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Abstract. Multi-modal deep hash learning is arguably one of the most
commonly used unsupervised methods in cross-modal retrieval tasks.
Most existing deep hashing methods focus on maintaining similarity
information in the hash code learning step. Although accurate and com-
pact binary representations are learned, these methods fail to encour-
age discriminative learning of features. In this paper, we propose a new
method called Class Concentrated Variational auto-encoder (CCTV) to
learn discriminative hash codes. The novelty of CCTV lies in two aspects.
First, the proposed method focuses on the concentration of the mean vec-
tor of latent features. Based on the assumption that the features in the
shared latent space produce multivariate Gaussian, CCTV updates the
mean vectors and the cluster centroids of the latent features at the same
time by minimizing the class concentration loss, so as to narrow the dis-
tance between the cluster centroids and the mean vectors, and further
make the concentration more compact. Secondly, under the constraint
of raw similarity information, CCTV is different from previous works, it
uses the mean vector of latent features as the representation of the images
to reduce the influence of variance, and then embeds them in the Ham-
ming space. Our experimental evaluation on four multimedia benchmarks
shows a significant improvement over the state-of-the-art methods. Code
is available at: https://github.com/theusernamealreadyexists/CCTV.

Keywords: Cross-modal hashing · Visual-text retrieval · Class
concentration · Twin variational autoencoder

1 Introduction

The past decades have witnessed the rapid growth of different types of contents
on the Internet. The same events or objects can be described as diverse kinds of
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data which can be referred as multi-modal data with heterogeneous properties.
Huge volumes of these multi-modal data affects people’s need for information
and the ways they search on the Internet. One of the most popular tasks is
cross-modal information retrieval, which aims to search relevant data of other
different modalities with query data. For instance, using a caption to retrieve
the related pictures in database.

Nowadays, cross-modal retrieval has attracted growing attention from
researchers. The most difficult problem of cross-modal retrieval is how to measure
the similarity between different modal features of data, which is known as het-
erogeneity gap. In order to support similarity relationship search, it is necessary
to map the incomparable data into comparable features. Hence, learning repre-
sentations for multi-modal data is considered as the fundamental step to extract
features of various modalities. As proposed in [24], the main research effort is
to design compact and accurate representations. During the learning process
of representations modelling, the features of various modalities are mapped to
so-called common latent embedding space, where the features of same object
or event are pulled together and those of different objects or events are pushed
away on the Euclidean distance basis. The challenge of learning accurate repre-
sentation lays in deciding the correlation between two modalities. Intuitively, the
learned feature is explicitly encouraged to maximize intra-class compactness and
inter-class separability. What’s more, the key problem for compactness, which
makes the stage of representation succinct, is dependent on the dimension and
discreteness of multi-modal features.

Hashing technology, which encodes continuous real-valued features into latent
hash space, where relative samples have similar binary codes, is widely used
in cross-modal retrieval due to its few storage, low Hamming distance com-
putational complexity and fast retrieval speed. Motivated by hashing technol-
ogy, [7,17,46,47] incorporate deep learning with hashing method and learn
accurate and compact representations for multi-modal information. These
methods have a common module called two-stream network which designs
two networks for visual and textual data respectively. Supervised approaches
[1,2,18,23,26,28,29,36,39,42] intuitively can perform better than unsupervised
methods due to the constraint of labelled information in training step. However,
labelled information is expansive and further limited in real world large scale
retrieval application right now. Thus, it is realistic to pay attention to unsuper-
vised hashing algorithms.

To date, pairwise similarity based unsupervised cross-modal hashing
(UCMH) methods can achieve better performance than those methods directly
embeds high-dimension feature into Hamming space, they preserve pairwise
information to construct similarity constraint. Some of these approaches pre-
serve the similarity information through graph structure [10,38,43,51]. Although
these related works achieve breakthrough, there still exists two main problems
in this task. Firstly, dense graph that basically contains pre-defined local neigh-
bourhood information in a mini-batch get much redundant information, which
means most of the graph neighbourhoods are useless and mislead the neighbour-
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Fig. 1. Illustration of the difference between our method and traditional methods.
Traditional methods try to project images and text directly into latent space, while
our method projects them into their corresponding class centroids in latent space.

hood relationship in common Hamming space and consequently learn redundant
hash codes, for example in Fig. 1, previous methods tries to directly map the
features into latent or hamming space, where the variance of the features make
the embeddings hard to separate. Secondly, previous methods fail to model the
posterior distribution of the observed data and only adopt similarity information
during training.

In light of these issues, we propose a novel unsupervised cross-modal hash-
ing method called Class Concentration with Twin Variational autoencoders
(CCTV). We train twin Variational Auto-Encoders (VAEs) models to encode
and decode visual and textual modal features respectively. The given multi-
modal data produces a distribution over the possible values of the latent fea-
tures, and we directly concentrate the mean of the latent features with Deep
Embedded Clustering (DEC) [44] method for updating the clustering centers
and mapping at the same time. We align the distribution of two modalities by
enforcing the mean of multi-modal data from the same cluster to produce the
same posterior distribution. Consequently, by explicitly enforcing both the distri-
bution of arithmetic mean of latent features and the distance between data point
and each clustering center, the objects of same construction share the matched
inter-modal distribution in common latent space, which generates much more
accurate latent representation. Then we train a deep network to learn binary
codes of latent features and minimize the reconstruction loss to learn compact
representation. In general, our main contributions are as follows:

– We propose a novel deep learning framework that learns compact and accu-
rate hash representation of multi-modal information via twin VAE models,
which creatively align the mean vectors of each modality in latent space. This
operation can circumvent the interference by the variances from the different
features although in a same class.

– We approximate the intractable true distributions of inter-class and intra-
class for class construction and jointly optimize the deep feature embedding
and mean vector clustering.
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– we have conducted extensive experiments on four popular datasets, and the
results show that our method can achieve state-of-the-art performance.

2 Related Works

Due to its low computational complexity and fast retrieval speed, cross-modal
hashing has attracted an increasing attention. It aims to mine the relation-
ship between visual and textual modalities and embed data into common
Hamming space. Similar to real-valued alternatives [5,16,30,52], cross-modal
hashing methods can be also simply categorized into supervised methods
[13,18,23,28,29,36,39]. and unsupervised methods. Since our method focuses
on the unsupervised one, we only briefly introduce some related unsupervised
methods in the following.

A large amount of unsupervised cross-modal hashing [12,13,21,34,43,48,51]
have been proposed in the past few years. The earlier shallow schemes, e.g.,
both Cross-view hashing (CVH) [20] and Inter-Media Hashing (IMH) [37], can
be regarded as the extension of Spectral Hashing [41] from single-modal hashing
to cross-modal hashing scenario. These methods learn hash functions by solving
the eigenvalue decomposition with constructed similarity graph. Zhai et al. [49]
presented the parametric local multi-modal hashing (PLMH), which designs a set
of hashing function to generate several hashing space and accesses to non-linear
global transformation. Ding et al. [8] employed matrix factorization methods and
proposed Collective Matrix Factorization Hashing (CMFH), which bridges the
modality gap by embedding different modal information into a latent common
space. Zhou et al. designed Latent Semantic Sparse Hashing (LSSH) that extends
CMFH in the manner of utilizing sparse coding in extracting latent feature pro-
cess at the same time and restricts hash code learning subsequently. However,
above shallow methods are week to extract the non-linear relevant information
from different modalities for using hand-crafted features. As the progress of deep
neural networks have made in exploring non-linear relationships, many methods
[7,17,46,47] capture more semantic relevant features during binary code learn-
ing process. Most of them utilize similarity graphs generated from intrinsic data
directly and obtain superior performances. Wang et al. [40] added an orthogonal
regularizer to make the representation compact and accurate. [11] utilizes the
adaptive tanh function which has concise derivation and can be used in objec-
tive function directly. [43] makes use of the matrix factorization with Laplacian
constraint in training process to constraint the hash code generation, which con-
sequently preserves the neighbour affinity information of original features in their
own space.

Though impressive progress has been made by these models, there are still a
few challenges to be solved that are mentioned in Sect. 1. In this paper, we focus
on improving the retrieval performance of unsupervised deep cross-modal hash-
ing. With the intention to model the posterior distribution of the observed data
from both visual and textual modalities, we concentrate the mean of the latent
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Fig. 2. The architecture of the proposed CCTV. The twin variational auto-encoder
project both image and text into a common latent space, where the embeddings are
aligned by their mean vectors and class discriminative information is raised by class
concentration loss. Cross reconstruction and cross consistency are employed to con-
strain images and texts to have both their own semantic information and the semantic
information of each other.

features with DEC clustering method which optimize the clustering centers iter-
atively, which tackles the problem of lacking label information and subsequently
generate accurate representations.

3 Methodology

3.1 Preliminaries

We first introduce several definitions in our methods. With n equals to the
amount of instances in each batch, the visual and textual features in each batch
are denoted as XI ∈ R

n×dI and XT ∈ R
n×dT respectively. Here dI and dT rep-

resent the dimensions of image and caption features respectively. Furthermore,
we aim to generate binary hash codes BI and BT by embedding continuous
features into common latent hash space, where BH ∈ R

n×b, (H ∈ {I, T}) and b
means hash code length. If two objects o1 and o2 are semantic similar, the hash
codes generated by their features should be within a small Hamming distance.

Modelling the posterior distribution of the observed data can improves the
performance of retrieval task. However, the lacking of labelled information before
generating binary codes is not conducive to the construction of a prior con-
straints. Previous methods can be grouped into two categories in terms of how
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to conduct feature embedding. The first category methods, such as [49], pre-
serve the affinity information of original features and use them to learn hash
codes directly. They share the following common quantification loss function:

Lq = ‖fI(I) − BI‖2F + ‖fT (T ) − BT ‖2F ,

s.t.BH ∈ {+1,−1}m×l,BT
HBH = mI,

(1)

where fI(·) and fT (·) are the embedding functions for visual and textual data
respectively and H ∈ {I, T}. Equation (1) aims to reduce the gap between
features and hash codes. The auxiliary constraint BT

g Bg = mI aims to generate
mutually independent hash codes.

Evolved from the first category, the second type of methods, such as [35],
typically generate clustering centers with the method of deep clustering in com-
mon latent space, and further update the latent embedding. Both the design of
construing matrices and the strategy of employing the matrices in training stage
have an impact on the final performance. To be specific, the loss functions of
these algorithms (optimizing objectives) are typically composed of two parts: Lq

and clustering loss Lc, the loss function can be formulated as follows:

L = λLq + (1 − λ)Lc, s.t.λ ∈ [0, 1], (2)

where λ is a hype-parameter to balance Lq and Lc.
The goal of our model is to learn accurate and compact binary representations

in a shared latent Hamming space for a combination of two modalities data. The
basic module of CCTV is the VAE [19], which introduces a recognition model
qφ(z|x) that is an approximation to the true posterior Pθ(z|x), where x means
original data point and z is the unobserved latent variable and produces the
prior distribution. VAE approximates the prior over the latent variables to be the
multivariate Gaussian Pθ(z) = N (z;0, I) and let the variational approximate
posterior also be a multivariate Gaussian:

log qφ (z|x) = logN (
z;μ,σ2I

)
, (3)

where μ and σ is the mean and standard deviation of the approximate posterior,
respectively.

From the perspective of coding theory, they are generated by non-linear
encoder. Furthermore, the latent variable z is sampled using z = μ + σ � ε,
where ε ∼ N (0, I) is an auxiliary variable with independent margin and �
means element-wise product. To learn the recognition model parameters φ and
generative the model parameters θ simultaneously, the estimator can be written
as:

L(θ, φ;x) = DKL(qφ(z|x)||pθ(z)) − Eqφ (z |x)[logpθ (x|z)], (4)

where the first item is the Kullback-Leibler (KL) divergence between intractable
true posterior and its approximation, and the second item is the lower bound on
the marginal likelihood of data point.
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3.2 Proposed Architecture

The overall pipeline of CCTV is shown in Fig. 2. We design a twin-VAE model to
learn the conditional probability distributions over the latent variables, qφI

(z|xI)
for visual features and qφT

(z|xT ) for textual features using approximate poste-
riors, qθI

(z|xI) and qθT
(z|xT ). The embeddings of data points from different

modalities are supposed to share a common latent space.

Cross Reconstruction (CR) Loss. To minimize the information gap between
the original data and latent feature in each modal, the twin-VAE reconstruction
loss should include two single VAE (SV) loss for each modality:

LSV =
∑

H∈{I,T}
DKL(qφH

(z|xH)||pθH(z)) − Eqφ H
(z |xH)[logpθH

(xH |z)], (5)

where xH means a specific original feature in XH .
In addition to using single modal information reconstruction loss to constrain

the latent space embedding process of data, it is also necessary to consider the
alignment between different-modal data. That means using the modality-specific
recognition model to approximate the true posterior in another modality. To be
specific, the cross VAE (CV) loss is formulated as following:

LCV =DKL(qφI
(z|xI)||pθT (z)) − Eqφ I

(z |xI)[logpθT
(xT |z)]

+ DKL(qφT
(z|xT )||pθI (z)) − Eqφ T

(z |xT )[logpθI
(xI |z)].

(6)

In the view of coding theory, the unobserved variables z is represented as a
code with specific length. Given several data samples, they produce a possible
distribution over the possible latent variables. Thus, same as VAE [19], we refer to
the true conditional probability distributions over the latent variables, qφI

(z|xI)
and qφT

(z|xT ), as encoders and realize qθI
(z|xI) and qθT

(z|xT ) with decoders.
Since given an unobserved variable, it generates a corresponding distribution over
the value of original data point. Here we combines the aforementioned object loss
function and term them as cross reconstruction (CR) loss:

LCR = LSV + LCV . (7)

Class Concentration (CC) Loss. Only reducing information loss can not
generate discriminative latent representation. Thus, we propose a class concen-
tration loss function. From the perspective of metric learning, after specifying the
distance metric method, high-quality clustering results should narrow the gaps
within the classes, and widen the gaps between the classes. This phenomenon
shows that the data in each cluster has its own unique distribution. However,
earlier deep unsupervised methods directly cluster data and did not consider
the prior and posterior distribution of the data. Suppose that latent variables
produce centered isotropic multivariate Gaussian distributions [19], we consider
that each cluster refer to a unique Gaussian. Accordingly, the latent features in
a cluster should share the same mean μ which has an interpretation as a vector.
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Thus, the proposed method (CCTV) clusters the mean vectors {μi}n
i=1 of latent

features in order to generate latent features which are compact within a class and
scattered between classes. For n latent points {zi}n

i=1 with k clusters {cj}k
j=1 in

latent space, we are supposed to learn k clustering centers and update θI and
θT , which are encoder learning parameters in an end-to-end fashion. To achieve
this goal, we utilize the auxiliary target distribution mentioned in DEC [44].
The construction can be described in two steps. First, we assign a distribution
for measuring the distance between mean vector of latent feature μi and clus-
ter centroid cj . Second, we calculate the KL divergence loss to update encoder
parameters and cluster centers.

To be specific, we adopt t-distribution to measure the distance between mean
vector of embedded feature μi and cluster centroid cj , this step is formulated
as:

Aij =

(
1 + ‖μi − cj‖2 /α

)−(α+1)/2

∑
h (1 + ‖μi − ch‖2/α)−(α+1)/2

, (8)

where α is the degree of freedom of t-distribution. Since Aij give a distance
measuring method, Ai can be regraded as a soft assignment. For instance, if Aij

has the largest value among other scalars over Ai, it means the possibility of μi

being assigned to cluster center cj is the biggest.
Then, we construct auxiliary target distribution which can be written as

following according to DEC:

Bij =
A2

ij/dj∑
h A2

ih/dh
, (9)

where dj =
∑

i Aij . This auxiliary target distribution can strengthen predictions
and emphasize features with high confidence. What’s more, the loss contribution
of each centroid is standardized to prevent a large number of categories from
distorting the hidden space. we try to refine the centroids by keeping cluster
assignment distribution close to auxiliary target distribution. Thus, we adopt KL
divergence loss as class concentration loss (CC) to reduce the distance between
two distribution:

LCC = KL (A‖B) =
∑

i

∑

j

Aij (log Aij − log Bij) , (10)

so that we can cluster the mean vectors of latent variables to k points. As a
result, latent features of same cluster share concentrated mean vector and still
keep fine distribution characters with variance.

Modality Alignment (MA) Loss. The projected text and image also need
to be matched in the latent space. Here, inspired by the concept of alignment
for attributes and visual features in zero shot learning [33], we simultaneously
align the mean vector and variance of VAE, and define the following modality
alignment loss:

LMA =
1
n

n∑

i=1

(|μIi − μTi‖22 + ‖Σ
1
2
Ii − Σ

1
2
Ti‖2F )

1
2 , (11)
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where, μIi and μTi represent the mean vectors projected from i-th pair of image
and text respectively in a mini batch. Similarly, ΣIi and ΣTi stand for the
corresponding variance matrices.

Reconstruction Consistency (RC) Loss. In this subsection, we utilize the
original semantic matrices SI and ST , which represents the original affinity
relations of the input instances, to restrict the generation stage of hash code.
Since it is hard to measure the distance between continuous feature and hash
codes referring to Eq. (1), we consider to preserve the information of latent
continues features indirectly by reducing the loss of information between the
original information and the hash code in the manner of structuring affinity
matrices. We calculate the similarity matrices in a mini batch from raw visual
and textual modalities as:

SH(ij) =
XH(i)(XH(j))

T

∥
∥XH(i)

∥
∥

∥
∥XH(j)

∥
∥ , (12)

where H ∈ {I, T}. Furthermore, we adopt manner of DJSRH [38] to get hybrid
semantic affinity matrix U = f(SI ,ST ). To be concrete, SI and ST are merged
in a trade-off method:

S = ωSI + (1 − ω)ST , (13)

where ω ∈ [0, 1] is the weight of two affinity matrices. This algorithm coincides
with the diffusion method in [9] which provides powerful evidence of effectiveness.
Then, second order neighbourhood information is structured by SST . Finally,
similarity information across original affinity structure in two modalities is com-
bined by the following manner:

U = γS + (1 − γ)
SST

n
. (14)

In latent Hamming space, relevant vertices have small Hamming distance.
Thus, hash codes can be understood as discrete features. earlier unsupervised
cross-modal algorithms directly generate hash codes using sign function with
latent features. However, it is impossible to derive the result of sign function
with respect to the input. Thus, we follow [3,11,38] and take a scaled tanh
activation function into consideration:

bi = tanh(κμi) ∈ [−1,+1]m×d, κ ∈ R
+, (15)

where κ is an auto-increasing parameter during training. With the increasing of
κ, the result of Eq. (15) is close to the sign function and approximates the binary
value of input feature.

Different from previous methods, CCTV is the first to embed the mean vec-
tors μ to hash codes as far as we know. The purpose of hash learning is to map
the continuous features into Hamming space where the relevant object share
small Hamming distance. However, the noise of features in the original con-
tinuous space is harmful to generate concentrated distribution of data points.
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Thus, we can narrow the binary features within same cluster in Hamming space
by removing the noise of data points between the original continuous space.
Since we utilize multivariate Gaussian as the prior distribution in latent space,
the distance between data point and cluster centroid can be regarded as noise.
Accordingly, it is beneficial to choose the mean of feature as the input of tanh
function. Then, to calculate the similarity with neighbourhoods in Hamming
space, the similarity function is defined as:

Z(BI(i),BT (j)) =
BI(i)(BT (j))

T

∥
∥BI(i)

∥
∥

∥
∥BT (j)

∥
∥ , (16)

where BI(i) means the i-th row in BI and BT (j) means the j-th row in BT . The
result of Eq. (16) is the cosine affinity score which represents the angular con-
nection among discrete features. Minimizing the reconstruction error between
the similarity matrix of hash code and the affinity matrix U of continuous fea-
tures keeps their similarity consistency. Therefore, we define the formulation of
reconstruction consistency (RC) Loss as the following manner:

LRC =
∥
∥βU − Z(BH

i ,BH
j )

∥
∥2

F
, (17)

where β is a trade-off parameter which makes reconstruction more flexible, refer-
ring to [38]. For instance, supposed that Uij = 0.7, which means that ith instance
and jth instance got 0.7 similarity score, then the similarity score of corresponding
hash codes calculated from Hamming space need to be close to 0.7. β > 1 means the
similarity score of hash codes pair need to lager than 0.7 and thus make the nodes
in Hamming space compact, while β < 1 means the similarity score of hash codes
pair need to smaller than 0.7 and accordingly make the nodes in Hamming space
sparse. We empirically find that it is beneficial to set β > 1. And this phenomenon
can be attributed to the fact that cosine similarity measures the similarity between
two vectors by measuring the cosine of the angle between them.

Consequently, we provide our loss function of CCTV:

L = LSV + ε1LCV + ε2LCC + ε3LMA + ε4LRC , (18)

where ε1, ε2, ε3 and ε4 are hyper parameters to balance the total loss.

4 Experiments

4.1 Datasets

WIKI [31]: This dataset consists of 2,866 samples in total with 10 classes. Each
image is described by a paragraph which represents related image, from 1 to 10.
In our experiment, we randomly select 500 samples from the total dataset as the
query set, and the remaining samples form the training set are composed as the
retrieval database.
NUS-WIDE [6]: It consists of 269,648 multi-modal instances, each of which
contains an image and the related captions with 81 class labels. Following pre-
vious methods, the top 10 largest categories is selected and totally contain over
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Table 1. The mAP@all results on image query text (I → T ) and text query image
(T → I) retrieval tasks at various encoding lengths and datasets. The best perfor-
mances are shown as bold. In this table, ‘*’ on the right of methods’ names means
the scores are according to results in their own paper, and ‘–’ means the score is not
reported.

Task Method WIKI MIRFlicker-25K MSCOCO NUS-WIDE
16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit

I → T CVH [20] 0.157 0.144 0.131 0.579 0.565 0.565 0.499 0.471 0.370 0.400 0.381 0.370
CMFH [8] 0.173 0.169 0.184 0.580 0.572 0.554 0.442 0.423 0.492 0.381 0.429 0.416
PDH [32] 0.196 0.168 0.184 0.544 0.544 0.545 0.442 0.423 0.492 0.368 0.368 0.368
ACQ [15] 0.126 0.120 0.115 0.617 0.594 0.578 0.559 0.552 0.514 0.440 0.416 0.395
IMH [37] 0.151 0.145 0.133 0.557 0.565 0.559 0.416 0.435 0.442 0.349 0.356 0.370
QCH [42] 0.159 0.143 0.131 0.579 0.565 0.554 0.496 0.470 0.441 0.401 0.382 0.370
UCH* [22] – – – 0.654 0.669 0.679 0.447 0.471 0.485 – – –
DJSRH [38] 0.274 0.304 0.350 0.649 0.662 0.669 0.561 0.585 0.585 0.496 0.529 0.528
DGCPN [48] 0.226 0.326 0.410 0.651 0.670 0.702 0.469 0.586 0.630 0.517 0.553 0.567
DSAH [45] 0.249 0.333 0.381 0.654 0.693 0.700 0.518 0.595 0.632 0.539 0.566 0.576
JDSH [27] 0.253 0.289 0.325 0.665 0.681 0.697 0.571 0.613 0.624 0.545 0.553 0.572
CCTV 0.405 0.409 0.413 0.690 0.701 0.716 0.604 0.640 0.645 0.548 0.569 0.580

T → I CVH [20] 0.342 0.299 0.245 0.584 0.566 0.566 0.507 0.479 0.446 0.405 0.384 0.372
CMFH [8] 0.176 0.170 0.179 0.583 0.566 0.556 0.453 0.435 0.499 0.394 0.451 0.447
PDH [32] 0.344 0.293 0.251 0.544 0.544 0.546 0.437 0.440 0.440 0.366 0.366 0.367
ACQ [15] 0.344 0.291 0.247 0.628 0.601 0.580 0.565 0.561 0.520 0.445 0.419 0.398
IMH [37] 0.236 0.237 0.218 0.560 0.569 0.563 0.560 0.561 0.520 0.350 0.356 0.371
QCH [42] 0.341 0.289 0.246 0.585 0.567 0.556 0.505 0.478 0.445 0.405 0.385 0.372
UCH* [22] – – – 0.661 0.667 0.668 0.446 0.469 0.488 – – –
DJSRH [38] 0.246 0.287 0.333 0.658 0.660 0.665 0.563 0.577 0.572 0.499 0.530 0.536
DGCPN [48] 0.186 0.297 0.522 0.648 0.676 0.703 0.474 0.594 0.634 0.509 0.556 0.574
DSAH [45] 0.249 0.315 0.393 0.678 0.700 0.708 0.533 0.590 0.630 0.546 0.572 0.578
JDSH [27] 0.256 0.303 0.320 0.660 0.692 0.710 0.565 0.619 0.632 0.545 0.566 0.576
CCTV 0.535 0.557 0.564 0.679 0.703 0.714 0.615 0.654 0.662 0.549 0.574 0.584

186 thousand instances and randomly choose 2,000 from them as query set, and
employ the others as retrieval database.
MIRFlickr-25K [14]: The original training set and validation set contains more
than 25 thousand samples from 38 categories. The class labels are represented
as one-hot form where 1 represents the image belongs to this class while 0 is the
opposite. We randomly choose 1,000 samples as the query set and set the others
as the retrieval set.
MSCOCO [25]: The dataset contains more than 123 thousand images-caption
pairs from real-world with 80 class labels. We randomly choose 2,000 from them
as query set and the others as retrieval database.

4.2 Evaluation Metrics

To evaluate the efficiency of our method and the baseline approaches, we employ
several frequently used evaluation metrics:

Mean Average Precision (mAP): mAP is a metric for evaluating the retrieval
performance and its formal definition can be found in [50]. In addition, the
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performance of all baselines and the proposed method are evaluated on 16 bit,
32 bit and 64 bit hash codes.

Precision-Recall (P-R curve): This curve shows the precision and recall rates
according to the retrieved images. It is worthy noting that the beginning plot
of curve means the precision and recall rate of the retrieval under the condition
that the binary codes of both query and returned items are the same.

4.3 Implementation Details

Our experiments follow previous methods to employ the fc7 layer of VGG-16 to
extract the 4,096-dimensional deep features XI ∈ R

n×4096 from original images,
while for original textual features we utilize the universal sentence encoder [4] to
represent final textual features XT whose dimension is 512. It is worth noting
that to calculate the consistency loss as the manner of Eq. (17), we need to
force the items in the same ranges. However, the cosine similarity ranges from
−1 to +1, while the affinity value elements in U are non-negative, which can
be obtained by Eq. (12) and Eq. (14). Therefore, we refine the SH with SH ←
2SH −1,H ∈ {I, T}. Additionally, we fix the batch size as 8 and employ the SGD
optimizer with 0.9 momentum and 0.0005 weight decay. We experimentally take
α = 1, ω = 0.5, γ = 0.6 and β = 1.5 for all four datasets. Then we set λ = 0.6,
ε = ε2 = ε3 = ε4 = 0.1 for NUM-WIDE, λ = 0.9, ε1 = ε2 = ε3 = ε4 = 0.1
for MiRFlickr, λ = 0.3, ε1 = ε2 = ε3 = ε4 = 0.3 for WIKI and λ = 0.6,
ε1 = ε2 = ε3 = ε4 = 0.1 for MSCOCO.

4.4 Retrieval Performance

To evaluate the performance of the proposed method, we compare our CCTV
with several recent competing methods, and record the result in Table 1. The
results of the compared methods are obtained by using the codes released by
themselves or reproduced according to the settings introduced in their original
papers. It can be seen from the table that the proposed method can achieve sat-
isfactory retrieval results on the four data sets. No matter the code length is 16,
32 or 64 bits, the performance of CCTV is higher than all other methods, espe-
cially on WIKI and MSCOCO. Specifically, the performance of CCTV’s image
retrieval text task on WIKI can be improved by about 20% compared with those
unsupervised non-depth algorithms (the first six rows in Table 1). At the same
time, the retrieval performance improves with the increase of the binary hash
code length, which reflects another advantage of this method, that is, the more
information the model obtains, the better the retrieval effect. This phenomenon
demonstrates that the effective training method of the CCTV model reduces the
loss caused by the lack of label information, so that the retrieval performance of
the model still has certain advantages compared with other benchmark methods.

In addition, we also employ the P-R curves to evaluate the proposed method
compared with other baselines. We choose a small-scale dataset WIKI and a
large-scale dataset NUS-WIDE to illustrate the performance, and draw the P-R
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Fig. 3. P-R curves compared with other methods on NUS-WIDE and WIKI for 32
bits.

Fig. 4. Visualization of top 36 retrieved images by textual query on MSCOCO Dataset
with random query text written on the top through. Returned samples with red boxes
are false-positive candidates. (Color figure online)

curves of the 32-bit hash codes generated by different models. Figure 3 shows
the result curves of image retrieving text (I2T) and text retrieving image (T2I).
As can be seen from the figure, for the generated 32-bit hash code, the curves
of our method lie high above those of the other methods, which means that our
CCTV model can achieve satisfactory results on both datasets.

4.5 Visualization

In this subsection, we visually demonstrate the performance of our proposed
method by using text retrieve images. We randomly select a query text from
MSCOCO as an example, and display the top 36 retrieved images and visualize
them in Fig. 4. Among the first 36 returned images, our method can obtain all the
correct images based on the query, while at least one of the retrieved results from
other methods is wrong. At the same time, it can be found that these incorrect
returned results usually have a shape or color similar to the correct retrieved
results, which means that they preserve too much redundant information from
the training samples.

4.6 Ablation Study

To verify whether the proposed several modules are effective for improving the
final performance, in this subsection we conduct ablation studies by removing
them and record the experimental results. Since some modules are the core part
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Table 2. The ablation studies of three proposed modules on WIKI and MIRFlickr.

Task Modules WIKI MIRFlickr
16 bit 32 bit 64 bit 16 bit 32 bit 64 bit

I → T w./o. LCV 0.372 0.399 0.408 0.672 0.686 0.709
w./o. LCC 0.386 0.404 0.410 0.673 0.692 0.709
With All 0.405 0.409 0.413 0.690 0.701 0.716

T → I w./o. LCV 0.502 0.536 0.558 0.651 0.666 0.675
w./o. LCC 0.531 0.553 0.561 0.666 0.679 0.680
With all 0.535 0.557 0.564 0.679 0.703 0.714

of this method, such as modality alignment and reconstruction consistency, they
cannot be removed. The verified modules are cross reconstruction module and the
class concentration module, and we record the results of both I → T and T → I
for 16, 32, 64 bits on WIKI and MIRFlicker in Table 2. This phenomenon reveals
that the twin VAE module with reconstruction is dominant for the performance,
and the final learned model is relatively close to only twin VAE. In addition,
we can also find that the cross reconstruction and class concentration play very
important roles.

5 Conclusion

In this paper, we have proposed a class concentration twin variational autoen-
coder to solve the problem of insufficient separability of hash codes in unsuper-
vised cross-modal retrieval. A Twin VAE network is designed to generate the
latent mean vector and variance, which are subsequently clustered by employing
the class concentration loss to improve the degree of discrimination. In addi-
tion, reconstruction consistency loss is also applied to keep the graph similarity
between hash codes and original features. Extensive experiments on four popular
datasets are conducted and the results demonstrate that our method can achieve
state-of-the-art performance. The ablation studies also verify that each module
designed in this method contributes to the final performance.
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