikiCS 27.92 65.4376 2048 31.19

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 449

Table 13. Training time (in seconds) across models

Dataset GPR-GNN PP-GNN MLP GCN BernNet ARMA AdaGNN

Texas 9.27 11.89 1.08 3.46 5.59 6.00 13.97

Cornell 9.41 11.63 1.06 3.69 5.37 5.51 12.56

Wisconsin 9.67 12.08 1.07 3.42 5.69 5.36 13.57

Chameleon 14.69 21.63 2.60 6.42 12.46 7.84 28.77

Squirrel 18.94 32.17 5.04 7.52 17.82 28.87 90.36

Cora 12.90 25.18 1.95 5.94 12.25 10.67 22.15

Citeseer 10.62 23.36 3.72 4.56 9.52 19.5 35.34

Cora-Full 24.98 71.75 7.77 8.01 31.26 40.21 175.58

Pubmed 14.00 65.38 6.21 11.73 12.64 27.76 162.01

Computers 7.67 32.44 2.24 6.68 7.48 27.76 118.43

Photo 8.58 21.72 1.68 5.1 7.95 14.34 45.46

Flickr 42.64 176.37 21.00 30.4 62.11 119.3 178.7371

ArXiv 118.35 210.57 78.9 102.88 693.92 771.59 307.84

WikiCS 14.37 31.19 3.34 10.8 11.43 30.79 73.63

Table 14. Training time of models relative to the training time of GCN

Dataset GPR-GNN PP-GNN MLP GCN BernNet ARMA AdaGNN

Texas 2.68 3.44 0.31 1.00 1.62 1.73 4.04

Cornell 2.55 3.15 0.29 1.00 1.46 1.49 3.40

Wisconsin 2.83 3.53 0.31 1.00 1.66 1.57 3.97

Chameleon 2.29 3.37 0.40 1.00 1.94 1.22 4.48

Squirrel 2.52 4.28 0.67 1.00 2.37 3.84 12.02

Cora 2.17 4.24 0.33 1.00 2.06 1.80 3.73

Citeseer 2.33 5.12 0.82 1.00 2.09 4.28 7.75

Cora-Full 3.12 8.96 0.97 1.00 3.90 5.02 21.92

Pubmed 1.19 5.57 0.53 1.00 1.08 2.37 13.81

Computers 1.15 4.86 0.34 1.00 1.12 4.16 17.73

Photo 1.68 4.26 0.33 1.00 1.56 2.81 8.91

Flickr 1.40 5.80 0.69 1.00 2.04 3.92 5.88

ArXiv 1.15 2.05 0.77 1.00 6.74 7.50 2.99

WikiCS 1.33 2.89 0.31 1.00 1.06 2.85 6.82

Average 2.03 4.39 0.50 1.00 2.19 3.18 8.39

Table 15. End to end training time (in HH:MM:SS) for optimizing over 20 hyper-
parameter configurations

Dataset Chameleon Citeseer Computers Cora Cora-Full Photo

Time 00:03:46 00:10:17 00:34:37 00:05:24 00:59:29 00:10:31

Dataset Pubmed Squirrel Texas Wisconsin OGBN-ArXiv

Time 00:57:40 00:10:38 00:02:27 00:02:33 01:03:20

450 V. Lingam et al.

References

1. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional net-
works. In: International Conference on Learning Representations (ICLR) (2017)

2. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(ICLR) (2018)

3. Kim, D., Oh, A.: How to find your friendly neighborhood: graph attention design
with self-supervision. In: International Conference on Learning Representations
(ICLR) (2021)

4. Pei, H., Wei, B., Chang, K., Lei, Y., Yang, B.: Geom-GCN: geometric graph
convolutional networks. In: International Conference on Learning Representations
(ICLR) (2020)

5. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily
in graph neural networks: current limitations and effective designs. In: Neural Infor-
mation Processing Systems (NeurIPS) (2020)

6. Zhu, J., et al.: Graph neural networks with heterophily. In: Association for the
Advancement of Artificial Intelligence (AAAI) (2021)

7. Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information in graph
convolutional networks. In: Association for the Advancement of Artificial Intelli-
gence (AAAI) (2021)

8. Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized pagerank
graph neural network. In: International Conference on Learning Representations
(ICLR) (2021)

9. Hamilton, W., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: Neural Information Processing Systems (NeurIPS) (2017)

10. Klicpera, J., Bojchevski, A., Günnemann, S.: Combining neural networks with
personalized PageRank for classification on graphs. In: International Conference
on Learning Representations (ICLR) (2019)

11. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. In: International Conference on Learning Repre-
sentations (ICLR) (2014)

12. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks
on graphs with fast localized spectral filtering. In: Neural Information Processing
Systems (NeurIPS) (2016)

13. Galstyan, S.: MixHop: higher-order graph convolution architectures via sparsified
neighborhood mixing. In: International Conference On Machine Learning (ICML)
(2019)

14. Lee, S.: N-GCN: multi-scale graph convolution for semi-supervised node classifica-
tion. In: Conference on Uncertainty in Artificial Intelligence (UAI) (2019)

15. Li, Q., Han, Z., Wu, X.: Deeper insights into graph convolutional networks for semi-
supervised learning. In: Association for the Advancement Of Artificial Intelligence
(AAAI) (2018)

16. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph
convolutional networks. In: International Conference on Machine Learning (ICML)
(2019)

17. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale net-
works. In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD) (2009)

A Piece-wise Polynomial Filtering Approach for Graph Neural Networks 451

18. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-Scale attributed node embedding.
J. Complex Netw. 9, cnab014 (2021)

19. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International
Conference on Learning Representations (ICLR) (2015)

20. Chua, T., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world
web image database from national university of Singapore. In: Proceedings of ACM
Conferen on Image and Video Retrieval (CIVR 2009) (2009)

21. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs.
ArXiv Preprint ArXiv:2005.00687 (2020)

22. Navarin, N., Erb, W., Pasa, L., Sperduti, A.: Linear graph convolutional net-
works. In: 28th European Symposium On Artificial Neural Networks, Computa-
tional Intelligence And Machine Learning, ESANN 2020, Bruges, Belgium, 2–4
October 2020, pp. 151–156 (2020)

23. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation
hyperparameter optimization framework. ArXiv. abs/1907.10902 (2019)

24. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. Adv. Neural. Inf. Process. Syst. 32, 8024–8035 (2019)

25. Tremblay, N., Gonçalves, P., Borgnat, P.: Design of graph filters and filterbanks
(2017)

26. Shuman, D., Narang, S., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging
field of signal processing on graphs: extending high-dimensional data analysis to
networks and other irregular domains. IEEE Signal Process. Mag. 30, 83–98 (2013)

27. Lim, D., Li, X., Hohne, F., Lim, S.: New benchmarks for learning on non-
homophilous graphs. In: The WebConf Workshop on Graph Learning Benchmarks
(GLB-WWW) (2021)

28. Lukovnikov, D., Fischer, A.: Improving breadth-wise backpropagation in graph
neural networks helps learning long-range dependencies. In: Proceedings of the
38th International Conference on Machine Learning (2021)

29. Chamberlain, B., Rowbottom, J., Gorinova, M., Bronstein, M., Webb, S., Rossi,
E.: GRAND: graph neural diffusion. In: Proceedings of the 38th International
Conference on Machine Learning, vol. 139, pp. 1407–1418 (2021)

30. Yang, Y., et al.: Graph neural networks inspired by classical iterative algorithms.
In: Proceedings of the 38th International Conference on Machine Learning (2021)

31. Wang, Y., Derr, T.: Tree decomposed graph neural network. In: Conference on
Information and Knowledge Management (2021)

32. Zheng, X., et al.: How framelets enhance graph neural networks. In: Proceedings
of the 38th International Conference on Machine Learning (2021)

33. Saad, Y.: On the rates of convergence of the Lanczos and the block-Lanczos meth-
ods. SIAM J. Numer. Anal. 17, 687–706 (1980)

34. Li, R.: Sharpness in rates of convergence for the symmetric Lanczos method. Math.
Comput. 79, 419–435 (2010)

35. Cullum, J., Willoughby, R.: Lanczos algorithms for large symmetric eigenvalue
computations. Society for Industrial (2002)

36. Dong, Y., Ding, K., Jalaian, B., Ji, S., Li, J.: Graph neural networks with adaptive
frequency response filter (2021)

37. He, M., Wei, Z., Huang, Z., Xu, H.: BernNet : learning arbitrary graph spectral
filters via bernstein approximation (2021)

38. Bianchi, F.M., Grattarola, D., Livi, L., Alippi, C.: Graph neural networks with
convolutional ARMA filters. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3496–
3507 (2022). https://doi.org/10.1109/TPAMI.2021.3054830

http://arxiv.org/abs/2005.00687
http://arxiv.org/1907.10902
https://doi.org/10.1109/TPAMI.2021.3054830

452 V. Lingam et al.

39. Gama, F., Marques, A., Leus, G., Ribeiro, A.: Convolutional neural network archi-
tectures for signals supported on graphs. IEEE Trans. Signal Process. 67, 1034–
1049 (2019)

40. Cai, C., Wang, Y.: A note on over-smoothing for graph neural networks (2020)
41. Zhou, K., et al.: Dirichlet energy constrained learning for deep graph neural net-

works (2021)
42. Davidson, E., Thompson, W.: Monster matrices: their eigenvalues and eigenvectors.

Comput. Phys. 7, 519–522 (1993)
43. Wang, H., Wei, Z., Gan, J., Wang, S., Huang, Z.: Personalized PageRank to a

target node, revisited. CoRR. abs/2006.11876 (2020)
44. Stewart, G.: A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix

Anal. Appl. 23, 601–614 (2002)
45. Lehoucq, R., Sorensen, D., Yang, C.: ARPACK users guide: solution of large scale

eigenvalue problems by implicitly restarted Arnoldi methods (1997)
46. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural

network evaluation. ArXiv Preprint ArXiv:1811.05868 (2018)

http://arxiv.org/abs/1811.05868

NE-WNA: A Novel Network Embedding
Framework Without Neighborhood

Aggregation

Jijie Zhang1, Yan Yang1,2(B), Yong Liu1,2(B), and Meng Han3,4,5

1 School of Computer Science and Technology, Heilongjiang University,
Harbin 150080, China

{yangyan,liuyong123456}@hlju.edu.cn
2 Key Laboratory of Database and Parallel Computing of Heilongjiang Province,

Harbin 150080, China
3 Zhejiang University, Hangzhou 310027, China

4 Binjiang Insititute of Zhejiang University, Hangzhou 310053, China
5 Zhejiang Juntong Intelligence Co. Ltd., Hangzhou 310053, China

Abstract. Graph Neural Networks (GNNs) are powerful tools in rep-
resentation learning for graphs. Most GNNs use the message passing
mechanism to obtain a distinguished feature representation. However,
due to this message passing mechanism, most existing GNNs are inher-
ently restricted by over-smoothing and poor robustness. Therefore, we
propose a simple yet effective Network Embedding framework Without
Neighborhood Aggregation (NE-WNA). Specifically, NE-WNA removes
the neighborhood aggregation operation from the message passing mech-
anism. It only takes node features as input and then obtains node repre-
sentations by a simple autoencoder. We also design an enhanced neigh-
boring contrastive (ENContrast) loss to incorporate the graph structure
into the node representations. In the representation space, the ENCon-
trast encourages low-order neighbors to be closer to the target node than
high-order neighbors. Experimental results show that NE-WNA enjoys
high accuracy on the node classification task and high robustness against
adversarial attacks.

Keywords: Graph Neural Networks · Autoencoder ·
Over-smoothing · Robustness

1 Introduction

In recent years, Graph Neural Networks (GNNs) [1] have received great attention
in the data mining community. They have achieved great success in many tasks
related to graph representation learning, such as node classification [2,3], graph
classification [4], link prediction [5] and so on.

Although GNNs have made significant progress in graph representation learn-
ing, most of them suffer from poor robustness and over-smoothing [6,7]. The
main idea of GNNs lies in the message passing mechanism to learn expressive
node representations. There are two important operations in the message pass-
ing mechanism: 1) Feature transformation, which is inherited from traditional
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 453–468, 2023.
https://doi.org/10.1007/978-3-031-26390-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_26&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_26

454 J. Zhang et al.

neural networks. 2) Neighborhood aggregation, which updates the representa-
tions of nodes by aggregating their neighborhood representations. This mecha-
nism will lead to poor robustness and over-smoothing. In terms of robustness,
the message passing mechanism forces each node to be highly dependent on its
neighborhoods, which makes the node easily misled by potential data noise and
thus makes GNNs vulnerable to adversarial disturbances. As a result, GNNs
are usually not robust against graph attacks [8,9]. After suffering graph attacks,
the neighborhood aggregation operation incorporates the representation of the
noisy nodes into the representation of the target node, making the learned node
representations underperform in downstream tasks. In terms of over-smoothing,
when performing the message passing, the representations of neighboring nodes
are aggregated and combined with the representation of the current node to form
an updated representation. After this process is iterated multiple times, different
nodes will have similar representations, making it difficult to distinguish between
nodes with different classes.

To address the above challenge, we propose a novel Network Embedding
framework Without Neighborhood Aggregation called NE-WNA to alleviate
over-smoothing and enhance the model’s robustness. In NE-WNA, we elabo-
rately remove the neighborhood aggregation operation in the messaging mech-
anism and only preserve the feature transformation operation to reduce the
dependence of node representations on the features of their neighbors. To exploit
graph structure information in learning the node representations, we design an
enhanced neighboring contrastive (ENContrast) loss using the graph structure
as a supervision signal. In the representation space, the ENContrast loss con-
siders the importance of different order neighbors, and it encourages low-order
neighbors to be closer to the target node than high-order neighbors. The main
contributions of this paper are summarized as follows.

– We propose a simple yet effective autoencoder-based graph learning frame-
work. Good node representation can be obtained by using only the basic
autoencoder without neighborhood aggregation.

– We design an enhanced neighboring contrastive loss that aims to incorporate
graph structure information into node representations.

– Extensive experiments show that the proposed framework outperforms the
state-of-the-art baselines. Removing the neighborhood aggregation can alle-
viate over-smoothing and enhance the robustness against adversarial attacks.

2 Related Work

2.1 Graph Neural Networks

GNNs have boosted research on graph data mining. The key to the success of
most GNNs lies in the message passing mechanism, which propagates the neigh-
bor information to the target node in an iterative manner. In the growing number
of GNN architectures, the most representative method is Graph Convolutional
Network (GCN) [10] and Graph Attention Networks (GAT) [11]. GCN learns

NE-WNA: A Novel Network Embedding Framework 455

the representation of the target node by iteratively aggregating the neighbors of
the target node. In the process of learning the target node representation, GAT
generates importance scores for all its neighbors, and then uses these importance
scores to aggregate the neighboring nodes. GCN and GAT follow coupling fea-
ture transformation and neighborhood aggregation together for representation
learning. Nevertheless, some recent work [2,7] finds that the coupling of feature
transformation and neighborhood aggregation is unnecessary and causes over-
smoothing. APPNP [12], SGC [13], SIGN [14] and S2GC [15] achieve good node
classification by separating the two operations. DropEdge [16] is introduced to
alleviate the over-smoothing by randomly dropping some edges in graph during
each training epoch. GCNII [17] obtains better results by applying two sim-
ple techniques, initial residuals and identity mapping, to graph convolutional
networks. In addition, GNNs can be easily fooled by graph adversarial attacks.
Many novel defense approaches, like GCN-Jaccard [18], GCN-SVD [19] and Pro-
GNN [20], have been proposed to defend against different types of graph adver-
sarial attacks.

2.2 Graph Contrastive Learning

Contrastive learning is self-supervised learning [21,22] method whose main idea
is to train the feature encoder by making the positive samples as close as
possible and the negative samples as far away as possible in the representa-
tion space. Recently, researchers have been focusing on applying contrastive
learning techniques to graph representation learning tasks. This series of tech-
niques have achieved good results and is known as Graph Contrastive Learning
(GCL) [23,24]. For a given large amount of unlabeled graph data, the GCL
aims to train a graph encoder, which currently generally refers to a GNN. In
contrast, instead of using GNN as a feature encoder and data augmentation
techniques in GCL, we use the autoencoder as the feature encoder and the adja-
cency matrix as the supervisory signal for the contrast. GCL’s objective aims to
pull relevant node representations together while pushing irrelevant node repre-
sentations away. It fits well with our idea of using the adjacency matrix to guide
the contrast of neighboring nodes.

2.3 Auto-Encoder

Currently, more deep models are beginning to be designed for graph-structured
data. For example, autoencoders have been extended for graph representation
learning on graph-structured data. The autoencoder architecture, which extracts
complex features using only unlabeled data, allows deep learning techniques to
be applied to a broader range of domains. SDNE [25] uses the deep autoencoder
with multiple non-linear layers to capture the first and second-order proximities.
SDCN [26] converts raw data into low-dimensional representations and then
decodes low-dimensional representations to reconstruct the input node represen-
tations. In this work, we only use the basic autoencoder [27] to learn represen-
tations for raw data.

456 J. Zhang et al.

Fig. 1. The framework of our proposed NE-WNA. The input data X is passed through
an autoencoder and a softmax classifier to obtain the prediction probabilities Z of nodes
in different classes. The cross-entropy loss Lsup, the reconstruction loss LAE and the
enhanced neighboring contrastive loss LENC are used to guide the learning of the model.
Lsup is constructed by Z and node labels. LAE is constructed by the reconstructed data
X̂ and the input data X. LENC is constructed by Z and the enhanced adjacency matrix
Ã which is summed by the different order powers of the normalized adjacency matrix,
such as Â1, Â2, Â3, · · · , Âk.

3 Methodology

In this section, we introduce our proposed NE-WNA, where the overall frame-
work is shown in Fig. 1. NE-WNA is composed of two key components: autoen-
coder and enhanced neighboring contrastive loss. We will describe our proposed
model in detail in the following.

3.1 Preliminaries

Let G = (V, E) denote a graph, where V = {v1, v2, . . . , vN} is a set of N nodes,
E ⊆ V ×V is a set of |E| = M edges between nodes. G is associated with a feature
matrix X = {x1,x2 . . . ,xN} in which xi ∈ R

d represents the feature vector of
node vi, and an adjacency matrix A ∈ R

N×N where Aij = 1 iff (vi, vj) ∈ E and
Aij = 0 otherwise.

3.2 Auto-Encoder Module

In our model, the basic autoencoder is used as a feature encoder in order to
reduce the complexity of the model. Assume that the encoder and decoder parts

NE-WNA: A Novel Network Embedding Framework 457

have L layers each and � represents the �-th layer. The processing of the encoder
is defined as:

H(�)
e = σ

(
W(�)

e H(�−1)
e + b(�)

e

)
, (1)

where σ(·) is the activation function and we apply Relu. Here W(�)
e and b(�)

e are
the trainable weight matrix and bias of the �-th layer in the encoder, respectively.
H(�−1)

e and H(�)
e are node embeddings of layer � − 1 and layer � in the encoder

respectively while H(0)
e is set to raw feature matrix X. Similarly, the decoder

part is defined as:
H(�)

d = σ
(
W(�)

d H(�−1)
d + b(�)

d

)
, (2)

where the input of the decoder part is H(0)
d = H(L)

e , W(�)
d and b(�)

d are the
trainable weight matrix and bias of the �-th layer in the decoder, respectively.
H(�−1)

d and H(�)
d are node embeddings of layer � − 1 and layer � in the decoder

respectively. The output of the decoder part is the reconstruction of the raw
feature matrix X̂ = H(L)

d . The corresponding reconstruction loss is defined as:

LAE =
1

2N

N∑
i=1

‖xi − x̂i‖22 =
1

2N
‖X − X̂‖2F . (3)

3.3 Enhanced Neighboring Contrastive Loss

Autoencoder is able to learn the useful representations from the data itself while
ignoring the graph structure information. To be able to incorporate graph struc-
ture information into the autoencoder-specific representation, it is intuitive that
connected nodes should be similar to each other and unconnected nodes should
be far apart in the representation space. This fits well with the idea of con-
trastive learning. With this motivation, we propose an Enhanced Neighboring
Contrastive (ENContrast) loss, which enables autoencoder-based models to learn
graph structure without neighborhood aggregation.

Before describing the ENContrast loss in detail, we first introduce the
enhanced adjacency matrix. By summing different order powers of the normal-
ized adjacency matrix, we obtain the enhanced adjacency matrix as:

Ã =
k∑

i=1

Â(i), (4)

where Â = D̃(−1/2)(A + I)D̃(−1/2), D̃ = D + I, Dii =
∑

j Aij . Many recent
studies leverage generalized PageRank matrix [12], which is formulated with the
summation of different order powers of the normalized adjacency matrix with
coefficients. However, we found through subsequent experiments that a simplified
version of PageRank (e.g., all coefficients are 1) achieves better results. Therefore,
we use Eq. (4) to obtain the enhanced normalized adjacency matrix. When k
tends to ∞, Â∞ is

Â∞
i,j =

(di + 1)1/2 (dj + 1)1/2

2M + N
, (5)

458 J. Zhang et al.

where M represents the number of edges and N represents the number of nodes,
di represents the degree of the node vi. This shows that after an infinite number of
multiplications, the influence of node vi on vj is only determined by their degree.
As shown in Fig. 2, the connection weights of the target node and its each order
neighbors will be very close as k gradually increases. The target node’s low-order
neighbors usually have more influence on the target node; in other words, the
information of the node’s low-order neighbors is more important. The enhanced
adjacency matrix Ã increases the connection weight between the target node and
its low-order neighbors as k gradually increases, it can enhance the influence of
the target node’s low-order neighbors on it during the contrast process.

Fig. 2. GNNs smooth the representation of each node via node propagation. As the
propagation layers deepen, the connection weights of the target node and its each order
neighbors gradually approach.

In the ENContrast loss, for each node, its k-hop neighbors are regarded as the
positive samples, while the other nodes are sampled as the negative ones. Since
the enhanced adjacency matrix increases the connection weight of the target node
with its low-order neighbors, the model will pay more attention to the contrast
of the target node with its low-order neighbors in the process of guiding the
model learning. In representation space, the loss encourages low-order neighbors
in positive samples to be closer to the target node than high-order neighbors in
positive samples. At the same time, it pushes negative samples away from the
target node. In detail, the ENContrast loss for the node vi can be formulated as:

�i = − log

∑N
j=1 1[j �=i]Ãij exp (sim (Zi,Zj) /τ)
∑N

q=1 1[q �=i] exp (sim (Zi,Zq) /τ)
, (6)

where sim denotes the cosine similarity and τ denotes the temperature param-
eter. 1[j �=i] represents the indicator function, which is 1 when i and j are not
equal and 0 otherwise. Ãij denotes the strength of the connection between node
vi and vj and is a non-zero value only if node vj is the k-hop neighbor of node
vi. Zi denotes the prediction probabilities of node vi on different classes, which
is obtained by taking the node representations of the autoencoder H(L)

e as input
to a softmax classifier. The detailed definition is as follows.

Z = softmax
(
WH(L)

e

)
, (7)

NE-WNA: A Novel Network Embedding Framework 459

where Z denotes the prediction probabilities of nodes on different classes, and
W are the trainable weight matrix of softmax classifier.

The corresponding ENContrast loss is defined as:

LENC =
1
N

N∑
i=1

�i. (8)

Besides the ENContrast loss, we also have a traditional cross-entropy loss for
node classification. The cross-entropy loss for labeled noes can be calculated as:

Lsup = −
∑
i∈Vl

C∑
p=1

Y[i,p] lnZ[i,p], (9)

where Vl is the set of labeled nodes and Y ∈ R
N×C is the label indicator matrix,

C is the number of classes. Y[i,p] is 1 when node vi belonging to class p and 0
otherwise. Z[i,p] denotes the probability of node vi belonging to class p.

In total, we define the final loss of NE-WNA as a combination of three losses:

L = Lsup + αLENC + βLAE, (10)

where α and β is the weighting coefficient to balance these losses.

Algorithm 1. NE-WNA
Input: Adjacency matrix A, raw data X, number of layers of the autoencoder
L, the order of the adjacency matrix k, learning rate η, balance coefficient α and
β, an autoencoder-based model f(X, Θ).
Output: Prediction Z.
1: for i = 1 to k do
2: Precompute Â(i).
3: end for
4: Compute the enhanced adjacency matrix Ã via Eq. (4).
5: while not convergence do
6: for � = 1 to L do
7: Generate embeddings H(�)

e via Eq. (1) and H(�)
d via Eq. (2).

8: end for
9: Compute autoencoder reconstruction loss LAE via Eq. (3).

10: Generate the prediction probabilities Z via Eq. (7).
11: Compute the enhanced neighboring contrastive loss LENC via Eq. (6) and

Eq.(8).
12: Compute the cross-entropy loss Lsup via Eq. (9).
13: Update the parameters Θ by gradients descending: Θ = Θ −

η∇Θ (Lsup + αLENC + βLAE).
14: end while

460 J. Zhang et al.

3.4 Algorithm and Complexity Analysis

Algorithm 1 outlines NE-WNA’s training process. Line 1–4 represents the pre-
computation procedure of the enhanced adjacency matrix. Line 5–14 represents
the training process of the model.

Table 1. Complexity Analysis for existing GNNs. N , M , and d are the number of
nodes, edges, and feature dimensions (assumed fixed for all layers), respectively. k
represents the power of the normalized adjacency matrix. L represents the number of
layers of feature transformation. For the coupled GNNs, we always have k = L.

Type Model Preprocessing Training Inference

Coupled
GNNs

GCN – O(
LMd2

) O(
LMd2

)

GAT – O(
LMd + LNd2

) O(
LMd + LNd2

)

Decoupled
GNNs

SGC O(kMd) O(
Nd2

) O(
Nd2

)

S2GC O(kMd) O(
Nd2

) O(
Nd2

)

SIGN O(kMd) O(
LNd2

) O(
LNd2

)

NE-WNA O(
k2M

) O(
LNd2

) O(
LNd2

)

Table 1 compares the asymptotic complexity of NE-WNA with several repre-
sentative GNNs. Because the operation of GCN can be efficiently implemented
using sparse matrix, the time complexity is linear with the number of edges M .
In the stage of the preprocessing, the time complexity of most decoupled mod-
els is O(kMd) and the time complexity of NE-WNA is O(

k2M
)
. Since k � d,

NE-WNA have smaller preprocessing complexity than decoupled GNNs. Com-
pared with the coupled GNNs, NE-WNA have smaller training and inference
complexity, i.e., higher efficiency.

4 Experiments

To evaluate the effectiveness of our proposed NE-WNA, we conduct exten-
sive experiments on node classification tasks. First, we introduced the datasets,
experimental environment and parameter settings. Then, we compare NE-WNA
with the previous state-of-the-art baselines on node classification to prove the
superiority of NE-WNA. Finally, we validate the proposed model further in terms
of ablation study, over-smoothing, robustness, and visualization.

4.1 Datasets

We conduct experiments on six datasets: three citation networks (Cora [10],
CiteSeer [10], PubMed [10]), two co-purchase networks (Amazon Photo [28],
Amazon Computers [28]) and one co-author network (Coauthor CS [28]). We
use the same train/validation/test splits as [10] for citation networks. For the
other datasets, we randomly select 20 labeled nodes per class as the training set,
30 labeled nodes per class as the validation set, and the remaining nodes as the
test set. The statistics of these datasets are summarized in Table 2.

NE-WNA: A Novel Network Embedding Framework 461

Table 2. Statistics of datasets.

Dataset Nodes Edges Features Classes Train/Val/Test

Cora 2708 5278 1433 7 140/500/1000
CiteSeer 3327 4552 3703 6 120/500/1000
PubMed 19717 44324 500 3 60/500/1000
Amazon Computers 13381 245778 767 10 200/300/12881
Amazon Photo 7487 119043 745 8 160/240/7087
Coauthor CS 18333 81894 6805 15 300/450/17583

Table 3. Hyper-parameter specifications.

DataSet α β τ k L Learning rate Weight decay

Cora 2 3 0.5 4 3 5e−3 5e−4
CiteSeer 1 2 0.5 4 3 1e−2 5e−4
PubMed 10 1 0.5 4 3 1e−2 5e−4
Amazon Computers 30 3 4 6 3 5e−3 5e−4
Amazon Photo 25 3 4 5 3 5e−3 5e−4
Coauthor CS 10 1 1 2 3 1e−2 5e−3

4.2 Implementation and Parameter Settings

The experiments are conducted on a machine with Intel(R) Core(TM) i9-
10980XE CPU @ 3.00GHz, and a single NVIDIA GeForce RTX 3090 with 24GB
GPU memory. The operating system of the machine is Ubuntu 18.04. As for soft-
ware versions, we use Python 3.8, Pytorch 1.9.1, Pytorch Geometric 2.0.1 [29],
and CUDA 11.1. The hyper-parameters in each baseline are set according to the
original paper if available. We perform a grid search to tune the hyper-parameters
for NE-WNA based on the accuracy of the validation set. α is obtained from a
search of range 1 to 30 with step 1, β is obtained from a search of range 1 to
6 with step 1, τ is obtained from a search of range 1 to 4 with step 0.5, k is
obtained from a search of range 1 to 7 with step 1, L is set to 3. Adam opti-
mizer is used on all datasets, the learning rate is chosen from {5e − 3, 1e − 2},
the weight decay is chosen from {5e − 4, 5e − 3}. The detailed hyper-parameter
settings for NE-WNA is in Table 3. Our data and code are publicly available1.

4.3 Node Classification Results

We choose the following baseline methods: GCN [10], GAT [11], JK-Net [30],
APPNP [12], SGC [13], SIGN [14], S2GC [15], DropEdge [16] and GCNII [17].
To alleviate the influence of randomness, we repeat each method 100 times and
report the mean performance and the standard deviations. The experimental
results are summarized in Table 4. On Cora, NE-WNA is comparable with other

1 https://github.com/YJ199804/NE-WNA.

https://github.com/YJ199804/NE-WNA

462 J. Zhang et al.

Table 4. Results on all datasets in terms of classification accuracy.

Model Cora CiteSeer PubMed Amazon
Computers

Amazon
Photo

Coauthor CS

GCN 81.3 ± 0.6 71.1 ± 0.8 78.9 ± 0.5 82.6 ± 2.0 91.2 ± 1.2 91.0 ± 0.5

GAT 83.1 ± 0.4 72.5 ± 0.7 79.0 ± 0.3 80.1 ± 0.6 90.8 ± 0.9 90.5 ± 0.6

JK-Net 81.8 ± 0.5 70.8 ± 0.7 78.8 ± 0.5 81.9 ± 0.8 91.9 ± 0.7 89.8 ± 0.7

APPNP 83.3 ± 0.5 71.8 ± 0.4 80.1 ± 0.2 81.7 ± 0.3 91.4 ± 0.3 91.8 ± 0.4

SGC 81.0 ± 0.1 71.3 ± 0.3 78.9 ± 0.2 82.1 ± 0.7 91.5 ± 0.8 90.3 ± 0.5

SIGN 82.2 ± 0.4 72.4 ± 0.5 79.3 ± 0.6 82.8 ± 0.7 91.7 ± 0.8 91.8 ± 0.9

S2GC 82.6 ± 0.5 72.9 ± 0.2 79.8 ± 0.3 82.9 ± 0.9 91.6 ± 0.6 91.4 ± 0.5

DropEdge 82.8 ± 0.2 72.3 ± 0.4 79.6 ± 0.3 82.4 ± 0.7 91.3 ± 0.5 91.6 ± 0.8

GCNII 85.5 ± 0.5 73.4 ± 0.6 80.3 ± 0.4 81.9 ± 0.3 92.1 ± 0.5 92.0 ± 0.5

NE-WNA 82.8 ± 0.8 74.2 ± 0.6 82.5 ± 0.7 84.7 ± 1.4 93.2 ± 0.7 92.5 ± 0.6

Table 5. Ablation study results in terms of accuracy of node classification.

Ablation Cora CiteSeer PubMed Amazon
Photo

Amazon
Computers

Coauthor CS

NE-WNA 82.8 ± 0.8 74.2 ± 0.6 82.5 ± 0.7 93.2 ± 0.7 84.7 ± 1.4 92.5 ± 0.6

w/o ENContrast 81.9 ± 0.8 73.7 ± 0.9 81.2 ± 1.0 92.5 ± 0.6 83.6 ± 1.5 91.7 ± 0.6

w/o AE 80.5 ± 0.3 73.3 ± 0.8 80.7 ± 0.6 92.7 ± 0.6 79.4 ± 0.7 85.3 ± 2.1

w/o AE & ENContrast 79.5 ± 0.8 72.8 ± 0.8 80.2 ± 1.0 90.7 ± 0.7 77.8 ± 0.9 85.6 ± 1.9

methods. On the other datasets, NE-WNA performs better than the representa-
tive baselines by significant margins and outperforms the best baseline of each
dataset by a margin of 0.5% to 2.9%. While most baselines use a multi-layer
perceptron (MLP) for feature transformation, our proposed framework uses an
autoencoder for feature transformation, which allows us to better extract infor-
mation from the data itself. By removing neighborhood aggregation, the target
node does not rely excessively on its multi-hop neighbors, which allows it to
expand the receptive fields while keeping the node representation distinguish-
able and able to obtain more structural information.

4.4 Ablation Study

We conduct an ablation study to examine the contributions of different compo-
nents in NE-WNA. Specifically, we build the following variants:

– Without Enhanced Neighborhood Contrast (ENContrast): We only
use the k-power of the normalized adjacency matrix to construct the neigh-
boring contrastive loss, i.e., Ã = Â(k).

– Without Auto-Encoder (AE): We use the MLP-based model to replace
the AutoEncoder-based model.

– Without Auto-Encoder and Enhanced Neighborhood Contrast (AE
& ENContrast): We use the MLP-based model to replace the autoencoder-
based model and the k-power of the normalized adjacency matrix to construct
the neighboring contrastive loss.

NE-WNA: A Novel Network Embedding Framework 463

In Table 5, we have two observations. First, all NE-WNA variants show
a significant performance degradation compared to the full model, indicating
that each component contributes to the performance of NE-WNA. Second, the
autoencoder does surpass the MLP in feature extraction ability.

Fig. 3. Over-smoothing comparison

4.5 Over-Smoothing Analysis

We study the NE-WNA’s ability to alleviate over-smoothing by using the classi-
fication results in the case of stacking different layers. Figure 3 shows the classi-
fication accuracy of different models. For the baselines, k denotes the number of
layers of the model. Each method makes use of the k-hop neighbors of the tar-
get node. As k increases, more and more neighboring nodes are utilized, which
inevitably suffers the over-smoothing. Figure 3 suggests that NE-WNA can bet-
ter alleviate over-smoothing while GCN and GAT show significant performance
degradation as the layer deepen. On most datasets, both NE-WNA and the cur-
rent state-of-the-art method GCNII show an increase in performance with deeper
layers. In particular, for a total of 6 datasets, NE-WNA outperforms GCNII for
5 datasets. It is worth mentioning that the optimal effect reported in the original
paper on GCNII is achieved at dozens of layers, and our framework can exceed
its optimal effect at shallow layers.

4.6 Parameter Analysis

NE-WNA involves a number of parameters and we examine how the different
choices of parameters affect the performance of NE-WNA on all datasets. The

464 J. Zhang et al.

Fig. 4. The performance of NE-WNA with varying different hyperparameters on all
datasets.

results of the validation set are shown in Fig. 4. We find that NE-WNA is robust
to the k and β. k, β takes smaller values to achieve good results, indicating that
the model does not need to expand the contrastive fields of nodes excessively and
does not need to excessively extract information from the data itself, which can
greatly reduce the training difficulty of the model and speed up the convergence
of the model. As the α increases, the performance of the model improves on
most of the datasets, indicating that increasing the contrast strength between
nodes helps to learn a better node representation. With increasing τ , the model
performance improves on the Amazon Photo and Amazon Computers datasets.
Still, it decreases on other datasets, probably because other datasets are more
sparse than these two datasets. The number of multi-hop neighbors of the target
nodes in the Amazon Photo and Amazon Computers datasets is higher. By
increasing τ , the data distribution will become flat and more neighbor nodes
will be considered in the backpropagation process, so that the model can learn
a more comprehensive node representation.

4.7 Robustness Comparison

Recent research has demonstrated that GNNs are vulnerable to adversarial
attacks [18,31]. We evaluated the robustness of NE-WNA against two types
of attacks based on node classification performance. The two types of attacks
are nettack [9] and metattack [32].

We analyze the robustness of different models on Cora, CiteSeer and PubMed.
We randomly divide all nodes into 10%, 10% and 80% for training, validation
and testing. We used GCN, GAT, GCN-Jaccard, GCN-SVD and Pro-GNN for
comparison. For the current state-of-the-art defense models GCN-Jaccard, GCN-
SVD and Pro-GNN, we use DeepRobust [33] to replicate them. We evaluate the
node classification accuracy of different methods against nettack and metattack.
For nettack, we perturb each target node from 1 to 5 times with a step size of
1. The target nodes are those with degree greater than 10 in the test set. The
node classification accuracy on target nodes is shown in Fig. 5. For metattack,
we perturb the edges from 0 to 25% with a step of 5%. The node classification
accuracy is shown in Fig. 6. As shown in Fig. 5 and Fig. 6, NE-WNA shows com-
parable performance to Pro-GNN on Cora. Our method consistently outperforms
other methods under different attacks on CiteSeer and PubMed. For example,

NE-WNA: A Novel Network Embedding Framework 465

on the CiteSeer dataset at 5 perturbations per targeted node, NE-WNA achieves
over 31% improvement over the state-of-the-art defense method Pro-GNN. The
neighborhood aggregation operation incorporates information from neighboring
nodes into the target node, and information from noisy nodes is incorporated
into the target node when subjected to adversarial attacks. By removing the
neighborhood aggregation operation, the noise generated by adversarial attack
is not excessively incorporated into the target node. Therefore, NE-WNA can
be robust to adversarial attacks.

Fig. 5. Results of different models under nettack.

Fig. 6. Results of different models under metattack.

4.8 Loss Validation

To further verify the effectiveness of the ENContrast loss, we use the neighboring
contrastive (NContrast) loss for comparison. The NContrast loss is defined as:

LNConcrast =
1
N

N∑
i=1

(
− log

∑N
j=1 1[j �=i]Â

(k)
ij exp (sim (Zi,Zj) /τ)

∑N
q=1 1[q �=i] exp (sim (Zi,Zq) /τ)

)
(11)

The NContrast loss only uses the k-power of the normalized adjacency matrix.
It is worth noting that the model with NContrast loss in this section is the
same as the first variant in the ablation study. This section is done to further

466 J. Zhang et al.

Fig. 7. Loss comparison

Fig. 8. t-SNE plots for Cora dataset.

experimental verification of the effectiveness of ENContrast loss under the influ-
ence of the different number of layers. As shown in Fig. 7, the ENContast loss
consistently improves the performance of the autoencoder than the NContast
loss on all datasets. Specifically, the ENContrast loss improves the performance
of the autoencoder by a more significant margin than the NContast loss when
the order is higher. The results also demonstrate the validity of focusing more
on comparing the node’s low-order neighbors when the node’s different order
neighbors are positive samples.

4.9 Visualization of Embeddings

To provide a more intuitive understanding of the learned node embeddings, we
visualize node embeddings of AE and NE-WNA by using t-SNE [34]. Each point
represents a test node on Cora, and the color represents the node label. The
results are shown in Fig. 8. We clearly observe that the nodes are better classified

NE-WNA: A Novel Network Embedding Framework 467

in NE-WNA than AE, which means that NE-WNA captures more detailed class
information.

5 Conclusion

In this paper, we propose a simple yet effective autoencoder-based graph learning
framework. We remove the neighborhood aggregation commonly used by GNNs.
The enhanced neighboring contrastive loss is designed to guide the autoencoder
to learn the node representation. By removing the neighborhood aggregation,
our framework is significantly more effective in alleviating over-smoothing and
is robust to adversarial attacks. Extensive experiments on six benchmark graph
datasets demonstrate the high accuracy and robustness of NE-WNA against the
state-of-the-art GNNs.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (No. 61972135), and the Natural Science Foundation of Hei-
longjiang Province in China (No. LH2020F043).

References

1. Waikhom, L., Patgiri, R.: Graph neural networks: methods, applications, and
opportunities. arXiv preprint arXiv:2108.10733 (2021)

2. Feng, W., et al.: Graph random neural networks for semi-supervised learning on
graphs. In: NIPS (2020)

3. Feng, W., et al.: GRAND+: scalable graph random neural networks. In: WWW,
pp. 3248–3258 (2022)

4. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: ICLR (2019)

5. Wang, X., He, X., Wang, M., Feng, F., Chua, T.: Neural graph collaborative fil-
tering. In: SIGIR, pp. 165–174 (2019)

6. Li, Q., Han, Z., Wu, X.: Deeper insights into graph convolutional networks for
semi-supervised learning. In: AAAI, pp. 3538–3545 (2018)

7. Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power
for node classification. In: ICLR (2020)

8. Zhu, D., Zhang, Z., Cui, P., Zhu, W.: Robust graph convolutional networks against
adversarial attacks. In: SIGKDD, pp. 1399–1407 (2019)

9. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural net-
works for graph data. In: SIGKDD, pp. 2847–2856 (2018)

10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

11. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

12. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then Propagate: graph neural
networks meet personalized PageRank. In: ICLR (2019)

13. Wu, F., de Souza Jr., A.H., Zhang, T., Fifty, C., Yu, T., Weinberger, K.Q.: Sim-
plifying graph convolutional networks. In: ICML, pp. 6861–6871 (2019)

http://arxiv.org/abs/2108.10733

468 J. Zhang et al.

14. Rossi, E., Frasca, F., Chamberlain, B., Eynard, D., Bronstein, M.M., Monti, F.:
SIGN: scalable inception graph neural networks. arXiv preprint arXiv:2004.11198
(2020)

15. Zhu, H., Koniusz, P.: Simple spectral graph convolution. In: ICLR (2021)
16. Rong, Y., Huang, W., Xu, T., Huang, J.: DropEdge: towards deep graph convolu-

tional networks on node classification. In: ICLR (2020)
17. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional

networks. In: ICML, pp. 1725–1735 (2020)
18. Wu, H., Wang, C., Tyshetskiy, Y., Docherty, A., Lu, K., Zhu, L.: Adversarial

examples for graph data: deep insights into attack and defense. In: IJCAI, pp.
4816–4823 (2019)

19. Entezari, N., Al-Sayouri, S.A., Darvishzadeh, A., Papalexakis, E.E.: All you need
is low (Rank): defending against adversarial attacks on graphs. In: WSDM, pp.
169–177 (2020)

20. Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., Tang, J.: Graph structure learning
for robust graph neural networks. In: SIGKDD, pp. 66–74 (2020)

21. Wu, L., Lin, H., Gao, Z., Tan, C., Li, S.Z.: Self-supervised on graphs: contrastive,
generative, or predictive. arXiv preprint arXiv:2105.07342 (2021)

22. Liu, Y., Pan, S., Jin, M., Zhou, C., Xia, F., Yu, P.S.: Graph self-supervised learning:
a survey. arXiv preprint arXiv:2103.00111 (2021)

23. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive repre-
sentation learning. arXiv preprint arXiv:2006.04131 (2020)

24. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning
with adaptive augmentation. In: WWW, pp. 2069–2080 (2021)

25. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: SIGKDD, pp.
1225–1234 (2016)

26. Bo, D., Wang, X., Shi, C., Zhu, M., Lu, E., Cui, P.: Structural deep clustering
network. In: WWW, pp. 1400–1410 (2020)

27. Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of data with neural
networks. Science 313, 504–507 (2006)

28. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural
network evaluation. arXiv preprint arXiv:1811.05868 (2018)

29. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric.
arXiv preprint arXiv:1903.02428 (2019)

30. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.: Representation
learning on graphs with jumping knowledge networks. In: ICML, pp. 5449–5458
(2018)

31. Zhu, Y., Xu, W., Zhang, J., Liu, Q., Wu, S., Wang, L.: Deep graph structure learn-
ing for robust representations: a survey. arXiv preprint arXiv:2103.03036 (2021)

32. Zügner, D., Günnemann, S.: Adversarial attacks on graph neural networks via meta
learning. In: ICLR (2019)

33. Li, Y., Jin, W., Xu, H., Tang, J.: DeepRobust: a PyTorch library for adversarial
attacks and defenses. arXiv preprint arXiv:2005.06149 (2020)

34. Van Der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(Nov), 2579–2605 (2008)

http://arxiv.org/abs/2004.11198
http://arxiv.org/abs/2105.07342
http://arxiv.org/abs/2103.00111
http://arxiv.org/abs/2006.04131
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/2103.03036
http://arxiv.org/abs/2005.06149

Transforming PageRank
into an Infinite-Depth Graph Neural

Network

Andreas Roth(B) and Thomas Liebig

Artificial Intelligence Group, TU Dortmund, Dortmund, Germany
{andreas.roth,thomas.liebig}@tu-dortmund.de

Abstract. Popular graph neural networks are shallow models, despite
the success of very deep architectures in other application domains of
deep learning. This reduces the modeling capacity and leaves models
unable to capture long-range relationships. The primary reason for the
shallow design results from over-smoothing, which leads node states to
become more similar with increased depth. We build on the close con-
nection between GNNs and PageRank, for which personalized PageR-
ank introduces the consideration of a personalization vector. Adopting
this idea, we propose the Personalized PageRank Graph Neural Net-
work (PPRGNN), which extends the graph convolutional network to an
infinite-depth model that has a chance to reset the neighbor aggrega-
tion back to the initial state in each iteration. We introduce a nicely
interpretable tweak to the chance of resetting and prove the convergence
of our approach to a unique solution without placing any constraints,
even when taking infinitely many neighbor aggregations. As in person-
alized PageRank, our result does not suffer from over-smoothing. While
doing so, time complexity remains linear while we keep memory com-
plexity constant, independently of the depth of the network, making it
scale well to large graphs. We empirically show the effectiveness of our
approach for various node and graph classification tasks. PPRGNN out-
performs comparable methods in almost all cases. (Our code is available
at: https://github.com/roth-andreas/pprgnn.)

Keywords: Machine learning · Graph neural networks · PageRank

1 Introduction

Graph-structured data is found in many real-world applications ranging from
social networks [26] to biological structures [28]. Steadily growing amounts of
data lead to emerging solutions that can extract relevant information from these
data types. Tasks like providing recommendations [41], predicting the state of
traffic [8] or the classification of entire graphs into distinct categories [39] are
some of the tasks of research interest. Approaches based on deep learning have

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26390-3_27.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 469–484, 2023.
https://doi.org/10.1007/978-3-031-26390-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_27&domain=pdf
http://orcid.org/0000-0002-0515-7635
http://orcid.org/0000-0002-9841-1101
https://github.com/roth-andreas/pprgnn.
https://doi.org/10.1007/978-3-031-26390-3_27
https://doi.org/10.1007/978-3-031-26390-3_27

470 A. Roth and T. Liebig

found great success for grid-structured data, e.g., in image processing [20] and
natural language processing [34]. Graph Neural Networks (GNNs) [21] adopt the
ideas from convolutions in euclidean space for irregular non-euclidean domains.
These methods directly consider the graph structure when performing convolu-
tion operations.

One of the challenges of GNNs is to capture long-range dependencies.
Recently popular methods use an aggregation scheme, in which k layers of graph
convolutions combine the information from k-hops around each node [21,35].
Several issues, most dominantly over-smoothing [24,38] and memory consump-
tion [6,17,42] were found to prevent deep models, as in image processing [20].
Several recent efforts explore options to enable more layers and even formu-
late infinite-depth equations. However, previous work still only allows a limited
depth [30,38] or places hard constraints on the parameters [16] or the architec-
ture [2].

As identified by [22], GNNs are closely related to PageRank [27], which in
its basic version only depends on the graph structure, not on the initial distri-
bution. Personalized PageRank [27] introduces a chance to reset PageRank to a
teleportation vector, allowing the result to depend not only on the graph struc-
ture but also on an initial distribution. We show how the idea of personalization
can be adopted to GNNs and propose the Personalized PageRank Graph Neu-
ral Network (PPRGNN), an infinitely deep GNN that adds a chance to reset
the neighbor aggregation back to the initial state. In order to prove the conver-
gence of PPRGNN to a unique solution when iterating infinitely many times,
we modify the chance of resetting to be dynamic based on the distance to the
root node. As in personalized PageRank, our approach does not suffer from over-
smoothing and the locality of node features around their root nodes is preserved.
Due to the large depths, far distant information still influences resulting node
representations.

In addition, we provide rich theoretical intuition for the success of our for-
mulation and our design choices. While the depth is theoretically always infinite,
the practically effective depth is adaptive and varies depending on the learned
parameters, the graph structure, and the observed features. We also provide
a way to control the convergence rate since different levels of localization are
effective for different types of graphs [1,15]. Furthermore, contrary to previous
infinite-depth approaches, we do not impose any constraints on parameters or the
model’s architecture. To allow scaling to large graphs despite the infinite depth,
we design an efficient gradient computation that remains constant in memory and
execution time. We validate our proposed approach against comparable meth-
ods on various inductive and transductive node and graph classification tasks.
Our approach outperforms related methods in almost all cases by considerable
margins, while most other approaches are within a competitive range only for
individual tasks. The experimental execution time is also improved compared to
previous infinite-depth approaches.

The rest of our work is structured as follows. Section 2 introduces our nota-
tion and relevant basics in personalized PageRank and GNNs. We describe recent

Personalized PageRank Graph Neural Network 471

related approaches in Sect. 3. Our method is detailed in Sect. 4, and a compre-
hensive evaluation is presented in Sect. 5. We discuss our results and potential
future directions in Sect. 6.

2 Preliminaries

We represent a graph G = (V,E) as the tuple of n nodes V = {v1, v2, . . . , vn}
and a set of edges E between pairs of nodes. We construct an adjacency matrix
A ∈ R

n×n describing the connectivity between pairs of nodes from the E. Entries
aij ∈ A indicate the strength of an edge between nodes vi and vj , a zero-entry
indicates the absence of an edge. Our method assumes undirected edges, e.g.,
aij = aji, but it is straightforward to apply it to directed graphs. We use a
normalized version Ã = D−1/2AD−1/2 of the adjacency matrix, potentially
with self-loops. Each node vk has a set of F features uk ∈ R

F associated with
them. The feature matrix U ∈ R

n×F contains all nodes’ stacked feature vectors
uk. We define the node neighborhood Ni = {vj |Ãij > 0} as the set of all nodes
connected to vi.

2.1 Personalized PageRank

Our approach inherits basic concepts and intuition from personalized PageR-
ank [27], which we briefly describe here. PageRank [27] was originally introduced
to score the importance of webpages for web searches. In their work, webpages
represent individual nodes in a graph and links on these webpages are modeled
as directed edges between these nodes. The solution to PageRank is the fixed
point of the equation

r = Ar , (1)

with r ∈ R
n being the dominant eigenvector of A. The vector r can be obtained

by power iteration with an arbitrary initial r0 [27]. For an intuitive interpretation
of Eq. (1), we can interpret A as the stochastic transition matrix over the graph,
providing a connection to a random walk. Therefore the stationary probability
distribution induced by a random walk is the same as r in the limit [27]. This
also results in r only depending on the graph structure and not on prior infor-
mation available for nodes. Therefore, the authors also introduce personalized
PageRank [27]

r = (1 − α)Ar+ αu (2)

that adds a chance α as a way to teleport back to a personalization vector
u ∈ R

n representing an initial distribution over all pages. The corresponding
interpretation for a random walk is to introduce a chance to reset the random
walk to the personalization vector [27].

472 A. Roth and T. Liebig

2.2 Graph Neural Networks

Another concept we build upon are Graph Neural Networks (GNNs), specifically
their subtype of Message-Passing Neural Networks (MPNNs) [13]. GNNs apply
permutation equivariant operations to graph structured data in order to identify
task-specific features. Originating from spectral graph convolutions [18] as a
localized first-order approximation, each message-passing operation updates the
node states hi by combining the information of the direct neighborhood Ni for
each node vi [36]. The general framework can be described as a node-wise update
function

h(l+1)
i = ψ

⎛
⎝h(l)

i ,
⊕
j∈Ni

ω(h(l)
i ,h(l)

j)

⎞
⎠ , (3)

for each state hi, using some functions ω and ψ and a permutation invariant
aggregation function

⊕
. In this work, we will demonstrate our approach using

the very basic instantiation of this framework, namely the Graph Convolutional
Network (GCN) [21]. Making use of the normalized adjacency matrix Ã ∈ R

n×n,
the GCN can be expressed in matrix notation

H(l+1) = φ
(
ÃH(l)W(l)

)
(4)

using a linear transformation W ∈ R
d×d and φ as an element-wise activation

function. H(l) ∈ R
n×d contains the node states h(l)

i of all nodes after layer l. Each
layer aggregates information only from direct neighborhood Ni for each node vi.
Thus, after k such layers, each node only has access to information a maximum
of k hops away. Given this property, choosing any number k of these layers leads
to information at k+1 hops away being impossible to be considered for making
predictions. Moreover, even when the number of layers k can be selected to be
sufficient for all potentially considered graphs, a large number k leads to various
additional issues that we will describe next.

Over-Smoothing. Recent work found that stacking many layers of Eq. (4)
leads to a degradation of experimental performance that is caused by an effect
called over-smoothing [21,24,38]. Li et al. [24] show that Eq. (4) is a special form
of Laplacian smoothing leading to node representation becoming more similar
the more layers are added. They prove that Laplacian smoothing converges to a
linear combination of dominant eigenvectors. While some smoothing is needed
to share information between nodes, representations eventually become indis-
tinguishable with too much smoothing, thus making accurate data-dependant
predictions harder [24].

On a similar note, [38] find a close connection between k layers of Eq. (4) and
a k-step random walk. They find that both to converge the limit distribution
of the random walk. In the limit, a random walk becomes independent of the
root nodes and therefore loses the locality property of individual nodes. There-
fore, representations become independent of the starting node and initial node

Personalized PageRank Graph Neural Network 473

features, thus becoming indistinguishable [38]. In practice, the performance of
Eq. (4) already degrades with more than two layers in many cases [21].

Memory Complexity. Another reason that prevents GNNs from being deep
models is the memory complexity. Graphs can quickly surpass a million nodes,
which leads to out-of-memory issues due to the linear memory requirements
O(kn) in the number of layers k and the number of nodes n. Several approaches
try to lower the memory complexity by only considering samples of nodes from a
local neighborhood [17]. Due to an effect known as the neighborhood explosion,
the number of nodes in the k-hop neighborhood O(dk) explodes, with d being the
average node degree. Thus, for a large number of layers k, the benefit vanishes.
Other approaches cluster the graph into subgraphs and use these for training [6,
42], but cannot leverage the full potential of the entire graphs relationships.
Therefore, this issue needs to be considered when designing deep graph neural
networks.

3 Related Work

Several approaches aim to increase the depth of MPNNs and simultaneously
deal with over-smoothing and memory consumption. Rong et al. [30] found
over-smoothing to occur faster for nodes with many incoming edges and pro-
pose DropEdge as the equivalent to dropout in regular neural networks. They
randomly sample edges to remove during each training epoch and show that
the effect of over-smoothing gets slowed down. Klicpera et al. [23] propose a
diffusion process that they find to be beneficial for semi-supervised node clas-
sification tasks for graphs with high homophily but encounters problems with
complex graphs. Zhu et al. [45] further discuss the issue of settings with low
homophily. Li et al. [24] co-train a random walk model that explores the global
graph topology. Inspired by the findings from ResNet [20], Chen et al. [4] propose
GCNII that makes use of residual connections in two ways. In each layer, they
add an initial residual connection to the input state H(0) and an identity map-
ping to the weights, which were shown to have beneficial properties [19]. Xu et
al. [38] combine the results of all intermediate iterations in JKNet. Other works
find a rescaling of the weights to alleviate the over-smoothing problem [25,44].
While these approaches help reduce the effect of over-smoothing, they are limited
in practical depth and the issue still arises.

3.1 Infinite-Depth Graph Neural Networks

Evaluating the option of repeating iterations infinitely many times have been
analyzed in various approaches [11,14,16,22]. These methods iterate some graph
convolution until convergence by employing weight-sharing and ensuring the
convergence of their formulations. When using an equation for an infinite-depth
GNN, the result needs to converge to a unique solution. We summarize this
under the following definition of well-posedness.

474 A. Roth and T. Liebig

Definition 1 (Well-posedness). Given an input matrix X ∈ R
N×D, an equation

Y = g(X), with g being an infinitely recursive function is well-posed, if

1. The solution Y is unique
2. g(X) converges to the unique solution Y.

While the GCN (Eq. (4)) is not generally well-posed, our work proposes a
similar equation that we prove to be well-posed. We start by reviewing two recent
approaches to infinitely deep graph neural networks that serve as the starting
point for our contribution. The first [22] is derivated from the PageRank [27]
algorithm, the other is the fixed-point solution of an equilibrium equation [16].

APPNP. Klicpera et al. [22] propose a propagation scheme derived from person-
alized PageRank [27]. They identify the connection between the limit distribution
of MPNNs and PageRank, with both losing focus on the local neighborhood of
the initial state. As personalized PageRank was introduced as a solution to this
issue for PageRank [27], they adopt this idea for MPNNs. They set the personal-
ization vector r from Eq. (2) to the hidden state of all nodes H(0). A chance α to
teleport back to the root node preserves the local neighborhood with the tunable
parameter. Klicpera et al. [22] transfer this idea to MPNNs with Approximate
Personalized Propagation of Neural Predictions (APPNP) [22]

H(l+1) = (1 − α)ÃH(l) + αH(0) (5)

that repeatedly, potentially infinitely many times, aggregates the neighborhood.
They also add a chance of going back to the initial state H(0) = fθ(U), that
is be the output of previous layers fθ. They show that Eq. (5) is well-posed for
any α ∈ (0, 1],H(0) ∈ R

N×D, Ã ∈ R
N×N with det(Ã) ≤ 1. Typical normaliza-

tions Ã of the adjacency matrix satisfy this property. Notably, Eq. (5) does not
utilise any learnable parameters. They rather propose to separate the propaga-
tion scheme in Eq. (5) from the learnable part, by making H(0) = fθ(U) as node-
wise application of a MLP. This method is proposed only for semi-supervised
node classification tasks, with a softmax activation employed to transform the
output of the last iteration H(K) of Eq. (5) to class predictions.

Implicit Graph Neural Networks. Independently, Gu et al. [16] propose
the Implicit Graph Neural Network (IGNN) by adapting the general implicit
framework [10] for graph convolutions. They obtain the fixed-point solution of a
non-linear equilibrium equation

X = φ(WXÃ+ fθ(U)) (6)

by iterating it until convergence. While not being well-posed in general, they
prove the well-posedness of Eq. (6) for the specific case that λpf (|AT ⊗W|) < 1
with λpf being the Perron-Frobenius (PF) eigenvalue. They make use of the
Kronecker product ⊗ and the Perron-Frobenius theory [3]. Since Ã is fixed, the

Personalized PageRank Graph Neural Network 475

matrix of parameters W needs to be strictly constrained to fulfill λpf (|AT ⊗
W|) < 1. The set M of allowed matrices W forms an L1-ball, with any weight
matrix outside the ball not leading to convergence. Remaining inside this ball
cannot be guaranteed by regular gradient descent. Instead, after each step of
regular gradient descent, they project the result to the closest point on the
ball using projected gradient descent, for which efficient algorithms exist [9].
While their inspiring work shows great experimental results, we identify a couple
of shortcomings with. Many weight matrices cannot be used given the strict
constraint on W, hindering the model capacity. Further, the projection onto
the L1-ball changes the direction of the gradient update away from the steepest
descent. Therefore optimization steps are less effective in reducing the models’
loss. The strict constraint and the resulting projection step also add complexity
to the method’s theoretical derivation and practical implementation. Considering
different neighborhood sizes was found to be important when applying graph
algorithms to varying graph types [1,15], not having a way to control the effective
depth of the model is also unsatisfying.

4 PageRank Graph Neural Network

The solution of PageRank is the stationary probability distribution that is inde-
pendent of the input. Given the close relation between PageRank (Eq. (1)) and
MPNNs (Eq. (4)), the locality of the data and the influence of the input features
also diminish with a MPNN, as identified by [22]. As personalized PageRank was
introduced to prevent the loss of focus for PageRank [27], we introduce the Per-
sonalized PageRank Graph Neural Network (PPRGNN) based on personalized
PageRank, that similarly assures the locality of the node states in the limit. Using
the initial state fθ(U) as personalization matrix for teleportation [22], PPRGNN
can be understood as repeatedly applying graph convolutions with a chance to
teleport back to this initial state. We assure the convergence of PPRGNN to a
unique solution, so our method allows an arbitrary amount of layers - poten-
tially infinitely many - without suffering from over-smoothing. Practically, we
iterate graph convolutions until further iterations have negligible impact and
our solution is close to the limit distribution. In this work, we adopt GCNs [21],
which are the basic version of MPNNs, but these are directly replaceable by
more advanced types.

We denote the chance of traversing the graph further by αl. Rewriting the
formulation of the GCN in a similar way to personalized PageRank, we come up
with our formulation

H(l+1) = φ
(
αlÃH(l)W + fθ(U)

)
(7)

with H(0) = 0 that utilizes shared and unconstrained parameters W. Due to
the recursive nature and no constraints, exponential growth in W prevents well-
posedness for any fixed αl. The issue with having no guarantees for convergence
is that the furthest distant nodes are multiplied with the highest exponential of

476 A. Roth and T. Liebig

W, which potentially dominates the result. As in PageRank, these only depend
on the graph structure and not on the node features, leading to the loss of locality
of the resulting node features.

Our core idea to guarantee convergence of Eq. (7) without constraining the
parameters as in [16] is to reduce the chance of expanding further αl with the
distance to the root node. As the message-passing formulation is connected to
a random walk on the graph, another interpretation is to increase the chance of
resetting the random walk with the number of steps taken. When n is the number
of steps taken in that walk, we find using a decay of αn = 1

n to be sufficient for
converging to a unique solution. The recursive nature of our formulation leads to
a multiplication of all αn, resulting in the influence to decay by 1

n! . Because the
recursive application of W only leads to an exponential Wn growth, the equation
converges. For control over the effective depth, i.e., the speed of convergence and
numerical stability, we use 1

1+nε and formally prove its convergence for any ε > 0
later. We set the value for teleporting back to fθ(U) fixed to 1 because in the
limit the chance (1 − αl) would become very small for close neighbors, leading
to the same issues of over-smoothing that we described in Sect. 2.2.

Setting αl in Eq. (7) accordingly to our findings, the following issue arises:
The most distant nodes are processed first in Eq. (7), and the direct neighbors
are processed in the last iteration. This results from recursively applying the
adjacency matrix Ã on the input, leading to the initial state being transformed
k times by Ã. Thus, for calculating H(1), the expansion factor α0 needs to be
minimal, which is the opposite of using the iteration l as n.

In case we are interested in a fixed number k of total iterations, we can
directly set αl = 1

1+(k−l−1)ε for each layer l. When using a fixed number of
iterations, this approach is ready for usage directly. Since we are interested in
the case when k → ∞, starting with α0 poses a challenge.

For a theoretical analysis of the convergence of Eq. (7), an equation that
can be iterated infinitely-deep independently of k is desired. We achieve this by
setting the index variable to n = k − l resulting in the flipped equation

G(n) = φ
(
βnÃG(n+1)W + fθ (U)

)
(8)

with βn = αk−l−1 that is semantically unchanged, i.e., G(0) = H(k) for any k
used for both G and H. Calculating G(n) from a given G(n+1) can be performed
without knowing k beforehand, helping us in the theoretical analysis by expand-
ing the recursive equation infinitely deep without the need to set a fixed value
for k. It also leads to a cleaner proof of convergence, which we will provide next.
We further simplify our notation by denoting G(l;k) as the result of k iterations
performed by setting Gk+l+1 = 0, resulting in G(l).

Theorem 1. The result of G(l;k) using the equation G(n) = φ
(
βnÃG(n+1)

W +B) with βn = 1
1+nε converges to a unique solution when k → ∞ for any

l ∈ R W ∈ R
d×d, Ã ∈ R

n×n,B ∈ R
d×n, n ∈ N, ε > 0, any Lipschitz continuous

activation function φ.

Personalized PageRank Graph Neural Network 477

We refer to the supplementary material for all proofs.
Practically, for either Eq. (7) or Eq. (8) processing starts at the furthest

distant nodes, for which k needs to be known. This a challenge, because we do
not know beforehand when our convergence criterion is satisfied. As our interest
is in the limit state G(0;k) when k → ∞, we make use of a convergence threshold
ε to identify the number of required iterations

k = min{M | G(0;k) − G(0;k+1) < ε} (9)

until our solution is close to the limit and iterating further has negligible impact.
Because even the initial iteration G(k−1;1) �= G(k;1) is different, intermediate
results from G(0;k−1) cannot be reused for computing G(0;k). A full recalculation
is needed, which requires k! iterations.

Instead, we take a different route to determine k. Determining at which
iteration the difference of expanding further on the graph becomes negligible is
approximately the same as determining how far the influence of nodes in the
graph reach using our message passing scheme. To determining this, we ignore
the teleportation term and estimate the influence of the initial state fθ(U) on
the result of l iterations G(0;l) with the equation

E(l+1) = φ(αl+1ÃE(l)W) (10)

by setting E(0) = fθ(U). Unlike in Eq. (7) where we reversed the equation, the
result E(m) is equal for αl = 1

1+(m−l−1)ε and αl = 1
1+lε when we use ReLU as

φ. Note, that we start with αl+1 because this is the first α that is applied to
the teleportation matrix fθ(U). Equation (10) converges for similar reasons as
Eq. (8), only towards 0 ∈ 0d×n, which we proof with the following theorem.

Theorem 2. The equation E(l+1) = φ
(
αlÃE(l)W

)
with αl = 1

1+lε converges

to 0 ∈ 0d×n for any W ∈ R
d×d, Ã ∈ R

n×n, l ∈ N, ε > 0, any initial E(0) and
the ReLU activation function φ. The solution can be obtained by iterating the
equation. For any fixed number of iterations m, the solution E(m) is the same
as using αl = 1

1+(m−l−1)ε .

Since we can evaluate Eq. (10) directly by iterating until our convergence
criterion is met, we find the required number of steps with

k′ = min{l | E(l) < ε} . (11)

At this point the effect of the initial state on nodes of distance l is negligible.
We use k′ as k in Eq. (8) and execute the forward pass. The result H(k′) gets
passed onto the next operation in our model, as with other graph convolutions.

4.1 Efficient Optimization

While we do not use Eq. (10) for gradient computation, even tracking only Eq. (7)
with autograd software would still lead to memory consumption that is linear

478 A. Roth and T. Liebig

in the number of layers. Similarly as in the forward pass, the gradients converge
to 0 for distant nodes. We iterate the computation of gradients until the same
convergence criterion is met. Because of faster converge in the backward pass,
this allows the optimization of the model with reduced memory consumption. We
will further limit the iterations to guarantee constant complexity, independently
of the number of iterations performed.

For calculating derivatives we use the reformulation from Eq. (8). We intro-
duce additional notation and set Ŷ = fθ(G(0)) as the output of our model,
Y as the target, and L = l(Ŷ,Y) to be our loss calculated with any differ-
entiable loss function l. We are interested in the partial derivatives of our loss
L with respect to the parameters W and the input state B. We let autograd
solve the derivation ∂L

∂G(0) and apply the chain rule for other partial derivatives.
To simplify our notation for the application of the chain rule, we further define
Z(n) = αnÃG(n+1)W + B and G(n) = φ(Z(n)). All further partial derivatives
can be calculated by using the following equations:

∂L

∂G(n)
= αnÃT ∂L

∂Z(n−1)
WT (12)

∂L

∂Z(n)
= φ′

(
αnÃG(n+1)W +B

)
� ∂L

∂G(n)
(13)

∂L

∂W
=

∞∑
n=0

αn

(
ÃG(n+1)

)T ∂L

∂Z(n)
(14)

∂L

∂B
=

∞∑
n=0

∂L

∂Z(n)
(15)

The partial derivatives ∂L
∂W and ∂L

∂B converge for similar reasons as before, so we
iterate Eq. (14) and Eq. (15) until our convergence criterion is met. The conver-
gence rate turns out to be much faster than the convergence rate of the forward
pass, which results in reduced practical memory consumption. To theoretically
guarantee constant memory consumption, we only consider a fixed amount n
of elements in the sum, similarly to the effectiveness of Truncated Backpropa-
gation Through Time (TBPTT) [33] for sequential data. This also reduces the
time complexity of the backward pass to be constant. We found this restriction
to have negligible impact even for small values of N . Depending on available
memory, we either store the intermediate results for gradient computation or
use gradient checkpointing [5] with a few additional forward iterations. Note,
that for the backward step the solutions of G(0), . . . ,G(n) are needed explicitly.
We assure the convergence of all used G(i) by using the fact that G(n;k) < G(0;k)

and therefore compute G(0;k+n) instead of G(0;k) in the initial forward pass.

5 Experiments

We evaluate the effectiveness of PPRGNN on various public benchmark
datasets and compare these results to popular methods and other infinite-depth

Personalized PageRank Graph Neural Network 479

Table 1. Properties of datasets used for evalu-
ation.

Dataset # of Graphs Avg. # of nodes # of classes

Amazon 1 334 863 58

PPI 22 2373 121

MUTAG 188 17.9 2

PTC 344 25.5 2

COX2 467 41.2 2

PROTEINS 1113 39.1 2

NCI1 4110 29.8 2

Table 2. Micro-F1-Scores for PPI.

Method Micro-F1-Score

MLP 46.2

GCN 59.2

SSE 83.6

GAT 97.3

IGNN 97.6

APPNP 44.8

PPRGNN 98.9

approaches. We evaluate our approach on an inductive node classification task, a
transductive node classification task, and five graph classification tasks. Table 1
shows detailed properties of all used datasets. We closely follow the experimental
settings of IGNN [16] and inherit their architectures, only replacing their for-
mulation directly with ours. Thus the number of parameters is the same, so the
comparison with their approach is the most meaningful for us. We apply APPNP
to all tasks using their setup with 10 iterations. We further compare PPRGNN
with a series of other popular methods for the tasks of node classification and
graph classification and reuse the results reported in [16]. Due to the increased
modeling capacity, we use gradient clipping and weight decay. Additionally, we
tune ε, the learning rate and whether self-loops are taken into account for Ã for
the three different tasks. We set n = 5 for the backward pass. We reduce the
learning rate when the training loss plateaus. All experiments are executed on a
single Nvidia Tesla P100.

PPI. We consider the task of role prediction of proteins in graphs of protein-
protein interactions (PPI) [17]. In this inductive node classification task, we use
18 graphs for training our model, 2 for validation, and 2 for testing. Our data
split matches that in previous work [17]. As taken over from IGNN, our model
consists of 5 stacked layers, each iterating until convergence. We set ε = 0.25 and
find self-loops detrimental to our approach. In addition to IGNN and APPNP,
reference methods are a MLP, GCN [21], SSE [7], GAT [35]. The Micro-F1-Scores
for all considered approaches are presented in Table 2. PPRGNN outperforms all
of these approaches and reduces the error by more than 50% compared to IGNN.
Our trained PPRGNN uses a total of 82 message passing iterations in testing,
while GCN and GAT use a maximum of 3 iterations. We also compare the
time needed for PPRGNN to surpass the Micro-F1-Score of IGNN in Table 3.
PPRGNN needs fewer iterations and also takes less time per Epoch. This comes
from accurate gradient descent steps without projection and being able to adjust
the speed of convergence with ε. We find APPNP to underfit the data due to
the limited modeling capacity, even when the number of parameters uses all
available memory.

480 A. Roth and T. Liebig

Table 3. Time and epochs needed until PPRGNN surpasses the best epoch of IGNN
on the validation set.

Dataset Method Epochs Avg. time per epoch Total time

Amazon (0.05) IGNN 872 14 s 3 h 21 m
PPRGNN 175 11 s 32m

PPI IGNN 58 26 s 25 m
PPRGNN 47 18 s 14m

Amazon. To test the scalability of our approach, we apply it to the Amazon
product co-purchasing network data set [40]. Following the settings from [7],
product types with at least 5000 different products are selected. This results
in 334 863 nodes representing products and 925 872 edges representing products
that have been purchased together. The task is to predict the correct product
type for each node. Nodes do not have any features, so predictions are made
solely based on the graph structure. We use the same data split as [7], leading
to a fraction of nodes used for training varying between 5% and 9%. A fixed
set consisting of 10% of the nodes is used for training, the rest for validation.
The main challenge of this task is not the prediction complexity but rather
dealing with the sparsity of the available labels. Our architecture consists of our
PPRGNN layer combined with a linear operation before and after. We compare
our results with APPNP and reuse the result found in [7,16] for IGNN [16],
SSE [7], struct2vec [29] and GCN [21]. Micro-F1-Scores and Macro-F1-Scores are
shown in Fig. 1 for varying fractions of labels used. While we outperform IGNN,
SSE, struct2vec and GCN across all settings by at least 1%, APPNP performs
the best. We find the low modeling capacity of APPNP to be better suited for
generalizing in this scenario. Again, we compare the execution time needed for
PPRGNN to outperform IGNN (Table 3) and find PPRGNN to converge in
fewer epochs, with each epoch executing faster. This further adds to our point
of benefiting from applying gradient descent without projection and controlling
convergence speed.

Graph Classification. We now evaluate our approach for the task of graph
classification on five open graph datasets, namely MUTAG, PTC, COX2, PRO-
TEINS, and NCI1. Following the same setup from previous work, we conduct a
10-fold cross-validation for each dataset and report the mean and standard devi-
ation of the folds validation sets. We integrate our formulation with ε = 1 into
the architecture from IGNN, consisting of 3 stacked iterations until convergence.
For regularization, we add a weight decay of 1e−6 and gradient clipping of 25 to
all datasets. For NCI1, we find removing self-loops to be helpful for generaliza-
tion. For comparison, we use several graph kernel approaches (GK [32], RW [12],
WL [31]) and GNN approaches (DGCNN [43], GCN [21], GIN [37]) in addition to
IGNN and APPNP. We reuse reported results from [16]. PPRGNN outperforms

Personalized PageRank Graph Neural Network 481

Fig. 1. Comparison of results on the Amazon dataset. The fraction of labels used for
optimization varies between 0.05 and 0.09.

Table 4. Comparison of accuracies on various graph classification tasks.

Dataset MUTAG PTC COX2 PROTEINS NCI1

GK 81.4 ±1.7 55.7 ±0.5 – 71.4 ±0.3 62.5 ±0.3
RW 79.2 ±2.1 55.9 ±0.3 – 59.6 ±0.1 –
WL 84.1 ±1.9 58.0 ±2.5 83.2 ±0.2 74.7 ±0.5 84.5 ±0.5
DGCNN 85.8 58.6 – 75.5 74.4
GCN 85.6 ±5.8 64.2 ±4.3 – 76.0 ±3.2 80.2 ±2.0
GIN 89.0 ±6.0 63.7 ±8.2 – 75.9 ±3.8 82.7 ±1.6
IGNN 89.3 ±6.7 70.1 ±5.6 86.9 ±4.0 77.7 ±3.4 80.5 ±1.9
APPNP 87.7 ±8.6 64.5 ±5.1 82.2 ±5.5 78.7 ±4.8 65.9 ±2.7
PPRGNN 90.4 ±7.2 75.0 ±5.7 89.1 ±3.9 80.2 ±3.2 83.5 ±1.5

all other approaches across 4 out of 5 datasets by at least 1% and is the second-
best performing model with competitive accuracy on the fifth dataset (Table 4).
Despite using the same ε = 1 across all experiments, the effective depth ranges
from 22 to 41 for different datasets. Depth is adaptive even within individual
datasets, depending on learned parameters, the examined graph and present
node features. These results further demonstrate the effectiveness of our app-
roach and the potential to create deeper models on a wide variety of datasets.

6 Conclusion

We introduced PPRGNN, a reformulation of MPNNs based on personalized
PageRank that assures localization and prevents over-smoothing of node features
even when using infinitely many layers. Theoretically based on the personalized
version of PageRank which allows teleporting back to the initial state, we adopt
this idea for MPNNs, specifically for the basic type GCNs [21]. Starting from

482 A. Roth and T. Liebig

the classic algorithm, we follow intuitive steps to introduce learnable parameters
and still converge to a limit distribution. Compared to previous infinite-depth
GNNs, our approach has a higher modeling capacity as we do not place any con-
straints. Our empirical evaluation on tasks for graph classification, and induc-
tive and transductive node classification confirm our theoretical base. Against
regular GCNs that have no way to teleport back to the initial state, we find
large improvements across all datasets. We even outperform other comparable
approaches, including previous infinite-depth models, across almost all datasets
by decent margins. Despite the theoretical infinite-depth, we introduced a path
for efficient optimization, running linearly in the number of layers and only using
constant memory. Our formulation allows controlling the convergence rate, lead-
ing to considerable improvements in experimental execution time compared to
IGNN, a previous infinite-depth model. While we show that our formulation
allows infinitely many layers, even fixed sized models should benefit from adopt-
ing our idea. Our approach is directly applicable to other types of MPNNs, for
which our proofs of convergence should hold.

Acknowledgements. Part of the work on this paper has been supported by Deutsche
Forschungsgemeinschaft (DFG) - project number 124020371 - within the Collaborative
Research Center SFB 876 “Providing Information by Resource-Constrained Analysis”,
DFG project number 124020371, SFB project B4. The authors are funded by the
German Federal Ministry of Education and Research (BMBF) in the course of the
6GEM research hub under grant number 16KISK038.

References

1. Abu-El-Haija, S., Perozzi, B., Al-Rfou, R., Alemi, A.A.: Watch your step: learning
node embeddings via graph attention. In: Advances in Neural Information Pro-
cessing Systems, vol. 31 (2018)

2. Bai, S., Kolter, J.Z., Koltun, V.: Deep equilibrium models. In: Advances in Neural
Information Processing Systems, vol. 32 (2019)

3. Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences.
SIAM (1994)

4. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolu-
tional networks. In: International Conference on Machine Learning, pp. 1725–1735.
PMLR (2020)

5. Chen, T., Xu, B., Zhang, C., Guestrin, C.: Training deep nets with sublinear mem-
ory cost. arXiv preprint arXiv:1604.06174 (2016)

6. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-GCN: an
efficient algorithm for training deep and large graph convolutional networks. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 257–266 (2019)

7. Dai, H., Kozareva, Z., Dai, B., Smola, A., Song, L.: Learning steady-states of iter-
ative algorithms over graphs. In: International Conference On Machine Learning,
pp. 1106–1114. PMLR (2018)

8. Derrow-Pinion, A., et al.: Eta prediction with graph neural networks in google
maps. In: Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pp. 3767–3776 (2021)

http://arxiv.org/abs/1604.06174

Personalized PageRank Graph Neural Network 483

9. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto
the l 1-ball for learning in high dimensions. In: Proceedings of the 25th International
Conference on Machine Learning, pp. 272–279 (2008)

10. El Ghaoui, L., Gu, F., Travacca, B., Askari, A., Tsai, A.: Implicit deep learning.
SIAM J. Math. Data Sci. 3(3), 930–958 (2021)

11. Gallicchio, C., Micheli, A.: Fast and deep graph neural networks. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3898–3905 (2020)

12. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: hardness results and efficient
alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS
(LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45167-9_11

13. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: International Conference on Machine Learning,
pp. 1263–1272. PMLR (2017)

14. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains.
In: Proceedings. In: 2005 IEEE International Joint Conference on Neural Networks,
vol. 2, pp. 729–734 (2005)

15. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864 (2016)

16. Gu, F., Chang, H., Zhu, W., Sojoudi, S., El Ghaoui, L.: Implicit graph neural
networks. In: Advances in Neural Information Processing Systems, vol. 33, pp.
11984–11995 (2020)

17. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

18. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spec-
tral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)

19. Hardt, M., Ma, T.: Identity matters in deep learning. In: 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017.
Conference Track Proceedings (2017)

20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

21. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

22. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural
networks meet personalized pagerank. arXiv preprint arXiv:1810.05997 (2018)

23. Klicpera, J., Weißenberger, S., Günnemann, S.: Diffusion improves graph learning.
In: Conference on Neural Information Processing Systems (NeurIPS) (2019)

24. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for
semi-supervised learning. In: Thirty-Second AAAI Conference on Artificial Intel-
ligence (2018)

25. Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power
for node classification. In: International Conference on Learning Representations
(2020)

26. Otte, E., Rousseau, R.: Social network analysis: a powerful strategy, also for the
information sciences. J. Inf. Sci. 28(6), 441–453 (2002)

27. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab (1999)

28. Pavlopoulos, G.A., et al.: Using graph theory to analyze biological networks. Bio-
Data Mining 4(1), 1–27 (2011). https://doi.org/10.1186/1756-0381-4-10

https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1007/978-3-540-45167-9_11
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.05997
https://doi.org/10.1186/1756-0381-4-10

484 A. Roth and T. Liebig

29. Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: learning node repre-
sentations from structural identity. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 385–394
(2017)

30. Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: towards deep graph convo-
lutional networks on node classification. In: International Conference on Learning
Representations (2020)

31. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)

32. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-
cient graphlet kernels for large graph comparison. In: Artificial Intelligence and
Statistics, pp. 488–495. PMLR (2009)

33. Sutskever, I.: Training Recurrent Neural Networks. University of Toronto Toronto,
ON, Canada (2013)

34. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

35. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018)

36. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2020)

37. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826 (2018)

38. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Repre-
sentation learning on graphs with jumping knowledge networks. In: International
Conference on Machine Learning, pp. 5453–5462. PMLR (2018)

39. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 1365–1374 (2015)

40. Yang, J., Leskovec, J.: Defining and evaluating network communities based on
ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)

41. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 974–983 (2018)

42. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Graphsaint: Graph
sampling based inductive learning method. In: International Conference on Learn-
ing Representations (2020)

43. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

44. Zhao, L., Akoglu, L.: PairNorm: tackling oversmoothing in GNNs. In: International
Conference on Learning Representations (2020)

45. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily
in graph neural networks: current limitations and effective designs. In: Advances
in Neural Information Processing Systems, vol. 33, pp. 7793–7804 (2020)

http://arxiv.org/abs/1810.00826

Learning to Solve Minimum Cost
Multicuts Efficiently Using Edge-Weighted

Graph Convolutional Neural Networks

Steffen Jung1(B) and Margret Keuper1,2

1 Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken,
Germany

{steffen.jung,keuper}@mpi-inf.mpg.de
2 University of Siegen, Siegen, Germany

Abstract. The minimum cost multicut problem is the NP-hard/APX-
hard combinatorial optimization problem of partitioning a real-valued
edge-weighted graph such as to minimize the total cost of the partition.
While graph convolutional neural networks (GNN) have proven to be
promising in the context of combinatorial optimization, most of them are
only tailored to or tested on positive-valued edge weights, i.e. they do not
comply with the nature of the multicut problem. We therefore adapt vari-
ous GNN architectures including Graph Convolutional Networks, Signed
Graph Convolutional Networks and Graph Isomorphic Networks to facili-
tate the efficient encoding of real-valued edge costs. Moreover, we employ
a reformulation of the multicut ILP constraints to a polynomial program
as loss function that allows us to learn feasible multicut solutions in
a scalable way. Thus, we provide the first approach towards end-to-end
trainable multicuts. Our findings support that GNN approaches can pro-
duce good solutions in practice while providing lower computation times
and largely improved scalability compared to LP solvers and optimized
heuristics, especially when considering large instances. Our code is avail-
able at https://github.com/steffen-jung/GCN-Multicut.

Keywords: Graph neural network · Graph partitioning

1 Introduction

Recent years have shown great advances of neural network-based approaches in
various application domains from image classification [39] and natural language
processing [56] up to very recent advances in decision logics [3]. While these suc-
cesses indicate the importance and potential benefit of learning from data dis-
tributions, other domains such as symbolic reasoning or combinatorial optimiza-
tion are still dominated by classical approaches. Recently, first attempts have
been made to address specific NP-hard combinatorial problems in a learning-
based setup [12,42,48,50]. Specifically, such papers employ (variants of) message

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26390-3_28.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 485–501, 2023.
https://doi.org/10.1007/978-3-031-26390-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_28&domain=pdf
http://orcid.org/0000-0001-8021-791X
http://orcid.org/0000-0002-8437-7993
https://github.com/steffen-jung/GCN-Multicut
https://doi.org/10.1007/978-3-031-26390-3_28
https://doi.org/10.1007/978-3-031-26390-3_28

486 S. Jung and M. Keuper

Fig. 1. (a) Node clustering of the proposed GCN_W_BN on a complete graph
(w = −220.6) from IrisMP and the ordered cosine similarity between all learned node
embeddings. (b) The first two principal components for each node embedding of (a).
Node 4 is part of the green cluster in the optimal solution (w = −222.9). The closeness
of both solutions is reflected in the embedding. (Color figure online)

passing neural networks (MPNN) [20], defined on graphs [37,45,49] in order to
model, for example, the boolean satisfiability of conjunctive normal form for-
mulas (SAT) [50] or address the travelling salesman problem [48] - both highly
important NP-complete combinatorial problems. These first advances employ
the ability of graph convolutional networks to efficiently learn representations of
entities in graphs and prove the potential to solve hard combinatorial problems.

In this paper, we address the minimum cost multicut problem [5,13], also
known as the weighted correlation clustering problem (see Fig. 1). This grouping
problem is substantially different from the aforementioned examples as it aims to
assign binary edge labels based on a signed edge cost function. Such graph parti-
tioning problems are ubiquitous in practical applications such as image segmen-
tation [1,2,4,31,51], motion segmentation [30,33], stereo matching [27], inpaint-
ing [27], object tracking [22,32], pose tracking [24], or entity matching [47]. The
minimum cost multicut problem is NP-hard, as well as APX-hard [5], which
makes it a particularly challenging subject to explore. Its main difficulty lies in
the exponentially growing number of constraints that define feasible solutions,
especially whenever non-complete graphs are considered. Established methods
solve its binary linear program formulation or linear program relaxations [27].
However, deriving optimal solutions is oftentimes intractable for large problem
instances. In such cases, heuristic, iterative solvers are used as a remedy [31]. A
significant disadvantage of such methods is that they can not provide gradients
that would allow to train downstream tasks in an end-to-end way.

To address this issue, we propose a formulation of the minimum cost mul-
ticut problem as an MPNN. While the formulation of the multicut problem
as a graph neural network seems natural, most existing GNN approaches are
designed to aggregate node features potentially under edge constraints [53]. In
contrast, instances of the multicut problem are purely defined through their edge
weights. Graph Convolutional Networks (GCN) [37] rely on diverse node embed-
dings normalized by the graph Laplacian and an isotropic aggregation function.

Learning to Solve Minimum Cost Multicuts Using Edge-Weighted GNNs 487

Yet, edge weights in general and signed edge weights in particular are not mod-
elled in standard GCNs. In this paper, we propose a simple extension of GCNs
and show that the signed graph Laplacian can provide sufficiently strong ini-
tial node embeddings from signed edge information. This, in conjunction with
an anisotropic update function which takes into account signed edge weights,
facilitates GCNs to outperform more recent models such as Signed Graph Con-
volutional Networks (SGCN) [14], Graph Isomorphic Networks (GIN) [58] as
well as models that inherently handle real-valued edge weights such as Residual
Gated Graph Convolutional Networks (RGGCN) [25] and Graph Transformer
Networks (GTN) [52] on the multicut problem.

To facilitate effective training, we consider a polynomial programming for-
mulation of the minimum cost multicut problem to derive a loss function that
encourages the network to issue valid solutions. Since currently available bench-
marks for the minimum cost multicut problem are notoriously small, we propose
two synthetic datasets with different statistics, for example w.r.t. the graph con-
nectivity, which we use for training and analysis. We further evaluate our models
on the public benchmarks BSDS300 [44], CREMI [8], and Knott3D [2].

In the following, we first briefly review the minimum cost multicut prob-
lem and commonly employed solvers. Then, we provide an overview on GNN
approaches and their application in combinatorial optimization. In Subsect. 3.1,
we present the proposed approach for solving the minimum cost multicut prob-
lem with GNNs including model adaptations and the derivation of the proposed
loss function. Section 4 provides an empirical evaluation of the proposed app-
roach.

2 The Minimum Cost Multicut Problem

The minimum cost multicut problem [11,15] is a binary edge labelling problem
defined on a graph G = (V,E), where the connectivity is defined by edges e ∈
E ⊆ (

V
2

)
, i.e. G is not necessarily complete. It allows for the definition of real-

valued edge costs we∀e ∈ E. Its solutions decompose G such as to minimize the
overall cost. Specifically, the MP can be defined by the following ILP [11]:

Definition 1. For a simple, connected graph G = (V,E) and an associated cost
function w : E → R, written below is an instance of the multicut problem

min
y∈{0,1}|E|

c(y) = yTw =
∑

e∈E

weye (1)

with y subject to the linear constraints

∀C ∈ cycles(G),∀e ∈ C : ye ≤
∑

e′∈C\{e}
ye′ , (2)

where cycles(·) enumerates all cycles in graph G. The resulting y is a vector of
binary decision variables for each edge. Equation (2) defines the cycle inequality

488 S. Jung and M. Keuper

constraints and ensures that if an edge is cut between two nodes, there can not be
another path in the graph connecting them. Chopra and Rao [11] further showed
that the facets of the MP can be sufficiently described by cycle inequalities on
all chordless cycles of G. The problem in Eq. (1)–(2) can be reformulated in a
more compact way as a polynomial program (PP):

min
y∈{0,1}|E|

∑

e∈E

weye + K
∑

C∈cc(G)

∑

e∈C

ye

∏

e′∈C\{e}
(1 − ye′), (3)

for a sufficiently large penalty K. The above problem is well behaved for complete
graphs where it suffices to consider all cycles of length three and Eq. (3) becomes
a quadratic program. For sparse graphs, sufficient constraints may have arbitrary
length ≤ |V | and their enumeration might be practically infeasible. Finding
an optimal solution is NP-hard and APX-hard [5]. Therefore, exact solvers are
intractable for large problem instances. Linear program relaxations as well as
primal feasible heuristics have been proposed to overcome this issue, which we
will briefly review in the following.

Related Work on Multicut Solvers. To solve the ILP from Definition 1, one can
use general purpose LP solvers, like Gurobi [21] or CPLEX, such that opti-
mal solutions might be in reach for small instances if the enumeration of con-
straints is tractable. However, no guarantees on the runtime can be provided.
To mitigate the exponentially growing number of constraints, various cutting-
plane [28,34,35] or branch-and-bound [2,27] algorithms exist. For example, [28]
employ a relaxed version of the ILP in Eq. (1) without cycle constraints. In
each iteration, violated constraints are searched and added to the ILP. This
approach provides optimal solutions to formerly intractable instances - yet with-
out any runtime guarantees. Linear program relaxations [27,34,55] increase the
tightness of the relaxation, for example using additional constraints, and provide
optimality bounds. While such approaches can yield solutions within optimality
bounds, their computation time can be very high and the proposed solution can
be arbitrarily poor in practice. In contrast, heuristic solvers can provide runtime
guarantees and have shown good results in many practical applications. The
primal feasible heuristic KLj [31] iterates over pairs of partitions and computes
local moves which allow to escape local optima. Competing approaches have been
proposed, for example by [7,29] or [6]. The highly efficient Greedy Additive Edge
Contraction (GAEC) [31] approach aggregates nodes in a greedy procedure with
an O(|E|log|E|) worst case complexity. While such primal feasible heuristics are
highly efficient in practice, they share one important draw-back with ILP solvers
that becomes relevant in the learning era: they can not provide gradients that
would allow for backpropagation for example to learn edge weights.

In contrast, a third order conditional random field based on the PP in Eq. (3)
has been proposed in [54] and adapted in [26], which can be optimized in an end-
to-end fashion using mean field iterations. This approach is strictly limited to the
optimization on complete graphs. Our approach employs graph neural networks
to overcome this limitation and provides a general purpose end-to-end trainable
multicut approach.

Learning to Solve Minimum Cost Multicuts Using Edge-Weighted GNNs 489

3 Message Passing Neural Networks for Multicuts

[20] provide a general framework to describe convolutions for graph data spa-
tially as a message-passing scheme. In each convolutional layer, each node is
propagating its current node features via edges to all of its neighboring nodes
and updates its own features based on the messages it receives. The update is
commonly described by an update function

h(t)
u = g(t)

⎛

⎝h(t−1)
u ,

∑̂

v∈N (u)

f (t)
(
h(t−1)
u ,h(t−1)

v ,xv,u

)
⎞

⎠ , (4)

where h(t)
u ∈ R

F is the feature representation of node u in layer t with dimension-
ality F , and xv,u are edge features. Here, f and g are differentiable functions,
and Σ̂ is a differentiable, permutation invariant aggregation function, mostly
sum, max, or mean. Commonly, the message function f and the update function
g are parameterized, and apply the same parameters at each location in the
graph.

Various formulations have been proposed to define g. Graph Convolutional
Network (GCN) [37] normalizes messages with the graph Laplacian and linearly
transforms their sum to update node representations. Signed Graph Convolu-
tional Network (SGCN) [14] aggregates messages depending on the sign of the
connectivity and keeps two representations per node, one for balanced paths
and one for unbalanced paths. Graph Isomorphic Network (GIN) [58] learns
an injective function by defining message aggregation as a sum and learning
the update function as an MLP. Residual Gated Graph Convolutional Network
(RGGCN) [25] computes edge gates to aggregate messages in an anisotropic man-
ner and learns to compute the residuals to the previous representations. Edge
conditioned GCNs [53] aggregate node features using dynamic weights computed
from high-dimensional edge features. Graph Transformer Network (GTN) [52]
also aggregate messages anisotropically by learning a self-attention model based
on the transformer models in NLP [56]. While the latter three can directly handle
real-valued edge weights, all are tailored towards aggregating meaningful node
features. In the following, we review recent approaches to employ such models
in the context of combinatorial optimization.

MPNNs and Combinatorial Optimization. Recently, MPNNs have been applied
to several hard combinatorial optimization problems, such as the minimum ver-
tex cover [42], maximal clique [42], maximal independent set [42], the satisfi-
ability problem [42], and the travelling salesman problem [25]. Their objective
is either to learn heuristics such as branch-and-bound variable selection poli-
cies for exact or approximate inference [16,19] or to use attention [57], rein-
forcement learning [9,12], or both [38,43,46] in an iterative, autoregressive pro-
cedure. [25] address the 2D Euclidean travelling salesman problem using the
RGGCN model to learn edge representations. Other recent approaches address
combinatorial problems by decoding, using supervised training such as [10].

490 S. Jung and M. Keuper

Fig. 2. Message aggregation in an undirected, weighted graph where node features (h0)
are initialized with 1. (a) Standard message aggregation in an isotropic fashion leads
to no meaningful node embeddings (h1 = h0). (b) Our proposed method takes edge
weights into account leading to anisotropic message aggregation and meaningful node
embeddings. A simple decision boundary at h = 0 can now partition the graph.

The proposed approach is related to the work of [25], since we cast the minimum
cost multicut problem as a binary edge classification problem that we address
using MPNN approaches, including RGGCN. We train our model in a supervised
way, yet employing a dedicated loss function which encourages feasible solutions
w.r.t. Eq. (2).

3.1 Multicut Neural Network

We cast the multicut problem into a binary edge classification task, where label
yu,v = 1 is assigned to an edge (u, v) if it is cut, and yu,v = 0 otherwise. The task
of the model is to learn a probability distribution ŷu,v = p(yu,v = 1 | G) over
the edges of a given graph, inferring how likely it is that an edge is cut. Based
on these probabilities, we derive a configuration of edge labels, y = {0, 1}|E|. In
contrast to existing autoregressive MPNN-based models in combinatorial opti-
mization, we derive a solution after a single forward pass over the graph to
achieve an efficient bound on the runtime of the model. In this scenario, our
model can be defined by three functions, i.e., yu,v = fr(fc(fe(G,w))). First, fe

is the edge representation mapping, assigning meaningful embeddings to each
edge in the graph given a multicut problem instance. This function is learned
by an MPNN. Second, fc assigns to every edge its probability to be cut. This
function is learned by an MLP. Last, function fr translates the resulting con-
figuration of edge probabilities to a feasible configuration of edge labels, hence,
computes a feasible solution.

Edge Representation Mapping. Given a multicut problem instance (G,w),
the edge representation mapping fe learns to assign meaningful edge embed-
dings via MPNNs. One specific case of MPNN is GCN [37], where the node

Learning to Solve Minimum Cost Multicuts Using Edge-Weighted GNNs 491

representation update function is defined as follows:

h(t)
u = g

(t)
θ

⎛

⎝h(t−1)
u +

∑

v∈N (u)

L[v,u]h(t−1)
v

⎞

⎠ , (5)

where h(t)
u ∈ R

F denotes the feature representation of node u in layer t with chan-
nel size F . In each layer, node representations of all neighbors of u are aggregated
and normalized by L[v,u] = 1/

√
deg(u)deg(v), where L = D̃1/2ÃD̃1/2 is the

normalized graph Laplacian with additional self-loops in the adjacency matrix
Ã = A + I and degree matrix D̃. Conventionally, h(0)

u is initialized with node
features xu. Intuitively, we expect normalization with the graph Laplacian to
be beneficial in the MP setting, since i) its eigenvectors encode similarities of
nodes within a graph [51] and ii) even sparsely connected nodes can be assigned
meaningful representations [4]. However, MP instances consist of real-valued
edge-weighted graphs and the normalized graph Laplacian is not defined for
negative node degrees. To the best of our knowledge, there is no work enabling
GCN to incorporate real-valued edge weights so far.

Real-valued Edge Weights. Hence, our first task is to enable negative-valued edge
weights in GCN. We can achieve this via the signed normalized graph Laplacian
[23,40]:

L[v,u] =
(
D

1/2
W̃D

1/2
)

[v,u]
= wv,u/

√
deg(u)deg(v), (6)

where W̃ is the weighted adjacency matrix and D is the signed node degree
matrix with deg(u) =

∑
v∈N (u) |wu,v|. [18] shows that this formulation preserves

the desired properties from the graph Laplacian w.r.t. encoding pairwise simi-
larities as well as representation learning on sparsely connected nodes (see i) and
ii) above).

Incorporating Eq. (6) into Eq. (5), we get

h(t)
u = g

(t)
θ

(
h(t−1)
u +

∑

v∈N (u)

wv,u · (
deg(u)deg(v)

)−1/2
h(t−1)
v

)
. (7)

Here, we can observe two new terms. First, each message is weighted by the edge
weight wv,u between two nodes enabling an anisotropic message-passing scheme.
Figure 2 motivates why this is necessary. While [58] show that GNNs with mean
aggregation have theoretical limitations, they also note that these limitations
vanish in scenarios where node features are diverse. Additionally, [58] only con-
sider the case where neighboring nodes are aggregated in an isotropic fashion.
As we show here, diverse node features are not necessary when messages are
aggregated in the anisotropic fashion we propose. The resulting node represen-
tations enable distinguishing nodes in the graph despite the lack of meaningful
node features. This is important in our case, since the multicut problem does not
provide node features. Second, we are now able to normalize messages via the
Laplacian in real-valued graphs. The normalization acts stronger on messages

492 S. Jung and M. Keuper

that are sent to or from nodes whose adjacent edges have weights with large
magnitudes. Large magnitudes on the edges usually indicate a confident deci-
sion towards joining (for positive weights) or cutting (negative weights). Thus,
the normalization will allow nodes with less confident edge cues to converge to
a meaningful embedding while, without such normalization, the network would
notoriously focus on embedding nodes with strong edge cues, i.e. on easy deci-
sions.

Node Features. Conventionally, node representations at timestep 0, h(0)
u , are

initialized with node features xu. However, multicut instances describe the mag-
nitude of similarity or dissimilarity between two items via edge weights and
provide no node features. Therefore, we initialize node representations with a
two-dimensional vector of node degrees as:

xu =

⎛

⎝
∑

v∈N+(u)

wu,v,
∑

v∈N −(u)

wu,v

⎞

⎠, (8)

where N+(u) is the set of neighboring nodes of u connected via positive edges,
and N −(u) is the set of neighboring nodes of u connected via negative edges.

Node-to-Edge Representation Mapping. To map two node representations to an
edge representation, we use concatenation hu,v = fe(hu,hv) =

(
hu

hv

) ∈ R
2·F ,

where hu,v is the representation of edge (u, v) and F the dimension of node
embedding hu. Since we consider undirected graphs, the order of the concate-
nation is ambiguous. Therefore, we generate two representations for each edge,
one for each direction. This doubles the number of edges to be classified in
the next step. The final classification result is the average computed from both
representations.

Edge Classification. We learn edge classification function fc via an MLP that
computes likelihoods ŷ ∈ [0, 1]|E| for each edge in graph G, expressing the confi-
dence whether an edge should be cut. A binary solution y ∈ {0, 1}|E| is retrieved
by thresholding the likelihoods at 0.5. Since there is no strict guarantee that the
edge label configuration y is feasible w.r.t. Eq. (2), we postprocess y to round
it to feasible solutions. Therefore, we compute a connected component labelling
on G after removing cut edges from E and reinstate removed edges for which
both corresponding nodes remain within the same component. For efficiency, we
implement the connected component labelling as a message-passing layer and
can therefore assign cluster identifications to each node efficiently on the GPU.

Training. Since we cast the multicut problem to a binary edge labelling prob-
lem, we can formulate a supervised training process that minimizes the Binary
Cross Entropy (BCE) loss w.r.t. the optimal solution ỹ, which we denote LBCE .

Learning to Solve Minimum Cost Multicuts Using Edge-Weighted GNNs 493

Cycle Consistency Loss. The BCE loss encodes feasibility only implicitly by
comparison to the optimal solution. To explicitly learn feasible solutions, we
take recourse to the PP formulation of the multicut problem in Eq. (3) and
formulate a feasibility loss, that we denote Cycle Consistency Loss (CCL):

LCCL = α ·
∑

C∈cc(G,l)

∑

e∈C

ŷe

∏

e′∈C\{e}
(1 − ŷe′), (9)

where α is a hyperparameter, balancing BCE and CCL, and cc(G, l) is a func-
tion that returns all chordless cycles in G of length at most l. The CCL term
effectively penalizes infeasible edge label configurations during training; it adds
a penalty of at most α for each chordless cycle that is only cut once. In practice,
we only consider chordless cycles of maximum length l, and we only consider a
cycle if e is cut, hence ŷe ≥ 0.5. This is necessary to ensure practicable training
runtimes. The total training loss is given by L = LBCE +LCCL. For best results,
we train all models using batch normalization.

Training Datasets. While the multicut problem is ubiquitous in many real world
applications, the amount of available annotated problem instances is scarce and
domain specific. Therefore, in order to train and test a general purpose model, we
generated two synthetic datasets, IrisMP and RandomMP, with complementary
connectivity statistics, of 22000 multicut instances each.

The first dataset, IrisMP, consists of multicut instances on complete graphs
based on the Iris flower dataset [17]. The generation procedure is described in the
Appendix. Each problem instance consists of 120 to 276 edges. Three graphs with
their respective optimal solutions are depicted in the Appendix. To complement
the IrisMP dataset, we generated a second dataset that contains sparse but
larger problem instances with 180 nodes on average, called RandomMP. The
generation procedure is described in the Appendix. Examples are depicted in
the Appendix.

4 Experiments

We evaluate all models trained on IrisMP and RandomMP and provide runtime
as well as objective value evaluations, where we compare the proposed GCN to
GIN and SGCN-based, edge-weight enabled models (see appendix for details) as
well as to RGGCN [25] and GTN [52]. Then, we provide an ablation study on
the proposed GCN-based edge representation mapping and the multicut loss.

4.1 Evaluation on Test Data

We evaluate our models on three segmentation benchmarks: a graph-based
image segmentation dataset [1] based on the Berkeley Segmentation Dataset
(BSDS300) [44] consisting of 100 test instances, a graph-based volume segmenta-
tion dataset [2] (Knott3D) containing 24 volumes, and 3 additional test instances

494 S. Jung and M. Keuper

T
ab

le
1.

R
es

ul
ts

on
th

e
te

st
da

ta
se

ts
.

W
e

co
m

pa
re

di
ffe

re
nt

G
N

N
va

ri
an

ts
,

he
ur

is
ti

cs
(G

A
E

C
)

[3
1]

,
L
P

-s
ol

ve
r

[2
7]

,
an

d
IL

P
-s

ol
ve

r
[2

7]
.

T
he

pe
rf

or
m

an
ce

is
ev

al
ua

te
d

as
op

ti
m

al
ob

je
ct

iv
e

ra
ti

o
↑

an
d

is
av

er
ag

ed
ov

er
al

l
da

ta
se

ts
vi

a
ha

rm
on

ic
m

ea
n

to
ac

co
un

t
fo

r
ge

ne
ra

liz
ab

ili
ty

.
T

he
la

st
co

lu
m

n
sh

ow
s

th
e

to
ta

l
ru

nt
im

e
↓

ov
er

al
l
da

ta
se

ts
in

m
ill

is
ec

on
ds

.
O

O
M

in
di

ca
te

s
in

su
ffi

ci
en

t
m

em
or

y.
O

O
T

in
di

ca
te

s
no

te
rm

in
at

io
n

w
it

hi
n

24
h.

N
ei

th
er

O
O

M
no

r
O

O
T

ar
e

co
ns

id
er

ed
in

th
e

ru
nt

im
e

(m
ar

ke
d

w
it

h
*)

.

So
lv
er

T
es
t
D
at

as
et

H
.m

ea
n

R
u
nt

im
e
[s
]

V
ar

ia
nt

D
ep

th
α

l
Ir
is
M

P
R
an

do
m
M

P
B
SD

S
30

0
C
R
E
M

I
K
n
ot

t
F
or

w
ar

d
T
ot

al

P
ro

p
os

ed
le
ar

ne
d

so
lv
er
s
Ir
is
M

P
GC

N_
W_

BN
1
2

0
.0
0
1
3
0
.9
8
3
4

0
.7
1
8
8

0
.8
9
1
2

0
.7
2
5
5

0
.6
9
0
2
0
.7
8
6
5

0
.5

4
.4

GI
N0

_W
_B

N
1
2

0
.0
1

3
0
.9
9
0
5
0
.7
3
8
7

0
.8
4
7
4

0
.5
4
6
4

0
.0
0
0
0

0
.0
0
0
0

0
.0

4
.0

Si
gn

ed
_W

_B
N
1
2

0
.0
1

3
0
.9
8
7
8

0
.2
5
2
6

0
.6
4
5
1

0
.5
1
5
4

0
.3
8
0
8

0
.4
5
1
0

1
.3

5
.3

RG
GC

N_
HE

1
2

0
.0
1

3
0
.7
9
7
6

0
.1
4
4
9

0
.4
6
5
5

0
.1
5
4
4

0
.1
7
3
5

0
.2
2
1
8

0
.1

4
.1

GT
1
2

0
.0
0
1
3
0
.7
9
4
0

0
.2
9
6
4

0
.6
3
6
0

0
.4
0
3
7

0
.6
0
3
8

0
.4
8
3
6

0
.1

4
.0

LR
0
.6
7
6
9

0
.1
1
1
8

0
.6
8
2
4

0
.2
6
8
9

0
.0
3
6
6

0
.1
1
6
4

N
/A

ML
P

0
.6
6
2
6

0
.3
1
2
7

0
.7
1
3
9

0
.2
7
8
9

0
.1
4
9
3

0
.3
0
5
1

N
/A

R
an

do
m
M

P
GC

N_
W_

BN
2
0

0
.0
1

8
0
.9
7
6
2
0
.9
0
4
1

0
.9
2
0
4

0
.8
4
4
0

0
.7
8
7
0
0
.8
8
1
5

0
.9

4
.8

GI
N0

_W
_B

N
2
0

0
.0
1

8
0
.9
5
2
8

0
.8
6
9
3

0
.9
1
0
9

0
.4
8
1
2

0
.0
0
0
0

0
.0
0
0
0

0
.0

4
.0

Si
gn

ed
_W

_B
N
2
0

0
.0
1

8
0
.9
7
0
9

0
.8
6
9
5

0
.8
8
2
5

0
.4
6
5
3

0
.6
4
0
8

0
.7
1
2
0

2
.3

6
.3

RG
GC

N_
HE

2
0

0
.0
1

8
0
.9
7
0
3

0
.8
7
8
7

0
.8
3
5
2

0
.5
5
9
3

O
O
M

–
0
.1

2
.7
*

LR
0
.8
0
3
5

0
.3
9
3
8

0
.7
9
5
8

0
.9
2
6
0

0
.7
3
3
5

0
.6
6
8
1

N
/A

ML
P

0
.8
9
8
5

0
.3
0
9
9

0
.6
8
0
4

0
.4
8
4
5

0
.1
5
1
7

0
.3
4
5
7

N
/A

GA
EC

0
.9
8
3
6

0
.9
7
8
0

0
.9
9
9
7

0
.9
9
5
8

0
.9
9
6
8

0
.9
9
0
7

2
3
.2

Ti
me

-b
ou

nd
ed

GA
EC

0
.3
6
4
2

0
.0
0
3
4

0
.0
0
0
0

0
.1
5
1
6

0
.0
0
0
0

0
.0
0
0
0

6
.3

LP
so

lv
er

0
.9
8
8
2

0
.9
5
2
5

0
.9
9
7
9

0
.9
9
9
8

O
O
T

–
3
1
9
1
8
.8
*

IL
P

so
lv

er
1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

2
4
3
6
1
.2

Learning to Solve Minimum Cost Multicuts Using Edge-Weighted GNNs 495

based on the challenge on Circuit Reconstruction from Electron Microscopy
Images (CREMI) [8] that contains volumes of electron microscopy images of fly
brains. BSDS300 and Knott3D instances are available as part of a benchmark
containing discrete energy minimization problems, called OpenGM [27].

Implementation Details. We train the proposed MPNN-based solvers with
(adapted) GCN, GIN, SGCN, RGGCN and GT backbones in different settings,
where we uniformly set the node representation dimensionality to 128. We set the
depth of the MPNN to 12 for IrisMP and 20 for RandomMP. CCL is applied with
α ∈ {0, 0.01, 0.001} and chordless cycle length up to 8. All of our experiments
are conducted on MEGWARE Gigabyte G291-Z20 servers with NVIDIA Quadro
RTX 8000 GPUs. If not stated otherwise, we consider as performance metric m
the optimal objective ratio achieved, hence m = max(0, w(y)/w(ỹ)) ∈ [0, 1].

Results. In Table 1, we show the results on all test datasets of the best models
based on the evaluation objective value after rounding, and thereby compare
models trained on IrisMP and models trained on RandomMP. In general, sparser
problems (RandomMP and established test datasets) are harder for the solvers
to generalize to. This is likely due to the longer chordless cycles that the model
needs to consider to ensure feasibility. Overall, our GCN-based model provides
the best generalizability over all test datasets both when trained on IrisMP and
RandomMP. We compare the GNN-based solvers to different baselines. First, we
train logistic regression (LR) and MLPs as edge classifiers directly on the training
data (concatenation of node features and edge weights). All our learned models
outperform these baselines significantly. This indicates that MPNNs provide
meaningful topological information to the edge classifier that facilitates solving
MP instances. Second, we compare against Branch & Cut LP and ILP solvers
as well as GAEC. In terms of objective value, GCN-based solvers are on par
with heuristics and LP solvers on complete graphs, even when trained on sparse
graphs. On general graphs, ILP solvers and GAEC issue lower energies, and, as
expected, training on complete graphs does not generalize well to sparse graphs.
However, the wall-clock runtime comparison shows that GCN-based solvers are
faster by an order of 103 than ILP and LP solvers. They are also significantly
faster than the fast and greedy GAEC heuristic. We further compared to a time-
constrained version of GAEC, where we set the available time budget to the
runtime of the GCN-based solver. The result shows that the trade-off between
smaller energies and smaller runtime is in favor of the GCN-based solver. In
the Appendix, we report additional experiments for our proposed GCN-based
model on domain specific training and show that task specific priors can be
learned efficiently from only a few training samples.

Next, we conduct a scalability study on random graphs with an increasing
number of nodes, generated according to the RandomMP dataset. Results are
shown in Table 2. While the GAEC is fast for small graphs, the GCN-based solver
scales better and returns solutions significantly faster for larger graphs. LP and
ILP solvers are not able to provide solutions within 24 h for larger instances. It is
noteworthy that GNN-based solvers spend 75-99% of their runtime rounding the

496 S. Jung and M. Keuper

Table 2. Wall-clock runtime ↓ and objective values ↓ of MPNN-based solver vs. GAEC,
LP and ILP on a growing, randomly-generated graph. OOT indicates no termination
within 24 h.

Nodes GAEC LP ILP GCN_W_BN
[ms] Objective [ms] Objective [ms] Objective [ms] Objective

101 0 −29 6 −24 11 −30 29 −29

102 4 −327 191 −246 273 −330 26 −276

103 24 −3051 6585 −2970 1299 −3093 29 −2643

104 228 −32 264 688 851 −31 531 18 604 −32 682 78 −27 552

105 2534 −323 189 OOT 2 171 134 −328 224 557 −269 122

106 35 181 −3 401 783 OOT OOT 8713 −2 182 589

solutions. Hence, GNN-based solvers are already more scalable and still have a
large potential for improvement in this regard, while GAEC and LP/ILP solvers
are already highly optimized for runtime.

Next, we ablate on the GCN aggregation functions, loss and network depths.

Edge-weighted GCNs. First, we determine the impact of each adjustment to the
GCN update function. In Table 3 we show the results of this ablation study.
While vanilla GCN is not applicable in the MP setting, simply removing the
Laplacian from Eq. 5 provides a first baseline. We observe that adding edge
weights (wu,v) to Eq. 5 improves the performance on the test split of the training
data substantially. However, the model is not able to generalize to different
graph statistics. By adding the signed normalization term (

(
deg(u)deg(v)

)−1/2
)

we arrive at Eq. 7, achieving improved generalizability. Removing edge weights
from Eq. 7 deteriorates performance and generalizability. Thus both changes are
necessary to enable GCN in the MP setting.

Additionally, we compare GCNs with edge weights and signed graph
Laplacian normalization, trained with batch normalization, to the plain GCN
model [37]. To this end, we train on the IrisMP dataset and set the model width
to 128 and its depth to 12. Here, we set α = 0, hence, we do not apply CCL.
Figure 3 shows the results of this experiment. The corresponding plots for SGCN
and GIN are given in the Appendix. The variants with edge features achieve
lower losses than without edge features, and batch normalization improves the
loss further. In fact, the original GCN is not able to provide any meaningful fea-
tures for the edge classification network. The proposed extensions enable these
networks to find meaningful node representations for the multicut problem.

4.2 Ablation Study

Number of Convolutional Layers. Next, we evaluate the effect of depth of the
GCN model when trained on the IrisMP dataset and evaluated on IrisMP, Ran-
domMP as well as BSDS300. Figure 3(c) shows the results after varying the depth
in increasing step sizes up to a depth of 40. The results suggest that increasing

Learning to Solve Minimum Cost Multicuts Using Edge-Weighted GNNs 497

Fig. 3. (a) Training and (b) evaluation loss while training variants of GCN on IrisMP.
Each plot compares the variants with (GCN_W) and without (GCN) edge weights in
the aggregation, and GCN_W with batch normalization (GCN_W_BN). (c) Results
in terms of optimal objective ratio on the evaluation data when training GCN_W_BN
with varying depths.

Fig. 4. (a) Ratio of feasible solutions before repairing, (b) Ratio of optimal solutions,
and (c) Optimal objective ratio, for GCN_W_BN on RandomMP, applying CCL after
3M instances.

the depth improves the objective value up to a certain point. In the case of IrisMP
graphs with diameter 1 and lengths of chordless cycles of at most 3, increasing
the depth beyond 10 has no obvious effect. This is an important observation,
because [41] raise concerns that GCN models can suffer from over-smoothing
such that learned representations might become indistinguishable.

Cycle Consistency Loss. Here, we evaluate the effect of applying the cycle con-
sistency loss from Eq. (9) by comparing models where CCL is applied after 3M
instances to models solely trained without CCL. Figures 4(a) and (b) show the
progress of the ratio of feasible solutions and ratio of optimal solutions found dur-
ing training. As soon as CCL is applied, the ratio of feasible solutions increases
while the ratio of optimal solutions decreases. Hence, CCL induces a trade-off
between finding feasible and optimal solutions, where the model is forced to find
feasible solutions to avoid the penalty, and as a consequence, settles for subop-
timal relaxated solutions. However, the objective value after rounding improves,
which is most relevant because these values correspond to feasible solutions. This

498 S. Jung and M. Keuper

Table 3. Ablation study with GCN [37] trained on IrisMP without CCL. Additional
comparison to vanilla versions of GIN0 [58], and MPNN [20]. We report the performance
on the test data in terms of optimal objective ratio ↑.

Variant IrisMP RandMP BSDS300 CREMI Knott

GCN Not applicable: Laplacian may not exist.
− Laplacian 0.41 0.18 0.00 0.49 0.00
+ edge weights 0.95 0.18 0.40 0.57 0.19
+ signed norm. 0.96 0.67 0.75 0.74 0.68
= GCN_W 0.96 0.67 0.75 0.74 0.68
− edge weights 0.64 0.05 0.00 0.48 0.00
GIN0 0.41 0.04 0.07 0.48 0.00
MPNN 0.93 0.45 0.48 0.49 0.06

indicates that the model’s upper bound on the optimal energy is higher while the
relaxation is tighter when CCL is employed. See the Appendix for an ablation
on α in Eq. 9.

Meaningful Embeddings. In Fig. 1 we visualize the node embedding space given by
our best performing model on an IrisMP instance. Plotting the cosine similarity
between all nodes reflects the resulting clusters. This shows that the model is
able to distinguish nodes based on their connectivity. We show further examples
in the Appendix.

5 Conclusion

In this paper, we address the minimum cost multicut problem using feed forward
MPNNs. To this end, we provide appropriate model and training loss modifica-
tions. Our experiments on two synthetic and two real datasets with various GCN
architectures show that the proposed approach provides highly efficient solutions
even to large instances and scales better than highly optimized primal feasible
heuristics (GAEC), while providing competitive energies. Another significant
advantage of our learning-based approach is the ability to provide gradients for
downstream tasks, which we assume will inherently improve inferred solutions.

References

1. Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.: Probabilistic
image segmentation with closedness constraints. In: ICCV (2011)

2. Andres, B., et al.: Globally optimal closed-surface segmentation for connectomics.
In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV
2012. LNCS, vol. 7574, pp. 778–791. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33712-3_56

https://doi.org/10.1007/978-3-642-33712-3_56
https://doi.org/10.1007/978-3-642-33712-3_56

Learning to Solve Minimum Cost Multicuts Using Edge-Weighted GNNs 499

3. Arakelyan, E., Daza, D., Minervini, P., Cochez, M.: Complex query answering with
neural link predictors (2021)

4. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. TPAMI 33(5), 898–916 (2011)

5. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004)

6. Beier, T., Andres, B., Köthe, U., Hamprecht, F.A.: An efficient fusion move algo-
rithm for the minimum cost lifted multicut problem. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 715–730. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46475-6_44

7. Beier, T., Kroeger, T., Kappes, J., Köthe, U., Hamprecht, F.: Cut, glue, & cut: a
fast, approximate solver for multicut partitioning. In: CVPR (2014)

8. Beier, T., et al.: Multicut brings automated neurite segmentation closer to human
performance. Nat. Methods 14(2), 101–102 (2017)

9. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
mization with reinforcement learning. In: ICLR Workshop (2017)

10. Chen, Y., Zhang, B.: Learning to solve network flow problems via neural decoding
(2020)

11. Chopra, S., Rao, M.R.: The partition problem. Math. Program. 59(1), 87–115
(1993)

12. Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial
optimization algorithms over graphs. In: NIPS (2017)

13. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in
general weighted graphs. Theor. Comput. Sci. 361(2–3), 172–187 (2006)

14. Derr, T., Ma, Y., Tang, J.: Signed graph convolutional networks. In: ICDM (2018)
15. Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics. Springer, Heidelberg

(1997)
16. Ding, J.Y., et al.: Accelerating primal solution findings for mixed integer programs

based on solution prediction. In: AAAI, vol. 34, no. 02, pp. 1452–1459 (2020)
17. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.

Eugen. 7(2), 179–188 (1936)
18. Gallier, J.: Spectral theory of unsigned and signed graphs. Applications to graph

clustering: a survey (2016)
19. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial

optimization with graph convolutional neural networks. In: NeurIPS (2019)
20. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message

passing for quantum chemistry. In: ICML (2017)
21. Gurobi Optimization L: Gurobi optimizer reference manual (2020). http://www.

gurobi.com
22. Ho, K., Kardoost, A., Pfreundt, F.-J., Keuper, J., Keuper, M.: A two-stage min-

imum cost multicut approach to self-supervised multiple person tracking. In:
Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J. (eds.) ACCV 2020. LNCS, vol. 12623,
pp. 539–557. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69532-
3_33

23. Hou, Y.P.: Bounds for the least Laplacian eigenvalue of a signed graph. Acta Math.
Sinica 21(4), 955–960 (2005)

24. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut:
a deeper, stronger, and faster multi-person pose estimation model. In: Leibe, B.,
Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 34–50.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_3

https://doi.org/10.1007/978-3-319-46475-6_44
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1007/978-3-030-69532-3_33
https://doi.org/10.1007/978-3-030-69532-3_33
https://doi.org/10.1007/978-3-319-46466-4_3

500 S. Jung and M. Keuper

25. Joshi, C.K., Laurent, T., Bresson, X.: An efficient graph convolutional network
technique for the travelling salesman problem (2019)

26. Jung, S., Ziegler, S., Kardoost, A., Keuper, M.: Optimizing edge detection for
image segmentation with multicut penalties. CoRR abs/2112.05416 (2021)

27. Kappes, J.H., et al.: A comparative study of modern inference techniques for struc-
tured discrete energy minimization problems. Int. J. Comput. Vis. 115(2), 155–184
(2015). https://doi.org/10.1007/s11263-015-0809-x

28. Kappes, J.H., Speth, M., Andres, B., Reinelt, G., Schn, C.: Globally optimal image
partitioning by multicuts. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R.
(eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 31–44. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23094-3_3

29. Kardoost, A., Keuper, M.: Solving minimum cost lifted multicut problems by node
agglomeration. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV
2018. LNCS, vol. 11364, pp. 74–89. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-20870-7_5

30. Keuper, M., Andres, B., Brox, T.: Motion trajectory segmentation via minimum
cost multicuts. In: ICCV (2015)

31. Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox, T., Andres, B.: Efficient
decomposition of image and mesh graphs by lifted multicuts. In: ICCV (2015)

32. Keuper, M., Tang, S., Andres, B., Brox, T., Schiele, B.: Motion segmentation
multiple object tracking by correlation co-clustering. TPAMI 42(1), 140–153 (2020)

33. Keuper, M.: Higher-order minimum cost lifted multicuts for motion segmentation.
In: ICCV (2017)

34. Kim, S., Nowozin, S., Kohli, P., Yoo, C.D.: Higher-order correlation clustering for
image segmentation. In: NIPS (2011)

35. Kim, S., Yoo, C., Nowozin, S., Kohli, P.: Image segmentation using higher-order
correlation clustering. TPAMI 36, 1761–1774 (2014)

36. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
37. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. In: ICLR (2017)
38. Kool, W., Hoof, H.V., Welling, M.: Attention, learn to solve routing problems! In:

ICLR (2019)
39. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-

volutional neural networks. In: NIPS (2012)
40. Kunegis, J., Schmidt, S., Lommatzsch, A., Lerner, J., Luca, E.W.D., Albayrak, S.:

Spectral analysis of signed graphs for clustering, prediction and visualization. In:
SDM (2010)

41. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for
semi-supervised learning. In: AAAI (2018)

42. Li, Z., Chen, Q., Koltun, V.: Combinatorial optimization with graph convolutional
networks and guided tree search. In: NIPS (2018)

43. Ma, Q., Ge, S., He, D., Thaker, D., Drori, I.: Combinatorial optimization by graph
pointer networks and hierarchical reinforcement learning. In: AAAI Workshop on
Deep Learning on Graphs: Methodologies and Applications (2020)

44. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: ICCV (2001)

45. Micheli, A.: Neural network for graphs: a contextual constructive approach. IEEE
Trans. Neural Netw. 20(3), 498–511 (2009)

46. Nazari, M., Oroojlooy, A., Snyder, L., Takac, M.: Reinforcement learning for solving
the vehicle routing problem. In: NIPS (2018)

https://doi.org/10.1007/s11263-015-0809-x
https://doi.org/10.1007/978-3-642-23094-3_3
https://doi.org/10.1007/978-3-030-20870-7_5
https://doi.org/10.1007/978-3-030-20870-7_5

Learning to Solve Minimum Cost Multicuts Using Edge-Weighted GNNs 501

47. Oulabi, Y., Bizer, C.: Extending cross-domain knowledge bases with long tail enti-
ties using web table data. In: Advances in Database Technology, pp. 385–396 (2019)

48. Prates, M.O.R., Avelar, P.H.C., Lemos, H., Lamb, L., Vardi, M.: Learning to solve
NP-complete problems - a graph neural network for the decision TSP. In: AAAI
(2019)

49. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

50. Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a
sat solver from single-bit supervision (2019)

51. Shi, J., Malik, J.: Normalized cuts and image segmentation. TPAMI 22(8), 888–905
(2000)

52. Shi, Y., Huang, Z., Wang, W., Zhong, H., Feng, S., Sun, Y.: Masked label predic-
tion: unified message passing model for semi-supervised classification (2020)

53. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In: CVPR (2017)

54. Song, J., Andres, B., Black, M., Hilliges, O., Tang, S.: End-to-end learning for
graph decomposition. In: ICCV (2019)

55. Swoboda, P., Andres, B.: A message passing algorithm for the minimum cost mul-
ticut problem. In: CVPR (2017)

56. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)
57. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: NIPS (2015)
58. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?

In: ICLR (2019)

Natural Language Processing and Text
Mining

AutoMap: Automatic Medical Code
Mapping for Clinical Prediction Model

Deployment

Zhenbang Wu1, Cao Xiao2, Lucas M. Glass3, David M. Liebovitz4,
and Jimeng Sun1(B)

1 University of Illinois at Urbana-Champaign, Champaign, USA
{zw12,jimeng}@illinois.edu

2 Amplitude, San Francisco, USA
danica.xiao@amplitude.com

3 IQVIA, Durham, USA
lucas.glass@iqvia.com

4 Northwestern University, Evanston, USA
david.liebovitz@nm.org

Abstract. Given a deep learning model trained on data from a source
hospital, how to deploy the model to a target hospital automatically?
How to accommodate heterogeneous medical coding systems across dif-
ferent hospitals? Standard approaches rely on existing medical code map-
ping tools, which have several practical limitations.

To tackle this problem, we propose AutoMap to automatically map the
medical codes across different EHR systems in a coarse-to-fine manner: (1)
Ontology-level Alignment:We leverage the ontology structure to learn
a coarse alignment between the source and target medical coding systems;
(2) Code-level Refinement: We refine the alignment at a fine-grained
code level for the downstream tasks using a teacher-student framework.

We evaluate AutoMap using several deep learning models with two real-
world EHR datasets: eICU and MIMIC-III. Results show that AutoMap

achieves relative improvements up to 3.9% (AUC-ROC) and 8.7% (AUC-
PR) for mortality prediction, and up to 4.7% (AUC-ROC) and 3.7% (F1)
for length-of-stay estimation. Further, we show that AutoMap can pro-
vide accurate mapping across coding systems. Lastly, we demonstrate that
AutoMap can adapt to two challenging scenarios: (1)mapping between com-
pletely different coding systems and (2) between completely different hos-
pitals.

Keywords: Medical code mapping · Clinical prediction model
deployment · Electronic health records

1 Introduction

Deep learning models have been widely used in clinical predictive modeling with
electronic health record (EHR) data [33]. These models often leverage medical

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26390-3 29.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 505–520, 2023.
https://doi.org/10.1007/978-3-031-26390-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_29&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_29
https://doi.org/10.1007/978-3-031-26390-3_29

506 Z. Wu et al.

codes as an important data source summarizing patients’ health status [5,7,14].
However, in real-world clinical practice, a variety of different coding systems
are used across hospital EHR systems [3]. As a result, models trained on data
from a source hospital are often hard to adapt to a target hospital where other
coding systems are used. A method that can accommodate different medical
coding systems across hospitals for easy model deployment is highly
desirable. Standard approaches rely on existing medical code mapping tools (e.g.,
Unified Medical Language System (UMLS) [4]), which have significant practical
limitations due to the following challenges:

– Rare coding systems. Existing commercial and free code mapping tools are
only available for a few widely used coding systems (e.g., ICD-9, ICD-10 and
SNOMED CT) [32]. Hospitals using rare or private coding systems cannot
benefit from these tools.

– Limited labeled data. While large hospitals may fine-tune the pre-trained
models to adapt to their coding systems, small hospitals with limited labeled
data often fail to do so.

– No access to source data. Even worse, the source data usually cannot be
shared with the target hospital due to privacy and legal concern.

In this paper, we propose AutoMap for automatic medical code mapping across
different hospitals EHR systems. AutoMap constructs appropriate target embed-
dings unsupervisedly based on the target EHR data and maps the target embed-
dings to the source embeddings, so that the deep learning model trained on the
source data can be seamlessly deployed to the target data without any manual
code mapping. More specifically, AutoMap learns the mapping across different
coding systems in a coarse-to-fine manner:

– Embedding. The medical code embeddings will be constructed from the
target EHR data unsupervisedly.

– Ontology-level Alignment. We leverage the ontology structure to map
medical coding groups via iterative self-supervised learning. In this step, we
obtain a coarse mapping from groups of target embeddings to the groups of
source embeddings.

– Code-level Refinement. We refine the coarse mapping at a fine-grained
code level via a teacher-student framework. It utilizes a discriminator (teacher
A) to align two coding systems at the code level, and the backbone model
(teacher B) to optimize the mapping based on the final prediction.

We evaluate AutoMap using multiple backbone deep learning models on two
real-world EHR datasets: eICU [25] and MIMIC-III [13]. Results show that with
a limited set of labeled data, AutoMap achieves relative improvements up to 3.9%
on AUC-ROC score and 8.7% on AUC-PR score for mortality prediction; and up
to 4.7% on AUC-ROC score and 3.7% on F1 score for length-of-stay estimation.
Further, we evaluate the mapping accuracy of AutoMap and show that AutoMap
improves the best baseline method by 8.2% in similarity score and 11.3% on
hit@10 score. Lastly, we demonstrate that AutoMap can still achieve acceptable
results under two challenging scenarios: (1) mapping between completely dif-
ferent coding systems: the model is trained on diagnosis codes and deployed on

AutoMap: Automatic Medical Code Mapping 507

medication codes; (2) mapping between completely different hospitals: the model
is trained and deployed in hospitals from different regions.

It is important to note that we do not argue to completely replace existing
code mapping tools. Instead, the main contribution of AutoMap is to evaluate
the potential of a novel approach to automatically learn the code
mapping from clinical data, which provides a new direction to support model
deployment across different medical coding systems, and complements existing
code mapping tools.

2 Related Work

Medical Code Mapping Tools. There exists a variety of commercial and
free tools for mapping across different EHR ecosystems. UMLS [4] provides the
mapping among ICD-9, ICD-10 and SNOMED CT. Observational Medical Out-
comes Partnership (OMOP) [12] and Fast Healthcare Interoperability Resources
(FHIR) [20] define the standards for representing clinical data in a consistent for-
mat. Relying on these tools, some recent works try to support model deployment
across hospitals by transforming the EHR data into a standard format [26,31].
However, creating such tools requires a lot of domain knowledge and human
labor [32]. These mapping tools are only available for widely-used coding sys-
tems and can be easily outdated due to code updates. To address this, AutoMap
proposes to learn the code mapping from clinical data, which complements exist-
ing code mapping tools.

Cross-lingual Word Mapping. Our medical code mapping problem has some
similarity to the cross-lingual research. Cross-lingual word mapping methods work
by mapping the word embeddings in two languages to a shared space using transla-
tion pairs [1], shared tokens [29], adversarial learning [9], or the nearest neighbors
of similarity distributions [2]. Inspired by [2], AutoMap also leverages the similarity
distributions [22] to align medical codes. However, there are significant differences
between EHR and natural languages: (1) medical codes often reside in a concept
hierarchy; (2) medical codes are often noisier. To address this, instead of directly
mapping medical codes, AutoMap adopts a coarse-to-fine method by first perform-
ing ontology-level alignment and then code-level refinement.

3 Preliminaries

We first define a few key concepts, and then present our setting in Definition 6.
Detailed notations can be found in the appendix.

Definition 1 (EHR Dataset). In EHR data, a patient has a sequence of visits:
Vp = [v(1)

p , v
(2)
p , . . . , v

(np)
p], where np is the number of visits of patient p. For model

training, each patient has a label yp (e.g., mortality or length-of-stay). We will
drop the subscript p whenever it is unambiguous. Each visit of a patient is repre-
sented by its corresponding medical codes, specified by v(i) = {c1, c2, . . . , cm(i)},
where m(i) is the total number of codes of the i-th visit. Each medical code
c ∈ {0, 1}|C| is a one-hot vector (i.e., ‖c‖1 = 1), where C denotes the set of
all medical codes in the dataset.

508 Z. Wu et al.

Fig. 1. AutoMap supports model deployment by automatically mapping the medical
code embeddings across different coding systems in a coarse-to-fine manner: (0) Embed-
ding that initializes the target code embedding matrix; (1) Ontology-level Alignment
that leverages the ontology structure to learn the coarse ontology mapping; (2) Code-
level Refinement that refines the mapping at the fine-grained code level for the down-
stream task with a teacher-student framework.

Our setting involves two datasets: a source dataset ∗S for pre-training the
backbone model but unavailable during deployment, and a mostly unlabeled
target dataset ∗T for deploying the model. The two datasets can have completely
different medical codes. We also utilize separate medical ontology structures for
source and target medical codes.

Definition 2 (Medical Ontology). A medical ontology O specifies the hier-
archy of medical codes in the form of a parent-child relationship. Formally, an
ontology O is a directed acyclic graph whose nodes are C ∪ C. Here, C is the
set of medical codes (often leaf nodes in the ontology), and C is the set of other
intermediate codes (i.e., non-leaf nodes) representing more general concepts.

For simplicity, we define a function ancestor(c, l) : {0, 1}|C| × Z → {0, 1}|C|,
which maps a given medical code c ∈ {0, 1}|C| to its l-th level ancestor code (i.e.,
category). For example, in Fig. 1, the root node is the 0-th level ancestor code
of all leaf codes.

Definition 3 (Medical Code Embedding). To fully utilize the code seman-
tic information, it is a common practice to convert the medical code from one-hot
vector c ∈ {0, 1}|C| to a dense embedding vector e ∈ R

d [5,14], where d is the
embedding dimensionality. This can be done via an embedding matrix E ∈ R

|C|×d,
where each row corresponds to the embedding for a medical code. The embedding
can be computed as e = E�c.

We denote the embedding matrices for source and target datasets as ES

and ET , respectively. The source embedding ES is provided with the trained
backbone model as the input. And the target embedding ET will be learned
using the target dataset. In this work, to deploy the backbone model, we will
learn to map the target medical codes to the source.

Definition 4 (Code Embedding Mapping). We define the mapping from
the embedding space of one medical coding system to another as φ(E) : Rd → R

d.

AutoMap: Automatic Medical Code Mapping 509

We will learn the embedding mapping φ(·) that maps the target embedding
to the source via φ(ET).

Definition 5 (Backbone Deep Learning Model). The backbone deep learn-
ing model F (·) takes EHR sequences and the corresponding medical code embed-
dings as the input and then outputs the prediction: ŷ = F ([v(i)]ni=1, φ(E)), where
ŷ is the corresponding predictions for label y. The backbone model F (·) is pre-
trained on source dataset ∗S and deployed on target dataset ∗T with a different
coding system. Note that the embedding mapping φ(·) degenerates to the identity
function if the backbone model F (·) is trained and deployed on the same coding
system.

Definition 6 (Predictive Model Deployment). Given a backbone model
F (·) and source code embedding matrix ES, a mostly unlabeled target dataset ∗T
in a different coding system, and the medical ontologies OS ,OT for both coding
systems, the goal is to optimize the mapping φ(·) on the target dataset ∗T , as
given by Eq. (1),

arg min
φ(·)

L(F (·),ES , ∗T,OS ,OT , φ(·)), (1)

where L(·) denotes the designated loss function. The prediction on the target
dataset can be obtained via F (VT , φ(ET)), where VT is a sequence of visits from
the target dataset ∗T , and φ(ET) is the transformed target embeddings.

In our setting, we can only access the source code embedding ES and ontology
OS instead of the source data ∗S. This is more realistic in deployment setting
since the source data often cannot be shared due to legal and privacy concern.
In contrast, the source embedding matrix ES can be more easily provided along
with the backbone model F (·), and the code ontologies are usually publicly
accessible. We also assume that the target dataset ∗T is mostly unlabeled, since
the target site may often be some small hospital.

4 AutoMap Method

We propose AutoMap for automatic code mapping across different hospitals EHR
systems. The mapping will be done in a coarse-to-fine manner, enabled by the
adaptation process shown in Fig. 1. Embedding (step 0) first initializes the tar-
get code embedding matrix ET . Ontology-level alignment (step 1) then derives
the initial coarse mapping φ(·) via iterative self-supervised learning. Code-level
refinement (step 2) further fine-tunes the mapping φ(·) at the code level using a
teacher-student framework.

4.1 Step 0: Embedding

As mentioned in Definition 3, we first convert the target medical codes from one-
hot vector cT ∈ {0, 1}|C| to a corresponding dense embedding vector eT ∈ R

d.

510 Z. Wu et al.

We use GloVe [24] to learn the target code embedding matrix ET via a global
co-occurrence matrix of medical codes. Other unsupervised learning algorithms
such as Med2Vec [7] and Word2Vec [21] can also be used. We employ GloVe
because of its computational efficiency. After this, we parameterize φ(·) by a
mapping matrix W ∈ R

d×d. The mapping matrix W can be used to transform
the target code embedding via ET W.

4.2 Step 1: Ontology-Level Alignment

In this step, we will first learn a coarse mapping W at the ontology level. This
first step is essential because direct code level mapping is difficult and unneces-
sary: (1) It is difficult due to the large number of medical codes; (2) It is also
unnecessary since many codes have similar clinical meanings. Therefore, we fol-
low a common practice to first group similar codes using code ontology [5,7,28]
and learn the mapping on groups instead of leaf-level codes. For example, ICD-9
code 438.11 “late effects of cerebrovascular disease, aphasia” corresponds to five
ICD-10 codes (I69.020, I69.120, I69.220, I69.320, I69.920). While it is hard to
directly align the ICD-9 code to each of these five ICD-10 codes, we can first
coarsely map the ICD-9 code to I00-I99 “diseases of the circulatory system”,
and then gradually refine the mapping to I60-I99 “cerebrovascular diseases”, I69
“cerebrovascular diseases”, and eventually the five-leaf codes. By leveraging the
medical ontology, we can use more general medical concepts as “anchor points”
to better align two coding systems.

Next, we introduce the building blocks of the iterative self-supervised learning
(i.e., ontology grouping, unsupervised seed induction, Procrustes refinement),
and then present the ontology-level alignment algorithm.

Ontology Grouping. At a given hierarchy level l, we group the codes according
to their l-th level ontology categories. Specifically, the i-th group G(l)

i consists of
all the leaf medical codes whose l-th level category is ci, as in Eq. (2),

G(l)
i = {cj | ancestor(cj , l) = ci, cj ∈ C}, (2)

where ci ∈ C is the corresponding l-th level category code. We will drop the
superscript (l) whenever it is unambiguous. To obtain the group embedding
gi, we first calculate the mean group embedding gi by averaging all the code
embeddings in that group, as in Eq. (3a); then, we represent the group embedding
as the closest code embedding, as in Eq. (3b),

gi = mean{ej | cj ∈ Gi}, (3a)

gi = argmin
ej

{ejg�
i | cj ∈ C}, (3b)

where ej is the embedding vector for the code cj , and ejg�
i ∈ R calculates the

distance between the code cj and the mean group embedding gi. Intuitively, gi

can be viewed as the “median” group embedding. We select the top-k groups

AutoMap: Automatic Medical Code Mapping 511

based on the group size, since we want to first learn a coarse mapping while
including too many groups may introduce too much granular information. As a
result, we have GT ,GS ∈ R

k×d for target and source groups, where each row
corresponds to an embedding vector for a particular group. We present with the
same k to reduce clutter, though it can be different for source and target groups.

We note that when the ontology is not available, AutoMap can still apply
by using a clustering algorithm (e.g., k-Means) to group the medical codes.
Specifically, we provide additional experiments on this setting in the appendix.

Unsupervised Seed Induction. Given the l-th level source and target coding
groups GS and GT , we can initialize a coarse alignment in a fully unsupervised
way. More specifically, we first calculate the similarity matrices, as in Eq. (4),

MT = GT G�
T ; MS = GSG�

S , (4)

where MT ,MS ∈ R
k×k. Each row in the similarity matrices MT ,MS repre-

sents the similarities of the corresponding group to all the other groups. Under
the ideal case where the embedding spaces between different coding systems are
isometric1, one can permute the rows and columns of MT to obtain MS . We
introduce the following heuristics to find the optimal permutation (i.e., a map-
ping dictionary) of this NP-hard problem. We perform row-wise sort on MT

and MS (i.e., elements in each row are sorted based only on the order in that
particular row), as in Eq. (5a). Under the isometric assumption, codes with the
same meaning will have exactly the same row vector in M̃T and M̃S , suggesting
that we can find the mapping dictionary D ∈ R

k×k via nearest neighbor search
over row vectors in M̃T , as shown in Eq. (5b),

M̃T = sorted(MT); M̃S = sorted(MS), (5a)

D[i, j] =

{
1, if j = argmax((M̃T · M̃�

S)[i, :])
0, otherwise,

(5b)

where · denotes matrix multiplication.

Procrustes Optimization. At a given hierarchy level l, we optimize the
inducted mapping dictionary D by iterating the following two steps.

1. The mapping W ∈ R
d×d is obtained by maximizing the similarities for the

current dictionary D, as given by Eq. (6a). This optimization problem is
known as the Procrustes problem [27] and has a closed form solution, as in
Eq. (6b),

argmin
W

‖D � (GT W︸ ︷︷ ︸
transformed target embedding

G�
S)‖1, (6a)

W = UV�, where UΣVT = SVD(G�
T DGS), (6b)

1 In practice, the isometry requirement will not hold exactly, but it can be assumed to
hold approximately, or the problem of mapping two code embedding spaces without
supervision would be impossible.

512 Z. Wu et al.

where � denotes Hadamard product, and SVD denotes Singular Value
Decomposition.

2. A new dictionary D is induced, as in Eq. (7),

D[i, j] =

{
1, if j = argmax((GT WG�

S)[i, :])
0, otherwise.

(7)

Iterative Self-supervised Learning. We now introduce the self-supervised
learning strategy, which maps the two coding systems at multiple resolutions
iteratively. Starting from a coarse hierarchy level l, we obtain the l-th level
medical coding groups GS and GT with Eq. (2, 3). Then we induct the l-th
level seed mapping dictionary D(l) with Eq. (4, 5). Next, we merge the current
and previous level mapping dictionaries, as D(l) = D(l) + D(l−1). Lastly, we
optimize the merged mapping dictionary D(l) using Eq. (6, 7). We gradually
increase l (going down in the ontology) during iterative self-supervised learning
until we reach the leaf level to learn the mapping at multiple resolutions. We
note that source and target codes can use different grouping level l. We present
with the same l to reduce clutter.

In this way, we learn a coarse mapping matrix W between two medical coding
systems at the ontology level. This step is inspired by [2]. However, instead
of directly mapping medical codes, AutoMap leverages the ontology structure
and iteratively maps medical coding groups in a coarse-to-fine manner, allowing
AutoMap to better align coding systems with different granularities.

4.3 Step 2: Code-Level Refinement

While we have performed step 1 (ontology-level alignment) to initialize the map-
ping, the mapping is still too coarse and need further refining. Moreover, there
is no guarantee of the performance for the downstream tasks (i.e., mortality pre-
diction and length-of-stay estimation). Thus, it is preferred to further fine-tune
the mapping at the code level for downstream tasks.

To do this, we propose a teacher-student framework, where the discriminator
D(·) (teacher A) refines the mapping matrix W (student) via adversarial learn-
ing; and the backbone model F (·) (teacher B) optimizes the mapping matrix W
(student) based on the final prediction task. Below we describe the framework
in detail.

Teacher A: Discriminator. We leverage the adversarial learning framework
by introducing a discriminator D(·), parameterized by a multi-layer neural net-
work. Specifically, the discriminator D(·) tries to classify whether the embed-
dings are from the target (label 0) or source (label 1) embedding distributions.
Formally, discriminator D(·) aims at minimizing the discriminator adversarial
loss, as in Eq. (8),

LD = − log(D(eS)) − log(D(1 − eT W)), (8)

AutoMap: Automatic Medical Code Mapping 513

where eS (eT) represents the source (target) code embedding sampled randomly
from the code embedding matrix ES (ET), and W maps the target embedding
to the source embedding space via eT W.

The mapping matrix W acts as the generator and tries to deceive the dis-
criminator D(·). Formally, we try to minimize the generator adversarial loss, as
in Eq. 9,

LG = − log(D(eT W)). (9)

Theoretically, the discriminator D(·) and mapping matrix W learn to align two
coding systems as an adversarial game. Since the minimization happens at the
distribution level, we do not require code mapping pairs to supervise training.

Teacher B: Backbone. Here, the backbone model F (·) is leveraged to opti-
mize the ultimate prediction performance based on the transformed target code
embeddings. Formally, we aim at minimizing the following classification loss

Lcls(F ([v(i)]ni=1,ET W),yT), (10)

where the transformed target code embeddings ET W are used to encode patient
visits [v(i)]ni=1.

In summary, the mapping matrix W is fine-tuned by minimizing the com-
bined loss

LW = Lcls + αLG, (11)

where α is a hyper-parameter. The pseudo-code can be found in the appendix.

5 Experiment

5.1 Experimental Setting

We will briefly introduce the experimental settings. Detailed information can be
found in the appendix. The code of AutoMap is publicly available2.

Data. We evaluate the performance of AutoMap extensively with two publicly
accessible datasets: eICU [25] and MIMIC-III [13]. eICU [25] is a multi-center
database with intensive care unit (ICU) records for over 200K admissions to over
200 hospitals across the United States. MIMIC-III [13] is a single-center database
containing 53K ICU records from Beth Israel Deaconess Medical Center.

Baselines. We compare AutoMap with multiple baseline methods ranging from
simple methods such as Direct Training and Transfer Learning, standard
method leveraging Mapping Tools, to cross-lingual translation methods like
MUSE [9] and VecMap [2]. We also conduct an ablation study of our AutoMap
with Step 1 Only, Step 1 Only + Random Ontology, and Step 2 Only.
2 https://github.com/zzachw/AutoMap.

https://github.com/zzachw/AutoMap

514 Z. Wu et al.

Backbone Models. As AutoMap is a general framework that can apply to
different backbone models, we incorporate AutoMap with the following backbone
deep learning models: MLP, RNN, RETAIN [5], GCT [8], BEHRT [14].

Table 1. Results with limited labeled data (100 patients) in the target site. Dataset is
eICU [25]. The average scores of two mapping directions between ICD-9 and ICD-10
codes are reported. * indicates that AutoMap achieves significant improvement over the
best baseline method (i.e., p-value is smaller than 0.05). Experiment results show that
AutoMap can adapt different backbone models to the target site with limited labeled
data.

Backbone Method
Mortality Length-of-Stay

AUC-PR AUC-ROC F1 AUC-ROC

MLP

Full-Label 0.2819 0.6531 0.5033 0.2819

Direct Training 0.2524 0.6191 0.2835 0.5345

Transfer Learning 0.2551 0.6240 0.4584 0.6095

MUSE 0.2506 0.6276 0.4905 0.6240

VecMap 0.2820 0.6502 0.4947 0.6341

AutoMap 0.2934* 0.6631* 0.4952 0.6350

RNN

Full-Label 0.2818 0.6539 0.5030 0.2818

Direct Training 0.2074 0.5547 0.1222 0.4427

Transfer Learning 0.2536 0.6234 0.4662 0.6166

MUSE 0.2455 0.6260 0.4933 0.6367

VecMap 0.2780 0.6488 0.5019 0.6416

AutoMap 0.2875* 0.6627* 0.4996 0.6487*

RETAIN

Full-Label 0.2648 0.6190 0.4447 0.2648

Direct Training 0.2031 0.5466 0.1222 0.4427

Transfer Learning 0.2269 0.5732 0.4455 0.5395

MUSE 0.2374 0.5838 0.4217 0.5831

VecMap 0.2744 0.6315 0.4264 0.5963

AutoMap 0.2835* 0.6528* 0.4779* 0.6007*

GCT

Full-Label 0.2814 0.6533 0.4986 0.2814

Direct Training 0.1836 0.5402 0.2680 0.4865

Transfer Learning 0.2103 0.5967 0.4748 0.5718

MUSE 0.2242 0.6016 0.4866 0.6129

VecMap 0.2491 0.6291 0.4863 0.6085

AutoMap 0.2707* 0.6539* 0.4940* 0.6363*

BEHRT

Full-Label 0.2652 0.6673 0.3657 0.2652

Direct Training 0.1740 0.5438 0.3063 0.4730

Transfer Learning 0.2320 0.6190 0.3291 0.5609

MUSE 0.2155 0.6040 0.3493 0.5869

VecMap 0.2786 0.6740 0.3612 0.6044

AutoMap 0.2712 0.6737 0.3744* 0.6328*

AutoMap: Automatic Medical Code Mapping 515

Table 2. Results for the scenario where the backbone model is trained on diagnosis
code and deployed on medication codes. Dataset is MIMIC-III [13]. Experiment results
show that AutoMap can adapt to target data coded in a completely different system.

Method
Mortality Length-of-Stay

AUC-PR F1

Full-Label 0.7149 0.3057

Direct Training 0.4701 0.3158

Transfer Learning 0.5642 0.2999

MUSE 0.4905 0.3022

VecMap 0.3553 0.3014

AutoMap 0.5902* 0.3022

5.2 Q1: Target Data with Limited Labels

We first evaluate AutoMap in a common setting where the target site has limited
labeled data (100 patients). For reference, we also report the performance of the
model trained with the fully-labeled target data, as “Full-Label” in the table.
This can be viewed as an “upper bound” of the model performance. Descriptions
of the metrics can be found in the appendix. Results can be found in Table 1.

First, we find that the two simple baselines: direct training and transfer learn-
ing methods do not work very well. In most cases, they are much worse compared
to the full-label performance. This is expected as the amount of labeled data is
insufficient to train or fine-tune the backbone models. Next, code-level mapping
methods MUSE [9] and VecMap [2] achieve some improvements, but they are
not stable. In some cases, they perform even worse than the two simple baselines.
This may because ICD-9 and ICD-10 have different degrees of specificity (e.g.,
10K codes in ICD-9 v.s. 68K codes in ICD-10), and directly mapping them at
code level does not work very well. Finally, we observe that AutoMap achieves sig-
nificant improvement over the baseline and can match the full-label performance
in most cases. Specifically, AutoMap achieves up to 8.7% relative improvement on
AUC-PR score for mortality prediction; for length-of-stay estimation, AutoMap
achieves up to and 3.7% relative improvement on F1 score. This demonstrates
the effectiveness of coarse-to-fine mapping and the versatility of AutoMap.

5.3 Q2: Completely Different Codes

We then evaluate AutoMap in the challenging case where we train the backbone
model on diagnosis code (ICD-9) and deploy it on medication codes (NDC). Due
to the limited space, for the rest of the experiments, we only report AUC-PR
for mortality and F1 for length-of-stay with backbone model BEHRT [14] using
100 labeled patients in the target data. Results can be found in Table 2.

First, we note that since these two coding systems are so different, no existing
mapping tools is available. For mortality prediction, as shown in Table 2, the

516 Z. Wu et al.

Table 3. Results for the scenario where the backbone model is trained and deployed
in hospitals from different regions. Dataset is eICU [25]. Experiment results show that
AutoMap can adapt to target hospitals from a completely region.

Method
Mortality Length-of-Stay

AUC-PR F1

Full-Label 0.2578 0.4560

Direct Training 0.1434 0.4334

Transfer Learning 0.1860 0.3924

MUSE 0.1314 0.3988

VecMap 0.1305 0.3801

AutoMap 0.1990* 0.4290

code-level mapping methods perform even worse than direct training and transfer
learning. This may due to the large gap between these two coding systems. On
the contrary, AutoMap can still give acceptable results, outperforming all baseline
methods with 4.6%–66.1% statistically significant improvements. This shows the
superiority of AutoMap’s coarse-to-fine mapping strategy. For the length-of-stay
estimation task, all five methods perform pretty similar to full-label performance.
This may indicate that medication codes are not so informational for length-of-
stay estimation.

5.4 Q3: Completely Different Hospitals

We next challenge AutoMap under the scenario where we train the backbone
model in hospitals from Midwest region (with ICD-9 code) and deploy it in
hospitals from South region (with ICD-10 code). Results can be found in Table 3.

For mortality prediction, mapping based methods (MUSE [9] and
VecMap [2]) achieve the worst results. This is expected as methods from cross-
lingual word mapping do not consider the domain gap between different regions.
This also explains why transfer learning perform slightly better (as its train-
ing scheme can accommodate some domain gap). Benefit from the refinement
step, AutoMap achieves the best result with 7.0%–52.5% statistically significant
relative improvements. This shows that AutoMap can adapt to hospitals from dif-
ferent regions. For length-of-stay estimation, all pre-training based methods per-
form worse than direct training. This may indicate that different hospitals have
different decision rules on ICU length-of-stay. As a result, transferring knowledge
from other hospitals may not help. Despite this, AutoMap still achieves the best
results among all pre-training based methods.

5.5 Q4: Mapping Accuracy

We further evaluate the accuracy of the learnt mapping. The ICD code mapping
in the eICU [25] dataset is used as the ground truth. As shown in Table 4,

AutoMap: Automatic Medical Code Mapping 517

Table 4. Accuracy of mapping for
diagnosis codes (ICD-9 and ICD-
10). Dataset is eICU [25]. The
average scores of two mapping
directions are reported. Experi-
ment results show that AutoMap

can learn accurate mapping across
medical coding systems.

Method Similarity Hit@10

MUSE 0.1633 0.0600

VecMap 0.4612 0.5974

AutoMap 0.4992* 0.6657*

Table 5. Ablation study. Dataset is
eICU [25]. The average scores of two map-
ping directions between ICD-9 and ICD-10
codes are reported. R.O. denotes random
ontology. Experiment results demonstrate
the importance of AutoMap’s 2-step coarse-
to-fine mapping.

Method
Mortality Length-of-Stay

AUC-PR F1

Step 1 Only 0.2680 0.3623

Step 1 Only + R.O. 0.2054 0.3631

Step 2 Only 0.2038 0.3306

AutoMap 0.2712* 0.3744*

VecMap [2] and AutoMap achieve much better performance than MUSE [9].
This supports the isometric assumption used in both methods. Further, AutoMap
achieves the best results with statistical significance. This demonstrates that the
proposed coarse-to-fine mapping can better map coding systems with different
granularities.

5.6 Ablation Study

Finally, we compare AutoMap with three ablated versions. As shown in Table 5,
only performing step 2 (code-level refinement) gives the worst results. This is
reasonable as the model will easily over-fit the target data with limited labels.
Also, since the mapping matrix W is randomly generated, the adversarial learn-
ing module will even harm the downstream tasks. Next, we can see that per-
forming step 1 (ontology-level alignment) only gives better results. This indicates
that step 1 contributes most to AutoMap’s improvements. This may because the
isometric assumption and medical ontology can act as a strong prior to guide the
model learning process. This point can also be supported by the performance
with randomly-generated ontology. Lastly, AutoMap achieves the best results.
This shows the importance of refining the mapping at code-level after the coarse
ontology alignment.

6 Conclusion

We propose AutoMap for automatic medical code mapping across different hospi-
tals EHR systems. Benefit from the coarse-to-fine mapping, AutoMap can better
align coding systems at different granularities. We evaluate AutoMap extensively
using different backbone models with two real-world EHR datasets. Experimen-
tal results show that AutoMap outperforms existing solutions on multiple predic-
tion tasks when mapping solutions exist and provides a mapping strategy when
conventional solutions do not exist.

518 Z. Wu et al.

References

1. Artetxe, M., Labaka, G., Agirre, E.: Learning bilingual word embeddings with
(almost) no bilingual data. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, Vancouver, Canada, (Volume 1: Long
Papers), pp. 451–462. Association for Computational Linguistics (2017). https://
doi.org/10.18653/v1/P17-1042. https://www.aclweb.org/anthology/P17-1042

2. Artetxe, M., Labaka, G., Agirre, E.: A robust self-learning method for fully unsu-
pervised cross-lingual mappings of word embeddings. In: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics, Melbourne, Aus-
tralia, (Volume 1: Long Papers), pp. 789–798. Association for Computational Lin-
guistics (2018). https://doi.org/10.18653/v1/P18-1073. https://www.aclweb.org/
anthology/P18-1073

3. Birkhead, G.S., Klompas, M., Shah, N.R.: Uses of electronic health records
for public health surveillance to advance public health. Ann. Rev. Pub-
lic Health 36(1), 345–359 (2015). https://doi.org/10.1146/annurev-publhealth-
031914-122747, pMID: 25581157

4. Bodenreider, O.: The Unified Medical Language System (UMLS): integrating
biomedical terminology. Nucleic Acids Res. 32(Database issue), D267–270 (2004)

5. Choi, E., Bahadori, M.T., Kulas, J.A., Schuetz, A., Stewart, W.F., Sun, J.: Retain:
an interpretable predictive model for healthcare using reverse time attention mech-
anism. In: Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS 2016, pp. 3512–3520. Curran Associates Inc., Red Hook
(2016)

6. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: pre-
dicting clinical events via recurrent neural networks. In: Doshi-Velez, F., Fackler,
J., Kale, D., Wallace, B., Wiens, J. (eds.) Proceedings of the 1st Machine Learn-
ing for Healthcare Conference. Proceedings of Machine Learning Research, vol. 56,
pp. 301–318. PMLR, Northeastern University, Boston, MA, USA (2016). https://
proceedings.mlr.press/v56/Choi16.html

7. Choi, E., et al.: Multi-layer representation learning for medical concepts. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD 2016, pp. 1495–1504. Association for Computing
Machinery, New York (2016). https://doi.org/10.1145/2939672.2939823

8. Choi, E., et al.: Learning the graphical structure of electronic health records with
graph convolutional transformer. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence, vol. 34, pp. 606–613 (2020). https://doi.org/10.1609/aaai.v34i01.
5400

9. Conneau, A., Lample, G., Ranzato, M., Denoyer, L., Jégou, H.: Word translation
without parallel data (2018)

10. Gupta, P., Malhotra, P., Narwariya, J., Vig, L., Shroff, G.: Transfer learning for
clinical time series analysis using deep neural networks (2019)

11. Harutyunyan, H., Khachatrian, H., Kale, D.C., Ver Steeg, G., Galstyan, A.: Mul-
titask learning and benchmarking with clinical time series data. Sci. Data 6(1)
(2019). https://doi.org/10.1038/s41597-019-0103-9

12. Hripcsak, G., et al.: Observational health data sciences and informatics (OHDSI):
opportunities for observational researchers. Stud. Health Technol. Inform. 216,
574–578 (2015)

13. Johnson, A.E., et al.: Mimic-iii, a freely accessible critical care database. Sci. Data
3, 160035 (2016)

https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.18653/v1/P17-1042
https://www.aclweb.org/anthology/P17-1042
https://doi.org/10.18653/v1/P18-1073
https://www.aclweb.org/anthology/P18-1073
https://www.aclweb.org/anthology/P18-1073
https://doi.org/10.1146/annurev-publhealth-031914-122747
https://doi.org/10.1146/annurev-publhealth-031914-122747
https://proceedings.mlr.press/v56/Choi16.html
https://proceedings.mlr.press/v56/Choi16.html
https://doi.org/10.1145/2939672.2939823
https://doi.org/10.1609/aaai.v34i01.5400
https://doi.org/10.1609/aaai.v34i01.5400
https://doi.org/10.1038/s41597-019-0103-9

AutoMap: Automatic Medical Code Mapping 519

14. Li, Y., et al.: BEHRT: transformer for electronic health records. Sci. Rep. 10(1),
7155 (2020). https://doi.org/10.1038/s41598-020-62922-y

15. Luo, J., Ye, M., Xiao, C., Ma, F.: HiTANet: hierarchical time-aware attention net-
works for risk prediction on electronic health records, pp. 647–656. Association
for Computing Machinery, New York (2020). https://doi.org/10.1145/3394486.
3403107

16. Ma, F., Chitta, R., Zhou, J., You, Q., Sun, T., Gao, J.: Dipole: diagnosis predic-
tion in healthcare via attention-based bidirectional recurrent neural networks. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2017, pp. 1903–1911. Association for Computing
Machinery, New York (2017). https://doi.org/10.1145/3097983.3098088

17. Ma, L., et al.: AdaCare: explainable clinical health status representation learn-
ing via scale-adaptive feature extraction and recalibration. In: The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, 7–12 February 2020, pp. 825–832. AAAI Press (2020). https://
aaai.org/ojs/index.php/AAAI/article/view/5427

18. Ma, L., et al.: CovidCare: transferring knowledge from existing EMR to emerging
epidemic for interpretable prognosis (2020)

19. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech
and Language Processing (2013)

20. Mandel, J.C., Kreda, D.A., Mandl, K.D., Kohane, I.S., Ramoni, R.B.: SMART on
FHIR: a standards-based, interoperable apps platform for electronic health records.
J. Am. Med. Inform. Assoc. 23(5), 899–908 (2016)

21. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013)

22. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for
machine translation (2013)

23. Nguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S.: Deepr: a convolutional
net for medical records. IEEE J. Biomed. Health Inform. 21(1), 22–30 (2017).
https://doi.org/10.1109/JBHI.2016.2633963

24. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP), pp.
1532–1543 (2014). http://www.aclweb.org/anthology/D14-1162

25. Pollard, T.J., Johnson, A.E.W., Raffa, J.D., Celi, L.A., Mark, R.G., Badawi, O.:
The eICU collaborative research database, a freely available multi-center database
for critical care research. Sci. Data 5(1), 180178 (2018). https://doi.org/10.1038/
sdata.2018.178

26. Rajkomar, A., et al.: Scalable and accurate deep learning with electronic health
records. NPJ Digit. Med. 1(1), 18 (2018). https://doi.org/10.1038/s41746-018-
0029-1. http://www.nature.com/articles/s41746-018-0029-1

27. Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem.
Psychometrika 31(1), 1–10 (1966). https://doi.org/10.1007/BF02289451

28. Shang, J., Xiao, C., Ma, T., Li, H., Sun, J.: GameNet: graph augmented mem-
ory networks for recommending medication combination. In: The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Inno-
vative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,

https://doi.org/10.1038/s41598-020-62922-y
https://doi.org/10.1145/3394486.3403107
https://doi.org/10.1145/3394486.3403107
https://doi.org/10.1145/3097983.3098088
https://aaai.org/ojs/index.php/AAAI/article/view/5427
https://aaai.org/ojs/index.php/AAAI/article/view/5427
https://doi.org/10.1109/JBHI.2016.2633963
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1038/sdata.2018.178
https://doi.org/10.1038/sdata.2018.178
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1038/s41746-018-0029-1
http://www.nature.com/articles/s41746-018-0029-1
https://doi.org/10.1007/BF02289451

520 Z. Wu et al.

Honolulu, Hawaii, USA, 27 January–1 February 2019, pp. 1126–1133. AAAI Press
(2019). https://doi.org/10.1609/aaai.v33i01.33011126

29. Søgaard, A., Ruder, S., Vulić, I.: On the limitations of unsupervised bilingual
dictionary induction. In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, Melbourne, Australia, (Volume 1: Long Papers),
pp. 778–788. Association for Computational Linguistics (2018). https://doi.org/
10.18653/v1/P18-1072. https://www.aclweb.org/anthology/P18-1072

30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(56), 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

31. Tang, S., Davarmanesh, P., Song, Y., Koutra, D., Sjoding, M.W., Wiens, J.: Democ-
ratizing EHR analyses with FIDDLE: a flexible data- driven preprocessing pipeline
for structured clinical data. J. Am. Med. Inform. Assoc. 14 (2020)

32. Wojcik, B.E., Stein, C.R., Devore, R.B., Hassell, L.H.: The challenge of
mapping between two medical coding systems. Mil. Med. 171(11), 1128–
1136 (2006). https://doi.org/10.7205/MILMED.171.11.1128. https://academic.
oup.com/milmed/article/171/11/1128-1136/4578127

33. Xiao, C., Choi, E., Sun, J.: Opportunities and challenges in developing deep learn-
ing models using electronic health records data: a systematic review. J. Am. Med.
Inform. Assoc. 25(10), 1419–1428 (2018). https://doi.org/10.1093/jamia/ocy068

34. Zhang, C., Gao, X., Ma, L., Wang, Y., Wang, J., Tang, W.: GRASP: generic frame-
work for health status representation learning based on incorporating knowledge
from similar patients. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 35, no. 1, pp. 715–723 (2021). https://ojs.aaai.org/index.php/AAAI/
article/view/16152

35. Zhang, H., Dullerud, N., Seyyed-Kalantari, L., Morris, Q., Joshi, S., Ghassemi, M.:
An empirical framework for domain generalization in clinical settings. In: Proceed-
ings of the Conference on Health, Inference, and Learning, CHIL 2021, pp. 279–290.
Association for Computing Machinery, New York (2021). https://doi.org/10.1145/
3450439.3451878

https://doi.org/10.1609/aaai.v33i01.33011126
https://doi.org/10.18653/v1/P18-1072
https://doi.org/10.18653/v1/P18-1072
https://www.aclweb.org/anthology/P18-1072
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.7205/MILMED.171.11.1128
https://academic.oup.com/milmed/article/171/11/1128-1136/4578127
https://academic.oup.com/milmed/article/171/11/1128-1136/4578127
https://doi.org/10.1093/jamia/ocy068
https://ojs.aaai.org/index.php/AAAI/article/view/16152
https://ojs.aaai.org/index.php/AAAI/article/view/16152
https://doi.org/10.1145/3450439.3451878
https://doi.org/10.1145/3450439.3451878

Hyperbolic Deep Keyphrase Generation

Yuxiang Zhang1(B), Tianyu Yang1, Tao Jiang1, Xiaoli Li2, and Suge Wang3

1 Civil Aviation University of China, Tianjin, China
{yxzhang,2019051011,2020052049}@cauc.edu.cn

2 Institute for Infocomm Research/Centre for Frontier AI Research, Singapore,
Singapore

xlli@i2r.a-star.edu.sg
3 Shanxi University, Taiyuan, China

wsg@sxu.edu.cn

Abstract. Keyphrases can concisely describe the high-level topics dis-
cussed in a document, and thus keyphrase prediction compresses doc-
ument’s hierarchical semantic information into a few important repre-
sentative phrases. Numerous methods have been proposed to use the
encoder-decoder framework in Euclidean space to generate keyphrases.
However, their ability to capture the hierarchical structures is limited by
the nature of Euclidean space. To this end, we propose a new research
direction that aims to encode the hierarchical semantic information of a
document into the low-dimensional representation and then decompress
it to generate keyphrases in a hyperbolic space, which can effectively
capture the underlying semantic hierarchical structures. In addition, we
propose a novel hyperbolic attention mechanism to selectively focus on
the high-level phrases in hierarchical semantics. To the best of our knowl-
edge, this is the first study to explore a hyperbolic network for keyphrase
generation. The experimental results illustrate that our method outper-
forms fifteen state-of-the-art methods across five datasets.

Keywords: Keyphrase generation · Hyperbolic neural network ·
Hyperbolic attention mechanism

1 Introduction

Keyphrase prediction is to automatically produce a set of representative phrases
that are related to the main topics discussed in a given document. Since
keyphrases (also referred to as keywords) can provide a high-level topic descrip-
tion of a document, they are beneficial for a wide range of natural language
processing (NLP) tasks, such as information extraction [32], text summariza-
tion [33] and question generation [30]. However, the performance of existing
approaches is still far from being satisfactory [16,21]. The main reason is that it
is very challenging to determine if a phrase or a set of phrases accurately capture
the high-level topics that are presented in a document.

Automatic keyphrase prediction models can be broadly divided into extrac-
tion and generation methods. In particular, traditional extraction methods can
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 521–536, 2023.
https://doi.org/10.1007/978-3-031-26390-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_30&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_30

522 Y. Zhang et al.

only extract present keyphrases that appear in a given document, while genera-
tion methods can generate both present keyphrases as well as absent keyphrases
that do not appear in a document.

Recently, the sequence-to-sequence (seq2seq) framework has been widely
applied in the natural language generation tasks. CopyRNN [23] is the first to
employ the attentional seq2seq framework [29] with the copying mechanism [14]
to generate both present and absent keyphrases for a document. Following Copy-
RNN, several seq2seq-based keyphrase generation methods have been proposed
to improve the generation performance [1,6,8,34,36–38,41]. However, all these
existing keyphrase generation methods have been proposed to compress the
semantic information in a given document into a dense vector in Euclidean space,
assuming a flat geometry. Although these Euclidean representation models have
proved successful for the keyphrase generation task, they still suffer from an
inherent limitation: their ability to capture hierarchical structures is bounded by
the nature of flat geometry of Euclidean space, as mentioned in recent work [27].

As a given document covers different topics and consists of many phrases
which could be keyphrases, it is critical to represent it into a hierarchical seman-
tic representation, facilitating the selection of the most representative keyphrases
related to the main topics at the highest level. Figure 1 shows the hierarchical
relations among different semantic levels of candidate keyphrases, which can be
regarded as the ideal keyphrase generation if viewing it from low-level (bound-
ary) to high-level (center) candidates. In Fig. 1, the set of ideal keyphrases should
be KP = {cp1, cp2, cp3} at the highest level, covering three topics comprehen-
sively. If the set of predicted keyphrases is KP′={cp21, cp221}, it just provides a
local and low-level topic description of the second topic Topic2 only, ignoring the
other two topics and a part of the second topic. This example illustrates that
without an effective hierarchical semantic representation, the predicted kephrases
will not cover major topics and provide the high-level topic description. As men-
tioned in several existing studies [6,16,21,38,41], predicted keyphrases may fall
into a single topic and fail to cover all the main topics discussed in a document.
In summary, semantic hierarchical relations widely exist among keyphrases, but
existing keyphrase generation methods available in Euclidean space can not effec-
tively capture semantic hierarchical relations to improve the topic coverage of
predicted keyphrases.

Recently, hyperbolic representation methods [26,27] have been developed
to model the latent hierarchical nature of data and demonstrated encourag-
ing results. To efficiently utilize hyperbolic embeddings in downstream tasks,
researchers have proposed some advanced hyperbolic deep networks, such as
hyperbolic neural networks [12] and hyperbolic attention network [15].

Motivated by the above observations, we propose a hyperbolic seq2seq net-
work for keyphrase generation, which is a novel keyphrase generation frame-
work for modeling hierarchical relations. Specifically, we design a hyperbolic
encoder to compress the hierarchical semantic information discussed in a tar-
get document into a hyperbolic embedding, and devise a hyperbolic decoder to
generate corresponding keyphrases. In the hyperbolic network, we propose an

Hyperbolic Deep Keyphrase Generation 523

Fig. 1. Ideal semantic hierarchical relations among candidate keyphrases (cp) within
a document, in which the dotted line semantically represents a topic segmentation and
facilitates understanding of hierarchical structures of topics.

innovative hyperbolic hierarchy-aware attention mechanism to enhance the abil-
ity to learn semantic hierarchical relations, which can selectively focus on the
words with high-level semantics. Different from Euclidean deep generation meth-
ods, our proposed hyperbolic hierarchy-aware attention mechanism make our
model more effective to capture the semantic hierarchical relations within a tar-
get document and thus generate keyphrases based on its semantic understanding
with good topic coverage and accuracy. In addition, we propose a new metric to
measure the degree to which the predicted keyphrases cover the main topics of
a target document. To the best of our knowledge, this is the first work to design
a new hyperbolic network for keyphrase generation.

2 Related Work

2.1 Keyphrase Generation

Following CopyRNN [23], several extensions have been proposed to boost its gen-
eration ability. For instance, Ye et al. [36] propose a semi-supervised keyphrase
generation model that utilizes both abundant unlabeled data and limited labeled
data. Chen et al. [9] propose a title-guided network to sufficiently utilize the
already summarized information in given title. In addition, some researches
attempted to leverage external knowledge to help reducing duplication and
improving coverage, such as syntactic constraints [41] and latent topics [34].

The above-mentioned methods, which utilize the standard seq2seq network,
can not generate multiple keyphrases and determine the appropriate number of
keyphrases at a time for a target document. To overcome this shortcoming, Yuan
et al. [38] introduce the new training and inference setup in the seq2seq network
to generate multiple keyphrases and decide on the suitable number of keyphrases
for a given document. Ye et al., [37] propose a One2Set paradigm to predict the
keyphrases as a set, which eliminates the bias caused by the predefined order
in One2Seq paradigm [38]. In addition, some recent works focus on improving

524 Y. Zhang et al.

the decoding process of seq2seq networks. For example, Chen et al., [8] propose
an exclusive hierarchical decoding framework and use either a soft or a hard
exclusion mechanism to reduce duplicated keyphrases. More recently, Ahmad et
al. [1] design an extractor-generator to jointly extract and generate keyphrases
from a document. We observe that almost all existing keyphrase generation
methods used the Euclidean seq2seq framework, which cannot provide the most
powerful representations for hierarchical structures on keyphrase generation task.

2.2 Hyperbolic Representation

An increasing number of research has shown that many types of complex data
exhibit non-Euclidean structures [3]. Recently, hyperbolic embedding methods
have been proposed to learn the latent representation of hierarchical data and
demonstrated encouraging results. In the field of NLP, hyperbolic representation
learning has been successfully applied to generating word embeddings [31] and
sentence representations [10], and inferring concept hierarchies from large text
corpora [20]. In addition, hyperbolic geometry has been integrated into recent
advanced hyperbolic deep learning frameworks, such as hyperbolic neural net-
works [12], and hyperbolic attention network [15].

3 Preliminaries

Hyperbolic Space. Hyperbolic space, specifically referring to a simply con-
nected manifolds with constant negative curvature [2], can be thought of as a
continuous analogue of tree and is more suitable for learning data with hierarchi-
cal structures. The hyperbolic space can be constructed using various isomorphic
models (i.e., these models can be converted into each other). In this paper, we
follow the majority of NLP works and employ the Poincaré ball model with the
curvature set as -1, whose distance function is differentiable.

Poincaré Ball Model. The n-dimensional Poincaré ball model Pn = (Bn, gP)
is defined by a Riemannian manifold Bn = {x ∈ Rn | ‖x‖ < 1} with the metric
tensor gP(x) = (2

1−‖x‖2)2gE , where ‖·‖ denotes the Euclidean norm, and gE = In

is the Euclidean metric tensor. The induced distance between two points x,y ∈
Pn is defined as

dP(x,y) = cosh−1

(
1 +

2‖x − y‖2
(1 − ‖x‖2)(1 − ‖y‖2)

)
, (1)

where cosh−1(x) = ln(x +
√

x2 − 1) is an inverse hyperbolic cosine function.
The induced distance can place root node near the center of the ball and

leaf nodes near the boundary of the ball to ensure that the distance from the
root node to each of leaf nodes is relatively small while the distance between
leaf nodes is relatively large. This explains why hyperbolic space can be seen as
a tree-like hierarchical structure.

Hyperbolic Deep Keyphrase Generation 525

Klein Model. To define the hyperbolic average, we employ the Klein model
of hyperbolic space. The n-dimensional Klein model Kn = (Bn, gK) is also
defined in a manifold Bn with the different metric tensor gK. The Poincaré model
and Klein model describe the same hyperbolic space using different coordinates.
Thus, these two models can be converted into each other. Given a point xP ∈ Pn

in the Poincaré ball model, we convert it to the Klein model by xK = 2xP
1+‖xP‖2 .

Similarly, a point xK ∈ Kn in Klein model can be converted into Poincaré ball
model as xP = xK

1+
√

1−‖xK‖2
.

Hyperbolic Operations. To make neural networks work in hyperbolic space,
Möbius operations including Möbius addition and Möbius matrix-vector multi-
plication in the Poincaré ball are used. In addition, the exponential map (which
maps a Euclidean vector to the hyperbolic space) and the inverse logarithm map
are also used. The details of these operations can be seen in the work [12].

4 Methodology

4.1 Problem Definition

Let x = (x1, . . . , xT) be a document that is treated as a sequence of words,
where T is the length of x. The goal of a keyphrase generation method is to find
a model to generate a set of keyphrases K = {pk}|K|

k=1 for document x, where
each keyphrase pk = (y1, ..., y|pk|) is also a sequence of words.

To generate multiple keyphrases for an input document, existing approaches
provide two different data formats as the predicted keyphrase output (i.e., two
training paradigms): One2One [23] and One2Seq [38]. One2One only predicts a
fixed number of keyphrases for all documents, where each training data sample is
a pair of source text and one of its keyphrases (x, p). To overcome this drawback,
One2Seq can generate a single sequence, which consists of multiple predicted
keyphrases and separators, as represented by K ′ = p1<sep>p2...<sep>p|K|.
Each training data sample is a pair of source text and concatenated sequence of
its keyphrases and separators (x,K ′).

4.2 Hyperbolic Encoder-Decoder Model

The basic idea of our keyphrase generation model is to leverage a hyperbolic
deep network to compress the semantic information of the input document into
the low-dimensional representations using the hyperbolic encoder and to gener-
ate corresponding keyphrases using the hyperbolic decoder, based on the rep-
resentations. In this hyperbolic network, we propose a new hyperbolic attention
mechanism to capture the semantic subordination and select the words with
high-level semantics. In addition, a hyperbolic pointer mechanism is used to
copy certain out-of-vocabulary words from the input document and paste them
into the generated keyphrases. An overview of this method is shown in Fig. 2.

526 Y. Zhang et al.

Fig. 2. The overview of the proposed hyperbolic deep model for keyphrase generation.

The encoder and decoder are implemented with a hyperbolic gated recurrent
unit (HGRU) [12]. Let x = (x1, ..., xT) be a sequence of words within an input
document, and x = [x1, ...,xT] be its corresponding sequence of hyperbolic word
embeddings. The encoder maps the input word sequence x into a set of contex-
tualized hidden representations h = [h1, ...,hT], using a bidirectional HGRU
ht = [HGRUf(xt),HGRUb(xt)] where HGRUf(·) and HGRUb(·) are used to learn
the forwardandbackwardhidden states around the input text, respectively.HGRU
based on Möbius operations in Poincaré model [12] is defined as

rt = σ(log0(W
r ⊗ ht−1 ⊕ Ur ⊗ xt ⊕ br))

zt = σ(log0(W
z ⊗ ht−1 ⊕ Uz ⊗ xt ⊕ bz))

h̃t = ϕ((Whdiag(rt)) ⊗ ht−1 ⊕ Uh ⊗ xt ⊕ bh)

ht = ht−1 ⊕ diag(zt) ⊗ (−ht−1 ⊕ h̃t)

(2)

where rt is a reset gate, and zt is a update gate. log0(·), ⊗ and ⊕ are defined
in Subsect. 3. σ(·) is a sigmoid function, and ϕ(·) is a pointwise non-linearity.
Since the hyperbolic space naturally has non-linearity, ϕ(·) is identity. diag(·) is
a square diagonal matrix. The six weights W ∈ Rn×n, U ∈ Rn×m are trainable
parameters in Euclidean space and three biases b ∈ Bn are trainable parameters
in hyperbolic space.

The decoder is another forward HGRU which is used to generate the sequence
of keyphrases by predicting the next word yt based on the hidden state st. Both
yt and st are conditioned on yt−1 and ct of the input sequence. Formally, the
hidden state st and decoding function can be written as

st = HGRUf(yt−1, st−1, ct), (3)

and
p(yt | y1, y2, ..., yt−1, c) = g(yt−1, st, ct), (4)

Hyperbolic Deep Keyphrase Generation 527

where g(·) is a nonlinear multi-layered function that outputs the probability of
yt. The more details of the decoder are given in the next subsections.

4.3 Hyperbolic Attention Mechanism

The attention mechanism is used to make the network model dynamically focus
on the important parts in input data, and consists of two core parts: match-
ing and aggregation. Particularly, the matching part computes attention weight
αtj = α(st,hj), which reflects the relevance of the hidden states hj of input
sequence in the presence of the current hidden state st for deciding the next
word yt. The aggregation part, on the other hand, takes a weighted sum of
hidden states using these weights, also known as context vector ct.

A general hyperbolic attention mechanism was first introduced by Gulcehre et
al. [15] to build an attentive read operation in the Hyperboloid model. Inspired by
this work, we propose a new hyperbolic attention mechanism in the Poincaré ball
model specifically for the keyphrase generation task. In particular, in the match-
ing part, the most natural way to compute attention weight is to use the hyper-
bolic distance between points of matching pairs, given as αtj = exp(a(st,hj))∑T

k=1 exp(a(st,hk))
,

where a(st,hj) is a soft alignment function that is used to score how well the
inputs around position j and the output at position t match (i.e., to measure
the relevance between st and hj), computed as

a(st,hj) = −βdP(st,hj) − db, (5)

where dP(·, ·) is the distance function in hyperbolic space, and db is a parameter
learned along with the rest of the network. Note that in the work [15], β is also
a learnable coefficient. This causes the attention mechanism to only utilize the
hyperbolic distance to measure the relevance between st and hj , and ignore the
distance between the center of the Poincaré ball to hj (i.e., the norm of hj),
which can reflect the semantic level of an input word at position j (i.e., hidden
state hj) in a tree-like hierarchical structure internalized by the hyperbolic space.

To overcome this drawback and further enhance the ability to capture the
high-level semantics, we redefine β as

β =
1

exp(−ϕ‖hj‖)
, (6)

where ϕ is a hyper parameter. Thus, the new hyperbolic attention mechanism
takes into account not only the semantic relevance between two words but also
the semantic hierarchy of each word in the semantic tree (as Fig. 1 shows). We
name it as the hierarchy-aware attention mechanism.

In the aggregation part, the weighted sum of hidden states is computed by the
Einstein midpoint that is defined in Klein model as ct =

∑T
j=1

[
αtjγ(hj)∑T
l=1 αtlγ(hl)

]
hj ,

where γ(hj) = 1√
1−‖hj‖2

is a Lorentz factor.

Note that before aggregation process, we first transform the hidden states
from Poincaré Ball to Klein model, and transform it back to Poincaré ball model
after aggregation. The used formulas are given in subsection Klein model.

528 Y. Zhang et al.

4.4 Hyperbolic Pointing Mechanism

To recall some keyphrases which contain out-of-vocabulary words, CopyRNN
utilized the copying mechanism [14] to generate out-of-vocabulary words. Here,
we use the pointing mechanism (that is a modified copy mechanism) into the
Poincaré ball model for the same purpose.

Let V be a global vocabulary, Vs be a vocabulary of the source sentences,
and unk be any out-of-vocabulary word. It builds an extended vocabulary Ve =
V ∪ Vs ∪ {unk}. The distribution over Ve at current time step t is

p(yt) = pg
t · pg(yt) + (1 − pg

t) · pc(yt), (7)

where pg
t is the probability of choosing generate-mode, calculated by

pg
t = σ(log0(W

cg ⊗ dt ⊕ bcg)). (8)

The probability of generate-mode pg(·) and copy-mode pc(·) are given by

pg(yt) =

{
v�

i log0(W
g ⊗ dt ⊕ bg), yt ∈ V ∪ {unk},

0, otherwise.
(9)

pc(yt) =

⎧⎨
⎩

∑
j:xj=yt

αtj , yt ∈ Vs,

0, otherwise.
(10)

where vi is a one-hot indicator vector, W and b in Eq. (8) and Eq. (9) are train-
able parameters. Finally, we adopt the widely used cross entropy loss function
to train the models, both in One2One and One2Seq paradigms.

5 Experiments

5.1 Dataset

We employ KP20k dataset [23], where each example contains a title and an
abstract of a scientific paper as source text, and author-assigned keywords as tar-
get keyphrases. Following previous works, we use the training dataset of KP20k
to train all the models, and use the validation dataset to validate the choice of
hyper parameters. In order to evaluate the proposed model comprehensively, we
also test on other four widely used public datasets from the scientific domain,
namely, Inspec [17], Krapivin [19], SemEval-2010 [18] and NUS [25]. The detailed
statistic information of these five datasets are summarized in the work [40].

5.2 Baselines

For the present keyphrase prediction, we compare our models with two types of
methods, including eight extraction and seven deep generation methods.

Hyperbolic Deep Keyphrase Generation 529

Representative extraction methods consist of three different types: 1) statistic-
based unsupervised methods, including (1)TF-IDF and (2)YAKE! [4], 2) graph-
based unsupervised methods, including (3)TextRank [24], (4) SingleRank [32],
(5)PositionRank [11], (6)KPRank [28], and 3) traditional supervised methods,
including (7) KEA [35] and (8) Maui [22]. Due to the limited space, we select the
best-performing method (BL∗) from each of the three types of baselines with the
best-performing metrics to compare with our method.

The supervised generation baselines can be classified into One2One and
One2Seq according to the training paradigm. The One2One baselines include: (1)
CopyRNN [23], which is the first to use seq2seq network to generate keyphrases,
(2) CorrRNN [6], which is an extension of CopyRNN integrating the sequen-
tial decoding with coverage and review mechanisms, and (3) KG-KE-KR-M
(abbreviated as KG-KE) [7], which is a multi-task learning using extraction
and generation models to generate keyphrases.

The One2Seq baselines include: (1) CatSeq [38], which has the same frame-
work as CopyRNN, with the key difference between them on the training
paradigm, (2) CatSeqTG-2RFl (abbreviated as Cat-2RFl) [5], which is an
extension of CatSeq using reinforcement learning to generate both sufficient and
accurate keyphrases, (3) ExHiRD-h [8], which uses an exclusive hierarchical
decoder to avoid generating duplicated keyphrases, and (4) SEG-Net [1], which
jointly extracts and generates keyphrases.

The proposed Hyperbolic Attentional Network (HyAN1) and its extensions
are: (1) HyAN, which is a basic hyperbolic attentional model trained by One2One
paradigm, corresponding to CopyRNN, (2) HyANh, which is an extension of
HyAN, in which only the semantic hierarchy is integrated into the hyperbolic
attention mechanism, (3) HyANS, which is also an extension of HyAN trained by
One2Seq paradigm, corresponding to CatSeq, and (4) HyANSh, which is a com-
posite of HyANS and HyANh, trained by One2Seq paradigm and incorporated
with the semantic hierarchy.

5.3 Evaluation Metrics

We adopt top-N macro-averaged F-measure (F1) and R@k as the evaluation
metrics, in which F1 includes F1@k, F1@O and F1@M. F1@k is used in almost
all existing works, while F1@O and F1@M proposed in [38] are designed specif-
ically for the One2Seq generation, where O is the number of author-provided
keyphrases and M is the number of all predicted keyphrases. They are capable
of reflecting the nature of variable number of keyphrases for each document. The
recall of the top 50 predictions (R@50) evaluates prediction of absent keyphrases.

5.4 Implementation Details

We follow the previous works [23,38] to pre-process the experimental data. The
top 50,000 most frequently-occurring words in the training data are used as the
vocabulary shared in the hyperbolic encoder and decoder.
1 The code of our model is available at https://github.com/SkyFishMoon/HyAN.

https://github.com/SkyFishMoon/HyAN

530 Y. Zhang et al.

Table 1. Results of predicting present keyphrases of different methods on five datasets.
Best/second-best performing score in each column is highlighted with bold/underline in
each of two trained paradigms, and best performing score in both trained paradigms is
highlighted with bold and asterisk. CopyRNN+ is re-implemented CopyRNN with best
results [38]. Sta-, Gra- and Tra- represent statistic-unsupervised, graph-unsupervised
and traditional supervised, respectively.

Method Inspec Krapivin NUS SemEval KP20k

F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

Ext. Sta-BL∗ 20.4 24.4 21.5 19.6 15.9 19.6 15.1 21.2 14.1 14.6

Gra-BL∗ 27.7 32.3 17.7 18.5 21.0 22.3 22.5 25.7 18.1 15.0

Tra-BL∗ 10.9 12.9 24.3 20.8 24.9 26.1 4.50 3.90 26.5 22.7

One2One CopyRNN+ 24.4 28.9 30.5 26.6 37.6 35.2 31.8 31.8 31.7 27.3

CorrRNN – – 31.8 27.8 35.8 33.0 32.0 32.0 – –

KG-KE 25.7 28.4 27.2 25.0 28.9 28.6 20.2 22.3 31.7 28.2

HyAN 27.9 29.8 32.2 27.9 38.1 34.7 32.8 32.3 32.9 28.5

HyANh 28.8 30.2 33.0 28.9 38.8 36.2 33.3∗ 32.5 34.0 29.3

F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M
One2Seq CatSeq 22.5 26.2 26.2 35.4 32.3 39.7 24.2 28.3 29.1 36.7

Cat-2RF1 25.3 30.1 30.0 36.9 37.5 43.3 28.7 32.9 32.1 38.6

ExHiRD-h 25.3 29.1 28.6 34.7 – – 28.4 33.5 31.1 37.4

SEG-Net 21.6 26.5 27.6 36.6 39.6 46.1 28.3 33.2 31.1 37.9

HyANS 30.0 33.0 33.9 36.1 40.2 46.5 33.0 34.7 33.9 38.9

HyANSh 30.8∗ 34.3 34.6∗ 36.9 40.7∗ 47.2 33.2 35.5 34.5∗ 39.5

The size of hyperbolic word embedding is set as m = 100 and the size of
hyperbolic hidden state is set as n = 150. The word embeddings are initialized
first using normal distribution by the method [13], where the gain weight is set
as

√
2. Then the embedding is projected into the Poincaré ball by exp0(·). In

addition, db and ϕ are set as 1.0 and 230 in formula (5) and (6), respectively.
In the training process, we set the batch size as 32. The initial learning rate

is set as 0.0008. Early stopping is used when training. In the testing process, our
models trained by One2One paradigm use the beam search with a width of 120
and a max depth of 6. Finally our models trained by One2Seq paradigm employ
a beam width of 40 and a max depth of 40.

5.5 Results and Analysis

Present Keyphrase Prediction. The results of predicting present keyphrases
are shown in Table 1. The results show that the generation methods substantially
outperform the traditional extraction methods across all the datasets. Among
the generation methods, the One2Seq methods can generally achieve better per-
formance than other One2One methods. This improvement may be driven by
the inter-relation among keyphrases of each document, which can be effectively
captured by the deep models trained by the One2Seq paradigm. In all methods,
HyANSh achieves the best results in term of all metrics on all datasets.

Hyperbolic Deep Keyphrase Generation 531

Table 2. Results of predicting absent keyphrases of different methods on five datasets.

Method Inspec Krapivin NUS SemEval KP20k

F1@5 R@50 F1@5 R@50 F1@5 R@50 F1@5 R@50 F1@5 R@50

O2O CopyRNN+ 0.1 8.3 0.9 8.1 1.1 8.1 1.0 2.6 0.8 8.7

HyAN 0.3 8.5 1.1 8.5 1.3 8.5 1.2 2.8 1.2 8.9

HyANh 0.3 8.6 1.4 9.0 1.5 8.7 1.6 3.1 1.3 9.1

F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M
One2Seq CatSeq 0.4 0.8 1.8 3.6 1.6 2.8 1.6 2.8 1.5 3.2

Cat-2RF1 1.2 2.1 3.0 5.3 1.9 3.1 2.1 3.0 2.7 5.0

ExHiRD-h 1.1 2.2 2.2 4.3 - - 1.7 2.5 1.6 3.2

SEG-Net 1.5 0.9 3.6 1.8 3.6 2.1 3.0∗ 2.1 3.6 1.8

HyANS 1.8 2.7 3.9 6.1 4.0 4.8 2.5 2.9 3.9 4.2

HyANSh 2.3∗ 3.1 4.3∗ 7.1 5.2∗ 5.1 3.0∗ 3.3 4.6∗ 5.3

In all the deep models whether trained by the One2One or One2Seq
paradigm, the proposed hyperbolic models outperform the corresponding
Euclidean baselines across all the datasets. It should be noted that HyAN can be
regarded as CopyRNN and HyANS as CatSeq in hyperbolic space, and they do
not use any side information or multi-task learning to achieve better performance
like almost all extensions of CoypRNN in Euclidean space, so it is only fair to
compare HyAN with CopyRNN, and HyANS with CatSeq. The results show that
HyAN and HyANS outperform CopyRNN and CatSeq on all datasets, respec-
tively. This demonstrates the superiority of the hyperbolic methods in modeling
hierarchical structures for keyphrase prediction.

Absent Keyphrase Prediction. Unlike present keyphrases, absent keyphrases
do not appear in the target document, and thus predicting them is very challeng-
ing and requires understanding the latent document semantic. The results are
presented in Table 2 (where O2O represents One2One paradigm), where recall
R@50 is more suitable for evaluating the performance of One2One methods
in absent keyphrase prediction (more detailed descriptions are shown in the
work [23]). The results indicate no matter which type of model is trained by
One2One or One2Seq paradigm, the proposed hyperbolic models can predict
absent keyphrases more accurately than the corresponding Euclidean baselines.

Variable-Number Keyphrase Generation. The One2Seq methods can pre-
dict a varying number of keyphrases conditioned on the given document, which is
one key advantage of this type of method. We conduct experiments on the KP20k
dataset to compare the performance of models for generating a varying number
of keyphrases in term of both F1@O and F1@M. The results are presented in
Table 3. As the results show, HyANS and HyANSh substantially outperform
CatSeq, and HyANSh achieves the best results in terms of two performance
metrics. This indicates that our proposed hierarchy-aware attention mechanism

532 Y. Zhang et al.

Table 3. Results of the variable-number keyphrase generation on kp20k dataset.

KP20k F1@O F1@M
CatSeq 24.3 25.1

HyANS 31.0 32.5

HyANSh 31.5 32.8

used in HyANSh is more effective than the primitive hyperbolic attention mech-
anism [15] used in HyANS.

5.6 Coverage Evaluation of Predicted Keyphrases

As mentioned in the works [21,39], the predicted keyphrases should cover all
the main topics discussed in the target document. However, it is challenging
to evaluate the degree to which the predicted keyphrases cover the main top-
ics of a target document. To this end, we try to find the ground-truth (i.e.,
author-provided) keyphrases that are not covered semantically by the predicted
keyphrases and use the number of them to measure the semantic coverage of
predicted keyphrases for a target document.

Specifically, let G = {gi}n
i=1 be a set of ground-truth keyphrases of a target

document, and K = {pj}m
j=1 be its corresponding set of predicted keyphrases.

The number of un-covered ground-truth keyphrases (uck) is defined as

uck =
n∑

i=1

1
(m∑

j=1

1
(
sij = max

k=1:n
{skj}

)
= 0

)
, (11)

where sij is the cosine similarity between embeddings of ground-truth keyphrase
gi and predicted keyphrase pj , produced by the pre-trained BERT2. The indi-
cator function 1(·) outputs 1 if the expression evaluates to true and outputs 0
otherwise. This formula is used to count the number of ground-truth keyphrases,
each of which has lower similarities with all the predicted keyphrases. A smaller
the value of uck suggests a better predictor.

As the results shown in Table 4, our hyperbolic deep models indeed outper-
form the other two Euclidean models, and HyANSh gets the best result. The
results indicate the predicted keyphrases generated by our hyperbolic models
can better cover the topics discussed in a target document and reduce dupli-
cated keyphrases generation.

Table 4. Average number of uncovered author-provided keyphrases (i.e., average uck)
of different methods on KP20k dataset.

CopyRNN+ HyAN HyANh CatSeq Cat-2RF1 ExHiRD-h HyANS HyANSh

1.7784 1.7602 1.7385 1.7729 1.7653 1.7542 1.7334 1.7328

2 https://github.com/duanzhihua/pytorch-pretrained-BERT.

https://github.com/duanzhihua/pytorch-pretrained-BERT

Hyperbolic Deep Keyphrase Generation 533

Table 5. Two examples of generated keyphrases by different methods with the One2Seq
training paradigm. Author-assigned (i.e., Gold) keyphrases are shown in bold, and
absent keyphrases are labeled by *.

Example 1

Title: Active Learning for Software Defect Prediction (#4445 in KP20k)

Abstract: An active learning method, called Two-stage Active learning
algorithm (TAL), is developed for software defect prediction. Combining the
clustering and support vector machine techniques, this method improves the
performance of the predictor with less labeling effort. Experiments validate its
effectiveness

Gold: machine learning*; defect prediction; active learning; support
vector machine

HyANSh: machine learning*; active learning; support vector machine;
support vector machines

Catseq: active learning; software defect prediction; clustering; support vector
machine; software defect prediction

Cat-2RF1: active learning; software defect prediction; clustering; support
vector machine; software metrics

ExHiRD-h: active learning; software defect prediction; clustering; support
vector machine

Example 2

Title: Experience with performance testing of software systems issues, an
approach, and case study (#4086 in KP20k)

Gold: performance testing; software performance testing; program
testing*; software testing*

HyANSh: performance testing; software performance testing; software
testing*

Catseq: performance testing; software performance testing; software
testing*

Cat-2RF1: performance testing; software systems; case study; software
testing*

ExHiRD-h: performance testing; software systems; case study; software
testing*; performance evaluation

5.7 Case Study and Visualization

Here, we select two anecdotal examples of research papers shown in Table 5.
The predictions generated by different methods along with human-picked “gold”
keyphrases are listed in this table. The first paper (i.e., Example 1) presented
an active learning method for software defect prediction and assigned “machine
learning” as a absent keyphrase, which appears in the first position of the author-
assigned keyphrase sequence. Obviously, the keyphrase “machine learning” can
be regarded as the root topic description of various machine learning methods,
such as active learning discussed in this example. As can be seen from Table 5,

534 Y. Zhang et al.

Fig. 3. Attention visualization of hyperbolic HyANSh (top) and Euclidean Catseq
(bottom) on the second example. Deeper shading denotes higher value.

our hyperbolic HyANSh is capable of understanding the underlying semantic
hierarchical structures in this document, and thus can accurately generate this
absent root keyphrase while all the baselines in Euclidean space fail to generate
it. This example further indicates that hyperbolic space may help to gain better
performance in keyphrase generation.

The second paper (i.e., Example 2) proposed an approach to software per-
formance testing. Comparing with the baseline methods, HyANSh and Catseq
achieve best performance and generate the same keyphrases on this exam-
ple. Figure 3 visualizes the proposed hyperbolic hierarchy-aware attention in
HyANSh and the Euclidean attention in Catseq to further clarify how our model
works. Due to space limitation, we only visualize the first present keyphrase “per-
formance testing” and the absent keyphrase “software testing” in the author-
assigned keyphrase sequence, and they are already enough to support our analy-
sis. Although these two keyphreses are correctly generated by both HyANSh and
Catseq, from the results shown in Fig. 3, we can clearly see that HyANSh pays
more attention to relevant content words such as “performance” and “testing”
while Catseq, to a certain extent, focuses on some irrelevant or functional words
such as “is” and “of”. This example indicates that compared with the Euclidean
space, the hyperbolic space is very helpful for generating keyphrases.

6 Conclusion

In this study, we presented a new solution that aims to predict keyphrases using
hyperbolic encoder-decoder framework, which can effectively capture the under-
lying semantic hierarchical structures discussed in a target document. To the
best of our knowledge, this is the first study to explore a hyperbolic deep net-
work for keyphrase generation. In addition, we propose a novel hierarchy-aware
attention mechanism to further enhance the ability to capture the semantic
hierarchical information, and a new metric to measure the degree to which the
predicted keyphrases cover the main topics of a target document. Comprehen-
sive experimental results show the proposed hyperbolic models outperform the

Hyperbolic Deep Keyphrase Generation 535

state-of-the-art Euclidean models across all five datasets. In future, we plan to
evaluate the proposed hyperbolic seq2seq model on a large corpus with compre-
hensive coverage of diverse topics.

Acknowledgements. This work was partially supported by grants from the Scientific
Research Project of Tianjin Educational Committee (Grant No. 2021ZD002).

References

1. Ahmad, W.U., Bai, X., Lee, S., Chang, K.W.: Select, extract and generate: neural
keyphrase generation with layer-wise coverage attention. In: Proceedings of ACL
(2021)

2. Birman, G.S., Ungar, A.A.: The hyperbolic derivative in the Poincaré ball model
of hyperbolic geometry. J. Math. Anal. Appl. 254(1), 321–333 (2001)

3. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4),
18–42 (2017)

4. Campos, R., Mangaravite, V., Pasquali, A., Jorge, A., Nunes, C., Jatowt, A.: Yake!
keyword extraction from single documents using multiple local features. Inf. Sci.
509, 257–289 (2020)

5. Chan, H.P., Chen, W., Wang, L., King, I.: Neural keyphrase generation via rein-
forcement learning with adaptive rewards. In: Proceedings of ACL (2019)

6. Chen, J., Zhang, X., Wu, Y., Yan, Z., Li, Z.: Keyphrase generation with correlation
constraints. In: Proceedings of EMNLP (2018)

7. Chen, W., Chan, H.P., Li, P., Bing, L., King, I.: An integrated approach for
keyphrase generation via exploring the power of retrieval and extraction. In: Pro-
ceedings of NAACL (2019)

8. Chen, W., Chan, H.P., Li, P., King, I.: Exclusive hierarchical decoding for deep
keyphrase generation. In: Proceedings of ACL (2020)

9. Chen, W., Gao, Y., Zhang, J., King, I., Lyu, M.R.: Title-guided encoding for
keyphrase generation. In: Proceedings of AAAI (2019)

10. Dhingra, B., Shallue, C.J., Norouzi, M., Dai, A.M., Dahl, G.E.: Embedding text
in hyperbolic spaces. In: Proceedings of Twelfth Workshop on TextGraphs (2018)

11. Florescu, C., Caragea, C.: Positionrank: an unsupervised approach to keyphrase
extraction from scholarly documents. In: Proceedings of ACL (2017)

12. Ganea, O., Bécigneul, G., Hofmann, T.: Hyperbolic neural networks. In: Proceed-
ings of NIPS (2018)

13. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of AISTATS (2010)

14. Gu, J., Lu, Z., Li, H., Li, V.O.: Incorporating copying mechanism in sequence-to-
sequence learning. In: Proceedings of ACL (2016)

15. Gulcehre, C., et al.: Hyperbolic attention networks. In: Proceedings of ICLR (2019)
16. Hasan, K.S., Ng, V.: Automatic keyphrase extraction: a survey of the state of the

art. In: Proceedings of ACL (2014)
17. Hulth, A., Megyesi, B.B.: A study on automatically extracted keywords in text

categorization. In: Proceedings of ACL (2006)
18. Kim, S.N., Medelyan, O., Kan, M.Y., Baldwin, T.: Semeval-2010 task: auto-

matic keyphrase extraction from scientific articles. In: Proceedings of Workshop
on SemEval (2010)

536 Y. Zhang et al.

19. Krapivin, M., Autaeu, A., Marchese, M.: Large dataset for keyphrases extraction.
Technical report, University of Trento (2009)

20. Le, M., Roller, S., Papaxanthos, L., Kiela, D., Nickel, M.: Inferring concept hierar-
chies from text corpora via hyperbolic embeddings. In: Proceedings of ACL (2019)

21. Liu, Z., Huang, W., Zheng, Y., Sun, M.: Automatic keyphrase extraction via topic
decomposition. In: Proceedings of EMNLP (2010)

22. Medelyan, O., Frank, E., Witten, I.H.: Human-competitive tagging using automatic
keyphrase extraction. In: Proceedings of EMNLP (2009)

23. Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P., Chi, Y.: Deep keyphrase
generation. In: Proceedings of ACL (2017)

24. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of
EMNLP (2004)

25. Nguyen, T.D., Kan, M.Y.: Keyphrase extraction in scientific publications. In: Pro-
ceedings of ICADL (2007)

26. Nickel, M., Kiela, D.: Learning continuous hierarchies in the Lorentz model of
hyperbolic geometry. In: Proceedings of ICML (2018)

27. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representa-
tions. In: Proceedings of NIPS (2017)

28. Patel, K., Caragea, C.: Exploiting position and contextual word embeddings for
keyphrase extraction from scientific papers. In: Proceedings of ECACL (2021)

29. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Proceedings of NIPS (2014)

30. Tang, Y., Huang, W., Liu, Q., Zhang, B.: Qalink: enriching text documents with
relevant Q&A site contents. In: Proceedings of CIKM (2017)

31. Tifrea, A., Bécigneul, G., Ganea, O.E.: Poincaré glove: hyperbolic word embed-
dings. In: Proceedings of ICLR (2019)

32. Wan, X., Xiao, J.: Single document keyphrase extraction using neighborhood
knowledge. In: Proceedings of AAAI (2008)

33. Wang, L., Cardie, C.: Domain-independent abstract generation for focused meeting
summarization. In: Proceedings of ACL (2013)

34. Wang, Y., Li, J., Chan, H.P., King, I., Lyu, M.R., Shi, S.: Topic-aware neural
keyphrase generation for social media language. In: Proceedings of ACL (2019)

35. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevillmanning, C.G.: Kea:
practical automatic keyphrase extraction. In: Proceedings of JCDL (1999)

36. Ye, H., Wang, L.: Semi-supervised learning for neural keyphrase generation. In:
Proceedings of EMNLP. Proceedings of ACL (2018)

37. Ye, J., Gui, T., Luo, Y., Xu, Y., Zhang, Q.: One2set: generating diverse keyphrases
as a set. In: Proceedings of ACL (2021)

38. Yuan, X., Wang, T., Meng, R., Thaker, K., Brusilovsky, P., He, D.: One size does
not fit all: Generating and evaluating variable number of keyphrases. In: Proceed-
ings of ACL (2020)

39. Zhang, Y., Chang, Y., Liu, X., Gollapalli, S.D., Li, X., Xiao, C.: Mike: keyphrase
extraction by integrating multidimensional information. In: Proceedings of CIKM
(2017)

40. Zhang, Y., Jiang, T., Yang, T., Li, X., Wang, S.: HTKG: deep keyphrase generation
with neural hierarchical topic guidance. In: Proceedings of SIGIR (2022)

41. Zhao, J., Zhang, Y.: Incorporating linguistic constraints into keyphrase generation.
In: Proceedings of ACL (2019)

On the Current State of Reproducibility
and Reporting of Uncertainty

for Aspect-Based Sentiment Analysis

Elisabeth Lebmeier, Matthias Aßenmacher(B) , and Christian Heumann

Department of Statistics (LMU), Ludwigstr. 33, 80539 Munich, Germany
e.lebmeier@gmx.de, {matthias,chris}@stat.uni-muenchen.de

Abstract. For the latter part of the past decade, Aspect-Based Senti-
ment Analysis has been a field of great interest within Natural Language
Processing. Supported by the Semantic Evaluation Conferences in 2014–
2016, a variety of methods has been developed competing in improving
performances on benchmark data sets. Exploiting the transformer archi-
tecture behind BERT, results improved rapidly and efforts in this direc-
tion still continue today. Our contribution to this body of research is a
holistic comparison of six different architectures which achieved (near)
state-of-the-art results at some point in time. We utilize a broad spec-
trum of five publicly available benchmark data sets and introduce a fixed
setting with respect to the pre-processing, the train/validation splits,
the performance measures and the quantification of uncertainty. Over-
all, our findings are two-fold: First, we find that the results reported in
the scientific articles are hardly reproducible, since in our experiments
the observed performance most of the time fell short of the reported one.
Second, the results are burdened with notable uncertainty, depending
on the data splits, which is why a reporting of uncertainty measures is
crucial.

Keywords: Natural Language Processing · Sentiment analysis ·
Pre-trained language models · Reproducibility

1 Introduction

The field of Natural Language Processing (NLP) has profited a lot from technical
and algorithmic improvements within the last years. Before the successful times
of machine learning and deep learning, NLP was mainly based on what linguists
knew about how languages work, i.e. grammar and syntax. Thus, primarily rule-
based approaches were employed in the past. Nowadays, far more generalized
models based on neural networks are able to learn the desired language features.

The original version of this chapter was previously published non-open access. A Cor-
rection to this chapter is available at https://doi.org/10.1007/978-3-031-26390-3_44

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26390-3_31.

c© The Author(s) 2023, corrected publication 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 537–552, 2023.
https://doi.org/10.1007/978-3-031-26390-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_31&domain=pdf
http://orcid.org/0000-0003-2154-5774
http://orcid.org/0000-0002-4718-595X
https://doi.org/10.1007/978-3-031-26390-3_44
https://doi.org/10.1007/978-3-031-26390-3_31
https://doi.org/10.1007/978-3-031-26390-3_31

538 E. Lebmeier et al.

On the other hand, data in written form is available in huge amounts and
thus might be an important source for valuable information. For instance, the
internet is full of comparison portals, forums, blogs and social media posts where
people state their opinions on a broad range of products, companies and other
people. Product developers, politicians or other persons in charge could profit
from this information and improve their products, decisions and behavior.

We specifically focus on Aspect-Based Sentiment Analysis (ABSA) in our
work. ABSA is often used as a generic umbrella term for several unique tasks,
which is caused by the inconsistency of terms in literature where many dif-
ferent names are widely used. To be as precise as possible, we explicitly use
different terms than ABSA to refer to the exact tasks. The first one (subtask
2 [14]) assumes that in each text, aspect terms are already marked and thus
given exactly as written in the text (this differs from so-called aspect categories
which do not necessarily appear in the text). Here, the task is to classify the
sentiments for those aspect terms. This is why the term Aspect Term Sentiment
Classification (ATSC) is most accurate.

When referring to ATSC methods, we usually think of single-task approaches.
These methods are designed to carry out only aspect term sentiment classifica-
tion as the aspect terms are already given. Whether these were identified man-
ually or by an algorithm is not relevant in this setting. In practice, however, the
aspect terms oftentimes are not already known. Thus, approaches dealing with
the step of Aspect Term Extraction (ATE) have been developed. They can either
work on their own or be combined with an ATSC method. For these combined
methods, which we refer to as ATE+ATSC, one can further distinguish between
pipeline, joint and collapsed models. In pipeline models, ATE and ATSC are
simply stacked one after another, i.e. the output of the first model is used as
input to the second model. The latter two are often also referred to as multi-task
models, since both tasks are carried out simultaneously or in an alternating way.
These models only differ in their labeling mechanisms: There are two label sets
for joint models, one to indicate whether a word is part of an aspect term and the
other one to state its polarity. For collapsed models, a unified labeling scheme
indicates whether a word is part of a positive, negative or neutral aspect term
or not.

We re-evaluate four different models for ATSC, covering a variety of differ-
ent architectures. This encompasses Recurrent neural networks (RNNs), Capsule
networks [6,16], networks using a Local Context Focus (LCF [22]), BERT-based
approaches [2]), as well as two different ATE+ATSC models, one of which is a
pipeline approach while the other one works in a collapsed fashion. All mod-
els are re-trained five times using five different (identical) train/validation splits
and tested on the respective test sets in order to (i) compare them on a common
ground and (ii) quantify the epistemic uncertainty associated with the architec-
tures and the data.

2 Related Work

Related experiments were conducted by Mukherjee et al. [11], yet with a dif-
ferent focus. On the one hand, the authors also try to reproduce results on the

Reproducibility and Uncertainty for Aspect-Based Sentiment Analysis 539

benchmark data sets from SemEval-14 about restaurants and laptops. However,
they selected six other models than we did for which the implementations are
provided in one repository.1 For these, the authors observed a consistent drop
of 1–2 % with respect to both accuracy and macro-averaged F1-Score (F macro

1).
Mukherjee et al. [11] report a doubling of this drop when using 15% of the
training data as validation data. On the other hand, they executed additional
tasks which included the creation of two new data sets about men’s t-shirts
and television as well as model evaluation on these data sets. Furthermore, they
also experimented with cross-domain training and testing. Yet, several impor-
tant points are not addressed by their work which is why we investigate them
in our work. First, while they mostly care about comparing different types of
architectures (memory networks vs. BERT), we instead focus on comparing the
best performing models for different tasks (ATSC vs. ATE+ATSC). Further, we
cover a larger variety of types of architectures by selecting the best performing
representatives of several different types. Second, we stick closer to the original
implementations (by using them, if available) whereas they exclusively rely on
community designed implementations, which adds a further potential source of
errors. Third, and most important, we provide estimates for the epistemic uncer-
tainty of performance values and are thus able to (at least tentatively) explain
performance differences due to different reporting standards.

3 Materials and Methods

This section will introduce the data sets we utilized for training and evaluation as
well as the selected model architectures. We start by briefly explaining the data,
before the models are described, since (reported) performance values on these data
sets partly motivate our choices regarding the models. We selected these data sets
as they are either widely known benchmark data sets or interesting adaptations of
them. We acknowledge that their sizes are not be that large, yet, the pool of avail-
able data sets for this kind of tasks is rather small. Descriptive statistics for all used
data sets canbe found inTable 1.Note that the data setswe eventually use for train-
ing and testing the models are all based on the original train/test splits. Further
we apply small modifications (as described below) which were (a) also applied by
some of the authors whose models we re-evaluate and (b) we perceive as reasonable.
This allows us to evaluate all of the architectures on a common ground, which is
not possible by comparing the reported values from the original publications alone.
Nevertheless, we are aware of the fact that this might limit comparability of our
results to the original ones to some extent.

3.1 Data Sets

SemEval-14 Restaurants. This data set contains reviews about restaurants
in New York. Pontiki et al. [14] chose a subset of the restaurant data from

1 https://github.com/songyouwei/ABSA-PyTorch.

https://github.com/songyouwei/ABSA-PyTorch

540 E. Lebmeier et al.

Ganu et al. [4] as training data2, while collecting test data3 themselves. Both
were labeled for several subtasks in the same way. These data sets were designed
for ATSC as well as its equivalent on category level, Aspect Category Sentiment
Classification (ACSC), but we stick to ATSC samples only. For each identified
aspect term within a sentence, the polarity is given as positive, negative, neutral
or conflict. We deleted the labels of the latter category (conflict) from the data
sets due to their rare appearance. This is similar to previous work [1,3,8,21], yet,
they do not all mention or explain the removing process explicitly. Rarely appear-
ing duplicate sentences which occurred in the training set were also removed in
our work. Due to their small amount, this procedure should not cause severe
problems concerning the over- or underestimation of the applied metrics. We
speculate that this rare appearance of duplicates also might be the reason for
why a similar preprocessing step was, to the best of our knowledge, only taken
in one other work [20].

MAMS. A Multi-Aspect Multi-Sentiment (MAMS) data set for the restaurant
domain was introduced by Jiang et al. [7] who criticized existing data sets for
not being adequate for ATSC. Since the data sets described above mainly consist
of sentences which exhibit (i) only one single aspect or (ii) several aspects with
the same sentiment, they argued that the task would not be much more difficult
than a sentiment prediction on the sentence-level. To circumvent this issue, they
extracted sentences of Ganu et al. [4] which comprise at least two aspects with
differing sentiments.4 The data sets have the same structure as the SemEval-
14 data sets, with the difference that Jiang et al. [7] provide a fixed validation
set for MAMS. The size of the validation split comprises about ten percent of
the whole training set, which also inspired our choice when it comes to creating
train/validation splits from the two SemEval-14 training data sets.

ARTS. Xing et al. [19] questioned the suitability of existing data sets for testing
the aspect robustness of a model, i.e. whether the model is able to correctly
identify the words corresponding to the chosen aspect term and predict its sen-
timent only based on them. Thus, the authors created an automatic generation
framework that takes SemEval-14 test data (restaurants and laptops) as input
and creates an Aspect Robustness Test Set (ARTS). They used three different
strategies to enrich the existing test set: The first one, REVTGT ("reverse tar-
get"), aims at reversing the sentiment of the chosen aspect term (called “target
aspect”). This is reached by flipping the opinion using antonyms or adding nega-
tion terms like "not". Additionally, conjunctions may be changed in order to
make sentences sound more fluent. Another strategy to augment the test set is
REVNON (“reverse non-target”) for which the sentiment of non-target aspects

2 http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-restaurant-
reviews-train-data/479d18c0625011e38685842b2b6a04d72cb57ba6c07743b9879d1a
04e72185b8/.

3 http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-test-data-
gold-annotations/b98d11cec18211e38229842b2b6a04d77591d40acd7542b7af823a54
fb03a155/.

4 https://github.com/siat-nlp/MAMS-for-ABSA.

http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-restaurant-reviews-train-data/479d18c0625011e38685842b2b6a04d72cb57ba6c07743b9879d1a04e72185b8/
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-restaurant-reviews-train-data/479d18c0625011e38685842b2b6a04d72cb57ba6c07743b9879d1a04e72185b8/
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-restaurant-reviews-train-data/479d18c0625011e38685842b2b6a04d72cb57ba6c07743b9879d1a04e72185b8/
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-test-data-gold-annotations/b98d11cec18211e38229842b2b6a04d77591d40acd7542b7af823a54fb03a155/
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-test-data-gold-annotations/b98d11cec18211e38229842b2b6a04d77591d40acd7542b7af823a54fb03a155/
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-test-data-gold-annotations/b98d11cec18211e38229842b2b6a04d77591d40acd7542b7af823a54fb03a155/
https://github.com/siat-nlp/MAMS-for-ABSA

Reproducibility and Uncertainty for Aspect-Based Sentiment Analysis 541

are (i) changed if they have the same sentiment as the target aspect or (ii)
exaggerated if the non-target aspect is of a differing polarity. The third strategy
called ADDDIFF (“add different sentiment”) adds non-target aspects with an
opposite sentiment which is intended to confuse the model. These non-target
aspects are selected from a set of aspects collected from the whole data set and
appended to the end of the sentence. ARTS are only designed to be used as test
sets after training an architecture on the respective SemEval-14 training sets.
The test sets for both restaurants and laptops are publicly available.5 During
the preparation of the ARTS data for CapsNet-BERT, we noticed that the start
and end positions of some aspect terms were not correct. We changed them in
order to make the code work properly and we also deleted duplicates (cf. [20]).
For these specific test sets, the Aspect Robustness Score (ARS) was introduced
by Xing et al. [19] in order to measure how well models can deal with variations
of sentences. Therefore, each sentence and all its variations are regarded as one
unit of observation for which the prediction is only considered to be correct if
the predictions for all variations are correct. These units alongside with their
corresponding predictions are then used to compute the regular accuracy (ARS
accuracy) on the level of the observational unit.
SemEval-14 Laptops. The second domain-specific subset of the SemEval-14 data
is on laptops. The data were collected and annotated by Pontiki et al. [14] for
the task of ATE and/or ATSC. The training data set is publicly available,6 just
like the test data (see Footnote 3). Again, there were duplicate sentences in the
training data which we deleted (cf. [20]). Unlike other benchmark data sets, both
SemEval-14 data sets come without an official train/validation split.
More Data Sets. Recently more data sets have been published in addition to
the ones mentioned beforehand. Mukherjee et al. [11] proposed two new data
sets about men’s t-Shirts and television. The YASO data set [12] has a different
structure as it is a multi-domain collection. This is an interesting approach, yet
also the reason for not considering it for our experiments: This data set is far
better suited for cross-domain analyses, which is out of the scope of this work.

3.2 Models

MGATN. A multi-grained attention network (MGATN) was proposed by Fan
et al. [3]. Its multi-grained attention is able to take into account the interaction
between aspects. We chose MGATN since it is reported to be the best performing
representative of RNN-based models on SemEval-14 data sets.

CapsNet-BERT. Capsules networks were initially proposed for the field of com-
puter vision, with the so-called capsules being responsible for recognizing certain
implicit entities in images. Each capsule performs internal calculations and returns

5 https://github.com/zhijing-jin/ARTS_TestSet.
6 http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-laptop-

reviews-train-data/94748ff4624e11e38d18842b2b6a04d7ca9201ec33f34d74a8551626
be122856.

https://github.com/zhijing-jin/ARTS_TestSet
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-laptop-reviews-train-data/94748ff4624e11e38d18842b2b6a04d7ca9201ec33f34d74a8551626be122856
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-laptop-reviews-train-data/94748ff4624e11e38d18842b2b6a04d7ca9201ec33f34d74a8551626be122856
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-laptop-reviews-train-data/94748ff4624e11e38d18842b2b6a04d7ca9201ec33f34d74a8551626be122856

542 E. Lebmeier et al.

T
ab

le
1.

D
es

cr
ip

ti
ve

St
at

is
ti

cs
fo

r
th

e
fiv

e
ut

ili
ze

d
da

ta
se

ts
.“

M
ul
ti
-S
en

ti
m
en

t
se
nt
en

ce
s”

ar
e

th
os

e
w

it
h

at
le

as
t

tw
o

di
ffe

re
nt

po
la

ri
ti

es
af

te
r

re
m

ov
in

g
“c

on
fli

ct
”

po
la

ri
ty

.“
A
sp
ec
t
T
er
m
s
in

to
ta
l”

al
so

ex
cl

ud
e

“c
on

fli
ct

”.

D
a
t
a

S
e
t

S
u
b
s
e
t

O
r
i
g
i
n
a
l

S
e
n
t
e
n
c
e
s

i
n

t
o
t
a
l

S
e
n
t
e
n
c
e
s

w
i
t
h
o
u
t

D
u
p
l
i
c
a
t
e
s

S
e
n
t
e
n
c
e
s

f
o
r

3
-
c
l
a
s
s

A
T
S
C

M
u
l
t
i
-

S
e
n
t
i
m

e
n
t

S
e
n
t
e
n
c
e
s

A
s
p
e
c
t

T
e
r
m

s

i
n

t
o
t
a
l

P
o
s
i
t
i
v
e

A
s
p
e
c
t

T
e
r
m

s

N
e
g
a
t
i
v
e

A
s
p
e
c
t

T
e
r
m

s

N
e
u
t
r
a
l

A
s
p
e
c
t

T
e
r
m

s

R
e
m

o
v
e
d

C
o
n
fl
i
c
t

A
s
p
e
c
t

T
e
r
m

s

S
em

E
va

l-
14

R
es

ta
u
ra

n
ts

T
ra

in
in

g
3
,
0
4
4

3
,
0
3
8

1
,
9
7
8

3
2
0

3
,
6
0
5

2
,
1
6
1

8
0
7

6
3
7

9
1

T
es

t
8
0
0

8
0
0

6
0
0

8
0

1
,
1
2
0

7
2
8

1
9
6

1
9
6

1
4

S
em

E
va

l-
14

L
ap

to
p
s

T
ra

in
in

g
3
,
0
4
8

3
,
0
3
6

1
,
4
6
0

1
6
6

2
,
3
1
7

9
8
8

8
6
6

4
6
3

4
5

T
es

t
8
0
0

8
0
0

4
1
1

3
8

6
3
8

3
4
1

1
2
8

1
6
9

1
6

A
R
T
S

R
es

ta
u
ra

n
ts

T
es

t
2
,
7
8
4

2
,
7
8
4

2
,
7
8
4

2
0
6

3
,
5
2
8

1
,
9
5
2

1
,
1
0
3

4
7
3

0

A
R
T
S

L
ap

to
p
s

T
es

t
1
,
5
7
6

1
,
5
7
6

1
,
5
7
6

7
4

1
,
8
7
7

8
8
3

5
8
7

4
0
7

0

M
A
M

S
R
es

ta
u
ra

n
t

T
ra

in
in

g
4
,
2
9
7

4
,
2
9
7

4
,
2
9
7

4
,
2
9
7

1
1
,
1
8
6

3
,
3
8
0

2
,
7
6
4

5
,
0
4
2

0

V
al
id

at
io
n

5
0
0

5
0
0

5
0
0

5
0
0

1
,
3
3
2

4
0
3

3
2
5

6
0
4

0

T
es

t
5
0
0

5
0
0

5
0
0

5
0
0

1
,
3
3
6

4
0
0

3
2
9

6
0
7

0

Reproducibility and Uncertainty for Aspect-Based Sentiment Analysis 543

a probability that the corresponding entity appears in the image. A variation of
capsule networks for ATSC and its combination with BERT was introduced by
Jiang et al. [7]. It was reported to outperform all other capsule networks with
respect to their accuracy on the SemEval-14 restaurants data. Additionally, it per-
formed second-best on MAMS, which is why we selected it for this study. Further-
more,we assumed their results on SemEval-14 restaurants data to be for three-class
classification, as all the other results they refer to are also three-class. Yet, it is not
fully clear to us which makes this experiment even more interesting.
RGAT-BERT. The Relational Graph Attention Network (RGAT) was intro-
duced by Bai et al. [1]. It utilizes a dependency graph representing the syn-
tactic relationships between words of a sentence as an additional input. The
RGAT encoder creates syntax-aware aspect term embeddings following the rep-
resentation update procedures from Graph Attentional Networks (GATs) [18].
It exhibits the best performance among graph-based models and also performs
best on the MAMS data in terms of both accuracy and F macro

1 .
LCF-ATEPC. Yang et al. [21] built upon the idea of the LCF mechanism. The
local context of an aspect term is defined as a fixed-size window around it, words
outside this window are taken into account with lower weights or not at all. For
each input token two labels, for aspect and sentiment, are assigned according
to the joint labeling scheme described in Sect. 1. We chose LCF-ATEPC to be
part of this meta-study since it reached the highest F macro

1 and accuracy on
SemEval-14 data of all approaches. Yet, this only holds for the variant that is
trained using additional domain adaptation.
BERT+TFM. The approach described by Li et al. [9] consists of a BERT model
followed by a transformer (TFM [17]) layer for classification. BERT+TFM was
the best model on SemEval-14 Laptops among all collapsed models at the time
point of its introduction. There were also models using other layers on top instead
of the transformer layer, but our variant of choice was TFM as it produced
slightly better results than the concurring models.
GRACE. GRACE, a Gradient Harmonized and Cascaded Labeling model intro-
duced by Luo et al. [10], belongs to the category of pipeline approaches. It
includes a post-training step of the pre-trained BERT model using Yelp7 and
Amazon data [5]. The post-trained model then shares its first l layers between
the ATE and the ATSC task. The remaining layers are only used for the former.
They are followed by a classification layer for the detected aspect terms. These
classification outputs are then used again as inputs for a Transformer decoder
which performs sentiment classification. The principle of using the first set of
labels as input for the second is called Cascaded Labeling here and is assumed
to deal with interactions between different aspect terms. Gradient Harmoniza-
tion is applied in order to cope with imbalanced labels during training. GRACE
appears to be the best performing one of the pipeline models according to the
literature. Furthermore, it is reported to be the best ATE+ATSC model on both
SemEval-14 data sets. However, these successes have to be taken into account
with care, as their results are based on four-class classification. This means that

7 https://www.yelp.com/dataset.

https://www.yelp.com/dataset

544 E. Lebmeier et al.

in comparison to the other authors’ settings they did not exclude conflicting
reviews of SemEval-14 data. Thus, our analysis contributes to comparability
even more since it has not been established yet for the model/data combinations
we examine.

4 Experiments

We re-evaluate six models (cf. Sect. 3.2) on the five data sets for the English
language presented in Sect. 3.1. Our overall goals are to establish comparability
between the models, to examine whether reported performance can be repro-
duced and to quantify epistemic model uncertainty that might exist due to the
lacking knowledge about the train/validation splits. The entire code from our
experiments is publicly available on GitHub.8

Our proceeding is as follows: First, we re-use the implementations provided
by the authors by simply cloning their git repositories and adjusting them to our
setup. Subsequently we try to reproduce their results on the data sets they used.
Second, we adapt their code to the remaining data sets and conduct the necessary
modifications, again sticking as closely as possible to the original hyperparame-
ter settings (cf. Table 2 in the supplementary material). The biggest change we
made was increasing the number of training epochs drastically and adding an
early stopping mechanism. Apart from that, we did not engage in hyperparam-
eter tuning in order not to modify/falsify the results. For all ATSC models, we
selected the optimal model during the training process based on the validation
accuracy and/or F macro

1 . For performing the experiments, we had one Tesla
V100 PCIe 16GB GPU at our disposal.

Data Preparation. Unlike other data sets, both SemEval-14 data sets come with-
out an official validation split. Thus, we created five different train/validation
splits (90/10) for each of the two SemEval-14 training sets. For each split, five
training runs with different random initializations were conducted per model.
The resulting 25 different versions per model per data set were subsequently
evaluated on the two official SemEval-14 test sets (restaurants and laptops) as
well as on the ARTS test sets. In Sect. 5 we report overall means per model per
test set as well as means and standard deviations per model and test set for
each of the different splits. Since there is an official validation set for MAMS,
we did not apply the splitting procedure from above when training on this data
set. Consequently, the given means and standard deviations are based on five
training runs with different random initializations only.
MGATN. As there exists no publicly available implementation provided by its
authors, we used the one from a collection of re-implemented ABSA methods
from GitHub.9 We slightly modified the early stopping mechanism from that
repository and then implemented it also for the other re-evaluated models.

8 https://github.com/el-ma-le/atsc-experiments-official.
9 https://github.com/songyouwei/ABSA-PyTorch.

https://github.com/el-ma-le/atsc-experiments-official
https://github.com/songyouwei/ABSA-PyTorch

Reproducibility and Uncertainty for Aspect-Based Sentiment Analysis 545

CapsNet-BERT. We used the implementation of CapsNet-BERT provided by
its authors.10
RGAT-BERT. We relied on the implementation of RGAT-BERT provided by
its authors.11 Since the authors manually created an accuracy score different to
the one implemented in scikit-learn12 [13], we substituted their metric by the
scikit-learn variant to ensure comparability. For data transformation, we selected
the stanza tokenizer [15] over the Deep Biaffine Parser,13 which was used by Bai
et al. [1], since the former provides the necessary syntactic information, whereas
the latter failed to produce the syntactic dependency relation tags and head IDs
the model requires.
LCF-ATEPC. We were not able to run the best-performing LCF-ATEPC variant
based on domain adaptation due to missing pre-trained models. Thus, we decided
to go for the second best, LCF-ATEPC-Fusion, using the official implementation
of LCF-ATEPC.14 During our experiments, the authors of LCF-ATEPC started
building a new repository15 based on the existing code which we did not use as
it was still subject to changes.
BERT+TFM. We used the implementation of BERT+TFM provided by its
authors.16 Our model selection was based on F micro

1 and F macro
1 , which were

calculated based on (start position, end position, polarity)-triples for each iden-
tified aspect. Due to the collapsed labeling scheme, these scores account for both
ATE and ATSC.
GRACE. We used the post-trained BERT model provided by Luo et al. [10].17
Our model selection was based on ATSC-F micro

1 and -F macro
1 as well as on

ATE-F micro
1 , with their calculations being slightly adjusted in order to match

the calculation of those from BERT+TFM.

5 Results

In general, reported values were not reproducible. Figure 1 shows a comparison of
our results (averaged over all 25 runs, including 95% confidence intervals) to the
reported results from the original publications on the two SemEval-14 data sets.
For all architectures there exists a notable gap between the blue (reproduced)
and the orange (reported) values. In general, the gap tends to be larger for the
ATSC models compared to the two ATE+ATSC models, where we were even able
to reach a better performance for BERT+TFM within our replication study.18

10 https://github.com/siat-nlp/MAMS-for-ABSA.
11 https://github.com/muyeby/RGAT-ABSA.
12 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.

html.
13 https://github.com/yzhangcs/parser.
14 https://github.com/yangheng95/LCF-ATEPC.
15 https://github.com/yangheng95/pyabsa.
16 https://github.com/lixin4ever/BERT-E2E-ABSA.
17 https://github.com/ArrowLuo/GRACE.
18 We do not give a similar figure for MAMS or ARTS as there are not enough reported

values to display the results in a meaningful way.

https://github.com/siat-nlp/MAMS-for-ABSA
https://github.com/muyeby/RGAT-ABSA
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://github.com/yzhangcs/parser
https://github.com/yangheng95/LCF-ATEPC
https://github.com/yangheng95/pyabsa
https://github.com/lixin4ever/BERT-E2E-ABSA
https://github.com/ArrowLuo/GRACE

546 E. Lebmeier et al.

Fig. 1. Comparison of reported and reproduced performance. The reproduced value
is the mean of all 25 runs per model in total. Further, 95% bootstrap (n = 2000)
confidence intervals are displayed. Note that absolute performance of GRACE (four
classes) and BERT+TFM cannot be compared to the other models due to different
tasks. No F micro

1 was reported for CapsNet-BERT on SemEval-14 Laptops.

It is also interesting to see how different runs can lead to rather broad ranges
of results, although having done only five training runs per model and data
split. An example for this phenomenon is the Accuracy of MGATN on SemEval-
14 Laptops (cf. Figure 2). For the first, the fourth and fifth split, all of the values
lie very close together (within mean ± std), whereas the results of the other two
splits show a rather high variance.

MGATN. For MGATN, our reproduced results fell short of the reported val-
ues for accuracy, around five to ten percentage points for SemEval-2014 lap-
tops and restaurants, respectively (cf. Table 5 and 6 in the supplementary mate-
rial). Figure 2 depicts the results on the laptops test set, the difference between
reported and reproduced performance on the restaurant data (not shown) looks
similar. A reason for this behavior might be that we could not use the official
implementation of the authors, but had to rely on a re-implementation from the
community. In terms of ARS accuracy on ARTS Restaurants, MGATN was the
only model that reached only a single-digit value which means that it is not good
at dealing with perturbed sentences.

CapsNet-BERT. Comparing all the selected models on the ATSC task, CapsNet-
BERT performed best on all data sets regarding all the metrics except for ARS
accuracy on the ARTS restaurant test set (cf. Table 5 and 6 in the supplemen-
tary material). For ARTS, it seems as if the reported ARS accuracy for laptops
matched our result for restaurants, and vice versa, as Fig. 3 illustrates. As far as
we can tell, we did not mix up the data sets during our calculations which makes
this look quite peculiar. The difference between the reported and reproduced val-
ues on SemEval-14 Restaurants data (as shown in Fig. 1b) may be explained by
the fact that we did three-class classification and we only assumed so for the
reported value.

Reproducibility and Uncertainty for Aspect-Based Sentiment Analysis 547

Fig. 2. Example for high differences between data splits: Accuracy of MGATN on
SemEval-14 Laptops.

RGAT-BERT. For both SemEval-14 and MAMS we missed the reported values
by around five percentage points (cf. Table 5 and 6 in the supplementary mate-
rial). ARTS restaurants is the only data set on which the best ARS accuracy was
not reached by CapsNet-BERT, but RGAT-BERT. Regarding MAMS, Bai et al.
[1] provided accuracy as well as F macro

1 , which is why we also compare these
results here. Figure 4 shows the all five values of the four different measures as
well as the average. For accuracy and F macro

1 , reported values from Bai et al.
[1] were added.

Fig. 3. Aspect Robustness Score (ARS) Accuracy of CapsNet-BERT.

LCF-ATEPC. Our experiments on average resulted in about five percentage
points lower accuracies for LCF-ATEPC than were reported. Yet, LCF-ATEPC
reached the best ARS accuracy value on ARTS restaurant data in our analysis.

BERT+TFM. In contrast to the majority of the other models, for BERT+TFM
the (average) performance of our runs surpassed the reported performance val-
ues on the SemEval-14 data. As Fig. 5 indicates, this holds for all runs (laptop
domain) and on average (restaurant domain). The reasons for our improved
values may lie in the chosen hyperparameters, yet we cannot tell for sure.

548 E. Lebmeier et al.

Fig. 4. Performance of RGAT-BERT on MAMS.

Fig. 5. F micro
1 of BERT+TFM.

GRACE. During our experiments with GRACE, we were able to produce results
approximately in the same range as the reported values. Regarding SemEval-
14 restaurants our results on average were better than the reported ones (cf.
Figure 6b), while for laptops we could not quite reach the reported performance
(cf. Figure 6a). For the latter case, our results of single runs were better than (or
at least equal to) the reported one, which is kind of a symptom of the problem.
If we only reported the best of all runs, our conclusion would have been that
we were able to outperform the original model. However, as we have already
mentioned, reported results were based on four-class classification, whereas our
results were made for three-class. This might be the reason for different results.
In the ATE+ATSC task, GRACE outperformed BERT+TFM on all data sets
except for MAMS (cf. Table 3 and 4 in the supplementary material).

6 Discussion

6.1 General Takeaways

Results differing from the reported values can be explained by various reasons.
First, we often do not know how the reported values were created, i.e. whether
the authors took the best or an average value of their runs. In Fig. 6a, it becomes
clearly visible that taking the best value compared to the mean over multiple
runs yields a difference of about almost three percentage points. Unfortunately

Reproducibility and Uncertainty for Aspect-Based Sentiment Analysis 549

Fig. 6. ATSC F micro
1 of GRACE.

there are also, to the best of our knowledge, no clear guidelines for how to
properly report the uncertainty resulting from different data splits. Second, our
data are usually not exactly identical to the data sets used for the original
papers due to the preprocessing steps we explained beforehand. Also, training
and validation splits are probably different from ours. Some models required
additional syntactical information which we (potentially) inferred from other
packages than indicated, because either none were given or because the ones
that were given did not work as stated. Third, hyperparameter configurations are
often not totally clear due to a lack of concise descriptions in the original work.
In these cases we took those that were chosen by default in the implementations
we used. Since those were not necessarily always provided by the authors of
the models, we have no information about how close they are to the original
configurations. What we could find out regarding hyperparameters can be found
in Table 2 in the supplementary material. Consequently, it is not surprising that
we were not able to exactly reproduce given results, since hyperparameter tuning
often has a large impact on the model performance. This insight is also shared
by Mukherjee et al. [11], although they tested other models in a different setup.

6.2 Possible Guidelines

Taking all considerations into account, we want to tentatively propose some
guidelines that might be beneficial for making NLP research reproducible and for
quantifying different types of uncertainty. First, it is not enough to purely open-
source your code but it also requires a thorough documentation and explana-
tion. This should also include all the information about hyperparameters, addi-
tional training data, custom data splits (if applicable), and non-standard pre-
processing, since all of this can have a (potentially) large impact on the results.
Second, every information about potential randomness/variation in the results
has to be acknowledged, ideally even researched further and reported/displayed
properly. One potential starting point could be to always perform multiple runs
on multiple different splits and use the results to report standard deviations
between and within splits. While the former gives an impression for the uncer-

550 E. Lebmeier et al.

tainty induced by data heterogeneity, the latter rather reflects the model’s share
of the overall uncertainty. This would of course to some extent mean, to move
away from (overly confidently) reporting single performance values. A reporting
convention indicating a common procedure combined with already prepared data
sets with all possible labels could improve the comparability between models a
lot.

7 Conclusion and Future Work

Our experiments revealed that reproducing reported results is hardly possible,
given the current practice of performance reporting (at least for this subset of
selected models). A tendency towards lower results is visible in our experiments,
sometimes even five to ten percentage points lower than the original values.
The only exception was BERT+TFM for which given values were surpassed.
The reasons for these observations may lay in the data preprocessing steps, in
the hyperparameters or in the absence of a convention on which values to report
(best or mean of several runs). This discovery of models hardly being comparable
based on their performance measures is a very important one from our point of
view. When new models are proposed, one of the main aspects during their
evaluation is the improvement with respect to the state-of-the-art. But when
the performance of a single model can vary between single runs, the question
is which results to take into account for model rankings. Also a huge practical
meta-analysis of all models on several data sets would clarify the situation.

Acknowledgements. This work has been partially funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) as part of BERD@NFDI
- grant number 460037581.

References

1. Bai, X., Liu, P., Zhang, Y.: Investigating typed syntactic dependencies for targeted
sentiment classification using graph attention neural network. In: IEEE/ACM
Transactions on Audio, Speech, and Language Processing 29, 503–514 (2020).
http://dx.doi.org/10.1109/TASLP.2020.3042009

2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapo-
lis, Minnesota (Jun 2019). https://doi.org/10.18653/v1/N19-1423, https://www.
aclweb.org/anthology/N19-1423

3. Fan, F., Feng, Y., Zhao, D.: Multi-grained attention network for aspect-level senti-
ment classification. In: Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing. pp. 3433–3442. Association for Computational
Linguistics, Brussels, Belgium (Oct-Nov 2018). https://doi.org/10.18653/v1/D18-
1380, https://aclanthology.org/D18-1380

http://dx.doi.org/10.1109/TASLP.2020.3042009
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.18653/v1/D18-1380
https://doi.org/10.18653/v1/D18-1380
https://aclanthology.org/D18-1380

Reproducibility and Uncertainty for Aspect-Based Sentiment Analysis 551

4. Ganu, G., Elhadad, N., Marian, A.: Beyond the stars: improving rating predictions
using review text content. In: Twelfth International Workshop on the Web and
Databases (WebDB 2009), vol. 9, pp. 1–6. Citeseer (2009)

5. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion
trends with one-class collaborative filtering. In: Proceedings of the 25th Inter-
national Conference on World Wide Web, pp. 507–517. WWW 2016, Interna-
tional World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, CHE (2016). https://doi.org/10.1145/2872427.2883037,https://doi.org/
10.1145/2872427.2883037

6. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In:
Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol.
6791, pp. 44–51. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21735-7_6

7. Jiang, Q., Chen, L., Xu, R., Ao, X., Yang, M.: A challenge dataset and effective
models for aspect-based sentiment analysis. In: Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 6280–
6285. Association for Computational Linguistics, Hong Kong, China (Nov 2019).
https://doi.org/10.18653/v1/D19-1654, https://aclanthology.org/D19-1654

8. Li, X., Bing, L., Li, P., Lam, W.: A unified model for opinion target extraction and
target sentiment prediction. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 6714–6721 (2019)

9. Li, X., Bing, L., Zhang, W., Lam, W.: Exploiting BERT for end-to-end aspect-
based sentiment analysis. In: Proceedings of the 5th Workshop on Noisy User-
generated Text (W-NUT 2019), pp. 34–41. Association for Computational Lin-
guistics, Hong Kong, China (Nov 2019). https://doi.org/10.18653/v1/D19-5505,
https://aclanthology.org/D19-5505

10. Luo, H., Ji, L., Li, T., Jiang, D., Duan, N.: GRACE: Gradient harmonized and
cascaded labeling for aspect-based sentiment analysis. In: Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020, pp. 54–64. Association for
Computational Linguistics, Online (Nov 2020). https://doi.org/10.18653/v1/2020.
findings-emnlp.6, https://aclanthology.org/2020.findings-emnlp.6

11. Mukherjee, R., Shetty, S., Chattopadhyay, S., Maji, S., Datta, S., Goyal, P.: Repro-
ducibility, replicability and beyond: assessing production readiness of aspect based
sentiment analysis in the wild. arXiv preprint arXiv:2101.09449 (2021)

12. Orbach, M., Toledo-Ronen, O., Spector, A., Aharonov, R., Katz, Y., Slonim,
N.: YASO: a new benchmark for targeted sentiment analysis. arXiv preprint
arXiv:2012.14541 (2020)

13. Pedregosa, F., et al.: Scikit-Learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

14. Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I.,
Manandhar, S.: SemEval-2014 task 4: aspect based sentiment analysis. In: Proceed-
ings of the 8th International Workshop on Semantic Evaluation (SemEval 2014),
pp. 27–35. Association for Computational Linguistics, Dublin, Ireland (Aug 2014).
https://doi.org/10.3115/v1/S14-2004, https://aclanthology.org/S14-2004

15. Qi, P., Zhang, Y., Zhang, Y., Bolton, J., Manning, C.D.: Stanza: a Python natural
language processing toolkit for many human languages. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics: System
Demonstrations (2020), https://nlp.stanford.edu/pubs/qi2020stanza.pdf

https://doi.org/10.1145/2872427.2883037,
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1007/978-3-642-21735-7_6
https://doi.org/10.1007/978-3-642-21735-7_6
https://doi.org/10.18653/v1/D19-1654
https://aclanthology.org/D19-1654
https://doi.org/10.18653/v1/D19-5505
https://aclanthology.org/D19-5505
https://doi.org/10.18653/v1/2020.findings-emnlp.6
https://doi.org/10.18653/v1/2020.findings-emnlp.6
https://aclanthology.org/2020.findings-emnlp.6
http://arxiv.org/abs/2101.09449
http://arxiv.org/abs/2012.14541
https://doi.org/10.3115/v1/S14-2004
https://aclanthology.org/S14-2004
https://nlp.stanford.edu/pubs/qi2020stanza.pdf

552 E. Lebmeier et al.

16. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Guyon,
I., et al. (eds.) Advances in Neural Information Processing Systems. vol. 30.
Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/
2cad8fa47bbef282badbb8de5374b894-Paper.pdf

17. Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017). http://
arxiv.org/abs/1706.03762

18. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018). https://openreview.net/forum?id=rJXMpikCZ

19. Xing, X., Jin, Z., Jin, D., Wang, B., Zhang, Q., Huang, X.: Tasty burgers, soggy
fries: probing aspect robustness in aspect-based sentiment analysis. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 3594–3605 (2020). https://doi.org/10.18653/v1/2020.emnlp-main.
292, https://www.aclweb.org/anthology/2020.emnlp-main.292

20. Xue, W., Li, T.: Aspect based sentiment analysis with gated convolutional net-
works. In: Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 2514–2523. Association for
Computational Linguistics, Melbourne, Australia (Jul 2018). https://doi.org/10.
18653/v1/P18-1234, https://aclanthology.org/P18-1234

21. Yang, H., Zeng, B., Yang, J., Song, Y., Xu, R.: A multi-task learning model for
chinese-oriented aspect polarity classification and aspect term extraction. Neu-
rocomputing 419, 344–356 (2021). https://doi.org/10.1016/j.neucom.2020.08.001,
https://www.sciencedirect.com/science/article/pii/S0925231220312534

22. Zeng, B., Yang, H., Xu, R., Zhou, W., Han, X.: LCF: a local context focus mech-
anism for aspect-based sentiment classification. Appl. Sci. 9, 3389 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://proceedings.neurips.cc/paper/2017/file/2cad8fa47bbef282badbb8de5374b894-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/2cad8fa47bbef282badbb8de5374b894-Paper.pdf
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.18653/v1/2020.emnlp-main.292
https://doi.org/10.18653/v1/2020.emnlp-main.292
https://www.aclweb.org/anthology/2020.emnlp-main.292
https://doi.org/10.18653/v1/P18-1234
https://doi.org/10.18653/v1/P18-1234
https://aclanthology.org/P18-1234
https://doi.org/10.1016/j.neucom.2020.08.001
https://www.sciencedirect.com/science/article/pii/S0925231220312534
http://creativecommons.org/licenses/by/4.0/

An Ion Exchange Mechanism Inspired
Story Ending Generator for Different

Characters

Xinyu Jiang1, Qi Zhang2,3, Chongyang Shi1(B), Kaiying Jiang4, Liang Hu3,5,
and Shoujin Wang6

1 Beijing Institute of Technology, Beijing, China
cy_shi@bit.edu.cn

2 University of Technology Sydney, Ultimo, Australia
3 Deepblue Academy of Sciences, Changzhou, China

zhangqi_cs@bit.edu.cn
4 University of Science and Technology Beijing, Beijing, China

5 Tongji University, Shanghai, China
6 Macquarie University, Sydney, Australia

Abstract. Story ending generation aims at generating reasonable end-
ings for a given story context. Most existing studies in this area focus
on generating coherent or diversified story endings, while they ignore
that different characters may lead to different endings for a given story.
In this paper, we propose a Character-oriented Story Ending Generator
(CoSEG) to customize an ending for each character in a story. Specif-
ically, we first propose a character modeling module to learn the per-
sonalities of characters from their descriptive experiences extracted from
the story context. Then, inspired by the ion exchange mechanism in
chemical reactions, we design a novel vector breaking/forming module
to learn the intrinsic interactions between each character and the corre-
sponding context through an analogical information exchange procedure.
Finally, we leverage the attention mechanism to learn effective character-
specific interactions and feed each interaction into a decoder to generate
character-orient endings. Extensive experimental results and case studies
demonstrate that CoSEG achieves significant improvements in the qual-
ity of generated endings compared with state-of-the-art methods, and it
effectively customizes the endings for different characters.

Keywords: Story ending generation · Character-oriented · Neural
network

1 Introduction

Story ending generation aims to deliver a comprehensive understanding of the
context and predict the next plot for a given story [10,16,29,31]. Some studies in
this field generate coherent stories by modeling the sequence of events or verbs

X. Jiang and Q. Zhang—The first two authors contribute equally to this work.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 553–570, 2023.
https://doi.org/10.1007/978-3-031-26390-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_32&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_32

554 X. Jiang et al.

Fig. 1. An example of the story context in the ROCStories corpus, and the endings
generated by our model for different characters.

[5,19], or diversify story generation by introducing common senses or vocabulary
information [8,18]. Others focus on controlling the sentiment of story endings [16,
27] or generating the missing plot for an incomplete story [1,29]. These methods
generally ignore the relation and interaction between story plots and characters
and simplify the influence of character personality on story generation, leading
to desirable but character-irrelevant story endings.

Intuitively, stories are derived from characters, and character personality
directly determines the plot and direction of the story. Figure 1 shows an example
of a typical story in the ROCStories corpus [21] and the endings generated for
different characters. From the figure, we can observe that: 1) each character has
its unique personality depicted by its character token and character experience,
i.e., the character-related descriptions in a story. For example, the character son
is depicted by the token “son” and the description “lying in the pea gravel”; 2)
naturally, different characters with different personalities interact with the story
context and thus affect the story plot, leading to different story endings (see the
different endings for ‘son’, ‘driver’ and ‘I’ in the example).

Customizing the endings for different characters in a story is a novel but
challenging task since there is no one-to-many dataset (i.e., one story corresponds
to many ground-truth endings). To the best of our knowledge, most previous
methods for the story ending generation aim to generate a single ending or
missing plot rather than diverse coherent endings of different characters, for
a given story context [10,29,31]. The main challenges in customizing character-
oriented story endings are 1) to model the personality of each character, and 2) to
learn the diverse interactions between different characters and the story context.
Intuitively, a story context contains a character’s experiences, i.e., the multiple
descriptions of the character, which depict the personalities of the character. It
would be helpful to extract the related descriptions of each character from the

Ion Exchange Mechanism for Story Ending Generator 555

OH H

Forming new

products/descriptions

Bonds Breaking

Bonds Forming

Bonds

Ion Exchange in a Chemical Reaction

H-Cl + Na-O-H → Na-Cl + H-O-H
O

H

Cl

Na

Forming New Products

H

ClNa

Na-Cl

friend's birthdayToday like singing

Information Exchange Procedure between the Character and the Context

Context:
I like singing

but I was so tired today.

Today is my friend's birthday and he

invite me to sing.

like singing

so tired

invite me to sing

Context

friend's birthday

Today

Ending for the character:
I refused his invitation.

Forming New Descriptions

so tired meinvite to sing

Breaking the weakest bonds

between ions/description

Character

Fig. 2. A character-context information exchange mechanism to learn the interaction
between character and context, which is inspired by the ion exchange mechanism in
chemical reactions.

story content and build its experience sequence via organizing the descriptions
in chronological order for modeling each character’s personalities.

Inspired by recent studies using deep learning to plan and predict chemi-
cal reactions [25,26], we model the personalities of characters by analogizing
the interactions between characters and context to chemical reactions. Specifi-
cally, we believe that the information exchange between different characters and
context in generating new situational (character-specific) semantics during the
interaction is similar to the ion exchange [2] to form new products in chemi-
cal reactions (cf. Fig. 2). Derived from this observation, it is promising to learn
the interaction between a character and the corresponding context following an
information exchange procedure. As depicted in Fig. 2, by exchanging related
descriptions of the character and context, a new informative and character-
related description “invite so tired me to sing” is formed by putting “so tired”
(from character) and “invite me to sing” (from context) together. Consequently,
the newly formed character-related description leads to an ending “refused his
invitation” customized for the character “I” with a high probability.

Accordingly, we propose a Character-oriented Story Ending Generator
(CoSEG) to customize an ending for each character in a story. Specifically,
the proposed model first learns a representation of each character’s personal-
ity by modeling its experiences with a Character Modeling module (CMM) and
a context representation by modeling the story content. Then, a novel Vector
Breaking/Forming module (VBF) is introduced to effectively learn the inter-
action between each character and the context through multiple information
exchanges. Finally, a character-specific interaction representation is generated
by adaptively picking out the most effective interaction via a Character-Context
Attention module (C-CA), and each interaction representation is further uti-
lized to customize the ending for the corresponding character. Note that CoSEG
adopts LSTM-based encoder-decoder architecture, and the proposed key mod-
ules are network-agnostics and are also suitable for other prevailing networks,

556 X. Jiang et al.

e.g., CNN [14] and Transformer [32]. The main contributions of our paper are
summarized below:

– We propose a Character-oriented Story Ending Generator (CoSEG) model to
tackle the challenging task of customizing story endings for different charac-
ters.

– We introduce a character modeling module to effectively model the person-
ality of each character and learn a personalized and informative character
representation.

– Inspired by the ion exchange process in chemical reactions, we propose a novel
VBF module to learn the interaction between the character and context based
on the information exchange mechanism.

Extensive experimental results on the ROCStories dataset show that our pro-
posed CoSEG not only generates more coherent and diversified story endings
compared with state-of-the-art and/or representative baseline methods, but also
customizes effective endings for each character in a story. The superiority of
CoSEG also demonstrates the effectiveness of the proposed CMM and VBF
module in customizing story endings.

2 Related Work

Neural network-based models are the current mainstream in story generation
methods owing to their impressive generation performance [6,18,22,30,31]. In
recent years, there have been many innovations that utilize the encoder and
decoder framework to generate coherent and diversified story endings. [33]
applies a hierarchical attention architecture to encode text information to gen-
erate the context representation. [19] predicts the next event by extracting the
event represented from the sentence, thereby ensuring the coherence of the story.
[5] uses one head of the decoder’s self-attention to attend only to previously gen-
erated verbs in order to generate a coherent story. [4] learns a second seq2seq
model, which is led by the first model to focus on what the first model failed
to learn. [10] introduces external knowledge and utilizes an incremental encod-
ing scheme to ensure the diversity of stories. In addition, recent work proposes a
character-centric neural storytelling model to generate stories for a given charac-
ter [15]. Excited with the excellent performance of attention-based models [7,34]
like Transformer [28] and BERT [3] in recent years, many story-ending genera-
tion and completion models leverage self-attention mechanism and Transformer
architecture to enhance the quality of generated story endings [9,32]. In this
work, we adopt LSTM as the backbone in the model design and experiments.
Other architectures, e.g., attention networks and Transformer, can easily be
incorporated into the proposed CoSEG.

However, most of the aforementioned generation methods cannot generate
multiple coherent and diverse endings for a single story context. Moreover, only
a few works focus on generating multiple endings or responses given a single con-
text. [8] uses several unobserved latent variables z to generate different responses.

Ion Exchange Mechanism for Story Ending Generator 557

This method, however, relies on a one-to-many dataset. [16] applies an addi-
tional sentiment analyzer to first predict the sentiment intensity s of the ground
truth ending y, then constructs paired data (x, s; y) for training, where x is the
story context. In the generation stage, the model receives the sentiment vari-
able s from users to generate a sentiment-specific ending. Recent work [20,29]
introduce prevalent Transformers to learn story representation for generating a
missing plot or a story ending. All these methods assume that the plot has little
relation or interaction with the personality of the characters in the story. Unlike
these models, our proposed model can customize an ending for each character
in the story context without relying on a one-to-many dataset.

3 Character-oriented Story Ending Generator (CoSEG)

3.1 Problem Definition and Architecture

In this section, we formulate the task of customizing the ending for each character
in a story. Given a story content x = (x1, ..., xl), which contains l sentences,
and m characters (c1, ..., cm). The task is to predict customized endings y =
(y1, ..., ym) for all the m characters.

A story generally corresponds to only one ground truth ending, which may
consist of the actions or opinions of a particular character; the endings of other
characters are unavailable. To tackle the issue, in the training stage, we extract
the experience sequence of the character in the ground-truth ending, then train
our proposed model to generate an ending related to the extracted charac-
ter (ground-truth ending). In the generating stage, we extract the experience
sequences of all characters who appear in the story and then apply the proposed
model to generate an ending for the characters.

The architecture of our proposed CoSEG model is depicted in Fig. 3. Our
model consists of three modules-a CMM module, a VBF module and a C-CA
module-as well as an encoder to encode the story context and a decoder to
generate the story ending. As shown in Fig. 3, the CMM module generates the
character representation cc for each character ci by modeling the character’s
experiences; the VBF module learns the interaction between the character rep-
resentation and the story context through multiple information exchanges and
generates multiple interaction results, namely product candidates (pc

0, ...,pc
n);

the C-CA module generates a character-related story context representation by
picking out the most effective product candidates. The context representation
is further used as the initial state of the decoder to predict an ending for the
character. The following sections present the details of each module.

3.2 Character Experience Sequences

We construct the experience sequence for each character in the story; the experi-
ence sequence is further fed into CMM to generate the character representation.

We take the sentence She knew a discount store near her sold socks as an
example to illustrate how to extract a character experience with the following
four steps:

558 X. Jiang et al.

Fig. 3. Character-oriented Story Ending Generator (CoSEG).

1) Construct a dependency tree for the given sentence, and get the headword
knew of the character She.

2) Extract the context words, namely knew, discount, store, sold, socks, as
the first part of the character experience. This part is the background of the
story.

3) Extract the entity words, namely the character She, the headword knew and
the corresponding object store, as the second part of the character experience.

4) Connect the above two parts of character experience with a token OBJ to
obtain the final character experience [knew, discount, store, sold, socks, OBJ,
knew, store, She]. The token OBJ is utilized to separate the two parts,
explicitly telling the model which words are context information and which
are directly related to the character.

In this way, we can extract each character’s experience from each sentence.
Subsequently, we build the experience sequence (ei1, ..., e

i
s) of the character ci

via organizing the character’s experience in chronological order, where s is the
number of the sentences that contain ci.

3.3 Character Modeling Module (CMM)

We generate the character representation by modeling the character experience
sequence. Formally, given a character ci and a corresponding character experi-
ence sequence (ei1, ..., e

i
S), the module encodes the token sequence (ws

1, ..., w
s
Ts
)

inside each experience eis to obtain the hidden states (hs
1, ...,h

s
Ts
), where Ts is

the length of eis, and the superscript s of h or w represents it is for the sth

character experience.
We choose the final hidden state hs

Ts
as the representation of the character ci

who went through the character experience eis. The character representation hs
Ts

is then used as the initial state of the next encoder to generate further enriched
character representation hs+1

Ts+1
as follows:

hs+1
t = LSTM(hs+1

t−1 ,ws+1
t ,hs

Ts
), (1)

Ion Exchange Mechanism for Story Ending Generator 559

where Ts+1 is the length of experience eis+1, ws+1
t is the tth token in the sequence

(ws+1
1 , ..., ws+1

Ts+1
) inside the experience eis+1, w

s+1
t denotes the embedding of ws+1

t

and the superscript s + 1 of h or w represents it is for the (s + 1)th character
experience.

Finally, the CMM Module will generate the Sth character representation hTS
,

which has gone through all the character experiences (ei1, ..., e
i
S).

3.4 Vector Breaking and Forming (VBF)

Since both character and context are represented with high-dimensional vectors,
we propose a novel VBF module to learn the interaction between the character
and the story context representation based on the information exchange proce-
dure (cf. Fig. 2) and then generate multiple product candidates.

Vector Breaking: Assume that there are invisible bonds between the adjacent
elements of a vector, and VBF breaks the bonds between adjacent elements. For
a vector of size n, there are n+1 potential bond-breaking positions. For example,
given a vector v1 = [0.1, 0.2], the size of v1 is 2 and we have 3 bond-breaking
positions, as follows:

vl
1, v

r
1 = [], [0.1, 0.2] = V ecB0(v1),

vl′
1 , vr′

1 = [0.1], [0.2] = V ecB1(v1),

vl′′
1 , vr′′

1 = [0.1, 0.2], [] = V ecB2(v1),

(2)

where V ecBk represents breaking the bond in the position k, and the superscripts
l and r of the breaking results represent the left and right parts of v1, respectively.

Vector Forming: The two interaction vectors break at each position respec-
tively. To keep the size of interaction results constant, for each bond-breaking
position, VBF integrates the left part of the first vector and the right part of
the second vector to generate a product candidate1. In this way, two vectors of
size n can interact to obtain a total of n + 1 product candidates. For example,
let v1 interact with v2 = [0.3, 0.4], and we can obtain such three product candi-
dates pc

0 = [0.3, 0.4],pc
1 = [0.1, 0.4],pc

2 = [0.1, 0.2]. As shown in Fig. 3 part (3),
the character representation and the encoder final state ht (i.e., story context
representation) interact in the VBF module to generate the product candidates
(pc

0, ...,pc
n).

3.5 Character-Context Attention (C-CA)

As shown in Fig. 3 part (4), the C-CA Module aims to pick out the most effective
product candidates. Specifically, we utilize the sth character representation hTs

1 There is no order between the two interaction vectors, which vector as the first one
has little influence on the experimental results.

560 X. Jiang et al.

and the encoder final state ht to obtain the attention weight of each product
candidate pc

k:
as = σ(Wa[hTs

;ht] + ba),

rs =
n∑

k=0

askp
c
k,

(3)

where σ is the softmax function, Wa is the weight matrix, ba is the bias, att
is the attention weight, and as stands for the character-related story context
representation of the sth character. As shown in Fig. 3 part (5), the rs is further
used as the initial state of the decoder (note that we omit the superscript s in
the following for simplicity):

hy
t = LSTM(hy

t−1,w
y
t−1, r), (4)

where hy
t is the tth hidden state of the decoder, which is further utilized to

generate the tth word wy
t , wy

t−1 is the embedding of word wy
t−1.

4 Experiment

In this section, we conduct extensive experiments to investigate the quality of
CoSEG and the comparative baselines.

4.1 Dataset

We evaluated our model on the ROCStories corpus [21]. This corpus contains
98,162 five-sentence stories. Our task is to generate an ending for each character
that appears in a given four-sentence story2. For each story, we extract the
experience sequence for the character who appears in the ground truth ending.
We select 66,881 stories in which the length of the ground-truth character’s
experience sequence is no less than 2 and treat these stories as the training set.
We elaborately design two test sets, each with 3073 stories. Specifically, the two
sets are called sufficient test set and inadequate test set. In the sufficient test set,
the length of the ground-truth character’s experience sequence is no less than 2
for all stories, while the length is less than 2 for all stories in the inadequate test
set. The two test sets are applied to evaluate the performance of our proposed
model when the character information is sufficient and inadequate, respectively.

2 We identify characters in a macro way. We extract the subject of each sentence in the
story. We regard name entity or noun as the character of the sentence. In principle,
in this way, we can generate an ending for any noun. Since there are few endings
regarding nouns as the characters in the training data (such as the ending with “car”
as the character), the proposed model is difficult to generate high-quality endings
for those characters.

Ion Exchange Mechanism for Story Ending Generator 561

4.2 Experimental Settings

We use the GloVe.6B [24] pre-trained word embedding, and the number of dimen-
sions is 200. The hidden size of the LSTM cell is 512. Since the size of the
character representation and the encoder’s final state both are 512, the number
of product candidates will be 512 + 1 = 513. A larger dimension size brings
large computation costs for the model and the device. In summary, the detailed
experimental settings are provided as follows:

– We use 66,881 stories for training.
– We use 3073 stories for validation, which is shared by the two test sets.
– We have two test sets with 3073 stories each. We refer to the two test sets as

the sufficient test set and the inadequate test set respectively. In the sufficient
test set, the character in the ground truth ending also appears multiple times
in the story context, and in the inadequate test set is the opposite. These two
test sets evaluate the performance of our proposed model when the character
information is sufficient and inadequate, respectively.

– We use Momentum Optimizer to update parameters when training and empir-
ically set the momentum to be 0.9.

– The size of the character representation and the encoder hidden state are 512.
– We select the product candidates generated using V ecB0, V ecB128, V ecB256,

V ecB384 and V ecB512 five breaking operation.
– The number of product candidates will be 512 + 1 = 513.

Note that the reason for the selection of the product candidates is analyzed in
Combination Analysis on Product Candidates in Sect. 4.5.

4.3 Baselines

We compared our model with the following state-of-the-art baseline methods:

Seq2Seq [17]: A vanilla encoder-decoder model with an attention mechanism.
The model treats the story context as a single sentence.

HAN [33]: A hierarchical attention architecture is applied to encode text infor-
mation so as to generate the context representation.

IE [10]: It adopts an incremental encoding scheme to represent context clues and
applies commonsense knowledge by multi-source attention.

T-CVAE [29]: It proposes a conditional variational autoencoder based on Trans-
former for missing plot generation.

MGCN-DP [11]: It leverages multi-level graph convolutional networks over
dependency parse trees to capture dependency relations and context clues.
In addition, we introduce two variations of the proposed CoSEG model:

CoADD: We replace the VBF Module in CoSEG with an element-wise summa-
tion.

CoCAT: We concatenate the character representation and the encoder final
state, and pass the concatenated vector through a linear layer to obtain the
character-related story context representation.

562 X. Jiang et al.

4.4 Evaluation Metrics

We evaluate our model from two perspectives: the quality of the generated end-
ings and the ability to customize endings.

Quality Evaluation. We adopt two kinds of evaluations to investigate the
ability of the proposed method and the baselines in generating high-quality story
endings.

Automatic Evaluation: We use perplexity (PPL) and BLEU (BLEU-1, BLEU-
2 and BLEU-3) [23] to evaluate the quality of the generated endings. A smaller
PPL and a higher BLEU indicate a better ending.

Manual Evaluation: We hire three evaluators, who are experts in English, to
evaluate the generated story endings. We randomly sampled 200 stories from
the two test sets and obtained 1400 endings from the seven models for each
test set. Evaluators need to score the generated endings in terms of two criteria:
coherency and grammar. The coherency score measures whether the endings are
coherent with the story context; specifically, the score of 3 denotes coherency,
the score of 1 denotes coherency to some extent, and the score of 0 denotes no
coherency at all. In addition, the grammar score measures whether there are
grammatical errors in generated endings; a grammar score is 0 if endings have
errors, and 1 otherwise.

Ability to Customize Endings. We randomly sample 200 stories from the
two test sets and generate ending for one random character in each story. To
evaluate the ability to customize endings for different characters, we propose
three evaluation metrics:

Success Rate (SucR): SucR measures whether the subject of the generated
ending is the selected character.

Rationality: We adopt three levels to evaluate whether the generated ending
matches the selected character given the story context: level 3 denotes perfect
matching, level 1 denotes partial matching, and level 0 for mismatching.

Discrimination Degree (DiscD): Given an ending generated by our proposed
model, we further hire three evaluators to choose which character is the ending
generated for. If the character chosen by the evaluator is consistent with the
selected character, it scores 1; and 0 otherwise.

4.5 Evaluation Results

Automatic Evaluation. The automatic evaluation results for the sufficient and
inadequate test sets are shown in Table 1. From the table, we can observe the
following:

1) In both the sufficient and inadequate test sets, our model has lower perplexity
and higher BLEU scores than the baselines. Specifically, in terms of perplexity,

Ion Exchange Mechanism for Story Ending Generator 563

Table 1. Automatic evaluation results of the sufficient and the inadequate test set.

Sufficient

Model PPL BLEU-1 (%) BLEU-2 (%) BLEU-3 (%)
Seq2Seq 13.26 22.46 6.88 4.21
HAN 13.43 22.43 6.96 4.47
IE 12.08 23.08 7.43 4.67
T-CVAE 11.21 23.72 8.05 5.11
MGCN-DP 11.01 23.90 8.11 5.34
CoADD 12.14 23.92 7.74 4.68
CoCAT 11.45 24.26 8.53 5.41
CoSEG 9.99 25.28 9.10 5.93
Inadequate
Model PPL BLEU-1 (%) BLEU-2 (%) BLEU-3 (%)
Seq2Seq 21.81 17.13 3.76 1.76
HAN 24.26 17.15 4.08 2.32
IE 16.90 18.40 4.89 2.78
T-CVAE 17.08 22.10 7.05 4.22
MGCN-DP 18.16 20.89 5.90 3.68
CoADD 14.53 21.83 6.99 4.03
CoCAT 15.08 24.50 9.09 5.26
CoSEG 11.45 26.06 9.80 5.70

CoSEG outperforms MGCN-DP, T-CVAE, IE, HAN and Seq2Seq by
1.02/ 1.22/ 2.09/ 3.44/ 3.27 respectively in the sufficient test set, and by 6.01/
5.63/ 5.45/ 12.81/ 10.36 respectively in the inadequate test set. In addition, in
terms of BLEU-1, CoSEG outperforms MGCN-DP, T-CVAE, IE, HAN
and Seq2Seq by 1.38%/ 1.56%/ 2.2%/ 2.85%/ 2.82% respectively in the
sufficient test set, and by 5.17%/ 3.96%/ 7.66%/ 8.91%/ 8.93% respectively
in the inadequate test set.

2) Our CoSEG model has the smallest performance gap between the two test
sets, which illustrates the performance of our model is not easily affected
by the amount of information. Specifically, the perplexity increased by 1.55
in the inadequate test set based on the sufficient test set, and the BLEU-1
increased by 0.78%.

3) In both the sufficient and inadequate test set, the CoSEG model outperforms
the CoADD and the CoCAT a lot, which illustrates the interaction ability
of the VBF Module is much stronger than the addition and concatenation.

Manual Evaluation. The manual evaluation results for the sufficient and inad-
equate test sets are shown in Table 2, where we can observe:

564 X. Jiang et al.

Table 2. Manual evaluation results of the sufficient and the inadequate test set.

Sufficient Inadequate

Model Coherency Grammar Coherency Grammar
Seq2Seq 1.395 0.655 0.905 0.780
HAN 1.160 0.685 0.600 0.785
IE 1.360 0.760 1.210 0.820
T-CVAE 1.750 0.785 1.440 0.815
MGCN-DP 1.760 0.780 1.315 0.795
CoADD 1.690 0.775 1.220 0.760
CoCAT 1.855 0.605 0.965 0.705
CoSEG 1.880 0.805 1.620 0.835

In both the sufficient and inadequate test set, the CoSEG model obtains
the best coherency score and the best grammar score. Specifically, in terms of
Coherency, CoSEG outperforms CoCAT, CoADD, MGCN-DP,T-CVAE,
IE, HAN and Seq2Seq by 0.025/ 0.19/ 0.12/ 0.13/ 0.52/ 0.72/ 0.485 respec-
tively in sufficient test set, and by 0.655/ 0.4/ 0.305/ 0.18/ 0.41/ 1.02/ 0.715
respectively in inadequate test set. Moreover, in terms of Grammar, CoSEG out-
performs CoCAT, CoADD, MGCN-DP, T-CVAE, IE, HAN and Seq2Seq
by 0.2/ 0.03/ 0.025/ 0.02/ 0.045/ 0.12/ 0.15 respectively in sufficient test set,
and by 0.13/ 0.075/ 0.04/ 0.02/ 0.015/ 0.05/ 0.055 respectively in inadequate
test set.

Table 3. Ability to Customize Endings.

Testset SucR Rationality DiscD

Sufficient 0.855 1.965 0.755
Inadequate 0.605 1.980 0.555

Ability to Customize Endings. The ability to customize endings for different
characters of our model is shown in Table 3, where we can observe:

1) In the sufficient test set, the success rate (SucR) and the discrimination degree
(DiscD) are 85.5% and 75.5% respectively, which indicates that our model is
able to identify the differences between characters. The SucR and DiscD in
the inadequate test set are lower than there in the sufficient test set, which
illustrates that the amount of character information has a certain influence
on distinguishing different characters.

2) In both the sufficient and inadequate test sets, the rationality of the cus-
tomized endings is close to 2.0 on the premise that the maximum score is
3.0. It indicates that our model has a high probability of 66% to predict a
reasonable ending for each character.

Ion Exchange Mechanism for Story Ending Generator 565

Table 4. Experimental results of several different combinations.

Model PPL

CoSEG (0) 12.08
CoSEG (128) 14.74
CoSEG (256) 13.06
CoSEG (0-256-512) 10.93
CoSEG (0-128-256-384-512) 9.99

Combination Analysis on Product Candidates. We conduct experiments on sev-
eral different combinations of product candidates. Specifically, the CoSEG (n)
selects the product candidate generated using the V ecBn breaking operation; the
CoSEG (0-256-512) selects the product candidates generated using V ecB0,
V ecB256 and V ecB512 three breaking operations; the CoSEG (0-128-256-384-
512) selects the product candidates generated using V ecB0, V ecB128, V ecB256,
V ecB384 and V ecB512 five breaking operations.

The experimental results are shown in Table 4. We can observe that CoSEG
(0-128-256-384-512) achieves the best performance. The result explains that
we finally selected the product candidates generated using V ecB0, V ecB128,
V ecB256, V ecB384 and V ecB512 five breaking operations and utilize the selected
five product candidates as inputs to C-CA module. In addition, the result is
attributed to the fact that CoSEG (0-128-256-384-512) involves more and
smaller candidate which facilitate generating fine-grained semantic elements and
providing more semantic combinations.

5 Case Study

5.1 Ground-Truth Endings

We present several examples of ground-truth story endings generated by base-
lines and our model in Table 5 to demonstrate that our model is able to generate
more natural and more character-related endings than the baselines. Specifically,
in the first story in Table 5, the ending generated by baseline T-CVAE makes
the reader feel that the character is not smart enough, it has begun to rain,
and it should not be very useful to look at the sky at this time; the baseline IE
only describes He had to go home, without other details. And other baselines
predicted wrong endings. By contrast, our model CoSEG allows the charac-
ter to take an appropriate action, get an umbrella, according to the given story
context, started raining.

In addition, the second story in Table 5 is derived from the inadequate test
set. In this example, the context is a story about a wrong lamp. The baselines
HAN, IE and MGCN-DP describe She/We had to clean it up, and IE further
describes get a new one. Our model CoSEG not only allows the character to
have an appropriate emotion, I was so upset, but also let the character take a
reasonable action, decided to get her a new one. Obviously, the ending generated

566 X. Jiang et al.

Table 5. Case study: endings generated by different models.

Context: Ned was walking in the park one day. He noticed
the sky started to turn gray. Ned turned back toward
his house. He didn’t quite get home before it started
raining

Gold: Ned ran inside, a little wet, but happy to be home

Seq2Seq: He went back to his car and bought with his warm
HAN: He had a clean mess
IE: He had to go home and go home
T-CVAE: Ned looked around and saw the sky
MGCN-DP: he was very happy with his new car!

CoADD: He decided to go to the store to buy more umbrella
CoCAT: He went outside to find his car
CoSEG: He decided to go to the store to get an umbrella

Context: We removed a lamp last week during carpet cleaning
After the cleaners left my wife put the lamp back
The lighting seemed much dimmer
Then she realized she had brought out the wrong lamp

Ground truth: I said I had not even noticed

Seq2Seq: She was so relieved
HAN: She had to clean it up
IE: She had to clean it up and get a new one
T-CVAE: I bought a new lamp
MGCN-DP: We had to clean it up

CoADD: I was so mad that she was able to get it fixed
CoCAT: She was so happy to have a new lamp
CoSEG: I was so upset, I decided to get her a new one

Context: Larry needed a job
He was let go from a job a month ago and hadn’t found another one
His bills were starting to mount up
Larry was determined and applied to many jobs every day

Ground truth: He was finally hired

Seq2Seq: He was able to get a job in time and help for his job
HAN: He was able to get a job in a new city
IE: He was hired for a new job
T-CVAE: He have a job
MGCN-DP: He said he was going to be more careful

CoADD: He was able to get to work and get a job
CoCAT: He was hired at the store and bought a brand new car
CoSEG: He finally got a job offer and paid his bills

Ion Exchange Mechanism for Story Ending Generator 567

Table 6. Customizing endings for each character using our proposed CoSEG model.

Context: I ran and climbed over the fence
My son was lying in the pea gravel on the road
The car had swerved just in time
I raged at the driver for not even stopping

Ground truth: I called 911 to come get my child

Endings for each character:

For I: I ended up falling and I had to go to the hospital
For driver: The driver pulled the car and I was able to get it back
For son: My son was upset
Context: I had a dental appointment I had to go to today

While getting my teeth checked, my dentist told I had a cavity
He said it’s probably because I’ve been using subpar toothpaste
I’ve been using the same toothpaste he recommended six months ago

Ground truth: Thanks a lot for the recommendation, doc

Endings for each character:

For I: I am glad I have a new toothpaste
For dentist: The dentist told me that he had to get a new toothpaste
Context: John was awakened by a phone call

Answering, John realized it was his buddy, Rich
Rich said he was stranded on a highway just outside of town
John drove out to pick up Rich

Ground truth: John drove Rich home, where they both fell asleep on the couch

Endings for each character:

For Rich: He drove to the mall and bought a new car
For John: John and his friends went to the park and had a great time

by CoSEG takes the character’s emotions (upset), behaviors (decided...get...),
and relationships (get her a...) into account, which illustrates the ability of our
model to obtain character’s personality.

The third example in Table 5 is sampled from the sufficient test set. In this
example, the context is a story about a man’s bills mount up and he needs a
job. Most of the baselines describe He get a job, as well as the ground truth
and our proposed model. In addition, different from all baselines and the ground
truth endings, our model further describes the man’s purpose of looking for a
job, paid bills, which also demonstrates that our model is able to generate a
more character-related ending.

5.2 Character-Orient Endings

In this section, we present three examples with character-orient endings (includ-
ing the ground-truth endings) generated by our method in Table 6, to illustrate
the ability of our model to customize endings for different characters.

568 X. Jiang et al.

In the first example in Table 6, our model customizes endings for the charac-
ters I, driver and son. The context is a story about a car accident that happened
to a father and son. The endings generated by our model are that the father had
to go to the hospital, the driver ran away, and the son was upset. These three
endings generated by our model describe the behavior of the father and the
driver and the mood of the son, which demonstrate the effectiveness of our pro-
posed model to customize endings for different characters. The second example
in Table 6 is a story in that a man has a cavity because he uses the toothpaste
recommended by the dentist, and our model customizes endings for the char-
acters I and dentist. The third example in Table 6 is a story in that Rich is
stranded on a highway and he calls John to pick him up. Our model identifies
the differences between Rich and John, generating endings, He drove to the mall
and bought a new car, for Rich, and John and his friends went to the park and
had a great time, for John. Rich need a new car, because his car is stranded
on the highway .

6 Conclusion

To tackle the challenging task of customizing story endings for different charac-
ters, we propose a Character-oriented Story Ending Generator (CoSEG). Exper-
imental results demonstrate that our proposed model can not only generate more
coherent and diversified story endings compared with state-of-the-art methods
but also effectively customize the ending for each character in a story.

Acknowledgements. This work is supported by the National Key Research and
Development Program of China(No. 2019YFB1406300), National Natural Science
Foundation of China (No. 61502033) and the Fundamental Research Funds for the
Central Universities.

References

1. Chen, J., Chen, J., Yu, Z.: Incorporating structured commonsense knowledge in
story completion. In: AAAI, pp. 6244–6251. AAAI Press (2019)

2. Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J., Tchobanoglous, G.: Ion
Exchange. John Wiley, New York (2012)

3. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. In: NAACL-HLT (1), pp. 4171–
4186 (2019)

4. Fan, A., Lewis, M., Dauphin, Y.N.: Hierarchical neural story generation. In: ACL,
pp. 889–898 (2018)

5. Fan, A., Lewis, M., Dauphin, Y.N.: Strategies for structuring story generation. In:
ACL, pp. 2650–2660 (2019)

6. Fedus, W., Goodfellow, I.J., Dai, A.M.: Maskgan: Better text generation via filling
in the _______. In: ICLR (2018)

7. Feng, C., Shi, C., Hao, S., Zhang, Q., Jiang, X., Yu, D.: Hierarchical social
similarity-guided model with dual-mode attention for session-based recommenda-
tion. Knowl. Based Syst. 230, 107380 (2021)

Ion Exchange Mechanism for Story Ending Generator 569

8. Gao, J., Bi, W., Liu, X., Li, J., Shi, S.: Generating multiple diverse responses for
short-text conversation. In: AAAI, pp. 6383–6390 (2019)

9. Guan, J., Huang, F., Huang, M., Zhao, Z., Zhu, X.: A knowledge-enhanced pre-
training model for commonsense story generation. Trans. Assoc. Comput. Linguis-
tics 8, 93–108 (2020)

10. Guan, J., Wang, Y., Huang, M.: Story ending generation with incremental encoding
and commonsense knowledge. In: AAAI, pp. 6473–6480 (2019)

11. Huang, Q., et al.: Story ending generation with multi-level graph convolutional
networks over dependency trees. In: AAAI, pp. 13073–13081 (2021)

12. Kennedy, R.H.: Elution of uranium values from ion exchange resins (1959)
13. Kim, J., Benjamin, M.M.: Modeling a novel ion exchange process for arsenic and

nitrate removal. Water Res. 38(8), 2053–2062 (2004)
14. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP,

pp. 1746–1751 (2014)
15. Liu, D., et al.: A character-centric neural model for automated story generation.

In: AAAI, pp. 1725–1732 (2020)
16. Luo, F., et al.: Learning to control the fine-grained sentiment for story ending

generation. In: ACL, pp. 6020–6026 (2019)
17. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neu-

ral machine translation. In: EMNLP, pp. 1412–1421 (2015)
18. Mao, H.H., Majumder, B.P., McAuley, J.J., Cottrell, G.W.: Improving neural

story generation by targeted common sense grounding. In: EMNLP, pp. 5987–5992
(2019)

19. Martin, L.J., et al.: Event representations for automated story generation with
deep neural nets. In: AAAI, pp. 868–875 (2018)

20. Mo, L.: Incorporating sentimental trend into gated mechanism based transformer
network for story ending generation. Neurocomputing 453, 453–464 (2021)

21. Mostafazadeh, N., Vanderwende, L., Yih, W., Kohli, P., Allen, J.F.: Story cloze
evaluator: Vector space representation evaluation by predicting what happens next.
In: Proceedings of the 1st Workshop on Evaluating Vector-Space Representations
for NLP, pp. 24–29 (2016)

22. Mou, L., Song, Y., Yan, R., Li, G., Zhang, L., Jin, Z.: Sequence to backward
and forward sequences: a content-introducing approach to generative short-text
conversation. In: COLING, pp. 3349–3358 (2016)

23. Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: a method for automatic eval-
uation of machine translation. In: ACL, pp. 311–318 (2002)

24. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: EMNLP, pp. 1532–1543 (2014)

25. Schütt, K.T., Gastegger, M., Tkatchenko, A., Müller, K.R., Maurer, R.J.: Unifying
machine learning and quantum chemistry - a deep neural network for molecular
wavefunctions. Nat. Commun. (2019)

26. Segler, M.H.S., Preuss, M., Waller, M.P.: Planning chemical syntheses with deep
neural networks and symbolic AI. Nature 555(7698), 604 (2018)

27. Tu, L., Ding, X., Yu, D., Gimpel, K.: Generating diverse story continuations with
controllable semantics. In: NGT@EMNLP-IJCNLP, pp. 44–58 (2019)

28. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
29. Wang, T., Wan, X.: T-CVAE: transformer-based conditioned variational autoen-

coder for story completion. In: IJCAI, pp. 5233–5239 (2019)
30. Welleck, S., Brantley, K., III, H.D., Cho, K.: Non-monotonic sequential text gener-

ation. In: ICML Proceedings of Machine Learning Research, vol. 97, pp. 6716–6726
(2019)

570 X. Jiang et al.

31. Xu, J., Ren, X., Zhang, Y., Zeng, Q., Cai, X., Sun, X.: A skeleton-based model for
promoting coherence among sentences in narrative story generation. In: EMNLP,
pp. 4306–4315 (2018)

32. Xu, P., et al.: MEGATRON-CNTRL: controllable story generation with exter-
nal knowledge using large-scale language models. In: EMNLP (1), pp. 2831–2845
(2020)

33. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A.J., Hovy, E.H.: Hierarchical atten-
tion networks for document classification. In: NAACL, pp. 1480–1489 (2016)

34. Zhang, Q., Cao, L., Shi, C., Niu, Z.: Neural time-aware sequential recommenda-
tion by jointly modeling preference dynamics and explicit feature couplings. IEEE
Trans. Neural Netw. Learn. Syst. 1–13 (2021)

Vec2Node: Self-Training with Tensor
Augmentation for Text Classification

with Few Labels

Sara Abdali1(B), Subhabrata Mukherjee2, and Evangelos E. Papalexakis3

1 Georgia Institute of Technology, Atlanta, USA
sabdali3@gatech.edu, sabda005@ucr.edu

2 Microsoft Research, Redmond, USA
Subhabrata.Mukherjee@microsoft.com
3 University of California, Riverside, USA

epapalex@cs.ucr.edu

Abstract. Recent advances in state-of-the-art machine learning models
like deep neural networks heavily rely on large amounts of labeled train-
ing data which is difficult to obtain for many applications. To address
label scarcity, recent work has focused on data augmentation techniques
to create synthetic training data. In this work, we propose a novel app-
roach of data augmentation leveraging tensor decomposition to generate
synthetic samples by exploiting local and global information in text and
reducing concept drift. We develop Vec2Node that leverages self-training
from in-domain unlabeled data augmented with tensorized word embed-
dings that significantly improves over state-of-the-art models, particularly
in low-resource settings. For instance, with only 1% of labeled training
data, Vec2Node improves the accuracy of a base model by 16.7%. Further-
more, Vec2Node generates explicable augmented data leveraging tensor
embeddings.

Keywords: Text augmentation · Tensor decomposition · Self-training

1 Introduction

In recent years, neural network models have obtained state-of-the-art performance
in several language understanding tasks employing non-contextualized FastText
[4] as well as contextualized BERT [5] word embeddings. Even though these models
have been greatly successful, they rely on large amounts of labeled training data
for their state-of-the-art performance. However, labeled data is not only difficult
to obtain for many applications, especially for tasks dealing with sensitive infor-
mation, but also requires time consuming and costly human annotation efforts.
To mitigate label scarcity, recent techniques such as self-training [6,11] and few

S. Abdali—This research work was conducted while the first author was a Ph.D. student
at the University of California, Riverside.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-26390-3_33.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 571–587, 2023.
https://doi.org/10.1007/978-3-031-26390-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_33&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_33
https://doi.org/10.1007/978-3-031-26390-3_33

572 S. Abdali et al.

Fig. 1. Overview of the proposed approach.

shot learning [24,28] methods have been developed to learn from large amounts
of in-domain unlabeled or augmented data. The core idea of self-training is to
augment the original labeled dataset with pseudo-labeled data [11] in an itera-
tive teacher-student learning paradigm. Traditional self-training techniques are
subject to gradual concept drift and error propagation [24,29]. In general, data
augmentation techniques aim to generate synthetic data with similar characteris-
tics as the original ones. While data augmentation has been widely used for image
classification tasks [18] leveraging techniques like image perturbation (e.g., crop-
ping, flipping) and adding stochastic noise, there has been limited exploration of
such techniques for text classifiers. Recent work on data augmentation for text
classification like [28] rely on auxiliary resources like an externally trained Neural
Machine Translation (NMT) system to generate back-translations1 for consistency
learning.

In contrast to the above works, we solely rely on the available in-domain
unlabeled data for augmentation without relying on external resources like an
NMT system. To this end, we develop Vec2Node that employs tensor embeddings
to consider both the global context and local word-level information. In order
to do so, we leverage the association of words and their tensor embeddings with
a graph-based representation to capture local and global interactions. Addition-
ally, we learn this augmentation and the underlying classification task jointly
to bridge the gap between self-training and augmentation techniques that are
learned in separate stages in prior works.

Our contributions can be summarized as follows:

– A novel tensor embedding based data augmentation technique for text clas-
sification with few labels.

1 Process of translating a text to another language and translating it back to the original
language.

Vec2Node 573

– A dynamic augmentation technique for detecting concept drift learned jointly
with the downstream task in a self-training framework.

– Extensive evaluation on benchmark text classification datasets demonstrate
the effectiveness of our approach, particular in low-resource settings with
limited training labels along with interpretable explanations.

2 Background

In this section, first, we present mathematical background; then we discuss the
problem formulation followed by the details of the proposed method.

2.1 Tensor

A data tensor D ∈ IRI1×I2×···×IM is a multi-way array i.e., an array with three
or more than three dimensions where the dimensions are usually referred to as
modes [13].

2.2 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a decomposition technique which fac-
torizes a matrix X into the following three matrices [13]:

X = UΣVT (1)

where the columns of U and V are orthonormal and Σ is a diagonal matrix with
positive real entries. A matrix can be estimated by a rank-R SVD as a sum of
R rank-1 matrices:

X ≈ ΣR
r=1σrur ◦ vr (2)

2.3 Canonical Polyadic (CP) Decomposition

Canonical Polyadic (CP) or PARAFAC is an extension of SVD for higher mode
arrays i.e., tensors [10]. CP/PARAFAC factorizes a tensor into a sum of rank-
1 tensors. For instance, a 3-mode tensor is decomposed into a sum of outer
products of three vectors:

X ≈ ΣR
r=1ar ◦ br ◦ cr (3)

where ar ∈ R
I , br ∈ R

J , cr ∈ R
K and the outer product is given by [19,20]:

(ar,br, cr)(i, j, k) = ar(i) br(j) cr(k) ∀i, j, k (4)

Factor matrices are defined as A = [a1 a2 . . .aR], B = [b1 b2 . . .bR], and
C = [c1 c2 . . . cR] where R is the rank of the decomposition, which is also the
number of columns in the factor matrices. PARAFAC optimization problem is
formulated as [13]:

574 S. Abdali et al.

min
A,B,C

= ‖X − ΣR
r=1ar ◦ br ◦ cr‖2F (5)

One effective way to optimize the above problem is to use Alternating Least
Squares (ALS) which solves for each one of the factor matrices by fixing the
others and cycles over all matrices iteratively until convergence [13].

2.4 KNN Tensor Graph

A k-nearest-neighbor (KNN) graph is a model for representing the nodes in a
given feature space such that the k most similar nodes are connected with edges,
weighted by a similarity measure [9]. In this work, we use a co-occurrence tensor
to map words into an embedding space such that each word (represented by a
vector) is a node in the embedding space and then we measure the similarity of
the nodes using the Euclidean distance between the corresponding vectors.

2.5 Hypergraph

Hypergraphs [7,31] are an extension of graphs where an edge may connect more
than two nodes to indicate higher-order relationships between the nodes. In
contrast to a single weighted connection in traditional graphs, an edge in a
hypergraph is a subset of nodes that are similar in terms of features or distance.

3 Vec2Node Framework

3.1 Problem Formulation

Given a corpus D of labeled data, we aim to generate D′ that augments D
and improves the performance of a classification model M on the downstream
task i.e. f(M(D)) > f(M(D + D′)), where f is an evaluation measure (e.g.,
accuracy).

To address the above problem, we propose a novel tensor-based approach
for generating synthetic texts from the corpus D. The details of the proposed
method, henceforth referred to as Vec2Node, are described in the following
section.

3.2 Data Augmentation

Vec2Node leverages tensor decomposition to find word and text embeddings.
These are further used for graph-based representations of the word vectors in
order to find similar ones as replacement candidates to generate synthetic sam-
ples while minimizing the concept drift. Vec2Node consists of the following steps:

Vec2Node 575

Fig. 2. Graph and hypergraph modeling for representing words’ homophily.

Tensor-Based Corpus Representation. Textual content of documents can
be represented by a co-occurrence tensor [1,8] which embeds the patterns shared
between different topics or classes. These patterns are formed by words that are
more likely to co-occur in documents of the same class. We leverage similar
principles to capture existing similarities within a given text. To this end, given
a set of samples, we first slide a window of size w across the text of each sample
and capture the co-occurring words to represent them in a co-occurrence matrix.
Furthermore, we stack the co-occurrence matrices of all samples to form a 3-mode
tensor of dimension T × T × S where T is the number of terms or words in the
entire corpus and S is the number of samples. This process is demonstrated in
Fig. 1. The rationale behind this approach is to capture the context (words)
for a given target word. In the experimental section, we demonstrate how this
approach captures contextually related words.

Decomposing Tensors into Word and Text Embeddings. The objective
of this step is to embed the words and the texts of the corpus into rank-R rep-
resentations which are later used for calculating word similarities. As explained
in Sect. 2, we use CP/PARAFAC to decompose our 3-mode tensor as:

X ≈ ΣR
r=1ar ◦ br ◦ cr (6)

where A = [a1 a2 . . . aR], B = [b1 b2 . . .bR], and C = [c1 c2 . . . cR] are embed-
ding representations of word, word and text respectively. The word co-occurrence
A and B are symmetric. Thus, they capture the same information.

Tensor Embeddings for KNN and Hypergraph Homophily Represen-
tation. In this step, we exploit tensor embedded representations A and C to

576 S. Abdali et al.

estimate words and texts homophilies (similarities) to find the best candidates
for replacement in a given text and generate new synthetic samples. We leverage
the following two graph based modelings:

K Nearest Neighbor Graph Modeling. Consider the factor matrix A (or B,
as they are symmetric and capture the same information) of dimension N × R
where each row is a tensor word embedding in R-dimensional space R

R. We
represent the ith row of this matrix which corresponds to word i as a node in R
dimensional space. This allows for calculating the Euclidean distance between
the nodes and represent the similarity between the nodes (words) as a weighted
undirected edge. The Euclidean distance between rows i and j measures the
similarity of these two vectors in R-dimensional space.

Hypergraph Modeling. Spitz et al. [23] propose a hypergraph modeling of
the documents where hyperedges are defined by consecutive sentences and words
within the text. In that work, the similarity is considered based on spatial close-
ness. However, in this work, we first leverage the factor matrix C corresponding
to text embedding to find K closest texts and then we use factor matrix A to
find K

′
closest words within these K samples. Thus, a hyperedge in this hyper-

graph is the set of K
′

closest words. The details of this process are shown in
Fig. 2. It is worth mentioning that our proposed model uses KNN tensor graph
for modeling word similarities. However, for comparison purposes we implement
Vec2Node framework with hypergraph modeling as well.

3.3 Learning with Data Augmentation and Limited Labels

Contextualized Word Replacement. Modeling the corpus using graph or
hypergraph representations allows for finding similar words by sorting the edge
weights i.e., the Euclidean distances between the nodes, and picking the ones with
the smallest distance (i.e., closest words) as the best candidates for replacement
and generation of synthetic samples. This process is fully unsupervised given
that the tensor decomposition method does not require any labels. Also, it con-
siders local and global contextual information given the graph and tensorial
representation of words and texts.

Self-training with Consistency Learning. In order to eliminate noisy sam-
ples, we check for concept drift between the original samples and the synthetic
ones using consistency learning in a self-training framework. Given a few labeled
samples {xl, yl} ∈ Dl for the downstream task, we first fine-tune a base model
with parameter θ.

Consider xu to be the target augmented pair for a source instance xl gener-
ated using the augmentation technique described before. We can use the current
parameters θ of the model to predict the pseudo-label for the target xu as:

yu = argmaxy p(y|xu; θ) (7)

Since the objective of data augmentation is to generate semantically simi-
lar instances for the model, we expect the output labels for the source-target

Vec2Node 577

0

1

2

3

4

Fig. 3. Few-shot self-training with data augmentation and consistency learning to pre-
vent concept drift.

augmented pair {xl, xu} to be similar as well; otherwise, we designate this as a
concept drift and discard augmented pairs where yl �= yu.

We add the remaining target pseudo-labeled data with consistent model pre-
dictions with the source data as our augmented training set {xu, yu} ∈ Du

and re-train the base model to update θ. The above steps are repeated with
iterative training of the base model with pseudo-labeled augmented data until
convergence. The optimization objective for the above self-training process can
be formulated as:

minθ Exl,yl∈Dl
[−log p(yl|xl; θ)]

+ λ Exu∈Du
Eyu∼p(y|xu;θ∗)[−log p(yu|xu; θ)] (8)

where p(y|x; θ) is the conditional distribution under model parameters θ. θ∗ is
given by the model parameters from the last iteration and fixed in the current
iteration. Similar optimization functions have been used recently in variants of
self-training for neural sequence generation [11], data augmentation [28] and
knowledge distillation. The details of this process are shown in Fig. 3 with the
pseudo-code in Algorithm 1.

3.4 Complexity Analysis

In the proposed Vec2Node pipeline, the main computation bottleneck is CP
decomposition (CPD). In general, CPD is shown to be in the order of the number
of non-zero elements [2] of a tensor. In fact, CPD is very fast and efficient for
sparse tensors which is the case in this work due to sparsity of the word co-
occurrences. Meanwhile, some methods have been proposed for CPD which are
amenable to hundreds of concurrent threads while maintaining load balance and
low synchronization costs [21]. Moreover, CPD is an offline step in the Vec2Node
framework i.e., we only execute it once to obtain the embeddings and there is
no need to repeat it while training the model.

578 S. Abdali et al.

Algorithm 1. Self-train Vec2Node
Input : Base model M , small labeled set Dl.
Return : Self-trained M .

1. Slide a window of size w across the text of each sample in Dl, capture co-
occurring words to create a co-occurrence matrix for each sample.

2. Stack all co-occurrence matrices to create a 3-mode tensor X of size T ×T ×S.
3. Decompose X into A,B,C
4. Use A,C to model the corpus using graph/hypergraph representations.
5. Calculate Euclidean distances between the nodes to find the closest words.
6. Train M using Dl = {xl, yl}. Set D = Dl.
7. While not converged

– For {xl, yl} ∈ D, generate augmented samples D′
u by replacing closest

words.
– Assign pseudo-label yu to each sample xu ∈ D′

u using Eq. 7.
– If yl = yu then D = D

⋃{xu, yu}.
– Retrain M using augmented data D using Eq. 8.

8. Return model M

4 Experimental Evaluation

In this section, we assess performance of Vec2Node against baselines we further
introduce and then we conduct an ablation study to evaluate components of
Vec2Node.

4.1 Baselines

– Base classifiers to asses the effectiveness of augmentation We compare
against the following base classifiers:

• FastText-Softmax FastText is an efficient word embedding which is an
extension of Word2Vec. It represents each word as an n-gram of charac-
ters. Thus, in contrast to other non-contextualized embeddings such as
GloVe and Word2Vec, provides representations for unseen words [4,12].
Considering this advantage of FastText over mentioned embeddings, we
choose FastText with a softmax layer (FastText-Softmax), as one of our
base classifiers.

• BERT leverages contextualized representations using deep bidirectional
transformers. We experiment with the pre-trained checkpoints of Hug-
gingFace2 [26].

– Neural Machine Translation (NMT) to assess the effectiveness of
Vec2Node augmentation An Encoder-Decoder architecture with recurrent
neural networks (RNN) has become an effective and standard approach for
Neural Machine Translation (NMT), sequence-to-sequence prediction and data

2 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers.

Vec2Node 579

augmentation. NMT is the core of the Google translation service [27]. We use
NMT to translate original sentences into French and then translate them back
into English. This process results in synthetic sentences which will be added
to the original dataset.

– GPT-3 to assess the effectiveness of Vec2Node augmentation Generative
Pre-trained Transformer 3 (GPT-3) is an autoregressive language model that
generates human-like text. In this work, for each training sample, we generate
multiple sentences using GPT-3 and train a base classifier on the training
set, leveraging classic self-training to assign pseudo labels to the generated
samples.

– NLP Word embeddings to assess the effectiveness of tensor embed-
ding We experiment with the following word embeddings to investigate the
efficacy of the tensor embedding in our proposed Vec2Node framework. For
a fair comparison, for all of the following baselines, we retain KNN graph,
self-training and concept drift check components of the proposed Vec2Node
and only substitute tensor embedding with the following:

• FastText embedding. Not only do we use FastText for classification,
but also we replace the tensor embedding by FastText embedding to find
the most similar words. we retain other components as mentioned above.

• Word2Vec embedding. A shallow 2-layers neural network proposed in
[14]. We use Word2Vec instead of tensor embedding to find the most sim-
ilar words using cosine similarity. Similarly, we retain other components
in Vec2Node.

• Random replacement. We replace tensor-based similarity strategy by
random word replacement while retaining self-training and consistency
learning.

– Matrix modeling (tf-idf) to compare the effectiveness of tensor
modeling against matrix modeling: First, we create a tf-idf matrix
and decompose it into word embeddings using SVD decomposition. Similar
to the previous setup, we retain other components in Vec2Node and only
replace tensor embedding by tf-idf embedding. Both random replacement
and tf-idf, with strong data augmentation and self-training techniques have
been shown to obtain very competitive results for text classification [25,28].

– Hypergraph similarity representation to assess the effectiveness of
KNN graph modeling We investigate the efficacy of KNN graph modeling
against hypergraph modeling proposed in [23]. Similar to the above setup, we
only replace KNN tensor graph by hypergraph while keeping other compo-
nents of Vec2Node.

– Vec2Node with and without self-training and consistency learning We
remove the self-training and consistency learning from the Vec2Node pipeline
to assess the effectiveness of aforementioned mechanisms.

580 S. Abdali et al.

Table 1. Dataset statistics.

Dataset Class Train Test Avg. Words/Doc

SST2 2 67340 872 17
IMDB 2 25000 25000 235
AG News 4 12000 7600 40
DBpedia 14 560000 70000 51

4.2 Evaluation

We experiment on SST2 [22], IMDB [16], AG News [30] and DBpedia [3] with
statistics in Table 1, to assess the efficacy of Vec2Node on short, long and multi-
label datasets respectively. We report results on the corresponding test splits as
available from the mentioned works. To facilitate easy comparison, we report rel-
ative accuracy improvement (↑) for all the methods over the base model without
augmentation.

Base Classifiers. From Table 3, we observe that Vec2Node with tensor
data augmentation obtains on average 16.75% and 10.5% improvement over
FastText-Softmax with no augmentation, using only 1% and 5% of labeled
training data respectively. In this experiment, Vec2Node is built on top of
FastText-Softmax to demonstrate the strength of augmentation. We also
observe the relative improvement with augmentation to significantly increase
with longer text. For example, the improvement in accuracy for IMDB is 16%
more than that on SST2 dataset using 5% of labels. This could be attributed
to the shorter context samples not being able to generate diverse variety of syn-
thetic samples that are significantly different from the original ones. However,
we still demonstrate significant accuracy improvement with augmentation on
SST2 as well. In case of DBpedia classification, which is relatively a hard task,
Vec2Node improves the accuracy of base FastText-Softmax by 3–4% using only
1–5% of training labels. As illustrated, when we use 100% of the training data,
we still observe improvement in classification accuracy which demonstrates the
effectiveness of tensor augmentation in both low and high-resource settings.

In contrast to FastText-Softmax which is trained from the scratch, the BERT
model we use here is pre-trained over massive amounts of unlabeled data thereby,
works well even in the low-data regime. Thus, to demonstrate the strength of
our tensor augmentation i.e., Vec2Node, we choose the few-shot setting with only
0.5% of labeled training data. From Table 2, we observe that Vec2Node using
BERT as an encoder along with tensor augmentation to obtain 3% improvement
on average over the base BERT model using very few training labels. Meanwhile,
augmenting SST2, using BERT as a classifier, improves the overall performance
of Vec2Node, where we observe 7.2% improvement of accuracy after augmen-
tation. In case of DBpedia, since it is a very large dataset, even with 0.5% of
the labels a pretrained BERT achieves its maximum accuracy. Thus we skip it for
this experiment. It is worth emphasizing that the pre-trained BERT outperforms

Vec2Node 581

Table 2. Performance of FastText-Softmax classifier with and without Vec2Node aug-
mentation.

Dataset %Train #Train w/o Vec2Node w/ Vec2Node Average ↑
1 673 0.509 ± 0.000 0.638 ± 0.0007

SST2 5 3367 0.710 ± 0.100 0.740 ± 0.004 (5.46↑)
100 67340 0.818 ± 0.0018 0.823 ± 0.0006

1 250 0.499 ± 0.000 0.605 ± 0.004
IMDB 5 1250 0.522 ± 0.012 0.718 ± 0.001 (10.26↑)

100 25000 0.857 ± 0.0007 0.863 ± 0.002
1 1200 0.295 ± 0.003 0.687 ± 0.023

AG News 5 6000 0.663 ± 0.001 0.825 ± 0.002 (18.56 ↑)
100 12000 0.900 ± 0.0003 0.903 ± 0.0008

1 5600 0.566 ± 0.000 0.603 ± 0.000
DBpedia 5 28000 0.589 ± 0.015 0.619 ± 0.000 (3.06 ↑)

100 56000 0.602 ± 0.013 0.627 ± 0.000

Table 3. Performance of FastText-Softmax classifier with and without Vec2Node aug-
mentation.

Dataset %Train #Train w/o Vec2Node w/ Vec2Node

SST2 0.5 336 0.754 0.826(7.2↑)
IMDB 0.5 125 0.776 0.783(0.7↑)
AG News 0.5 600 0.869 0.880(1.1↑)

FastText-Softmax which is trained from the scratch. However, in both base
model settings, Vec2Node improves the performance.

Neural Machine Translation (NMT): As reported in Table 4, Vec2Node
outperforms NMT augmentation strategy as well. We observed that in contrast
to synthetic samples of Vec2Node, the majority of the synthetic samples created
by NMT are quite identical with the original ones and as a result, they do not
add diversity to the datasets. GPT-3 Text Generation : Table 4 also illustrates
performance of Vec2Node against GPT-3 on FastText-Softmax classifier. while
GPT-3 outperforms Vec2Node by only 1.53% on average (all four datasets), it is
also significantly larger with 175 billion parameters compared to Vec2Node with
only few hyper-parameters (i.e., R, w and K) as well as pre-trained over massive
amount of web corpora.

Ablation Study. In this part, we conduct an ablation study to evaluate dif-
ferent components of Vec2Node namely, tensor embedding, KNN tensor graph,
and self-training mechanism for few label classification.

582 S. Abdali et al.

Table 4. Performance of FastText-Softmax classifier with augmentations from NMT,
GPT-3 and Vec2Node.

Dataset %Train #Train w/o Aug. w/ NMT w/ GPT3 w/ Vec2Node

SST2 5 3367 0.710 ± 0.100 0.715 ± 0.008(0.50↑) 0.700 ± 0.005(0.01↓) 0.740 ± 0.004(3.00↑)
IMDB 5 1250 0.522 ± 0.012 0.692 ± 0.016(17.00↑) 0.795 ± 0.001(27.3↑) 0.718 ± 0.001(19.06↑)
AG News 5 6000 0.663 ± 0.001 0.786 ± 0.021(12.30 ↑) 0.801 ± 0.001(13.8↑) 0.825 ± 0.002(16.20 ↑)
DBpedia 5 28000 0.589 ± 0.015 0.610 ± 0.005(2.10 ↑) 0.667 ± 0.060(7.8↑) 0.619 ± 0.000(3.00 ↑)

NLP Word Embeddings vs. Tensor Embeddings. Table 5 demonstrates
performance of Vec2Node with different replacement strategies including
FastText and Word2Vec. As illustrated, with longer texts as in IMDB and AG
News, Vec2Node with tensor embedding, outperforms other word embeddings
due to more tangible word co-occurrences in the texts. In case of SST2, where
samples are short phrases with fewer co-occurring non-stop words, we observe
less diverse synthetic samples. However, we may conclude that tensor embedding
outperform other embeddings in general.

Tensor Modeling vs. Matrix Modeling and tf-idf Embedding . In addi-
tion, Table 5 illustrates the performance of Vec2Node against Random and
tf-idf word replacement strategies. Random and tf-idf do not consider the
local and global contextual information of the target word during replacement,
and, consequently, generate noisy samples. Vec2Node captures both local and
global context to outperform these strategies. In case of large datasets such as
DBpedia, we observe that matrix modeling results in a very large and memory
inefficient representation and suffers from compute bottleneck for SVD decom-
position, whereas tensor modeling is memory efficient due to the fact that it
breaks down a large co-occurrence matrix into multiple, yet smaller ones.

KNN Graph vs. Hypergraph for Word Similarities. From Table 6, we
observe that Vec2Node with KNN graph representation to capture word simi-
larities, outperform hypergraph representation on all four datasets. The KNN
graph captures globally similar words, whether or not they co-occur in similar
sentences, whereas the hypergraph representation confines the similarity search
to words that co-occur in similar texts. This may lead to situations in which all
words in a given sentence are replaced by the same word due to lack of candi-
dates in the pool. Moreover, similar words may occur in different contexts and
in such cases hypergraph does not capture them.

Vec2Node with and without Self-Training and Consistency Learning.
In this experiment, we ablate the self-training and consistency learning compo-
nents in Vec2Node to analyze their contribution to the results in Table 7. We
observe the self-training component where the model leverages augmented data
and pseudo-labels for consistency learning to further improve the performance
of Vec2Node by 8.2% on all datasets. Also, this component along with aug-
mentation jointly contributes to 10.45% improvement of Vec2Node over that of
FastText-Softmax.

Vec2Node 583

T
ab

le
5.

Ve
c2

No
de

w
it

h
di

ffe
re

nt
w

or
d

st
ra

te
gi

es
on

Fa
st

Te
xt

-S
of

tm
ax

cl
as

si
fie

r

D
at

as
et

%
T
ra

in
M

at
ri
x
(t
f-
id
f)

R
an

do
m

W
or

d
2V

ec
Fa

st
Te

xt
T
en

so
r
(O

u
r)

SS
T

2
5

0.
73

3
±

0.
00

4
(2

.3
↑)

0.
73

7
±

0.
00

1(
2.

7↑
)

0.
75

9
±

0.
03

(4
.9

↑)
0.

73
0

±
0.

02
5(

2↑
)

0.
74

0
±

0.
00

4(
3.

0↑
)

IM
D

B
5

0.
60

2
±

0.
02

1(
7.

9↑
)

0.
65

9
±

0.
01

3(
13

.7
↑)

0.
66

3
±

0.
01

(1
4.

1↑
)

0.
68

0
±

0.
04

5(
15

.8
↑)

0.
71

8
±

0.
00

1(
19

.6
↑)

A
G

N
ew

s
5

0.
80

7
±

0.
00

2(
14

.3
↑)

0.
79

9
±

0.
00

2(
13

.6
↑)

0.
80

6
±

0.
04

2(
14

.3
↑)

0.
81

0
±

0.
05

4(
14

.7
↑)

0.
82

5
±

0.
00

1(
16

.2
↑)

D
B

pe
di

a
5

O
ut

of
M

em
or

y
0.

61
9

±
0.

00
0(

3.
0↑

)
0.

61
9

±
0.

00
0(

3.
0↑

)
0.

61
9

±
0.

00
0(

3.
0↑

)
0.

61
9

±
0.

00
0(

3.
0↑

)
A
ve

ra
ge

↑
6.

12
5↑

8.
25

↑
9.

07
↑

8.
87

↑
10

.4
5↑

584 S. Abdali et al.

Table 6. Vec2Node with KNN vs. hypergraph on FastText-Softmax classifier.

Dataset %Train FastText Hypergraph KNN

SST2 5 0.710 ± 0.100 0.722 ± 0.003(1.2↑) 0.740 ± 0.004(3.0↑)
IMDB 5 0.522 ± 0.012 0.664 ± 0.004(14.2↑) 0.718 ± 0.001(19.6↑)
AG News 5 0.663 ± 0.001 0.811 ± 0.002(14.8↑) 0.825 ± 0.001(16.2↑)
DBpedia 5 0.589 ± 0.015 0.615 ± 0.000(2.6↑) 0.619 ± 0.000(3.0↑)

Table 7. Vec2Node with and without self-training & consistency learning (ST & CL)
on FastText-Softmax classifier.

Dataset %Train FastText w/o ST & CL w/ ST & CL

SST2 5 0.710 ± 0.100 0.720±0.006(1.0↑) 0.740 ± 0.006(3.0↑)
IMDB 5 0.522 ± 0.012 0.686 ± 0.005(16.4↑) 0.718 ± 0.001(19.6↑)
AG News 5 0.663 ± 0.001 0.791 ± 0.001(12.8↑) 0.825 ± 0.001(16.2↑)
DBpedia 5 0.589 ± 0.015 0.614 ± 0.000(2.5↑) 0.619 ± 0.000(3.0↑)

4.3 Interpretability and Examples

Table 8 in Appendix 7, demonstrates synthetic examples from the AG news and
SST2 datasets, generated by Vec2Node using different word replacement strate-
gies i.e., random, tf-idf and tensor embedding. We observe Vec2Node to gen-
erate better samples with the following features.

Preserving Context for Word Replacement. In contrast to random selec-
tion which blindly substitutes words, the co-occurrence based structure of the
tensor embedding preserves the context, and selects candidate words that are
contextually similar to the original ones. For instance, in example #1 the entity
“Jermain Defoe” is replaced by “Owen Michael” as they are more likely to
co-occur in a Sport text related to “Real Madrid”. As illustrated, the other
approaches replace words quite randomly. This feature helps to minimize the
concept drift that might happen in the replacement process.

Paraphrasing Context. Vec2Node leverages a sliding window to capture co-
occurring concepts in a sentence, such that non-adjacent words that occur within
the same context can be substituted with each other. This contributes to para-
phrased sentences generated during augmentation as illustrated in example #2
with re-ordered proper nouns “Samsung” and “SCH-S250”.

Tensor Embedding Preserves Word-Level Similarities. Tensor embed-
ding not only preserves the context-level similarity, but also retains the seman-
tics of the replaced concept. More precisely, it is more likely that a number gets
replaced by another number (# 3) or an adverb by another adverb (# 5), and
so on and so forth. We observe that not only numbers and verbs, but also prepo-
sitions like “a”, “an”, and “the” are replaced by similar concepts in the synthetic
samples while preserving the context.

Vec2Node 585

4.4 Related Work

Self-Training and Consistency Learning. Self-training is one of the well-
known semi-supervised approaches which has been widely used to minimize
the need for annotation leveraging large-scale unlabeled data [11,15,17,24]. For
instance, Wang et al. leverage self-training and meta-learning for few-shot train-
ing of neural sequence taggers [24]. Moreover, a recent work, a.k.a UDA [28]
exploits consistency learning with paraphrasing and back-translation from Neu-
ral Machine Translation systems for few-shot learning. In this work, we do not
use any external resources such as an NMT system. In fact, we aim to bridge
the gap between self-training and augmentation techniques, while solely relying
on in-domain unlabeled data for tensor-based augmentation.

5 Conclusion

In this work, we propose a novel tensor-based technique i.e., Vec2Node, to
augment textual datasets leveraging local and global information in corpus.
Vec2Node leverages tensor data augmentation with self-training and consistency
learning for text classification with few labels. Our experiments demonstrate that
synthetic data generated by Vec2Node are interpretable and improve the classifi-
cation accuracy over different datasets significantly in low-resource settings. For
instance, Vec2Node improves the accuracy of FastText by 16.75% while using
only 1% of labeled data. Overall, we demonstrate Vec2Node to work well both
in low and high-data regime with improved performance when built on top of
different encoders (e.g., FastText, BERT).

Acknowledgments. The GPUs used for this research were donated by the NVIDIA
Corp. Research was partly supported by a UCR Regents Faculty Fellowship. Research
was also supported by the National Science Foundation grant no. 1901379, CAREER
grant no. IIS 2046086 and grant no. 2127309 to the Computing Research Associate for
the CIFellows project.

References

1. Abdali, S., Shah, N., Papalexakis, E.E.: Hijod: semi-supervised multi-aspect detec-
tion of misinformation using hierarchical joint decomposition. In: ECML/PKDD
(2020)

2. Bader, B., Kolda, T.: Algorithm 862: matlab tensor classes for fast algorithm pro-
totyping. ACM Trans. Math. Softw. 32, 635–653 (2006)

3. Bizer, C., et al.: Dbpedia - a crystallization point for the web of data. J. Web
Semant. 7(3), 154–165 (2009). https://doi.org/10.1016/j.websem.2009.07.002

4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. arXiv preprint arXiv:1607.04606 (2016)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
NAACL, pp. 4171–4186. ACL, Minneapolis, Minnesota (2019). https://doi.org/10.
18653/v1/N19-1423

https://doi.org/10.1016/j.websem.2009.07.002
http://arxiv.org/abs/1607.04606
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

586 S. Abdali et al.

6. Du, J., et al.: Self-training improves pre-training for natural language understand-
ing (2020)

7. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and appli-
cations. Discrete Appl. Math. 42, 177–201 (1993). https://doi.org/10.1016/0166-
218X(93)90045-P

8. Guacho, G.B., Abdali, S., Shah, N., Papalexakis, E.E.: Semi-supervised content-
based detection of misinformation via tensor embeddings, pp. 322–325 (2018).
https://doi.org/10.1109/ASONAM.2018.8508241

9. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn.
Morgan Kaufmann Publishers Inc., San Francisco (2011)

10. Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions
for an explanatory multi-modal factor analysis. UCLA Working Pap. Phonetics
16(1), 84 (1970)

11. He, J., Gu, J., Shen, J., Ranzato, M.: Revisiting self-training for neural sequence
generation (2020)

12. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification (2016)

13. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev.
51(3), 455–500 (2009). https://doi.org/10.1137/07070111X

14. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML 2014, vol. 4 (2014)

15. Li, X., et al.: Learning to self-train for semi-supervised few-shot classification (2019)
16. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning

word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies,
pp. 142–150. ACL, Portland, Oregon, USA (2011)

17. Meng, Y., Shen, J., Zhang, C., Han, J.: Weakly-supervised neural text classifica-
tion. In: Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. ACM (2018). https://doi.org/10.1145/3269206.3271737

18. P. Liu, X. Wang, C.X., Meng, W.: A survey of text data augmentation (2020)
19. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Tensors for data mining and

data fusion: models, applications, and scalable algorithms. ACM Trans. Intell. Syst.
Technol. 8(2), 16:1–16:44 (2016). https://doi.org/10.1145/2915921

20. Sidiropoulos, N., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E., Falout-
sos, C.: Tensor decomposition for signal processing and machine learning. IEEE
Trans. Signal Process. 65(13), 3551–3582 (2016). https://doi.org/10.1109/TSP.
2017.2690524

21. Smith, S., Ravindran, N., Sidiropoulos, N.D., Karypis, G.: Splatt: efficient and
parallel sparse tensor-matrix multiplication. In: IPDPS, pp. 61–70 (2015)

22. Socher, R., et al.: Recursive deep models for semantic compositionality over a
sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pp. 1631–1642. ACL, Seattle, Washington, USA
(2013)

23. Spitz, A., Aumiller, D., Soproni, B., Gertz, M.: A versatile hypergraph model for
document collections. In: SSDBM 2020 (2020)

24. Wang, Y., et al.: Adaptive self-training for few-shot neural sequence labeling.
ArXiv: abs/2010.03680 (2020)

25. Wei, J., Zou, K.: EDA: easy data augmentation techniques for boosting perfor-
mance on text classification tasks. In: EMNLP-IJCNLP, pp. 6383–6389. Associa-
tion for Computational Linguistics, Hong Kong (2019)

https://doi.org/10.1016/0166-218X(93)90045-P
https://doi.org/10.1016/0166-218X(93)90045-P
https://doi.org/10.1109/ASONAM.2018.8508241
https://doi.org/10.1137/07070111X
https://doi.org/10.1145/3269206.3271737
https://doi.org/10.1145/2915921
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1109/TSP.2017.2690524
http://arxiv.org/2010.03680

Vec2Node 587

26. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing, pp. 38–45. ACL (2020)

27. Wu, Y., et al.: Google’s neural machine translation system: Bridging the gap
between human and machine translation. ArXiv: abs/1609.08144 (2016)

28. Xie, Q., Dai, Z., Hovy, E.H., Luong, M., Le, Q.V.: Unsupervised data augmenta-
tion. CoRR abs/1904.12848 (2019)

29. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. In: ICLR (2017)

30. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R.
(eds.) Advances in Neural Information Processing Systems, vol. 28, pp. 649–657.
Curran Associates, Inc. (2015)

31. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: Clustering, classi-
fication, and embedding, vol. 19, pp. 1601–1608 (2006)

http://arxiv.org/1609.08144

“Let’s Eat Grandma”: Does Punctuation
Matter in Sentence Representation?

Mansooreh Karami(B) , Ahmadreza Mosallanezhad ,
Michelle V. Mancenido , and Huan Liu

Arizona State University, Tempe, AZ, USA
{mkarami,amosalla,mmanceni,huanliu}@asu.edu

Abstract. Neural network-based embeddings have been the main-
stream approach for creating a vector representation of the text to cap-
ture lexical and semantic similarities and dissimilarities. In general, exist-
ing encoding methods dismiss the punctuation as insignificant informa-
tion; consequently, they are routinely treated as a predefined token/word
or eliminated in the pre-processing phase. However, punctuation could
play a significant role in the semantics of the sentences, as in “Let’s eat,
grandma” and “Let’s eat grandma”. We hypothesize that a punctuation-
aware representation model would affect the performance of the down-
stream tasks. Thereby, we propose a model-agnostic method that incor-
porates both syntactic and contextual information to improve the perfor-
mance of the sentiment classification task. We corroborate our findings
by conducting experiments on publicly available datasets and provide
case studies that our model generates representations with respect to
the punctuation in the sentence.

Keywords: Sentiment analysis · Representation learning · Structural
embedding · Punctuation

1 Introduction

According to a famous legend, Julius Caesar had decided
to grant amnesty to one of his unscrupulous generals,
who had been fated to be executed. “Execute not, lib-
erate,” Caesar had ordered his guards. However, the
message had been delivered with a small but calamitous
error: “Execute, not liberate.”

The recent paradigm shift to pre-training the NLP models with language
modeling has gained tremendous success across a wide variety of downstream
tasks. Word and sentence embeddings from these pre-trained language mod-
els have revolutionized the modern NLP research and reduced the non-trivial
computational time of training NLP-related tasks. BERT [4], an example of a

M. Karami and A. Mosallanezhad—Authors contributed equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 588–604, 2023.
https://doi.org/10.1007/978-3-031-26390-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_34&domain=pdf
http://orcid.org/0000-0002-8168-8075
http://orcid.org/0000-0003-1907-3536
http://orcid.org/0000-0002-3000-8922
http://orcid.org/0000-0002-3264-7904
https://doi.org/10.1007/978-3-031-26390-3_34

“Let’s Eat Grandma”: Does Punctuation Matter 589

pre-trained language model, addresses limitations of other methods by incor-
porating context from both directions to capture the semantic concepts more
accurately [33].

In pre-trained language models, punctuation is often treated as an ordinary
word or as a predefined token in the data or, in some cases, filtered out during the
pre-processing phase [7,11,20]. The lack of considerable attention to punctuation
in NLP models stems from the fact that punctuation has long been considered as
cues that only aid text’s readability, thus not providing additional semantic value
to the sentence’s coherence [5]. However, studies show that the misplacement
or elimination of these symbols can change the original meaning or obscure a
text’s implicit sentiment [2,31] as it conveys rich information about structural
relations among the elements of a text. For example, “No investments will be
made over three years” and “No, investments will be made over three years” have
drastically different meanings and implications. But BERT, as a representation
tool, will assign a fixed predefined token to the punctuation treating it as an
ordinary word in the data; under BERT, the vector representations of these two
sentences are nearly the same. On the other hand, methods that account for
punctuation are typically model-specific and cannot be integrated into SOTA
representation models.

In this work, we hypothesize that trivializing the role of punctuation in sen-
timent analysis tasks results in the degraded quality of representations which
consequently, affects traditional measures of classifier performance. To provide
evidence, we propose a model-agnostic module for representing the syntactic
and contextual information that could be derived from punctuation. Our app-
roach is based on an encoder that integrates structural and textual embedding
to capture sentence-level semantics accurately through the use of parsing trees.
Previous works on parsing trees have shown that there is an association between
a text’s punctuation and syntactic structure [11].

The following summarizes the major contributions of this work:

– We conduct preliminary experiments to show that the state-of-the-art rep-
resentation learning models do not distinguish between sentences with and
without punctuation (Sect. 5);

– We develop (Sect. 4) and evaluate (Sect. 5) a model-agnostic methodology for
sentiment analysis that augments the structure of the sentences to the orig-
inal sentence embedding which can be integrated into SOTA representation
models;

– We provide case studies to demonstrate that the proposed model yields proper
representation for cases when punctuation change and do not change the
meaning of the sentences (Sect. 7).

2 Related Work

The proposed methodology spans the subject domains of word and sentence
embeddings, punctuation in NLP tasks such as sentiment analysis, and tree-
structured encoding. Current state-of-the-art in these areas are discussed in this
section.

590 M. Karami et al.

2.1 Embeddings

Word and sentence embeddings are techniques used to map text data to vec-
tor representations so that the distance between the vectors corresponds to their
semantic proximity. Word2vec had been applied on many tasks since it was intro-
duced in 2013 [18]. Although this neural network-based model could effectively
encode the semantic and syntactic meaning of the text into vectors, word2vec
is sub-optimal for syntax-based problems such as Part-of-Speech (POS) tag-
ging or dependency parsing [13]. In recent years, embeddings such as BERT [4]
improved on term-based embeddings by not only encoding the semantic infor-
mation of words but also their contextualized meanings (i.e. terms and related
contexts). Despite proving its usefulness across a wide range of tasks in NLP,
BERT has been shown lacking in some aspects, such as common sense, pragmatic
inferences, and the meaning of negations [6].

One prevailing issue in sentiment analysis is that these representations typ-
ically fail to distinguish between words with similar contexts but opposite sen-
timent polarities (e.g., wonderful vs. terrible) because they were mapped to
vectors that were closely contiguous in the latent space [34]. Thus, researchers
proposed various word embedding methods to encode sentiments [3,10,12,17].
In this work, we propose a novel sentence embedding as an improvement over
current methods for sentiment analysis tasks.

2.2 Punctuation in NLP

Punctuation has long been considered the visual equivalent of spoken-language
prosody, thus only providing cues that aid a text’s readability. However, Nun-
berg [21] argued that punctuation has a more important role. He defines it as
a linguistic subsystem related to grammar that conveys rich information about
the structural relations among the elements of a text [21].

In NLP, the inclusion of punctuation marks has been shown to be useful in
syntactic processing [15] and could be used to enhance grammar induction in
unsupervised dependency parsing. As an example, Spitkovsky et al. [28] showed
improved performance by splitting sentences at their punctuation to impose pars-
ing restrictions over their fragments. Additionally, in the context of sentiment
analysis, punctuation marks have been shown to add extra value to the senti-
ment [2,22,31] and could be used to create more meaningful syntax trees [1,11].

Despite evidence that incorporating punctuation improves aspects of an
NLP’s performance, very few NLP models make significant use of these sym-
bols, which we concurrently address in the proposed methodology. Moreover, we
investigate sentiments at the sentence-level.

“Let’s Eat Grandma”: Does Punctuation Matter 591

2.3 Tree-Structured Encoders

Tree-structured encoders, which have been shown to perform as well as their
sequential counterparts, are representations constructed from the syntactic struc-
ture of groups of words or sentences. An example of a tree-structured encoder
is the Tree-LSTM, a generalization of the long short term memory (LSTM)
architecture that accounts for the topological structure of sentences [29]. Each
unit in the Tree-LSTM consists of values provided by the input vector and the
hidden states of its children (as derived from the syntactic tree); in contrast,
the standard LSTM only considers hidden states from the previous time step.
Tree-LSTM was inspired by an RNN-based compositional model that captured
the parent representation in syntactic trees [26,27].

In addition to changing the LSTM architecture, another method to capture
the syntactic structure of sentences is by directly using the LSTM architecture to
code the syntactic structures. Liu et al. [14] encoded the variable-length syntactic
information, i.e. the path from leaf node to the root node in the constituency or
dependency tree, into a fixed-length vector representation to embed the struc-
tural characteristics of the sentences on neural attention models for machine
comprehension tasks. To jointly learn syntax and lexicon, Shen et al. [25] pro-
posed a Parsing-Reading-Predict neural language model (PRPN) that learns the
syntactic structure from an unannotated corpus and uses the learned structure
to form a premier language model. There has also been some work that extended
the Transformer [30] architecture for syntactic coding.

The work in this paper augments constituency trees to the original word
embedding to record the position of the punctuation by capturing structural
information.

3 Problem Statement

Let X = {(x1, y1), (x2, y2), ..., (xN, yN)} denote a set of N textual data with
text xi and the sentiment label yi for sample i. Each text xi consists of sequence
of words/punctuation xi = [w1 w2 ... wM], where M represents the number of
words and punctuation in the text. Since the punctuation and their position
affects the structure of the sentence and its meaning, we focus on generating a
robust sentence embedding for sentiment analysis with respect to the structure
of the sentence. Formally, this problem can be stated as follows:

Problem 1. Given a set of textual data X comprising of words and punctuation,
learn an embedding E which accounts for the constituency tree structure of the
sentences and finds a function F for sentiment classification.

4 Proposed Model

We hypothesize that due to the effect of punctuation on the constituency struc-
tures of the sentences, adding the structural embedding of the sentences could

592 M. Karami et al.

improve the vector representation of sentences. The general framework of the
proposed model is shown in Fig. 1. The proposed model has three major compo-
nents: (1) a sentence encoder, (2) a structural encoder, and (3) a text classifier.
In the following discussion, we describe in detail the sentence and structural
encoders and discuss how these two methods are integrated into a robust frame-
work that improves embedding and classification performance.

Fig. 1. The three components of the model: (1) the sentence encoder that captures the
input context, (2) the syntactic tree encoder which accounts for the structural content,
and (3) the sentiment analysis classifier.

4.1 Sentence Embedding for Sentiment Analysis

In sentiment analysis, textual data is first converted into vectors or matrices. The
ability of recurrent neural networks (RNNs) to model order-sensitive data makes
it an effective choice for modeling textual data, where the order of words alter
the contextual meaning. Our framework uses a bi-directional gated recurrent
unit (BiGRU), an RNN that models contextual meanings more effectively than
uni-directional networks [9]. However, later as demonstrated in the experiments,
we also considered a fine-tuned BERT instead of the BiGRU module in creating
the text embeddings. This will ensure the generalization of our method for other
representation models.

To create the text embeddings, a sample, xi = [w1 w2 ... wM], is passed
through an embedding layer which converts each word wj to its representation.
This layer has a tensor of dimension |V | × dw, where V is the vocabulary and

“Let’s Eat Grandma”: Does Punctuation Matter 593

dw is the dimension of the word embeddings. The representations will be fed to
a BiGRU that yields the following M outputs:

(
−→
hm,

←−
hm) = BiGRU(wm, (

−→
hm−1,

←−
hm−1)) (1)

where
−→
hm and

←−
hm are, respectively, the forward and backward outputs of the

BiGRU at time step m ∈ M . These BiGRU’s outputs are then concatenated to
form a fixed-length context vector:

Hm = Concat(
−→
hm,

←−
hm) (2)

Further, to establish a comprehensive context vector, an attention mechanism
was included by augmenting a location-based attention layer [16]. The weighted
average of the importance values am ∈ Hm provided by the attention layer
creates the final context vector:

H′ =
∑

i

aiHi (3)

Using the context vector H′ with a Multi-Layer Perceptron (MLP) classifier
yields good performance on sentiment analysis tasks [24,32].

Information learned from BiGRU/BERT, as described in this subsection,
will be combined with the encoded syntactic structure of the sentence. This will
enhance the context vector to include salient information provided by punctua-
tion.

4.2 Enhanced Embedding

We use a constituency tree to analyze sentence structure and organize words into
nested constituents. In the constituency tree, words are represented by the leaves
while the internal nodes show the phrasal (e.g. S, NP and VP) or pre-terminal
Part-Of-Speech (POS) categories. Edges in the tree indicate the set of grammar
rules. Figure 2 shows an example of a constituency tree that demonstrates the
parsing of a sample sentence. Subsequent to the generation of the syntactic
tree, we adopt the word-level approach in Liu et al. [14] to capture syntactic
information but in a sentence-level manner. We use the traversal of the syntactic
tree T to pass it through a bi-directional GRU and create a representation of
T . Because the order of the nodes in a tree impact the traversal result, we use
BiGRU to create a correct representation:

(
−→
h t,

←−
h t) = BiGRU(lt, (

−→
h t−1,

←−
h t−1)) (4)

where l is the value of the tree node and ht shows the BiGRU output. We
consider the last output of the BiGRU, HT = Concat(

−→
h t,

←−
h t), as the context

of the syntactic tree.
Finally, to balance the effect of the extracted contexts, the context of the text

H′ and the context of its syntactic tree HT are passed through a feed-forward
neural network to create the enhanced text representation:

594 M. Karami et al.

Fig. 2. The constituency tree of a text with and without punctuation, “what is this
thing called love” versus “what? is this thing called love?”

HF = MLP(H′,HT) (5)

where HF is the enhanced text representation containing the text’s semantic
information and information about its syntactic tree. This enhanced representa-
tion could now be used for sentiment analysis tasks.

5 Experimental Settings

In this section, we present details about the datasets, the implementation details,
as well as the baseline methods used for the experiments.

5.1 Datasets

Four publicly available datasets – IMDB, Rotten Tomatoes (RT), Stanford Sen-
timent Treebank (SST), and Yelp Polarity (Yelp P.) – were used to evaluate and
compare the proposed method with other baselines. The IMDB movie reviews
dataset contains 50, 000 movie reviews, with each review labeled as ‘positive’ or
‘negative’. In a similar fashion, the Rotten Tomatoes dataset contains 480, 000
movie reviews from the Rotten Tomatoes website, labeled as ‘fresh’ (positive) or
‘rotten’ (negative). As a more challenging task, we consider the SST-2 dataset,
which consists of 10, 754 samples having a binary label of positive and negative
sentiment. Finally, we utilized a subsample of 100, 000 reviews from Yelp Polarity
dataset which uses ‘negative’ and ‘positive’ labels instead of the five point star

“Let’s Eat Grandma”: Does Punctuation Matter 595

Table 1. The statistics of the datasets.

Dataset # of samples Avg. text length (# of words) # of sentences

IMDB 50,000 231.1 ± 171.3 536,641
RT 480,000 21.8 ± 9.3 601,787
SST-2 10,754 19.4 ± 9.3 11,855
Yelp P 100,000 133 ± 122.5 814,596

scale [35]. Table 1 summarizes some key statistics of each dataset. We used 10-
fold cross-validation with 45/5/50 for Train/Validation/Test split configuration
to compare the proposed model with other baselines.

5.2 Implementation Details

In this subsection, we discuss the parameters and implementation details of the
proposed model for conducting the experiments1. Based on the average number
of the words in the datasets (Table 1), we truncate every textual data to 128
words. Next, we extract the syntactic tree for each sentence, in the spirit of
Liu et al. [14] but in a sentence-level manner using Spacy toolkit2 Finally, to
combine all trees related to a text, an empty root was added as the parent of all
the other roots of the syntactic trees. Children are arranged based on the order
of the sentences in the text (Fig. 1).

We use GloVe 100d [23] to replace each word with its corresponding word
vector to convert sentences into matrices. For words and POS tags that are not
included in GloVe, a trainable random vector was used as a proxy. We use a 1-
layer BiGRU with 256 hidden neurons to generate the text’s context vector and
a 128-hidden neuron BiGRU for the syntactic tree’s context vector. To combine
both context vectors, we use a simple neural network with 512 output neurons.
The output of this neural network is the final context vector HF containing both
semantic and syntactic information of the input text:

o = tanh(W(1)
F (H′||HT) + b(1)

F) (6)

HF = tanh(W(2)
F o + b(2)

F), (7)

where || is the concatenation operator, (W,b) are the learnable weights, and H′,
HT are the input’s context and the syntactic tree’s context vectors, respectively.

The integrated context vector HF is used for text classification. The neural
network classifier includes three layers with 512, 128, and C number of neurons,
respectively, where C is the number of classes. Model parameters θ and the data
labels y are updated using a cross-entropy loss function in the training phase:

L(θ) = − 1
N

N∑

i=1

C∑

j=1

yij log(pij), (8)

1 The code for this work is available at: https://github.com/mansourehk/Grandma.
2 Available at https://spacy.io/.

https://github.com/mansourehk/Grandma
https://spacy.io/

596 M. Karami et al.

where N is the number of samples. We use the Adam optimizer [8] to update
the parameters of the network.

5.3 Baseline Methods

Several embedding methods are implemented to generate sentence representa-
tions for comparison with the proposed model. The vectors created by these
sentence encoders are used as inputs to the three-layered neural network classi-
fier. Each sentence representation method is described below.

– BERT [4]: Bidirectional Encoder Representations from Transformers is a
model used for various NLP tasks, including sentiment analysis. In this paper,
a pre-trained base BERT is used to extract the sentence embeddings.

– BiGRU: similar to the approach in Mosallanezhad et al. [19], we design a
baseline that uses a bidirectional GRU to create a context vector based on
the input text. Each word is replaced by its corresponding GloVe vector and
passed through a bidirectional Gated Recurrent Unit. The final output of the
BiGRU is then considered as the context vector.

– BiGRU+Attn: similar to the BiGRU method, but uses a location-based
attention layer [16] to create the context vector.

– SEDT–LSTM [14]: creates a word-level embedding by including the depen-
dency tree of the sentences. For each word w in the text, this method merges
the GloVe vector of w with the fixed-length context vector extracted from
the dependency tree. To create this context vector, all the words in the path
from w to the root node in the dependency tree are fed to an LSTM.

We integrated our model-agnostic module (i.e., the syntactic tree encoder)
to the BiGRU, BiGRU+Attn, and BERT.

6 Discussion and Experimental Results

In this section, we conduct experiments to evaluate the effectiveness of our
method in sentiment analysis tasks. We propose two major research questions:

(Q1) How do other methods behave in terms of the embeddings and perform in
terms of the sentiment classification task when punctuation is included in the
input text?

(Q2) How well does the proposed method incorporate the effect of the punctu-
ation in the sentence embeddings?

Figure 3 shows the similarity between sentence embeddings with and without
punctuation in the text. To calculate the similarity between embeddings, we use
the cosine similarity measure:

CosineSim(Ew,Ewo) =
Ew · Ewo

||Ew||||Ewo|| , (9)

“Let’s Eat Grandma”: Does Punctuation Matter 597

Fig. 3. The histogram of cosine similarities between sentence embeddings with and
without punctuation. Higher similarity means that the embeddings are close to each
other.

where Ew and Ewo are the sentence embeddings with and without punctuation,
respectively. The cosine similarity measure is close to 1.0 when context vectors
are close to each other.

Q1. In Fig. 3 (a–b), it is observable that BERT and Recurrent Neural Networks
(BiGRU+Attn) have higher cosine similarity measures, implying that they do
not produce different embeddings for sentences with and without punctuation.
The minimum similarity between embeddings for these models is approximately
0.9. This finding corroborates our hypothesis that these models consider punctu-
ation as just another fixed word/token in the data, strongly justifying the devel-
opment of an enhanced representation method.

Additionally, Table 2 shows the accuracy of the baseline models on the afore-
mentioned datasets when punctuation is excluded. By comparing it with the
first section of Table 3, it is evident that the performance of the baselines are
agnostic to the use of punctuation due to their similar representation vectors
in both cases. For the baselines, inclusion of the punctuation is almost irrele-
vant and even lowers performance in some cases providing evidence why most
researchers exclude punctuation in the preprocessing phase.

Q2. Fig. 3 (c–d) shows the trend of cosine similarity when the syntactic infor-
mation is augmented with the word embedding. The lower similarity values,

598 M. Karami et al.

Table 2. Without Punctuation: Performance (accuracy) of the baseline models on the
datasets.

Model Datasets
IMDB RT SST-2 Yelp P.

BiGRU 88.0 69.1 86.9 84.8
BiGRU+Attn 88.8 70.0 87.4 84.6
BERT 92.3 71.6 91.7 90.6

Table 3. With Punctuation: Performance (accuracy) of SEDT-LSTM and our added
module to different representation baselines when punctuation is included.

Model Datasets
IMDB RT SST-2 Yelp P.

BiGRU 88.1 70.3 87.3 84.8
BiGRU+Attn 88.2 70.5 88.1 84.8
BERT 92.1 71.5 91.7 90.6
SEDT-LSTM 91.1 72.0 90.5 85.1
Proposed-BiGRU 92.7 74.2 90.1 87.1
Proposed-BiGRU+Attn 93.0 74.3 91.3 88.3
Proposed-BERT 94.6 74.8 92.4 91.7

ranging from as low as 0.10 to only as high as 0.90, indicate that the representa-
tion vectors of sentences with and without punctuation are distinct. While the
SEDT-LSTM model shows promising results, the proposed model still outper-
forms SEDT-LSTM in the sentiment analysis task (Table 3). This difference is
due to the fact that our model operates in a sentence-level manner and pro-
vides a richer structural embedding, while SEDT-LSTM works as a word-level
approach and does not account for the whole structure of the syntactic tree.

7 Case Studies

The cosine similarity of several sentences were also calculated to investigate how
the methods compare when punctuation is removed. We combined the IMDB
and Rotten Tomatoes datasets into a larger dataset, which is justifiable due to
the similarity in the purpose and structure of the two datasets. The combined
dataset was used to train the proposed model and the baseline methods.

Tables 4, 5 and 6 shows the cosine similarity measures of sample sentences
with and without punctuation for all models. What is interesting in the results
is that the proposed model clearly distinguishes the syntax between sentences
where punctuation is necessary (similarity measures are lower). Specifically, this
is apparent in sentences provided in Table 4.

“Let’s Eat Grandma”: Does Punctuation Matter 599

Table 4. Examples of sentences in which punctuation change the meaning of the sen-
tence. The proposed method distinguishes between the two versions, with and without
punctuation. In this experiment, we use both inputs on a single model.

Examples in which
punctuation change the
meaning of the sentence

Cosine similarity

With
punctuation

Without
punctuation

Proposed SEDT-
LSTM

BERT BiGRU+
Attn

1 Now, my
friends, listen to
me

Now my
friends listen
to me

0.56 0.67 0.97 0.95

2 Help. wanted Help wanted 0.51 0.45 0.99 0.99
3 What? Is this

thing called
‘love’?

What is this
thing called
love

0.75 0.78 0.98 0.99

4 No, investments
will be made in
United States

No
investments
will be made
in United
States

0.57 0.55 0.96 0.96

5 If you go, pack
your knitting
needles

If you go
pack your
knitting
needles

0.43 0.67 0.97 0.98

6 When the plot
kicks in, the film
loses credibility

When the
plot kicks in
the film loses
credibility

0.48 0.78 0.96 0.94

Further, if the context of the sentence is agnostic with respect to the punc-
tuation, our proposed model still performs relatively well (high cosine similarity
measure). This is evident in sentences 7–11 in Table 5. In a specific example,

600 M. Karami et al.

Table 5. The cosine similarity of sentences with and without punctuation in which
the punctuation do not change the meaning of the sentence using different embedding
methods. The proposed method can incorporate the syntactic tree’s information better
than the baselines. In this experiment, we use both inputs on a single model.

Examples in which punctuation do

not change the meaning of the

sentence

Cosine similarity

With punctuation Without punctuation Proposed SEDT-

LSTM

BERT BiGRU+

Attn

7 A gorgeously strange

movie, heaven is deeply

concerned with morality,

but it refuses to spell

things out for viewers

A gorgeously strange movie

heaven is deeply concerned

with morality but it refuses

to spell things out for

viewers

0.89 0.91 0.98 0.99

8 But, like silence, it’s a

movie that gets under your

skin

But like silence its a movie

that gets under your skin

0.96 0.98 0.98 0.99

9 You will be required to

work twenty-four hour

shifts

You will be required to

work twenty four hour

shifts

0.99 0.99 0.99 0.99

10 The talents of the actors

helps “Moonlight Mile”

rise above its

heart-on-its-sleeve writing

The talents of the actors

helps Moonlight Mile rise

above its heart on its

sleeve writing

0.97 0.95 0.97 0.98

11 It’s a fine, old - fashioned -

movie. movie, which is to

say it’s unburdened by

pretensions to great

artistic significance

It s a fine old fashioned

movie which is to say it s

unburdened by pretensions

to great artistic

significance

0.95 0.94 0.98 0.99

12 Her favorite pies were

lemon meringue, apple,

and pecan

Her favorite pies were

lemon meringue apple and

pecan

0.83 0.93 0.98 0.97

sentence 12 shows a case where the Oxford/serial comma helps in preventing
ambiguity. Without the serial comma, ‘apple and pecan’ could be interpreted as
a pie containing both apples and pecans. By looking into the cosine similarities,
the proposed method seems to distinguish this nuance.

Additionally, to confirm our hypothesis that baselines such as BERT do not
differentiate among different kinds of punctuation, we randomly replaced the
punctuation in sentences with other types. It is evident from Table 6 results that
the proposed method creates different representations when punctuation changes
while BERT and BiGRU provided nearly similar representations.

“Let’s Eat Grandma”: Does Punctuation Matter 601

Table 6. Examples of sentences with random punctuation alongside their cosine sim-
ilarity using different embedding methods. The proposed method can incorporate the
syntactic tree’s information better than the baselines. In this experiment, we use both
inputs on a single model.

Examples in which random

punctuation may change the meaning

of the sentence

Cosine similarity

With punctuation Without punctuation Proposed SEDT-

LSTM

BERT BiGRU+

Attn

13 Now, my friends, listen to

me.

Now. my friends! listen to

me,

0.52 0.59 0.96 0.98

14 Help. wanted. Help, wanted? 0.67 0.61 0.96 0.98

15 What? Is this thing called

’love’?

What. Is this thing called

’love’ !

0.82 0.78 0.99 0.99

16 A gorgeously strange

movie, heaven is deeply

concerned with morality,

but it refuses to spell

things out for viewers.

A gorgeously strange

movie? heaven is deeply

concerned with morality.

but it refuses to spell

things out for viewers,

0.91 0.94 0.98 0.99

17 But, like silence, it’s a

movie that gets under your

skin.

But! like silence. it?s a

movie that gets under your

skin?

0.74 0.77 0.97 0.98

18 You will be required to

work twenty-four hour

shifts.

You will be required to

work twenty!four hour

shifts,

0.94 0.95 0.99 0.99

8 Conclusion and Future Work

In this paper, we proposed a model-agnostic methodology for sentence embeddings
that consider punctuation as a salient feature of textual data. By leveraging on the
association between punctuation and syntactic trees, our model yielded embed-
dings that were consistently able to convey the contextual meaning of sentences
more accurately. We integrate our proposed module into state-of-the-art repre-
sentation models, including BERT, the gold standard for NLP tasks. The pro-
posed model in this paper outperformed the baselines in distinguishing between
sentences with and without punctuation, especially those that require punctuation
to be sensical. Moreover, as task performance, it performed accurately on classi-
fying opinions for the IMDB, Rotten Tomatoes, SST-2, and Yelp P. datasets. A
possible direction for future research is to use syntactic trees for other NLP-related
tasks, such as automated chatbots and machine comprehension.

Acknowledgment. The authors would like to thank Sarath Sreedharan (ASU) and
Sachin Grover (ASU) for their comments on the manuscript. This material is, in part,
based upon works supported by ONR (N00014-21-1-4002) and the U.S. Department of
Homeland Security (17STQAC00001-05-00) (Disclaimer: “The views and conclusions
contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the U.S.
Department of Homeland Security.”).

602 M. Karami et al.

References

1. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.J.: Sentiment analysis
of Twitter data. In: Proceedings of the workshop on language in social media (LSM
2011), pp. 30–38 (2011)

2. Altrabsheh, N., Cocea, M., Fallahkhair, S.: Sentiment analysis: towards a tool for
analysing real-time students feedback. In: 2014 IEEE 26th International Conference
on Tools with Artificial Intelligence, pp. 419–423. IEEE (2014)

3. Bespalov, D., Bai, B., Qi, Y., Shokoufandeh, A.: Sentiment classification based on
supervised latent n-gram analysis. In: Proceedings of the 20th ACM International
Conference on Information and Knowledge Management, pp. 375–382 (2011)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: NAACL-HLT (1) (2019)

5. Ek, A., Bernardy, J.P., Chatzikyriakidis, S.: How does punctuation affect neu-
ral models in natural language inference. In: Proceedings of the Probability and
Meaning Conference (PaM 2020), pp. 109–116 (2020)

6. Ettinger, A.: What BERT is not: lessons from a new suite of psycholinguistic
diagnostics for language models. Trans. Assoc. Comput. Linguist. 8, 34–48 (2020)

7. Karami, M., Nazer, T.H., Liu, H.: Profiling fake news spreaders on social media
through psychological and motivational factors. In: Proceedings of the 32nd ACM
Conference on Hypertext and Social Media, pp. 225–230 (2021)

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR
(Poster) (2015)

9. Kiperwasser, E., Goldberg, Y.: Simple and accurate dependency parsing using
bidirectional LSTM feature representations. Trans. Assoc. Comput. Linguist. 4,
313–327 (2016)

10. Labutov, I., Lipson, H.: Re-embedding words. In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pp. 489–493 (2013)

11. Li, X.L., Wang, D., Eisner, J.: A generative model for punctuation in dependency
trees. Trans. Assoc. Comput. Linguist. 7, 357–373 (2019)

12. Lin, Z., Feng, M., Santos, C.N., Yu, M., Xiang, B., Zhou, B., Bengio, Y.: A struc-
tured self-attentive sentence embedding. In: International Conference on Learning
Representations (ICLR) (2017)

13. Ling, W., Dyer, C., Black, A.W., Trancoso, I.: Two/too simple adaptations of
word2vec for syntax problems. In: Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 1299–1304 (2015)

14. Liu, R., Hu, J., Wei, W., Yang, Z., Nyberg, E.: Structural embedding of syntac-
tic trees for machine comprehension. In: Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pp. 815–824 (2017)

15. Lou, P.J., Wang, Y., Johnson, M.: Neural constituency parsing of speech tran-
scripts. In: NAACL-HLT (1) (2019)

16. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neu-
ral machine translation. In: EMNLP (2015)

“Let’s Eat Grandma”: Does Punctuation Matter 603

17. Maas, A., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word
vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, pp.
142–150 (2011)

18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word rep-
resentations in vector space. In: Bengio, Y., LeCun, Y. (eds.) 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,
2–4 May 2013, Workshop Track Proceedings (2013)

19. Mosallanezhad, A., Beigi, G., Liu, H.: Deep reinforcement learning-based text
anonymization against private-attribute inference. In: Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pp. 2360–2369 (2019)

20. Mosallanezhad, A., Karami, M., Shu, K., Mancenido, M.V., Liu, H.: Domain adap-
tive fake news detection via reinforcement learning. In: Proceedings of the ACM
Web Conference 2022, pp. 3632–3640 (2022)

21. Nunberg, G.: The Linguistics of Punctuation. Center for the Study of Language
(CSLI) (1990)

22. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using
machine learning techniques. In: In proceedings of EMNLP (2002)

23. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

24. Sachin, S., Tripathi, A., Mahajan, N., Aggarwal, S., Nagrath, P.: Sentiment analysis
using gated recurrent neural networks. SN Comput. Sci. 1(2), 1–13 (2020)

25. Shen, Y., Lin, Z., Huang, C., Courville, A.: Neural language modeling by jointly
learning syntax and lexicon. In: International Conference on Learning Representa-
tions (2018)

26. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural
language with recursive neural networks. In: Proceedings of the 28th International
Conference on Machine Learning (ICML-2011), pp. 129–136 (2011)

27. Socher, R., et al.: Recursive deep models for semantic compositionality over a
sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pp. 1631–1642 (2013)

28. Spitkovsky, V.I., Alshawi, H., Jurafsky, D.: Punctuation: making a point in unsu-
pervised dependency parsing. In: Proceedings of the Fifteenth Conference on Com-
putational Natural Language Learning, pp. 19–28 (2011)

29. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-
structured long short-term memory networks. In: Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.
1556–1566 (2015)

30. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

31. Wang, H., Liu, L., Song, W., Lu, J.: Feature-based sentiment analysis approach
for product reviews. J. Softw. 9(2), 274–279 (2014)

32. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: Proceedings of the 2016 Conference of
the North American Chapter of the Association For Computational Linguistics:
Human Language Technologies, pp. 1480–1489 (2016)

604 M. Karami et al.

33. Yenicelik, D., Schmidt, F., Kilcher, Y.: How does BERT capture semantics? A
closer look at polysemous words. In: Proceedings of the Third Blackbox NLP Work-
shop on Analyzing and Interpreting Neural Networks for NLP, pp. 156–162 (2020)

34. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley
Interdisc. Rev. Data Min. Knowl. Disc. 8(4), e1253 (2018)

35. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. Adv. Neural. Inf. Process. Syst. 28, 649–657 (2015)

Contextualized Graph Embeddings
for Adverse Drug Event Detection

Ya Gao1 , Shaoxiong Ji1(B) , Tongxuan Zhang2, Prayag Tiwari1 ,
and Pekka Marttinen1

1 Aalto University, 02150 Espoo, Finland
{ya.gao,shaoxiong.ji,prayag.tiwari,pekka.marttinen}@aalto.fi

2 Tianjin Normal University, Tianjin 300387, China
txzhang@tjnu.edu.cn

Abstract. An adverse drug event (ADE) is defined as an adverse reac-
tion resulting from improper drug use, reported in various documents
such as biomedical literature, drug reviews, and user posts on social
media. The recent advances in natural language processing techniques
have facilitated automated ADE detection from documents. However,
the contextualized information and relations among text pieces are less
explored. This paper investigates contextualized language models and
heterogeneous graph representations. It builds a contextualized graph
embedding model for adverse drug event detection. We employ differ-
ent convolutional graph neural networks and pre-trained contextualized
embeddings as the building blocks. Experimental results show that our
methods can improve the performance by comparing recent ADE detec-
tion models, suggesting that a text graph can capture causal relationships
and dependency between different entities in a document.

Keywords: Adverse drug events · Graph neural networks ·
Contextualized embeddings

1 Introduction

Adverse Drug Events (ADEs) are injuries resulting from medical intervention
related to a drug [7]. A typical way to detect ADEs is to conduct a clinical
trial. However, there are many settings where a drug would be used, and we
cannot check all of them during the clinical trial. Besides, some ADEs have
long latency, making them hard to be discovered by an ordinary clinical trial
[29]. Post-marketing drug safety surveillance, also called pharmacovigilance, is
conducted to solve these problems. Pharmacovigilance activities mostly depend
on Spontaneous Reporting Systems, which collect users’ voluntary ADE reports
[18]. However, the number of people willing to report their experiences through
the official systems is negligible. Furthermore, these systems are limited due to
biased and incomplete reports.

Compared with reports using Spontaneous Reporting Systems, more peo-
ple often talk about their adverse reactions on social media platforms. Recent
c© The Author(s) 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 605–620, 2023.
https://doi.org/10.1007/978-3-031-26390-3_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_35&domain=pdf
http://orcid.org/0000-0003-4056-679X
http://orcid.org/0000-0003-3281-8002
http://orcid.org/0000-0002-2851-4260
http://orcid.org/0000-0001-7078-7927
https://doi.org/10.1007/978-3-031-26390-3_35

606 Y. Gao et al.

publications collect documents from social media such as Twitter and Reddit
to obtain more reliable data and detect ADEs automatically using Nature Lan-
guage Processing (NLP) techniques. The detection of ADEs can be seen as a
text classification task or a sequence-labeling problem, where we need to identify
documents including ADEs [8]. The early studies include lexicon-based and rule-
based methods [28]. These methods focus on string-matching, which is less effec-
tive for social media text and consumes many resources to build rules. Machine
learning algorithms are also used to solve this task, such as Support Vector
Machine (SVM) [4], Recurrent Neural Network (RNNs) [5] and Convolutional
Neural Networks (CNNs) [10]. These approaches can process text with man-
ual feature engineering or enable automated feature learning with deep learning
methods, facilitating automated ADE detection from biomedical text or social
content. However, the existing approaches and models have two limitations: (1)
some works are limited in capturing the rich context information in the text.
(2) some do not fully consider the causal relationship and dependency between
different entities in a document. Effective text encoding should be considered
for the ADE detection task to capture rich semantic and contextualized infor-
mation. Note that detecting causal relationships does not here refer to causal
inference as in the field of machine learning focusing on causality [24], but rather
expressing or indicating the relationship between the cause, e.g. a drug taken,
and the respective individual’s adverse health outcome as reported in the text
sample.

Graphs are commonly used for different data representations because of their
strong expressivity. Text data can be represented by heterogeneous graphs, where
different words, phrases, and documents are seen as nodes, and their relations
are shown using edges. Text graphs and graph neural networks are widely used
in many NLP applications for healthcare tasks such as sentiment classification
and review rating [20,35]. Graph Neural Networks (GNNs) [33] can be applied
to graph representation learning and capture the causal relationships and depen-
dency of objects, making them more suitable for representing text with adverse
drug events. However, no existing studies on ADE detection employ graph rep-
resentation and graph neural networks. Besides, contextualized representations
of text facilitate various NLP applications and boost the performance of NLP
systems with minimal architecture engineering. In the medical domain, con-
textualized embeddings with domain knowledge are also in need. Pretrained
contextualized language embeddings have been applied to various medical appli-
cations such as medical code assignment [11] and biomedical knowledge graph
construction [12].

This paper presents a contextualized graph embedding model for ADE detec-
tion. We build contextualized language embeddings to capture contextualized
information. With a heterogeneous graph built to embody word and document
relations from the ADE corpus, we use graph neural networks to learn causal
relations between word and document nodes to improve adverse drug reaction
detection. This paper deploys different GNN-based models and pre-trained con-
textualized embeddings. The performance of these models is evaluated and com-

Contextualized Graph Embeddings for Adverse Drug Event Detection 607

pared with state-of-the-art models on three public benchmarks for ADE detec-
tion. Our model outperforms several strong ADE detection models in most cases.
We also analyze the experiment results to discuss some potential challenges and
explore the potential for improving the ADE detection tasks. The code will be
made publicly available on acceptance.

Our contributions include the following folds.

– We develop a contextualized graph embedding model (CGEM) that intro-
duces text graphs to capture the cause-effect relation for drug adverse event
detection.

– The CGEM model utilizes contextualized embeddings pre-trained in large-
scale domain-specific corpora for capturing context information, convolutional
GNNs for text graph encoding, and an attention classifier for ADE classifica-
tion.

– Experimental results show our approach outperforms recent advanced ADE
detection models in three public datasets from the biomedical domain and
social media.

2 Related Work

The rapid development of deep learning makes neural network-based approaches
predominant in ADE detection. RNN can process sequence information and cap-
ture the sequential dependency, making it is suitable for ADE detection from
text. Many studies on the ADE detection task employ RNN-based models. Cocos
et al. [5] developed a Bidirectional Long Short-Term Memory (BiLSTM) net-
work to label different parts of a sequence for ADE detection. Information from
recognition of concepts and relations can benefit each other, enabling this joint
modeling technique to obtain more useful information during learning. However,
inaccurate recognition in the first step will affect the following steps, known as
the error propagation issue. To address this issue, Wei et al. [31] proposed a
joint learning model which can recognize entities of ADE, the reason, and their
relations simultaneously. In the recognition phase, the joint model employs CRF
and BiLSTM. To achieve relation classification, it uses CNN-RNN and SVM.

Some studies also developed models with other neural network architectures,
such as capsule networks and the self-attention mechanism. Zhang et al. [38]
presented a model called Gated iterative capsule network (GICN), which applies
CNN to obtain the complete phrase information and extracts deep semantic
information using a capsule network with a gated iteration unit. This unit can
remember contextual information by clustering features. However, they did not
consider the wights of different parts of a document. With attention mechanisms,
more critical parts of a document get higher weights. Ge et al. [9] employed Multi-
Head Self-Attention in their model to distinguish the importance of different
words. Wunnava et al. [34] developed a dual-attention mechanism with BiLSTM
to capture both task-specific and semantic information in the sentence. However,
they did not fully consider the causal relationship between entities in a document.

608 Y. Gao et al.

3 Methods

3.1 Overall Architecture

This paper defines ADE detection as a classification task. We develop the contex-
tualized graph embedding model as illustrated in Fig. 1. There are three compo-
nents of the model. (1) Graph Construction with Contextualized Embed-
dings. We construct a heterogeneous graph to represent words and documents in
the whole dataset, following TextGCN [35], and use pre-trained language models,
specifically BERT [6] and its domain-specific variants, to obtain the contextual-
ized text representation. (2) Graph-based Text Encoding. To capture neigh-
borhood information in the heterogeneous graph, the feature matrix obtained
from the embedding layer and the adjacency matrix from the constructed graph
are fed into graph encoders. The feature embeddings are iteratively updated in
the heterogeneous relational networks of words and documents. (3) ADE Clas-
sification. We follow the BertGCN model [20] to fuse contextualized embedding
and graph networks with a weight coefficient to balance these two branches. Fur-
thermore, we build an attentive classification layer to allow more critical content
to contribute more to predictions. Figure 1 shows the overall model architecture.
The details of these components are introduced in the following sections.

Fig. 1. The illustration of the model architecture with contextualized graph embed-
dings for ADE detection

Contextualized Graph Embeddings for Adverse Drug Event Detection 609

3.2 Graph Construction

Heterogeneous Graph. We first represent text as a graph before feeding it
to neural networks. Representing text in a heterogeneous graph can provide dif-
ferent perspectives for text encoding and improve ADE detection. The process
of graph construction follows TextGCN [35]. Nodes in the graph represent doc-
uments and different words. The number of nodes n equal to the number of
documents nd plus the number of unique words nw in the whole dataset, i.e.,
n = nd + nw. There are two types of edges, i.e., word-word and document-word
edges. We use the term frequency-inverse document frequency (TF-IDF) of one
word in the document to represent the weight of a document-word edge, while
the weight of a word-word edge is based on positive point-wise mutual informa-
tion (PMI) of two words. We can represent the weight between the node i and
the node j as:

Aij =

⎧
⎪⎪⎨

⎪⎪⎩

PMI(i, j), PMI > 0; i, j: words
TF-IDFij, i: document, j: word
1, i = j
0, otherwise

. (1)

Contextualized Embeddings. We used three pre-trained contextualized lan-
guage models to obtain embeddings for documents. They are all BERT-based
models but pre-trained with different strategies or corpora collected from differ-
ent domains. The pre-trained language embeddings include:

– RoBERTa [21]: a pre-trained model with masked language modeling (MLM)
objective on English language. In this paper, we used the base version.

– BioBERT [17]: a BERT-based model trained with biomedical corpora includ-
ing PubMed abstracts and PubMed Central full-text articles.

– ClinicalBERT [2]: another domain-specific BERT-based model which is
trained on clinical notes from the MIMIC-III database [13].

Given the dimension of embeddings denoted as d, the final output of contextu-
alized text encoding are denoted as Hdoc ∈ R

nd×d. We then apply a zero matrix
as the initialization of word nodes to get the feature matrix input to GNN:

H(0) =
(

Hdoc

0

)

(2)

where H(0) ∈ R
(nd+nw)×d.

3.3 Graph-Based Text Encoding

This section employs a graph-based model for text encoding and capturing com-
plex heterogeneous relationships. Graph neural networks are powerful models to
mine and capture the relations and dependencies of graph data. Specifically, we
apply two graph neural networks, i.e., Graph Convolutional Network (GCN) [16]
and Graph Attention Network (GAT) [30], which are commonly used in different

610 Y. Gao et al.

tasks. Graph convolution encodes the topological structure of the heterogeneous
graph, enables label influence propagation, and achieves effective modeling of
ADE corpora. In this section, we introduce their principles.

GCN is a category of Convolutional Graph Neural Networks (ConvGNNs)
models. It is a spectral-based model which incorporates nodes’ feature infor-
mation from their neighbors. It can be seen as a multilayer neural network
limited to undirected graphs where the number of layers is fixed. Each layer
has different weights to better process cyclic mutual dependencies. GCN is the
approximations and simplifications of Spectral CNN. It approximates spectral
graph convolutions using convolutional architecture to get a localized first-order
representation.

A graph G consists of nodes set V , and edge sets E. A is the adjacency
matrix obtained from the step of graph construction, and Â is its normalized
form. D is the degree matrix, where Dij =

∑
j Aij . In the GCN model, multiple

layers are stacked to integrate information about higher-order neighborhoods.
In the m-th layer, the feature matrix is updated as:

H(m) = f(ÂH(m−1)W(m−1)), Â = D− 1
2 AD

1
2 , (3)

where H(m) ∈ R
n×dm , and W(m−1) ∈ R

dm−1×dm is the weight matrix, H(0) is the
output from contextualized language models, and f(·) is an activation function.

Being similar to GCN, GAT is also a ConvGNNs model. However, it is spatial-
based neural networks, where node information is propagated within edges and
graph convolutions are finally decided by the spatial relation. It employs the
message passing process and attention mechanism to learn relations between
nodes. Graph attention layers in GAT assign different attention scores to one
node’s distant neighbors and prioritize the importance of different types of nodes.

3.4 Classification Layers

The GNN-based text encoding produces hidden feature representations H ∈
R

n×dc . We propose to use an attention mechanism (Eq. 4) to put more attention
on nodes with more important information related to positive or negative ADE
classes, denoted as

s = softmax(waHT), (4)

where wa ∈ R
dc and s = (s1, s2, · · · , sn) ∈ R

n is the attention weight vec-
tor containing attention score of each node. Attention scores from the attentive
classification layer are different from the attention layer of GAT. Here, atten-
tion scores measure which nodes are more important to the graph, while in the
attention layer of GAT, attention scores decide the importance of one node to
the other node in the neighborhood. The weight is assigned to feature matrix
to obtained attentive hidden representation weighted by attention scores, i.e.,
Ha = [s1 × h′

1, s2 × h′
2, ..., sn × h′

n].
Then, we apply the softmax classifier over the graph-based encoding and

obtain the probability of each class as:

pg = softmax(WfHT
avf), (5)

Contextualized Graph Embeddings for Adverse Drug Event Detection 611

where Wf ∈ R
n×dh and vf ∈ R

n×2 are the weight matrices. We apply the same
calculation as Eq. 5 but with different weight matrices to pretrained contextu-
alized embeddings H(0). Finally, we get pc as the prediction probability from
the contextualized embeddings. A weight coefficient λ ∈ [0, 1) is introduced to
balance the result from graph-based encoding models and the result from BERT-
based contextualized models:

p = λpg + (1 − λ)pc. (6)

This weighted strategy can also be viewed as an ensemble of two classifiers or
the interpolation of the prediction probability of two classifiers.

3.5 Model Training

We apply the negative log-likelihood loss function as the training objective.
Because data in one of the datasets used in our study is imbalanced and the
number of instances of this dataset is not large where the downsampling method
is not suitable, we use the weighted negative log-likelihood loss function to solve
the data imbalance problem [27]. Assuming that the number of documents con-
taining ADE is N1 and the number of documents not containing ADE is N2, the
weight w+ for documents predicted as positive samples is N2

N1+N2
and the weight

w− for documents predicted as negative samples is N1
N1+N2

. The weighted loss
function is:

L = − 1
N

N∑

i=1

(w+yi log(pi) + w−(1 − yi) log(1 − pi)), (7)

where N is the number of documents in one batch and yi is the true label of a
document. When a document contains ADE, yi equals to 1; otherwise, yi equals
to 0. The Adam optimizer [15] is used for model optimization. To control the
learning rate, we use the multiple-step learning rate scheduler. The learning
rate scheduler decays the learning rate by the parameter γ when the number of
epochs reaches a specific number.

4 Experiment

4.1 Data and Pre-processing

We used three datasets from the biomedical domain and social media to evaluate
the performance of baselines and our model. The details of these datasets are
shown in Table 1. We perform data pre-processing before building graph repre-
sentation. Specifically, stop words, punctuation, and numbers are removed. For
the data collected from Twitter, we use the tweet-preprocessor Python package1

to remove URLs, emojis, and some reserved words for tweets.
1 https://pypi.org/project/tweet-preprocessor/.

https://pypi.org/project/tweet-preprocessor/

612 Y. Gao et al.

Table 1. A statistical summary of datasets

Dataset Documents ADR non-ADR

SMM4H 2418 1209 1209

TwiMed-Pub 1000 191 809

TwiMed-Twitter 625 232 393

TwiMed-Twitter and TwiMed-Pub2. The TwiMed dataset [3] includes
two sets collected from different domains, i.e., TwiMed-Twitter and TwiMed-
Pub. They consist of documents from Twitter and PubMed, respectively. Peo-
ple with different backgrounds annotate diseases, symptoms, drugs, and their
relations in each document. There are three types of relations: Outcome-
negative, Outcome-positive, and Reason-to-use. When a document is annotated
as outcome-negative, it is marked as ADE (positive). Otherwise, we mark it as
non-ADE (negative). The TwiMed-Pub has a small number of documents con-
taining ADEs. The weighted loss function is used to solve the issue of imbalanced
classification. Models are evaluated by 10-fold cross-validation.

SMM4H Dataset3 [22,26]. The dataset is from Social Media Mining for Health
Applications (#SMM4H) shared tasks. Documents collected from Twitter con-
tain a description of drugs and diseases. The dataset contains 17,385 tweets for
training and 915 tweets for testing. In our experiment, since this dataset is large
enough, we conduct downsampling to mitigate the problem of imbalance, where
we only use 2418 tweets, half of which are negative (non-ADE) and the other half
are positive (ADE). The training tweets are split into train and validation sets,
with a ratio of 9:1. We use the official validation set to evaluate the model per-
formance for a fair comparison with baseline models developed in the SMM4H
shared task, such as [14,25,36].

4.2 Baselines, Evaluation and Setup

Precision (P), Recall (R), and F1-score are commonly used to measure different
models in a classification task. We report these three metrics in our results and
mainly use the F1-score to compare models’ performance in our experiments.
We consider two sets of baseline models for performance comparison: 1) models
explicitly designed for ADE detection and 2) pre-trained contextualized models.

Customized models for ADE detection include:

– CNN-Transfer [19] (CNN-T for short): a CNN-based model with transfer
learning module. It has two sentence classifiers and a shared feature extractor
based on CNN.

2 https://github.com/nestoralvaro/TwiMed.
3 https://healthlanguageprocessing.org/smm4h-2021/task-1/.

https://github.com/nestoralvaro/TwiMed
https://healthlanguageprocessing.org/smm4h-2021/task-1/

Contextualized Graph Embeddings for Adverse Drug Event Detection 613

– HTR-MSA [32]: a model with hierarchical tweet representation and multi-
head self-attention. This model learns word representations and tweet repre-
sentations with CNN and Bi-LSTM. The multi-head self-attention mechanism
is also applied.

– ATL [19]: a model based on adversarial transfer learning for the ADE detec-
tion, where corpus-shared features are exploited.

– MSAM [37]: a model with the multihop self-attention mechanism. It captures
contextual information using Bi-LSTM and applies an attention mechanism
in multiple steps to generate semantic representations of sentences.

– IAN [1]: interactive attention networks, a model to interactively learn atten-
tions in the context and model targets and context separately.

We compare our model with pre-trained language models on the SMM4H
dataset as it is a recent dataset not studied by the aforementioned ADE detection
baselines. We use the base version of pretrained models in our experiments for
a fair comparison, which is the same setting as in the compared baselines.

– BERT [6]: a language representation models pre-training with unlabeled text.
Yaseen et al. [36] proposed a model that combined LSTM with a BERT
encoder for ADE detection, denoted as BERT-LSTM in this paper.

– RoBERTa [21]: a BERT-based model on the English language with slightly
different pre-training strategies. Pimpalkhute et al. [25] developed a data aug-
mentation method with RoBERTa text encoder for ADE detection, denoted
as RoBERTa-aug in this paper.

– BERTweet [23]: a domain-specific model for English Tweets with the same
architecture as BERT-base. Kayastha et al. [14] built a model with BERTweet
and single-layer BiLSTM for ADE detection, denoted as BERTweet-LSTM
in this paper.

We use Python 3.7 and PyTorch 1.7.1 to implement the model. The hyper-
parameters we tuned in our experiments are presented in Table 2. In our exper-
iment, we set the hyper-parameter of the learning rate scheduler γ and the
milestone of epoch number to 0.1 and 30, respectively.

Table 2. Choices of hyper-parameters

Hyper-parameters Choices

Learning rate for text encoder 2e−5, 3e−5, 1e−4

Learning rate for classifier 1e−4, 5e−4, 1e−3

Learning rate for graph-based models 1e−3, 3e−3, 5e−3

Hidden dimension for GNN 200, 300, 400

Weight coefficient λ 0, 0.1 0.3, 0.5, 0.7, 0.9

614 Y. Gao et al.

4.3 Main Results

We compared our model with baseline models for the ADE detection task to
validate the performance of our model. Tables 3 and Table 4 show the results of
TwiMed and SMM4H dataset, respectively. Our model achieves the best per-
formance for all datasets compared with other methods in terms of F1-score.
The best result of TwiMed-Pub is obtained with ClinicalBERT embeddings and
a GAT encoder. As for SMM4H and TwiMed-Twitter, the best combination of
building blocks is RoBERTa embeddings and GCN encoder.

Table 3. Results of TwiMed datasets

Datasets Metrics HTR-MSA [32] CNN-T [19] MSAM [37] IAN [1] ATL [19] Ours

TwiMed-Pub P (%) 75.0 81.3 85.8 87.8 81.5 88.4

R (%) 66.0 63.9 85.2 73.8 67.0 85.0

F1 (%) 70.2 71.6 85.3 79.2 73.4 86.7

TwiMed-Twitter P (%) 60.7 61.8 74.8 83.6 63.7 84.2

R (%) 61.7 60.0 85.6 81.3 63.4 83.7

F1 (%) 61.2 60.9 79.9 82.4 63.5 83.9

Table 4. Results of SMM4H dataset

Methods P (%) R (%) F1 (%)

BERT-LSTM [36] 77.0 72.0 74.0

BERTweet-LSTM [14] 81.2 86.2 83.6

RoBERTa-aug [25] 82.1 85.7 84.3

Ours 86.7 93.4 89.9

As shown in Table 3, performances of HTR-MSA, ATL, and CNN-Transfer
are lower than others. The network structures of these three models are complex,
resulting in a large amount of data being required. Thus, it performs worse than
other models on small corpora. MSAM achieves the best performance on recall,
while our model performs the best on precision and F1-score. Our model can
balance precision and recall better. The competitive performance on the three
datasets also shows the high generalization ability of our model. In Table 3, the
performances of most models on the two datasets are significantly different. It
is challenging to detect ADEs from tweets since tweets are informal text and
contain much colloquial language. However, our model performs well on the
TwiMed-Twitter dataset, showing that it can effectively encode information from
the informal text and better capture relationships of entities in a document. From
Table 4, we can find that other models are all BERT-based models. In contrast,
our model employs GNN architectures, which suggests GNN can significantly
improve models’ performance on this task.

Contextualized Graph Embeddings for Adverse Drug Event Detection 615

4.4 Analyses and Discussion

We further analyze the contextualized graph embedding model in this section,
discuss the choice of different building blocks, and conduct a case study.

Choice of Graph Encoders. Our experiment examines GCN and GAT to
study which one is more suitable for the ADE detection task. We record the
best result under different graph encoders. For both GCN and GAT, we obtain
the best result from RoBERTa for the SMM4H dataset and TwiMed-Twitter.
For TwiMed-Pub, the best result is obtained using ClinicalBERT. From Table 5,
we can find the results from the two GNNs are similar, showing that they both
performed well on this task.

Table 5. Comparison on the choices of graph encoders, i.e., GCN and GAT

Graph encoder SMM4H TwiMed-Pub TwiMed-Twitter

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

GCN 86.7 93.4 89.9 88.6 84.3 86.4 84.2 83.7 83.9

GAT 84.8 92.3 88.4 88.4 85.0 86.7 83.1 81.9 82.5

Choice of Pretrained Embeddings. We examine three contextualized lan-
guage models in our experiment. We record the best results with different lan-
guage models. When using RoBERTa, the best results for the SMM4H dataset,
TwiMed-Pub, and TwiMed-Twitter are from GCN, GAT, and GCN, respec-
tively. When using ClinicalBERT, the best results for the SMM4H dataset and
TwiMed-Pub are from GAT, and for TwiMed-Twitter, the best result is from
GCN. When using BioBERT, the choice of GNNs for best results is the same as
using ClinicalBERT.

From Table 6, we can find that, for TwiMed-Pub, there is little difference
among the three pre-trained language models. However, for the SMM4H dataset
and TwiMed-Twitter, RoBERTa performs better than others. The SMM4H
dataset and TwiMed-Twitter dataset contain documents with many non-medical
terms, while ClinicalBERT and BioBERT are trained with many medical terms.
Therefore, when there are insufficient medical terms in the text, ClinicalBERT
and BioBERT are unsuitable. RoBERTa is a better choice for informal text for
this task.

Ablation Study on the Attention Classifier. To examine the effect of the
attention classifier, we conduct an ablation study in our experiment. We remove
the attentive classification layer and check the performance change in F1 scores.

From Table 7, we can find that after removing the attentive classification
layer, values of F1-scores get decreased for all three datasets. It suggests that

616 Y. Gao et al.

Table 6. The effect of contextualized text embeddings obtained pretrained from dif-
ferent domains

Pretrained embeddings SMM4H TwiMed-Pub TwiMed-Twitter

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

RoBERTa 86.7 93.4 89.9 88.2 84.3 86.2 84.2 83.7 83.9

ClinicalBERT 81.5 92.3 86.6 88.4 85.0 86.7 80.1 80.7 80.4

BioBERT 80.9 93.4 86.7 88.2 84.0 86.0 81.2 80.6 80.9

the attentive classification layer can improve the model to prioritize information
in the heterogeneous graph. More meaningful content, such as the description of
symptoms and drugs, medical terms, and other relevant information related to
ADEs, can contribute more to final predictions by employing attention mecha-
nisms in the classification layer.

We also notice that F1 scores increase with the attentive classification layer,
while precision scores for the SMM4H and TwiMed-Twitter datasets decrease.
The documents of these two datasets are both from Twitter. Tweets are informal
texts that do not follow the logical order, and their structures are unclear. They
lack medical terms, and some content that seems not to be related to ADEs may
also help determine whether a document contains ADEs or not. After applying
the attentive classification layer, the model puts more attention to parts directly
related to the description of symptoms, resulting in a tendency where a tweet is
more easily to be predicted as a positive sample. Therefore, the precision value
decreases after employing the attention classification layer. Besides, we can find
that the F1 score on the SMM4H dataset decreases to a greater extent without
an attentive classification layer. This dataset contains more documents compared
to others. It suggests that the attentive classification layer works better for larger
datasets. For small corpora, models with simpler architectures also perform well.

Table 7. Comparison between our model and the model without attentive classification
layer

SMM4H TwiMed-Pub TwiMed-Twitter

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Our model 86.7 93.4 89.9 88.4 85.0 86.7 84.2 83.7 83.9

- Attentive layer 87.0 90.1 88.5 87.8 83.9 85.8 84.6 82.2 83.3

Effect of Weight Coefficient λ. The weight coefficient λ’s value controls
the trade-off between the contextualized language models and graph neural net-
works. When λ equals zero, only BERT-based pre-trained contextualized embed-
dings are considered. In 2, dashed lines show the values of the F1-score when
λ equals to zero. After employing GNNs (λ = 0.1, 0.3, 0.5, 0.7, 0.9), we can find

Contextualized Graph Embeddings for Adverse Drug Event Detection 617

that the value of the F1-score increases on all three datasets. It demonstrates
that convolutional GNNs can improve the performance of our model signifi-
cantly. Determining whether a symptom description is about the disease itself
or adverse reactions resulting from the disease is a challenge in ADE detec-
tion. Utilizing GNNs helps solve this issue since GNNs can better capture the
cause-effect relation and dependency between different entities of documents.

We can find the trend of the three lines are similar in respective plots of
Fig. 2. In terms of F1-score, the best choices of the value of λ for three datasets
are 0.5 (SMM4H), 0.9 (TwiMed-Pub), and 0.7 (TwiMed-Twitter). It suggests
how to choose the value of λ depending on which datasets we use and other
model hyper-parameters. Also, when values of λ are greater than 0.5, the F1
scores are relatively high. Therefore, we can first choose a high value of λ to
allow graph embeddings to contribute more.

Fig. 2. The effect of weight coefficient λ on values of metrics

Case Study. We conduct a case study to explore the effect of the attention
mechanism in Eq. 4. We choose two documents classified as positive samples in
the SMM4H test dataset, where one is classified correctly while the other one
does not contain ADE. We record the attention scores of words of these two
tweets and utilize a heap map to show the value of different words’ attention
scores in a document, illustrated in Fig. 3. Figure 3a of a correctly classified
tweet shows nouns (such as medication, sideaffects and seroquel), verbs (such
as jolting), and sentiment words (such as hard and bad) related to drugs and
symptoms get high attention scores. It helps the model put more attention on
these important words. However, assigning high attention scores to such words
does not ensure correct predictions. Figure 3b shows the attention scores of a
tweet incorrectly classified as a positive sample. We can find that words related
to symptoms, negative sentiment, and drugs are still getting high scores, while
the tweet does not talk about ADE directly.

618 Y. Gao et al.

Fig. 3. Case study of the attention scores in two tweets: (a) with ADE; and (b) without
ADE

5 Conclusion

The automated detection of adverse drug events from social content or biomed-
ical literature requires the model to encode text information and capture the
causal relation efficiently. This paper utilizes contextualized graph embeddings
to learn contextual information and causal relations for ADE detection. We equip
different convolutional graph neural networks with pre-trained language repre-
sentation, develop an attention classifier to detect ADEs in documents and study
the effects of different building components in our model. By comparing our
model with other baseline methods, experiment results show that graph-based
embeddings can better capture causal relationships and dependency between
different entities in documents, leading to better detection performance.

Acknowledgment. We thank Professor Hongfei Lin for his kind support of this work.
We acknowledge the computational resources provided by the Aalto Science-IT project
and CSC - IT Center for Science, Finland. This work was supported by the Academy
of Finland (grants 315896) and EU H2020 (grant 101016775).

References

1. Alimova, I., Solovyev, V.: Interactive attention network for adverse drug reaction
classification. In: Ustalov, D., Filchenkov, A., Pivovarova, L., Žižka, J. (eds.) AINL
2018. CCIS, vol. 930, pp. 185–196. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01204-5 18

2. Alsentzer, E., et al.: Publicly available clinical BERT embeddings. In: Proceedings
of the 2nd Clinical Natural Language Processing Workshop, pp. 72–78 (2019)

3. Alvaro, N., Miyao, Y., Collier, N.: Twimed: Twitter and PubMed comparable cor-
pus of drugs, diseases, symptoms, and their relations. JMIR Public Health Surveill.
3(2), e6396 (2017)

4. Bollegala, D., Sloane, R., Maskell, S., Hajne, J., Pirmohamed, M.: Learning causal-
ity patterns for detecting adverse drug reactions from social media. J. Med. Internet
Res. (2018)

5. Cocos, A., Fiks, A.G., Masino, A.J.: Deep learning for pharmacovigilance: recurrent
neural network architectures for labeling adverse drug reactions in twitter posts.
JAMIA 24(4), 813–821 (2017)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL-HLT (2019)

https://doi.org/10.1007/978-3-030-01204-5_18
https://doi.org/10.1007/978-3-030-01204-5_18

Contextualized Graph Embeddings for Adverse Drug Event Detection 619

7. Donaldson, M.S., Corrigan, J.M., Kohn, L.T., et al.: To Err is Human: Building a
Safer Health System (2000)

8. Duan, L., Khoshneshin, M., Street, W.N., Liu, M.: Adverse drug effect detection.
IEEE J. Biomed. Health Inform. 17(2), 305–311 (2012)

9. Ge, S., Qi, T., Wu, C., Huang, Y.: Detecting and extracting of adverse drug reac-
tion mentioning tweets with multi-head self attention. In: Proceedings of SMM4H
Workshop, pp. 96–98 (2019)

10. Huynh, T., He, Y., Willis, A., Rüger, S.: Adverse drug reaction classification with
deep neural networks. In: COLING (2016)

11. Ji, S., Hölttä, M., Marttinen, P.: Does the magic of BERT apply to medical code
assignment? A quantitative study. Comput. Biol. Med. 139, 104998 (2021)

12. Jiang, T., et al.: Biomedical knowledge graphs construction from conditional state-
ments. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(3), 823–835 (2020)

13. Johnson, A.E., et al.: Mimic-iii, a freely accessible critical care database. Sci. Data
3(1), 1–9 (2016)

14. Kayastha, T., Gupta, P., Bhattacharyya, P.: BERT based adverse drug effect tweet
classification. In: Proceedings of SMM4H Workshop, pp. 88–90 (2021)

15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. In: International Conference on Learning Representations (2017)
17. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model

for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)
18. Li, H., et al.: Adverse drug reactions of spontaneous reports in shanghai pediatric

population. PLoS ONE 9(2), e89829 (2014)
19. Li, Z., Yang, Z., Luo, L., Xiang, Y., Lin, H.: Exploiting adversarial transfer learning

for adverse drug reaction detection from texts. J. Biomed. Inform. 106, 103431
(2020)

20. Lin, Y., et al.: BertGCN: Transductive Text Classification by Combining GCN and
BERT. arXiv preprint arXiv:2105.05727 (2021)

21. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

22. Magge, A., et al.: Overview of the sixth social media mining for health applications
(# smm4h) shared tasks at NAACL 2021. In: Proceedings of SMM4H Workshop,
pp. 21–32 (2021)

23. Nguyen, D.Q., Vu, T., Nguyen, A.T.: BERTweet: a pre-trained language model for
english tweets. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 9–14 (2020)

24. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
25. Pimpalkhute, V., Nakhate, P., Diwan, T.: IIITN NLP at SMM4H 2021 tasks:

transformer models for classification on health-related imbalanced twitter datasets.
In: Proceedings of SMM4H Workshop, pp. 118–122 (2021)

26. Sarker, A., Gonzalez-Hernandez, G.: Overview of the second social media mining
for health (SMM4H) shared tasks at AMIA 2017. Training. 1(10,822), 1239 (2017)

27. Shimodaira, H.: Improving predictive inference under covariate shift by weighting
the log-likelihood function. J. Statist. Plann. Inference 90(2), 227–244 (2000)

28. Sohn, S., Clark, C., Halgrim, S.R., Murphy, S.P., Chute, C.G., Liu, H.: MedXN: an
open source medication extraction and normalization tool for clinical text. JAMIA
21(5), 858–865 (2014)

29. Sultana, J., Cutroneo, P., Trifirò, G.: Clinical and economic burden of adverse drug
reactions. J. Pharmacol. Pharmacotherap. 4(Suppl1), S73 (2013)

http://arxiv.org/abs/2105.05727
http://arxiv.org/abs/1907.11692

620 Y. Gao et al.

30. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018)

31. Wei, Q., et al.: A study of deep learning approaches for medication and adverse
drug event extraction from clinical text. JAMIA 27(1), 13–21 (2020)

32. Wu, C., Wu, F., Liu, J., Wu, S., Huang, Y., Xie, X.: Detecting tweets mentioning
drug name and adverse drug reaction with hierarchical tweet representation and
multi-head self-attention. In: Proceedings of SMM4H Workshop, pp. 34–37 (2018)

33. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2020)

34. Wunnava, S., Qin, X., Kakar, T., Kong, X., Rundensteiner, E.: A dual-attention
network for joint named entity recognition and sentence classification of adverse
drug events. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: Findings, pp. 3414–3423 (2020)

35. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In:
Proceedings of AAAI, vol. 33, pp. 7370–7377 (2019)

36. Yaseen, U., Langer, S.: Neural text classification and stacked heterogeneous embed-
dings for named entity recognition in SMM4H 2021. In: Proceedings of SMM4H
Workshop, pp. 83–87 (2021)

37. Zhang, T., et al.: Adverse drug reaction detection via a multihop self-attention
mechanism. BMC Bioinform. 20(1), 1–11 (2019)

38. Zhang, T., et al.: Gated iterative capsule network for adverse drug reaction detec-
tion from social media. In: 2020 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pp. 387–390. IEEE (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Bi-matching Mechanism to Combat
Long-tail Senses of Word Sense

Disambiguation

Junwei Zhang1,2, Ruifang He1,2(B), and Fengyu Guo3(B)

1 Tianjin Key Laboratory of Cognitive Computing and Application,
College of Intelligence and Computing, Tianjin University, Tianjin, China

{junwei,rfhe}@tju.edu.cn
2 State Key Laboratory of Communication Content Cognition,

People’s Daily Online, Beijing, China
3 College of Computer and Information Engineering, Tianjin Normal University,

Tianjin, China
fyguo@tjnu.edu.cn

Abstract. The long-tail phenomenon of word sense distribution in lin-
guistics causes Word Sense Disambiguation (WSD) to face both head
senses with a large number of samples and tail senses with only a few
samples. Traditional recognition methods are suitable for head senses
with sufficient training samples, but they cannot effectively deal with tail
senses. Inspired by the diverse memory and recognition abilities of chil-
dren’s linguistic behavior, we propose a bi-matching mechanism approach
for WSD. Considering that tail senses are often presented in the form of
fixed collocations, a collocation feature matching method suitable for tail
senses is designed; the traditional definition matching method is used for
head senses; finally, the two matching methods are combined to construct
a WSD model with the bi-matching mechanism (called Bi-MWSD). Bi-
MWSD can effectively combat the difficulty of identifying the tail senses
due to insufficient training samples. The experiments are implemented
in the standard English all-words WSD evaluation framework and the
training data augmented evaluation framework. The experimental results
outperform the baseline models and achieve state-of-the-art performance
under the data augmentation evaluation framework.

Keywords: Word sense disambiguation · Long tail senses ·
Bi-matching mechanism

1 Introduction

Word Sense Disambiguation (WSD) is to assign the correct sense to the target
word according to the given context [1,2]. WSD occupies an important position
in the field of Natural Language Processing (NLP) [3], and the correct identifi-
cation of word senses has a direct and profound impact on subsequent semantic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 621–637, 2023.
https://doi.org/10.1007/978-3-031-26390-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_36&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_36

622 J. Zhang et al.

understanding tasks, such as machine translation [4,5] and natural language
understanding [6,7].

However, due to the long-tail phenomenon of word sense distribution in lin-
guistics, the WSD model needs to face both head senses with a large number of
samples and tail senses with only a few samples [8,9]. For example, the verb form
of the word Play1 has 35 senses in WordNet 3.1, of which the most commonly
used is “Participate in games or sports”, and the vast majority are rarely used
tail senses, such as “Contend against an opponent in a sport, game, or battle”. In
addition, due to the long-tail phenomenon of vocabulary usage frequency in lin-
guistics, the occurrence frequency of tail senses is severely reduced, which makes
it more difficult for the WSD model to identify long-tail senses. Note that the
long-tail senses here refer to the tail senses under the long-tailed distribution.

Traditional recognition methods can effectively deal with head senses with
sufficient training samples, but it is difficult to take into account tail senses with
insufficient training samples. BEM, proposed by Blevins et al. [10], attempts
to employ BERT [11] to obtain a context-based embedding of the target word,
and then determines possible sense by calculating the similarity between this
embedding and the textual embedding of each gloss. For head senses, this method
can obtain effective sense representations, but for tail senses, it is difficult to
obtain highly recognizable representations. The reason is that embeddings of all
senses can be easily obtained based on glosses, but it is difficult to effectively
improve the accuracy of embeddings when training samples are lacking or not.
GlossBERT, proposed by Huang et al. [12], combines the sentence containing
the target word with each gloss separately to obtain shared embeddings, and
then treats the WSD task as a sentence-level classification task to achieve word
sense recognition. This method has similar drawbacks to BEM, that is, it is
difficult to obtain reliable representations when training samples are lacking or
not. In addition, some researchers attempt to treat the WSD task as a few-shot
learning problem to deal with insufficient training samples for tail senses. For
example, Holla et al. [13] propose a meta-learning framework to deal with few-
shot WSD, which aims to learn features from labeled instances to disambiguate
unseen words. See also Refs. [8,9,14].

Inspired by the diverse memory and recognition abilities of children’s linguis-
tic behavior [15] (see Sect. 3.2 for a detailed analysis), we propose a bi-matching
mechanism approach for WSD. Analysis of a large number of tail senses finds
that tail senses are mostly presented in the form of fixed collocations, that is,
they often appear together with fixed words or often appear in fixed contexts.
This is also the main reason for insufficient samples of tail senses. Considering
that the collocation words of tail senses are fixed, and the collocation words
are clear, this paper proposes a collocation feature matching method to combat
the challenge of insufficient training samples of tail senses. This paper extracts
collocation words from the example sentences provided by the corresponding
word senses in the dictionary, and collectively calls them the collocation feature.
When there are multiple example sentences, the collocation feature integrates

1 http://wordnetweb.princeton.edu/perl/webwn?s=play.

http://wordnetweb.princeton.edu/perl/webwn?s=play

Bi-matching Mechanism to Combat Long-tail Senses of WSD 623

all the collocation words in the example sentences; when there is no example
sentence, the collocation feature directly uses the gloss instead. Considering the
outstanding performance of definition matching in traditional recognition meth-
ods, this paper adopts traditional definition matching to deal with head senses.
Finally, the two matching methods together constitute a WSD model with the
bi-matching mechanism.

The contributions of this paper are summarized as follows:

– By mining the characteristics of long-tail senses, a collocation feature match-
ing method against insufficient training samples of tail senses is proposed.

– Inspired by the diverse memory and recognition abilities of children’s linguis-
tic behavior, a WSD model with the bi-matching mechanism is constructed,
which fills the gap of using different matching methods for head and tail
senses.

– The experiments are carried out under the evaluation framework of English
all-words WSD, and the experimental results are better than the base-
line models. Moreover, state-of-the-art performance is achieved under data-
augmented evaluation framework.

Codes and pre-trained models are available at https://github.com/yboys0504/
wsd.

2 Related Work

In the early development of WSD, researchers did not focus on long-tail senses,
but more on dealing with all senses by adopting a unified approach. During
this period, WSD models used a single recognition method to complete the
recognition process at the end of the model [1,3]. These recognition methods are
also often used in other tasks in NLP, so we call them traditional recognition
methods. Subsequently, with the continuous improvement of the overall level
of WSD models, long-tail senses became the bottleneck of development, and
researchers began to focus on few-shot learning methods to combat long-tail
senses [14,16].

2.1 Traditional Recognition Methods for WSD

According to the classical classification method, WSD models can be roughly
divided into two categories, namely supervised models and knowledge-based
models.

Supervised models usually employ a deep network structure to process
the target word with context, and connect a classifier at the end of the model to
calculate the probability of each sense [17,18]. For example, Recurrent Neural
Network (RNN) suitable for sequence features is often used to build the core
network structure of the WSD models, and a fully connected layer with normal-
ization constraints is added as a classifier in the output layer [19,20]. Subsequent
WSD models based on pre-trained language models only replace the core network

https://github.com/yboys0504/wsd
https://github.com/yboys0504/wsd

624 J. Zhang et al.

structure with pre-trained models, but the classifiers are still implemented using
a traditional fully connected layer [21–23]. The reason why supervised models
are accustomed to this design is that the model can be trained end-to-end as a
whole.

Knowledge-based models attempt to employ external knowledge to
improve the recognition rate of WSD models, such as dictionary knowl-
edge [10,24], semantic network knowledge [25,27], and multilingual knowl-
edge [21,28]. Among them, glosses in the dictionary are often trained as text
embeddings to replace word sense labels [9,10,26]. Such definition matching
methods are good for identifying head senses, but they are not good for identi-
fying tail senses. The fundamental reason is that tail senses often appear in the
form of fixed collocations and they are difficult to give a clear definition.

2.2 Few-shot Learning Methods for WSD

Subsequently, the researchers realized the importance of long-tail senses in WSD,
and adopted some targeted solutions for tail senses, such as meta-learning, zero-
shot learning, reinforcement learning, etc. Holla et al. [13] proposed a meta-
learning framework for few-shot WSD, where the goal is to learn features from
labeled instances to disambiguate unseen words. See also Refs. [14,16]. Blevins
et al. [10] noticed the long-tail phenomenon of word sense distribution, and
proposed a dual encoder model, that is, one BERT is used to extract the word
embedding of the target word with contextual information, and another BERT
is used to obtain the text embeddings of the glosses. The innovation of this work
is that the model adopts a joint training mechanism of dual encoders, but the
disadvantage is that the model still adopts a single matching method to deal
with both head and tail senses.

3 Methodology

In this section, we first formalize the WSD task, then clarify the cognitive basis
of the bi-matching mechanism derived from children’s literacy behavior, and
finally describe the structure of our model in the formal language.

3.1 Word Sense Disambiguation

WSD is to predict the senses of the target word in a given context [1,2]. The
formal definition can be expressed as: the possible sense s ∈ Sŵ of the target
word ŵ in the given context Cŵ is formally described as

f(ŵ, Cŵ) = s ∈ Sŵ (1)

where f(·) refers to the WSD model, and Sŵ is the candidate list of the senses
of the target word.

All-words WSD is to predict all ambiguous words in a given context [1,2].
This means that the WSD model may predict the noun, verb, adjective, and

Bi-matching Mechanism to Combat Long-tail Senses of WSD 625

adverb forms of ambiguous words. In this case, the input and output of the
WSD model are defined as C = (..., wi, ...) and S = (..., sxwi

, ...), respectively,
where sxwi

represents the xth sense of the target word wi.

3.2 Cognitive Basis of Bi-matching Mechanism

Masaru Ibuka [15], a Japanese educator, pointed out that children’s literacy
behavior is mainly based on mechanical memory and recognition ability in the
early stage, and then gradually develops concept-oriented memory and recog-
nition ability in the later stage. The mechanical method rigidly remembers the
structure of the word itself and its application scenarios, such as collocation fea-
tures of words. The concept-oriented method establishes the relationship between
the structure, meaning, and usage of words through analysis and comparison,
such as the definitions given in the dictionary.

For the WSD task, we should not only pay attention to head senses with a
large number of samples, but also tail senses with only a few samples, because
long-tail senses are an important bottleneck for the development. For head
senses, it is reasonable to distinguish senses through the definition system,
because theoretically, the definition system of word senses can clearly distin-
guish different head senses. But for tail senses, it is difficult to define a clear and
non-confusing definition system for each sense. For example, “Go to plant fish”,
where the word plant means “Place into a river”. This sense of the word plant
mostly appears in such a collocation form. Therefore, considering the character-
istics of tail senses, the collocation feature matching method is more suitable for
identifying tail senses.

In this paper, we propose a bi-matching mechanism approach to construct
a WSD model (called Bi-MWSD), namely the collocation feature match-
ing method for tail senses and the definition matching method for head
senses. We describe the construction details and operation process of Bi-MWSD
in Sect. 3.3.

3.3 Bi-matching Mechanism for WSD

The architecture of Bi-MWSD is shown in Fig. 1. Bi-MWSD uses two pre-trained
language models as text feature encoders, and the pre-trained model adopts the
widely used BERT [11]. One encoder is used to extract the collocation features
of the target word in the training samples and the example sentences, which is
called the collocation feature encoder. The other is used to learn the defi-
nition system in the glosses of the target word, which is called the definition
encoder. The example sentences and glosses come from the examples and def-
initions corresponding to each sense in WordNet. The last step is the matching
process of head senses and tail senses, which is called word sense matching.

Collocation Feature Encoder: The function of the collocation feature
encoder is to memorize the collocation features of the target word, such as the

626 J. Zhang et al.

Fig. 1. Schematic diagram of the Bi-MWSD architecture, which illustrates the disam-
biguation process of the target word Plant. The collocation feature encoder is used
to encode target words and example sentences; the definition encoder is only used to
encode glosses. The symbol � represents the dot product of matrices.

structure and relationship between the target word and the collocation words,
and the entire application scenario. The encoder process two kinds of texts:

– One is the example sentences corresponding to each sense of the target word
in WordNet, Ex = (..., exk, ...) where exk represents the kth word of the example
sentence Ex of the xth sense of the target word.

– And the other is the training samples containing the target word, C =
(..., wi, ...) where wi represents the ith word.

The texts are encoded using BERT standard processing rules, that is, adding
[CLS] and [SEP] marks at the beginning and end of the text respectively, such
as

Ex = ([CLS], ..., exk , ..., [SEP]) (2)
= (excls, ..., e

x
k, ..., exsep). (3)

The processing method of the training samples is also the same. The encoder
encodes each word, including the added [CLS] and [SEP], to obtain a corre-
sponding 768-dimensional vector.

The reason why we use one encoder to process two kinds of texts here is that
both the example sentences and the training samples contain the target word,
which can all be considered that there are collocation features of the target word.
Moreover, the advantage of this processing is that the training sample will truly
reflect the frequency of each sense of the target word, and the example sentences

Bi-matching Mechanism to Combat Long-tail Senses of WSD 627

can provide the collocation features of tail senses. Processing them together can
make up for the lack of scene information of tail senses, but it will not (seriously)
change their frequency. In WordNet 3.0, sometimes multiple example sentences
are given for one sense, and we integrate all the example sentences by default;
when no example sentences are given, we use the embedded representation of
the gloss instead.

After processing by the collocation feature encoder, we can get the vector
representation of the target word in the training sample, which is defined as
vŵ, and the vector representation of the collocation features of each sense x
provided by the example sentences, which is defined as VEx . vŵ is the vector
representation corresponding to the target word in the output of the pretrained
model BERT. For VEx , we here provide two calculation methods, namely the
overall text vector minus the target word vector,

VEx = vexcls − vexŵ , (4)

and the vectors except the target word vector are added,

VEx =
∑

k

vexk − vexŵ . (5)

Through experimental analysis of these two methods, we find that the first one
is relatively better. The possible reason is that it can not only characterize the
collocation features of the target word, but also remember the entire text, namely
the application scenario.

Definition Encoder: The definition encoder constructs the definition system
of the target word by learning the glosses Gx for each sense x in WordNet,
Gx = (..., gxj , ...) where gxj represents the jth word of the gloss text of the xth

sense of the target word. The glosses are simple and accurate generalizations of
word senses and are therefore suitable for refining the definition system of the
target word. What needs to be emphasized here is that the target word itself is
not included in the glosses, so glosses cannot be used to extract the collocation
features of the target word. Following standard processing rules of BERT, [CLS]
and [SEP] marks are also added for the glosses,

Gx = ([CLS], ..., gxj , ..., [SEP]) (6)

= (gxcls, ..., g
x
j , ..., gxsep). (7)

The encoder encodes each word, including the added [CLS] and [SEP], to obtain
a corresponding 768-dimensional vector. Here we choose the output vector corre-
sponding to [CLS], i.e., vgx

cls
, to represent the entire gloss text, i.e., VGx = vgx

cls
.

This method is a common practice in the industry.

Word Sense Matching: At this point, we can calculate the score of each sense
of the target word ŵ in a given context C,

Score(ŵ|C) = F ({vŵ � (αVGx + βVEx)}x) (8)

628 J. Zhang et al.

where α and β respectively represent the proportion of the definition match-
ing method and the collocation feature matching method. F (·) can be a stan-
dard Softmax or other distribution function. When F (·) is selected as Softmax,
Score(ŵ|C) is a probability distribution of all senses of the target word in a given
context. Finally, we can conclude that the one with the highest probability is
the most likely sense.

Here α and β can be the weights learned by the model itself, or they can
be the proportions of each sense provided by WordNet. Through experimental
analysis, we find that they work best when they are set to the same value. It
needs to be explained that it is difficult to know in advance which sense of the
target word is, so it is appropriate to use the equal probability method, that is,
the possibility of the head sense or the tail sense is the same.

Parameter Optimization: We use a cross-entropy loss on the scores of the
candidate senses of the target word to train Bi-MWSD. The loss function is

Loss(Score, index) (9)

= − log
(

exp(Score[index])∑
i=1 exp(Score[i])

)
(10)

= −Score[index] + log
∑

i=1

exp(Score[i]) (11)

where index is the index of the list of the candidate senses of the target word.
Bi-MWSD employs an Adam optimizer [29] to update the parameters of the

model, and the specific settings of the optimizer are given in the experimental
section.

4 Experiments

4.1 Datasets and Evaluation Metrics

Bi-MWSD adopts the unified evaluation framework of English all-words WSD
proposed by Raganato et al. [1] to implement training and evaluation. In
the standard evaluation experiment, the training set is SemCor2; in the
evaluation experiment under data augmentation, the training set is
SemCor and WNGT3 (WordNet Gloss Tagged). Following common practice,
SemEval-2007 (SE07; [30]) is designated as the development set, and Senseval-2
(SE2; [31]), Senseval-3 (SE3; [32]), SemEval-2013 (SE13; [33]), and SemEval-
2015 (SE15; [34]) are used as the test sets. The statistical information of each
dataset is shown in Table 1. Also, we concatenate the development set and all
the test sets to reconstruct the test sets of verbs (V), nouns (N), adjectives (A),
and adverbs (R), and treat them as a whole as a test set (ALL).

2 http://lcl.uniroma1.it/wsdeval/training-data.
3 https://wordnetcode.princeton.edu/glosstag.shtml.

http://lcl.uniroma1.it/wsdeval/training-data
https://wordnetcode.princeton.edu/glosstag.shtml

Bi-matching Mechanism to Combat Long-tail Senses of WSD 629

Table 1. Statistics of the datasets: the number of documents (Docs), sentences (Sents),
tokens (Tokens), sense annotations, sense types covered, annotated lemma types cov-
ered and ambiguity level in each dataset, where the ambiguity level implies the difficulty
of the dataset.

Dataset Docs Sents Tokens Annotations Sense types Lemma types Ambiguity

SE2 3 242 5,766 2,282 1,335 1,093 5.4

SE3 3 352 5,541 1,850 1,167 977 6.8

SE07 3 135 3,201 455 375 330 8.5

SE13 13 306 8,391 1,644 827 751 4.9

SE15 4 138 2,604 1,022 659 512 5.5

In this paper, we select all word senses in WordNet 3.0 [35] as candidate
senses of the target word. All experimental results in the figures and tables are
reported as a percentage of the F1-score.

4.2 Baseline Models

To evaluate the comprehensive performance of Bi-MWSD in the community,
we select state-of-the-art models in the past three years, including LMMS [36],
EWISE [9], and GlossBERT [12] in 2019, SREF [37], ARES [26], EWISER [38],
BEM [10], and SparseLMMS [39] in 2020, and COF [40], ESR [41], Multi-
Label [42], and SACE [43] in 2021. All experimental results of the above models
are taken from the data published in the original paper.

From these, we select three most comparable models as baseline models,
which are GlossBERT [12] with similar external resources, BEM [10] with sim-
ilar framework structure, and Multi-Label [42] with multi-label classification
method. GlossBERT and BEM employ typical and traditional word sense recog-
nition methods. GlossBERT employs a fully connected layer with normaliza-
tion constraints as the output layer of the model. BEM implements word sense
matching by calculating the similarity between the target word vector and the
definition vectors. Multi-Label designs the WSD model as a multi-label classifi-
cation task. Although this method has the ability to match multiple times, it is
not the same as the bi-matching mechanism proposed in this paper.

In addition, we select three models as baselines for the evaluation experi-
ment under data augmentation, which are SparseLMMS [39], EWISER [38], and
ESR [41].

4.3 Experimental Setting

The hardware platform of Bi-MWSD is Ubuntu 18.04.3, which installs two GPUs
whose version is NVIDIA Tesla P40. The development platform is Python 3.8.34,
and the learning framework is Pytorch 1.8.15. The pre-trained language model
4 https://www.python.org/.
5 https://pytorch.org/.

https://www.python.org/
https://pytorch.org/

630 J. Zhang et al.

is provided by Transformers 4.5.16. Under the standard evaluation exper-
iment, the encoders of Bi-MWSD use BERT-base-uncased ; under the evalu-
ation experiment of data augmentation, the encoders of Bi-MWSD use
BERT-large-uncased. The hyperparameter Learning Rate, Context Batch Size,
Gloss Batch Size, Epochs, Context Maximum Length and Gloss Maximum Length
of the model are set to [1E-5, 5E-6, 1E-6], 4, 256, 20, 128 and 32, respectively.
Super-parameters not listed are given in the published code.

Table 2. F1-score (%) on the English all-words WSD task. Dev refers to the devel-
opment set, and N, V, A, R, and ALL refer to the nouns, verbs, adjectives, adverbs,
and overall datasets constructed by concatenating the development set and the test
sets, respectively. The experimental results are organized according to the standard
evaluation experiment (that is, Training data: SemCor) and the evaluation experiment
under data augmentation (that is, Training data: SemCor + WNGT). The underlined
and the bolded results refer to the overall and the regional best results, respectively.

Model Dev Test sets Concatenation

SE07 SE2 SE3 SE13 SE15 N V A R ALL

Training data: SemCor

Prior work

LMMS (ACL, 2019, [36]) 68.1 76.3 75.6 75.1 77.0 – – – – 75.4

EWISE (ACL, 2019, [9]) 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8

SREF (EMNLP, 2020, [37]) 72.1 78.6 76.6 78.0 80.5 80.6 66.5 82.6 84.4 77.8

ARES (EMNLP, 2020, [26]) 71.0 78.0 77.1 77.3 83.2 80.6 68.3 80.5 83.5 77.9

EWISER (ACL, 2020, [38]) 71.0 78.9 78.4 78.9 79.3 81.7 66.3 81.2 85.8 78.3

COF (EMNLP, 2021, [40]) 69.2 76.0 74.2 78.2 80.9 80.6 61.4 80.5 81.8 76.3

ESR (EMNLP, 2021, [41]) 75.4 80.6 78.2 79.8 82.8 82.5 69.5 82.5 87.3 79.8

SACE (ACL, 2021, [43]) 74.7 80.9 79.1 82.4 84.6 83.2 71.1 85.4 87.9 80.9

Baseline models

GlossBERT (EMNLP, 2019, [12]) 72.5 77.7 75.2 76.1 80.4 79.8 67.1 79.6 87.4 77.0

BEM (ACL, 2020, [10]) 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0

Multi-Label (EACL, 2021, [42]) 72.2 78.4 77.8 76.7 78.2 80.1 67.0 80.5 86.2 77.6

Bi-MWSD 75.2 80.2 78.0 79.8 81.4 82.8 69.5 82.5 87.5 79.4

Training data: SemCor + WNGT

SparseLMMS (EMNLP, 2020, [39]) 73.0 79.6 77.3 79.4 81.3 – – – – 78.8

EWISER (ACL, 2020, [38]) 75.2 80.8 79.0 80.7 81.8 81.7 66.3 81.2 85.8 80.1

ESR (EMNLP, 2021, [41]) 77.4 81.4 78.0 81.5 83.9 83.1 71.1 83.6 87.5 80.7

Bi-MWSDlarge 77.3 80.8 79.9 83.8 83.7 84.0 71.7 81.5 86.5 81.5

4.4 Experimental Results

The experimental results are shown in Table 2, where according to common prac-
tice, all results are presented as a percentage of the F1-score. The experimental
6 https://huggingface.co/transformers/v4.5.1/.

https://huggingface.co/transformers/v4.5.1/

Bi-matching Mechanism to Combat Long-tail Senses of WSD 631

results are organized according to the standard evaluation experiment and
the evaluation experiment under data augmentation.

– In the standard evaluation experiment, compared with previous work,
Bi-MWSD is in an upper-middle position; compared with baseline models, Bi-
MWSD achieves state-of-the-art in multiple metrics. The experimental results
confirm that the bi-matching mechanism is indeed beneficial to improve the
recognition ability of the model. Compared with GlossBERT [12], it shows
that the matching mechanism of Bi-MWSD is superior to the recognition
method constructed by a fully connected layer with normalization constraints.
The possible reason is that the recognizer constructed by a fully connected
layer has a large number of parameters that need to be learned, and the lack
of training samples of long-tail senses makes it difficult to learn the param-
eters effectively. Compared with BEM [10], it shows that the bi-matching
mechanism of Bi-MWSD will improve the recognition ability compared with
the single-matching mechanism model with a similar structure. For the con-
tribution of the collocation feature matching method, we will give an analysis
in the ablation study.

– In the evaluation experiment under data augmentation, Bi-MWSD
also achieves state-of-the-art performance in multiple metrics, indicating that
Bi-MWSD has great potential. Moreover, it also shows that when the training
sample size of tail senses is expanded, it is beneficial to improve the perfor-
mance of Bi-MWSD.

Analysis of poor performance on indicators A (adjectives) and R (adverbs)
of Table 2: In linguistics, nouns and verbs are words with a serious long-tail,
and adjectives and adverbs are relatively weaker. In other words, there are fewer
tail senses in adjectives and adverbs. For datasets where the proportion of tail
senses is not high, the method of not distinguishing or ignoring tail senses has
advantages.

Fig. 2. Experimental results of ablation studies on the definition encoder and the
collocation feature encoder. All values are experimental results under the test set ALL
and are presented as a percentage of the F1-score.

632 J. Zhang et al.

4.5 Ablation Study

Bi-MWSD employs a bi-matching mechanism to replace the traditional single-
matching mechanism of the WSD model, namely definition matching and
collocation feature matching. To clarify the contribution of various matching
mechanisms to the overall representation, and to determine their value for the
target task, we perform ablation experiments.

Ablation Study for Definition Matching: For the analysis of the definition
matching mechanism, we use the method of ablation function (i.e., freeze the
encoder) and ablation module (i.e., directly remove the encoder). The method
of freezing the encoder will prevent the encoder from fine-tuning the parameters
on the training set, that is, preventing the encoder from learning more semantic
information on the training set. We know that tail senses are marked in the
training set. Preventing the encoder from fine-tuning the parameters on the
training set will hinder the encoder’s ability to recognize tail senses. Compared
with the original model, this method will directly reflect the contribution of the
definition encoder to solving tail senses. The method of removing the encoder is
more direct, which directly reflects the contribution of the definition matching
method to the overall representation.

We separately freeze and remove the definition encoder on the original model,
and adjust the hyperparameters to get the best results. The experimental results
are shown in Fig. 2.

1. Comparing the original version and the frozen version, it can be seen that the
definition encoder can indeed learn new semantic knowledge by fine-tuning
the parameters on the training set, and it can greatly improve the overall
representation.

2. Comparing the original version and the removed version, it can be seen that
the contribution of the definition encoder to the overall representation is huge.
This result is in line with reality, because head senses are indeed far greater
than the usage rate of tail senses in life, and the function of the definition
encoder is reflected in the recognition of head senses. Again, comparing the
frozen version with the deleted version confirms this conclusion.

Ablation Study for Collocation Feature Matching: For the analysis of the
collocation feature matching mechanism, in addition to the ablation function
and ablation module, we also need to disassemble the two functions of
the collocation feature encoder, that is, target word vectorization and example
sentence vectorization. It should be emphasized that the removed version here
only removes the example sentence learning function of the encoder.

We fine-tune the hyperparameters of the modified versions to obtain the best
results. The experimental results are shown in Fig. 2.

1. Comparing the original version and the frozen version, it can be seen that
the model shows the worst case without fine-tuning the parameters under the

Bi-matching Mechanism to Combat Long-tail Senses of WSD 633

training set. The main reason is that the encoder is responsible for the learning
of the target word vector. If there is no good target word representation, it
will directly affect the overall representation.

2. Comparing the original version with the removed version, that is, removing
the collocation feature matching method, it can be seen that introducing
this matching mechanism can indeed improve the effectiveness of the model.
Although there is only two percentage point improvement, considering the
difficulty of tail sense recognition, it also shows that the bi-matching mecha-
nism does contribute to the recognition of tail senses.

3. Regarding whether the training process of merging the target word and the
collocation feature can improve the overall representation of the model, we
can compare the results of the original version and the split version. An
improvement of close to 3% proves that this design is reasonable. Example
sentences of tail senses in the dictionary improve the ability of the pre-trained
model to represent low-tail words.

5 Experiments Under Head and Tail Senses

To confirm the effectiveness of the bi-matching mechanism for various word
senses, namely, head senses and tail senses, we conduct experiments under the
reconstructed head sense and tail sense test sets respectively. The ablation exper-
iments focus more on analyzing the effectiveness of each module, while the exper-
iments here can more clearly present the specific contribution of the bi-matching
mechanism to various word senses.

Datasets: The training set and development set still employ the settings of the
standard evaluation experiment. The test sets are divided into head sense (HS)
and tail sense (TS) datasets obtained by reconstructing ALL.

– The construction method of the head sense datasets is to obtain the dataset
by removing the specified word sense samples in ALL. We construct two
head sense datasets: a dataset constructed by removing data with only one
sample (called Removed 1-shot TS); and a dataset constructed by removing
data with less than three samples (called Removed 2-shot TS).

– The construction method of the tail sense datasets is to obtain the dataset by
retaining only the specified word sense samples in ALL. We construct two
tail sense datasets: a dataset constructed by retaining only data with only
one sample (called Retained 1-shot TS); a dataset constructed by retaining
only data with less than three samples (called Retained 2-shot TS).

Experimental Setting and Baseline Models: The experimental setting is
still carried out according to the setting method of the standard evaluation
experiment. The baseline models select the most comparable GlossBERT [12]
and BEM [10] as the control group. Bi-MWSD adopts the setup of the standard
evaluation experiment.

634 J. Zhang et al.

Fig. 3. Experimental results on the head sense and the tail sense datasets reconstructed
by ALL. All values are presented as a percentage of the F1-score. Removed ∗-shot TS
and Retained ∗-shot TS refer to different kinds of head sense (HS) and tail sense (TS)
datasets, respectively.

5.1 Bi-MWSD for Head Senses

The experimental results under the head sense datasets are shown in Fig. 3. From
the overall data performance, Bi-MWSD outperforms GlossBERT but is inferior
to BEM on both head sense datasets, indicating that the bi-matching mecha-
nism is stronger than the single-matching mechanism constructed by the fully
connected layer but weaker than the single-matching mechanism constructed by
the definition identification method on datasets with all head senses. This con-
clusion shows that there is a certain interference between the double matching
mechanisms, and it is difficult to obtain the best performance when only one
class of word senses is processed.

5.2 Bi-MWSD for Tail Senses

The experimental results under the tail sense datasets are shown in Fig. 3. From
the overall data performance, Bi-MWSD outperforms the control models on
both tail sense datasets, indicating that the bi-matching mechanism has signif-
icant advantages in dealing with tail senses. This conclusion fully proves that
the collocation feature matching method can effectively deal with the long-tail
senses; the multi-matching mechanism (not limited to the bi-matching mecha-
nism proposed in this paper) can be used to achieve the purpose of dealing with
various word senses in a targeted manner.

6 Conclusion

Inspired by the diverse memory and recognition abilities of children’s linguis-
tic behavior, this paper proposes a method of bi-matching mechanism to deal
with the head and tail senses in Word Sense Disambiguation (WSD). We design

Bi-matching Mechanism to Combat Long-tail Senses of WSD 635

a collocation feature matching method for tail senses, and leverage traditional
definition matching method to deal with head senses, which together constitute
a WSD model with the bi-matching mechanism (called Bi-MWSD). Bi-MWSD
can effectively combat the difficulty of insufficient tail sense training samples
caused by the long tail distribution of word sense. In addition, Bi-MWSD out-
performs baseline models and achieves state-of-the-art performance under data-
augmented evaluation framework. The contribution of this work is to fill the
gap of bi-matching mechanism in WSD, and moreover explore the feasibility of
bi-matching mechanism against insufficient training samples.

In future work, we will build a hierarchical multi-matching mechanism to
better address the imbalance of training samples caused by the long-tailed phe-
nomenon of word sense distribution. Moreover, we will further subdivide the
word senses, and employ this multi-matching method to deal with various word
senses in a targeted manner to improve the accuracy of word sense recognition.

Acknowledgements. Our work is supported by the National Natural Science
Foundation of China (61976154), the National Key R&D Program of China
(2019YFC1521200), the State Key Laboratory of Communication Content Cognition,
People’s Daily Online (No. A32003), and the National Natural Science Foundation of
China (No. 62106176).

References

1. Navigli, R., Camacho-Collados, J., Raganato, A.: Word sense disambiguation: a
unified evaluation framework and empirical comparison. In: EACL (2017)

2. Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. 41, 1–69
(2009)

3. Bevilacqua, M., Pasini, T., Raganato, A., Navigli, R.: Recent trends in word sense
disambiguation: a survey. In: IJCAI (2021)

4. Neale, S., Gomes, L.-M., Agirre, E., Lacalle, O.-L., Branco, A.-H.: Word sense-
aware machine translation: including senses as contextual features for improved
translation models. In: LREC (2016)

5. Rios Gonzales, A., Mascarell, L., Sennrich, R.: Improving word sense disambigua-
tion in neural machine translation with sense embeddings. In: WMT (2017)

6. Dewadkar, D.-A., Haribhakta, Y.-V., Kulkarni, P.-A., Balvir, P.-D.: Unsupervised
word sense disambiguation in natural language understanding. In: ICAI (2010)

7. Mills, M.-T., Bourbakis, N.-G.: Graph-based methods for natural language pro-
cessing and understanding-a survey and analysis. IEEE Trans. Syst. Man Cybern.
Syst. 44, 59–71 (2014)

8. Li, W., Madabushi, H.-T., Lee, M.-G.: UoB UK at SemEval 2021 Task 2: Zero-shot
and few-shot learning for multi-lingual and cross-lingual word sense disambigua-
tion. In: SEMEVAL (2021)

9. Kumar, S., Jat, S., Saxena, K., Talukdar, P.-P.: Zero-shot word sense disambigua-
tion using sense definition embeddings. In: ACL (2019)

10. Blevins, T., Zettlemoyer, L.: Moving down the long tail of word sense disambigua-
tion with gloss informed bi-encoders. In: ACL (2020)

11. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL (2019)

636 J. Zhang et al.

12. Huang, L., Sun, C., Qiu, X., Huang, X.: GlossBERT: BERT for word sense disam-
biguation with gloss knowledge. In: EMNLP (2019)

13. Holla, N., Mishra, P., Yannakoudakis, H., Shutova, E.: Learning to learn to disam-
biguate: meta-learning for few-shot word sense disambiguation. In: EMNLP (2020)

14. Du, Y., Holla, N., Zhen, X., Snoek, C.-G., Shutova, E.: Meta-learning with varia-
tional semantic memory for word sense disambiguation. In: ACL (2021)

15. Ibuka, M.: Kindergarten is Too Late!. Souvenir Press, London (1977)
16. Chen, H., Xia, M., Chen, D.: Non-parametric few-shot learning for word sense

disambiguation. In: NAACL (2021)
17. Yuan, D., Richardson, J., Doherty, R., Evans, C., Altendorf, E.: Semi-supervised

word sense disambiguation with neural models. In: COLING (2016)
18. Raganato, A., Bovi, C.-D., Navigli, R.: Neural sequence learning models for word

sense disambiguation. In: EMNLP (2017)
19. Le, M.-N., Postma, M., Urbani, J., Vossen, P.: A Deep dive into word sense dis-

ambiguation with LSTM. In: COLING (2018)
20. K̊agebäck, M., Salomonsson, H.: Word sense disambiguation using a bidirectional

LSTM. In: COLING (2016)
21. Scarlini, B., Pasini, T., Navigli, R.: SensEmBERT: context-enhanced sense embed-

dings for multilingual word sense disambiguation. In: AAAI (2020)
22. Hadiwinoto, C., Ng, H.-T., Gan, W.-C.: Improved word sense disambiguation using

pre-trained contextualized word representations. In: EMNLP (2019)
23. Du, J., Qi, F., Sun, M.: Using BERT for word sense disambiguation.

arXiv:1909.08358 (2019)
24. Luo, F., Liu, T., Xia, Q., Chang, B., Sui, Z.: Incorporating glosses into neural word

sense disambiguation. In: ACL (2018)
25. Fernandez, A.-D., Stevenson, M., Mart́ınez-Romo, J., Araujo, L.: Co-occurrence

graphs for word sense disambiguation in the biomedical domain. Artif. Intell. Med.
87, 9–19 (2018)

26. Scarlini, B., Pasini, T., Navigli, R.: With more contexts comes better perfor-
mance: contextualized sense embeddings for all-round word sense disambiguation.
In: EMNLP (2020)

27. Dongsuk, O., Kwon, S., Kim, K., Ko, Y.: Word sense disambiguation based on
word similarity calculation using word vector representation from a knowledge-
based graph. In: COLING (2018)

28. Pasini, T.: The knowledge acquisition bottleneck problem in multilingual word
sense disambiguation. In: IJCAI (2020)

29. Kingma, D.-P., Ba, J.: Adam: A Method for Stochastic Optimization. CoRR,
abs/1412.6980 (2015)

30. Pradhan, S., Loper, E., Dligach, D., Palmer, M.: SemEval-2007 Task 2017: English
lexical sample. In: SRL and All Words, Fourth International Workshop on Semantic
Evaluations (2007)

31. Edmonds, P., Cotton, S.: SENSEVAL-2: Overview. *SEMEVAL (2001)
32. Snyder, B., Palmer, M.: The English all-words task. In: ACL (2004)
33. Navigli, R., Jurgens, D., Vannella, D.: SemEval-2013 task 12: multilingual word

sense disambiguation. In: *SEMEVAL (2013)
34. Moro, A., Navigli, R.: SemEval-2015 Task 13: multilingual all-words sense disam-

biguation and entity linking. In: *SEMEVAL (2015)
35. Fellbaum, C.-D.: WordNet: An Electronic Lexical Database. Language. MIT Press,

Cambridge (2000)

http://arxiv.org/abs/1909.08358

Bi-matching Mechanism to Combat Long-tail Senses of WSD 637

36. Loureiro, D., Jorge, A.-M.: Language modelling makes sense: propagating repre-
sentations through wordnet for full-coverage word sense disambiguation. In: ACL
(2019)

37. Wang, M., Wang, Y.: A synset relation-enhanced framework with a try-again mech-
anism for word sense disambiguation. In: EMNLP (2020)

38. Bevilacqua, M., Navigli, R.: Breaking Through the 80% Glass Ceiling: Raising the
State of the Art in Word Sense Disambiguation by Incorporating Knowledge Graph
Information. ACL (2020)

39. Berend, G.: Sparsity Makes Sense: Word Sense Disambiguation Using Sparse Con-
textualized Word Representations. EMNLP (2020)

40. Wang, M., Zhang, J., Wang, Y.: Enhancing the Context Representation in
Similarity-based Word Sense Disambiguation. EMNLP (2021)

41. Song, Y., Ong, X.C., Ng, H.T., Lin, Q.: Improved Word Sense Disambiguation
with Enhanced Sense Representations. EMNLP (2021)

42. Conia, S., Navigli, R.: Framing Word Sense Disambiguation as a Multi-Label Prob-
lem for Model-Agnostic Knowledge Integration. EACL (2021)

43. Wang, M., Wang, Y.: Word Sense Disambiguation: Towards Interactive Context
Exploitation from Both Word and Sense Perspectives. ACL (2021)

FairDistillation: Mitigating Stereotyping
in Language Models

Pieter Delobelle1,2(B) and Bettina Berendt1,2,3,4

1 Department of Computer Science, KU Leuven, Leuven, Belgium
pieter.delobelle@kuleuven.be

2 Leuven.AI Institute, Leuven, Belgium
3 Faculty of Electrical Engineering and Computer Science,

TU Berlin, Berlin, Germany
4 Weizenbaum Institute, Berlin, Germany

Abstract. Large pre-trained language models are successfully being
used in a variety of tasks, across many languages. With this ever-
increasing usage, the risk of harmful side effects also rises, for example by
reproducing and reinforcing stereotypes. However, detecting and mitigat-
ing these harms is difficult to do in general and becomes computationally
expensive when tackling multiple languages or when considering differ-
ent biases. To address this, we present FairDistillation: a cross-lingual
method based on knowledge distillation to construct smaller language
models while controlling for specific biases. We found that our distilla-
tion method does not negatively affect the downstream performance on
most tasks and successfully mitigates stereotyping and representational
harms. We demonstrate that FairDistillation can create fairer language
models at a considerably lower cost than alternative approaches.

Keywords: Knowledge distillation · Fairness · BERT · Language
models

1 Introduction

Pre-trained transformer-based Language Models (LMs), like BERT [14], are
not only pushing the state-of-the-art across many languages, they are also
being deployed in various services, ranging from machine translation to internet
search [14,22,34]. However, these deployed language models have been shown to
exhibit problematic behaviour. For instance, BERT and other models (i) replicate
gender stereotypes [1,12,32], (ii) exhibit dubious racial correlations [32] and (iii)
reproduce racial stereotypes [26]. These behaviours are all present in pre-trained
models that are used in a wide range of applications, which are referred to as down-
stream tasks.

Without precautions, downstream tasks could use such problematic
behaviour to make biased predictions. LMs are generally finetuned for such tasks,
where allocation harms (i.e. allocating or withholding a resource) might occur [3].
These can originate from the fine-tuning dataset or the pre-trained model or a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 638–654, 2023.
https://doi.org/10.1007/978-3-031-26390-3_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_37&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_37

FairDistillation: Mitigating Stereotyping in Language Models 639

combination of both. We focus on the pre-training, where representation harms
(i.e. encoding stereotypes) can occur in the pre-trained LMs [3,36].

Multiple methods have been proposed to reduce representational harms in
language models [1,36], These methods are based on pre-processing of the data,
for example Counterfactual Data Augmentation (CDA) [23] or Counterfactual
Data Substitution (CDS) [16]. In both cases, gendered words in input sequences
are replaced by a predefined counterfactual, e.g. “He is a doctor” → “She is a
doctor”. CDA can significantly increase the training dataset, with longer training
times as a consequence, so CDS-based methods replace input sequences instead.
Nevertheless, both techniques require retraining the model with an augmented
dataset, instead of leveraging the efforts done to train the original model.

Wepropose a framework formitigating representational harms based on knowl-
edge distillation [17], which we demonstrate on gender stereotypes. Our approach
uses existing language models as a teacher, which provides a richer training sig-
nal and does not require retraining from scratch. To prevent the transfer of learnt
correlations to new LMs, our framework replaces CDA’s augmentation strategy
with probabilistic rules between tokens. Since our approach can be performed at
a fraction of the original training cost and also creates smaller models, it becomes
more feasible to create domain-specific bias-controlled LMs.

In this paper, we start in Sect. 2 with an overview of language models and
fairness interventions (Sect. 2.1). In Sect. 3, we present our method to create
debiased language models, which we call FairDistillation. Section 4 describes the
evaluation set-up and Sect. 5 presents the results. Section 6 gives an overview of
future work and ethical considerations and we conclude in Sect. 7.

2 Background

BERT [14] is a language model that is trained in two phases: (i) self-supervised
pre-training with a Masked Language Modeling (MLM) objective and afterwards
(ii) supervised finetuning for downstream tasks. The intuition behind the first
learning task is that learning to reconstruct missing words in a sentence helps
with capturing interesting semantics—and because this relies on co-occurrences it
also captures stereotypes. Formally, a token xm in the input sequence x1, . . . , xN

is replaced by a masked token (<mask>) and the MLM objective is to predict
the original token xm based on the context x = x1, . . . , xm−1, xm+1, . . . , xN ,
following

max
θ

N∑

i=1

1xi=xm
log (P (xi | x; θ))

with 1xi=xm
as an indicator function whether the token is correctly predicted.

This training setup results in a good estimator of the contextualized probability
of a word P (xi | x; θ). Aside from the MLM objective, the original BERT model
also incorporated a Next Sentence Prediction (NSP) objective. Liu et al. [22]
later concluded that the NSP objective did not improve training and removed
it when constructing RoBERTa. Because of this, we do not further consider this
objective during distillation or evaluation.

640 P. Delobelle and B. Berendt

After pre-training, the newly obtained model can be reused and finetuned for
different classification and regression tasks, like sentiment analysis. Finetuning
requires different datasets, that can also introduce biases that are referred to as
extrinsic biases [11]. Mitigating extrinsic biases in downstream tasks is out of scope
for this work. Nevertheless, since LMs are used both for downstream tasks and for
generating contextualized embeddings, mitigating intrinsic biases is still crucial.

2.1 Mitigating Intrinsic Biases

Bolukbasi et al. [5] presented two intrinsic debiasing methods based on removing
the observed gender axis in static word embeddings. Mitigating problematic cor-
relations is more challenging for LMs because of the contextualization that models
like BERT incorporate. This means that word representations from LMs cannot
be considered in isolation, so mitigation strategies for word embeddings cannot be
applied.

Models like BERT can only generate meaningful representations for a given
sequence, so for this reason, mitigation strategies have mostly been based on
Counterfactual Data Augmentation (CDA) [1,16,23,36]. This strategy augments
the pre-training dataset with sequences where certain words, like pronouns or
names, are swapped.

Unfortunately, this requires re-training the model from scratch, which can
be extremely costly and with many negative side effects [2].

One of few mitigation strategies that does not alter the training data was
also presented by Webster et al. [36], namely using dropout as a regularisation
method against problematic correlations. Regularisation as a means to mitigate
problematic correlations thus seems a feasible option, but albeit effective, the
method still requires retraining the model from scratch. It should also be noted
that these efforts are mostly focused on English. Results of performing CDA on
a German model were less successful, likely due to gender marking [1].

All previous methods require retaining a language model. Lauscher et al.
[21] presents a unique approach, ADELE, that addresses this issue by using
adapters [18,29,30]. These adapters are inserted after each attention layer and
are the only trainable parameters, so the majority of parameters of a language
model are shared over different tasks. ADELE trains these adapters on a sub-
set (1/3th) of the original BERT corpus1 with the MLM objective and CDA
to mitigate biases. Although ADELE works very different from our distillation
method, both methods aim to reduce the computational requirements and asso-
ciated costs, by reusing existing models.

2.2 Knowledge Distillation

Knowledge distillation is a method to transfer learnt knowledge from one model—
originally proposed as an ensemble of models—to another, usually smaller

1 The original BERT corpus is a concatenation of Wikipedia and the Toronto Book-
corpus [14].

FairDistillation: Mitigating Stereotyping in Language Models 641

Fig. 1. Overview of the training procedure with FairDistillation for a single input
sequence in English.

model [7,17]. Buciluǎ et al. [7] introduced this technique as model compression
with an ensemble of models that are used to label a dataset. This was later adapted
for neural networks [17]. The teacher outputs a label probability distribution zi

where some labels have higher probabilities, for example names or pronouns are
more likely than verbs in the sentence “<mask> is a doctor.”. To incorporate this
information, a variation of the softmax function (Eq. 1) can be used with a tem-
perature T to tune the importance of these labels.

pi =
exp

(
zi

T

)
∑

j exp
(zj

T

) . (1)

Sanh et al. [31] focus on the distillation of the MLM task from pre-trained
LMs. Their models, DistilBERT and DistilRoBERTa, are trained on a linear
combination of a distillation loss Lce with the softening function from Eq. 1, the
original MLM loss Lmlm, and additionally a cosine loss Lcos for the last hidden
states, following

L = αceLce + αmlmLmlm + αcosLcos.

TinyBERT [19] takes the same approach but also proposes a set of loss func-
tions that perform distillation on (i) the embeddings layer, (ii) each of the trans-
former layers, and (iii) the prediction layer for specific tasks. These different loss
functions make TinyBERT perform slightly better than DistilBERT, but these
functions require additional transformations to be learnt. In addition, if the stu-
dent and teacher have a different number of layers, a mapping function is also
required to transfer the knowledge between both.

3 FairDistillation

In this section, we introduce FairDistillation, a method to mitigate problematic
correlations in pre-trained language models. We first present the distillation
architecture (Sect. 3.1) and afterwards, we will discuss the probabilistic rules
that our method relies on (Sect. 3.2).

642 P. Delobelle and B. Berendt

3.1 Architecture

Our method trains a newly initialized model (the student) from an already
trained model (the teacher). Often, the teacher model has already been evalu-
ated for biases, for example stereotypical gender norms for professions, which can
lead to representational harms [3]. In this example, models like BERT-base [14]
predict that the input sentence “<mask> is a doctor.” should be filled with ‘He’
instead of ‘She’. The LM encoded that the token ‘He’ is more frequent in the
training dataset, both in isolation and in combination with words like ‘doctor ’.

To prevent representational harms from being encoded in the final model,
we apply a set of user-specified rules to the predictions of the original model.
By doing so, we can train a new model with these predictions. Predictions of
a teacher model provide a richer training signal and thus require less training
time compared to CDA and CDS [17,19,31]. Moreover, we can simultaneously
reduce the student’s model size to improve both training and inference times,
which boils down to knowledge distillation as is done for DistilBERT [31].

Figure 1 illustrates our method, which consists of 5 steps. First, an input
sequence x is passed to both the teacher and the student model, both with an
MLM prediction head. Second, the MLM predictions of the teacher model are
passed to the rule engine. Third, the predictions for certain tokens, like ‘He’,
are modified based on the provided rules. Figure 1 demonstrates how a rule
where we assume equal probabilities P (‘He’ | x) = P (‘She’ | x) alters the MLM
prediction, which we discuss more in-depth later in this section. Fourth, both
MLM outputs, after applying possible rules to the teacher outputs, are used
to calculate the distillation loss Lce between the teacher and student outputs.
Finally, the MLM outputs of the student model can also be used to calculate an
additional loss term Lmlm to train the student model in the same manner as the
original model.

Student Architecture. The student models use the same base architecture as
the teacher models, but with 6 attention layers instead of the typical 12 layers,
following Sanh et al. [31]. The weights are initialized at random, which we prefer
over smarter initialization strategies [31] to prevent an accidental transfer of
problematic correlations. We also reuse the teacher’s tokenizer for the student,
since these are already specifically constructed for the targeted language and no
complex token translation is needed.

Applying Probabilistic Rules. The MLM head outputs a vector for each position
in the input sequence, so for BERT-base this means at most 512 vectors. Each
value in this vector represents the probability that a token fits in this position.
Consequently, there will be 30,522 values for BERT-base-uncased. We assume that
some probabilities should be equal, like P (‘He’ | “<mask> is a doctor”) = P (‘She’
| “<mask> is a doctor”), so our method can enforce these kind of equality rules.

During distillation, our method applies these equality rules to all the MLM
outputs of the teacher. For efficiency reasons, the tokens of interest are translated
into a small lookup table at the start of the distillation loop so that applying

FairDistillation: Mitigating Stereotyping in Language Models 643

each rule only requires a few lookup operations. The corresponding values of the
tokens are set to the mean of both values. Consequently, the outcome is also
normalized and each prediction still sums up to 1.

Currently, our method only supports equalization between two or more tokens.
We did experiment with implementing these and more complex rules in ProbLog,
a probabilistic logic programming language [10], but this proved to be unfeasi-
ble because of inference times that frequently exceeded 0.5 s per training exam-
ple. Nevertheless, future work could focus on adding more complex rules that also
depend for example on context or on part-of-speech tags to distinguish between
adjectives (‘His car’ → ‘Her car’) or pronouns (‘. . . is his’ → ‘. . . is hers’).

Knowledge Distillation. We follow the DistilBERT [31] distillation method, as
discussed in Sect. 2. FairDistillation applies a set of rules to affect the distillation
loss, but the student not only learns from the distillation task, but also from the
MLM task. It is possible to concurrently train on this MLM objective for little
additional cost. Although this can be another source of problematic correlations,
we opted to use this loss without correcting any associations. We reason that
the contextual probability for a single input sequence can also be a useful signal.

3.2 Obtaining Probabilistic Rules

Until now, we used a running example of a probabilistic rule where the contex-
tualized probability, as generated by the teacher LM, has to be equal for two
tokens, namely ‘He’ and ‘She’. CDA achieves something similar by augmenting
the dataset based on word mappings [15,23]. These mappings are very similar
to our probabilistic rules; in fact, AugLy, a popular data augmentation frame-
work [28], has the same mapping2 that we use for our running example in the
context of gender bias.

Depending on which biases one wants to mitigate, different sets of rules are
required. We focus in this work on gender bias, so we rely on the same kind of
rules as CDA. Simple rules to balance predictions highlight the robustness of our
method and do not require lists of professions, which come with their own issues
and biases [4]. However, creating more fine-grained, domain-specific rules might
improve our results. Such rules could aim at balancing, for example, profession
titles or proper names.

4 Experimental Setup

We evaluate our method in two Indo-European languages: (i) English and (ii)
Dutch, of which the results are discussed further in Sect. 5. Both languages
have their own set of models, pre-training corpora and evaluation datasets,
which we briefly cover in this section. The evaluation of gender biases is also
highly language-dependent and to illustrate generalization of our method beyond
2 https://raw.githubusercontent.com/facebookresearch/AugLy/main/augly/assets/

text/gendered words mapping.json.

https://raw.githubusercontent.com/facebookresearch/AugLy/main/augly/assets/text/gendered_words_mapping.json
https://raw.githubusercontent.com/facebookresearch/AugLy/main/augly/assets/text/gendered_words_mapping.json

644 P. Delobelle and B. Berendt

English, we also used a monolingual model for Dutch [12] with an architecture
similar to RoBERTa [22]. We opted for this language since it has some inter-
esting, challenging characteristics, namely it is one of only two languages with
cross-serial dependencies that make it non-context free, with the other one being
Swiss-German [6]. It also has gendered suffixes for some, yet not all, nouns. This
affects such evaluations since these rely on implicit associations between nouns
(e.g. for professions). However, grammatical gender can also be an opportunity
to evaluate how e.g. gendered professions align with the workforce [1] or with
equal opportunity policies. We compare our method based on three popular
metrics that we discuss in this section, Delobelle et al. [11] provides a more
comprehensive overview of intrinsic fairness measures.

SEAT. The Word Embedding Association Test (WEAT) [8] measures associ-
ations between target words (‘He’, ‘She’, . . .) and attribute words (‘doctor’,
‘nurse’, . . .). Between the embeddings of each target and attribute word, a sim-
ilarity measure like cosine similarity can be used to quantify the association
between word pairs. To add context, SEAT uses some ‘semantically bleached’
template sentences [26].

LPBS. Kurita et al. [20] observe that using SEAT for the learned BERT embed-
dings fails to find many statistically significant biases, which is addressed in the
presented log probability bias score (LPBS). This score computes a probability
ptgt for a target token t (e.g. ‘He’ or ‘She’) from the distribution of the masked
position Xm following

ptgt = P (Xm = t | x; θ) ,

for a template sentence, e.g. “<mask> is a doctor”. Since the prior likelihood
P (Xm = t) can skew the results, the authors correct for this by calculating a
template prior pprior by additionally masking the token(s) with a profession or
another attribute xp, following

pprior = P (Xm = t | x\{xp}; θ) .

Both probabilities are combined in a measure of association log ptgt

pprior
and the

bias score is the difference between the association measures for two targets, like
‘He’ and ‘She‘. Kurita et al. [20] applied their method to the original English
BERT model [14] and found statistically significant differences for all categories
of the WEAT templates.

DisCo. Webster et al. [36] also utilize templates to evaluate possible biases
which their approach also mitigates (see Sect. 2.1). As an intrinsic measure, the
authors present discovery of correlations (DisCo). Compared to previously dis-
cussed metrics, this metric measures the difference in predictions for the attribute
token xp when varying gendered tokens (i.e. ‘<P> is a <mask>’ for different pro-
nouns or names instead of ‘<mask> is a <P> ’ with different professions).

We experimented with the original DisCo metric, which performs statistical
tests between predicted tokens, but we found that it didn’t produce any statis-
tically significant tokens. So, we simplified the metric to measure the differences

FairDistillation: Mitigating Stereotyping in Language Models 645

in probabilities for the predicted tokens. The resulting score of our DisCo imple-
mentation can therefore also be negative, while the original version has a lower
bound of 0 as it counts the number of statistically significant fills.

In the remainder of this section, we discuss our evaluations of English and
Dutch in their respective subsections, where we define the used datasets, models
and language-specific evaluation aspects.

4.1 English Setup

The first model we use as a teacher is the original uncased BERT model
(BERT-base-uncased) as released by Devlin et al. [14], which is also the most-
studied LM with regard to gender stereotypes. This model was trained on the
Toronto Bookcorpus and Wikipedia, but the Toronto Bookcorpus is no longer
publicly available anymore and thus hinders reproduction. For this reason, Jiao
et al. [19] use only Wikipedia. We used a portion of the English section of the
OSCAR corpus [27] to keep the training dataset size similar. More specifically,
we used the first two shards of the unshuffled version. We recognise that there is
a mismatch between the domains of the Bookcorpus and OSCAR, but we believe
this is acceptable to increase reproducibility.

As introduced in Sect. 3.2, we use a set of gendered pronouns and define
which ones should have the same probability. Since we use the uncased variant,
we only need to define one set of rules, since ‘She’ and ‘she’ result in the same
token.

The tokenization method used by BERT, WordPiece, splits words and adds
a merge symbol (e.g. ‘word’ + ‘##piece’), so no special care is required. For
RoBERTa [22], which uses Byte Pair Encoding (BPE), a word boundary sym-
bol is used. Consequently, a word can have different tokens and representations
depending if a space, punctuation mark, mask token or sequence start token are
in front of the target token. Since the Dutch model uses BPE, we will revisit
this issue in Sect. 4.2.

Evaluation. To evaluate our method’s performance trade-off, we finetune the
obtained model on the Internet Movie Database (IMDB) sentiment analysis
task [24], which was also done by BERT [14] and DistilBERT [31]. The dataset
contains 25k training examples, from which we used 5k as a separate validation
set, and another 25k test sequences. This is a high-level task where no gendered
correlations should be used for predictions. Predicting entailment is a high-level
task covered multiple times in GLUE [35], on which we also evaluated our method
with the pre-trained model. For a description of this benchmark and all datasets,
we refer to Wang et al. [35].

Bias Evaluation. To evaluate possible problematic correlations with regard to
gender stereotypes, we compute DisCo and LPBS, which we introduce at the
beginning of this section. We use the Employee Salary dataset3 [20]. Following
3 https://github.com/keitakurita/contextual embedding bias measure/blob/master/

notebooks/data/employeesalaries2017.csv.

https://github.com/keitakurita/contextual_embedding_bias_measure/blob/master/notebooks/data/employeesalaries2017.csv
https://github.com/keitakurita/contextual_embedding_bias_measure/blob/master/notebooks/data/employeesalaries2017.csv

646 P. Delobelle and B. Berendt

Kurita et al. [20], we filter on the top 1000 highest-earning instances as a proxy
for prestigious jobs and test this for the same two templates (‘<mask> is a <P>’
and ‘<mask> can do <P>’). However, we additionally filter digits from the job
titles and remove duplicate titles, to not skew the results towards more popular
professions.

4.2 Dutch Setup

We use a Dutch RoBERTa-based model called RobBERT [12] as a teacher, more
specifically robbert-v2-dutch-base. This model was pre-trained on the Dutch
section of the shuffled version of OSCAR4. Similar to the distilled version of
RobBERT [13], we select a 1GB portion of the OSCAR corpus (using head,
2.5%) to illustrate the ability to perform successful knowledge distillation with
only a small fraction of the data required in comparison to the pre-trained model.

To create our model, we used a defined a set of rules based on the gendered
pronouns ‘Hij’ and ‘Zij’ (‘He’ and ‘She’). The tokens corresponding to these
pronouns were grouped based on capitalization and included spaces, since the
BPE tokenizer includes a word boundary character at the beginning of some
tokens. Our method then used these rules to equalise the distributions predicted
by the teacher during distillation, which we performed for 3 epochs. This took
approximately 40 h per epoch on a Nvidia 1080 Ti and a traditionally distilled
model required the same time, indicating our method has very limited effect on
training time.

Evaluation. Wecompare themodel createdwithFairDistillation toRobBERTand
RobBERTje [12,13] on the same set of benchmark tasks: (i) sentiment analysis on
book reviews (DBRD) [33], (ii) NER, (iii) POS tagging, and (iv) natural language
inference with SICK-NL [37]. These tasks are fairly high-level sequence-labelling
tasks that can exhibit allocational harms, such as the predictive difference for sen-
timent analysis that was illustrated by Delobelle et al. [12].

Bias Evaluation. We also evaluate numerically using the LPBS and DisCo met-
rics, but the RobBERT LM has also been evaluated by the authors on gender
stereotyping using a different technique. This evaluation technique is based on
a set of templates and a translated set of professions5 from Bolukbasi et al. [5].
These professions have a perceived gender (e.g. ‘actress’ is a female profession
and ‘surveyor’ is neutral), which can be correlated with the predictions by the
model. The authors rank the tokens based on the predicted probability instead
of using this probability directly. Interestingly, a correlation was not considered
problematic, but male pronouns were predicted higher on average, even for by
definition female professions (e.g. ‘nun’). To compare these results, we recreate
the same plot and report the Mean Ranking Difference (MRD). We focus on the
gendered pronouns ‘zij ’ (‘she’) and ‘hij ’ (‘he’) for our evaluation.

4 https://oscar-corpus.com.
5 https://people.cs.kuleuven.be/∼pieter.delobelle/data.html.

https://oscar-corpus.com
https://people.cs.kuleuven.be/~pieter.delobelle/data.html

FairDistillation: Mitigating Stereotyping in Language Models 647

Table 1. English results on IMDB (sentiment analysis), GLUE [35], and two bias mea-
sures. Following Devlin et al. [14], we report F1 scores for QQP and MRPC, Spearman
correlations for STS-B, and accuracy for all other tasks. Results reported by Devlin
et al. [14] on the GLUE dashboard are indicated with an obelisk (†), while the results
from [31] are also on the GLUE dev set, indicated with an asterisk (∗). For LPBS,
positive values represent more stereotypical associations, and for DisCo, lower values
are more favorable.

Model IMDB GLUE Bias

MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE LPBS DisCo

BERT [14] 93.5 84.0† 71.2† 90.5† 93.5† 52.1† 85.8† 88.9† 66.4† 1.16 −0.48

DistilBERT [31] 92.82 82.2∗ 88.5∗ 89.2∗ 91.3∗ 51.3∗ 86.9∗ 87.5∗ 59.9∗ −0.27 −0.55

FairDistillation 85.5 ± 0.4 80.1 82.1 86.6 90.6 38.5 84.0 85.1 59.6 −0.16 0.25

5 Results

In this section, we present the results of the experiments (Sect. 4). We discuss
English (Sect. 5.1) and Dutch (Sect. 5.2) results separately. We also performed
experiments on French using the CamemBERT model [25], but we chose to
ommit those results due to our limited understanding of the language, which we
address further in Sect. 6.

To eliminate any possible effect from hyperparameter assignments on the
results, we ran each finetuning training 10 times with random hyperparameter
assignments. We varied the (i) learning rate, (ii) weight decay, and (iii) the num-
ber of gradient accumulation steps to effectively scale the batch size while still
fully utilizing the GPU. The full set of hyperparameters is listed in Table 3 in the
supplementary materials. For the Dutch benchmarks and for the English IMDB,
we select the best-performing model based on the validation set and present the
results on the held-out test set. The results from the GLUE benchmark are from
the dev set, which were also the results reported by [31].

Unless indicated otherwise, all training runs are done on a single Nvidia 1080
Ti with 11 GB VRAM. All models are also comparably sized, with 66M trainable
parameters each. This is 50% of the model size of the teachers.

5.1 English Results

We observe that problematic correlations are reduced on all three metrics, as is
shown in Table 1. One interesting observation—which also holds for Dutch—is
that distillation in itself is already successful in mitigating these correlations.
This might be related to regularization as a method to control correlations [36],
but we leave this for a future study.

On the IMDB task, our model suffers a 10% accuracy drop, which is signifi-
cant. However, as noted in Sect. 4, we used a smaller training set for finetuning
than BERT and DistilBERT, because we created a separate validation set from
the original training set.

For GLUE, the results are in line with distilBERT. We do observe some
diminished scores, notably CoLA, but the overall trade-off is limited.

648 P. Delobelle and B. Berendt

Table 2. Dutch results on several benchmarks, namely Dutch Book Reviews (DBRD,
sentiment analysis), named entity recognition (NER), part-of-speech (POS), tagging,
and language inference (SICK-NL). We report bias as measured with LPBS and DisCo
and additionally the mean ranking difference (MRD), which measures the preference
of a language model to fill in male tokens (negative score) or female tokens (positive
score). Benchmarks are reported with accuracy with 95% CI, except for the NER task,
where we report the F1 score. Results indicated with † were reported by Delobelle
et al. [12]. For MRD, smaller ranking differences are more favorable, for LPBS, positive
values represent more stereotypical associations, and for DisCo, lower values are more
favorable.

Model Params Benchmark scores Bias

DBRD NER POS SICK-NL MRD LPBS DisCo

RobBERT [12] 116 M 94.4± 1.0† 89.1† 96.4± 0.4† 84.2± 1.0 −7.47 1.13 −0.29

RobBERTje [13] 74 M 92.5± 1.1 82.7 95.6± 0.4 83.4± 1.0 −6.66 −0.45 −0.41

FairDistillation 74 M 92.1± 1.1 82.7 95.4± 0.4 82.4± 1.1 −3.98 1.14 −0.08

Unlike the other models, we performed our FairDistillation method on 4
Nvidia V100’s for 3 epochs, which took 70h per epoch. Finetuning was done
on an Nvidia 1080 Ti for 4 epochs for IMDB, which took approximately 1h
per run and was replicated 10 times. For GLUE, we report the dev results and
did not do any hyperparameter search. We used the same hyperparameters as
distilBERT [31], who also report the development set results.

5.2 Dutch Results

Both the distilled RobBERT model and the model obtained with FairDistil-
lation perform only slightly worse (within 97.5% of the original model) for both
downstream tasks (see Table 2). Both models have only half the parameters com-
pared to the original RobBERT model and are thus faster to train and deploy,
making this a decent trade-off between model size and predictive performance.
With no significant differences in performance between the distilled model and
our FairDistillation model, this highlights the potential of our method.

With regards to the bias evaluation, we observe a reduction between the orig-
inal model and ours (Table 2): correlations are significantly reduced as measured
by DisCo and the mean ranking of female associated tokens improved by 3.5
tokens. The only exception is LPBS [20], which incorporates a correction based
on the prior probability of a token. Our method effectively corrects this prior,
while still allowing the context to affect individual results with the MLM objec-
tive. Since Dutch has gendered nouns for some professions, a correlation is not
necessarily undesirable, but the prior is (e.g. assuming all physicians are men).
Further graphical analysis of the predicted rankings for the third person singular
pronouns confirms this, as shown in Fig. 2. These charts reveal that most pro-
fessions are now less associated with the masculine pronoun. When considering

FairDistillation: Mitigating Stereotyping in Language Models 649

Fig. 2. Differences in predictions for the Dutch template ‘<mask> is een <P>’ for our
and the original RobBERT model. The ‘gender’ axis ranges from words associated with
female professions (left) to words associated with male professions (right). A positive
ranking difference indicates ‘She’ is predicted before ‘He’.

which pronoun is ranked higher (i.e. above or below y = 0), this result is even
more pronounced. RobBERT only predicted a feminine pronoun for a single
profession [12], while with our method this increased to 15 professions.

6 Limitations and Ethical Considerations

Despite the promising results, there are several potential improvements possible
to our methods, as well as some ethical considerations. First, we rely on facts that
express probabilities for a single token at a time. For gender stereotyping, this
is sufficient as the vocabulary usually contains the tokens of interest. However,
this is not the case for many other problematic correlations, especially those
affecting minority groups. Tokens that are interesting here, like names, are not
in the tokenizer’s vocabulary because this is created based on occurrence counts.
Addressing this limitation would require extending our method to support facts
that span multiple tokens.

Second, the effects of our method on ‘low-level’ grammatical tasks require
further study in English, as we focused on GLUE and sentiment analysis. The
used Dutch benchmarks do cover more tasks and seem to indicate favourable
reductions.

Third, our work focuses on binary gender stereotypes. This leaves out a wide
range of people who do not identify as such and although our method supports
equalization over more than two tokens, this might be challenging if the intended
words span multiple tokens. This also poses a challenge for generalizing our
method beyond gender bias, since this frequently involves words that are not a
single token in BERT’s vocabulary.

650 P. Delobelle and B. Berendt

Fourth, since none of the authors is a native speaker of a language like French,
we only performed a limited, exploratory evaluation of our methods with Camem-
BERT [25]. Our method appears successful, with improved scores of 0.04 (DisCo)
and −0.85 (LPBS) compared to −1.15 (DisCo) and 1.99 (LPBS) for the original
CamemBERT model [25]. The performance of the LM was also still high, with
XNLI [9] scores 75.6 compared to 82.5 for CamemBERT. However, constructing
correct probabilistic rules and evaluating them is tricky for non-native speakers.
For example, the female variant of a profession can refer to a woman practising said
profession, but also to the spouse of a man with this profession. When discussing
these results with native French speakers from Wallonia, Belgium and from north-
ern France, we realised that we are not well-suited to address this. We thus leave
a more comprehensive evaluation across languages as future work.

Finally, by presenting a method to remove correlations with gender stereotypes
in pre-trained language models, we risk it being used as a ‘rubber stamp’ to absolve
model creators from their responsibilities. Therefore, we urge creators to critically
analyse LMs within the social context that these models will be deployed in, both
with respect to both the pre-trained and the finetuned model.

7 Conclusion

We introduced a method called FairDistillation that allows to use probabilistic
rules during knowledge distillation. We showed that this can effectively mit-
igate gender stereotypes in language models. Our method demonstrates that
knowledge distillation of language models with probabilistic rules is a possible
alternative to re-training in order to reduce representational harms. Even though
comes at a slight cost for some downstream tasks, but we find that the overall
cost is limited and can mostly be attributed to the distillation process.

Acknowledgements. Pieter Delobelle was supported by the Research Foundation -
Flanders (FWO) under EOS No. 30992574 (VeriLearn) and received funding from the
Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI)
Vlaanderen” programme. Bettina Berendt received funding from the German Federal
Ministry of Education and Research (BMBF) - Nr. 16DII113. Some resources and
services used in this work were provided by the VSC (Flemish Supercomputer Center),
funded by the Research Foundation - Flanders (FWO) and the Flemish Government.

FairDistillation: Mitigating Stereotyping in Language Models 651

A Hyperparameters

Table 3. The hyperparameter space used for finetuning.

Hyperparameter Value

adam epsilon 10−8

fp16 False

gradient accumulation steps i ∈ {1, 2, 3, 4}
learning rate [10−6, 10−4]

max grad norm 1.0

max steps −1

num train epochs 3

per device eval batch size 4 (16 for XNLI)

per device train batch size 4 (16 for XNLI)

max sequence length 512 (128 for XNLI)

seed 1

warmup steps 0

weight decay [0, 0.1]

References

1. Bartl, M., Nissim, M., Gatt, A.: Unmasking contextual stereotypes: measuring and
mitigating BERT’s gender bias. arXiv:2010.14534 [cs] (2020)

2. Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the dangers
of stochastic parrots: can language models be too big? In: Proceedings of the
2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610–623
(2021)

3. Blodgett, S.L., Barocas, S., Daumé III, H., Wallach, H.: Language (technology)
is power: a critical survey of “bias” in NLP. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 5454–5476, Associa-
tion for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-
main.485, https://www.aclweb.org/anthology/2020.acl-main.485

4. Blodgett, S.L., Lopez, G., Olteanu, A., Sim, R., Wallach, H.: Stereotyping Norwe-
gian salmon: an inventory of pitfalls in fairness benchmark datasets. In: Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 1004–1015 (2021)

5. Bolukbasi, T., Chang, K.W., Zou, J., Saligrama, V., Kalai, A.: Man is to com-
puter programmer as woman is to homemaker? Debiasing word embeddings.
arXiv:1607.06520 [cs, stat] (2016)

6. Bresnan, J., Kaplan, R.M., Peters, S., Zaenen, A.: Cross-serial dependencies in
Dutch. In: Savitch, W.J., Bach, E., Marsh, W., Safran-Naveh, G. (eds.) The For-
mal Complexity of Natural Language. Studies in Linguistics and Philosophy, vol.
33, pp. 286–319. Springer, Dordrecht (1982). https://doi.org/10.1007/978-94-009-
3401-6 11

http://arxiv.org/abs/2010.14534
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/2020.acl-main.485
https://www.aclweb.org/anthology/2020.acl-main.485
http://arxiv.org/abs/1607.06520
https://doi.org/10.1007/978-94-009-3401-6_11
https://doi.org/10.1007/978-94-009-3401-6_11

652 P. Delobelle and B. Berendt

7. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 535–541 (2006)

8. Caliskan, A., Bryson, J.J., Narayanan, A.: Semantics derived automatically from
language corpora contain human-like biases. Science 356(6334), 183–186 (2017).
https://doi.org/10.1126/science.aal4230, https://science.sciencemag.org/content/
356/6334/183. ISSN 0036-8075

9. Conneau, A., et al.: XNLI: evaluating cross-lingual sentence representations. In:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics (2018)

10. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: a probabilistic prolog and its
application in link discovery. In: IJCAI, Hyderabad, vol. 7, pp. 2462–2467 (2007)

11. Delobelle, P., Tokpo, E., Calders, T., Berendt, B.: Measuring fairness with biased
rulers: a comparative study on bias metrics for pre-trained language models. In:
Proceedings of the 2022 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, pp. 1693–1706.
Association for Computational Linguistics, Seattle (2022)

12. Delobelle, P., Winters, T., Berendt, B.: RobBERT: a dutch RoBERTa-based lan-
guage model. In: Findings of ACL: EMNLP 2020 (2020)

13. Delobelle, P., Winters, T., Berendt, B.: RobBERTje: a distilled Dutch BERT
model. Comput. Linguist. Netherlands J. 11, 125–140 (2022). https://www.
clinjournal.org/clinj/article/view/131

14. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4171–4186. Association for Computational Linguistics, Minneapolis (2019).
https://doi.org/10.18653/v1/N19-1423

15. Feng, S.Y., et al: A survey of data augmentation approaches for NLP. arXiv
preprint arXiv:2105.03075 (2021)

16. Hall Maudslay, R., Gonen, H., Cotterell, R., Teufel, S.: It’s all in the name: mit-
igating gender bias with name-based counterfactual data substitution. In: Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pp. 5267–5275. Association for Computational Linguistics,
Hong Kong (2019). https://doi.org/10.18653/v1/D19-1530, https://www.aclweb.
org/anthology/D19-1530

17. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv:1503.02531 [cs, stat] (2015)

18. Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: Chaudhuri,
K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on
Machine Learning, Proceedings of Machine Learning Research, vol. 97, pp. 2790–
2799. PMLR (2019). https://proceedings.mlr.press/v97/houlsby19a.html

19. Jiao, X., et al.: TinyBERT: distilling BERT for natural language understanding.
In: Findings of ACL: EMNLP 2020 (2020)

20. Kurita, K., Vyas, N., Pareek, A., Black, A.W., Tsvetkov, Y.: Measuring bias in
contextualized word representations. In: Proceedings of the First Workshop on
Gender Bias in Natural Language Processing, pp. 166–172. Association for Com-
putational Linguistics, Florence (2019). https://doi.org/10.18653/v1/W19-3823,
https://www.aclweb.org/anthology/W19-3823

https://doi.org/10.1126/science.aal4230
https://science.sciencemag.org/content/356/6334/183
https://science.sciencemag.org/content/356/6334/183
https://www.clinjournal.org/clinj/article/view/131
https://www.clinjournal.org/clinj/article/view/131
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2105.03075
https://doi.org/10.18653/v1/D19-1530
https://www.aclweb.org/anthology/D19-1530
https://www.aclweb.org/anthology/D19-1530
http://arxiv.org/abs/1503.02531
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/W19-3823
https://www.aclweb.org/anthology/W19-3823

FairDistillation: Mitigating Stereotyping in Language Models 653

21. Lauscher, A., Lueken, T., Glavaš, G.: Sustainable modular debiasing of lan-
guage models. In: Findings of the Association for Computational Linguis-
tics: EMNLP 2021, pp. 4782–4797. Association for Computational Linguis-
tics, Punta Cana (2021). https://doi.org/10.18653/v1/2021.findings-emnlp.411,
https://aclanthology.org/2021.findings-emnlp.411

22. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach.
arXiv:1907.11692 [cs] (2019)

23. Lu, K., Mardziel, P., Wu, F., Amancharla, P., Datta, A.: Gender bias in neural
natural language processing. In: Nigam, V., et al. (eds.) Logic, Language, and
Security. LNCS, vol. 12300, pp. 189–202. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-62077-6 14. ISBN 978-3-030-62077-6

24. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies,
pp. 142–150. Association for Computational Linguistics, Portland (2011). http://
www.aclweb.org/anthology/P11-1015

25. Martin, L., et al.: CamemBERT: a tasty french language model. In: Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
7203–7219. Association for Computational Linguistics (2020). https://doi.org/10.
18653/v1/2020.acl-main.645

26. May, C., Wang, A., Bordia, S., Bowman, S.R., Rudinger, R.: On measuring social
biases in sentence encoders. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 622–628. Association
for Computational Linguistics, Minneapolis (2019). https://doi.org/10.18653/v1/
N19-1063

27. Ortiz Suárez, P.J., Romary, L., Sagot, B.: A monolingual approach to contex-
tualized word embeddings for mid-resource languages. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 1703–
1714. Association for Computational Linguistics (2020). https://www.aclweb.org/
anthology/2020.acl-main.156

28. Papakipos, Z., Bitton, J.: AugLy: data augmentations for robustness. arXiv
preprint arXiv:2201.06494 (2022)

29. Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K., Gurevych, I.: AdapterFusion: non-
destructive task composition for transfer learning. In: Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Lin-
guistics: Main Volume, pp. 487–503. Association for Computational Linguistics
(2021). https://doi.org/10.18653/v1/2021.eacl-main.39, https://aclanthology.org/
2021.eacl-main.39

30. Pfeiffer, J., et al.: AdapterHub: a framework for adapting transformers. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pp. 46–54. Association for Com-
putational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-demos.7,
https://aclanthology.org/2020.emnlp-demos.7

31. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. In: NeurIPS EMC2 Workshop (2019)

32. Tan, Y.C., Celis, L.E.: Assessing social and intersectional biases in contextualized
word representations. In: Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc,
F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems,
vol. 32, pp. 13230–13241. Curran Associates, Inc. (2019)

https://doi.org/10.18653/v1/2021.findings-emnlp.411
https://aclanthology.org/2021.findings-emnlp.411
http://arxiv.org/abs/1907.11692
https://doi.org/10.1007/978-3-030-62077-6_14
https://doi.org/10.1007/978-3-030-62077-6_14
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.18653/v1/2020.acl-main.645
https://doi.org/10.18653/v1/2020.acl-main.645
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://www.aclweb.org/anthology/2020.acl-main.156
https://www.aclweb.org/anthology/2020.acl-main.156
http://arxiv.org/abs/2201.06494
https://doi.org/10.18653/v1/2021.eacl-main.39
https://aclanthology.org/2021.eacl-main.39
https://aclanthology.org/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://aclanthology.org/2020.emnlp-demos.7

654 P. Delobelle and B. Berendt

33. van der Burgh, B., Verberne, S.: The merits of universal language model fine-tuning
for small datasets - a case with dutch book reviews. arXiv:1910.00896 [cs] (2019)

34. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in
Neural Information Processing Systems, vol. 30, pp. 5998–6008. Curran Associates,
Inc. (2017)

35. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: GLUE: a multi-
task benchmark and analysis platform for natural language understanding. In: the
Proceedings of ICLR (2019)

36. Webster, K., et al.: Measuring and reducing gendered correlations in pre-trained
models. arXiv:2010.06032 [cs] (2020)

37. Wijnholds, G., Moortgat, M.: SICKNL: a dataset for dutch natural language infer-
ence. arXiv preprint arXiv:2101.05716 (2021)

http://arxiv.org/abs/1910.00896
http://arxiv.org/abs/2010.06032
http://arxiv.org/abs/2101.05716

Self-distilled Pruning of Deep Neural
Networks

James O’ Neill(B), Sourav Dutta, and Haytham Assem

Huawei Ireland Research Center, Dublin, Ireland
james.o.neil@huawei-partners.com,

{sourav.dutta2,haytham.assem}@huawei.com

Abstract. Pruning aims to reduce the number of parameters while
maintaining performance close to the original network. This work pro-
poses a novel self-distillation based pruning strategy, whereby the rep-
resentational similarity between the pruned and unpruned versions of
the same network is maximized. Unlike previous approaches that treat
distillation and pruning separately, we use distillation to inform the prun-
ing criteria, without requiring a separate student network as in knowl-
edge distillation. We show that the proposed cross-correlation objec-
tive for self-distilled pruning implicitly encourages sparse solutions, nat-
urally complementing magnitude-based pruning criteria. Experiments
on the GLUE and XGLUE benchmarks show that self-distilled prun-
ing increases mono- and cross-lingual language model performance. Self-
distilled pruned models also outperform smaller Transformers with an
equal number of parameters and are competitive against (6 times) larger
distilled networks. We also observe that self-distillation (1) maximizes
class separability, (2) increases the signal-to-noise ratio, and (3) con-
verges faster after pruning steps, providing further insights into why
self-distilled pruning improves generalization.

Keywords: Iterative pruning · Self-distillation · Language models

1 Introduction

Neural network pruning [16,29,33] zeros out weights of a pretrained model with
the aim of reducing parameter count and storage requirements, while maintaining
performance close to the original model. The criteria to choose which weights to
prune has been an active research area over the past three decades [3,10,16,19,28].
Lately, there has been a focus on pruning models in the transfer learning setting
whereby a self-supervised pretrainedmodel trained on a large amount of unlabelled
data is fine-tuned to a downstream task while weights are simultaneously pruned,
referred to as fine-pruning. In this context, recent work proposes to learn impor-
tant scores over weights with a continuous mask and prune away those that having
the smallest scores [25,36]. However, these learned continuous masks double the
number of parameters and gradient updates in the network [36]. Ideally, we aim

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 655–670, 2023.
https://doi.org/10.1007/978-3-031-26390-3_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_38&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_38

656 J. O’ Neill et al.

to perform task-dependent fine-pruning without adding more parameters to the
network, or at least far fewer than twice the count. Additionally, we desire prun-
ing methods that can recover from performance degradation directly after pruning
steps, faster than current pruning methods while encoding task-dependent infor-
mation into the pruning process. To this end, we hypothesize self-distillation may
recover performance faster after consecutive pruning steps, which becomes more
important with larger performance degradation at a higher compression regime.
Additionally, self-distillation has shown to encourage sparsity as the training error
tends to 0 [27]. This implicit sparse regularization effect complements magnitude-
based pruning.

Hence, this paper proposes to combine self-distillation and magnitude-based
pruning to achieve task-dependent pruning efficiently. This is achieved by maxi-
mizing the cross-correlation between output representations of the fine-tuned pre-
trained network and a pruned version of the same network – referred to as self-
distilled pruning (SDP). Cross-correlation maximization reduces redundancy and
encourages sparse solutions [49], naturally fitting with magnitude-based pruning.
Unlike typical knowledge distillation (KD) where the student is a separate network
trained from random initialization, here the student is initially a masked version
of the teacher. We find that SDP sets state-of-the-art results when compared to
alternative magnitude-based pruning methods and equivalently sized distilled net-
works. We also provide three insights as to why self-distillation leads to more gen-
eralizable pruned networks. We observe that self-distilled pruning (1) recovers per-
formance faster after pruning steps (i.e., improves convergence), (2)maximizes the
signal-to-noise ratio (SNR), where pruned weights are considered as noise, and (3)
improves the fidelity between pruned and unpruned representations as measured
by mutual information of the respective penultimate layers. We focus on pruning
fine-tuned monolingual and cross-lingual transformer models, namely BERT [6]
and XLM-RoBERTa [5]. To our knowledge, this is the first study that introduces
the concept of self-distilled pruning, analyzes iterative pruning in the mono-lingual
and cross-lingual settings on the GLUE and XGLUE benchmarks respectively and
the only work to include an evaluation of pruned model performance in the cross-
lingual transfer setting.

2 Background and Related Work

Regularization-based pruning can be achieved by using a weight regularizer that
encourages network sparsity. Three well-established regularizers are L1, L2 and
L0 weight regularization [23,24,47] for weight sparsity [10,11]. For structured
pruning, Group-wise Brain Damage [18] and SSL [45] propose to use Group
LASSO [48] to prune whole structures (e.g., convolution blocks or blocks within
standard linear layers). Park et al. [31] avoid pruning small weights if they are
connected to larger weights in consecutive layers and vice-versa, by penalizing
the Frobenius norm between pruned and unpruned layers to be small.

Importance-based pruning assigns a score for each weight in the network and
removes weights with the lowest importance score. The simplest scoring cri-
teria is magnitude-based pruning (MBP), which uses the lowest absolute value

Self-distilled Pruning of Deep Neural Networks 657

(LAV) as the criteria [10,11,33] or L1/L2-norm for structured pruning [23]. MBP
can be seen as a zero-th order pruning criteria. However higher order pruning
methods approximate the difference in pruned and unpruned model loss using
a Taylor series expansion up until 1st order [12,19] or the 2nd order, which
requires approximating the Hessian matrix [26,37,44] for scalability. Lastly, the
regularization-based pruning is commonly used with importance-based pruning
e.g. using L2 weight regularization alongside MBP.

Knowledge Distillation (KD) transfers the knowledge of an already trained net-
work, such as the logit outputs [13]), and uses them as soft targets to optimize a
student network. The student network is typically smaller than the teacher net-
work and benefits from the additional information soft targets provide. There has
been various extensions that involve distilling intermediate representations [34],
distributions [14], maximizing mutual information between student and teacher
representations [1], using pairwise interactions for improved KD [32] and con-
trastive representation distillation [30,39].

Self-Distillation is a special case of KD whereby the student and teacher
networks have the same capacity. Interestingly, self-distilled students often gen-
eralize better than the teacher [9,46], however the mechanisms by which self-
distillation leads to improved generalization remain somewhat unclear. Recent
works have provided insightful observations of this phenomena. For example, Stan-
ton et al. [38] have shown that soft targets make optimization easier for the stu-
dent when compared to the task-provided one-hot targets. Allen et al. [2] view
self-distillation as implicitly combining ensemble learning and KD to explain the
improvement in test accuracy when dealing with multi-view data. The core idea
is that the self-distillation objective results in the network learning a unique set
of features that are distinct from the original model, similar to features learned
by combining the outputs of independent models in an ensemble. Given this back-
ground on pruning and distillation, we now describe our proposed methodology
for SDP.

3 Proposed Methodology

We begin by defining a dataset D := {(Xi, yi)}D
i=1 with single samples si =

(Xi,yi), where each Xi (in the D training samples) consists of a sequence of vec-
tors Xi := (x1, . . . ,xN) and xi ∈ R

d. For structured prediction (e.g., NER, POS)
yi ∈ {0, 1}N×C , and for single and pairwise sentence classification, yi ∈ {0, 1}C ,
where C is the number of classes. Let yS = fθ(Xi) be the output prediction
(yS ∈ R

C) from the student fθ(·) with pretrained parameters θ := {Wl, bl}L
l=1

for L layers. The intermediate input to each subsequent layer is denoted as
zl ∈ R

nl where z0 := x for nl number of units in layer l and the corresponding
output activation as Al = g(zl). The loss function for standard classification fine-
tuning is defined as the cross-entropy loss �CE(yS ,y) := − 1

C

∑c
i=1 yc log(ys

c).
For self-distilled pruning, we also require an already fine-tuned teacher net-

work fΘ, that has been tuned from the pretrained state fθ, to retrieve the soft
teacher labels yT := fΘ(x), where yT ∈ R

C and
∑C

c yT
c = 1. The soft label yT

658 J. O’ Neill et al.

can be more informative than the one-hot targets y used for standard classi-
fication as they implicitly approximate pairwise class similarities through logit
probabilities. The Kullbeck-Leibler divergence �KLD is then used with the main
task cross-entropy loss �CE to express �SDP−KLD as shown in Eq. 1,

�SDP-KLD = (1 − α)�CE(yS ,y)+ατ2DKLD

(
yS ,yT

)
(1)

where DKLD(yS ,yT) = H(yT)−yT log(yS), H(yT) = yT log(yT) is the entropy
of the teacher distribution and τ is the softmax temperature. Following [13], the
weighted sum of cross-entropy loss and KLD loss shown in Eq. 1 is used as our
main SDP-based KD loss baseline, where α ∈ [0, 1]. After each pruning step dur-
ing iterative pruning, we aim to recover the immediate performance degradation
by minimizing �SDP−KLD. In our experiments, we use weight magnitude-based
pruning as the criteria for SDP given MBP’s flexibility, scalability and miniscule
computation overhead (only requires a binary tensor multiplication to be applied
for each linear layer at each pruning step). However, DKLD only distils the knowl-
edge from the soft targets which may not propagate enough information about
the intermediate dynamics of the teacher, nor does it penalize representational
redundancy. This brings us to our proposed SDP objective.

3.1 Cross-Correlation Between Pruned and Unpruned Embeddings

Iterative pruning can be viewed as progressively adding noise Ml ∈ {0, 1}nl−1×nl

to the weights Wl ∈ R
nl−1×nl . Thus, as the pruning steps increase, the out-

puts become noisier and the relationship between the inputs and outputs becomes
weaker. Hence, a correlation measure is a natural choice for dealing with such
pruning-induced noise. To this end, we use a cross-correlation loss to maximize
the correlation between the output representations of the last hidden state of the
pruned network and the unpruned network to reduce the effects of this pruning
noise. The proposed cross-correlation SDP loss function, �CC, is expressed in Eq. 2,
where λ controls the importance of minimizing the non-adjacent pairwise correla-
tions between zS and zT in the correlation matrix C. Here, m denotes the sample
index in a mini-batch of M samples. Unlike �KLD, this loss is applied to the out-
puts of the last hidden layer as opposed to the classification logit outputs. Thus,
we have,

�CC(zS ,zT) :=
∑

i

(1 − Cii)2 + λ
∑

i

∑

j �=i

C2
ij (2)

such that Cij :=
∑

m zS
m,iz

T
m,j√∑

m(zS
m,i)

2
√∑

m(zT
m,j)

2
.

Maximizing correlation along the diagonal of C makes the representations
invariant to pruning noise, while minimizing the off-diagonal term decorrelates
the components of the representations that are batch normalized. To reiterate,
zS is obtained from the pruned version of the network (fθp

) and zT is obtained
from the unpruned version (fθ).

Since the learned output representations should be similar if their inputs are
similar, we aim to address the problem where a correlation measure may produce

Self-distilled Pruning of Deep Neural Networks 659

Fig. 1. Self-distilled pruning with a cross-correlation knowledge distillation loss.

representations that are instead proportional to their inputs. To address this,
batch normalization is used across mini-batches to stabilize the optimization
when using the cross-correlation loss, avoiding local optima that correspond
to degenerate representations that do not distinguish proportionality. In our
experiments, this is used with the classification loss and KLD distillation loss as
shown in Eq. 3.

�SDP−CC = (1 − α)�CE(yS ,y) + ατ2DKLD(yS ,yT) + β�CC(zS ,zT) (3)

Figure 1 illustrates the proposed framework of self-distilled pruning with cross-
correlation loss (SDP-CC), where I is the identity matrix.

3.2 A Frobenius Distortion Perspective of Self-distilled Pruning

To formalize the objective being minimized when using MBP with self-
distillation, we take the view of Frobenius distortion minimization (FDM) [7]
which says that layer-wise MBP is equivalent to minimizing the Frobenius dis-
tortions of a single layer. This can be described as minM:||M||0=p ||W−M�W||F ,
where � is the Hadamard product and p is a constraint of the number of weights
to remove as a percentage of the total number of weights for a layer. Therefore,
the output distortion is approximately the product of single layer Frobenius dis-
tortions. However, this minimization only defines a 1st order approximation of
pruning induced Frobenius distortions which is a loose approximation for deep
networks. In contrast, the yT targets provide higher-order information outside
of the l-th layer being pruned in this FDM framework because Θ encodes infor-
mation of all neighboring layers. Hence, we reformulate the FDM problem for
SDP as an approximately higher-order MBP method as in Eq. 4 where WT are
the weights in fΘ.

min
M:||M||0=p

[
||W − M � W||F + λ||WT − M � W||F

]
(4)

660 J. O’ Neill et al.

As described in [7,12], the difference in error can be approximated with a Tay-
lor Series (TS) expansion as δEl ≈ (

∂El

∂Wl

)�
δWl + 1

2δW�
l HlδWl + O(||δWl||3)

where H is the Hessian matrix. When using SDP with a 1st TS, we can further
express the TS approximation for SDP as shown in Eq. 5, where ES

l is the error
of the pruned network for task provided targets and ET

l are the errors of the
pruned network with distilled logits.

(El − ES
l

)2 + λ
(El − ET

l

)2 ≈ δES
l + δET

l ≈
(∂ES

l

∂θl

)�
δθl + λ

(∂ET
l

∂θl

)�
δθl (5)

3.3 How Does Self-distillation Improve Pruned Model
Generalization?

We put forth the following insights as to the advantages provided by self-
distillation for better pruned model generalization, and later experimentally
demonstrate their validity.

Recovering Faster From Performance Degradation After Pruning Steps. The first
explanation for why self-distillation leads to better generalization in iterative
pruning is that the soft targets bias the optimization and smoothen the loss
surface through implicit similarities between the classes encoded in the logits.
We posit this too holds true for performance recovery after pruning steps, as
the classification boundaries become distorted due to the removal of weights.
Faster convergence is particularly important for high compression rates where
the performance drops become larger.

Implicit Maximization of the Signal-to-Noise Ratio. One explanation for faster
convergence is that optimizing for soft targets translates to maximizing the mar-
gin of class boundaries given the implicit class similarities provided by teacher
logits. Intuitively, task provided one-hot targets do not inform SGD of how simi-
lar incorrect predictions are to the correct class, whereas the teacher logits do, to
the extent they have learned on the same task. To measure this, we use a formu-
lation of the signal-to-noise ratio1 (SNR) to measure the class separability and
compactness differences between pruned model representations trained with and
without self-distillation. We formulate SNR as Eq. 6, where for a batch of inputs
X, we obtain Z output representations from the pruned network, which contain
samples with C classes where each class has the same N number of samples.
The numerator expresses the average �2 inter-class distance between instances
of each class pair and the denominator expresses the intra-class distance between
instances within the same class.

1/N(C − 1)2
∑N

n

∑C
c=1

∑C
i�=c ||√Zc,n − √

Zi,n||2
1/C(N − 1)2

∑C
c=1

∑N
n

∑
j �=n ||√Zc,n − √

Zc,j ||2
(6)

1 A measure typically used in signal processing to evaluate signal quality.

Self-distilled Pruning of Deep Neural Networks 661

This estimation is C−1
(
C+1
2

)
in the number of pairwise distances to be computed

between the inter-class distances for the classes. For large output spaces (e.g.,
language modeling) we recommend defining the top k-NN classes for each class
and estimate their distances on samples from them.

Quantifying Fidelity Between Pruned Models Trained With and Without Self-
distillation. A natural question to ask is how much generalization power does
the distilled soft targets provide when compared to the task provided one-hot tar-
gets ? If best generalization is achieved when α = 1 in Eq. 1, this implies that the
pruned network should have as high fidelity as possible with the unpruned net-
work. However, as we will see there is a bias-variance trade-off between fidelity
and generalization performance, i.e., α = 1 is not optimal in most cases. To
measure fidelity between SDP representations and standard fine-tuned represen-
tations, we compute their mutual information (MI) and compare this to the MI
between representations of pruned models without self-distillation and standard
fine-tuned models. The MI between continuous variables can be expressed as,

Î(ZT ;ZS) = H(ZT) − H(ZT |ZS)

= −EzT [log p(ZT)] + EZT ,ZS [log p(ZT |ZS)]
(7)

where H(ZT) is the entropy of the teacher representation and H(ZT |ZS) is the
conditional entropy that is derived from the joint distribution p(ZT ,ZS). This
can also be expressed as the KL divergence between the joint probabilities and
product of marginals as I(ZT ;ZS) = DKLD[p(ZS , ZT)||p(ZS)p(ZT)]. However,
these theoretical quantities have to be estimated from test sample represen-
tations. We use a k-NN based MI estimator [8,17,41,42] which partitions the
supports into a finite number of bins of equal size, forming a histogram that can
be used to estimate Î(ZS ;ZT) based on discrete counts in each bin. This MI
estimator is given as,

I(zS ; zT) ≈ ε
(

log
φ[zS](i, k[zS])φ[zT](i, k[zT])

φz(i, k)

)
(8)

where φzS (i, k[zS]) is the probability measure of the k-th nearest neighbour ball
of zS ∈ R

nL and ω[zT](i, k[zT]) is the probability measure of the ky-th nearest
neighbour ball of zT ∈ R

nL where nL is the dimension of the penultimate layer.
In our experiments, we use 256 bins for the histogram with Gaussian smoothing
and k = 5 (see [17] for further details).

4 Experimental Setup

Datasets. We perform experiments on monolingual tasks within the GLUE [43]
benchmark2 with pretrained BERTBase and multilingual tasks from the XGLUE
benchmark [22] with pretrained XLMRBase. In total, this covers 18 different
2 WNLI is excluded for known issues, see the Q. 12 on the GLUE benchmark FAQ.

662 J. O’ Neill et al.

Table 1. GLUE benchmark results for pruned models @10% (or @20%) remaining
weights.

Compression method Score Single sentence Similarity and paraphrase Natural language inference

(avg.) CoLA SST-2 MNLI MRPC STS-B QQP RTE QNLI

(mcc) (acc) (acc) (f1/acc) (pears./spear.) (f1/acc) (acc) (acc)

BERTBase (Ours) 84.06 53.24 90.71 80.27 80.9/77.7 83.5/83.8 83.9/88.0 68.59 86.91

Knowledge distilled baselines (% parameters w.r.t. original BERT)

DistilBERT (60%) 82.85 51.3 91.3 82.2 87.5/-.- 86.9/-.- -.-/85.5 59.9 89.2

BERT-Medium (44.4%) 81.54 38.0 89.6 80.0 86.6/81.6 80.4/78.4 69.6/87.9 62.2 87.7

BERT-Small (20%) 79.02 27.8 89.7 77.6 83.4/76.2 78.8/77.0 68.1/87.0 61.8 86.4

BERT-Mini (10%) 76.97 0.0 85.9 75.1 74.8/74.3 75.4/73.3 66.4/86.2 57.9 84.1

BERT-Tiny (3.6%) 73.32 0.0 83.2 70.2 81.1/71.1 74.3/73.6 62.2/83.4 57.2 81.5

Pruning baselines 20% 10% 10% 10% 10% 10% 10% 10%

Random 66.03 6.50 78.44 69.55 77.5/67.1 27.4/26.9 77.07/81.86 52.70 74.66

L0-MBP 77.25 31.68 83.37 75.61 78.4/68.2 75.9/75.7 81.56/86.49 64.26 82.62

L2-MBP 76.48 29.51 83.37 76.19 78.4/68.2 75.3/75.6 77.50/82.98 62.09 82.61

L2-Global-MBP 77.16 29.25 82.83 76.40 81.2/69.9 75.1/75.5 82.77/86.70 62.01 82.24

L2-Gradient-MBP 74.84 15.46 82.91 72.51 81.0/73.7 73.8/73.6 80.41/85.19 56.31 79.33

1st-order Taylor 76.31 28.88 83.26 74.64 83.0/74.8 76.7/76.6 80.09/85.29 57.76 81.20

Lookahead 76.40 28.15 82.80 75.31 79.8/70.5 71.9/71.9 81.84/86.53 60.29 81.80

LAMP 74.03 20.31 83.26 74.27 72.3/63.7 73.7/74.1 79.32/85.07 58.84 81.09

Proposed methodology

L2-MBP + SDP-COS 77.83 31.80 86.00 75.68 81.6/72.2 76.4/76.3 81.39/86.68 61.73 83.07

L2-MBP + SDP-KLD 78.34 36.74 87.96 77.94 80.5/68.2 77.1/77.3 83.21/85.58 63.18 83.54

L2-MBP + SDP-CC 78.90 36.77 87.84 78.04 81.1/71.0 77.3/77.5 83.79/86.37 62.64 84.20

BERT- results reported from prior work [15,35,40] and MNLI results are for the
matched dataset.

datasets, covering pairwise classification, sentence classification, structured pre-
diction and question answering. To our knowledge, this work is the first to analyse
iterative pruning in the context of cross-lingual models and their application on
multilingual datasets. Further dataset statistics can be found in supplementary
material.

Iterative Pruning Baselines. For XGLUE tasks, we perform 15 pruning steps
on XLM-RoBERTABase, one per 15 epochs, while for the GLUE tasks, we per-
form 32 pruning steps on BERTBase. The compression rate and number of prun-
ing steps is higher for GLUE tasks compared to XGLUE, because GLUE tasks
involve evaluation in the supervised classification setting; whereas in XGLUE
we report in the more challenging zero-shot cross-lingual transfer setting with
only a single language used for training (i.e., English). At each pruning step, we
uniformly pruning 10% of the parameters for both the models. Although prior
work suggests non-uniform pruning schedules (e.g., cubic schedule [50]), we did
not see any major differences to uniform pruning. We compare the performance
of the proposed SDP-CC method against the following baselines:

– Random Pruning (MBP-Random) - prunes weights uniformly at random
across all layers. Random pruning can be considered as a lower bound on
iterative pruning performance.

Self-distilled Pruning of Deep Neural Networks 663

– Layer-wise Magnitude Based Pruning (MBP) - for each layer, prunes
weights with the LAV.

– Global Magnitude Pruning (Global-MBP) - prunes the LAV of all weights
in the network.

– Layer-wise Gradient Magnitude Pruning (Gradient-MBP) - for each
layer, prunes the weights with the LAV of the accumulated gradients evalu-
ated on a batch of inputs.

– 1st Taylor Series Pruning (TS) - prunes weights based on the LAV of
|gradient × weight|.

– L0 norm MBP [24] - uses non-negative stochastic gates that choose which
weights are set to zero as a smooth approximation to the non-differentiable
L0-norm.

– L1 norm MBP [21] - applies L1 weight regularization and uses MBP.
– Lookahead pruning (LAP) [31] - prunes weight paths that have the small-

est magnitude across blocks of layers, unlike MBP that does not consider
neighboring layers.

– Layer-Adaptive MBP (LAMP) [20] - adaptively computes the pruning
ratio for each layer.

For all above pruning methods we exclude weight pruning of the embeddings,
layer normalization parameters and the last classification layer, as they play an
important role for generalization and account for less than 1% of weights in both
BERT and XLM-RBase.

Knowledge Distillation. We also compare against a class of smaller knowledge
distilled versions of the BERT model with varying parameter sizes on the GLUE
benchmark. We report prior results of DistilBERT [35] and also mini-BERT mod-
els including TinyBERT [15], BERT-small [40] and BERT-medium [40]. In addi-
tion, we consider maximizing the cosine similarity between pruned and unpruned
representations in the SDP loss, as �SDP−COS := α�CE(yS ,y)+β

(
1− zS ·zT

||zS ||||zT ||
)
.

Unlike cross-correlation, there is no decorrelation of non-adjacent features in
both representations for SDP-COS. This helps identify whether the redundancy
reduction in cross-correlation is beneficial compared to the correlation loss that
does not directly optimize this.

5 Empirical Results

Pruning Results on GLUE. Table 1 shows the test performance across all GLUE
tasks of the different models with varying pruning ratios, up to 10% remaining
weights of original BERTBase along with mini-BERT models [35,40] of varying
size. However, for the CoLA dataset, we report at 20% pruning as nearly all
compression methods have an MCC score of 0, making the compressed method
performance indistinguishable. For this reason, the GLUE score (Score) is com-
puted for all tasks and methods @10% apart from CoLA. The best performing
compression method per task is marked in bold. We find that our proposed

664 J. O’ Neill et al.

Fig. 2. Iterative pruning results on GLUE tasks.

SDP approaches (all three variants) outperform against baseline pruning meth-
ods, with SDP-CC performing the best across all tasks. We note that for the
tasks with fewer training samples (e.g., CoLA has 8.5k samples, STS-B has 7k
samples and RTE has 3k samples), the performance gap is larger compared to
BERTBase, as the pruning step interval is shorter and less training data allows
lesser time for the model to recover from pruning losses and also less data for
teacher model to distil in the case of using SDP.

Smaller dense versions of BERT require more labelled data in order to com-
pete with unstructured MBP and higher-order pruning methods such as 1st order
Taylor series and Lookahead pruning. For example, we see BERT-Mini (@10%)
shows competitive test accuracy with our proposed SDP-CC on QNLI, MNLI
and QQP, the three datasets with the most training samples (105k, 393k and
364k respectively). Overall, L2−MBP + SDP-CC achieves the highest GLUE
score for all models at 10% remaining weights when compared to BERT-Base
parameter count. Moreover, we find that L2-MBP + SDP-CC achieves best per-
formance for 5 of the 8 tasks, with 1 of the remaining 3 being from L2MBP+SDP-
KLD. This suggests that redundancy reduction via a cross-correlation objective
is useful for SDP and clearly improve over SDP-COS which does not minimize
correlations between off-diagonal terms. Figure 2 shows the performance across
all pruning steps. Interestingly, for QNLI we observe the performance notably
improves between 30–70% for SDP-CC and SDP-KLD. For SST-2, we observe a

Self-distilled Pruning of Deep Neural Networks 665

Table 2. XGLUE iterative pruning @ 30% remaining weights of XLM-Rbase - zero
shot cross-lingual performance per task and overall average score (avg).

Prune method XNLI NC NER PAWSX POS QAM QADSM WPR Avg.

XLM-RBase 73.48 80.10 82.60 89.24 80.34 68.56 68.06 73.32 76.96

Random 51.22 70.19 38.19 57.37 52.57 53.85 52.34 70.69 55.80

Global-Random 50.97 69.88 38.30 56.74 53.02 54.02 53.49 69.11 55.69

L0-MBP 64.75 78.98 56.22 72.09 71.38 59.31 53.35 71.70 65.97

L2-MBP 64.30 78.79 54.43 77.99 70.68 59.24 60.33 71.52 67.16

L2-Global-MBP 65.12 78.64 54.47 79.13 71.37 59.26 60.61 71.80 67.55

L2-Gradient-MBP 61.11 73.77 53.25 79.56 65.89 57.35 59.33 71.59 65.23

1st-order Taylor 64.26 79.34 63.60 82.83 68.94 61.69 62.42 72.28 69.09

Lookahead 60.84 79.18 54.44 71.05 68.76 55.94 53.41 71.26 64.36

LAMP 58.04 63.64 51.92 66.05 67.43 55.36 52.42 71.09 60.74

L2-MBP + SDP-COS 64.96 79.02 62.77 78.70 72.88 60.21 60.94 72.04 68.94

L2-MBP + SDP-KLD 65.94 80.72 64.50 79.25 73.18 61.66 61.09 71.84 69.77

L2-MBP + SDP-CC 66.47 79.73 66.34 80.03 73.45 63.73 62.78 72.59 70.76

significant gap between SDP-KLD and SDP-CC compared to the pruning base-
lines and smaller versions of BERT, while TinyBERT becomes competitive at
extreme compression (<4%). Pruning Results on XGLUE. We show the per
task test performance and the average task understanding score on XGLUE for
pruning baselines and our proposed SDP approaches in Table 2. Our proposed
cross-correlation objective for SDP again achieves the best average (Avg.) score
and achieves the best task performance in 6 out of 8 tasks, while standard SDP-
KLD achieves best performance on one (news classification) of the remaining two.
Most notably, we outperform methods which use higher order gradient informa-
tion (1st-order Taylor) at 30% remaining weights, which tends to be a point at
which XLM-RBase begins to degrade performance below 10% of the original fine-
tuned test performance for SDP methods and competitive baselines. In Fig. 3,
we can observe this trend from the various tasks within XGLUE. We note that
the number of training samples used for retraining plays an important role in
the rate of performance degradation. For example, of the 6 presented XGLUE
tasks, NER has the lowest number of training samples (15k) of all XGLUE
tasks and also degrades the fastest in performance (from 90% to 50% Test F1
at 30% remaining weights). In comparison, XNLI has the most training samples
for retraining (433k) and maintains performance relatively well, keeping within
10% of the original fine-tuned model at 30% remaining weights. Summary of
Results. From our experiments on GLUE and XGLUE task, we find that SDP
consistently outperforms pruning, KD and smaller BERT baselines. SDP-KLD
and SDP-CC both outperform larger sized BERT models (BERT-Small), some-
what surprisingly, given that BERT-Small (and the remaining BERT models)

666 J. O’ Neill et al.

have the advantage of large-scale self-supervised pretraining, while pruning only
has supervision from the downstream task. For NER in XGLUE, higher order
pruning methods such as Taylor-Series pruning have an advantage at high com-
pression rates mainly due to lack of training samples (only 15k). Apart from
this low training sample regime, SDP with MBP dominates at high compression
rates.

Measuring Fidelity to the Fine-Tuned Model. We now analyse the empir-
ical evidence that soft targets used in SDP may force higher fidelity with the
representations of the fine-tuned model when compared to using MBP without
self-distillation. As described in Subsect. 3.3 we measure mutual dependencies
between both representations of models with the best performing hyperparam-
eter settings of α, β and the softmax temperature τ . We note that increasing
the temperature τ translates to “peakier” teacher logit distributions, encour-
aging SGD to learn a student with high fidelity to the teacher. From the LHS
of Fig. 4, we can see that SDP models have higher mutual information (MI)
with the teacher compared to MBP, which performs worse for PAWS-X (similar
on remaining tasks, not shown for brevity). In fact, the rank order of the best
performing pruned models at each pruning step has a direct correlation with
MI, e.g., SDP-COS-MBP maintains highest MI and the highest test accuracy
for PAWS-X for the same α. However, too high fidelity (α = 1.) led to worse
generalization compared to a balance between the task provided targets and the
teacher logits (α = 0.5).

Fig. 3. Zero-shot results after iteratively fine-pruning XLM-RBase on XGLUE tasks.

Self-distilled Pruning of Deep Neural Networks 667

Fig. 4. Mutual information between unpruned and pruned representations (left) and
signal-to-noise ratio (right)

Fig. 5. PAWS-X development set representations and (right) pruning performance
recovery with self-distilled pruning.

Self-distilled Pruning Increases Class Separability and the Signal-to-Noise Ratio
(SNR). We also find that the SNR is increased at each pruning step as for-
mulated in Sect. 3.3. From this observation, we find that SDP-CC-MBP using
cross-correlation loss does particularly well in the 30%–50% remaining weights
range. More generally, all 3 SDP losses clearly lead to better class separabil-
ity and class compactness across all pruning steps compared to MBP (i.e., no
self-distillation).

Self-distilled Pruning Recovers Faster Performance Degradation Directly After
Pruning Steps. In Fig. 5 we show how SDP with Magnitude pruning (SDP-MBP)
recovers during training in between pruning steps. The top of each vertical bar
is the recovery development accuracy and the bottom is the initial performance
degradation prior to retrainng. We see that SDP pruned models degrade in per-
formance more than magnitude pruning without self-distillation. This suggests
that SDP-MBP may force weights to be closer, as there is more initial perfor-
mance degradation if weights are not driven to zero. However, the recovery is
faster. This may be explained by recent work that suggests the stability gener-
alization tradeoff [4].

668 J. O’ Neill et al.

6 Conclusion

In this paper, we proposed a novel self-distillation based pruning technique based
on a cross-correlation objective. We extensively studied the confluence between
pruning and self-distillation for masked language models and its enhanced util-
ity on downstream tasks in both monolingual and multi-lingual settings. We
find that self-distillation aids in recovering directly after pruning in iterative
magnitude-based pruning, increases representational fidelity with the unpruned
model and implicitly maximize the signal-to-noise ratio. Additionally, we find
our cross-correlation based self-distillation pruning objective minimizes neuronal
redundancy and achieves state-of-the-art in magnitude-based pruning baselines,
and even outperforms KD based smaller BERT models with more parameters.

References

1. Ahn, S., Hu, S.X., Damianou, A., Lawrence, N.D., Dai, Z.: Variational information
distillation for knowledge transfer. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9163–9171 (2019)

2. Allen-Zhu, Z., Li, Y.: Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816 (2020)

3. Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional neural
networks. ACM J. Emerg. Technol. Comput. Syst. (JETC) 13(3), 1–18 (2017)

4. Bartoldson, B.R., Morcos, A.S., Barbu, A., Erlebacher, G.: The generalization-
stability tradeoff in neural network pruning. arXiv preprint arXiv:1906.03728
(2019)

5. Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale.
arXiv preprint arXiv:1911.02116 (2019)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

7. Dong, X., Chen, S., Pan, S.J.: Learning to prune deep neural networks via layer-
wise optimal brain surgeon. arXiv preprint arXiv:1705.07565 (2017)

8. Evans, D.: A computationally efficient estimator for mutual information. Proc. R.
Soc. A Math. Phys. Eng. Sci. 464(2093), 1203–1215 (2008)

9. Furlanello, T., Lipton, Z., Tschannen, M., Itti, L., Anandkumar, A.: Born again
neural networks. In: International Conference on Machine Learning, pp. 1607–1616.
PMLR (2018)

10. Han, S., Mao, H., Dally, W.: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint (2015)

11. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural networks. arXiv preprint arXiv:1506.02626 (2015)

12. Hassibi, B., Stork, D.G.: Second Order Derivatives for Network Pruning: Optimal
Brain Surgeon. Morgan Kaufmann (1993)

13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

14. Huang, Z., Wang, N.: Like what you like: knowledge distill via neuron selectivity
transfer. arXiv preprint arXiv:1707.01219 (2017)

http://arxiv.org/abs/2012.09816
http://arxiv.org/abs/1906.03728
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1705.07565
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1707.01219

Self-distilled Pruning of Deep Neural Networks 669

15. Jiao, X., et al.: TinyBERT: distilling bert for natural language understanding.
arXiv preprint arXiv:1909.10351 (2019)

16. Karnin, E.D.: A simple procedure for pruning back-propagation trained neural
networks. IEEE Trans. Neural Netw. 1(2), 239–242 (1990)

17. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys.
Rev. E 69(6), 066138 (2004)

18. Lebedev, V., Lempitsky, V.: Fast convnets using group-wise brain damage. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2554–2564 (2016)

19. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural
Information Processing Systems, pp. 598–605 (1990)

20. Lee, J., Park, S., Mo, S., Ahn, S., Shin, J.: Layer-adaptive sparsity for the
magnitude-based pruning. In: International Conference on Learning Representa-
tions (2020)

21. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710 (2016)

22. Liang, Y., et al.: XGLUE: a new benchmark dataset for cross-lingual pre-training,
understanding and generation. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 6008–6018 (2020)

23. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolu-
tional networks through network slimming. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 2736–2744 (2017)

24. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through
l 0 regularization. arXiv preprint arXiv:1712.01312 (2017)

25. Mallya, A., Davis, D., Lazebnik, S.: Piggyback: adapting a single network to multi-
ple tasks by learning to mask weights. In: Proceedings of the European Conference
on Computer Vision (ECCV), pp. 67–82 (2018)

26. Martens, J., Grosse, R.: Optimizing neural networks with kronecker-factored
approximate curvature. In: International Conference on Machine Learning, pp.
2408–2417. PMLR (2015)

27. Mobahi, H., Farajtabar, M., Bartlett, P.L.: Self-distillation amplifies regularization
in hilbert space. arXiv preprint arXiv:2002.05715 (2020)

28. Molchanov, D., Ashukha, A., Vetrov, D.: Variational dropout sparsifies deep neu-
ral networks. In: International Conference on Machine Learning, pp. 2498–2507.
PMLR (2017)

29. Mozer, M.C., Smolensky, P.: Skeletonization: a technique for trimming the fat from
a network via relevance assessment. In: Advances in Neural Information Processing
Systems, pp. 107–115 (1989)

30. Neill, J.O., Bollegala, D.: Semantically-conditioned negative samples for efficient
contrastive learning. arXiv preprint arXiv:2102.06603 (2021)

31. Park, S., Lee, J., Mo, S., Shin, J.: Lookahead: a far-sighted alternative of
magnitude-based pruning. arXiv preprint arXiv:2002.04809 (2020)

32. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3967–3976 (2019)

33. Reed, R.: Pruning algorithms-a survey. IEEE Trans. Neural Netw. 4(5), 740–747
(1993)

34. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets:
hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

35. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1712.01312
http://arxiv.org/abs/2002.05715
http://arxiv.org/abs/2102.06603
http://arxiv.org/abs/2002.04809
http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1910.01108

670 J. O’ Neill et al.

36. Sanh, V., Wolf, T., Rush, A.M.: Movement pruning: adaptive sparsity by fine-
tuning. arXiv preprint arXiv:2005.07683 (2020)

37. Singh, S.P., Alistarh, D.: WoodFisher: efficient second-order approximations for
model compression. arXiv preprint arXiv:2004.14340 (2020)

38. Stanton, S., Izmailov, P., Kirichenko, P., Alemi, A.A., Wilson, A.G.: Does knowl-
edge distillation really work? arXiv preprint arXiv:2106.05945 (2021)

39. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv
preprint arXiv:1910.10699 (2019)

40. Turc, I., Chang, M.W., Lee, K., Toutanova, K.: Well-read students learn better: on
the importance of pre-training compact models. arXiv preprint arXiv:1908.08962
(2019)

41. Ver Steeg, G.: Non-parametric entropy estimation toolbox (NPEET). Technical
report (2000). https://www.isi.edu/∼gregv/npeet doc.pdf

42. Ver Steeg, G., Galstyan, A.: Information-theoretic measures of influence based on
content dynamics. In: Proceedings of the Sixth ACM International Conference on
Web Search and Data Mining, pp. 3–12 (2013)

43. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: GLUE: a multi-
task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461 (2018)

44. Wang, C., Grosse, R., Fidler, S., Zhang, G.: EigenDamage: structured pruning in
the kronecker-factored eigenbasis. In: International Conference on Machine Learn-
ing, pp. 6566–6575. PMLR (2019)

45. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks. arXiv preprint arXiv:1608.03665 (2016)

46. Yang, C., Xie, L., Qiao, S., Yuille, A.L.: Training deep neural networks in gener-
ations: a more tolerant teacher educates better students. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, pp. 5628–5635 (2019)

47. Ye, J., Lu, X., Lin, Z., Wang, J.Z.: Rethinking the smaller-norm-less-
informative assumption in channel pruning of convolution layers. arXiv preprint
arXiv:1802.00124 (2018)

48. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped
variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)

49. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised
learning via redundancy reduction. arXiv preprint arXiv:2103.03230 (2021)

50. Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning
for model compression. arXiv preprint arXiv:1710.01878 (2017)

http://arxiv.org/abs/2005.07683
http://arxiv.org/abs/2004.14340
http://arxiv.org/abs/2106.05945
http://arxiv.org/abs/1910.10699
http://arxiv.org/abs/1908.08962
https://www.isi.edu/~gregv/npeet_doc.pdf
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1608.03665
http://arxiv.org/abs/1802.00124
http://arxiv.org/abs/2103.03230
http://arxiv.org/abs/1710.01878

MultiLayerET: A Unified Representation
of Entities and Topics Using Multilayer

Graphs

Jumanah Alshehri(B) , Marija Stanojevic , Parisa Khan, Benjamin Rapp,
Eduard Dragut , and Zoran Obradovic

Center for Data Analytics and Biomedical Informatics, Temple University,
Philadelphia, PA, USA

{shehri.j,marija.stanojevic,edragut,zoran.obradovic}@temple.edu

Abstract. Many online news outlets, forums, and blogs provide a rich
stream of publications and user comments. This rich body of data is a
valuable source of information for researchers, journalists, and policy-
makers. However, the ever-increasing production and user engagement
rate make it difficult to analyze this data without automated tools. This
work presents MultiLayerET, a method to unify the representation of
entities and topics in articles and comments. In MultiLayerET, articles’
content and associated comments are parsed into a multilayer graph con-
sisting of heterogeneous nodes representing named entities and news top-
ics. The nodes within this graph have attributed edges denoting weight,
i.e., the strength of the connection between the two nodes, time, i.e.,
the co-occurrence contemporaneity of two nodes, and sentiment, i.e., the
opinion (in aggregate) of an entity toward a topic. Such information helps
in analyzing articles and their comments. We infer the edges connecting
two nodes using information mined from the textual data. The multilayer
representation gives an advantage over a single-layer representation since
it integrates articles and comments via shared topics and entities, pro-
viding richer signal points about emerging events. MultiLayerET can
be applied to different downstream tasks, such as detecting media bias
and misinformation. To explore the efficacy of the proposed method, we
apply MultiLayerET to a body of data gathered from six representative
online news outlets. We show that with MultiLayerET, the classification
F1 score of a media bias prediction model improves by 36%, and that of
a state-of-the-art fake news detection model improves by 4%.

Keywords: News mining · Multilayer graphs · Text mining · Social
network analysis

1 Introduction

The amount of published articles is steadily increasing, and readers are shifting
toward online platforms because of the affordable technology costs and the ability
to share their opinions. News articles are conveniently accessed either via news
outlets’ websites or news aggregator platforms, like Google News, that collect

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 671–687, 2023.
https://doi.org/10.1007/978-3-031-26390-3_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_39&domain=pdf
http://orcid.org/0000-0002-0077-7173
http://orcid.org/0000-0001-8227-6577
http://orcid.org/0000-0002-3103-054X
http://orcid.org/0000-0002-2051-0142
https://doi.org/10.1007/978-3-031-26390-3_39

672 J. Alshehri et al.

articles and recommend a subset of them to readers according to their interests.
The current news ecosystem escalates the competition between platforms and
motivates them to scale and enhance their systems. Such growth makes it harder
for readers and analysts to get a complete picture of a particular event or entity
without falling into the news source bias or the contrasting opinions hidden
between the lines of articles across sources. Therefore, building an automated
system able to represent and model semantic data is essential to help readers,
researchers, journalists, and decision-makers understand emerging events and
their associated entities. Such a system will benefit downstream applications,
such as news popularity, media bias, news recommendations, and fake news
detection. We propose a unified representation of news and comments in our
MultiLayerET system based on shared entities and topics.

To our knowledge, most news research focuses on extracting topics and enti-
ties from the news articles and omits the user-generated content associated with
news items in comment sections. In this study, we formulate the problem as fol-
lows, having a large set of documents in the form of articles and their associated
comments. We aim to extract a rich graph representation of emerging events or
topics. To achieve this objective, we introduce our system MultiLayerET. The
output of our system is a heterogeneous attributed multilayer graph. A multilayer
graph is a graph with a set of nodes, each assigned a type from a set of types
[36]; our graph has two types of edges: intra-layer edges, which connect nodes
within the same layer, and inter-layer edges, which connect nodes across layers.
In MultiLayerET, nodes are entities and topics, and edges are attributed. We
consider three types of attributes: 1) co-occurrence, which is the co-occurrence
frequency of a pair of nodes, 2) contemporaneity, which is the published times of
the documents where the two nodes co-occur (note that articles and comments
have temporal information, published and posted times, respectively), and 3)
sign, which denotes the aggregated sentiment of the text where two nodes co-
occur. The extracted graph consists of two layers, the Ga layer where nodes and
edges are extracted from articles, and the Gc layer where the nodes and edges
are obtained from comment sections related to the articles in Ga.

The multilayer approach provides a unique representation of emerging events.
To illustrate, Fig. 1 shows both layers with their attributes on a set of documents
from Washington Post (WP) during the 2016 US election, we unfold the graph
based on time to show the contemporaneity attribute over three months period
from May - July 2016. Comparing Ga and Gc, we can see that Gc complements
Ga greatly including entities that are not mentioned in Ga. For example, the
comment layer mentions other candidates such as Bernie Sanders during the
2016 election that are from the same party and their relationship with the topic
Hillary Clinton’s email story. Moreover, James Comey the director of the FBI’s
investigation, appears in the comment layer around July when the investigation
started, and Colin Powell and his relationship with Clinton email controversy
appeared in early stages in Gc. Related to topics, we see that the topic election
debates and its relationship with the Clinton’s email story appeared much earlier
in Gc compared to Ga. This indicates that information mined from comments

MultiLayerET: A Unified Representation of Entities and Topics 673

Fig. 1. Monthly representation of a two-layer graph of Washington Post articles and
comments during the 2016 US election over three months (May - July 2016). Gray node
1 represents the topic “Hillary Clinton’s email story”, and gray node 2 represents the
topic “2016 elections debates”. Orange nodes represent associated entities in articles
and comments layers (Ga, Gc) ∈ WP . Blue and red edges represent the intra-layer
connections, while green edges represent the inter-layer connections. The width of the
link represents the weight, red edges represent a negative sentiment, while blue edges
represent positive sentiment. (Color figure online)

complements that mined from articles; we capture even richer (latent) informa-
tion if we mine concomitantly articles and comments from multiple sources.

MultiLayerET can be applied to other areas of study besides news like blogs
and their comments and research papers discussed on social media platforms. In
this work, our focus is on online news and its application. We apply our system
to six English online news sources, Washington Post (WP), Cable News Network
(CNN), Wall Street Journal (WSJ), British Broadcasting Corporation (BBC),
Fox News (FN), and Daily Mail (DM). The number of articles and comments
varies across sources, resulting in graphs with a different number of nodes per
source. The number of nodes varies between 4K and 200K, producing small
to extensive graphs. For this study, we focus on entities and topics related to
politics, and we consider people entities and associated topics. We make the
following contribution in this work:

1. We introduce MultiLayerET, a system that represents entities and topics in
articles and comments as a heterogeneous attributed multilayer graph. Such
representation assists in highlighting significant events and their associated
entities; it enhances the analysis of emerging events reported in news streams.

2. We analyze the topological graph structure to show the unique information
encoded within the network.

3. We show that MultiLayerET improves downstream applications, e.g., media
bias classification by 36% and fake news detection by 4%.

4. We build a dictionary of over 1M people entities; the dictionary contains
useful data such as aliases crucial to downstream applications.

674 J. Alshehri et al.

2 Related Work

Here we give an overview of the related work to properly position MultiLayerET
within the literature on topic modeling and entity extraction from articles and
their comments.

Comments carry valuable information concerning public opinion [46–48,52,
53]. Utilizing user comments can enhance the performance of many models for
downstream tasks, such as, fake news detection [26,32,49,50], news popularity
prediction [21,23,51], media bias [22,25,45], news recommendations [37–39], and
news summarization [41].

Latent Dirichlet Allocation (LDA) [1] is a hierarchical Bayesian model that
generates probabilities of corpora for a given document. LDA is the Bayesian
version of the Probabilistic Latent Semantic Analysis (PLSA) model [13]. It is
considered the foundation of many other models such as Topic-link LDA [12],
Labeled LDA [11], and Spatial LDA [14]. LDA is utilized in many applica-
tions (e.g., information retrieval, topics overlapping, and visualization) where
the extraction of topics is needed. For a given set of news sources, a line of work
aims to link entities, and topics using statistical [5,10] and other techniques
[29–31,33,34]. Other studies, construct an entity-centric graph and the topic
associated with it [6–9]. [16] uses an attribute proximity graph to mine events
reported in the news.

Most works in news mining either work with news articles and ignore com-
ments or with comments and ignore articles. There are a few exceptions. For
example, [40,42] shows that comments combined with articles improve topic
discovery and [18] shows that comments improve explainability in fake news
detection. Our MultiLayerET approach creates a unified representation of arti-
cles and comments, giving a richer graph representation of topics discussed in
the news and their associated entities. It is argued that entities are an essential
component significantly affecting the comprehension level of a given document
[15]. Therefore, entities are first-class citizens in MultiLayerET as the candidate
documents to be mined are added to the graph according to an input set of
entities. We extract topics from a set of documents, which assists in producing
a coherent list of terms for each extracted topic. To our knowledge, our work
is the first to propose a heterogeneous attributed multilayer graph to represent
information in news streams.

3 MultiLayerET

This section defines the problem and the notations used in this paper. We also
introduce our system MultiLayerET to represent entities and topics in articles
and comments. The system pipeline is shown in Fig. 2.

3.1 Problem Formulation

Having a source s ∈ S that consists of several articles and their comments si =
{〈a1, (c11, .., c1n)〉, .., 〈an, (cn1, .., cnm)〉}, MultiLayerET’s objective is to extract

MultiLayerET: A Unified Representation of Entities and Topics 675

Fig. 2. MultiLayerET pipeline to represent entities and topics in articles and comments

(major) topics and entities mentioned in articles and comments. MultiLayerET
produces an undirected heterogeneous attributed multilayer graph G = {Ga, Gc}
where Ga is the article graph and Gc is the comment graph. The nodes in the
graph are sets of entities E and topics T , respectively, along with attributed
edges contemporaneity τ̂ , co-occurrence count ω̂, and sign ς̂. Table 1 describes
the notations used in this paper.

Table 1. Notations used in this paper.

Symbol Description Symbol Description

S Set of sources T Set of topics ∈ {Da, Dc}
si The ith ∈ S where i = 1..n t Topic node ∈ T

A Set of articles ∈ s Ga Articles graph

ai The ith article ∈ A Gc Comments graph

C Set of comments section G Multilayer graph {Ga, Gc}
cij The jth comment for an article ai τ Contemporaneity, link attribute

Da Set of candidate articles ∈ A ω Weight, link attribute

Dc Set of candidate comments ∈ C ς Sign, link attribute

dict Entities dictionary τ̂ Aggregated contemporaneity

lda Best LDA model ω̂ Aggregated weights

E Set of entities in D ∈ {Da, Dc} ς̂ Aggregated signs
e Entity node ∈ E

3.2 Selection of Candidate Documents

Importing a large set of articles and comments is a challenge in itself. In this
work, we assume one can access an extensive collection of documents. We focus
on the challenge of gleaning knowledge from such data. An essential step in
the MultiLayerET pipeline is collecting representative documents; this prelim-
inary curation process helps eliminate noise, enabling gaining meaningful and
interpretable information.

676 J. Alshehri et al.

In order to fulfil this objective, we build an entity dictionary dict from wiki-
data1. The dictionary contains more than one million person entities along with
their names, alias names, affiliations, descriptions, and URLs to their Wikidata
pages. The list of aliases contains the most commonly misspelled names to cap-
ture better the varied ways entities are mentioned in articles and comments. In
dict, entities are divided into six categories according to their current or most
recent affiliation, such as politicians and officeholders, military figures, sports
figures, musicians and actors, writers, and social media personalities.

For a specific source s, article a and comment c are added to Da, the set of
candidate articles, and Dc, the set of candidate comments, respectively, if any
entity token of e is present in the entity dictionary dict. For example, we add
the article “Bernie Sanders FINALLY unloaded on Hillary Clinton for not being
‘qualified.’ Here’s why.”2 from WP and its subset of comments since the entities
Hillary Clinton and Bernie Sander in our dict are present in that article. In this
work, we focus on politics-related documents; therefore, we use the politicians
and office holders dict to extract coherent topic terms.

3.3 Entity Extraction and Topic Mining

Once candidate documents Da and Dc are obtained, we preprocess the data to
construct the graph where nodes = {E, T}. In this section we describe how to
extract entity nodes E and topic nodes T from Da and Dc.

Entity Nodes: To obtain meaningful information from the selected articles and
comments, we focus on entities present in our entity dictionary dict. We utilize
it along with NLTK [44] and TextBlob3 to extract entity name phrases. Entities
may appear multiple times in the same Da and Dc; therefore, we keep track of
their frequencies.

Topic Nodes: To extract topics, we train an LDA [1] model for each Da in
s. The LDA model looks into the bag of words from Da and returns a set
of terms with their probabilities. Each probability represents how much each
word contributes to that cluster. We evaluate the quality of the lda model by
measuring 1) Coherence score [3], which is the semantic degree of similarity
between high-scoring words in a given cluster (topic), and 2) Perplexity score;
normalized log-likelihood. MultiLayerET chooses the best lda model according
to the coherence value; a higher coherence value returns interpretable topics. If
two LDA models have the same coherence score, we choose the one with the
lower perplexity score. We only train lda on Da, assuming that Dc will align
with at least one of the extracted topics. We select the most relevant topic for
a given article in Da and comment Dc based on the topic probability given by
the trained lda model.

1 https://www.wikidata.org/.
2 Full article: https://wapo.st/3yOMYdO.
3 https://textblob.readthedocs.io/en/dev/.

https://www.wikidata.org/
https://wapo.st/3yOMYdO
https://textblob.readthedocs.io/en/dev/

MultiLayerET: A Unified Representation of Entities and Topics 677

Algorithm 1: Single-layer graph construction

1: procedure GC(D, lda, dict)
/* Nodes Extraction */

2: E = {token ∈ D ∧ token ∈ dict}
3: T = {lda(d) where d ∈ D}

/* Intra-layer Edges */
4: Initialize G ← [a]

for (e, t) ∈ 〈E, T 〉 do
for d ∈ D do

if (e, t)co-occur ind then
ςd ← Majority(ςi)
G[e, t] ← 〈τd, ωd, ςd〉

/* Link aggregation */
5: for (e, t) ∈ G do

τ̂d ← ∪〈τd,ωd,ςd〉∈G[e,t]τd

ω̂d ← ∑
〈τd,ωd,ςd〉∈G[e,t] ωd

ς̂d ← Majority(ςd)
G[e, t] ← 〈τ̂d, ω̂d, ς̂d〉

6: return Single layer ∈ G

Algorithm 2: Multilayer graph construction

1: procedure MGC(Da, Dc, lda, dict)
/* Graph construction */

2: Ga ← GC(Da, lda, dict)
3: Gc ← GC(Dc, lda, dict)

/* Inter-layer Edges */
4: Initialize G ← [a]

/* Entity-entity edges */

5: for (ea, ec) ∈ {Ga, Gc} do
if (ea = ec)||(ea, ec) ∈ {ai, cij}

then
G[ea, ec] ← 〈τ̂d, ω̂d〉

/* Topic-topic edges */
6: for (ta, tc) ∈ {Ga, Gc} do

if (ta = tc)||(ta, tc) ∈ {ai, cij})
then

G[ta, tc]〈τ̂d, ω̂d〉
7: return G

3.4 Graph Construction

In our setting, G is a multilayer, undirected, weighted, attributed graph. The first
layer in the graph G is Ga, which represents the article graph, and the second
layer Gc is the comment graph. The nodes in our graph are heterogeneous; they
consist of 1) a set of entities E and 2) a set of topics T that maps to one of the
extracted topics. Some nodes may appear in Gc but not in Ga and vice-versa.
This phenomenon depends on the commenters’ behavior; they tend to discuss or
leave out entities and topics that might be mentioned in the article. Algorithm
1 summarizes the graph construction for a single layer in G, and Algorithm2
shows the process of constructing the multilayer graph G.

Edges Construction: Since we are dealing with a multilayer graph, we have
two types of edges: intra-layer edges, which represent edges within the same

678 J. Alshehri et al.

layer, and inter-layer edges, which represent edges between the layers. Intra-
layer edges are (e, t), which links e ∈ E with t ∈ T . This link captures the
relationship between (e, t) pairs in news articles and comments. The inter-layer
edges are entity-entity links (ea, ec), which link entities together; this link gives
an intuition of how entities are connected between articles and their comments.
Another type of inter-layer edge is topic-topic (ta, tc), which links topics together;
this helps in projecting topics in G and analyzing the level of relevancy between
events in news articles and comments. Edges are formed between nodes v and w
if they co-occur in a single document d.

Edge Attributes and Aggregation: Once a link is formed between a pair of
nodes, we compute its attributes ω, τ , and ς. The first attribute is ω, representing
the link weight. For two nodes v and w, we compute the co-occurrence frequency
in a single document D, where D can be an article or comment. This attribute
represents the connection strength. Second, τ contemporaneity, is a concatenated
list of all publish times where node v and w co-occurred. This attribute assists
in understanding the temporal evolution of pair of nodes. Finally, ς is the sign
attribute representing the text sentiment between a pair of nodes co-occurring
in d. This attribute is different as it is only found in intra-layer edges (e,t). The
value of ς is 1 if the sentiment of d is positive, −1 if it is negative, and 0 if it
is neutral. We calculate the aggregated set 〈τ̂ , ω̂, ς̂〉 of edges as follows, τ̂ is a
concatenation of all τ for a given pair of nodes. ω̂ is the sum of all ω for a given
pair of nodes, and finally, ς̂ is the majority vote of all ς for a given pair of nodes.

3.5 Graph Construction Complexity

The graph construction complexity of Algorithm 2 is O(|S| · |T | · (|Da|2 ·
maxlen(Da)2 + |Dc|2 · maxlen(Dc)2). Here, |S| is the number of sources, |T | is
the number of unique topics, |Da| is the total number of the selected candidate
articles, |Dc| is the total number of selected candidate comments, maxlen(Da)
is the maximum number of tokens calculated over all selected candidate articles,
and maxlen(Dc) is the maximum number of tokens calculated over all selected
candidate comment sections. The graph construction is quadratic, where |Da|
and |Dc| play larger roles in controlling complexity compared to |S| and |T |.
This indicates that construction runtime grows gracefully with the number of
articles and comments.

4 Graph Analysis

Here, we describe the dataset and analyze the topological structure of the mul-
tilayer graph G.

4.1 Data

News articles and comments were collected from Google News [2] between 2015
and 2017; the database contains over one million articles and 33 million com-
ments from 22 thousand difference English and Spanish news sources. For this

MultiLayerET: A Unified Representation of Entities and Topics 679

Table 2. Candidate documents D statistics for each source, showing the total number
of articles and comments used in the study.

Dataset WP DM FN CNN WSJ BBC

No. articles 36K 14K 9K 4K 2K 101

No. comments 290K 90K 410K 14K 69K 105K

study, we draw six English news sources, Washington Post (WP), Cable News
Network (CNN), Wall Street Journal (WSJ), British Broadcasting Corporation
(BBC), Fox News (FN), and Daily Mail (DM). We selected all articles and com-
ments for this study between January 2016 and July 2016. Table 2 shows the
datasets statics.

4.2 Topological Graph Structure Analysis

We selected sources where the number of nodes and edges varies across sources,
leading to the construction of small to extensive graphs as shown in Table 3. In
addition, the size of the graph varies between layers; for example, CNN and
WSJ have a similar number of nodes in Ga. However, WSJ has a 3 times larger
number of nodes in Gc compared to CNN . This phenomenon will aid in better
understating the structural differences across sources.

Table 3. Topological structure properties for each layer Ga and Gc, and multilayer
graph G. Na = Number of nodes in article layer, Nc = Number of nodes in comments
layer, Ea= Number of edges in article layer, Ec= Number of edges in comments layer,
avg Nd = Average node degree for each layer Ga and Gc, Diameter= Diameter of the
layer largest component in each layer Ga and Gc, Inter= The number of multilayer
graph inter-layer edges, avg C = Multilayer average clustering coefficient, and r =
Multilayer assortativity coefficient.

Dataset Na Nc Ea Ec Avg Nd Diameter Inter Avg C r

Ga Gc Ga Gc

WP 1.2K 2K 3.6K 18K 3.50 5.01 7 6 200K 0.82 −0.34
DM 1K 1.3K 1.3K 2.8K 2.53 4.15 6 5 56K 0.81 −0.33
FN 515 1.7K 3K 10K 2.96 4.81 6 4 115K 0.80 −0.35
WSJ 308 2K 475 6K 3.08 4.98 6 4 149K 0.83 −0.34
CNN 297 534 447 10K 3.01 3.76 6 4 16K 0.82 −0.35
BBC 59 176 75 436 2.54 4.95 7 5 4K 0.81 −0.19

We analyze each layer, the multilayer graph structure, and edge sentiment
to understand the topological graph structure. In terms of topological structure,

680 J. Alshehri et al.

we consider the following properties: 1) Average Node Degree: that helps under-
stand the connectivity differences between layers in G. 2) Diameter : that shows
the graph connectivity, which indicates how many steps we need to take to tra-
verse the graph; we calculated the diameter of the largest component in each
layer. 3) avg C: which measures how well the nodes tend to form clusters [4]; a
value close to 1 means that nodes have a high tendency to form clusters, while
a value near to 0 means otherwise. 4) Assortativity Coefficient : this property
indicates the tendency of nodes to be connected, whether they have the same
degree magnitude, large, or low-degree. Assortativity is calculated as the Pear-
son correlation coefficient of nodes at either side of an edge. The assortativity
value ranges from −1 to +1; positive values mean that nodes of similar degrees
connect, while negative values mean that large-degree nodes tend to attach to
low-degree nodes. The degree sequence of the graph heavily influences the mea-
sure. Finally, 5) Edge Sentiment Distribution which is the edge sign ς̂, gives the
stance of an entity toward a topic.

Across Sources Analysis: Table 3 shows that the largest graph is WP with
more than 1K nodes and 3K intra-layer edges in Ga and 2K nodes and 18K
intra-layer edges in Gc, respectively. The smallest graph is BBC with 59 nodes
and around 176 intra-layer edges in Ga, and around 75 nodes and 436 intra-
layer edges in Gc. The average Nd indicates that the nodes tend to be connected
similarly across sources, which suggests that the size of the graph does not
affect the connectivity. The diameter for the largest component across sources
is similar, and we can see that the diameter of Ga is larger than that of Gc.

Multilayer Graph Analysis: Comparing Ga and Gc together, we can see that
Gc is always larger than Ga. This indicates that users tend to mention entities
and discuss topics that are not present in articles. In other words, users tend
to drift into topics unrelated to that of the article, but still mentioning entities
present in the article along with new ones. The number of inter-layer edges is
much greater than the number of intra-layer edges resulting of high average
clustering coefficient across all outlets. Although BCC is the smallest graph, it
has the highest density among all sources, which suggests that BCC’s topics
and entities are highly connected compared to other sources. The analysis of
assortativity coefficient shows that nodes with high degree tend to be connected
with nodes with smaller degree; this is a sign of the existence of hubs.

Signed Edge Analysis: Signed edges give an intuition of the sentiment dif-
ference between articles and comments. In Ga, we observe that the number of
positive and neutral edges represent 78%–85% of the total signed edges in all
sources. The percentages indicate that most entities have positive or neutral
sentiments towards a particular topic. In Gc, neutral edges represent between
6%–10%, while the percentages of both positive and negative edges are between
90%–94%. This phenomenon indicates that even though sources may have some
inherent (political) bias, the articles are written in a way that their text conveys
positive or neutral sentiment. Users, however, tend to express more polarized
opinions, which explains the low percentage of neutral edges.

MultiLayerET: A Unified Representation of Entities and Topics 681

5 System Evaluation

In this section, we present the added benefit of MultiLayerET on two downstream
applications, media bias classification, and fake news detection. We compare
methods that only utilize the textual representation against the same methods
when combined with our MultiLayerET system.

5.1 Experimental Setup

We pre-process the text by removing stop words, punctuation, and digits. To
obtain the base of the words, we utilize NLTK [44] to perform lemmatization,
which removes the conjugation ending of the word. Our comparison models are:
1) Doc2Vec [43], which is trained to predict words in the text; it produces a
dense vector for a given text. We train Doc2Vec for 100 epochs to produce 300
dimension vectors for articles and comments. 2) BERT [27], which generates an
expressive feature embedding for a given text using a self-attention mechanism
and bidirectional cross attention. We utilize BERTbase to get the text feature
representation. Then we feed the feature vectors to a feed-forward network with
a softmax function to get the predictions.

In MultilayerET, we use Node2Vec [17] to obtain the graph feature repre-
sentation. Node2Vec maps the graph nodes to low-dimensional vectors while
preserving the graph structure. We train Node2Vec and produce a vector fea-
ture representation of 100 dimensions. Then we concatenate the graph features
with text features obtained with BERT. Once we obtain the feature vectors,
we feed them to a feed-forward network with a softmax function to get the
predictions. We investigate the performance of MultiLayerET by analyzing the
performance of each layer of MultiLayerET. We run experiments 1) using only
the graph representation of articles layer Ga along with the representation of
the article obtained by BERT, 2) using the graph representation of comments
layer Gc along with the comments representation obtained by BERT, and 3)
using the multilayer representation of MultiLayerET along with the articles and
comments representation obtained by BERT.

In both applications, we repeat experiments five times and test on a different
fold not used for training. The dataset split is 80:20 ratios for training, and
testing, respectively. We report the average accuracy, precision, recall, F1 score,
and standard deviation.

5.2 Media Bias Classification

To perform this experiment, we selected articles and comments from six news
sources mentioned in Sect. 4.1 that discuss well-known politicians from different
political parties, such as Donald Trump and Hillary Clinton. We label all exam-
ples from each source as left, right, or center based on their media bias rank
given by AllSides4. To get a balanced dataset, we randomly selected around 1K

4 https://www.allsides.com/media-bias/media-bias-ratings.

https://www.allsides.com/media-bias/media-bias-ratings

682 J. Alshehri et al.

Table 4. Performance on MediaBias. The first row is the input representation; Ga

and Gc use only the articles or the comments layer, respectively. MultiLayerET means
using the representation of the multilayer graph. We report the average scores for each
metric and standard deviation

Representation Doc2Vec BERT Ga Gc MultiLayerET

Accuracy 0.547 (0.004) 0.687 (0.006) 0.785 (0.009) 0.806 (0.009) 0.912 (0.005)
Precision 0.525 (0.009) 0.656 (0.009) 0.736 (0.008) 0.791 (0.009) 0.880 (0.007)
Recall 0.538 (0.008) 0.669 (0.007) 0.739 (0.008) 0.795 (0.006) 0.894 (0.003)
F1 score 0.545 (0.008) 0.686 (0.007) 0.774 (0.007) 0.797 (0.006) 0.901 (0.003)

article and 5K comments from each outlet except for BBC, where we have only
101 articles. This result in having a smaller sample of the center class. The total
number of articles and comments is about 6K and 30K respectively, and the
proportion of classes are: left = 34%, center = 10%, and right = 56%.

The worst performance was obtained using only Doc2Vec representation,
where the accuracy is 54% (Table 4). Using any part of MultiLayerET enhanced
the model performance from 21% to 37%. In sign edge analysis (Sect. 4.2) we
show that journalists tend to write articles mostly with positive or neutral sen-
timents, which makes it harder to understand the hidden bias in online news
from the textural representation itself. We also observe that using the Ga or Gc

already enhances the prediction results across all metrics. From the last column
of Table 4, one notices that the best accuracy and F1 score are obtained when the
full MultiLayerET system is used. This supports our hypothesis that the com-
ment section is important in increasing the prediction accuracy in downstream
tasks.

Fig. 3. Confusion matrix on media bias classification for proposed methods

To better understand the advantage of using MultiLayerET compared to
separate layers Ga and Gc, we plot the confusion matrix for each of these exper-
iments as shown in Fig. 3. MultiLayerET performs the best in predicting each

MultiLayerET: A Unified Representation of Entities and Topics 683

class. The left class with the highest error rate in all cases is the most challeng-
ing class to predict. MultiLayerET and Gc have a lower error rate in predicting
the center class than Ga. Looking at the misclassified examples, when MultiLay-
erET is not sure about the prediction, it consistently predicts the right class and
avoids predicting the center class. On the contrary, Ga and Gc randomly assign a
class to miss classified examples. This observation indicated that MultiLayerET
learns better in imbalanced data cases compared to Ga and Gc.

5.3 Fake News Detection

To evaluate MultiLayerET on Fake News Detection we utilize the benchmark
dataset FakeNewsNet [19,20]. We focus on political news retrieved from Politi-
Fact articles and comments (tweets) and use it to perform a binary classification,
where texts are labeled as fake and real. PolitiFact consists of 415 news articles
with around 89K comments, where 35% are real news and 65% are fake. We com-
pare MultiLayerET to dEFEND [18] since it utilizes both articles and comments.
It reports the best results in FakeNewsNet compared to alternative models for
fake news detection.

Table 5 shows that our MultiLayerET-based method for fake news detec-
tion outperforms dEFEND’s reported accuracy between 1%–6% in F1 score.
The results highlight the importance of utilizing the interaction between entities
and topics in this classification task. We note that when we use Ga alone, our
prediction performs similarly to that of dEFEND; dEFEND outperforms our
prediction model when we use Gc alone.

Table 5. Performance on fake news detection. The first row is the input representa-
tion; Ga and Gc mean that only articles and comment layers are utilized, respectively.
MultiLayerET means that the entire multilayer graph is used. We report the average
scores for each metric and standard deviation. dEFEND results are reported as in [18];
we did not report dEFEND standard deviation since we do not have access to the
results.

Model dEFEND Ga Gc MultiLayerET

Accuracy 0.904 0.939 (0.007) 0.895 (0.008) 0.972 (0.003)
Precision 0.902 0.919 (0.009) 0.878 (0.007) 0.942 (0.003)
Recall 0.956 0.919 (0.009) 0.880 (0.007) 0.959 (0.003)
F1 score 0.928 0.929 (0.009) 0.892 (0.008) 0.960 (0.004)

The problem appears to be complex; the articles carry latent information that
is useful to distinguish between real and fake news compared to comments. We
should mention that dEFEND is an explainable fake news detection model that
indicates the article sentences and comments that lead to a specific prediction.
However, in this work, we focus on the performance of the models; we believe that
appending MultiLayerET to dEFEND will enhances dEFEND’s performance
while maintaining its explainability power. We leave this for future work.

684 J. Alshehri et al.

6 Conclusion

We propose a novel system, MultiLayerET, to create a unified representation
of entities and topics in online news using multilayer graphs. The layers of the
graph are the articles and comments, respectively. This study is the first to con-
sider the comments representing topics and entities and analyze them from a
multilayer perspective. Our proposed system encodes novel interactions between
articles and comments, which proves beneficial to downstream tasks. MultiLay-
erET is not limited to online news articles and their comments; it can be applied
to many areas such as blogs and their comments, research papers, and discus-
sion such as in Twitter. To characterize the capabilities of our proposed system
on real applications, we provided a detailed analysis of MultiLayerET on six
representative online news sources. We showed how MultiLayerET assisted in
highlighting significant events and their associated entities to better understand
and extract information from large-scale online news. We applied MultiLayerET
to two downstream tasks. The results obtained on the media bias classification
showed that MultiLayerET enhanced the textual representation and helped in
better understanding the bias across sources. We also showed that MultiLay-
erET outperforms a state-of-the-art fake news detection model that considers
both articles and comments. In the future, we will focus on expanding the dic-
tionary of entities to include organizations, locations, subjects, materials, and
other entities. We also plan to study the multilayered graph from a temporal
aspect.

Acknowledgements. This research was supported in part by the U.S. NSF awards
2026513 and 1838145, and the ARL subaward 555080-78055 under Prime Contract No.
W911NF2220001 and Temple University office of the Vice President for Research 2022
Catalytic Collaborative Research Initiative Program. AI & ML Focus Area. In addition,
this research includes calculations carried out on HPC resources supported in part by
the U.S. NSF through major research instrumentation grant number 1625061 and by
the U.S. Army Research Laboratory under contract number W911NF-16-2-0189.

References

1. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3,
993–1022 (2003)

2. He, L., Han, C., Mukherjee, A., Obradovic, Z., Dragut, E.: On the dynamics of user
engagement in news comment media. Wiley Interdiscip. Rev. Data Min. Knowl.
Discov. 10, e1342 (2020)

3. Röder, M., Both, A., Hinneburg, A.: Exploring the space of topic coherence mea-
sures. In:WSDM (2015)

4. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393,
440–442 (1998)

5. Newman, D., Chemudugunta, C., Smyth, P., Steyvers, M.: Analyzing entities and
topics in news articles using statistical topic models. In: Mehrotra, S., Zeng, D.D.,
Chen, H., Thuraisingham, B., Wang, F.-Y. (eds.) ISI 2006. LNCS, vol. 3975, pp.
93–104. Springer, Heidelberg (2006). https://doi.org/10.1007/11760146_9

https://doi.org/10.1007/11760146_9

MultiLayerET: A Unified Representation of Entities and Topics 685

6. Spitz, A., Gertz, M.: Exploring entity-centric networks in entangled news streams.
In: TheWebConf (2018)

7. Spitz, A., Gertz, M.: Entity-centric topic extraction and exploration: a network-
based approach. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.)
ECIR 2018. LNCS, vol. 10772, pp. 3–15. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-76941-7_1

8. Spitz, A., Almasian, S., Gertz, M.: Entity-centric network topic exploration in news
streams. In: WSDM (2019)

9. Wu, C., Kanoulas, E., Rijke, M.: Learning entity-centric document representations
using an entity facet topic model. Inf. Process. Manage. 57, 102216 (2020)

10. Kim, H., Sun, Y., Hockenmaier, J., Han, J.: ETM: entity topic models for mining
documents associated with entities. In: ICDM (2012)

11. Ramage, D., Hall, D., Nallapati, R., Manning, C.: Labeled LDA: a supervised topic
model for credit attribution in multi-labeled corpora. EMNLP (2009)

12. Liu, Y., Niculescu-Mizil, A., Gryc, W.: Topic-link LDA: joint models of topic and
author community. In: ICML (2009)

13. Hofmann, T.: Probabilistic latent semantic analysis. In: UAI (1999)
14. Wang, X., Grimson, E.: Spatial latent dirichlet allocation. In: NeurIPS, vol. 20

(2008)
15. Wu, C., Kanoulas, E., Rijke, M.: It all starts with entities: a salient entity topic

model. Nat. Lang. Eng. 26, 531–549 (2020)
16. Kim, H., El-Kishky, A., Ren, X., Han, J.: Mining news events from comparable

news corpora: a multi-attribute proximity network modeling approach. In: IEEE
BigData (2019)

17. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In:
SIGKDD (2016)

18. Shu, K., Cui, L., Wang, S., Lee, D., Liu, H.: DEFEND: explainable fake news
detection. In: SIGKDD (2019)

19. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media:
a data mining perspective. ACM SIGKDD. 19, 22–36 (2017)

20. Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: FakeNewsNet: a data
repository with news content, social context, and spatiotemporal information for
studying fake news on social media. Big Data 8, 171–188 (2020)

21. Tatar, A., Leguay, J., Antoniadis, P., Limbourg, A., Amorim, M., Fdida, S.: Pre-
dicting the popularity of online articles based on user comments. In: WIMS (2011)

22. Yigit-Sert, S., Altingovde, I., Ulusoy, Ö.: Towards detecting media bias by utilizing
user comments. In: WebSci (2016)

23. Rizos, G., Papadopoulos, S., Kompatsiaris, Y.: Predicting news popularity by min-
ing online discussions. In: The Web Conference (2016)

24. Tsagkias, M., Weerkamp, W., de Rijke, M.: News comments: exploring, modeling,
and online prediction. In: Gurrin, C., et al. (eds.) ECIR 2010. LNCS, vol. 5993, pp.
191–203. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12275-
0_19

25. Lee, E.: That’s not the way it is: how user-generated comments on the news affect
perceived media bias. J. Comput.-Mediat. Comm. 18, 32–45 (2012)

26. Yanagi, Y., Orihara, R., Sei, Y., Tahara, Y., Ohsuga, A.: Fake news detection with
generated comments for news articles. In: INES (2020)

27. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL (2019)

28. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese
BERT-networks. In: EMNLP (2019)

https://doi.org/10.1007/978-3-319-76941-7_1
https://doi.org/10.1007/978-3-319-76941-7_1
https://doi.org/10.1007/978-3-642-12275-0_19
https://doi.org/10.1007/978-3-642-12275-0_19

686 J. Alshehri et al.

29. Leban, G., Fortuna, B., Brank, J., Grobelnik, M.: Event registry: learning about
world events from news. In: TheWebConference (2014)

30. Watanabe, K., Ochi, M., Okabe, M., Onai, R.: Jasmine: a real-time local-event
detection system based on geolocation information propagated to microblogs. In:
CIKM (2011)

31. Sankaranarayanan, J., Samet, H., Teitler, B., Lieberman, M., Sperling, J.: Twit-
terStand: news in tweets. In: GIS (2009)

32. Panagiotou, N., Saravanou, A., Gunopulos, D.: News monitor: a framework for
exploring news in real-time. Data 7, 3 (2022)

33. Saravanou, A., Stefanoni, G., Meij, E.: Identifying notable news stories. In: Jose,
J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 352–358. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45442-5_44

34. Mathioudakis, M., Koudas, N.: TwitterMonitor: trend detection over the twitter
stream. In: SIGMOD (2010)

35. Syed, M., et al.: Unified representation of twitter and online news using graph and
entities. Front. Big Data 4, 699070 (2021)

36. Barabási, A.: Network science. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371,
20120375 (2013)

37. Trevisiol, M., Aiello, L., Schifanella, R., Jaimes, A.: Cold-start news recommenda-
tion with domain-dependent browse graph. In: RecSys (2014)

38. Bach, N., Hai, N., Phuong, T.: Personalized recommendation of stories for com-
menting in forum-based social media. Inf. Sci. 352–353 (2016)

39. Li, Q., Wang, J., Chen, Y., Lin, Z.: User comments for news recommendation in
forum-based social media. Inf. Sci. 180, 4929–4939 (2010)

40. Guo, W., Li, H., Ji, H., Diab, M.: Linking tweets to news: a framework to enrich
short text data in social media. In: ACL (2013)

41. Wei, Z., Gao, W.: Gibberish, assistant, or master? Using tweets linking to news
for extractive single-document summarization. In: SIGIR (2015)

42. Li, M., et al.: EKNOT: event Knowledge from news and opinions in Twitter. In:
AAAI (2016)

43. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML, vol. 32 (2014)

44. Loper, E., Bird, S.: NLTK: the natural language toolkit. In: ACL (2004)
45. Stanojevic, M., Alshehri, J., Dragut, E., Obradovic, Z.: Biased news data influence

on classifying social media posts. In:sIR@ SIGIR (2019)
46. Stanojevic, M., Alshehri, J., Obradovic, Z.: Surveying public opinion using label

prediction on social media data. In: ASONAM (2019)
47. Alshehri, J., Stanojevic, M., Dragut, E., Obradovic, Z.: Stay on topic, please: align-

ing user comments to the content of a news article. In: Hiemstra, D., Moens, M.-
F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS,
vol. 12656, pp. 3–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72113-8_1

48. Yang, F., Dragut, E., Mukherjee, A.: Predicting personal opinion on future events
with fingerprints. In: COLING (2020)

49. Yang, F., Dragut, E., Mukherjee, A.: Claim verification under positive unlabeled
learning. In: ASONAM (2020)

50. Yang, F., Dragut, E., Mukherjee, A.: Improving evidence retrieval with claim-
evidence entailment. In: RANLP (2021)

51. He, L., Shen, C., Mukherjee, A., Vucetic, S., Dragut, E.: Cannot Predict comment
volume of a news article before (a few) users read it. In: ICWSM (2021)

https://doi.org/10.1007/978-3-030-45442-5_44
https://doi.org/10.1007/978-3-030-72113-8_1
https://doi.org/10.1007/978-3-030-72113-8_1

MultiLayerET: A Unified Representation of Entities and Topics 687

52. Hosseinia, M., Dragut, E., Boumber, D., Mukherjee, A.: On the usefulness of per-
sonality traits in opinion-oriented tasks. In: RANLP (2021)

53. Tumarada, K., Zhang, Y., Yang, F., Dragut, E., Gnawali, O., Mukherjee, A.: Opin-
ion prediction with user fingerprinting. arXiv (2021)

Conversational Systems

MFDG: A Multi-Factor Dialogue Graph
Model for Dialogue Intent Classification

Jinhui Pang1(B), Huinan Xu1, Shuangyong Song2, Bo Zou2, and Xiaodong He2

1 Beijing Institute of Technology, Beijing 100081, China
{pangjinhui,xuhuinan}@bit.edu.cn

2 JD AI Research, Beijing 100176, China
{songshuangyong,cdzoubo,hexiaodong}@jd.com

Abstract. Interest in speaker intent classification has been increasing
in multi-turn dialogues, as the intention of a speaker is one of the compo-
nents for dialogue understanding. While most existing methods perform
speaker intent classification at utterance-level, the dialogue-level com-
prehension is ignored. To obtain a full understanding of dialogues, we
propose a Multi-Factor Dialogue Graph Model (MFDG) for Dialogue
Core Intent (DCI) classification. The model gains an understanding of
the entire dialogue by explicitly modeling multi factors that are essen-
tial for speaker-specific and contextual information extraction across the
dialogue. The main module of MFDG is a heterogeneous graph encoder,
where speakers, local discourses, and utterances are modelled in a graph
interaction manner. Based on the framework of MFDG, we propose two
variants, MFDG-EN and MFDG-EE, to fuse domain knowledge into the
dialogue graph. We apply MFDG and its two variants to a real-world
online customer service dialogue system on the e-commerce website, JD,
in which the MFDG can help achieving an automatic intent-oriented
classification of finished service dialogues, and the MFDG-EE can fur-
ther promote dialogue comprehension with a well-designed knowledge
graph. Experiments on this in-house JD dataset and a public DailyDialog
dataset demonstrate that MFDG performs reasonably well in multi-turn
dialogue classification.

Keywords: Dialogue classification · Core intent classification · Graph
neural network

1 Introduction

There are increasing number of internet firms and platforms providing online cus-
tomer services, thus creating lots of available multi-turn dialogues between cus-
tomer service staffs and customers, which could be explored further for enhancing
the user experience and satisfaction. Especially, the ability to recognize speakers’
intentions, which is officially called Dialogue Intent (DI) classification [24,25], is
essential to perceive the customers’ requests across the dialogue. Most of works

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 691–706, 2023.
https://doi.org/10.1007/978-3-031-26390-3_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_40&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_40

692 J. Pang et al.

focus on the utterance-level DI classification, ignoring the dialogue-level com-
prehension. To promote the full understanding of dialogues, we bring forward a
task, Dialogue Core Intent (DCI) classification, aiming to infer the core intention
of the entire dialogue, such as refund promoting, product consultation, service
complaint and etc. Early works regarded multi-turn dialogues as ordinary texts
[1]. They simply concatenated the utterances in the dialogue, preventing them
from learning the dialogue-level contextual dependency among utterances.

Dialogues have their own specific characteristics. As an example shown in
Table 1, the speakers of a dialogue talk in a random order, breaking up the con-
tinuity of adjacent utterances in the dialogue. Moreover, topic transitions are
common in human-human dialogues, which brings a new challenge of modeling
the dependency among remote but interrelated utterances. The key point to
address dialogue classification is adopting speaker-specific and contextual mod-
eling [2].

Firstly, the speaker-specific dialogue modeling considers speaker information
contained in the dialogue. It consists of two aspects: intra and inter speaker
dependency. Intra-speaker dependency is used to reflect the affect that speakers
have on themselves, which can contribute to the understanding of individual
speakers. Inter-dependency implies the dynamic interactions among speakers.
Modeling intra and inter speaker dependency in dialogues relies on plenty of
factors, such as topic, speakers’ personality and viewpoint [2]. Secondly, the
contextual information coming from both neighbouring and distant utterances is
indispensable for dialogue understanding. While the importance of neighbouring
utterances is generally considered, it should be stressed that distant utterances
can sometimes offer supplementary information when speakers refer to the same
word that appears at former utterances.

In term of the above two points, DialogueGCN was proposed in [3], which
built a directed graph to model both speaker dependency and contextual infor-
mation in the dialogue. Later, other works inherited the graph modeling pattern
and introduced discourse relations [4,5], position encoding [6] to the dialogue
graph for enhancing the understanding of utterances in the dialogue.

It reminds us to acquire the comprehension of the dialogue based on a dia-
logue graph. Besides, considering the lack of additional factors’ annotation, we
focus on the very nature of multi-turn dialogues and build a multi factor dia-
logue graph. Not like prior methods using edges to inject speaker dependency,
we explicitly define speaker nodes to represent the contextual information of
speakers in the dialogue.

Moreover, we find the consecutive utterances spoken by the same speaker are
generally highly correlated and supplementary to each other. A real example is
shown in Table 1. The customer speaks U1, U2 and U3 continuously to explain
the problem he (she) faces, thus it’s helpful to integrate them to know the back-
ground information of the customer. We add local discourse nodes to aggregate
such consecutive utterances for generating a dialogue representation later. The
multi factor dialogue graph we build has three types of nodes, namely utterance
nodes, speaker nodes and local discourse nodes. And the graph has five different

MFDG: A Multi-Factor Dialogue Graph Model 693

Table 1. An example dialog from JD dataset. The core intent label of this dialogue is
‘refund urging’. Bold font denotes the pre-defined entities coming from a well-designed
knowledge graph for JD dataset.

Speaker Utterance

U1 Customer Hello? I can not reach the merchant

U2 Customer I bought some bread with a shelf life of a week, and it has been 4 days
after I ordered

U3 Customer I haven’t receive the bread, but it is probably expired at that time

U4 Staff We are sorry for our neglect. We will connect the merchant right now

U5 Customer I demand for return

U6 Staff You can apply for Refund of unreceived goods on the app

U7 Customer I have tried. This needs the permission of the merchant and I can not
reach him

U8 Staff We can apply for Order dispute for you

U9 Staff Then you need to provide some evidence, after that we help you with
the refund

U10 Customer All right

types of edges, i.e., speaker edges, local edges, local-speaker edges, utterance-
order edges and local-order edges. By applying a Graph Convolution Network
(GCN) to this graph, we propagate contextual information among multi factors
and obtain a multi-factor representation of the dialogue.

To sum up, we propose the Multi-Factor Dialogue Graph model (MFDG) by
explicitly modeling the relations among speakers, utterances and local discourses
in dialogues. We believe that the representation contains richer information rel-
evant to core intent than other graph-based and text classification models. The
results are shown in Sect. 5.

Furthermore, we discover there exist entities that contain domain-specific
knowledge in online customer service dialogues. As shown in Table 1, pre-defined
entities ’Refund of unreceived goods’ and ’Order dispute’ always appear with the
refund demand of the customer. It will be helpful to take advantage of such domain
knowledge. We explore two ways to fuse the fine-grained entity information into
our original model MFDG, namely MFDG-Entity Node (MFDG-EN) and MFDG-
Entity Embedding (MFDG-EE). On the basis of MFDG, MFDG-EN adds entity
nodes to the dialogue graph and considers the inclusion relations among utterances
and entities, MFDG-EE combine the token-level and entity-level representations
and generate knowledge-aware initial representations for utterance nodes.

In summary, our main contributions are as follows:

– We propose a novel model, MFDG, to infer the core intention of a multi-turn
dialogue by obtaining a full understanding of the entire dialogue.

– We build a heterogeneous dialogue graph to model the interactions among
multi factors in the dialogue. Especially, we create local discourse nodes to
aggregate consecutive utterances spoken by the same speaker and add speaker
nodes to explicitly capture the speaker information.

694 J. Pang et al.

– Additionally, we propose two variants of MFDG to explore an appropriate
way to fuse domain knowledge into the dialogue graph.

2 Related Work

In this section, we firstly introduce current deep learning models for text classifi-
cation, as dialogue core intent classification is a specific type of text classification.
Considering the lack of dialogue-level classification models, we then introduce
related works for utterance-level dialogue classification from the following two
perspectives: recurrence-based models and graph-based models.

– Text Classification. Deep learning models have achieved state-of-the-art
results in many domains, including a wide variety of NLP applications.
TextCNN [7] firstly migrated Convolutional Neural Networks (CNN) from
computer vision to natural language processing. CNN makes use of convo-
lution kernel to generate latent semantic features across the sentences, and
performs much better than traditional feature-based text classification mod-
els. However, CNN does not take sequential information among sentences
into consideration. As Recurrent Neural Network (RNN) is designed to rec-
ognize the sequential characteristics of data, it’s a powerful model for text,
string and sequential data classification [8]. Furthermore, an attention-based
Long Short-Term Memory (LSTM) network [9] was proposed to dynamically
integrate text information.

– Recurrence-based Models. Utterances of the dialogue are inherently
sequential, then [10] proposed RNN and LSTM models for utterance intent
classification task. DialogueRNN [11] used two Gate Recurrent Units (GRU)
to track individual speaker states and global context across the dialogue.
COSMIC [12] shared a similar network with DialogueRNN and incorporated
different elements of commonsense to learn interactions between speakers par-
ticipating in a dialogue.

– Graph-based Models. Many recent utterance-level dialogue classification
models utilized graph-based neural networks to adopt speaker-specific and
contextual modeling. DialogueGCN [3] firstly leveraged self and inter-speaker
dependency of the speakers in a graph-based framework to model a con-
versational context, treating each dialogue as a graph where each utterance
is connected to its surrounding utterances. Based on DialogueGCN, RGAT
[15] added relational positional encodings that provide RGAT with sequen-
tial information implying in the dialogue. Besides, some other methods [4,5]
draw support from pre-defined discourse relations between utterances. Lately,
DAG [21] attempted to combine the advantages of recurrence-based models
and graph-based models, which designs a directed acyclic graph to model the
connections between nearby and distant utterances.

MFDG: A Multi-Factor Dialogue Graph Model 695

Fig. 1. The overall framework of MFDG. First, a sequential encoding module is used
to obtain the initial representations of utterances in the dialogue. Then, in multi factor
dialogue graph module we construct a dialogue graph consisting of three types of nodes
and five types of edges. We utilize a graph convolutional network to update the nodes’
features. Finally, three types of nodes are pooled and then concatenated together to
be the dialogue representation which is fed to a fully connected layer for dialogue-level
core intent classification.

3 Methodology

3.1 Problem Definition

In the following sections, let D = {U1, U2, ..., UNu
} be a dialogue with Nu utter-

ances, and let there be Ns speakers S = {s1, s2, ..., sNs
} in dialogue D, where

each utterance Ui is associated with the ID of its corresponding speaker by a
mapping function P (Ui). Given D,S and P , DCI attempts to predict the core
intention label I of the dialogue.

3.2 Model

Now we present our Multi-Factor Dialogue Graph model (MFDG), which mainly
consists of three modules as shown in Fig. 1.

– Sequential Encoding Module. This module is used to produce context-
dependent representations for utterances without considering speaker-specific
information, which will be used as the initial node features for the dialogue
graph.

696 J. Pang et al.

– Multi Factor Dialogue Graph Module. In this module, we organize the
dialogue context as a heterogeneous graph. The detailed process of dialogue
graph construction is below. Then a Relational Graph Convolutional Network
(R-GCN) is applied to integrate contextual and speaker-specific information
from multi factors in the dialogue graph.

– Classification Module. The last module predicts the core intention of a
dialogue over the multi-factor involved dialogue representation.

Sequential Encoding Module. Firstly, we follow [7] to make use of a CNN
to extract features for each utterance. We use a simple CNN with one layer of
convolution followed by max-pooling and a fully connected layer to learn the
representations for the utterances.

Then, in order to obtain inherent contextual information among utterances,
we feed the output of CNN to a Bidirectional Long Short-Term Memory (Bi-
LSTM). Let H = {g1, g2, ...gNu

} be the output of the former CNN, the output
features of utterances through Bi-LSTM can be represented as:

ui =
[←−−−−−−−
LSTM(gi);

−−−−−−−→
LSTM(gi)

]
(1)

for i = 1, 2, ...Nu, where ui is the sequential contextual feature for utterance
Ui. Then u1, u2, ..., uNu

are used to initialize the node features of the dialogue
graph.

Multi Factor Dialogue Graph Module. In view of the characteristics of
dialogues mentioned before, we explicitly model the interactions between utter-
ances, speakers and local discourses. A heterogeneous graph with these three
types of nodes is built to model the dialogue. Figure 2 is an example of dialogue
graph for the original dialogue in Fig. 1.

Same as prior works, each utterance in a dialogue is viewed as a node to rep-
resent the information of each turn in this dialogue, and the number of utterance
nodes in a dialogue graph is same as that of turns in the dialogue. Then, speaker
nodes are added for obtaining speaker information. The number of speaker nodes
is decided by the speakers involved in the dialogue. In the online customer ser-
vice scenario, there are usually two speakers, staff and customer. Besides, local
discourse nodes denote the aggregated information for the sets of local longest
continuous utterances uttered by the same speaker.

The initial representations of utterance nodes are the outputs of sequential
encoding module. In addition, each speaker node initializes itself by averaging the
representations of utterance nodes uttered by this speaker. Similarly, the mean
of the representations of local longest continuous utterance nodes is used as the
initial representation of the corresponding local discourse node. The number of
speaker and local discourse nodes is denoted as Ns, Nl, respectively.

MFDG: A Multi-Factor Dialogue Graph Model 697

Fig. 2. Dialogue graph of the original dialogue in Fig. 1. For brevity, we omit the
self-loop edges. We set both utterance-level and local discourse-level context window
to [1, 1].

In this heterogeneous graph, we define several different types of edges to
indicate different aspects of knowledge. Here is the introduction of edges in the
dialogue graph.

– speaker edge: Each of the speaker nodes is connected to all of its spoken
local discourse nodes with the speaker edge so that the speaker node can learn
speaker information in the dialogue.

– local edge: To strengthen the connections among local continuous utter-
ances, we create the local discourse node for each of the sets of local longest
continuous utterance nodes and connect the local discourse node with every
utterance nodes in the set by the local edge.

– local-speaker edge: Despite using speaker edges to explicitly include the
speaker information, local discourse nodes spoken by the same speaker are
fully connected with the local-speaker edge to inject the intra-speaker depen-
dency into the graph.

– utterance-order edge and local-order edge: To obtain the contextual
information that comes from both neighbouring and distant utterances, two
types of edges are created to introduce utterance-level and local discourse-
level contextual information, respectively. Each utterance is connected to its
contextual utterances by the utterance-order edge, and we set a utterance-
level context window [p, q] so that each utterance node has an edge with
its past p utterances and latter q utterances. Besides, it should be empha-
sized that an utterance node only has utterance-order edges with utterance
nodes which connect to the same discourse node with it. Likewise, each local
discourse node is connected to its contextual local discourse nodes by local-
order edges with a local discourse-level window size [m, n], which promotes
the message passing among distant utterances.

698 J. Pang et al.

Apart from above five types of edges, we also add self-loop edges for each
node in the dialogue graph to facilitate effective computation. Therefore, there
are totally six types of edges in the dialogue graph.

After acquiring the initial representation hk for each node nk and the edges
among nodes, we feed the node features and the adjacent matrix into a graph
neural network to obtain structural and semantic information of the dialogue.
We apply R-GCN [14] to acquire the high-level hidden features with multi factors
considered. The graph convolutional operation for node nv at the l+1 layer can
be defined as:

h(l+1)
v = RELU

⎛
⎝∑

r∈R

∑
a∈Nr(v)

W (l)
r h(l)

a + b(l)r

⎞
⎠ (2)

where R denotes different types of edges, Nr(v) is the set of one-hop neighbors of
node nv under edge r, W (l)

r and b
(l)
r denote the edge-specific learnable parameters

at the l-th layer. Furthermore, h(0)
k = hk, for k = 1, 2, ..., N , where N = Nu +

Ns + Nl denotes the total number of nodes in the dialogue graph.
In addition, it is a natural thought that different types of edges can not be

treated equally. We make use of the gating mechanism when aggregating infor-
mation from different relations [13]. The simple idea is to compute a coefficient
between 0 and 1 for each relation:

c(l)v = Sigmod(h(l)
v W (l)

r) (3)

Therefore the message passing process for node nv at the l + 1 layer in the
R-GCN can be overwrote as:

h(l+1)
v = RELU

⎛
⎝∑

r∈R

∑
a∈Nr(v)

c(l)v W (l)
r h(l)

a + b(l)r

⎞
⎠ (4)

Classification Module. Finally, we concatenate the pooling results of output
features of speaker nodes, utterance nodes and local discourse nodes at each
GCN layer as hidden graph features. Here the pooling operation can be either
max or mean pooling. Then, we concatenate the hidden graph features of all the
GCN layers as the representation of the dialogue and makes the prediction using
a fully-connected network.

3.3 Domain Knowledge Integration

Utterances of online customer service dialogues contain lots of domain-specific
entities. An example is shown in Fig. 1, where the entities come from a well-
designed knowledge graph for JD dataset. Here we design two approaches to take
advantage of the fine-grained entity information based on MFDG, MFDG-EN
and MFDG-EE. Both of them utilize pre-trained knowledge graph embedding
so we firstly give a brief introduction to knowledge graph embedding and then
detail the two variant models.

MFDG: A Multi-Factor Dialogue Graph Model 699

Knowledge Graph Embedding. Knowledge Graph (KG) is composed of
triples in the form of (head entity, relation, tail entity). Given all the triples in
a KG, knowledge graph embedding aims to learn representation for each entity
and relation that preserves structural information of the KG. There exist many
translation-based knowledge graph embedding methods, such as TransE [17],
TransH [18], TransR [19]. Considering those methods lack the ability of using
the graph structures to enforce the local/global smoothness in the embedding
spaces for entities and relations [20], we apply a simple R-GCN to acquire entity
embedding from a pre-defined KG. Let us denote the pre-trained entity embed-
ding as [E1, E2, ..., Ej , ..., Ek], where K is the total number of entities of the KG
and Ej is the generated embedding for entity ej in the KG.

MFDG-EN. The first variant of MFDG is proposed by adding entity nodes
to the dialogue graph, named as MFDG-Entity Node (MFDG-EN). That is,
every individual entity appearing in a dialogue is treated as a entity node in
the dialogue graph, and each utterance node is connected to entity nodes that
contained in the corresponding utterances by entity-utterance edges. Besides, the
entity embedding generated from above is used to initialize the entity node. In
this way, utterances containing the same entities can be indirectly connected by
two consecutive entity-utterance edges, which was designed to promote message
passing of domain knowledge in the dialogue graph.

MFDG-EE. MFDG-Entity Embedding (MFDG-EE) leaves the dialogue graph
unchanged, combining the token-level and entity-level representations and gen-
erating knowledge-aware initial representations for utterance nodes.

Here we use U = t1:n = [t1, t2, ..., tn] to denote the raw sequence of an
utterance in dialogue D, where n is the number of tokens in U . Then the token-
level vectors for U can be obtained from a look-up word embedding table, which
is denoted as W = [w1w2...wn].

The entity-level vectors E = [g1g2...gn] for U is generated as below:

gi =

{
Ej , if ti is in the span of entity ej(j = 1, 2, ...,K)
0, else

Considering entity vectors are not in the same vector space with token vectors,
we introduce a transformation function F for entity vectors:

F (E) = [F (g1)F (g2)...F (gn)], (5)

where F can be either linear or non-linear mapping function.
Then we align and stack the token-level and entity-level embedding matrices

as M = [[w1F (g1)][w2F (g2)]...[wnF (gn)]]. M will be fed into the sequential
encoding module to compute knowledge-aware utterance representations. The
rest of MFDG-EE is same as MFDG.

700 J. Pang et al.

4 Experiment Setting

4.1 Datasets

We investigate several public dialogue datasets and find little information is
available about dialogue-level labels. For this reason, we evaluate our MFDG
model and its two variants on JD and DailyDialog datasets. The statistical
information of them is shown in Table 2. Both the two datasets are composed of
multi-turn dialogues where at least two speakers involve.

– JD Dialogue dataset. This dataset is supplied by the customer service
department of JD. Dialogues in this dataset are produced when customers
consult the online customer service staffs about a series of issues. Each dia-
logue consists of several utterances with speaker annotations. The dialogues
are annotated with one of 50 core intent labels, which are carefully designed
by experts to summarize the essential intention of the customer during con-
versation. The dataset has 20,000 samples of dialogues, with a total of 437,060
utterances. We use 18,000 dialogues for training, 1,000 for validation, and the
remaining for test.

– DailyDialog. This dataset [22] reflects our daily communication way and
covers various topics. Each dialogues in DailyDialog is annotated with one
of the 10 certain topics, ranging from ordinary life to financial. It totally
has 13,118 dialogues and 102,979 utterances. We use 11,118 dialogues for
training, 1,000 for validation, and the remaining for test. Despite it does not
have speaker annotations for utterances, we assume the utterances are spoken
by two speakers one by one like previous works did.

Table 2. Statistical information of datasets. #Turn refers to the average number of
utterances in a dialogue.

Dataset #Dialogue #Utterances #Turn #Class

JD dataset 20,000 473,060 23.65 50

DailyDialog 13,118 102,979 7.85 10

4.2 Evaluation Metrics

We adopt several widely used evaluation metrics, which are accuracy, H@3, H@5,
macro-F1 and weighted-F1, to evaluate the performance of MFDG. Besides, we
remove H@5 for DailyDialog, as there are just 10 classes in this dataset.

4.3 Baseline Methods

For the lack of dialogue-level classification model, we compare our model with
several baseline methods for text classification, pre-trained models and some
modified models of utterance-level classification models.

MFDG: A Multi-Factor Dialogue Graph Model 701

– TextCNN [7]. This is a convolutional neural network based model for sen-
tence classification. To acquire the features for dialogue-level classification,
we add a max pooling layer to aggregate the utterances in the dialogue.

– TextRNN [8]. In this method, a Bi-LSTM network is used to capture the
contextual information from surrounding tokens in a text. We concatenate
the utterances in a dialogue as an input of this model.

– TextRNN-Att [9]. This model uses a Bi-LSTM with attention mechanism
to automatically focus on the most informative words in a text. Likewise, we
concatenate the utterances in a dialogue as an input of this model.

– BERT-base1, Roberta-base2, ERNIE3. We use each of these three pre-
trained models as an encoder for dialogues, following with a fully connected
layer to acquire the dialogue-level labels.

– Dialog-BERT [26]. Dialog-BERT designs three pre-training strategies to
sufficiently capture dialogue exclusive features. We use the pre-trained model4

as an encoder for dialogues, following with a fully connected layer to acquire
the dialogue-level labels.

– DialogueGCN [3]. DialogueGCN builds a graph for the dialogue where
nodes represent individual utterances and the edges represent both the
speaker and temporal dependency across the dialogue. DialogueGCN uses
R-GCN as its graph encoder and initializes utterance features by using a
CNN following a GRU. We modify DialogueGCN to a dialogue-level classifi-
cation model by adding a max pooling layer to the graph neural network for
acquiring representations of dialogues.

– RGAT [15]. Based on the dialogue graph DialogueGCN builds, this module
introduces position encodings to the graph to retain the sequential informa-
tion contained in dialogues. RGAT uses the pre-trained BERT-base model to
acquire the initial representations of utterance nodes. The modified operation
is same as above.

– DAG [21]. This model builds a directed acyclic graph for the dialogue
with several carefully designed constraints on speaker dependency and posi-
tional relations. DAG introduces a directed acyclic graph neural network for
utterance-level emotion recognition. Initial utterance embeddings in DAG is
acquired form the pre-trained Bert-base model. The modified operation is
same as above.

4.4 Other Settings

We choose cross entropy as the loss function for our model on two datasets. We
take advantage of a cosine annealing schedule to dynamically modify the learning
rate, and the initial learning rate is set to 1e-4. Adam optimizer is used in the
training process with a batch size of 32 on both of the two datasets. JD dataset

1 https://huggingface.co/bert-base-cased.
2 https://github.com/pytorch/fairseq/tree/main/examples/roberta.
3 https://github.com/nghuyong/ERNIE-Pytorch.
4 https://github.com/xyease/Dialog-PrLM.

https://huggingface.co/bert-base-cased
https://github.com/pytorch/fairseq/tree/main/examples/roberta
https://github.com/nghuyong/ERNIE-Pytorch
https://github.com/xyease/Dialog-PrLM

702 J. Pang et al.

take the 300 dimensional Chinese Word Vectors [16] and DailyDialog use 300
dimensional pretrained 840B Glove vectors [23] as word embeddings. Then we
set the CNN filter size to (3, 4, 5) with 50 out channels in each, following is a fully
connected layer to get a 100 dimensional feature for each utterance. The hidden
size of Bi-LSTM in the sequential encoding module is set to 100. We use 2-layer
R-GCN to perform message passing on the dialogue graph. The utterance-level
and local discourse-level window sizes are set to [5, 5] and [2,2], respectively.
And We choose dropout rate that achieved the best score on each dataset by
using validation data. Each training and testing process were conducted on a
single Tesla P40 GPU. Every training process contain 60 epochs. The presented
results are averages of 5 turns.

Besides, as for the knowledge graph resource that the two variant models
MFDG-EN and MFDG-EE demand, we use a well-designed KG built by experts
for JD Dialogue dataset. DailyDialog consists of daily communication dialogs
and it’s hard to design a KG for it, so we just extract general entities by spaCy5

without pre-defined relations between entities and use the word embeddings of
entities as the initial features of entity nodes.

5 Results and Analysis

5.1 MFDG Comparing with Baseline Methods

Table 3. Comparison with baseline methods on the JD Dialogue dataset; Bold font
denotes the best performances.

Model Acc Top-3 Top-5 Macro-F1 Weighted-F1

TextRNN 49.10 74.90 84.00 38.62 46.52

TextRNN-Att 55.30 79.00 86.10 47.77 52.83

TextCNN 63.80 85.80 92.20 57.72 62.58

Bert-base 62.90 83.40 88.60 57.48 61.39

Robert-base 61.60 83.10 88.70 56.52 61.10

ERNIE 64.80 83.30 87.90 60.89 64.04

Dialog-BERT 63.70 87.70 93.40 55.09 61.21

DialogueGCN 61.30 83.90 90.80 52.48 58.70

RGAT 63.50 89.40 93.90 59.02 63.53

DAG 63.20 86.40 93.20 58.52 61.69

MFDG 66.50 89.30 94.40 60.64 65.30

MFDG-EN 65.00 88.60 94.00 60.71 64.00

MFDG-EE 67.70 90.40 95.20 61.06 66.48

We show the performance of MFDG and its variants with other baseline
methods in Table 3 and Table 4. Our model outperforms text classification base-
line methods and other graph-based models. On the JD dataset, apart from
5 https://spacy.io/.

https://spacy.io/

MFDG: A Multi-Factor Dialogue Graph Model 703

MFDG-EE, MFDG achieves best Macro-F1 of 60.64%, Top-3 of 89.3%, Top-5
of 94.4%, and accuracy of 66.5%, which is 4.2% better than RGAT, and 2.9%
better than the pre-trained model ERNIE. On the DailyDialog, MFDG achieves
best Macro-F1 of 61.41% and Weighted-F1 of 72.22%.

It shows that graph-based models outperform most of the text classifica-
tion models, as they adopt speaker-specific and contextual modeling for dia-
logue understanding, whereas text classification models treat the dialogue as an
ordinary text without consider the characteristics of the dialogue. Besides, we
notice that DialogueGCN perform worse than TextCNN, It demonstrates that
DialogueGCN can obtain a good understanding of utterances, however mere
modeling interactions between surrounding utterances leads to obvious losses of
dialogue-level contextual information.

Besides, we notice MFDG underperforms Dialog-BERT on DailyDialog, oth-
erwise outperforms Dialog-BERT on JD dataset. As the dialogues in JD dataset
contain more utterances and speakers of dialogues in it talk in a random order,
which is differ from dialogues in DailyDialog as the speakers talk one by one, we
consider our MFDG shows its superiority in the real human-to-human multi-turn
conversation scenarios.

With regard to the gap in performance between MFDG and other three
graph-based models, it is important to understand the nature of these mod-
els. All of them build a dialogue graph and apply a GNN to train the model,
whereas, other graph-based models only capture contextual information among
utterances. MFDG adds other factors, speaker and local discourse, to the dia-
logue graph, modeling the contextual information of the dialogue form different
levels, acquiring a more comprehensive understanding of the dialogue.

In addition, we notice that MFDG performs much better than other graph-
based models on the real-world e-commerce dialogue dataset. As the dialogue in
JD dataset contains more turns and is more complicated than that of DailyDi-
alog, we believe our model MFDG contributes to enhancing the understanding
of complex multi-turn dialogues in a real world scenario.

5.2 Ablation Study

We conduct ablation studies to evaluate the effectiveness of speaker nodes and
local discourse nodes we add to the dialogue graph. The results are shown in
Table 5.

Firstly, we remove speaker nodes and local discourse nodes from the dialogue
graph in MFDG, leaving only the utterance-order edges accordingly. Without
the two types of nodes, the performance of MFDG drops by 5.3% accuracy score
on JD dataset and 3.44% accuracy score on DailyDialog. Besides, it should be
mentioned that we find MFDG without considering speaker and local discourse
nodes shares a close accuracy score with DialogueGCN, which can be rationally
explained, as both of them model interactions between surrounding utterances.

Secondly, we remove the speaker nodes from the dialogue graph in MFDG,
thus removing speaker edges accordingly. Without speaker nodes, the perfor-
mance of MFDG drops by 0.9% accuracy score on JD dataset and 2.1% accuracy

704 J. Pang et al.

Table 4. Comparison with baseline methods on DailyDialog.

Model Acc Top-3 Macro-F1 Weighted-F1

TextRNN 53.12 84.38 42.62 47.20

TextRNN-Att 68.20 93.40 50.17 66.36

TextCNN 71.60 93.30 55.29 69.39

Bert-base 70.20 93.00 59.00 69.01

Robert-base 72.90 95.20 60.67 71.54

ERNIE 71.90 93.30 53.12 70.55

Dialog-BERT 74.00 94.90 59.09 72.13

DialogueGCN 70.30 93.70 52.64 68.30

RGAT 72.30 93.40 55.32 70.31

DAG 72.30 92.90 56.18 70.58

MFDG 73.70 94.20 61.41 72.22

MFDG-EN 70.90 93.50 47.09 69.51

MFDG-EE 71.00 94.10 55.47 68.90

Table 5. Nodes ablation on two datasets. ✗ and ✓denotes nodes removed and added
respectively.

Speaker node Local discourse node Acc(JD) Acc(DailyDialog)

✗ ✗ 61.20(−5.3%) 70.26(−3.44%)

✗ ✓ 65.60(−0.9%) 71.60(−2.1%)

✓ ✗ 61.40(−5.1%) 73.60(−0.1%)

✓ ✓ 66.50 73.70

score on DailyDialog. This shows that speaker nodes help aggregating speaker-
specific information in message passing of dialogues.

Lastly, we remove the local discourse nodes from the dialogue graph in MFDG,
thus leaving only the utterance-order edges. In order to keep speaker nodes func-
tion in MFDG, we add utterance-speaker edges, which connect each speaker node
with its corresponding spoken utterance nodes. Without local discourse nodes, the
performance of MFDG drops by 5.1% accuracy score on the JD dataset and 0.1%
accuracy score on the DailyDialog. The tiny drop on DialyDialog is because that
speakers of the dialogue in DailyDialog talk one by one, forcing each local discourse
node connect to only one utterance node, which can not show its superiority. And
the drop on JD dataset shows that local discourse nodes are effective at aggregating
multiple consecutive utterances spoken by the same speaker.

5.3 Variants of MFDG

As shown in Table 3 and Table 4, MFDG-EN obtains the accuracy score of
65.00% on JD dataset and 70.09% on DailyDialog, underperforming MFDG on

MFDG: A Multi-Factor Dialogue Graph Model 705

the two datasets. It indicates that the addition of entity nodes leads to informa-
tion loss of the dialogue graph, as the features of entity nodes generated from
KG are not in the same semantic space with other nodes in the graph.

For JD dataset, MFDG-EE outperforms MFDG on all the metrics, with a
1.2% promotion of accuracy score and 1.18% improvement of weighted-F1. The
results prove the effectiveness of commonsense sense integration on dialogue
classification. And it also shows the knowledge-aware representation method we
design in MFDG-EE is an appropriate way to integrate entity information. How-
ever, MFDG-EN underperforms MFDG on DailyDialog. This is a predictable
result as we use general entities for DailyDialog because of the lack of a well-
designed KG.

6 Conclusion

In summary, we propose MFDG for dialogue core intent classification. MFDG
is designed to obtain a full understanding of the dialogue by building a multi
factor graph. Experimental results on two datasets demonstrate that MFDG
outperforms other baseline methods. Furthermore, we propose MFDG-EE and
MFDG-EN to fuse domain knowledge into the dialogue graph, the experiment
results show that MFDG-EE can promote dialogue comprehension with a well-
designed knowledge graph.

Acknowledgement. This work was supported by the National Key R&D Program
of China under Grant No. 2020AAA0108600 and Guizhou Province Science and Tech-
nology Plan Project-Research on Knowledge Management Technology Based on KG.

References

1. Ortega, D., Vu, N.T.: Neural-based context representation learning for dialog act
classification. In: Proceedings of SIGDIAL 2017 (2017)

2. Ghosal, D., Majumder, N., Poria, S., et al.: Utterance-level Dialogue Understand-
ing: An Empirical Study. CoRR abs/2009.13902 (2020)

3. Ghosal, D., Majumder, N., Poria, S., et al.: DialogueGCN: a graph convolutional
neural network for emotion recognition in conversation. In: Proceedings of EMNLP-
IJCNLP, pp. 154–164. ACL (2019)

4. Feng, X., Feng, X., Qin, B., et al.: Dialogue discourse-aware graph model and
data augmentation for meeting summarization. In: Proceedings of IJCAI 2021, pp.
3808–3814 (2021)

5. Li, J., Liu, M., Zheng, Z., et al.: DADgraph: a discourse-aware dialogue graph
neural network for multiparty dialogue machine reading comprehension. In: Pro-
ceedings of IJCNN, pp. 1–8. IEEE (2021)

6. Ishiwatari, T., Yasuda, Y., Miyazaki, T., et al.: Relation-aware graph attention net-
works with relational position encodings for emotion recognition in conversations.
In: Proceedings of EMNLP 2020, pp. 7360–7370. ACL (2020)

7. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of EMNLP 2014, pp. 1746–1751. ACL (2014)

706 J. Pang et al.

8. Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with
multi-task learning. In: Proceedings of IJCAI 2016, pp. 2873–2879. IJCAI/AAAI
Press (2016)

9. Zhou, P., Shi, W., Tian, J., et al.: Attention-based bidirectional long short-term
memory networks for relation classification. In: Proceedings of ACL 2016, Volume
2: Short Papers (2016)

10. Ravuri, S.V., Stolcke, A.: Recurrent neural network and LSTM models for lexical
utterance classification. In: INTERSPEECH 2015, 16th Annual Conference of the
International Speech Communication Association, pp. 135–139. ISCA (2015)

11. Majumder, N., Poria, S., Hazarika, D., et al.: DialogueRNN: an attentive RNN for
emotion detection in conversations. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 6818–6825 (2019)

12. Ghosal, D., Majumder, N., Gelbukh, A., et al.: COSMIC: COmmonSense knowl-
edge for eMotion identification in conversations. In: Proceedings of EMNLP 2020,
pp. 2470–2481. ACL (2020)

13. Marcheggiani, D., Titov, I.: Encoding sentences with graph convolutional networks
for semantic role labeling. In: Proceedings of EMNLP, pp. 1506–1515 (2017)

14. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

15. Ishiwatari, T., Yasuda, Y., Miyazaki, T., et al.: Relation-aware graph attention net-
works with relational position encodings for emotion recognition in conversations.
In: Proceedings of EMNLP 2020, pp. 7360–7370 (2020)

16. Li, S., Zhao, Z., Hu, R., et al.: Analogical reasoning on Chinese morphological and
semantic relations. In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pp. 138–143 (2018)

17. Bordes, A., Usunier, N., Garcia-Duran, A., et al.: Translating embeddings for mod-
eling multi-relational data. In: Advances in Neural Information Processing Systems,
pp. 2787–2795 (2013)

18. Wang, Z., Zhang, J., Feng, J., et al.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

19. Lin, Y., Liu, Z., Sun, M., et al.: Learning entity and relation embeddings for knowl-
edge graph completion. In: AAAI, pp. 2181–2187 (2015)

20. Yu, D., Yang, Y., Zhang, R., et al.: Knowledge embedding based graph convolu-
tional network. In: Proceedings of the Web Conference 2021, pp. 1619–1628 (2021)

21. Shen, W., Wu, S., Yang, Y., et al.: Quan, directed acyclic graph network for con-
versational emotion recognition. In: Proceedings of ACL/IJCNLP, pp. 1551–1560
(2021)

22. Li, Y., Su, H., Shen, X., et al.: DailyDialog: a manually labelled multi-turn dialogue
dataset. In: Proceedings of IJCNLP, pp. 986–995 (2017)

23. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of EMNLP, pp. 1532–1543 (2014)

24. Guo, D., Tur, G., Yih, W., et al.: Joint semantic utterance classification and slot fill-
ing with recursive neural networks. In: IEEE Spoken Language Technology Work-
shop (SLT), pp. 554–559. IEEE (2014)

25. Ravuri, S., Stoicke, A.A.: Comparative study of neural network models for lexical
intent classification. In: IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), pp. 368–374. IEEE (2015)

26. Xu, Y., Zhao, H.: Dialogue-oriented pre-training. Findings of the Association for
Computational Linguistics, Online Event, 1–6 August 2021 (2021)

https://doi.org/10.1007/978-3-319-93417-4_38

Contextual Information
and Commonsense Based Prompt

for Emotion Recognition in Conversation

Jingjie Yi1 , Deqing Yang1(B) , Siyu Yuan1 , Kaiyan Cao1 ,
Zhiyao Zhang2 , and Yanghua Xiao2

1 School of Data Science, Fudan University, Shanghai, China
{jjyi20,yangdeqing,yuansy17,kycao20}@fudan.edu.cn

2 School of Computer Science, Fudan University, Shanghai, China
{zhiyaozhang19,shawyh}@fudan.edu.cn

Abstract. Emotion recognition in conversation (ERC) aims to detect
the emotion for each utterance in a given conversation. The newly pro-
posed ERC models have leveraged pre-trained language models (PLMs)
with the paradigm of pre-training and fine-tuning to obtain good perfor-
mance. However, these models seldom exploit PLMs’ advantages thor-
oughly, and perform poorly for the conversations lacking explicit emo-
tional expressions. In order to fully leverage the latent knowledge related
to the emotional expressions in utterances, we propose a novel ERC
model CISPER with the new paradigm of prompt and language model
(LM) tuning. Specifically, CISPER is equipped with the prompt blending
the contextual information and commonsense related to the interlocu-
tor’s utterances, to achieve ERC more effectively. Our extensive exper-
iments demonstrate CISPER’s superior performance over the state-of-
the-art ERC models, and the effectiveness of leveraging these two kinds
of significant prompt information for performance gains. To reproduce
our experimental results conveniently, CISPER’s source code and the
datasets have been shared at https://github.com/DeqingYang/CISPER.

Keywords: Emotion recognition · Prompt · Pre-trained language
model

1 Introduction

Emotion recognition in conversation (ERC) aims to judge the emotion category
expressed by each interlocutor in a given conversation. In recent years, ERC
has been widely studied in natural language processing (NLP), and applied in
many fields, including dialogue robots (such as chat and self-help psychological
diagnosis), sentiment and opinion mining in the conversations on social media.

This paper was supported by Shanghai Science and Technology Innovation Action Plan
No. 21511100401.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 707–723, 2023.
https://doi.org/10.1007/978-3-031-26390-3_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_41&domain=pdf
http://orcid.org/0000-0002-0890-0180
http://orcid.org/0000-0002-1390-3861
http://orcid.org/0000-0001-8161-6429
http://orcid.org/0000-0001-5763-3050
http://orcid.org/0000-0002-4400-7904
http://orcid.org/0000-0001-8403-9591
https://github.com/DeqingYang/CISPER
https://doi.org/10.1007/978-3-031-26390-3_41

708 J. Yi et al.

Fig. 1. A toy example of recognizing utterance emotion based on the cues from the
contextual information and commonsense related to the states of speaker and listener.

Most previous ERC models are implemented through encoding the dia-
logue’s text into semantic embeddings at first, followed by regarding each round
of dialogue as a step or node. Then, they employ recurrent neural networks
(RNNs) [21] or graph neural networks (GNNs) [5,39] to obtain utterance rep-
resentations for the final sentiment prediction. The encoders of dialogue texts
in the earlier models include Glove [24] and Word2Vec [23]. Recently, inspired
by the power of pre-trained language models (PLMs) [4,19] on encoding text
semantics, PLMs are also employed as the encoders to obtain enhanced recogni-
tion performance [6,27].

Despite the achievements, the previous PLM-based ERC models seldom fully
exploit PLMs’ latent knowledge, resulting in limited performance gains. More
recently, some researchers have proposed the prompt-based learning paradigm to
utilize PLMs on various downstream NLP tasks, in which an appropriate prompt
is designed to guide the PLM to better take advantage of the knowledge related
to the downstream task. As a result, the PLM’s performance on the downstream
task is improved. Given that PLMs also contain rich semantic and emotional
knowledge related to the utterances in a human dialogue at pre-training stage,
we are inspired to leverage the prompt about such knowledge to guide the PLM
to achieve the ERC task more effectively.

However, it is nontrivial to apply the prompt-based learning paradigm on
a PLM to achieve ERC. Although prompt-based PLMs have been employed
for generic sentimental analysis successfully [14], ERC is an entirely different
task posing new challenges. In ERC, multiple utterances in a conversation are
semantically similar to or logically correlated with each other. Thus the contex-
tual information is helpful to the emotion recognition of the current utterance
in a conversation [21]. Besides, due to the lack of the commonsense related to
emotional expressions, the colloquial and obscure expressions in a conversation
make it difficult for PLMs to understand the real utterance emotions. We use a
conversation example in Fig. 1 to explain the significance of these two kinds of
significant information. Without any prompt, it is difficult to identify Anger is
the real emotion of Speaker B’s utterance “What a good thing you’ve done!”,
because “good thing” is obscure that is actually an irony in this conversation.

Contextual Information and Commonsense 709

While it would be recognized correctly if the cues from contextual utterances
were provided, such as “so messy” and “playing a game”. Furthermore, the
states of Speaker A and B when expressing these utterances are also helpful in
identifying the emotion.

Therefore, it is challenging but crucial for ERC to design a valid and effec-
tive prompt to leverage the contextual information and commonsense. To tackle
this challenge, we propose a PLM-based ERC model with prompt, namely CIS-
PER (Contextual Information and commonSense based Prompt for Emotion
Recognition). Specifically, we adopt the trainable embeddings of pseudo-tokens
as the continuous prompt to cue the PLM, which blends two kinds of signifi-
cant information. One is the contextual information in the conversation, and the
other is the inferential commonsense related to the emotional expression in the
utterance, which is extracted from a famous commonsense base ATOMIC [28].
Compared with the explicit discrete prompt [29] in previous models, the train-
able continuous prompt in CISPER blends these two kinds of information more
flexibly, and makes the model converge more quickly with the learning paradigm
of prompt + LM tuning (language model tuning). In fact, these prompt embed-
dings can be regarded as some informative “sentences” with crucial emotional
cues of the conversation, which are then attached with the utterance text and
fed into the PLM to achieve ERC.

In summary, the main contributions of our paper include:
1. To the best of our knowledge, this is the first to successfully practice the

prompt-based learning paradigm on the ERC task. Unlike previous work focusing
on task-specific model design, we focus more on prompt template mining.

2. We propose a novel ERC model built with the trainable continuous prompt
from the contextual information and commonsense related to the emotional
expressions in utterances. The prompt provides the model with significant cues,
and thus enhances the model’s ERC performance effectively.

3. Our extensive experimental results on two benchmark ERC datasets prove
that, our CISPER outperforms the state-of-the-art (SOTA) baselines, especially
in the emotion categories with fewer instances. Meanwhile, the rationality of
incorporating contextual information and commonsense for enhanced ERC per-
formance is also verified.

2 Related Work

Emotion Recognition in Conversation. Emotion recognition (including
ERC) has been widely applied in many fields, such as man-machine dialogue
and psychological and emotional intervention [26]. Previous work in ERC gen-
erally adopts fine-tuning paradigm. Specifically, the utterance embeddings are
first extracted by PLMs (such as Bert [4] and Roberta [19]), and then fed into
the ERC model for emotion identification. Most of previous works based on fine-
tuning paradigm design sophisticated deep neural networks to model various
hidden states in the conversation, which can be divided into RNN-based methods
[21], and GNN-based methods [5,10]. However, those methods with fine-tuning

710 J. Yi et al.

focus on identifying utterance emotions through downstream model designing,
that implicitly model related elements in a conversation but ignore incorporating
the latent knowledge in the PLM.

Commonsense Knowledge. Commonsense knowledge benefits many NLP
tasks such as dialogue generation [35] and story ending generation [7]. Widely
used commonsense knowledge graphs (CKGs) include ATOMIC [28], Concept-
Net [33], etc. Commonsense knowledge is essential for ERC, since the colloquial
expressions often occur in a conversation, making it difficult for the model to
understand the semantics of sentences. Therefore, the CKGs containing abun-
dant commonsense, are leveraged to incorporate such commonsense into the ERC
model to improve ERC performance. For example, COSMIC [6] adopts COMET
[2] to generate several types of commonsense for each utterance from ATOMIC,
and achieves SOTA performance. Inspired by those works, we also incorporate
commonsense knowledge into our ERC model.

Language Prompting. In recent years, as a new paradigm, “pre-training,
prompting, and predicting” has been proposed to directly exploit the knowl-
edge in pre-trained language models (PLMs), which greatly bridges the gap
between the pre-training and fine-tuning of PLMs in downstream tasks. The
construction methods of language prompts can be classified into manually con-
structed prompts and automatically constructed prompts [17]. Manual con-
structed prompts are manually created based on human insights into the task
and widely used in machine translation, and text classification [29,30]. Con-
structing an appropriate prompt template for a certain downstream task is still
a challenge even for experienced prompt designers. Automatically constructed
prompts are automatically generated to address the shortcomings of manual
prompts. Some efforts have exploited natural language phrases to discover dis-
crete prompts [11,37]. In addition, given the inherent continuous characteristics
of neural networks, others focused on implementing prompts directly in vec-
tor spaces rather than designing the human-interpretable template of prompts
[16,18]. These continuous prompts are trainable and, therefore, optimal for
downstream tasks. The training strategies of the prompt-based models can be
divided into four categories: Tuning-free Prompting [3], Fixed-LM Prompt Tun-
ing [8,16], Fixed-prompt LM Tuning [29,30] and Prompt+LM Tuning [1,18].
The third category does not need to train the prompts, and the last category
takes the prompts as the parameters to fine-tune. In our CISPER, we also adopt
Prompt+LM Tuning paradigm to train the model given its good flexibility and
performance on ERC.

3 Methodology

3.1 Task Formalization

Given a conversation containing L utterances {u1, u2, ..., uL}, suppose that the
t-th utterance ut(1 ≤ t ≤ L) is spoken by the speaker qt and has Kt words,

Contextual Information and Commonsense 711

Fig. 2. The overall framework of our proposed CISPER. It has three main steps: feature
extraction, prompt generation and emotion prediction.

i.e., ut = {wt
1, w

t
2, ..., w

t
Kt

}. The task of ERC is to identify each utterance ut’s
emotion mt based on the features of ut and qt, as well as any other important
cues. In other words, ERC is achieved at the utterance level.

3.2 Framework

Compared with the previous of ERC models with the fine-tuning paradigm, we
adopt the prompts+LM-tuning paradigm for our CISPER, and focus more on how
to mine an appropriate and effective prompt template to guide the PLM to achieve
better ERC. As we claimed before, although the emotional expressions seldom
appear in most conversations, the potential information derived from contextual
utterances and commonsense reasoning are highly related to the emotional expres-
sion of the current utterance. It implies that these two kinds of information are
informative for the PLM to infer the current utterance’s emotion. Therefore, we
pay more attention to the generation of the appropriate prompt based on these
two kinds of significant information. To this end, we adopt a trainable continuous
prompt that can be updated during training to blend contextual information and
commonsense better. Our CISPER’s architecture is depicted in Fig. 2, of which the
pipeline can be mainly divided into the following three steps (components):

1. Feature Extraction: The information features related to a conversation are
extracted by the language models at first, including the semantics of the
utterances in the conversation and the various inferential relations of com-
monsense.

2. Prompt Generation: The trainable continuous prompt in CISPER is gener-
ated based on the features extracted in the first step.

3. Emotion Prediction: The continuous prompt embeddings generated in the
previous step and the target utterance’s embeddings are together fed into the
PLM to predict the token indicating the utterance’s emotion.

712 J. Yi et al.

Table 1. 9 relation types of commonsense used in CISPER.

Notation Type token Relation meaning

r1 xIntent The reason why speaker would cause the event

r2 xAttr How the speaker might be described given their part in the event

r3 xNeed What speaker might need to do before the event

r4 xWant What speaker may want to do after the event

r5 xEffect The effect that the event would have on speaker

r6 xReact The reaction that speaker would have to the event

r7 oWant What listener may want to do after the event

r8 oEffect The effect the event has on listener

r9 oReact The reaction of listener to the event

3.3 Information Feature Extraction

This step aims to obtain the embeddings encoding the semantics of the utter-
ances and the commonsense related to the utterances. These semantic embed-
dings will be subsequently used to generate the prompt in our model.

Semantic Features Extraction. For each utterance in a conversation, we
directly use a PLM to generate its semantic embeddings. In our experiments, we
adopted a RoBERTa-large model [20] as the PLM in this step, consisting of 24
Transformer encoder layers with 16-head self-attentions.

Specifically, we append two special tokens [CLS], [SEP] to the token sequence
of a given utterance ut = {wt

1, w
t
2, ..., w

t
Kt

}, to constitute RoBERTa’s input
sequence as [CLS][wt

1w
t
2...w

t
Kt

][SEP]. As verified in previous work [6], the spe-
cial token [CLS] in such input format generally encodes the whole sequence’s
semantics through the PLM’s encoding. Thus, among the output embeddings of
RoBERTa, we only use [CLS]’s embeddings in the last 4 layers, denoted as v1,
v2, v3 and v4. Then, we average these 4 embeddings as ut’s semantic embedding
xt ∈ R

du . All utterances’ semantic embeddings are obtained by this method.

Commonsense Features Extraction. Similar to COSMIC [6], the common-
sense related to the utterances in the conversation is extracted from COMET [2].
COMET is a Transformer-based model that constructs commonsense through
training the language model on a seed set of knowledge triplets from ATOMIC
[28]. ATOMIC is one representative commonsense graph with 880K triplets of
everyday inferential knowledge, covering 9 relations about entities and events.
In CISPER, we select the 9 relation types of commonsense from ATOMIC, as
listed in Table 1. In these types, the former six types are related to the inference
of different states of the speaker in the conversion, while the latter three types
are related to the states of the listener.

The procedure of extracting the features of commonsense is presented as
follows. Suppose rj(1 ≤ j ≤ 9) is the token of one relation type in the 9 inferential
commonsense types, we concatenate it with the token sequence of given utterance

Contextual Information and Commonsense 713

ut and feed it into the COMET encoder. Then, we extract the hidden state
(embedding) of the encoder’s last layer, namely ctj ∈ R

dc , as the embedding of
the j-th commonsense type for ut. So we have

ctj = COMET (wt
1w

t
2...w

t
Kt

rj). (1)

All embeddings of the 9 commonsense types are used together with xt for gen-
erating the prompt in CISPER in the next step.

3.4 Continuous Prompt Generation

In general, there are two types of language prompts, i.e., discrete and continuous.
As we mentioned in Sect. 2, a continuous prompt may be more appropriate and
effective for deep models, since deep neural networks are inherently continuous.
Inspired by P-tuning [18], we also adopt some trainable embeddings as the con-
tinuous prompt in CISPER. These trainable embeddings are generated by the
encoders fed with the contextual information and commonsense related to the
current utterance in the conversation.

Previous research [21] has found that, the utterance emotion is highly related
to the states of this utterance’s speaker (such as speaker’s intent, reaction, etc.)
and listener (listeners’ effect, reaction, etc.), which has also been illustrated in
Fig. 1. Inspired by it, we generate two groups of continuous prompt embeddings
from the perspective of speaker and listener, respectively, which are denoted as
E and P. E corresponds to the speaker-related conversational information while
P corresponds to the listener-related conversational information. Furthermore,
the inferential commonsense related to speaker and listener is blended with the
contextual information in the conversation and encoded into these embeddings,
which are finally leveraged as the emotional prompts for the PLM to predict the
utterance’s emotion. The details of the generation of these prompt embeddings
are described as follows.

Encoding Contextual Information and Commonsense. At first, we build
a Transformer encoder to encode the contextual information and commonsense
related to a conversation, which is fed with the semantic embeddings and the
commonsense type embeddings of the utterances in the conversation obtained
in the previous step.

Specifically, given a conversation consisting of L utterances, for each common-
sense type j(1 ≤ j ≤ 9), we concatenate its embeddings related to all utterances
that are computed by Eq. 1, as

cj = c1j ⊕ c2j ⊕ ... ⊕ cLj ∈ R
Ldc , (2)

where ⊕ is concatenation operation. Then, suppose x = x1⊕x2⊕ ...⊕xL ∈ R
Ldu

represent this conversation’s contextual information, the two hidden embedding
matrices about the conversation are obtained as

He = Transformere
(
x ⊕ (We[c1 ⊕ . . . ⊕ c6])

) ∈ R
L×dT ,

Hp = Transformerp
(
x ⊕ (Wp[c7 ⊕ c8 ⊕ c9])

) ∈ R
L×dT ,

(3)

714 J. Yi et al.

where We,Wp are two linear projection matrices, and dT is the dimension of
hidden embeddings.

The encoding operations from Eq. 1 to Eq. 3 indicate that all contextual
information in the conversation and the commonsense are blended and encoded
into He and Hp with respect to (w.r.t.) speaker and listener, respectively, which
are subsequently used as the basis of generating the final prompt embeddings.

Generating Prompt Embeddings of Pseudo Tokens. In the last predic-
tion step of CISPER, a PLM identifies the target utterance’s emotion by pre-
dicting the special middle token based on its surrounding (contextual) tokens’
embeddings. In order to better fit with such a prediction mechanism, we adopt
a symmetrical prompt template to simultaneously insert the pseudo (prompt)
tokens of the same number on the left side and the right side of utterance tokens.

Accordingly, based on either He or Hp, we respectively generate two sets of
prompt embeddings of the pseudo tokens by a multi-layer perceptron (MLP)
followed by reshape operation. Specifically, suppose E ∈ R

L×(2NedT),P ∈
R

L×(2NpdT) are the continuous embedding matrices containing the speaker-
related and listener-related conversational information, respectively, where Ne

and Np are the number of prompt embeddings. Then, we have

E = [El,Er] = Reshapee
(
MLPe(He)

)
,

P = [Pl,Pr] = Reshapep
(
MLPp(Hp)

)
,

(4)

where El(Er) ∈ R
L×(NedT) is the left (right) half of E used as the continuous

embeddings for the left (right) pseudo tokens. So is Pl(Pr).
Finally, for utterance ut(1 ≤ t ≤ L), we take the t-th vectors in the continu-

ous embedding matrices to constitute its hidden prompt embeddings of pseudo
tokens, denoted as elt,p

l
t,p

r
t , e

r
t . Note that the current continuous prompt embed-

dings are not encoded with sequential correlations among the tokens. It is not
satisfied with the requirement that the input token embeddings of PLMs should
encode sequential features. As a result, we further use Bi-LSTM [9] to obtain
the final prompt embeddings of pseudo tokens as:

[e′l
t,p

′l
t,p

′r
t , e

′r
t] = Bi-LSTM([elt,p

l
t,p

r
t , e

r
t]). (5)

3.5 Utterance Emotion Prediction

Recall that ERC task is to identify the emotion of a given conversation
{u1, ..., uL} at utterance level. In the last step, we leverage a PLM to predict the
emotion of utterance. To guide the PLM to better take advantage of the knowl-
edge related to the utterances which is obtained from its pre-training, we convert
the original emotion recognition task into a cloze task that meets the masked
PLM’s pre-training task. Specifically, in the PLM pre-training, some tokens in
the original corpus are masked by a special token [MASK] with a certain prob-
ability. Then, the PLM predicts the masked tokens based on their contextual
tokens.

Contextual Information and Commonsense 715

According to this task’s principle, we feed a [MASK] corresponding to mt

along with ut’s token sequence and the prompt pseudo tokens, into a RoBERTa
with the following format as

[CLS][El
t][P

l
t][MASK][wt

1w
t
2...w

t
Kt

][P r
t][Er

t][SEP] (6)

where [El
t], [E

r
t] are two sequences of Ne pseudo tokens w.r.t. speaker, and

[P l
t], [P

r
t] are two sequences of Np pseudo tokens w.r.t. listener. Fed with such

token sequence, the RoBERTa can predict the word that would most probably
appear at the position of [MASK], based on the embeddings of all input tokens.
Formally, the predicted word corresponding to [MASK] is

ŵ = arg max
w∈V

P ([MASK] = w) (7)

where P ([MASK] = w) is the predicted probability of w appearing at the
position of [MASK] and w is one word in the tokenizer’s vocabulary V. Since
the predicted word may be any word in the vocabulary, we maintain a thesaurus
to map the predicted word ŵ into one emotion category, i.e., mt. Hence, the
prediction of ut’s emotion is achieved.

Please note that, in order to exert the continuous prompt’s effect, the embed-
dings of [El

t], [E
r
t], [P

l
t], [P

r
t] used in the RoBERTa are just e′l

t,p
′l
t,p

′r
t , e

′r
t , which

are generated by Eq. 5. The embeddings of the rest input tokens in Eq. 6 are
obtained directly for RoBERTa’s pre-training results.

3.6 Model Training

We adopt the cross entropy loss to train our ERC model as follows,

L = − 1
∑

q∈Q
Lq

∑

q∈Q

Lq∑

t=1

wt logP (wt) (8)

where q is one conversation from the training set Q, and Lq is the utterance
number in q. wt is the word corresponding to the true emotion category of
utterance ut, while P (wt) is the estimated probability of wt appearing at the
position of [MASK] for ut. In addition, we use ADAM [13] as the optimizer to
update the model’s parameters based on the error inverse propagation strategy.

4 Experiments

4.1 Datasets

MELD [25]: It has 1,432 conversations with more than 13,000 utterances in
total, which were extracted from the famous TV show Friends. All utterances are
labeled with seven emotion categories: anger, disgust, sadness, joy, surprise, fear
and neutral, as well as three sentiment classes of positive, negative or neutral. We
only evaluated the models’ performance of recognizing the emotion categories.

716 J. Yi et al.

EmoryNLP [38]: It is another dataset also extracted from the TV show
Friends. The utterances in this dataset are also annotated on seven emotion
categories and three sentiment classes. The emotion categories are neutral, joyful,
peaceful, powerful, scared, mad and sad. To create three sentiment classes, joyful,
peaceful, and powerful are grouped to constitute the positive class; scared, mad
and sad are grouped to constitute the negative class; and neutral is the rest class.

We divided the two datasets into training, validation and test set according
to the size the same as the previous work [6]. Table 2 lists the sample number
statistics of the three sample sets in these two datasets.

Table 2. The statistics of sample division for the two datasets.

Model Dataset

Conversation Utterance

Train Validation Test Train Validation Test

MELD 1,039 114 280 9,989 1,109 2,610

EmoryNLP 659 89 79 7,551 954 984

4.2 Baselines

CNN [12]: It is constructed based on convolutional neural networks, where Glove
is used to obtain word embeddings. This model has no conversation modeling.

KET [40]: It uses knowledge-enriched Transformer, hierarchical self-
attention and context-aware graph attention to maintain the commonsense of
emotions.

ConGCN [39]: It first treats speakers and utterances as the nodes in a
conversation graph and then uses GCN to achieve emotion recognition.

DialogueRNN [21]: It uses three different GRUs to update the situations
of global states, speaker states and emotion states.

DialogueGCN [5]: It also treats the utterances in a conversation as the
nodes in the graph and uses different edge types to model dialogue context for
emotion detection.

SenticGAT [34]: It proposes a context/sentiment-aware network based on
contextual&sentiment-based graph attention to link relevant entities with similar
sentiment.

BERT+MTL [15]: It obtains utterance embeddings by BERT which are
fed into RNNs to recognize emotions as well as identify speakers. It also adopts
a multi-task learning framework.

DialogXL [31]: It modifies the recurrence mechanism in XLNet [36], and
uses the dialog-aware self-attention to model conversational data better.

DialogueTRM [22]: It first utilizes a hierarchical transformer to generate
features maintaining utterance-level and individual context and then utilizes a
multi-modal transformer for Multi-Grained Interactive Fusion in the ERC task.

DAG-ERC [32]: It proposes a directed acyclic graph network to simulate
better the internal structure of a conversation, which provides a more intuitive

Contextual Information and Commonsense 717

way to model the information flow between the background of the conversation
and nearby context.

COSMIC [6]: It utilizes commonsense Transformer COMET [2] to extract
commonsense from ATOMIC [28] graph for each utterance, and uses RNNs to
blend those knowledge with contextual information.

P-tuning [18]: It is a framework using Bi-LSTM to generate trainable con-
tinuous prompt that would be fed along with utterances into the PLM. We apply
this baseline in ERC to examine its difference from our model.

We also specially designed several methods with fixed prompt templates to
be compared with CISPER. Notice that we have tested some manual templates
and finally chose the best effective fixed template “my emotion is [MASK]” as
the prompt template for a prompt-based baseline, denoted as FixedTemplate.
In Sect. 3.4, we have mentioned the reason of adopting a symmetrical prompt
template in CISPER. To justify such a symmetrical template’s advantage, we
further compared CISPER with its two variants which are equipped with the
same size prompt only on the left or right side, denoted as CISPER (left) and
CISPER (right).

4.3 Important Settings

We used the following score as the metric to evaluate all compared models as,

weighted-F1 =
1

∑

m∈M

Nm

∑

m∈M

NmF1(m) (9)

where M is the set of all emotion categories, Nm is the number of utterances
with emotion category m, and F1(m) is the F1-score on m.

In CISPER, we adopted the Roberta-large model from https://huggingface.
co/, and used the Transformer comes from https://pytorch.org/ as the encoder
in Eq. 3. We used ADAM [13] as the optimizer to update our model’s parameters
and set the learning rate and weight decay to 5 × 10−6 and 10−2 respectively.
The batch size was set to 64. In addition, we set Ne = Np = 3, which was deter-
mined by our tuning studies displayed subsequently. In addition, the dimension
of commonsense type embedding dC is 768, the dimensions of utterance’s seman-
tic embedding du and prompt embeddings dT were both set to 1,024. All these
settings were decided as the optimum through our tuning studies.

4.4 ERC Performance Comparisons

We compared our CISPER with the baselines regarding macro (overall) ERC
performance and micro performance on each emotion category level.

Macro Comparisons. We first display the overall performance (weighted-F1)
of all compared models on the two datasets in Table 3, where all models are

https://huggingface.co/
https://huggingface.co/
https://pytorch.org/

718 J. Yi et al.

Table 3. ERC performance (weighted-F1) comparisons of all compared models.

Paradigm Language model ERC model MELD EmoryNLP

Fine-tuning Glove-based CNN 55.02% 32.59%

KET 58.18% 34.19%

ConGCN 57.40% –

DialogueRNN 57.03% 31.70%

DialogueGCN 58.13% –

SenticGAT 58.31% 35.45%

Fine-tuning BERT&RoBERTa

-based

BERT+MTL 61.90% 35.92%

DialogXL 62.41% 34.73%

DialogueTRM 63.55% –

DialogueRNN 63.61% 37.44%

DAG-ERC 63.65% 39.02%

COSMIC 65.21% 38.11%

Prompt+LM tuning RoBERTa-based FixedTemplate 65.12% 38.67%

P-tuning 64.90% 37.97%

CISPER (left) 65.92% 39.46%

CISPER (right) 65.88% 39.39%

CISPER 66.10% 39.86%

divided into three groups according to their learning paradigms and used lan-
guage models. Except for DialogueGCN and P-tuning for the baselines, their
performance scores were directly obtained from their original papers. For the
rest models, we ran each one for 4 times and reported its average scores.

As we mentioned, MELD was extracted from the famous TV show Friends
where the utterances are very colloquial and hardly contain explicit emotional
expressions. As shown in Table 3, all types of prompts can help the PLM obtain
good ERC performance, since all prompt-based models in the third group almost
outperform the rest baselines. CISPER and CISPER(left/right) both outperform
FixedTemplate, justifying the advantage of the trainable continuous prompt over
the fixed prompt template. Specifically, our CISPER has a performance improve-
ment of 0.89% over COSMIC, which is the current SOTA ERC model except
for the prompt-based ones. We attribute this improvement to the employment
of prompt in the ERC task and the effective way of incorporating contextual
information and commonsense into the prompt.

Compared with MELD, all models’ performance on EmoryNLP declines
apparently, due to the more “obscure” emotional expressions in the utterances of
this dataset. Nonetheless, our CISPER outperforms COSMIC with an improve-
ment of 1.75%, which is more significant than that in MELD. Please note that
COSMIC also leverages contextual information and commonsense as CISPER.
Thus, CISPER’s superior performance shows that leveraging these two impor-
tant pieces of information through our proposed prompt is more effective than
the solution in COSMIC for enhancing ERC performance. Especially for the
conversations with more “obscure” emotional expressions as MELD, the prompt
in CISPER can guide the PLM to recall its latent knowledge related to the
emotional cues, which has been learned in the PLM’s pre-training.

Contextual Information and Commonsense 719

Fig. 3. Micro performance comparisons of CISPER and COSMIC on emotion category
level (better viewed in color). It shows that the two models perform better in the cat-
egories with more samples, while our CISPER outperforms COSMIC in the categories
with fewer samples, justifying its capability of few-shot learning. (Color figure online)

Micro Comparisons. Since COSMIC is the current SOTA model, we further
compared the performance of CISPER and COSMIC on the level of seven emo-
tion categories. In Fig. 3, each sector of a certain color corresponds to a certain
emotion category, of which the size of the sectorial area quantifies the sam-
ple number. Meanwhile, the sample proportion and the corresponding category
number are also listed beside the sector. Figure 3 shows that, on MELD, our
CISPER has the performance nearly equivalent to COSMIC on neutral, sur-
prise, joy and anger, while has better performance on sadness, fear and disgust.
CISPER’s advantage is more obvious in the categories of fear (+13.17%) and dis-
gust (+12.02%). Compared with MELD, CISPER’s performance on EmoryNLP
is better than COSMIC in more emotion categories, i.e., powerful (+1.47%),
peaceful (+7.28%), mad (+2.77%) and scared (+4.87%).

In addition, from Fig. 3 we can easily find that both of the two compared
models have high weighted-F1 on neutral, joy, anger, mad, surprise and scared.
In general, these popular categories of emotions are obviously expressed in the
utterances. Both models perform poorly on sad (sadness) fear, disgust, peaceful
and powerful. The reason is two-fold: on the one hand, the utterances’ emotions
are inherently obscure. On the other hand, the utterances of these emotions are
relatively rare in the conversations, so the models cannot obtain satisfactory per-
formance only with sparse training data. Notably, with the help of contextual
semantics and commonsense-based prompt, our CISPER can take full advantage
of its latent knowledge related to the emotional expressions in utterances. Partic-
ularly, CISPER outperforms COSMIC, especially in the emotion categories with
fewer samples. Such results also prove CISPER’s capability of few-shot learning,

720 J. Yi et al.

which is consistent with the findings in previous work [17] about the advantage
of prompt-based models in few-shot learning tasks.

4.5 Ablation Studies

The main innovation of our work is to use two Transformer encoders to blend
and encode two types of significant information, i.e., contextual information and
commonsense, to generate an effective continuous prompt that guides the PLM
to achieve ERC better. To verify the effectiveness of either type of prompt infor-
mation, we added three ablated variants of CISPER into performance compar-
isons, as shown in Table 4 where all models’ weighted-F1 scores and the improve-
ments w.r.t. that of the variant without prompt are both listed. If one type of
prompt information is not incorporated, we use randomly initialized embed-
dings (denoted as “no”) to replace our proposed continuous prompt (denoted as
“yes”). The results in Table 4 show that, although the random embeddings have
the same amount of parameters as the continuous prompt, they can not help the
model sufficiently since they contain no meaningful information. We also find
that either contextual information or commonsense is helpful for the model to
improve ERC performance on these two datasets. Specifically, contextual infor-
mation brings a more apparent performance improvement than commonsense
on both datasets. Furthermore, incorporating these two types of information
results in more performance improvement. Even without those two types of
information, our model still outperforms P-tuning, justifying the advantage of
our model structure. In addition, as shown in Table 3, CISPER’s superiority over
CISPER(left) and CISPER(right) shows that the symmetrical prompt structure
is better than the one side structure.

4.6 Prompt Length Decision

Unlike manually designed prompt templates with fixed length and explicit
semantics, the continuous prompt in our model is in fact a group of embed-
dings and has no explicit semantics. To investigate the influence of prompt
length on model performance, we compared CISPER’s performance when setting
Ne = Np = 1 ∼ 5 (the corresponding pseudo token number is 4, 8, 12, 16, 20).
According to the results in Fig. 4, we set Ne = Np = 3 when comparing CISPER

Table 4. CISPER’s performance comparisons of different prompt information selec-
tions.

Commonsense Contextual info. MELD EmoryNLP

No No 65.12% 38.02%

No Yes 65.95% (+0.83%) 39.42% (+1.40%)

Yes No 65.78% (+0.66%) 38.97% (+0.95%)

Yes Yes 66.10% (+0.98%) 39.86% (+1.84%)

Contextual Information and Commonsense 721

with the baselines. In fact, the small value of Ne/Np can not ensure the prompt
to bring adequate emotional cues for the PLM. While the large value of Ne/Np

may result in redundant information that disturbs the model.

Fig. 4. CISPER’s performance with different prompt lengths. The X-axis is the value
of Ne(= Np). It shows that Ne = Np = 3 is the best setting for our model.

Fig. 5. A conversation case of MELD. The baseline COSMIC can not correctly identify
the emotion of “Ugh!”, while our CISPER recognizes it correctly with the prompt.

4.7 Case Study

In actual conversation scenarios, many utterances contain very few words, mak-
ing their real emotions hard to be recognized. We illustrate such a situation by an
actual case from our test set, as shown in Fig. 5 where the emotion of Speaker A’s
utterance: “Ugh!” is disgust in fact. Obviously, it is tough to identify Speaker A’s
emotion expressed in this utterance only with such a single word. For this case,
COSMIC failed to recognize the emotion of “Ugh!”, although it has leveraged
contextual semantics and commonsense information. Comparatively, CISPER
can thoroughly exploit the contextual semantics in the conversation and the
speaker/listener’s state through the sophisticated prompt generation. Further-
more, with the prompt+LM tuning paradigm, CISPER successfully identifies
the emotion of this utterance as disgust.

722 J. Yi et al.

5 Conclusion

In this paper, we propose an ERC model CISPER which blends contextual
information and common sense related to the utterances in a conversation into
the continuous prompt for enhanced ERC performance. Unlike previous ERC
methods adopting fine-tuning paradigm, our CISPER achieves ERC with the
paradigm of prompt+LM tuning, which explicitly brings the information related
to emotional expressions in the conversation to the PLM. With the help of
contextual information and commonsense-based prompts, our model can well
handle the challenge of recognizing the implicit emotional expressions in the
utterances. Our experiments show that our CISPER significantly outperforms
the state-of-the-art ERC models, especially on some critical emotion categories.

References

1. Ben-David, E., Oved, N., Reichart, R.: Pada: a prompt-based autoregressive app-
roach for adaptation to unseen domains. arXiv preprint arXiv:2102.12206 (2021)

2. Bosselut, A., Rashkin, H., et al.: Comet: commonsense transformers for automatic
knowledge graph construction. arXiv preprint arXiv:1906.05317 (2019)

3. Brown, T.B., Mann, B., et al.: Language models are few-shot learners. arXiv
preprint arXiv:2005.14165 (2020)

4. Devlin, J., Chang, M., et al.: BERT: pre-training of deep bidirectional transformers
for language understanding. CoRR (2018)

5. Ghosal, D., Majumder, N., et al.: Dialoguegcn: a graph convolutional neural net-
work for emotion recognition in conversation. arXiv preprint arXiv:1908.11540
(2019)

6. Ghosal, D., Majumder, N., et al.: Cosmic: commonsense knowledge for emotion
identification in conversations. arXiv preprint arXiv:2010.02795 (2020)

7. Guan, J., Wang, Y., Huang, M.: Story ending generation with incremental encoding
and commonsense knowledge. In: Proceedings of AAAI (2019)

8. Hambardzumyan, K., Khachatrian, H., May, J.: Warp: word-level adversarial repro-
gramming. arXiv preprint arXiv:2101.00121 (2021)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. (1997)
10. Hu, J., Liu, Y., et al.: MMGCN: multi-modal fusion via deep graph convolution

network for emotion recognition in conversation. arXiv preprint arXiv:2107.06779
(2021)

11. Jiang, Z., Xu, F.F., et al.: How can we know what language models know? Trans.
Assoc. Comput. Linguist. (2020)

12. Kim, Y.: Convolutional neural networks for sentence classification. Eprint Arxiv
(2014)

13. Kingma, J., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings
of ICLR (2015)

14. Li, C., Gao, F., et al.: Sentiprompt: sentiment knowledge enhanced prompt-tuning
for aspect-based sentiment analysis. CoRR (2021)

15. Li, J., Zhang, M., et al.: Multi-task learning with auxiliary speaker identification
for conversational emotion recognition. CoRR (2020)

16. Li, X.L., Liang, P.: Prefix-tuning: optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190 (2021)

http://arxiv.org/abs/2102.12206
http://arxiv.org/abs/1906.05317
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1908.11540
http://arxiv.org/abs/2010.02795
http://arxiv.org/abs/2101.00121
http://arxiv.org/abs/2107.06779
http://arxiv.org/abs/2101.00190

Contextual Information and Commonsense 723

17. Liu, P., Yuan, W., et al.: Pre-train, prompt, and predict: a systematic survey
of prompting methods in natural language processing. arXiv preprint 2107.13586
(2021)

18. Liu, X., Zheng, Y., et al.: GPT understands, too. arXiv preprint arXiv:2103.10385
(2021)

19. Liu, Y., Ott, M., et al.: RoBERTa: a robustly optimized BERT pretraining app-
roach. CoRR (2019)

20. Liu, Y., Ott, M., et al.: RoBERTa: a robustly optimized BERT pre-training app-
roach. arXiv preprint arXiv:1907.11692 (2019)

21. Majumder, N., Poria, S., et al.: DialogueRNN: an attentive RNN for emotion detec-
tion in conversations. In: Proceedings of AAAI (2019)

22. Mao, Y., Sun, Q., et al.: DialogueTRM: exploring the intra-and inter-modal emo-
tional behaviors in the conversation. arXiv preprint arXiv:2010.07637 (2020)

23. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

24. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of EMNLP (2014)

25. Poria, S., Hazarika, D., et al.: Meld: a multi-modal multi-party dataset for emotion
recognition in conversations. arXiv preprint arXiv:1810.02508 (2018)

26. Poria, S., Majumder, N., et al.: Emotion recognition in conversation: research chal-
lenges, datasets, and recent advances. IEEE Access (2019)

27. Qin, L., Che, W., et al.: DCR-net: a deep co-interactive relation network for joint
dialog act recognition and sentiment classification. In: Proceedings of AAAI (2020)

28. Sap, M., Le Bras, R., et al.: Atomic: an atlas of machine commonsense for if-then
reasoning. In: Proceedings of AAAI (2019)

29. Schick, T., Schütze, H.: Exploiting cloze questions for few shot text classification
and natural language inference. arXiv preprint arXiv:2001.07676 (2020)

30. Schick, T., Schütze, H.: Few-shot text generation with pattern-exploiting training.
arXiv preprint arXiv:2012.11926 (2020)

31. Shen, W., Chen, J., et al.: DialogXL: all-in-one XLnet for multi-party conversation
emotion recognition. arXiv preprint arXiv:2012.08695 (2020)

32. Shen, W., Wu, S., et al.: Directed acyclic graph network for conversational emotion
recognition. arXiv preprint arXiv:2105.12907 (2021)

33. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: an open multilingual graph of
general knowledge. In: Proceedings of AAAI (2017)

34. Tu, G., Wen, J., Liu, C., Jiang, D., Cambria, E.: Context-and sentiment-aware
networks for emotion recognition in conversation. IEEE Trans. Artif. Intell. (2022)

35. Wu, S., Li, Y., et al.: Diverse and informative dialogue generation with context-
specific commonsense knowledge awareness. In: Proceedings of ACL (2020)

36. Yang, Z., Dai, Z., et al.: XLnet: generalized autoregressive pre-training for language
understanding. In: Proceedings of NeurIPS (2019)

37. Yuan, W., Neubig, G., Liu, P.: BartScore: evaluating generated text as text gen-
eration. arXiv preprint arXiv:2106.11520 (2021)

38. Zahiri, S.M., Choi, J.D.: Emotion detection on tv show transcripts with sequence-
based convolutional neural networks. In: Proceedings of AAAI (2018)

39. Zhang, D., Wu, L., et al.: Modeling both context-and speaker-sensitive dependence
for emotion detection in multi-speaker conversations. In: Proceedings of IJCAI
(2019)

40. Zhong, P., Wang, D., Miao, C.: Knowledge-enriched transformer for emotion detec-
tion in textual conversations. arXiv preprint arXiv:1909.10681 (2019)

http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2010.07637
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1810.02508
http://arxiv.org/abs/2001.07676
http://arxiv.org/abs/2012.11926
http://arxiv.org/abs/2012.08695
http://arxiv.org/abs/2105.12907
http://arxiv.org/abs/2106.11520
http://arxiv.org/abs/1909.10681

Do You Know My Emotion?
Emotion-Aware Strategy Recognition
Towards a Persuasive Dialogue System

Wei Peng1,2 , Yue Hu1,2(B), Luxi Xing1,2, Yuqiang Xie1,2, and Yajing Sun1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
huyue@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China

Abstract. Persuasive strategy recognition task requires the system to
recognize the adopted strategy of the persuader according to the conver-
sation. However, previous methods mainly focus on the contextual infor-
mation, little is known about incorporating the psychological feedback,
i.e. emotion of the persuadee, to predict the strategy. In this paper, we
propose a Cross-channel Feedback memOry Network (CFO-Net) to lever-
age the emotional feedback to iteratively measure the potential benefits
of strategies and incorporate them into the contextual-aware dialogue
information. Specifically, CFO-Net designs a feedback memory module,
including strategy pool and feedback pool, to obtain emotion-aware strat-
egy representation. The strategy pool aims to store historical strategies
and the feedback pool is to obtain updated strategy weight based on feed-
back emotional information. Furthermore, a cross-channel fusion predic-
tor is developed to make a mutual interaction between the emotion-aware
strategy representation and the contextual-aware dialogue information
for strategy recognition. Experimental results on PersuasionForGood
confirm that the proposed model CFO-Net is effective to improve the
performance on M-F1 from 61.74 to 65.41.

Keywords: Persuasive dialogue · Emotional feedback · Strategy
recognition

1 Introduction

Persuasive conversation is an essential area in dialogue systems and has embraced
a boom in recent NLP research [4,10,32,35]. In a dyadic persuasive dialogue,
one party, the persuader, tries to induce another party, the persuadee, to believe
something or to do something [14] by a series of persuasion strategies [34]. How-
ever, recognizing the persuasion strategy is challenging in the field of natural
language understanding since it needs a deeper understanding of conversation,
semantic information, and even the psychological feedback of speakers [4,25,27].
Furthermore, dialogue systems can utilize the predicted historical strategy chains
to guide the dialogue generation task.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 724–739, 2023.
https://doi.org/10.1007/978-3-031-26390-3_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_42&domain=pdf
http://orcid.org/0000-0001-8179-1577
https://doi.org/10.1007/978-3-031-26390-3_42

Do You Know My Emotion? 725

Fig. 1. Statistics in the dataset to show relationships between the emotion and strategy.

To make persuasive strategy prediction, mainstream studies [4,7] focused on
the conversational context to recognize strategies. Some work considered resis-
tance strategies to model the strategy conversations, such as [6] and [30]. How-
ever, analyzing and understanding speaker’s psychological emotion is an essen-
tial job [22,23] to fully understand the conversation and help persuader to adopt
appropriate strategies. Previous methods do not take the persuadee-aware emo-
tional feedback into account thereby fail to model the emotion-aware human
persuasive dialogue systems. To illustrate the importance of emotional feedback,
the statistics in the dataset have shown the relationships between the emotion
and strategy in Fig. 1. The whole plane is divided into four quadrants. As shown
in quadrant-I, if the persuadee shows positive emotion after using the strategy
X , the probability of strategy X continuing to be used is 63% in the follow-
ing conversation. Similarly, in quadrant-III, when the persuadee shows negative
emotion, the probability of the strategy not being used in the subsequent con-
versation is 75%.

Fig. 2. An example is to compare previous work (a) that utilized the contextual infor-
mation and our work (b) that considers emotional feedback of the persuadee to recog-
nize the strategy. n© indicates the order of processes.

726 W. Peng et al.

Statistical results indicate that if the strategy obtains positive feedback, it
can be given priority in the future. On the contrary, the strategy should be
paid less attention [2,28]. To present the discrepancy between the previous work
(a) and ours (b), an example is shown in Fig. 2. Specifically, in the third turn,
(a) outputs the wrong prediction personal-related inquiry which has received
the negative emotional feedback in the previous turn. Therefore, it would be
more appropriate to give priority to a different strategy based on the emotional
feedback. This leaves us with: How to model and incorporate emotional feedback
into the contextual dialogue information to achieve a better strategy recognition?

In this paper, the proposed Cross-channel Feedback memOry Network (CFO-
Net) leverages persuadee’s emotional feedback to iteratively measure the poten-
tial benefit of historical strategies, and further the updated representations of
strategies are used to guide the strategy recognition. Specifically, the novel feed-
back memory module designs strategy pool and feedback pool to process and
store the historical strategies and update the strategy weight based on the emo-
tional feedback, respectively. Furthermore, the emotion-aware strategy repre-
sentation and the contextual information are interacted by the designed cross-
channel fusion predictor to make the final strategy recognition.

The contributions can be summarized as follows:

– We propose a CFO-Net to leverage persuadee’s emotional feedback to measure
the potential benefit of historical strategies, and incorporate them into context
with cross-channel fusion predictor for persuasive strategy recognition.

– A novel feedback memory module is presented to keep track of the historical
strategies and further to obtain the emotion-aware strategy representation in
a dynamic and iterative manner.

– Experiments on the dataset show that the CFO-Net has strong competitive-
ness with baselines and improves the performance of strategy recognition
significantly.

2 Related Work

2.1 Non-collaborative Dialogue

In collaborative dialogue, systems collaborate and communicate with each other
to achieve a common goal [8]. A large number of researches [3,16,32] have shown
remarkable advancement in the collaborative setting. However, they are out of
scope when applied to non-collaborative settings like negotiation or persuasion.
For the negotiation task, two agents have a conflict of interest but must strate-
gically communicate to reach an agreement like a bargaining scenario [9]. In this
paper, the main focus is on the persuasive scenario, where the persuader tries
to induce people to donate [34]. The persuasion strategies are identified as ten
categories in [34] that can be divided into two types, 1) persuasive appeal and 2)
persuasive inquiry. Specifically, persuasive appeal contains seven strategies (Log-
ical appeal, Emotion appeal, Credibility appeal, Foot-in-the-door, Self-modeling,
Personal story and Donation information). For example, personal story refers to

Do You Know My Emotion? 727

the strategy of using narrative examples to state someone’s donation experiences
or the beneficiaries’ positive outcomes, which can encourage others to follow the
actions. In addition, the three strategies (Task-related inquiry, Personal-related
inquiry and Source-related inquiry) belong to persuasive inquiry, which builds
better interpersonal relationships by asking questions. For example, source-
related inquiry asks whether the persuadee knows about the organization (i.e.,
the source in our specific donation task).

2.2 Persuasive Dialogue Systems

Persuasive dialogue systems, which have come to increasing attention, aim to
change people’s behaviors by persuasive strategies [1,12,21,36]. For instance,
[11] proposed a two-tiered annotation scheme to distinguish claims in an online
persuasive forum. [10] proposed to predict persuasiveness by modeling argument
sequence in social media. [35] designed a hierarchical neural network to identify
persuasion strategies. Furthermore, some work focused on the contextual infor-
mation and modeled the utterances to recognize the strategy. [7] explored and
quantified the role of context for different aspects of dialogue for strategy pre-
diction. [4] introduced a transformer-based approach coupled with Conditional
Random Field for strategy recognition. A few work considered the resistance
strategies to model the strategy conversations like [30] and [6]. The Hybrid-
RCNN [34] extracted sentiment embedding features (pos, neg, neu) but did not
include the emotion in the history modeling, and ignored the corresponding
strategy. To overcome these defects, we present the CFO-Net to leverage the
emotional feedback to iteratively measure the potential benefits of strategies
and incorporate them into the context.

3 Approach

As shown in Fig. 3, the proposed model consists of three components: (a) a hier-
archical encoder, which encodes the contextual dependency with the multi-
head attention to capture the semantic information, (b) a feedback memory
module, which models the interaction between the strategy pool and the feed-
back pool to obtain emotion-aware strategy representation, and (c) a cross-
channel fusion predictor, which makes an interaction between the emotional
feedback and the contextual information, and outputs the final result. Each com-
ponent is described in the following.

3.1 Hierarchical Encoder

The hierarchical encoder uses a Bi-directional LSTM (BiLSTM) [13] or
BERT-style encoder [5,17,18], which capture the temporal features within
the words. Then, the Multi-head Attention aims to explore the semantic
information at different granularity.

728 W. Peng et al.

Fig. 3. The overview of CFO-Net, which consists of hierarchical encoder, feedback
memory module and cross-channel fusion predictor. Green and blue vertical bars mean
the utterances of persuader and persuadee. The emotion-aware strategy representation
is updated iteratively based on the strategy pool and feedback pool. (Color figure
online)

Utterance Encoder with BiLSTM. The Utterance Encoder vectorizes an
input utterance. Given a historical conversation C = (u1, u2, . . . , uN) a set of N
utterances, where ui = (xi,1, xi,2, . . . , xi,T) that consists of a sequence of T words,
uN indicates the utterance of the persuader, which is used to predict the per-
suasion strategy. A BiLSTM is utilized to encode each word xi,t in the utterance
ui ∈ C, leading to a series of context-aware hidden states (hi,1,hi,2, . . . ,hi,T),
hi,t = concat[

−→
hi,t ;

←−
hi,t].

The last hidden state hi,T is considered to get the utterance-level repre-
sentation. (Note: the representation of the [CLS] is used as the utterance-level
representation in BERT-style encoders). Therefore, the set of N utterances in C
can be represented as H = (h1,T ,h2,T , . . . ,hN,T).

Utterance-Level Multi-head Attention. To explore the semantic informa-
tion at different granularity, the multi-head attention [31] is adopted as shown
in Eq. (1). ci indicates the representation of i-th utterance:

ci = Multi-head Attention(hi,T) (1)

3.2 Feedback Memory Module

The proposed feedback memory module is composed of three novel factors. (i)
Strategy Embedding represents the features of strategies which will be con-
tinuously updated to capture persuasive strategy features. (ii) Strategy Pool
temporarily processes and stores all the possible historical strategies for future
reference. (iii) Feedback Pool considers the emotional feedback of the per-
suadee to measure the potential benefits of strategies and updates the strategy
weight γ. Finally, the strategy pool and feedback pool are interacted to obtain
the emotion-aware strategy representation for later strategy recognition.

Do You Know My Emotion? 729

Strategy Embedding. In the feedback memory module, a randomly initialized
strategy embedding is defined to represent the strategy features as S ∈ R

L×d,
where L is the number of the strategy labels and d indicates the dimension.
The strategy embedding will be continuously updated to capture persuasive
strategy features. Specifically, CFO-Net selects the appropriate strategies (i.e.
top-k) based on the context from strategy embedding and stores them into the
strategy pool with the context-aware softmax function that shown in Eq. (2).

Logical appeal

Self-modeling

maskf

0

1

0

1

1

0

top2

max

Strategy

Embedding

Strategy

Embedding

0.3

0.5

0.2

maskp

Self-modeling

top2

max

Fig. 4. The two-stream mask mechanisms are defined in the feedback memory module.

Strategy Pool. Strategy pool aims to process and store the possible historical
strategies for future reference. As shown in Fig. 4, to achieve the selection of
strategies and prevent gradient truncation, two-stream mask mechanisms are
defined in the following:
– maskp: The selected strategies (i.e. top-k) are stored into the strategy pool

to reserve the possible historical strategies (here, size is set to 10).
– maskf : The best strategy of the current moment is stored into the feedback

pool.

Specifically, the module first outputs a probability distribution α of the strat-
egy based on the contextual information, as:

α = softmax(MLP([c1; . . . ; cN])) (2)

Then, the maskp is obtained based on the α with the top-k operation where
k is a hyper-parameter, and maskf is obtained when k = 1. The strategies Sp

which contain multiple possible strategies are stored into the strategy pool, as:

Sp = S � (maskp ⊗ ed) (3)

where � is element-wise multiplication, (· ⊗ ed) produces a matrix by repeating
the vector on the left for d times [33].

The strategies Sm in the strategy pool are obtained by making a concatena-
tion with the stored strategies Sp. Similarly, the strategy Sf that stored into the
feedback pool is formulated as:

Sf = S � (maskf ⊗ ed) (4)

730 W. Peng et al.

Feedback Pool. The purpose of the feedback pool is to update the strategy
weight γ dynamically to record the emotional feedback of the persuadee towards
the strategy. The tuple {strategy, emotion} stored in the pool calculates the
strategy weight γ ∈ R

L that is used to obtain the subsequent emotion-aware
strategy representation. Firstly, the representation of utterance ci is considered
to predict the emotional label ye ∈ {pos, neu, neg} of the persuadee, as:

ye = softmax(MLP([c1; . . . ; cN−1])) (5)

where cN−1 indicates the (N − 1)th utterance spoken by the persuadee.

Fig. 5. The three different cross-channel fusion mechanisms that include (a) MLP [20],
(b) double-head linear layer and (c) co-interactive attention layer.

Then, the weight γ is assigned based on the score of the predicted emotion
and stream maskf . To enhance the generalization of the model, soft weight
γ ∈ R

L (randomly initialized with an all-one vector at the first) can be defined
as:

γi =

⎧
⎪⎨

⎪⎩

γi + maskf · μ exp−ζ if pos;
γi if neu;
γi − maskf · μ exp−ζ if neg;

(6)

where the scalar parameter μ controls the proportion of exp−ζ that guarantees
to be greater than zero. For the first condition, the weight of γ increases when
ζ becomes smaller. To this end, we intuitively set the confidence factor ζ that
depends on the score of emotion ye, as:

ζ = (1 − ye
x) (7)

where ye
x is a scalar that indicates the score of the x ∈ {pos, neu, neg} emotion.

Finally, the emotion-aware strategy representation S′ is modeled as:

S′ = γ · Sm (8)

3.3 Cross-Channel Fusion Predictor

In this section, the predictor aims to make a recognition of the strategy. Three
main types of fusion mechanisms are designed for horizontal comparison in Fig. 5.
The mechanisms are introduced to fully interact the psychological feedback with
the contextual dialogue information. And the predictor outputs the fusion dis-
tribution which captures the profound relationships between two sources.

Do You Know My Emotion? 731

Multi-layer Perceptron. An MLP can obtain the integrated representation
automatically in a simple fashion, as:

g = MLP([c1; . . . ; cN ; s′
1; . . . ; s

′
L]) (9)

The predicted distribution of the strategy ys can be defined as follows:

ys = softmax(Wsg+ bs) (10)

where Ws ∈ R
L×2d is transformation matrices, bs ∈ R

L is the bias vector, L is
the number of the labels.

Double-Head Linear Layer. To achieve the fusion of two probability dis-
tribution, a double-head linear layer is designed for prediction. Specifically, we
introduce two MLPs to calculate respective probabilities and then combine them,
as:

ys
1 = softmax(MLP ([c1; . . . ; cN])) (11)

ys
2 = softmax(MLP ([s′

1; . . . ; s
′
L])) (12)

ys = softmax(ys
1 + ys

2) (13)

where ys
1 ∈ R

L and ys
2 ∈ R

L, ys is the final predicted distribution of the strategy.

Co-interactive Attention Layer. Motivated by attention mechanism [19,26,
29], the co-interactive attention layer is proposed to effectively model mutually
relational dependency. In this layer, attentions are computed in two directions:
from C = (c1, . . . , cN) to S′ = (s′

1, . . . , s′
L) as well as from S′ to C.

Specifically, the layer first yields a shared similarity matrix A ∈ R
N×L,

between C and S′. Aij indicates the similarity between i-th context-aware utter-
ance and j-th emotion-aware strategy, as:

Aij = F(C:i,S′
:j) (14)

where F is a dot product function, C:i is i-th row vector of C, and S′
:j is j-th

row vector of S′.
The attention weights and the attended vectors can be obtained in both direc-

tions. Firstly, considering the direction from S′ to C, the attention weight is com-
puted by ai = softmax(Ai:) ∈ R

L, and subsequently context-aware utterance
vector is C̃:i =

∑
j aijS′

:j . Similarly, the attention weight bj = softmax(A:j) ∈
R

N , and updated emotion-aware strategy vector is S̃′
:j =

∑
i bijCi:.

Finally, the context-aware utterance representation and emotion-aware strat-
egy representation are combined to yield g and ys like Eq. (9) and Eq. (10), as:

ys = softmax(Wsg+ bs) (15)

732 W. Peng et al.

3.4 Training

The objective of strategy and emotion prediction can be formulated as:

Ls = −
D∑

i=1

ŷs
i log (y

s
i) (16)

Le = −
D∑

i=1

ŷe
i log (y

e
i) (17)

where D is the number of the training data, ŷs
i and ŷe

i are gold strategy label
and sentiment label, respectively. The joint objective function Lθ is formulated
with the hyper-parameters β as, Lθ = β1Ls + β2Le.

4 Experiments

4.1 Experimental Setting

Dataset & Evaluation Metric. Considering there is no emotional score in
other dataset, we focus on the PersuasionForGood [34]1 whose sentiment
label can be obtained based on the manually annotated score. The persuader
strategies are identified to ten categories (detail in Sect. 2) and one none category.
As for the evaluation metric, Precision, Recall, and Macro F1 (M-F1) are used
for the strategy recognition and emotion prediction as the dataset is highly
imbalanced [4].

Implementation Details. The BERT-style baselines have the same hyper
parameters given on the paper [5,18]. Adam optimizer [15] is used for train-
ing, with a start learning rate from {2e-5, 4e-5, 6e-5, 8e-5} and mini-batch size
from {32, 64}. The epoch of training is set from {3, 5, 7, 9}. The scalar param-
eter μ is set from {0.2, 0.5}. k is set to 2 based on the parameter analysis. The
historical strategies and emotion will be preprocessed to the two pool. To coor-
dinate the joint training of the two training objectives, we set β1 = β2 = 0.5.
Tesla V-100 GPU and PyTorch [24] are used to implement our experiments.

4.2 Experimental Results

Baselines. State-of-the-art models are used as baselines to test the performance.
Considering the advantages of pre-trained language models (PLMs), we replace
the Bi-LSTM with RoBERTa [18] to strengthen the baseline for fair comparison,
as with the work [4]. The base and large PLMs are used in the main experiments
for a complete comparison. To increase training speed, the base PLMs are utilized
in other experiments. Other baselines are shown in Table 1, [34] considered a
hybrid RCNN model to extract textual features. [4] combined the PLMs with
some state-of-the-art models to recognize the strategy of the persuader.
1 The data are available at: https://gitlab.com/ucdavisnlp/persuasionforgood.

https://gitlab.com/ucdavisnlp/persuasionforgood

Do You Know My Emotion? 733

Table 1. Experiments on PersuasionForGood for strategy recognition and emotion
prediction. – indicates the baselines don’t take emotional feedback into account, there-
fore the results are none. * indicates the experiments are implemented by ourselves.

Strategy recognition Emotion prediction
P ↑ R ↑ M-F1 ↑ P ↑ R ↑ M-F1 ↑

Hybrid RCNN + All features [34] 62.17* 59.80* 58.76* – – –
RoBERTalarge LogReg [4] 64.88* 68.32* 63.15* – – –
RoBERTalarge cLSTM [4] / / 64.10 – – –
RoBERTalarge DialogueRNN [4] / / 64.30 – – –
RoBERTabase [18] 59.58 64.39 58.35 53.21 72.05 60.41
CFO-Netbase 63.29 67.74 62.41 53.08 75.22 61.94
RoBERTalarge [18] 62.69 69.91 61.74 55.49 71.30 62.11
CFO-Netlarge 66.81 72.28 65.41 58.11 75.88 63.91

Main Results. As depicted in Table 1, compared with state-of-the-art mod-
els and RoBERTa, the performance of our CFO-Net (with double-head linear
layer) has gained a lot. The CFO-Net achieves 4.12% gain on Precision, 2.37%
gain on Recall and 3.67% gain on M-F1 score compared with RoBERTalarge,
which demonstrates that the psychological feedback of the persuadee is benefi-
cial for the strategy recognition. The M-F1 reaches the decent performance with
the RoBERTa DialogueRNN where four tasks are jointly trained, which shows
that the CFO-Net can achieve better performance with fewer tasks. As for the
emotion prediction task, the CFO-Net also improves the performance, which
shows that jointly training the tasks can provide benefits and boost each other.
This phenomenon illustrates that the emotional feedback of the persuadee has
the potential to help the process of strategy recognition task. Our code will be
released in the link.2

4.3 Ablation Study

To get a better insight into the components of the CFO-Net, the ablation study is
performed in the Table 2. The experiments demonstrate that either component
is beneficial to the final results. Note that by removing the feedback memory
module, configuration (1) reduces to the RB-base model.

w/o Feedback Memory Module. In this setting, the feedback memory mod-
ule is abandoned for exploring the effectiveness of the psychological feedback.
From the result, the performance has declined significantly in all metrics, which
confirms our hypothesis that introducing the emotion of the persuadee to the
strategy recognition is important.
2 The codes are available at: https://github.com/pengwei-iie/CFONETWORK.

https://github.com/pengwei-iie/CFONETWORK

734 W. Peng et al.

Table 2. The results of ablation study on model components.

Strategy recognition Emotion prediction
P ↑ R ↑ M-F1 ↑ Δ(M−F1) P ↑ R ↑ M-F1 ↑ Δ(M−F1)

CFO-Net + RoBERTabase 63.29 67.74 62.41 – 53.08 75.22 61.94 –

(1) w/o feedback memory module 59.58 64.39 58.35 −4.06 53.21 72.05 60.41 −1.54
(2) w/o multi-task learning 59.04 65.17 58.50 −3.91 53.06 72.62 60.52 −1.42
(3) w/o cross-channel fusion 62.44 66.38 60.53 −1.88 53.12 72.97 60.84 −1.10

w/o Multi-task Learning. Multi-task learning considers the mutual connec-
tion between tasks by sharing latent representations. Here, the emotion predic-
tion task is removed to see the performance of strategy recognition. In Table 2,
the multi-task learning that is jointly training (Ls and Le) can provide benefits,
which shows that the training objectives are closely related and boost each other.

w/o Cross-channel Fusion. The cross-channel fusion combines the persuader-
aware contextual dependency with persuadee-aware emotional dependency. In
this setting, these representations are concatenated directly to make a prediction.
The results indicate the fusion mechanisms make a contribution to the overall
performance.

4.4 Performances on the Fusion Mechanism

The fusion mechanism is adopted to exploit the two types of the interaction,
including persuader-aware contextual dependency and persuadee-aware emo-
tional dependency. To further investigate the effectiveness of these mechanisms,
a couple of experiments are conducted from two perspectives, as shown in Fig. 6
and Fig. 7. One is the comparison between three fusion methods and baselines,
the other is to consider the horizontal comparison of the fusion mechanisms.

0.514

0.564

0.614

0.664

P R M-F1

(b) Performance between baseline and

Double-head Linear Layer

Baseline Double-head Linear Layer

0.514

0.564

0.614

0.664

P R M-F1

(a) Performance between baseline and

Multi-layer Perceptron

Baseline Multi-layer Perceptron

0.514

0.564

0.614

0.664

P R M-F1

(c) Performance between baseline and Co-

interactive Attention Layer

Baseline Co-interactive Attention Layer

Fig. 6. The performances on the fusion mechanism. (a), (b), (c) represent the results
between the baseline and the MLP, Double-head Linear Layer and Co-interactive Atten-
tion Layer, respectively.

Do You Know My Emotion? 735

0.514

0.564

0.614

0.664

Multi-layer Perceptron Double-head Linear Layer Co-interactive Attention Layer

P R M-F1

Fig. 7. The performances and comparisons on the three different fusion mechanisms.

As shown in Fig. 6, the results conclude that the fusion mechanisms incorpo-
rating persuadee-aware emotional dependency into persuader-aware contextual
dependency can bring consistent improvements and surpass baselines on all eval-
uation metrics. In addition, Fig. 7 presents the performances of different fusion
mechanisms, in which the double-head linear layer performs best, with the M-F1
score achieving 62.41%. Surprisingly, the co-interactive attention layer underper-
forms the double-head linear layer. The phenomenon could be attributed to the
fact that the strategy representation and the utterance-level dialogue informa-
tion belong to different levels of abstract semantic information, leading to the
introduction of noise after co-attention operation.

4.5 Parameter Analysis

In the feedback memory module, k is a key hyper-parameter. As shown in Table 3,
the model will introduce more noise when k is set too large, and the confidence
score will become lower, leading to worse performance. On the contrary, the
enriched semantic representations of the strategy will be ignored when k is set
to one. It shows that although the confidence score is higher, the performance
is not the best. The analysis validates that an appropriate k is crucial to the
experimental results.

Table 3. Performance on the hyper-parameter k. Confidence score indicates kth aver-
age predicted probability.

Top-k Top-1 Top-2 Top-3 Top-4

M-F1 60.68 62.41 60.42 58.68
Confidence score 0.877 0.473 0.326 0.242

4.6 Case Study

A case study is conducted with the example in Fig. 8 to demonstrate how CFO-
Net works when recognizing a strategy. We list the possible strategies, the state

736 W. Peng et al.

Turn Utterance Possible Strategy Strategy Pool Feedback Pool Weight Output
P
S
P <P, ->
S

L
C
P

S

C <P, ->
L <L, +>
P

S

P (highest score) <P, ->
E <L, +>

C

L

P

S

ER: Persuader EE: Persuadee S: source-related inquiry P: Personal-related inquiry C: Credibility appeal L: Logical appeal F: foot-in-door E: Emotion appeal

EE: Okay that sounds nice and an important service. <1.215, 0.736, …, 1>

<1, 0.736, …, 1>

+

3
ER: And the money raised helps feed and clothe them. Its a lot of children

that are starving and need our help. Would like to help?
P,E <1.215, 0.736, …, 1> E

L2

ER: I truly understand. And Save the Children is an international non-

governmental

organization that promotes children's rights, provides relief and helps support

children.

L,C <P, ->

P

EE: I do have a big family, I enjoy it sometimes, other times I don't. <1, 0.736, …, 1> -

1 ER: I have a big family with two kids do you? P,S <> <1, 1, …, 1>

Fig. 8. An example to illustrate the process of novel feedback memory module. The
red marker indicates the changes. (Color figure online)

of the strategy pool and feedback pool, and the updated weights. In this case,
two possible strategies are selected to the strategy pool at a time. Then, the
predicted emotion and the strategy with the highest score are stored into the
feedback pool in a tuple fashion, such as <Personal-related inquiry, A> where
A represents positive or neutral or negative. Finally, weights γ will be calcu-
lated with Eq. (6). During the conversation, the strategy recognition not only
depends on the contextual dialogue information, but also the emotional feed-
back of the persuadee. The weights are utilized to compute the emotion-aware
strategy representation for the final prediction. In the third turn, the CFO-Net
outputs a correct prediction emotion appeal rather than personal-related inquiry
with the highest score calculated by the contextual dialogue information, which
indicates that incorporating the emotion-aware strategy representation into the
contextual dialogue information is of great importance.

5 Conclusion

This paper concentrates on incorporating the psychological feedback (emotion
of the persuadee) into the recognition of strategies in the persuasive dialogue.
In this paper, we propose a novel Cross-channel Feedback memOry Network
(CFO-Net), with a feedback memory module and three different cross-channel
fusion mechanisms, to model and explore the historical emotional feedback of
persuadee. Experimental results and analysis demonstrate that the CFO-Net
has strong competitiveness with baselines and significantly improves the per-
formance of strategy recognition. For the future work, some other categories of
psychological feedback will be considered with BiLSTM-CRF, such as personal
character, educational background and so on. These cognitive factors are still
worth researching for persuasion dialogue systems. Furthermore, dialogue sys-
tems can utilize the predicted historical strategy chains to guide the dialogue
generation task.

Acknowledgment. We thank all anonymous reviewers for their constructive com-
ments and we have made some modifications. This work is supported by the National
Natural Science Foundation of China (No. U21B2009).

Do You Know My Emotion? 737

References

1. André, E., Rist, T., Van Mulken, S., Klesen, M., Baldes, S.: The automated design
of believable dialogues for animated presentation teams. In: Embodied Conversa-
tional Agents, pp. 220–255 (2000)

2. Baron-Cohen, S., Wheelwright, S.: The empathy quotient: an investigation of
adults with asperger syndrome or high functioning autism, and normal sex dif-
ferences. J. Autism Dev. Disord. 34, 163–175 (2004)

3. Bowden, K.K., Oraby, S., Wu, J., Misra, A., Walker, M.A.: Combining search with
structured data to create a more engaging user experience in open domain dialogue.
CoRR abs/1709.05411 (2017). http://arxiv.org/abs/1709.05411

4. Chen, H., Ghosal, D., Majumder, N., Hussain, A., Poria, S.: Persuasive dialogue
understanding: the baselines and negative results. Neurocomputing 431, 47–56
(2021). https://doi.org/10.1016/j.neucom.2020.11.040

5. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186
(2019)

6. Dutt, R., et al.: RESPER: computationally modelling resisting strategies in per-
suasive conversations. CoRR abs/2101.10545 (2021). https://arxiv.org/abs/2101.
10545

7. Ghosal, D., Majumder, N., Mihalcea, R., Poria, S.: Utterance-level dialogue under-
standing: an empirical study. CoRR abs/2009.13902 (2020). https://arxiv.org/abs/
2009.13902

8. He, H., Balakrishnan, A., Eric, M., Liang, P.: Learning symmetric collaborative
dialogue agents with dynamic knowledge graph embeddings. In: Barzilay, R., Kan,
M. (eds.) ACL, pp. 1766–1776. Association for Computational Linguistics (2017).
https://doi.org/10.18653/v1/P17-1162

9. He, H., Chen, D., Balakrishnan, A., Liang, P.: Decoupling strategy and generation
in negotiation dialogues. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J.
(eds.) EMNLP, pp. 2333–2343. Association for Computational Linguistics (2018).
https://doi.org/10.18653/v1/d18-1256

10. Hidey, C., McKeown, K.R.: Persuasive influence detection: the role of argument
sequencing. In: McIlraith, S.A., Weinberger, K.Q. (eds.) AAAI, pp. 5173–5180.
AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/17077

11. Hidey, C., Musi, E., Hwang, A., Muresan, S., McKeown, K.: Analyzing the semantic
types of claims and premises in an online persuasive forum. In: Habernal, I., et al.
(eds.) Proceedings of the 4th Workshop on Argument Mining, ArgMining@EMNLP
2017, Copenhagen, Denmark, 8 September 2017, pp. 11–21. Association for Com-
putational Linguistics (2017). https://doi.org/10.18653/v1/w17-5102

12. Fogg, B.J.: Persuasive Technology: Using Computers to Change What We Think
and Do (2003)

13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

14. Iyer, R.R., Sycara, K.P.: An unsupervised domain-independent framework for auto-
mated detection of persuasion tactics in text. CoRR abs/1912.06745 (2019). http://
arxiv.org/abs/1912.06745

15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
16. Larionov, G., et al.: Tartan: a retrieval-based socialbot powered by a dynamic

finite-state machine architecture. arXiv preprint arXiv:1812.01260 (2018)

http://arxiv.org/abs/1709.05411
https://doi.org/10.1016/j.neucom.2020.11.040
https://arxiv.org/abs/2101.10545
https://arxiv.org/abs/2101.10545
https://arxiv.org/abs/2009.13902
https://arxiv.org/abs/2009.13902
https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.18653/v1/d18-1256
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17077
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17077
https://doi.org/10.18653/v1/w17-5102
http://arxiv.org/abs/1912.06745
http://arxiv.org/abs/1912.06745
http://arxiv.org/abs/1812.01260

738 W. Peng et al.

17. Li, Y., et al.: Enhancing Chinese pre-trained language model via heterogeneous
linguistics graph. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, 22–27 May 2022, pp. 1986–1996.
Association for Computational Linguistics (2022). https://aclanthology.org/2022.
acl-long.140

18. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. CoRR
abs/1907.11692 (2019)

19. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neu-
ral machine translation. In: Màrquez, L., Callison-Burch, C., Su, J., Pighin, D.,
Marton, Y. (eds.) EMNLP, pp. 1412–1421. The Association for Computational
Linguistics (2015). https://doi.org/10.18653/v1/d15-1166

20. Nguyen, D., Okatani, T.: Improved fusion of visual and language representations
by dense symmetric co-attention for visual question answering. In: CVPR, pp.
6087–6096. IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.
00637

21. Oinas-Kukkonen, H., Harjumaa, M.: Towards deeper understanding of persua-
sion in software and information systems. In: First International Conference on
Advances in Computer-Human Interaction, pp. 200–205 (2008)

22. Pamungkas, E.W.: Emotionally-aware chatbots: a survey. CoRR abs/1906.09774
(2019). http://arxiv.org/abs/1906.09774

23. Partala, T., Surakka, V.: The effects of affective interventions in human-computer
interaction. Interact. Comput. 16(2), 295–309 (2004). https://doi.org/10.1016/j.
intcom.2003.12.001

24. Paszke, A., et al.: Automatic differentiation in pytorch (2017)
25. Peng, W., Hu, Y., Xing, L., Xie, Y., Sun, Y., Li, Y.: Control globally, understand

locally: a global-to-local hierarchical graph network for emotional support conver-
sation. CoRR abs/2204.12749 (2022). https://doi.org/10.48550/arXiv.2204.12749

26. Peng, W., Hu, Y., Yu, J., Xing, L., Xie, Y.: APER: adaptive evidence-driven rea-
soning network for machine reading comprehension with unanswerable questions.
Knowl.-Based Syst. 229, 107364 (2021)

27. Prendinger, H., Ishizuka, M.: The empathic companion: a character-based interface
that addresses users’ affective states. Appl. Artif. Intell. 19(3–4), 267–285 (2005).
https://doi.org/10.1080/08839510590910174

28. Scott, J.: Understanding contemporary society: theories of the present - rational
choice theory- complexity theory (2000)

29. Seo, M.J., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention
flow for machine comprehension. In: ICLR (2017). https://openreview.net/forum?
id=HJ0UKP9ge

30. Tian, Y., Shi, W., Li, C., Yu, Z.: Understanding user resistance strategies in per-
suasive conversations. In: Cohn, T., He, Y., Liu, Y. (eds.) EMNLP, pp. 4794–4798.
Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/
2020.findings-emnlp.431

31. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.)
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems, 4–9 2017 December, Long Beach, CA,
USA, pp. 5998–6008 (2017). https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

32. Wang, Q., Cao, Y., Jiang, J., Wang, Y., Tong, L., Guo, L.: Incorporating specific
knowledge into end-to-end task-oriented dialogue systems. In: 2021 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2021)

https://aclanthology.org/2022.acl-long.140
https://aclanthology.org/2022.acl-long.140
https://doi.org/10.18653/v1/d15-1166
https://doi.org/10.1109/CVPR.2018.00637
https://doi.org/10.1109/CVPR.2018.00637
http://arxiv.org/abs/1906.09774
https://doi.org/10.1016/j.intcom.2003.12.001
https://doi.org/10.1016/j.intcom.2003.12.001
https://doi.org/10.48550/arXiv.2204.12749
https://doi.org/10.1080/08839510590910174
https://openreview.net/forum?id=HJ0UKP9ge
https://openreview.net/forum?id=HJ0UKP9ge
https://doi.org/10.18653/v1/2020.findings-emnlp.431
https://doi.org/10.18653/v1/2020.findings-emnlp.431
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Do You Know My Emotion? 739

33. Wang, S., Jiang, J.: Machine comprehension using match-LSTM and answer
pointer. In: ICLR (2017). https://openreview.net/forum?id=B1-q5Pqxl

34. Wang, X., et al.: Persuasion for good: towards a personalized persuasive dialogue
system for social good. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) ACL,
pp. 5635–5649. Association for Computational Linguistics (2019). https://doi.org/
10.18653/v1/p19-1566

35. Yang, D., Chen, J., Yang, Z., Jurafsky, D., Hovy, E.H.: Let’s make your request
more persuasive: modeling persuasive strategies via semi-supervised neural nets
on crowdfunding platforms. In: Burstein, J., Doran, C., Solorio, T. (eds.) NAACL-
HLT, pp. 3620–3630. Association for Computational Linguistics (2019). https://
doi.org/10.18653/v1/n19-1364

36. Yuan, T., Moore, D.J., Grierson, A.: A human-computer dialogue system for edu-
cational debate: a computational dialectics approach. Int. J. Artif. Intell. Educ.
18(1), 3–26 (2008). http://content.iospress.com/articles/international-journal-of-
artificial-intelligence-in-education/jai18-1-02

https://openreview.net/forum?id=B1-q5Pqxl
https://doi.org/10.18653/v1/p19-1566
https://doi.org/10.18653/v1/p19-1566
https://doi.org/10.18653/v1/n19-1364
https://doi.org/10.18653/v1/n19-1364
http://content.iospress.com/articles/international-journal-of-artificial-intelligence-in-education/jai18-1-02
http://content.iospress.com/articles/international-journal-of-artificial-intelligence-in-education/jai18-1-02

Customized Conversational
Recommender Systems

Shuokai Li1,2, Yongchun Zhu1,2, Ruobing Xie3, Zhenwei Tang4, Zhao Zhang1,
Fuzhen Zhuang5,6(B), Qing He1,2(B), and Hui Xiong7

1 Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100190, China

{lishuokai18z,zhuyongchun18s,zhangzhao2021,heqing}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

3 WeChat Search Application Department, Tencent, Shenzhen, China
ruobingxie@tencent.com

4 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
zhenwei.tang@kaust.edu.sa

5 Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
zhuangfuzhen@buaa.edu.cn

6 SKLSDE, School of Computer Science, Beihang University, Beijing 100191, China
7 Artificial Intelligence Thrust, The Hong Kong University of Science

and Technology, Guangzhou, China
xionghui@ust.hk

Abstract. Conversational recommender systems (CRS) aim to capture
user’s current intentions and provide recommendations through real-time
multi-turn conversational interactions. As a human-machine interactive
system, it is essential for CRS to improve the user experience. However,
most CRS methods neglect the importance of user experience. In this
paper, we propose two key points for CRS to improve the user experi-
ence: (1) Speaking like a human, human can speak with different styles
according to the current dialogue context. (2) Identifying fine-grained
intentions, even for the same utterance, different users have diverse fine-
grained intentions, which are related to users’ inherent preference. Based
on the observations, we propose a novel CRS model, coined Customized
Conversational Recommender System (CCRS), which customizes CRS
model for users from three perspectives. For human-like dialogue ser-
vices, we propose multi-style dialogue response generator which selects
context-aware speaking style for utterance generation. To provide person-
alized recommendations, we extract user’s current fine-grained intentions
from dialogue context with the guidance of user’s inherent preferences.
Finally, to customize the model parameters for each user, we train the
model from the meta-learning perspective. Extensive experiments and a
series of analyses have shown the superiority of our CCRS on both the
recommendation and dialogue services.

Keywords: Conversational recommendation · Knowledge graph ·
Customization · Meta learning

S. Li, Y. Zhu, Q. He—The authors are at the Key Lab of Intelligent Information
Processing of Chinese Academy of Sciences.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 740–756, 2023.
https://doi.org/10.1007/978-3-031-26390-3_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_43&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_43

Customized Conversational Recommender Systems 741

1 Introduction

Recently, conversational recommender systems (CRS) [2,16,17,19,24,31,33],
which capture the user current preference and recommend high-quality items
through real-time dialog interactions, have become an emerging research topic.
They [2,16,33] mainly require a dialogue system and a recommender system.
The dialogue system elicits the user intentions through conversational interac-
tion and responses to the user with reasonable utterances. On the other hand,
the recommender system provides high-quality recommendations by user’s inten-
tions and inherent preferences. CRS has not only a high research value but also
a broad application prospect [7], such as “Siri”, “Cortana” etc.

Do you like The Shining?

That’s probably the scariest

movie I ever watched! I advise

you do not watch it alone.

Human-Like
Response

I recommend The Shining.

Have you seen it?

Existing CRS
methods

Maybe you will like Edwards
Scissorhands? It is a tear-jerker

kind of movie with an happy

ending!

My suggestions is Edwards
Scissorhands. I am not sure if

you haven’t seen it.

Topic: scary movie Topic: romantic movie

Speaking Like A Human

I like Titanic. Its

plot design is good.

I like Titanic. The

actors are doing well.

Coarse-grained
intention Titanic

James
Cameron

Leonardo

DiCaprio

Director Actor

Titanic

James

Cameron

Leonardo
DiCaprio

Director Actor

Fine-grained
intention

User A User B

Capturing Fine-grained Intentions

Fig. 1. An motivating example of our CCRS. The left part shows the various human
speaking styles on different topics. The right part presents different users have the same
coarse-grained intentions but with various fine-grained intentions.

As a kind of human-machine interactive system, improving user experience
is of vital importance. However, existing CRS methods neglect the importance
of user experience. Some methods [24,31] not only require lots of labor to
construct rules or templates but also make results rely on the pre-processing,
which hurt user experience as the constrained interaction [7]. Some other
approaches [2,16,20,33,34] generate inflexible and fixed-style responses which
could make users uncomfortable. Besides, some methods [2,33] only identify
coarse-grained intentions and cannot provide customized recommendations. In
this paper, to improve the user experience in CRS, we propose two key points:

– Speaking like a human: Facing various dialogue scenes, people’s responses
may be diverse largely in terms of speaking styles. Figure 1 (left) shows
an example when the topics are about horror films and romantic movies.
Obviously, a human-like dialogue system is expected to: (1) generate utter-
ances that fit the current content semantics and topics, rather than using a
fixed template; (2) generate vivid and attractive conversations, rather than
short, dull and boring expressions. In this way, the user experience would be
improved and user engagement would also increase, which helps identify the
user intentions more accurately.

– Identifying fine-grained intentions: The same utterance from different
users could reflect diverse fine-grained intentions. For example, in Fig. 1 (right),

742 S. Li et al.

if users mentioned the movie “Titanic” during the conversation, they would
have the same coarse-grained intentions to find movies related to “Titanic”.
Nevertheless, they may have different fine-grained intentions. This is because
of the diversity of the inherent preferences: some users prefer movies of the
actor “Leonardo DiCaprio”, while others prefer movies of the director “James
Cameron”. Thus, modeling the fine-grained intentions which are related to the
users’ inherent preferences helps provide high-quality recommendations.

Along this line, we design a novel model Customized Conversational
Recommender System (CCRS), which customizes CRS model from three per-
spectives. Firstly, for the recommender service, given user mentioned entities, the
key idea is to highlight user fine-grained intentions with the guidance of user’s
inherent preferences (i.e. the preferences on different relations of entity). Then,
for the dialogue service, we generate customized utterances with the guidance
of content semantics. In detail, multiple styles are modeled as style embeddings,
and we aggregate multiple style embeddings into the customized speaking style
embedding according to the dialogue context. Finally, we further customize the
(recommendation and generation) models for each user, with the advantage of
meta-learning. As user fine-grained intentions and speaking styles are sparse in
CRS, we choose Model-Agnostic Meta-Learning (MAML) algorithm [6], which
can rapidly learn customized model parameters.

To summarize, the contributions of this paper are as follows:

– We propose a novel customized conversational recommender system CCRS,
which consists of customized recommendation and dialog services. We further
customize the model parameters for each user with the advantage of meta-
learning.

– We model user fine-grained intentions on entity relations, and propose multi-
style generation to provide human-like dialogue service, which improves user
experience.

– Extensive quantitative and qualitative experiments demonstrate that the pro-
posed approach can significantly outperform baseline methods.

2 Method

In this section, we present our novel method to provide customized services for
users, coined Customized Conversational Recommender System (CCRS). First,
we extract the fine-grained intentions of users with the guidance of user inherent
preferences. Then, we design the multi-style embeddings and generate person-
alized responses based on the extracted fine-grained user intentions. Finally, we
adopt meta training to learn customized model parameters for each user rapidly.
The overview illustration of the proposed model is presented in Fig. 2.

2.1 Preliminary and Formulations

Recommender Module in CRS. Given a user u ∈ U with his identifier uid

and his mentioned entities e ∈ E , a recommender system aims to retrieve a subset

Customized Conversational Recommender Systems 743

of items that meet the customized user needs. To be noticed, the entities consist
of item entities and non-item entities. For example, in a movie recommender
system, the item entities denote the movies and the non-item entities can be
the actor/actress, director, and genre. To better model user mentioned entities,
external knowledge graphs G are often incorporated.

Specifically, the knowledge graph G consists of triples (e, r, e′) where the
entities e, e′ ∈ E and the entity relation r ∈ R. E and R denote the entity set
and entity relation set, respectively. Following [2,33], we utilize the knowledge
graph from DBpedia [15] to learn the entity representations. As the original
graph consists of redundant information, we collect all the entities appearing in
the dialogue corpus and extract the subgraph following [2,33].

Fig. 2. The overview of our CCRS, which consists of a customized recommender part
and a personalized dialogue generation part. Moreover, we use MAML to learn cus-
tomized model parameters for both recommendation and dialogue generation modules.

Dialogue Module in CRS. The dialogue system is designed to generate proper
utterance responses in natural languages. At the T -th turn of the conversation,
the dialogue system receives the dialogue history H = {st}T−1

t=1 and user men-
tioned entities {e1, e2, ..., en}. Here the entities are extracted from the dialogue
utterances using entity linking. For simplify, the items are replaced by a special
token “<unk>”. When generating “<unk>”, it means to provide recommenda-
tions for users. Then the items are provided by the recommendation part.

2.2 Fine-Grained User Intentions Extraction

In this section, we extract the fine-grained user intentions by considering the
entity relations and the appearing turns of the entities. These two factors are
leveraged to learn the importance of user mentioned entities.

744 S. Li et al.

Entity Encoder. Given the user mentioned entities and corresponding knowl-
edge graph, previous methods [2,33] mainly leverage Relational Graph Convo-
lutional Networks (R-GCNs) [23] to incorporate the structural information and
learn entity representations. Though R-GCNs keep a distinct linear projection for
each type of entity relation, the projections are fixed for different users, regard-
less of the fine-grained user intentions. Indeed, the fixed projections could only
model the coarse-grained preferences (i.e. knowing what entities do users like),
and ignore the customized fine-grained user intentions on entity relations (i.e.
not knowing what types of entity relations do users like).

Motivated by [11], we proposed to capture the fine-grained user intentions
by modeling personalized preference on entity relations. For each user, with the
guidance of the user inherent embedding, we learn the customized attention
weights on various relations and aggregated the neighboring entities according
to the customized attention weights.

Given the triple (e, r, e′) in knowledge graph, where e is the user mentioned
entity, e′ ∈ N(e) is the neighbour of e and r is the relation between e and e′,
our goal is to learn the fine-grained user attentions on relation r. First, to learn
the fine-grained entity information, we project the l-th layer’s entity embeddings
(hl−1(e) ∈ R

d×1) into multi-head representations:

T l−1
i (e) = WT

i hl−1(e), Sl−1
i (e′) = WS

i hl−1(e′), (1)

where WT
i ∈ R

d
k ×d and WS

i ∈ R
d
k ×d are trainable weights, and h0(e) = Embe(e)

is initialized randomly. Next, as different users may have various inherent pref-
erences, we keep a distinct relation-aware matrix Ai

r and use γi
<r,u> to rep-

resent the user intentions on distinct entity relation r. Concretely, γi
<r,u> =

Vec(Ai
r)WuUid is the similarity between Ai

r and the inherent user embedding
Uid, here Vec(Ai

r) represents flattening the matrix into a vector. Then the fine-
grained user intentions on the relation r for i-th head is calculated as:

gi(r, u) = Sl−1
i (e′)TAi

rT
l−1
i (e) · γi

<r,u>√
d

. (2)

Finally, the overall user fine-grained intention on entity relation r is calculated
by concatenating k heads together:

G(r, u) = Softmax
N(e)

(Concat(g1, ..., gk))[e′]. (3)

Here the “Softmax” is the normalization of the source nodes, and “[e′]” denotes
the e′-th element. By this, user fine-grained intentions on relations G(r, u) are
learned with the guidance of user inherent preferences Uid.

Similar to the attention calculation procedure, we model the information of
source nodes message using k heads projections and concatenated the multi-head
information like Eq. 3:

fi(e′) = M i
rW

M
i hl−1(e′), F (e′) = Concat(f1, ..., fk), (4)

Customized Conversational Recommender Systems 745

where M i
r ∈ R

d
k × d

k and WM
i ∈ R

d
k ×d denote the i-th head message matrices.

Then we aggregate the message from the source nodes to the target node
with the guidance of user inherent attention G(r, u), which finally leads to per-
sonalized entity representations and captures the customized and fine-grained
user intentions:

hl
∗(e) =

∑

∀e′∈N(e)

(G(r, u) · F (e′)). (5)

Finally, the entity embedding is finally updated by residual connection [9]:

hl(e) = σ(WAhl
∗(e)) + hl−1(e), (6)

where WA ∈ R
d×d is the aggregation matrix and σ(·) denotes the activation

functions (in practice, we use GELU [10]). In the following, we utilize the last
layer’s (layer L) representation hL(e) as the entity representation and denote
hL(e) as h(e) for simplification.

Now given the user mentioned entities {e1, e2, ..., en} through the con-
versations, we encode them into fine-grained entity representations Hu =
(h(e1), h(e2), ..., h(en)), where h(ej) ∈ R

d denotes the entity embedding of ej .

Turn Encoder. By the entity encoder, we learn the fine-grained user intentions
Hu on mentioned entities. However, these entities are not equally important. In
CRS, the importance of entities is also influenced by the temporal factor. That
is, the entities that appeared in the later turns are prone to be more important
than early entities. Motivated by the position embedding technique [4,25] in
NLP, we take the appearing turns of entities into consideration:

µo
u = Attn(Ou) = Softmax(wO

2 Tanh(WO
1 Ou)), (7)

where oi = Embt(ti) is the turn embedding and Ou = (o1, ..., on) is the combi-
nation of oi. Here ti is a scalar, which denotes the appearing turn of the entity
ei, and Embt is the turn embedding layer. We then use the turn importance (i.e.
µo

u) of entities to better learn fine-grained user intentions.

Fine-Grained Intention Encoder. Actually, the importance of entities is also
influenced by the entities themselves. Thus we calculate the self-importance of
entities like Eq. 7: µr

u = Attn(Hu). Finally, we calculate the user representations
pu in terms of entity and turn importance, and recommend items according to
user intentions:

pu =
1
2
(µr

u + µo
u)Hu, prec(i) = Softmax(puH̃)[i], (8)

where H̃ is the embedding matrix of the whole items and i is the index of items.

746 S. Li et al.

2.3 Customized Dialogue Generation

Sequence-to-Sequence Model. The seq2seq framework has been verified in
NLP and recommendation [1,27,28]. It consists of an encoder that encodes the
input utterances into high-level representations and a decoder that generates the
responses. Following [2,33], we leverage the Transformer [25] as base architecture.

Given the input utterance x = (x1, ..., xnc
) with dialogue history, the encoder

extracts information from x. Then the decoder receives the encoder outputs
and generates a representation q at each decoding time step. According to the
representation q, the generator calculates a probability distribution over the
whole vocabulary to determine the generated tokens.

Multi-style Generation. Actually, the speaking style depends on the current
user intention. That is to say, when talking about horror films and romance
movies, the speaking style varies definitely. Thus we would like to model the
speaking styles of users and perform customized generation.

First, we pre-define ns latent speaking style embeddings L = {l1, ..., lns
}

∈ R
d×ns . Then for each user, the corresponding styles vary according to current

dialogue contexts and user fine-grained intention. Thus the multi-style vocabu-
lary bias gu is learned by proper speaking styles:

µm
u = puWCL, gu = µm

u LT, (9)

where pu is the user fine-grained intentions learned by Eq. 8 and WC is the
similarity matrix. The selected style embeddings fit the context semantics and
user inherent preferences. Finally, we add the vocabulary bias to the original
generator to perform personalized utterances generation:

pdial = softmax(WGq + F(gu) + b), (10)

where F : R
d → R

|V | maps the vocabulary bias vector into a |V |-dimension
vector, which consists of two fully connected layers.

2.4 Customized Model Training

In previous sections, we describe the details of our model and capture the cus-
tomized user preferences from the design of network perspective. In this section,
we will model the customized user preferences from the training perspective.

Training Loss. A common way to train the parameters is the back-propagation
algorithm. For the recommendation part, we could leverage a common cross-
entropy loss to train the recommendation part:

Lrec =
1

|U|
∑

u∈U

1
Nu

Nu∑

n=1

log prec(yu,n), (11)

Customized Conversational Recommender Systems 747

where yun denotes the actual preference of user u and Nu is the number of the
movies in which the user u is interested.

For the dialogue generation module, the common training loss is also the
cross-entropy loss:

Ldial =
1

|U|
∑

u∈U

1
Ng

u

Ng
u∑

n=1

log p(sn,u|s(n−1),u, ..., s1,u, xn,u), (12)

where Ng
u denotes the whole utterance of user u, and sn,u is for the gold response

tokens.
Nevertheless, it lacks the personality for various users and could not tune the

network according to the customized and fine-grained user preferences. Moti-
vated by [14], we adopt the meta-learning framework [6] to learn the communal
user preferences and customized user preferences for a specific user.

Algorithm 1. The training algorithm of recommendation and dialogue gener-
ation parts.
Require:

The training model: m = rec or dial,
βm and νm: inner and outer learning rates.
Randomly initialized the inner θinner

m and outer θouter
m params

while not converge do
Sample batch of users U ∼ Dtr

for user u in U do
(Dsup

u , Dqu
u) ∼ Dtr,u

L1(u) = Lm,Dsup
u

(fθinner
m ,θouter

m
)

Inner update: φ(u)innerm ← θinner
m − βm∇θinner

m
L1(u)

L2(u) = Lm,Dqu
u

(fφ(u)innerm ,θouter
m

)
end for
Global update
θouter

m ← θouter
m − νm

∑
u∈U (∇θouter

m
L2(u) + ∇θouter

m
L1(u))

θinner
m ← θinner

m − νm

∑
u∈U (∇θinner

m
L2(u) + ∇θinner

m
L1(u))

end while

Meta Training. The meta training includes the inner update and global
update. We first define predicting each user’s preference as an individual task
and sample a set of records as support set Dsup

u , while others as the query set
Dqu

u for each user. In the inner update, the model updates the inner parame-
ters θinner (see Section Parameters Setting for details) to learn customized user
tastes, according to the user’s unique item-consumptions (i.e., the support set).
It takes a single gradient step with inner learning rate β:

φ(u)inner ← θinner − β∇θLDsup
u

(M), (13)

748 S. Li et al.

where M denotes the training parameters of the whole model. As the inner
parameters are updated in different directions for different users, it captures the
user customized preferences. The following procedure is global update and its
goal is to learn a communal parameters initialization, such that each of the users’
customized preferences would be met from the common initialization with a few
update steps, i.e., capturing the customized preferences rapidly:

θ ← θ − ν
∑

u∈˜U

∇θLDqu
u

(M(φ(u)inner)), (14)

where θ includes the whole parameters of M, and ν is the outer learning rate.
In practice, we first train the recommender part to learn the entity embed-

dings and take the customized recommendation. When the recommender part
converges, the dialogue generation module is optimized with the guidance of user
intentions on entities, and personalized utterances are generated. The detailed
training algorithm of recommendation and dialogue generation is shown in Algo-
rithm 1.

Parameters Setting. For the recommendation part, the inner parameters
are set to θouterrec = {Embu,Embe}, and the outer parameters are θinnerrec =
θrec \ θouterrec , where θrec = {θ|θ ∈ Mrec}. For the dialogue generation part,
The parameters are also divided into two categories: the inner parameters
θinnerdial = {Encoder′,WL

j |ns
j=1} and the outer parameters θouterdial = θdial \ θinnerdial ,

where θdial = {θ|θ ∈ Mdial}.

3 Experiment

In this section, we first introduce the details of our experiments and then answer
the following questions: RQ1: How does our CCRS perform on recommendation
and dialogue generation compared with the SOTA baselines? RQ2: Does our
CCRS capture the fine-grained user intentions? RQ3: Does our CCRS generate
human-like responses? RQ4: How do different components of CCRS benefit the
performances?

3.1 Experimental Setup

Dataset. To evaluate the effectiveness of CCRS, we conduct experiments on
real-world dataset ReDial. It contains 10,006 conversations and 182,150 utter-
ances. The total number of users and movies are 956 and 51699, respectively.

For meta-learning, we define each task as a user’s interactive conversations.
Then we group the train, validation, and test sets by the user id, and the ratio
of samples is about 8:1:1. For each user, half of the user conversations are used
as the query set, and the remaining conversations are used as the support set.
During the meta test phase, CCRS is fine-tuned on the support set Dsup

test and
tested on the query set Dqu

test. For a fair comparison with baseline methods,

Customized Conversational Recommender Systems 749

when training these models, we add the meta test support set Dsup
test into the

training data.

Baselines. We consider the following baselines: (1) Popularity ranks the items
according to the historical recommendation frequencies. (2) TextCNN [12]:
encodes utterances to extract user intent by CNN-based model. (3) ReDial [16] is
a CRS method which adopts an auto-encoder for recommendation. (4) KBRD [2]
adopts the external knowledge graphDBpedia to enhance the user representations.
(5) KGSF [33] incorporates both the semantic KG ConceptNet and the entity KG
DBpedia for modeling user preferences. (6) KECRS [30] constructs a high-quality
KG and it proposes the Bag-of-Entity loss and the infusion loss to better integrate
KG with CRS for generation. (7) RevCore [20] collects user reviews on movies to
enhance the recommendation and dialogue generation modules.

Evaluation Metrics. For the recommendation task, we evaluate whether it
recommends high-quality items. So we adopt Recall@k (following [33]), MRR@k
and NDCG@k (following [34]) for evaluation (k = 10, 50). For the dialogue
generation task, we evaluate the performance by the automatic and human eval-
uations. In the automatic evaluations, we adopt BLEU [22] and F1 to estimate
the generation quality, and Distinct n-gram (n = 3, 4) to measure the diversity
at sentence level. In the human evaluations, we invite three annotators to score
whether the generations are fluent (Fluency) and plenty of useful information
(Informativeness). The range of scores is 0 to 2, and the final result is the average
scores of the three annotators.

Implementation Details. We implement our approach based on PyTorch
framework. For the recommendation part, the entity embedding size is set to
128. We choose the number of entity relation extractor layers L = 1 and the
number of heads k = 4. The network parameters are initialized by glorot uni-
form [8]. For training, the inner and outer learning rates are set to 0.006 and
0.003, respectively. For the dialogue part, the dimension of word embeddings is
set to 300, and the number of styles ns equals 4. For training, the inner and
outer learning rates are set to 0.0003 and 0.001, respectively. For both parts, we
use Adam [13] optimizer with default parameter setting, and gradient clipping
restricts the gradients within [0, 0.1].

3.2 Overall Performance (RQ1)

Recommendation. The recommendation results on ReDial are shown in
Table 1. From Table 1, we have the following observations. (1) First, our CCRS
outperforms CRS baselines (ReDial, KBRD, KGSF, KECRS, and RevCore)
by a large margin, which shows the superiority of the fine-grained user inten-
tions extraction and meta training framework. With the guidance of inherent
user preferences, the fine-grained user intentions are modeled, and MAML fur-
ther customizes user preferences by the local update. Moreover, though CCRS
does not consider ConceptNet and external user reviews, it outperforms KGSF
and RevCore significantly, which also shows the effectiveness of our customiza-
tion recommendation module. (2) Second, CCRS beats the non-CRS method

750 S. Li et al.

TextCNN. The reason is that TextCNN directly learns user representation by
the whole history, which suffers from the sparsity and noise of the utterances. (3)
Finally, KBRD, KGSF, and KECRS perform better than ReDial, which proves
the effectiveness of incorporating external knowledge graphs. Besides, KGSF out-
performs KBRD, as KGSF leverages an extra word-oriented KG ConceptNet.

Table 1. The recommendation results. The marker * indicates that the improvement
is statistically significant compared with the best baseline (t-test with p-value < 0.05).

Dataset ReDial

Method HR@10 HR@50 MRR@10 MRR@50 NDCG@10 NDCG@50

Population 6.47 17.68 0.0158 0.0204 0.0346 0.0617

Text CNN 6.57 16.51 0.0235 0.0275 0.0425 0.0661

ReDial 11.79 30.11 0.0551 0.0628 0.0895 0.1273

KBRD 15.20 33.26 0.0593 0.0677 0.0979 0.1382

KGSF 17.00 35.72 0.0637 0.0717 0.1072 0.1497

KECRS 11.57 31.95 0.0573 0.0639 0.0911 0.1291

RevCore 17.36 36.66 0.0659 0.0741 0.1103 0.1528

CCRS 19.09∗ 38.41∗ 0.0717∗ 0.0808∗ 0.1193∗ 0.1618∗

w/o TE 17.26 36.58 0.0661 0.0751 0.1092 0.1520

w/o RE&TE 16.49 35.23 0.0633 0.0720 0.1063 0.1463

Table 2. Evaluation results on dialogue generation. Flu. and Inf. stand for Fluency
and Informativeness, respectively. The marker * indicates that the improvement is
statistically significant compared with the best baseline (t-test with p-value < 0.05).

Dataset ReDial

Method BLEU F1 Dist-2 Dist-3 Dist-4 Flu Inf.

ReDial 1.213 0.183 0.089 0.393 0.798 0.83 0.96

KBRD 1.287 0.192 0.118 0.571 1.212 0.95 1.03

KGSF 1.629 0.227 0.123 0.647 1.583 1.23 1.32

KECRS 1.088 0.125 0.078 0.351 0.761 0.85 0.99

RevCore 1.236 0.186 0.105 0.553 1.321 1.21 1.33

CCRS 2.386∗ 0.267∗ 0.146∗ 0.776∗ 1.924∗ 1.36∗ 1.43∗

Only-Meta 2.129 0.258 0.131 0.692 1.772 1.30 1.40

Dialogue Generation. We also evaluate our CCRS on the dialogue genera-
tion task and the main results are listed in Table 2. From Table 2, we have the
following observations. (1) First, our CCRS outperforms the baselines signifi-
cantly. The improvement on BLEU shows that the generation of CCRS is more

Customized Conversational Recommender Systems 751

consistent with the ground truth, and the high value of Distinct n-gram reflects
the diversity of CCRS’s results. (2) Then, from the human evaluation perspec-
tive, CCRS also generates the most fluent and informative responses, which are
more human-like responses. The main reason is that CCRS considers multi-style
generations according to the current content semantics and inherent user prefer-
ences. The human-like generations then improve the user experience, and users
are more willing to chat with CCRS. (3) Besides, compared with ReDial, we can
see that the external knowledge graph also contributes to the generation.

3.3 Qualitative Results on Recommendation (RQ2)

Fine-Grained User Intentions on Entity Relations. In this part, we
present qualitative examples to show that we capture fine-grained customized
user intentions.

The
Matrix

Titanic

Sleepless
in Seattle

ActorDirector Producer ActorDirector Producer ActorDirector Producer ActorDirector Producer

a) user 1 b) user 2 c) user 3 d) user 4

(a) Fine-grained user intentions

Turns 1 2 3 4 5 6 7 8

(b) Turn Importance

Fig. 3. The visualization of fine-grained user intentions on different relations (left),
and the importance of the dialogue turns (right).

We first choose three movies “The Matrix”, “Titanic” and “Sleepless in Seat-
tle” and three different relations “Director”, “Actor” and “Producer”. Then we
randomly pick up four users to show their fine-grained intentions on relations.
The results are shown in Fig. 3 left. (1) Firstly, we can see that the user’s prefer-
ences on relations vary. For example, user 1 pays more attention to the “Director”
relation, while user 4 cares about “Actor”. So it is necessary to learn the user
attention on the entity relation, and we aggregate more information from the
“Director” relation for user 1, while the “Actor” relation for user 4. (2) Secondly,
even for a fixed user, the intentions on different movies also vary. For user 1, he
likes the director of “Sleepless in Seattle” and the actor of “The Matrix”. (3)
Last but not least, in the original corpus, user 4 mentioned that he loves Tom
Hanks, which is the star of “Sleepless in Seattle”, and he also likes the movie
“Castaway” which also includes Tom Hanks. These observations show that our
CCRS correctly captures the fine-grained user intentions on entity relations and
provides high-quality recommendations.

Turn Encoder. For the turn encoder, we first conduct an experiment to prove
that the appearing turn of the entities contributes to the recommendation perfor-
mances. Given a user’s mentioned entities, we try to rank them purely according

752 S. Li et al.

Table 3. The human-like responses for different types of movies.

Topic 1:
Horror film

User: I recently watched The Shining and it was great

KGSF: Maybe you will also like Scream

CCRS: I’m not sure if you have seen The Conjuring. I would say
it’s pretty horror. It scared me for whatever reason

Topic 2:
Romantic movie

User: Hello! Can you suggest some movies like Roman Holiday?

KGSF: 50 First Date is a good choice

CCRS: What about The Notebook? The characters suffer lots of
hardships and get an happy-ending. It tells a moving story!

to the appearing turn. Then we use the first and last entity’s first-order neigh-
bors as the candidate pool. If the candidate pool includes the target movie, this
recommendation is viewed as correct. After the calculation, we find the accuracy
of the first entity is 2.32%, while the last entity is 3.50%. This confirms that the
entities near the current turn of the dialogue are more important for learning
user preference. Secondly, we visualize the importance of each turn learned by
CCRS in Fig. 3 right. We observe that with the increase of turns, the attention
weights become larger, which helps to recommend high-quality items according
to the customized user preferences.

3.4 Qualitative Results on Dialogue (RQ3)

In this part, we present some qualitative examples to illustrate the personalized
generation. Firstly, as shown in Table 3, when talking about different topics of
movies, our CCRS could generate multi-style responses according to the current
content semantics. While the speaking style of KGSF is monotonous. Thus our
CCRS improves the user experience, and the user would feel like chatting with
a real person.

Horror

Fantasy

Romance

 a) user 1 b) user 2

Fig. 4. The probability µm
u of choosing the different styles. We can see that for different

type of movies, the style probability varies.

Then, we visualize the style distribution vector µm
u (see Eq. 9) in Fig. 4, which

controls the choice of the four speaking style embeddings. On the one hand, for

Customized Conversational Recommender Systems 753

different types of movies, the style distribution vector varies significantly. For
example, for horror film, µm

u is prone to choose Style 3, while the romantic
movie is Style 1. On the other hand, for the same type of movie, the style
distribution is similar among different users, but not identical. In a word, CCRS
chooses customized style vectors for various kinds of movie topics, which leads
to human-like generations.

3.5 Ablation Study (RQ4)

Recommendation. In our recommendation part, we propose to learn the fine-
grained user intentions, temporal factors of entities, and the meta-learning frame-
work to achieve the customized recommendations. Here we would like to examine
the effectiveness of each part and show the results in Table 1. For meta training,
CCRS w/o RE&TE denotes training KBRD from the meta-learning perspec-
tive (KBRD leverages RGCN to learn the entity representations). CCRS w/o
RE&TE beats KBRD, which shows the effectiveness of meta training. For the
remaining two parts, CCRS w/o TE denotes training CCRS with only the entity
relation encoder, and it outperforms without entity relation encoder (i.e. CCRS
w/o RE&TE). CCRS incorporates both the entity relation encoder and the turn
encoder, and it beats without turn encoder (i.e. CCRS w/o TE) significantly.
These results show the usefulness of each part of CCRS. With the help of the
fine-grained user intention, the appearing turns of entities, and meta-learning,
CCRS achieves good performances.

Dialogue Generation. In our generation part, we adopt the multi-style gener-
ator and the meta training to generate personalized utterances. We also conduct
ablation studies to examine the effectiveness of each part. First, the Only-Meta
denotes training KBRD with MAML. We can see that MAML significantly
improves the quality (BLEU) and diversity (Distinct n-gram) simultaneously.
This is not surprising, as we update the network parameters in the user specific
direction in the inner update, which leads to the customized generations. Then,
CCRS beats Only-Meta, which shows the effectiveness of the multi-style gener-
ator. Compared with the Only-Meta, though the improvements on BLEU and
F1 scores are marginal, CCRS generates more personalized responses.

4 Related Work

Conversational Recommender Systems. Conversational Recommender
Systems (CRS) [2,16,17,19,24,31,33] aim to provide high-quality items through
the interactive conversations. It mainly consists of a recommender system that
identifies the user customized preferences given the item-consumption history
and a dialogue system that converses with the users and collects their preferences.
Early conversational recommender systems [3,24] mainly collects the user prefer-
ence via the pre-defined questions. They pay more attention to recommendation
accuracy, and the dialogue system is an auxiliary part, which is implemented by

754 S. Li et al.

simple or pre-defined patterns. Recently, several works focus on building end-to-
end CRS models. [16] proposed a standard CRS dataset named ReDial and an
end-to-end model which consists of a hierarchical recurrent encoder, a switching
decoder, an RNN-based sentiment analysis module, and an autoencoder-based
recommendation module. Moreover, [2,33] proposed to incorporate the external
knowledge to improve the CRS performances. [2] mainly leverages the knowl-
edge graph (KG) of user mentioned entities, which includes movies, actors, etc.,
while [33] incorporates both word-oriented and entity-oriented KGs, and adopts
Mutual Information Maximization to align word-level and entity-level represen-
tations. Other works focus on selecting proper inter-active action (policy) dur-
ing the conversations. [19] constructs a goal sequence which includes question
answering, chit-chat, and recommendation phrase. Then they characterized the
goal planning process and focus type switch during conversations. [34] focused
on topic-guided CRS and proposed a topic prediction model. Furthermore, [32]
proposed an open-source CRS toolkit CRSLab, which provides a unified and
extensible framework for previous CRS works. Moreover, [20] proposes a review-
enhanced framework, in which user reviews are incorporated to enhance the
CRS performances. [18] further learns templates automatically for utterances
generation.

Meta-Learning. Meta-learning is also named learning to learn, which aims
to improve new tasks’ performance with several similar tasks. The work can
be grouped into three clusters, e.g. metric-based [26], model-based [37], and
optimization-based [6] approaches. Recently, meta-learning has also been applied
to recommender systems [14,21,29,35,36,38] and natural language process-
ing [5]. In this paper, we leverage meta-learning to learn customized conversa-
tional recommendation model, and provide personalized service, which is differ-
ent from previous works. To the best of our knowledge, this is the first attempt in
adapting meta-learning to conversational recommendation for model customiza-
tion and improving user experience.

5 Conclusion

In this paper, we proposed a novel approach CCRS, which aims to improve the
user experience and explore the customization in CRS from three perspectives.
For the customized recommendation results, we capture fine-grained intentions
by exploring user inherent preference on entity relations and the appearing turn
of the entities. For the customized dialogue interactions, we proposed a multi-
style generator, which generates responses in customized speaking styles. Finally,
for the model training, we adopted the meta-learning framework to enhance the
recommendation and dialogue generation via customized model parameters. The
extensive experiments show that our CCRS outperforms competitive baselines.

Acknowledgments. This work is also supported by the National Natural Sci-
ence Foundation of China under Grant (No. 61976204, U1811461, U1836206). Zhao
Zhang is supported by the China Postdoctoral Science Foundation under Grant No.
2021M703273.

Customized Conversational Recommender Systems 755

References

1. Bahdanau, D., Cho, K.H., Bengio, Y.: Neural machine translation by jointly learn-
ing to align and translate. In: ICLR (2015)

2. Chen, Q., et al.: Towards knowledge-based recommender dialog system. In:
EMNLP, pp. 1803–1813 (2019)

3. Christakopoulou, K., Radlinski, F., Hofmann, K.: Towards conversational recom-
mender systems. In: SIGKDD, pp. 815–824 (2016)

4. Devlin, J., Chang, M.W., Lee, K., et al.: Bert: pre-training of deep bidirectional
transformers for language understanding. In: NAACL, pp. 4171–4186 (2019)

5. Dong, B., et al.: Meta-information guided meta-learning for few-shot relation clas-
sification. In: COLING, pp. 1594–1605 (2020)

6. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML (2017)

7. Gao, C., Lei, W., He, X., de Rijke, M., Chua, T.S.: Advances and challenges in
conversational recommender systems: a survey. AI Open 2, 100–126 (2021)

8. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256. JMLR Proceedings (2010)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR, pp. 770–778 (2016)

10. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint
arXiv:1606.08415 (2016)

11. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: WWW,
pp. 2704–2710 (2020)

12. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP
2014, pp. 1746–1751 (2014)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv (2014)
14. Lee, H., Im, J., Jang, S., Cho, H., Chung, S.: MeLU: meta-learned user preference

estimator for cold-start recommendation. In: SIGKDD, pp. 1073–1082 (2019)
15. Lehmann, J., Isele, R., Jakob, M., et al.: Dbpedia-a large-scale, multilingual knowl-

edge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)
16. Li, R., Ebrahimi Kahou, S., Schulz, H., Michalski, V., Charlin, L., Pal, C.: Towards

deep conversational recommendations. In: NeurIPS, vol. 31, pp. 9725–9735 (2018)
17. Li, S., Xie, R., Zhu, Y., Ao, X., Zhuang, F., He, Q.: User-centric conversational

recommendation with multi-aspect user modeling. In: SIGIR (2022)
18. Liang, Z., Hu, H., Xu, C., et al.: Learning neural templates for recommender dia-

logue system. In: EMNLP, pp. 7821–7833 (2021)
19. Liu, Z., Wang, H., Niu, Z.Y., Wu, H., Che, W., Liu, T.: Towards conversational

recommendation over multi-type dialogs. In: ACL, pp. 1036–1049 (2020)
20. Lu, Y., et al.: Revcore: review-augmented conversational recommendation. arXiv

preprint arXiv:2106.00957 (2021)
21. Pan, F., Li, S., Ao, X., Tang, P., He, Q.: Warm up cold-start advertisements:

improving CTR predictions via learning to learn id embeddings. In: SIGIR, pp.
695–704 (2019)

22. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: ACL, pp. 311–318 (2002)

23. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/2106.00957
https://doi.org/10.1007/978-3-319-93417-4_38

756 S. Li et al.

24. Sun, Y., Zhang, Y.: Conversational recommender system. In: SIGIR, pp. 235–244
(2018)

25. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)
26. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for

one shot learning. In: NeurIPS, vol. 29, pp. 3630–3638 (2016)
27. Wu, Y., et al.: Selective fairness in recommendation via prompts. In: SIGIR (2022)
28. Wu, Y., et al.: Personalized prompts for sequential recommendation. arXiv (2022)
29. Xie, R., et al.: Long short-term temporal meta-learning in online recommendation.

In: WSDM (2022)
30. Zhang, T., Liu, Y., Zhong, P., et al.: KECRS: towards knowledge-enriched conver-

sational recommendation system. arXiv preprint arXiv:2105.08261 (2021)
31. Zhang, Y., Chen, X., Ai, Q., Yang, L., Croft, W.B.: Towards conversational search

and recommendation: system ask, user respond. In: CIKM, pp. 177–186 (2018)
32. Zhou, K., et al.: CRSLab: an open-source toolkit for building conversational rec-

ommender system. In: ACL: System Demonstrations, pp. 185–193 (2021)
33. Zhou, K., Zhao, W.X., Bian, S., Zhou, Y., Wen, J.R., Yu, J.: Improving con-

versational recommender systems via knowledge graph based semantic fusion. In:
SIGKDD, pp. 1006–1014 (2020)

34. Zhou, K., Zhou, Y., Zhao, W.X., Wang, X., Wen, J.R.: Towards topic-guided con-
versational recommender system. In: COLING, pp. 4128–4139 (2020)

35. Zhu, Y., et al.: Transfer-meta framework for cross-domain recommendation to cold-
start users. In: SIGIR, pp. 1813–1817 (2021)

36. Zhu, Y., et al.: Learning to expand audience via meta hybrid experts and critics
for recommendation and advertising. In: KDD, pp. 4005–4013 (2021)

37. Zhu, Y., et al.: Personalized transfer of user preferences for cross-domain recom-
mendation. In: WSDM, pp. 1507–1515 (2022)

38. Zhu, Y., et al.: Learning to warm up cold item embeddings for cold-start rec-
ommendation with meta scaling and shifting networks. In: SIGIR, pp. 1167–1176
(2021)

http://arxiv.org/abs/2105.08261

Correction to: On the Current State
of Reproducibility and Reporting

of Uncertainty for Aspect-Based Sentiment
Analysis

Elisabeth Lebmeier, Matthias Aßenmacher ,
and Christian Heumann

Correction to:
Chapter “On the Current State of Reproducibility
and Reporting of Uncertainty for Aspect-Based Sentiment
Analysis” in: M.-R. Amini et al. (Eds.): Machine Learning
and Knowledge Discovery in Databases, LNAI 13714,
https://doi.org/10.1007/978-3-031-26390-3_31

Chapter “On the Current State of Reproducibility and Reporting of Uncertainty for
Aspect-Based Sentiment Analysis” was previously published non-open access. It has
now been changed to open access under a CC BY 4.0 license and the copyright holder
updated to ‘The Author(s)’.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

The updated original version of this chapter can be found at
https://doi.org/10.1007/978-3-031-26390-3_31

© The Author(s) 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, p. C1, 2023.
https://doi.org/10.1007/978-3-031-26390-3_44

http://orcid.org/0000-0003-2154-5774
http://orcid.org/0000-0002-4718-595X
https://doi.org/10.1007/978-3-031-26390-3_31
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26390-3_44&domain=pdf
https://doi.org/10.1007/978-3-031-26390-3_31
https://doi.org/10.1007/978-3-031-26390-3_44

Author Index

A
Abdali, Sara 571
Ahmed, Nesreen K. 86
Akoglu, Leman 53
Alshehri, Jumanah 671
Assem, Haytham 655
Aßenmacher, Matthias 537

B
Berberidis, Dimitris 53
Berendt, Bettina 638

C
Cao, Kaiyan 707
Chen, Haifeng 155
Chen, Ninghan 241
Chen, Tianyi 3
Chen, Xihui 241
Chen, Yuzhou 309
Chen, Zhengzhang 155

D
Delobelle, Pieter 638
Ding, Kaize 394
Dragut, Eduard 671
Du, Bo 377
Duan, Yijun 20
Dutta, Sourav 655

E
Ekbote, Chanakya 412

F
Fletcher, George 360
Frey, Christian M. M. 326

G
Gao, Hang 293
Gao, Ya 605
Gastinger, Julia 107

Gel, Yulia R. 309
Gemulla, Rainer 138
Glass, Lucas M. 505
Guo, Fengyu 621
Guo, Ruocheng 394
Guo, Yuhui 172

H
Han, Meng 453
Hao, Junheng 155
He, Qing 740
He, Ruifang 621
He, Xiaodong 691
Heumann, Christian 537
Hooi, Bryan 274
Hu, Jingyuan 207
Hu, Liang 553
Hu, Wenbin 377
Hu, Yue 724
Huang, Hong 122

I
Italiano, Giuseppe F. 69
Iyer, Arun 412

J
Jacobs, Tobias 107
Jatowt, Adam 20
Ji, Shaoxiong 605
Jiang, Kaiying 553
Jiang, Tao 521
Jiang, Xinyu 553
Jin, Hai 122
Jung, Steffen 485

K
Karami, Mansooreh 588
Karypis, George 86
Kawintiranon, Kornraphop 224
Keuper, Margret 485

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
M.-R. Amini et al. (Eds.): ECML PKDD 2022, LNAI 13714, pp. 757–759, 2023.
https://doi.org/10.1007/978-3-031-26390-3

https://doi.org/10.1007/978-3-031-26390-3

758 Author Index

Khan, Parisa 671
Kim, Kyoung-Sook 20
Kochsiek, Adrian 138
Konstantinidis, Athanasios L. 69

L
Laclau, Charlotte 37
Lebmeier, Elisabeth 537
Li, Guoyi 207
Li, Jiangmeng 293
Li, Shuokai 740
Li, Xiaoli 521
Li, Zhichuan 155
Liang, Pierre J. 53
Liang, Xun 172
Liebig, Thomas 469
Liebovitz, David M. 505
Lingam, Vijay 412
Liu, Chuang 377
Liu, Huan 394, 588
Liu, Xin 20
Liu, Yong 258, 453
Lynden, Steven 20
Lyu, Honglei 207

M
Ma, Xueqi 377
Ma, Yunpu 326
Maekawa, Seiji 360
Mancenido, Michelle V. 588
Marttinen, Pekka 605
Matejek, Brian 3
Matono, Akiyoshi 20
Mitzenmacher, Michael 3
Mosallanezhad, Ahmadreza 588
Mukherjee, Subhabrata 571

N
Niesel, Fritz 138

O
O’ Neill, James 655
Obradovic, Zoran 671
Oettershagen, Lutz 69
Onizuka, Makoto 360

P
Pang, Jinhui 691
Pang, Jun 241

Papalexakis, Evangelos E. 571
Peng, Wei 724

R
Ragesh, Rahul 412
Rapp, Benjamin 671
Ren, Dedong 258
Rhee, Junghwan 155
Roth, Andreas 469

S
Sasaki, Yuya 360
Schubert, Matthias 326
Sellamanickam, Sundararajan 412
Sharma, Manan 412
Shi, Chongyang 553
Shi, Xuanhua 122
Singh, Lisa 224
Sizikova, Elena 309
Song, Shuangyong 691
Stanojevic, Marija 671
Sun, Daniel 188
Sun, Jimeng 505
Sun, Yajing 724
Sun, Yizhou 155
Sztyler, Timo 107

T
Tan, Zhen 394
Tang, Lu-An 155
Tang, Zhenwei 740
Tao, Dapeng 377
Tissier, Julien 37
Tiwari, Prayag 605
Tom, Ancy Sarah 86
Tsang, Ivor W. 344
Tsourakakis, Charalampos E. 3

W
Wang, Ruoyu 188
Wang, Shoujin 553
Wang, Suge 521
Wang, Wei 155
Wei, Haohui 122
Wong, Raymond 188
Wu, Bo 172
Wu, Jiaying 274
Wu, Yulei 207
Wu, Zhenbang 505

Author Index 759

X
Xiao, Cao 505
Xiao, Yanghua 707
Xie, Ruobing 740
Xie, Yuqiang 724
Xing, Luxi 724
Xiong, Hui 740
Xu, Huinan 691

Y
Yang, Deqing 707
Yang, Tianyu 521
Yang, Yan 453
Yi, Jingjie 707
Yin, Jie 344
Yu, Hai-tao 20
Yu, Jingyi 107
Yuan, Siyu 707

Z
Zhan, Yibing 377
Zhang, Jijie 453
Zhang, Junwei 621
Zhang, Qi 553
Zhang, Teng 122
Zhang, Tongxuan 605
Zhang, Xiaodan 207
Zhang, Xuan 172
Zhang, Yuxiang 521
Zhang, Zhao 740
Zhang, Zhiyao 707
Zheng, Changwen 293
Zheng, Xiangping 172
Zhong, Zhiqiang 241
Zhou, Wei 207
Zhou, Xiaowei 344
Zhu, Yongchun 740
Zhuang, Fuzhen 740
Zou, Bo 691

	 Preface
	 Organization
	 Contents – Part II
	Networks and Graphs
	Algorithmic Tools for Understanding the Motif Structure of Networks
	1 Introduction
	2 Related Work
	3 How to Address Combinatorial Artifacts?
	4 MotifScope: Anomaly Detection via Motif Contrasting
	5 Experiments
	5.1 Combinatorial Artifacts
	5.2 MotifScope Case Studies

	6 Motif Significance and Null Models
	7 Conclusion
	References

	Anonymity can Help Minority: A Novel Synthetic Data Over-Sampling Strategy on Multi-label Graphs
	1 Introduction
	2 Related Works
	2.1 Graph Neural Networks
	2.2 Imbalanced Learning

	3 Problem Formulation
	4 Methodology
	4.1 Imbalance Measurement
	4.2 Node Generator
	4.3 Edge Generator
	4.4 Node Classifier
	4.5 Optimization Objective
	4.6 Training Algorithm

	5 Experimental Settings
	5.1 Datasets
	5.2 Analyzed Methods and Metrics
	5.3 Training Configurations

	6 Experimental Results
	6.1 Imbalanced Multi-label Classification Performance

	7 Conclusions
	References

	Understanding the Benefits of Forgetting When Learning on Dynamic Graphs
	1 Introduction
	2 Related Work
	2.1 Node Embeddings in Static Graphs
	2.2 Node Embeddings in Dynamic Graphs

	3 Learning Node Embeddings Using Time Distance
	3.1 Problem Setup
	3.2 General Framework
	3.3 Static and Temporal Similarities Between Nodes
	3.4 Complexity Analysis

	4 Experiments
	4.1 Datasets
	4.2 Evaluation Tasks
	4.3 Training Settings
	4.4 Baselines

	5 Results and Analysis of the Model
	5.1 Against Dynamic Graph Methods
	5.2 Against Static Graph Methods
	5.3 Influence of the Hyperparameters of the Model
	5.4 Training Times

	6 Conclusion
	References

	Summarizing Labeled Multi-graphs
	1 Introduction
	2 Related Work
	3 Graph Summary Design and Encoding
	3.1 Summary and Decompression
	3.2 Model Encoding

	4 Graph Summary Search
	4.1 Candidate Set Generation
	4.2 Merging Candidates: Glyphs, Super-Edges, Multiplicities

	5 Experiments
	5.1 Setup
	5.2 Qualitative Evaluation: TG-sum at Work
	5.3 Quantitative Evaluation: Evaluating Financial Accounts Labeling
	5.4 Quantitative Evaluation: Compression Rate, Running Time, Scalability

	6 Conclusion
	References

	Inferring Tie Strength in Temporal Networks
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Weighted Strong Triadic Closure
	5 Strong Triadic Closure in Temporal Networks
	5.1 Weighting Functions for the Aggregated Graph
	5.2 Approximation of WeightedMinSTC
	5.3 Streaming Algorithm for WeightedMinSTC

	6 Experiments
	6.1 Comparing Weighted and Non-weighted STC
	6.2 Efficiency of the Streaming Algorithm

	7 Conclusion and Future Work
	References

	Joint Learning of Hierarchical Community Structure and Node Representations: An Unsupervised Approach
	1 Introduction
	2 Definitions and Notation
	3 Mazi
	3.1 Objective Function
	3.2 Algorithm

	4 Experiments
	4.1 Experimental Setup
	4.2 Evaluation
	4.3 Ablation Study

	5 Related Work
	6 Conclusion
	References

	Knowledge Graphs
	ProcK: Machine Learning for Knowledge-Intensive Processes
	1 Introduction
	2 Related Work
	2.1 Predictive Process Monitoring
	2.2 Combined Sequence and Graph Models

	3 Preliminaries
	4 ProcK Architecture
	4.1 Conceptual Architecture
	4.2 Implementation

	5 Experiments
	5.1 Data
	5.2 Setup
	5.3 Results

	6 Summary and Conclusion
	References

	Enhance Temporal Knowledge Graph Completion via Time-Aware Attention Graph Convolutional Network
	1 Introduction
	2 Related Works
	2.1 Static KG Completion
	2.2 Temporal KG Completion

	3 Proposed Model
	3.1 Problem Definition
	3.2 Model Overview
	3.3 TAGCN
	3.4 Time-Aware Decoder

	4 Experimental Setup
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Baselines
	4.4 Implementation Details
	4.5 Results and Comparison
	4.6 Ablation Study
	4.7 Parameter Analysis
	4.8 Further Analysis
	4.9 Time Prediction

	5 Conclusion
	References

	Start Small, Think Big: On Hyperparameter Optimization for Large-Scale Knowledge Graph Embeddings
	1 Introduction
	2 Preliminaries and Related Work
	3 Successive Halving for Knowledge Graphs (GraSH)
	4 Low-fidelity Approximation Techniques
	4.1 Graph Reduction
	4.2 Epoch Reduction
	4.3 Summary

	5 Experimental Study
	5.1 Experimental Setup
	5.2 Comparison of Low-Fidelity Approximation Techniques (Fig.2)
	5.3 Final Model Quality (Table3)
	5.4 Resource Consumption (Table4)
	5.5 Influence of Number of Rounds (Table5)

	6 Conclusion
	References

	Multi-source Inductive Knowledge Graph Transfer
	1 Introduction
	2 Problem Statement
	3 Methodology
	3.1 Intra-graph Encoder
	3.2 Attention-Based Cross-Graph Transfer
	3.3 Graph Decoder
	3.4 Training, Inference and Complexity

	4 Experiments
	4.1 Datasets
	4.2 Baseline Methods
	4.3 Experiment Setup
	4.4 Results
	4.5 Hyperparameters

	5 Related Work
	6 Conclusion and Future Work
	References

	MULTIFORM: Few-Shot Knowledge Graph Completion via Multi-modal Contexts
	1 Introduction
	2 Related Work
	2.1 Unimodal Knowledge Embedding Models
	2.2 Multi-modal Knowledge Embedding Models
	2.3 Few-Shot Learning

	3 Preliminaries
	3.1 Task Formulation
	3.2 Few-Shot Learning Settings

	4 Model
	4.1 Multi-modal Context Encoder
	4.2 Metric Learning Module
	4.3 Loss Function

	5 Experiments
	5.1 Datasets
	5.2 Baseline Methods
	5.3 Implementation Details
	5.4 Results
	5.5 Ablation Study
	5.6 Impact of Few-Shot Size

	6 Conclusion and Future Work
	References

	RDF Knowledge Base Summarization by Inducing First-Order Horn Rules
	1 Introduction
	2 Related Work
	3 Summarization via First-Order Horn Rules
	3.1 Preliminaries, Definitions and Notation Conventions
	3.2 Summarization Workflow and the Recovery
	3.3 First-Order Horn Rule Mining

	4 Evaluation
	4.1 Summarization with Horn Rules
	4.2 Quality of Summarizations
	4.3 Rule Mining Speed

	5 Conclusion
	References

	Social Network Analysis
	A Heterogeneous Propagation Graph Model for Rumor Detection Under the Relationship Among Multiple Propagation Subtrees
	1 Introduction
	2 Related Work
	3 Multi-subtree Heterogeneous Propagation Graph Attention Network Model
	3.1 Construct Heterogeneous Propagation Graph
	3.2 Aggregate Neighbour Information and Simple Fusion of Root Features
	3.3 Calculate the Initial Representation
	3.4 Propagation Subtree Interaction Module

	4 Experiments
	4.1 Datasets
	4.2 Baselines and Evaluations Metrics
	4.3 Data Processing and Experiments Setup
	4.4 Results and Analysis
	4.5 Ablation Study
	4.6 Early Detection

	5 Conclusions
	References

	DeMis: Data-Efficient Misinformation Detection Using Reinforcement Learning
	1 Introduction
	2 Related Works
	3 Background and Problem Definition
	4 Methodology
	4.1 Overview of DeMis
	4.2 Automatic Annotation Based on Claims
	4.3 Data Selection via Reinforcement Learning
	4.4 Model Training

	5 Experimental Design
	5.1 Data Collection
	5.2 Data Preparation
	5.3 Baselines
	5.4 Evaluations and Hyperparameter Tuning

	6 Results and Analysis
	6.1 Experimental Results
	6.2 Robustness of Model
	6.3 Analysis on Big Data

	7 Conclusions
	References

	The Burden of Being a Bridge: Analysing Subjective Well-Being of Twitter Users During the COVID-19 Pandemic*-12pt
	1 Introduction
	2 Related Work
	2.1 Measuring Bridging Performance
	2.2 Subjective Well-Being Extraction

	3 The GR-Ego Twitter Dataset
	4 Data Processing
	4.1 Cascade Computation
	4.2 Sentiment Analysis

	5 Bridging Performance of Users in Information Diffusion
	5.1 Measuring User Bridging Performance
	5.2 Validation of UBM

	6 Impact of COVID-19 on the SWB of Influential Users
	6.1 Measuring SWB
	6.2 Analysing SWB Changes of Influential Users
	6.3 Relation Between SWB and Bridging Performance

	7 Conclusion and Limitation
	References

	SkipCas: Information Diffusion Prediction Model Based on Skip-Gram
	1 Introduction
	2 Related Works
	2.1 Cascades Prediction
	2.2 Graph Representation

	3 Preliminaries
	4 Model
	4.1 Diffusion Path Encoding
	4.2 Time Effect
	4.3 Structural Modeling
	4.4 Prediction

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Experimental Settings
	5.4 Evaluation Metric
	5.5 Experimental Results
	5.6 Ablation Study
	5.7 Parameter Analysis

	6 Conclusion
	References

	Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks*-12pt
	1 Introduction
	2 Related Work
	3 Spurious Correlations in Event-Based Datasets
	3.1 Event-Based Data Collection
	3.2 Possible Causes of Spurious Correlations

	4 Event-Separated Rumor Detection
	4.1 Problem Formulation
	4.2 Existing Approaches
	4.3 SOTA Models' Performance Is Heavily Overestimated

	5 Proposed Method
	5.1 Consistency of Publisher Style
	5.2 Content-Based Microblog Encoding
	5.3 Publisher Style Aggregation

	6 Experiments
	6.1 Experimental Setup
	6.2 Q1. Model Performance
	6.3 Q2. Early Rumor Detection
	6.4 Q3. Cross-Dataset Rumor Detection
	6.5 Discussion: Source-Specific Spurious Cues

	7 Conclusion
	References

	Graph Neural Networks
	Self-supervised Graph Learning with Segmented Graph Channels*-12pt
	1 Introduction
	2 Related Works
	3 Methods
	3.1 Preliminary
	3.2 Segmented Graph Channels
	3.3 Network Structure
	3.4 Feature-Level Weight-Sensitive Loss

	4 Experiments
	4.1 Comparison with the State-of-the-Art Methods
	4.2 Comparison of Computing Resource Consumption
	4.3 Evaluation of the Weight Factors
	4.4 Representation Capability Analysis

	5 Conclusions
	References

	TopoAttn-Nets: Topological Attention in Graph Representation Learning*-12pt
	1 Introduction
	2 Related Work
	3 Background on Persistent Homology
	4 Learnable Topological Meta-Representation for Deep Attention Networks
	4.1 Persistence Meta-Representation
	4.2 Aggregated Attention Layer

	5 Experiments
	6 Conclusion
	References

	SEA: Graph Shell Attention in Graph Neural Networks
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Recap: Graph Transformer Layer

	4 Methodology
	4.1 Graph Shells Models
	4.2 SEA: Routing Mechanism
	4.3 Shells vs. Over-smoothing

	5 Evaluation
	5.1 Experimental Setting
	5.2 Prediction Tasks
	5.3 Number of Shells
	5.4 Stretching Locality in SEA-k-hop
	5.5 Distribution of Experts

	6 Conclusion
	References

	Edge but not Least: Cross-View Graph Pooling*-12pt
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Preliminaries and Notations
	3.2 Cross-View Graph Pooling: Co-Pooling

	4 Experiments
	4.1 Substructure Counting on Random Graphs
	4.2 Graph Classification on Attribute-Complete Graphs
	4.3 Graph Classification on Attribute-Incomplete Graphs
	4.4 Parameter Sensitivity
	4.5 Graph Regression

	5 Conclusion
	References

	GNN Transformation Framework for Improving Efficiency and Scalability
	1 Introduction
	2 Preliminaries
	2.1 Graph Convolutional Networks
	2.2 Precomputation-Based GNNs

	3 GNN Transformation Framework
	3.1 Linear Convolution Transformation
	3.2 Efficient Precomputation

	4 Experiments
	4.1 Effectiveness of LC Transformation (Q1)
	4.2 Precomputation Efficiency (Q2)

	5 Related Work
	6 Conclusion
	A LC Version of GPRGNN
	References

	Masked Graph Auto-Encoder Constrained Graph Pooling
	1 Introduction
	2 Preliminaries and Related Works
	2.1 Notations
	2.2 Problem Statement
	2.3 Graph Convolutional Networks
	2.4 Graph Pooling
	2.5 Graph Auto-Encoder

	3 MGAP: Masked Graph Auto-Encoder Constrained Pooling
	3.1 Constraint in Attribute Space
	3.2 Constraint in Topology Space
	3.3 Node Drop Pooling Framework with MGAP
	3.4 Complexity Analysis

	4 Experiments
	4.1 Experimental Settings
	4.2 Overall Results
	4.3 Ablation Study
	4.4 Efficiency Analysis
	4.5 Parameter Analysis

	5 Conclusion and Future Work
	References

	Supervised Graph Contrastive Learning for Few-Shot Node Classification*-12pt
	1 Introduction
	2 Problem Formulation
	3 Methodology
	3.1 Data Augmentation
	3.2 Subgraph Encoder
	3.3 Multi-scale Graph Contrastive Learning with Augmented Views
	3.4 Linear Classifier Fine-Tuning

	4 Experiments
	4.1 Experimental Settings
	4.2 Overall Evaluation
	4.3 Further Experiments
	4.4 Ablation and Parameter Analysis

	5 Related Work
	6 Conclusion, Limitations and Outlook
	References

	A Piece-Wise Polynomial Filtering Approach for Graph Neural Networks*-12pt
	1 Introduction
	2 Related Work
	3 Problem Setup and Motivation
	4 Proposed Approach
	4.1 Piece-Wise Polynomial Filters
	4.2 Practical and Implementation Considerations
	4.3 Analysis
	4.4 Comparison Against Other Filtering Methods

	5 Experiments
	5.1 PP-GNN Versus SOTA Models
	5.2 PP-GNN Model Investigation
	5.3 Additional Experiments

	6 Conclusion
	A Appendix
	A.1 Motivation
	A.2 Fictitious Polynomial
	A.3 Proposed Approach
	A.4 Experiments
	A.5 PP-GNN v/s SOTA Models (Extension)
	A.6 Additional Experiments
	A.7 Comparison Against General FIR Filters
	A.8 More Details on Comparison Against Polynomial Filtering Methods
	A.9 Training Time Analysis

	References

	NE-WNA: A Novel Network Embedding Framework Without Neighborhood Aggregation*-12pt
	1 Introduction
	2 Related Work
	2.1 Graph Neural Networks
	2.2 Graph Contrastive Learning
	2.3 Auto-Encoder

	3 Methodology
	3.1 Preliminaries
	3.2 Auto-Encoder Module
	3.3 Enhanced Neighboring Contrastive Loss
	3.4 Algorithm and Complexity Analysis

	4 Experiments
	4.1 Datasets
	4.2 Implementation and Parameter Settings
	4.3 Node Classification Results
	4.4 Ablation Study
	4.5 Over-Smoothing Analysis
	4.6 Parameter Analysis
	4.7 Robustness Comparison
	4.8 Loss Validation
	4.9 Visualization of Embeddings

	5 Conclusion
	References

	Transforming PageRank into an Infinite-Depth Graph Neural Network*-12pt
	1 Introduction
	2 Preliminaries
	2.1 Personalized PageRank
	2.2 Graph Neural Networks

	3 Related Work
	3.1 Infinite-Depth Graph Neural Networks

	4 PageRank Graph Neural Network
	4.1 Efficient Optimization

	5 Experiments
	6 Conclusion
	References

	Learning to Solve Minimum Cost Multicuts Efficiently Using Edge-Weighted Graph Convolutional Neural Networks*-12pt
	1 Introduction
	2 The Minimum Cost Multicut Problem
	3 Message Passing Neural Networks for Multicuts
	3.1 Multicut Neural Network

	4 Experiments
	4.1 Evaluation on Test Data
	4.2 Ablation Study

	5 Conclusion
	References

	Natural Language Processing and Text Mining
	AutoMap: Automatic Medical Code Mapping for Clinical Prediction Model Deployment*-12pt
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 AutoMap Method
	4.1 Step 0: Embedding
	4.2 Step 1: Ontology-Level Alignment
	4.3 Step 2: Code-Level Refinement

	5 Experiment
	5.1 Experimental Setting
	5.2 Q1: Target Data with Limited Labels
	5.3 Q2: Completely Different Codes
	5.4 Q3: Completely Different Hospitals
	5.5 Q4: Mapping Accuracy
	5.6 Ablation Study

	6 Conclusion
	References

	Hyperbolic Deep Keyphrase Generation
	1 Introduction
	2 Related Work
	2.1 Keyphrase Generation
	2.2 Hyperbolic Representation

	3 Preliminaries
	4 Methodology
	4.1 Problem Definition
	4.2 Hyperbolic Encoder-Decoder Model
	4.3 Hyperbolic Attention Mechanism
	4.4 Hyperbolic Pointing Mechanism

	5 Experiments
	5.1 Dataset
	5.2 Baselines
	5.3 Evaluation Metrics
	5.4 Implementation Details
	5.5 Results and Analysis
	5.6 Coverage Evaluation of Predicted Keyphrases
	5.7 Case Study and Visualization

	6 Conclusion
	References

	On the Current State of Reproducibility and Reporting of Uncertainty for Aspect-Based Sentiment Analysis*-12pt
	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 Data Sets
	3.2 Models

	4 Experiments
	5 Results
	6 Discussion
	6.1 General Takeaways
	6.2 Possible Guidelines

	7 Conclusion and Future Work
	References

	An Ion Exchange Mechanism Inspired Story Ending Generator for Different Characters*-12pt
	1 Introduction
	2 Related Work
	3 Character-oriented Story Ending Generator (CoSEG)
	3.1 Problem Definition and Architecture
	3.2 Character Experience Sequences
	3.3 Character Modeling Module (CMM)
	3.4 Vector Breaking and Forming (VBF)
	3.5 Character-Context Attention (C-CA)

	4 Experiment
	4.1 Dataset
	4.2 Experimental Settings
	4.3 Baselines
	4.4 Evaluation Metrics
	4.5 Evaluation Results

	5 Case Study
	5.1 Ground-Truth Endings
	5.2 Character-Orient Endings

	6 Conclusion
	References

	Vec2Node: Self-Training with Tensor Augmentation for Text Classification with Few Labels*-12pt
	1 Introduction
	2 Background
	2.1 Tensor
	2.2 Singular Value Decomposition (SVD)
	2.3 Canonical Polyadic (CP) Decomposition
	2.4 KNN Tensor Graph
	2.5 Hypergraph

	3 Vec2Node Framework
	3.1 Problem Formulation
	3.2 Data Augmentation
	3.3 Learning with Data Augmentation and Limited Labels
	3.4 Complexity Analysis

	4 Experimental Evaluation
	4.1 Baselines
	4.2 Evaluation
	4.3 Interpretability and Examples
	4.4 Related Work

	5 Conclusion
	References

	``Let's Eat Grandma'': Does Punctuation Matter in Sentence Representation?
	1 Introduction
	2 Related Work
	2.1 Embeddings
	2.2 Punctuation in NLP
	2.3 Tree-Structured Encoders

	3 Problem Statement
	4 Proposed Model
	4.1 Sentence Embedding for Sentiment Analysis
	4.2 Enhanced Embedding

	5 Experimental Settings
	5.1 Datasets
	5.2 Implementation Details
	5.3 Baseline Methods

	6 Discussion and Experimental Results
	7 Case Studies
	8 Conclusion and Future Work
	References

	Contextualized Graph Embeddings for Adverse Drug Event Detection
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Overall Architecture
	3.2 Graph Construction
	3.3 Graph-Based Text Encoding
	3.4 Classification Layers
	3.5 Model Training

	4 Experiment
	4.1 Data and Pre-processing
	4.2 Baselines, Evaluation and Setup
	4.3 Main Results
	4.4 Analyses and Discussion

	5 Conclusion
	References

	Bi-matching Mechanism to Combat Long-tail Senses of Word Sense Disambiguation
	1 Introduction
	2 Related Work
	2.1 Traditional Recognition Methods for WSD
	2.2 Few-shot Learning Methods for WSD

	3 Methodology
	3.1 Word Sense Disambiguation
	3.2 Cognitive Basis of Bi-matching Mechanism
	3.3 Bi-matching Mechanism for WSD

	4 Experiments
	4.1 Datasets and Evaluation Metrics
	4.2 Baseline Models
	4.3 Experimental Setting
	4.4 Experimental Results
	4.5 Ablation Study

	5 Experiments Under Head and Tail Senses
	5.1 Bi-MWSD for Head Senses
	5.2 Bi-MWSD for Tail Senses

	6 Conclusion
	References

	FairDistillation: Mitigating Stereotyping in Language Models
	1 Introduction
	2 Background
	2.1 Mitigating Intrinsic Biases
	2.2 Knowledge Distillation

	3 FairDistillation
	3.1 Architecture
	3.2 Obtaining Probabilistic Rules

	4 Experimental Setup
	4.1 English Setup
	4.2 Dutch Setup

	5 Results
	5.1 English Results
	5.2 Dutch Results

	6 Limitations and Ethical Considerations
	7 Conclusion
	A Hyperparameters
	References

	Self-distilled Pruning of Deep Neural Networks
	1 Introduction
	2 Background and Related Work
	3 Proposed Methodology
	3.1 Cross-Correlation Between Pruned and Unpruned Embeddings
	3.2 A Frobenius Distortion Perspective of Self-distilled Pruning
	3.3 How Does Self-distillation Improve Pruned Model Generalization?

	4 Experimental Setup
	5 Empirical Results
	6 Conclusion
	References

	MultiLayerET: A Unified Representation of Entities and Topics Using Multilayer Graphs*-12pt
	1 Introduction
	2 Related Work
	3 MultiLayerET
	3.1 Problem Formulation
	3.2 Selection of Candidate Documents
	3.3 Entity Extraction and Topic Mining
	3.4 Graph Construction
	3.5 Graph Construction Complexity

	4 Graph Analysis
	4.1 Data
	4.2 Topological Graph Structure Analysis

	5 System Evaluation
	5.1 Experimental Setup
	5.2 Media Bias Classification
	5.3 Fake News Detection

	6 Conclusion
	References

	Conversational Systems
	MFDG: A Multi-Factor Dialogue Graph Model for Dialogue Intent Classification
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Definition
	3.2 Model
	3.3 Domain Knowledge Integration

	4 Experiment Setting
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Baseline Methods
	4.4 Other Settings

	5 Results and Analysis
	5.1 MFDG Comparing with Baseline Methods
	5.2 Ablation Study
	5.3 Variants of MFDG

	6 Conclusion
	References

	Contextual Information and Commonsense Based Prompt for Emotion Recognition in Conversation
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Task Formalization
	3.2 Framework
	3.3 Information Feature Extraction
	3.4 Continuous Prompt Generation
	3.5 Utterance Emotion Prediction
	3.6 Model Training

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Important Settings
	4.4 ERC Performance Comparisons
	4.5 Ablation Studies
	4.6 Prompt Length Decision
	4.7 Case Study

	5 Conclusion
	References

	Do You Know My Emotion? Emotion-Aware Strategy Recognition Towards a Persuasive Dialogue System*-12pt
	1 Introduction
	2 Related Work
	2.1 Non-collaborative Dialogue
	2.2 Persuasive Dialogue Systems

	3 Approach
	3.1 Hierarchical Encoder
	3.2 Feedback Memory Module
	3.3 Cross-Channel Fusion Predictor
	3.4 Training

	4 Experiments
	4.1 Experimental Setting
	4.2 Experimental Results
	4.3 Ablation Study
	4.4 Performances on the Fusion Mechanism
	4.5 Parameter Analysis
	4.6 Case Study

	5 Conclusion
	References

	Customized Conversational Recommender Systems*-12pt
	1 Introduction
	2 Method
	2.1 Preliminary and Formulations
	2.2 Fine-Grained User Intentions Extraction
	2.3 Customized Dialogue Generation
	2.4 Customized Model Training

	3 Experiment
	3.1 Experimental Setup
	3.2 Overall Performance (RQ1)
	3.3 Qualitative Results on Recommendation (RQ2)
	3.4 Qualitative Results on Dialogue (RQ3)
	3.5 Ablation Study (RQ4)

	4 Related Work
	5 Conclusion
	References

	Correction to: On the Current State of Reproducibility and Reporting of Uncertainty for Aspect-Based Sentiment Analysis
	Correction to: Chapter “On the Current State of Reproducibility and Reporting of Uncertainty for Aspect-Based Sentiment Analysis” in: M.-R. Amini et al. (Eds.): Machine Learning and Knowledge Discovery in Databases, LNAI 13714, https://doi.org/10.1007/978-3-031-26390-3_31

	Author Index

