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Abstract. Long-tailed learning aims to tackle the crucial challenge that
head classes dominate the training procedure under severe class imbal-
ance in real-world scenarios. Supervised contrastive learning has turned
out to be worth exploring research direction, which seeks to learn class-
specific feature prototypes to enhance long-tailed learning performance.
However, little attention has been paid to how to calibrate the empiri-
cal prototypes which are severely biased due to the scarce data in tail
classes. Without the aid of correct prototypes, these explorations have
not shown the significant promise expected. Motivated by this, we pro-
pose the meta-prototype contrastive learning to automatically learn the
reliable representativeness of prototypes and more discriminative feature
space via a meta-learning manner. In addition, on top of the calibrated
prototypes, we leverage it to replace the mean of class statistics and
predict the targeted distribution of balanced training data. By this pro-
cedure, we formulate the feature augmentation algorithm which samples
additional features from the predicted distribution and further balances
the over-whelming dominance severity of head classes. We summarize
the above two stages as the meta-prototype decouple training scheme
and conduct a series of experiments to validate the effectiveness of the
framework. Our method outperforms previous work with a large margin
and achieves state-of-the-art performance on long-tailed image classifi-
cation and semantic segmentation tasks (e.g., we achieve 55.1% overall
accuracy with ResNetXt-50 in ImageNet-LT).

Keywords: Meta-prototype · Decoupled training · Supervised
contrastive learning · Feature augmentation

1 Introduction

Most real-world data comes with a long-tailed nature: a few head classes con-
tribute the majority of data, while most tail classes comprise relatively few data.
An undesired phenomenon is models [2,29] trained with long-tailed data perform
better on head classes while exhibiting extremely low accuracy on tail ones.
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To address this problem, a large number of studies have been conducted in
recent years, making promising progress in the field of deep long-tailed learn-
ing. Supervised contrastive learning (SCL) has been the main focus of many
techniques for long-tailed learning. The mainstream insights work on supervised
contrastive learning methods [17,43] which seek to learn class-specific feature
prototypes to enhance long-tailed learning performance. DRO-LT [21] innova-
tively explores the idea of feature prototypes to handle long-tailed recognition
in an open world. Following that, TSC [15] converges the different classes of
features to a target that is uniformly distributed over the hyper-sphere during
training.

Nevertheless, when a class has only few samples, the distribution of train-
ing samples may not represent well the true distribution of the data. The shift
between test distribution and training distribution causes the offset of the pro-
totypes in tail classes [21]. The above works are all based on the empirical proto-
type under imbalanced data, limiting the effectiveness of feature representation.
Therefore, the sub-optimal prototypes become an issue in learning high-quality
representations for SCL methods, which confuse optimization for improved long-
tailed learning.

To alleviate the above issues, we propose the supervised meta-prototype con-
trastive learning which calibrates the empirical prototype under the imbalanced
setting. Specifically, we extend meta-learner to automatically restore the meta-
prototypes of feature embeddings via two nested loops of optimization, guaran-
teeing the efficiency of the meta-prototype contrastive learning algorithm. Our
major insight here is to parameterize the mapping function as a meta-network,
which is theoretically a universal approximator for almost all continuous func-
tions, and then use the meta-data (a small unbiased validation set) to guide the
training of all the meta-network parameters. The meta-prototypes provide more
meaningful feature prototypes which are designed to be robust against possible
shifts of the test distribution and guide the SCL to obtain the discriminative
feature representation space.

To further ease the dominance of the head classes in classification deci-
sions, we develop the calibration feature augmentation algorithm based on the
learned meta-prototype in classifier training stage. Specifically, we utilize it as the
‘anchor’ of corresponding class which represents the mean of the class statistics
under the imbalanced setting. In contrast to the typical methods which generate
the new feature samples based on the class statistics of imbalanced training data,
our meta-prototype calibrates the bias and provides the reasonable feature dis-
tribution of new feature samples for tail classes. The newly generated feature are
sampled from the calibrated distribution and help to find the correct classifier
decision boundary via improving the performance of severely under-represented
tail classes.

We summarize the above processes as the meta-prototype decoupled train-
ing framework which includes calibrating the empirical prototype for SCL in the
representation learning stage and enhancing feature embedding for tail classes
based on learned meta-prototype in the classifier learning stage. We extensively
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validate our model on typical visual recognition tasks, including image classifica-
tion on three benchmarks (CIFAR-100-LT [12], ImageNet-LT [18] and iNatural-
ist2018 [25]), semantic segmentation on ADE20K dataset [40]. The experimen-
tal results demonstrate our method consistently outperforms the state-of-the-art
approaches on all the benchmarks.

Summary of Contributions:

– To the best of our acknowledge, we are the first in long-tailed learning to com-
plete the meta-prototype to promote the representation quality of supervised
prototype contrastive learning in the representation learning stage.

– On top of the learned meta-prototype, we develop the feature augmentation
algorithm for tail classes to ease dominance of the head classes in classification
decisions in the classifier learning stage.

– Our method outperforms previous works with a large margin and achieve
state-of-the-art performance on long-tailed image classification and semantic
segmentation tasks.

2 Related Work

Supervised Contrastive Learning. Existing supervised contrastive learning-
based methods for long-tailed learning seek to help alleviate the biased label
effect. DRO-LT [21] extends standard contrastive loss and optimizes against the
worst possible centroids within a safety hyper ball around the empirical centroid.
KCL [10] develops a new method to explicitly pursue balanced feature space for
representation learning. TSC [15] generates a set of targets uniformly distributed
on a hypersphere and makes the features of different classes converge to these dis-
tinct and uniformly distributed targets during training. Hybrid-SC [28] explores
the effectiveness of supervised contrastive learning. It introduces prototypical
supervised learning to obtain better features and resolve the memory bottle-
neck. The above works are all based on the empirical prototype under imbal-
anced data, which limits the effectiveness of feature representation. To alleviate
the above issue, we introduce the meta-prototype to calibrate the empirical pro-
totype, further constructing a discriminative feature space.

Meta-learning. The recent development of meta-learning [1,7] inspires
researchers to leverage meta-learning to handle class imbalance. Meta-weight-
net [22] introduces a method capable of adaptively learning an explicit weight-
ing function directly from data. MetaSAug [14] proposes to augment tail classes
with a variant of ISDA [30] by estimating the covariance matrices for tail classes.
Motivated by these works, our method attempts to automatically estimate the
meta-prototype of each class to calibrate the empirical prototype for high-quality
feature representation.

Data Augmentation for Long-Tailed Learning. In long-tail learning,
transfer-based augmentation has been explored. Transfer-based augmentation
seeks to transfer the knowledge from head classes to augment model perfor-
mance on tail classes. TailCalibX [26] and GLAG [38] explore a direction that
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attempts to generate meaningful features by estimating the tail category’s dis-
tribution. RSG [27] dynamically estimates a set of feature centers for each class,
and uses the feature displacement between head-class sample features and the
nearest intra-class feature center to augment each tail sample feature. However,
the estimated distribution of tail category and the intra-class feature center are
biased or unreasonable due to the imbalanced size of training dataset. Our meta-
prototype feature augmentation algorithm calibrates the bias and predicts likely
shifts of the test distribution.

Decoupled Scheme for Long-Tailed Learning. Decoupling [9] is a pioneer-
ing work that introduces a two-step training scheme. It empirically evaluates
different sampling strategies for representation learning in the first step, and
then evaluates different classifier training schemes by fixing the feature extrac-
tor trained in the second step. Decouple [9] and Bag of tricks [37] decouple
the learning procedure into representation learning and classification, and sys-
tematically explore how different balancing strategies affect them for long-tailed
recognition. BBN [41] further unifies the two stages to form a cumulative learn-
ing strategy. MiSLAS [39] proposes to enhance the representation learning with
data mixup in the first stage. During the second stage, MiSLAS applies a label-
aware smoothing strategy for better model generalization. In our paper, our
method also adopts the two-stage decoupled training scheme, which leads to
better long-tailed learning performance.

3 The Proposed Methods

3.1 Problem Definition

For long-tailed learning, considering Dtra = {xi, yi}, i ∈ {1, · · · ,K} be the
training set, where xi denotes an image sample and yi indicates its class label.
Let K be the total numbers of classes, Ni be the number of samples in class i,
where

∑K
i=1 Ni = N . A long-tail setup can be defined by ordering the number

of samples per category, i.e. N1 ≥ N2 ≥ . . . ≥ NK and N1 � NK after sorting
of Ni. Under the long-tailed setting, the training dataset is imbalanced, leading
to the poor performance on tail classes.

We train a network Ψ(·;W ) consisting of two components: (i) a backbone or
representation network (CNN for images) that translates an image to a feature
representation zi = Ψ(xi;wE ) ∈ R

1×d and (ii) a classifier wC ∈ R
K×d at

predicts the category specific scores (logits). As shown in Fig. 1, given a pair
(xi, yi) sampled from a mini-batch B ⊂ Dtra, feature vector zi is extracted by
the feature extractor. zi is projected onto the classifier to output the classification
logit. Too few samples belonging to the tail classes result in inadequate learning
of tail classes representations.

3.2 Supervised Meta-prototype Contrastive Learning
in the Representation Learning Stage

Supervised contrastive learning introduces cluster-based prototypes and encour-
ages embeddings to gather around their corresponding prototypes. Our
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Fig. 1. Overview of our proposed method during the training period. Upper box
introduces the meta-prototype, which consists of the following steps in sequence: sam-
pling a mini-batch images B from training set Dtra, learning features by the feature
extractor Ψ (·;wE ), embedding features onto the hyper-sphere, estimating the proto-
types for classes, and learning meta-prototypes for discriminative representation space.
Bottom box introduces the meta-prototype feature augmentation algorithm which
enriches the samples of tail classes to re-build the classifier decision boundaries.

original feature prototypes follow the MoPro [13], adopting the exponential-
moving-average (EMA) algorithm during training by:

ck ← mck + (1 − m)zi, ∀i ∈ {i | ŷi = k} , (1)

where ck is the prototype for class k and m is momentum coefficient, usually
set as 0.999. Then given the embedding zf

i , the prototypes are queried with
contrastive similarity matching. The prototype contrastive loss [13,21] is defined
as:

LPC = − log

⎡

⎣
exp

(
zf
i · ck/τ

)

∑K
j=1 exp

(
zf
i · cj/τ

)

⎤

⎦ , (2)

where τ is a hyper-parameter and usually set as 0.07 [11]. The neural network is
denoted as f(·,W), and W denotes all of its parameters. Generally, the optimal
network parameter W∗ can be extracted by minimizing the training loss:

Ltrain(W; ck) = LCE(W) + λ · LPC(W, ck), (3)

where λ denotes the weighting coefficient to balance the two loss terms and
LCE is the cross-entropy loss. As aforementioned, the empirical prototypes of
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tail classes can be far away from the ground-truth prototypes due to the limited
features of tail classes and large variances in data distribution between training
and test datasets. Therefore, we aim to learn appropriate feature prototypes to
perform reasonable feature representation learning.

The whole process of the meta-prototype constrastive learning is summarized
in Algorithm1. In the presence of imbalanced training data, our method cali-
brates the empirical prototypes by prototype meta network, denoted as C(ck;Θ).
ck is the input of the meta network and Θ represents the parameters contained
in it. The meta network consists of MLP, which maps the empirical prototype ck

into the meta-prototype ĉk. The prototype meta network is an encoder-decoder
network, where the encoder contains one linear layer with a ReLU activation
function, and the decoder consists of a Linear-ReLU-Linear structure. The opti-
mal parameter w is calculated by minimizing the following training loss:

W∗(Θ) = argmin
W

Ltrain(W; ck;Θ)

= argmin
W

{LCE(W) + λ · LPC(W, C(ck;Θ))
}

.
(4)

The parameters contained in the meta-network can be optimized by using the
meta-learning idea. The optimal parameter Θ∗ can be obtained by minimizing
the following meta-loss:

Θ∗ = argmin
Θ

Lmeta (W∗(Θ)) , (5)

where Lmeta (w) = LCE

(
y
(meta )
i , f

(
x
(meta )
i ,W

))
on meta-data. Specifically,

following the meta-learning methods [14,22] for long-tailed learning, we conduct
a small amount of balanced meta-data set (i.e., with balanced data distribution)
{

x
(meta )
i , y

(meta )
i

}M

i=1
to represent the meta-knowledge of ground-truth sample-

label distribution, where M is the number of meta-samples and M � N .

Online approximation. To estimate the optimal feature prototypes for differ-
ent classes, we adopt a double optimization loop, respectively, to guarantee the
efficiency of the algorithm. We optimize the model in a meta-learning setup by
i). updating equation of the network parameter can be formulated by moving
the current W(t) along the descent direction of the objective loss in Eq. 4 on a
mini-batch training data by

Ŵ(t)(Θ) ← W(t) − α × ∇W(t)Ltrain(W; ck;Θ), (6)

where α is the step size. ii). After receiving the updated network parameters
Ŵ(t)(Θ), the parameter Θ of the meta-network can then be readily updated by
Eq. 5, i.e., moving the current parameter Θ(t) along the objective gradient to be
calculated on the meta-data by

Θ(t+1) = Θ(t) − β
1
n

n∑

i=1

∇Θ(t)Lmeta
(
Ŵ(t)(Θ)

)
, (7)
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Algorithm 1. The Meta-Prototype Contrastive Learning Algorithm.
Input: Training data Dtra, meta-data set Dmeta, batch size n, m, max epochs T ,
epoch threshold Tth.
Output: Network parameter W(T ), meta-network parameter Θ(T ).

1: for epoch = 0 : Tth − 1 do
2: Update W by LCE .
3: Update ck by Eq. 1.
4: end for
5: Initialize meta network parameters Θ(0).
6: for epoch = Tth : T − 1 do
7: { xi, yi } ← SampleMiniBatch (Dtra, n).
8: {x(meta ), y(meta )} ← SampleMiniBatch (Dmeta, m).
9: Formulate the network learning function Ŵ(t)(Θ) by Eq. 6.

10: Update Θ(t+1) by Eq 7.
11: Update W(t+1) by Eq 8.
12: end for

where β is the step size. iii) Then, the updated Θ(t+1) is employed to ameliorate
the parameter W of the network, constituting a complete loop:

W(t+1) = W(t) − α × ∇W(t)Ltrain (W(t); ck;Θ(t+1)), (8)

Since the updated meta-network C(ck;Θ(t+1)) are learned from balanced meta-
data, we could expect C(ck;Θ(t+1)) contribute to learning better network param-
eters W(t+1).

3.3 Meta-prototype Feature Augmentation in the Classifier
Training Stage

On the classifier training phase, the target of our work is to generate addition
feature embeddings to further balance the over-whelming dominance severity
of head classes in the representation space. It is natural to utilize the feature
augmentation to calibrate the ill-defined decision boundary. Following the Joint
Bayesian face model [3], typical feature augmentation methods [26,34,38] assume
that the features zi lies in a Gaussian distribution with a class mean μi and a
covariance matrix Σi. The mean of a class is estimated as the arithmetic mean
of all features in the same class by μk = 1

Nk

∑
i∈Fk

zi.
However, the means of Gaussian distribution for tail classes are biased due to

sparse sample size of the tail categories and large variances for data distribution
between train and test datasets. This bias causes the distribution of the generated
data to deviate significantly from the data distribution of the validation set.
It leads to significant performance drop, even the destruction of the original
representational space. Therefore, as Fig. 2 illustrated, we leverage the meta-
prototypes ĉi as the ‘anchor’ to replace the typical class statistics μk to provide
the reasonable feature distribution of new feature samples for tail classes.
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Fig. 2. Illustration of the feature augmentation process based on the learned meta-
prototype ĉ. Tukey’s Ladder of Power transformation function transfers the feature
instance zi into z̃i. Meta-prototypes replace the means μ of class statistics to calculate
the neighbors Ni via Si,k and the calibrated distribution μz̃i and Σz̃i . Additional
features for tail classes are sampled from the calibrated statistics so as to ease the
dominance of the head classes in classification decisions.

Given a trained backbone (discussed in Sect. 3.2), we first pre-compute fea-
ture representations for the entire dataset. These features of true samples are
denoted as F = {zi}N

i=1. Fk denotes features of images belonging to the category
k. For each class, we sample N1 − NK additional features, such that the result-
ing feature dataset is completely balanced and all classes have N1 instances.
Sampling is performed based on an instance specific calibrated distribution.
Specifically, each zik (ith feature from category k) is responsible for generat-
ing snew = max

{
[N1/Nk − 1]+ , 1

}
features, where [·]+ is the ceiling function.

Based on the learned meta-prototype, the features covariance for the corre-
sponding class can be calculated as:

Σk =
1

Nk − 1

∑

i∈Fk

(
zi − ĉk

) (
zi − ĉk

)T
, (9)

where Σk ∈ R
d×d denotes the full covariance of the Gaussian distribution for

category k. Next, for each feature z̃i belonging to tail classes k processed by
Tukey’s Ladder of Power transformation [24], we calculate the similarity degree
with other classes k which have more training samples as Si,k = z̃i

� · ĉk/‖z̃i
�‖ ·

‖ĉk‖. We identify the set of M category indices that are neighbors Ni with the
maximum cosine similarity. We calibrate the distribution of feature z̃i as:

μz̃i
= (1 − α) · z̃i + α · 1

M

∑

k∈Ni

eSi,k

∑M
j=1 eSi,j

· ĉk

Σz̃i
= (1 − α)2 · Σi + α2 · 1

M

∑

k∈Ni

eSi,k

∑M
j=1 eSi,j

· Σk + β,

(10)

where α is the hyper-parameter to balance the degree of the calibration and β
is an optional constant hyper-parameter to increase the spread of the calibrated
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Fig. 3. t-SNE visualization of a few head and tail classes from ImageNet-LT. The plot
on the left is before generation, and the plot on the right is after generation. We show 10
validation samples for each class and limit to 40 training + generated samples for ease
of interpretation. Markers: · (dot) indicate training samples; + (plus) are validation
samples; and × (cross) are generated features also shown with a lighter version of the
base color. Best seen in colour.

distribution. We found that β = 0.05 works reasonably well for multiple exper-
iments. We generate the new samples with the same associated class label and
denote the new samples for category k as F∗

k . This combined set of features is
generated for all categories and used to train classifier. As shown in Fig. 3, we
generate features using our meta-prototype feature augmentation and re-build
the t-SNE visualization in the right plot. Compared with the left plot which is
before generation, the right plot eases the interpretation and clarifies the fea-
ture boundaries. In addition, due to the meta-prototype, the newly generated
features are close to validation samples, which further promote the performance
of the classifier.

4 Experiments

4.1 Long-Tailed Image Classification Task

Datasets and Setup. We perform experiments on long-tailed image classifi-
cation datasets, including the CIFAR-100-LT [12], ImageNet-LT [18] and iNat-
uralist2018 [25].

– CIFAR-100-LT is based on the original CIFAR-100 dataset, whose training
samples per class are constructed by imbalance ratio (The imbalance ratios
we adopt in our experiment are 10, 50 and 100).

– ImageNet-LT is a long-tailed version of the ImageNet dataset by sampling
a subset following the Pareto distribution with power value 6. It contains
115.8K images from 1,000 categories, with class cardinality ranging from 5 to
1,280.



Meta-prototype Decoupled Training for Long-Tailed Learning 261

Table 1. Top 1 accuracy of CIFAR-100-LT with various imbalance factors (100, 50,
10). RL, DT, and DA indicate representation learning, decouple training, and data
augmentation, respectively.

Type Method CIFAR-100-LT
100 50 10

Baseline Softmax 38.3 43.9 55.7
RL KCL [10] 42.8 46.3 57.6

DRO-LT [21] 47.3 57.6 63.4
TSC [15] 43.8 47.4 59.0
Hybrid-SC [28] 46.7 51.9 63.1

DT Decoupling [9] 43.3 47.4 57.9
De-confound [23] 44.1 50.3 59.6
MiSLAS [39] 47.0 52.3 63.2
Bag of tricks [37] 47.8 51.7 –

DA MetaSAug [14] 48.1 52.3 61.3
TailCalibX [26] 46.6 50.9 61.1
RSG [27] 44.6 48.5 –
GLAG [38] 51.7 55.3 64.5
Ours 52.3 55.9 64.9

– iNaturalist2018 is the largest dataset for long-tailed visual recognition. It
contains 437.5K images from 8,142 categories. It is extremely imbalanced
with an imbalance factor of 512.

Experimental Details. We implement all experiments in PyTorch. On CIFAR-
100-LT, following [20], we use ResNet-32 [31] as the feature extractor for all
methods. we conduct model training with SGD optimizer based on batch size
256, momentum 0.9 under three imbalance ratios (10, 50 and 100). For image
classification on ImageNet-LT, following [5,8,23], we use ResNetXt-50 [31] as
the feature extractor for all methods. We conduct model training with the SGD
optimizer based on batch size 512, and momentum 0.9. In both training epochs
(90 and 200 training epochs), the learning rate is decayed by a cosine sched-
uler [19] from 0.2 to 0.0. On iNaturalist2018 [25] dataset, we use ResNet-50 [31]
as the feature extractor for all methods with 200 training epochs, with the same
experimental parameters set for the other. Moreover, we use the same basic data
augmentation (i.e., random resize and crop to 224, random horizontal flip, color
jitter, and normalization) for all methods.

Comparison with State of the Arts. As shown in Table 1, to prove the
versatility of our method, we employ our method on the CIFAR-100-LT dataset
with three imbalance ratios. We compare against the most relevant methods
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Table 2. Results on ImageNet-LT in terms of accuracy (Acc) under 90 and 200 training
epochs. In this table, CR, DT, and RL indicate class re-balancing, decouple training,
and representation learning, respectively.

Type Method 90 epochs 200 epochs
Many Med Few All Many Med Few All

Baseline Softmax 66.5 39.0 8.6 45.5 66.9 40.4 12.6 46.8
CR Focal Loss [16] 66.9 39.2 9.2 45.8 67.0 41.0 13.1 47.2

BALMS [20] 61.7 48.0 29.9 50.8 62.4 47.7 32.1 51.2
LDAM [2] 62.3 47.4 32.5 51.1 60.0 49.2 31.9 51.1
LADE [8] 62.2 48.6 31.8 51.5 63.1 47.7 32.7 51.6
DisAlign [35] 62.7 52.1 31.4 53.4 – – – –

DT Decoupling [9] 62.4 39.3 14.9 44.9 60.9 36.9 13.5 43.0
MiSLAS [39] 62.1 48.9 31.6 51.4 65.3 50.6 33.0 53.4
De-confound [23] 63.0 48.5 31.4 51.8 64.9 46.9 28.1 51.3
xERMTDE [42] – – – – 68.6 50.0 27.5 54.1

RL OLTR [17] 58.2 45.5 19.5 46.7 62.9 44.6 18.8 48.0
DRO-LT [21] – – – – 64.0 49.8 33.1 53.5
PaCo [5] 59.7 51.7 36.6 52.7 63.2 51.6 39.2 54.4

DA RSG [27] 68.7 43.7 16.2 49.6 65.0 49.4 31.1 52.9
SSP [32] 65.6 49.6 30.3 53.1 67.3 49.1 28.3 53.3
Ours 64.3 51.6 31.8 53.8 66.3 52.8 35.2 55.1

and choose methods that are recently published and representative of different
types, such as class re-balancing, decouple training and data augmentation. Our
method surpasses the DRO-LT [21] under various imbalance factors, especially
on the largest imbalance factor (52.3% vs 47.3%). Furthermore, compared with
the data augmentation methods [38], our model achieves competitive perfor-
mance (52.3% vs 51.7% with 100 imbalance factor).

Table 2 shows the long-tailed results on ImageNet-LT. We adopt the perfor-
mance data from the deep long-tailed survey [36] for various methods at 90 and
200 training epochs to make a fair comparison. Our approach achieves 53.8% and
55.1% in overall accuracy, which outperforms the state of the art methods by a
significant margin at 90 and 200 training epochs, respectively. Compared with
representation learning methods, our method surpasses SSP by 0.7% (53.8% vs
53.1%) at 90 training epochs and outperforms SSP by 1.8% (55.1% vs 53.3%)
at 200 training epochs. In addition, our method obtains higher performance by
1.1% (53.8% vs 52.7%) and 0.7% (55.1% vs 54.4%) than PaCo at 90 and 200
training epochs, respectively.

Furthermore, Table 3 presents the experimental results on the naturally-
skewed dataset iNaturalist2018. Compared with the improvement brought by
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Table 3. Benchmarking on iNaturalists2018 in Top 1 accuracy (%). RL, DT, and DA
indicate representation learning, decouple training, and data augmentation.

Type Method iNaturalist
Many Med. Few All

Baseline Softmax 72.2 63.0 57.2 61.7
RL Focal Loss [16] – – – 61.1

DRO-LT [21] – – – 69.7
OLTR [17] 59.0 64.1 64.9 63.9
TSC [15] 72.6 70.6 67.8 69.7
DisAlign [35] 69.0 71.1 70.2 70.6

DT Decoupling [9] 65.6 65.3 65.5 65.6
BBN [41] 49.4 70.8 65.3 66.3

DA MetaSAug [14] – – – 68.7
GLAG [38] – – – 69.2
Ours 72.8 71.7 70.0 71.0

representation learning, decouple training and data augmentation approaches,
our method achieves competitive result (71.0%) consistently.

4.2 Semantic Semgnetaion on ADE20K Dataset

To further validate our method, we apply our strategy to segmentation networks
and report our performance on the semantic segmentation benchmark, ADE20K.

Dataset and Setup. ADE20K is a scene parsing dataset covering 150 fine-
grained semantic concepts and it is one of the most challenging semantic seg-
mentation datasets. The training set contains 20,210 images with 150 semantic
classes. The validation and test set contain 2,000 and 3,352 images respectively.

Experimental Details. We evaluate our method using two widely adopted
segmentation models (OCRNet [33] and DeepLabV3+ [4]) based on different
backbone networks. We initialize the backbones using the models pre-trained on
ImageNet [6] and the framework randomly. All models are trained with an image
size of 512×512 and 80K/160K iterations in total. We train the models using the
Adam optimizer with the initial learning rate of 0.01, weight decay of 0.0005, and
momentum of 0.9. The learning rate dynamically decays exponentially according
to the ‘ploy’ strategy.

Comparison with State of the Arts. The numerical results and comparison
with other peer methods are reported in Table 4. Our method achieves 1.1% and
0.5% improvement in mIoU using OCRNet with HRNet-W18 when the iterations
are 80K and 160K, respectively. Moreover, our method outperforms the baseline
with large margin at 0.9% and 1.1% in mIoU using DeeplabV3+ with ResNet-50
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Table 4. Performance of semantic segmentation on ADE20K. R-50 and R-101 denote
ResNet-50 and ResNet-101, respectively.

Framework Method Backbone 80K iteration 160K iteration
mIoU mAcc mIoU mAcc

OCRNet Baseline HRNet-W18 39.2 49.0 40.8 50.9
Ours 40.3 51.9 41.3 52.8

DeepLabV3+ Baseline R-50 43.8 54.5 44.9 55.0
DisAlign [35] – – 45.7 57.3
Ours 44.7 55.1 46.0 57.0
Baseline R-101 46.1 56.2 46.4 56.7
DisAlign [35] - – 47.1 59.5
Ours 46.9 57.1 47.3 59.9

(a) λ in Eq. 3 (b) α in Eq. 10

Fig. 4. Ablation study on λ in Eq. 3 and α in Eq. 10.

when the iterations are 80K and 160K, respectively. Even with a stronger back-
bone, ResNet-101, our method also achieves 0.8% mIoU and 0.9% improvement
than the baseline. Compared with DisAlign, our method still outperforms it on
both in both mIoU and mAcc with various backbones consistently.

4.3 Ablation Study

We conduct ablation study on the ImageNet-LT dataset to further understand
the hyper-parameters of our methods and the effect of each proposed component.
All of them have trained with ResNetXt-50 by 90 epochs for a fair comparison.

λ in Meta Training Loss. One major hyper-parameter in our method is λ
in Eq. 3, which adjusts the degree of adjustment in meta training loss. We set
the hyper-parameter λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We study the sensitivity of the
accuracy to the values of λ. Figure 4(a) quantifies the effect of the trade-off
parameter λ on the validation accuracy. It shows that combining the LPC and
LCE with optimal λ is 0.5 gives the best results.
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Table 5. Ablation study on ImageNet-LT for different decouple methods.

CE DRO-LT KCL MPCL TailCalibX MPFA Many Med. Few All

� � � � � � 66.5 39.0 8.6 45.5
� � � � � � 65.0 48.8 25.8 51.9
� � � � � � 62.4 49.0 29.5 51.5
� � � � � � 64.6 50.1 27.5 52.7
� � � � � � 63.7 51.2 31.0 53.2
� � � � � � 64.3 51.6 31.8 53.8

α in Meta-Prototype Feature Generation. In Eq. 10, we introduce a class-
wise confidence score α which controls the degree of distribution calibration. We
initialize α to 0.2 for each tail class and it changes adaptively during training.
We set the hyper-parameter α in the interval from 0.2 to 1 with a stride of 0.2
and take the five sets of values to conduct ablation experiments as shown in
Fig. 4(b). Overall, the larger α means more confidence to transfer the knowledge
from head to tail classes. The optimal α for ImageNet-LT is 0.4.

Effectiveness of MPCL and MPFA. Table 5 verifies the critical roles of our
adaptive modules for meta-prototype contrastive learning (MPCL) and meta-
prototype feature augmentation (MPFA). The baseline only performs decoupled
training pipelines without using any components of our methods. In representa-
tion learning stage, our MPCL module significantly surpasses the performance
over the DRO-LT and KCL (52.7% vs 51.9% vs 51.5%). Moreover, in classifier
training stage, our MPFA module further boosts the performance, especially in
the tail classes (53.8% vs 53.2%). The results suggest the effectiveness of both
the MPCL and MPFA components in improving the training performance.

5 Conclusion

In this paper, we have proposed a novel meta-prototype decoupled training
framework to tackle the long-tail challenge. Our decoupled training framework
includes calibrating the empirical prototype for SCL in the representation learn-
ing stage and enhancing feature embedding for tail classes based on learned
meta-prototype in the classifier learning stage. The first module of our method
completes the meta-prototype to promote the representation quality of super-
vised prototype contrastive learning. The second module leverages the learned
meta-prototype to provide the reasonable feature distribution of new feature
samples for tail classes. We sample features from the calibrated distribution to
ease the dominance of the head classes in classification decisions. The experi-
mental results show that our method achieves state-of-the-art performances for
various settings on long-tailed learning.
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