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Abstract. Magnetic resonance imaging (MRI) has been popularly used
to diagnose orthopedic injuries because it offers high spatial resolution
in a non-invasive manner. Since the rotator cuff tear (RCT) is a tear
of the supraspinatus tendon (ST), a precise comprehension of both is
required to diagnose the tear. However, previous deep learning studies
have been insufficient in comprehending the correlations between the ST
and RCT effectively and accurately. Therefore, in this paper, we propose
a new method, substitution learning, wherein an MRI image is used to
improve RCT diagnosis based on the knowledge transfer. The substitu-
tion learning mainly aims at segmenting RCT from MRI images by using
the transferred knowledge while learning the correlations between RCT
and ST. In substitution learning, the knowledge of correlations between
RCT and ST is acquired by substituting the segmentation target (RCT)
with the other target (ST), which has similar properties. To this end,
we designed a novel deep learning model based on multi-task learning,
which incorporates the newly developed substitution learning, with three
parallel pipelines: (1) segmentation of RCT and ST regions, (2) classifi-
cation of the existence of RCT, and (3) substitution of the ruptured ST
regions, which are RCTs, with the recovered ST regions. We validated
our developed model through experiments using 889 multi-categorical
MRI images. The results exhibit that the proposed deep learning model
outperforms other segmentation models to diagnose RCT with 6 ∼ 8%
improved IoU values. Remarkably, the ablation study explicates that
substitution learning ensured more valid knowledge transfer.

1 Introduction

In modern society, owing to the frequent incidence of rotator cuff tears (RCT)
that occur in the supraspinatus tendon (ST) of people regardless of their age,
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the demand for orthopedic diagnosis and surgery has increased recently [1]. RCT
ruptures the shoulder joint, hindering movement of the shoulder [2,3]. However,
to minimize resections, it is required to comprehend the precise location and
size of RCTs and the mechanism behind them, prior to a surgical operation [4].
To this end, magnetic resonance imaging (MRI) has been established as an
indispensable imaging tool owing to its non-invasive diagnostic capability to
provide detailed anatomic structures. Using MRI, skilled surgeons have been able
to localize RCTs and comprehensively analyze the tear. However, inter-clinician
reliability and time-consuming manual segmentation have produced limitations
in MRI-based diagnosis [5,6]. In contrast, advances in artificial intelligence have
promoted the utilization of computer-assisted diagnosis (CAD) system in the
medical imaging field [7–9]. Particularly, deep learning-based RCT diagnosis
has been studied for the precise diagnosis of RCTs in terms of classification
and segmentation. Kim et al. [10] detected the existence of RCT and classified
the sizes, particularly a partial or full tear by adopting weighted combination
layers. Shim et al. [11] exploited 3D CNN on volumetric MRI data to classify the
existence of RCT and visualized the location of RCT using a gradient-weighted
class activation mapping (Grad-CAM) [12].

Fig. 1. Anatomical structure and MRI images of ST and RCT.

However, as illustrated in Fig. 1, the RCT region occupies a significantly
smaller number of pixels in MRI images than the ST region, thus resulting in
class-imbalance problem. Since the non-diseased regions correspond to most of
the pixels, the trained network is biased toward the normal regions and con-
verges to local minima [13,14]. In addition, since the RCT regions are sparse,
the deep learning models could not learn enough knowledge related to RCT.
To this end, researchers have used two major strategies; (1) a model-centric
approach and (2) a data-centric approach. A novel loss function or network
is proposed for the model-centric approach to resolving the biased state. The
focal loss proposed by Lin et al. [15] was applied to resolve the class imbal-
ance problem by assigning weights to the imbalanced class. Lee et al. [16] pro-
posed a modified loss function to mitigate class imbalance in the diagnosis of
RCTs from ultrasound images. However, previous studies and conventional algo-
rithms for the class-imbalance problem have exhibited limited performance due
to class imbalanced problem. Since these model-centric approaches could not
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dramatically improve the accuracy with low-quality datasets, the data-centric
approach should be accompanied by the model-centric approaches [17]. Recently,
generative adversarial neural networks (GANs) [18] have been proposed as a use-
ful tool for a data-centric approach. Several studies have demonstrated that data
augmentation using GANs improves the accuracy of the diagnosis [19,20]. Par-
ticularly, data augmentation using GANs that mask lesions in synthetic images
has been shown to be very useful even for medical applications [21–23]. How-
ever, because these synthetic images are not completely accurate, their use in
the medical field remains debatable.

Therefore, to ensure the reliability of the generated medical images and
improve diagnostic accuracy despite the class-imbalance problem, we propose
a novel learning method of substitution learning for image translation as well
as the corresponding network, denoted as the classification, substitution, and
segmentation Network (CSS-Net). Initially, to ensure the generation of reliable
medical images compared to GANs, substitution learning is newly developed
using Discrete Fourier Transform (DFT) in the CSS-Net. Next, to improve the
class-imbalance problem, wherein the knowledge related to RCT is limited due
to sparse RCT information, we adopted the knowledge transfer-based method
to CSS-Net to learn abundant knowledge of RCT from other tasks and other
related classes. Since RCT is originally a part of ST and the RCT is meanwhile
given from the tear of ST, there should be correlations between RCT and ST. At
this moment, we were motivated that the knowledge about correlations between
RCT and ST could be informative for other tasks, such as segmentation of RCT.

To this end, we designed the multi-task learning-based deep learning network,
including segmentation and classification tasks. The simple transfer learning-
based network could not still improve the segmentation accuracy drastically.
Therefore, we were motivated to use image translation to extract or capture
features/knowledge of correlations between RCT and ST. Since the GAN models
have the aforementioned limitations, we devised a new translation method: Since
DFT can extract features regardless of the location, a new translation method
adopts DFT in this study. As a result, substitution learning is motivated by
the knowledge transfer that exploits the correlations between ST and RCT, and
DFT is employed due to its feature extraction process regardless of the target
objects’ locations. Therefore, the CSS-Net based on multi-task learning includes
three pipelines; (1) as the main task, the segmentation task of RCT and ST
regions. (2) the classification task for determining the presence or absence of
RCTs, and (3) the substitution task based on DFT that substitutes ruptured
ST (RCT) images with normal ST images.

To summarize, the main contributions are summarized as follows:

– Substitution learning: In terms of data augmentation, substitution learn-
ing achieves reliable data manipulation using DFT compared to GANs which
utilize intensity-based feature maps.

– Multi-task learning: In terms of knowledge transfer, the CSS-Net improves
the segmentation performance with the interactions between three modules
of substitution, classification, and segmentation.
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– Diagnostic performance: In terms of segmentation, the CSS-Net achieves
10% improved RCT diagnostic performance compared to the baseline model
using proposed modules, and 6 ∼ 8% improved RCT diagnostic performance.

2 Methods

This section illustrates the detailed architecture of the CSS-Net and its design
principle. First, we introduce the architecture of the CSS-Net with the individual
pipelines for multi-task learning. Then, the detailed descriptions of the substi-
tution learning in the CSS-Net follow. Table 1 summarizes the mathematical
notation to construct the CSS-Net.

Table 1. Mathematical notations for the CSS-Net. Here, [Gseg(C = c)]h,w = 1
iff [Gseg]h,w,c = 1 else 0.

Notation Dimension Element Related notations Description
I R

H×W [I]h,w ∈ [0, 1] H: height of I
W : width of I

Input MRI image

Mseg(I) R
H×W×3 [Mseg(I)]h,w,c

= p ∈ [0, 1]
Mseg(I)|c ∈ R

H×W

Mseg(I)|h,w ∈ R
C

Prediction by
segmentation module

Gseg
R

H×W×3 [Gseg]h,w,c

= g ∈ {0, 1}
Gseg(C = c) ∈ R

H×W Ground truth
in segmentation task

Mclf (I) R
2 Mclf (I) =

(
p0

p1

)
Mclf (I)|c = pc ∈ [0, 1]∑

c Mclf (I)|c = 1
Prediction by
classification module

Gclf
R

2 Gclf =

(
p0

p1

)
Gclf

c = pc ∈ {0, 1} Ground truth
in classification task

DFT DFT : RH×W → R
H×W DFT function

IDFT IDFT : RH×W → R
H×W Inverse DFT function

S S : RH×W → R
H×W CNNs in Msl

Msl(I) R
H×W [Msl(I)]h,w ∈ [0, 1] I′ = IDFT (X′)

X′ = S(DFT(I ∗ G(C = 2)))
Substituted image

CL CL : RH×W × R
H×W → R Content loss function

2.1 Multi-Task Learning Architecture

Fig. 2 (a) describes the overall architecture and pipeline of the CSS-Net, which
includes the substitution (Msl), classification (Mclf ), and segmentation (Mseg)
modules based on convolutional neural networks (CNNs). The CSS-Net aims to
predict the multi-categorical segmentation masks of the background (BG), ST,
and RCT. To this end, the CSS-Net is mainly designed for the segmentation task
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Fig. 2. (a) Overall pipeline of CSS-Net. Each module is optimized using the corre-
sponding loss functions in the training phase. In the inference phase, the CSS-Net
predicts the segmentation masks of ST and RCT using only the segmentation module.
(b) Detailed architecture of the substitution learning module.

Fig. 3. Dense Block in the CSS-Net. Since ST and RCT occupy a small area, it is
required to enlarge receptive fields to comprehend the correlations between RCT and
ST. To this end, the Astros convolutions are utilized.
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Fig. 4. Detailed architecture of Mseg and Mclf in the CSS-Net. Mseg and Mclf

are designed based on U-Net and VGGNet, respectively. Convolution blocks in original
models are replaced with DenseBlock.

(main task). In addition, despite the feasibility of single utilization of Mseg, to
enhance the feature extraction during the optimization, two supplementary tasks
and modules are appended; the classification module (Mclf ) and the substitution
learning module (Msl). Figures 3 and 4 illustrate the detailed architecture of the
CSS-Net. Note that, several convolutions are shared between Mseg and Mclf to
transfer the learned knowledge related to RCT as illustrated in Fig. 4.

2.2 Segmentation Task

As the main task, Mseg aims to generate one-hot labeled segmentation masks
that include three categories of {0, 1, 2}, where 0, 1, and 2 indicate BG, ST, and
RCT classes, respectively. Mseg is constructed based on the U-Net [24], Atrous
convolution in DeepLab [25], and the dense connectivity [26], which is a CNN
structure shared with Mclf (Fig. 3). The segmentation network Mseg extracts
the features of the input MRI images (I ∈ R

H×W ), and then generates the
segmentation outputs (Mseg(I) ∈ R

H×W×3). Here, Mseg(I) is the probability-
based segmentation mask, and thus

∑{0,1,2}
c Mseg(I)|c = 1 ∈ R

H×W , where
c indicates class-wise notation. In addition, the pixel at the location (h,w) is
classified as argmax

c

(
Mseg(I)|h,w

)
. Note that Mseg is trained with Mclf and Msl

during training, but the single Mseg is used during inference.

2.3 Classification Task

As the supplementary task, Mclf classifies the existence of the RCT in I as
a binary classification, wherein the classification category is 0 or 1, where 0
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and 1 indicate the absence and presence of RCT in I. Here, Mclf is designed
using the dense connectivity [26] and shares parameters with Mseg. The Mseg

extracts features of I and then outputs the classification results (Mclf (I) ∈ R
2).

Since Mclf (I) is also probability-based matrix,
∑{0,1}

c Mclf (I)|c = 1 ∈ R, and
is determined as argmax

c

(
Mclf (I)

)
. Mclf transfers the learned knowledge about

the RCT by sharing parameters between Mseg and Mclf , and this knowledge
improves the performance of Mseg.

2.4 Substitution Learning

Msl substitutes the RCT region, which is a ruptured ST area in the MRI images,
for a normal ST style. The substituted images are then utilized as additional
inputs for Mseg and Mclf , in terms of data augmentation. Figure 2(b) describes
the detailed pipeline of Msl. First, I is binary-masked using the corresponding
ground truth (G = Gseg) with the two outputs (I∗G(c = 1)) and RCT (I∗G(c =
2)), where ∗ indicates the Hadamard product. The individual masked regions are
then converted into the frequency-domain as shown in Figs. 2(b) and 5(a). Here,
the DFT is formulated as follows:

F [x, y] =
1

HW

H∑

h

W∑

w

I[h,w]e−j2π
(

h
H y+ w

W x
)

, j =
√−1 (1)

where, F is the output mapped into the frequency domain, e is Euler’s number,
and H and W are the height and width of I, respectively. Subsequently, a simple
CNN architecture (S) with identical mapping transfers the DFT-converted out-
put of the RCT, which is D = DFT(I∗G(c = 2)), as D′ = (S◦DFT)(I∗G(c = 2)).
The inverse DFT (IDFT) is applied to D′, and the substituted images IDFT(D′)
is finally generated. In summary, the substituted image (I ′) is calculated as
I ′ = Msl(I) = (IDFT ◦ S ◦ DFT)(I ∗ G(c = 2)). As illustrated in Fig. 5(b), the
generated images by SL are more reliable than those of GANs.

2.5 Loss Functions of CSS-Net

As illustrated in Fig. 2, the CSS-Net includes three loss functions of classification
loss (L1), segmentation loss (L2), and substitution loss (L3). Here, L1 and L2

are based on the cross-entropy loss function. In particular, the KL-divergence of
Mclf (I)|c is compared to that of the corresponding ground truth Gclf , and thus
L1 =

∑
c G

clf
c logMclf (I)|c. Likewise, L2 =

∑
h,w,c[G

seg]h,w,c log[Mseg(I)]h,w,c.
Additionally, the content loss (CL) is utilized to compare the similarity between
the substituted RCT and the normal ST, which is regarded as ground truth, in
the frequency-domain. In particular, (S ◦ DFT)(I ∗ G(C = 2)) is compared to
I∗G(C = 1), and thus L3 = CL(S(DFT(I∗G(C = 2))), I∗G(C = 1)). Moreover,
the CSS-Net has additional constraints if the RCT does not exist in I, then the
substituted images are the same as the original image, and thus I = Msl(I).
Therefore, Gclf

0 |I −Msl(I)|1 is constrained, where f(x) = |x|1 is l1 loss. Besides,
since the RCT is not in substituted image, Mclf (Msl(I))|0 = 1 is constrained
(Table 2).
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Fig. 5. (a) MRI, substituted, and corresponding DFT images. (b) t-SNE projection of
MRI (green), SL images (red), and GANs images (blue). Distribution of substituted
images is more similar to MRI than that of medical style GANs [27] (Color figure
online).

Table 2. Loss functions for training CSS-Net. Ltotal =
∑5

i=1 αiLi. Here αi is a
scale factor and trainable. The initial values of αi is 1.0 except for α4 = 0.01. CE and
CL are cross-entropy and content loss.

Loss function Definition Description
L1

∑
c Gclf

c log Mclf (I)|c CE for classification task
L2

∑
h,w,c[G

seg]h,w,c log[Mseg(I)]h,w,c CE for segmentation task
L3 CL(S(DFT(I ∗ G(C = 2))), I ∗ G(C = 1)) CL for substitution task
L4 Gclf

0 |I − Msl(I)|1, and |x|1 is l1 loss If RCT not in I,
then I = Msl(I)

L5 1 − Mclf (Msl(I))|0 RCT is not in Msl(I)

3 Experiments and Results

3.1 Dataset Construction and Environmental Set-up

The data collection has been conducted in accordance with the Declaration of
Helsinki, the protocol was approved by the Ethics Committee of the Institutional
Review Board of Daegu Catholic University Medical Center, and the clinical

Table 3. Total number of samples and ratio in each segmentation class.

Total Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg. # pixels per images (%)
Total patients 42 9 9 8 8 8
Total images 889 196 192 166 174 161

BG 612 127 131 119 128 109 Background (BG) 99.20%
BG + ST 123 31 33 13 17 29 Supraspinatus tendon (ST) 0.76%
BG + ST + RCT 152 38 28 34 29 23 Rotator cuff tear (RCT) 0.04%
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Table 4. Training environment for the CSS-Net.

Parameter Value Parameter Value Parameter Value
Image Size 512 Resolution 16bits Augmentation Flip
Optimizer Adam Learning rate 1e-3 Batch size 16
β1 in Adam 0.9 β2 in Adam 0.99 ε in Adam 1e-7
CPUs 2 Xeons GPUs 8 Titan-Xps RAM 256GB
Layer Value Layer Value
Normalization Group Normalization (G = 16) Activation ReLU

trial in this paper has been in accordance with ethical standards. In total, 889
images were obtained from 42 patients with shoulder pains. Table 3 illustrates
the detailed description of the dataset. In the acquired dataset, the number of
images on ST is 123, and that on both the ST and RCT is 152. The other images
did not include the ST or RCT. The acquired dataset were divided into 5 folds
for the k-fold cross-validation to guarantee the robustness of the experiments,
such that each fold contained at least 160 images. MRI images originating from
a single patient were only included in single folds. In addition, the experimen-
tal environment and the hyper-parameters to train deep learning models are
illustrated in Table 4.

Table 5. Comparisons between ours with state-of-the-art models.

mIoU IoU-BG IoU-ST IoU-RCT Sensitivity-RCT
U-Net 0.65 ± 0.01 0.93 ± 0.01 0.62 ± 0.02 0.38 ± 0.05 0.68 ± 0.02
DeepLabV3+ 0.69 ± 0.01 0.94 ± 0.02 0.66 ± 0.03 0.41 ± 0.04 0.71 ± 0.02
IteR-MRL 0.71 ± 0.01 0.97 ± 0.01 0.69 ± 0.02 0.43 ± 0.06 0.80 ± 0.03
SA-RE-DAE 0.72 ± 0.01 0.97 ± 0.01 0.72 ± 0.02 0.45 ± 0.05 0.78 ± 0.02
Seg + Clf + SL 0.75 ± 0.01 0.98 ± 0.01 0.74 ± 0.02 0.51 ± 0.03 0.88 ± 0.04

Fig. 6. Representative segmentation results using deep learning models.
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3.2 Comparison with State-of-the-Art Models

Table 5 illustrates the quantitative analysis of the proposed CSS-Net com-
pared with other deep learning models. U-Net and DeepLabV3+ were employed
because of their popularity in segmentation tasks. In addition, the SA-RE-
DAE [28] and IteR-MRL [29] were utilized as state-of-the-art segmentation
and multi-task models. The experimental results demonstrated that all mod-
els achieve high scores in segmenting BG. Expecting the RCT, the CSS-Net
significantly outperforms the other models. It showed at least a 6% IoU-RCT
compared to the other models. In particular, the CSS-Net achieved 10% ∼ 20%
improved sensitivity in RCT segmentation, suggesting that the CSS-Net with
substitution learning could be utilized as an excellent diagnostic tool to localize
RCT, as shown in Fig. 6.

3.3 Analysis of Our Model

Since the CSS-Net was designed based on multi-task learning that includes seg-
mentation, classification, and substitution learning, an ablation study was con-
ducted by using each task (Seg, Seg + Clf, Seg + SL, and Seg + Clf + SL).
Additionally, because substitution learning was comparable with GANs, CSS-
Net, which replaced the substitution module with Style-GAN [27] was also com-
pared. Table 6 illustrates the ablation study of the CSS-Net. The results exhib-
ited that the multi-task learning of segmentation and classification could slightly
improve the segmentation of the RCT (Seg and Seg + Clf). In contrast, genera-
tive tasks, including GAN and SL, could significantly improve the performance
of the CSS-Net. Here, the CSS-Net with SL and Clf tasks improve at 8% IoU-
RCT than the baseline. However, the SL-based generative task was preferred
in teaching intensity- and frequency-domain knowledge rather than GAN-based
style transfer. The results implied that informative knowledge in SL could be
transferred into the Seg task.

Table 6. Ablation study of CSS-Net.

mIoU IoU-BG IoU-ST IoU-RCT Sensitivity-RCT
Seg (baseline) 0.68 ± 0.01 0.96 ± 0.01 0.65 ± 0.03 0.41 ± 0.04 0.69 ± 0.02
Seg + Clf 0.69 ± 0.01 0.95 ± 0.01 0.67 ± 0.03 0.44 ± 0.05 0.74 ± 0.02
Seg + SL 0.71 ± 0.01 0.96 ± 0.01 0.70 ± 0.04 0.46 ± 0.03 0.78 ± 0.02
Seg + GAN 0.71 ± 0.03 0.96 ± 0.02 0.70 ± 0.06 0.47 ± 0.11 0.75 ± 0.05
Seg + Clf + GAN 0.73 ± 0.02 0.97 ± 0.02 0.72 ± 0.05 0.49 ± 0.09 0.81 ± 0.05
Seg + Clf + SL 0.75 ± 0.01 0.98 ± 0.01 0.74 ± 0.02 0.51 ± 0.03 0.88 ± 0.04
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Fig. 7. Representative results of Guided Grad-CAMs. Left→Right: MRI images (I),
Ground truth (G), Guided-backprop (B), Overlay of I and Grad-CAM (AClf) by
the Clf -network which has only classification module, Overlay of I and Grad-CAM
(AClf+SL) by the Clf+SL-network which has classification and substitution module,
Guided Grad-CAM (B∗AClf) by the Clf -network, and Guided Grad-CAM (B∗AClf+SL)
by the Clf+SL-network.

4 Discussion and Future Work

4.1 Explainability

To analyze the effectiveness of substitution learning on other tasks, we compared
the Grad-CAM [12] of the CSS-Net with and without an SL module in the RCT
classification. Figure 7 illustrates the Grad-CAM and Guided Grad-CAM sam-
ples. The results demonstrated that the Grad-CAMs generated by the CSS-Net
without the SL module (Aclf + I) widely exhibited attentions nearby shoulders.
On the contrary, the Grad-CAMs generated by CSS-Net with the SL module
(Aclf+sl + I) exhibited an integrated attention distribution similar to that by
ground truth of ST (G). The results implied that the CSS-Net with the SL mod-
ule extracted the features maps of RCT from the ST- and RCT-related areas
rather than the entire image. Therefore, it was concluded that the substitution
learning improved RCT-related feature extraction by learning the correlations
between ST and RCT.

4.2 Limitations and Improvements

One of the main reasons for low IoU-RCT values was the imbalanced pixel distri-
bution in the dataset. Since the BG pixels occupied approximately 99%, whereas
the RCT pixels occupy 0.04%, misprediction of the BG significantly affected the
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accuracy of the RCT regions. Although substitution learning improved segmen-
tation performance by reliable data manipulation than GANs and by transfer-
ring the informative knowledge into the segmentation modules, the imbalanced
problem could be further improved. Additionally, since the multi-task deep learn-
ing models demanded heavy memory utilization owing to their large number of
CNNs, a long training time and high memory cost are required to optimize the
deep learning models. However, we improved the prediction time by eliminating
other tasks except for the segmentation task in the prediction phase. Therefore,
the CSS-Net costs the same prediction time as the baseline but it offered high
performance in segmentation. Furthermore, we have mainly focused on segment-
ing the ST and the RCT. However, substitute learning could be further extended
to diagnose any diseases that are significantly imbalanced by learning the cor-
relations between normal and disease regions using substitution (abnormal to
normal).

5 Conclusions

We introduced integrated multi-task learning as an end-to-end network architec-
ture for RCT segmentation in MRI images. We also proposed a novel substitution
learning using DFT to augment data more reliably for the imbalanced dataset, as
well as to improve accuracy by knowledge transfer. We employed the SL instead
of GANs-based approaches since the SL was demonstrated as more reliable than
GANs with even low computation costs. Our results showed that the CSS-Net
produced a superior segmentation performance owing to the abundant knowl-
edge transfer from the classification and substitution tasks to the segmentation
task, outperforming other state-of-the-art models. It showed a 10% higher IoU
value than the baseline model, and even at least 6% higher IoU values than
those shown by other state-of-the-art models. Further experiments should be
conducted for clinical applications that require reliable data augmentation and
high performance.
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