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Abstract. Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) and its fast variant, ultrafast DCE-MRI, are useful for the
management of breast cancer. Segmentation of breast lesions is neces-
sary for automatic clinical decision support. Despite the advantage of
acquisition time, existing segmentation studies on ultrafast DCE-MRI
are scarce, and they are mostly fully supervised studies with high anno-
tation costs. Herein, we propose a semi-supervised segmentation app-
roach that can be trained with small amounts of annotations for ultrafast
DCE-MRI. A time difference map is proposed to incorporate the dis-
tinct time-varying enhancement pattern of the lesion. Furthermore, we
present a novel loss function that efficiently distinguishes breast lesions
from non-lesions based on triple loss. This loss reduces the potential false
positives induced by the time difference map. Our approach is compared
to that of five competing methods using the dice similarity coefficient and
two boundary-based metrics. Compared to other models, our approach
achieves better segmentation results using small amounts of annotations,
especially for boundary-based metrics relevant to spatially continuous
breast lesions. An ablation study demonstrates the incremental effects
of our study. Our code is available on GitHub (https://github.com/yt-
oh96/SSL-CTL).

Keywords: Semi-supervised segmentation · Tiplet loss · Ultrafast
DCE-MRI

1 Introduction

Breast cancer is the most frequently diagnosed cancer in women and the main
cause of cancer-related deaths [1]. Early detection of breast cancer can signif-
icantly lower mortality rates [2]. The importance of early detection has been
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widely recognized; therefore, breast cancer screening has led to better patient
care [3,4]. Compared to commonly used mammography, dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) is increasingly being adopted
owing to its higher sensitivity in dense breasts [5–7].

Breast DCE-MRI has many phases, including precontrast, early, and delayed
phases. After contrast agent (CA) injection, each phase is recorded with a differ-
ent delay time, up to a few minutes, from the initial CA injection to measure the
distinct time-varying enhancement [8]. Each phase takes approximately 60-120 s
to acquire. High-resolution T2 weighted and diffusion-weighted sequences have
been routinely added for the complete MRI sequence. This leads to an increased
scan time, ranging from 20 to 40min [9]. Because a long scan time is associ-
ated with high cost, it is urgent to shorten the scan protocol for the widespread
adoption of breast DCE-MRI [10–12].

Ultrafast DCE-MRI records an early inflow of CA and can obtain whole-
breast images at several time points within 1min after CA injection [13]. Con-
ventional DCE-MRI is typically performed immediately after ultrafast sequenc-
ing. Within the first minute of ultrafast DCE-MRI, malignant breast lesions
show altered patterns compared to that of benign tissue in terms of shorter
enhancement, steeper maximum slope, and higher initial contrast ratio [14–17].
This implies that there could be lesion-differentiating information in ultrafast
DCE-MRI.

Manual segmentation of breast lesions in DCE-MRI is troublesome; therefore,
many computer-aided detection systems have been developed to automatically
segment breast lesions [18,19]. These segmentation methods are increasingly
adopting deep learning approaches [19,20]. There is limited literature on the
application of deep learning methods for ultrafast DCE-MRI, possibly moving
toward a short scan time for breast MRI imaging [5,19–21]. However, these
methods are supervised learning approaches with high labeling costs.

In this study, we propose a semi-supervised segmentation method for breast
lesions using ultrafast DCE-MRI with limited label data. In our method, we use
a time difference map (TDM) to incorporate the distinct time-varying enhance-
ment pattern of the lesion [21].Our TDM could locate enhanced regions, includ-
ing the breast lesion, but could also enhance the blood vessel that receives the
CA. To solve this problem, we introduce a distance-based learning approach of
triplet loss to better contrast a lesion with a non-lesion area. Compared with
various semi-supervised segmentation methods, our method can segment breast
lesions well, even with a few labels. We obtained MRI data from 613 patients
from Samsung Medical Center. Our method was evaluated using three metrics:
dice similarity coefficient, average surface distance, and Hausdorff distance. The
main contributions of our study are summarized as follows:

1. As labeled medical image data are difficult to obtain, we propose a semi-
supervised segmentation method based on pseudo-labels.

2. We add TDM to explicitly model the distinct time-varying enhancement pat-
tern of lesions.
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3. We propose a local cross-triplet loss to discover the similarities and differences
between breast lesions and non-lesion areas. This allows our model to focus
on breast lesions with limited labeling data.

2 Related Work

Supervised Learning in DCE-MRI. Automatic segmentation technologies
help with diagnosis and treatment planning tasks by reducing the time resources
for manual annotation of breast cancer. In particular, deep learning algorithms
show considerable potential and are gaining ground in breast imaging [22]. Sev-
eral studies have proposed segmentation methods using conventional DCE-MRI.
For example, Piantadosi et al. [23] proposed a fully automated breast lesion seg-
mentation approach for breast DCE-MRI using 2D U-Net. Maicas et al. [24] used
reinforcement learning to automatically detect breast lesions. Zhang et al. [25]
proposed a breast mask to exclude confounding nearby structures and adopted
two fully convolutional cascaded networks to detect breast lesions using the mask
as a guideline. The aforementioned approaches worked well compared to those of
the conventional machine learning approaches, they adopted conventional DCE-
MRI with a long scan time.

Recently, the effectiveness of ultrafast DCE-MRI has been demonstrated [12–
15], and studies using deep learning approaches in ultrafast DCE-MRI have been
actively pursued. Ayatollahi et al. [19] detected breast lesions using spatial and
temporal information obtained during the early stages of dynamic acquisition.
Oh et al. [21] showed that ultrafast DCE-MRI could be used to generate conven-
tional DCE-MRI, confirming the possibility of replacing conventional DCE-MRI
with ultrafast DCE-MRI. These studies had shorter scan times for data acquisi-
tion than that of conventional DCE-MRI. However, because they adopted super-
vised learning, the labeling cost remained significant. Therefore, in this study,
we propose a semi-supervised segmentation method using only a small amount
of labeling data.

Semi-supervised Learning. Semi-supervised learning is widely used to reduce
time-consuming and expensive manual pixel-level annotation [26,27].

Consistency regularization imposes a constraint on consistency between pre-
dictions with and without perturbations applied to inputs, features, and net-
works [28]. “Mean Teacher” [29] updates the model parameter values of the
teacher model by the exponential moving average of the model parameter values
of the student model. Based on “Mean Teacher” [29], “Uncertainty Aware Mean
Teacher” [30] proposed a consistency loss such that learning proceeds only with
reliable predictions using the uncertainty information of the teacher model.

Entropy minimization forces the classifier to make predictions with low
entropy for an unlabeled input. This method assumes that the classifier’s deci-
sion boundary does not traverse the dense area of the marginal data distribution
[31]. “ADVENT” [32] proposed an entropy-based adversarial training strategy.
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Fig. 1. An overview of the proposed method. The upstream model (purple) and down-
stream model (orange) receive both the original input (X) and transformed input T (X).
P1 and P2 are segmentation confidence maps derived from the two models. Y 1 and Y 2
are the final segmentation confidence maps with TDM applied. Flows corresponding
to the blue dotted arrow for one model lead to pseudo-labels for the other model. The
product sign means element-wise multiplication. (Color figure online)

“Pseudo-label” [33] implicitly performs entropy minimization because the
intermediate prediction probability undergoes one-hot encoding [31]. The
recently proposed “cross-pseudo supervision” [28] is a consistency regularization
approach with perturbations of the network that provides input after different
initializations for two networks of the same structure. For unannotated inputs,
the pseudo-segmentation map of one network was utilized to supervise the other
network. This can increase the number of annotated training data, resulting in
more stable and accurate prediction results.

Our proposed model is based on “cross-pseudo supervision” [28] and intro-
duces TDM and local cross-triplet loss to incorporate the time-varying enhance-
ment pattern of ultrafast DCE-MRI and contrast lesions from non-lesions. Our
model performs an input perturbation to enforce the consistency of the interme-
diate features. The proposed method achieves reliable segmentation with fewer
annotations.

Deep Metric Learning. Deep metric learning maps an image to a feature
vector in a manifold space through deep neural networks [34]. The mapped fea-
ture vector is trained using a distance function. Deep metric learning approaches
typically optimize the loss functions defined on pairs or triplets of training exam-
ples [35]. The contrastive loss of pairs minimizes the distance from the feature
vectors of the same class while ensuring the separation of the feature vectors of
different classes [36]. Alternatively, triplet loss is defined based on three points:
anchor point, positive point (i.e., a feature vector belonging to the same class
as the anchor), and negative point (i.e., a feature vector belonging to a differ-
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Fig. 2. Effects of time difference map (TDM). (a) Representative 1st phase image of
ultrafast DCE-MRI. (b) TDM is computed as the difference between the last-phase
image of ultrafast DCE-MRI and (a). (c) Example of the training result of “cross-
pseudo supervision” (5% of the labeled data is used for training). This shows the
focused regions for segmentation (white, cancer; red, vessel). (d) Ground truth. (Color
figure online)

ent class than the anchor). This loss forces the distance of the positive pair to
be smaller than that of the negative pair [37]. “CUT” [38], a recently proposed
patch-based approach, defines negatives within the input image itself. This leads
to efficient discrimination between the target and nontarget areas. Inspired by
this method, we propose a local cross-triplet loss to discriminate breast lesions
from non-lesions in the input image. This is discussed in detail in Sect. 3.2.

3 Methodology

This study aims to accurately segment breast cancer lesions with small anno-
tation data based on pseudo-labels. First, TDM is defined to incorporate time-
varying enhancement patterns in ultrafast DCE-MRI. Next, we discuss the draw-
backs of TDM in our task, as well as the proposed loss terms to overcome the
shortcomings using metric learning. An overview of the proposed method is
shown in Fig. 1.

3.1 TDM

Ultrafast DCE-MRI has up to 20 phasic images, each taking 2-3 s, within 1min
after CA. Our ultrafast DCE-MRI sequence has 17 phases. We introduce the
TDM to incorporate time-varying information. Lesions appear brighter than
those in the normal regions of the breast. In general, as we traverse the time
steps in the ultrafast sequence, the slope of the intensity change in the lesion
is positive, while that in the normal region remains flat, close to zero. TDMs
computed from consecutive phases or the averaged TDM are certainly possible,
but for computational efficiency and the linear trend of enhancement, TDM is
defined as the difference between the first and last (17th) phases in our ultrafast
data following Oh et al. [21]. Our ultrafast DCE-MRI(V ) are of dimension H ×
W × D × F×, where D = 1 and F = 17. Unlike color images, we have only one
channel D = 1. TDM is defined as the difference between the last frame and the
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Fig. 3. Illustration of the proposed local cross-triplet loss. DS denotes downsampling,
and RS denotes random spatial sampling. Anchor and positive points come from the
positive group Gpos defined locally in the cancer region. Negative points come from
the negative group Gneg defined locally in the non-cancer region. Cross-triplet comes
from the loss defined across two streams. The loss is computed for each stream (Mup,
Mdown) and the two losses(Lup

lct,L
down
lct ) are combined to obtain Llct.

first frame. TDM can be obtained as follows:

V ∈ H × W × D × F×,D = 1, F = 17,
TDM = V [:, :, :, 17] − V [:, :, :, 1]

(1)

The TDM generated in this manner is multiplied by the prediction of the
model so that the model could focus only on the enhanced regions, as shown
in the final segmentation results (Fig. 1). However, the results show that the
blood vessel region is enhanced in addition to the lesion (Fig. 2). This could be
especially detrimental because our approach is limited to a small amount of label
data. To overcome this problem, we propose a local cross-triplet loss.

3.2 Local-Cross Triplet Loss

Starting from Dl with N labeled images and Du with M unlabeled images. our
local cross-triplet loss Llct is designed to avoid false detection in situations where
there is a limited amount of label data available (N <<< M). The input image
X ∈ RH×W , with height (H) and width (W ), is mapped to anchor, positive, and
negative points that are h × w K-dimensional vectors z, z+, z− ∈ RK through
the encoder of U-net [39] used as the backbone, where h,w are the height and
width of the feature volume. respectively, We use h=7, w=7, K=256 for our
setup.
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The positive candidate group Gpos corresponding to the cancer region and
the negative candidate group Gnegcorresponding to the non-cancer region, are
defined in the upstream model Mup and downstream model Mdown of Fig. 3.
Gpos is obtained by downsampling the given binary label mask to the size of
the feature map. Similarly, Gneg can be obtained by downsampling the input
image that contains the entire breast and others. However, background regions
outside the breast lack the necessary information. Therefore, we set Gneg to
exclude background and cancer regions (Fig. 3). Both groups are obtained from
one given image, and thus, our design allows for effective local discrimination of
breast lesions from non-lesions.

We adopt the local cross-triplet loss approach for both streams (Mup and
Mdown), The loss of Mup is as follows. “Locality” comes from how the triplet
points are defined. Anchor and positive points come from the positive group
Gpos defined locally in the cancer region. Negative points come from the nega-
tive group Gneg defined locally in the non-cancer region. “Cross-triplet” comes
from the loss defined across two streams, where anchor points of one stream are
compared with positive/negative points of the other stream. A K-dimensional
vector z is chosen at random from Gpos of Mup to work as an anchor point and
the K-dimensional vectors z+ and z− are chosen at random from Gpos and Gneg

of Mdown to work as positive and negative points, respectively. Then, Lup
lct can

be written as :

Lup
lct(z, z

+, z−) = −log[
exp(z · z+/τ)

exp(z · z+/τ) + exp(z · z−/τ)
], (2)

where τ is an important tuning parameter for supervised feature learning [38,40].
We set this value at 0.07, as in previous studies [38]. The loss for Mdown can be
calculated in the same manner as the loss for Lup

lct. We use the final Llct obtained
by combining Lup

lct and Ldown
lct in the following manner.

Llct =
1
2N

⎡
⎣ ∑
X∈Dl

Lup
lct +

∑
X∈Dl

Ldown
lct

⎤
⎦ . (3)

3.3 Cross Pseudo Supervision Loss

In both labeled and unlabeled data, the loss for semantic segmentation consists of
supervision loss Ls and cross-pseudo supervision loss Lcps [28]. Our models Mup

and Mdown for Ls use an original input image and a transformed input image as
input, respectively. The segmentation confidence maps created in this manner
are P1(X) and P2(T (X)). The final segmentation confidence maps Y 1,Y 2 are
created by applying the TDM and the transformed TDM introduced in Sect. 3.1.
Standard pixel-wise cross-entropy for the confidence vectors y1i,y2i at each i
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position is as follows:

Y 1 = P1(X) � TDM, y1i ∈ Y 1,
Y 2 = P2(T (X)) � T (TDM), y2i ∈ Y 2,

Ls =
1
N

∑
X∈Dl

1
H × W

H×W∑
i=0

(lce(y1i, l1i))) + (lce(y2i, l2i))) ,

(4)

where T is the geometric transformation for the input perturbation, the circle
dot is the element-wise multiplication, and l1i and l2i are one-hot vector corre-
sponding to each pixel i of the ground truth Label, T (Label).

The cross-pseudo supervision loss proposed in “cross-pseudo supervision” [28]
is similar to the supervision loss above, but uses a pixel-wise one-hot label map
created by the one-hot encoding of segmentation confidence maps from different
stream models as the ground truth. The loss for the unlabeled data is as follows:

Lu
cps =

1
M

∑
X∈Du

1
H × W

H×W∑
i=0

(lce(y1i,pl2i))) + (lce(y2i,pl1i))) , (5)

where pl1i, pl2i are the hot vectors for each pixel i in a pixel-wise one-hot label
map created using different stream models. Because pseudo supervision cannot
access ground truth information, the addition of TDM might lead to focusing on
unimportant regions, such as vessels, making the learning unstable. Therefore,
we do not use the TDM when generating pseudo-supervision.

The cross-pseudo supervision loss Ll
cps for labeled data can be defined in

the same manner. The cross-pseudo supervision loss for both labeled and unla-
beled data is Lcps=Lu

cps+Ll
cps. The final objective function to which the trade-off

weight λ is applied is as follows:

L = Ls + λ (Llct + Lcps) . (6)

4 Experiments

4.1 Dataset

The institutional review board of Samsung Medical Center authorized this study,
and the requirement for informed consent was waived. The total number of
patients was 613, 500 as the training set, 50 as the validation set, and the remain-
ing 63 as the test set. An expert manually segmented the breast lesions in the
entire dataset. The following MRI protocol was used to acquire the imaging data.
First, images of the precontrast phase were captured before CA injection. Fol-
lowing CA administration, ultrafast DCE-MRI images were collected for approx-
imately 1min, followed by conventional DCE-MRI images of the three phases
recorded at 70 s intervals. There were three imaging acquisition settings available
for ultrafast DCE-MRI, and the typical settings were as follows. The imaging
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Fig. 4. Dice similarity coefficient (DSC) and its shortcomings. (a) and (b) have the
same DSC, but (b) has two spatially disparate clusters that are inconsistent with the
spatially continuous ground truth.

data were collected using a Philips 3T Ingenia CX scanner. Echo time, repe-
tition time, and field-of-view were 2.1ms, 4.1ms, and 330× 330mm2, respec-
tively. In-plane resolution, slice thickness, and temporal resolution per phase
were 1.0× 1.0mm, 1.0mm, and 3.4 s, respectively. Because three settings were
employed in the data collection process, 1.0 × 1.0× 1.0 resampling was used to
unify them. Only images containing lesions were selected and further divided
into left- and right-breast images by splitting them in half in the horizontal
direction.

4.2 Implementation Details

To evaluate the effectiveness of the proposed approach, we compare ours with
five models: 1) U-net [39]; 2) cross-pseudo supervision [28]; 3) mean teacher
[29]; 4) uncertainty aware mean teacher [30]; and 5) entropy minimization [32].
The U-net is adopted to evaluate the fully supervised learning scenario, and
the associated results using 100% labeled data represent the upper bound of
our semi-supervised approach. All models, including ours, use a Vanilla U-net
as their backbone. U-net-related codes are implemented using those proposed
by Luo and Xiangde [41]. Our model is based on cross-pseudo supervision [28],
which requires the application of geometric transforms to the input. Random
rotation, flipping, and cropping are performed.

We train various models on four NVIDIA TITAN XP GPUs. For all experi-
ments, the batch size is set to 24, and the maximum number of iterations is 15000.
All codes are implemented using Pytorch1.8.0 and are available on GitHub [42].

4.3 Evaluation Metrics

We measure segmentation performance using three metrics: 1) dice similarity
coefficient (DSC); 2) average surface distance (ASD); 3) Hausdorff distance
(HD). DSC is the most representative metric based on the spatial overlap
between the predictive segmentation and ground truth. However, it is insen-
sitive to the spatial continuity of the segmentation results [43]. As shown in
Fig. 4, one result is spatially continuous, while the other is spatially disparate.
Both cases have the same DSCs, but the spatially continuous result is relevant
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Fig. 5. Plots of segmentation performance metrics using varying portions (5%, 10%,
20%, 30%, 40%, and 50%) of labeled data. (a) Dice similarity coefficient (DSC). (b)
Average surface distance (ASD). (c) Hausdorff distance (HD).

to the context of the breast lesion. Therefore, we further adopt the ASD and
HD metrics based on the boundary distances. The ASD is the average of all
distances from the point of the boundary of the predictive segmentation to that
of the ground truth. HD is the maximum distance between a point in one of the
two segmentation results and its nearest point in the other. Due to the spatially
continuous nature of the breast lesion, it is important to have low ASD and HD,
which penalize spatially disparate segmentation maps that are likely to be false
positives.

4.4 Results

Figure 5 shows the performance metrics related to the increasing proportion
of labeled data used for training. Because this study aims at an environment
with limited labeled data, we show the results using up to 50% of the labeled
data. As the proportion of labeled data approaches 100%, all models perform
equally well, making the comparison pointless. DSCs are comparable among the
methods; however, our model performs better than that of other methods for
ASD and HD, which are more relevant for spatially continuous breast lesions.

We performed a 5-fold cross validation. Table 1 shows a detailed comparison
of the models using 5% or 50% of the labeled data. Our model using 50% labeled
data achieves a performance similar to that of the upper bound obtained from
supervised U-net results using 100% labeled data. More importantly, our model
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Table 1. Comparisons of a 5-fold cross validation performance between models using
varying portions of labeled data. Values are given as mean (standard deviation) format.
The supervised U-net results using 100% labeled data serve as the upper bound. CPS
denotes cross-pseudo supervision [28], MT is the mean teacher [29], and UAMT is the
uncertainty aware mean teacher [30].

Training Model Portion of labeled data DSC(↑) ASD(↓) HD(↓)

Supervised U-net [40] 5% 0.67923(±0.003) 5.06443(±0.535) 14.12663(±1.773)
50% 0.74060(±0.008) 3.00268(±0.413) 8.74188(±0.889)
100% 0.76279(±0.008) 2.09796(±0.389) 6.31361(±1.467)

Semi-supervised CPS [29] 5% 0.68246(±0.01) 4.49830(±0.496) 12.59923(±0.755)
50% 0.75389(±0.01) 2.01122(±0.348) 6.85415(±1.541)

MT [30] 5% 0.67335(±0.01) 4.73847(±0.605) 12.74394(±1.652)
50% 0.75394(±0.006) 2.14507(±0.061) 6.63480(±0.612)

UAMT [31] 5% 0.68503(±0.003) 4.49306(±1.176) 12.23937(±2.481)
50% 0.74427(±0.008) 2.53061(±0.391) 7.59957(±1.130)

ADVENT [33] 5% 0.67719(±0.004) 4.93907(±0.686) 13.63126(±2.235)
50% 0.74582(±0.006) 2.52074(±0.387) 7.82263(±1.191)

Ours 5% 0.68412(±0.005) 3.15440(±0.440) 8.60817(±0.947)
50% 0.75422(±0.006) 1.80862(±0.167) 5.88411(±0.472)

trained with only 5% of the labeling data shows similar performance in boundary-
based metrics (ASD and HD) compared to the results of other models trained
with 50% of the labeling data. This demonstrates that our proposed method
does not detect false positives and segments spatially continuous breast lesions
even with a small amount of labeling data.

Figure 6 shows representative segmentation results for various methods for
different axial slices. All models use 5% of the labeled data. The U-net model
uses 5% of the labeled data, while the others use 5% of the labeled data and 95%
of the unlabeled data. Our method generally provides more accurate predictions
than other comparative models. Furthermore, our model has fewer false positives,
primarily due to enhanced blood vessels, and results in one spatially continuous
cluster for the lesion. These results confirm that the loss terms of our approach
are effective for the segmentation of breast lesions.

4.5 Ablation Study

An ablation study is conducted to demonstrate the incremental effects of the pro-
posed contributions (Table 2). The cross-pseudo supervision model is used as the
baseline model. 1) We apply TDM to incorporate the time-varying enhancement
pattern of the lesion into the baseline model. DSC is improved because TDM can
focus on enhanced regions (lesions and vessels), but the boundary distance-based
metrics are not as favorable, possibly due to false positives owing to spatially
disparate vessels. 2) This shortcoming of TDM is addressed with local cross-
triplet loss, where spatially continuous lesions are explicitly encouraged. This
results in improved performance for DSC, ASD, and HD. 3) In addition, we
apply not only the network perturbation, but also the input perturbation by
adopting geometric transformations, such as rotation, flipping, and cropping, to
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Fig. 6. Representative segmentation results for various models. All models use 5% of
the labeled data. Rows 1 and 2 are different axial slice images from one patient. Rows
3 and 4 are the results for another patient.

better enforce the consistency of the intermediate features. Finally, the model to
which all proposed techniques are applied shows good performance for all three
metrics.

Table 2. Ablation study of the proposed method. The CPS denoting cross-pseudo
supervision serves as the baseline, and the contributions of our approach are sequen-
tially evaluated from top to bottom.

Model Portion of labeled data DSC(↑) ASD(↓) HD(↓)
CPS [29] 5% 0.68002 3.93187 11.90405

50% 0.75182 2.0191 7.30482

+ TDM 5% 0.68121 4.84958 12.40415
50% 0.76322 2.11603 7.07866

+ local-cross triplet loss 5% 0.68521 3.66874 9.49801
50% 0.75707 2.02848 6.06029

+ transformation (Ours) 5% 0.68560 2.57821 7.10232
50% 0.76240 1.57659 5.48009

5 Conclusion

As high-quality annotation is difficult to collect in the medical domain, an app-
roach based on little or weak annotation is preferred. With only a small amount
of annotation, we utilize the time-varying enhancement pattern of ultrafast DCE-
MRI to segment breast lesions, and propose a loss to efficiently distinguish lesions
from non-lesions. Our design allows the network to focus solely on breast lesions,
reducing false positives using limited annotations. Compared to that of other
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models, our approach achieves significant qualitative and quantitative improve-
ments. We plan to study a segmentation technique using a small number of weak
annotations in the future. Rather than using TDM as self-attention, joint pre-
diction across slices could be a more promising approach where the model can
automatically figure out context by looking at consecutive slices.
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