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Preface

The 16th Asian Conference on Computer Vision (ACCV) 2022 was held in a hybrid
mode in Macau SAR, China during December 4–8, 2022. The conference featured
novel research contributions from almost all sub-areas of computer vision.

For the main conference, 836 valid submissions entered the review stage after desk
rejection. Sixty-three area chairs and 959 reviewers made great efforts to ensure that
every submission received thorough and high-quality reviews. As in previous editions
of ACCV, this conference adopted a double-blind review process. The identities of
authors were not visible to the reviewers or area chairs; nor were the identities of the
assigned reviewers and area chairs known to the authors. The program chairs did not
submit papers to the conference.

After receiving the reviews, the authors had the option of submitting a rebuttal.
Following that, the area chairs led the discussions and final recommendations were
then made by the reviewers. Taking conflicts of interest into account, the area chairs
formed 21 AC triplets to finalize the paper recommendations. With the confirmation of
three area chairs for each paper, 277 papers were accepted. ACCV 2022 also included
eight workshops, eight tutorials, and one grand challenge, covering various cutting-edge
research topics related to computer vision. The proceedings of ACCV 2022 are open
access at the Computer Vision Foundation website, by courtesy of Springer. The quality
of the papers presented at ACCV 2022 demonstrates the research excellence of the
international computer vision communities.

This conference is fortunate to receive support from many organizations and indi-
viduals. We would like to express our gratitude for the continued support of the Asian
Federation of Computer Vision and our sponsors, the University of Macau, Springer, the
Artificial Intelligence Journal, and OPPO. ACCV 2022 used the Conference Manage-
ment Toolkit sponsored by Microsoft Research and received much help from its support
team.

All the organizers, area chairs, reviewers, and authors made great contributions to
ensure a successful ACCV 2022. For this, we owe them deep gratitude. Last but not
least, we would like to thank the online and in-person attendees of ACCV 2022. Their
presence showed strong commitment and appreciation towards this conference.
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Abstract. Current few-shot learning models capture visual object rela-
tions in the so-called meta-learning setting under a fixed-resolution input.
However, such models have a limited generalization ability under the
scale and location mismatch between objects, as only few samples from
target classes are provided. Therefore, the lack of a mechanism to match
the scale and location between pairs of compared images leads to the per-
formance degradation. The importance of image contents varies across
coarse-to-fine scales depending on the object and its class label, e.g.,
generic objects and scenes rely on their global appearance while fine-
grained objects rely more on their localized visual patterns. In this paper,
we study the impact of scale and location mismatch in the few-shot learn-
ing scenario, and propose a novel Spatially-aware Matching (SM) scheme
to effectively perform matching across multiple scales and locations, and
learn image relations by giving the highest weights to the best matching
pairs. The SM is trained to activate the most related locations and scales
between support and query data. We apply and evaluate SM on various
few-shot learning models and backbones for comprehensive evaluations.
Furthermore, we leverage an auxiliary self-supervisory discriminator to
train/predict the spatial- and scale-level index of feature vectors we use.
Finally, we develop a novel transformer-based pipeline to exploit self-
and cross-attention in a spatially-aware matching process. Our proposed
design is orthogonal to the choice of backbone and/or comparator.

Keywords: Few-shot · Multi-scale · Transformer · Self-supervision

1 Introduction

CNNs are the backbone of object categorization, scene classification and fine-
grained image recognition models but they require large amounts of labeled data.
In contrast, humans enjoy the ability to learn and recognize novel objects and
complex visual concepts from very few samples, which highlights the superiority
of biological vision over CNNs. Inspired by the brain ability to learn in the few-
samples regime, researchers study the so-called problem of few-shot learning for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Wang et al. (Eds.): ACCV 2022, LNCS 13845, pp. 3–20, 2023.
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Fig. 1. Scale mismatch in mini-ImageNet. Top row: support samples randomly selected
from episodes. Remaining rows: failure queries are marked by red boxes. We estimated
that ∼30% mismatches are due to the object scale mismatch, which motivates the
importance of scale and region matching in few-shot learning.

which networks are adapted by the use of only few training samples. Several
proposed relation-learning deep networks [1–4] can be viewed as performing a
variant of metric learning, which they are fail to address the scale- and location-
mismatch between support and query samples as shown in Fig. 1. We follow such
models and focus on studying how to capture the most discriminative object
scales and locations to perform accurate matching between the so-called query
and support representations.

A typical relational few-shot learning pipeline consists of (i) feature encoder
(backbone), (ii) pooling operator which aggregates feature vectors of query and
support images of an episode followed by forming a relation descriptor, and
(iii) comparator (base learner). In this paper, we investigate how to efficiently
apply spatially-aware matching between query and support images across dif-
ferent locations and scales. To this end, we propose a Spatially-aware Match-
ing (SM) scheme which scores the compared locations and scales. The scores
can be regularized to induce sparsity and used to re-weight similarity learning
loss operating on {0, 1} labels (different/same class label). Note that our SM is
orthogonal to the choice of baseline, therefore it is applicable to many existing
few-shot learning pipelines.

As the spatial size (height and width) of convolutional representations vary,
pooling is required before feeding the representations into the comparator. We
compare several pooling strategies, i.e., average, max and second-order pooling
(used in object, texture and action recognition, fine-grained recognition, and
few-shot learning [4–10]) which captures covariance of features per region/scale.
Second-order Similarity Network (SoSN) [4] is the first work which validates
the usefulness of autocorrelation representations in few-shot learning. In this
paper, we employ second-order pooling as it is permutation-invariant w.r.t. the
spatial location of aggregated vectors while capturing second-order statistics
which are more informative than typical average-pooled first-order features. As
second-order pooling can aggregate any number of feature vectors into a fixed-
size representation, it is useful in describing regions of varying size for spatially-
aware matching.
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Though multi-scale modeling has been used in low-level vision problems, and
matching features between regions is one of the oldest recognition tools [11,12],
relation-based few-shot learning (similarity learning between pairs of images)
has not used such a mechanism despite clear benefits.

In addition to our matching mechanism, we embed the self-supervisory dis-
criminators into our pipeline whose auxiliary task has to predict scale and spatial
annotations, thus promoting a more discriminative training of encoder, attention
and comparator. This is achieved by the use of Spatial-aware Discriminator (SD)
to learn/predict the location and scale indexes of given features. Such strategies
have not been investigated in matching, but they are similar to pretext tasks in
self-supervised learning.

Beyond using SM on classic few-shot learning pipelines, we also propose a
novel transformer-based pipeline, Spatially-aware Matching CrossTransformer
(SmCT), which learns the object correlations over locations and scales via cross-
attention. Such a pipeline is effective when being pre-trained on large-scale
datasets.

Below we summarize our contributions:

i. We propose a novel spatially-aware matching few-shot learning strategy,
compatible with many existing few-shot learning pipelines. We form pos-
sible region- and scale-wise pairs, and we pass them through comparator
whose scores are re-weighted according to the matching score of region- and
scale-wise pairs obtained from the Spatial Matching unit.

ii. We propose self-supervisory scale-level pretext tasks using second-order rep-
resentations and auxiliary label terms for locations/scales, e.g., scale index.

iii. We investigate various matching strategies, i.e., different formulations of the
objective, the use of sparsity-inducing regularization on attention scores, and
the use of a balancing term on weighted average scores.

iv. We propose a novel and effective transformer-based cross-attention match-
ing strategy for few-shot learning, which learns object matching in pairs of
images according to their respective locations and scales.

2 Related Work

One- and few-shot learning has been studied in shallow [13–18] and deep
learning setting [1,2,2–4,10,19–32]. Early works [17,18] employ generative mod-
els. Siamese Network [19] is a two-stream CNN which can compare two streams.

Matching Network [1] introduces the concept of support set and L-way Z-
shot learning protocols to capture the similarity between a query and several
support images in the episodic setting which we adopt. Prototypical Net [2] com-
putes distances between a query and prototypes of each class. Model-Agnostic
Meta-Learning (MAML) [20] introduces a meta-learning model which can be
considered a form of transfer learning. Such a model was extended to Gradi-
ent Modulating MAML (ModGrad) [33] to speed up the convergence. Relation
Net [3] learns the relationship between query and support images by a deep
comparator that produces relation scores. SoSN [4] extends Relation Net [3] by
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second-order pooling. SalNet [24] is a saliency-guided end-to-end sample halluci-
nating model. Graph Neural Networks (GNN) [34–38] can also be combined with
few-shot learning [21,25,26,39–41]. In CAN [27], PARN [28] and RENet [42],
self-correlation and cross-attention are employed to boost the performance. In
contrast, our work studies explicitly matching over multiple scales and locations
of input patches instead of features. Moreover, our SM is the first work study-
ing how to combine self-supervision with spatial-matching to boost the perfor-
mance. SAML [29] relies on a relation matrix to improve metric measurements
between local region pairs. DN4 [30] proposes the deep nearest neighbor neural
network to improve the image-to-class measure via deep local descriptors. Few-
shot learning can also be performed in the transductive setting [43] and applied
to non-standard problems, e.g., keypoint recognition [44].

Second-order pooling has been used in texture recognition [45] by Region
Covariance Descriptors (RCD), in tracking [5] and object category recogni-
tion [8,9]. Higher-order statistics have been used for action classification [46,47],
domain adaptation [48,49], few-shot learning [4,10,24,50,51], few-shot object
detection [52–55] and even manifold-based incremental learning [56].

We employ second-order pooling due to its (i) permutation invariance (the
ability to factor out spatial locations of feature vectors) and (ii) ability to capture
second-order statistics.

Notations. Let x ∈ R
d be a d-dimensional feature vector. IN stands for the

index set {1, 2, ..., N}. Capitalized boldface symbols such as Φ denote matrices.
Lowercase boldface symbols such as φ denote vectors. Regular fonts such as
Φij , φi, n or Z denote scalars, e.g., Φij is the (i, j)th coefficient of Φ. Finally,
δ(x − y) = 1 if x = y and 0 otherwise.

3 Approach

Although spatially-aware representations have been studied in low-level vision,
e.g., deblurring, they have not been studied in relation-based learning (few-shot
learning). Thus, it is not obvious how to match feature sets formed from pairs
of images at different locations/resolutions.

In conventional image classification, high-resolution images are known to
be more informative than their low-resolution counterparts. However, extracting
the discriminative information depends on the most expressive scale which varies
between images. When learning to compare pairs of images (the main mechanism
of relation-based few-shot learning), one has to match correctly same/related
objects represented at two different locations and/or scales.

Inspired by such issues, we show the importance of spatially-aware matching
across locations and scales. To this end, we investigate our strategy on classic few-
shot learning pipelines such as Prototypical Net, Relation Net and Second-order
Similarity Network which we refer to as (PN+SM), (RN+SM) and (SoSN+SM)
when combined with our Spatially-aware Matching (SM) mechanism.
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Fig. 2. The pipeline of SoSN+SM. We downsample input images twice (3 scales) and
extract 5 sub-regions from the original image. Thus, 8 sub-images are passed through
our encoder, and intermediate feature vectors are obtained and aggregated with SoP
into matrices (red and blue blocks). We obtain 5+5 location-wise support/query matri-
ces Ψ i

k and Ψ i
q per support/query images k and q, where i ∈ {1, ..., 5}. We also obtain

3+3 scale-wise matrices Ψ ′i
k and Ψ ′i

q , where i ∈ {1, ..., 3}. We pair them via relation
operator ϑ (e.g., concatenation) into 25 and 9 relation descriptors passed to the atten-
tion mechanism and relation network, which produces weight scores wpp′ (5 × 5) and
w′

ss′ (3 × 3), and relation scores ζpp′ (5 × 5) and ζ′
ss′ (3 × 3), respectively. Finally,

relation scores are re-weighted by attention scores and aggregated into the final score.

3.1 Spatially-aware Few-shot Learning

Below, we take the SoSN+SM pipeline as an example to illustrate (Fig. 2) how we
apply SM on the SoSN few-shot learning pipeline. We firstly generate spatially-
aware image sequences from each original support/query sample, and feed them
into the pipeline. Each image sequence includes 8 images, i.e., 5 location-wise
crops and 3 scale-wise instances. Matching over such support-query sequences
requires computing correlations between 8× 8 = 64 pairs, which leads to signifi-
cant training overhead when the model is trained with a large batch size. Thus,
we decouple spatially-aware matching into location-wise and scale-wise matching
steps to reduce the computational cost.

Specifically, let I1, ..., I4 be four corners cropped from I of 84×84 size without
overlap and I5 be a center crop of I. We refer to such an image sequence by
{Ip}p∈I5 , and they are of 42× 42 resolution. Let I′1 be equal to the input image
I of 84 × 84 size, and I′2 and I′3 be formed by downsampling I to resolutions
42×42 and 21×21. We refer to these images by {I′s}s∈I3 . We pass these images
via the encoding network f(·):

Φp = f(Ip;F) and Φ′s = f(I′s;F). (1)

where F denotes parameters of encoder network, Φp and Φ′s are feature maps
at the location p and scale s, respectively. As feature maps vary in size, we apply
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second-order pooling from Eq. (2) to these maps. We treat the channel mode
as D-dimensional vectors and spatial modes H × W as HW such vectors. As
N = HW varies, we define it to be N for crops and N ′s for scales. Then we form

Ψp = η
( 1

N
ΦpΦpT

)
and Ψ ′s = η

( 1
N ′sΦ′sΦ′sT

)
. (2)

Subsequently, we pass the location- and scale-wise second-order descriptors
Ψp and Ψ ′s to the relation network (comparator) to model image relations. For
the L-way 1-shot problem, we have a support image (kth index) with its image
descriptors (Φp

k,Φ
′s
k) and a query image (qth index) with its image descriptors

(Φp
q ,Φ

′s
q). Moreover, each of the above descriptors belong to one of L classes in

the subset {c1, ..., cL} ⊂ IC that forms the so-called L-way learning problem and
the class subset {c1, ..., cL} is chosen at random from IC ≡ {1, ..., C}. Then, the
L-way 1-shot relation requires relation scores:

ζpp
′

kq = r
(
ϑ

(
Ψp

k,Ψ
p
q

)
;R)

and ζ ′ss′
kq = r

(
ϑ

(
Ψ ′s

k ,Ψ ′s
q

)
;R)

, (3)

where ζ and ζ ′ are relation scores for a (k, q) image pair at locations (p, p′)
and scales (s, s′). Moreover, r(·) is the relation network (comparator), R are
its trainable parameters, ϑ(·, ·) is the relation operator (we use concatenation
along the channel mode). For Z-shot learning, this operator averages over Z
second-order matrices representing the support image before concatenating with
the query matrix.

A naive loss for the location- & scale-wise model is given as:

L =
∑

k,q,p

wp

(
ζpp

kq − δ (lk − lq)
)2

+ λ
∑

k,q,s

w′
s

(
ζ′ss

kq − δ (lk − lq)
)2

, (4)

where lk and lq refer to labels for support and query samples, wp and w′
s are

some priors (weight preferences) w.r.t. locations p and scales s. For instance,
wp = 1 if p = 5 (center crop), wp = 0.5 otherwise, and ws = 1/2s−1.

A less naive formulation assumes a modified loss which performs matching
between various regions and scales, defined as:

L =
∑

k,q

∑

p,p′

(
wkq

pp′
)γ(

ζpp′
kq − δ (lk − lq)

)2
+ λ

∑

k,q

∑

s,s′

(
w′kq

ss′
)γ(

ζ′ss′
kq − δ (lk − lq)

)2
, (5)

where wpp′ and w′
ss′ are some pair-wise priors (weight preferences) w.r.t. loca-

tions (p, p′) and scales (s, s′). We favor this formulation and we strive to learn
wkq

pp′ and w′kq
ss′ rather than just specify rigid priors for all (k, q) support-query

pairs. Finally, coefficient 0 ≤ γ ≤ ∞ balances the impact of re-weighting. If
γ = 0, all weights are equal one. If γ = 0.5, lower weights contribute in a bal-
anced way. If γ = 1, we obtain regular re-weighting. If γ = ∞, the largest weight
wins.

Spatially-Aware Matching. As our feature encoder processes images at dif-
ferent scales and locations, the model should have the ability to select the
best matching locations and scales for each support-query pair. Thus, we pro-
pose a pair-wise attention mechanism to re-weight (activate/deactivate) different
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Fig. 3. Our Spatially-aware Matching CrossTransformer (SMCT) is built upon the
cross-transformer [57]. We introduce the spatially-aware (location- and scale-wise)
image sequences as inputs to exploit cross-attention during feature matching.

matches withing support-query pairs when aggregating the final scores of com-
parator. Figure 2 shows this principle.

Specifically, as different visual concepts may be expressed by their constituent
parts (mixture of objects, mixture of object parts, etc..), each appearing at a
different location or scale, we perform a soft-attention which selects wpp′ ≥ 0 and
w′

ss′ ≥ 0. Moreover, as co-occurrence representations are used as inputs to the
attention network, the network selects a mixture of dominant scales and locations
for co-occurring features (which may correspond to pairs of object parts).

The Spatially-aware Matching (SM) network (two convolutional blocks and
an FC layer) performs the location- and scale-wise matching respectively using
shared model parameters. We opt for a decoupled matching in order to reduce
the training overhead. We perform 5×5+3×3 = 34 matches per support-query
pair rather than 5 × 5 × 3 × 3 = 225 matches but a full matching variant is
plausible (and could perform better). We have:

wkq
pp′ = m

(
ϑ(·Ψp

k,Ψ
p′
q );M

)
and w′kq

ss′ = m
(
ϑ(·Ψ ′s

k ,Ψ ′s′
q );M

)
, (6)

where m(·) is the Spatially-aware Matching network, M denotes its parameters,
(k, q) are query-support sample indexes. We impose a penalty to control the
sparsity of matching:

Ω =
∑
k,q

∑
p,p′

∣∣∣wkq
pp′

∣∣∣ +
∑
k,q

∑
s,s′

∣∣∣w′kq
ss′

∣∣∣. (7)
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Our spatially-aware matching network differs from the feature-based atten-
tion mechanism as we score the match between pairs of cropped/resized regions
(not individual regions) to produce the attention map.

3.2 Self-supervised Scale and Scale Discrepancy

Scale Discriminator. To improve discriminative multi-scale representations,
we employ self-supervision. We design a MLP-based Scale Discriminator (SD)
as shown in Fig. 4 which recognizes the scales of training images.
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Fig. 4. Scale Discriminator with 3 fully-connected layers.

Specifically, we feed second-order representations to the SD module and
assign labels 1, 2 or 3 for 256 × 256, 128 × 128 or 64 × 64 images, respec-
tively. We apply cross-entropy loss to train the SD module and classify the scale
corresponding to given second-order feature matrix.

Given Ψ s
i which is the second-order representation of Xs

i , we vectorize them
via (:) and forward to the SD module to predict the scale index s. We have:

ps
i = sd(Ψ s

i(:);C), (8)

where sd(·) refers to the scale discriminator, C denotes parameters of sd(·),
and p are the scale prediction scores for Ψ . We go over all i corresponding to
support and query images in the mini-batch and we use cross-entropy to learn
the parameters of Scale Discriminator:

Lsd = −
∑
i,s

log
(

exp(ps
i [s])∑

s′ exp(ps
i [s′])

)
, (9)

where s, s′ ∈ IS enumerate over scale indexes.

Discrepancy Discriminator. As relation learning requires comparing pairs
of images, we propose to model scale discrepancy between each support-query
pair by assign a discrepancy label to each pair. Specifically, we assign label
Δs,s∗ = s − s∗ + 1 where s and s∗ denote the scales of a given support-query
pair. Then we train so-called Discrepancy Discriminator (DD) to recognize the
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discrepancy between scales. DD uses the same architecture as SD while the input
dimension is doubled due to concatenated support-query pairs on input. Thus:

ps,s∗
ij = dd(ϑ(Ψ s

i ,Ψ
s∗
j );D), (10)

where dd(·) refers to scale discrepancy discriminator, D are the parameters of
dd, ps,s∗

ij are scale discrepancy prediction scores, ϑ is concat. in mode 3. We go
over all i, j support+query image indexes in the mini-batch and we apply the
cross-entropy loss to learn the discrepancy labels:

Ldd = −
∑
i,s

∑
j,s∗

log

(
exp(ps,s∗

ij [Δs,s∗ ])∑
s′

∑
s′∗ exp(ps,s∗

ij [Δs′,s′∗ ])

)
, (11)

where where s, s′, s∗, s′∗ ∈ IS enumerate over scale indexes.

Final Loss. The total loss combines the proposed Scale Selector, Scale Discrim-
inator and Discrepancy Discriminator:

argmin
F ,R,M,C,D

αΩ + L + βLsd + γLdd, (12)

where α, β, γ are the hyper-parameters that control the impact of the regular-
ization and each individual loss component.

3.3 Transformer-Based Spatially-Aware Pipeline

Our SM network can be viewed as an instance of attention, whose role is to
re-weight numbers of spatial pairs to improve the discriminative relation learn-
ing between support and query samples. Recently, transformers have proven
very effective in learning the discriminative representations in both natural lan-
guage processing and computer vision tasks. Inspired by the self-attention [57],
which can naturally be used to address the feature matching problem, we further
develop a novel Spatially-aware Matching CrossTransformer (SmCT) to match
location- and scale-wise support-query patches in few-shot learning. Figure 3
shows the architecture of SmCT, which consists of 4 heads, namely the support
key and value heads, and the query key and value heads. In contrast to using
SM in classic pipelines, where we decoupled the matching into location-wise and
scale-wise steps, all possible matching combinations are considered in the SmCT
pipeline. Thus, we do not use symbols Ip and I′s in this section. The image
sequence is simply given by {Is}s∈I8 .

We pass the spatial sequences of support and query samples Isk and Isq into the
backbone and obtain Φs

k,Φ
s̃
q ∈ R

D×N . Due to different scales of feature maps
for s = 6, 7, 8, we downsample larger feature maps and obtain N ′ = 10 × 10
feature vectors. We feed them into the key/value heads to obtain keys Ks

k,K
s̃
q ∈

R
dk×N ′

and values Vs
k,V

s̃
q ∈ R

dv×N ′
. Then we multiply support-query spatial

key pairs followed by SoftMax in order to obtain the normalized cross-attention
scores Css̃ = SoftMax(Ks

k
TKs̃

q) ∈ R
N ′×N ′

, which are used as correlations in
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Table 1. Evaluations on mini-ImageNet and tiered-ImageNet (5-way acc. given).

mini-ImageNet tiered-ImageNet

Model Backbone 1-shot 5-shot 1-shot 5-shot

MN [1] - 43.56 ± 0.84 55.31 ± 0.73 - -

PN [2] Conv–4–64 49.42 ± 0.78 68.20 ± 0.66 53.31 ± 0.89 72.69 ± 0.74

MAML [20] Conv–4–64 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 1.75

RN [3] Conv–4–64 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 71.32 ± 0.78

GNN [21] Conv–4–64 50.30 66.40 - -

MAML++ [58] Conv–4–64 52.15 ± 0.26 68.32 ± 0.44 - -

SalNet [24] Conv–4–64 57.45 ± 0.86 72.01 ± 0.75 - -

SoSN [4] Conv–4–64 52.96 ± 0.83 68.63 ± 0.68 - -

TADAM [59] ResNet-12 58.50 ± 0.30 76.70 ± 0.30 - -

MetaOpt [60] ResNet-12 61.41 ± 0.61 77.88 ± 0.46 65.99 ± 0.72 81.56 ± 0.53

DeepEMD [61] ResNet-12 65.91 ± 0.82 82.41 ± 0.56 - -

PN+SM Conv–4–64 52.01 ± 0.80 69.92 ± 0.67 54.37 ± 0.82 75.13 ± 0.77

RN+SM Conv–4–64 54.99 ± 0.87 68.57 ± 0.63 57.01 ± 0.91 75.04 ± 0.78

SoSN+SM Conv–4–64 57.11 ± 0.84 71.98 ± 0.63 61.58 ± 0.90 78.64 ± 0.75

SoSN+SM ResNet-12 62.36 ± 0.85 78.86 ± 0.63 66.35 ± 0.91 82.21 ± 0.71

DeepEMD+SM ResNet-12 66.93 ± 0.8484.34 ± 0.6170.19 ± 0.8986.98 ± 0.74

Table 2. Evaluations on the Open MIC dataset (Protocol I) (1-shot learning accuracy).
(http://users.cecs.anu.edu.au/~koniusz/openmic-dataset).

Model way p1→p2 p1→p3 p1→p4 p2→p1 p2→p3 p2→p4 p3→p1 p3→p2 p3→p4 p4→p1 p4→p2 p4→p3

RN [3]

5

71.1 53.6 63.5 47.2 50.6 68.5 48.5 49.7 68.4 45.5 70.3 50.8

SoSN(84) [4] 81.4 65.2 75.1 60.3 62.1 77.7 61.5 82.0 78.0 59.0 80.8 62.5

SoSN(256) 84.1 69.3 82.5 64.9 66.9 82.8 65.8 85.1 81.1 65.1 83.9 66.6

SoSN+SM 85.6 73.6 85.0 67.7 69.6 83.1 68.2 86.9 82.9 67.4 84.7 68.4

RN [3]

20

40.1 30.4 41.4 23.5 26.4 38.6 26.2 25.8 46.3 23.1 43.3 27.7

SoSN(84) [4] 61.5 42.5 61.0 36.1 38.3 56.3 38.7 59.9 59.4 37.4 59.0 38.6

SoSN(256) 63.9 49.2 65.9 43.1 44.6 62.6 44.2 63.9 64.1 43.8 63.1 44.3

SoSN+SM 65.5 51.1 67.6 45.2 46.3 64.5 46.3 66.2 67.0 45.3 65.8 47.1

RN [3]

30

37.8 27.3 39.8 22.1 24.3 36.7 24.5 23.7 44.2 21.4 41.5 25.5

SoSN(84) [4] 60.6 40.1 58.3 34.5 35.1 54.2 36.8 58.6 56.6 35.9 57.1 37.1

SoSN(256) 61.7 46.6 64.1 41.4 40.9 60.3 41.6 61.0 60.0 42.4 61.2 41.4

SoSN+SM 62.6 47.3 65.2 41.9 41.7 61.5 43.1 61.8 61.0 43.1 62.1 42.3

p1: shn+hon+clv, p2: clk+gls+scl, p3: sci+nat, p4: shx+rlc.
Notation x→y means training on exhibition x and testing on y

aggregation of support values w.r.t.each location and scale. We obtain the aligned
spatially-aware prototypes Ṽs

k ∈ R
dv×N ′

:

Ṽs
k =

∑
s̃

Vs
kCss̃. (13)

We measure Euclidean distances between the aligned prototypes and correspond-
ing query values, which act as the final similarity between sample Ik and Iq:

L =
∑
k,q

(
ζkq − δ(lk − lq)

)2 where ζkq =
∑
s

‖ Ṽs
k − Ṽs

q ‖2F . (14)

4 Experiments

Below we demonstrate usefulness of our proposed Spatial- and Scale-matching
Network by evaluations (one- and few-shot protocols) on mini -ImageNet [1],
tiered -ImageNet [63], Meta-Dataset [62] and fine-grained datasets.

http://users.cecs.anu.edu.au/~koniusz/openmic-dataset
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Table 3. The experiments on selected subsets of Meta-Dataset (train-on-ILSVRC set-
ting). We compare our Spatially-aware Matching pipelines with recent baseline models.
Following the training steps in [57], we also apply the SimCLR episodes to train our
SmCT (which uses the ResNet-34 backbone).

ImageNet Aircraft Bird DTD Flower Avg

k-NN [62] 41.03 46.81 50.13 66.36 83.10 57.49
MN [1] 45.00 48.79 62.21 64.15 80.13 60.06
PN [2] 50.50 53.10 68.79 66.56 85.27 64.84
RN [3] 34.69 40.73 49.51 52.97 68.76 49.33
SoSN [4] 50.67 54.13 69.02 66.49 87.21 65.50
CTX [57] 62.76 79.49 80.63 75.57 95.34 78.76

PN+SM 53.12 57.06 72.01 70.23 88.96 68.28
RN+SM 41.07 46.03 53.24 58.01 72.98 54.27
SoSN+SM 52.03 56.68 70.89 69.03 90.36 67.80
SMCT 64.12 81.03 82.98 76.95 96.45 80.31

Table 4. Evaluations on fine-grained recognition datasets, Flower-102, CUB-200-2011
and Food-101 (5-way acc. given). See [3,4] for details of baselines listed in this table.

Flower-102 CUB-200-2011 Food-101
Model 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PN 62.81 82.11 37.42 51.57 36.71 53.43

RN 68.52 81.11 40.36 54.21 36.89 49.07

SoSN 76.27 88.55 47.45 63.53 43.12 58.13

RN+SM 71.69 84.45 45.79 58.67 45.31 55.67

SoSN+SM 81.69 91.21 54.24 70.85 48.86 63.67

Setting. We use the standard 84 × 84 image resolution for mini -ImageNet and
fine-grained datasets, and 224×224 resolution for Meta-Dataset for fair compar-
isons. Hyper-parameter α is set to 0.001 while β is set to 0.1 via cross-validation
on mini -ImageNet. Note that SmCT uses ResNet-34 backbone on Meta-Dataset,
and ResNet-12 on mini -ImageNet and tiered -ImageNet. The total number of
training episode is 200000, and the number of testing episode is 1000.

4.1 Datasets

Below, we describe our experimental setup and datasets.

mini-ImageNet [1] consists of 60000 RGB images from 100 classes. We follow
the standard protocol (64/16/20 classes for training/validation/testing).

tiered-ImageNet [63] consists of 608 classes from ImageNet. We follow the
protocol that uses 351 base classes, 96 validation and 160 test classes.
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Fig. 5. Accuracy w.r.t.α (subfigure 1), β (the blue curve in subfigure 2&3) and γ (the
red curve in subfigure 2&3), which control the impact of SD and DD. (Color figure
online)
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Fig. 6. The histograms of spatial-matching scores with different α values, which demon-
strate how Ω induces sparsity and improves the performance.

Open MIC is the Open Museum Identification Challenge (Open MIC) [64],
a dataset with photos of various museum exhibits, e.g., paintings, timepieces,
sculptures, glassware, relics, science exhibits, natural history pieces, ceramics,
pottery, tools and indigenous crafts, captured from 10 museum spaces according
to which this dataset is divided into 10 subproblems. In total, it has 866 diverse
classes and 1–20 images per class. We combine (shn+hon+clv), (clk+gls+scl),
(sci+nat) and (shx+rlc) into subproblems p1, ..., p4. We form 12 possible pairs
in which subproblem x is used for training and y for testing (x→y).

Meta-Dataset [62] is a recently proposed benchmark consisting of 10 publicly
available datasets to measure the generalized performance of each model. The
Train-on-ILSVRC setting means that the model is merely trained via ImageNet
training data, and then evaluated on the test data of remaining 10 datasets.
In this paper, we follow the Train-on-ILSVRC setting. We choose 5 datasets to
measure the overall performance.

Flower-102 [65] contains 102 fine-grained classes of flowers. Each class has 40–
258 images. We randomly select 80/22 classes for training/testing.

Caltech-UCSLD-Birds 200-2011 (CUB-200-2011) [66] has 11788 images
of 200 fine-grained bird species, 150 classes a for training and the rest for testing.

Food-101 [67] has 101000 images of 101 fine-grained classes, and 1000 images
per category. We choose 80/21 classes for training/testing.
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4.2 Performance Analysis

Table 1 shows our evaluations on mini -ImageNet [1] and tiered -ImageNet. Our
approach achieves the state-of-the-art performance among all methods based on
both ’Conv-4-64’ and ’ResNet-12’ backbones at 84 × 84 input resolution. By
adding SM (Eq. (3)) and self-supervisory loss (Eq. (9)), we achieve 57.11 and
71.98 scores for 1- and 5-shot protocols with the SoSN baseline (Conv-4-64 back-
bone), and 66.93 and 85.34 with the DeepEMD baseline (ResNet-12 backbone)
on mini -ImageNet. The average improvements gained from SM are 4% and 3.5%
with the Conv-4-64 backbone, 1% and 1.9% with the ResNet-12 backbone for
1- and 5-shot protocols. These results outperform results in previous works,
which strongly supports the benefit of our spatially-aware matching. On tiered -
ImageNet, our proposed model obtains 3% and 4% improvement for 1-shot and
5-shot protocols with both the Conv-4-64 and the ResNet-12 backbones. Our
performance on tiered -ImageNet is also better than in previous works. How-
ever, we observed that SmCT with the ResNet-12 backbone does not perform
as strongly on the above two datasets. A possible reason is that the complicated
transformer architecture overfits when the scale of training dataset is small (in
contrast to its performance on Meta-Dataset).

We also evaluate our proposed network on the Open MIC dataset [64]. Table 2
shows that our proposed method performs better than baseline models. By
adding SM and self-supervised discriminators into baseline models, the accu-
racies are improved by 1.5% − 3.0%.

Table 3 presents results on the Train-on-ISLVRC setting on 5 of 10 datasets
of Meta-Dataset. Applying SM on classic simple baseline few-shot leaning meth-
ods brings impressive improvements on all datasets. Furthermore, our SmCT
achieves the state-of-the-art results compared to previous methods. This obser-

Scale-matching Score Location-matching Score

Fig. 7. The histograms of spatial-matching scores with different α values, which demon-
strate how Ω induces sparsity and improves the performance.

Table 5. Ablation studies w.r.t. the location- and scale-wise inputs (no matching used).
Region crops and scale selection is done either in the image space (img) or on the feature
maps (feat.), (5-way 1-shot accuracy, ‘SoSN+SM’ with ResNet-12 backbone).

Scale-wise (img) Scale-wise (feat.) Loc.-wise (img) Loc.-wise (feat.)

59.51 58.54 60.14 58.16



16 H. Zhang et al.

vation is consistent with our analysis that transformer-based networks are likely
to be powerful when being trained on a large-scale dataset.

Table 4 shows that applying SM on classic baseline models significantly out-
performs others on fine-grained Flower-102, CUB-200-2011 and Food-101.

Spatially-Aware Matching. The role of SM is to learn matching between
regions and scales of support-query pairs. As shown in Table 5, using the
Spatially-aware Matching Network can further improve results for both 1-shot
and 5-shot learning on mini -ImageNet by 1.5% and 1.0%, respectively. The
results on Flower-102, Food-101 yield ∼ 1.5% gain for SmN. Figure 5 shows
the impact of α, β and γ on the performance. Figure 6 verifies the usefulness
of Ω regularization term. To this end, we show histograms of spatial-matching
scores to demonstrate how α affects the results vs. sparsity of matching scores.
For instance, one can see the results are the best for moderate α = 0.001, and
the bin containing null counts also appears larger compared to α = 0 (desired
behavior). Figure 7 visualizes the matching scores. We randomly sample support-
query pairs to show that visually related patches have higher match scores (red)
than unrelated pairs (blue). Do note the location- and scale- discrimination is
driven by matching both similar and dissimilar support-query pairs driven by
the relation loss.

Self-supervised Discriminators. Pretext tasks are known for their ability to
boost the performance of image classification due to additional regularization
they provide. Applying Scale Discriminator (SD) and Discrepancy Discrimina-
tor (DD) is an easy and cheap way to boost the representational power of our
network. Pretext tasks do not affect the network complexity or training times.
According to our evaluations, the SD improves the 1-shot accuracy by 1.1% and
5-shot accuracy by 1.0%, while the DD improves the accuracy by 1.2% and 1.1%
0.9% for 1- and 5-shot respectively on the mini -ImageNet dataset.

In summary, without any pre-training, combining our Spatially-aware Match-
ing strategy brings consistent improvements on the Conv-4-64 and ResNet-12
backbones and various few-shot learning methods, with the overall accuracy out-
performing state-of-the-art methods on all few-shot learning datasets. Our novel
transformer-based SmCT model also performs strongly on the recently proposed
Meta-Dataset, which further supports the usefulness of spatial modeling.

5 Conclusions

We have proposed the Spatially-aware Matching strategy for few-shot learn-
ing, which is shown to be orthogonal to the choice of baseline models and/or
backbones. Our novel feature matching mechanism helps models learn a more
accurate similarity due to matching multiple locations and coarse-to-fine scales
of support-query pairs. We show how to leverage a self-supervisory pretext task
based on spatial labels. We have also proposed a novel Spatially-aware Matching
CrossTransformer to perform matching via the recent popular self- and cross-
attention strategies. Our experiments demonstrate the usefulness of the proposed



Improving FSL by SM and CrossTransformer 17

SM strategy and SmCT in capturing accurate image relations. Combing our SM
with various baselines outperforms previous works in the same testbed. SmCT
achieves SOTA results on large-scale training data.
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Abstract. Occluded person Re-identification (Occluded ReID) aims to
verify the identity of a pedestrian with occlusion across non-overlapping
cameras. Previous works for this task often rely on external tasks, e.g.,
pose estimation, or semantic segmentation, to extract local features over
fixed given regions. However, these external models may perform poorly
on Occluded ReID, since they are still open problems with no reliable per-
formance guarantee and are not oriented towards ReID tasks to provide
discriminative local features. In this paper, we propose an Attentional
Occlusion-aware Network (AONet) for Occluded ReID that does not rely
on any external tasks. AONet adaptively learns discriminative local fea-
tures over latent landmark regions by the trainable pattern vectors, and
softly weights the summation of landmark-wise similarities based on the
occlusion awareness. Also, as there are no ground truth occlusion anno-
tations, we measure the occlusion of landmarks by the awareness scores,
when referring to a memorized dictionary storing average landmark fea-
tures. These awareness scores are then used as a soft weight for training
and inferring. Meanwhile, the memorized dictionary is momenta updated
according to the landmark features and the awareness scores of each
input image. The AONet achieves 53.1% mAP and 66.5% Rank1 on
the Occluded-DukeMTMC, significantly outperforming state-of-the-arts
without any bells and whistles, and also shows obvious improvements
on the holistic datasets Market-1501 and DukeMTMC-reID, as well as
the partial datasets Partial-REID and Partial-iLIDS. The code and pre-
trained models will be released online soon.

Keywords: Occluded ReID · Occlusion-aware · Landmark ·
Orthogonal

1 Introduction

Most Person Re-identification (ReID) [2,12,30] approaches focus more on holistic
pedestrian images, and tend to fail in real-world scenarios where a pedestrian
is partially visible, e.g., occluded by other objects. The Occluded person Re-
identification (Occluded ReID) is then investigated which aims to handle the
occlusion distractions. Some previous Occluded ReID methods perform part-to-
part matching based on fine-grained external local features [13,24], e.g., with
body parts assigned larger weights and occlusion parts smaller weights.
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Fig. 1. Illustration of local feature responses. (a) Holistic and occluded images. (b)
Local features by partitioning over segmentation mask. (c) Local features based on
pose estimation. (d) Landmark features by our AONet.

The key to solving Occluded ReID is to locate landmark regions and then
extract well-aligned features from non-occluded landmark regions, while rea-
sonably reducing or prohibiting the use of features from occluded landmark
regions. Some Occluded ReID works use body parts attained from pose esti-
mation for local feature extraction [3,4,24], and suppress or exclude the local
features of some occluded body parts with low pose confidence. However, the
reliability of pose estimation is not guaranteed (e.g., failure on the knees and
waist in Fig. 1(c)). Moreover, pose features are often not necessarily adapted to
ReID tasks due to cross-task variance. Another group of methods [13,21,22,32]
extracts local features directly on uniformly partitioned grids on pedestrian
images, and measures the occlusion of each grid guided by the semantic seg-
mentation task, as shown in Fig. 1(b). However, due to the different poses and
non-rigid deformation of the human body, these models cannot accurately per-
form part alignment and thus often fail. In addition, there are some methods that
achieve Occluded ReID by locating occluded parts or measuring the occlusion
degree using the pose estimation [4,27] or semantic segmentation tasks [3,32].

However, the aforementioned methods rely on external tasks, such as pose
estimation or semantic segmentation, to extract local features on fixed given
regions of the human body. On one hand, the results of these external tasks
may be imprecise; on the other hand, the obtained local features are usu-
ally not discriminative enough for Occluded ReID. [10] presented the Match-
ing on Sets (MoS), positioning Occluded ReID as a set matching task with-
out using external models. Compared to this work, we go further to adaptively
extract more discriminative local features as well as more accurately sense and
measure the occlusions. We then propose an Attentional Occlusion-aware Net-
work (AONet) with the Landmark Activation Layer and the Occlusion Aware-
ness (OA) component. The latent landmark features refer to features of ReID
oriented local parts (i.e., latent landmarks), and are resistant to landmark occlu-
sion. The occlusion awareness score measures the visibility of each landmark
according to the average landmark features in the memorized dictionary. Besides,
to prevent the model collapse problem that multiple landmarks focus on the same
region, we involve the orthogonality constraints among landmarks features.
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Fig. 2. The framework of AONet, including a Landmark Activation (LA) layer to
extract the landmark features, and the Occlusion Awareness (OA) score to measure the
occlusion. The responses of occluded pixels will be lower than the corresponding average
response passing through the LA layer. Then, the normalization over all pixels and the
average responses will further scale down these occluded responses (the green branch).
Finally, the normalized pixel responses are summed up as the occlusion awareness score,
and used to update the memorized dictionary. (Color figure online)

Our main contributions can be summarized as follows:

– Instead of relying on any external tasks, we only use a learnable parameter
matrix (i.e., the landmark patterns) and a memorized dictionary storing the
average landmark features, to guide the extraction of landmark features that
are more discriminative and resistant to occlusion.

– Furthermore, we define the occlusion awareness score to sense and measure
the occlusion of each landmark explicitly, especially by referring to the average
landmark features in the memorized dictionary.

– Our AONet achieves excellent performance on not only the occluded dataset
Occluded-DukeMTMC, but also the holistic and partial datasets, i.e., Duke-
MTMC-reID, Market-1501, Partial-REID, and Partial iLIDS, significantly
outperforming state-of-the-art.

2 Related Works

Person ReID has been studied in terms of both feature representation learn-
ing [22,29,33] and distance metric learning [1,8,23]. However, most ReID meth-
ods focus on matching the holistic pedestrian images, and do not perform well on
occlusion images [13,24], which limits their applicability in real-world scenarios.

Occluded ReID [10,24] is aimed at matching occluded person images to holis-
tic ones across dis-joint cameras, which is challenging due to distracting factors
like cluttered scenes or dense crowd. To solve it, [7] proposed an occlusion-robust
alignment-free model, using an occlusion-sensitive foreground probability gener-
ator with guidance from a semantic segmentation model. [13] refined the setup
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of the Occluded ReID problem to be more realistic, i.e., both probe and gallery
images containing occlusion. They introduced a PGFA method that exploits pose
landmarks to disentangle useful information from the occlusion noise. Here, we
tackle an Occluded ReID problem as defined in [13].

Later, [4] proposed a PVPM method to jointly learn the pose-guided local
features and the self-mined part visibility. [24] proposed an HOReID method
to learn high-order relations for discriminative features and topology informa-
tion for robust alignment, by an external human key-points prediction model.
In [32], a Semantic-aware Occlusion-Robust Network (SORN) was proposed that
exploits the intrinsic relationship between person ReID and semantic segmenta-
tion. Also, [14] proposed a Semantic Guided Shared Feature Alignment (SGSFA)
method to extract features focusing on the non-occluded parts, using guidance
from external human parsing and pose estimation models. The above works
require guidance information from external tasks (e.g., semantic segmentation,
pose estimation) either for local feature extraction or occlusion measurement.
Recently, [10] presented the Matching on Sets (MoS) method, viewing Occluded
ReID as a set matching task without requiring spatial alignment.

3 Attentional Occlusion-Aware Network

The Attentional Occlusion-aware Network (AONet) mainly includes the extrac-
tion of the attentional landmark features, and the calculation of the Occlusion
Awareness (OA) score, as shown in Fig. 2. Meanwhile, a learnable matrix is used
to explicitly represent the landmark patterns for the more discriminative fea-
tures. A memorized dictionary is defined as a strong reference, which stores the
average landmark features and is dynamically updated in a momentum way. The
discriminative local features, i.e., the landmark features, are extracted adaptively
according to both the memorized dictionary and the landmark patterns.

3.1 Landmark Patterns and Memorized Dictionary

Landmark Patterns. We define the landmark patterns I ∈ R
C×K as trainable

parameters to attend to specific discriminative landmarks, i.e., the attentional
latent landmarks. We expect the learned landmark patterns to encode local pat-
terns, which help explain the inputs (feature maps F ).

Memorized Dictionary. We also define the memorized dictionary M ∈ R
C×K

to store the average features of the K latent landmarks. M is zero-initialized but
momentum updated under the guidance of landmark patterns batch by batch.
Moreover, the updating considers the occlusion of each landmark, i.e., using the
referenced response maps in the calculation of the occlusion awareness scores (see
details in Sect. 3.4). Namely, given the referenced response map ̂Rk ∈ R

W×H

for the kth landmark, we binarize ̂Rk as R̃k ∈ R
W×H by setting all pixels

corresponding to the maximum value to 1 and the rest to 0. Then, given a
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Fig. 3. Visualization of the effect with or without the reference of average response on
the example pattern ’head-neck’. The use of average response has no particular impact
on the holistic image in (a), but is effective in suppressing false alarms on the occluded
image in (b). In (b), facing the occlusion of ’head-neck’, the response map has false
alarms on ‘knees’ without referring to average response (the 2nd image), but this gets
obviously alleviated with the reference (the 3rd image).

batch of B images, we use momentum updating to get the updated memorized
dictionary M t+1

k with a balance weight (α) as:

M t+1
k = αM t

k + (1 − α)
1
B

∑B

b=1
FbR̃k. (1)

3.2 Attentional Latent Landmarks

The learnable landmark patterns I = {ik}Kk=1, ik ∈ R
C should be trained

together with other parameters of the network. The 1× 1 convolution can be
seen as an operation where a 1× 1× C sized filter is applied over the input and
then weighted to generate several activation maps. That is, the 1×1 filter can be
thought of as some type of pattern matching to create a linear projection of a
stack of feature maps. Therefore, we realize the landmark patterns by the 1× 1
filters, as shown in the Landmark Activation layer of Fig. 2.

In details, the 1 × 1 convolution layer appended after the CNN backbone
network takes F ∈ R

C×H×W (feature maps of an input image) as input, and
outputs K landmark-specific response maps R = {Rk} ∈ R

K×W×H . We normal-
ize these response maps among all pixels to form the basic normalized response
maps Ř ∈ R

K×W×H , then the value of pixel (w, h) in the kth map is calculated
as,

Řk(w, h) =
φ(ik,F (w, h))

∑(W,H)
(i,j)=(1,1) φ(ik,F (i, j))

, (2)

and φ(ik,F (i, j)) = exp(iTk F (i, j)) is the similarity based response.
After that, without considering occlusion awareness, we easily obtain the

Standard Landmark-specific (SL) features of f̄k ∈ R
C for the kth landmark by

f̄k = FŘk. However, the SL features cannot accurately reflect the response
of landmarks in the occluded image. As shown in Fig. 3(b), when the example
landmark (seems to be the ’head-neck’ parts) is occluded, this landmark still has
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Algorithm 1. The Main Flowchart of the AONet.
Input: Batch of feature maps F = {F b ∈ R

W×H×C}B
b=1; landmark patterns I =

{ik} ∈ R
C×K ; where B, C and K are the size of batch, channel and the number of

landmarks.
Output: The awareness scores β = {βk} and updated memorized dictionary
M ;
1: Initialize the memorized dictionary Mt = {mk} ∈ R

C×K ;
(noting: superscript b is omitted until step 11 for convenience.)

2: for t = 1 to T do
3: Response maps R=φ(I , F ) ∈ R

K×W×H , where Rk ∈ R
W×H is the kth land-

mark’s response on F ;
4: Average responses a = {ak}, where ak = φ(ik, mk).
5: Each augmented response map Rk = {Rk; ak} ∈ R

W×H+1.
6: Normalizing Rk with Eq. 3.
7: Referenced response map ̂Rk = { ̂Rk(w, h)} ∈ R

W×H , i.e., detaching the value
corresponding to sk.

8: Calculating the awareness scores (e.g., βb
k) based on Eq. 4;

9: The kth OA feature fk = F ̂Rk.
10: Binarization over ̂Rk to get binarized response map R̃k.
11: Updating the K memorized landmark features:

M t+1
k = αM t

k + (1 − α) 1
B

∑B
b=1 FbR̃;

12: end for
13: return β and M respectively;

large activated regions (i.e., the false alarm on the parts of ‘knees’). Thus, we
adopt the landmark features that characterize the occlusion awareness, i.e., the
OA features (see Sect. 3.4) instead of the SL features finally.

3.3 Referenced Response Map

Meanwhile, a special feature map, i.e., the referenced response map, is defined
to measure the occlusion awareness and represent the discriminative feature. We
first calculate the similarity-based response between each landmark pattern (e.g.,
ik ∈ I) and its corresponding memorized average feature (e.g., mk ∈ M), which
is named as the average response (e.g., ak = φ(xk,mk)). While the memorized
average features are the statistical representation of each landmark, the average
responses can be used as some real and strong reference values to suppress false
alarms, e.g., scaling down responses of false alarms through uniform normaliza-
tion, as shown in Fig. 3. More details can be seen in Algorithm 1.

Then, for an input image, given a landmark-specific response map Rk =
φ(ik,F ), if all responses in Rk are significantly lower than the average response
ak, it means that this landmark is not present in this image, and the area cor-
responding to this landmark is occluded. Thus, we concatenate each ak to the
corresponding Rk to form the augmented response map Rk, which is then nor-
malized in a similar way as Eq. (2) (but on W × H + 1 elements). That is,
the normalized response of the kth landmark pattern on the nth pixel by the
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similarity function φ is calculated by

̂Rk(w, h) =
φ(ik,F (w, h))

ak +
∑(W,H)

(i,j)=(1,1) φ(ik,F (i, j))
. (3)

Given a landmark pattern ik, pixel responses φ(ik, xn) that are far below the
average response ak are normalized to small values or even 0. Consequently, the
responses of the occluded pixels, and pixels unrelated to the landmark patterns ik
are greatly suppressed, as shown in Fig. 3. Finally, we detach out the normalized
response value of the average features, and rename the remained part as the
referenced response map, i.e., ̂Rk = { ̂Rk(w, h)} ∈ R

W×H .

3.4 Occlusion Awareness

Although we do not have true annotations about the occlusion of each landmark,
we can utilize the memorized dictionary M that stores the average feature of
each landmark, as a special strong reference to measure the occlusion, as shown
in Algorithm 1. Namely, the pixels that refer to a particular landmark should
have a large response to this landmark’s pattern. Namely, the feature of pixels
referring to a particular landmark should be similar to the memorized average
feature of that landmark, and also, both of them have comparable similarity
based responses to the corresponding landmark pattern.

Occlusion Awareness Score. Ideally, if the regions referring to a landmark
are occluded, there should be no responses to this landmark, and all pixels should
not be used for learning any learnable landmark pattern. However, the network
itself is not aware of the occlusion, and the responses of this landmark (e.g.,
’head-neck’) will transfer to other unoccluded but wrong regions (e.g., ’knees’)
to extract features (see Fig. 3). An intuitive idea for addressing this problem is
to accurately measure the degree of occlusion by some metric (i.e., awareness
score), and then use it to suppress the impact of occluded regions in training
and inference. Therefore, we further explicitly define an occlusion awareness
score to measure the degree of occlusion based on the referenced response map
̂R. Specifically, we define the awareness score of the kth landmark as,

βk =
(W,H)
∑

(1,1)

̂Rk(w, h). (4)

Then, βk is used to reduce the weight of the occluded landmarks not only in
training but also in inference.

Occlusion Awareness Feature. We need not only to sense the awareness
score of each landmark but also involve such occlusion awareness in feature
representation. Thus, the referenced response maps are also used as very crucial
guidance to generate the more discriminative landmark features, i.e., Occlusion
Awareness (OA) features. Specifically, we replace Řk to the referenced response
map ̂Rk, and get the kth OA feature as fk = F ̂Rk.
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3.5 Training and Inference

Training Losses. We use the cross-entropy loss weighted by the occlusion
awareness to constrain each landmark. Specifically, we perform the classification
loss on both the OA features before and after the self-attention block, i.e.,

Lcls = − 1
K

(
K

∑

k=1

βk log p1k +
K

∑

k=1

βk log p2k), (5)

where βk is the kth landmark’s awareness score, and p1k and p2k are the predicted
probability of the kth landmark features before and after the self-attention block.

Without any other constraints but only the classification loss, different land-
marks are easy to collapse to focus on the same part. Thus, we propose the
orthogonal loss to ensure spatial diversity between landmark features. In detail,
when the cosine similarity is calculated between two landmark features (fi and
fj), the orthogonal loss is defined as

Lot = − 1
K2

k
∑

i=1

K
∑

j=i+1

log(1 − |cosine(fi,fj)|+). (6)

where | · |+ means the ramp function, i.e., max(0, ·).
Finally, the overall objective function is formulated by

LAONet = Lcls + λotLot, (7)

where Lcls is the cross-entropy based classification loss, and Lot refers to the
orthogonal loss among landmark features before the self-attention block, and
λot is the balance weight.

Inference. For inference, given a pair of images (im1 and im2) and their
feature maps (F 1 and F 2), as well as their landmark features (e.g., f1

k and f2
k ),

their similarity is calculated based on the cosine similarity cosine(·) by

sim(im1, im2) =
1
K

∑K

k=1
β1
kβ

2
kcosine(f

1
k ,f2

k ), (8)

where β1
k and β2

k are the occlusion awareness scores of the kth landmark.

4 Experiments

4.1 Datasets and Implementations

We mainly evaluate AONet on the most popular occluded ReID dataset, i.e.,
Occluded-DukeMTMC [13], where both the probe and gallery images have occlu-
sion. In addition, we also experiment on holistic person ReID datasets: Market-
1501 [34] and DukeMTMC-reID [15], as well as the partial ReID datasets:
Partial-REID [35] and Partial-iLIDS [6]. All experiments are performed based
on a single query image and without re-ranking [36].



AONet: Attentional Occlusion-aware Network 29

Table 1. Comparison of performance on metrics of Ranks and mAP on the Occluded-
DukeMTMC dataset.

Methods Rank1 Rank5 Rank10 mAP

PGFA[ICCV19] 51.4 68.6 74.9 37.3
HOReID[cvpr20] 55.1 – – 43.8
SORN[TCSVT20] 57.6 73.7 79.0 46.3
SGSFA[ACML20] 62.3 77.3 82.7 47.4
DIM[arXiv17] 21.5 36.1 42.8 14.4
PartAligned[ICCV17] 28.8 44.6 51.0 20.2
RandErasing[AAAI20] 40.5 59.6 66.8 30.0
HACNN[CVPR18] 34.4 51.9 59.4 26.0
AOS[CVPR18] 44.5 – – 32.2
PCB[ECCV18] 42.6 57.1 62.9 33.7
PartBilinear[ECCV18] 36.9 – – –
FD-GAN[NeurIPS18] 40.8 – – –
DSR[CVPR18] 40.8 58.2 65.2 30.4
MoS[AAAI21] 61.0 – – 49.2
AONet 66.5 79.4 83.8 53.1
MoSw/ibn[AAAI21] 66.6 – – 55.1
AONetw/ibn 68.8 81.4 85.8 57.3

We use ResNet50 [5] pre-trained on ImageNet as the backbone network. For a
fair comparison, we also incorporate the instance batch normalization (ibn) into
ResNet50 (i.e., AONetw/ibn) as in [10]. To acquire high-resolution feature maps,
the stride of conv4_1 is set to 1. We resize original images into 256 × 128, with
a half probability of flipping them horizontally. Then, the images are padded by
10 pixels and randomly cropped back to 256 × 128, and then randomly erased
with a half probability. We use the Adam optimizer [11] with a learning rate of
3.5e− 4, warm up the training in the first 20 epochs and decay the learning rate
with 0.1 in the 50th and 90th epoch. The batch size is 64, 4 images per person,
and a total of 120 epochs are trained end-to-end. The weight of orthogonal loss,
i.e., λot, is set to 0.01 and the momentum α for memorized dictionary updating
is set to 0.9. If not specified, the number of landmarks is set as 6.

4.2 Comparisons to State-of-the-Arts

Results on Occluded ReID Dataset. Table 1 shows the performance of
AONet and several competing methods, including methods without external
models: DIM [31], PartAligned [33], RandErasing [37], HACNN [12], AOS [9],
PCB [22], PartBilinear [19], FD-GAN [18], DSR [6], MoS [10], methods with
external models: PGFA [13], SORN [32], SGSFA [14], HOReID [24], and the most
related set matching based method [10], on the Occluded-DukeMTMC dataset.
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Table 2. Performance comparison on Holistic Person ReID datasets of the Market-1501
and DukeMTMC-reID.

Methods Market-1501 DukeMTMC-reID
Rank1 mAP Rank1 mAP

PCB+RPP[ECCV18] 93.8 81.6 83.3 69.2
MGN[MM18] 95.7 86.9 88.7 78.4
VPM[CVPR19] 93.0 80.8 83.6 72.6
SORN [TCSVT20] 94.8 84.5 86.9 74.1
PDC[ICCV17] 84.2 63.4 – –
PSE[CVPR18] 87.7 69.0 27.3 30.2
PGFA[ICCV19] 91.2 76.8 82.6 65.5
HOReID[CVPR20] 94.2 84.9 86.9 75.6
PartAligned[ICCV17] 81.0 63.4 – -
HACNN[CVPR18] 91.2 75.6 80.5 63.8
CAMA[CVPR19] 94.7 84.5 85.8 72.9
MoS[AAAI21] 94.7 86.8 88.7 77.0
AONet 95.2 86.6 88.7 77.4

Our AONet shows a significant advantage over other methods. Note that
our AONet uses no external models as in most of the previous works. More-
over, on Rank1 and mAP, AONet improves 4.2% and 5.7% over the SOTA
method SGSFA (with external models). AONet also improves 5.5% and 3.9%
over MoS (without external models). In MoS, a pre-trained backbone network
IBN is used to achieve better results, so we also propose the AONetw/ibn uti-
lizing IBN, which also achieves better results.

Results on Holistic ReID Datasets. Many related methods achieved good
performance on Occluded ReID datasets, but they perform unsatisfactorily
on holistic person ReID datasets and cannot be applied widely [13]. The
AONet is also evaluated on the holistic person ReID datasets (i.e., Market-
1501 and DukeMTMC-reID) and compared with three groups of competing
methods: uniform-partition based (PCB [22], VPM [21], MGN [25], pose-guided
based (PDC [17], PSE [16], PGFA [13], HOReID [24]) and attention-guided based
methods (PartAligned [33], HACNN [12], CAMA [28]). As shown in Table 2, the
AONet produces satisfactory results in holistic cases even using an occluded ori-
ented network. Meanwhile, the methods of different groups all perform well on
holistic datasets and without large performance gaps. The reason could be, that
almost all body parts are visible in holistic datasets, offering a greater possibil-
ity to locate all parts and thus obtain discriminative features easily. Meanwhile,
AONet not only achieves SOTA performance on the occluded dataset, but also
achieves competitive results on holistic datasets.

Results on Patial ReID Datasets. To fully validate the effectiveness of
the AONet, we also conduct experiments on the partial person ReID datasets of
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Table 3. Performance comparison on Partial ReID datasets of Partial-REID and
Partial-iLIDS.

Methods Partial-REID Partial-iLIDS
Rank1 Rank3 Rank1 Rank3

DSR[CVPR18] 50.7 70.0 58.8 67.2
VPM[CVPR19] 67.7 81.9 65.5 84.7
HOReID[CVPR20] 85.3 91.0 72.6 86.4
AONet (crop) 85.0 92.7 68.1 84.9
PGFA[ICCV19] 68.0 80.0 69.1 80.9
SGSFA[ACML20] 68.2 – – –
SORN [TCSVT20] 76.7 84.3 79.8 86.6
AONet (whole) 75.3 86.3 80.7 86.6

Partial-REID and Partial-iLIDS. Since these two datasets are always only used as
the test dataset, existing works are trained on other ReID dataset (e.g., Market-
1501). Not only that, but existing works also use the partial ReID dataset in two
different ways (the two groups in Table 3), the main difference being whether the
visible pedestrian area is cropped out separately as a new image. For example, the
SOTA methods of HOReID [24] and SORN [32] are evaluated on partial datasets
with images of the whole pedestrian or the cropped visible parts, respectively.
We use AONet(whole) and AONet(crop) to refer to the performance of AONet
on partial datasets in these two ways. As shown in Table 3, our AONet(whole)
and AONet(crop) achieve the best performance on datasets of Patial-REID and
Partial-iLIDS respectively, which proved the efficiency of our approach.

4.3 Ablation Studies

We test the effect of components in AONet with the below variants on Occluded-
DukeMTMC: i) SLFea (Standard Landmark-specific features), extracting land-
mark features without occlusion awareness. ii) SAtt (Self-Attention), enabling
information interaction between landmark features. iii) OAFea (Occlusion
Awareness Features), being similar to SLFea, but referring to the memorized fea-
tures. iv) OAScore (Occlusion Awareness Score), measuring the occlusion degree
of each landmark. v) OLoss (orthogonal loss), constraining over different pairs
of landmark features.

With or Without Each Component. We define a basic baseline Base_GAP,
which includes the backbone of ResNet, a Global Average Pooling (GAP) layer,
and a softmax layer. As shown in Table 4, compared to Base_GAP, utilizing
SLFea achieves significantly better performance, reflecting the advantage of set
matching over global feature matching. Utilizing SAtt gains an extra improve-
ment of 1.3% on Rank1 and 1.4% on mAP. Besides, with the simple combination
of SLFea and SAtt, Rank1 of 58.6% is achieved, better than most previous meth-
ods as shown in Table 1. We argue that our attentional landmarks would facilitate
reconstructing the information of the occluded landmark using other landmarks.
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Table 4. The ablation study of the components in AONet.

Method SLFea SAtt OAFea OAScore OLoss Rank1 mAP

Base_GAP 49.4 40.0
Base_SLFea � 57.3 43.9
Base_SAtt � � 58.6 45.3
AONet† � � 62.6 51.3
AONet‡ � � � 65.6 52.5
AONet � � � �� 66.5 53.1

Table 5. Ablation study of the components compared to baselines on the Occluded-
DukeMTMC dataset.

Methods Rank1 Rank5 Rank10 mAP

Base_GAP 49.4 63.7 68.9 40.0
Base_Pose 52.1 66.2 71.1 42.3
Base_OAFea (AONet†) 62.6 77.1 81.6 51.3
AONet† 62.6 77.1 81.6 51.3
+Base_Max 63.4 77.3 82.1 51.7
+OAScore (AONet‡) 65.6 79.1 83.6 52.5
AONet‡ 65.6 79.1 83.6 52.5
+Base_RegL 65.9 78.8 83.7 52.7
+OLoss (AONet) 66.5 79.4 83.8 53.1

When we replace SLFea with OAFea that incorporates occlusion awareness,
we obtain an improvement on Rank1 (4%) and mAP (6%) (Base_SLFea vs
AONet†). Meanwhile, the involving of OAScore achieves an extra improvement
on Rank1 (3%) and mAP (1.2%) (AONet† vs AONet‡), which means both OAS-
core and OAFea effectively mitigate feature mislocalization caused by occlusion.
Furthermore, utilizing OLoss does work very effectively with an improvement of
0.9% and 0.6% on Rank1 and mAP respectively.

Comparisons to Various Baselines. Firstly, we construct three comparable
baselines: i) Base_Pose refers to method using external pose features [20] as the
pedestrian representation. ii) Base_Max means directly choosing the maximum
value in normalized responses without referring to memory. iii) Base_RegL is
the method of position regularization loss [26].

As shown in Table 5, the method utilizing landmark features of OAFea obvi-
ously gains better performance. Thus, it is indeed crucial to involve occlusion
awareness in landmark representation. Meanwhile, the performance improves
obviously by comprehensively weakening the occluded landmark features, no
matter the method with OAScore or Base_Max. That is, a reasonable aware-
ness of occlusion indeed brings better performance. However, simply taking the
maximum value cannot accurately sense occlusion, but the OAScore referring



AONet: Attentional Occlusion-aware Network 33

Table 6. The performance of AONet with different numbers of landmarks on Occluded
Person ReID.

Methods Rank1 Rank5 Rank10 mAP

AONet (K =2) 64.3 79.7 84.5 52.3
AONet (K =4) 65.2 79.0 84.3 53.4
AONet (K =6) 66.5 79.4 83.8 53.1
AONet (K =8) 66.2 79.6 83.9 53.0
AONet (K =10) 65.7 79.8 84.3 52.7

Fig. 4. (a) Visualization of retrieval results. The 1st image in each row is the query,
and the next five images are returned images with descending ranking. Green and
red rectangles indicate correct and error results. (b) Visualization of landmarks in the
original pedestrian image. Each column of images refers to the visualization of a specific
landmark by its corresponding response map. (Color figure online)

to memorized features can effectively handle this problem with 2.2% and 0.8%
improvements on both Rank1 and mAP.

Besides, we evaluate the comparable efficiency of OLoss by the orthogonal
loss and RegL with the position regularization loss [26]. As shown in Table 5,
the OLoss does show obvious improvements on performance. The reason may
be that, the position regularization loss, while enabling different landmarks to
indicate different regions, does not guarantee attention to select discriminative
landmark features, which is however what our orthogonal constraint is good at.

Influence of Number of Landmarks. As shown in Table 6, the performance
improves at first as the number of landmarks increases, possibly because more
local features provide more robustness to occlusion. However, too many land-
marks lead the network to focus on more fine-grained local features, or even
background noise, which lacks sufficient discrimination for identification.

Visualization Analysis. We visualize the image retrieval results of the AONet
approach in Fig. 4(a). We get the correct image by AONet for both horizontal
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Table 7. Comparison of costs with the state-of-the-arts.

Methods FLOPs(G) #Params(M)

PGFA[ICCV19] 29.51 57.51

HOReID[CVPR20] 35.80 109.23

SORN[TCSVT20] 24.73 41.96

SGSFA[ACML20] 16.13 47.71

MoS[AAAI21] 12.57 24.22

AONet 6.22 30.22

and vertical occlusion, as well as to object and pedestrian occlusion. However,
when the effective region is too small, the retrieval easily makes mistakes. We
also visualize the landmark response map. As shown in Fig. 4(b), each landmark
focuses on a different unique semantic pattern.

Cost Evaluation. To more clearly quantify the advantages of our model over
other state-of-the-art models. As shown in Table 7, we compare the number
of model parameters “#Param" and floating-point operations “FLOPs", where
FLOPs are calculated at an input size of 256 × 128. Since the AONet does
not use any additional models, such as models of pose estimation and semantic
segmentation, it has a smaller time and space overhead. Besides, our AONet has
good parallel computing properties while not relying on any additional model,
so it is computed at the fastest speed.

5 Conclusion

Previous works for occluded person ReID often rely on external tasks, e.g., pose
estimation or semantic segmentation, to extract local features over fixed given
regions. In this paper, we propose an end-to-end Attentional Occlusion-aware
Network (AONet), including a Landmark Activation layer to extract the land-
mark features, and an Occlusion Awareness (OA) score to explicitly measure
the occlusion. Without any external information by extra tasks, we adaptively
extract discriminate anti-occlusion local features with the landmark patterns.
The OA is the focus of this paper, on the one hand, providing occlusion ref-
erence information to prevent landmark patterns from focusing on the wrong
region, and on the other hand, to generate occlusion awareness scores to reduce
the weight of the occluded landmark features in classification loss and image
matching.
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Abstract. Recognizing oracle characters, the earliest hieroglyph dis-
covered in China, is recently addressed with more and more attention.
Due to the difficulty of collecting labeled data, recognizing oracle char-
acters is naturally a Few-Shot Learning (FSL) problem, which aims to
tackle the learning problem with only one or a few training data. Most
current FSL methods assume a disjoint but related big dataset can be
utilized such that one can transfer the related knowledge to the few-
shot case. However, unlike common phonetic words like English letters,
oracle bone inscriptions are composed of radicals representing graphic
symbols. Furthermore, as time goes, the graphic symbols to represent
specific objects were significantly changed. Hence we can hardly find
plenty of prior knowledge to learn without negative transfer. Another
perspective to solve this problem is to use data augmentation algorithms
to directly enlarge the size of training data to help the training of deep
models. But popular augment strategies, such as dividing the characters
into stroke sequences, break the orthographic units of Chinese charac-
ters and destroy the semantic information. Thus simply adding noise to
strokes perform weakly in enhancing the learning capacity.

To solve these issues, we in this paper propose a new data augmen-
tation algorithm for oracle characters such that (1) it will introduce
informative diversity for the training data while alleviating the loss of
semantics; (2) with this data augmentation algorithm, we can train the
few-shot model from scratch without pre-training and still get a powerful
recognition model with superior performance to models pre-trained with
a large dataset. Specifically, our data augmentation algorithm includes a
B-spline free form deformation method to randomly distort the strokes of
characters but maintain the overall structures. We generate 20–40 aug-
mented images for each training data and use this augmented training set
to train a deep neural network model in a standard pipeline. Extensive
experiments on several benchmark datasets demonstrate the effective-
ness of our augmentor. Code and models are released in https://github.
com/Hide-A-Pumpkin/FFDAugmentor.

This paper is the final project of Neural Network and Deep Learning (DATA130011.01,
Course Instructor: Dr. Yanwei Fu; TA: Yikai Wang), School of Data Science, Fudan
University.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Wang et al. (Eds.): ACCV 2022, LNCS 13845, pp. 37–53, 2023.
https://doi.org/10.1007/978-3-031-26348-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26348-4_3&domain=pdf
http://orcid.org/0000-0003-0555-243X
http://orcid.org/0000-0002-6002-3779
http://orcid.org/0000-0001-6107-5063
http://orcid.org/0000-0002-6595-6893
https://github.com/Hide-A-Pumpkin/FFDAugmentor
https://github.com/Hide-A-Pumpkin/FFDAugmentor
https://doi.org/10.1007/978-3-031-26348-4_3


38 X. Zhao et al.

Keywords: Oracle character recognition · Few-shot learning · Data
augmentation · Free form deformation

1 Introduction

Oracle inscriptions are one of the earliest pictographs in the world. Dating back
to Shang Dynasty [1], ancient Chinese carved oracle characters on animal bones
or tortoise shells to record the present and divine the future. Due to the gradual
abandonment of oracle characters and the loss of oracle samples in the long
history, we now can only discover very limited oracle bone inscriptions, and
most of the characters are incompletely preserved. What is worse, as oracle
bone inscriptions were created by people of different ethnic groups in different
regions and were written on nail plates of various shapes and curvatures, the
oracle characters are hard to recognize and distinguish from each other.

In the early time, archaeologists [1] could identify some widely used and
easily identifiable characters. Then, with recognition models, researchers [2–4]
can identify some new characters after training on annotated oracle characters.
However, the ultimate goal of fully understanding the oracle inscription system
is far from attainable since there remain a lot of undecipherable oracle pieces.
For those deciphered words, mostly we only collect very limited characters [5]
that is far from enough to train a powerful recognition model. To go further, we
can formulate the oracle recognition task as a Few-Shot Learning (FSL) [6,7]
problem targeted at recognizing oracle characters in the limited data case.

FSL is a popular machine learning topic that aims to train a learning model
with only a few data available. Based on the motivation to solve the limited
training data issue, we can roughly classify FSL algorithms into the following
categories: (1) Learning to learn, or meta-learning algorithms [8–14], aims to
train the few-shot model to learn the capacity of learning from a few examples
by simulating the few-shot scenario in the training stage; (2) Data-augmentation
algorithms [5,15,16] directly expand the training set by generating new data
based on the few training samples; (3) Semi-supervised algorithms [17–23] have
the access to the additional unlabeled dataset and try to utilize this unlabeled
knowledge to help train the few-shot model.

However, most FSL algorithms assume the existence of related large labeled
datasets to pre-train the few-shot model. But as we do not have such datasets,
these algorithms are not suitable for the oracle character recognition problem.
Current algorithms to tackle the oracle character recognition problem in the FSL
pipeline mainly focus on data-augmentation, including using hierarchical repre-
sentation [3], dividing characters into structure and texture components [24],
converting characters to stroke vectors [5].Nevertheless, they still fail to solve
the problem of limited training data for their under-utilization of structured
information and the mining of stroke information is limited and costly.

In this paper, we propose a new data augmentation approach by adopting
Free Form Deformation (FFD) [25] which is initially used in the field of non-
rigid registration [26]. FFD deforms the image by manipulating an underlying
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Fig. 1. The oracle character ‘Ci’ (in the left column) is made up of two parts, an eight-
like character (in the middle column) and a knife-like radical (in the right column).
After the FFD transformation (from top to bottom), though the strokes are distorted,
the overall structure remains unchanged. We can still re-recognize the character ‘Ci’
based on them.

mesh of control points [25] and calculates the displacement rule for each pixel in
the image individually. When it is applied to oracle character images, each pixel
that makes up a stroke moves by their each displacement rule, which leads to the
distortion of strokes and the corruption of local information. Meanwhile, the two
adjacent pixels’ displacement rules are similar in general, which maintains the
consistency of radicals and stability of the global information (See Fig. 1 as an
example). By corrupting local information while maintaining global information,
FFD well preserves the radical features of oracle bone inscriptions and randomly
distorts stokes, making the augmented image more representative.

With this FFD Augmentor, we can now tackle the few-shot oracle char-
acters recognition by utilizing the online Free Form Deformation algorithm as
our augmentor and generating a bunch of augmented data from each annotated
training instance for each category. As the generated training data is of high
quality and diversity, we now make it possible to train the few-shot model in
a standard supervised manner with our generated data from scratch. To better
show the effectiveness of our FFD Augmentor, we select a powerful few-shot
training method called EASY [27], which is composed of widely used training
modules without specifically designed algorithms, and train the model with the
generated data in a standard pipeline to ensure that our proposed algorithm
can be utilized as a general module for the oracle recognition task. Extensive
experiments on benchmark datasets, Oracle-FS [5] and HWOBC [28], verify the
effectiveness of our proposed algorithm. We further conduct experiments on a
sketch dataset [29] to show that the effectiveness of our augmentor is not limited
to the oracle characters.

The main contributions of our work are as follows:

(1) To the best of our knowledge, we are the first to apply the non-rigid trans-
formation, namely FFD, to the field of data augmentation.
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(2) Our generated training data are diverse and informative such that the deep
model can be trained with generated data from scratch without the help of
an additional large unlabeled or labeled dataset.

(3) We demonstrate the effectiveness of our approach through comprehensive
experiments on Oracle-FS and HWOBC datasets, reaching a significant
accuracy improvement over competitors.

2 Related Works

2.1 Oracle Character Recognition

Here we mainly survey machine learning algorithms for oracle character recogni-
tion. Conventional researches [30–32] regarded the characters as a non-directional
graph and utilized its topological properties as features for graph isomorphism.
Guo et al. [3] proposed a hierarchical representation and released a dataset of
hand-printed oracle characters from 261 different categories.

In the deep learning era, neural networks gradually became the mainstream
recognition method. Yang et al. [33] studied several different networks and sug-
gested using the Gabor method for feature extraction. Zhang et al. [34] utilized
the nearest-neighbor classifier to reject unseen categories and configure new cat-
egories. Other models like capsule network [4] and generative model [24] are also
proposed to solve this task.

However, few researchers focus on few-shot learning of oracle character recog-
nition. Orc-Bert [5] converts character images to stroke vectors and learns the
stoke features from large unlabeled source data. The method requires large unla-
beled source data and the generated augmented stroke data performs average
compared with the benchmark. Instead, we show that a single oracle charac-
ter is informative enough to train the recognition model via our proposed data
augmentation algorithm without pretraining on related large datasets.

2.2 Few-Shot Learning

Few-Shot Learning (FSL) [35,36] aims to train a machine learning model with
only a few training data. Gidaris et al. [6] created an attention-based few-shot
classification weight generator with a small number of gradient steps. MAML [8]
searched for the best initial weights to accelerate the learning process reduc-
ing the risk of over-fitting. Chen et al. [37] applied self-supervised learning in
a generalized embedding network to provide a robust representation for down-
stream tasks. LEO [38] reduced the complexity by learning a low-dimension
model embedding and used the nearest neighbor criterion to classify. Chen et
al. [39] generated multiple features at different scales and selected the most
important local representations among the entire task under the complex back-
ground.

In this paper, we used the EASY [27] framework, which combined several
simple approaches like backbone training, and featured vectors projection in the
above literature, and reached the state-of-art performance in training without
huge computation cost.
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2.3 Data Augmentation Approaches

Traditional data augmentation methods are mainly focused on rigid transforma-
tion such as flipping [40], rotation [9], shearing [41] and cropping [40]. Blending
or occluding [42] parts of images is also widely used, but they require expert
domain knowledge to prevent critical information from being disrupted. In the
context of few-shot learning, some efficient data augmentation algorithms like
AutoAugment [43] are not applicable for the lack of large-scale labeled data.

Distinguished from the traditional image, the character image is regarded as
an intermediate between text and image. As an image, it retains textual features,
such as the ability to be reconstructed into a sequence of strokes. Han et al. [5]
captured the stroke order information of Chinese characters and utilized the pre-
trained Sketch-Bert model to augment few-shot labeled oracle characters. Yue
et al. [44] designed a dynamic dataset augmentation method using a Generative
Adversarial Network to solve the data imbalance problem. However, none of the
state-of-art data augmentation approaches addressed the problem of oracle bone
characters recognition from the overall structure.

As the ancestor of Chines characters, the oracle character is at least a logo-
graphic language and the upper-level orthographic units, like radicals, should
contain richer information. Simply introducing noise to strokes cannot enhance
or may even weaken the model’s ability to recognize radical components.

2.4 Non-Rigid Transformation

Non-Rigid transformation is a critical technique in the field of image registration,
which focuses on finding the optimal transformation from one input image to
another [26]. In the medical field, extensive research has been conducted on non-
Rigid transformation for its essential role in analyzing medical effects over time.
Existing non-rigid transformation techniques include AIR [45], Diffeomorphic
Demons [46], and FFD [47].

FFD is a commonly used algorithm for image registration [25]. The registra-
tion from moving image to fixed image is modeled by the combined motion of
a global affine transformation and a free-form deformation based on B-splines.
Compared with rigid transformation, FFD has a higher degree of freedom which
can better model the motion between two images. When applied to data aug-
mentation, this can also bring greater flexibility to enlarge the training dataset.

3 Methodology

3.1 Problem Formulation

Here we define the few-shot oracle character learning problem without related
large datasets for pre-training, thus degenerating to the standard supervised
learning manner. We are provided with labeled dataset, D, which comprises
the category set C, |C| = n. For a certain k-shot learning task, our augmentor
and classifier would only have access to k annotated training instances for each
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grid overlay

random offset

FFD Augmentororiginal image augmented data

Fig. 2. Illustration of our FFD Augmentor. We generate random offsets for each con-
trol point and construct a deformed image based on the recalculation of the world
coordinates of each vertex of the image.

category. We randomly sample k and q images for each category Ci ∈ C, i = 1, ...n
to construct the training set S and the evaluation set Q respectively. We aim to
train on S and generalize to Q. We take accuracy on Q as the evaluation metric.

3.2 Overview of Framework

As shown in Fig. 2, our data augmentation method, FFD Augmentor, consists
of several parts. For each image, we first create a local coordinate system by
splitting the whole image into local patches using grids. The grid vertexes are
used as the control points to define the local position of the neighboring pixels.
Then random offsets are generated to shift the control points, thus shifting the
neighboring pixels. Due to random offsets being used to shift control points, the
whole image is modified with destroyed local information.

Using our proposed FFD Augmentor, we generate several augmented data
for each training image and then store them to expand the training set. With
this expanded training set, we now can train the few-shot model from scratch.

3.3 FFD Augmentor

Though there are few studies on the composition of oracle characters, as the
ancestor of Chinese characters [48], oracle characters intuitively retain similar
characteristics. For example, compared with strokes, radicals contain richer infor-
mation. This motivates us to perform a data augmentation algorithm to generate
local diversity while preserving global structures.
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In non-rigid registration, researchers [25,49,50] applies FFD to achieve this
goal by calculates displacement rule for each pixel in the image individually.
When it is applied to oracle character images, each pixel that makes up a stroke
moves according to their each displacement rules. Thus it leads to the distortion
of strokes and the corruption of local information. On the other hand, thanks to
the continuity of these features and physical rules, the displacement rules for two
adjacent pixels are similar in general. Globally, the relative positions of radicals
remain consistent and the character’s structure is well preserved. See Fig. 1 for
an illustration. Hence in this paper, we adopt FFD to generate new training
data for few-shot oracle character recognition problem.

Free Form Deformation. As the oracle characters can be represented as a
grayscale image, we implement the 2D version of Free Form Deformation based
on B-splines [25]. Specifically, for the oracle character grayscale image x ∈ R

h×w,
we design a two-dimensional mapping

T : (x1, x2) → (x
′
1, x

′
2), (1)

to simulate the non-rigid transformation. We decouple T by a global deformation
mapping and a local deformation mapping as:

T(x1, x2) = Tglobal(x1, x2) + Tlocal(x1, x2). (2)

The global deformation mapping is a simple affine transformation defined as:

Tglobal (x1, x2) =
(

θ11 θ12
θ21 θ22

) (
x1

x2

)
+

(
θ13
θ23

)
, (3)

while the local deformation mapping is the major concern in our algorithm.
Specifically, we first distribute a series of grid points over the image at a certain
spacing based on the predetermined patch number. Denote the area of the oracle
character grayscale image as Ω = {(x1, x2) | 0 ≤ x1 ≤ X1, 0 ≤ x2 ≤ X2}, we
split it by control points Φ = {φi,j} into several patches of size n1×n2, where ni

is the distance between adjacent control points in the i-th dimension. Then we
can define the local deformation mapping as the product of B-splines functions:

Tlocal(x1, x2) =
3∑

l=0

3∑
m=0

Bt(u)Bm(v)φi+l,j+m, (4)

where i = �x1/n1� − 1, j = �x2/n2� − 1, u = x1/n1 − �x1/n1� , v = x2/n2 −
�x2/n2� , and the B-splines functions are defined as:

B0(u) =
(1 − u)3

6
, B1(u) =

3u3 − 6u2 + 4
6

,

B2(u) =
−3u3 + 3u2 + 3u + 1

6
, B3(u) =

u3

6
.

(5)

Then the augmentation comes when we randomly apply offsets with a pre-
defined range O = [Omin, Omax] to shift the control points. For a specific grid
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Algorithm 1. FFD Augmentor
Require: Training Image x, patch size of n1 × n2, offset range O.
Ensure: Augmented Image.
1: Initialize the new image with empty pixel value: x̃;
2: For each control point C, random initialize its degree of shift based on Eq. (6);
3: for all pixel xi = (xi,1, xi,2) in x do
4: Generate the new coordinates x̃i = (x̃i1, x̃i2) based on Eq. (4);

5: Use bi-linear interpolation algorithm to complete unvisited pixels in x̃.
6: return x̃

point φi,j = (xφi
, xφj

), we randomly initialize its degree of shift within the offset
range.

T : (xφi
, xφj

) → (xφi
+ Δxφi

, xφj
+ Δxφj

), Δxφi
,Δxφj

∈ O. (6)

Then for each pixel (x1, x2) within the image, we calculate the deformed
location based on Eq. (4) with the shifted control points deformed in Eq. (6).
After the displacement transformation rules for all pixels are determined, we
finally re-sample the image by pixels according to their rules to achieve non-
rigid deformation. If the transformed pixel coordinates exceed the image size,
the grayscale value will be replaced by 255. Finally, for the unvisited pixels in
the generated image, we use a bi-linear interpolation algorithm [51] to fill these
empty holes.

Augmentor. As mentioned in Sect. 1, non-rigid transformation can destroy
local information while maintaining global information. By generating multi-
ple FFD-augmented training samples, the model extracts and learns the struc-
tured information of the oracle characters, rather than relying on some particular
strokes to classify the character. This is critical in the task of few-shot oracle
character recognition since it will alleviate the problem of bias and overfitting
caused by the limited training samples.

Algorithm 1 illustrates the detailed pseudo-code for our FFD Augmentor.
An ablation study about the number of FFD-augmented training samples and
the selection of FFD hyperparameters will be further discussed in Sect. 4.3.

3.4 Training with FFD Augmentor

To show the effectiveness of the FFD Augmentor, we adopt a popular train-
ing algorithm, the Ensemble Augmented-Shot Learning method (EASY) [27] to
combine with our proposed FFD Augmentor.

Specifically, we test our algorithm on several widely used CNN architec-
tures, including ResNet-12 [52], ResNet-18, ResNet-20, and WideResNet [53],
respectively. For the FFD augmented training set, we also apply standard data
augmentation strategies, including cropping, flipping, and color jittering. When
training, each mini-batch is divided into two parts: the first part is input to the
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Table 1. Accuracy (%) of oracle characters recognition on Oracle-FS under all three
few-shot settings with classifiers ResNet18 including Orc-Bert, EASY with and without
FFD augmentor. Because we only share the ResNet18 classifier in common with Orc-
Bert, we compare with their best-performance method, i.e. Orc-Bert Augmentor with
point-wise displacement on ResNet18.

k-shot Orc-Bert EASY FFD + EASY

1 31.9 55.17 78.90

3 57.2 79.45 93.36

5 68.2 90.34 96.47

Table 2. Accuracy (%) of oracle characters recognition on Oracle-FS under all three
few-shot settings with different architectures. The Basic model is the pure model with-
out any augmentation method involved.

k-shot model Basic FFD+Basic EASY FFD + EASY

1 ResNet12 14.95 33.95 58.46 76.79

ResNet18 21.22 26.47 55.17 78.90

ResNet20 8.61 30.28 54.67 77.09

WideResNet 15.35 33.85 53.77 77.75

3 ResNet12 33.06 68.83 84.91 92.89

ResNet18 35.90 57.25 79.45 93.36

ResNet20 32.28 66.08 82.53 92.57

WideResNet 40.23 71.12 84.81 93.42

5 ResNet12 54.53 77.92 91.30 95.38

ResNet18 46.70 70.00 90.34 96.47

ResNet20 55.82 77.60 91.55 95.26

WideResNet 60.62 78.38 92.43 97.59

standard classifier with the feature augmentation strategy Manifold-MixUp [54];
the second part is with the rotation transformation and input to both heads. For
details on training the EASY model, we suggest to read the original paper [27].

4 Experiments

We conduct extensive experiments to validate the effectiveness of our FFD aug-
mentor and provide ablation studies to analysis each part of our algorithm.

4.1 Experimental Settings

Datasets. We demonstrate the effectiveness of our FFD Augmentor on Oracle-
FS [5] and HWOBC [28]. Oracle-FS contains 200 oracle character categories.
We run experiments on 3 different few-shot settings, including k-shot for k =
1, 3, 5 where for each category we only have access to k labeled training data.
To evaluate the performance, we randomly select 20 instances to construct the
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Table 3. Accuracy (%) of oracle characters recognition on HWOBC under 1-shot
setting with different architectures.

Model Basic FFD+Basic EASY FFD + EASY

ResNet12 14.92 55.72 65.24 98.53

ResNet18 15.73 38.43 41.85 98.97

ResNet20 7.65 54.63 52.32 98.60

WideResNet 10.2 63.37 62.16 99.52

testing dataset for each category. HWOBC consists of 3881 oracle character
categories, each containing 19 to 25 image samples. We randomly selected 200
categories, and each category is divided into 1-shot training sets and 15-sample
test sets. Because the accuracy of our model in the 1-shot setting is high enough,
we did not test on more k-shot settings.

Competitors. We mainly compare our results with Orc-Bert [5], the SOTA
algorithm for the few-shot oracle character recognition task. Orc-Bert masks
some strokes, predicts them by a pre-trained model and make additional noise
on each stroke to generate multiple augmented images. We also train EASY [27]
for both with FFD augmentor and without FFD augmentor to compare the
results.

Implementation Details. We implement FFD Augmentor training methods
using PyTorch [55]. The number of training epochs is 100 with a batch size of 64.
Unless otherwise specified, We follow the hyper-parameters for training EASY
in their default settings. We conducted experiments with the FFD Augmentor of
5 patch num, 11 max offset, and 30 augmented samples. For 1-shot and 3-shot,
we used a cosine scheduled learning rate beginning with 0.1, while we used a
learning rate of 0.01 for 5-shot. The images are resized to 50 × 50.

4.2 Evaluation of FFD Augmented Training

It can be clearly noticed in Table 1 that our FFD-based data augmentor can
defeat the state-of-the-art method by more than 30% under all few-shot settings.
Also can be seen in Table 2, our data augmentation method plays a decisive role
in improving accuracy.

On Oracle-FS, our 1-shot accuracy reaches 76.5% for all the classifiers, which
outperforms EASY without being augmented by 20%. Our 3-shot accuracy
achieved 93.42%, exceeding the accuracy of all the 5-shot models without FFD
augmentation. For the 5-shot setting, our model’s accuracy reaches 97.59% on
WideResNet.

On the HWOBC dataset, the effect of our data augmentation tool is more
prominent. We compare the result with EASY and Conventional Data Augmen-
tation. As seen from the Table 3, our FFD augmentor improves the accuracy
from the original 65.24% to 99.52% for the 1 shot setting.
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Fig. 3. Examples of oracle character images and the FFD-augmented samples.

4.3 Further Analysis of FFD Augmentor

Visualization. Here we provide more visualization of the oracle characters
and FFD augmented images in Fig. 3. Clearly, for all kinds of oracle characters,
the FFD Augmentor will consistently generate diverse and informative images.
Hence we can provide many realistic augmented images to alleviate the lack of
training data in the few-shot oracle character recognition task.

Ablation Study. In this part, we conduct more experiments to evaluate our
FFD augmentor, including the min-max offset, the number of patches, and aug-
mented samples. These experiments are running with ResNet18. To make our
results more accurate, all experiments on hyperparameters are conducted twice
and we average the results of the two experiments as the final accuracy.

(1)Max Offset Value: In our FFD augmentor, the random offset value was
generated through a uniform distribution in the interval between the minimal
and the maximal offset value. The maximal offset value is set as a hyper-
parameter while we negate it as the minimal offset. They together limit the
movement range of the offset. The closer they are, the smaller the deformation
of the image. In our experiment, we tested the maximum value from 0 to 15.
Max offset value of 0 indicates that no free form transformation is performed on
the original image, i.e., as an ablation experiment for our data augmentor.

(2)Num of Patches: The number of patches influences the number of control
points of the grid. The more patches in the FFD transformation, the more trans-
formation control points there are, and the more complex the deformation can
be. In our realization, we test the number of patches from 3, 5 to 7. Considering
the effectiveness of the transformation and the time overhead, we did not test
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Fig. 4. Illustration of num of patches and maximum offset difference.

Fig. 5. Left: Different combination of Patch numbers and max offsets varies in accu-
racy. Right: Num of Augmented Sample influences the model accuracy.

on more patch nums. The time of generating the augmented dataset is propor-
tional to the square of patch nums. When the number of patches increases to a
large amount, the enhancement effect of the picture is not obvious but will take
considerable time, much longer than the training cost.

Take Fig. 4 as an example, when the max offset value and num of patches are
both limited, the deformation is closer to rigid transformation and the overall
shape of the text remains unchanged. But when the num of patches and max-
imum offset value becomes too large, the deformation is so complex that the
overall structure is severely damaged and the oracle character is hard to iden-
tify. As max offset value and num of patches influence the deformation process
in different ways, we experimented on the trade-off between max offset value and
num of patches. The results are shown in Fig. 5. With the rise of the max offset
value, the accuracy of all patch nums increases. However, their accuracy begins
to decrease when the offset exceeds a certain threshold. As can be seen, the top
three accuracy combinations of patch Num and max offset is (3, 11), (5, 15) and
(7, 11).
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Table 4. Top-1 Accuracy under different learning rates in the 5-shot task.

Learning rate 0.1 0.05 0.01 0.00 0.001

Accuracy 95.82 96.31 96.47 89.08 87.05

Table 5. Top-1 Accuracy under different support samples with no FFD
augmentation.(k-shot=1).

Aug-sample 1 5 10 20 40

Accuracy 52.94 53.39 53.52 53.40 53.36

NumofAugmented Sample. We then experimented on the num of augmented
samples to figure out whether the larger num of augmented samples contributes to
the better performance of our model. Here, we mean generate num of augmented
images for each training image. For example, under the 3-shot setting, if the num
of Augmented Sample equals 30, we generate 90 augmented images.

Intuitively, with more augmented samples, the accuracy will be higher. How-
ever, the results of experiments (See Fig. 5) show that due to the limited number
of samples, too many augmented images will lead to overfitting, i.e., the test
accuracy will become lower with the decrease of training loss. Two FFD combi-
nations show an increasing trend followed by a decreasing trend and the growth
trend is also diminishing for the combination of 3 patches and 15 offset value.
When the number of augmented samples equals 30, the FFD combination of 5
patch num and 11 max offset reaches the maximum accuracy.

Besides, the computation time of data augmentation is a crucial factor to
be considered. FFD is a time-intensive transformation that increases with the
size of the image and the number of patches. The flaw of FFD is less fatal
in few-shot learning for a small number of images. Our FFD augmentor takes
about 0.4 to 0.5s to generate each image of size 50×50 for 5 patch num. Due to
the expensive time cost for data augmentation, we trade off both performance
and computation time. Combining all the results above, we find that with 5
patch num, 11 max offset and 30 augment samples, our model achieves the best
performance of 78.9% in 1-shot.

Learning Rate. Different learning rates affect the convergence speed and accu-
racy of the model. A low learning rate may cause the model to overfit the training
dataset or converge too slowly. A high learning rate may prevent the model from
convergence. We experimented on the influence of different learning rates under
different k-Shot settings. As shown in Table 4, for k=5, learning rate of 0.01
reaches the highest accuracy.

Num of Augmented Samples Using Random Crop. Our experiments
also test the number of image samples processed by random crop and flip before
backbone training. The results in Table 5 show that the accuracy rate is highest
when the size is 10, and there is a risk of overfitting when the size is larger.
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4.4 Applicability to Other Problems

Though our paper is intended to tackle oracle character recognition, the innova-
tive augmentor we proposed has much broader applications. To better demon-
strate its versatility, we here report more experiments on the sketch recognition
task. The task takes a sketch s as input and predicts its category label c. We
did the toy experiment on the sketch dataset [29], which contains 20,000 unique
sketches evenly distributed over 250 object categories, with the same dataset
setting as before. The experiment results in Table 6 demonstrate superior per-
formance after adopting the FFD Augmentor, which is 15% higher than the
EASY without FFD augmentation. More applications of the augmentor will be
explored in future works.

Table 6. Accuracy (%) of sketch recognition on the sketch dataset. The FFD Aug-
mentor is with 5 patch num, 11 max offset, and 30 augmented samples.

k-shot Model EASY FFD + EASY

1 ResNet12 35.38 49.75

ResNet18 38.51 54.27

ResNet20 30.48 53.91

WideResNet 40.27 55.17

3 ResNet12 61.72 71.38

ResNet18 55.03 73.38

ResNet20 62.21 75.23

WideResNet 59.22 76.04

5 ResNet12 72.98 80.76

ResNet18 67.00 81.77

ResNet20 69.49 80.87

WideResNet 70.87 84.38

5 Conclusion

We address the task for oracle character recognition with a few labeled training
samples in this study. We propose a new data augmentation tool for few-shot
oracle recognition problems, FFD Augmentor, which is based on the free form
deformation method commonly used the registration. FFD Augmentor generates
a series of augmented images by random FFD on the original images for the
classifier for training. Numerous experiments in three few-shot scenarios support
the efficacy of our FFD Augmentor. Our generated training data are so efficient
and informative that the deep model can be trained with generated data from
scratch, without any additional large unlabeled dataset for pretraining. Our
model has broad prospects in the field of written character recognition field. A
wider range of applications will be explored in future studies.
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Abstract. Metric learning aims to build a distance metric typically by
learning an effective embedding function that maps similar objects into
nearby points in its embedding space. Despite recent advances in deep
metric learning, it remains challenging for the learned metric to general-
ize to unseen classes with a substantial domain gap. To tackle the issue,
we explore a new problem of few-shot metric learning that aims to adapt
the embedding function to the target domain with only a few annotated
data. We introduce three few-shot metric learning baselines and propose
the Channel-Rectifier Meta-Learning (CRML), which effectively adapts
the metric space online by adjusting channels of intermediate layers.
Experimental analyses on miniImageNet, CUB-200-2011, MPII, as well
as a new dataset, miniDeepFashion, demonstrate that our method con-
sistently improves the learned metric by adapting it to target classes and
achieves a greater gain in image retrieval when the domain gap from the
source classes is larger.

1 Introduction

The ability of measuring a reliable distance between objects is crucial for a vari-
ety of problems in the fields of artificial intelligence. Metric learning aims to
learn such a distance metric for a type of input data, e.g., images or texts, that
conforms to semantic distance measures between the data instances. It is typ-
ically achieved by learning an embedding function that maps similar instances
to nearby points on a manifold in the embedding space and dissimilar instances
apart from each other. Along with the recent advance in deep neural networks,
deep metric learning has evolved and applied to a variety of tasks such as image
retrieval [31], person re-identification [6] and visual tracking [34]. In contrast
to conventional classification approaches, which learn category-specific concepts
using explicit instance-level labels for predefined classes, metric learning learns
the general concept of distance metrics using relational labels between samples
in the form of pairs or triplets. This type of learning is natural for information
retrieval, e.g., image search, where the goal is to return instances that are most
similar to a query, and is also a powerful tool for open-set problems where we
match or classify instances of totally new classes based on the learned metric.
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Fig. 1. Few-shot classification vs. few-shot metric learning. (a) A few-shot
classifier learns to construct a decision boundary between support examples of different
classes (red and blue). The query (white) is correctly classified as the red class, but fails
to be placed away from blue samples. (b) A few-shot metric learner learns improved
distance relations by adapting the embedding space online using the support examples,
where the contour line represents the points with the same distance from the query.

For this reason, metric learning has focused on generalization to unseen classes,
that have never been observed during training [15,31,44]. Despite recent progress
of deep metric learning, however, it remains exceedingly challenging for the
learned embedding to generalize to unseen classes with a substantial domain
gap.

To bridge the generalization gap in metric learning, we investigate the prob-
lem of few-shot metric learning that aims to adapt an embedding function on
the fly to target classes with only a few annotated data. While the problem of
few-shot learning has been actively studied for classification [21,30], the problem
for metric learning has never been directly investigated so far to the best of our
knowledge. Few-shot metric learning and classification problems share the goal
of adapting to scarce labeled data, but diverge in terms of their training objec-
tives and evaluation protocols, thus requiring different approaches. As illustrated
in Fig. 1, few-shot classification focuses on forming a decision boundary between
samples of different classes and often fails to measure the relative distance rela-
tions between the samples, which are crucial for a retrieval task. Our analysis
also shows that the improvement of classification accuracy does not necessarily
lead to that of retrieval accuracy (Table 7). While one of the main approaches
to few-shot classification is to learn a metric space for nearest-neighbor classi-
fication to generalize to unseen classes [7,18,21,24,33,38,39,45–47], it exploits
the learned metric in testing without adapting the embedding space to the few-
shot instances online. In this sense, metric-based few-shot classification is very
different from few-shot metric learning that we investigate in this paper.

In this work we introduce three baselines for few-shot metric learning by
adapting existing methods and propose the Channel-Rectifier Meta-Learning
(CRML), which effectively adapts the metric space online by adjusting chan-
nels of intermediate layers. We compare them to conventional metric learning
as well as few-shot classification counterparts on miniImageNet [30], CUB-200-
2011 [40], and MPII [23]. We also introduce a new multi-attribute dataset for
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image retrieval, dubbed miniDeepFashion, where two instances may have an
opposite similarity relationship over multiple attributes (perspectives), and thus
embedding functions are required to adapt to target attributes. Experiments
show that CRML as well as the three baselines significantly improve image
retrieval quality by adapting the model to target classes. Notably, such improve-
ment is significant when the gap between training and testing domains arises,
which conventional metric learning often fails to bridge.

2 Related Work

2.1 Metric Learning

Metric learning has been studied extensively in the past decades [32], and has
shown a great success recently using deep embedding networks trained with new
losses. One of the widely studied losses is the pair-wise loss [8,31,35,43] which
minimizes the distance between two instances that have the same label and
separates them otherwise. Such losses include contrastive loss [4,8,12], triplet
loss [31,41], lifted structured loss [35], and multi-similarity loss [43]. Unlike pair-
based losses, proxy-based losses [2,19,28,29] associate proxy embeddings with
each training class as a part of learnable parameters and learn semantic dis-
tance between an instance and the proxies. These previous methods, which we
refer to as conventional metric learning, emphasize the generalization perfor-
mance on unseen classes that have never been observed during training. However,
they often suffer from a significant gap between source and target classes [27].
Although it is very practical to utilize a few labeled data from the target classes
on the fly, online adaptation of the metric has never been explored so far to the
best of our knowledge. Recently, Milbich et al. [27] showcase the effect of few-shot
adaptation as a mean of out-of-distribution deep metric learning, their work does
not present a problem formulation and a method dedicated to few-shot learn-
ing while our work does both of them. In many practical applications of metric
learning, a metric can also be learned with continuous labels of similarity , which
are more informative but costly to annotate [11,20,23,36]. Online adaptation of
metric learning may be particularly useful for such a scenario where we need to
adapt the metric to the target classes with their few yet expensive labels.

2.2 Few-shot Classification

Few-shot learning has been actively investigated for classification problems, and
recent work related to ours is roughly categorized into three types: metric-based,
optimization-based, and transfer-learning methods. The key idea of metric-based
methods [7,18,21,24,33,38,39,45–47] is to learn an embedding space via episodic
training so that the class membership of a query is determined based on its near-
est class representations in the embedding space. Although the metric-based
few-shot classification and few-shot metric learning share the terminology “met-
ric”, they clearly differ from each other in terms of their learning objectives and
practical aspects. While metric-based few-shot classifiers construct a decision
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boundary using a learned metric without online adaptation of embeddings, few-
shot metric learners learn improved metric function by adapting the embeddings
online. In this aspect, N -way 1-shot retrieval task, proposed in Triantafillou et
al. [38], is different from our task, few-shot metric learning. The N -way 1-shot
retrieval task in [38] does not perform any online adaptation of embedding in
the inference time; thus, it is exactly the same as the conventional deep metric
learning. In this work, we focus on instance retrieval problems on an adaptive
embedding space of a few examples, while class discrimination is out of our
interest.

The optimization-based few-shot classification methods [10,30,37] learn how
to learn a base-learner using a few annotated data. While two aforementioned
lines of work follow meta-learning frameworks, recent studies suggest that the
standard transfer learning is a strong baseline for few-shot classification [5,9,
16,25,42]. Such transfer learning methods pre-train a model using all available
training classes and leverage the model for testing.

The contribution of this paper is four-fold:

– We introduce a new problem of few-shot metric learning that aims to adapt
an embedding function to target classes with only a few annotated data.

– We present three few-shot metric learning baselines and a new method,
Channel-Rectifier Meta-Learning (CRML), which tackles the limitations of
the baselines.

– We extensively evaluate them on standard benchmarks and demonstrate that
the proposed methods outperform the conventional metric learning and few-
shot classification approaches by a large margin.

– We introduce miniDeepFashion, which is a challenging multi-attribute
retrieval dataset for few-shot metric learning.

3 Few-shot Metric Learning

The goal of few-shot metric learning is to learn an embedding function for target
classes with a limited number of labeled instances. In this section, we first revisit
conventional metric learning, and then introduce the problem formulation and
setup of few-shot metric learning.

3.1 Metric Learning Revisited

Let us assume data X of our interest, e.g., a collection of images. Given an
instance x ∈ X , we can sample its positive example x+, which is from the same
class with x, and its negative example x−, which belongs to a different class from
x. The task of metric learning is to learn a distance function d such that

∀(x, x+, x−), d(x, x+; θ) < d(x, x−; θ). (1)

Deep metric learning solves the problem by learning a deep embedding func-
tion f(·, θ), parameterized by θ, that projects instances to a space where the
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Fig. 2. The problem formulation of few-shot metric learning as an episodic training.

Euclidean distance is typically used as a distance function d:

d(x, x′; θ) = ‖f(x; θ) − f(x′; θ)‖22. (2)

Note that metric learning focuses on unseen class generalization. The con-
ventional setup for metric learning [35] assumes a set of training classes Ctr

and its dataset Dtr = {(xt, yt)|yt ∈ Ctr}t that contains labeled instances xt

of the training classes. The task of metric learning then is to learn an embed-
ding model using the dataset Dtr so that it generalizes to a dataset of unseen
classes Dun = {(xu, yu)|yu ∈ Cun}u, which contains instances from the classes
not observed in training, i.e., Ctr ∩ Cun = ∅.

3.2 Problem Formulation of Few-shot Metric Learning

In contrast to the conventional metric learning, few-shot metric learning uses
annotated instances of the target classes (thus, not totally unseen any more) but
only a few instances per class, which is reasonable in most real-world scenarios.
For simplicity and fair comparison, we applied N -way K-shot setting. Let us
assume a target class set C, which contains N classes of our interest, and its
support set S = {(xs, ys)|ys ∈ C}NK

s=1 , which contains K labeled instances for
each of the target classes; K is supposed to be small. The task of N -way K-shot
metric learning is to learn an embedding model using the support set S so that
it generalizes to a prediction set P = {(xp, yp)|yp ∈ C}M

p=1, which contains M
unseen instances, i.e., S ∩ P = ∅, from the target classes. The generalization
performance is evaluated using instance retrieval on P.

Our goal is to learn such a few-shot metric learning model using a set of
labeled instances from non-target classes, which can be viewed as a meta-learning
problem. In training a few-shot metric learning model, we thus adopt the episodic
training setup of meta-learning [10,30,33,39] as illustrated in Fig. 2. In this setup,
we are given a meta-train set Dmtr and a meta-validation set Dmvl. They both
consist of labeled instances from non-target classes but their class sets, Cmtr and
Cmvl, are disjoint, i.e., C ∩ Cmtr = C ∩ Cmvl = Cmtr ∩ Cmvl = ∅.

A meta-train episode is constructed from Dmtr by simulating a support set
and its prediction set; (1) a support set Smtr is simulated by sampling N classes
from Cmtr then K instances for each of the N classes, and (2) a prediction set
Pmtr, which is disjoint from Smtr, is simulated by sampling other K ′ instances
for each of the N classes. A meta-validation episode is constructed from Dmvl
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likewise. The meta-trained few-shot metric learning model is tested on meta-test
set E = {(Sm,Pm)}m from the target classes C.

4 Methods

We introduce three baselines for few-shot metric learning (Sect. 4.1–4.3) by
adapting existing few-shot learning methods, representative for few-shot classi-
fication and appropriate for few-shot metric learning in the sense that it adapts
the embedding spaces online. We then discuss the limitations of the baselines
and propose our method that overcomes the limitations (Sect. 4.4).

4.1 Simple Fine-Tuning (SFT)

As the first simple baseline for few-shot metric learning, we use the standard
procedure of inductive transfer learning. In training, the embedding model f is
trained on meta-training set Dmtr from scratch with a metric learning loss; this
is done in the same way with conventional metric learning, not involving any
episodic training. In testing with an episode (S,P), the trained model f(x; θ0)
is simply fine-tuned using the target support set S by computing gradients with
respect to a metric learning loss on S:

θ′ = θ0 − α∇θL(S; θ0). (3)

After fine-tuning, the model is tested on P. We choose the number of updates
that shows the highest performance on the (meta-)validation set.

4.2 Model-Agnostic Meta-Learning (MAML)

As the second baseline for few-shot metric learning, we employ MAML [10],
which meta-learns a good initialization for few-shot adaptation via episodic train-
ing. Given a meta-train episode (Smtr

k ,Pmtr
k ), the meta-training process consists

of inner and outer loops. In the inner loop, the parameters of a base-learner are
updated using a meta-learner and the support set Smtr

k . In MAML, the base-
learner corresponds to the embedding model f , and the meta-learner corresponds
to the initializer θ0 for the embedding model. The inner loop updates the base
learner using Smtr

k by a few gradient descent steps:

θ1 = θ0 − α∇θL(Smtr
k ; θ0), (4)

where α is the step size of inner-loop updates. In the outer loop, the meta-learner
is updated using the loss of the updated base-learner on the prediction set Pmtr

k :

θ′
0 = θ0 − η∇θL(Pmtr

k ; θ1), (5)

where η is the step size of outer-loop updates. This meta-optimization with
episodic training seeks to learn the initialization of the embedding model that
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generalizes well to unseen classes. For computational efficiency, we use the first-
order approximation of meta-gradient update as in [10].

The meta-testing procedure with an episode (S,P) is the same as that of the
inner loop; the meta-trained model f(x; θ′

0) is evaluated by fine-tuning it on S
with a few gradient steps and testing it on P. We choose the number of steps
that shows the highest performance on the Dmvl.

4.3 Meta-Transfer Learning (MTL)

As the third baseline, we adapt MTL [37] for few-shot metric learning. MTL first
pre-trains an embedding model f on the meta-training set Dmtr and then con-
ducts an optimization-based meta-learning process while freezing all the layers
except for the last fully-connected one. Here, the base-learner is the last fully-
connected layer ψ and the meta-learner consists of two groups: a set of channel
scaling/shifting parameters Φ = {(γl, βl)}l and the initialization of the last fully-
connected layer ψ0. The channel-scaling/shifting parameters are applied to the
frozen convolutional layers of the embedding model f so that the parameters of
each conv layer are scaled by γl and shifted by βl:

Convl
CSS(X;W l, bl, γl, βl) = (W l � γl) ∗ X + (bl + βl), (6)

where W l and bl are the weight and bias of each convolution layer, � is channel-
wise multiplication, and ∗ is convolution. For example, if the 3 × 3 convolution
kernel is size of 128 × 64 × 3 × 3, then channel-scaling parameter is size of
128 × 64 × 1 × 1.

In the inner loop of the meta-training, the last fully-connected layer is fine-
tuned on Smtr

k from the initialization ψ0. In the outer loop, the set of channel-
scaling/shifting parameters Φ and the initialization of the last fully-connected
layer ψ0 are meta-updated using the prediction loss.

In meta-testing with an episode (S,P), following the process of the inner
loop, only the last layer ψ is updated via a few gradient steps from the meta-
learned initialization ψ0 using S, and the fine-tuned model is tested on P.

4.4 Channel-Rectifier Meta-Learning (CRML)

In this subsection we discuss limitations of the aforementioned baselines and
then propose a simple yet effective method for few-shot metric learning.

The main challenge in few-shot metric learning is how to effectively adapt
the vast metric space using only a few examples while avoiding the danger of
overfitting; as expected, the issue of overfitting is particularly critical in few-shot
learning since only a few annotated examples are given for adaptation online.
Updating all learnable parameters during meta-testing, as typically done in sim-
ple fine-tuning (Sect. 4.1) and MAML (Sect. 4.2), often causes quick over-fitting.
A reasonable alternative is to fine-tune a part of the network only, e.g., the out-
put layer as in MTL (Sect. 4.3), with all the other parts frozen. This partial
update strategy is shown to be effective for classification problems where class
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Algorithm 1. Channel-Rectifier Meta-Learning
Input: Meta training set Dmtr, learning rate α, η, pre-trained embedding model f
Output: The set of initialization of channel-scaling/shifting parameter Φ0 =
{(γl

0, β
l
0)}l

1: Initialize γl ← 1, βl ← 0
2: for (Smtr

k , Pmtr
k ) ∈ Dmtr do

3: Φ1 ← Φ0 − α∇ΦL(Smtr
k ; f, Φ0) // Inner loop

4: Φ0 ← Φ0 − η∇ΦL(Pmtr
k ; f, Φ1) // Outer loop

5: end for

decision boundaries can be easily affected by the specific part. In metric learn-
ing, however, fine-tuning the output layer or other specific layer online turns
to hardly change the metric space, i.e., distance relations among embeddings
(Sect. 5.2).

To tackle the issue, we propose the Channel-Rectifier Meta-Learning (CRML)
that meta-learns how to rectify channels of intermediate feature layers. The main
idea is inspired by channel scaling/shifting of MTL (Eq. (6)), which is shown to
be effective in adapting pretrained layers but never used in online adaptation.
Unlike MTL, we propose to leverage the channel scaling/shifting module, dubbed
channel rectifier, for online adaptation. In other words, we set the channel recti-
fier Φ = {(γl, βl)}l as a base-learner and its initialization Φ0 as a meta-learner. In
this setup, we pre-train an embedding model f on the meta-training set Dmtr and
all the pre-trained parameters are frozen during the subsequent meta-learning
process. Instead, in the meta-training stage, we update the channel rectifier Φ in
the inner loop (Eq. (4)) while updating the initialization of the channel rectifier
Φ0 in the outer loop. This meta-learning process of CRML is summarized in
Algorithm 1, where we describe a single-step inner loop with meta-batch of size
1 for the sake of simplicity.

In meta-testing with an episode (S,P), only the channel rectifier Φ is fine-
tuned by the support set S with a few gradient steps from the learned initializa-
tion Φ0, and the fine-tuned model is tested on P. Note that the CRMLallows the
channel rectifier to effectively exploit the support set to adapt the embedding
function online.

5 Experiments

5.1 Experimental Settings

Datasets and Scenarios. We evaluate CRML and three baselines on two
standard few-shot learning datasets, miniImageNet [30] and CUB-200-2011 [40].
The miniImageNet dataset is a subset of the ImageNet [22] and consists of 60,000
images categorized into 100 classes with 600 images each. We use the splits
divided into 64/16/20 classes for (meta-)training (meta-)validation, and (meta-
)testing, which has been introduced by [30]. The CUB-200-2011 (CUB) is a fine-
grained classification dataset of bird species. It consists of 200 classes with 11,788
images in total. Following the evaluation protocol of [14], the split is divided into
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100/50/50 species for (meta-)training, (meta-)validation, and (meta-)testing. We
also use the MPII dataset, a human pose dataset, to train the metric learning
model with continuous labels. Following the split of [23], 22,285 full-body pose
images are divided into 12,366 for (meta-)training and 9,919 for (meta-)testing.
Following [20], the label for a pose pair is defined as a pose distance, the sum
of Euclidean distances between body-joint locations. To verify the influence of
the domain gap between the source and the target classes, we conduct cross-
domain experiments [5], which is designed to have a significant domain gap
between training and evaluation; (meta-)training set consists of all samples in
miniImageNet where each (meta-)validation and (meta-)test set consists of 50
classes from CUB. Lastly, we propose a new multi-attribute dataset for few-shot
metric learning, dubbed miniDeepFashion. The miniDeepFashion is built on
DeepFashion [26] dataset, which is a multi-label classification dataset with six
fashion attributes. It consists of 491 classes and the number of all instances in
the dataset amounts to 33,841. The details of miniDeepFashion is in Sect. 5.5.

Evaluation Metrics. We use two standard evaluation metrics, mAP (mean
value of average precision) [3] and Recall@k [17], to measure image retrieval
performances. Recall@k evaluates the retrieval quality beyond k nearest neigh-
bors while mAP evaluates the full ranking in retrieval. Since the MPII dataset for
the human pose retrieval is labeled with continuous real values, we employee two
metrics defined on continuous labels following [20]: mean pose distance (mPD)
and a modified version of normalized discounted cumulative gain (nDCG). The
mPDk evaluates the mean pose distance between a query and k nearest images.
The modified nDCGk evaluates the rank of the k nearest images and their rel-
evance scores. The details about evaluation metrics are specified in the supple-
mentary material.

Implementation Details. We use ResNet-18 [13] for the main backbone from
scratch. We append a fully-connected layer with the embedding size of 128 fol-
lowed by l2 normalization on top of the backbone. We use the multi-similarity
loss [43] for training all the baselines and ours, CRML. For the human pose
retrieval task on the MPII, we use ResNet-34 with the embedding size of 128,
which is pre-trained on ImageNet [22] for a fair comparison with [20]. We fine-
tune the network with log-ratio loss [20] using from 25 to 300 pairs out of all
possible

(
12366

2

) ≈ 7.6×107 pairs. Complete implementation details are specified
in the supplementary material.

5.2 Effectiveness of Few-shot Metric Learning

Few-shot Metric Learning is effective on Discrete-Label Benchmarks.
We first compare few-shot metric learning to conventional metric learning (DML)
in Tables 1, 2, and 3. All the few-shot metric learning methods consistently out-
perform DML not only on the 5-way 5-shot setting, which is standard for few-
shot learning but also on the full-way 5-shot setting, which is standard for image
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Table 1. Performance on miniImageNet.
Method 5-way 5-shot 20-way 5-shot

mAP R@1 R@2 R@4 mAP R@1 R@2 R@4

DML 46.9 73.5 84.1 91.2 21.0 49.2 62.6 74.2

FSMLSFT 63.3 78.6 85.7 91.8 29.9 52.6 65.1 75.3

FSMLMAML 65.9 79.8 87.5 92.2 28.6 52.7 65.6 76.3

FSMLMTL 56.5 77.2 86.7 92.6 24.0 50.0 64.6 76.2

CRML 69.2 83.2 89.9 93.8 30.7 56.3 68.6 78.5

Table 2. Performance on CUB-200-2011.
Method 5-way 5-shot 50-way 5-shot

mAP R@1 R@2 R@4 mAP R@1 R@2 R@4

DML 57.8 81.4 88.6 93.6 26.3 51.8 62.5 72.2

FSMLSFT 79.9 87.7 91.6 93.8 31.1 55.3 66.2 74.8

FSMLMAML 82.0 89.5 93.2 95.4 33.2 54.6 66.3 75.7

FSMLMTL 71.9 86.2 91.4 94.5 30.2 54.3 65.2 73.6

CRML 82.7 90.0 93.5 95.5 33.9 58.1 68.4 76.5

Table 3. Performance on cross-domain.
Method 5-way 5-shot 50-way 5-shot

mAP R@1 R@2 R@4 mAP R@1 R@2 R@4

DML 36.2 57.5 73.2 86.1 6.1 19.6 29.0 41.1

FSMLSFT 49.4 65.2 77.1 86.0 9.8 24.1 35.2 47.8

FSMLMAML 51.5 67.0 78.8 87.2 10.0 23.7 35.4 48.8

FSMLMTL 40.3 62.7 28.7 41.1 6.8 20.0 29.9 42.8

CRML 56.4 71.0 81.5 88.9 10.9 27.0 38.3 51.1

Table 4. Performance on miniDeep
Fashion.
Method 5-way 5-shot 20-way 5-shot

mAP R@1 R@2 R@4 mAP R@1 R@2 R@4

DML 31.8 50.3 65.8 80.2 11.3 26.1 37.3 50.2

FSMLSFT 35.2 51.3 66.1 79.8 12.5 26.4 37.8 50.4

FSMLMAML 38.2 53.5 67.6 80.2 13.3 27.7 39.1 52.1

FSMLMTL 35.2 52.2 66.8 79.9 12.3 26.8 38.0 50.6

CRML 38.3 50.7 66.3 80.2 13.0 27.8 39.1 52.0

retrieval. The result also shows that only five shots for each class is enough to
boost the image retrieval quality regardless of the number of classes to retrieve.
Such improvement is clear not only in Recall@k, i.e., the measurement of top-
k nearest neighbors, but also in mAP, i.e., the quality of all distance ranks.
More importantly, the proposed CRML outperforms all baselines in the most
settings, improving over MAML and SFT baselines by a large margin on the
miniImageNet and the cross domain setting. CRML is trained to rectify the
base feature maps by learning a small set of channel scaling and shifting param-
eters and thus effectively avoids overfitting to the few-shot support set from an
unseen domain. In contrast, both the MAML and the SFT baselines update all
parameters in the embedding functions online, thus being vulnerable to overfit-
ting to the small number of support set. Note that the worst model is the MTL
baseline, which fine-tunes the last fully-connected layer while all the other layers
frozen, suggesting that fine-tuning only a single output layer in the embedding
function is insufficient for online adaptation. Note that simple fine-tuning (SFT)
often performs comparable to meta-learning baselines (MAML and MTL) as
recently reported in transfer learning based few-shot learning work [5].

Few-shot Metric Learning is Effective on Continuous-Label Bench-
marks. We also evaluate few-shot metric learning on the human pose retrieval
on MPII to demonstrate its applications and show its effectiveness. Given a
human image with a certain pose, the goal of the human pose retrieval is to
retrieve the most similar image of a human pose, where the supervisions in
MPII consist of a continuous value on a pair-wise similarity. Since such labels
are expensive to collect, few-shot learning is a practical solution for this prob-
lem, while the standard image classification approach is unlikely to applied due
to the pair-based form of supervisions. Table 5 summarizes the retrieval per-
formances with increasing numbers of the pair-wise supervisions. The retrieval
performance gradually improves as the number of labels increase, although the
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Table 5. Performance on MPII [1].
For nDCG1, the higher the better, and
for mPD1, the lower the better. † and
‡ denotes the performances from [23]
and [20].

Metric #(pair labels used)

0 25 50 100 200 300 76M† 76M‡

nDCG1 40.4 41.2 41.5 41.9 42.4 43.0 70.8 74.2

mPD1 31.5 30.9 30.8 30.7 30.3 29.9 17.5 16.5

Table 6. Adaptation growth rate1 (%) of
CRMLon three datasets. The models are
trained and evaluated in the 5-way 5-shot
setting on each dataset.

Metric → mAP (%) recall@1 (%)

Dataset → CUBmini cross CUBmini cross

before adapt 72.2 58.1 41.8 87.5 80.7 65.3

after adapt 82.7 69.2 56.4 90.0 83.2 71.0

growth rate (%) 14.5 19.0 34.8 2.8 3.1 8.7

source classes (object classes in ImageNet [22]) used for pre-training deviate
from the target classes of human poses. Few-shot adaptation achieves 7.7% of
the state-of-the-art performance [20] trained with full supervisions using only
0.00039% of supervisions.

Please refer to the supplementary material for qualitative visualizations of
our method and more experiments about effectiveness of few-shot metric learning
with 1) 10 shots, 2) additional metric learning losses, 3) qualitative results.

5.3 Influence of Domain Gap Between Source and Target

To verify the influence of the domain gap between the source and the target
classes, we conduct cross-domain experiments. Table 3 shows the results of the
5-way and 50-way 5-shot experiments on the cross-domain setting. Due to the
substantial domain gap between the source and target classes, the performances
are much lower than those on CUB experiment in Table 2. However, the perfor-
mance improvement is between 1.5 and 2 times higher than that of CUB. We
observe that CRML results in remarkable improvement, which implies CRML is
learned to properly rectify the base features adapted to given a support set.

We investigate the correlation between domain gap and effects of few-shot
adaptation. For miniImageNet, we randomly sample 60 instances from each
target class in to match the prediction set size equal to that of CUB for a fair
comparison. Note that the CUB is fine-grained thus has the smallest domain gap,
while the cross-domain setting has the biggest. For each dataset, we measure
the ratio of performance improvement from online adaptation and refer to it as
adaptation growth rate. As shown in Table 6, the growth rate increases as the
domain gap arises. It implies that few-shot metric learning is more effective when
the target classes diverge more from the source classes.

5.4 Few-shot Metric Learning vs. Few-shot Classification

To verify the differences between few-shot metric learning and few-shot classifi-
cation, we compare them both in image retrieval and classification. We evaluate
different types of few-shot classification methods for comparison: transfer-based
(Baseline [5], Baseline++ [5]), optimization-based (MAML [10]), and metric-
based (MatchingNet [39], ProtoNet [33], FEAT [45]) methods. Note that as
mentioned earlier, unlike the transfer-based and optimization-based methods,
the metric-based ones in their original forms do not use online adaptation to
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Table 7. Classification and image retrieval performances of few-shot classification and
few-shot metric learning methods on miniImageNet in a 5-way 5-shot setting. TTA
stands for test-time adaptation via gradient descents.

Method Classification Image retrieval
Accuracy Recall@1 mAP

Transfer-based few-shot classification
Baseline [5] 62.21 74.04 53.14
Baseline++ [5] 74.88 78.97 65.22
Metric-based few-shot classification
MatchingNet [39] 67.42 69.70 51.10
+TTA 71.50 71.05 52.51
ProtoNet [33] 74.46 71.04 51.73
+TTA 77.15 71.89 51.78
FEAT [45] 80.37 79.15 49.73
+TTA 80.59 79.31 51.72
Optimization-based few-shot classification
MAML [10] 68.80 75.81 57.03
Few-shot metric learning
FSMLSFT 69.92 79.14 65.22
FSMLMAML 72.69 79.77 65.86
FSMLMTL 70.34 77.19 56.50
CRML 76.64 83.22 69.15

the given support on test time. For a fair comparison, we thus perform add-on
online adaptation, which is denoted by TTA, for the metric-based methods by
a few steps of gradient descent using the support set.

We observe that there is little correlation between the classification accuracy
and the image retrieval performances as shown in Table 7. All the few-shot metric
learning methods outperform few-shot classification methods on image retrieval
in terms of Recall@1 and mAP, while their classification accuracies are lower
than those of few-shot classification methods. Interestingly, only Baseline++
shows competitive results with few-shot metric learning on image retrieval; we
believe it is because the learned vectors in Baseline++ behave similarly to prox-
ies in proxy-based metric learning methods. The results imply that few-shot
classification learning and few-shot metric learning are distinct and result in dif-
ferent effects indeed. Note that even metric-based few-shot classification is not
adequate for organizing the overall metric space, and additional test-time adap-
tation contributes insignificantly to improving the image retrieval performances.

5.5 Results on miniDeepFashion

Our design principle for the miniDeepFashion is to make a binary (simi-
lar/dissimilar) relationship between two instances inconsistent across the non-
target and target classes. We thus split six attributes, each of which indi-
cates a semantic perspective that categorizes instance into (meta-)training,
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Table 8. The split of
miniDeep Fashion.

Splits attribute #instances

(#classes)

Cmtr fabric (99) 27,079

part (95)

style (127)

Cmvl shape (76) 7,600

C category (37) 8,685

texture (57)

total 33,841

Belted trench coat Open-shoulder shift dress

attribute:class attribute:class
part:belted part:belted

category:coat category:dress

Cami trapeze dress Dotted cami dress

attribute:class attribute:class
shape:cami shape:cami

texture:watercolor texture:dots

Fig. 3. Two example pairs sharing attributes. Blue
rows denote positive pairs on one attribute, and
red rows denote negative pairs on the other. (Color
figure online)

(meta-)validation, and (meta-)testing as shown in Table 8. For example, a trench
coat and a shift dress are either a positive pair in terms of parts they share, or a
negative pair in terms of their categories as shown in Fig. 3. As existing few-shot
learning datasets [30,40] do not assume such semantic switch, one embedding
space is enough for a global information. In contrast, the assumption is no longer
valid on miniDeepFashion, thus online adaptation is inevitable; this feature is
well-aligned with the goal of few-shot metric learning. miniDeepFashion is built
on DeepFashion [26] dataset, which is a multi-label classification dataset with
six fashion attributes. We construct miniDeepFashion by randomly sampling
100 instances from each attribute class. The number of classes in each attribute
and the number of instances in each split is shown in Table 8. Also, the class
configuration for each attribute is in the supplementary materials.

Table 4 shows the results on miniDeepFashion. We observe that it is excep-
tionally challenging to reexamine distance ranking between instances online when
the context of target class similarity switches from that of (meta-)training class.
CRML and the baselines result in moderate performance growth from DML,
opening the door for future work. Figure 4 shows the qualitative retrieval results
of DML and CRML on the miniDeepFashion. The leftmost images are queries
and the right eight images are top-eight nearest neighbors. As shown in Fig. 4,
DML is misled by similar colors or shapes without adapting to target attributes,
texture and category, only retrieving images of common patterns. In contrast,
CRML adapts to attribute-specific data, thus retrieving correct images. For
example, when the query is blue chinos, while DML only retrieves the blue pants
regardless of the category, CRML retrieves the chinos successfully irrespective
of the color (Fig. 4 (a)). Note that miniDeepFashion benchmark has an original
characteristics that requires online adaptation to a certain attribute of given
a support set, thus this benchmark makes more sense for evaluating few-shot
metric learning in comparison to prevalent few-shot classification benchmarks.
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Fig. 4. Retrieval results on the (a) texture and (b) category attribute in mini- Deep-
Fashion. The leftmost images are queries, and the right images are top-eight nearest
neighbors. Green and red boxes are positive and negative images.

6 Conclusion

We have presented a few-shot metric learning framework and proposed an effec-
tive method, CRML, as well as other baseline methods. All the few-shot metric
learning methods consistently outperform the conventional metric learning app-
roach, demonstrating that they effectively adapt the learned embedding using
a few annotations from target classes. Moreover, few-shot metric learning is
more effective than classification approaches on relational tasks such as learning
with continuous labels and multi-attribute image retrieval tasks. For this direc-
tion, we have introduced a challenging multi-attribute image retrieval dataset,
miniDeepFashion. We believe few-shot metric learning is a new promising direc-
tion for metric learning, which effectively bridges the generalization gap of con-
ventional metric learning.
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Abstract. 3D shape of human body can be both discriminative and
clothing-independent information in video-based clothing-change per-
son re-identification (Re-ID). However, existing Re-ID methods usually
generate 3D body shapes without considering identity modelling, which
severely weakens the discriminability of 3D human shapes. In addition,
different video frames provide highly similar 3D shapes, but existing
methods cannot capture the differences among 3D shapes over time.
They are thus insensitive to the unique and discriminative 3D shape
information of each frame and ineffectively aggregate many redundant
framewise shapes in a videowise representation for Re-ID. To address
these problems, we propose a 3D Shape Temporal Aggregation (3STA)
model for video-based clothing-change Re-ID. To generate the discrim-
inative 3D shape for each frame, we first introduce an identity-aware
3D shape generation module. It embeds the identity information into
the generation of 3D shapes by the joint learning of shape estimation
and identity recognition. Second, a difference-aware shape aggregation
module is designed to measure inter-frame 3D human shape differences
and automatically select the unique 3D shape information of each frame.
This helps minimise redundancy and maximise complementarity in tem-
poral shape aggregation. We further construct a Video-based Clothing-
Change Re-ID (VCCR) dataset to address the lack of publicly available
datasets for video-based clothing-change Re-ID. Extensive experiments
on the VCCR dataset demonstrate the effectiveness of the proposed
3STA model. The dataset is available at https://vhank.github.io/vccr.
github.io.

Keywords: Clothing-change person re-identification · 3D body
shape · Temporal aggregation

1 Introduction

Person re-identification (Re-ID) aims to match the same person across non-
overlapping cameras. Short-term Re-ID methods [8,14,16,30] consider the
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(1) Distribution of 3D shape parameters (2) 3D meshes constructed from video frames with the standardized pose

Fig. 1. The motivation of this paper. (1) 3D shape parameters are not discriminative,
as shown by randomly sampled 100 images of 10 different persons (color indicated)
on the VCCR dataset, with their corresponding 3D shape parameters estimated by a
3D human estimation model [21], visualized by t-SNE. (2) The 3D shapes captured in
successive video frames are usually very similar and redundant, as shown in the 3D
mesh examples by SMPL [29] constructed with standardized pose parameters.

problem within a short time period assuming no changes of clothing, and therefore
are mostly clothing-dependent. In practice, Re-ID over a longer time period in a
more general setting, e.g., over several days, probably includes clothing changes. In
certain situations, a suspect may even deliberately change clothes to avoid being
found. To this end, a number of methods have been proposed to address the chal-
lenge of clothing-change person Re-ID (CC Re-ID) [15,26,34,38,44].

Since clothing is less reliable in CC Re-ID, it is necessary to explore other
clothing-independent characteristics, e.g., body shape. Some methods consider
2D body shape features by human contours/silhouettes extraction [13,44], key-
points detection [34] or body shape disentanglement [26]. However, human body
actually exists in a 3D space. 2D body shape information is not only view-
dependent but also lacking of 3D depth information, which has been shown to
be discriminative in Re-ID [37,42]. Some works [1,49] therefore have explored
3D shape information for Re-ID, but they suffer from two major limitations.

First, these methods [1,49] generate 3D human shapes without considering
discriminative identity modelling. They usually directly employ a 3D human esti-
mation model to generate 3D shape parameters, which are then used to construct
3D meshes by SMPL [29] for discriminating different persons. As illustrated in
Fig. 1 (1), due to lack of identity modelling, the 3D shape parameters of the
same person can be dispersive (especially when the same person wears different
styles of clothes), while those of different persons can be close, making such 3D
shape information not discriminative enough for Re-ID. Second, as shown in
Fig. 1 (2), although a video provides richer information a single frame, the 3D
shapes captured by successive frames are mostly highly similar. Existing tempo-
ral aggregation models [5,41,47] in Re-ID are usually designed for appearance
instead of 3D shape information. They are insensitive to the differences among
3D shapes over time, and cannot select the unique shape information of each
frame. Consequently, many redundant shapes from different frames are aggre-
gated in a videowise shape representation, while some unique and discriminative
shape information of each frame is suppressed.
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To solve these problems, in this work we propose a 3D Shape Temporal Aggre-
gation (3STA) Re-ID model for video-based CC Re-ID. Our 3STA model consists
of three main modules: Identity-aware 3D Shape Generation (ISG), Difference-
aware Shape Aggregation (DSA) and Appearance and Shape Fusion (ASF). 1)
In order to generate the discriminative 3D shape for each video frame, the ISG
embeds identity information into the 3D shape generation. This is realized by
combing shape supervision of an auxiliary 3D human dataset with identity super-
vision of a Re-ID dataset in a joint learning framework. 2) The DSA is formulated
to adaptively aggregate videowise shape representations from frames by refer-
ring to the intra-frame and inter-frame shape differences. The intra-frame shape
difference enables our model to compare the changes of all the shape parameters
in each frame for framewise spatial attention learning. The inter-frame shape
difference is used to capture the change of each shape parameter over time to
learn temporal attention. By considering both differences, DSA is sensitive to
the unique and discriminative shape information in each frame and selectively
aggregates into videowise shape representations with suppressed redundancy and
enhanced complementarity. 3) We also exploit appearance information to model
visual similarities unaffected by clothing changes, which can complement shape
information especially when the target person only partially changes clothes. The
ASF module is presented to fuse appearance and shape information adaptively
into the final identity representation.

Another significant challenge to video-based CC Re-ID is that there is no pub-
licly available dataset. For this purpose, we introduce a Video-based Clothing-
Change Re-ID (VCCR) dataset in this work. Built on the attribute recognition
datasetRAP [24] collected in a large indoor shoppingmall,VCCRcovers rich varia-
tions in clothing, cameras and viewpoints. To our best knowledge, it is currently the
largest video-based CC Re-ID dataset with 4,384 tracklets of 232 clothing-change
persons and 160 distractors, compared to the other dataset [3].

Our contributions are summarized as follows. 1) To our best knowledge, our
3D Shape Temporal Aggregation (3STA) model is the first attempt to explore
temporal 3D shape information for video-based CC Re-ID. 2) To generate dis-
criminative 3D shapes for Re-ID, we introduce Identity-aware 3D Shape Gen-
eration (ISG) that enforces 3D shape parameters to be person-specific. 3) The
proposed Difference-aware Shape Aggregation (DSA) can be sensitive to tempo-
ral shape differences, and help minimise the redundancy of shape aggregation.
4) We construct a VCCR dataset for video-based CC Re-ID research. Exten-
sive comparative evaluations show the effectiveness of our method against the
state-of-the-art methods.

2 Related Work

Short-Term Re-ID. Short-term person Re-ID includes image-based [9,10,
17,31,32] and video-based [20,25,33] Re-ID. This research primarily relies on
clothing information for discriminative person representation learning. Com-
pared with image-based Re-ID methods, video-based Re-ID methods can lever-
age temporal information in video sequences to explore richer identity features.
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However, the performance of these short-term Re-ID methods suffers a sharp
drop when a person changes clothes.

Imaged-Based Clothing-Change Re-Id. To handle clothing variations for
Re-ID, many methods have been proposed to learn clothing-independent shape
information, which can be categorized into 2D and 3D shape based meth-
ods. For 2D shape learning, Qian et al. [34] present a clothing-elimination and
shape-distillation model for structural representation learning from human key-
points. Yang et al. [44] directly learn feature transformation from human contour
sketches. Hong et al. [13] transfer shape knowledge learned from human silhou-
ettes to appearance features by interactive mutual learning. Li et al. [26] remove
clothing colors and patterns from identity features by adversarial learning and
shape disentanglement. Shu et al. [35] force the model to learn clothing-irrelevant
features automatically by randomly exchanging clothes among persons.

In contrast to 2D shape that is confined to a plane, 3D shape can introduce
human depth information to facilitate Re-ID. A few works have attempted to
employ 3D human estimation models to construct 3D meshes for Re-ID. Zheng et
al. [49] learn shape features directly with these 3D meshes instead of RGB images
as inputs. However, due to the lack of consideration of identity information, the
discriminability of constructed 3D meshes is not guaranteed. Chen et al. [1]
propose an end-to-end framework to recover 3D meshes from original images.
This method is supervised in a 2D manner by reprojecting the recovered 3D
meshes back into a 2D plane again, which is lack of supervision of 3D shapes.
Unlike them, our method unifies ground-truth 3D shape signals from a 3D human
dataset with identity signals from a Re-ID dataset in a joint learning framework.
In this way, our method can generate reliable and discriminative 3D shapes to
boost shape learning for Re-ID.

Video-Based Clothing-Change Re-Id. Compared with image-based CC Re-
ID, video-based CC Re-ID is rarely studied and still in the initial stage. Zhang et
al. [46] make the first attempt on video-based CC Re-ID based on hand-crafted
motion features from optical flow, assuming that people have constant walking
patterns. Fan et al. [3] study video-based CC Re-ID with radio frequency signals
reflected from human body instead of RGB color signals, thus completely remov-
ing clothing information. Different from them, we take advantage of temporal
3D shape information as a discriminative cue, which is more stable than walking
patterns and easier to obtain than radio frequency signals.

Single-View 3D Human Estimation. Single-view 3D human estimation aims
to construct human 3D meshes, including 3D shape and pose, from a single
image. Current methods [21,23] typically predict shape and pose parameters
with the supervision of 3D ground truths, and then construct 3D meshes by the
SMPL model [29]. However, the 3D shape parameters estimated by these models
are usually not discriminative enough and cannot fully reflect the differences of
body shapes among persons, making these methods not well applied to Re-ID.
To this end, our proposed ISG module combines 3D shape estimation and Re-ID
in a joint learning framework to generate more discriminative shape parameters.
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Fig. 2. An overview of the proposed 3D Shape Temporal Aggregation (3STA) model.

3 Method

In this paper, we propose a 3D Shape Temporal Aggregation (3STA) Re-ID
model to learn temporal 3D shape representations for video-based CC Re-ID. As
shown in Fig. 2, our model includes three main modules. The Identity-aware 3D
Shape Generation (ISG) is first performed to generate discriminative 3D shape
parameters for each video frame. The Difference-aware Shape Aggregation (DSA)
exploits the differences across intra-frame and inter-frame 3D shape parameters
to aggregate videowise shape parameters. The Appearance and Shape Fusion
(ASF) further exploits appearance information to complement shape and adap-
tively fuses them into final representations for CC Re-ID. Let us start with an
introduction to parametric 3D human estimation, which is the basis for our
discriminative 3D shape learning.

3.1 Parametric 3D Human Estimation

3D human estimation models [21,23,29] usually parameterize 3D human body
by shape parameters and pose parameters that are irrelevant to each other.
Typically, SMPL [29] is modeled as a function of the pose parameters θ ∈ R

24×3

representing the rotation vectors of 24 human joints and shape parameters β ∈
R

10. Given the two parameters, SMPL can construct the 3D mesh with the
corresponding pose and shape. Since pose is not person-specific, we focus only
on shape parameters β in our modelling.

The SMPL model predefines a human shape template, and uses shape param-
eters to formulate the shape offset to the template by principal component anal-
ysis (PCA). Then the body shape is represented by a linear function BS

BS =
|β |∑

n=1

βnSn, (1)

where the shape parameters β = [β1, . . . , β|β |]T, and |β| is the number of parame-
ters (|β| = 10). Sn ∈ R

3N represents orthonormal principal components of shape
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offsets, where N is the number of vertices on the predefined human mesh, and 3N is
the number of 3Dcoordinates ofN vertices.The functionBS thus formulates all the
shape offsets to the shape template. When Sn is shared by all the people’s shapes,
the shape parameters β reflect the difference among these shapes. Each parameter
βn (n = 1, · · · , 10) usually controls some specific aspects of body shape, e.g., the
body size, waistline or leg length. We thus can formulate the change of 3D shapes
over time in a video by the change of shape parameters.

3.2 Identity-Aware 3D Shape Generation

One challenge of learning 3D shape information for Re-ID is that Re-ID datasets
do not contain annotations of 3D shape parameters β. In fact, it is very difficult
and has to rely on special equipments to collect individual 3D shape parameters
in real-world scenarios. Existing CC Re-ID methods [1,49] directly utilize 3D
human estimation models to estimate shape parameters which are nevertheless
not discriminative. To overcome this problem, we introduce an Identity-aware
3D Shape Generation (ISG) module that embeds identity information into the
generation of shape parameters.

In the ISG module (Fig. 2 (1)), a shape encoder is modeled as a function:
R

C×H×W → R
10, to predict 10D shape parameters for a given image, where C,

H and W are the number of channels, height and width of the image, respec-
tively. The generated 3D shape parameters need to satisfy two requirements. (1)
Validity: shape parameters are valid and close to the ground truths so that they
can formulate true 3D body shape. (2) Discriminability: shape parameters of the
same person are close while those of different persons are away from each other
in the parameter space.

To meet the requirement (1), we introduce a 3D human dataset [19] as an
auxiliary dataset with ground truths of shape parameters. Images from both
the Re-ID and 3D datasets are input into the shape encoder to estimate shape
parameters β̂ID and β̂3D, respectively. We introduce a shape validity loss Lβ

val:

Lβ
val = ‖β̂3D − β3D‖2, (2)

where β3D is ground-truth 3D shape parameters from the 3D human dataset.
To meet the requirement (2), we further introduce a shape discrimination loss
Lβ

dis on β̂ID.
Lβ

dis = Lβ
ce + Lβ

tri, (3)

where Lβ
ce and Lβ

tri are the cross-entropy and triplet losses, respectively, which
are enforced by pairwise positive and negative identity labels from the Re-ID
dataset. The total loss for ISG is

LISG = Lβ
val + αLβ

dis, (4)

where α is a weight factor. After performing ISG, the generated shape parameters
for the Re-ID dataset are kept as pseudo labels (βISG

T ) to train the 3STA model.
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When we train the 3STA model, the shape encoder is retrained from scratch
on the Re-ID dataset and does not share the weights with the shape encoder in
ISG. This can decrease the interference of the 3D human data distribution bias in
training the shape encoder. We denote a random tracklet composed of T frames
in the Re-ID dataset as I T . The shape encoder generates shape parameters
βT ∈ R

T×10 and is optimised by a shape regression loss Ls
reg:

Ls
reg = ‖βT − βISG

T ‖2, (5)

where βISG
T is the corresponding shape parameters generated by ISG. In this

way, the shape encoder learns to regress discriminative 3D shape parameters for
each video frame.

3.3 Difference-Aware Shape Aggregation

Existing temporal aggregation methods [5,41,47] are usually proposed for aggre-
gating appearance information, and insensitive to the shape differences over time
in a video. They thus aggregate much redundant shape information of different
frames and suppress valuable unique shape information of each frame. To this
end, we propose a Difference-aware 3D Shape Aggregation (DSA) module, which
takes advantage of the shape differences among frames to drive the shape aggre-
gation with suppressed redundancy and enhanced complementarity.

To make our method more sensitive to inter-frame shape differences over time,
we use relative shape instead of absolute shape per frame in video shape aggre-
gation. As shown in Section. 3.1, each shape parameter βd controls some specific
aspects of body shape, sowe can formulate the subtle difference of 3D shapes among
frames by the difference values of shape parameters. As shown in Fig. 2. (2), we
first compute the mean shape parameters β̄T of a tracklet as a reference, and then
obtain the shape-difference map βdif = βT − β̄T (βdif ∈ R

T×10). We denote the
value at the coordinate (t, d) as (βdif )dt indicating the shape difference between
the d-th shape parameter of the t-th frame and the corresponding mean param-
eter. We introduce the intra-frame and inter-frame shape-difference references to
jointly decide the weight for each shape parameter of each frame.

Intra-Frame Shape-Difference Reference. We consider a shape parameter
with a larger difference to the mean parameter to be more informative than other
parameters in that frame. But if most shape parameters have larger differences,
their importance should be balanced because it is possibly caused by the body
occlusion or shape estimation error. Therefore we introduce an intra-frame shape-
difference reference wD ∈ R

T×10 to consider all the shape parameters within a
frame to balance the weight of each one. wD for the t-th frame is formulated as

(wD)1t , · · · (wD)10t = Sigmoid(Conv[(βdif )1t , · · · (βdif )10t ]), (6)

where Sigmoid is the Sigmoid function, Conv is a convolutional layer, of which
the kernel size is 1×10 to span all of 10 shape parameters of a frame. The output
channel is 10 for 10 different parameters. Details are illustrated in Fig. 2. (2).
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Inter-Frame Shape-Difference Reference. To reduce the temporal redun-
dant information, we also introduce an inter-frame shape-difference reference
wT ∈ R

T×10 to compare each shape parameter across frames to assign tem-
poral attention. Concretely, we compute an inter-frame shape-difference map
β′

dif ∈ R
T×T×10, on which the value at the coordinate (t1,t2,d) is formulated as

(β′
dif )

d
t1,t2 = (βdif )dt1 − (βdif )dt2 , (7)

where t1, t2=1,· · · ,T ; d=1,· · · ,10. β′
dif indicates the shape difference of the d-th

shape parameter between the t1-th and t2-th frames. wT is then formulated by
10 convolutional layers as

(wT )dt = Sigmoid(Convd([(β′
dif )

d
t,1, · · · (β′

dif )
d
t,T ])), (8)

where Convd is the d-th convolutional layer with a kernel size of 1 × 1, which
considers all of T frames on the d-th parameter to determine the reference weight.

The reference weights wD and wT make our model sensitive to the shape
changes both in respect to each shape parameter over time and all shape parame-
ters in each frame at a time. They thus impose selective aggregation by minimis-
ing redundant spatial-temporal shape information across frames in a video. The
final weight wS = wT � wD, where � is the elementwise product, and then is
normalized by the Softmax function. The aggregated videowise shape parameters
βs are the sum of βT weighted by wS , where βs is optimised by a shape-based
identity loss Ls

id, same as in Eq.(3), i.e., the sum of the cross-entropy loss and
triplet loss to learn discriminative videowise shape parameters.

3.4 Appearance and Shape Fusion

Appearance remains useful in complementing some visual similarities to shape
for Re-ID, e.g., when a person only changes partial clothes and/or with certain
aspects of appearance unaffected by clothing changes, such as gender, age, etc.
To that end, we formulate a joint appearance and shape fused representation
that is adaptively learned in model training.

The appearance encoder extracts videowise appearance features fa, to be
combined with videowise shape parameters βs. A fusion module includes two
steps, i.e., feature transformation and weight prediction. The feature transfor-
mation projects two feature vectors into a common feature space, defined as

fa ← Sigmoid(Conva(L2(fa))),fs ← Sigmoid(Convs(L2(βs))), (9)

where L2 is L2 normalization, Conva and Convs are two independent convolu-
tional layers with the kernel size of 1 × 1.

The weight prediction aims to estimate the weights for the two feature vectors
by making them refer to each other and jointly optimise the weight for each one.
This process is defined as

wa = Conva([fa,fs]), ws = Convs([fa,fs]), (10)

where fa and fs are concatenated as a tensor, which then separately goes forward
through two convolutional layers Conva and Convs. They both have the kernel
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Table 1. Comparison among CC Re-ID datasets. Some data are unclear because of
being publicly unavailable.

Dataset NKUP [40] LTCC [34] PRCC [44] COCAS [45] RRD-Campus [3] Motion-ReID [46] VCCR (Ours)

Type image image image image radio frequency video video
CC IDs\Distractors 107\0 91\61 221\0 5,266\0 100\0 30\0 232\160
Cameras 15 12 3 30 5 2 23
Cropping Detection Detection Manual Manual Detection Manual Manual
Tracklets – – – – 863 240 4,384
Images (Frames) 9,738 17,119 33,698 62,383 Unclear 24,480 152,610
Clothes/ID 2∼3 2∼14 2 2∼3 Unclear Unclear 2∼10
Publicly Available Y Y Y N N N Y (to be released)

size of 1×2 and thus output two weight vectors wa and ws. A fused joint feature
vector fj = wa � fa + ws � fs, where � is element-wise product, with fa and
fj being optimised by the appearance-based loss La

id and fusion-based loss Lj
id.

Each of them is the sum of a cross-entropy loss and a triplet loss as in Eq.(3).
The overall 3STA model is jointly trained by an overall loss

Lall = Lβ
reg + λ1Ls

id + λ2La
id + λ3Lj

id, (11)

where λ1, λ2 and λ3 are weight factors. Discriminative appearance and shape
representations, which are optimised by La

id, Ls
id and Lβ

reg, are the foundations
of contributing to a more discriminative joint representation optimised by Lj

id.

4 VCCR Dataset

Given that there is no publicly available dataset for video-based CC Re-ID model
learning and evaluation, we introduce a new Video-based Clothing-Change Re-
ID (VCCR) dataset to be released for open access to the research community.

4.1 Collection and Labelling

We collect data from the Richly Annotated Pedestrian (RAP) dataset [24] for
reducing the collection and annotation cost. Moreover, this does not lead to
additional privacy issues by not introducing new data. RAP contains person
images captured in an indoor shopping mall over 3months. It was originally
built for attribute recognition and annotated with identity labels. We select 232
persons that change clothes and 160 distractors that do not change clothes from
the RAP dataset, with access to the corresponding videos given the permission
and consent by the authors. Then we manually crop person patches from video
frames. Apart from the identity and camera labels from RAP, we additionally
annotate each tracklet with a clothing label. Two tracklets with the same identity
label are given two different clothing labels only if there is a visible clothing
change. A change of carrying items, such as bottles, books and boxes, does not
affect the clothing label.

4.2 Statistics and Comparison

We compare VCCR with other CC Re-ID datasets in Table 1 in four aspects.
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1) Type. Most existing datasets, e.g., NKUP [40], LTCC [34], PRCC [44] and
COCAS [45], are image-based. RRD-Campus [3] collects radio frequency sig-
nals. Only Motion-ReID [46] is video-based, but not publicly available.

2) Scale. Motion-ReID includes 240 tracklets, while VCCR has 4,087 tracklets of
232 clothing-change persons and 297 tracklets of 160 distractors. Each tracklet
has 5 to 130 frames with an average of 35. VCCR is thus the currently largest
video-based CC Re-ID dataset.

3) Number of persons. Since it is much more challenging to collect and
label clothing-change data in videos than images, VCCR has a smaller num-
ber of clothing-change persons (232) than the image-based COCAS (5,266).
But VCCR still contains more clothing-change persons than the video-based
Motion-ReID (30), and also competitive compared with most image-based
datasets, such as NKUP (107), LTCC (91) and PRCC (221).

4) 4) Number of clothes. In contrast to NKUP, PRCC and COCAS with 2∼3
clothes/ID, VCCR contains 2∼10 clothes/ID with an average of 3.3.

4.3 Protocol

The training set includes 2,873 tracklets of 150 clothing-change persons. For test,
496 tracklets of 82 clothing-change persons constitute the query set, while 718
tracklets of these 82 persons along with 297 tracklets of 160 distractors build the
gallery set. We make sure that the training and test sets have close statistics and
diversity in samples. We adopt two test modes like [34], i.e., the cloth-changing
(CC) and standard modes, to evaluate the performance of CC Re-ID models. In
the clothing-change (CC) mode, all the ground-truth gallery tracklets have
different clothing labels to the query. In the standard mode, the ground-truth
gallery tracklets can have either same or different clothing labels to the query.
When evaluating Re-ID performances, we use the average cumulative match
characteristic and report results at ranks 1, 5 and 10.

5 Experiments

5.1 Implementation Details

The appearance encoder adopts the Resnet-50 [11] backbone pretrained on Ima-
geNet [2] to extract framewise appearance features and average pooling to pro-
duce 2048D videowise features fa. The shape encoder is composed of a pretrained
Resnet-50 backbone and three fully-connected layers of 1024, 1024 and 10 dimen-
sions, respectively. All images are scaled to 224×112 and randomly flipped.

We first run the ISG module with the VCCR dataset and 3D human dataset
Human3.6M [19]. All the tracklets of VCCR are broken into 152,610 images in
total. We randomly sample 16 persons with 4 images per person from VCCR, and
64 random images from Human3.6M in each training batch. ISG is performed
for 20,000 iterations with the Adam optimiser [22] (β1=0.9 and β2=0.999). The
learning rate is set to 0.00001 and the weight factor α is set to 500. After training
ISG, we keep the generated shape parameters βISG

T for VCCR to train the overall
3STA model.



3D Shape Temporal Aggregation for Video-Based CC Re-Id 81

The overall 3STA model is trained on VCCR. We randomly choose 8 different
persons, 4 tracklets for each person and 8 successive frames for each tracklet in
each training batch. We also use the Adam optimiser, with the learning rates of
the shape encoder and other modules initialized at 0.00001 and 0.0001, respec-
tively, and decayed by 0.1 after 20,000 iterations. The 3STA model is jointly
trained over 30,000 epochs. The weight factor λ1=1, λ2=10, λ3=0.05, and the
margin parameters of all the used triplet losses are set to 0.3. The dimension of
the projected feature space in the appearance and shape fusion module is 2048,
i.e., fa,fs,fj ∈ R

2048.

5.2 Evaluation on CC Re-Id Datasets

We compare our 3STA model and four types of state-of-the-art methods on
the VCCR dataset in Table 2. In terms of the deep learning based methods,
the results show a general trend that the performance is incrementally improved
from image-based short-term, image-based CC, video-based short-term to video-
based CC Re-ID methods. Specifically, first, image-based short-term Re-ID
methods have the lowest accuracies, because they primarily make use of cloth-
ing information to discriminate persons and inevitably lose some discriminabil-
ity under clothing-change situations. Second, image-based CC Re-ID meth-
ods reduce the reliance on clothing by exchanging clothes among persons [35]
or using vector-neuron capsules to perceive clothing change of the same per-
son [18]. Third, video-based short-term Re-ID methods have more robust
Re-ID capacities due to exploiting temporal information, but they are still sen-
sitive to clothing changes. Overall, our video-based CC Re-ID model 3STA
achieves the highest accuracies in both CC and standard modes. The reasons are
two-fold. 1) Discriminative temporal 3D shape information in videos is modelled
as clothing-independent person characteristics. 2) Complementary appearance
information is jointly modelled with 3D shape, resulting in the joint representa-
tion more robust to both clothing-change and clothing-consistent situations.

For completeness, we also list the released results of STFV3D [27], DynFV [6]
and FITD [46] on the Motion-ReID dataset [46]. All of these methods are based
on hand-crafted features. We are unable to compare them with other methods
on Motion-ReID because the dataset is not publicly available, but we include a
comparison on the video-based short-term Re-ID dataset PRID.

5.3 Evaluation on Short-Term Re-Id Datasets

We also conduct evaluations on the video-based short-term Re-ID datasets
MARS [48] and PRID [12]. MARS is a large-scale dataset containing 1,261 per-
sons with 20,715 tracklets. PRID includes 200 persons captured by two cameras,
and only 178 persons with more than 25 frames are used, following the previous
work [46].

Our 3STA model can perform clearly better than image-based short-term
and CC Re-ID methods on both MARS and PRID, benefiting from mod-
elling temporal 3D shape apart from clothing information. But the video-based
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Table 2. Results on video-based CC Re-ID datasets VCCR and Motion-ReID, and
short-term Re-ID datasets MARS and PRID (%). Image-based methods produce vide-
owise features by average pooling on framewise features. Appe., Shape and Joint denote
that appearance features fa, shape parameters βs and joint features fj in the 3STA
model are used for evaluation (the same below).

Method Type Methods Features VCCR (CC Mode) VCCR (Standard Mode) Motion-ReID MARS PRID
MAP Rank1 Rank5 MAP Rank1 Rank5 Rank1 Rank1 Rank1

Image-Based
Short-Term
Re-ID

PCB [36] Deep Learning 15.6 18.8 38.6 36.6 55.6 75.2 – 85.2 89.1
MGN [39] Deep Learning 22.6 23.6 44.9 42.7 64.4 81.9 – 86.4 90.6
HPM [4] Deep Learning 19.4 23.1 42.9 39.5 58.3 78.7 – 87.9 90.3

Video-Based
Short-Term
Re-ID

STFV3D [27] Hand-Crafted – – – – – – 29.1 – 42.1
DynFV [6] Hand-Crafted – – – – – – 32.3 – 17.6
MGH [43] Deep Learning 30.7 34.6 54.5 51.6 76.3 87.2 – 90.0 94.8
AP3D [7] Deep Learning 31.6 35.9 55.8 52.1 78.0 88.4 – 90.1 94.6
GRL [28] Deep Learning 31.8 35.7 55.3 51.4 76.9 88.2 – 89.8 95.1

Image-Based
Clothing-Change
Re-ID

ReIDCaps [18] Deep Learning 29.9 33.4 53.6 48.4 75.1 86.3 – 83.2 88.0

SPS [35] Deep Learning 30.5 34.5 54.1 50.6 76.5 85.5 – 82.8 87.4
Video-Based
Clothing-Change
Re-ID

FITD [46] Hand-Crafted – – – – – – 43.8 – 58.7
Appe. (3STA) Deep Learning 29.3 32.8 52.0 46.7 74.3 84.5 – 83.7 87.8
Shape (3STA) Deep Learning 20.6 21.3 36.9 39.2 62.8 82.4 – 74.0 76.3
Joint (3STA) Deep Learning 36.2 40.7 58.7 54.3 80.5 90.2 – 89.1 93.4

short-term Re-ID methods can surpass our 3STA model, due to enhanc-
ing clothing based temporal information for better discriminating clothing-
consistent persons. For the two video-based CC Re-ID models, 3STA sig-
nificantly outperforms FITD on PRID. FITD utilizes motion cues for Re-ID
with the assumption that people keep constant motion patterns, which does
not always hold in practice. In contrast, 3STA explores discriminative 3D shape
together with appearance, which is more stable and robust than motion cues.

5.4 Ablation Study

Appearance vs. Shape vs. Joint Representations. We compare the perfor-
mance of appearance, 3D shape and joint representations in Table 2. The results
show two phenomenons that deserve the attention. 1) Appearance can achieve
higher performance than 3D shape in both test modes, due to two reasons.
First, when people do not change or just slightly change clothes, appearance
remains more competitive than 3D shape by exploiting visual similarities for
Re-ID. Second, 3D shape parameters only have 10 dimensions and they have
a limited capacity of modelling complex body shape. Overall, 3D shape is best
complemented with appearance instead of being used alone. 2) The joint repre-
sentations outperform both appearance and 3D shape by a significant margin.
This demonstrates that our model can exploit the complementarity of two infor-
mation to adaptively fuse more discriminative information, which can adapt to
both cloth-changing and clothing-consistent situations better.

Identity-Aware 3D Shape Generation (ISG). The ISG module ensures the
validity and discriminability of the generated 3D shape parameters by the loss
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Table 3. Rank 1 accuracy on the VCCR dataset for the ablation study of losses.

ISG module 3STA model CC Mode Standard Mode
Lβ

val Lβ
dis Ls

reg La
id Ls

id Lj
id Appe. Shape Joint Appe. Shape Joint

� � � � � � 32.2 12.7 31.5 73.5 57.4 72.6
� � � � � � 32.7 6.3 24.1 73.9 18.7 67.3
� � � � � � 31.9 14.6 26.3 73.6 44.7 64.3
� � � � � � 14.5 19.7 17.6 46.2 62.5 55.7
� � � � � � 32.6 15.8 29.8 73.4 57.6 72.3
� � � � � � 33.5 21.6 30.3 75.2 62.6 73.5
� � � � � � 32.8 21.3 40.7 74.3 62.8 80.5

OG-Net Our ISG module

Fig. 3. Comparing 3D shape parameters generated by the OG-Net [49] and our ISG
module. The visualisation shows 700 images of 10 persons from the VCCR dataset.

Lβ
val and Lβ

dis in Eq. (4), respectively. We remove either of the two losses during
performing ISG and show the results in Table 3 (top two lines). 1) Removing
Lβ

val degenerates the accuracy of shape representations from 21.3%/62.8% to
12.7%/57.4% in the CC/starndard mode. Losing the supervision from the 3D
human dataset in validity makes the shape parameters not formulate true 3D
body shapes. Only using identity supervision from the Re-ID dataset for train-
ing, the model implicitly relies on appearance instead of 3D shape in minimising
the loss Lβ

dis. 2) Removing Lβ
dis decreases the rank 1 of shape representations to

6.3%/18.7% in the CC/standard mode. In Fig. 3, we visualize the shape parame-
ters generated by the ISG and the OG-Net [49]. OG-Net does not embed identity
information, similar to removing Lβ

dis from ISG. ISG enables 3D shape param-
eters to be separable for different persons, attributed to introducing Lβ

dis to
significantly improve discriminative 3D shape learning for Re-ID.

Difference-Aware 3D Shape Aggregation (DSA). 1) Intra-frame and
inter-frame shape-difference references. The weight wS in DSA is decided
jointly by the intra-frame and inter-frame shape-difference references wD and
wT . As shown in the 2nd and 3rd rows in Table 4, using wT alone degenerates
the rank 1 accuracy of shape representations from 21.3%/62.8% to 18.2%/60.7%
in the CC/standard mode. The joint representations are affected similarly. The
1st and 3rd rows suggest that using wD alone degrades the rank 1 accuracy of
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Table 4. Rank 1 accuracy of different temporal aggregation methods on the VCCR
dataset. βdif = βT − β̄T .

Methods Shape Weight CC Mode Standard Mode
Shape Joint Shape Joint

Ours βdif wD 17.9 36.6 58.8 78.4
βdif wT 18.2 39.0 60.7 79.7
βdif wD � wT 21.3 40.7 62.8 80.5
βT wD 16.2 35.8 58.5 77.3
βT wD � wT 17.5 36.4 59.4 77.8

shape representations by 3.4%/4.0% in the CC/standard mode. The joint use of
wD and wT makes DSA sensitive to the changes of spatial and temporal shape
information and reduces the redundancy of shape aggregation over time.
2) Shape differences. DSA uses the shape differences among frames (βdif =
βT − β̄T ) to guide the weight prediction. To validate the effectiveness, we also
show the result of directly using βT to replace βdif when computing wD by Eq.
(6). Comparing the 1st and 4th, or 3rd and 5th rows in Table 4, we can observe
using βdif improves the rank 1 accuracy obviously over βT . The advantage of
βdif lies in helping the DSA module explicitly perceive the subtle 3D shape
differences among frames in a form of relative shape, and reduce the reuse of
redundant shape information better.

Losses. We perform the ablation study on the losses Ls
reg, La

id, Ls
id and Lj

id

in training the 3STA model and show the results in Table 3. Taking off Ls
reg

greatly decreases the accuracy of shape representations from 21.3%/62.8% to
14.6%/44.7% in the CC/standard mode, and also affects adversely the joint rep-
resentations in a similar way. This is because Ls

reg can enable effective framewise
shape learning, which is the basis of temporal shape aggregation. Our model also
suffers from performance degradation in different degrees if trained without La

id,
Ls

id or Lj
id. This reveals that the discriminative joint representations have to be

built on discriminative appearance and shape representations.

6 Conclusion

To our best knowledge, for the first time this paper has formulated a model to
learn discriminative temporal 3D shape information for video-based CC Re-ID.
First, our proposed 3STA model has included an ISG module, which consid-
ers identity modelling to generate the discriminative 3D shape for each frame.
Then, a DSA module that is sensitive to the shape differences among frames
has been proposed to aggregate framewise shape representations into videowise
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ones. query Kindly provide the page range for Refs. [31].It selectively exploits
the unique shape information of each frame to reduce the redundancy of shape
aggregation. Moreover, we have also contributed a VCCR dataset for the video-
based CC Re-ID research community.
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Abstract. This paper presents a framework to robustize object detec-
tion networks against large geometric transformation. Deep neural net-
works rapidly and dramatically have improved object detection perfor-
mance. Nevertheless, modern detection algorithms are still sensitive to
large geometric transformation. Aiming at improving the robustness of
the modern detection algorithms against the large geometric transfor-
mation, we propose a new feature extraction called augmented feature
pooling. The key is to integrate the augmented feature maps obtained
from the transformed images before feeding it to the detection head with-
out changing the original network architecture. In this paper, we focus
on rotation as a simple-yet-influential case of geometric transformation,
while our framework is applicable to any geometric transformations. It is
noteworthy that, with only adding a few lines of code from the original
implementation of the modern object detection algorithms and applying
simple fine-tuning, we can improve the rotation robustness of these orig-
inal detection algorithms while inheriting modern network architectures’
strengths. Our framework overwhelmingly outperforms typical geometric
data augmentation and its variants used to improve robustness against
appearance changes due to rotation. We construct a dataset based on
MS COCO to evaluate the robustness of the rotation, called COCO-
Rot. Extensive experiments on three datasets, including our COCO-Rot,
demonstrate that our method can improve the rotation robustness of
state-of-the-art algorithms.

1 Introduction

There has been remarkable progress in object detection by modern network archi-
tectures [3,32,45], large image datasets with accurate annotations [16,17,33], and
sophisticated open-sources [1,5,41,54]. Despite these successes, a significant issue
still remains; it is sensitive to unexpected appearance changes in the wild, such as
geometric transformation, occlusions, and image degradation. Particularly, rota-
tion robustness is simple yet significant for object detection. In such cases as
first-person vision, drone-mounted cameras, and robots in accidents and disasters,
images are taken with unexpected camera poses and often contain large rotations.
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Fig. 1. An overview of our proposed framework (a) and example results by our frame-
work (b). The rotation robustness of a modern object detection network can be sub-
stantially improved by our framework based on augmented feature pooling.

A typical approach to improve robustness to geometric transformation is data
augmentation (DA) [10,11,30,46] and test-time augmentation (TTA [21,47]).
Although the DA and TTA are essential learning protocols for image classifi-
cation, they are powerless for rotation transformation in object detection. The
reason for this is that a bounding box for an augmented image with rotation
becomes much looser than the originally annotated bounding box, as we will
describe in details in Sect. 3. The loosened bounding box includes a large area of
background, which dramatically harm training and inference performance. This
loosened bounding box problem is a common and significant challenge in object
detection with the large geometric transformations such as rotation. As we will
show later, DA and TTA cannot overcome the loosened bounding box problem.

A further challenge in improving the robustness of the object detection net-
work to geometric transformation is the orientation bias of backbone feature
extraction. The weight of the common backbones for object detection networks,
e.g. ResNet [21] and Swin Transformer [37], are optimized for the frontal direc-
tion due to the orientation bias of the training data. Those standard backbones
cannot be directly applicable to object detection tasks with arbitrary rotations.
There is a strong demand for a general framework that can easily inherit the
strengths of highly expressive backbones and modern object detection architec-
tures while improving robustness to geometric transformations.

We propose a robust feature extraction framework for large geometric trans-
formation based on augmented feature pooling. This paper focuses on rotation as
a simple-yet-influential case of geometric transformation, while our framework is
applicable to any kind of geometric transformations. The key is to integrate fea-
ture maps obtained from geometrically augmented images before feeding it to a
detection head. It can be achieved by adding two processes: inverse rotation and
feature pooling as shown in Fig. 1 (a). Examples of bounding boxes detected by
our framework with Deformable DETR [65] are shown in Fig. 1 (b). We aim to
improve robustness without additional annotation cost, so we only use the already
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annotated bounding boxes. Despite that, our proposed augmented feature pool-
ing can substantially improve the robustness against rotation by simply adding a
few lines of code to the original implementation of the existing method, and fine-
tuning the model while freezing the backbone parameters. It can be easily applied
to highly expressive backbones with many parameters, e.g. Swin-Transformer [37],
because the proposed method does not require backbone optimization.

Our main contributions are summarized as follows1 1) We propose a rotation
robust feature extraction framework based on augmented feature pooling, which
is applicable to various modern object detection networks. 2) We conducted
preliminary experiments for investigating the problems of object detection net-
works on rotation robustness. 3) We constructed an object detection dataset with
arbitrary rotations using MS COCO [33] for evaluating the robustness against
the rotation. 4) Extensive experiments on three datasets demonstrate that our
method can significantly improve the performance of state-of-the-art methods.

2 Related Works

Object Detection. The architectures of recent object detection consist of three
components: backbone, neck, and detection head. Based on the detection head’s
architecture, the existing object detection algorithms can be classified into single-
stage detectors [6,19,32,35,42–44] and two-stage detectors [2,4,22,39,40,45,49,
53]. While anchors are widely used, anchor-free approaches [29,48,59,64] and
keypoint-based approaches [28,62] have been proposed. Beyond those CNN-
based methods, Transformers have also been employed in detection networks,
combining a transformer-based architecture [3,13,65] with a CNN-based back-
bone [12,18,21,36,56] or using a transformer-based backbone [37]. Those meth-
ods implicitly assume that the target objects are facing in the front.

Data Augmentation and Test Time Augmentation. Data augmentation
(DA) has become essential for training protocol. Learnable data augmenta-
tion algorithms by reinforcement learning and random search have been pro-
posed [10,11,30]. Data augmentation is also effective at inference, which is called
Test-Time Augmentation (TTA) [21,47]. If those DA and TTA for the classifica-
tion task are naively applied to the rotated-object detection task, the detection
performance will be significantly degraded because the augmentation makes the
bounding box loose. Recently, a DA algorithm [25] to handle that problem has
been proposed to approximate the bounding box with an inscribed ellipse to
improve the robustness for small rotation. In contrast, our proposed method can
be more robust to larger rotations.

Rotation-Invariant CNNs and Datasets. Rotation invariance is a funda-
mental challenge in pattern recognition, and many approaches have been pro-
posed. Aiming at extracting features invariant to affine transformations includ-
ing rotation, various network architectures have been proposed [7–9,26,38,50,52,
57,60,61,63]. Alignment-based approaches [23,24,51] have also been presented.
1 Our code of will be available at http://www.ok.sc.e.titech.ac.jp/res/DL/index.html.

http://www.ok.sc.e.titech.ac.jp/res/DL/index.html
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Those methods are not directly applicable to the state-of-the-art object detec-
tion algorithms because those methods do not support the latest advantages
including transformer-based approaches [37,65].

Fig. 2. Loosened bounding-box problem of DA and TTA.

For specific applications such as remote sensing focusing on rotation robust-
ness, network architectures and image datasets have been designed based on an
oriented bounding box [14,15,20,34,55,58], where its rotation angle information
is annotated in addition to the center position, width, and height. While the
oriented bounding box is practical for these specific applications, it is not appli-
cable to standard object detection datasets [16,17,33]. It is also difficult to share
the advantages of modern object detection developed for the standard datasets.

3 Two Challenges of Object Detection for Rotation
Robustness

We discuss two challenges of object detection for rotation: the loosened bounding
boxes and the sensitivity of backbone feature extraction on object detection task.

Loosened Bounding Box. When we apply geometrical data augmentation,
we need to generate a new bounding box for the rotated image. If there is no
segmented mask along object boundary, we have to generate a new bounding
box from the originally annotated bounding box. The bounding rectangle of the
rotated bounding box is commonly used as the new bounding box.

Consequently, geometrical transformation of the data augmentation (DA)
and the test time augmentation (TTA) generates loosened bounding boxes, as
shown in Fig. 2 (a) and (b). To evaluate the looseness of the generated bounding
box, we measured the occupancy of the target object in the generated bounding
box for each rotation angle during training with DA and inference with TTA2

2 Note that the TTA curve assumes that each inference before ensemble is ideal, and
thus this occupancy is the upper bound.
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Fig. 3. Rotation sensitivity for backbone feature extraction.

using MS COCO [33] as shown in Fig. 2 (c). These analysis show that (i) the
loosened bounding box problem can only be avoided at integer multiples of
90◦C, where the occupancy does not decrease, (ii) the looseness is dramatically
increased where there is a deviation from those four angles.

To demonstrate the harm of the loosened bounding box for DA and TTA, we
measured the mAP of Faster-RCNN [45] with DA and TTA on the rotated
version of MS COCO val dataset (we will describe details in Sect. 5.1) as
shown in Fig. 2(d). For DA and TTA, we evaluated mAP using three sets of
rotation angles for data augmentations denoted by ξ=4, 8, and 16, where ξ is
the number of augmentation. Here, angles are assigned at equal intervals from
all directions, depending on ξ. More specifically, those three rotation sets are
given by Θ=[−180,−90, 0, 90] for ξ=4, Θ=[−180,−135, · · · , 135] for ξ=8, and
Θ=[−180,−157.5, · · · , 157.5] for ξ=16, respectively. As shown in Fig. 2(d), DA,
TTA and those combination are only effective for ξ = 4 because the loosened
bounding box degrades the training and inference performances for any angle
except for the integer multiples of 90◦C. The performance of DA and TTA
(except for ξ = 4) become worse than naive fine tuning where the detection
head is naively refined using training data containing arbitrary rotation.

Sensitivity of Backbone Feature Extraction. Backbone feature extraction
of the object detection network is also sensitive to rotation transformations,
i.e. the backbone feature extraction is not rotation invariant. When the rotated
image is used as the input image, as shown in Fig. 3(a), the feature map obtained
by the backbone feature map is also rotated. Even though the rotated feature
map is aligned by inverse rotation, the feature map still deviates significantly
from the feature map extracted from the original input image. As a result, the
rotation of the input image dramatically reduces the detection accuracy (see
Fig. 3(b)). Surprisingly, the sensitivity of the backbone to rotation is a common
challenge, not only in commonly used backbones like the ResNet50 [21], but also
in modern transformers like the Swin-Transformer [37].

4 Proposed Rotation Robust Object Detection
Framework

Our proposed method aims to improve the robustness to large geometric trans-
formations such as rotation while inheriting the strengths and weights of existing
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Fig. 4. Proposed augmented feature pooling architecture. Feature maps obtained from
the rotated images are inversely rotated and integrated by feature pooling. Then, the
integrated features are fed into a detection head or FPN.

detection networks, avoiding the loosened bounding box problem and the sensi-
tivity of backbone feature extraction. The key is to introduce augmented feature
pooling, which integrates the set of the feature maps obtained from the rotated
images before feeding it to the detection head. In the following, we describe our
augmented feature pooling and its extension to Feature Pyramid Network [31].
Then, we explain how to extend our framework to transformer-based backbones
such as Swin Transformer [37], and discuss its application to modern object
detection networks.

4.1 Architecture of Augmented Feature Pooling

Figure 4 shows an overview of our proposed augmented feature pooling. Our aug-
mented feature pooling is a simple architecture that inserts the inverse rotation
and the feature pooing between the backbone and the detection head. Let x0,
xl, and F l be an input image, the l-th stage’s feature map, and the backbone of
l-th stage, respectively. The l-th stage’s feature map xl is obtained from (l−1)-th
stage’s feature map xl−1 and l-th stage’s backbones F l as follows:

xl = F l ◦ xl−1 = F l(xl−1), (1)

where “◦” is composing operator.
We start our discussion with our proposed augmented feature pooling with

a standard detection architecture shown in Fig. 4(a). We generate a set of
augmented feature maps by the rotation angle θ defined by the rotation set
Θ = {θ1, · · · , θi}. To obtain this set of the augmented feature maps, we first
generate the set of rotated images Z0 = {z00, · · · z0i }, where the i-th rotated
image z0i is generated by z0i = Rθi

(x0) using the rotation operator Rθ. The
rotation operator Rθ represents the rotation within the image plane by angle
theta around the image center. Each of these rotated images z0i is fed to the
backbone F = F l ◦ F l−1 ◦ · · · ◦ F 1, resulting in the set of rotated feature maps
Zl = {zl

0, · · · zl
i}.
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Inverse Rotation. Alignment of feature maps is essential for feature pooling
from the augmented feature maps because the object detection task simulta-
neously estimates the bounding box location with the class label. A set of the
aligned feature maps X̃ l corresponding to each augmentation is obtained by the
inverse rotation R−θi

(·) as follows:

X̃ l = {x̃l
0, · · · , x̃l

i} = {R−θ0(z̃
l
0), · · · , R−θi

(z̃l
i)}. (2)

Feature Pooling. Our proposed feature pooling performs a element-wise max
pooling from the set of aligned feature maps as

(
x̂l

)
k

= max
i

(
x̃l

i

)
k
, (3)

where k is an index of an element of the feature map, and (x̂l)k and (x̃l
i)k are

the k-th element of x̂l and x̃l, respectively. From Eqs. (1), (2) and (3), our
augmented feature pooling with the rotation set Θ is formally given by

(
x̂l

)
k

= max
θ∈Θ

(
R−θ(F l ◦ · · · ◦ F 1 ◦ Rθ(x))

)

k
. (4)

In a typical object detection task, the extracted raw feature map xl is used as
an input for the detection head. Our proposed method feeds the pooled feature
map x̂l to the detection head instead of the raw feature map xl3.

Extension to Feature Pyramid Network. Our proposed framework can be
easily extended to Feature Pyramid Networks (FPN) [31] as shown in Fig. 4(b).
The inverse rotation and the feature pooling are applied to the augmented feature
maps for each stage, and those pooled feature maps are fed to the FPN module.
The set of pooled feature maps is denoted as {x̂0 · · · x̂m · · · x̂l}. Using Eq. (4),
the m-th stage’s pooled feature map x̂m is formally represented as follows:

(
x̂m

)
k

= max
θ∈Θ

(
R−θ(Fm ◦ · · · ◦ F 1 ◦ Rθ(x))

)

k
. (5)

Rotation Set Designs. By designing the rotation set Θ, our proposed method
can control whether to focus on a specific angle range or robust to arbitrary
rotation. For example, if the rotation set Θ is uniform and dense, the robustness
against arbitrary angles is improved, which is the main focus of this paper. On
the other hand, if the rotation set Θ is intensively sampled around a target
angle, e.g. 0 [deg] for the case where the target object is approximately facing in
the front, the robustness of object detection accuracy around the target angle is
improved. We will discuss the effectiveness of the rotation set designs in Sect. 5.2.

Beyond CNNs: Transformer-Based Backbone. Our proposed method can
also be applied to transformer-based backbones with spatial structures such
as Swin Transformer [37]. Figure 5 shows the details of the CNN-based and
the Swin Transformer-based architectures. When FPN is used together with
3 The dimensions of feature map xl are the same as the original backbones.
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Fig. 5. Extension to transformer-based backbone.

CNN-based backbones, e.g. ResNet [21], ResNeXt [56], our augmented feature
pooling is applied to the feature maps obtained from Stages-2, 3, 4, and 5. On
the other hand, for Swin Transformer, our augmented feature pooling is applied
to the feature map immediately after the Swin-Transformer Block of each stage,
i.e. just before the Patch Merging. The proposed method can be easily applied
to the transformer-based backbone with spatial structure and thus inherits their
rich feature representation and pre-trained weight.

4.2 Applying to Object Detection Networks

Our proposed framework is applicable to various types of detection heads such
as single-stage detectors [32,42], two-stage detectors [45], and transformer-based
detectors [65] without any changes in those detection head’s architectures. Our
framework aims to improve the robustness of rotation-sensitive detectors while
taking advantage of the weight of the pre-trained backbones. We consider this
robustness improvement as a downstream task, freezing the backbone and opti-
mizing only the parameters of the detection head. Limiting the optimization
parameters to the detection head allows us to quickly achieve robustness against
the rotation transformation with much less computation than optimizing all
parameters including the backbone.

5 Experiments

5.1 Setting

Datasets and Evaluation Measures. While MNIST-Rot12k [27], which is a
rotated version of the original MNIST in any direction, is widely used for the
classification task, there is no common dataset with this kind for the generic
object detection task. Therefore, we constructed a new dataset4 containing arbi-
trary rotation using MS COCO [33], called COCO-Rot, and evaluated the per-
formance of our augmented feature pooling. Our COCO-Rot is composed of
4 The details of our dataset are described in our supplemental.
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Fig. 6. Performance on COCO-Rot-val by the proposed method with various number
of augmentations ξ. The mAP, AP50, and AP75 with MS COCO-train [33] and COCO-
Rot-train as training data are shown, respectively.

COCO-Rot-train and COCO-Rot-val, which were generated from the original MS
COCO training and validation data, respectively. We automatically annotated
the bounding box for COCO-Rot-train and COCO-Rot-val based on rotated
ground truth segmentation mask instead of manual annotation. The numbers
of images for COCO-Rot-train and COCO-Rot-val are 118K and 5K, respec-
tively. For training, we used the original MS COCO-train [33] or COCO-Rot-
train as training data, respectively. In addition, we also demonstrated our per-
formance on two publicly available datasets, PASCAL VOC [17] and Synthetic
Fruit Dataset [25]. We used MS COCO detection evaluation measures [33], i.e.
the mean Average Precision (mAP), AP50, and AP75.

Implementation Details. We implemented our code based on MMDetec-
tion [5] with PyTorch [41]. The default training protocol in MMDetection [5]
was employed unless otherwise noted. SGD was used for optimization, and the
training schedule is 1x (i.e. 12 epochs with warmup and step decay, the learn-
ing rate is set to 2.0 × 10−2 to 2.0 × 10−4 for Faster-RCNN [45]). NVIDIA
A100, P100 and K80 GPUs were used for our experiments. For evaluation of our
framework and existing framework, we only trained the heads while fixing the
feature extraction backbones. Unless otherwise noted, we used the pre-trained
model using the original MS COCO [33] as initial weights for training. Resnet 50
was used in most of our experiments. We set the batch size to 16. The detailed
training protocols are described in our supplementary material.

5.2 Effectiveness of Augmented Feature Pooling

We demonstrate the effectiveness of our proposed method in terms of the effec-
tiveness by increasing the number of augmentations, the comparison with DA
and TTA, the applicability to various backbones, and the effectiveness of our
rotation set design using Faster-RCNN [45]. Applicability to various detection
heads will be described in Sec. 5.3.

Improvement by Increasing the Number of Augmentations. We first
demonstrate the effectiveness of our proposed method by increasing the number
of augmentations. Subscript ξ represents the number of augmentations as Oursξ.
For example, ours with the four augmentations is denoted as Ours4. We used three
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Table 1. Performance of mAP on COCO-Rot-val by DA, TTA, and ours. Bold and
italic indicate the best and second best results for each column, respectively. MS
COCO-train and COCO-Rot-train are used as training data, respectively. Green and
red characters show the increase or decrease in performance from vanilla.

(a) Original MS COCO-train.
Method mAP

Vanilla 15.8

+ TTA4 24.7 (+8.9)

+ DA4 21.2 (+5.4)

+ DA4+TTA4 24.3 (+8.5)

Ours16 21.3 (+5.5)

+ TTA4 26.3 (+10.5)

+ DA4 26.7 (+10.9)

+ DA4 + TTA4 26.5 (+10.7)

(b) COCO-Rot-train.
Method mAP

Vanilla 24.6

+ TTA4 27.6 (+3.0)

+ DA4 24.8 (+0.2)

+ DA4+TTA4 27.8 (+3.2)

+ Oracle DA4 24.8 (+0.2)

+ Oracle DA4+TTA4 27.7 (+3.1)

Ours16 30.0 (+5.4)

+ TTA4 30.0(+5.4)

rotation sets with different numbers of augmentations ξ = 4, 8, and 16, where ξ is
the number of augmentation for ours. Angles are assigned at equal intervals from
all directions, depending on ξ. We only train the head of the detection network
using COCO-Rot-train or the original MS COCO-train [33] while fixing the fea-
ture extraction backbones. The performance on COCO-Rot-val were evaluated.
We also evaluated the performances of the original backbone feature extraction
without our augmented feature pooling, which we call vanilla in the following.
In vanilla, the original backbone is also frozen during training for their detection
heads using COCO-Rot-train or original MS COCO-train, respectively.

Figure 6 shows mAP, AP50 and AP75 on COCO-Rot-val by the proposed
method with various number of augmentations ξ. In our method, the performance
is steadily improved as ξ is increased because we can avoid the loose bounding
box problem. Note that naive DA, TTA and those combinations are only effec-
tive for ξ = 4 as shown in Sect. 3 (see Fig. 2(d)). In the following, unless other-
wise noted, for the number of augmentations in the following experiments, we set
ξ = 16 for our proposed method, which was highest mAPs for our method. On the
other hand, we fix ξ = 4 for DA, TTA as DA4 and TTA4 because DA, TTA and
those combination are only effective for ξ = 4, i.e. Θ=[−180,−90, 0, 90] (Table 1).

Comparison with DA and TTA. To demonstrate the superiority of our
augmented feature pooling, we evaluated the performance of our method, DA,
and TTA. For fair comparison, we also used COCO-Rot-train to train the heads
for vanilla, DA, and TTA. We also compared our approach with a tightened
bounding box using the instance segmentation mask label when perform rotation
augmentation, called as Oracle DA4. Table 1 shows mAP of our method, vanilla,
DA, Oracle DA, and TTA. The values in parentheses are the increase (green)
from mAP of the vanilla backbone feature extraction. We can clearly see that
our proposed method with DA (Table 1(a)) or TTA (Table 1 (b)) can achieve the
highest mAP compared to naive DA and TTA5. Note that our proposed method

5 As shown in our supplemental, AP50 and AP75 are also the highest in the proposed
method as well as mAP.
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Fig. 7. Performance on COCO-Rot-val by the proposed method with various back-
bones. The proposed method is applicable to both CNN-based and transformer-based
backbones. The robustness is improved by increasing the number of augmentations ξ.

also outperforms the tight box-based DA, called Oracle DA. This is because
our augmented feature pooling can simultaneously solve both the rotation-bias
problem of backbone feature extraction and the loosened bounding box problem
as discussed in Sect. 3.

Applicability to Various Backbones. Our proposed method is effective for
both CNN-based and transformer-based backbones. We evaluated the applica-
bility of our framework using the following five major backbones with FPN [31],
Resnet50 [21], Resnet50 [21] with DCN [12], Resnet101 [21], ResNeXt101 [56],
Swin-T [37], and Swin-S [37]. The performance was evaluated on COCO-Rot-val.
Again, the rotation set Θ was defined by uniformly assigning from all directions
with equal intervals according to the number of augmentations ξ. Figure 7 shows
mAP, AP50 and AP75 of our proposed framework with various numbers of aug-
mentations and that of vanilla. Our framework substantially improves the perfor-
mance for all backbones compared with the vanilla backbone feature extraction.
We can see that the mAP, AP50 and AP75 are improved by increasing the num-
ber of augmentations ξ for all backbones. Note that our proposed method can
further improve the performance of DCN [12] designed to compensate for the
positional deformation. Our proposed method is applicable to such geometrical-
transformation-based backbones. Figure 8 shows the visual comparisons between
our proposed method and vanilla. There are many false positives in the vanilla
backbone feature extraction (blue arrows in the first and the second rows) and
false negatives (green arrows in the third row). Specifically, skateboards and peo-
ple are falsely detected (blue arrows) in the first row, and fire hydrants (green
arrows) can not be detected in the third row. In contrast, our proposed method
can successfully detect those objects, even when using the same training dataset
COCO-Rot-train. More visual comparisons are shown in our supplemental.

Effectiveness of Rotation Set Design. As described in Sect. 4.1, our frame-
work can control whether to focus on the robustness to arbitrary angle range or
a specific angle range by designing the rotation set Θ. To demonstrate this, we
evaluated mAP, AP50, and AP75 for the three rotation set designs denoted by
Set 1, Set 2, and Set 3 shown in Fig. 9. Here, Set 1 has only a single angle at 0
[deg], Set 2 has the five angles equally sampled among ±45-◦ range, and Set 3
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Fig. 8. Example results by our proposed method and vanilla using Faster-RCNN [45]
with Swin-Transformer [37]. In the results of vanilla, the green and the blue arrows,
i.e. ↖ and ↖, indicate false negatives and false positives, respectively. Contrary
to vanilla backbone feature extraction, our proposed method can detect target objects
with accurate bounding boxes for various rotation angles.

has 16 angles equally sampled among ±180-◦ ranges. Figure 9 shows mAP, AP50,
and AP75 for each rotation angle for those three rotation set designs. Compared
to Set 1 (blue line), mAP, AP50 and AP75 for Set 2 (green line) are improved
in the wide-angle range centered on 0 [deg]. Furthermore, in Set 3 (red line),
mAP, AP50, and AP75 are improved on average for all rotation angles. From
these results, we can see that our proposed method enables us to improve the
robustness for arbitrary angles, and at the same time, it can also improve the
robustness for a specific angle range by designing the rotation set.

Other Datasets. We compared the performance of our proposed method with
the state-of-the-art method [25] focusing rotation augmentation for object detec-
tion using the PASCAL VOC and Synthetic Fruit datasets. For a fair compar-
ison, the backbone and the detection head were both optimized as in [25]. We
used ResNet50, which has the smallest expressive power of the backbone, in our
implementation. Here, we set the rotation set Θ as seven angles sampled at equal
intervals from a range of ±15 [deg] as in [25]. Table 2 (a) shows AP50 and AP75

of the proposed and the existing methods. Note that the value for the existing
method is taken from [25]. As shown in Table 2, our proposed method achieves
substantially higher performance in both AP50 and AP75. In contrast to [25],
our framework can improve the robustness over a broader range by designing the
rotation set Θ as mentioned in Sect. 4.1. In this sense, our framework is a more
general and versatile framework that encompasses the existing method [25].
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Fig. 9. Performance comparisons with various rotation set. Our framework can control
whether to focus on robust to arbitrary rotation or a specific angle range by designing
the rotation set Θ. (Color figure online)

Table 2. Result on other datasets. Bold indicates the most accurate methods. (a)
Comparison of AP50 and AP75 on PASCAL VOC and Synthetic Fruit. (b) Results of
AP50 on PASCAL VOC-Rot.

(a) PASCAL VOC and Synthetic Fruit
Datasets PASCAL VOC [17] Synth. Fruit [25]

Methods AP50 AP75 AP50 AP75

Ellipse+RU [25] 81.6 58.0 95.8 93.2

Ours 89.6 69.4 96.7 93.6

(b) PASCAL VOC-Rot
Method AP50 AP75

Vanilla 64.9 35.6

+ TTA4 72.3 (+7.4) 40.5 (+4.9)

Ours16 77.3 (+12.4) 45.7 (+10.1)

+ TTA4 78.8 (+13.9) 44.2 (+8.6)

In many practical scenarios, we cannot obtain an annotated segmented mask
along object boundary due to the high cost of annotation. Even in such a case,
the proposed method works better than naive TTA. To demonstrate this, we
constructed a new dataset, called PASCAL VOC-Rot, by rotating the image
and the originally annotated bounding box of the original PASCAL VOC in
an arbitrary rotation. Table 2 (b) shows AP50 on PASCAL VOC-Rot6. Note
that the bounding boxes for those evaluation and training datasets are loose
because there are no segmented masks in PASCAL VOC. As shown in Table 2,
our proposed method is relatively more effective than naive TTA (Table 2).

5.3 Applicability to Modern Object Detection Architectures

The proposed method is applicable to various types of object detection net-
works including single-stage, two-stage, and transformer-based architectures. To
demonstrate the versatility of our proposed method, the following widely used
and state-of-the-art object detection networks were used for our evaluation:
Faster-RCNN [45] (two-stage), Retinanet [32] (single-stage), YOLOF [6] (single-
stage), FSAF [64] (anchor-free), ATSS [59] (anchor-free), and Deformable-DETR
[65] (transformer-based).

Tables 3(a) and (b) show mAP on COCO-Rot-val of our proposed method,
vanilla with DA4, our proposed method with TTA4 and vanilla with TTA4,
respectively7. We can clearly see that our proposed method substantially
6 Note that, in PASCAL VOC, the standard evaluation metric is AP50.
7 We also show AP50 and AP75 in our supplementary material.
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Table 3. Overall performance of mAP on COCO-Rot-val. Bold indicates the best result
for each column. COCO-Rot-train is used for training.

(a) Our method and DA with various object detection networks.

Baseline Backbone/Neck Vanilla Vanilla+DA4 Ours16

Faster-RCNN [45] ResNet50 w/ FPN 24.6 24.8 (+0.2 ) 30.0 (+5.4 )

RetinaNet [32] ResNet50 w/ FPN 24.1 24.3 (+0.2 ) 29.6 (+5.5 )

FSAF [64] ResNet50 w/ FPN 24.6 24.9 (+0.3 ) 30.1 (+5.5 )

ATSS [59] ResNet50 w/ FPN 26.6 27.0 (+0.4 ) 32.2 (+5.6 )

YOLOF [6] ResNet50 24.4 24.6 (+0.2 ) 28.1 (+3.7 )

D-DETR (++ two-stage) [65] ResNet50 35.9 37.3 (+1.4 ) 39.5 (+3.6 )

(b) Our method and TTA with various object detection networks.

Baseline Backbone/Neck Vanilla Vanilla+TTA4 Ours16+TTA4

Faster-RCNN [45] ResNet50 w/ FPN 24.6 27.6 (+3.0 ) 30.0 (+5.4 )

RetinaNet [32] ResNet50 w/ FPN 24.1 27.3 (+3.2 ) 29.5 (+5.4 )

FSAF [64] ResNet50 w/ FPN 24.6 27.3 (+2.7 ) 30.1 (+5.5 )

ATSS [59] ResNet50 w/ FPN 26.6 29.3 (+2.7 ) 32.0 (+5.4 )

YOLOF [6] ResNet50 24.4 26.9 (+2.5 ) 28.2 (+3.8 )

D-DETR (++ two-stage) [65] ResNet50 35.9 37.6 (+1.7 ) 39.2 (+3.3 )

Fig. 10. Comparison of mAP, AP50 and AP75 for each rotation angle between our
method and vanilla with TTA4. The combination of various object detection with our
method improves the robustness against rotation compared to vanilla with TTA4.

improves the mAP for all the detection architectures than DA and TTA. Finally,
we evaluated mAP, AP50, and AP75 of our proposed method and vanilla with
TTA4 for each rotation angle as shown in Fig. 10. For mAP and AP75, our pro-
posed method outperforms vanilla with TTA4 for almost all angles. In AP50,
the proposed method is comparable to vanilla with TTA4 only in [65], and
our method outperforms vanilla with TTA4 in other detection networks. These
results show that our method is applicable to various detection networks.
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6 Conclusions

We have proposed the rotation robust feature extraction framework using aug-
mented feature pooling. The key is to integrate the augmented feature maps
obtained from the rotated images before feeding it to the detection head with-
out changing the original network architecture. We can obtain robustness against
rotation using the proposed framework by freezing the backbone and fine-tuning
detection head. Extensive experiments on three datasets demonstrated that our
method improves the robustness of state-of-the-art algorithms. Unlike TTA and
DA, the performance of the proposed method improves as the number of aug-
mentations is increased.
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Abstract. Scene text in natural images contains a wealth of valuable
semantic information. To read scene text from the image, various text
spotting techniques that jointly detect and recognize scene text have
been proposed in recent years. In this paper, we present a novel end-to-
end text spotting network SPRNet for arbitrary-shaped scene text. We
propose a parametric B-spline centerline-based representation model to
describe the distinctive global shape characteristics of the text, which
helps to effectively deal with interferences such as local connection and
tight spacing of text and other object, and a text is detected by regress-
ing its shape parameters. Further, exploiting the text’s shape cues, we
employ adaptive projection transformations to rectify the feature repre-
sentation of an irregular text, which improves the accuracy of the sub-
sequent text recognition network. Our method achieves competitive text
spotting performance on standard benchmarks through a simple archi-
tecture equipped with the proposed text representation and rectifica-
tion mechanism, which demonstrates the effectiveness of the method in
detecting and recognizing scene text with arbitrary shapes.

Keywords: Scene text spotting · Spline · Regression · Rectification

1 Introduction

Scene text in natural images carries a wealth of semantic information, which is
of great importance in various real-world applications. To read the scene text
from the image, text spotting methods first localize text regions in the image and
then recognize the character sequences contained in them. Due to the complex
and varied appearance of text, scene text spotting has been a challenging task
and attracted increasing research attention in recent years.

Most of recent scene text spotting methods [5,18,23,31,42,46] integrated
text detection and recognition into an end-to-end framework to exploit the com-
plementarity of these two tasks to effectively improve the performance of the
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Fig. 1. Illustration of the architecture of the proposed text spotting network SPRNet.
The network first detects text with arbitrary shapes in the image by a spline-based text
region representation and regression model. An adaptive spatial rectification module
is then employed to transform the text’s feature representation to a regular shape to
facilitate the subsequent text recognition. ‘G’ denotes the grid sampling operation for
feature deformation based on predicted control points.

whole spotting model. Meanwhile, to alleviate the difficulties that the irregular
shape of a scene text causes to a text recognition network, variant techniques like
shape rectification [23] and spatial attention [31] have been employed in recent
text spotting methods for generating appropriate features for text recognition.

Despite the great progress in enhancing scene text spotting performance,
most of existing text spotting methods employed a text region localization mech-
anism based on either segmentation [29,31,46] or regression of discrete boundary
points [39], which did not capture the text’s shape characteristics as a whole
(e.g., via a global shape model) and sometimes required some post-processing
like grouping or fitting to obtain the final text region.

In this paper, we propose a novel end-to-end scene text spotting network
SPRNet, which integrates a spline-based parametric shape regression network
for localizing arbitrary-shaped text region, an adaptive text feature rectification
module, and a light-weight text recognition network. Figure 1 shows the overall
architecture of the proposed text spotting network. The key contributions of our
work are summarized as follows:

– We propose a spline-based representation and regression model for detecting
arbitrary-shaped text. The model geometrically describes the global shape of
a text and its intrinsic smoothness and regularity with a parametric B-spline
centerline and associated boundary cues. Compared with the segmentation-
or boundary-based text representations employed in previous text spotting
methods, our parametric, centerline-based representation of text is less sus-
ceptible to interferences such as local connection and tight spacing of text
and other object due to its modeling and constraints on the overall shape
and regularity of the text. Moreover, the model obtains directly the complete
boundary of the text as the localization result, eliminating the need for post-
processing that segmentation-based methods usually rely on to obtain the
final text boundary.
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– We integrate a shape rectification mechanism with the text spotting model
for recognizing text with arbitrary shapes. The rectification module exploits
adaptive projection transformations and the shape cues of an irregular text
obtained by the detection module to regularize the text’s feature representa-
tion, which effectively improves the accuracy of the subsequent text recogni-
tion network.

– Our text spotting method achieves competitive performance on several scene
text benchmarks.

2 Related Work

Scene Text Detection. Most of recent scene text detection methods can
be generally categorized into two schemes: segmentation-based and regression-
based. Segmentation-based methods [27,41,45,49] localize text regions by pre-
dicting a text/non-text label for every image pixel using some fully convolu-
tional networks [26]. Accordingly, a text region is usually modeled as a con-
nected set of text pixels in these methods, and some of them [5,27,49] further
model a text’s centerline region as a shrunk mask of the whole text area consist-
ing of a set of points on the text’s central axis associated with local geometric
attributes such as centerline/character orientations and boundary offsets, and
certain post-processing is often required to generate the final boundary of the
text. Regression-based methods [20,44,50] predict text candidates by regressing
their bounding box parameters based on generated proposals or from dense fea-
tures directly, while a text region is usually depicted by its polygonal boundary
with discrete vertices.

Note both pixel-based and boundary-based text representations employed
in most previous work capture only local constraints such as connectedness or
offset between individual pixels or boundary points, lacking accurate description
of a text’s global shape characteristics. Comparatively, our method geometrically
and holistically depicts the text shape with a parametric representation based
on B-spline.

Scene Text Recognition. Recent text recognition methods usually employ
some sequence models like RNN to recognize the character sequence in an image
region as a whole, avoiding error-prone segmentation of individual characters.
Particularly, the encoder-decoder framework has often been employed in text
recognition, with the encoder encoding the text region into a feature sequence
and the decoder predicting a sequence of most probable character labels corre-
sponding to the features with connectionist temporal classification (CTC) [6,33]
or attention mechanisms [3,16]. To cope with text in irregular shapes, some
recent methods further proposed rectification [28,34,35,47,48] and 2D atten-
tion [17] techniques for obtaining appropriate text features for recognition. For
example, in [47], a text’s shape was characterized by a point-based centerline
associated with local geometric attributes similar to [27], which was used to
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generate the fiducial points of a TPS transformation for rectifying the feature
maps of an irregular text.

Scene Text Spotting. Earlier scene text spotting methods [12,19,40] often
employed a two-stage pipeline that performed text detection and recognition in
separate steps. Due to the complementarity of text detection and recognition
tasks, however, it is difficult for these two-stage spotting methods to attain
holistically optimal performance.

Most of recent scene text spotting methods [5,18,23,31,42,46] employed
an end-to-end detection and recognition pipeline for improved spotting per-
formance. Particularly, to handle arbitrary-shaped scene text, some methods
introduced spatial rectification measures [5,23] to help obtain regularized repre-
sentations of the text or spatial attention mechanisms [18,31] to adaptively align
features with characters for recognition. For example, in [31], a Mask R-CNN
based instance segmentation model was combined with a seq2seq recognition
model and a spatial attention mechanism for text spotting. On the other hand,
ABCNet [23] first localized the text boundary depicted by two Bezier curves, and
then exploited the BezierAlign operation to generate rectified features of the text
for recognition. Our method differs from previous work in two main aspects—the
text region representation and regression model and the text feature rectification
mechanism, which are described in detail in following respective sections.

3 Methodology

We propose an effective scene text spotting network SPRNet. As shown in Fig. 1,
the network localizes arbitrary-shaped text regions in the image with a spline-
based text shape representation and regression model, and then adaptively recti-
fies the feature representation of an irregular text for subsequent text recognition.

3.1 Text Localization via Spline-Based Shape Regression

Different from most previous segmentation-based and boundary point-based text
region representation schemes used for scene text detection, which lack precise
description and effective constraint for the global shape of one text, we pro-
pose a parametric, geometric text region modeling and regression scheme, which
captures the holistic shape characteristics of a text to improve the text region
localization accuracy. Specifically, as shown in Fig. 2, a text region is modeled
by a n-order B-spline centerline describing the global layout of the text and a
series of boundary cues capturing its local shape details.

The B-spline centerline is formulated as:

B(t) =
m∑

i=0

PiNi,n(t) (1)
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Fig. 2. Illustration of the spline-based representation of a text region.

where Pi=0,··· ,m denote the m + 1 control points of the B-spline, and Ni,n(t)
is the basis function associated with Pi, which is defined recursively with a
predesignated knot vector [t̄0, t̄1, · · · , t̄m+n] as follows:

Ni,1(t) =
{

1, t̄i ≤ t < t̄i+1

0, otherwise

Ni,n(t) = t−t̄i
t̄i+n−1−t̄i

Ni,n−1(t) + t̄i+n−t
t̄i+n−t̄i+1

Ni+1,n−1(t) (2)

In addition to the centerline, we further depict the contour of a text region
with two sets of boundary points {vi}ui=1..w and {vi}li=1..w on the upper and lower
boundaries of the text region respectively as shown in Fig. 2. Each pair of two
corresponding boundary points (vu

i , vl
i) are connected by a line segment Li, and

its length above and below the centerline are described by a pair of parameters lui
and lli, the angle between Li and the coordinate axis is described by a parameter
θi, and the intersection point between Li and the centerline (called a sampling
point) is represented by its corresponding spline variable value ti. Accordingly,
a text region is geometrically described by the control points Pi=0,··· ,m of the
B-spline centerline and the parameters {ti, l

u
i , lli, θi} of the boundary points.

Our spline-based, geometric text region representation model differs essen-
tially from the segmentation-based representations employed by previous scene
text detection and spotting methods [5,41,43,49]. The explicit parametric mod-
eling of the global centerline provides effective shape constraints for robustly
and accurately localizing text in cluttered scenes such as closely spaced or par-
tially overlapping text instances, which are often challenging for segmentation-
based detection methods. Moreover, compared to previous text representations
that modeled a text region by its upper and lower boundaries like in [23], our
centerline-based representation of the text region is usually less affected by vari-
ations of text geometry and style such as nonuniform sizes of characters in a text
which often cause more significant changes to the boundary of the text region
than to its centerline, and better captures the smoothness of the overall shape
of a text.

We generate training labels for the parameters of the text region represen-
tation model in a similar manner to that adopted in [36] on the basis of the
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common polygonal annotations of text region provided in most scene text bench-
marks. Particularly, different from ABCNet which requires generating ground-
truth labels for the control points of Bezier curve boundaries, we do not gener-
ate annotations for the B-spline centerline’s control points. Instead, we generate
ground-truth labels for a series of k path points located on the text centerline,
which act as more direct constraints on the B-spline centerline and are easier to
be inferred from text region features than the control points.

Text Region Regression Network. To infer the shape parameters of a text
candidate in an image, as shown in Fig. 1, the text region regression network
takes a text region proposal’s feature maps generated by the ResNet50 [10],
FPN [21], and RPN [32] backbone as input, and employs a Cascade R-CNN [2]
to refine the proposal’s position and assign it a text/non-text score. Next, the
network employs three branches, each comprising several convolution, pooling,
and full-connected layers, to predict the parameters of the B-spline centerline, the
boundary points, and the text direction respectively. The detailed configuration
of the network is given in the supplementary material.

Localization Loss. We employ a multitask text region localization loss Lloc

on each text region proposal, which integrates a RPN loss Lrpn [32], a Cascade
R-CNN loss Lrcnn [2], and a text region regression loss Lreg:

Lloc = λ1Lrpn + λ2Lrcnn + λ3Lreg (3)

where λ1, λ2, and λ3 are set to 1.0.
The text region regression loss Lreg measures the approximation accuracy of

the predicted text region relative to the ground-truth, which is formulated as
the combination of a centerline loss Lspline, a boundary loss Lbound, and a text
direction loss Ldir:

Lreg(P ,Tc,Tb,Θ, l,Q∗,V ∗,Θ∗, l∗,d,d∗) = λ4Lspline(P ,Tc,Q
∗)

+ λ5Lbound(P ,Tb,Θ, l,V ∗,Θ∗, l∗) + λ6Ldir(d,d∗) (4)

where P = {P0, · · · ,Pm} are predicted control points of the B-spline centerline
defined by Eq. (1). Tc = {tc1, · · · , tck} and Tb = {tb1, · · · , tbw} are predicted spline
variable values for the path points and the sampling points on the centerline
respectively, while Q∗ and V ∗ are the ground-truth coordinates of path points
and boundary points respectively. Θ, l = [lu, ll] and Θ∗, l∗ are the predicted
and ground-truth angles and lengths of the lines connecting sampling points
to corresponding boundary points respectively. Ldir(d,d∗) is the binary cross-
entropy loss between the predicted text direction probability vector d and the
ground-truth one-hot direction label vector d∗ which is generated for a text
region based on the angle θt between the text’s main axis (i.e. the line connecting
the first and last path points) and the x axis to categorize it to horizontal if
θt < 50◦ and vertical otherwise. The weights λ4, λ5, and λ6 are experimentally
set to 5.0, 5.0, and 0.5 respectively in this work.
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The centerline loss Lspline measures how accurately the predicted B-spline
centerline approximates the ground-truth path points Q∗ and is formulated as:

Lspline(P ,Tc,Q
∗) = smoothL1(|F(P ,Tc) − Q∗|) (5)

where the function F(P ,T ) computes a set of s output points corresponding to
a set of spline variable values T = {t1, · · · , ts}, which are located on the B-spline
defined by the control points P = {P0, · · · ,Pm}:

F(P ,T ) =

⎡

⎣
T1

..
Ts

⎤

⎦ [
N0,n N1,n .. Nm,n

]

⎡

⎢⎢⎣

P0

P1

..
Pm

⎤

⎥⎥⎦ (6)

where Ni,n denotes the coefficient vector of the ith basis function of B-spline,
and Tj = [tn−1

j , tn−2
j , · · · , t0j ] with tj being the spline variable value for the jth

output point. Therefore, F(P ,Tc) yields the set of predicted path points.
The function smoothL1(·) is defined as:

smoothL1(x) =
{

0.5x2, if |x| < 1
|x| − 0.5, otherwise

(7)

The boundary loss Lbound measures the accuracy of the predicted boundary
points of text region relative to the ground-truth V ∗ and is formulated as:

Lbound(P ,Tb,Θ, l,V ∗,Θ∗, l∗) = smoothL1(|G(P ,Tb,Θ, l) − V ∗|)
+ smoothL1(sum(|Θ − Θ∗|)) + smoothL1(sum(|l − l∗|)) (8)

where the function G(P ,Tb,Θ, l) computes w pairs of boundary points based on
the set of sampling points computed by F(P ,Tb) and the predicted parameters
Θ, l of lines connecting sampling and boundary points. Moreover, we maintain
two separate sets of Θ, l parameters to better capture shape characteristics of
horizontal and vertical text respectively, and compute Lbound on the parameter
set corresponding to the direction label d∗.

3.2 Spatial Rectification of Text Features

To alleviate the difficulties caused by irregular text shapes (e.g., curved or per-
spectively distorted) to a text recognizer, we introduce an adaptive shape rec-
tification module to spatially regularize the text’s feature representation before
feeding it to the recognizer for improved recognition accuracy. Different from
most previous text rectification methods [30,34,35] which used spatial trans-
form network (STN) [13] with thin-plate-spline (TPS) transformation to deform
the text’s shape, we employ a piecewise linear deformation model based on pro-
jection transformation for feature sampling and mapping to reduce non-linear
distortion to the text’s shape during rectification, while keeping sufficient defor-
mation flexibility for widely varied shapes of scene text.
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deformationsource patch target patch
target control point

source control point

Fig. 3. Illustration of spatial rectification of irregular text. Note the deformation actu-
ally occurs on the feature maps rather than the image itself.

Specifically, given the predicted boundary points of a text region, as shown
in Fig. 3, we first use the line connecting each pair of boundary points on the
upper and lower text boundaries respectively to divide the feature map of the
text region into a strip of adjacent quadrilateral patches (called source patches),
each of which will be deformed individually.

Next, we map each source patch to a target patch in the output (rectified)
feature map as shown in Fig. 3. Different from predefining a set of fixed-size target
patches on the output feature map using a uniform grid as employed in previous
methods [35,48], we propose a variable target grid by predicting an offset δ for
each grid point to allow a target patch’s boundary to deviate adaptively from
the uniform grid position, which increases the model’s flexibility for rectifying
non-uniform distortions of text. Note the offsets of the target grid points are
end-to-end learned with the recognition task without any extra supervision.

Finally, we compute the feature values in a target patch by grid-sampling
features in the corresponding source patch to obtain a regular feature represen-
tation of the text region for recognition.

Feature Patch Deformation. We employ projection transformation as the
mapping function between the source and target patches because of its linearity
which helps keep shape characteristics of character and the fact that most scene
text has a certain degree of perspective distortion resulting from the viewing
process.

Using the four boundary points of a source patch as four source control points
and the four corner points of the corresponding target patch as target control
points, the homogeneous deformation matrix H of a projection transformation
for the patch can be formulated as:

H = reshp([b 1])3×3 (9)

where function reshp(·)3×3 reshapes the input tensor to a 3 × 3 view, and b is a
1 × 8 vector computed as:

b = A−1x (10)

where x is an 8 × 1 vector containing the coordinates of the four target control
points. A is an 8 × 8 matrix formulated as follows based on the Direct Linear
Transformation (DLT) algorithm [8]:
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A =

⎡

⎢⎢⎢⎢⎢⎣

r
(0)
x r

(0)
y 1 0 0 0 −r

(0)
x ∗ t

(0)
x −r

(0)
y ∗ t

(0)
x

0 0 0 r
(0)
x r

(0)
y 1 −r

(0)
x ∗ t

(0)
y −r

(0)
y ∗ t

(0)
y

· · ·
r
(3)
x r

(3)
y 1 0 0 0 −r

(3)
x ∗ t

(3)
x −r

(3)
y ∗ t

(3)
x

0 0 0 r
(3)
x r

(3)
y 1 −r

(3)
x ∗ t

(3)
y −r

(3)
y ∗ t

(3)
y

⎤

⎥⎥⎥⎥⎥⎦
(11)

where (r(i)x , r
(i)
y ) and (t(i)x , t

(i)
y ) are the (x, y) coordinates of the ith source and

target control points respectively.
Given the deformation matrix H, a position pt in the target patch is mapped

back to the position pr = H−1pt in the source patch. Accordingly, we compute
the feature value in the position pt in the target patch’s feature map by bilinear
interpolation of feature values neighbouring to pr in the source feature map.
This grid sampling operation is represented by the symbol ’G’ in Fig. 1.

3.3 Text Recognition

Given the rectified feature maps of one text region, we employ a light-weight
attention-based sequence-to-sequence recognition network to recognize the text.
As shown in Fig. 1, the network first employs several convolutional layers to pro-
duce a feature map of height 1, and then uses a bidirectional LSTM to encode
long-range forward and backward dependencies between the column feature vec-
tors of the feature map and outputs a sequence of features. A gated recurrent
unit (GRU) decoder with Bahdanau attention is finally employed to decode the
feature sequence into a character label sequence. More details about character
sequence prediction with GRU can be found in [28], and the configuration of the
recognition network is presented in the supplementary material.

Recognition Loss. The text recognition loss Lrec is formulated as:

Lrec = −
N∑

i=1

NC∑

j=1

I(ŷj
i = 1)log(yj

i ) (12)

where N is the length of the predicted character label distribution sequence
{yi}, NC is the total number of different characters, {ŷi} is the ground-truth
one-hot label distribution sequence, and I(·) is a binary function that returns 1
if its input is evaluated as true and returns 0 otherwise.

3.4 Text Spotting Loss

The total loss of the text spotting model is a combination of the text region
localization loss Lloc and the text recognition loss Lrec:

L = λlLloc + λrLrec (13)

where the weights λl and λr are set to 1.0 and 0.2 respectively in this work.
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4 Experiments

4.1 Datasets

We evaluate our scene text spotting method on three challenging benchmarks:
TotalText, CTW1500, and ICDAR2015. TotalText [4] is composed of 1255 and
300 images for training and testing respectively and contains large numbers of
curved text instances, each annotated by a polygonal boundary of 10 vertices.
CTW1500 [24] contains 1000 training images and 500 testing images with many
challenging long curved text, each annotated by a polygonal boundary of 14
vertices. ICDAR2015 [14] consists of 1000 training images and 500 testing
images with multi-oriented accidental scene text instances, each annotated by a
quadrilateral bounding box. We employ precision P , recall R, and f -measure F
to evaluate text spotting performance.

4.2 Implementation Details

We implement the proposed text spotting network on the basis of the PyTorch
framework and conduct the experiments on a NVIDIA Tesla V100 GPU. We
depict the text centerline by a cubic B-spline (order n = 4) with 5 control points
(m = 4) and an open uniform knot vector, and approximate the centerline with
k = 17 path points. We employ w = 9 pairs of boundary points on the upper
and lower boundaries of a text region.

The spotting network is optimized using stochastic gradient descent with a
weight decay of 0.0001 and a momentum of 0.9. The network is first pre-trained
on a combined dataset similar to that used in [29] for 90K iterations with the
learning rate starting from 0.01 and reduced to 0.001 for the last 20K iterations.
The combined dataset contains training samples of SynthText [7], ICDAR 2013
[15], ICDAR 2015 [14], COCO-Text [38], and Total-Text [4] datasets, with a
sampling ratio 2 : 2 : 2 : 2 : 1 among these datasets for generating a mini-batch
of 10. Next, we fine-tune separate spotting models for different test datasets
using their own training sets. For TotalText and CTW1500 curved text datasets,
the learning rate is initialized to 0.001 for the first 40K training iterations and is
reduced to 0.0001 for further 20K iterations. For ICDAR2015 dataset, a learning
rate of 0.001 is used during 40K training iterations of the network.

4.3 Ablation Study

Effectiveness of Spline-Based Text Region Regression. We verify the
effectiveness of the proposed spline-based text region representation and regres-
sion model by comparing the text detection performance of some variants of the
text region regression network in Table 1. The model ’Baseline’ uses the Cascade
R-CNN backbone to predict the bounding boxes of text instances in the image.
The model ’Mask’ replaces the shape parameter regression branches with the
mask branch in Mask R-CNN [9] for text detection.
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Table 1. Text detection performance
of the proposed spline-based text region
regression model and two variant models

Model TotalText ICDAR2015

P R F P R F

Baseline 73.3 72.7 73.0 79.5 74.8 77.1

Mask 85.0 82.2 83.6 89.7 80.9 85.1

Proposed 85.7 85.1 85.4 91.1 85.4 88.1

Table 2. Text detection performance
using variant number of control points for
the B-spline centerline of a text region

Num TotalText ICDAR2015

P R F P R F

4 85.8 84.5 85.1 89.0 86.9 87.9

5 85.7 85.1 85.4 91.1 85.4 88.1

6 85.5 85.0 85.3 90.2 85.6 87.8

7 85.1 84.6 84.8 88.4 86.5 87.4

Fig. 4. Text detection results obtained
by variant models in Table 1.

Fig. 5. Text spotting results obtained by the
baseline model (left) and our model (right) in
Table 3. Detected text instances are marked
with green boxes. Incorrect recognition results
are shown with red text.

Compared to the baseline, the proposed spline-based text region regression
model substantially improves the text detection performance through more accu-
rate and flexible modeling of the text region. It also achieves higher detection
f -measure than the mask mechanism [9], showing the advantages of the pro-
posed parameterized, geometric representation of the text over the pixel-level
representation in accurately describing the shape of the text. Figure 4 presents
some text detection results obtained by variant models in Table 1. The proposed
model yields more accurate text region boundaries than the others.

We further inspect the impact of using different numbers of control points for
the B-spline centerline of a text region on the detection performance. As shown
in Table 2, a B-spline with 5 control points is usually sufficient to cope with the
different shape complexities of most scene text.
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Effectiveness of Text Feature Rectification for Text Spotting. We verify
the effectiveness of our text feature rectification mechanism in scene text spotting.
Table 3 compares the spotting performance with our rectification model, a STN-
based rectification model similar to [34] for adaptive text shape deformation, and
a baseline model that removes the rectification module from the spotting network
(i.e., feeding features of a text region directly to the text recognition module).

Table 3. Text spotting perfor-
mance with variant rectification
models

Model TotalText ICDAR2015

P R F P R F

Baseline 75.8 73.0 74.4 69.9 69.0 69.5

STN 80.8 72.8 76.6 71.7 69.0 70.3

Ours 81.2 78.9 80.0 72.2 69.3 70.7

As shown in Table 3, introducing adap-
tive rectification of text features ahead of
recognition significantly enhances the text
spotting performance owing to the rectified,
more regular representation of the text, espe-
cially on benchmarks with curved/irregular
text instances like TotalText as expected.
Figure 5 shows some examples of text spotting
results obtained by the baseline model and our
rectification-based model respectively. The improved spotting accuracy achieved
by our model shows its effectiveness for arbitrary-shaped scene text spotting.

4.4 Comparison with State-of-the-Arts

We compare the performance of our text spotting method with some state-
of-the-art methods on both curved and multi-oriented text benchmarks in

Table 4. Scene text spotting results on TotalText and CTW1500. ’None’ and ’Full’
are f -measure of spotting using no lexicon and the full lexicon in recognition respec-
tively. ’Det’ is the f -measure of text detection results. ’FPS’ is the inference speed on
TotalText. In each column, the best result is shown in bold and the second best result
is shown with underline. Methods marked with ∗ exploited additional character-level
labels besides the common word-level labels in training and are not included in ranking.

Method TotalText CTW1500 FPS

Det None Full Det None Full

TextNet [37] 63.5 54.0 – – – – –

FOTS [22] – – – 62.8 21.1 39.7 –

Qin et al.[31] 83.3 67.8 – – – – 4.8

TextDragon [5] 80.3 48.8 74.8 83.6 39.7 72.4 –

ABCNet [23] – 64.2 75.7 – 45.2 74.1 17.9

Text Perceptron [30] 85.2 69.7 78.3 84.6 57.0 – –

PAN++ [42] 86.0 68.6 78.6 – – – 21.1

ABCNet v2 [25] 87.0 70.4 78.1 84.7 57.5 77.2 10

Mask TextSpotter [29] ∗ 83.9 52.9 71.8 – – – 4.8

CharNet [46] ∗ 85.6 66.6 – – – – –

Mask TextSpotter v3 [18] ∗ – 71.2 78.4 – – – –

Ours 86.6 67.8 80.0 84.9 59.6 75.0 8.6
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Table 5. Scene text spotting results on ICDAR2015. ’S’, ’W’, and ’G’ are f -measure of
spotting using the strong (100 words), weak (1000+ words), and generic (90K words)
lexicons respectively. Methods marked with ∗ exploited additional character-level labels
besides the common word-level labels in training and are not included in ranking.

Method Word Spotting End-to-End Recognition FPS

S W G S W G

Deep TextSpotter [1] 58.0 53.0 51.0 54.0 51.0 47.0 9.0

TextBoxes++ [19] 76.5 69.0 54.4 73.3 65.9 51.9 –

FOTS [22] 84.7 79.3 63.3 81.1 75.9 60.8 7.5

He et al.[11] 85.0 80.0 65.0 82.0 77.0 63.0 –

TextDragon [5] 86.2 81.6 68.0 82.5 78.3 65.2 2.6

Text Perceptron [30] 84.1 79.4 67.9 80.5 76.6 65.1 –

PAN++ [42] – – – 82.7 78.2 69.2 13.8

ABCNet v2 [25] – – – 82.7 78.5 73.0 10

Mask TextSpotter [29] ∗ 79.3 74.5 64.2 79.3 73.0 62.4 2.6

CharNet [46] ∗ – – – 83.1 79.2 69.1 –

Mask TextSpotter v3 [18] ∗ 83.1 79.1 75.1 83.3 78.1 74.2 2.5

Ours 82.7 77.0 70.7 82.7 76.6 70.6 6.2

Tables 4 and 5. Note that, besides the word-level annotations of text, some meth-
ods (marked with ∗) further exploited external character-level annotations as
extra supervision information, which are not available in the benchmark datasets.

Curved Text Spotting. Table 4 shows that our method achieves the best
results in two text spotting and one text detection tasks on TotalText and
CTW1500 curved text datasets and comparable results in the rest of detec-
tion/spotting tasks, which demonstrate the method’s capability to accurately
localize and recognize various curved text in natural images.

Particularly, compared to Text Perceptron which combined a TPS-based fea-
ture rectification module with a focusing attention recognizer [3] and ABCNet
which employed a Bezier curve-based feature sampling mechanism for recogniz-
ing irregular text, our rectification and spotting model achieves higher perfor-
mance on most evaluation metrics on the two curved text benchmarks. ABCNet
v2 further extended the ABCNet’s backbone (e.g. introducing the BiFPN and
CoordConv modules) and its training mechanism for enhanced performance.
When the ResNet+FPN backbone of ABCNet is used, which is similar to that
employed in our model, it achieves a text spotting f -measure of 67.4 on Total-
Text and 54.6 on CTW1500 using no lexicon [25]. On the other hand, unlike
our method employing common word-level annotations of text as supervision
information, Mask TextSpotter v3 exploited both word-level and character-level
annotations (e.g. bounding boxes and category indices of characters) for train-
ing the model and employed a combinatory text recognition strategy integrating
character-level pixel voting and spatial attention mechanisms.
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Multi-oriented Text Spotting. On ICDAR2015 which consists of multi-
oriented but mostly straight text instances, as shown in Table 5, our method also
achieves comparable text spotting performance among the methods that simi-
larly exploit only word-level annotations of text and common training datasets.
The good results of our method on the curved and multi-oriented text bench-
marks demonstrate its effectiveness in spotting scene text in arbitrary shapes.

4.5 Qualitative Results

Figure 6 shows some text spotting results of our method. The proposed spotting
network robustly detects and recognizes various scene text with largely varied
appearances and qualities. More examples of scene text spotting results and
discussions of limitations can be found in the supplementary material.

Fig. 6. Examples of text spotting results. Detected text instances are marked with
green boxes, with corresponding recognition results shown nearby. (Color figure online)

5 Conclusions

We present a method for accurately spotting arbitrary-shaped scene text in nat-
ural images. A parametric text representation and regression model based on
the spline centerline is proposed to capture the distinctive global shape charac-
teristics of text for robustly localizing text instances with varied appearances.
The method further spatially rectifies the feature representation of an irregularly
shaped text with an adaptive deformation model before feeding it to the text
recognition network, which effectively improves the text spotting accuracy. In
the future work, we will explore integrating effective language models with the
recognition network and further improving the collaboration between detection
and recognition modules for enhancing the performance of the method.
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Abstract. Without densely tiled anchor boxes or grid points in the
image, sparse R-CNN achieves promising results through a set of object
queries and proposal boxes updated in the cascaded training manner.
However, due to the sparse nature and the one-to-one relation between
the query and its attending region, it heavily depends on the self atten-
tion, which is usually inaccurate in the early training stage. Moreover, in
a scene of dense objects, the object query interacts with many irrelevant
ones, reducing its uniqueness and harming the performance. This paper
proposes to use IoU between different boxes as a prior for the value rout-
ing in self attention. The original attention matrix multiplies the same
size matrix computed from the IoU of proposal boxes, and they determine
the routing scheme so that the irrelevant features can be suppressed. Fur-
thermore, to accurately extract features for both classification and regres-
sion, we add two lightweight projection heads to provide the dynamic
channel masks based on object query, and they multiply with the output
from dynamic convs, making the results suitable for the two different
tasks. We validate the proposed scheme on different datasets, including
MS-COCO and CrowdHuman, showing that it significantly improves the
performance and increases the model convergence speed. Codes are avail-
able at https://github.com/bravezzzzzz/IoU-Enhanced-Attention.

1 Introduction

Object detection is a fundamental task in computer vision, which aims to locate
and categorize semantic regions with bounding boxes. Traditionally, there are
two-stage [13,19,33] methods based on the densely tiled anchors or one-stage [25,
28,31,32,41] methods built on either anchors or grid points. However, they are
both complained for handcrafted designs, e.g. the anchor shapes, the standard for
positive and negative training samples assignment, and the extra post processing
step, like Non-Maximum Suppression (NMS).
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Fig. 1. Two ways to enhance sparse R-CNN. (a) focuses on a particular proposal box
(in yellow) and its corresponding attention matrix in sparse R-CNN (attn) and our
model ( ̂attn). It shows that IoU-ESA can effectively restrict the query attending region,
hence keeping the uniqueness of object query. In (b), two channel masks, dynamically
predicted from object queries, help to highlight different regions on the features for
classification and regression tasks. (Color figure online)

DETR [3] is a simpler model that utilizes the structure of transformer. In its
decoder, a sparse set of learnable queries absorb object contents from the image
by cross attention and also from each other by self attention. Then bipartite
matching connected the updated queries and ground truths, assigning only one
query to a ground truth box for the classification and regression loss. The one-
to-one label assignment rule prevents redundant boxes output from the model.
Therefore, NMS is no longer needed. However, DETR still suffers from the slow
training convergence. TSP [40] selects features from the encoder to initialize the
query set, and SMCA [11] directly predicts a spatial mask to weight the attention
matrix. Both of them can accelerate the training speed.

The above works have a sparse query set but must attend to the complete
image densely. Deformable DETR [50] changes the standard attention into a
deformable one, constraining each query to attend to a small set of sampling
points around the reference point. It significantly reduces the calculations of
attention patterns and improves convergence speed. Sparse R-CNN [39] utilizes
RoI align [17] to make local object embedding for loss heads. It has paired object
query qi and proposal box bi, and qi only interacts with the corresponding image
feature within box bi through dynamic convs, where i = 1, 2, · · · , N and N is
the total number of the query slots and boxes. Apart from that, it still performs
self attention among the query set so that one qi knows about the others. Sparse
R-CNN is a cascaded structure with multiple stages, and bi is refined in each
stage to approach the ground truth box progressively.

Despite the simple designs, sparse R-CNN relies on self attention to model the
relationship between different object queries. Since qi provides kernels for each
bi, self attention indirectly enlarges the receptive field of the dynamic convs
within each box bi. However, qi is summarized into a vector without spatial
dimensions, and the self attention ignores the spatial coverage of bi. In other
words, qi may be intensively influenced by other qj simply because they have
similar query and key vectors, without considering the locations of bi and bj .
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For dense object detection in MS-COCO and CrowdHuman datasets, there are
many ground truths of the same class within an image. The dynamic routing
in self attention can be ineffective due to the lack of guidance from the spatial
prior, especially in the early training epochs.

In this paper, we intend to enhance the self attention for object queries in
sparse R-CNN by considering the geometry relation between two corresponding
boxes, as is shown in Fig. 1a. Similar idea is also adopted in Relation Net [19].
However, we take a different strategy without adding any parameters. The com-
mon metric of Intersection over Union (IoU) is directly utilized as a natural prior
for value routing during self attention. Specifically, a matrix IoU of size N ×N is
computed among N proposal boxes, in which the IoU metric between two boxes
bi and bj determines each element IoUij . Note that IoU is in the same size with
the attention matrix attn, so the element-wise multiplication can combine them,
and the result is used for weighting the value matrix to update object queries.

To further enhance the feature for classification and localization in the dual
loss heads, we design a dynamic channel weighting (DCW) module to produce
different and suitable features for two tasks. The idea is to add a connection
between object query and RoI feature to achieve dynamic cross weighting. It
employs the object query qi to predict two channel masks with the exact dimen-
sion of qi. Then the two masks are applied to weight the output feature given by
the dynamic convs. As a result, channels can be highlighted differently for the
two tasks, focusing on the relevant regions for classification and regression, as
shown in Fig. 1b. Similar to the dynamic conv, there are two light-weight heads
in the DCW module, and both have the sigmoid function at the end, like the
SE-Net [20], constraining the value range from 0 to 1. After the DCW, features
for the two tasks are no longer shared, potentially benefiting both.

The summary of our contributions is listed as follows:

– We propose an IoU-enhanced self attention module in sparse R-CNN, which
brings in the spatial relation prior to the attention matrix. Here the IoU of
the two proposal boxes is utilized as a metric to evaluate the similarities of
different object queries and to guide the value routing in self attention.

– We design an inserted DCW module with the cross weighting scheme, which
outputs two types of channel masks based on object queries, and then uses
them to weight the feature from the original dynamic conv. The DCW sepa-
rates the RoI features for the classification and regression heads.

– Extensive experiments on two datasets of CrowdHuman and MS-COCO are
carried out, which validate the proposed method effectively boosts the quality
of detection results without significantly increasing the model size and the
amount of the calculations.

2 Related Work

Object detection [7,43] has been intensively investigated in computer vision,
particularly in the framework of a deep neural network [47]. Recently, due to
the great success of transformer [42] and its application on image classification



IoU-Enhanced Attention for End-to-End Task Specific Object Detection 127

[10,29,44], the performance of detection has been significantly improved due to
strong backbones pre-trained on Imagenet [8]. Here we only give a brief review
on models, particularly for object detection, primarily including two types which
are dense and sparse detectors.

2.1 Dense Detector

Typical dense methods are either two-stage or one-stage. From R-CNN [14], Fast
R-CNN [13] to Faster R-CNN [33], two-stage [19,36] or even multi-stage [2] meth-
ods become tightly fitted into CNN, achieving the end-to-end training manner.
In these methods, object proposals, which are the roughly located object regions,
are first obtained. Then, RoI align [17] extracts these proposal regions from the
entire image, making the second stage only observes the RoIs and focuses on
improving their qualities. One-stage methods detect objects in a single shot
without RoI align. SSD [28] and YOLO [31,32] mimic the first stage in Faster
R-CNN, and try to give the final locations and the belonging classes directly .
However, the detection quality of them significantly lags behind their two-stage
competitors. RetinaNet [25] attributes the inferiority of one-stage methods to
the extreme imbalance between the positive and negative training samples and
designs a focal loss to deal with it, which down weights the easy negative during
training. Based on feature pyramid network (FPN) [24] and sample assigning
schemes, e.g., ATSS [46], PAA [22] or OTA [12], one-stage method RetinaNet
achieves competitive performance.

Except for the early versions of YOLO [31,32], most of the above works have
densely tiled initial boxes in the image, known as anchors. However, their sizes
and ratios are important but challenging to choose. Recent works demonstrate
that single-stage anchor-free methods achieve promising results. Without tiled
anchors, these methods directly classify each grid point and regress bounding
boxes for positive samples. Different strategies have been adopted to locate a
box from a grid. FCOS [41] outputs distances to four borders of the ground truth
box. At the same time, it also predicts centerness as a supplement quality metric
for NMS. RepPoints [45] utilizes deformable conv [6] to spread irregular points
around the object center, and then collects all point positions for locating the
ground truth box. CornerNet [23] adopts a bottom-up scheme, which estimates
Gaussian heatmaps for the top-left and bottom-right corners of a ground truth,
and tries to match them from the same ground truth through an embedding
feature. A similar idea is also used to predict heatmaps for object centers [48].
RepPoints-v2 [5] integrates the idea of CornerNet by adding a branch to predict
corner heatmaps, which also helps refine the predicted box from irregular points
during inference.

2.2 Sparse Detector

Although anchor-free methods greatly alleviate the complexity, they still need
to predict on the densely tiled grids. Since a ground truth is potentially assigned
to many candidates as positive, NMS becomes the inevitable post processing
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step to reduce the redundant predictions. However, NMS is complained for its
heuristic design, and many works try to improve [1,21,27] or even eliminate it
[38]. But these works often bring in complex modules. DETR [3] gives a sim-
ple NMS-free solution under the transformer structure [42]. It assumes a sparse
set of learnable queries updated repeatedly by both self and cross attentions.
The query is finally employed to predict its matching ground truth. Note that
one ground truth box is only assigned to its belonging query through bipartite
matching. Therefore NMS is not required anymore. Despite its simple setting,
DETR takes a long time to converge. TSP [40] finds that the unstable behavior
of cross attention in the early training epochs is the leading cause of the slow
convergence. Hence it removes cross attention and only performs self attention
among selected RoIs. Using FPN as backbone, TSP-FCOS and TSP-RCNN can
achieve satisfactory results with 36 epochs. SMCA [11] incorporates the spa-
tial prior predicted directly from query to modulate the attention matrix and
increases convergence speed. Deformable DETR [50] uses the idea in deformable
conv-v2 [49] into transformer’s encoder and decoder. Different from traditional
non-local attention operation, each query in deformable attention straightly sam-
ples the features at irregular positions around the reference point and predicts
the dynamic weight matrix to combine them. The weighted feature updates to
query for the next stage until it feeds into the loss heads. Sparse R-CNN [39] can
be regarded as a variant of DETR and assumes an even simpler setting. It has
a set of learnable object queries and proposal boxes, and kernels given by query
slots process only regions within proposal boxes. Details are provided in Sect.
3.1. We believe that sparse R-CNN can be easily enhanced without breaking its
full sparse assumption and increasing many calculations and parameters.

3 Method

We now introduce the proposed method, mainly including IoU-enhanced self
attention (IoU-ESA) and dynamic channel weighting (DCW). The overview of
the method is shown in Fig. 2. Before illustrating the details of the designed
modules, we first review and analyze the preliminary works of sparse R-CNN.

3.1 Preliminaries and Analysis on Sparse R-CNN

Basic Formulation. Details about sparse RCNN can also be found in Fig. 2.
It has a set of the learnable object queries q to provide one-to-one dynamic
interactions within their corresponding learnable proposal boxes b. These q are
expected to encode the content of the ground truth boxes. The proposal boxes b
represent the rectangles. They locate on features of the whole image for regional
RoIs r by RoI align. Dynamic convs, with the two sets of parameters (Params1-
2) generated from the object queries q by a linear projection, is performed on
RoI features r. Then, object features o for dual loss heads can be obtained.
Note that the dynamic convs directly link the object queries q with their corre-
sponding RoIs r. Sparse R-CNN is in an iterative structure with multiple stages.
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Fig. 2. An overview illustration of our approach. Besides the original dynamic convs
module in sparse R-CNN, two inserted modules, IoU-Enhanced Self Attention (IoU-
ESA) and Dynamic Channel Weighting (DCW), are designed. The former enhances
the self attention among object queries by IoU between proposal boxes. The latter
outputs disentangled features for the two tasks, classification and regression, in object
detection.

Particularly, both q and b are updated in the intermediate stage and potentially
used for the next one. In the initial stage, q and b are model parameters which
can be tuned by back-propagation during training.

Sparse R-CNN is similar to DETR in the following aspects: (i) They both
have learnable object queries, which intends to describe and capture the ground
truths. In sparse R-CNN, it is the proposal feature, while in DETR, it is the
positional encoding. (ii) In these two methods, self attention is performed among
object queries to aggregate information from the entire set. (iii) Dynamic convs
and cross attention are comparable. Both perform interactions between object
queries and image feature, refining the object embeddings used for classification
and regression. In summary, sparse R-CNN can be regarded as a variant of DETR
depending on RoI align, with a different way to generate object embeddings for
loss heads.
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Fig. 3. Analysis on feature disentanglement. (a)–(c) indicate the original sparse RCNN,
disentangled dynamic conv with half dimension for each branch, and disentangled
dynamic conv with a projection head to recover full dimension, respectively. Note
that, we only show the classification branch in (b) and (c).

Analysis on Self Attention. The unique property of sparse R-CNN is its
sparse-in sparse-out paradigm throughout the processing steps. Neither dense
candidates nor interacting with global features exists in the pipeline. However,
we find that the self attention plays an important role, since it models the relation
among q and enlarges the receptive field of it. Although q is a summarized vector
without spatial coverage, the geometry relation is also expected to be discovered
in the self attention and to be considered in value routing. To validate our
assumption, we train one model without self attention and the other in which the
self attention matrix is replaced by the IoU matrix computed directly between
proposal boxes. Their performances are compared with the original sparse R-
CNN in Table 1. These experiments are conducted on MS-COCO. It can be
seen that the worst performance, with the AP of 38.5, is from the model w/o
MSA without any self attention among object queries. When IoU matrix is used
as the attention matrix, the results from IoU-MSA have been greatly recovered.
However, the original self attention still achieves the optimal performance. Thus,
we intend to enhance the self attention in sparse R-CNN by utilizing the IoU as
a geometry prior to guide the routing scheme in self attention. Note that, all the
self attentions are in the form of multi-head. The analyze result on CrowdHuman
will be presented in the supplementary material.

Analysis on Feature Disentanglement. As is described in [36], the two
tasks in detection concentrate on different parts of objects. The classification
branch concerns about the region of semantics to support its class type, while
the regression branch is more related to object contours for accurately locating
it. Therefore, it is beneficial to disentangle the features for them. Note that
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sparse R-CNN uses the same entangled feature for the two tasks, which can be
potentially improved.

We train two models which have separate features and structures for the clas-
sification and regression, as shown in Fig. 3. Both of them use the same dimension
(e.g., 256) setting on object queries q and RoI features r. The first one in Fig. 3b
allocates half dimensions (e.g., 128) for each task. Therefore the dynamic conv
and its later layers become fully independent. Note that this setting saves the
model parameters and calculations. The other in Fig. 3c has a similar inten-
tion but considers to compensating the dimension lost before giving the feature
to dual heads. The number of channels is recovered to the original dimension
as in sparse R-CNN, which is realized by an extra projection layer. One thing
that needs to mention is that although the newly added layer brings along more
model parameters and calculations, it is still efficient compared with the original
model, mainly due to the significant dimension reduction during dynamic convs.
Their performances on MS-COCO are listed in Table 2. Compared to the original
sparse R-CNN with entangled features and structures for both tasks, the half
dim model metric does not obviously degrade, but the parameters and Flops are
apparently less. The full dim model is slightly better than the original and is
still slightly efficient. These results clearly demonstrate the effectiveness of task
disentanglement in sparse R-CNN. However, we think the simple strategy to
divide channels for different tasks does not fully consider the dynamic weighting
scheme from the object query. Based on this observation, we intend to enhance
the feature for classification and localization by a dynamic channel weighting
(DCW) module, which gives a better disentanglement for the two tasks at the
cost of only a slight increase in model parameters.

Table 1. Analysis on self attention. Three
different models, including origin sparse
R-CNN with multi-head self attention
(MSA), without self attention and atten-
tion matrix replaced by IoU matrix (IoU-
MSA), are trained on MS-COCO.

Method AP Params FLOPs

MSA 42.8 106.2M 133.8G

w/o MSA 38.5 104.7M 133.6G

IoU-MSA 41.8 105.4M 133.7G

Table 2. Analysis on feature disentangle-
ment on MS-COCO. AP, the number of
parameters, and the amount of calcula-
tions of the three models are listed. ‘En.’
and ‘Dis.’ indicate entangled and disen-
tangled feature dimension.

Method AP Params FLOPs

En. (original) 42.8 106.2M 133.8G

Dis. (half dim) 42.7 97.0M 132.9G

Dis. (full dim) 43.1 103.7M 133.5G

3.2 IoU-Enhanced Self Attention (IoU-ESA)

As is depicted in Sect. 3.1, multi-head self attention (MSA) is applied on the
object queries q to obtain the global information from each other. Here we further
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Fig. 4. Details of IoU-ESA module. Normal self attention is still executed among object
queries. The attention matrix attn, calculated from Q and K, is further modulated
by IoU matrix through element-wise multiplication. IoU matrix reflects similarity of
proposal boxes, and it also determines the value routing scheme.

illustrate its mechanism as in Eq. (1),

MSA(Q,K,V) = [Attn (Qi,Ki,Vi)]i=1:HWo (1)

Attn (Qi,Ki,Vi) = softmax

(
QiK

T
i√

d

)
Vi (2)

where Q, K, V ∈ R
N×d are the input query, key and value matrices, pro-

jected from object queries q by parallel layers with different parameters. d is
the hidden dimension after the projection, and H is the total number of heads.
Attn (Q,K,V) denotes the standard attention function with Q, K, and V as
its input, and it is further clarified in Eq. (2). Wo is a set of learnable parame-
ters used to combine multiple heads, and the subscripts specify the index of the
head. Note that each head independently routes its own value V according to
the similarity between Q and K.

We intend to enhance the self attention by considering the geometry rela-
tion between two corresponding boxes, and the details are given in Fig. 4.
Basically, IoU-ESA utilizes another way to measure the similarity between Q
and K. Compared with exhaustively measure between any slot pair through
attn = QKT/

√
d ∈ R

N×N , IoU is a good prior and it is easier to compute. IoU-
ESA takes advantage of it without adding any parameters. Specifically, each ele-
ment of attn before normalize is multiplied by its corresponding element in IoU
matrix, which is computed from the pairs of proposal boxes. The IoU-enhanced
self attention is formulated as:

âttnij =
exp (attnij) · IoUij∑N

k=1 exp (attnik) · IoUik

(3)



IoU-Enhanced Attention for End-to-End Task Specific Object Detection 133

where i, j are indexed from 1 to N , âttn ∈ R
N×N is the enhanced attention

matrix, and IoU ∈ [0, 1]N×N is measured among N proposal boxes based on the
IoU metric.

Fig. 5. Details of DCW module and its way to be applied on RoI feature. Two channel
masks mc and mr are generated from object queries q by the lightweight bottlenecks,
and they enhance the RoI features r output from dynamic convs.

3.3 Dynamic Channel Weighting (DCW)

As is analyzed in Sect. 3.1, it is better to use different features for the two loss
heads in detection. However, sparse R-CNN sends the same features into both
heads, which is obviously not optimal. Although the simple strategy, to separate
object queries q and RoI features r along the channel dimension, can reduce
the parameters and calculations without degrading the performance, a better
dynamic scheme, which fully utilizes q, is still needed.

Here we propose a dynamic channel weighting (DCW) module to separate
and strengthen the two features. As shown in Fig. 5, two channel masks mc

and mr ∈ R
N×d are generated by linear projection layers in parallel with the

dynamic layer for the parameters in dynamic convs. The sigmoid is used as the
activation, constraining each element in mc and mr between 0–1. Different from
SE-Net, the DCW is actually a dynamic cross weighting scheme. Based on the
object queries q, they generate mc and mr with the same number of channels
as the RoI features r, and the value in them shares for each spatial position in
r. These two channel masks highlight different areas in the proposal box, hence
producing more relevant features for classification and regression branches. The
DCW module can be formulated as follows:

r′ = r � σ (gm (q)) (4)

where q and r indicate object queries and RoI features after dynamic conv. gm
is a bottleneck including two connected linear projection layers, predicting two
masks based on q. σ(·) represents the sigmoid activation. The result r′ is the
enhanced RoI features for different tasks, and it can be rc or rr as is shown in
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Fig. 5. Note that the separate rc and rr go through independent layers, which
project them into object embeddings oc and or. These features are finally given
to the two loss heads to compute different types of penalties.

Since the original sparse R-CNN is built in cascaded structure, the object
queries q need to be updated for the next stage. To keep it simple, in our imple-
mentation, oc and or are added together to form the new q in the next stage.

3.4 Training Objectives

Following [3,37,39,50], we take the Hungarian algorithm to make the prediction
and ground truth pairs. The bipartite matching manner avoids post processing
like NMS. The matching cost is the same as the training loss, L = λcls · Lcls +
λL1 · LL1 + λgiou · Lgiou. Here, Lcls is focal loss [25] used for classification. LL1

and Lgiou representing the L1 loss and generalized IoU loss [34] are employed
for box regression. λcls, λL1 and λgiou are coefficients balancing the impact of
each term.

4 Experiment

Datasets. We perform extensive experiments with variant backbones on the
pedestrian detection benchmark CrowdHuman [35] and 80-category MS-COCO
2017 detection dataset [26].

For CrowdHuman, training is performed on ∼15k train images and testing
is evaluated on the ∼4k validation images. There are a total of 470k human
instances from train and validation subsets and 23 persons per image on average,
with various kinds of occlusions in the dataset. Each human instance is annotated
with a head bounding-box, human visible-region bounding-box and human full-
body bounding-box. We only use the full-body bounding-box for training. For
evaluation, we follow the standard Caltech [9] evaluation metric mMR, which
stands for the Log-Average Missing Rate over false positives per image (FPPI)
ranging in [10−2, 100]. Average Precision (AP) and Recall are also provided to
better evaluate our methods.

For COCO dataset, training is performed on train2017 split (∼118k images)
and testing is evaluated on val2017 set (5k images). Each image is annotated
with bounding-boxes. On average, there are 7 instances per image, up to 63
instances in a single image in the training set, ranging from small to large on
the same image. If not specified, we report AP as bbox AP, the integral metric
over multiple thresholds. We report validation AP at the last training epoch.

Implementation Details. All experiments are implemented based on Detec-
tron2 codebase [15]. We initialize backbone from the pre-trained model on Ima-
geNet [8], and other newly added layers with Xavier [16]. By default, we treat
ResNet-50 [18] as the backbone, and use FPN [24] to deal with different sizes
of ground truth boxes. AdamW [30] is employed to optimize the training loss
with 10−4 weight decay. The initial learning rate is 2.5 × 10−5, divided by 10 at
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40th epoch for CrowdHuman and by 10 at 27th and 33rd epochs for COCO. All
models are trained on 4 RTX 3090 GPUs with batch size of 16, for 50 epochs
on CrowdHuman, while 36 epochs on COCO. Images are resized such that the
shorter edge is at most 800 pixels while the longer side is 1,333. The loss weights
are set as λcls = 2, λL1 = 5 and λgiou = 2. Following sparse R-CNN, the default
number of object queries and proposal boxes are 500 for CrowdHuman, 100 for
COCO. All models have 6 iterative stages. The gradients on proposal boxes are
detached in the next stage for stable training. There is no post processing step
like NMS at the evaluation.

4.1 Ablation Study

Ablation Study on CrowdHuman. CrowdHuman consists of images with
highly overlapped pedestrians. IoU-ESA restricts the attending range of the
object queries q during self attention, according to Eq. (3), so q can intentionally
consider the geometry relation for updating itself. On the other hand, DCW gives
the independent feature representations for classification and regression, which is
also conducive to improve the performance. Table 3 shows the detailed ablations
on them. It clearly indicates that both modules can significantly improve the
performance. When the two modules are combined together, they can bring
further enhancements.

Ablation Study on COCO. We further carry out a similar experiment on
the richer and larger dataset MS-COCO. The results are shown in Table 4. Note
that compared to CrowdHuman, COCO has variety of classes and dense objects
at the same time. It can be seen that both IoU-ESA and DCW modules can also
perform well on COCO.

Table 3. Ablation study results on
CrowdHuman. All experiments are based
on ResNet-50, and number of object
queries and proposal boxes are 500.

IoU-ESA DCW AP ↑ mMR ↓ Recall ↑
89.2 48.3 95.9

� 90.4 47.8 96.7

� 89.9 47.4 96.3

� � 90.9 47.2 96.9

Table 4. Ablation study results on
COCO. All experiments are based on
ResNet-50, and number of object queries
and proposal boxes are set to 100.

IoU-ESA DCW AP AP50 AP75

42.8 61.2 45.7

� 43.9 63.0 47.6

� 43.6 62.3 47.3

� � 44.4 63.4 48.3

4.2 Main Results

Main Results on CrowdHuman. To thoroughly evaluate the performance
of our proposed methods, we do plenty of experiments based on the same
backbone (ResNet-50) for different methods. The results are shown in Table 5.
It obviously shows that our work outperforms the sparse R-CNN and other
works especially the sparse detector, including DETR and deformable DETR.
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Note that we increase all metrics, including AP, mMR and Recall, at the same
time. Particularly, the enhanced version can achieve +1.7, –1.1, +1.0 gains on
AP, mMR and Recall, respectively, compared with sparse R-CNN.

Table 5. Performance comparisons on CrowdHuman.

Method NMS AP ↑ mMR ↓ Recall ↑
Faster R-CNN � 85.0 50.4 90.2

RetinaNet � 81.7 57.6 88.6

FCOS � 86.1 55.2 94.3

AdaptiveNMS � 84.7 49.7 91.3

DETR ◦ 66.1 80.6 –

Deformable DETR ◦ 86.7 54.0 92.5

Sparse R-CNN ◦ 89.2 48.3 95.9

Ours ◦ 90.9 47.2 96.9

Main Results on COCO. Table 6 shows the performances of our proposed
methods with two standard backbones, ResNet-50 and ResNet-101, and it also
compares with some mainstream object detectors or DETR-series. It can be seen
that the sparse R-CNN outperforms well-established detectors, such as Faster
R-CNN and RetinaNet. Our enhanced version can further improve its detection
accuracy. Our work reaches 44.4 AP, with 100 query slots based on ResNet-
50, which gains 4.2 and 1.6 AP from Faster R-CNN and sparse R-CNN. Note
that our model only slightly increases the calculations from 134 to 137 GFlops.
However, it is still efficient compared with other models like deformable DETR,
TSP and SMCA. With 300 query slots, we can achieve 46.4 on AP, which is not
only superior to 45.0 from sparse R-CNN, but also outperforms other methods
with even bigger backbone like ResNet-101. Our method consistently boosts the
performance under ResNet-101. Particularly, it gives the AP at 45.6 and 47.5
with 100 and 300 query slots, respectively, compared with 44.1 and 46.4 from
sparse R-CNN of the same settings. More surprisingly, our method reaches 49.6
on the Swin-T backbone, surpassing sparse R-CNN 1.7 AP. The results of our
method on COCO test-dev set are reported in Table 7. With the help of test-time
augmentation, the performance can be further improved.
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Table 6. Performances of different detectors on COCO 2017 val set. Here ‘*’ indicates
that the model is with 300 object queries and random crop training augmentation, ‘Res’
indicates ResNet. The top two sections show results from Detectron2 [15], mmdetection
[4] or original papers [3,11,39,50].

Method Backbone Epoch Params FLOPs AP AP50 AP75 APS APM APL

RetinaNet [15] Res-50 36 38M 206G 38.7 58.0 41.5 23.3 42.3 50.3

RetinaNet [15] Res-101 36 57M 273G 40.4 60.3 43.2 24.0 44.3 52.2

Faster R-CNN [15] Res-50 36 42M 180G 40.2 61.0 43.8 24.2 43.5 52.0

Faster R-CNN [15] Res-101 36 61M 232G 42.0 62.5 45.9 25.2 45.6 54.6

Cascade R-CNN [4] Res-50 20 69M 235G 41.0 59.4 44.4 22.7 44.4 54.3

DETR [3] Res-50 500 41M 86G 42.0 62.4 44.2 20.5 45.8 61.1

DETR [3] Res-101 500 60M 152G 43.5 63.8 46.4 21.9 48.0 61.8

Deformable DETR [50] Res-50 50 40M 173G 43.8 62.6 47.7 26.4 47.1 58.0

TSP-FCOS [40] Res-50 36 52M 189G 43.1 62.3 47.0 26.6 46.8 55.9

TSP-RCNN [40] Res-50 36 64M 188G 43.8 63.3 48.3 28.6 46.9 55.7

TSP-FCOS [40] Res-101 36 – 255G 44.4 63.8 48.2 27.7 48.6 57.3

TSP-RCNN [40] Res-101 36 – 254G 44.8 63.8 49.2 29.0 47.9 57.1

SMCA [11] Res-50 50 40M 152G 43.7 63.6 47.2 24.2 47.0 60.4

SMCA [11] Res-101 50 58M 218G 44.4 65.2 48.0 24.3 48.5 61.0

Sparse R-CNN [39] Res-50 36 106M 134G 42.8 61.2 45.7 26.7 44.6 57.6

Sparse R-CNN [39] Res-101 36 125M 201G 44.1 62.1 47.2 26.1 46.3 59.7

Sparse R-CNN* [39] Res-50 36 106M 152G 45.0 63.4 48.2 26.9 47.2 59.5

Sparse R-CNN* [39] Res-101 36 125M 219G 46.4 64.6 49.5 28.3 48.3 61.6

Sparse R-CNN* [39] Swin-T 36 110M 158G 47.9 67.3 52.3 – – –

Ours Res-50 36 133M 137G 44.4 63.4 48.3 27.5 47.1 58.2

Ours Res-101 36 152M 203G 45.6 64.4 49.8 27.5 48.5 60.2

Ours* Res-50 36 133M 160G 46.4 65.8 50.7 29.9 49.0 60.5

Ours* Res-101 36 152M 227G 47.5 66.8 51.8 30.4 50.7 62.5

Ours* Swin-T 36 136M 167G 49.6 69.4 54.4 33.8 51.9 64.4

Table 7. Performances of different detectors on COCO test-dev set. ‘ReX’ indicates
ResNeXt, and ‘TTA’ indicates test-time augmentations, following the settings in [46].

Method Backbone TTA AP AP50 AP75 APS APM APL

Faster RCNN Res-101 36.2 59.1 39.0 18.2 39.0 48.2

RetinaNet Res-101 39.1 59.1 42.3 21.8 42.7 50.2

Cascade R-CNN Res-101 42.8 62.1 46.3 23.7 45.5 55.2

TSD Res-101 43.2 64.0 46.9 24.0 46.3 55.8

TSP-RCNN Res-101 46.6 66.2 51.3 28.4 49.0 58.5

Sparse R-CNN* ReX-101 46.9 66.3 51.2 28.6 49.2 58.7

Ours Res-101 45.6 64.9 49.6 26.9 47.9 58.4

Ours* Res-101 47.8 67.1 52.3 29.0 50.1 60.4

Ours Res-101 � 49.5 68.7 54.9 32.4 51.5 61.9

Ours* Res-101 � 50.8 70.2 56.8 34.1 52.7 63.1

Ours* Swin-T � 52.2 71.9 58.4 35.4 53.7 65.0
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5 Conclusion

This paper enhances sparse R-CNN and makes it more suitable for dense object
detection. We design two modules, including IoU-ESA and DCW. The former
strengthens the original self attention performed on object queries. By employing
IoU of two corresponding proposal boxes, the object query is updated by other
relevant ones under the guide from spatial relations. The latter allows the object
query to provide two extra dynamic channel weights for classification and regres-
sion, so image feature within proposal boxes can be highlighted in different ways
to meet the requirement of the two detection tasks. Both two modules effectively
boost the performance of spare R-CNN. They can significantly increase the met-
rics on CrowdHuman and MS-COCO based on different backbones. Considering
the fact that sparse R-CNN has relatively more parameters than other methods,
particularly in its multi-stage dynamic heads, we will explore the ways to reduce
model size and to increase the efficiency.
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Abstract. Although gaze estimation methods have been developed with
deep learning techniques, there has been no such approach as aim to
attain accurate performance in low-resolution face images with a pixel
width of 50 pixels or less. To solve a limitation under the challenging
low-resolution conditions, we propose a high-frequency attentive super-
resolved gaze estimation network, i.e., HAZE-Net. Our network improves
the resolution of the input image and enhances the eye features and
those boundaries via a proposed super-resolution module based on a
high-frequency attention block. In addition, our gaze estimation mod-
ule utilizes high-frequency components of the eye as well as the global
appearance map. We also utilize the structural location information of
faces to approximate head pose. The experimental results indicate that
the proposed method exhibits robust gaze estimation performance even
in low-resolution face images with 28×28 pixels. The source code of this
work is available at https://github.com/dbseorms16/HAZE Net/.

1 Introduction

Human gaze information provides principal guidance on a person’s attention and
is significant in the prediction of human behaviors and speculative intentions.
Accordingly, it has been widely used in various applications, such as human-
computer interaction [1,2], autonomous driving [3], gaze target detection [4],
and virtual reality [5]. Most of the existing methods for estimating the human
gaze by utilizing particular equipment (e.g., eye-tracking glasses and virtual real-
ity/augmented reality devices) are not suitable for real-world applications [6–8].
Recently, to solve this problem, face image’s appearance-based gaze estimation
methods that learn a direct mapping function from facial appearance or eyes to
human gaze are considered. To accurately estimate the human gaze, an image
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with well-preserved eye features (e.g., the shape of the pupil) and well-separated
boundaries (e.g., the boundary between the iris and the eyelids) is crucial.

Recent studies [9,10] show reliable performance for the gaze estimation with
high-resolution (HR) face images from 448 × 448 to 6000 × 4000 pixels including
abundant eye-related features. However, in the real world, even the face region
detected from the HR image may have a low-resolution (LR) depending on the
distance between the camera and the subject, as shown in the upper-left of Fig. 1.
Most of the existing gaze estimation methods use fixed-size images. Thus, when
the distance between the camera and the subject is large, it leads to the severe
degradation of gaze estimation due to the lack of resolution of the eye patches,
as shown in the first row of Fig. 1.

Fig. 1. Examples of gaze estimation approaches in the real world. HAZE-Net intro-
duced a high-frequency attentive super-resolved gaze estimation that outperforms con-
ventional methods by a large margin.

To deal with the problem, the conventional image interpolation approach
can be adopted so that the image resolution for eye regions can be enhanced
as shown in the second row of Fig. 1. However, since it only works based on
the limited relationship between the surrounding pixels, this method cannot
resolve the degradation of gaze estimation performance. As an alternative, image
super-resolution (SR) methods [11–18] have been considered. These methods are
performed to restore HR images from the LR images. Accordingly, the SR mod-
ule learns how to reconstruct the LR images to HR images. However, this is
an ill-posed problem with various possible answers. This indicates that conven-
tional SR modules do not stably enhance eye features and boundaries, which
are essential for gaze estimation. In other words, although the SR approach may
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help improve the quality of the image, it does not guarantee an ideal mapping
for the optimal performance of the gaze estimation. The results of each image
upscaling method for an LR face image with 28×28 pixels are shown in Fig. 2. A
severe degradation problem occurs in the up-sampled image when bicubic inter-
polation is applied to the LR image, as shown in bicubic results. On the other
hand, the conventional SR module shows higher quality, as shown in DRN [12]
results. Nevertheless, it can be seen that the boundary between the iris and the
pupil is not distinctly differentiated. This demonstrates that the conventional
SR method does not provide an optimal mapping guideline for gaze estimation.

Fig. 2. Visual comparison of different 4× up-sampling methods for LR face images
with 28 × 28 pixels. The first row for each LR image shows the enlarged eye images
using different methods. The second row for each LR image represents the ground truth
(blue arrow) and predicted gaze (red arrow), respectively. (Color figure online)

In this paper, we propose a high-frequency attentive super-resolved gaze esti-
mation network, so-called HAZE-Net, which is mainly comprised of two mod-
ules: 1) SR module based on a high-frequency attention block (HFAB) and 2)
global-local gaze estimation module. To deal with the limitations in the conven-
tional SR methods, we reinforce the high-frequency information inspired by the
observation that the contour of eye features and their boundaries correspond to
high-frequency in the frequency domain. Through the proposed SR module, we
observe that it preserves the shape of the pupil well and distinctly differentiates
the boundary between the iris and the pupil. In addition to the SR module, we
devise a global-local gaze estimation module. Based on the super-resolved face
images and corresponding global-local (face-eye) appearance maps are used to
improve the gaze estimation performance. In addition, we use the coordinates
of five landmarks (e.g., eyes, nose, both corners of the mouth) containing the
structural location information of the face to provide an appropriate guide to the
head pose. Moreover, the devised two modules are collaboratively trained via the
proposed alternative learning strategy. In this process, we add a constraint on
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the SR module to produce a face image that is favorable to gaze estimation. It
contributes to improving gaze estimation performance, as shown in HAZE-Net
results in Fig. 2. We test gaze estimation performance under LR conditions using
MPIIFaceGaze [19] and EyeDiap [20] datasets. The proposed method effectively
estimates the gaze under challenging LR conditions (e.g., 28 × 28 pixels face
image). The major contributions of the paper are as follows:

– The HFAB proposed in our SR module strengthens the high-frequency infor-
mation including eye regions, which is crucial for gaze estimation. With the
contribution of HFAB, the LR face image can be enhanced to be suitable for
gaze estimation.

– Our gaze estimation module utilizes the global-local appearance map obtained
via high-frequency extraction. It improves the performance to be robust to
person-specific appearance and illumination changes.

– HAZE-Net performs favorably against typical gaze estimation models under
challenging LR conditions.

2 Related Work

Appearance-Based Gaze Estimation. Gaze estimation can be divided into
two methods: model-based methods [21–23] and appearance-based methods [24–
32]. Model-based methods estimate human gazes from the shape of the pupil
and boundaries between the iris and the pupil by handcrafted features. How-
ever, recently, appearance-based methods have been in the spotlight owing to
large datasets and the advancement of deep learning techniques. These methods
learn how to extract embedded features for gaze estimation. As one of the early-
stage methods, GazeNet [24] takes a grayscale eye patch as input and estimates
the gaze vector. It shows a better gaze estimation performance by additionally
using a head pose vector. As an extended version, the performance was further
improved by using the VGG network. Spatial-Weights CNN [19] utilizes not
only the eye region but also full-face images. Spatial weights are used to encode
important positions in the face image. This method weights regions of the face
that are useful for gaze estimation. Through this, more weight is assigned to a
specific area in the face image. Furthermore, iTracker [26] receives two eyes, face,
and face positions as input and predicts the gaze vector. Dilated-Net [27] uti-
lizes dilated-convolutions to extract high-level features without reducing spatial
resolution. It is to capture such small changes in eye appearance. Kang Wang
et al. [28] point out the difficulty of generalizing gaze estimation because of
appearance variations, head pose variations, and over-fitting issues with point
estimation. To deal with these issues, they introduced adversarial learning and
Bayesian framework in their network so that it can be practically used in real-
world applications. Focusing on the fact that over-parameterized neural net-
works can be quickly over-fitted, disentangling transforming encoder-decoder
(DT-ED) [29] performs few-shot adaptive gaze estimation for learning person-
specific gaze networks with very few calibration samples. Coarse-to-fine adaptive
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network (CA-Net) [25] extracts coarse-grained features from face images to esti-
mate basic gaze direction and fine-grained features from eye images to estimate
gaze. In addition, according to the above strategy, they design a bigram model
that connects two gaze directions and a framework that introducing attention
components to adaptively acquire appropriate subdivided functions. Addition-
ally, there is an attempt to support gaze estimation by utilizing semantic seg-
mentation which identifies different regions of the eyes such as the pupils and iris
pupils. RITnet [31] exploits boundary-aware loss functions with a loss scheduling
strategy to distinguish coherent regions with crisp region boundaries. PureGaze
[32] purifies unnecessary features for gaze estimation (e.g., illumination, personal
appearance, and facial expression) through adversarial training with a gaze esti-
mation network and a reconstruction network. Nevertheless, the appearance-
based gaze estimation can have a high variance in performance depending on
the person-specific appearance (e.g., colors of pupil and skin). In this paper, we
devise the global-local appearance map for the gaze estimation to be robust to
person-specific appearance. Also, our gaze estimation module effectively learns
high-frequency features to be robust to illumination and resolution changes.

Unconstrained Gaze Estimation. Despite the emergence of appearance-
based methods for gaze estimation, there are limitations on estimating gaze from
real-world images owing to various head poses, occlusion, illumination changes,
and challenging LR conditions. According to the wide range of head pose, obtain-
ing both eyes in the occluded or illuminated image is difficult. Park et al. [10]
proposed a model specifically designed for the task of gaze estimation from single
eye input. FARE-Net [9] is inspired by a condition where the two eyes of the
same person appear asymmetric because of illumination. It optimizes the gaze
estimation results by considering the difference between the left and right eyes.
The model consists of FAR-Net and E-net. FAR-Net predicts 3D gaze directions
for both eyes and is trained with an asymmetric mechanism. The asymmet-
ric mechanism is to sum the loss generated by the asymmetric weight and the
gaze direction of both eyes. E-Net learns the reliability of both eyes to balance
symmetrical and asymmetrical mechanisms. To solve this problem in a differ-
ent approach, region selection network (RSN) [33] learns to select regions for
effective gaze estimation. RSN utilizes GAZE-Net as an evaluator to train the
selection network. To effectively train and evaluate the above methods, uncon-
strained datasets which are collected in real-world settings have been emerged
[34–38]. Recently, some studies have introduced self-supervised or unsupervised
learning to solve the problem of the lack of quantitative real-world datasets [39–
41]. In addition, GAN-aided methods [42,43] can be applied to solve the lack
of datasets problem. The above studies have been conducted to solve various
constraints, but studies in unconstrained resolutions are insufficient. When the
recently proposed gaze estimation [24,27,32,44] modules are applied to the LR
environment, it is experimentally shown that the performance of these modules
is not satisfactory. To deal with this, we propose HAZE-Net which shows an
acceptable gaze accuracy under challenging LR conditions.
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3 Method

This section describes the architecture of the proposed high-frequency attentive
super-resolved gaze estimation, that so-called HAZE-Net. The first module for
the proposed method is the SR module based on HFABs that is a key component
to strengthen the high-frequency component of LR face images. The second
module is the global-local gaze estimation module, where discriminative eye
features are learned. Note that two modules are collaboratively learned. The
overall architecture of HAZE-Net is shown in Fig. 3.

Fig. 3. HAZE-Net architecture. In the first module (yellow panel), given the face image
of an LR image, we employ our SR module based on the HFAB. The input image goes
through one or two down samples according to the scale factor. In the second module
(violet panel), our gaze estimation module utilizes eye patches and the global-local
appearance map. We feed four features to the final fully connected layer to obtain the
estimated gaze angle (θprd,φprd). (Color figure online)

3.1 Super-Resolution Module

Our SR module is mainly composed of HFABs to exaggerate the high-frequency
components that are highly related to gaze estimation performance. Figure 4
shows the high-frequency extractor (HF extractor) for extracting high-frequency
components from the input. We use the DCT principle that indicates that the
more directed from the top-left to the bottom-right in the zigzag direction, the
higher is the frequency component. 2D-DCT denoted by F transforms input I
into the DCT spectral domain D for each channel:

D(i) = F(I (i)), i = 1, 2, ...n, (1)

where i is a channel index, and n is the number of channels. We create a binary
mask m by using a hyper-parameter λ which decides the masking point as
follows:

m =

{
0, y < −x + 2λh

1, otherwise
, (2)
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where h denotes the height of I , and x, y denote the horizontal and vertical
coordinates of m , respectively. The size of m equals I . The hyper-parameter
λ ranges from 0 to 1. If the λ is too small, overfitting occurs because finer
features with low-frequency are emphasized and used for learning. On the other
hand, if the λ is too large, most of the useful information for gaze estimation
such as the shape of the pupil and the boundaries between the iris and the
eyelids is lost, preventing performance improvement. The high-frequency can be
separated by element-wise product of D and m . The high-frequency features
in the DCT spectral domain are transformed into the spatial domain through
2D-IDCT denoted by F−1:

Eh(I ) = F−1(D ⊗ m), (3)

where ⊗ denotes the element-wise product and Eh denotes a HF extractor.

Fig. 4. Architecture of HF extractor. Given the spatial domain image or feature map,
we map the spatial domain into DCT spectral domain. λ is a hyper-parameter that
indexes the high-frequency component to be extracted from the top-left to the bottom-
right in the zigzag direction. The mask determined by λ is multiplied by the feature
of the DCT spectral domain. We finally get the high-frequency spatial domain image
through 2D-IDCT.

The HFAB utilizes the residual channel attention block (RCAB) [14] struc-
ture, as shown in Fig. 5. RCAB extracts informative feature components to
learn the channel statistic. The high-frequency feature map extracted by the HF
extractor and the original feature map are assigned to the HFAB as input, as
shown in Fig. 5. The original feature map is reinforced by a residual group stacked
RCABs for image restoration. To exaggerate the insufficient high-frequency in
the original process, the high-frequency feature map is input through a module
consisting of two RCABs. Two enhanced results are added to obtain a high-
frequency exaggerated feature map. This result becomes a feature in which the
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outline of the face and the boundary between the elements of the eyes are empha-
sized. Our SR module is composed of the HFABs, H, and the HF extractors,
Eh. The architecture of our SR module is given on the left side of Fig. 3. The
module takes an LR image as input and magnifies it to a target size through
bicubic interpolation.

Fig. 5. Architecture of HFAB. Given a feature map, we separate the image into the
high-frequency feature map and the original feature map. Both features are fed through
independent RCABs. We empirically employ two RCABs for the high-frequency feature
map and five RCABs for the original feature map. CA layer allows RCAB to learn useful
channel-wise features and enhance discriminative learning ability.

After the head layer extracts the features from the magnified input, the fea-
ture size is reduced through the down block consisting of two convolution layers
and a LeakyReLU activation layer. The original features and high-frequency
features extracted by Eh are passed through the group of HFABs. The high-
frequency enhanced feature through the HFAB is upscaled to the target size
through up-block, U , consisting of a pixel shuffle layer and two convolution lay-
ers. Finally, this extended feature is concatenated with the feature extracted from
the head layer and converted into the super-resolved RGB image ISR through
the tail layer as follows:

ISR = U(H(Eh(fd), fd)) ⊕ fb), (4)

where fb is the feature extracted from a bicubic-upsampled image, fd is the
feature reduced in size by the downblock and ⊕ is the concatenation operation.

3.2 Gaze Estimation Module

The performance of the appearance-based gaze estimation module depends on
the resolution of the image received as an input. In general, the proportion of
a face in the image is usually small and variable. Thus, resizing the LR face
image to a larger size causes severe loss of information that is important to
gaze estimation. Therefore, in this paper, we propose the super-resolved gaze
estimation module that is robust under LR conditions. As our gaze estimation
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module adaptively learns through super-resolved images with exaggerated high-
frequency, it preserves information that helps estimate gaze under the LR envi-
ronment. Our module secures stable input by adding additional high-frequency
components that are insensitive to this environment. The gaze estimation mod-
ule has a high variance in performance depending on the appearance of a person.
This is because face images contain redundant low-frequency information. Thus,
unnecessary information should be excluded while high-frequencies that help
gaze estimation remain. We improve our generalization ability by obtaining a
high-frequency appearance map through an HF extractor and using it as an
input of the feature extractor. Additionally, we utilize five landmark coordinates
such as eyes, nose, and corners of the mouth in the input image during the
training process, with the facial landmark detector [45]. The above five coordi-
nates are the structural location information of the face that can be used as a
proper guidance of head pose. Our gaze estimation module is designed to receive
a super-resolved image and generates five inputs consisting of a high-frequency
global appearance map, two high-frequency local maps for each eye, and two eye
images. The global appearance map refers to the features that only leave high-
frequency features extracted from the face and facial landmarks. Meanwhile, the
local appearance map is only extracted from eye patches by the same procedure.
It utilizes Resnet-18 as the backbone to extract features from each input. The
five features extracted from each input are concatenated into a vector and put
into a fully connected layer of size 512. A two-dimensional head-pose vector is
used to train our gaze estimation module that predicts a gaze angle (θprd, φprd).

3.3 Loss Function

HAZE-Net employs two loss functions for the SR and gaze estimation modules.
The two loss functions are appropriately combined according to the proposed
alternative learning strategy.

SR Loss. Our module uses L1 Loss, which is commonly used in SR tasks. The
loss function minimizes the difference in pixel values between the original image
and the SR result image as follows:

LSR =
1
N

‖FSR(ILR) − IHR‖1, (5)

where N is the image batch size, ILR is the LR image taken as the input, and
IHR is the original HR image. In addition, FSR is our high-frequency attention
SR module.

Gaze Estimation Loss. The proposed gaze estimation module predicts (θ, φ)
which represents pitch and yaw, respectively. The predicted (θprd, φprd) are com-
pared with the ground truth (θgt, φgt) and the mean squared error as the loss
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function. This is the loss function of our gaze estimation module:

LGE =
1
N

N∑
i=1

((θprdi − θgt
i)2 + (φprd

i − φgt
i)2). (6)

Total Loss. The total loss function is a combination of the SR loss and the gaze
estimation loss. Therefore, the total loss is defined as follows:

LTotal = LSR + αLGE , (7)

where α is a hyper-parameter that scales gaze estimation loss. If the loss scale is
focused on one side, it tends to diverge. Thus, it should be appropriately tuned
according to the purpose of each phase. The detailed hyper-parameters according
to the phase are introduced in Sect. 3.4.

3.4 Alternative End-to-End Learning

Fig. 6. Flowchart of HAZE-Net’s alternative end-to-end learning architecture. (a)
Phase 1: SR module training while freezing gaze estimation module. (b) Phase 2: Gaze
estimation module training while freezing SR module.

This section describes the learning strategies for the proposed HAZE-Net. It
is not simply a structural combination of the SR module and the gaze estimation
module but a complementary combination through the proposed alternative end-
to-end learning. We initialize each module with pre-trained parameters for each
task. To train the end-to-end model stably, we combine two modules and apply
different losses at each phase, as shown in Fig. 6. We found that using training
on our module is more efficient and effective than training from scratch. In
phase 1, the SR module is trained while the gaze estimation module is frozen.
We use the weighted sum of the SR loss and gaze estimation loss, LTotal, as
shown in Fig. 6(a). We combine two loss functions for our modules to learn
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complementarily. α is used to perform training by scaling the magnitude of SR
loss and gaze estimation loss. Given the scale difference between the two losses,
we found that setting the α to 0.1 is the best empirical choice. In phase 2, the gaze
estimation module is trained while the SR module is frozen, as shown in Fig. 6(b).
We use only gaze loss LGE in phase 2. Although training both modules without
freezing is a possible option, we found that the performance was poor compared
with our strategy. The SR images produced by our end-to-end trained SR module
generally show clear boundaries between the components of the eyes and the
clear shape of the pupil. Although our module may not guarantee a better peak
signal-to-noise ratio (PSNR) score, it performs better in the gaze estimation task
than simply combining the two separated state-of-the-art (SOTA) modules.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. Based on the datasets used in recent studies [9,29,44], we accordingly
evaluate our module on the MPIIFaceGaze [19] and EyeDiap [20] datasets. To
simulate LR conditions, we set the HR size to 112 × 112 and set LR size according
to the scale factor (e.g., 56 × 56, 37 × 37, 28 × 28). For example, if the scale
factor is 2×, the resolution of the LR image is 56×56. If the scale factor is 4×,
the resolution of the LR image is 28×28. The MPIIFaceGaze contains a total of
45,000 images from 15 subjects. We split 9,000 images of three subjects (p00,
p02, p14) for validation, and others are used for the training set. The EyeDiap
contains a total of 94 video clips from 16 subjects. We prepare 16,665 images as
in [25]. We split 2,384 images consisting of two subjects (p15, p16) and others are
utilized for the training set. When generating LR images, we utilize the built-in
resize function of MATLAB.

Environment. Our module is implemented in PyTorch 1.8.0, and experiments
for comparison with other modules are conducted in the same environment. We
train each module for 100 epochs with a batch size of 80 and use the Adam
optimizer. In addition, we empirically set the hyper-parameter λ to 0.2

Evaluation Metric. We compare the proposed SR module with SOTA SR
methods. For qualitative comparison, we compared the PSNR and structural
similarity index measure (SSIM) [46] values of the different methods for scale
factors (2×, 3×, and 4×). Also, we compare the proposed gaze estimation module
with other modules. We compute the angular error between the predicted gaze
vector and the ground-truth gaze vector, and represent the performance of the
module as an angular error to numerically show the performance.



HAZE-Net for Gaze Estimation 153

4.2 Performance Comparison by Module

Comparison of SR Modules. We compare our SR module with SOTA SR
modules [11–13] in terms of both quantitative results and visual results. All SR
modules are trained according to their losses and training methods on MPI-
IFaceGaze and Eyediap datasets from scratch. Note that gaze datasets are
rescaled to simulate low-resolution constraint settings. Therefore, the SR losses
are calculated between the SR result and HR image. We present a compari-
son in terms of high-frequency restoration. As shown in Fig 7, the proposed
module enhances the lines, which are high-frequency components, better than
DBPN [11] and DRN [12]. SwinIR [13] is comparable to our SR module. As
shown in Table 1, the HAZE-Net shows a lower tendency in terms of PSNR and
SSIM than the SOTA SR modules. However, as shown in Fig. 7, the proposed
HAZE-Net can adequately enhance high-frequency components to be suitable
for gaze estimation task that requires clear boundaries. To prove the superior-
ity of our SR module, we measure angular errors on each SR result with the
baseline gaze estimation module consisting of ResNet-18 and fully connected
layers. As shown in Table 1, our SR module provides the lowest angular error
compared with other SOTA SR modules. The HFAB proposed in our SR mod-
ule strengthens the high-frequency information such as eye features (e.g., the
shape of the pupil) and boundaries (e.g., the boundary between the iris and the
eyelids). It leads improvement of gaze estimation performance. Moreover, our
SR module can restore clean HR image robust to noise of the input image even
while maintaining the high-frequency information.

Table 1. Performance comparison with SOTA SR modules for 2×, 3×, and 4×. The
best and the second-best results are highlighted in red and blue colors, respectively.

SR module Scale MPIIFaceGaze EyeDiap

PSNR/SSIM Angular error PSNR/SSIM Angular error

Bicubic 2 30.83/0.8367 7.23 35.62/0.9436 5.96

DBPN [11] 34.35/0.8882 6.64 39.61/0.9716 5.64

DRN [12] 33.73/0.8128 6.46 38.70/0.9228 5.44

SwinIR [13] 34.40/0.8911 6.51 40.36/0.9735 6.47

Our SR module 34.28/0.8263 6.23 39.65/0.9041 4.68

Bicubic 3 26.23/0.6939 7.73 31.46/0.8722 5.64

DBPN [11] 31.43/0.8257 6.69 37.02/0.9447 5.18

DRN [12] 31.59/0.8279 8.52 36.19/0.9165 6.55

SwinIR [13] 31.67/0.9086 6.62 36.93/0.9657 5.32

Our SR module 31.33/0.8219 6.49 36.82/0.9392 4.96

Bicubic 4 25.84/0.6429 9.32 29.58/0.8066 6.22

DBPN [11] 29.69/0.7704 7.06 34.96/0.9128 5.83

DRN [12] 29.77/0.7735 6.85 33.42/0.8516 5.82

SwinIR [13] 30.26/0.8723 7.54 34.02/0.9452 5.79

Our SR module 29.59/0.7769 6.60 32.73/0.8934 5.54
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Fig. 7. Qualitative comparison of our SR module with SOTA modules on 4× SR.

Comparison of Gaze Estimation Module. In this section, we compare the
results of our gaze estimation module with other gaze estimation modules. We
select a gaze estimation module to compare with our module. Among the recent
gaze estimation modules, we exclude modules that use few data [39], unlabeled
[40,41]. All gaze estimation module is trained using an image of size 112 × 112
from scratch. For a fair comparison, we commonly use ResNet-18 as a backbone
of all gaze estimation modules. As presented in Table 2, our method shows the
best gaze angular error on the MPIIFaceGaze dataset and the second-best gaze
angular error on the EyeDiap dataset. It indicates the superiorty of our gaze
estimation module due to the global-local appearance map. As shown in Fig. 8,
our module shows robust performance under challenging illumination conditions.

Table 2. Performance comparison with gaze estimation modules for 112 × 112 HR
images. The best and the second-best results are highlighted in red and blue colors,
respectively.

Gaze estimation module MPIIFaceGaze angular error EyeDiap angular error

GazeNet [24] 5.88 4.25

RT-GENE [44] 5.52 4.65

DilatedNet [27] 5.03 4.53

PureGaze [32] 5.71 3.88

Our gaze estimation module 4.95 4.12

Fig. 8. Visualization of gaze estimation results under challenging illumination condi-
tions. Blue and red arrows represent ground truth and predicted gaze, respectively.
(Color figure online)
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4.3 Comparison Under LR Conditions

To verify performance under the LR conditions, we compare HAZE-Net, and the
combination of SR module and gaze estimation module. Each module is trained
with gaze datasets accordingly Tables 1 and 2. For fair comparison under the LR
conditions, each gaze estimation modules are fine-tuned with the results of SR
modules. Moreover, we set the gaze estimation baselines that are trained with LR
image. In Sect. 4.2, the results show that our module presents lower PSNR and
SSIM than those of SwinIR. In contrast, HAZE-Net exhibits the lowest angular
error, as presented in Table 3. This is because HAZE-Net successfully enhances
high-frequency components, which are critical for gaze estimation performance,
compared to other SR modules.

Table 3. Performance comparison with SOTA SR modules combined with gaze estima-
tion modules under LR conditions. The best and the second-best results are highlighted
in red and blue colors, respectively.

SR module

Gaze MPII EyeDiap

SR module

Gaze MPII EyeDiap

Estimation FaceGaze Angular Estimation FaceGaze Angular

Module Angular error Error Module Angular error errorr

LR (56×56)

GazeNet 9.42 9.17

LR (37×37)

GazeNet 9.82 9.87

RT-GENE 10.13 10.33 RT-GENE 10.54 11.41

DilatedNet 15.47 17.21 DilatedNet 16.59 18.23

GazeNet 6.89 4.46 GazeNet 8.00 5.02

Bicubic 2× RT-GENE 6.23 4.96 Bicubic 3× RT-GENE 7.33 5.64

(112×112) DilatedNet 5.59 4.55 (111×111) DilatedNet 6.85 5.93

PureGaze 6.71 4.25 PureGaze 7.92 4.91

GazeNet 6.07 4.05 GazeNet 6.55 4.15

DBPN 2× RT-GENE 6.59 4.82 DBPN 3× RT-GENE 5.65 4.79

(112×112) DilatedNet 5.21 4.58 (111×111) DilatedNet 5.60 5.22

PureGaze 5.94 3.98 PureGaze 6.38 3.92

GazeNet 6.17 4.36 GazeNet 6.59 4.52

DRN 2× RT-GENE 5.76 4.69 DRN 3× RT-GENE 6.52 5.38

(112×112) DilatedNet 5.14 5.04 (111×111) DilatedNet 5.73 5.18

PureGaze 6.01 5.51 PureGaze 6.21 5.72

GazeNet 6.47 4.21 GazeNet 7.25 4.51

SwinIR 2× RT-GENE 5.54 4.76 SwinIR 3× RT-GENE 6.46 5.02

(112×112) DilatedNet 5.03 4.39 (111×111) DilatedNet 5.56 4.47

PureGaze 5.77 4.33 PureGaze 7.09 4.39

HAZE-Net 2× (112×112) 4.93 3.90 HAZE-Net 3× (111×111) 5.14 3.74

SR module Gaze estimation module MPIIFaceGaze angular error EyeDiap angular error

LR (28×28)

GazeNet 10.45 11.53

RT-GENE 10.76 12.69

DilatedNet 17.89 19.23

GazeNet 9.23 5.57

Bicubic 4× RT-GENE 9.32 6.22

(112×112) DilatedNet 7.52 6.14

PureGaze 9.17 4.96

GazeNet 7.10 4.81

DBPN 4× RT-GENE 7.03 5.70

(112×112) DilatedNet 5.89 4.51

PureGaze 6.94 4.45

GazeNet 7.04 4.90

DRN 4× RT-GENE 7.05 5.65

(112×112) DilatedNet 5.82 5.39

PureGaze 6.88 4.30

GazeNet 8.14 5.21

SwinIR 4× RT-GENE 7.44 5.50

(112×112) DilatedNet 6.38 4.67

PureGaze 7.97 4.56

HAZE-Net 4×(112×112) 5.56 4.02
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Table 4. Quantitative results for evaluating the effects of the HF extractor on the
MPIIFaceGaze dataset. The experiment is conducted for 4×.

HF extractor PSNR SSIM Angular error

× 30.80 0.8397 7.27

O 29.59 0.7769 6.60

Table 5. Quantitative results for evaluating the effects of global and local appearance
maps. The experiments are conducted under HR (112×112) conditions.

Global map Local map RGB eye patch MPIIFaceGaze angular error

× × O 5.56

× O O 5.27

O × O 5.23

O O O 4.95

Table 6. Gaze estimation performance of different levels of α and λ. The best results
are highlighted in red.

MPIIFaceGaze angular error

α 0 0.1 1

HAZE-Net 4× 5.47 4.95 5.13

λ 0.2 0.4 0.5

HAZE-Net 4× 4.95 5.19 5.71

4.4 Ablation Study

Effect of HF Extractor. We investigate the impact of the HF extractor in
order to verify the element performance of our first contribution introduced
in Sect. 1. We measure the angular error by using our gaze estimation module
trained with HR images. As presented in Table 4, although the HF extractor
shows a lower PSNR and SSIM, it exhibits better gaze estimation performance.
This indicates that the proposed module enhanced high-frequency components
that are suitable for gaze estimation tasks.

Global-Local Appearance Map. In this section, we demonstrate the effec-
tiveness of the global-local appearance map introduced as our second contribu-
tion. Table 5 shows that both global and local appearance maps help to improve
gaze estimation performance. In particular, using the global-local appearance
map provides 0.61◦ lower angular error than using only RGB eye images.

Hyper-parameters. We clarify and specify how we decided the value of the
hyper-parameters α, and λ. As present in Table 6, when α is 0.1, λ is 0.2, it
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provides the best performance in terms of gaze estimation. α = 0.1 means effec-
tiveness of end-to-end learning. λ = 0.2 is used to improve the generalization
performance of HAZE-Net. If the λ is too large (e.g., 0.4,0.5), most of the use-
ful information for gaze estimation is lost. We determined the hyper-parameters
according to these results.

Limitations. Our module may still be somewhat limited in two aspects in its
practical application. In the first aspect, the inference time of our module in
112×112 HR resolution that is measured in 2× is 46ms, 3× is 41ms, and 4× is
103ms with NVIDIA RTX 3080 GPU. Therefore, it is slightly difficult to apply in
an environment that requires real-time. Second, as our experiment assumes only
the bicubic kernel, there is a possibility that the performance will deteriorate in
a real environment where the blur kernel is blinded.

5 Conclusion

In this paper, we propose a high-frequency attentive super-resolved gaze estima-
tion network. In the SR module, we introduce the HFAB to effectively exaggerate
high-frequency components for gaze estimation. In the gaze estimation mod-
ule, we introduce the global-local high-frequency appearance map. Furthermore,
alternative end-to-end learning is performed to effectively train our module.
With the contribution of techniques described above, HAZE-Net significantly
improves the performance of the gaze estimation module under LR conditions.
Extensive experiments including ablation studies demonstrate the superiority of
our method over the existing methods.
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Abstract. Although recent gaze estimation methods lay great emphasis
on attentively extracting gaze-relevant features from facial or eye images,
how to define features that include gaze-relevant components has been
ambiguous. This obscurity makes the model learn not only gaze-relevant
features but also irrelevant ones. In particular, it is fatal for the cross-
dataset performance. To overcome this challenging issue, we propose a
gaze-aware analytic manipulation method, based on a data-driven app-
roach with generative adversarial network inversion’s disentanglement
characteristics, to selectively utilize gaze-relevant features in a latent
code. Furthermore, by utilizing GAN-based encoder-generator process,
we shift the input image from the target domain to the source domain
image, which a gaze estimator is sufficiently aware. In addition, we pro-
pose gaze distortion loss in the encoder that prevents the distortion of
gaze information. The experimental results demonstrate that our method
achieves state-of-the-art gaze estimation accuracy in a cross-domain gaze
estimation tasks. This code is available at https://github.com/leeisack/
LatentGaze/.

1 Introduction

Human gaze information is essential in modern applications, such as human
computer interaction [1,2], autonomous driving [3], and robot interaction [4].
With the development of deep-learning techniques, leveraging convolution neu-
ral networks (CNNs), appearance-based gaze estimation has led to significant
improvements in gaze estimation. Recently, various unconstrained datasets with
wide gaze range, head pose range are proposed. Although these allow a gaze
estimator to learn a broader range of gaze and head pose, the improvement is
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limited to the fixed environment. Because real-world datasets contain unseen
conditions, such as the various personal appearances, illuminations, and back-
ground environments, the performance of the gaze estimator be degraded signif-
icantly. It suggests that gaze-irrelevant factors cause unexpected mapping rela-
tions, so called overfitting. It makes a model barely handle various unexpected
factors in a changing environment. Therefore, to handle this issue, the domain
adaptation method, which uses a small number of target samples in training,
and the domain generalization method, which only utilizes source domain data,
have received much attention recently. However, in the real world, the former
approach does not always hold in practice because the target data for adapta-
tion are usually unavailable. Consequently, the latter approach is highly effective
because of its practicability. Especially in gaze estimation, these problems are
more because the dimensions of gaze-irrelevant features are much larger than
those of gazerelevant features, which are essential to gaze estimation. This prob-
lem must be considered because it affects the learning of the network in an
unexpected way. Although a few studies have suggested handling this issue in
gaze estimation tasks, it remains a challenge.

Fig. 1. (a) Typical gaze estimation method which utilizes entangled features. (b)
LatentGaze which utilizes latent code with domain shifted image.

In this paper, to solve this issue, we propose a gaze-aware latent code manip-
ulation module based on the data-driven approach. In this process, we focus
on the following two characteristics of Generative Adversarial Networks (GAN)
inversion for downstream tasks: reconstruction and editability. The former char-
acteristic assures that the attributes of the input images can be mapped into
a latent code without losing principal information. The latter enables manipu-
lation or editing concerning a specific attribute, allowing the latent code to be
selectively used by excluding or remaining the information in downstream tasks.
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Based on these, our proposed method utilizes statistical analysis in the latent
domain to find elements that have a high correlation with the gaze information.
To this end, we split the dataset into binary-labeled groups, which are a left-
staring group and a right-staring group. We then perform two-sample t-tests to
see whether the difference between the distributions of two groups’ latent codes
is statistically significant. Therefore, we could find which elements are related to
gaze. In addition, the specific information of the latent code is attentively used to
train a gaze estimator. As shown in Fig. 1, typical gaze estimation methods are
vulnerable to domain shifts because they use an image with entangled attributes.
However, GAN inversion separates intertwined characteristics within an image
into semantic units (e.g., illumination, background, and head pose). We exploit
this advantage by using the GAN inversion encoder as a backbone for the two
modules in our framework. We propose a target-to-source domain shift module
with a GAN-based encoder-decoder. This module maps the unseen target image
into the source distribution, where the gaze estimator is sufficiently aware, by
replacing the attributes of the image with the attributes of the source domain. To
this end, we first use the GAN inversion method, encoder, to extract the input
image’s attributes in a semantically disentangled manner. Nevertheless, while
coarse information is generally maintained after inversion, finer information such
as gaze angle and skin tone are subject to distortion. Thus, we introduce our
proposed gaze distortion loss in the training process of the encoder to minimize
the distortion of gaze between the input and the generated images. Our two
modules complementarily improve performance during gaze estimation because
they encompass both the image and the latent domains. The contributions of
this study can be summarized as follows.

– We propose an intuitive and understandable gaze-aware latent code manip-
ulation module to select semantically useful information for gaze estimation
based on a statistical data-driven approach.

– We propose a target-to-source domain shift module that maps the target
image into the source domain image space with a GAN-based encoder-
decoder. It significantly improves the cross-dataset gaze estimation perfor-
mance.

– We demonstrate the correlation between manipulated latent features and gaze
estimation performance through visualizations and qualitative experiments.
As a result, our framework outperforms the state-of-the-art (SOTA) methods
in both fixed and cross-dataset evaluations.

2 Related Work

2.1 Latent Space Embedding and GAN Inversion

Recent studies have shown that GANs effectively encode various semantic infor-
mation in latent space as a result of image generation. Diverse manipulation
approaches have been proposed to extract and control image attributes. At an
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early stage, Mirza et al. [5] trained to create a conditional image which enables
the control of a specific attribute of an image. Subsequently, Abdal et al. [6]
analyze three semantic editing operations that can be applied on vectors in the
latent space. Shen et al. [7] adopted a data-driven approach and used princi-
pal component analysis to learn the most important directions. Park et al. [8]
presented a simple yet effective approach to conditional continuous normalizing
flows in the GAN latent space conditioned by attribute features. In the present
study, we propose an intuitive and understandable manipulation method to find
the direction that correlates with gaze estimation performance. In addition, we
prove the effectiveness and necessity of latent code manipulation, particularly
by showing cross-domain evaluations. However, such manipulations in the latent
space are only applicable to images generated from pre-trained GANs rather than
to any given real image. GAN inversion maps a real image into a latent space
using a pre-trained generator. Inversion not only considers reconstruction perfor-
mance but must also be semantically meaningful to perform editing. To this end,
Zhu et al. [9] introduced a domain-guided encoder and domain regularized opti-
mization to enable semantically significant inversion. Tov et al. [10] investigated
the characteristics of high-quality inversion in terms of distortion, perception,
and editability and showed the innate tradeoffs among them. Typically, encoders
learn to reduce distortion, which represents the similarity between the input and
target images, both in the RGB and feature domains. Zhe et al. [11] proposed an
architecture that learns to disentangle and encode these irrelevant variations in a
self-learned manner. Zheng et al. [12] proposed a method to relieve distortion of
the eye region by leveraging GAN training to synthesize an eye image adjusted
on a target gaze direction. However, in this study, the distortion is redefined from
the gaze estimation perspective. By utilizing GAN inversion as a backbone for
two proposed modules, we effectively improve generalization ability of our frame-
work. First, we take the editability of GAN inversion to extract gaze-relevant
features and utilize them in gaze-aware analytic selection manipulation module.
Second, we improve the estimation performance for unseen datasets by shifting
target domain images into source domain images utilizing GAN inversion and
generator. It reduces the bias between the distributions of the two independent
image spaces. These help the gaze estimator improve cross-domain performance
without touching the target samples.

2.2 Domain Adaptation and Generalization

Most machine learning methods commonly encounter the domain shift prob-
lem in practice owing to the distribution shift between the source and target
domain datasets. Consequently, a model suffers significantly from performance
degradation in the target domain. Several research fields have been explored
extensively to address this problem. Domain adaptation utilizes a few target
samples during the training [13]. Recently, Bao et al. [14] performed the domain
adaptation under the restriction of rotation consistency and proposed rotation-
enhanced unsupervised domain adaptation (RUDA) for cross-domain gaze esti-
mation. Wang et al. [15] proposed a gaze adaptation method, namely contrastive
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regression gaze adaptation (CRGA), for generalizing gaze estimation on the tar-
get domain in an unsupervised approach. Although such methods show per-
formance improvement, they do not always hold in practice as target data are
difficult to obtain or are unknown. In contrast, domain generalization aims to
generalize a model to perform well in any domain, using only the source domain
dataset. Unsupervised domain generalization is primarily based on two method-
ologies: self-supervised learning and adversarial learning. An advantage of self-
supervised learning is that the model learns generic features while solving a pre-
text task. This makes the model less prone to overfitting to the source domain
[16]. Adversarial learning allows a generative model to learn the disentangled rep-
resentations. Here, we introduce GAN inversion to utilize its out-of-distribution
generalization ability.

2.3 Gaze Estimation

Several appearance-based gaze estimation methods have been introduced [17–
19]. Recent studies have shown significant improvements in gaze estimation per-
formance using various public datasets [20]. However, cross-person and cross-
dataset problems remain in gaze estimation tasks. This stems from variance
across a large number of subjects with different appearances. To improve the
cross-person performance, Park et al. [8] utilized an auto-encoder to handle
person-specific gaze and a few calibration samples. Yu et al. [21] improved the
person-specific gaze model adaptation by generating additional training samples
through the synthesis of gaze-redirected eye images. Liu et al. [22] proposed an
outlier-guided collaborative learning for generalizing gaze in the target domain.
Kellnhofer et al. [23] utilized a discriminator to adapt the model to the tar-
get domain. Cheng et al. [24] introduced domain generalization method through
gaze feature purification. This method commonly assumes that gaze-irrelevant
features make the model overfit in the source domain and perform poorly in
the target domain. Although these methods have improved cross-person per-
formance, they cannot always be applicable as the target data are difficult to
obtain or even unavailable in the real world. In consideration of this, generaliz-
ing the gaze estimation across datasets is required. However, since facial features
are tightly intertwined with illumination, face color, facial expression, it is diffi-
cult to separate gaze-relevant features from them. To address this, we improve
the generalization ability by analyzing latent codes and selectively utilize the
attributes that are favorable to the gaze estimator.

3 LatentGaze

3.1 Preliminaries

Gaze estimation models which use full-faces learn a biased mapping on the image-
specific information such as facial expressions, personal appearance, and illumi-
nation rather than learn only the gaze-relevant information of the source dataset.
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While it leads to a strong mapping ability in a fixed domain, it still remains as
a challenging problem as it causes serious performance degradation in cross-
domain gaze estimation. Therefore, this paper aims to dodge the bias-variance
tradeoff dilemma by shifting the domain of image space from target dataset to
source dataset. In this section, we introduce some notations, objective definitions
and condition.

Conditions. While the majority of generalization works have been dedicated
to the multi-source setting, our work only assumes a single-source domain set-
ting for two motivations. First, it is easier to expand from a single-source domain
generalization to a multi-source domain generalization. Second, our study specif-
ically attempts to solve the out-of-distribution problem when the training data
are roughly homogeneous.

Definition of Latent Code Manipulation. The first application of GAN
inversion is to selectively utilize gaze-related attributes in the input image. We
invert a target domain image into the latent space because it allows us to manip-
ulate the inverted image in the latent space by discovering the desired code
with gaze-related attributes. This technique is usually referred to as latent code
manipulation. In this paper, we will interchangeably use the terms “latent code”
and “latent vector”. Our goal is to ensure that the manipulated latent vector and
gaze vector are highly correlated. Therefore, we need to find the manipulation
operator H that determines which elements are correlated to gaze information
in the latent vector. This objective can be formulated as:

H∗ = max
H

∇f(H(X)), (1)

∇f = [
∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xd
]T , (2)

where f denotes an optimal gaze estimator, X denotes latent vector. x denotes
an element of X, and d denotes the dimension of latent space.

Definition of Domain Shifting Process. Given labeled source domain DS ,
the goal is to learn a shifting model f that maps an unseen image from target
domain DT to DS by only accessing source data from DS . We take GAN inver-
sion method into consideration to utilize its out-of-distribution generalization
ability. It can support inverting the real-world images, that are not generated
by the same process of the source domain training data. Our objective can be
formulated as follows:

S∗ = argmax
s

‖F (S(DT )) − F (DS)‖, (3)

where F denotes the general feature extractor, and S∗ denotes the domain
shifter. Note that domain the generalization process should not include the tar-
get sample during the training.
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3.2 The LatentGaze Framework Overview

Fig. 2. Overview of the LatentGaze framework. Our framework is mainly composed of
two modules. The target-to-source domain shift module maps the unseen target image
into the source distribution where the gaze estimator is sufficiently aware. The gaze-
aware analytic selection manipulation module finds the gaze-relevant feature through
statistical analysis in the latent domain. Thereafter, the gaze estimate model utilizes
each feature to estimate the gaze vector (θprd,φprd).

Figure 2 shows the overall architecture of the proposed framework. It consists of
two complementary modules. The first module, i.e., the target-to-source domain
shift module, maps a target domain image to a source domain image. The
encoder extracts an image into a latent code. To reduce the possible gaze dis-
tortion in the encoder, we propose gaze distortion loss to preserve the gaze
information. The generator generates an attributes-persevered image in the
source domain, based on the extracted latent code. The second module, i.e.,
the gaze-aware latent code manipulation module, improves the generalization
performance by manipulating features that are highly related to gaze in the
latent code through statistical hypothesis test. Subsequently, the latent vector
and the image are concatenated. And through two fc-layers, the gaze direction
is predicted as θprd and φprd. These two modules effectively utilize the property
that latent code passed through inversion is semantically disentangled. These
modules achieve complementary benefits in our framework by jointly reinforcing
cross-domain generalization. Qualitative and quantitative experiments and visu-
alizations show that our framework achieves robust performance, on par with
the state-of-the-art approaches.

3.3 Statistical Latent Editing

Recently, extensive research has been conducted on the discovery of semanti-
cally meaningful latent manipulations. Radford et al. [25] investigated the vector
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arithmetic property in the latent space of a pre-trained generator and demon-
strated that averaging the latent code of samples for visual concepts showed
consistent and stable generations that semantically obeyed arithmetic. There-
fore, we assume that it is possible to statistically find gaze-related features that
correspond to a specific attribute. In this study, we propose an explainable and
intuitive gaze-aware analytic manipulation method to select semantically useful
information for gaze estimation based on a statistical data-driven approach. We
utilize ETH-XGaze [26] and MPIIFaceGaze [27] which have a large number of
subjects, wide gaze and head pose ranges for the analysis. This method consists
of four steps. First, we divide the data set into two groups GL and GR. GL

denotes the group having gaze vectors of 30◦C to 90◦C along the yaw axis direc-
tion. GR denotes the group having gaze vectors of –30◦C to –90◦C along the yaw
axis direction. Second, we calculate the mean of the entire latent codes for each
group. Since gaze-irrelevant attributes such as illumination, person-appearance,
background environments are averaged out, the divided groups have the same
value of latent codes except for gaze-relevant elements. We can presume that
the elements with a large difference between the group’s values are significantly
related to gaze features. From then on, since adjacent tensors represent simi-
lar features, we consider 16 tensors as a single chunk and define it as a unit of
statistical operations as follows.

Ci =
1
16

16∑

j=1

Cij , i = 1, 2, . . . , k, (4)

where Ci denotes i-th chunk, k denotes the number of chunks in a latent code,
and j represents the number of elements in a chunk. Ci

L and Ci
R each denotes

the chunk of the group Ci
L and Ci

R . Third, we sort the chunks in a descending
order to select the most gaze-related chunks. Fourth, we perform paired t-tests
for two expected values of each chunk from two groups.

Paired t-test for Two Expected Values. We perform the t-test and the
size of the samples in the two groups is sufficiently large, so the distribution of
the difference between the sample means approximates to Gaussian distribution
by the central limit theorem, and each sample variance approximates to the
population variance. The hypotheses and test statistic are formulated as:

H0 : μi
L = μi

R, H1 : μi
L �= μi

R, i = 1, 2, . . . d, (5)

T =
Xi

L − Xi
R√

σ(Xi
L)

nL
+ σ(Xi

R)

nR

, (6)

where H0 denotes null hypothesis, H1 denotes alternative hypothesis, μi
L and μi

R

denote the population average of both groups for the i-th chunk, d denotes the
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dimension of the latent space, T denotes test statistic, Xi
L and Xi

R each denotes
sample statistic of Ci

L and Ci
R, nL and nR each denotes to the number of GL and

GR, and σ denotes standard deviation. The above procedure can be found in
Fig. 3. We found that a number of chunks belonging to the critical region are in
the channels 4 and 5. However, as the indices of the gaze-related chunks subject
to slightly differ depending on the dataset, we utilize a channel attention layer
(CA-layer) [28] to improve generalization performance in cross-domain. We verify
the efficacy of our proposed manipulation method through visualizations and
experiments. Furthermore, we show the effectiveness of our gaze-aware analytic
manipulation method. As shown in Fig. 4, it shows the chunks extracted from
our manipulation method are related to gaze information The Fig. 4(c) shows
the generated images from the latent code that are replaced only gaze-relevant
chunks from the other group. They are similar to the appearance of the Fig. 4(b)
while preserving the gaze direction of the Fig. 4(a). Since it is not completely
disentangled, it does not completely maintain the appearance, illumination of
Fig. 4(b), but it does not affect the performance of gaze estimation.

3.4 Domain Shift Module

The goal of this module is to properly map a target image to the source latent
space by an out-of-distribution generalization of GAN inversion. Latent code
should be mapped to a semantically aligned code based on the knowledge that
emerged in the latent space. However, due to the large bias of distributions
between the source and target datasets, the mapping ability of the encoder
network hardly covers the target domain. Furthermore, general extraction of

Fig. 3. Overview of the statistical latent editing. The person-paired gaze datasets are
divided into the left staring group (GL) and right staring group (GR). Each image is
embedded into latent code by the GaP-encoder. After that, the latent code values of
each group averaged and subtracted the mean values of GL and GR. The larger values
of the result have a high correlation with the gaze information. Due to this statistical
hypothesis test, we classify the gaze-relevant and gaze-irrelevant.
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Fig. 4. Visualizations of latent code manipulation. (a) shows images staring one side.
(b) shows images staring the other side in the same subjects. (c) shows the generated
images with the latent codes that combines the gaze-irrelevant chunks of (b) and the
gaze-relevant chunks of (a).

Fig. 5. Training process of GaP-encoder that preserves gaze-relevant feature during
domain shifting. The training process consists of two phases. First, the gaze-relevant
extractor is trained to estimate the gaze vector from the facial image. Second, the
GaP-encoder is trained by LGD that is difference between the estimated result from
generated image F (G(E(l))) and ground truth g.

features from the entire image makes it extremely difficult in that it requires
extracting features from infinitely large unseen real-world image space. There-
fore, to minimize the space of the space that unseen images could possibly have,
we capture only face with RetinaFace [29] and crop images. This could drasti-
cally reduce the unexpected input from different environments. Since the values
of a latent code is set along one specific direction to the corresponding attribute,
the latent code is meaningful beyond simply compressing the facial information.
The second goal of the generator is to perform image reconstruction at the pixel
level. The generator is pre-trained with the source dataset. This makes it possible
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to utilize dataset-specific mapping ability as the generated images in the space
where the gaze estimator is fully capable. Especially, the label space of the gaze
estimation task remains the same as it can be represented with two angles of
azimuth and elevation. In general, since the generatable space of each attribute
trained with the source domain is larger, the generator can reconstruct an image
domain from the latent domain with attributes aligned in a semantical way. To
obtain latent codes, we benchmarked e4e-encoder [10] which embed images into
latent code with disentanglement characters. However, e4e-encoder cannot pre-
serve gaze-relevant features, since the gaze-relevant feature is a relatively finer
attribute. To tackle this issue, we propose novel gaze distortion loss LGD that
preserves gaze features in the encoding process. We call the encoder with this
loss the GaP-encoder. As shown in Fig. 5, training process of encoder consists
of two phases. First, we train extractor F that is combined with ResNet-18 and
MLP to estimate gaze vector from face images. Second, we utilize F to calculate
LGD from the generated image G(E(I)).E is an encoder, G is a generator, I is
input image, respectively. Therefore, LGD is denoted as:

LGD = ‖F (G(E(I))) − g‖22, (7)

where g denotes 3D ground-truth gaze angle. The encoder is trained with our
proposed LGD on top of three losses used in [10] that consists of L2. LLPIPS

[30], Lsim [10] and total loss is formulated as follows:

Ltotal(I) = λl2L2(I) + λLPIPSLLPIPS(I) + λsimLsim(I) + λGDLGD(I), (8)

where λl2 , λLPIPS , λsim , λGD are the weights of each loss. In our method,
the extractor F may have gaze angle error. Since our method performs end-to-
end training with encoder and extractor F during training process, F can be
optimized to generate the image which preserved gaze relevant features.

4 Experiments

4.1 Datasets and Setting

Datasets. Based on the datasets used in recent gaze estimation studies, we used
four gaze datasets, ETH-XGaze [26], MPIIFaceGaze [27], and EyeDiap [31]. The
ETH-XGaze dataset provides 80 subjects (i.e., 756,540 images) that consist of
various illumination conditions, gaze and head pose ranges. The MPIIFaceGaze
provides 45000 facial images from 15 subjects. The EyeDiap dataset provides
16,674 facial images from 14 participants. The smaller the number of subjects
and various gaze direction datasets, the better to extract gaze-relevant features
through statistical methods. For this reason, datasets such as ETH-XGaze and
MPIIFaceGaze are useful for extracting gaze-relevant features.
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Cross-Domain Evaluation Environment. We used ETH-XGaze that has
wider gaze and head pose ranges than the others. To evaluate cross-dataset
performance of gaze estimation, MPIIFaceGaze and EyeDiap are used. All facial
images are resized to 256×256 for stable encoder-decoder training. We conducted
two cross-dataset evaluation tasks, E(ETH-XGaze) → M (MPIIGaze), E → D
(EyeDiap).

Dataset Preparation. We utilized RetinaFace [30] to detect the face region
of an image and consistently cropped according to the region for all datasets to
induce the generator to generate equal size of faces.

Evaluation Metric. To numerically represent the performance of the gaze esti-
mation models, we computed the angular error between the predicted gaze vector
ĝ and 3D ground-truth gaze angle g, and the angular error can be computed as:

Langular =
ĝ · g

‖ĝ‖‖g‖ (9)

where ĝ and g each denotes predicted 3D gaze angle and the ground truth angle,
and ‖g‖ denotes absolute value of g, and · is the dot product.

4.2 Comparison with Gaze Estimation Models on Single Domain

An experiment was conducted to verify the performance of the gaze estimation
model in a single dataset. We achieved favorable performance against other gaze
estimation methods on single-domain as well as cross-domain evaluations. We
utilized the ETH-XGaze and MPIIFaceGaze dataset which provides a standard
gaze estimation protocol on this experiment. ETH-XGaze is divided into 15 vali-
dation sets and the rest of the training sets. MPIIFaceGaze is divided into 36,000
training sets, 9,000 validation sets based on each individual. To compare with
the SOTA gaze estimation model, we tested RT-Gene, Dilated-Net models using
eye images, and ResNet-18, Pure-Gaze using face images. As shown in Table 1,
the proposed LatentGaze shows a lower angular error than most others, indicat-
ing the superiority of our framework. In addition, as shown in Fig. 6, personal
appearances are converted into favorable conditions for gaze estimation. Since it
helps the gaze estimation model extract high-quality gaze-relevant features, the
model can provide good gaze estimation performance in single domain. In addi-
tion to the SOTA performance of our model on the single domain evaluation,
we propose a specialized model to cover the cross-domain evaluation.
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Table 1. Performance comparison with gaze estimation models for ETH-XGaze and
MPIIFaceGaze dataset.

Method ETH-XGaze angular error (◦) MPIIFaceGaze angular error (◦)

ResNet-18 4.71 5.14

Dilated-Net 4.79 4.82

Pure-Gaze 4.52 5.51

RT-Gene 4.21 4.31

LatentGaze 3.94 3.63

Fig. 6. Visual results of LatentGaze in single domain. (a) The glasses are eliminated
without blurring and geometric deformation. (b) The illumination is changed favorable
to the gaze estimator.

4.3 Comparison with Gaze Estimation Models on Cross Domain

We compare LatentGaze with the SOTA gaze estimation methods on cross-
domain evaluation. In general, in a cross-dataset environment, gaze estimation
methods show significant performance degradation due to overfitting to the
source domain. However, our model solves the overfitting of gaze-irrelevant fea-
tures by enabling selective latent codes utilization through gaze-aware analytic
manipulation. In addition, the target-to-source domain shift module maps the
input image to an image space where the gaze estimator is sufficiently aware.
As shown in Table 2, our method shows the best or favorable gaze angular error
in two cross-domain environments. Here, the performance of E→D is poor com-
pared to E→M. The reason is that the difference in resolution between the source
domain and the target domain used for generator training is extreme. However,
we can solve this through preprocessing through super-resolution and denoising.
In this experiment, no more than 100 target samples for adoption were randomly
selected. It demonstrates that our framework is suitable for a real-world appli-
cation where the distribution of target domain is usually unknown. Moreover,
as shown in Fig. 7, it shows that the proposed framework can shift the target
domain to the source domain while preserving gaze-relevant features. Since it
helps the gaze estimation module maintains gaze estimation performance, our
framework provides the robustness of cross-domain evaluation. Even if small illu-
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mination change is generated during the domain shift process as shown in Fig. 7,
it does not affect the gaze estimation performance as shown in Table 2.

Table 2. Performance comparison with SOTA gaze estimation models on cross-dataset
evaluation. The best and the second-best results are highlighted in red and blue colors,
respectively.

Method Target samples E→M E→D

Gaze360 [23] >100 5.97 7.84

GazeAdv [32] 500 6.75 8.10

DAGEN [16] 500 6.16 9.73

ADDA [33] 1000 6.33 7.90

UMA [34] 100 7.52 12.37

PnP-GA [22] <100 5.53 6.42

PureGaze [24] <100 5.68 7.26

CSA [15] <100 5.87 5.95

RUDA [14] <100 5.70 6.29

LatentGaze N/A 7.98 9.81

LatentGaze <100 5.21 7.81

Fig. 7. Visualizations of generated images by target-to-source domain shift module.
The results show that our module maps the unseen target images into the source distri-
bution by replacing the image’s attributes with the source domain’s. (a) MPIIFaceGaze
dataset is mapped into the domain of the ETH-XGaze dataset. (b) EyeDiap dataset is
mapped into the domain of the ETH-XGaze dataset.

4.4 Ablation Study

In this section, we conduct experiments about how two modules affect the
gaze estimation performance. We also show the necessity of our LGD in the
encoder training process by comparing the generated images with and without
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the loss. Finally, to show the effectiveness of the gaze-aware analytic manipula-
tion method, we first find out the gaze-related index in latent codes through the
proposed method and replace one group’s gaze-related elements from the other
group’s ones. And we visualize the generated images from the replaced latent
codes to show the gaze of the images are replaced accordingly.

Effect of Gaze-aware Analytic Manipulation. In this section, we demon-
strate the effectiveness of the gaze-aware analytic manipulation. We used both
an image and the manipulated latent code for the MPIIFaceGaze dataset. We
used 448 (all), 256 (56%), and 64 (14%) chunks in the latent code, respectively.
We removed gaze-irrelevant chunks found by our gaze-aware analytic manip-
ulation method. As presented in Table 3, the angular error using gaze-aware
analytic manipulation is lower than that when using many chunks. It indicates
that our manipulation method correctly separates gaze-relevant features from
tightly intertwined ones. Consequently, the gaze estimation model does not have
to consider features that impede the gaze estimation performance.

Table 3. Quantitative results for evaluating the effects of gaze-aware analytic manip-
ulation.

# of Chucks MPIIFaceGaze angular error (◦)

None (only Resnet-18) 5.14

All 11.34

256 7.21

64 3.63

Effect of GaP-Encoder. To verify the effectiveness of the Gap-encoder, we
compare the e4e-encoder benchmarked in this paper with the GaP-encoder. To
fair comparison, we train each encoder with 30 epochs, and the angular error is
measured by the same gaze estimation module. Also, each image result is gener-
ated by the same generator. As presented in Table 4, the GaP-encoder exhibits
better gaze estimation performance because our model preserves gaze-relevant
features after the domain shifting. As shown in Fig. 8, since our GaP-encoder
effectively embed the image into latent code with preserving gaze-relevant fea-
tures, the generated image shows the same pupil position which is highly related
to gaze estimation performance.
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Fig. 8. Visual comparison with e4e-encoder and GaP-encoder. All results are generated
by the same generator. (a) Images generated by e4e-encoder’s latent codes. (b) The
original images, (c) Images generated by GaP-encoder’s latent codes. Red and blue dots
represent the predicted gaze vectors. Green dot represents ground-truth gaze vector.
(Color figure online)

Table 4. Performance comparison with encoder models. This is the result of using
only the latent code from each encoder.

# of Chucks MPIIFaceGaze angular error (◦)

e4e-encoder 28.51

GaP-encoder 3.54

5 Conclusion

In this paper, we presented the first practical application of GAN inversion to
solve the cross-dataset problem in gaze estimation with latent code. Our pro-
posed LatentGaze framework consists of a target-to-source domain shift mod-
ule, which maps the target image into the source domain image space, and a
gaze-aware analytic selection manipulation module, which selectively manipu-
lates gaze-relevant features by a statistical data-driven approach. Furthermore,
we propose gaze distortion loss that prevents the distortion of gaze information
caused by inversion. Our quantitative and qualitative experiments and visual-
izations show our approach performs favorably against the SOTA methods.
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Abstract. Transformer attracts much attention because of its ability
to learn global relations and superior performance. In order to achieve
higher performance, it is natural to distill complementary knowledge
from Transformer to convolutional neural network (CNN). However,
most existing knowledge distillation methods only consider homologous-
architecture distillation, such as distilling knowledge from CNN to CNN.
They may not be suitable when applying to cross-architecture scenarios,
such as from Transformer to CNN. To deal with this problem, a novel
cross-architecture knowledge distillation method is proposed. Specifi-
cally, instead of directly mimicking output/intermediate features of the
teacher, partially cross attention projector and group-wise linear projec-
tor are introduced to align the student features with the teacher’s in two
projected feature spaces. And a multi-view robust training scheme is fur-
ther presented to improve the robustness and stability of the framework.
Extensive experiments show that the proposed method outperforms 14
state-of-the-arts on both small-scale and large-scale datasets.

Keywords: Knowledge distillation · Cross architecture · Model
compression

1 Introduction

Knowledge distillation (KD) has become a fundamental topic for model per-
formance promotion. It has been successfully applied to various applications
including model compression [1] and knowledge transfer [2]. KD usually adopts
a teacher-student framework, where the student model is trained under the guid-
ance of the teacher’s knowledge. The knowledge is usually defined by soft outputs
or intermediate features of the teacher model.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Wang et al. (Eds.): ACCV 2022, LNCS 13845, pp. 179–195, 2023.
https://doi.org/10.1007/978-3-031-26348-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26348-4_11&domain=pdf
http://orcid.org/0000-0002-8426-9335
https://doi.org/10.1007/978-3-031-26348-4_11


180 Y. Liu et al.

Existing KD methods focus on convolutional neural network (CNN). How-
ever, there recently emerge many new networks such as Transformer. It shows
superior on different computer vision tasks including image classification [3] and
detection [4], while its huge computation and limited platform acceleration sup-
port limits the application of Transformer, especially for edge devices. On the
other hand, with several years of development, there are sufficient acceleration
libraries including CUDA [5], TensorRT [6] and NCNN [7], making CNN hard-
ware friendly on both servers and edge devices. To this end, it is a natural idea
to distill the knowledge from high-performance Transformer to compact CNN.
However, there is a large gap between the two architectures. As shown in Fig. 1-
(a), Transformer consists of self-attention-based transformer blocks while CNN
contains a sequence of convolutional blocks. Further, the features are arranged
in a totally different way. The intermediate outputs of CNNs are formed with
c channels of h′ × w′ feature maps. Different from CNN, the features of Trans-
former consist of N feature vectors with 3hw elements, where N refers to the
patch number.

Fig. 1. (a) The comparison of CNN and Transformer. The formation of the features
are absolutely different. (b) The cosine similarity between features from different mod-
els on ImageNet. Note that the features are mapped into the same dimension by a
linear projection. For “CNN→CNN”, the bars represent the similarities between CNN
ResNet152 and CNNs {ResNet18, ResNet32, ResNet50, ResNet101, ResNet152}; For
“T→T”, the bars represent the similarities between Transformer ViT-L/16 and Trans-
formers {ViT-B/32, ViT-B/16, ViT-L/32, ViT-L/16}; For “T→CNN”, the bars repre-
sent the similarities between Transformer ViT-L/16 and CNNs {ResNet18, ResNet32,
ResNet50, ResNet101, ResNet152}.

Unfortunately, existing methods focus on homologous-architecture KD such
as CNN →CNN and Transformer→Transformer, which are not suitable for the
cross-architecture scenarios. As shown Fig. 1-(b), the knowledge “transferabil-
ity” is defined quantitatively. In particular, the output feature of the student is
aligned to the feature space of the teacher, and then, the cosine similarity of the
aligned student feature vector and the teacher feature vector is computed. For
homologous-architecture cases, the transferability is between 0.6−0.7, while it is
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much lower, typically lower than 0.55, on the cross-architecture condition. Con-
sequently, it is more difficult to distill knowledge across different architectures
and a new KD framework should be designed to deal with it.

In this work, a novel cross-architecture knowledge distillation method is pro-
posed to bridge the large gap between Transformer and CNN. With the help
of the proposed framework, the knowledge from Transformer is efficiently trans-
ferred to the student CNN network and the knowledge transferability is sig-
nificantly improved via this method. It encourages the student to learn both
local spatial features (with the original CNN model) and the complementary
global features (from the transformer teacher model). In particular, two pro-
jectors including a partially cross attention (PCA) projector and a group-wise
linear (GL) projector, are designed. Instead of directly mimicking the output
of the teacher, these two projectors align the intermediate student feature into
two different feature spaces and knowledge distillation is further operated in the
two feature spaces. The PCA projector maps the student feature into the Trans-
former attention space of the teacher. This projector encourages the student to
learn the global relation from the Transformer teacher. The GL projector maps
the student feature into the Transformer feature space in a pixel-by-pixel man-
ner. This projector directly alleviates the feature formation differences between
the teacher and the student. In addition, to alleviate the instability caused by
the diversity in the cross-architecture framework, we propose a cross-view robust
training scheme. Multi-view samples are generated to disturb the student net-
work. And a multi-view adversarial discriminator is constructed to distinguish
the teacher features and the disturbed student features, while the student is
trained to confuse the discriminator. After convergence, the student can be more
robust and stable.

Extensive experiments are conducted on both large-scale datasets and small-
scale datasets, including ImageNet [8] and CIFAR [9]. The experimental results
of different teacher-student pairs demonstrate that the proposed method stably
performs better than 14 state-of-the-arts. In summary, the main contributions
of our work are three-fold:

– We propose a cross-architecture knowledge distillation framework to distill
excellent Transformer knowledge to guide CNN. In this framework, partially
cross attention (PCA) projector and group-wise linear (GL) projector are
designed to align the student feature space and promote the transferability
between teacher features and student features.

– We propose a multi-view robust training scheme to improve the stability and
robustness of the student network.

– Experimental results show that the proposed method is effective and out-
performs 14 state-of-the-arts on both large-scale datasets and small-scale
datasets.

2 Related Work

Hinton et al. [10] proposes the concept of knowledge distillation, using the soft
output of teacher to guide the learning of student. Recently, it has been applied
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mainly to model compression [1] and knowledge transfer [2]. Different forma-
tions of distilled knowledge are explored to better guide the student network,
including final output [10,11] and hint layer knowledge [12–19]. For hint layer
knowledge, many endeavors have been taken to match the student hint lay-
ers and the teacher-guided layers. For example, AT [12] defines single-channel
attention maps as knowledge. However, the computation of the attention maps
causes channel-dimension information loss. FitNet [13] directly distills the fea-
tures from intermediate layers without information loss. However, this restriction
is somewhat hard and not all the information is beneficial. Liu et al. [17] distill
the knowledge called instance relationship graph (IRG), which contains instance
feature, instance feature relationship and feature space transformation. It is not
limited by the dimension mismatch between the teacher and the student.

The methods above all focus on convolutional neural network (CNN).
Recently, Transformer becomes increasingly popular because of its impressive
performance. However, due to the totally different architecture, many previous
KD methods can not be directly applied to Transformers. There are some works
[20–22] studying knowledge distillation between Transformers. DeiT [20] pro-
poses a distillation token similar to the class token, to make the student Trans-
former learn the hard label from the teacher and ground truth (GT). MINILM
[21] focuses on the attention mechanisms in Transformer and distills the corre-
sponding self-attention information. IR [22] distills the internal representations
(e.g., self-attention map) from the teacher Transformer to the student Trans-
former.

In summary, existing methods usually present a transformation to match the
teacher’s features and the student’s features. However, nearly all of them require
similar or even the same architecture between teacher and student. To deal
with the cross-architecture knowledge distillation problem, we carefully design
projectors to match the teacher and the student in the same feature space.
Consequently, a compact student CNN model can well learn the global feature
from a teacher Transformer model despite the big gap in the architectures.

3 The Proposed Method

In this section, the framework of the proposed method is first introduced. Then,
two key components of the framework including cross-architecture projectors
and a cross-view robust training scheme are presented. The former is constructed
to alleviate the feature mismatch for cross-architecture scenarios and help the
student learn the global relation of the features, while the latter is adopted to
improve the robustness and stability of the student. Finally, the loss function
and training procedure are described.

3.1 Framework

The overall framework of the proposed method is depicted in Fig. 2. In this
figure, the upper pink network represents the teacher network, while the lower
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Fig. 2. Overall framework of the proposed method.

blue network is the student network. For the transformer teacher ΘT, the input
sample x ∈ R

3×H×W is divided into (N = HW
hw ) patches {xn ∈ R

3×h×w}Nn=1.
After the inference of several transformer blocks, the feature hT ∈ R

N×(3hw)

is generated. And the final predicted possibility is then computed via a multi
layer perceptron (MLP) head as shown in Fig. 2. For the CNN student ΘS, it
receives the whole image without patch-wise partition as input. Similarly, after
the inference of several CNN blocks, the final student feature hS ∈ R

c×(h′w′) can
be obtained. Note that c is the channel number and h′w′ = HW

22s . The s denotes
the number of CNN stages (usually equals 4). It is then used to predict the class.

Due to the differences of the design principles and architectures between
transformers and CNNs, it is hard to make the student features directly mimic
the teacher features using the existing KD methods. To solve this problem, we
propose a cross-architecture projector which consists of a partially cross attention
(PCA) projector and a group-wise linear (GL) projector. The PCA projector
maps the student features into the transformer attention space. By mapping the
CNN feature space to this attention space, it is easier for the student to learn the
global relationship among different regions by minimizing the distances between
the student attention maps and the teacher attention maps. The GL projector
maps the student features into the transformer feature space. In this transformer
feature space, the student is guided to mimic the global transformer features in
a pixel-by-pixel manner.

To improve the robustness and stability of the student, a cross-view robust
training scheme is proposed. Multi-view samples are generated by a multi-view
generator which randomly conducts some transformations and generates mask
and noise adding to the inputs. Fed with the multi-view inputs, the student gen-
erates different features. A multi-view adversarial discriminator is constructed
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to distinguish the teacher features and the student features in the transformer
feature space. Then the goal is to puzzle the discriminator.

Eventually, we integrate the proposed losses and give end-to-end training to
obtain a strong student network.

3.2 Cross-architecture Projector

(1) Partially Cross Attention Projector Partially cross attention (PCA)
projector maps the student feature space into transformer attention space. It
is designed to map the CNN features to Query, Key, Value matrices and then
mimic the attention mechanism. It consists of three 3 × 3 convolutional layers:

{QS,KS, VS} = Proj1(hS), (1)

where the matrixes QS,KS, VS are computed and aligned to mimic the query
QT, the key KT and the value VT of the Transformer teacher. In the transformer
attention space, the self-attention of the student is calculated as:

AttnS = softmax(
QS(KS)T√

d
)VS, (2)

in which d is the query size. The calculation of AttnT is similar. Hence, we can
minimize the distance between the attention maps of the teacher and those of
the student to guide the student network. To further improve the robustness of
the student, we construct the partially cross attention of the student to replace
the original AttnS:

PCAttnS = softmax(
g(QS)(g(KS))T√

d
)g(VS),

s.t. g(MS(i, j)) =

{
MT(i, j), p ≥ 0.5
MS(i, j), p < 0.5

, (M = Q,K, V ).
(3)

Note that (i, j) denotes the matrix element index of M . The function g(·) replaces
the QS,KS, VS matrixes of the student by the corresponding matrixes of the
teacher, with the probability p subject to uniform distribution. In this manner,
the loss is constructed:

Lproj1 = ||AttnT − PCAttnS||22 + ||VT · VT√
d

− VS · VS√
d

||22, (4)

to make the student mimic the teacher in the attention space.

(2) Group-wise Linear Projector Group-wise linear (GL) projector maps
the student feature into transformer feature space. It consists of several shared-
weight fully-connected (FC) layers:

h′
S = Proj2(hS), (5)
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where h′
S ∈ R

N×(3hw) is aligned to have the same dimension with teacher fea-
ture hT. Specifically, for the regular image input with size of 224 × 224, the
dimensions are hS ∈ R

256×196 and h′
S ∈ R

196×768. In order to realize a pixel-by-
pixel mapping manner, the projector needs at least 196 FC layers with 256×768
parameters. each of them maps the pixel from the original feature space to the
corresponding “pixel” in the transformer space. A large number of FC layers may
cause huge computation. In order to obtain a compact projector, we propose the
group-wise linear projector where a 4 × 4 neighborhood shares an FC layer.
Hence, the GL projector only contains 16 FC layers. Furthermore, drop-out is
also adopted to reduce the computation and improve the robustness. Finally,
after obtaining the new aligned student feature, the loss is computed as:

Lproj2 = ||hT − h′
S||22, (6)

to minimize the distance between the teacher feature and the student feature in
the transformer feature space.

3.3 Cross-view Robust Training

Due to the big difference between the architectures of the teacher and the stu-
dent, it is not that easy for the student to learn to be robust. To improve the
robustness and the stability of the student network, we proposed a cross-view
robust training scheme. The proposed training scheme contains two important
components, i.e., a multi-view generator (MVG) and the corresponding multi-
view adversarial discriminator. The MVG takes the original image as the input,
and generates images with different transformations with some probability:

x̃ = MVG(x) =

{
Trans(x), p ≥ 0.5
x, p < 0.5

, (7)

in which Trans(·) contains the common transformations, such as color jettering,
random crop, rotation, patch-wise mask, etc. The probability p is also subject to
the uniform distribution. These transformed versions of the samples are then fed
to the student network. Subsequently, the multi-view adversarial discriminator
is constructed to distinguish the teacher feature hT and the transformed student
feature h′

S, which is comprised of a three-FC-layer network. In this manner, the
target of the cross-view robust training is to confuse the discriminator and obtain
a robust student feature. The training loss of the discriminator is computed as:

LMAD =
1
m

m∑
k=1

[
− log D(h(k)

T ) − log(1 − D(h′(k)
S ))

]
. (8)

Note that D(·) denotes the multi-view adversarial discriminator. And m is the
total number of training samples. For the student network which can be seen as
the generator in the adversarial training, the loss is written as:

LMVG =
1
m

m∑
k=1

[
log(1 − D(h′(k)

S ))
]
. (9)
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Minimizing this loss can help to generate the student feature h′
S which dis-

tributes similarly to that of the teacher feature hT.

3.4 Optimization

In this subsection, we introduce the overall optimization and the training pro-
cedure of the proposed method. In order to train the student network, the loss
function can be obtained by:

Ltotal = (Lproj1 + Lproj2) + λ · LMVG, (10)

in which λ is the penalty coefficient balancing the loss terms. For the multi-view
adversarial discriminator, the loss function is LMAD in Eq. (8).

The overall training procedure of the proposed method is summarized in
Algorithm 1. In detail, the cross-architecture teacher-student framework is first
constructed. The PCA projector and the GL projector are then embedded in the
student network to map the student features into the teacher attention space and
feature space. Subsequently, a cross-view robust training scheme is adopted to
train the framework. The framework main body (i.e., ΘS, Proj1(·) and Proj2(·))
and the multi-view adversarial discriminator D(·) are alternatively updated.
After convergence, the modules Proj1(·), Proj2(·) and D(·) are removed and
only the compact student network ΘS is remained to carry out the inference
phase.

Algorithm 1: The procedure of cross-architecture knowledge distillation.
Input: Database Dtrain = {xtrain,ytrain}, ΘS, ΘT, D(·), Proj1(·), Proj2(·).

1 e = 0;

2 Initialize ΘS, Proj1(·), Proj2(·) and D(·);
3 repeat
4 Compute the transformed features h′

S and {QS,KS, VS} through Proj1(·)
and Proj2(·), using Eq. (1) and Eq. (5);

5 Update ΘS, Proj1(·) and Proj2(·) using Eq. (10);
6 if e%5 = 0 then
7 Update D(·) using Eq. (8);
8 end
9 e = e + 1;

10 until done;

11 Remove Proj1(·), Proj2(·) and D(·), and predict the label through ΘS in
inference phase;

12 return ΘS.
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4 Experiments

4.1 Settings

Databases and Networks. We evaluate the proposed method on two
databases: CIFAR [9] and ImageNet [8]. The data are augmented using the
same strategies as in the PyTorch official examples [23]. For networks, we use
the popular CNNs as the student network, including ResNets [24], MobileNet
v2 [25], Xception [26] and EfficientNet [27]. The typical Transformers are applied
as the teacher network, such as ViT [3], and Swin Transformer [28].

Implementation Details. We train all the networks from scratch. For CIFAR
datasets, the total number of epochs is 200 with a standard batch size of 64. The
learning rate is initialized as 0.1 and multiplied by 0.1 at epoch 100 and epoch
150. For ImageNet, the total number of epochs is 120 with a 256 batch size. The
learning rate is initialized as 0.1 and multiplied by 0.1 at epoch 30, epoch 60 and
epoch 90, respectively. A standard stochastic gradient descent (SGD) optimizer
with 10−4 weight decay and 0.9 momentum is adopted. All the experiments are
conducted on a platform with 8 Nvidia Tesla GPU cards and 96-core Intel(R)
Xeon(R) Platinum 8163 CPU. In addition, every single setting is repeated 5
times with different random seeds on Pytorch.

4.2 Performance Comparison

We compare the performance of our method with 14 state-of-the-art knowl-
edge distillation methods, including Logits [10], FitNet [13], AT [12], IRG [17],
RKD [29], CRD [30], OFD [14], ReviewKD [31], LONDON [32], AFD [33],
AB [34], FT [35], DeiT [20] and MINILM [21]. Among them, Logits, FitNet, AT,
IRG, RKD, CRD, OFD, ReviewKD and LONDON are CNN-based KD meth-
ods, and DeiT and MINILM are transformer-based KD methods. There exist few
related works for the Transformer-CNN framework. Consequently, several CNN-
based methods including logits, RKD and IRG are adopted for cross-architecture
scenarios, since these methods do not rely on the CNN architectures. Besides,
for a fair comparison, we select CNNs and Transformers with similar FLoating-
point OPerations (FLOPs) or similar accuracy as the teacher network or the
student network.

Evaluation on CIFAR. Table 1 presents the KD results on CIFAR100. As
shown in this table, three KD modes of the teacher-student frameworks, includ-
ing CNN-CNN, Transformer-CNN and Transformer-Transformer, are evaluated.
It can be seen that the proposed method has the best performance among all the
methods, including CNN-based KD methods and transformer-based methods.
For the most commonly used CNN-CNN mode, the proposed cross-architecture
KD method shows superior performance. It is because the CNN student learns
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complementary global information from the Transformer teacher. The perfor-
mance gap is even larger (usually more than 1%) when the Transformer teacher
and the CNN teachers have similar FLOPs. Because under similar computation
cost, Transformer teacher usually has higher accuracy than CNN teacher. For the
Transformer-CNN mode, a higher performance gain (an average gain of 2.7%)
is obtained compared with the CNN-CNN methods. This indicates that existing
KD methods do not take full advantage of the Transformer teacher, though they
can be adopted to the cross-architecture scenario. In Transformer-Transformer
mode, the proposed method results mostly surpass the Transformer-based KD
results. Although the Xceptionx2 model is slightly inferior to the ViT-B/16
model, the performance gain of Xceptionx2 is higher than that of ViT-B/16.
This indicates that cross-architecture KD can obtain higher promotion than
the conventional homologous-architecture KD. Besides, in our cross-architecture
framework, it is easier to adopt and accelerate the CNN student into practical
application.

Evaluation on ImageNet. Experiments are conducted on ImageNet to fur-
ther verify the generalization and effectiveness of the proposed method. As
shown in Table 2, our method exhibits the best performance on ImageNet. Sim-
ilar to the settings of CIFAR, two homologous-architecture modes including
CNN-CNN and Transformer-Transformer and one cross-architecture mode, i.e.,
Transformer-CNN, are compared. Different from homologous-architecture meth-
ods, the proposed cross-architecture framework encourages the student to learn
both local spatial features (with the original CNN model) and complementary
global features (from the transformer teacher model). Consequently, the CNN
student obtains higher performance. Especially, from Table 2, some CNNs (e.g.,
ResNet50x2-80.72%) guided by Transformer even surpasses the Transformer
with similar model computation (e.g., ViT-B/32-78.29%), by more than 1.03%
accuracy. With hardware-friendly attributes, these improved CNNs are more
potential for edge device applications.

4.3 Ablation Study

(1) Different teacher-student pairs. In order to verify the generalization of
the proposed method, we evaluate it with different cross-architecture teacher-
student pairs in Table 3. It can be observed that our cross-architecture method
obtains significant performance promotion across different teacher-student pairs,
compared with the baseline. In addition, the accuracies of the student continue
increasing as the teacher’s performance becomes better. At this end, Transformer
can be an excellent teacher since it usually obtains better performance with
similar FLOPs compared with a CNN network. Using Transformer to guide the
learning of a CNN student can be a potential direction.

(2) Effectiveness of the proposed projector. We analyze the effectiveness
of the proposed PCA projector and GL projector. Experimental results on Ima-
geNet in Fig. 3-(a) show great performance gain when the two projectors are
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Table 1. Performance comparison on CIFAR100. Note that “x2” denotes the channel
number of this network is twice of the original ResNet’s. And “x3” has the analogous
meaning.

Mode Teacher Student Methods Test accuracy Teacher Student Methods Test accuracy

CNN→CNN ResNet152x2
(212.0

GFLOPs)

ResNet50 (4.1

GFLOPs)

Baseline T 91.03% ResNet101x3
(205.0

GFLOPs)

ResNet50x2
(15.9 GFLOPs)

Baseline T 90.98%

Baseline S 85.02% Baseline S 88.21%

Logits 86.53% Logits 89.07%

FitNet 85.37% FitNet 88.51%

AT 86.41% AT 89.18%

RKD 86.22% RKD 89.39%

IRG 86.87% IRG 89.89%

OFD 86.79% OFD 89.62%

CRD 86.91% CRD 89.94%

ReviewKD 87.03% ReviewKD 90.04%

LONDON 87.16% LONDON 89.98%

ViT-B/16 ResNet50 Ours 87.39% ViT-B/16 ResNet50x2 Ours 90.33%

ViT-L/16 ResNet50 Ours 88.09% ViT-L/16 ResNet50x2 Ours 90.97%

Transformer
→CNN

ViT-B/16
(55.4 GFLOPs)

ResNet50 (4.1

GFLOPs)

Baseline T 90.92% ViT-L/16
(190.7

GFLOPs)

ResNet50 (4.1

GFLOPs)

Baseline T 92.46%

Baseline S 85.02% Baseline S 85.02%

Logits 86.42% Logits 86.69%

RKD 86.13% RKD 86.73%

IRG 86.59% IRG 86.91%

Ours 87.39% Ours 88.09%

ViT-B/16
(55.4 GFLOPs)

ResNet50x2
(15.9 GFLOPs)

Baseline T 90.92% ViT-L/16
(190.7

GFLOPs)

ResNet50x2
(15.9 GFLOPs)

Baseline T 92.46%

Baseline S 88.21% Baseline S 88.21%

Logits 88.86% Logits 89.28%

RKD 89.11% RKD 89.51%

IRG 89.38% IRG 89.68%

Ours 90.33% Ours 90.97%

Swin-L (103.9

GFLOPs)

ResNet50 (4.1

GFLOPs)

Baseline T 93.78% Swin-L (103.9

GFLOPs)

ResNet50x2
(15.9 GFLOPs)

Baseline T 93.78%

Baseline S 85.02% Baseline S 88.21%

Logits 86.78% Logits 88.93%

RKD 86.91% RKD 90.02%

IRG 87.06% IRG 89.97%

Ours 88.46% Ours 91.21%

Transformer
→
Transformer

ViT-L/16
(190.7

GFLOPs)

ViT-B/16
(55.4 GFLOPs)

Baseline T 92.46% Swin-L (103.9

GFLOPs)

ViT-B/16
(55.4 GFLOPs)

Baseline T 93.78%

Baseline S 90.92% Baseline S 90.92%

Logits 91.45% Logits 91.74%

IRG 91.59% IRG 91.88%

DeiT 91.57% DeiT 91.91%

MINILM 91.44% MINILM 91.75%

ViT-L/16 Xceptionx2
(57.3G/90.27%)

Ours 91.15% Swin-L Xceptionx2
(57.3G/90.27%)

Ours 91.36%

ViT-L/16 ResNet101x3 Ours 91.84% Swin-L ResNet101x3 Ours 92.07%

ViT-L/16
(190.7

GFLOPs)

ViT-B/32
(13.8 GFLOPs)

Baseline T 92.46% Swin-L (103.9

GFLOPs)

ViT-B/32
(13.8 GFLOPs)

Baseline T 93.78%

Baseline S 89.46% Baseline S 89.46%

Logits 90.22% Logits 90.59%

IRG 90.39% IRG 90.95%

DeiT 90.40% DeiT 90.99%

MINILM 90.26% MINILM 90.62%

ViT-L/16
(190.7

GFLOPs)

ResNet152
(11.0

G/89.57%)

Ours 90.66% Swin-L (103.9

GFLOPs)

ResNet152
(11.0

G/89.57%)

Ours 91.20%

* Baseline T: Baseline model of the teacher network.
* Baseline S: Baseline model of the student network.

involved during the KD procedure. It indicates that PCA and GL projectors
significantly improve the quality of the CNN feature, though they are removed
during the inference phase. We further evaluate the transferability after adding
these two projectors in Fig. 3-(b). The cosine similarity is increased by a large
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Table 2. Performance comparison on ImageNet.

Mode Teacher Student Methods Test accuracy
Top1/Top5

Teacher Student Methods Test accuracy
Top1/Top5

CNN→CNN ResNet152x2
(212.0

GFLOPs)

ResNet50x2
(15.9

GFLOPs)

Baseline T 81.95/96.02 ResNet101x3
(205.0

GFLOPs)

ResNet50x2
(15.9

GFLOPs)

Baseline T 82.03/96.06

Baseline S 78.16/93.91 Baseline S 78.16/93.91

Logits 79.06/94.67 Logits 79.19/94.71

AT 79.01/94.66 AT 78.92/94.63

FT 79.12/94.69 FT 79.11/94.69

AB 78.93/94.62 AB 79.01/94.65

OFD 79.63/94.81 OFD 79.55/94.79

AFD 79.38/94.76 AFD 79.45/94.78

IRG 79.85/94.87 IRG 79.75/94.84

ReviewKD 80.12/94.99 ReviewKD 80.08/94.97

LONDON 80.09/94.97 LONDON 80.15/95.01

ViT-B/16 ResNet50x2 Ours 80.74/95.38 ViT-B/16 ResNet50x2 Ours 80.72/95.38

ViT-L/16 ResNet50x2 Ours 80.92/95.43 ViT-L/16 ResNet50x2 Ours 81.01/95.46

Transformer
→CNN

ViT-B/16
(55.4 GFLOPs)

ResNet50
(4.1 GFLOPs)

Baseline T 82.17/96.11 ViT-L/16
(190.7

GFLOPs)

ResNet50
(4.1 GFLOPs)

Baseline T 84.20/96.93

Baseline S 76.28/93.03 Baseline S 76.28/93.03

Logits 77.02/93.40 Logits 77.45/93.57

RKD 77.27/93.50 RKD 77.82/93.75

IRG 77.39/93.55 IRG 77.75/93.71

Ours 78.34/94.06 Ours 78.85/94.31

ViT-B/16
(55.4 GFLOPs)

ResNet50x2
(15.9

GFLOPs)

Baseline T 82.17/96.11 ViT-L/16
(190.7

GFLOPs)

ResNet50x2
(15.9

GFLOPs)

Baseline T 84.20/96.93

Baseline S 78.16/93.91 Baseline S 78.16/93.91

Logits 79.02/94.62 Logits 79.31/94.72

RKD 79.68/94.82 RKD 79.78/94.85

IRG 79.60/94.79 IRG 79.83/94.88

Ours 80.72/95.38 Ours 81.01/95.46

Swin-L (103.9

GFLOPs)

ResNet50
(4.1 GFLOPs)

Baseline T 87.32/98.21 Swin-L (103.9

GFLOPs)

ResNet50x2
(15.9

GFLOPs)

Baseline T 87.32/98.21

Baseline S 76.28/93.03 Baseline S 78.16/93.91

Logits 77.60/93.64 Logits 79.68/94.83

RKD 77.85/93.76 RKD 79.92/94.92

IRG 77.89/93.79 IRG 80.10/94.99

Ours 78.96/94.42 Ours 81.39/95.64

Transformer
→
Transformer

ViT-L/16
(190.7

GFLOPs)

ViT-B/16
(55.4

GFLOPs)

Baseline T 84.20/96.93 Swin-L (103.9

GFLOPs)

ViT-B/16
(55.4

GFLOPs)

Baseline T 87.32/98.21

Baseline S 82.17/96.11 Baseline S 82.17/96.11

Logits 83.18/96.55 Logits 83.49/96.65

IRG 83.27/96.59 IRG 83.60/96.69

DeiT 83.38/96.63 DeiT 83.71/96.72

MINILM 83.17/96.55 MINILM 83.55/96.65

ViT-L/16 Xceptionx2
(80.37%/

95.24%)

Ours 82.56/96.34 Swin-L Xceptionx2
(80.37%/

95.24%)

Ours 82.98/96.45

ViT-L/16 ResNet152x2 Ours 83.62/96.74 Swin-L ResNet101x3 Ours 84.37/96.97

ViT-L/16
(190.7

GFLOPs)

ViT-B/32
(13.8

GFLOPs)

Baseline T 84.20/96.93 Swin-L (103.9

GFLOPs)

ViT-B/32
(13.8

GFLOPs)

Baseline T 87.32/98.21

Baseline S 78.29/94.08 Baseline S 78.29/94.08

Logits 79.40/94.76 Logits 79.30/94.73

IRG 79.20/94.64 IRG 79.10/94.60

DeiT 79.37/94.75 DeiT 79.27/94.71

MINILM 79.29/94.70 MINILM 79.19/94.67

ViT-L/16 ResNet152
(78.31%/

94.05%)

Ours 80.47/95.29 Swin-L ResNet152
(78.31%/

94.05%)

Ours 81.09/95.52

margin and is even higher than that of the homologous-architecture. Therefore,
it is possible to increase the knowledge transferability between Transformer and
CNN by carefully designed KD methods.

(3) Effectiveness of the cross-view robust training. As reported in Fig. 3-
(a), for regular evaluation without noise, student networks obtain 0.2%–0.4%
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Table 3. Performance results of different teacher-student pairs on ImageNet. Note that
the brackets behind the networks report the FLOPs of the networks.

Teacher Student Teacher accuracy Student accuracy Ours accuracy

Top1 Top5 Top1 Top5 Top1 Top5

ViT-B/16 (55.4G) ResNet50 (4.1 GFLOPs) 82.17% 96.11% 76.28% 93.03% 78.34% 94.06%

ViT-L/16 (190.7G) 84.20% 96.93% 76.28% 93.03% 78.85% 94.31%

DeiT-B (55.4G) 83.12% 96.52% 76.28% 93.03% 78.53% 94.13%

Swin-B (15.4G) 86.38% 98.01% 76.28% 93.03% 78.87% 94.29%

Swin-L (103.9G) 87.32% 98.21% 76.28% 93.03% 78.96% 94.42%

ViT-B/16 ResNet18 (1.9 GFLOPs) 82.17% 96.11% 69.76% 89.08% 71.73% 90.41%

ViT-L/16 84.20% 96.93% 69.76% 89.08% 72.02% 90.52%

DeiT-B 83.12% 96.52% 69.76% 89.08% 71.85% 90.45%

Swin-B 86.38% 98.01% 69.76% 89.08% 72.01% 90.52%

Swin-L 87.32% 98.21% 69.76% 89.08% 72.09% 90.57%

ViT-B/16 MobileNetV2 (0.3 GFLOPs) 82.17% 96.11% 71.88% 90.29% 73.34% 91.01%

ViT-L/16 84.20% 96.93% 71.88% 90.29% 73.52% 91.18%

DeiT-B 83.12% 96.52% 71.88% 90.29% 73.40% 91.06%

Swin-B 86.38% 98.01% 71.88% 90.29% 73.56% 91.21%

Swin-L 87.32% 98.21% 71.88% 90.29% 73.66% 91.25%

ViT-B/16 EfficientNetB0 (1.6 GFLOPs) 82.17% 96.11% 77.69% 93.53% 79.23% 94.50%

ViT-L/16 84.20% 96.93% 77.69% 93.53% 79.34% 94.54%

DeiT-B 83.12% 96.52% 77.69% 93.53% 79.30% 94.52%

Swin-B 86.38% 98.01% 77.69% 93.53% 79.38% 94.55%

Swin-L 87.32% 98.21% 77.69% 93.53% 79.52% 94.60%

Fig. 3. (a) Performance of each component in the proposed method. (b) The cosine sim-
ilarities between the features from different models. The student network is ResNet50.
Among these blue bars, the features are mapped into the same dimension with the
teacher features by a linear projector. All the results are obtained on ImageNet. (Color
figure online)

top-1 accuracy gain on ImageNet with the cross-view robust training scheme.
To further verify its effectiveness, we also report the results for noisy evaluation,
where the validation dataset is augmented differently from the training augmen-
tation. Under this protocol, the top-1 accuracy gain after adding the cross-view
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Table 4. Evaluation on other visual tasks, including object detection, instance seg-
mentation and face anti-spoofing.

Task (Dataset) Teacher backbone Student backbone Method AP ΔAP

Object

Detection

(COCO)

– ResNet50 Baseline 34.5 0

ResNet152x2 Logits 35.0 0.5

ViT-L/16 Logits 34.9 0.4

ViT-L/16 Ours 35.5 1.0

– ResNet101 Baseline 37.1 0

ResNet152x2 Logits 37.7 0.6

ViT-L/16 Logits 37.4 0.3

ViT-L/16 Ours 38.1 1.0

– ResNeXt101 Baseline 39.2 0

ResNet152x2 Logits 39.8 0.6

ViT-L/16 Logits 39.6 0.4

ViT-L/16 Ours 40.3 1.1

Task (Dataset) Teacher backbone Student backbone Method AP ΔAP

Instance

Segmenta-

tion (COCO)

– ResNet50 Baseline 32.6 0

ResNet152x2 Logits 33.3 0.7

ViT-L/16 Logits 33.1 0.5

ViT-L/16 Ours 33.6 1.0

– ResNet101 Baseline 33.9 0

ResNet152x2 Logits 34.5 0.6

ViT-L/16 Logits 34.2 0.3

ViT-L/16 Ours 34.8 0.9

– ResNeXt101 Baseline 35.1 0

ResNet152x2 Logits 35.5 0.4

ViT-L/16 Logits 35.3 0.2

ViT-L/16 Ours 35.9 0.8

Task (Dataset) Teacher backbone Student backbone Method EER −ΔEER

Face Anti-

Spoofing

(CelebA-

Spoof)

– ResNet18 Baseline 1.6 0

ResNet152x2 Logits 1.6 0

ViT-L/16 Logits 1.6 0

ViT-L/16 Ours 1.3 0.3

– Inception-v3 Baseline 1.4 0

ResNet152x2 Logits 1.3 0.1

ViT-L/16 Logits 1.4 0

ViT-L/16 Ours 1.1 0.3

– ResNeXt26 Baseline 1.3 0

ResNet152x2 Logits 1.3 0

ViT-L/16 Logits 1.3 0

ViT-L/16 Ours 0.9 0.4

robust training scheme is enlarged to more than 1.0%. It demonstrates that the
proposed robust training scheme enhances the noise robustness of the student
network.

(4) Applications on other tasks. The proposed cross-architecture KD
method also performs well on other tasks. As shown in Table 4, our method
is evaluated on three visual tasks including object detection [36], instance seg-
mentation [37] and face anti-spoofing [38].
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For detection and segmentation, we follow the recent protocol of the COCO
database [39] and report average precision (AP). Note that AP in segmentation
is computed using mask intersection over union (IoU). The proposed method
shows superiority compared with the conventional KD method in Table 4. For
the conventional KD method Logits, the performance of the cross-architecture
mode is even worse than the performance of the homologous-architecture mode.
This further manifests that our method effectively solves the mismatching prob-
lem of cross-architecture KD. In addition, for face anti-spoofing, which is a binary
classification task, we adopt ResNet18, Inception-v3 and ResNext26 as the back-
bones of the student. Equal Error Rate (EER) is reported as the evaluation
metric. And the experiments are conducted on CelebA-Spoof [38], which is one
of the largest datasets for face anti-Spoofing. It is worth mentioning that there
exist few useful information of class correlation on the binary classification task.
Hence, conventional KD method Logits has marginal enhancement on the stu-
dent. In contrast, the proposed method also obtains a satisfactory performance
from Table 4. It is interesting to notice that, though the proposed method is
designed for the classification task, it has good generalization when it is directly
applied to other tasks such as detection and segmentation.

5 Conclusions

In this paper, a novel cross-architecture knowledge distillation method is pro-
posed. In particular, two projectors including a partially cross attention (PCA)
projector and a group-wise Linear (GL) projector are presented The two pro-
jectors promote the knowledge transferability from teacher to student. In order
to further improve the robustness and stability of the framework, a multi-view
robust training scheme is proposed. Extensive experimental results show that
our method outperforms 14 state-of-the-arts on both large-scale datasets and
small-scale datasets.
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Abstract. As ultra-realistic face forgery techniques emerge, deepfake
detection has attracted increasing attention due to security concerns.
Many detectors cannot achieve accurate results when detecting unseen
manipulations despite excellent performance on known forgeries. In this
paper, we are motivated by the observation that the discrepancies
between real and fake videos are extremely subtle and localized, and
inconsistencies or irregularities can exist in some critical facial regions
across various information domains. To this end, we propose a novel
pipeline, Cross-Domain Local Forensics (XDLF), for more general deep-
fake video detection. In the proposed pipeline, a specialized framework is
presented to simultaneously exploit local forgery patterns from space, fre-
quency, and time domains, thus learning cross-domain features to detect
forgeries. Moreover, the framework leverages four high-level forgery-
sensitive local regions of a human face to guide the model to enhance
subtle artifacts and localize potential anomalies. Extensive experiments
on several benchmark datasets demonstrate the impressive performance
of our method, and we achieve superiority over several state-of-the-art
methods on cross-dataset generalization. We also examined the factors
that contribute to its performance through ablations, which suggests that
exploiting cross-domain local characteristics is a noteworthy direction for
developing more general deepfake detectors.

1 Introduction

Recent years have witnessed tremendous progress in face forgery techniques [13,
25,29,40], i.e., deepfake, due to the emergence of deep generative models. As
such techniques can synthesize highly realistic fake videos without considerable
human effort, they can easily be abused by malicious attackers to counterfeit
imperceptible identities or behaviors, thereby causing severe political and social
threats. To mitigate such threats, numerous automatic deepfake detection meth-
ods [6,9,20,31,34,46,53,54] have been proposed.

Most studies formulated deepfake detection as a binary classification problem
with global supervision (i.e., real/fake) for training. They relied on convolutional
neural networks (CNN) to extract discriminative features to detect forgeries.
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While these methods achieved satisfactory accuracy when the training and test
sets have similar distributions, their performance significantly dropped when
encountering novel manipulations. Therefore, many works [20,26,34,36] aimed
at improving generalization to unseen forgeries with diverse approaches.

With the continuous refinement of face forgery methods, the discrepancies
between real and fake videos are increasingly subtle and localized. Inconsistencies
or irregularities can exist in some critical local regions across various informa-
tion domains, e.g., space [1,43], frequency [6,31,34,42], and time [4,18,24,44]
domains. However, these anomalies are so fine-grained that vanilla CNN often
fails to capture them. Many detection algorithms exploited local characteristics
to enhance generalization performance. However, these algorithms still had some
limitations in representing local features. On the one hand, some algorithms [20]
solely relied on a specific facial region to distinguish between real and fake videos
while ignoring other facial regions, which restricted the detection performance.
On the other hand, many algorithms [6,34,36] made insufficient use of local
representation and cannot aggregate local information from various domains.

In this work, we are motivated by the above observation. It is reasonable
to assume that incorporating more local regions and information domains can
improve detection performance. We expect to design a specialized model to
implement this idea and verify its performance through extensive experiments.
We aim to guide the model to capture subtle artifacts around some high-level
facial local regions that are sensitive to forgeries due to complicated natural
motions. These regions are referred to as the forgery-sensitive local regions
(FSLR) in this paper, which are abundant in high-level semantics that can
enhance the model’s generalization capability. We also consider the feasibility of
simultaneously exploiting information from space, frequency, and time domains
based on a 3D CNN backbone.

To this end, we propose Cross-Domain Local Forensics (XDLF), a novel
pipeline specially designed for feature extraction across multiple domains and
local artifacts enhancement. Four forgery-sensitive local regions (i.e., left eye,
right eye, nose, and mouth) are extracted to guide the model to capture sub-
tle artifacts around these regions. To simultaneously leverage information from
space, frequency, and time domains, we design a two-stream 3D CNN based
framework to learn a cross-domain dense representation for forgery detection.

To demonstrate the effectiveness of our framework, extensive experiments
were conducted on several benchmark datasets, including FaceForensics++ [43],
Celeb-DF [29], and DFDC [13]. Our results show the superiority of the proposed
method over many state-of-the-art approaches on cross-dataset generalization.

Our main contributions are as follows:

• We leverage four forgery-sensitive local regions of a human face to guide the
model to enhance subtle artifacts and localize potential anomalies around
those regions. Using bounding boxes of those regions, we extract regional
features as an attention to help the model focus more on those regions. We
validated our design through ablations.
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• We present a novel deepfake video detection pipeline that simultaneously
exploits information from space, frequency, and time domains, thus learning
a cross-domain dense representation for better generalization.

• We achieve impressive performance on extensive experiments, and our method
outperforms several state-of-the-art methods on cross-dataset generalization.

2 Related Work

2.1 Deepfake Detection

Existing deepfake detection algorithms can fall into two categories, namely
image-based methods and video-based methods, depending on whether temporal
information is explicitly exploited across frames.

Image-Based Methods. Earlier image-based methods employed hand-crafted
facial features to detect forgeries, e.g., steganalysis features [55], inconsistent
head poses [50], and anomalous visual artifacts [37]. However, these methods
underperformed on more realistic forgeries synthesized with more advanced face
manipulation technologies recently. With the tremendous progress of deep learn-
ing, many works [1,43] utilized state-of-the-art convolutional neural networks
(CNN), e.g., Xception [7], to extract features from facial images and perform
binary classification. More recently, an increasing number of CNN-based meth-
ods have been proposed from various perspectives. They aimed at exploring
the crucial discrepancies between real and fake images, continuously improv-
ing the detection performance. These methods included leveraging frequency
spectrum [16,31,34,36,42], attention mechanism [10,53], extra identity informa-
tion [3,9], self-supervised learning [26,28,54], etc.

Video-Based Methods. Unlike image-based methods, video-based methods
distinguish real and fake videos based on a sequence of aligned frames. Most
works managed to model the temporal consistency across frames, since current
face manipulation techniques struggled to generate temporally coherent fake
videos. These methods [19,30,36,44] utilized recurrent neural networks (RNN)
or 3D CNN to extract spatio-temporal features of facial movements. They can
focus on unnatural eye blinking [27], irregular mouth motion [20], inconsistent
visual-auditory modalities [2,8,38,56]. In contrast, our method designs a two-
stream 3D CNN based framework to mine forgery patterns from space, frequency,
and time domains. We also leverage four facial forgery-sensitive local regions to
enhance imperceptible artifacts for forgery defect localization.

2.2 Generalization to Unseen Forgeries

While current methods achieved excellent accuracy in the scenario where the train-
ing and test sets have similar distributions, they cannot generalize very well to
unseen forgeries and tend to overfit to manipulation-specific artifacts. It is of
paramount importance for deployed detectors to learn generalized representation
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regardless of forgery types. To this end, many works focused on improving gener-
alization to unseen forgeries with diverse approaches. Several works [34,36] used a
two-branch architecture to exploit information from the RGB domain and the fre-
quency domain, exploiting generalized frequency patterns to expose the discrepan-
cies. Our method has a similar idea but far different designs. Moreover, a series of
self-supervised methods [26,28,54] demonstrated superior generalization. These
methods relied on self-generated fake data targeted at specific patterns without
the need for conventional forgery training data. The patterns can be face warp-
ing artifacts [28], blending boundary [26], source feature inconsistency [54]. Lip-
Forensics [20] exhibited remarkable performance on cross-dataset generalization
by pre-training a spatio-temporal network to perform lipreading and fine-tuning
on a deepfake dataset. We followed its experimental settings due to similar goals.

3 Proposed Method

3.1 Overview

In this section, we first explain the motivation of our work, and then briefly
introduce the pipeline of our proposed method.

Motivation. Recent studies [20,37,42,53] have shown that the discrepancies
between real and fake videos contain implicitly in local subtle regions, where
manipulation artifacts may exist across various information domains. Unfortu-
nately, most deepfake datasets have no manipulation masks as local supervision.
Without external location guidance of facial semantic regions that are sensitive
to forgeries, it is often difficult for detectors to localize those subtle artifacts.
We observe that current detection algorithms had two limitations in leveraging
local information:
• Some algorithms [20,27] relied on a single facial region as the criterion to

detect forgeries, while ignoring the effect of other critical local regions, which
may restrict the performance. Our framework exploits four forgery-sensitive
local regions (FSLR) of a human face, which are used to guide the model to
enhance subtle artifacts and localize more potential anomalies based on our
newly proposed FSLR-Guided Feature Enhancement.

• Many algorithms made insufficient use of local regions to detect anomalies,
which can be embodied in multiple information domains, e.g., space, fre-
quency, and time domains. To the best of our knowledge, few studies have
been done to simultaneously capture local features across these three domains.
We note that the Two-branch [36] method extracted spatial/frequency and
temporal features at two stages with CNN and RNN, respectively, without
cross reference among these features. To this end, we propose a two-stream
framework, Cross-Domain Local Forensics, to simultaneously exploit local
information from those three domains.

Pipeline. Motivated by the above observations, we propose a novel feature
extraction framework Cross-Domain Local Forensics (XDLF) for more gen-
eral deepfake video detection. Figure 1 illustrates the overall pipeline of XDLF.
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Fig. 1. Pipeline of our proposed framework XDLF. The end-to-end training consists
of three stages: Data Preprocessing, Cross-Domain Local Forensics, and Classifier.

The pipeline takes as input a sequence of aligned RGB frames. First, the data
preprocessing consists of two procedures. On the one hand, Frequency Decom-
position takes as input RGB images to generate frequency maps where manip-
ulation traces in the frequency domain are amplified, especially for those videos
with high compression. On the other hand, Forgery-Sensitive Region Detec-
tion takes as input RGB images to extract bounding boxes of four forgery-
sensitive local regions (FSLR) that are abundant in high-level defects. The
four FSLRs are left eye, right eye, nose, and mouth. Then, sequences of RGB
images, frequency maps, and FSLR boxes are input into Cross-Domain Local
Forensics (XDLF) to learn a comprehensive and generalized cross-domain fea-
tures. Finally, a classifier comprising a 3D global average pooling layer and a
fully-connected layer is used to make predictions.

3.2 Data Preprocessing

Frequency Decomposition. Recent studies [31,52] observed that up-
sampling is a necessary step of most existing face manipulation methods, and

Fig. 2. Pipeline of Frequency Decomposition. This module generates frequency maps
where manipulation traces in the frequency domain are amplified adaptively.
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cumulative up-sampling can leave apparent anomalies in the frequency domain,
which provides clues for detecting manipulated videos. Inspired by F3-Net [42],
we design Frequency Decomposition to obtain multi-band frequency maps adap-
tively. Figure 2 shows the pipeline of this module.

For each RGB image X in a frame sequence, we first calculate the fre-
quency response with Discrete Cosine Transform (DCT) D. Then, filters of
low, middle, and high frequency bands fi , i ∈ {low,mid,high} are used to
obtain three frequency components. We follow the settings in [42] to construct
filters. Next, Inversed Discrete Cosine Transform (IDCT) D−1 is applied to
three frequency components to obtain the corresponding spatial components
Yi , i ∈ {low,mid,high}. Finally, the three spatial components are concatenated
to attain the frequency map Y . Before concatenation, each component is multi-
plied by a learnable weight αi ∈ (0, 1), i ∈ {low,mid,high} to enable the model
to adaptively concentrate on the interested frequency band for a flexible repre-
sentation of frequency features. The above can be summarized as Eq. 1, 2, where
� is the element-wise product.

Yi = D−1{D(X) � fi}, i ∈ {low,mid,high} (1)

Y = Concat(αlowYlow, αmidYmid, αhighYhigh) (2)

Forgery-Sensitive Region Detection. Current face manipulation techniques
struggled to generate temporally coherent fake faces, especially in high-level
semantic regions that have continual motions and thereby sensitive to forgeries.
We hope to guide the model to pay more attention to these regions. Therefore, we
extract bounding boxes of four forgery-sensitive local regions (FSLR): left eye,
right eye, nose, and mouth. These four manually selected regions are further
leveraged by FSLR-Guided Feature Enhancement (FGFE) as an external
guidance. For each RGB image, we first compute 68 facial landmarks based on
a face detector. Then, the landmarks are used to crop bounding boxes of those
four regions based on preset box sizes. Each box can be expressed as a quadruple
(h1, h2, w1, w2) where (h1, w1) is the top-left vertex and (h2, w2) is the bottom-
right vertex. The four boxes are stacked to generate the 4×4 FSLR box matrix.

3.3 Cross-Domain Local Forensics

We propose a novel two-stream collaborative learning framework for cross-
domain feature extraction, Cross-Domain Local Forensics (XDLF), which is
based on a spatio-temporal convolutional backbone. As is illustrated in Fig. 3,
the framework consists of two symmetric 3D CNN backbones: 3D-CNN(A)
extracts spatio-temporal features of RGB images, and 3D-CNN(B) extracts
frequency-temporal features of frequency maps. The features of the two modali-
ties are cross-referenced and merged at low, middle, and high levels of the back-
bone, with Cross Attention and Feature Fusion, respectively. Moreover, we
apply FSLR-Guided Feature Enhancement to the low-level features of both
streams, thus enhancing the local subtle artifacts of shallow features under the
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Fig. 3. Framework of Cross-Domain Local Forensics. We adopt a two-stream archi-
tecture for cross-domain feature extraction based on two symmetric spatio-temporal
convolutional backbones, e.g., 3D ResNet-50 [21,22].

guidance of forgery-sensitive regions. The ultimate cross-domain features are
obtained with Feature Ensemble to integrate features of three different levels
of abstraction.

FSLR-Guided Feature Enhancement. Many studies [31,53] showed that
local textural artifacts represent the high frequency component of shallow fea-
tures, which is essential for the face forgery detection task. These artifacts are
especially salient nearby critical facial regions that are sensitive to forgeries. As
aforementioned, we exploit four forgery-sensitive local regions to enhance sub-
tle artifacts and guide the model to localize more possible anomalies in these
regions. The module structure is shown in Fig. 4.

The module takes as input low-level RGB (or frequency) features X ∈
R

c×d×h×w (of c channels, depth d, height h, width w) and FSLR boxes r ∈
Z
d×4×4 and outputs the enhanced features of the same shape. First, the region

coordinates are scaled down (i.e., region projection) according to the size differ-
ence between the RGB image (or frequency map) and low-level features. Then,
FSLR features R ∈ R

4×c×d×H×W are obtained with region pooling, which
refers to ROI pooling [17] in object detection. Specifically, we crop four sub-
features with region coordinates and generate four FSLR features of fixed size

Fig. 4. Structure of FSLR-Guided Feature Enhancement. This module is designed
to guide the model to enhance subtle artifacts of shallow features and localize more
anomalous regions.
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(H ×W ) using adaptive max-pooling (Eq. 3). FSLR features condense the irreg-
ular semantics of local textural patterns in these four regions, which serve as an
attention for global features. Next, transformed features X′ ∈ R

c×hw are calcu-
lated by temporally averaging the RGB (or frequency) features X and flattening
spatial dimensions. And features R′ ∈ R

4c×dHW are also obtained by flattening
the FSLR features R. Later, the similarity matrix S ∈ R

hw×dHW between X′

and R′ (Eq. 4) is computed, where W ∈ R
c×4c is a learnable weight matrix.

Each value in S represents the similarity between each row in X′T and each col-
umn in R′. By the similarity matrix, we model the internal relevance between
those local regions for cross-region forgery mining. And then the attention matrix
A ∈ R

c×dHW is calculated to enhance the original features (Eq. 5). Moreover, the
upsampled A′ ∈ R

c×d×h×w is obtained by reshaping, bilinear interpolation, and
1× 1× 1 convolution (Eq. 6, 7). Finally, the enhanced features Xe ∈ R

c×d×h×w

are attained by element-wise product and residual addition (Eq. 8). We apply
this module to the low-level features of both streams, which enables the model to
pay more attention to the regularity and consistency of local semantic regions.

R = AdaMaxPool(X,Proj(r)) (3)

S = X′TWR′ (4)

A = X′S (5)

A′ = BilinearInterpolate(A) (6)

A′ = ReLU(BN(Conv1(A′))) (7)

Xe = X +X � A′ (8)

Cross Attention. In this module, RGB and frequency features are cross-
referenced at low, middle, and high levels of the backbone, which enables the
model to learn a more comprehensive cross-domain representation. The mod-
ule takes as input RGB features X and frequency features Xf . First, the two
features are concatenated on the channel axis and then applied 1× 1× 1 convo-
lution (Eq. 9, 10). Next, 3×3×3 convolution with output channel 2 and sigmoid
activation is used to obtain two attention maps (Eq. 11). Finally, the original
features are enhanced with attention maps by element-wise product (Eq. 12).

U = Concat(X,Xf ) (9)

U ′ = ReLU(BN(Conv1(U))) (10)

A,Af = Sigmoid(Conv3(U ′)) (11)

Xc = X � A, Xc
f = Xf � Af (12)

Feature Fusion. In this module, RGB and frequency features are fused in
a complementary way based on Squeeze-and-Excitation (SE) [23]. SE block
improves the quality of cross-domain features by explicitly modeling the inter-
dependence between the channels of RGB and frequency features. The module
structure is shown in Fig. 5.
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Fig. 5. Structure of Feature Fusion. This module is designed to model the interdepen-
dence between RGB and frequency features for improved cross-domain fusion.

This module also takes as input RGB features X ∈ R
C×D×H×W and

frequency features Xf ∈ R
C×D×H×W . The two features are first concate-

nated to obtain U ∈ R
2C×D×H×W (Eq. 13). Then, the spatial information is

squeezed into a value by global pooling to get channel descriptor V ∈ R
2C

(Eq. 14, 15). Next, we enable channel descriptor V to capture the interdepen-
dency between channels and obtain channel attention Ac ∈ R

2C (Eq. 16, 17, 18),
where W1 ∈ R

2C× 2C
r and W2 ∈ R

2C
r ×2C are learnable weight matrices, r is

the reduction ratio. Finally, the fused features Xv are computed as Eq. 19.

U = Concat(X,Xf ) (13)

V avg = GlobalAvgPool(U) (14)

V max = GlobalMaxPool(U) (15)

V ′
avg = W2ReLU(W1Vavg) (16)

V ′
max = W2ReLU(W1Vmax) (17)

Ac = Sigmoid(V ′
avg + V ′

max) (18)

Xv = ReLU(BN(Conv1×1×1(U +U � Ac))) (19)

Feature Ensemble. This module aggregates low, middle, and high-level fea-
tures through adaptive average pooling and concatenation (Eq. 20, 21, 22, 23).

˜X
low

= λlowAdaAvgPool(X low, (dhigh, hhigh, whigh)) (20)

˜X
mid

= λmidAdaAvgPool(Xmid, (dhigh, hhigh, whigh)) (21)

˜X
high

= λhighX
high (22)

˜X = Concat(˜X
low

, ˜X
mid

, ˜X
high

) (23)

where Xi ∈ R
ci×di×hi×wi , i ∈ {low,mid,high} are fused features of three

abstraction levels, and λi ∈ (0, 1), i ∈ {low,mid,high} are three learnable
parameters for adaptive feature combination.
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4 Experiment and Discussion

4.1 Experiment Setup

Datasets. We used FaceForensics++ (FF++) [43] for training and valida-
tion, and evaluated the cross-dataset generalization on Celeb-DF (CDF) [29]
and DeepFake Detection Challenge (DFDC) [13]. (1) FF++ is the most
commonly used benchmark dataset containing 1,000 real videos and 4,000 fake
videos. Each real video is manipulated by four face forgery techniques, i.e.,
DeepFakes (DF) [11], FaceSwap (FS) [15], Face2Face (F2F) [48], and Neural-
Textures (NT) [47]. We adopted the slightly-compressed (HQ/c23) and heavily-
compressed (LQ/c40) versions for our experiments. (2) CDF is a challenging
dataset that includes 590 real videos and 5,639 fake videos synthesized by an
improved algorithm. (3) DFDC is a large-scale dataset with extreme filming
conditions and various perturbations, which is also very challenging for current
deepfake detectors. We used the preview version [14] that includes 1,131 real
videos and 4,113 fake videos for our evaluation.

Evaluation Metrics. Following most existing works [20,26,36], Accuracy
(ACC) and Area Under the Receiver Operating Characteristic Curve (AUC)
were used as the metrics to evaluate our method. As in [20], we reported video-
level metrics for fair comparison with image-based methods. Specifically, all
frame/clip predictions were averaged across the video and hence all models pre-
dicted based on an equal number of frames.

Implementation Details. For each video, we sampled non-overlapping frame
clips with a length of 16, and oversampled the minority class (e.g., real in
FF++) to tackle label imbalance. We used the state-of-the-art face detector
RetinaFace [12] to crop facial images with a size of 224 × 224 and FSLR box
matrices with a size of 4 × 4. The preset FSLR size is 40 × 40 for the mouth
and 30 × 30 for the other three. For data augmentations, we applied several
traditional image augmentations such as random horizontal flipping. Moreover,
as in [41], we conducted Mixup [51] augmentation on aligned real-fake pairs to
reduce overfitting. For XDLF, we adopted 3D ResNet-50 [21,22] as the back-
bone which is pre-trained on large-scale action recognition datasets to accelerate
the model convergence. For FSLR-Guided feature enhancement, we set FSLR
feature size H = W = 7. For feature fusion, we set reduction ratio r = 16.
For training, we used a batch size of 4 and AdamW [33] optimizer with initial
learning rate 1 × 10−4 and weight decay 1 × 10−4. The learning rate decayed
with a cosine annealing [32] strategy with Tmax = 32.

4.2 In-dataset Evaluation

We evaluated our method in the in-dataset scenario where the training and test
sets have identical distributions. Following [20], we compared our method with
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current state-of-the-art approaches in FF++ under different quality settings
(HQ/LQ). As shown in Table 1, we achieve great improvements over most cur-
rent methods, especially under the challenging low-quality (LQ) setting where
frequency statistics are partly destroyed. However, our method still maintains
good performance when exploiting frequency spectrum, which we attribute to
our two-stream architecture that learns to be biased towards RGB features. Note
that we gain comparable results with LipForensics [20], which leverages dynamic
lip features from pre-trained lipreading models. Unlike LipForensics, our method
does not need any external pre-training data and can be more efficiently trained.

Table 1. In-dataset performance comparisons. We report video-level ACC/AUC
(%) when trained and tested on FF++ slightly-compressed (HQ) and heavily-
compressed (LQ) videos. The results of other methods are quoted from [20]. The best
results are in bold, and the second-best results are underlined.

Method FF++(HQ) FF++(LQ)
ACC (%) AUC (%) ACC (%) AUC (%)

Xception [43] 97.0 99.3 89.0 92.0
CNN-aug [49] 96.9 99.1 81.9 86.9
Patch-based [5] 92.6 97.2 79.1 78.3
Two-branch [36] – 99.1 – 91.1
Face X-ray [26] 78.4 97.8 34.2 77.3
CNN-GRU [44] 97.0 99.3 90.1 92.2
LipForensics [20] 98.8 99.7 94.2 98.1
XDLF (ours) 98.1 99.7 94.5 96.7

Moreover, we show the t-SNE [35] visualization of features extracted from
classifiers of LipForensics and our method on FF++ high-quality (HQ) test
set in Fig. 6. We observe that although both methods can well distinguish real
and fake data, they learn different feature distributions. For LipForensics, the
separation distances between real and fake data are smaller than our method,
which can easily lead to classification ambiguity in those in-between videos,
especially for some real and NeuralTextures-based fake samples. On the other
hand, our method learns a more mixed and gathered feature representation of
FF++ fake data without obviously separating different forgery types. It proves
that our method can learn a generalized feature to detect novel forgeries.
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Fig. 6. The t-SNE feature visualization of the baseline LipForensics [20] (a) and our
proposed XDLF (b) on FF++(HQ) test set. Each dot represents the feature of a video
clip. Red dots are real clips, while the rest are fake ones with different forgery types.

4.3 Cross-Dataset Evaluation

In real-world scenarios, a deployed detector is expected to identify videos crafted
by unseen manipulations with unknown source videos. Therefore, we conducted
cross-dataset evaluation as in [20] to verify the generalization capability of our
method. Specifically, we trained the models on FF++(HQ) and tested them on
CDF and DFDC. As shown in Table 2, our method outperforms all listed meth-
ods on both unseen datasets, surpassing the recent state-of-the-art LipForen-
sics [20] by 0.2% and 0.3% in terms of AUC on CDF and DFDC, respectively.

Table 2. Cross-dataset performance comparisons. We report video-level AUC
(%) on CDF and DFDC when trained on FF++(HQ). The results of other methods
are quoted from [20]. The best results are in bold.

Method CDF AUC (%) DFDC AUC (%)

Xception [43] 73.7 70.9
CNN-aug [49] 75.6 72.1
Patch-based [5] 69.6 65.6
Face X-ray [26] 79.5 65.5
CNN-GRU [44] 69.8 68.9
Multi-task [39] 75.7 68.1
DSP-FWA [28] 69.5 67.3
Two-branch [36] 76.7 –
LipForensics [20] 82.4 73.5
XDLF (ours) 82.6 73.8
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4.4 Ablation Study

Evaluations on Core Modules in XDLF. To understand the components
responsible for our method’s performance, we ablated three core modules in
XDLF and examined its in-dataset and cross-dataset generalization performance.
The modules are FSLR-Guided Feature Enhancement (FGFE), Cross Atten-
tion, and Feature Fusion. For the first two, we removed them directly as their
inputs and outputs have the same shapes. For Feature Fusion, we replaced it
with a simple channel-axis concatenation of RGB and frequency features. We
trained all the models on FF++(HQ) and tested them on FF++(HQ), CDF,
and DFDC.

Table 3. Evaluations on core modules in XDLF. We report video-level
ACC/AUC (%) on FF++(HQ), CDF, and DFDC when trained on FF++(HQ). The
highlighted row is our original setting. We ablated core modules in our feature extrac-
tion framework to verify their effects. The best results are in bold.

Method FF++(HQ) CDF DFDC
ACC AUC ACC AUC ACC AUC

XDLF (ours) 98.1 99.7 74.2 82.6 66.2 73.8
w/o FGFE 97.9 99.3 71.7 79.2 65.3 69.8
w/o cross sttention 97.8 99.4 72.2 79.9 65.9 71.0
w/o feature fusion 98.0 99.4 73.8 81.5 66.1 72.3

The results are shown in Table 3. We have the following observations: (1)
Training our model without FGFE leads to a performance drop on all datasets.
In cross-dataset evaluation, the model decreases by 3.4% and 4.0% in terms of
AUC on CDF and DFDC, respectively. This suggests that the model learns more
generalized features by enhancing subtle artifacts in those forgery-sensitive local
regions. (2) Both Cross Attention and Feature Fusion play an essential role in
performance improvements. Although they have the same goal to complemen-
tarily exploit forgery patterns from different domains, they work differently and
enhance the model’s performance mutually.

To further understand the effect of FGFE, we show the Grad-CAM [45]
visualization of the model without/with FGFE in Fig. 7. It visually explains
that FGFE serves as external guidance to help the model focus on four forgery-
sensitive local regions. As can be seen, these regions are abundant in motions that
contain more subtle artifacts. The model can localize more potential anomalies to
detect forgeries with the help of FGFE, which is consistent with our motivation.
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Evaluations on Different Information Domains. We altered our feature
extraction framework XDLF to prove the necessity to mine forgery clues from
three different information domains, i.e., space, frequency, and time domains.
Specifically, we trained three variants with each dropping one of the three
domains: (1) Freq-Freq-3D: The inputs of both streams are the same frequency
maps, and the network structure is unchanged. (2) RGB-RGB-3D: The inputs
of both streams are RGB images, and the network structure is unchanged. (3)
RGB-Freq-2D: The inputs are still RGB images and frequency maps, but tem-
poral dimension is merged into batch dimension. We replaced the 3D ResNet-50
backbone with 2D ResNet-50 backbone, and replaced all 3D convolutional layers
and 3D batch normalization layers with 2D counterparts.

The results are shown in Table 4. We have the following observations: (1) By
using 3D spatio-temporal CNN instead of 2D CNN, the in-dataset and cross-
dataset generalization performance are all considerably improved. It indicates
that our method can leverage 3D CNN to effectively capture temporal defects
for forgery detection. (2) Compared to RGB-RGB-3D, Freq-Freq-3D achieves
better cross-dataset generalization. It suggests that frequency statistics are more
generalizable features than color textures. However, RGB-RGB-3D gains better
in-dataset results which may benefit from manipulation-specific artifacts. (3) We
note that forgery clues from these three domains work in a complementary way
and contribute to the overall performance.

Table 4. Evaluations on different information domains. We report video-level
ACC/AUC (%) on FF++(HQ), CDF, and DFDC when trained on FF++(HQ). The
highlighted row is our original setting. We developed three variants of feature extrac-
tion framework with each dropping one of the three domains, i.e., space, frequency,
and time domains. The best results are in bold.

Method Information domains FF++(HQ) CDF DFDC
Space Frequency Time ACC AUC ACC AUC ACC AUC

RGB-Freq-3D (ours) � � � 98.1 99.7 74.2 82.6 66.2 73.8
Freq-Freq-3D × � � 97.6 99.0 73.9 82.6 64.5 72.5
RGB-RGB-3D � × � 98.1 99.5 72.7 81.2 63.6 71.9
RGB-Freq-2D � � × 96.4 98.5 68.4 76.1 61.3 69.1
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Fig. 7. The Grad-CAM visualization of localized defect regions of the model with-
out/with FSLR-Guided Feature Enhancement (FGFE). We show several examples
including four forgery types in FF++ and another dataset CDF. For each example,
red circles mark visually noticeable artifacts, and consecutive frames in a video clip
are provided to understand temporal defects. The warmer region suggests a higher
probability of cross-domain defects the model believes. (Color figure online)

5 Conclusion

In this paper, we propose Cross-Domain Local Forensics (XDLF), a specially
designed pipeline for general deepfake video detection. Our approach aims at
exploiting forgery patterns from space, frequency, and time domains simultane-
ously to learn a generalized cross-domain features. We also leverage four forgery-
sensitive local regions to guide the model to capture subtle forgery defects.
Experiments show that our method achieves impressive performance, especially
strong cross-dataset generalization. We hope our work encourages future research
on cross-domain forensics for more general deepfake detection.
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Abstract. The addition of depth maps improves the performance of
salient object detection (SOD). However, most existing RGB-D SOD
methods are inefficient. We observe that existing models take into
account the respective advantages of the two modalities but do not fully
explore the roles of cross-modality features of various levels. To this end,
we remodel the relationship between RGB features and depth features
from a new perspective of the feature encoding stage and propose a three-
stage bidirectional interaction network (TBINet). Specifically, to obtain
robust feature representations, we propose three interaction strategies:
bidirectional attention guidance (BAG), bidirectional feature supplement
(BFS), and shared network, and use them for the three stages of feature
encoder, respectively. In addition, we propose a cross-modality feature
aggregation (CFA) module for feature aggregation and refinement. Our
model is lightweight (3.7 M parameters) and fast (329 ms on CPU).
Experiments on six benchmark datasets show that TBINet outperforms
other SOTA methods. Our model achieves the best performance and
efficiency trade-off.

1 Introduction

Salient object detection (SOD) aims to locate the object(s) most concerned by
human eyes from a given scene. It is the pre-task of many computer vision tasks,
such as semantic segmentation [1,2], tracking [3,4], image/video compression [5,
6], and image retrieval [7]. Although significant progress has been made in SOD
in recent years, it is still challenged to accurately locate objects in complex
scenes, such as complex textures, cluttered backgrounds, and low contrast.

With the wide use of depth sensors in smartphones and other devices, RGB-D
SOD has attracted the attention of researchers [8–13]. The depth map has illu-
mination invariance and internal consistency, which can provide complementary
spatial information for RGB images and improve saliency detection performance.
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Fig. 1. Comparison of network interaction strategies between existing models and our
model. (a) No interaction. (b) Unidirectional interaction. (c) Bidirectional interaction.
(d) Cross-modality discrepant interaction. (e) Proposed three-stage bidirectional inter-
action.

As we all know, RGB and depth are two different modalities. An effective
interaction strategy for a two-stream feature encoder can obtain more robust
saliency-related features and thereby help the subsequent decoder generate
more accurate saliency maps. The existing interaction strategies can be roughly
divided into four categories: (i) No interaction mode [9,13,14] shown in Fig. 1(a),
which uses two independent branches to learn features of the two modalities sep-
arately, and then feds the features into subsequent feature fusion modules or the
decoder. (ii) Unidirectional interaction mode [8,10,15] shown in Fig. 1(b), which
integrates depth cues into RGB branch, and then feds the integrated features
into decoder. (iii) Bidirectional interaction mode [16] shown in Fig. 1(c), which
performs the same bidirectional operation on the hierarchical features of the
two modalities. (iv) Cross-modality discrepant interaction mode [17] shown in
Fig. 1(d), which gives full play to the respective advantages of the two modal-
ities. Most of these interaction strategies are designed based on the modality
perspective, while we try to explore the relationship between RGB features and
depth features from the perspective of feature encoding stage. The basic obser-
vation of hierarchical cross-modality features is that high-level features contain
rich global context information, which is conducive to locating salient regions,
low-level features contain detailed information that can contribute significantly
to refining the boundaries of salient regions [8].

To this end, we propose a novel three-stage bidirectional interaction network
(TBINet) for RGB-D SOD. Specifically, the interaction of feature encoding pro-
cess is divided into three stages (as shown in Fig. 1(e)): the interaction of low-
level features in first stage, the interaction of middle-level features in second
stage, and the interaction of high-level features in thrid stage. Low-level cross-
modality features have specific boundary details, such as RGB image will be
difficult to distinguish between salient objects and background in the case of
complex texture and low contrast, and depth map will contain misleading infor-
mation when salient objects and non-salient objects have the same spatial depth.
Therefore, in first stage, we propose a bidirectional attention guidance (BAG)
module, which can guide the two branches to focus on the important regions of
each other while maintaining the modality-specific low-level features. The qual-
ity of depth maps tends to be uneven. Decreasing the influence of misleading
information from low-quality depth maps is a key and hot issue in RGB-D SOD.
We noticed that middle-level features contain approximate location informa-
tion and rough boundary information. Therefore, in second stage, we propose a
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bidirectional feature supplement (BFS) module, which extracts cross-modality
fusion features and transfers them to two branches separately. The BFS module
effectively suppresses the low-quality features of deep branches and helps purify
saliency-oriented feature representations. High-level features have the lowest res-
olution and can locate salient objects. After the abstraction of cross-modality
information by the previous layers, the high-level cross-modality features have
similar global context information, and the features of the two modalities have
strong commonality. Inspired by JL-DCF [18], in thrid stage, we use shared net-
work based on shared CNN layers, which can extract high-level cross-modality
features with fewer parameters. The three-stage bidirectional interaction strat-
egy effectively utilizes the characteristics of the three encoding stages. It helps
the encoder finally generate multi-level cross-modality feature representations
with specificity, purity, and commonality.

In addition, to integrate multi-level cross-modality features, we implement
a three-stage refinement decoder. The three stages correspond one-to-one with
the three stages of the encoder. Each decoder stage contains a cross-modality
feature aggregation (CFA) module. The CFA module performs alternate feature
fusion and refinement through two steps to effectively fuse and refine cross-
modality features. The decoder generates final accurate saliency maps through
feature fusion and refinement of the three CFA modules. Inspired by the channel
split and channel shuffle operations in ShuffleNet-v2 [19], we redesign an efficient
receptive field block (ERFB) module for the CFA module to expand the receptive
field and extract multi-scale features.

Our network adopts the lightweight MobileNet-v3 [20] as the backbone net-
work, and all modules adopt a lightweight design. Our model is lightweight (15.1
MB model size and 3.7 M parameters) and fast (329 ms inference time on CPU
and 93 FPS inference speed on GPU). Our main contributions are as follows:

1. We propose a novel three-stage bidirectional interaction network (TBINet)
for RGB-D SOD. TBINet adopts different interaction strategies in different
stages of the feature encoding process so that the cross-modality features of
various levels can give full play to their advantages.

2. We propose a three-stage refinement decoder and a cross-modality feature
aggregation (CFA) module. Each decoding stage utilizes a CFA module for
feature aggregation. The decoder continuously refines the saliency-oriented
feature representation through three-stage feature aggregation and finally
generates accurate saliency maps.

3. Our model is based on a lightweight design with fewer parameters and faster
speed than cumbersome models. Experiments on six public datasets show
that our model outperforms 15 state-of-the-art models and achieves a good
balance between efficiency and performance.
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2 Related Work

2.1 RGB-D SOD

In some complex scenes, salient objects in RGB images are indistinguishable from
the background. Adding depth information may help overcome this challenge.
Traditional RGB-D SOD models extract handcrafted features from RGB images
and depth maps and fuse them for saliency detection [21–24]. However, due to the
limited expressive power of handcrafted features, the performance of traditional
methods is not satisfactory.

With the rapid development of deep convolutional neural networks (CNNs),
researchers have begun to focus on CNNs-based RGB-D SOD work and push the
performance to new peaks [8,12,13,18,25–28]. Two key challenges facing current
RGB-D SOD research are dealing with low-quality depth maps and effectively
aggregating cross-modality multi-level features. For low-quality depth maps, for
example, Fan et al. [29] proposed a depth depurator unit to filter low-quality
depth maps. Jin et al. [9] proposed a complementary depth network, which esti-
mates a depth map from the RGB image, and fuses the estimated depth map
with the original depth map. Ji et al. [26] proposed a depth calibration and fusion
framework capable of calibrating the depth image and correcting the latent bias
in the original depth maps. Zhang et al. [15] proposed a depth feature manipula-
tion network that can control depth features and avoid feeding misleading depth
features. For cross-modality multi-level feature aggregation, for example, Fu et
al. [18] developed a densely cooperative fusion strategy that uses dense connec-
tions to facilitate the fusion of depth and RGB features at different scales. Li
et al. [30] proposed an adaptive feature selection module that emphasizes the
importance of channel features in self-modality and cross-modality while fusing
multi-modality spatial features. For more inspiring related works, refer to the
recent survey [31,32].

2.2 Efficient RGB-D SOD

Efficiency is also important for models besides performance. Recently, researchers
have started to propose some efficient models for RGB-D SOD with lighter size
and faster speed. Zhao et al. [33] proposed an early fusion single-stream net-
work to make the network lighter. Chen et al. [34] constructed a lightweight
deep stream to make the network more compact and efficient. More and more
computer vision applications are adapting to mobile devices. To this end,
many lightweight networks for image classification have been proposed, such
as MobileNets [20,35,36] and ShuffleNets [19,37]. Unlike classic cumbersome
networks, such as VGG [38] and ResNet [39], lightweight networks can be well
adapted to mobile devices due to their extremely high efficiency. Some RGB-D
SOD models attempt to use a lightweight network as the backbone network. Wu
et al. [40] proposed a network named MobileSal, which uses MobileNet-v2 [36] as
the backbone network and fuses RGB features with depth features only on the
coarsest layers. Zhang et al. [15] proposed an efficient model DFMNet based on
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MobileNet-v2 [36] and a tailored depth backbone. The current efficient RGB-D
SOD models still lacks performance compared with cumbersome models. In this
paper, we propose an efficient model that uses MobileNet-v3 [20] as the model
backbone network and achieves a good balance between accuracy and efficiency.

Fig. 2. Overview of our network architecture. Three-stage bidirectional interaction is
shown in the upper part of this illustration, and the three stages use the BAG module,
BFS module and shared network as the interaction strategy respectively. Three-stage
refinement decoder is shown in the lower part of this illustration, and it consists of
three CFA modules.

3 Proposed Method

3.1 Overview

Figure 2 shows the framework of the proposed three-stage bidirectional interac-
tion network for RGB-D SOD. Our network consists of encoder and decoder.
The encoder generates saliency-related features through a three-stage bidirec-
tional interaction strategy, and the decoder aggregates these features and gener-
ates the final saliency map. MobileNet-v3 large [20] is used to build the feature
encoder. we divide the encoder into six layers, the output stride is 2 for each
layer except 1 for the 5th layer, this means that the feature resolution does not
change in the 5th layer, so the 5th layer has the same output resolution as the
fourth layer. We denote the features output by the i-th layer of the RGB branch
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Fig. 3. Illustration of the proposed bidirectional attention guidance (BAG) module,
bidirectional feature supplement (BFS) module, and adaptive feature fusion (AFF)
module.

and the depth branch as f i
M (M ∈ {R,D}, i = 1, ..., 6). We take the 1st and

2nd layers as first stage, the 3rd and 4th layers as second stage, and the 5th and
6th layers as thrid stage. We use bidirectional attention guidance (BAG) strat-
egy in first stage and bidirectional feature supplement (BFS) strategy in second
stage. The features output by the BAG module or BFS module are denoted as
bf i

M (M ∈ {R,D}, i = 1, ..., 4). After encoding, bf i
M (M ∈ {R,D}, i = 1, ..., 4)

and f i
M (M ∈ {R,D}, i = 5, 6) are fed into the three-stage refinement decoder. As

shown in Fig. 2, the decoder consists of three cross-modality feature aggregation
(CFA) modules, denoted as CFA-high, CFA-middle and CFA-low, respectively.

3.2 Three-Stage Bidirectional Interaction (TBI)

The encoder part of Fig. 2 shows the TBI strategy. For the processing of features
output by two encoders at different levels, previous works such as SPNet [13],
CMWNet [41] and DCFNet [26] tend to fuse the cross-modality features and feed
them directly to the decoder. Unlike these works, we process the cross-modality
features at each layer and then fed them to the next layer, which enables the use
of cross-modality information to improve the network in the feature encoding
stage.

First Stage: Bidirectional Attention Guidance (BAG). The detailed
structure of the BAG module is shown in Fig. 3(a). The BAG module is based on
the spatial attention mechanism. Given the features f i

R(i = 1, 2) or f i
D(i = 1, 2),

we use a 3 × 3 convolutional (output channel number is 1) with Sigmoid acti-
vation function to generate the spatial attention map. To guide one modality
to focus on important areas of the other modality. The attention map from one
modality is used to enhance another modality. Then, a residual connection is
used to combine the enhanced features with their original features. Take the
case that depth information enhances RGB information as an example. The
process can be described as:

bf i
R = f i

R + σ(Conv3×3(f i
D)) ⊗ f i

R, (1)
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where Conv3×3(·) denotes a 3 × 3 convolution, σ(·) is the Sigmoid activation
function, and ⊗ represents element-wise multiplication. The features bf i

R(i =
1, 2) and bf i

D(i = 1, 2) will be fed into the decoder and the next layer of encoder.
The low-level features of the two modalities have complementary boundary

details, so modality specificity should be maintained. The BAG module ensures
that the modality specificity is not destroyed while mining more modality cor-
relations.

Second Stage: Bidirectional Feature Supplement (BFS). The detailed
structure of the BFS module is shown in Fig. 3(b), an adaptive feature fusion
(AFF) module is included in a BFS module. As shown in Fig. 3(c), AFF module
is simple and effective, it can adaptively fuse cross-modality features. Given the
features f i

R(i = 3, 4) and f i
D(i = 3, 4), they are first fed into a 1 × 1 convolution

layer with BatchNorm and ReLU activation to adjust their channel number and
obtain their smooth feature representations (i.e., f̂ i

R = Conv1×1(f i
R) and f̂ i

D =
Conv1×1(f i

D), where Conv1×1(·) denotes a 1 × 1 convolution with BatchNorm
and ReLU activation). Then, we use element-wise multiplication to emphasize
the shared feature representation, which can be described as f̂ i

F = f̂ i
R ⊗ f̂ i

D,
where ⊗ represents element-wise multiplication. We add f̂ i

F with f̂ i
R and f̂ i

D

respectively to get the enhanced features. Finally, the enhanced features are
concatenated and fed into a depth-wise separable convolution layer to obtain
the final fused features, the process can be described as:

f i
F = DSConv3×3([f̂ i

F + f̂ i
R, f̂ i

F + f̂ i
D]), (2)

where DSConv3×3(·) denotes a 3 × 3 depth-wise separable convolution with
BatchNorm and ReLU activation, and [·] donates feature concatenation. After
these operations, the AFF module adaptively fuses cross-modality features. After
obtaining the fused features f i

F , we use the spatial attention mechanism to
enhance f i

F and then combine the enhanced features with the original features
of the two modalities. The entire process can be described as:{

bf i
R = f i

R + σ(Conv3×3(f i
R)) ⊗ f i

F ,

bf i
D = f i

D + σ(Conv3×3(f i
D)) ⊗ f i

F ,
(3)

the features bf i
R(i = 3, 4) and bf i

D(i = 3, 4) will be fed into the decoder and the
next layer of encoder.

In a word, we first adaptively fuse cross-modality features to obtain pure
fused features, then use spatial attention mechanism to enhance the fused fea-
tures, and finally transfer them to the two modality branches as supplements.
The BFS module can effectively suppress low-quality depth information and
transfer high-quality cross-modality shared information between branches.

Third Stage: Shared Network. High-level features have rich global contex-
tual information, which is beneficial for localizing salient objects. The saliency-
related high-level features of the two modalities have strong commonality.
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Inspired by JL-DCF [18], we adopt shared network in the third stage as shown
in Fig. 2. Unlike JL-DCF, which uses the strategy of the shared network on the
entire feature encoding network, we only share parameters in the most appropri-
ate third stage. Following [18], we concatenate RGB features and depth features
in the 4th dimension. The features generated by the 5th and 6th layers of the
encoder will be split in the 4th dimension for the decoder. By employing shared
network, the two branches share the same parameters in the final stage of the
encoder, so the parameters are greatly reduced. Shared network can exploit
cross-modality commonality and complementarity, which match the properties
of high-level cross-modality features.

Fig. 4. Illustration of the proposed cross-modality feature aggregation (CFA) module
and efficient receptive field block (ERFB) module. The CFA-high module does not
contain the part circled by the red dotted line in (a). The two AFF modules pointed
to by the red arrows are the two-step cross-modality fusion in the CFA module, AFF
modules labelled “step-1” and “step-2” denote “fusion before refinement” and “fusion
after refinement”, respectively. (Color figure online)

3.3 Three-Stage Refinement Decoder

Figure 2 shows the three-stage refinement decoder, whose three stages corre-
spond one-to-one with the three stages of the encoder. The CFA-high module
aggregates high-level cross-modality features, CFA-middle and CFA-low are the
same.

Cross-Modality Feature Aggregation (CFA). The detailed structure of the
CFA module is shown in Fig. 4(a), which consists of AFF modules and efficient
receptive field block (ERFB) modules. There are three branches in the CFA mod-
ule, namely RGB branch, depth branch, and fusion branch. Take CFA-middle
as an example, we first fuse the features bf3

M with bf4
M (M ∈ R,D), and obtain

the features: {
bfm

R = AFF (bf3
R, bf4

R),

bfm
D = AFF (bf3

D, bf4
D),

(4)
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where AFF (·) is the AFF module. Note that when fusing features of different
layers of the same modality, we added squeeze-and-excitation (SE) modules [42]
after the 1 × 1 convolution layer of the AFF module.

After fusing the features from two levels, we conduct the first-step cross-
modality feature fusion (“fusion before refinement”):

bfm
F = AFF (bfm

R , bfm
D), (5)

we concatenate bfm
M (M ∈ R,D,F ) with the features fh

M (M ∈ R,D,F ) gener-
ated by the CFA-high of the previous stage. Then, we do channel shuffle [37]
operations and finally feed them into the ERFB modules of the three branches.
The outputs of the three ERFB modules in the CFA-middle are defined by:⎧⎪⎨

⎪⎩
fm

R = ERFB([bfm
R , up(fh

R)]),

fm
D = ERFB([bfm

D , up(fh
D)]),

fm1
F = ERFB([bfm

F , up(fh
F )]),

(6)

where ERFB(·) is the ERFB module, and up(·) represents upsample operation.
fm

R and fm
D are the final refined features of the RGB branch and the depth

branch, respectively.
ERFB is a variant of receptive field block (RFB) module [43] as shown in

Fig. 4(b). It has the basic function of the RFB module and has a lower compu-
tational cost. Inspired by ShuffleNet-v2 [19], we use channel split and channel
shuffle operations on the ERFB module. Features are divided into two parts in
the channel dimension. One half is fed into 1 × 1 convolution as residuals, and
the other half is fed into a dilated convolution block with multiple branches to
extract multi-scale features. Finally, we concatenate these two parts and use the
channel shuffle operation to ensure information communication between different
groups of channels.

We conduct the second-step cross-modality feature fusion (“fusion after
refinement”), fusing features fm

R and fm
D , and obtain the fused features:

fm2
F = AFF (fm

R , fm
D ), (7)

then, the features fm1
F and fm2

F are concatenated, and we use a 1×1 convolution
to generate the final fused features of the fusion branch:

fm
F = Conv1×1([fm1

F , fm2
F ]), (8)

where Conv1×1(·) denotes a 1 × 1 convolution with BatchNorm and ReLU acti-
vation. Finally, take the fusion branch as an example, the model generates the
final saliency maps:

SF = up(σ(Conv1×1(f l
F ))), (9)

where Conv1×1(·) denotes a 1 × 1 convolution layer.
Two cross-modality feature fusion steps are included in the CFA module,

these two steps serve different purposes. The first step fuses the original cross-
modality features and uses them to refine the coarse features generated by the
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previous stage’s fusion branch (“fusion before refinement”), the second step
fuses the refined features of the current stage’s RGB branch and depth branch
(“fusion after refinement”). Finally, cross-modality features are effectively fused
and refined.

3.4 Loss Function

We employ the pixel position aware loss Lppa [44] to implement supervision on
the three prediction maps SF , SR and SD.

Ltotal = Lppa(SF , G) + Lppa(SR, G) + Lppa(SD, G), (10)

where Ltotal is the overall loss and G is the ground truth.

Table 1. Quantitative results on seven widely-used datasets. Red, blue and bold
indicate the best, second best, and third best performances respectively. ↑/↓ for a
metric denotes that a larger/smaller value is better

Non-efficient model Efficient model

Model D3Net UCNet S2MA BBSNet JL-DCF HAINet CDINet DCFNet DSA2F RD3D SPNet DANet PGAR MobileSal DFMNet TBINet

2020 2020 2020 2020 2021 2021 2021 2021 2021 2021 2021 2020 2020 2021 2021 Ours

Params (M) ↓ 45.2 31.3 86.6 49.8 70.7 59.8 54.4 108.5 36.5 46.9 175.3 26.7 16.2 6.5 2.2 3.7

CPU (ms) ↓ 862 471 2097 633 3136 3019 1585 1069 2288 701 1217 1139 709 115 87 329

GPU (FPS) ↑ 52 99 25 54 6 9 37 36 21 28 31 46 69 227 299 93

STERE Fmax
β ↑ .891 .899 .882 .903 .904 .906 .901 .901 .900 .906 .906 .881 .898 .892 .892 .910

Emax
ξ ↑ .938 .944 .932 .942 .947 .944 .942 .945 .942 .947 .949 .930 .939 .939 .941 .952

Sα ↑ .899 .903 .890 .908 .903 .907 .905 .902 .898 .911 .907 .892 .907 .901 .898 .911

MAE ↓ .046 .039 .051 .041 .040 .040 .040 .039 .039 .037 .037 .048 .041 .042 .045 .034

NJU2K Fmax
β ↑ .900 .895 .889 .920 .904 .915 .921 .915 .907 .914 .928 .893 .907 .895 .910 .928

Emax
ξ ↑ .938 .936 .929 .949 .943 .944 .951 .951 .939 .947 .957 .936 .940 .937 .947 .958

Sα ↑ .900 .897 .894 .921 .902 .912 .919 .912 .904 .916 .925 .897 .909 .896 .906 .924

MAE ↓ .047 .043 .054 .035 .041 .038 .035 .036 .039 .036 .028 .047 .042 .045 .042 .029

NLPR Fmax
β ↑ .897 .903 .902 .918 .918 .915 .916 .912 .906 .919 .919 .893 .916 .907 .908 .932

Emax
ξ ↑ .953 .956 .953 .961 .963 .960 .960 .963 .952 .965 .962 .949 .961 .957 .957 .970

Sα ↑ .912 .920 .916 .930 .925 .924 .927 .924 .919 .930 .927 .909 .930 .919 .923 .937

MAE ↓ .030 .025 .030 .023 .022 .024 .024 .022 .024 .022 .021 .031 .024 .025 .026 .018

SIP Fmax
β ↑ .861 .879 .877 .883 .889 .892 .884 .884 .875 .889 .904 .884 .876 .872 .887 .905

Emax
ξ ↑ .909 .919 .918 .922 .924 .922 .915 .922 .912 .924 .933 .920 .915 .911 .926 .937

Sα ↑ .860 .875 .872 .879 .880 .880 .875 .876 .862 .885 .894 .878 .876 .866 .883 .894

MAE ↓ .063 .051 .057 .055 .049 .053 .054 .052 .057 .048 .043 .054 .055 .058 .051 .041

SSD Fmax
β ↑ .834 .854 .847 .859 .832 .838 .846 .851 .863 .772 .863 .849 .798 .835 .851 .872

Emax
ξ ↑ .911 .907 .909 .919 .902 .903 .899 .909 .913 .859 .920 .905 .872 .905 .918 .921

Sα ↑ .857 .865 .868 .882 .860 .857 .853 .864 .877 .803 .871 .868 .832 .861 .865 .874

MAE ↓ .059 .049 .053 .044 .053 .052 .056 .050 .048 .082 .044 .050 .068 .053 .051 .042

DES Fmax
β ↑ .884 .930 .934 .927 .923 .936 .934 .893 .915 .929 .946 .894 .902 .899 .922 .934

Emax
ξ ↑ .945 .976 .973 .966 .968 .973 .970 .951 .954 .972 .983 .957 .945 .951 .972 .974

Sα ↑ .897 .934 .940 .934 .931 .935 .937 .905 .917 .935 .945 .904 .913 .909 .931 .935

MAE ↓ .031 .018 .021 .021 .020 .018 .020 .024 .023 .019 .014 .029 .026 .025 .021 .018

4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Metrics. We evaluate the proposed model on
six widely-used datasets to validate its effectiveness, including STERE [45],
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NJU2K [46], NLPR [47], SIP [29], SSD [48] and DES [49]. Following previ-
ous works [8,13,29], we use 1,485 samples of NJU2K [46] and 700 samples of
NLPR [47] for training, and the remaining samples of NJU2K (500) and NLPR
(300) for testing. The datasets of STERE (1,000), SIP (929), SSD (80), and DES
(135) are used for testing.

We employ four metrics to evaluate various methods, including maximum F-
measure (Fmax

β ) [50], maximum E-measure (Emax
ξ ) [51], S-measure (Sα) [52], and

mean absolute error (MAE) [53]. Model parameters, CPU inference time (ms,
millisecond) and GPU inference FPS (frame-per-second) are used to evaluate
the efficiency of the model.

Implementation Details. We implement our model in PyTorch [54]. Param-
eters of the backbone network (MobileNet-v3 large [20]) are initialized from the
model pre-trained on ImageNet [55]. RGB and depth images are both resized
to 352×352 for input. We use a single Nvidia Tesla P100-16GB for training and
testing and Intel Xeon (4) @2.199GHz for CPU inference speed test. The train-
ing images are augmented using various strategies, including random flipping,
rotating, colour enhancement, and border clipping. The initial learning rate is
set to 1e-4 and is divided by 5 every 60 epochs. The Adam optimizer is used,
and the batch size is 10. It takes about 5 h to train our model for 160 epochs.

Fig. 5. PR curves [56] and F-measure curves on STERE [45], NJU2K [46], NLPR [47],
and SIP [29].

4.2 Comparisons with SOTA Methods

Quantitative Evaluation. We compare the proposed method with 15 RGB-D
SOD methods, including 11 non-efficient models (i.e., D3Net [29], UCNet [57],
S2MA [58], BBSNet [8], JL-DCF [18], HAINet [14], CDINet [17], DCFNet [26],
DSA2F [27], RD3D [25], and SPNet [13]), and 4 efficient models (i.e., DANet [33],
PGAR [34], MobileSal [40], and DFMNet [15]). As shown in Table 1, our method
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outperforms all of the comparison state-of-the-art methods. On the STERE,
NLPR, and SIP datasets, our method achieves the best performance on all four
evaluation metrics. Our model outperforms most compared RGB-D SOD meth-
ods on the NJU2K and SSD datasets except SPNet and BBSNet. As shown in
Fig. 5, we plot the PR curves [56] and F-measure curves. For readability, We
chose the larger four datasets of the six datasets. The comparison method is still
the 15 methods mentioned earlier. In terms of efficiency, among all the compared
methods, our method ranks 2nd, 3rd and 4th in model parameters, CPU inference
speed, and GPU inference speed, respectively, and is more efficient than most
of the compared methods. Overall, our RGB-D SOD method (TBINet) achieves
promising performance and efficiency.

RGB Depth GT Ours DFMNet MobileSal SPNet RD3D DSA2F DCFNet CDINet HAINet JL-DCF PGAR S2MA D3Net

Fig. 6. Visual comparisons of our method (TBINet) with SOTA methods includ-
ing DFMNet [15],MobileSal [40], SPNet [13], RD3D [25], DSA2F [27], DCFNet [26],
CDINet [17], HAINet [14], JL-DCF [18], PGAR [34], S2MA [58], D3Net [29].

Qualitative Evaluation. Figure 6 shows the saliency maps predicted by the
proposed method and several state-of-the-art methods on six representative
examples. The first row shows a simple example with a single salient object
but some misleading information in the depth map. The salient objects pre-
dicted by our method, MobileSal, RD3D, and CDINet, have complete boundary
details, while results of other methods appear smeared and incomplete to varying
degrees. The 2nd and 3rd rows show multiple salient objects, and it is not easy
to detect all salient objects accurately. Only our method, DFMNet, and S2MA
can completely detect three salient objects in the second row. At the same time,
other compared models have missing objects or incomplete segmentation, and
the third row is similar. The 4th row shows a salient object with a complex
structure. Thanks to the clear depth map, most methods achieve good results.
However, some compared methods make poor use of depth information and con-
fuse the background as a salient object. The 5th row shows the low-contrast
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scene, and it can be observed that our model segments salient objects sharply.
The 6th row shows a scene with complex textures. In this example, the depth
map is ambiguous. Our model is not misled by low-quality depth information,
and accurately locates salient objects.

4.3 Ablation Studies

To verify the effectiveness of the modules and strategies we use in the model,
we conduct ablation studies by removing or replacing relevant modules from the
full model and reformulating the strategies. We conduct experiments on NJU2K
dataset and NLPR dataset.

Table 2. The effectiveness analyses of TBI strategy.

Strategy Ours A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 D1 D2 E1 E2 E3 E4

First stage BAG UAG-r UAG-d BFS BAG BAG BAG BAG BAG BAG UAG-r UAG-d BAG BFS Shared

Second stage BFS BFS BFS BFS BFS UFS-r UFS-d BAG BFS BFS UFS-r UFS-d BAG BFS Shared

Third stage Shared Shared Shared Shared Shared Shared Shared Shared Shared BFS Shared Shared BAG BFS Shared

Param (M) 3.7 3.7 3.7 3.7 3.8 3.7 3.7 3.7 3.7 6.4 6.5 3.7 3.7 6.3 6.3 6.5 3.5

NJU2K Fmax
β ↑ .928 .926 .925 .925 .927 .920 .921 .926 .925 .926 .924 .921 .926 .919 .923 .924 .914

MAE ↓ .029 .029 .031 .030 .030 .032 .033 .031 .032 .029 .031 .033 .031 .033 .032 .030 .034

NLPR Fmax
β ↑ .932 .929 .931 .929 .926 .923 .923 .929 .927 .932 .928 .923 .929 .929 .932 .928 .924

MAE ↓ .018 .020 .019 .019 .021 .022 .021 .019 .021 .019 .019 .021 .019 .020 .019 .019 .021

Effectiveness of TBI Strategy. Our three-stage interaction strategy uses
BAG, BFS, and shared network strategies in the first, second and third stages of
the encoding process, respectively. For first stage, we first remove the BAG mod-
ule, this evaluation is denoted as ‘A1’ in Table 2. Then, we replace the BAG mod-
ules with unidirectional attention guidance (UAG) modules. The RGB-enhanced
UAG module is abbreviated as UAG-r, and the depth-enhanced UAG module
is abbreviated as UAG-d. We denote the RGB-enhanced and depth-enhanced
strategies as ‘A2’ and ‘A3’, respectively. Finally, the replacement of the BAG
module with the BFS module is denoted as ‘A4’. Table 2 shows that the BAG
module is effective in guiding the network to learn cross-modality correlations.
second stage is similar to first stage, we compare the BFS module with four base-
lines: removing the BFS module (denoted as ‘B1’), replacing the BFS module
with a unidirectional feature supplement (UFS) module (denoted as ‘B2’ and
‘B3’), and replacing the BFS module with a BAG module (denoted as ‘B4’).
Table 2 shows the effectiveness of the BFS module. It is worth noting that the
performance of ‘B3’ is significantly better than that of ‘B2’ and ‘B1’, which
shows that feature supplement to the deep branch can improve the performance
very well. The deep reason may be that the BFS module reduces the interference
of low-quality depth information. For thrid stage, we do not use shared network
strategy (denoted as ‘C1’) or change to use the BFS module (denoted as ‘C2’),
the performance of ‘C1’ is not much different from our strategy, but the param-
eters are much more. We also changed the BAG module and BFS module to
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unidirectional interaction at the same time (denoted as ‘D1’ and ‘D2’). These
strategies have gaps compared with our strategy. Finally, we evaluate the cases of
using the same interaction strategy in all stages (denoted as ‘E1’, ‘E2’, ‘E3’, and
‘E4’). As shown in the Table 2, our three-stage bidirectional interaction strategy
outperforms the ordinary bidirectional interaction strategy.

Fig. 7. Illustration of other feature aggregation strategies compared with the CFA
module. Channel shuffle operations are hidden for a clear view.

Effectiveness of CFA Module. The CFA module is proposed to aggregate
and refine cross-modality features, which adopts a two-step feature fusion and
refinement. To verify the effectiveness of the CFA module, we evaluate some
different cross-modality feature aggregation strategies, as shown in Fig. 7. We
first remove the step of “fusion before refinement” (denoted as ‘F1’) as shown
in Fig. 7(a) or remove the step of “fusion after refinement” (denoted as ‘F2’) as
shown in Fig. 7(b). Table 3 shows that the performance of ‘F1’ and ‘F2’ is reduced
to varying degrees. Our proposed two-step cross-modality fusion strategy can
better fuse and refine cross-modality features. We formulate a strategy denoted
as ‘F3’ as shown in Fig. 7(c): we fuse the refined features of the RGB branch
with the refined features of the depth branch and then use the fused features to
refine the features generated by the previous stage‘s fusion branch. The result
shows that our strategy outperforms this “refinement-by-refinement” strategy.
We remove the supervision of the saliency maps generated by the RGB branch
and the depth branch (denoted as ‘F4’), the result shows that the supervision of

Table 3. The effectiveness analyses of CFA module.

Strategy Ours F1 F2 F3 F4 F5 F6

Param(M) 3.7 3.5 3.7 3.7 3.7 3.7 3.6

NJU2K Fmax
β ↑ .928 .927 .925 .924 .917 .919 .921

MAE ↓ .029 .030 .031 .031 .052 .032 .032

NLPR Fmax
β ↑ .932 .928 .931 .930 .914 .923 .923

MAE ↓ .018 .020 .020 .019 .037 .021 .021
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the RGB branch and the depth branch is effective. The direct removal of the RGB
branch and the depth branch in the CFA module is denoted as ‘F5’ as shown in
Fig. 7(d), and Table 3 shows the effectiveness of the three branches in the CFA
module. The above evaluation of different cross-modality feature aggregation
strategies can conclude that our CFA module can effectively aggregate and refine
cross-modality features and generate more accurate saliency maps.

5 Conclusion

We propose a three-stage bidirectional interaction network for RGB-D SOD.
Existing works have not explored the relationship between cross-modality fea-
tures of various levels. Our model employs appropriate interaction strategies at
different stages of the encoding process to generate more robust feature represen-
tations. In addition, our proposed cross-modality feature aggregation module can
effectively aggregate and refine saliency-oriented features to generate accurate
saliency maps. Evaluations on six benchmark datasets show promising perfor-
mance of our TBINet. Our model is lightweight and efficient, which may help
the application of RGB-D SOD on mobile devices.
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Abstract. Person search is a challenging problem with various real-
world applications, that aims at joint person detection and re-
identification of a query person from uncropped gallery images.
Although, previous study focuses on rich feature information learning,
it’s still hard to retrieve the query person due to the occurrence of appear-
ance deformations and background distractors. In this paper, we propose
a novel attention-aware relation mixer (ARM) module for person search,
which exploits the global relation between different local regions within
RoI of a person and make it robust against various appearance defor-
mations and occlusion. The proposed ARM is composed of a relation
mixer block and a spatio-channel attention layer. The relation mixer
block introduces a spatially attended spatial mixing and a channel-wise
attended channel mixing for effectively capturing discriminative relation
features within an RoI. These discriminative relation features are fur-
ther enriched by introducing a spatio-channel attention where the fore-
ground and background discriminability is empowered in a joint spatio-
channel space. Our ARM module is generic and it does not rely on
fine-grained supervisions or topological assumptions, hence being easily
integrated into any Faster R-CNN based person search methods. Com-
prehensive experiments are performed on two challenging benchmark
datasets: CUHK-SYSU and PRW. Our PS-ARM achieves state-of-the-
art performance on both datasets. On the challenging PRW dataset, our
PS-ARM achieves an absolute gain of 5% in the mAP score over SeqNet,
while operating at a comparable speed. The source code and pre-trained
models are available at https://github.com/mustansarfiaz/PS-ARM.
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1 Introduction

Person search is a challenging computer vision problem where the task is to find
a target query person in a gallery of whole scene images. The person search meth-
ods need to perform pedestrian detection [26,28,41] on the uncropped gallery
images and do re-identification (re-id) [7,24,43] of the detected pedestrians. In
addition to addressing the challenges associated with these individual sub-tasks,
both these tasks need to be simultaneously optimized within person search.
Despite numerous real-world applications, person search is highly challenging
due to the diverse nature of person detection and re-id sub-tasks within the
person search problem.

Person search approaches can be broadly grouped into two-step [4,16,43] and
one-step methods [5,36,38]. In two-step approaches, person detection and re-id
are performed separately using two different steps. In the first step a detection
network such as Faster R-CNN is employed to detect pedestrians. In the second
step detected persons are first cropped and re-sized from the input image, then
utilized in another independent network for the re-identification of the cropped
pedestrians. Although two-step methods provide promising results, they are com-
putationally expensive. Different to two-step methods, one step methods employ
a unified framework where the backbone networks are shared for the detection
and identifications of persons. For a given uncropped image, one-step methods
predict the box coordinates and re-id features for all persons in that image. One-
step person search approaches such as [5,23] generally extend Faster R-CNN
object detection frameworks by introducing an additional branch to produce
re-id feature embedding, and the whole network is jointly trained end-to-end.
Such methods often struggle while the target person in the galley images has
large appearance deformations such as pose variation, occlusion, and overlapping
background distractions within the region of interest (RoI) of a target person
(see Fig. 1).

1.1 Motivation

To motivate our approach, we first distinguish two desirable characteristics to
be considered when designing a Faster R-CNN based person search framework
that is robust to appearance deformations (e.g. pose variations, occlusions) and
background distractions occurring in the query person (see Fig. 1).

Discriminative Relation Features through Local Information Mixing: The posi-
tion of different local person regions within an RoI can vary in case of appearance
deformations such as pose variations and occlusions. This is likely to deteriorate
the quality of re-id features, leading to inaccurate person matching. Therefore,
a dedicated mechanism is desired that generates discriminative relation fea-
tures by globally mixing relevant information from different local regions within
an RoI. To ensure a straightforward integration into existing person search
pipelines, such a mechanism is further expected to learn discriminative rela-
tion features without requiring fine-level region supervision or topological body
approximations.
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Fig. 1. On the left: Qualitative comparison showing different query examples and
their corresponding top-1 matching results obtained with and without our ARM mod-
ule in the same base framework. Here, true and false matching results are marked in
green and red, respectively. These examples depict appearance deformations and dis-
tracting backgrounds in the gallery images for the query person. Our ARM module
that explicitly captures discriminative relation features better handle the appearance
deformations in these examples. On the right: Accuracy (AP) vs. speed (frames per
second) comparison with state-of-the-art person search methods on PRW test set. All
methods are reported with a Resnet50 backbone and speed is computed over V100
GPU. Our approach (PS-ARM) achieves an absolute mAP gain of 5% over SeqNet
while operating at a comparable speed.

Foreground-Background Discriminability for Accurate Local Information Mix-
ing: The quality of the aforementioned relation features rely on the assumption
that the RoI region only contains foreground (person) information. However, in
real-world scenarios the RoI regions are likely to contain unwanted background
information due to less accurate bounding-box locations. Therefore, discrim-
inability of the foreground from the background is essential for accurate local
information mixing to obtain discriminative relation features. Further, such a
FG/BG discrimination is expected to also improve the detection performance.

1.2 Contribution

We propose a novel end-to-end one-step person search method with the fol-
lowing novel contributions. We propose a novel attention-aware relation mixer
(ARM) module that strives to capture global relation between different local
person regions through global mixing of local information while simultaneously
suppressing background distractions within an RoI. Our ARM module com-
prises a relation mixer block and a spatio-channel attention layer. The rela-
tion mixer block captures discriminative relation features through a spatially-
attended spatial mixing and a channel-wise attended channel mixing. These dis-
criminative relation features are further enriched by the spatio-channel attention
layer performing foreground/background discrimination in a joint spatio-channel
space. Comprehensive experiments are performed on two challenging benchmark
datasets: CUHK-SYSU [36] and PRW [43]. On both datasets, our PS-ARM per-
forms favourably against state-of-the-art approaches. On the challenging PRW
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benchmark, our PS-ARM achieves a mAP score of 52.6%. Our ARM module is
generic and can be easily integrated to any Faster R-CNN based person search
methods. Our PS-ARM provides an absolute gain of 5% mAP score over SeqNet,
while operating at a comparable speed (see Fig. 1), resulting in a mAP score of
52.6% on the challenging PRW dataset.

2 Related Work

Person search is a challenging computer vision problem with numerous real-world
applications. As mentioned earlier, existing person methods can be broadly clas-
sified into two-step and one-step methods. Most existing two-step person search
approaches address this problem by first detecting the pedestrians, followed by
cropping and resizing into a fixed resolution before passing to the re-id network
that identifies the cropped pedestrian [4,10,17,22,43]. These methods generally
employ two different backbone networks for the detection and re-identification.

On the other hand, several one-step person search methods employ feature
pooling strategies such as, RoIPooling or RoIAlign pooling to obtain a scale-
invariant representation for the re-id sub-task. [4] proposed a two-step method
to learn robust person features by exploiting person foreground maps using pre-
trained segmentation network. Han et al. [17] introduced a bounding box refine-
ment mechanism for person localization. Dong et al. [10] utilized the similarity
between the query and query-like features to reduce the number of proposals for
re-identification. Zhang et al. [43] introduced the challenging PRW dataset. A
multi-scale feature pyramid was introduced in [22] for improving person search
under scale variations. Wang et al. [34] proposed a method to address the incon-
sistency between the detection and re-id sub-tasks.

Most one-step person search methods [2,5,9,15,23,25,27,35,36,38] are
developed based on Faster R-CNN object detector [30]. These methods gen-
erally introduce an additional branch to Faster R-CNN and jointly address the
detection and Re-ID subtasks. One of the earliest Faster R-CNN based one-step
person approach is [36], which proposed an online instance matching (OIM) loss.
Xiao et al. [35] introduced a center loss to explore intra-class compactness. For
generating person proposals, Liu et al. [25] introduced a mechanism to itera-
tively shrink the search area based on query guidance. Similarly, Chang et al.
[2] used reinforcement learning to address the person search problem. Chang et
al. [38] exploited complementary cues based on graph learning framework. Dont
et al. [9] proposed Siamese based Bi-directional Interaction Network (BINet) to
mitigate redundant context information outside the BBoxes. On the contrary,
Chen et al. [5] proposed Norm Aware Embedding (NAE) to alleviate the conflict
between person localization and re-identification by computing magnitude and
angle of the embedded features respectively.

Chen at al. [3] developed a Hierarchical Online Instance Matching loss to
guide the feature learning by exploiting the hierarchical relationship between
detection and re-identification. A query-guided proposal network (QGPN) is
proposed by Munjal et al. [27] to learn query guided re-identification score. H
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Li et al. [23] proposed a Sequential End-to-end Network (SeqNet) to refine the
proposals by introducing Faster R-CNN as a proposal generator into the NAE
pipeline to get refined features for detection and re-identification. The Faster
R-CNN based one-step person search approaches often struggle while the tar-
get undergoes large appearance deformations or come across with distracting
background objects within RoI. To address this, we propose a novel person
search method, PS-ARM, where a novel ARM module is introduced to cap-
ture global relation between different local regions within an RoI. Our PS-ARM
enables accurate detection and re-identification of person instances under under
challenging scenarios such as pose variation and distracting backgrounds (See
Fig. 1).

Fig. 2. The overall architecture of the proposed PS-ARM framework. It comprises a
person detection branch (shown in green) and person re-ID branch (shown in blue).
The person detection branch predicts the initial box locations whereas the person re-
id branch refines the box locations and perform a norm-aware embedding (NAE) to
disentangle the detection and re-id. The focus of our design is the introduction of a
novel attention-aware relation Mixer (ARM) module (shown in grey) to the detection
and re-id branches. Our ARM module enriches standard RoI Align pooled features
by capturing discriminative relation features between different local regions within an
RoI. The resulting enriched features are used for box regression and classification in
the detection branch, whereas these features are used to refine the box locations, along
with generating a norm-aware embedding for box classification (person vs background)
and re-id feature prediction in the re-id branch. (Color figure online)

3 Method

3.1 Overall Architecture

Figure 2 shows overall architecture of the proposed framework. It comprises a
person detection branch (shown in green) followed by a person re-ID branch
(shown in blue). The person detection branch follows the structure of standard
Faster R-CNN, which comprises a ResNet backbone (res1-res4), a region pro-
posal network (RPN), RoIAlign pooling, and a prediction head for box regression
and classification. The person re-id branch takes the boxes predicted by the per-
son detection branch as input and performs RoIAlign pooling on these predicted
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box locations. The resulting RoI Align pooled features are utilized to perform
re-identification. We adopt norm-aware embedding (NAE) that is designed to
separate the detection and re-identification using shared feature representation.
During inference, the person re-id branch takes only unique boxes (obtained
by non-maximum suppression algorithm) from the person detection branch and
performs a context bipartite graph matching for the re-id similar to [23]. The
above-mentioned standard detection and re-id branches serve as a base network
to which we introduce our novel attention-aware relation mixer (ARM) module
that enriches the RoI features for accurate person search.

The focus of our design is the introduction of a novel ARM module (shown
in grey). Specifically, we integrate our ARM module between the RoIAlign and
convolution blocks (res5) in both the person detection and re-id branches of the
base framework, without sharing the parameters between both branches. Our
proposed ARM module strives to enrich standard RoI Align pooled features by
capturing discriminative relation features between different local regions within
an RoI through global mixing of local information. To ensure effective enrichment
of RoI Align pooled features, we further introduce a foreground/background
discrimination mechanism in our ARM module. Our ARM module strives to
simultaneously improve both detection and re-id sub-tasks. Therefore, the output
is passed to norm-aware embedding to decouple the features for the contradictory
detection and re-id tasks. Furthermore, our ARM module is generic and can be
easily integrated to other Faster R-CNN based person search methods. Next, we
present the details of the proposed ARM module.

3.2 Attention-aware Relation Mixer (ARM) Module

Fig. 3. The network structure of our ARM
module. The module takes RoI Align
pooled features as input and captures
inter-dependency between different local
regions, while simultaneously suppressing
background distractions for the person
search problem. To achieve this objective,
ARM module comprises a relation mixer
block and a joint spatio-channel attention
layer.

Our ARM module is shown in Fig. 3.
It comprises a relation mixer block
and a spatio-channel attention layer.
Our relation mixer block captures
relation between different sub-regions
(local regions) within an RoI. The
resulting features are further enriched
by our spatio-channel attention that
attend to relevant input features in a
joint spatio-channel space. Our ARM
module takes RoIAlign pooled fea-
ture F ∈ R

C×H×W as input. Here,
H, W , C are the height, width and
number of channels of the RoI fea-
ture. For computational efficiency, the
number of channels are reduced to
c = C/4 through a point (1 × 1) con-
volution layer before passing to rela-
tion mixer and spatio-channel atten-
tion blocks.
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Fig. 4. Structure of relation mixer block within our ARM module. It comprises a
spatially attended spatial mixing operation where important local spatial regions will
be emphasized using a spatial attention before globally mixing them across all spatial
regions (tokens) within each channel using MLP-1 shared across all channels. Following
this spatial mixing, we perform a channel attention to emphasize informative channels
before globally mixing the channels for each local spatial region (token) using MLP-2
shared across all spatial regions.

Relation Mixer Block: As mentioned earlier, our relation mixer block is intro-
duced to capture the relation between different sub-regions (local regions) within
an RoI. This is motivated by the fact that the local regions of a person share cer-
tain ‘standard’ prior relationships among local regions, across RoIs of different
person and it is desirable to explicitly learn these inter-dependencies without any
supervision. One such module that can learn/encode such inter-dependencies, is
the MLP-mixer [32] that performs spatial ‘token’ mixing followed by ‘point-
wise’ feature refinement. Compared to other context aggregators [19,21,33], the
mlp-mixer is more static, dense, and does not share parameters [12]. The core
operation of the MLP-Mixer is transposed affinity matrix on a single feature
group, which computes the affinity matrix with non-sharing WMLP−1 parame-
ters as: A = (WMLP−1)T . To this end, MLP mixer contains a spatial mixer and
a channel mixer. The spatial mixer comprise of a layer norm, skip connection
and a token-mixing MLP with two fully-connected layers and a GELU nonlin-
earity. Similarly, the channel mixer employs a channel-mixing MLP, layer norm,
skip connection and dropout. The MLP mixer conceptually acts as a persistent
relationship memory that can learn and encode the prior relationships among
the local regions of an object at a global level. To this end, we introduce our
relation mixer comprising a spatially attended spatial mixer and a channel-wise
attended channel mixer. our ARM module with residual connection not only
enabled using MLP mixer for the first time in the problem of person search, but
also provided impressive performance gain over the base framework.

Spatially attended Spatial Mixer: While learning the inter-dependencies of
local RoI sub-regions using standard MLP mixer, the background regions are
likely to get entangled with the foreground regions, thereby adversely affecting
the resulting feature embedding used for the re-id and box predictions. In order
to discriminate the irrelevant background information at token level, we intro-
duce a spatial attention before performing token (spatial) mixing within our
MLP mixer for emphasizing the foreground regions. In our spatial attention,
we employ pooling operations along the channel axis, followed by convolution
and sigmoid layers to generate a 2D spatial attention weights Ms ∈ R

1×H×W .
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These attention weights are broadcasted along the channel dimension to gen-
erate the spatial attention M ′

s ∈ R
c×H×W . For a given feature F ′ ∈ R

c×H×W ,
we obtain the spatially attended feature map F ′′ = F ′ � M ′

s. Here � denotes
element-wise multiplication. These spatially attended features (F ′′) are expected
to discriminate irrelevant (background) spatial regions from the foreground.
These features are (F ′′) input to a shared multi-layer perceptron (MLP-1) for
globally mixing local features (within F ′′) across all spatial regions (tokens).
Our spatially attended spatial mixing strives to achieve accurate spatial mixing
and outputs the feature map Q (see Fig. 4).

Channel-Wise attended Channel Mixer: To further prioritize the feature
channels of Q that are relevant for detection and re-id of person instances,
we introduce a channel attention before channel mixing. Our channel atten-
tion weights Mc ∈ R

c×1 are generated through spatial pooling, fully connected
(fc) and sigmoid layers, which are broadcasted along the spatial dimension to
generate the channel attention weights M ′

c ∈ R
c×H×W . Similar to spatial atten-

tion, these channel weights are element-wise multiplied with the feature map to
obtain channel-wise attended feature map. The resulting features are expected
to emphasize only the channels that are relevant for effective channel-mixing
within our relation mixing block. Our channel mixing employs another shared
MLP (MLP-2) for global mixing of channel information. The final output of our
relation mixer block results is feature maps K ∈ R

c×H×W .

Spatio-Channel Attention Layer: Our relation mixer block performs the
mixing operations by treating the spatial and channel information in a disjoint
manner. But, in many scenarios, all spatial regions within a channel and all chan-
nels at a given spatial location are not equally informative. Hence, it is desired to
treat the entire spatio-channel information as a joint space. With this objective,
we introduce a joint spatio-channel attention layer within our ARM module to
further improve the foreground/background discriminability of RoIAlign pooled
features. Our spatio-channel attention layer utilizes parameter-free 3D attention
weights obtained based on [39] to modulate the 3D spatio-channel RoI pooled
features. These spatio-channel attended features are aggregated with the relation
mixer output to produce enriched features O for the person search task. These
enriched features projected back to C channels (H ∈ R

C×H×W ) and taken as
input to the res5 block.

In summary, within our ARM module, the relation mixer targets the global
relation between different local regions within RoI and captures the discrim-
inative relation features in disjoint spatial and channel spaces. The resulting
features are further enriched by a spatio-channel attention that performs fore-
ground/background discrimination in a joint spatio-channel space.

3.3 Training and Inference

For training and inference, we follow a strategy similar to [5,23]. Our PS-ARM is
trained end-to-end with a loss formulation similar to [23]. That is, in the person
detection branch, similar to Faster R-CNN, we employ Smooth-L1 and cross
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entropy losses for box regression and classifications. For the person re-id branch,
we employ three additional loss terms similar to [5] for regression, classification
and re-ID. Both these branches are trained by utilizing an IoU threshold of 0.5
for selecting positive and negative samples.

During inference, we first obtain the re-id feature for a given query by using
the provided bounding box. Then, for the gallery images, the predicted boxes
and their re-id features are obtained from the re-id branch. Finally, employ cosine
similarity between the re-id features to match a query person with an arbitrarily
detected person in the galley.

4 Experiments

We perform the experiments on two person search datasets (i.e., CUHK-SYSU
[36]) and PRW [43] to demonstrate the effectiveness of our PS-ARM and compare
it with the state-of-the-art methods.

4.1 Dataset and Evaluation Protocols

CUHK-SYSU [36]: is a large scale person search dataset with 96,143 person
bounding boxes from a total of 18,184 images. The training and testing sets
contains 11,206 images, 55,272 pedestrians, and 5,532 identities and test set
includes 6,978 images, 40,871 pedestrians, and 2,900 identities. Instead of using
full gallery during inference, different gallery sizes are used for each query from
50 to 4000. The default gallery size is set to 100.

PRW [43]: is composed of video frames recorded by six cameras that are being
installed at different location in Tsinghua University. The dataset has a total
11,816 frames containing 43,110 person bounding boxes. In training set, 5,704
images are annotated with 482 identities. The test set has 2,057 frames are
labelled as query persons while gallery set has 6,112 images. Hence, the gallery
size of PRW dataset is notably larger compared to CUHK-SYSU gallery set.

Evaluation Protocol: We follow two standard protocol for person search per-
formance evaluation of mean Average Precision (mAP) and top-1 accuracy. The
mAP is computed by averaging over all queries with an intersection-over-union
(IoU) threshold of 0.5. The top-1 accuracy is measured according to the IoU over-
laps between the top-1 prediction and ground-truth with the threshold value set
to 0.5.

Implementation Details: We used ResNet-50 as our backbone network. We
followed [23] and utilized Stochastic Gradient Descent (SGD), set momentum
and decay to 0.9 and 5× 10−4, respectively. We trained the model for 12 epochs
over CUHK-SYSU dataset PRW dataset. During training, we used the batch-
size of 3 with input size 900 × 1500 and set initial learning rate to 0.003 which
is warmed up at first epoch and decayed by 0.1 at 8th epoch. During inference,
the NMS threshold value is set to 0.4. The code is implemented in PyTorch [29].
The code and trained model will be publicly released.
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Table 1. State-of-the-art comparison on CUHK and PRW test sets in terms of mAP
and top-1 accuracy. On both datasets, our PS-ARM performs favourably against exist-
ing approaches. All the methods here utilize the same ResNet50 backbone. When com-
pared with recently introduced SeqNet, our PS-ARM provides an absolute mAP gain
of 5% on the challenging PRW dataset. Also, introducing our novel ARM module to a
popular Faster R-CNN based approach (NAE [5]), provides an absolute mAP gain of
3.6%.

Method CUHK-SYSU PRW

mAP top-1 mAP top-1

Two-step CLSA [22] 87.2 88.5 38.7 65.0

IGPN [10] 90.3 91.4 42.9 70.2

RDLR [17] 93.0 94.2 42.9 70.2

MGTS [4] 83.0 83.7 32.6 72.1

MGN+OR [40] 93.2 93.8 52.3 71.5

TCTS [34] 93.9 95.1 46.8 87.5

End-to-end OIM [36] 75.5 78.7 21.3 49.9

RCAA [2] 79.3 81.3 – –

NPSM [25] 77.9 81.2 24.2 53.1

IAN [35] 76.3 80.1 23.0 61.9

QEEPS [27] 88.9 89.1 37.1 76.7

CTXGraph [38] 84.1 86.5 33.4 73.6

HOIM [3] 89.7 90.8 39.8 80.4

BINet [9] 90.0 90.7 45.3 81.7

AlignPS [37] 93.1 96.4 45.9 81.9

PGSFL [20] 92.3 94.7 44.2 85.2

DKD [42] 93.1 94.2 50.5 87.1

NAE+ [5] 92.1 94.7 44.0 81.1

PBNet [31] 90.5 88.4 48.5 87.9

DIOIM [8] 88.7 89.6 36.0 76.1

APNet [44] 88.9 89.3 41.2 81.4

DMRN [18] 93.2 94.2 46.9 83.3

CAUCPS [14] 81.1 83.2 41.7 86.0

ACCE [6] 93.9 94.7 46.2 86.1

NAE [5] 91.5 92.4 43.3 80.9

SeqNet [23] 94.8 95.7 47.6 87.6

Ours (NAE + ARM) 93.4 94.2 46.9 81.4

Ours (PS-ARM) 95.2 96.1 52.6 88.1

Ours (Cascaded PS-ARM) – – 53.1 88.3

4.2 Comparison with State-of-the-Art Methods

Here, we compare our approach with state-of-the-art one-step and two-step per-
son search methods in literature on two datasets: CUSK-SYSU and PRW.

CUHK-SYSU Comparison: Table 1 shows the comparison of our PS-ARM
with state-of-the-art two-step and single-step end-to-end methods with the
gallery size of 100. Among existing two-step methods, MGN+OR [40] and TCTS
[34] achieves mAP of 93.2 and 93.9, respectively. Among existing single-step end-
to-end methods, SeqNet [23] and AlignPS [37] obtains mAP of 94.8%, 93.1%
respectively.
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Fig. 5. Qualitative comparison between the top-1 results obtained from SeqNet (row
2) and our PS-ARM (row3) for the same query input (row 1). Here, true and false
matching results are marked in green and red, respectively. SeqNet provides inaccu-
rate predictions due to the appearance deformations in these examples whereas our
PS-ARM provides accurate predictions by explicitly capturing discriminative relation
features within RoI. (Color figure online)

Fig. 6. State-of-the-art comparison of
existing methods over CUHK-SYSU
dataset with varying gallery sizes. Dotted
lines represent two-stage methods whereas
solid lines represent one-stage methods.
Our PS-ARM shows consistent improve-
ment compared to other methods as the
size of gallery increases.

To further analyse the benefits
of our ARM module, we introduced
the proposed ARM module in to a
Faster R-CNN based method (NAE
[5] method) after RoIAlign pooling.
We observed that our ARM mod-
ule can provide an absolute gains of
1.9% and 1.8% to the mAP and top-
1 accuracies over NAE (see Table 1).
Our PS-ARM outperforms all existing
methods, and achieves a mAP score of
95.2. In terms of top-1 accuracy our
method sets a state-of-the-art accu-
racy of 96.1%.

CUHK-SYSU dataset has differ-
ent range of gallery sizes such as 50,
100, 500, 1000, 2000, and 4000. To
further analyze our proposed method,
we performed an experiment by vary-
ing the gallery size. Our mAP scores
across different gallery size are com-
pared with recent one-stage and two-stage methods as shown in Fig. 6.
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Fig. 7. Qualitative results of our PS-ARM on challenging PRW dataset. The top-2
matching results for each query image is shown. Our PS-ARM accurately detect and
re-identify the query person in both images.

The results shows that our PS-ARM provides consistent performance gain over
other approaches across all gallery sizes.

PRW Comparison: Table 1 shows the state-of-the-art comparison on PRW
dataset. Among the existing two stage methods, MGN+OR [40] achieves the
best mAP score 52.3, but with a very low top-1 accuracy. While comparing the
top-1 accuracy, TCTS [34] provides the best performance, but with a very low
mAP score. To summarize, the performance of most two-step methods [4,10,13,
17,22,40] are inferior either in mAP score or top-1 accuracy.

Fig. 8. Person search and detection scores
on PRW dataset with and without provided
ground-truth detection boxes. The ∗ indi-
cates the results using ground-truth boxes.

Among one-stage methods, NAE
[5] and AlignPS [37], achieved mAP
scores of 43.3% and 45.9%. These
methods achieved top-1 accuracies of
80.9% and 81.9%. Among the other
one-step methods SeqNet [23], PBNet
[31], DMRN [18], and DKD [42] also
performed well and obtain more than
46% mAP and have more than 86%
top-1 accuracy.

To further analyze the effective-
ness of our ARM module, we inte-
grate our ARM module to NAE and
achieved absolute mAP gain of 3.6%
mAP, leading to an mAP score of
46.9%. We observe a similar per-
formance gain over top-1 accuracy,
resulting in top-1 score of 81.4%. We
also introduced proposed ARM mod-
ule in Han’s [15] method. Compared to the existing methods, [15] utilize a dif-
ferent approach, such as an RoI pooling of 24×8 size, instead of 14×14. To this
end, we modified our PS-ARM to adapt the setting of [15], resulting in an abso-
lute gains of 2% and 1.3% improvement on PRW dataset and obtained 55.3%
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mAP and 89.0% top-1 scores, respectively. Our PS-ARM achieve state-of-the-art
performance compared the existing one-step and two-step methods. We achieve
an mAP score of 52.6% and top-1 score of 88.1%.

Besides similar to cascade RCNN [1], we extend our person search network
by introducing an other person re-id branch, called Cascaded PS-ARM. This
newly introduced branch takes refined bounding boxes from the Box2 as an
input to perform RoIAlign pooling. This strategy further refines the detection
and re-identification, producing improved mAP 53.1% and top-1 88.3 % scores.

Qualitative Comparison: Figure 5 shows qualitative comparison between the
SeqNet [23] (row 2) and our PS-ARM for the same query input (row 1). Here, true
and false matching results are marked in green and red, respectively. The figure
shows top-1 results obtained from both methods. It can be observed that SeqNet
provides inaccurate top-1 predictions due to the appearance deformations. Our
PS-ARM provides accurate predictions on these challenging examples by explic-
itly capturing discriminative relation features within RoI. Figure 7 shows the
qualitative results from our PS-ARM. Here we show the top-2 matching results
for each query image. It can be seen that our PS-ARM can accurately detect
and re-identify the query person in both gallery images.

Table 2. Ablation study over the PRW dataset by incrementally adding our novel
contributions to the baseline. While introducing a MLP mixer to a baseline, both the
detection and re-id performance increases over the baseline except top-1. The spa-
tially attended spatial mixing and channel-wise attended channel mixing within our
relation mixer captures discriminative relation features within RoI while suppressing
distracting background features, hence provides superior re-id performance. Finally,
our joint spatio-channel attention removes distracting backgrounds in a joint spatio-
channel space, leading to improved detection and re-id performance.

Method ReID Detection

mAP top-1 Recall AP

Baseline 47.6 87.6 96.3 93.1

Baseline + MLP-Mixer 49.1 86.8 96.3 93.3

Baseline + Transformer 47.9 85.8 96.1 93.5

Baseline + Spatio-channel attention layer 48.1 86.2 95.2 93.0

Baseline + Spatial mixing + channel-wise attended channel mixing 49.4 86.7 96.2 93.2

Baseline + Spatially attended spatial mixing + channel mixing 49.5 86.9 96.5 93.4

Baseline + Relation mixer 51.8 87.9 96.6 93.8

PS-ARM (Baseline + ARM) 52.6 88.1 97.1 93.9

4.3 Ablation Study

Here, we perform the ablation study on the PRW dataset. Table 2 shows the
performance gain obtained by progressively integrating our novel contributions
to the baseline.
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First we verify the effectiveness of the context aggregators including MLP-
Mixer [32] and Transformer [11] within the proposed framework. The experiment
shows that choice of MLP-mixer is better. Moreover, we apply joint spatio-
channel attention on the RoI feature maps which results in improved performance
compared to baseline. Further, we investigate the introduction of spatially-
attended spatial mixing and channel-wise attended channel mixing within our
relation mixer which captures discriminative relation features within RoI while
suppressing distracting background features. This resulted in superior re-id per-
formance. Introducing our relation mixer comprising of a spatially attended spa-
tial mixing and channel-wise attended channel mixing leads to an overall AP of
93.8 for detection and 51.8 mAP for re-id. To further complement the rela-
tion mixer that performs information mixing in the disjoint spatial and channel
spaces, we introduce a joint spatio-channel attention. Our joint spatio-channel
attention removes distracting backgrounds in a joint spatio-channel space, lead-
ing to improved detection and re-id performance by achieving 94.1 and 52.6,
respectively.

Relation Between Detection and ReID. In Fig. 8, we validate the effec-
tiveness of the proposed PS-ARM to deal with the contradictory detection and
ReID objectives. We compared our PS-ARM with the SOTA SeqNet [23] and
NAE [5]. We notice that PS-ARM∗ and NAE+ARM∗ outperforms their counter
parts provided the ground-truth boxes.

5 Conclusions

We propose a novel person search method named PS-ARM, that strives to cap-
ture global relation between different local regions within RoI of a person. The
focus of our design is introduction of a novel ARM module, which effectively cap-
turing the global relation within an RoI and make robust against occlusion. The
relation mixer block introduces a spatially attended spatial mixing, a channel-
wise attended channel mixing, and an input-output feature re-using for captur-
ing discriminative relation features within an RoI. An additional spatio-channel
attention layer is introduced within the ARM module to further enrich the
discriminability between the foreground/background features in a joint spatio-
channel space. Our ARM module is generic and it can be easily integrated to
any Faster R-CNN based person search methods. Comprehensive experiments
are performed on two benchmark datasets. We achieve state-of-the-art perfor-
mance on both datasets, demonstrating the merits of our novel contributions.
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Abstract. The development of unsupervised hashing is advanced by the
recent popular contrastive learning paradigm. However, previous con-
trastive learning-based works have been hampered by (1) insufficient
data similarity mining based on global-only image representations, and
(2) the hash code semantic loss caused by the data augmentation. In this
paper, we propose a novel method, namely Weighted Contrative Hashing
(WCH), to take a step towards solving these two problems. We introduce
a novel mutual attention module to alleviate the problem of informa-
tion asymmetry in network features caused by the missing image struc-
ture during contrative augmentation. Furthermore, we explore the fine-
grained semantic relations between images, i.e., we divide the images into
multiple patches and calculate similarities between patches. The aggre-
gated weighted similarities, which reflect the deep image relations, are
distilled to facilitate the hash codes learning with a distillation loss, so as
to obtain better retrieval performance. Extensive experiments show that
the proposed WCH significantly outperforms existing unsupervised hash-
ing methods on three benchmark datasets. Code is available at: http://
github.com/RosieYuu/WCH.

Keywords: Unsupervised image retrieval · Deep hashing · Contrastive
learning · Mutual attention · Weighted similarities

1 Introduction

With the advancement of deep neural networks, deep hash has become one of the
most studied approaches for Approximate Nearest Neighbors (ANN) in large-
scale image retrieval. Earlier studies rely heavily on artificial annotations, which
makes it difficult to apply in real-world scenarios due to the high labor costs.
As a result, unsupervised deep hashing [22,23,27,36] has gradually become the
major research direction in this field, with the recent boom in unsupervised
learning [2–4,12,13,26]. The key difficulty with unsupervised hash is that the
ad-hoc encoding process does not extract the key information for hashing, pre-
cisely because of the lack of supervised information. Hence, numerous methods
have been proposed to learn better discrete representations for hashing in unsu-
pervised setting.

A large family of recent unsupervised hash learning tasks is based on con-
trastive learning [3,4,13]. These methods build upon instance discrimination,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Wang et al. (Eds.): ACCV 2022, LNCS 13845, pp. 251–266, 2023.
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Fig. 1. An example of the conflict of the traditional similarity calculation approach. A
typical unsupervised method will treat the top image with both the bottom-left and
bottom-right images as similar pairs, because they have a common label. In this case,
the two images in the bottom left and bottom right corners should be considered as a
similar sample pair. However, the fact is that these two images do not have a common
label and they should be considered as a dissimilar pair.

which constructs similar and dissimilar instances and learns the discrete rep-
resentations by prompting the model to pull in the similar instances and push
away the dissimilar instances. With simply the most fundamental concepts for
contrastive learning, existing methods [23,27,36] based on contrastive learning
have achieved significant success.

Despite their success, most of the current methods mainly focus on adjusting
the contrastive loss to fit the hash learning criterion [23,27]. However, directly
combining contrastive loss and unsupervised hashing tasks like this leads to two
problems. On the one hand, an instance discrimination-based approach leads to
the fact that even if the samples are very similar, they still need to be forced
apart, i.e., the sample similarity obtained in this way is unreliable. On the other
hand, calculating the similarity with the feature vector or hash code of a whole
image may lead to the following problem: The top image in Fig. 1 is associated
with the labels of apple and banana; the bottom left image is associated with
the labels of apple and bird; and the bottom right image is associated with the
labels of banana and bowl. In the traditional method, the similarity of both the
bottom left image and the bottom right image according to the top image is
considered full similar. Therefore, we can say that the bottom left and bottom
right images are also very similar. However, the labels of the bottom left and
bottom right images do not overlap, i.e., they are actually dissimilar. Based on
this, we raise a question: how to define or even use the similarity between samples
to learn high-quality hash codes?

Curiously, most existing approaches do not focus on this problem. To the
best of our knowledge, NSH [36] uses Neural Sorting Operators to obtain the
permutation of a vector of similarity scores, and it employs the sorted similarity
results to pick the top m positive samples of the anchor, i.e., it improves the
comparison by increasing the number of positive samples in the learning frame-
work. However, in the experiment, the optimal number of positive samples is
fixed at 3, and all of them are considered fully similar. There are two drawbacks.
First, the anchor image and the augmented similar image, especially processed
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with random crop, are not always similar, e.g., the cropped image only contains
the background, which will prompt the network to learn the background rather
than the object representation in the image. Second, for multi-labeled images,
the positions and sizes of objects vary greatly, and it is difficult to learn a single
depth representation that fits all objects. The quality of the hash codes obtained
in this way is not high, which will have an impact on the final retrieval results.
This can also explain why NSH [36] boosts highly on single-label datasets, but
the boost of MAP on multi-label datasets is not very obvious.

In order to solve the above problem, we propose a novel method called
Weighted Contrastive Hashing (WCH) to re-weight the similarity of the anchor
image and the others. Concretely, we develop a novel metric rule that is more
reasonable and efficient for measuring similar samples, and finally apply this rule
to the learning of hash codes for better retrieval performance. We divide each
image into a number of patches, and exploit the Vision Transformer (ViT) [7] as
the encoder to adapt the patches as the input to the model. To obtain the simi-
lar samples of an anchor, we use the aggregated vector of similarity between the
patches of different samples as weights. Unlike NSH [36], we do not selectively
pick the most relevant samples as the positive samples for contrastive learning,
but assign trainable weights to all candidate samples, which represent the degree
of similarity between samples. That is, we can consider an image pair as less or
more similar, rather than stating them as fully similar or dissimilar in absolute
terms. Notably, we demonstrate in the experimental section that our method
works better than NSH [36]. In addition, to solve the problem of insufficient
similarity between augmented images and anchor images, we propose a Mutual
Attention (MA) module to reset the weights of each patch of them by calculat-
ing their similarity, which can guarantee sufficient similarity of them to make
them the most similar pair, so as to facilitate the hash code learning towards
the correct direction. In a nutshell, our main contributions are summarized as
follows:

– To the best of our knowledge, this is the first time that weighted contrastive
learning has been introduced to image retrieval tasks. It alleviates the problem
that certain anchor images and negative samples, which are similar enough
for the hashing task, are treated as dissimilar pairs.

– We propose a Mutual Attention module to achieve information complementa-
tion between the augmented anchor image and the positive sample, avoiding
the lack of key information for hashing.

– The excellent performance of our WCH model is extensively demonstrated by
comparing it to 18 state-of-the-art hashing frameworks on three benchmark
datasets, i.e., CIFAR-10, NUS-Wide, and MS COCO.

2 Related Works

In this section, we will briefly introduce some unsupervised hashing methods
here.
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Unsupervised Hashing. Early unsupervised hashing methods mainly focus on
projecting images to compact representations by constraining the learned hash
codes to fit several principles, e.g., quantization [11], balancing [18]. Several
recent works using deep learning pay attention to how to generate high quality
hash codes [10,17,23,32]. Some others try to preserve the semantic similarity
in hash codes [28,30,35], while the majority of methods adopt image pseudo
labels with pre-trained networks to convert the unsupervised hashing to fully a
supervised learning [37]. Their performance is usually evaluated against ranked
candidates. However, they did not try to sort them during training to mine their
similarity.

Hashing with Contrastive Learning. Contrastive learning has been a very
successful approach for unsupervised hashing tasks. Typical examples include
CIMON [23], CIB [27], NSH [36]. All of these methods utilize the contrastive
learning framework. As we mentioned before, these methods do not well combine
the contrastive learning framework with the hash retrieval task. For example,
both CIMON and CIB define the data-enhanced version of an image as a positive
sample, and a negative sample is formed by sampling the views of different
images. It leads to the possibility that images considered as negative samples
may contain positive samples, which will have an impact on the retrieval results.
On the other hand, although NSH considers this problem, they simply rank the
similarity between anchor samples and select quantitative positive candidates,
which does not take into account the similarity degree between the anchor images
and augmented images.

Mining Similarity for Unsupervised Hashing. Some methods based on
mining similarity aim at solving unsupervised hashing tasks using pairwise meth-
ods, e.g., SSDH [34] is a representative method studied in this area. It sets two
thresholds at pairwise distances and constructs a similarity structure, and then
image features are extracted and hash code learning is performed. However,
using two rough thresholds to determine whether they are similar or not is usu-
ally unreliable. DistillHash [35] extracts similarity signals using similarity signals
from local structures, and further constructs an efficient and adaptive semantic
graph, which is updated by decoding it in the context of an autoencoder for hash
code learning. MLS3RDUH [33] reconstructs a local semantic similarity struc-
ture by exploiting the intrinsic flow structure and cosine similarity in the feature
space. DATE [22] improves the commonly used cosine distance by proposing a
distribution-based metric. In contrast to these methods, WCH guides the learn-
ing of hash codes based on the weighted similarity between patches assigned to
each anchor and the rest of the samples.

3 Weighted Contrastive Learning

3.1 Preliminaries

To better explain our method in the next section, we first introduce some con-
cepts and preliminary knowledge here.
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Fig. 2. Overall architecture of the proposed weighted contrastive hashing.

Patch Generation. Following ViT [7], we divide an image X ∈ R
s×s×c into

non-overlapping patches xi ∈ R
p×p×c, where i = 1, 2, · · · , n. It is obvious that

s2 = n × p2 and c is the number of image channels.

WCH Encoder. Recent work proposes the use of the ViT model as a universal
feature extractor [8]. Inspired by these works, we also use ViT as an encoder for
our model. We first flatten the patches xi into a vector pi ∈ R

1×d, where d is the
dimension of the vector, and then use a trainable linear projector LP to map
the vector to embedding. The output of this projection is referred to the patch
embedding as follows:

Ei = LP(pi), (1)

where Ei is the patch embedding associated with the i-th patch. Unlike the stan-
dard ViT, our model does not use the class token. We add the position embedding
into the patch embeddings, and the final embedding for ViT Input is:

PEi = Ei +PoE, (2)

where, PoE stands for the position embedding, and PE is the final projecting
embedding, which will be fed into the transformer encoder fθ(·).

Binarization. In WCH, we revisit the problem of how to evaluate whether a
candidate sample is comparable to an anchor in the contrastive learning frame-
work and obtain higher quality hash codes in the image retrieval task. As for
an image retrieval task, the goal is to learn a binary vector bi ∈ {−1, 1}l by
mapping the data xi into the encoder, where l is the length of the hash code. In
general, the hash code is obtained by the sign function:

bi = sign(h(xi)) ∈ {−1, 1}l, (3)

where h(·) is the encoding function, which mainly consists of the WCH encoder
and a one-layer projector. Since the sign(·) function is non-differentiable, we
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adopt a straight-through estimator (STE) [1] that allows back-propagation
through bi.

3.2 Overall Architecture

WCH employs contrastive learning as an unsupervised framework, which typ-
ically defines positive pairs as different augmented parts of the same image
and negative pairs as samples of different images. Given a batch of N sam-
ples

{
X1, · · · ,Xi, · · · ,XN

}
, it first goes through two different data augmenters

to get two different views X̃i and X̂i. Then, we divide each image into n non-
overlapping patches, X̃i =

[
x̃i
1; · · · ; x̃i

k; · · · ; x̃i
n

]
, X̂i =

[
x̂i
1; · · · ; x̂i

k; · · · ; x̂i
n

]
. As

we described in Sect. 3.1, we employ ViT as the encoder, and feed the patches
into it to generate the corresponding encoded features fθ(x̃i

k) and fθ(x̂
i
k).

During traditional augmentation, the augmented two images are usually
taken as a similar pair to guide the training direction. However, some cropped
images containing background only are totally different from others, which might
damage the training process. Therefore, we employ the Mutual Attention (MA)
module to re-weight the image patches to guarantee similarity between them.
After that, the weighted image similarity is calculated by computing the patch
similarity between different images, and it is subsequently used to construct the
final weighted contrastive loss function. The overall architecture is illustrated in
Fig. 2.

3.3 Mutual Attention

Given any two encoded patches fθ(x̃i
k) and fθ(x̂

i
t) in the corresponding aug-

mented pair, the similarity of them can be calculated as

sk,t = fθ(x̃i
k)

T fθ(x̂
i
t). (4)

Therefore, we can construct a similarity matrix S ∈ R
n×n, which measures the

similarity between each patch of the augmented pair. Then, we normalize the
row vectors and column vectors respectively with softmax function:

{
S1 = softmax(s1∗, · · · , si∗, · · · , sn∗)
S2 = softmax(s∗1, · · · , s∗j , · · · , s∗n)

, (5)

where si∗ stands for the i-th row of S, and s∗j means the j-th column of S.
Then, the refined patch vector is reconstructed with the following calculation:

{
f̃

i

k =
∑n

j=1 s2j,kfθ(x̃i
j)

f̂
i

k =
∑n

j=1 s1k,jfθ(x̂
i
j)

, (6)

where s1j,k is the j-th row and k-column element of S1, and s2k,j is analogously
defined. After this operation, the refined augmented pair can be guaranteed to
be similar, and thence be undoubtedly treated as a positive pair.
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3.4 Weighted Similarities Calculation

Previous works often use embedding vectors to explore the relationship between
different images. Specifically, most existing unsupervised hashing methods assume
binary similarity between two images, i.e., two images can be similar (positive sam-
ple) or dissimilar (negative sample). For example, NSH [36] uses hash codes to cal-
culate the degree of similarity between images, and then ranks them according to
the magnitude of similarity, and selects the top m positive samples according to
the result of the ranking, i.e., determines that these m samples and anchor are
similar. However, selecting positive samples based on similarity like this will cause
two problems. First, there may be noise in the positive samples. Since the num-
ber of positive samples is set to a fixed value, forcing a fixed number of positive
samples based on the ranking results will slow down the convergence of the model.
Second, the results of the first m closest samples may not be equivalent. For an
anchor image Xi, Xj is one of the selected m positive samples that are similar to
Xi in one iteration. However, it is possible that in another iteration, Xj is not one
of the m closest samples since there are more similar images in this training batch.
In this situation, Xj will be treated as a negative sample of Xi, which results in
inconsistency with the former one, and this conflict will damage the training pro-
cess and cause the training to fail to converge.

Weighted Labels Processing. To tackle these problems, instead of adopt-
ing a strategy such as selecting positive samples, we reformulate the rules for
computing the similarity between images and use the obtained similarity to re-
weight the contrastive loss to capture the semantic information that may overlap
between the anchor and negative samples. In WCH, we exploit the fine-grained
interaction results between patches to explore the relationship between different
images.

Specifically, suppose there are two patch features f i
k and f j

t extracted from
two different images Xi and Xj , respectively. The similarity between them can
be defined as

gij
kt = (f i

k)
Tf j

t . (7)

Therefore, the similarity matrix of Xi and Xj can be constructed as Gij ∈
R

n×n. For each row in Gij , the max value represents the most similar batches
in Xi and all patches in Xj , and the mean of the max values of each row is the
similarity of Xi and Xj :

wij = mean(max
row

(Gij)), (8)

where max
row

(·) means to take the maximum value according to the row direction,
and mean(·) stands for calculating the mean value of the vector. For a mini-
batch containing bs images, including one augmented image and bs − 1 other
images, the similarity matrix W ∈ R

bs×bs can be constructed with Eq. 8. To
fit the value of W within a proper range, we conduct a temperature weighted
row softmax as Wi∗ = softmax(Wi∗/τw), where τw [14] is the temperature
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coefficient. Furthermore, to guarantee that the augmented images are equivalent
to the anchor images, we divide each row with the element wii:

W = diag(diag(W))−1W, (9)

where diag(·) means extracting the diagonal vector from a matrix or constructing
a diagonal matrix with a vector.

3.5 Training and Inference

For training, we use the maximum similarity between patches to guide the con-
trastive objective [25]:

LWCE = −
bs∑

i=1

bs∑

j=1

wij log
exp

(
b̃ib̂

ᵀ
j /l/τ

)

∑bs
k=1 exp

(
b̃ib̂

ᵀ
k/l/τ

) , (10)

where τ is the temperature scale. Finally, the loss function is formulated as

LWCH = LWCE + LR, (11)

where LR refers to the quantization loss and bit balancing loss [9]. The whole
learning procedure is shown in Algorithm 1.

Inference Process. In the inference process, WCH abandons the MA and
weighted labeling modules dedicated to training and keeps only the encoder and
hash head for generating hash codes characterizing the semantic information of
the images. The Hamming distance between the hash codes of the images is then
computed to accomplish the retrieval task.

4 Discussion

Remark 1: Why Do We Choose the ViT Encoder? In WCH, our key
idea is to use the patch-level semantic information captured by ViT [7] as a
benchmark to measure the degree of similarity between arbitrary images and
assign corresponding weights to each pair of images by aggregating the similar-
ity between patches to measure the degree of similarity. Unlike the recent self-
supervised visual representation learning-based approaches [27,36], they only
determine similar samples by the global feature similarity of the whole image.
Instead, we introduce a novel inter-patch-based fine-grained interaction module
using the ViT model, enabling fine-grained interactions between patches and
each pair of images to mine more detailed semantic alignment.

Furthermore, we use the ViT model to address the problems posed by con-
trastive learning methods that rely on instance discrimination tasks. As men-
tioned before, positive native pairs are defined as different views of the same
image, while negative pairs are formed by sampling views of different images.
This common approach ignores their semantic content. Our approach, on the
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Algorithm 1: The Training Procedure of WCH.
Input: Dataset D = {xi}N

i=1 and batch size n.
Output: Network parameters θ.
for batch in D.repeat() do

batch1, batch2 = aug(batch), aug(batch)
f1, f2 = Mθ(batch1), Mθ(batch2)
# mutual attention
sim = einsum(′nid, njd → nij′, f1, f2)
f1 = einsum(′nid, ndj → nij′, softmax(sim.T), f1)
f2 = einsum(′nid, ndj → nij′, softmax(sim), f2)
# weighted similarities calculation
sim = einsum(′nid, mjd → nmij′, f1, f2)
sim = softmax(sim.max(−1).mean(−1)/τw)
weighted = matmul(diag(diag(sim))−1, sim)
# hashing
b1, b2 = hash(f1.mean(1)), hash(f2.mean(1))
logits = softmax(matmul(b1, b2.T)/l/τ)
# weighted corss entropy
loss= cross_entropy(logits, weighted)
loss.backward()

end

other hand, fully exploits the semantic content of the images and makes reason-
able use of fine-grained interaction results as a measure of similarity between
images, as detailed in Sect. 3.4.

Remark 2: Why Mutual Attention Helps? First, note the phenomenon
that most models construct positive and negative samples by treating the same
images produced by different augmenters as positive pairs, while the rest of
the samples are considered as negative pairs. However, this manually designed
approach involves many manual choices, and inappropriate data augmentation
schemes may severely alter the image structure, resulting in data-enhanced
images that do not possess label-preserving properties, i.e., images undergo
transformations that may lose high-level semantic information. For example,
a common data augmentation scheme is random cropping, which may ran-
domly crop out the sample information that contains label-related information
for single-labeled images. Similarly, for multi-labeled images, where the position
and size of objects vary greatly, the random cropping method will most likely
crop out some objects in multi-labeled images, making the sample information
contained in multi-labeled images reduced. This operation will lead to asymmet-
ric semantic information between the anchor and the positive samples.

The mutual attention module in Fig. 2 reconstructs the feature vectors asso-
ciated with the pictures based on the similarity between positive sample pairs of
patches. Therefore, it can be seen as a specific attention mechanism. Intuitively,
it focuses our attention on the degree of similarity of patch pairs. The attention
fraction is used so that the feature vectors of each patch carry information about
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Table 1. Performance comparison (mAP) of WCH and the state-of-the-art unsuper-
vised hashing methods. *Note that we use a more common setting on NUS-WIDE
with the 21 most frequent classes, while some papers report results on 10 classes.

Method Reference CIFAR-10 NUS-WIDE MS COCO
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

AGH [21] ICML11 0.333 0.357 0.358 0.592 0.615 0.616 0.596 0.625 0.631
ITQ [11] PAMI13 0.305 0.325 0.349 0.627 0.645 0.664 0.598 0.624 0.648
DGH [20] NeurIPS14 0.335 0.353 0.361 0.572 0.607 0.627 0.613 0.631 0.638
SGH [6] ICML17 0.435 0.437 0.433 0.593 0.590 0.607 0.594 0.610 0.618
BGAN [31] AAAI18 0.525 0.531 0.562 0.684 0.714 0.730 0.645 0.682 0.707
BinGAN [38] NeurIPS18 0.476 0.512 0.520 0.654 0.709 0.713 0.651 0.673 0.696
GreedyHash [32] NeurIPS18 0.448 0.473 0.501 0.633 0.691 0.731 0.582 0.668 0.710
HashGAN [10] CVPR18 0.447 0.463 0.481 – – – – – –
DVB [29] IJCV19 0.403 0.422 0.446 0.604 0.632 0.665 0.570 0.629 0.623
DistillHash [35] CVPR19 0.284 0.285 0.288 0.667 0.675 0.677 – – –
TBH [30] CVPR20 0.532 0.573 0.578 0.717 0.725 0.735 0.706 0.735 0.722
MLS3RDUH [33] IJCAI20 0.369 0.394 0.412 0.713 0.727 0.750 0.607 0.622 0.641

DATE [22] MM21 0.577 0.629 0.647 0.793 0.809 0.815 – – –
MBE [17] AAAI21 0.561 0.576 0.595 0.651 0.663 0.673 – – –
CIMON [23] * IJCAI21 0.451 0.472 0.494 – – – – – –
CIBHash [27] IJCAI21 0.590 0.622 0.641 0.790 0.807 0.815 0.737 0.760 0.775
SPQ [15] ICCV21 0.768 0.793 0.812 0.766 0.774 0.785 – – –
NSH [36] IJCAI22 0.706 0.733 0.756 0.758 0.811 0.824 0.746 0.774 0.783
WCH Proposed 0.897 0.910 0.932 0.799 0.823 0.838 0.776 0.808 0.834

other patches to different degrees. More specifically, this attention mechanism
is very useful for multiple patches, especially when there are many classes of
objects and the positions are highly variable.
Remark 3: Why Do We Gather W in This Way? The purpose of Weighted
Labels is to use the maximum similarity between patches to guide the contrastive
objective. Using the maximum similarity between patches in Eq. 8, we can get
the most similar patch pair among all patches in the two images. Then the sum of
the maximum similarity is averaged. The model learns the fine-grained semantic
alignment between patches by applying the weighted label to the contrastive
loss.

5 Experiments

In this section, we conduct experiments on three datasets, including one single-
labeled dataset and two multi-labeled datasets, to evaluate our method.

5.1 Datasets and Evaluation Metrics

Three benchmark datasets are used in our experiments. CIFAR-10 [16] consists
of 60,000 images from 10 classes. We follow the common setting [10] and select
10,000 images (1000 per class) as the query set. The remaining 50,000 images
are regarded as the database. NUS-WIDE [5] has of 81 categories of images.
We adopt the 21-class subset following [36]. 100 images of each class are utilized
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as a query set, with the remaining being the gallery. MS COCO [19] is a bench-
mark for multiple tasks. We use the conventional set with 12,2218 images. We
randomly select 5,000 images as queries with the remaining ones the database.

Evaluation Metric. To compare the proposed method with the baselines,
we adopt several widely-used evaluation metrics, including the mean average
precision (mAP), top-K precision (P@K), precision-recall (PR) curves [37].

5.2 Implementation Details

For all three datasets, the images were resized to 224 × 224 × 3 and we adopt
the image augmentation strategies of [3]. The standard ViT-Base [7] was used
as the backbone, with patches of size and number 16 and 196, respectively. As
in previous work [23,27], we loaded a pre-trained model trained on ImageNet
to accelerate the convergence. We used the cosine decay method and trained 50
epochs for all models, with the initial learning rate set to 1 × 10−5.

5.3 Comparison with the SotA

Baselines. We compare WCH against 18 state-of-the-art baselines, including
3 traditional unsupervised hashing methods and 15 recent unsupervised hash-
ing methods. For fair comparisons, all the methods are reported with identical
training and test sets. Additionally, the shallow methods are evaluated with the
same deep features as the ones we are using.

Results. Table 1 shows the retrieval performance in mAP and Table 2 demon-
strates the precision of the first 1000 returned images. It can be clearly observed
that WCH obtains the best results on all three datasets for the two metrics.
Another interesting observation is that WCH significantly outperforms the pre-
vious works CIBHash and NSH on different hash bits and datasets. Note that
all three methods use contrastive learning. In addition, the P-R curves of WCH
and several baselines on CIFAR-10 and MS COCO are reported in Fig. 3, from
which it can also be discovered that the curves of our method are highly above
those of other methods for all three different code lengths.

5.4 Ablation Studies

In this subsection, we considered the following ablation experiments to verify
the effectiveness and contribution of each component of WCH, and the specific
results are shown in Table 3.

(i) ViT Baseline. We first investigate the enhancements that the ViT back-
bone brings to the unsupervised hashing domain. In this baseline, the class
token covering global features is applied directly to the hash head to gen-
erate a hash code characterizing the image. Subsequent contrastive loss is
used to update the network parameters, which form a design close to the
CIB [27] except that the network backbone differs. Regrettably, the applica-
tion of the ViT backbone alone is not sufficient to improve the performance
of the unsupervised hashing.
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Fig. 3. P-R curves comparison with other methods on CIFAR-10 and MS COCO.

Table 2. P@1000 results on CIFAR-10 and MS COCO.

Method CIFAR-10 MS COCO
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

AGH 0.306 0.321 0.317 0.602 0.635 0.644
DGH 0.315 0.323 0.324 0.623 0.642 0.650
HashGAN 0.418 0.436 0.455 – – –
GreedyHash 0.322 0.403 0.444 0.603 0.624 0.675
TBH 0.497 0.524 0.529 0.646 0.698 0.701
CIBHash 0.526 0.570 0.583 0.734 0.767 0.785
NSH 0.691 0.716 0.744 0.733 0.770 0.805
WCH 0.889 0.902 0.923 0.795 0.830 0.855

(ii) Without LR. We also reveal the impact of traditional quantization loss
and bit balance loss [9] on WCH. It can be seen that these conventional
regularizers have no significant improvement in the encoding quality. As a
result, we can attribute the good performance entirely to our design.

(iii) MA → mean. We use this baseline to demonstrate the validity of our
MA module. Here we remove the mutual attention mechanism of anchor
and positive samples in Eq. 6 and replace it with the averaging operation.
Although it also achieves trivially good results, there is still a noticeable
margin of difference with the performance of WCH, which indicates that
the motivation of mutual attention can play a positive role.

(iv) Weighted → hard. This baseline does not use weighted labels, but rather
the most fundamental hard labels, which means that the weighted con-
trastive learning degrades to the standard contrastive learning. The non-
negligible performance degradation in Table 3 precisely illustrates the short-
coming of standard contrastive learning, which cannot close the distance
between the anchor and similar negative samples in the feature space. This
also highlights the crucial role played by our core motivation from the side.
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Table 3. Ablation study results of mAP@1000 on MS COCO. The baselines are con-
structed by replacing some key modules of WCH.

Baseline 16 bits 32 bits 64 bits

(i) ViT Baseline 0.573 0.595 0.622
(ii) Without LR 0.773 0.810 0.828
(iii) MA → mean 0.742 0.782 0.805
(iv) weighted → hard 0.738 0.777 0.799
(v) Without scale 0.461 0.479 0.491

WCH 0.776 0.808 0.834

Fig. 4. Examples of top-10 retrieved results of 32-bit on CIFAR-10.

Fig. 5. 32-bit and 64-bit t-SNE visualization results on CIFAR-10.

(v) Without scale. In this baseline, we remove the operation defined in Eq. 9
and simply use the similarity matrix W in Eq. 8 as a weighted label during
the calculation of the loss. We can strikingly see an unexpectedly dramatic
performance slippage. Hence, affine mapping based on positive sample sim-
ilarity is a key factor to guarantee the effectiveness of weighted comparison
learning.

Results. Baseline (i) contradicts our intuition that directly replacing the back-
bone network with ViT can not bring meaningful performance improvement.
Baseline (iii) shows that MA is an effective solution to deal with the information
asymmetry problem for positive samples. We use baseline (iv) to validate our
core motivation that weighted contrast learning can substantially alleviate the
class collision problem of negative samples and thus further improve the retrieval
performance.
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Fig. 6. (a) mAP@1000 results with extremely short code lengths on CIFAR-10.
(b)&(c)Effects of different temperatures τ and τw on MS COCO.

5.5 Visualization and Hyper-parameters

Visualization. To more intuitively demonstrate the performance of our
method, we show the retrieved top-10 images on CIFAR-10 in Fig. 4, where
a high semantic accuracy can be observed from the results. In addition, to show
whether the embedded hash codes are discriminative enough for retrieval, the
t-SNE plots [24] of hash codes for both 32-bit and 64-bit on CIFAR-10 are also
illustrated in Fig. 5, where the plotted dots of different classes show obvious
boundaries between them, which means that the generated codes are separable
and shows the consistency with other results.

Hyper-parameters. In Fig. 6(a), we show the results for very short hash code
lengths on CIFAR10. Although the performance varies slightly depending on
the hyperparameter settings, it is generally stable and state-of-the-art. We also
evaluated the impact of the temperature coefficient τ of the WCE loss and
the temperature coefficient τw of computing the weighted labels on the final
performance of MSCOCO, and we depict these trends in Fig. 6(b) and (c).

6 Conclusion

In this paper, we propose a weighted contrastive hashing model to explore seman-
tic information based on fine-grained information interactions between patches
for image retrieval. The proposed mutual attention module can well solve the
inconsistency of the anchor image and the augmented images. A weighted coef-
ficient is calculated to weigh the similarities of the images in a training batch,
and it can better improve the hash code learning. Extensive experiments show
that the proposed method improves the state-of-the-art unsupervised hashing
scheme in image retrieval.
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Abstract. Cross-view geo-localization (CVGL) aims to retrieve the
images that contain the same geographic target content and are from
different views. However, the target content usually scatters over the
whole image, and they are indiscernible from the background. Thus, it
is difficult to learn feature representation that focuses on these contents,
rendering CVGL a challenging and unsolved task. In this work, we design
a Content-Aware Hierarchical Representation Selection (CA-HRS) mod-
ule, which can be seamlessly integrated into current deep networks to
facilitate CVGL. This module can help focus more on the target content
while ignoring the background region, thus as to learn more discrimi-
native feature representation. Specifically, this module learns hierarchi-
cal important factors to each location of the feature maps according to
their importance and enhances the feature representation based on the
learned factors. We conduct experiments on several large-scale datasets
(i.e., University-1652, CVUSA and CVACT), and the experiment results
show the proposed module can obtain obvious performance improve-
ment over current competing algorithms. Codes are available at https://
github.com/Allen-lz/CA-HRS.

Keywords: Geo localization · Feature selection · Image retrieval

1 Introduction

As a practical and challenging sub-task of image retrieval [14,27,30], cross-view
geo-localization (CVGL) aims to find the target images in one view among large-
scale candidates (gallery) that have the same contents with the input query image
in another view. Formally, there are three views of images, i.e., satellite-view,
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Input Image CVIM CVIM+CA-HRS

Fig. 1. Two examples of the input image (left), the learned feature maps by the baseline
CVIM (middle), and the learned feature maps by integrating the CA-HRS module
(right).

drone-view, and ground-view images. It contains three types of tasks according
to different views of the input and target images: Drone → Satellite with the
input image of drone-view and the target images of satellite-view; Satellite →
Drone with the input image of satellite-view and the target images of drone-
view; Ground → Satellite with the input image of ground-view and the target
images of satellite-view.

Recently, CVGL receives increasing attention as it benefits variant applica-
tions such as agriculture, aerial photography, event detection, and accurate deliv-
ery [10,18,27,32]. Current works for this task combine metric learning [2,14,15]
or domain adaptation [12,23] with deep neural networks to learn view-invariant
feature representation. More recent works further introduce manually annotated
orientation information to regularize training to improve CVGL performance.
However, this works either increase the model complexity and inference time or
incur additional annotation overhead, making them impractical and unscalable.
On the other hand, the target contents usually scatter over the whole image.
Current algorithms roughly find the content regions but can not well highlight
these regions to learn more discriminative feature representation. As shown in
Fig. 1, the learned feature representation is slightly obvious but can not be dis-
tinguished from the surrounding background regions.

To address these issues, we design a novel yet effective Content-Aware Hier-
archical Representation Selection (CA-HRS) module that helps to better focus on
the target content meanwhile suppress the background regions. We experimentally
find that it has higher activation values on the content regions and slightly lower
activation values on the background regions. Thus, it is expected to set the regions
with higher activation values the higher value and set the regions with lower acti-
vation values with lower values, and thus make the contents distinguished from
the background regions. To achieve this end, the CA-HRS module computes an
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average representation as a threshold. Then, it sets the locations with the acti-
vation values higher than this threshold as positive while those values lower than
this threshold as positive to obtain an enhancement coefficient map. Moreover,
the content regions usually have different scales for different images, and we pro-
pose to compute multi-scale enhancement coefficient maps, and combine them to
obtain the hierarchical enhancement coefficient maps. Finally, we design an adap-
tive residual fusion mechanism to seamlessly and flexibly integrate the CA-HRS
into current CVGL algorithms for feature enhancement to facilitate the perfor-
mance of CVGL. As shown in Fig. 1, by integrating the CA-HRS module into the
current cross-view image matching (CVIM) algorithm [30], it can learn feature
maps that obviously focus on the content regions while ignoring most of the back-
ground regions. Moreover, the CA-HRS incur no additional parameters and very
limited computational overhead (i.e., about 1.0%), and thus it can be integrated
into variant CVGL algorithms to boost their performance.

The contributions of this work can be summarized in the following. First,
we design a novel yet effective content-aware hierarchical feature selection (CA-
HRS) module that can help feature enhancement by focusing more on content
regions while ignoring the background regions. Second, we introduce an adaptive
residual fusion mechanism that can integrate the CA-HRS into current algo-
rithms flexibly and seamlessly. Finally, we conduct extensive experiments on the
large-scale University-1652, CVUSA, and CVACT datasets, and the experiment
results show that the proposed module can obviously improve the performance
of current state-of-the-art algorithms.

2 Relate Work

With the advancement of deep learning in images [4,16,17], cross-view geo-
localization based on deep learning has achieved significant development.
Siamese network [6] and metric learning are often used in image retrieval. The
contrastive loss can reduce the distance between two matched positive samples
and increase the distance between two unmatched negative samples [15]. The
triple loss can simultaneously reduce and increase the distance between positive
and negative samples [2,14]. There is still a lot of works that use metric learning
to train deep neural networks to learn discriminative features [7,8,11,22].

In order to reduce the distance between two different domains, the most direct
method is to transform the image features in one domain to another domain,
namely cross-domain adaptation task [5,28]. Lin et al. introduce a cross-view
feature translation approach to greatly extend the reach of image geo-localization
methods [12]. Shi et al. applied a regular polar transform to warp a satellite image
such that its domain is closer to that of a ground-view panorama [21]. Shi et al.
proposed a novel Cross-View Feature Transport (CVFT) technique to explicitly
establish cross-view domain transfer that facilitates feature alignment between
ground and satellite images [23].

The orientation information is also integrated into the neural network for
learning. Liu et al. integrated the orientation information of each pixel into the
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convolution neural network for cross-view geo-localization, which improved the
geo-localization accuracy [14]. Vo et al. proposed a new loss function, which
combined rotation invariance and orientation regression in the training process,
so that the network learned orientation and got a better feature representation
[24]. Rodrigues et al. proposed a semantic-driven data enhancement technology
that enables Siamese Network to discover objects that are difficult to capture
[20]. Then, the enhanced samples are input to a multi-scale attention embed-
ding network to perform the matching task. Zhu et al. [33] propose to estimate
the orientation and align a pair of cross-view images with unknown alignment
information.

In order to enable the network to focus on the feature extraction of images
in different domains. CBMA [26] simply combines convolutional layers with sig-
moid to extract key features. Zheng et al. applied Instance loss [31] to cross-view
geo-localization [30]. Satellite images, ground images, and drone images were
extracted by using corresponding backbone network to extract features. These
features share the same classifier. They continued to use this network structure
in their subsequent work LPN [25], LPN used a fixed division method to extract
local features using context, so that the features were discriminative. Arand-
jelovic et al. proposed NetVLAD [1], which is a scene recognition method. It
can extract local features and aggregate them to enhance the expressive ability
of features. the method can also be applied to CVGL. Hu et al. introduced a
CVM-Net [11], in which NetVLAD is embedded in Siamese network [6]. CVM-
Net extracts the local features and then integrate them for image retrieval and
geo-localization. Experiments show that the network with local features is better
than that with only global features.

3 Hierarchical Enhancement Coefficient Map

In this section, we present the computing process of the hierarchical enhancement
coefficient map (HECM) which helps to pay more attention to the important
content regions while ignoring the unimportant background regions. In the con-
text of the CVGL task, we observe the activation values of the content regions
are usually slightly higher than those of the background regions. Thus, it is
expected to increase the higher activation values even higher to emphasize the
content regions and meanwhile to decrease the smaller activation values to even
smaller to suppress the background. On the other hand, the different content
regions usually share different scales. To achieve the above end, we propose to
compute HECM that has higher important factors for regions with higher acti-
vation values and has smaller important factors otherwise.

Specifically, given the input feature maps of layer l, denoted as f l ∈
RW l×Hl×Cl

in which W l, H l and Cl are the width, height, and channel number,
we first compute an mean activation value for each location, formulated as

al =
1
Cl

Cl∑

c=1

f l,c, (1)
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where f l,c is the c-th feature map of f l. Then, average the activation values over
all locations to obtain the mean representation, formulated as

thrl0 =
1

W lH l

W l∑

w=1

Hl∑

h=1

alwh. (2)

As discussed above, we consider the regions with activation values higher than
the mean representation as important content region while those with activation
values smaller than the mean representation as unimportant background regions.
Intuitively, we can compute the ECM ml

0 ∈ RW l×Hl

, in which the value ml
0,wh

denote the important of location (w, h) and it can be computed by

ml
0,wh = 1(alwh ≥ thrl0). (3)

In this way, we can obtain an ECM ml
0 to indicate the importance of each loca-

tion. Considering different scales of content regions, we further introduce the aver-
age pooling with different kernel sizes that operates on the mean activation map
al to obtain the thresholds and ECMs for different scales. For scale i, we first per-
form an average pooling with a kernel size of kl

i × kl
i on al to obtain an new mean

activation map al
i ∈ RW l

i ×Hl
i . Then, the threshold can be computed by

thrli =
1

W l
iH

l
i

W l
i∑

w=1

Hl
i∑

h=1

ali,wh. (4)

Similarly, we compare the activation value of each location of awith the thresh-
old to obtain the corresponding ECM ml

i, in which ml
i,wh can be computed by

ml
i,wh = 1(alwh ≥ thrli). (5)

Finally, we combine all the ECMs to obtain the HECM ml. For each location
(w, h), the value can be compute by

ml
wh = 1 + log10(1 +

K∑

i=0

ml
i,wh), (6)

where K is the number of scales, and the log functions are used to normalize the
important values for more stable training.

Selection of the Kernel Sizes. To ensure seamless and flexible integration
with current CVGL algorithms, the kernel sizes of the pooling operations should
be automatically adjusted according to the size of the input feature maps. Con-
cretely, it is expected that the kernel size of the largest kernel can not large
than min(W l,H l)/2 and the kernel sizes of different pooling have great vari-
ance. Suppose there are K scales of pooling operation, we can first obtain the
maximal kernel size and base kernel variation stride:

kl
m = min(h,w)/s, (7)
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Fig. 2. A illustration of adaptive residual fusion (ARF). In particular, f̂l is the final
enhanced feature map of l-th layer, m̂l is the final hierarchical enhancement coefficient
map of CA-HRS of l-th layer.

slb = max(1,min(Wl,H
l)/K − 1). (8)

Then, we can compute the kernel size for the i-th by:

kl
i = kl

m − i × slb. (9)

4 Adaptive Residual Fusion Mechanism

As suggested in previous works, local information may be lost if the network goes
deeper. This may lead to fuzzy boundaries of the target content, and thus result-
ing in degration of the CVGL performance. Inspired by previous work [9], we
design an adaptive residual fusion (ARF) mechanism that takes the HECM for
enhancement to avoid losing the local information. Figure 2 presents an overall
computing process of the ARF mechanism. It first uses the bilinear interpolation
to re-sample the previous HECM ml−1 to the same size with ml, and adds them
to obtain the final HECM for layer l, formulated as

m̂l = ml + φbi(ml−1,W l,H l), (10)

where φbi is the bilinear interpolation operation that re-samples the ml−1 from
the size of W l−1 ×H l−1 to the size of W l ×H l. Once we obtain m̂l, we perform
dot product of the final HECM m̂l and each channel of the feature maps:

f̂ lc = f lc · m̂l. (11)

We perform the operation for all channels and obtain the final enhanced
feature representation f̂ l.

5 Experiments

In this section, we present in-depth ablative studies to analyze the effect of each
component of the proposed CA-HRS module. We also combine the CA-HRS
module with current leading algorithms and compare it with state-of-the-art
algorithms to show its superiority.
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5.1 Experimental Settings

Datasets. For a fair comparison, we follow previous works [25] to conduct
experiments on the CVUSA [27], CVACT [14], and University-1652 [30] datasets.
CVUSA and CVACT are two most-used datasets that cover the ground-view
and satellite-view images and are used to evaluate the subtask of Ground →
Satellite. Therein, CVUSA contains a training set of 35,532 ground-and-satellite
image pairs and a validation set of 8884 image pairs. CVACT contains 35,532
ground-and-satellite image pairs for training, 8884 image pairs for validation,
and 92,802 image pairs for testing. There exists merely one true-matched image
for each query image on the CVUSA test set and exist several true-matched
images for each query image on the CVACT test set. Different from the above
two datasets, University-1652 covers the satellite-view and drone-view images,
which are used to evaluate both two subtasks of Satellite → drone and Drone
→ Satellite. Specifically, in the Satellite → Drone task, it provides 37,855 drone-
view images in the query set and 701 true-matched satellite-view images and 250
satellite-view distractors in the gallery. There is only one true-matched satellite-
view image under this setting. In the Drone → Satellite task, it provides 701
satellite-view query images, and 37,855 true-matched drone-view images and
13,500 drone-view distractors in the gallery. There are multiple true-matched
drone-view images under this setting.

Implementation Details. We only perform simple data enhancement with
random cropping at a certain size and a 0.5 probability of horizontal flipping for
all images that are input to the network. Since there are few aerial images, we
also perform a 90◦ random rotation operation on images. None of the above data
enhancements are used in the testing stage. The height and width of the input
image are set to 256. n and s are set to 3 and 2 respectively, the correspond-
ing scale number is 3. For the first 5 epochs of training, a warmup strategy is
utilized to slowly increase the learning rate to its initial value. And, after every
80 epochs, the learning rate change to 1/10 of its original value. The Stochastic
Gradient Descent (SGD) is used as the optimizer. We adopt the structure of
D2 for backbone ResNet-50, and adopt CA-HRS module after the last convolu-
tional layer for backbone VGG-16 since VGG-16 does not divide the layers like
ResNet-16.

Evaluation Protocol. In the evaluation phase, the feature map output by
backbone is transformed into a vector through the shape change of the tensor.
Then the vectors belonging to the query image and gallery image will be nor-
malized. Finally, the cosine similarity between them is calculated to measure
the similarity between images, and the retrieval result is generated according to
the similarity. The images ranked in the top-10 of similarity will be used as the
retrieved results.
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Table 1. Comparison of R@1 and AP of different integration strategies. The best
results are highlighted in bold.

Structure Drone → Satellite Satellite → Drone

R@1 AP R@1 AP

S1 62.85 66.54 75.46 62.28

S2 63.01 67.32 77.03 62.89

S3 63.85 68.36 78.07 64.82

S4/D4 63.16 67.74 77.19 63.05

D3 63.54 68.42 77.51 63.62

D2 64.87 69.28 80.03 64.73

D1 64.02 68.76 78.73 64.17

Table 2. Comparison of R@1 and AP of different scale numbers. The best results are
highlighted in bold.

Scale number Drone → Satellite Satellite → Drone

R@1 AP R@1 AP

1 63.13 67.52 76.89 63.01

2 63.93 68.01 77.85 63.28

3 64.87 69.28 80.03 64.73

4 64.16 68.53 79.19 63.92

5 64.09 68.34 78.75 63.64

6 63.82 68.17 78.46 63.33

Table 3. Comparison of R@1 and AP of the CVIM+CA-HRS with and without the
ARF mechanism. The best results are highlighted in bold.

Method Drone → Satellite Satellite → Drone

R@1 AP R@1 AP

CVIM+CA-HRS w/o ARF 63.12 67.48 78.32 64.11

CVIM+CA-HRS w/ ARF 64.87 69.28 80.03 64.73

5.2 Analyses the CA-HRS Module

To analyze the effect of the CA-HRS module, and integrate it into two baselines,
namely cross-view image matching (CVIM) [30] and local pattern network (LPN)
[25]. Both two algorithms use the ResNet-50 and VGG-16 that have four layer
blocks as the backbone.

Analysis of Integration Strategy. As a plug-and-play module, CA-HRS can
be integrated into any layer of the deep neural network. However, it may lead
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Table 4. Comparison of R@1, R@Top1% and AP of the LPN and CVIM with and
without the CA-HRS module foar the Satellite → Drone, Drone → Satellite and Ground
→ Satellite subtasks on the University-1652, CVUSA and CVACT datasets. The best
results are highlighted in bold.

Dataset Task Methods Backbone R@1 R@Top1% AP

University-1652 Satellite → Drone CVIM [30] ResNet-50 74.47 97.15 59.45

CVIM [30] + CA-HRS ResNet-50 80.03 98.29 64.27

LPN [25] ResNet-50 86.45 – 74.79

LPN [25] + CA-HRS ResNet-50 86.88 98.72 74.83

Drone → Satellite CVIM [30] ResNet-50 58.23 86.00 62.91

CVIM [30] + CA-HRS ResNet-50 64.87 90.45 69.28

LPN [25] ResNet-50 75.93 – 79.14

LPN [25] + CA-HRS ResNet-50 76.67 93.76 79.77

CVUSA Ground → Satellite CVIM [30] VGG-16 43.91 91.78 –

CVIM [30] + CA-HRS VGG-16 48.83 93.96 53.82

LPN [25] VGG-16 79.69 98.50 –

LPN [25] + CA-HRS VGG-16 84.89 99.39 87.18

LPN [25] ResNet-50 85.79 99.41 –

LPN [25] + CA-HRS ResNet-50 87.16 99.49 89.15

CVACT Ground → Satellite LPN [25] VGG-16 73.83 95.87 –

LPN [25] + CA-HRS VGG-16 77.15 96.96 80.11

LPN [25] ResNet-50 79.99 97.03 –

LPN [25] + CA-HRS ResNet-50 80.91 97.07 83.20

to different effects if integrating this module into different layers. In this part,
we analyze the effect of this choice. Here, we conduct experiments using the
CVIM baseline with ResNet-50 backbone on the University-1652 dataset. We
design two categories of integration strategies: shallow layer integration that
mainly integrates the CA-HRS in shallow layers and deep layer integration that
mainly integrates the CA-HRS in deep layers. As shown in Table 1, the back-
bone of ResNet-50 contains 4 layers, Sx indicates that CA-HRS is preferentially
embedded in the shallow layers of ResNet-50, Dx indicates that CA-HRS is
preferentially embedded in the deep layers of ResNet-50, and x represents the
number of CA-HRS. We find the performance increasingly becomes better from
strategy S1 to S3, as stacking more CA-HRS may better enhance feature rep-
resentation. However, the performance degrades when adding more CA-HRS,
i.e., S4. One possible reason for this phenomenon is that may over-emphasize
the content regions and lose some less-obvious but equally-important regions.
Thus, the performance inversely increases from setting D4 to D2. As shown D2
achieves the best performance for both the Drone → Satellite and Satellite →
Drone subtasks. Thus, we select the D2 strategy.

Analysis of Scale Number. The number of scales in the CA-HRS module
controls the richness of the scale information and it also plays key roles in the
CVGL tasks. To analyze its effect, we further conduct experiments that vary
the scale number from 1 to 6, and present the performance comparisons on the
University-1652 dataset. As shown in Table 2, the R@1 and AP both the Drone
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→ Satellite and Satellite → Drone subtasks increases obviously when increasing
the scale number from 1 to 3, as it enhances feature representation from more
scale and thus focus more and better on the content regions. However, the R@1
and AP become saturate or even worse when further increasing it from 3 to 6.
Obviously, the scale information is saturated, and thus adding more scale can
not help capture more information and have the risk to be over-fitting. Based
on these analyses, we set the scale number as 3 in the experiments.

Analysis of the ARF Mechanism. In this work, we introduce the ARF mech-
anism to better update the HECM. Here, we further conduct an experiments to
analyze its contribution by comparing the results that removes this mechanism.
As shown Table 3, we find the R@1 and AP suffer from evident drop on both
Drone → Satellite and Satellite → Drone subtasks.

Analysis of Complexity and Efficiency. As we introduce an additional CA-
HRS module, we also analyze the model complexity and efficiency. As discussed
above, the CA-HRS module does not contain any learnable parameters, and thus
the model size is the same as the baselines without integrating the CA-HRS
module. Here, we main analyze the number of multiply-accumulate operations
(MAC) and inference time with and without the CA-HRS module. We find the
number of MAC are nearly the same for both the CVIM and LPN baselines with
and without the CA-HRS modules. In addition, the inference time increases from
6.80 ms to 6.87 ms and from 6.95 ms to 7.01 ms, with the relative increases of
1.03% and 0.86%, respectively. These comparisons suggest the CA-HRS does not
incur additional computation overhead and is practical for real-world applica-
tions.

Table 5. The comparison results of LPN with CA-HRS module and current state-of-
the-art competitors for the Drone → Satellite and Satellite → Drone subtasks on the
University-1652 dataset. The best results are highlighted in bold.

Methods Dataset Backbone Drone → Satellite Satellite → Drone

R@1 AP R@1 AP

CVIM [30] University-1652 ResNet-50 58.49 63.31 71.18 58.74

Contrastive Loss [13] University-1652 ResNet-50 52.39 57.44 63.91 52.24

Triplet Loss (M = 0.3) [3] University-1652 ResNet-50 55.18 59.97 63.62 53.85

Triplet Loss (M = 0.5) [3] University-1652 ResNet-50 55.58 58.60 64.48 53.15

Soft Margin Triplet Loss [11] University-1652 ResNet-50 53.21 58.03 65.62 54.47

LPN [25] University-1652 ResNet-50 75.93 79.14 86.45 74.79

LPN+CA-HRS University-1652 ResNet-50 76.67 79.77 86.88 74.83

Contribution of CA-HRS Module. As the above-mentioned description,
we use the CVIM and LPR algorithms as baselines. Here, we emphasize the
comparison with these two baselines to show the contribution of the CA-HRS
module.
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Table 6. The comparison results of LPN with CA-HRS module and current state-
of-the-art competitors for Ground → Satellite subtask on the CVUSA and CVACT
datasets. The best results are highlighted in bold. - indicates the corresponding results
are not provided.

Methods Backbone CVUSA CVACT

R@1 R@5 R@10 R@Top1% R@1 R@5 R@10 R@Top1%

MCVPlaces [27] AlexNet – – – 34.40 – – – –

Regmi [19] X-Fork 48.75 – 81.27 95.98 – – – –

Siam-FCANet [2] ResNet-34 – – – 98.30 – – – –

CVM-Net [11] VGG-16 18.80 44.42 57.47 91.54 20.15 45.00 56.87 87.57

Zhai [29] VGG-16 – – – 43.20 – – – –

Orientation [14] VGG-16 27.15 54.66 67.54 93.91 46.96 68.28 75.48 92.04

CVIM [30] VGG-16 43.91 66.38 74.58 91.78 31.20 53.64 63.00 85.27

CVFT [23] VGG-16 61.43 84.69 90.94 99.02 61.05 81.33 86.52 95.93

LPN [25] VGG-16 79.69 91.70 94.55 98.50 73.85 87.54 90.66 95.87

LPN+CA-HRS VGG-16 84.89 95.18 97.04 99.39 77.15 90.11 92.50 96.96

LPN [25] ResNet-50 85.79 95.38 96.98 99.41 79.99 90.63 92.56 97.03

LPN+CA-HRS ResNet-50 87.16 95.98 97.55 99.49 80.91 90.95 92.93 97.07

(i) Comparisons with the CVIM baseline. To ensure fair comparisons, we
conduct experiments to compare the results in paper [30]. Here, we perform the
comparison with the ResNet-50 as the baseline on the University-1652 dataset
and with the VGG-16 as the baseline on the CVUSA dataset. The results are
presented in Table 4. On the University-1652 dataset, integrating the CA-HRS
module obviously improves all metrics on both Satellite → Drone, Drone →
Satellite subtasks. For example, it outperforming the baseline CVIM by 5.56%,
1.14%, 4.82% in R@1, R@Top1 and AP for the Satellite → Drone task, and
6.64%, 4.45%, and 6.37% for the Drone → Satellite subtask, respectively. On
the CVUSA dataset, it also obtains evident improvement by integrating the
CA-HRS module. Specifically, the R@1 and R@Top1 improvements are 4.92%
and 2.18%. These comparisons well demonstrate the effectiveness of the CA-HRS
module.

(ii) Comparison with the LPN baseline. LPR is a more recent-proposed algo-
rithm and it achieves better overall performance. Here, we also compare with
the results that are reported in the original paper [25] for fair comparisons. Here,
we conduct experiments with ResNet-50 as the backbone on the University-1652
dataset and with both ResNet-50 and VGG-16 on the CVUSA and CVACT
datasets. As shown in Table 4, integrating the CA-HRS with the LPN algorithm
also leads to performance improvement over all settings. On the University-1652
dataset, integrating the CA-HRS module improves the R@1 and AP from 86.45%
and 74.79% to 86.88% and 74.83% for the Satellite → Drone and from 75.93%
and 79.14% to 76.67% to 79.77%, respectively. On the CVUSA and CVACT
datasets with VGG-16 as the backbone, the R@1 and R@Top1 improvements are
5.20% and 0.89% on the CVUSA dataset and 3.32% and 1.09% on the CVACT
dataset. These comparisons further suggest that the CA-HRS can generalize to
different baseline algorithms to facilitate the CVGL task.
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5.3 Comparison with State of the Arts

In this part, we present the comparisons with current state-of-the-art algorithms
to show the superiority of the proposed CA-HRS. Here, we present the results
of LPN+CA-HRS as it achieves the overall best performance.

Performance on University-1652. As all of the current algorithms that have
reported their results on University-1652 use the ResNet-50 as the backbone,
we also present our results with the same backbone for fair comparisons. As
shown in Table 5, LPN is the previous best-performing algorithm for both the
Drone → Satellite and Satellite → Drone tasks, which obtains very obvious
improvement compared with early works. By integrating the CA-HRS module,
it can further improve the performance. Specifically, it leads to 0.74% and 0.43%
R@1 improvement on both two subtasks, respectively.

Performance on CVUSA and CVACT. On the CVUSA and CVACT
datasets, current algorithms use ResNet-50, VGG-16, and some other networks
as backbones. For fair comparisons, we divide them into three groups accord-
ing to the used backbone networks for fair comparisons, i.e., ResNet-50-based,
VGG-16-based, and other-net-based. Besides, current algorithms [25] [23] mainly
present the R@K (K=1,5,10) and R@Top1% and do not report the AP, and
thus we also present these metrics for comparisons. The comparison results are
presented in Table 6. When using the VGG-16 as the backbone, the current best-
performing algorithm is also LPN that achieves the R@1, R@5, R@10, R@Top1%
of 79.69%, 91.70%, 94.55%, 98.50% on the CVUSA dataset and 73.85%, 87.54%,
90.66%, 95.87% on the CVACT dataset. By integrating the CA-HRS module
into the LPN, it boosts these metrics by 5.20%, 3.48%, 2.49%, 0.89% on the
CVUSA dataset and 3.30%, 2.57%, 1.84%, 1.09% on the CVACT dataset. It is
noteworthy that the improvement is more obvious for the more strict metric.
When using the ResNet-50 as the backbone, the LPN can achieve even better
performance compared with those using VGG-16. Expectedly, it can still improve
the performance when integrating the CA-HRS module.

6 Conclusion

In this work, we design a novel yet effective content-aware hierarchical represen-
tation selection module that can be seamlessly integrated into current CVGL
algorithms to facilitate the performance of CVGL. The proposed module helps
to locate the content regions while ignoring the background regions to learn dis-
criminative feature representation. We conduct extensive experiments on multi-
ple CVGL datasets (e.g., University-1652, CVUSA and CVACT) to demonstrate
the superiority of our proposed module.
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Abstract. Deep neural networks tend to be vulnerable to catastrophic
forgetting when learning new tasks. To address it, continual learning
has become a promising and popular research field in recent years.
It is noticed that plentiful research predominantly focuses on class-
incremental (CI) settings. However, another practical setting, domain-
incremental (DI) learning, where the domain distribution shifts in new
tasks, also suffers from deteriorating rigidity and should be empha-
sized. Concentrating on the DI setting, in which the learned model is
overwritten by new domains and is no longer valid for former tasks, a
novel method named Consolidating Learned and Undergoing Experience
(CLUE) is proposed in this paper. In particular, CLUE consolidates for-
mer and current experiences by setting penalties on feature extractor
distortion and sample outputs alteration. CLUE is highly applicable to
classification models as neither extra parameters nor processing steps
are introduced. It is observed through extensive experiments that CLUE
achieves significant performance improvement compared with other base-
lines in the three benchmarks. In addition, CLUE is robust even with
fewer replay samples. Moreover, its feasibility is supported by both the-
oretical derivation and model interpretability visualization. The code is
available at: https://github.com/Multiplied-by-1/CLUE.

1 Introduction

Humans are born with the ability to learn continuously, adapting to new scenar-
ios without forgetting previous knowledge when facing the ever-changing world.
However, when deep neural networks are applied in learning new tasks, sharp
declines will be observed in the performance of previous ones, which is called
catastrophic forgetting [12]. Since multiple new training samples, unpredictable
scenario changes, and novel requirements in new tasks keep emerging as time
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passes by, making it impractical to seek a once-for-all training scheme [1,23,35],
alleviating forgetting in continual learning [23,35] is of great significance.

(a) (b)

Fig. 1. (a) Difference between CI and DI learning. CI learning shares all the domains
and divides the classes into tasks, while DI learning shares all the classes and possess
different domains in each task. (b) DI learning also faces a tradeoff between rigidity
and plasticity - allowing weights to be accessible to all changes leads to forgetting while
penalizing and forbidding any weight change results in failure of learning new tasks.

Though abundant works have focused on continual learning [6,18,21,23,35],
the majority only consider class-incremental (CI) scenario [18,21], where differ-
ent classes are distributed into sequentially-appearing tasks. Nevertheless, in real
cases, sometimes it is the domain distribution that changes in the incoming tasks
instead of the classes. For example, regarding autonomous driving, though the
target objects to classify, such as cars, cyclists, and pedestrians, are always the
same, the domain may shift due to different weather, location, and time. Thus,
though being ignored currently, domain-incremental (DI) [35] learning is also
an important and urgent research topic. The difference between CI continual
learning and DI continual learning is depicted in Fig. 1(a).

Besides, the same as its CI counterpart, DI classification also faces the
rigidity-and-plasticity delimma [6]. Namely, for continual learning methods,
allowing enough plasticity might result in catastrophic forgetting, while allowing
no degradation in previous tasks may lead to the incapability of transferring to
new tasks, which is illustrated in Fig. 1(b).

Since the up-to-date research in domain-incremental continual learning
[32,33,36,39] does not have a unified problem setting, we first clarify the prob-
lem setting following the principles in [35]. Then, to find the main culprit of
catastrophic forgetting in DI settings, we conduct preliminary experiments to
observe the performance of deep learning models facing sequential tasks. As
is shown in Fig. 2, when learning novel tasks, the changes in data distribution
lead to an alteration of the original feature extractor, which further creates a
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distorted attention map and invalid logits (output before Softmax) of previous
data, contributing to the misclassification.

Fig. 2. Results of preliminary experiments. Facing novel tasks, the changes in domain
distribution lead to distorted attention maps and invalid logits outputs, contributing
to the misclassification. Left shows an example in the Digits benchmark while right
shows an example in the Pictures benchmark.

In order to alleviate forgetting, the feature extractor updated with data in
novel distribution should remain valid for previous data. Therefore, a Consolidat-
ing Learned and Undergoing Experience (CLUE) method is proposed to main-
tain the performance of old tasks when training on novel ones. CLUE can be
applied to all deep classification models and ensure an unchanged network archi-
tecture without additional calculation overhead. In CLUE, a network knowledge
distillation loss and a stored data regularization loss are respectively utilized to
increase the rigidity of the feature extractor and maintain the logits output dis-
tribution. CLUE greatly reduces forgetting and achieves good performance com-
pared to baselines on three domain-incremental benchmarks - Digits, Pictures,
Processing - we arrange in this paper. Besides, it shows remarkable robustness
towards changes in the buffer size (numbers of stored replay samples), which
greatly lessen storage overhead. Moreover, the feasibility of CLUE is supported
by mathematical derivation and neural network interpretability visualization.
Our main contributions are as follows:

– We clarify the problem setting of domain-incremental (DI) classification,
define the metrics, and find the primary cause of forgetting in DI settings.

– For DI settings, we propose a Consolidating Learned and Undergoing Experi-
ence (CLUE) method, which consolidates knowledge by two additional losses
from network and data aspects without introducing extra parameters or pro-
cessing steps, and can be applied to mainstream deep classifiers.

– CLUE achieves remarkable performance compared with other baselines on
three benchmarks - Digits, Pictures, and Processing - from different domain-
incremental aspects, which are arranged using existing open-sourced datasets.

– Further experiments show that CLUE also possesses strong robustness when
buffer size changes. Besides, the feasibility of CLUE is also supported by
theoretical derivation and model interpretability visualization.
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2 Related Work

Continual Learning
An increasing amount of research [18,21] tries to alleviate forgetting in con-

tinual learning settings. Regarding image classification, the most common main-
stream method is the replay-based method [6,18,21]. The simple-yet-efficient
method store samples from previous tasks and merge them with data of novel
tasks [6]. Recent years has witnessed a great evolution of replay-based methods,
from storing raw samples [3,4,17,25] to synthetic image generators [31], inter-
mediate features [38] or hidden representations [34], compressed embeddings [9]
and prototypes [43]. Other non-replay methods may set some regularization.
By attaching a term to the loss function to prevent weights from unwanted
changes [12,42], orthogonally modifying weights [41] or applying knowledge dis-
tillation [15] to maintain the performance, those methods help to avoid forget-
ting. Another typical method is to redesign the architecture into a growable
network [29,40] or apply a masked network [7,19,20,30] to allow training of
novel classes. However, those architecture-based methods tend to be efficient
only when the task label is available in reference [6,18,35].

Nevertheless, the above research mainly focuses on class-incremental classi-
fication tasks, where novel classes following the same domain distribution will
appear in new tasks. In this paper, we concentrate on the domain-incremental
setting and propose our method to avoid catastrophic forgetting depending on
why performance drops facing newly appeared alien domains.

Continual Domain Adaptation
Domain adaptation [24,37], where training data and target test data are

from different domains, has been another popular research topic. Nevertheless,
it only prioritizes performance in the target domain without caring about catas-
trophic forgetting, which is partially different from continual learning settings.
Some recent work begins to handle forgetting in continual domain adaptation.
However, the up-to-date research [32,33,36,39] does not have a unified problem
setting. [32] focuses on class-incremental learning when cross-domain training
sets are available. In [39], both domains and classes will increment in future
tasks. Instead of sequentially appearing tasks, the source and target domains’
performance is focused in [33]. Besides, most of them are based on heavy image
preprocessing [36] or expandable network [32,39] structure, which introduces
additional computational overhead and may be invalid for some specific deep
learning classifiers and practical application.

Therefore, this paper simplifies and clarifies the definition of DI image classifi-
cation as stated in [35]. Besides, we propose a continual learning method without
additional training overhead, such as image pre-processing or meta-learning cal-
culations, and ensure that the network architecture remains unchanged facing
novel tasks, which is applicable for all deep learning classifiers.
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3 Method

3.1 Problem Statement

Assuming Dtrain = {Dt}Tt=1 is the domain-incremental classfication training
dataset with T tasks, each task satisfies Dt = {(It,i, ct,i)}|Dt|

i=1 with |Dt| samples.
In a training image sample of task t, (It,i, ct,i), It,i represents for the ith image,
and ct,i is its class label. Categories are shared in all tasks. Namely, ct,i ∈ C, t =
1, 2, ..., T , where C is the set of all classes. Besides, each task t belongs to one
specific domain d without overlapping with others.

While training on task t, only current data Dt is available. Besides, a
small buffer B = {(Ib, info)}|B|

b=1 is also allowed to store former samples and
corresponding information, where the buffer size |B| should be far less than
|Dt|, t = 1, 2, ..., T .

The Goal of DI Classification
The optimizing goal for learning task t is to minimize the loss of classifying

all classes in learned and undergoing tasks when only Dt ∩B is available, which
can be presented as:

min[
|Di|∑

j=1

LCE(F (Θt; Ii,j), ci,j)]ti=1 (1)

where LCE represents the cross-entropy loss function, F represents forwarding
propagation calculation, and Θt is the current model.

During reference, Dtest is used to evaluate the performance, where all the
domains {d1, d2, ..., dt} are included.

Metrics of DI classification
In the DI continual learning setting, task-average accuracy and Forgetting

are the evaluation metrics.
In realistic situations, sample numbers might vary between domains because

data in a particular domain (e.g., hand-written digits) might be easier to collect.
To avoid overlooking the performance in some scenes with fewer test samples, we
calculate the mean classification accuracy of every task, which can be formulated
as:

ACCavg =
1
T

T∑

t=1

ACC(t, T ) (2)

where ACC(t, T ) means the classification accuracy of task t after learning the
T th task, the end of continual learning.

Forgetting is another commonly used continual learning metric reflecting the
severity of forgetting [4]. However, only measuring the absolute accuracy drops
in DI settings might be unreasonable since learning difficulty varies between
domains. For example, training hand-written digits might achieve a higher accu-
racy than digits in street scenes. Thus, the absolute accuracy decay when catas-
trophic forgetting happens might be more significant in hand-written digits.
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Fig. 3. The framework of CLUE. Replay images and corresponding logits are stored
in the fixed memory. Network loss and Data loss are utilized to maintain the rigidity
of feature extractor to consolidate the learned and undergoing experiences.

Therefore, ensuring the balance between domains, we also calculate task-average
forgetting:

Favg =
1
T

T∑

t=1

max(ACC(t, t) − ACC(t, T ), 0)
ACC(t, t)

(3)

3.2 Consolidating Learned and Undergoing Experience (CLUE)

Motivation and Framework
As shown in Fig. 2, when a deep neural network faces sequential tasks from

alien domain distributions, the weights in the original model adapt themselves to
classify samples following the new domain distribution. The overwritten weights
then lead to distorted attention maps of former task samples, which results in
the invalid logits output and incorrect classification. Figure 2 shows how the
handwritten digit ‘2’ is misclassified into ‘4’ and ‘1’ after learning street scene
and synthetic numbers because of no-more appropriate feature extractor and
how the sketch image of ‘Dog’ is classified into ‘Horse’ after training on comic,
painting and photos.

Thus, the main reason for forgetting tends to differ from that of the CI
setting, where unbalanced, fully connected layers contribute most to forgetting.
In this paper, focusing on DI problems, we propose CLUE that maintains the
feature extractor’s performance on previous tasks.

Figure 3 shows the overall framework of CLUE. Two loss functions concerning
the original network and data are used to consolidate the learned and undergoing
tasks, apart from the common cross-entropy classification loss. The training for
each task requires two steps - updating the model and refreshing the buffer. In
the first step, a network loss is calculated as the knowledge distillation between
former and updated networks using current data. On the other hand, a data loss
controls the logits alteration of stored images in the buffer. With both of the
loss functions, the model is updated. In the second step, the buffer is renewed
with random sampling, where the allowed account of stored images is equally
arranged for each task. Old samples are randomly dropped from the buffer if it
is full, while new ones are selected from the current task to fill the vacancy. Both
the image and its logits are stored.
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Loss of Learned Network
Since (Ii,j , ci,j) ∼ Di, i = 1, 2, ..., t − 1 in equation (1) is not available when

learning task t, we need to estimate the optimization goal in (1) using available
data. Knowledge distillation loss [11] can be used to measure the changes when
training the model. Thus, the feature extractor can be prevented from becoming
invalid in former tasks. Utilizing data in current tasks, we can calculate the
model’s output before updating and compare it with the output after training
the current task. The final network loss applying knowledge distillation can be
written as:

Lnet = −
|Dt|∑

j=1

(F (Θt−1; It,j)/Tem) log(F (Θt; It,j)/Tem) (4)

where |Dt| represents the number of samples in current task t, Θt−1 and Θt

respectively represents the model before and after training task t, and Tem ≥ 1
is the temperate that rescale the output and is set to be 2 following [15] in this
paper.

The supplement will deliver a detailed formula derivation about why Lnet

estimate equation (1) and can be used in optimization.

Loss of Learned Samples
Another method to estimate equation (1) is to take advantage of the stored

samples in the replay buffer. The replay samples directly guarantee the model
performance on old tasks. To keep the output logits the same as when the replay
sample is trained, we minimize the distance between logits of the current model
and stored logits. The data loss Ldata can be represented as:

Ldata =
|B|∑

b=1

||F (Θt; Ib) − zb||22 (5)

where |B| is the buffer size, Ib represents the stored image, and zb represents its
corresponding stored logits.

L2 norm is used instead of the cross-entropy loss, whose effectiveness is fur-
ther discussed in the ablation study. Besides, please refer to the supplement for
a detailed theoretical derivation of how Ldata relates to equation (1).

Overall Loss Function
Attaching Lnet and Ldata to the training loss of current classification task

LCE , we will get the overall loss function to update training models under the
CLUE framework:

Lall = LCE + λ1Lnet + λ2Ldata (6)

where λ1 and λ2 are both hyper-parameters balancing different losses.
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4 Results

Benchmarks
The following three benchmarks are used in this paper:

Digits. We organize commonly-used digit datasets as the Digits benchmark,
sorting them from simple to complex. The four tasks appear sequentially in
the order of MNIST [13], MNIST-M [8], SVHN [22], Synthesis [28] to test the
continual learning ability of methods.

Pictures. PACS dataset [14] contains object images of various types, from
line sketches to real pictures, where the object categories are shared between
domains. We also arrange four tasks orderly from simple to complex. Sketch,
cartoons, art paintings, and authentic photo images appear sequentially.

Processing. STL10 [5] contains ten categories of animal images. Here, we per-
form image processing on STL10 to divide four different types of domains. We use
PyTorch’s official transform tool [26] for image processing and set four sequential
tasks for brightness, grayscale, sharpness, and contrast changes.

Through benchmarks from the three different aspects, we investigate the
performance of methods for continual learning in the DI settings. Please refer to
the supplement for more details concerning benchmarks.

Compared Baselines
We first implement two basic methods as upper and lower bounds for perfor-

mance comparison in continual learning. Naive, which means that all weights
in the original classifier are variable for finetuning facing novel tasks, with-
out adding any continual learning approach, is considered the theoretical lower
bound. Joint training, where it is assumed that data of all tasks are avail-
able simultaneously to train the model together, is considered the theoretical
upper bound. It is worth noting that they are not actual experimental upper
and lower bounds. In some cases, continual learning methods may exceed the
range. For other comparison methods, we implement LwF [15], EWC [12], and SI
[42] three regularization-based method, where knowledge distillation or weight
update methods are utilized to control network changes. With regard to replay-
based methods, Replay [27], DER [2], DER++ [2] are implemented where replay-
ing raw samples and feature vectors are both included.

Implement Details
All experiments are conducted on RTX 3090 GPUs. We use the same clas-

sifier backbone to ensure fair comparisons between methods and implement all
methods in the Avalanche [16] continual learning framework with PyTorch [26].

ResNet-18 [10] is used for all tasks. Besides, we use an SGD optimizer with a
learning rate of 0.01 and a momentum of 0.9 for all experiments. The batch size
for the Digits benchmark is 128, while the Pictures and Processing benchmark
have a batch size of 64. Training epochs are set to be 20 for Digits and Pictures
and 40 for Processing.
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Table 1. Performance comparision on different benchmarks (%)

Benchmark 1: Digits Benchmark 2: Pictures Benchmark 3: Processing

Matrics ACCavg ↑ ACCavg ↑ ACCavg ↑
Naïve 64.52 ± 0.25 66.91 ± 1.82 68.88 ± 0.54
LwF 71.89 ± 1.26 84.03 ± 0.75 73.98 ± 1.35
EWC 62.28 ± 3.06 69.80 ± 2.78 69.98 ± 1.20
SI 64.60 ± 2.22 69.65 ± 2.96 66.47 ± 1.82
Replay 78.73 ± 0.54 87.32 ± 0.64 77.52 ± 0.73
DER 79.37 ± 0.53 87.84 ± 0.99 75.58 ± 1.02
DER++ 80.27 ± 0.93 88.68 ± 0.28 75.28 ± 1.01
Ours 84.81 ± 0.31 90.16 ± 0.82 79.13 ± 0.98
Joint 90.67 ± 0.14 88.30 ± 1.70 88.12 ± 0.41
Matrics Favg ↓ Favg ↓ Favg ↓
Naïve 42.24 ± 0.24 38.24 ± 2.45 23.29 ± 0.57
LwF 31.86 ± 1.88 13.56 ± 1.58 18.18 ± 1.49
EWC 44.97 ± 4.56 34.61 ± 4.15 21.85 ± 1.83
SI 42.32 ± 3.45 34.21 ± 4.33 27.38 ± 2.85
Replay 22.91 ± 0.72 9.36 ± 0.70 6.80 ± 2.04
DER 20.52 ± 0.71 3.77 ± 0.55 6.61 ± 2.22
DER++ 19.23 ± 1.57 3.95 ± 1.05 8.28 ± 1.93
Ours 7.23 ± 0.44 1.34 ± 0.18 5.03 ± 1.21
Joint - - -

To determine the hyperparameters λ1 and λ2 in our method, we use the grid
parameter tuning method. λ1 is determined to be 0.8, 0.2, and 0.5 for the Digits,
Pictures, Processing benchmark. λ2 is decided to be 0.1 for all benchmarks.

4.1 Performance Comparison

Results are indicated in Table 1 and Fig. 4. Table 1 shows the metric results of
different methods on the three benchmarks. Besides, the dynamic change plot
of overall accuracy, which is different from the task-average accuracy ACCavg,
is depicted in the left part of Fig. 4. The eventual accuracy of all tasks after
learning the last one is plotted in the right part of Fig. 4.

Table 1 shows that CLUE exceeds other methods by a large margin, with
84.81%, 90.16%, and 79.13% of ACCavg in each benchmark. It is remarkable
that in the Picture benchmark, CLUE even surpasses the upper bound Joint. It
is probably because the obvious difference between different domains confuses
the neural network when training them jointly. However, the neural network can
be trained on single novel tasks without confusion carrying former knowledge
by applying CLUE. CLUE is also superb in solving catastrophic forgetting, with
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only 7.23% forgetting compared with 19.23% of the second-best method in the
Digits benchmark. In the Picture and Processing benchmarks, CLUE is also
excellent in alleviating forgetting, only having 1.34% and 5.03% Favg respec-
tively.

Besides, CLUE also maintains a high overall classification accuracy through-
out learning steps, shown in Fig. 4 left. While other methods suffer from vari-
ous degrees of forgetting, CLUE maintains comparatively stable even when the
domain distribution in the current task changes. Figure 4 right shows the even-
tual accuracy of all learned tasks when complete training is finished. In each
benchmark, the histograms of the first three tasks reflect the rigidity of the
method and the last histogram of task 4 mirrors plasticity. Through this graph,
CLUE maintains high accuracy in former tasks while preserving plasticity for
future tasks, almost always being the closest to the upper bound accuracy.

Fig. 4. Performance comparisons of different methods. The dynamic changes of overall
accuracy are depicted in the left while the final accuracy distribution of all tasks after
completing all tasks is in the right. Our method maintains high accuracy in former
tasks while preserving plasticity for future tasks.
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Fig. 5. The dynamic changes of ACCavg and Favg on the Digits benchmark using
different continual learning methods when the buffer size changes from 0 to 200. The
results of method ‘Naive’ is marked in red as a comparison. Our method is observed
to be robust, facing reduced buffer sizes. (Color figure online)

4.2 Buffer Size Analysis

In continual learning settings, buffer sizes (the number of replay images allowed
to be stored) are fixed. Therefore, as the task number grows, stored image num-
bers of each task will gradually decrease, significantly impacting the perfor-
mance. Superior continual learning methods must maintain high performance
even when buffer sizes are limited. Thus, it is fundamental to study the changes
in metrics when the buffer size becomes smaller.

In Fig. 5, the dynamic changes of ACCavg and Favg is plotted for all the
replay-based methods. It is observed that when the buffer size is reduced to 0,
other replay-based methods degenerate into ‘Naive’, while CLUE still maintains
decent performance. When the buffer size is gradually reduced to one-tenth, in
CLUE, both ACCavg and Favg have a significantly smaller change than other
methods. ACCavg is maintained at around 80%, while Favg is approximately
10%.

Therefore, we can safely conclude that CLUE is a robust method facing
reduced buffer size. On the one hand, it helps maintain continual learning per-
formance as the task number increases. On the other hand, when the task num-
ber remains unchanged, it significantly reduces the number of required replay
samples, saving storage overhead.

4.3 Model Interpretability Analysis

As is illustrated above in Fig. 2, the changes in domain distribution may lead to
a distorted attention map and invalid logits outputs. In this part, we conduct
experiments to interpret the effectiveness of CLUE in correcting the attention
map and preserving the logits distribution.

Figure 6 shows the output logits distribution of nine typical samples from
the first three tasks of the three benchmarks. Before forgetting shows the results
right after learning the task to which the samples belong, while after forgetting
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Fig. 6. Logits distributions of typical samples. Left shows the Digits benchmark, middle
depicts the Pictures benchmark, and right corresponds to the Processing benchmark.
CLUE works in maintaining the original logits distributions and classifying correctly.

shows the performance of the eventual model. The last row in Fig. 6 shows the
final results when applying CLUE.

It is observed that without our model, ‘0’ might lose the logits distribution of
the original domain, leading to the misclassification as ‘6’, ‘5’, or ‘9’. The sample
‘elephant’ in the Picture benchmark and ‘bird’ in the Processing benchmark
might also be misclassified without an effective continual learning method. With
CLUE, accurate classification can be achieved by maintaining the original logits
distribution as much as possible to prevent catastrophic forgetting.

Fig. 7. Attention Maps of typical samples from the Picture benchmark without or with
CLUE. The mean output of channels in layer3 (ResNet-18) is used as the attention
map, where bright color corresponds to the vital area. CLUE works in maintaining
proper attention maps and classifying correctly. (Color figure online)
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The attention maps of typical samples are shown in Fig. 7. The Pictures
benchmark is used as an example as its 224 * 224-sized images are large enough
to be observed and analyzed.

As is shown, in the sketch image, for correct classification, the neck of the
giraffe should be focused. By applying CLUE, the attribute can be maintained.
The cartoon giraffe can be classified successfully by its head and legs. However,
after forgetting, the neural network tends to pay more attention to table legs
and the giraffe’s tail. Our method can preserve important areas without being
disturbed by noisy information. The eye and noise in the art painting of giraffes
are the prime areas for classification. CLUE keeps them well. Therefore, applying
CLUE guarantees a more accurate attention map.

4.4 Ablation Studies

Table 2 shows the ablation studies, where the significance of Lnet and Ldata

is tested. Metrics of the classifier when removing Lnet or Ldata or both are
calculated and recorded. Additionally, we test the performance where Ldata is
replaced by commonly used cross-aentropy LCE .

As is observed in Table 2, when both Lnet and Ldata are omitted, the method
degrades into naive finetuning. Attaching either Lnet or Ldata will promote
ACCavg by a large margin in the Digits (≈ 15%) and Pictures (≈ 10%) bench-
mark. In the Processing benchmark, Lnet is more effective than Ldata. Regarding
Favg, Lnet works better in alliviating forgetting in all benchmarks. Obviously,
utilizing both loss functions will further improve the performance.

Table 2. Ablation studies

Lnetwork Ldata ACCavg(%) ↑ Favg(%) ↓
Benchmark 1: Digits � � 64.51 42.23

� � 80.15 14.38
� � 79.00 20.96
� LCE 82.41 11.64
� � 84.81 7.23

Benchmark 2: Pictures � � 66.91 38.24
� � 87.99 3.78
� � 88.27 6.03
� LCE 89.12 2.45
� � 90.16 1.34

Benchmark 3: Processing � � 68.88 23.29
� � 76.55 8.27
� � 72.60 14.03
� LCE 74.25 7.67
� � 79.13 5.03

Besides, when changing Lnet into LCE , drops are witnessed in the perfor-
mance, with approximately 2%, 1% and 5% decrease in the ACCavg on the
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three benchmarks. It is probably because LCE focuses more on the between-class
difference of samples, while Lnet focuses more on the class logits distributions
facing new domains.

As a result, both Lnet and Ldata are effective and contributing parts for our
CLUE.

5 Conclusion

In this paper, focused on the DI setting, we clarify the problem setting and
define the metrics. Firstly, the main culprit of forgetting when training on shifted
domains is found through preliminary experiments. It is because the feature
extractor has adjusted to the new domain distribution, being invalid for former
tasks. Next, to deal with this issue, a Consolidating Learned and Undergoing
Experience (CLUE) method is proposed to mitigate forgetting in DI classifica-
tion. It consists of two more loss functions to control network changes and can
be applied in any mainstream classification model without introducing extra
parameters or processing steps. Comprehensive experiments show the superior
performance of CLUE compared with other baselines on three benchmarks -
Digits, Pictures, and Processing, with higher task-average accuracy and less for-
getting. Besides, extensive experiments show that CLUE remains robust when
there are limited replay samples, maintaining higher performance and saving
storage overhead. Moreover, both theoretical derivation and model interpretabil-
ity visualization justify the feasibility of CLUE.
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Abstract. As an extension of visual detection tasks, scene graph gen-
eration (SGG) has drawn increasing attention with the achievement of
complex image understanding. However, it still faces two challenges: one
is the distinguishing of objects with high visual similarity, the other is
the discriminating of relationships with long-tailed bias. In this paper, we
propose a Continuous Self-Study model (CSS) with self-knowledge distil-
lation and spatial augmentation to refine the detection of hard samples.
We design a long-term memory structure for CSS to learn its own behav-
ior with the context feature, which can perceive the hard sample of itself
and focus more on similar targets in different scenes. Meanwhile, a fine-
grained relative position encoding method is adopted to augment spatial
features and supplement relationship information. On the Visual Genome
benchmark, experiments show that the proposed CSS achieves obvious
improvements over the previous state-of-the-art methods. Our code is
available at https://github.com/LINYE1998/Continuous Self Study.

1 Introduction

Scene graph [1,2] structure is a medium bridging the image and the text [3,4].
It is comprised by the detection of a list of 〈subject-predicate-object〉 triplets [5]
to describe the objects and their relationships in an image. With feature aug-
mentation by the extraction of context information [1,6,7] and the introduction
of external semantic knowledge [8–10], it can not only improve the accuracy
of classification in upstream tasks, such as object detection [11] and visual rela-
tionship detection [10,12,13], but also provide a more comprehensive and specific
structure for its downstream visual understanding tasks [14,15], including image
retrieval [16], visual question answering [17,18] and image captioning [19], thus
has been drawing increasing attention.
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Fig. 1. Examples of the two challenges for SGG task. (1) The distinguish of the unclear
target, e.g., the object dog is predicted as sheep wrongly in (a). (2) The discriminating
of the long-tailed relationship, e.g., the holding is misclassified as eating in (b), due to
the common sense bias [2] from 〈woman-eating-food〉. (Color figure online)

To generate high-quality scene graphs, multifarious scene graph generation
(SGG) methods [1,2,6,20,21] have been proposed to optimize the prediction
of objects and relations. It can be mainly classified as the traditional SGG
types [1,6] and the unbiased SGG types [20,22]. Both approaches refine the
targets by passing visual or semantic messages with the extraction of context
information [1,7]. Differently, the first types focus on a better feature extrac-
tion network [2,23,24] to mine useful information from more perspectives, while
the second types concentrate on the debiasing work [20,21,25] to recall more
semantic relationships [2] and obtain a more balancing result for the applica-
tion of downstream tasks [20]. Although the previous methods have promising
improvement in performance, most of them suffer from the limitations of exist-
ing SGG datasets [26]: the inadequate training data with hard sample, and the
unbalanced distribution of the long-tailed relation.

The atypical objects with high visual similarity are always hard to be distin-
guished. For example, in the red box in Fig. 1(a), the dog is identified as sheep
by a state-of-the-art model. While the dog is ambiguous and difficult to be dis-
tinguished, it’s easy to recognize it by inference with the context information. To
extract the scene information from the image, numerous researchers [2,6,7,10,27]
struggle for better feature extraction networks [20]. However, it’s still difficult to
understand the scene and focus on the hard samples under dozens of predicted
objects and biased relation of square growth. For human beings, how do we think
when observing objects that are difficult to distinguish? Focusing on the unclear
targets, we usually realize that we are confused and list several alternative possi-
bilities, and then make the judgment in combination with the scene information.
Inspired by the recent knowledge distillation work [28–31] , we want to enable
the network to perceive the hard samples of itself and distinguish them with the
supplement of scene context information.

Meanwhile, the recent research focuses on the debiasing work to balance
the results from long-tailed bias. However, with the increase of the mean recall
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Fig. 2. Four typical cases of the long-tailed bias. With the subject human and the
object food, different relations are more likely to be predicted as eating. By supple-
menting the relative position information, the relationship can be predicted correctly,
e.g., from eating to behind in (b), holding in (c), and under in (d).

(mR@K) [23] among each predicate, most of the debiasing methods cause an
unacceptable decline in Recall (R@K). As illustrated in Fig. 2, the unbiased SGG
approaches choose a preference for the relationships with similar semantics, but
finitely to predict them more accurately. It means that the upper limit of the
predicates’ prediction is limited by the information the neural networks extract.
Hence, the unbiased SGG methods still need to optimize the feature extraction
networks for more useful information. A large proportion of predicates have a
high correlation with the spatial relations between their objects. Therefore, Both
SGG types [2,12,20,22,25] and much more visual detection tasks [32,33] adopt
position encoding to extract spatial information. The common position encoding
cuts the image averagely into a set resolution and encodes each object separately.
Nevertheless, it cannot extract the relative position information explicitly, while
the relative position can provide more details between the object pairs. Besides,
for small objects, it’s hard to extract accurate spatial information. This motivates
us to augment the spatial feature with fine-grained encoding.

Hence, for the distinguishing of objects with high visual similarity, we pro-
posed a novel self-distillation method: Continuous Self-Study (CSS) for SGG
model to learn from its own behavior with a real-time updated long-term mem-
ory structure. Focusing on the hard sample, CSS transfers the detection task
from the prediction of objects to the distinguishing of similar targets. Moreover,
for the discriminating of relationships with long-tailed bias, we propose a spatial
augmentation (SA) of the relative position to improve the spatial information
from ambiguous and directionless to accurate and directional.

Our contributions can be summarized as follows:

• A Continuous Self-Study method for SGG models is proposed to learn self-
behavior, so as to obtain better visual understanding and distinguish similar
targets in complex scenes.

• A spatial augmentation method is designed for visual relation detection to
effectively improve the recall (R@K) and mean recall (mR@K) among each
predicate in unbiased SGG field.

• Experiments on the benchmark dataset show that our approach can improve
on the state-of-the-art baseline.



300 Y. Lv et al.

2 Related Work

Scene Graph Generation. Scene graph [1,2] is a mid-connection [3,4,16]
of visual domain and semantic domain, which drawn increasing attention with
its refinement of visual detection tasks [5,11–13,34] and its potential value in
several downstream visual reasoning [17–19,35–37] and visual understanding
tasks [14,15]. The development of scene graph generation task can be divided
into two stages. In the first stage, various methods [1,6,8,13,23,27,38–40] are
proposed to explore multiple ways of the extraction of the feature. With the sup-
plement of context feature [1,2,6,7] and the introduction of external language
information [3,8–10], these methods access promising improvement of function
and performance. However, This scene graph generation is far from practical,
due to the biased SGG problem [3,20] with the long-tailed dataset.

In the second stage, multiple approaches are proposed to generate unbiased
scene graph. Zellers et al. [2] firstly pointed out the bias problem of SGG and the
followers [9,23,26] proposed the unbiased metric to evaluate SG with increased
attention on tail relationships. Tang et al. [20] draw the counterfactual causality
from the trained graph to infer the effect from the bias. Yu et al. [22] proposed
a cognition tree loss to make the tail classes receive more attention in a coarse-
to-fine mode. Guo et al. [21] tackled the bias problem with semantic adjustment
and balanced predicate learning. Chiou et al. [25] used a dynamic label frequency
estimation to balance the head and the tail data. However, the recent approaches
struggle for the identification of tail predicates and focus on the promotion of
the mean recall. With the improvement of mR@K, the recall of the head data
got a severe drop, which made the SGG still far from practical.

Knowledge Distillation. Knowledge distillation [41–45] is a method of extrac-
tion, generalization, and transmission of knowledge. By transferring the knowl-
edge [42–44,46,47] of a complex pre-trained teacher network [42,43,46], a sim-
ple student network [29,31,41,48,49] can be trained effectively with the pseudo
labels. To address the problem of confirmation bias [50] in pseudo-labeling, Pham
et al. [51] trained the teacher along with the student and corrected the bias with
the feedback of the student’s performance. However, these traditional methods
depended on a well-trained teacher network [28]. Several self-knowledge distilla-
tion methods [30,52–55] are proposed to reduce the necessity of training a large
network. Nevertheless, because of the square growth relation [7] with the targets,
it’s still hard for SGG model to overcome the limited computing [28,41,56,57]
which inversely optimizes the detection of hard samples. To this end, we dis-
till the knowledge from the network with a memory structure that enables the
network to study from its own behavior.

3 Methodology

As illustrated in Fig. 3, the CSS model consists of two parts: (1) the Self-Study
module (SS) for object refinement. It retains its behavior information in a real-
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Fig. 3. Overview of the proposed Continuous Self-Study model. For the input image,
the proposals are generated by a detector. With the object refinement by the self-study
module, the hard sample jacket which is predicted wrongly by the detector can be
refined to coat correctly. Then the relationship prediction is optimized with the spatial
augmentation module. The output scene graph is generated with the combination of
the predicted pair-wise objects and their detected relationships.

time updated memory Memorandum. The hard samples are perceived by dis-
tilling the knowledge from Memorandum and combining it with the detected
results. Then the hard samples are focused on to distinguished and refined with
the supplement of the scene context. (2) the spatial augmentation module for
relationship optimization. It embeds the spatial feature of the relative position
through a fine-grained encoding with an explicit spatial constraint, which dis-
tinguishes the bidirectional relationships.

The input of the CSS are proposals generated by a detector. In order to
describe better, the following definitions are given. For an input image I, We
use a pre-trained Faster RCNN [58] as an underlying detector [2] to predict a set
of region proposals B = {bi} and their corresponding detected object O = {oi}.
The proposal bi ∈ R

4 is represented by a bounding box bi = [xi, yi, wi, hi], where
(xi, yi) are the coordinates of the box’s top left corner, wi and hi are the width
and height of the bounding box respectively. Meanwhile, the detector extracts a
set of visual feature vector V = {vi} for each proposal bi. With the feature vector,
the Roi Box Head outputs a set of predicted vector L = {Li} which represents
the per-class confidence distribution. In addition, the C = {ci}, i ∈ {1, ..., Rc} is
the category set of the object, where Rc is the dimension.

3.1 Self-study Module

Memorandum. We design a long-term memory structure, Memorandum, for
CSS to retain its behavior information. The Memorandum M ∈ R

Rc×Rc is a
square matrix represented by a set of memory vectors M = {mi·}, where mi·
is the memory of the object class ci ∈ Rc which records the CSS’s historical
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predicted behavior. More specifically, the scalar mij represents the conditional
probability P (gt = cj |pred = ci) that the detector predicts the object as ci while
its ground truth is cj , as illustrated in Fig. 3.

Intuitively, for a well-trained class cw of CSS model, the memory vector mw·
will just activate at node mww with the rest of inactive nodes of mw·. On the
contrary, for the indistinguishable classes, the memory vector will activate at
pairwise even more nodes. Hence, the Memorandum structure can be regarded
as a summary note organized by the CSS itself.

The CSS is trained with a two-stage strategy to avoid the difficulty of con-
vergence caused by error accumulation at the beginning of training. In the first
stage, the SGG network is trained without Memorandum until the network
achieves the performance of the baseline. In the second stage, we initialize a
heatmap H ∈ R

RC×RC with the statistical matrix S0 = {sij} ∈ R
RC×RC , where

sij is the statistical quantity of the ci predicted by CSS with the ground truth of
cj . Then, the heatmap is updated with the new statistics Si each iteration, where
Si is the i-th statistical matrix of its iteration similar to S0. Considering that
the relevance between the current and historical state of the heatmap on CSS
decreases over time, the historical data of each iteration is attenuated during the
training process with the variant formula of Newton’s law of cooling [59]:

T (t) = T (0)e−αt (1)

where T (0) and T (t) are the temperature of time 0 and t respectively, and α is
the attenuation factor. Equation 1 can be regarded as a cooling process for an
impulse response, which is widely used to calculate the heat of events in today’s
social network [60]. By summing the impulse responses after each iteration of
training, the heatmap H at moment t can be calculated with Eq. 2:

H(t) =
t∑

i=0

Sie
−α(t−i) (2)

With the increasing decay over time, the H(t) can reflect the behavior of
CSS with an appropriate cycle, which addresses the accumulation of too much
historical behavior. To simplify the calculating process of H(t), Eq. 2 can be
further converted by making a difference between H(t + 1) and H(t):

H(t + 1) − H(t) =
t+1∑

i=0

Sie
−α(t+1−i) −

t∑

i=0

Sie
−α(t−i) (3)

which can be simplified as:

H(t + 1) = e−αH(t) + St+1 (4)

Equation 4 will be derived in detail in the supplementary materials. The
heatmap can be updated iteratively only through the statement of the last
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moment and the statistical matrix of current moment by Eq. 4. Then the Mem-
orandum can be calculated with H:

Mi = LineNorm(H(i)) (5)

where LineNorm is a function that normalizes each row of H separately. By
repeatedly distilling and updating knowledge from Memorandum, CSS can con-
tinuously study from its own behavior and finally get a well-trained network
with an ideal Memorandum, which is a dynamic balanced diagonal matrix.

Knowledge Distillation. This subsection is to perceive and refine the hard
samples with the behavior information distilling from the Memorandum and the
supplement of the scene information. As illustrated in Fig. 3, each object Oi

can be predicted with a pre-labeled ci by getting the maximum value of the
confidence vector li. The memory mci·is drawn out from the Memorandum with
the pre-predicted ci.Then we use a perceiving layer to get the focus feature di

which focus on the hard sample:

di = Φ1(li � mci) + αΦ2(mci) (6)

where Φ1 and Φ2 are multi-layer perceptron, α is a balance hyperparameter,
and � denotes the element-wise product. The focus feature can be regarded as a
confusion vector with the confusion degree of each class. For the confidence vector
li and the drawn-out memory mci with only one activate node, the confusion
degree will be very low for all nodes of di so that the CSS can decrease the
correction with the scene feature for oi. On the contrary, if li or mci has two or
more activate nodes, the confusion degree will be high between the class relative
to the activate nodes, which will increase the refinement with the scene attention
feature F = {fi}.

As shown in the bottom of Fig. 3, the scene attention feature is extracted
with the scene encoder network. In this work, we embed and normalize the li
first, and then we use N transformer-based Encoder which connected end to end
to adaptively gather contextual information for a certain object. The fi can be
regarded as an inference that predicts the probability distribution of ci type
object under a certain scenario.

Object Refinement. The objects are refined with the combination and fusion
of the focus feature and the scene attention feature. To avoid the deviation
from the image, the refinement needs to be constraint with the original visual
information. Through the supplement of the original confidence distribution l,
the predicted label of the object is refined by:

l′i = softmax(li + βΨ(fi � di)) (7)

where l′i is the confidence distribution of the object after the refinement, β is a
balance hyperparameter, and Ψ is a projection function. We denote βΨ(fi � di)
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Fig. 4. The fine-grained encoding of the relative position. For the pairwise targets, the
subject box is divided equally into nine parts. The whole image can be divided into
twenty-five little boxes with the split lines obtained in the previous step. Then these
boxes are encoded into a matrix, and the boxes which intersect with the object box
are encoded as one. Finally, The matrixes are reshaped as a vector.

as l̃ with the statistical of the refined predicts, This Self-Study structure refine
the distribution of classification probability by:

P (L′) = P (L|V ) + P (L̃|D,O1, ..., On) · P (D|L,M) (8)

where L̃ = l̃i is the refinement of the object, L′ = {l′i} is the final output
prediction distribution, and D = di is the focus feature set. Equation 8 embodies
the essence of the self-study method. P (D|L,M) is the knowledge distilled from
the CSS. For hard samples with high P (D|L,M), CSS will focus more on scene
context between the confusion classes with less attention from visual features.
It is a positive feedback process to continuous self-study because the network
will be refined by learning of the Memorandum, while the Memorandum will
transform to a better distribution with the better performance of CSS.

3.2 Spatial Augmentation Module

To enhance the spatial constraint for the prediction of relations, we augment
the relation feature with a fine-grained relative position spatial encoding. For
better description, we use bs and bo to distinguish the bounding box of subject
and object. As illustrated Fig. 4, for each triplet 〈subject -predicate-object〉, bs =
[x, y, w, h] is divided equally into nine little boxes. Then, bs is expanded into a
larger box bu, which obtained the whole view on the image I. With the nine
boxes inside bs and sixteen boxes outside bs, the image I can be divided into
twenty-five region bu = {zij}, where zij can be represented by:

zij = [xij , yij , wij , hij ], i, j = 0, ..., 4 (9)

where xij , wij can be further represented as:

xij =

{
0, j = 0
x − (1 − j) 13w, j = 1, ..., 4

(10)
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wij =

⎧
⎪⎨

⎪⎩

x, i = 0
1
3w, i = 1, 2, 3
wI − x − w, i = 4

(11)

where wI is the width of the image. Meanwhile, yij , hij can be calculated in
the same way with Eqs. 10 and 11 respectively. The set Qb is defined as the
region within the bounding box b, and bo is defined as the bounding box of the
triplet’s object. The spatial embedding of 〈bs, bo〉 is encoded by a boolean matrix
H = {hij}:

hij =

{
0, Qbo ∩ Qzij

= ∅

1, Qbo ∩ Qzij
�= ∅

, i, j = 0, ..., 4 (12)

where hij represents the existence of intersection of bo with zij . This encoding
method can not only describe all possible spatial relationships in a consistent
way but also make a distinction between 〈subject, object〉 and 〈object, subject〉.
Then, H is reshaped to a vector s ∈ R

25. The spatial feature is extracted from
s with a fully connected layer and then fuse with the conventional encoding
feature.

3.3 Scene Graph Generation

A scene graph consists of the class labels with the locations of individual objects
and the relationship between each pairwise object [9], which can be defined as :

G = {B,O,R} (13)

where B = {b1, b2, ..., bn} is a set of bounding boxes, O = {O1, O2, ..., On} is
the set of class labels corresponding to B, which is refined in Sect. 3.1 with the
self-study method, R = {rO0→O1 , rO0→O2 , ..., rOn→On−1} is the set of relation
between Oi and Oj with n(n − 1) elements. The relationships R is predicted
with a Roi Relation Head. In this paper, we use MOTIFS [2], as the Roi Relation
Head, and debias the predict of the relation R with TDE [20]. Finally, the triplet
list is ranked with the comprehensive confidence score of the object and the
predicate. The scene graph is generated with the combination of the detected
pairwise objects and their predicted relationships, and finally ordered by its joint
probability P (Oi)P (ROi→Oj

)P (Oj).

4 Experiment

4.1 Experimental Settings

Datasets. Following the recent works [2,9,20] in SGG, we trained and evaluated
our model on the Visual Genome (VG) [26] dataset. It consists of 108k images
with 75k object categories and 37k predicate classes. Since 92% predicate classes
have no more than 10 samples, we followed previous works [1] and adopted a
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widely used VG split, containing the 150 most frequent object categories with
50 predicate classes. Meanwhile, the VG dataset is split into a training set (70%)
and a test set (30%) with a validation set (5k) sampled from the training set for
parameter tuning.

Table 1. The SGG performances of Relationship Retrieval on mean Recall@K [9,23],
and the CSS is our proposed model.

Predicate classification Scene graph classification Scene graph detection

Model Method mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

IMP+ [1,9] – – 9.8 10.5 – 5.8 6.0 – 3.8 4.8

FREQ [2,23] – 8.3 13.0 16.0 5.1 7.2 8.5 4.5 6.1 7.1

KERN [9] – – 17.7 19.2 – 9.4 10.0 – 6.4 7.3

PA [61] – 15.2 19.2 20.9 8.7 10.9 11.6 5.7 7.7 8.8

GPS-Net [62] – 17.4 21.3 22.8 10.0 11.8 12.6 6.9 8.7 9.8

GB-Net-β [63] – – 22.1 24.0 – 12.7 13.4 – 7.1 8.5

VTranseE [24] baseline 11.6 14.7 15.8 6.7 8.2 8.7 3.7 5.0 6.0

TDE [24] 18.9 25.3 28.4 9.8 13.1 14.7 6.0 8.2 10.2

MOTIFS [2] baseline 10.8 14.0 15.3 6.3 7.7 8.2 4.2 5.7 6.6

Focal 10.9 13.9 15.0 6.3 7.7 8.3 3.9 5.3 6.6

Reweight 16.0 20.0 21.9 8.4 10.1 10.9 6.5 8.4 9.8

Resample 14.7 18.5 20.0 9.1 11.0 11.8 5.9 8.2 9.7

Lu+cKD [64] 14.4 18.5 20.2 8.7 10.7 11.4 5.8 8.1 9.6

CogTree [22] 20.9 26.4 29.0 12.1 14.9 16.1 7.9 10.4 11.8

TDE [20] 18.5 24.9 28.3 11.1 13.9 15.2 5.8 8.2 9.8

TDE-CSS 20.0 26.1 28.5 11.8 14.8 16.2 6.7 8.9 10.8

DLFE [25] 22.1 26.9 28.8 12.8 15.2 15.9 8.6 11.7 13.8

DLFE-CSS 23.9 28.8 30.7 13.6 16.0 16.9 8.7 12.0 14.1

VCTree [23] baseline 14.0 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8.0

Reweight 16.3 19.4 20.4 10.6 12.5 13.1 6.6 8.7 10.1

Lu+cKD [64] 14.4 18.4 20.0 9.7 12.4 13.1 5.7 7.7 9.1

CogTree [22] 22.0 27.6 29.7 15.4 18.8 19.9 7.8 10.4 12.1

EBM [65] 14.2 18.2 19.8 10.4 12.5 13.5 5.7 7.7 9.1

EBM-CSS 17.1 20.8 22.3 10.9 13.0 14.1 6.0 7.1 9.7

TDE [20] 18.4 25.4 28.7 8.9 12.2 14.0 6.9 9.3 11.1

TDE-CSS 19.4 25.9 29.4 9.2 12.9 14.9 7.1 9.6 11.8

DLFE [25] 20.8 25.3 27.1 15.8 18.9 20.0 8.6 11.8 13.8

DLFE-CSS 23.7 28.6 30.5 16.0 18.9 20.4 8.7 11.9 14.0

Task and Evaluation. We followed the previous work [2] to divide the SGG
task into three sub-tasks: (1) Predicate Classification (PredCls) which takes the
ground truth bounding boxes with its object labels for relation prediction; (2)
Scene Graph Classification (SGCls) which takes ground-truth bounding boxes
to predict the object label and the relation between the pairwise objects. (3)
Scene Graph Detection (SGDet) which detects scene graph from scratch. The
metric of the traditional SGG task is Recall@K(R@K), which is the fraction
of ground-truth targets that are recalled correctly in top K predictions [12].
Due to the long-tailed bias, the good performance on R@K caters to “head”
predicates, e.g. on [20]. The metric of the recent unbiased SGG task is mean
Recall@K(mR@K) [9,23], which retrieves each class of relation separately and
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averages R@K for each relation. The good performance on mR@K achieves more
balanced results among different predicates.

Model Configuration. In this paper, we evaluated our method with the roi
relation head based on two classic baselines: MotifNet [2] and VCTree [23]. The
fusion function for the relation head is set to sum in PredCls and SGDet, and
gate in SGCls. Other hyperparameters can be viewed in Model Zoo [66]. All
models share the same pre-trained detector and the same settings as well.

4.2 Implementation Details

Following the previous work [20], we used a pre-trained Faster R-CNN [58] with a
ResNeXt-101-FPN [67,68] and freeze the weights during the training process. For
SGCls and SGDet tasks, we first train the original SGG models with the source
domain recommended from the configuration for all tasks, including the learning
rate. The batch size is set to 12. Then we initialized the Memorandum with the
statistics of the results for its counterparts, respectively. The attenuation factor
α is set to 0.998 in this paper.

Table 2. The results of Relationship Retrieval on Recall@K, , and the CSS is our
proposed model. The Motifs-TDE and VCTree-TDE are traditional SGG approaches,
and the others are the unbiased SGG approaches.

Predicate classification Scene graph classification Scene graph detection

Model R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

IMP+ [1,9] 52.7 59.3 61.3 31.7 34.6 35.4 14.6 20.7 24.5

FREQ [2,23] 53.6 60.6 62.2 29.3 32.3 32.9 20.1 26.2 30.1

KERN [9] – 65.8 67.6 – 36.7 37.4 – 27.1 29.8

VTransE [24] 59.0 65.7 67.6 35.4 38.6 39.4 23.0 29.7 34.3

Motifs-TDE [2,20] 38.7 50.8 55.8 21.8 27.2 29.5 12.4 16.9 20.3

VCTree-TDE [20,23] 39.1 49.9 54.5 22.8 28.8 31.2 14.3 19.6 23.3

MOTIFS [2] 58.5 65.2 67.1 32.9 35.8 36.5 21.4 27.2 30.3

MOTIFS-CSS 59.5 66.1 67.9 35.9 39.1 39.9 25.2 32.3 37.2

VCTree [23] 60.1 66.4 68.1 35.2 38.1 38.8 22.0 27.9 31.3

VCTree-CSS 61.6 66.9 68.5 41.6 45.6 46.6 24.5 31.4 36.0

Table 3. Ablation studies of individual components of our method. The baseline model
mentioned below is Motifs-TDE unless otherwise indicated.

Predicate classification Scene graph classification Scene graph detection

SS SA mR@20/R@20 mR@50/R@50 mR@20/R@20 mR@50/R@50 mR@20/R@20 mR@50/R@50

– – 18.5 / 38.7 24.9 / 50.8 11.1 / 22.1 13.9 / 27.2 5.8 / 12.4 8.2 / 16.9

� – – / – – / – 11.4 / 21.2 14.6 / 27.9 6.7 / 12.9 8.9 / 17.5

– � 20.0 / 42.0 26.1 / 53.1 11.2 / 24.8 14.5 / 30.4 6.4 / 13.3 8.7 / 18.4

� � – / – – / – 11.8 / 26.2 14.8 / 31.7 6.4 / 12.9 8.9 / 18.6
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4.3 Experiment Results

We evaluated the CSS with the comparison of the conventional unbiased SGG
approaches and traditional SGG approaches. As illustrated in Tabs.1 and 2, we
compared our performance with several state-of-the-art unbiased SGG methods:
TDE [20], EBM [65] and DLFE [25] with mR@K, and the classic traditional
SGG model: Motifs [2] and Vctree [23] with R@K.

Table 4. The average precision (left) and the average recall (right) of the object
detection for the bounding boxes with different sizes.

Predicate classification Scene graph detection

SS � � � �
SA � � � �
Small 46.2/53.6 47.4/54.7 46.4/53.7 47.2/54.7 5.7/21.7 5.7/21.8 5.8/21.7 5.8/21.8

Medium 54.8/62.0 55.6/62.8 55.1/62.0 55.6/62.9 11.9/32.3 11.9/32.3 11.9/32.3 11.9/32.3

Large 53.1/60.7 53.9/61.4 53.2/60.7 54.0/61.5 17.9/35.4 17.9/35.6 17.9/35.4 17.9/35.6

All 56.6/64.2 57.4/64.9 56.8/64.2 57.4/64.9 12.9/34.4 13.0/34.5 12.9/34.4 13.0/34.5

Fig. 5. The mean precision of the object between the easy and hard sample in the
SGCls task. The results of objects with high precision are close between the baseline
and CSS, while CSS obtain an obvious improvement to the low-precision objects.

Object Retrieval. We accumulated the average precision and the average recall
of objects with different sizes by the COCO-API [69]. As illustrated in Table 4,
both the precision and the recall achieve promotion from the baseline with an
average of 1.4% and 1.5% relative gain in SGCls sub-task. However, the opti-
mization of both the precision and recall are under 0.5% in SGDet.
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Relationship Retrieval (RR). The results are listed in Tables 1 and 2. The
CSS model improves on the baseline by an average of 4.6%, 4.5%, 9.3% relative
gain of mR@K in each subtask respectively. Meanwhile, it is obvious that the
debiasing method causes an unacceptable decline in Recall, as shown with the
unbiased SGG model in Table 2. Moreover, the recall of each predicate is applied
in the supplementary materials. The CSS improves the RR with an average of
37.8% of the head predicates and 26.72% of the tail predicates, which can be
illustrated intuitively in Fig. 6.

Ablation Study. We considered the ablations of each module to investigate
the effectiveness of each part of the proposed CSS. The results of SS and CSS are
vacant in PredCls task because the label of the object has already been provided
as the input of this task, therefore there is no need for object refinement.
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Fig. 6. The recall of the relationships between baseline and CSS. It indicated that the
recall of the overall predicates is improved with CSS.

As illustrated in Table 3, each module obtains an obvious promotion: over
the baseline, the SS and SA module achieves an average of 8.2% and 5.2%
respectively. Besides, we observed that the average precision and recall between
SS and CSS are close in Table 4 which obtain an obvious improvement, while
the results of SA are almost consistent with the baseline. Moreover, the recall
of each predicate shows that the SS module improves the tail predicates with
an average of 40% without any optimization of the head predicates, while SA
promotes the RR with 19.3% of the head predicates and 32.6% of the hard ones.
In addition, we evaluated the influence of the granularity of the relative position
encoding in the scene augmentation module. The granularity is set to be 5 × 5,
8×8 and 13×13. The results are recorded in the supplementary materials, which
show limited promotion with the increase of the encoding granularity. However,
the increased cost of time and resources is unacceptable.
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4.4 Quantitative Studies

Object Detection. As illustrated in Table 4, the SS module achieves promis-
ing improvement on object detection in SGCls, especially the targets with small
bounding boxes. However, the promotion is limited in the SGDet sub-task. Since
the scene information of complex image contains unexpected noise, the SS mod-
ule is struggle to refine objects with confounding factors. While the labeling
process selects the bounding box with human focus, it naturally mitigates the
scene noise in SGCls. With the denoising of the bounding box proposals, the SS
has great potential to optimize the objects in complex scenes in the future.

Visual Relation Detection. The RR results verify that CSS can refine the
SGG effectively with the promising promotion. The recall among each relation
shows that SA optimizes the prediction of the overall predicates, while SS focuses
more on the tail predicates. Combining the results of SS in Tabs. 3 and 4, it shows
that the prediction of the relationships is sensitive to the object, which enables
the SS module still work with limited refinement of the object detection. Further,
we can infer that the hard sample has a strong constraint on the tail predicates.

Fig. 7. The visualization results of SG generated from MOTIFS-TDE [20] and CSS.

Scene Graph Generation. The improvement of both the R@K and mR@K
illustrated the effectiveness of the CSS model. Moreover, we observed that the
CSS achieves the best performance in mR@K and R@K from different aspects. It
illustrates that the two modules have different preferences and the CSS balances
the results of the head and the tail predicates.

4.5 Visualization Results

For a more intuitive explanation, we generated several SGCls examples from
MOTIFS-TDE and Motifs-CSS. As illustrated in Fig. 7, the first row shows the
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optimization of the unclear objects with small bounding boxes. The top example
of the first row also consistent with our analysis in Sec. 4.4 that the relationships
are sensitive with the objects. With the refinement of cat from dog, the misclas-
sified predicate on is also optimized with standing on correctly. The second row
shows examples of the debiasing work. We can observe the refinement of both
the head predicate riding and the tail predicate using, which can provide richer
information for the downstream tasks.

5 Conclusion

In this work, we introduced a Continuous Self-Study model (CSS) for scene graph
generation. By learning the self-behavior and combining the scene information,
the CSS improves the accuracy of identifying the ambiguous targets in complex
images. Meanwhile, with the fine-grained relative position encoding, the CSS
is able to discriminate the visual relationships with long-tailed bias effectively.
Since our proposed method achieves improvements of two basic tasks: object
detection and visual relationship detection, it will be helpful to improve the
performance in much more visual understanding tasks in the future.
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Abstract. The success of attention modules in CNN has attracted
increasing and widespread attention over the past years. However, most
existing attention modules fail to consider two important factors: (1)
For images, different semantic entities are located in different areas,
thus they should be associated with different spatial attention masks;
(2) most existing framework exploits individual local or global infor-
mation to guide the generation of attention masks, which ignores the
joint information of local-global similarities that can be more effective.
To explore these two ingredients, we propose the Spatial Group-wise
Enhance (SGE) module. SGE explicitly distributes different but accu-
rate spatial attention masks for various semantics, through the guid-
ance of local-global similarities inside each individual semantic feature
group. Furthermore, SGE is lightweight with almost no extra parameters
and calculations. Despite being trained with only category supervisions,
SGE is effective in highlighting multiple active areas with various high-
level semantics (such as the dog’s eyes, nose, etc.). When integrated
with popular CNN backbones, SGE can significantly boost their per-
formance on image recognition tasks. Specifically, based on ResNet101
backbones, SGE improves the baseline by 0.7% Top-1 accuracy on Ima-
geNet classification and 1.6∼1.8% AP on COCO detection tasks. The
code and pretrained models are available at https://github.com/implus/
PytorchInsight.

Keywords: Computer vision · Backbone · Attention mechanism

1 Introduction

Recently, attention mechanisms have become extremely popular in convolutional
neural networks. SENet [1] first proposes feature recalibration using the global
information in a channel-wise manner. Subsequently, more works [2,3] extend
the recalibration to the spatial dimension, enabling the attention factors to be
spatially redistributed. Despite their great success, there are at least two aspects
have been ignored by most existing work, which limits the rationality and effec-
tiveness of attention modules:
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For Spatial Attention Modeling: The natural image usually contains mul-
tiple semantic objects distributed in different image regions. However, almost
all the existing spatial attention modules [2–4] only use one single global spatial
attention mask, which obviously has no way to reasonably reflect the spatial
distribution of different semantic features.

For Attention Mask Generation: Existing attention modules strive to guide
the generation of the attention mask by utilizing global [1–7], or local [7,8], or
local-local pair [9,10] information, but unfortunately lose the chances of gaining
benefits from the joint information of the local-global pairs.

In this paper, we aim to propose a novel attention mechanism by taking into
account the two factors:

For the first factor, inspired by the CapsuleNet [11] where the grouped sub-
features can represent the instantiation parameters of a specific type of entity,
we propose a group-wise attention mechanism. To be specific, the feature vec-
tor is first divided into groups, which are supposed to be learnt with multiple
semantics (similarly as Capsules do). Then different spatial attention masks are
designed and generated between different semantic feature groups, in the purpose
of achieving a more reasonable and explainable spatial attention modeling.

For the second factor, in order to fully utilize both global and local infor-
mation, and to lighten the complexity of the designed module as much as possi-
ble, we propose to use the similarity between the global feature descriptor and
the local feature vector to guide the generation of the attention mask, which
introduces rich information from local-global pairs.

To combine both factors above, the two solutions are merged naturally and
completely into a unified framework by requiring almost no additional parameters
and calculations, which is termed Spatial Group-wise Enhance (SGE) module.

We show on the ImageNet [12]benchmark that the SGE module performs
better or comparable to a series of recently proposed state-of-the-art attention
modules, despite its superiority in both model capacity and complexity. Similar
trend is also observed on smaller dataset like CIFAR-100 [13]. Meanwhile, based
on ResNet101 [14] backbones, SGE improves the baseline by 0.7% Top-1 accuracy
on ImageNet classification and 1.6∼1.8% AP on COCO detection tasks, which
demonstrates its remarkable advantages in accurate spatial modeling.

In the ablation study, we show that both solutions of the two factors play
an important role for improving the final performance. We also examine the
changes in the distribution of the semantic feature activations for each group
after the SGE module. The results show that SGE significantly improves the
spatial distribution of different semantic sub-features within its group, which
strengthens the feature learning in semantic regions and compresses the possible
noise and interference. The visualization of activation maps by Grad-CAM [15]
also shows that SGE is able to make better use of accurate spatial features.
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2 Related Work

Spatial Attention Modeling: In this part, we mainly focus on spatial atten-
tion mechanism, where the exsiting work mainly generates a single spatial mask
for the entire tensor. BAM [2] and CBAM [3] utilize the convolutional layers or
channel-based max/avg pooling layer to produce a unified attention map for spa-
tial refinement. GCNet [4] proposes a context modeling, where a convolutional
layer is also utilized to produce one spatial mask. The variants of GENet [7] with
local extent ratio can be regarded as that each channel has its own attention
spatial mask obtained by local information. However, [11] shows that a single
scalar is difficult to characterize a semantic entity well, and local attention is also
very limited in terms of semantic enhancement. Conversely, the proposed SGE
explicitly assign different spatial attention masks in different semantic feature
groups, leading to accurate feature enhancement.

Table 1. Summary of major differences among popular lightweight attention modules.
The additional costs comprehensively consider the situation of multiple backbones.

Features SGE (ours) SE SK SRM GE BAM CBAM GC GCT

Multiple Spatial Attention Mask � �(local version)

Spatial Attention on Feature Vectors �
Global Feature for Attention Generation � � � � �(global version) � � � �
Local Feature for Attention Generation � �(local version)

Additional Parameter Cost < ∼1% � �(GE-θ−)

Additional FLOPs Cost < ∼1% � � � �(GE-θ−) � � �

Attention Mask Generation: The existing methods can be mainly attributed
into the following three groups:

• Global Only: A series of work like SENet [1], SKNet [5], SRM [6], GCT
[16], BAM [2], CBAM [3] and ECANet [17] performs feature recalibration
via the guidance of global averaged statistics. The gather operator in GENet
[7] aggregates neuron responses over a given spatial extent to guide the pro-
duction of the refined tensor. Among the different parameter-free versions
of GENet (GE-θ−), the one with global extent ratio achieves the best per-
formance. Different from the global average operator, GCNet [4] utilizes the
context modeling block to weighted average the global statistics. FcaNet
[18] decomposes channel features in the frequency domain and utilizes multi-
frequency components with the selected DCT bases to replace global average
pooling. Instead of squeezing a 3D feature tensor into a single feature vector,
Coordinate Attention Network [19] and Triplet Attention Network [20] uti-
lize global pooling along height and width dimensions separately to capture
fine-grained global spatial attention.
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• Local Only: Residual Attention Network [8] constructs a light encoder-
decoder architecture between stages to utilize the local spatial information for
generating attention masks. The variants of GENet [7] with local extent ratio
aggregate the local spatial neuron responses to produce the refined feature
tensors. SCNet [21] utilizes a self-calibration branch to allow local spatial
information adaptively interact with its surrounding context.

• Local-Local Pair Only: [9] gives a thorough study of spatial attention
mechanisms designed for broad application, where four types of attention
terms are investigated in different combinations of context/position encod-
ings of dense key-query pairs [22]. Such a key-query pair essentially reflects
the property of local-local pairs. Another representative structure based on
local-local pairs is Non-Local [10] Network, which aims at strengthening the
features of the query position via aggregating information from all other posi-
tions. However, the time and space complexity of the Non-Local blocks are
both quadratic to the number of positions, which are considerably heavy for
lightweight modules.

In contrast, our proposed SGE module explores a novel and rich guidance
which is generally ignored by the related work: the local-global similarity. Such
operator can not only make good use of both global and local information, but
also utilize the advantage of the joint statistics between them. Compared to other
attention modules, SGE also has fewer parameters, less computational complex-
ity (Table 2), and a clear interpretable mechanism (Fig. 3). Table 1 summarizes
the essential differences between SGE and other existing lightweight attention
modules for better reference.

Grouped Features: Learning and distributing features into groups in convolu-
tional networks has been widely studied recently. AlexNet [23] initially presents
the group convolution and divides features into two groups on different GPUs
to save computing budgets. ResNeXt [24] examines the importance of grouping
in feature transfer and suggests that the number of groups should be increased
to obtain higher accuracy under similar model complexity. The MobileNet series
[25–27] and Xception [28] treat each channel as a group and model only spatial
relationships inside these groups. The ShuffleNet [29,30] family rearranges the
grouped features to produce efficient feature representation. Res2Net [31] uses
a hierarchical mode to transfer grouped sub-features, enabling the network to
incorporate multi-scale features in a single bottleneck. CapsuleNet [11] models
each of the grouped neurons as a capsule, where the activities of the neurons
within an active capsule represent the various properties of a particular entity
that is present in the image. The overall length of the vector of instantiation
parameters is used to represent the existence of the entity and the orientation of
the vector is forced to represent the properties of the entity. In SGE, all enhance-
ments are operated inside groups, which saves computational overhead similarly
as in group convolution. Conceptually, the SGE module adopts the basic mod-
eling assumptions of CapsuleNet, and believes that the features of each group
are able to actively learn various semantic entity representations. At the same
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time, in the process of visualization of this paper, we also use the length of the
sub-feature to measure as its activation value, analogous to the probability of
the existence of entities in CapsuleNet.

3 Method

Fig. 1. Illustration of the proposed lightweight SGE module. It processes the sub-
features of each group in parallel, and uses the similarity between global statistical
feature and local positional features in each group as the attention guidance to enhance
the features, thus obtaining well-distributed semantic feature representations in space.

Here we describe the detailed implementation of SGE module, which unifies the
above aforementioned two solutions: various semantic spatial attention mask and
local-global similarity guidance. We consider a C channel, H × W convolutional
feature map and divide it into G groups along the channel dimension. Without
loss of generality, we first examine a certain group separately (see the bottom
black box in Fig. 1). Then the group has a vector representation at every position
in space, namely X = {x1...m} ,xi ∈ R

C
G ,m = H × W . Conceptually inspired

by the capsules [11], we further assume that this group gradually captures a
specific semantic response (such as the dog’s eyes) during the course of network
learning. In this group space, ideally we can get features with strong responses
at the eye positions (i.e., features with a larger vector length and similar vector
directions among multiple eye regions), whilst other positions almost have no
activation and become zero vectors. However, due to the unavoidable noise and
the existence of similar patterns, it is usually difficult for CNNs to obtain the
well-distributed feature responses. We propose to utilize the overall information
of the entire group space to further enhance the learning of semantic features
in critical regions, given the fact that the features of the entire space are not
dominated by noise (otherwise the model learns nothing from this group). There-
fore we can use the global statistical feature through spatial averaging function
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Fgp(·) to approximate the semantic vector that this group learns to represent:

g = Fgp(X ) =
1
m

m∑

i=1

xi. (1)

Next, using this global feature, we can generate the corresponding importance
coefficient for each feature, which is obtained by simple dot product that mea-
sures the similarity between the global semantic feature g and local feature xi

to some extent. Thereby for each position, we have the following expression:

ci = g · xi. (2)

Note that ci can also be expanded as ‖g‖‖xi‖ cos(θi), where θi is the angle
between g and xi. It indicates that features that have a larger vector length
(i.e., ‖xi‖) and a direction (i.e., θi) closer to g are more likely to obtain a larger
initial coefficient, which is in line with our assumptions. In order to prevent the
biased magnitude of coefficients between various samples, we normalize c over
the space, as is widely practiced in [32–34]:

ĉi =
ci − μc√
σ2
c + ε

, μc =
1
m

m∑

j

cj , σ2
c =

1
m

m∑

j

(cj − μc)2, (3)

where ε (e.g., 1e-5) is a constant added for numerical stability. To make sure that
the normalization inserted in the network can represent the identity transform,
we introduce a pair of parameters γ, β for each coefficient ĉi, which scale and
shift the normalized value:

ai = γĉi + β. (4)

Note that γ, β here are the only parameters introduced in our module. In a single
SGE unit, the number of γ, β is the same as the number of groups G, and the
order of their magnitude is about tens (typically, 32 or 64), which is basically
negligible compared to the millions of parameters of the entire network. Finally,
to obtain the enhanced feature vector x̂i, the original xi is scaled by the generated
importance coefficients ai via a sigmoid function gate σ(·) over the space:

x̂i = xi · σ(ai), (5)

and all the enhanced features form the resulted feature group as

X̂ = {x̂1...m} , x̂i ∈ R
C
G ,m = H × W. (6)

4 Experiments

4.1 Image Classification

We first compare SGE with a set of SOTA attention modules on ImageNet bench-
mark. The ImageNet 2012 dataset [12] comprises 1.28 million training images
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and 50k validation images from 1k classes. We train networks on the training
set and report the Top-1 and Top-5 accuracies on the validation set with single
224×224 central crop. For data augmentation, we follow the standard practice
[35] and perform the random-size cropping to 224 × 224 and random horizon-
tal flipping. The practical mean channel subtraction is adopted to normalize
the input images. All networks are trained with naive softmax cross entropy
without label-smoothing regularization [36]. We train all the architectures from
scratch by synchronous SGD with weight decay 0.0001 and momentum 0.9 for
100 epochs, starting from learning rate 0.1 and decreasing it by a factor of 10
every 30 epochs. The total batch size is set as 256 and 8 GPUs (32 images per
GPU) are utilized for training, using the weight initialization strategy in [37].
Our codes are implemented in the pytorch [38] framework in which all results

Table 2. Comparisons between various guidance for spatial attention mask generation
on ImageNet validation set, based on ResNet50. The best and the second best records
are marked as red and blue, respectively.

Backbone Param GFLOPs Top-1 (%) Top-5 (%)

ResNet50 [14] 25.56M 4.122 76.38 92.91

SE-ResNet50 [1] 28.09M 4.130 77.18 93.67

SK-ResNet50∗ [5] 26.15M 4.185 77.54 93.70

BAM-ResNet50 [2] 25.92M 4.205 76.90 93.40

CBAM-ResNet50 [3] 28.09M 4.139 77.63 93.66

SRM-ResNet50 [6] 25.62M 4.139 77.13 93.51

GCT-ResNet50 [16] 25.68M 4.134 77.30 93.70

GE-ResNet50 [7] 25.56M 4.127 76.78 93.22

SGE-ResNet50 (ours) 25.56M 4.127 77.58 93.66

ResNet101 [14] 44.55M 7.849 78.20 93.91

SE-ResNet101 [1] 49.33M 7.863 78.47 94.10

SK-ResNet101∗ [5] 45.68M 7.978 78.79 94.27

BAM-ResNet101 [2] 44.91M 7.933 78.22 94.02

CBAM-ResNet101 [3] 49.33M 7.879 78.35 94.06

SRM-ResNet101 [6] 44.68M 7.879 78.47 94.20

GCT-ResNet101 [16] 44.76M 7.869 78.60 94.10

GE-ResNet101 [7] 44.55M 7.858 78.42 94.14

SGE-ResNet101 (ours) 44.55M 7.858 78.90 94.37

ResNeXt50 [24] 25.03M 4.273 77.15 93.52

SE-ResNeXt50 [1] 27.56M 4.281 78.09 93.96

SK-ResNeXt50 [5] 27.42M 4.505 78.21 94.07

BAM-ResNeXt50 [2] 25.39M 4.356 77.44 93.60

CBAM-ResNeXt50 [3] 27.56M 4.290 78.08 94.05

GCT-ResNeXt50 [16] 25.19M 4.285 78.20 94.00

GE-ResNeXt50 [7] 25.03M 4.279 77.48 93.69

SGE-ResNeXt50 (ours) 25.03M 4.279 78.25 94.09

DenseNet121 [39] 7.98M 2.883 75.36 92.60

SE-DenseNet121 [1] 7.99M 2.884 76.21 93.00

SK-DenseNet121∗ [5] 8.10M 2.930 75.83 92.88

BAM-DenseNet121 [2] 8.07M 2.904 76.20 93.01

CBAM-DenseNet121 [3] 7.99M 2.886 76.10 92.78

GE-DenseNet121 [7] 7.98M 2.884 76.18 92.88

SGE-DenseNet121 (ours) 7.98M 2.884 76.45 93.06
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are reproduced. Note that in the following tables, Param. denotes the number of
parameter and the definition of FLOPs follows [29], i.e., the number of multiply-
adds.

Comparisons with State-of-the-Art Attention Modules. We select a
series of state-of-the-art attention modules, which is considered to be relatively
lightweight, and demonstrate their performance based on ResNet50, ResNet101
[14,40], ResNeXt50 [24] and DenseNet121 [39]. For a fair comparison, we imple-
ment all the attention modules (partially refer to the official codes1) with their
respective best settings using a unified pytorch framework. Following [1,3], these
attention modules are placed after the last BatchNorm [32] layer inside each bot-
tleneck except for BAM and SK. BAM [2] is naturally designed between stages.
SK [5] is originally designed on ResNeXt-like bottlenecks with multiple large-
kernel group convolutions. To transfer it to the ResNet/DenseNet backbones, we
make a slight modification and only append one additional 3 × 3 group (G = 32)
convolution upon each original 3 × 3 convolutions, to prevent the parameters
and calculations of the corresponding SKNets from being too large or too small.
For GE, we select the best performed parameter-free settings with global extent
ratio, namely GE-θ−, for comparisons (the other variants increase the number
of parameters too much). From the results of Table 2, we observe that based on
ResNet50, SGE is on par with the best entries from CBAM (Top-1) and SK/SE
(Top-5) but has much fewer parameters and slightly less calculations. As for
ResNet101, it outperforms most other competing modules. The similar trend is
also hold for ResNeXt50 [24] and DenseNet121 [39].

The Effectiveness of Local-Global Similarities. To validate the effective-
ness of local-global similarities, we conduct extensive experiments by comparing
SGE with global-only and local-only variants of the state-of-the-art SE and GE
modules. Specifically in Table 3, to keep the comparisons more fair under the set-
tings of multiple spatial semantics in global-only type, we extend SE with group
settings (denoted as SE∗), where the fc layers are replaced by group conv1× 1
layers with group number G. We also extend GE-θ− as GE-θ−∗ with groups.
Considering the parameter-free settings of GE-θ−, we simply average the ele-
ments in each group of the global pooled vector to reweight the activations. For
the modified group versions of SE∗ and GE-θ−∗, we choose the two settings G=32
and G=64 for experiments. In local-only type, we select the GE modules with
spatial extent ratio e=8. Furthermore, we validate the importance of local-global
similarities by deleting the similarity part but only using the length of each local
sub-feature itself to guide the attention generation in SGE, which is denoted as
SGE (- similarity). For the comparisons with local-local pairs, four variants of
Non-Local [10] blocks are applied. As the module adds a lot of extra complexity,
it is forced to place only one instance on the last stage of ResNet50. From the
above results, we notice that the joint information of local-global similarities is
considerably efficient and beneficial for achieving the best performance.
1 https://github.com/Jongchan/attention-module.

https://github.com/Jongchan/attention-module
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Table 3. Comparisons between various guidance for spatial attention mask generation
on ImageNet validation set, based on ResNet50. The best records are marked as bold.

Type Backbone Param GFLOPs Top-1/5 (%)

+ SE [1] 28.09 M 4.130 77.2/93.7

+ SE∗ (G=32) 26.20 M 4.128 77.2/93.6

Global-only + SE∗ (G=64) 25.89 M 4.128 77.0/93.5

+ GE-θ− [7] 25.56 M 4.127 76.8/93.2

+ GE-θ−∗ (G=32) 25.56 M 4.127 76.6/93.2

+ GE-θ−∗ (G=64) 25.56 M 4.127 76.7/93.4

+ GE-θ− (e=8) 25.56 M 4.127 76.5/93.1

Local-only + GE-θ−∗ (G=64, e=8) 25.56 M 4.127 76.5/93.2

+ SGE (- similarity) 25.56 M 4.125 77.0/93.5

+ Non-Local [10] (Gaussian) 29.76 M 4.328 75.8/92.7

Local-local pair + Non-Local [10] (Embedded Gaussian) 33.95 M 4.534 75.6/92.6

+ Non-Local [10] (Dot Product) 33.95 M 4.534 76.2/92.8

+ Non-Local [10] (Concatenation) 33.96 M 4.534 76.2/92.9

Local-global pair + SGE (ours) 25.56 M 4.127 77.6/93.7

Fig. 2. Performance of SGE-ResNet50 w.r.t. group number G.

Group Number G. In the SGE module, the number of groups G controls
the number of semantic sub-features. Too many groups will result in a reduc-
tion in the sub-feature dimension within each group, leading to weaker feature
representation for each semantic response; On the contrary, too few groups will
make the diversity of semantics limited. It is natural to speculate that there is
a moderate hyperparameter G that balances semantic diversity and the ability
of representing each semantic to optimize network performance. From Fig. 2, we
can see that with the increase of G, the performance of the network shows a trend
of increasing first and then decreasing (especially in terms of Top-1 accuracy),
which is highly consistent with our deduction. Through the experimental results,
we recommend the group number G to be 32 or 64. In subsequent experiments,
we use G = 64 by default.

Initialization of the γ and β. During the experiment, we find that the initial-
ization of the parameter γ and β has a not negligible effect on the result. We use
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Table 4. Performance of SGE-ResNet50 as a function of initializations of γ and β.

γ β Top-1 (%) Top-5 (%)

0 0 77.38 93.71

0 1 77.58 93.66

1 0 77.22 93.58

1 1 77.08 93.70

Table 5. Performance of SGE-ResNet50 with/without the normalization part.

Type Top-1 (%) Top-5 (%)

w/ Normalization 77.58 93.66

w/o Normalization 76.50 93.16

Table 6. Comparisons to the state-of-the-art attention modules on CIFAR-100 test
set. The best and the second best records are marked as red and blue, respectively.

Backbone Param GFLOPs Top-1 (%)

ResNet50 [14] 23.71 M 1.306 78.06

SE [1] 26.24 M 1.310 78.96

SK∗ [5] 24.30 M 1.329 79.42

BAM [2] 24.06 M 1.335 79.35

CBAM [3] 26.24 M 1.317 78.44

SRM [6] 23.77 M 1.316 78.62

GCT [16] 23.75 M 1.312 79.10

GE [7] 23.71 M 1.310 78.83

SGE (ours) 23.71 M 1.310 79.47

values 0, 1 for grid search to see the effects of the initialization. From Table 4 we
find that initializing γ to 0 tends to get better results. We speculate that when
the ordinary patterns of semantic learning has not yet been completely formu-
lated in convolutional feature maps during the initial stage of network training,
it may be appropriate to temporarily discard the attention mechanism, but let
the network learn a basic semantic representation first. After the initial train-
ing period, the attention modules then need to be gradually turned in effect.
Therefore, in the early moments of network learning, the attention mechanism
of SGE is not suggested to participate heavily in training by setting γ to 0. Such
an operation is almost equivalent to simulate the learning process of a network
without attention modules during the very early training stage, since each sub-
feature of each location is linearly multiplied by the same constant (i.e., σ(β)),
whose effect can be cancelled by the following BatchNorm layer.
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Normalization. To investigate the importance of normalization in SGE mod-
ules, we conduct experiments by eliminating the normalization part from SGE
(as shown in Table 5) and find that performance is considerably reduced. The
central reason is that the variance of the activation values of different samples in
the same group can be statistically very different, indicating that normalization
is essential for SGE to work.

Image Classification on CIFAR-100. We also compare SGE with a set of
SOTA modules on the 32× 32 image dataset CIFAR-100 [13] benchmark. We
perform random cropping on images with 4-pixel padding, random horizontal
flipping and random rotation with 15◦C. We train networks on the train set and
report the Top-1 accuracy on the test set. We adopt a standard training strategy
as stated in [41]. Total batch size is set as 128. From the results in Table 6, we
observe that based on the ResNet50 backbones, the SGE outperforms all other
competing modules in Top-1 classification accuracy, with minimal parameters
and relatively lowest computations. SGE’s good performance on small image
dataset demonstrates its robustness to the scale of the input images.

4.2 Object Detection

We further evaluate the SGE module on object detection on COCO 2017 [42],
whose train set is comprised of 118k images, validation set of 5k images. We
follow the standard setting [43] of evaluating object detection via the stan-
dard mean Average-Precision (AP) scores at different box IoUs or object scales,
respectively. The input images are resized with their shorter side being 800 pixels
[44]. We train on 8 GPUs with 2 images per each. The backbones of all models
are pretrained on ImageNet [12] (directly borrowed from the models listed in
Table 2), then all layers except for the first two stages are jointly finetuned with
FPN [44] neck and a set of detector heads. Following the conventional finetuning
setting [43], the BatchNorm layers are frozen during finetuning. All models are
trained for 24 epochs using synchronized SGD with a weight decay of 0.0001 and
momentum of 0.9. The learning rate is initialized to 0.02, and decays by a factor
of 10 at the 18th and 22nd epochs. The choice of hyper-parameters follows the
latest release of the detection benchmark [45].

Table 7. AP50:95 (%) scores via embedding SGE on the backbones of state-of-the-art
detectors on COCO [42] dataset. The best records are marked as bold.

Backbone Param. GFLOPs Retina [46] Faster [47] Mask [43] Cascade [48]

ResNet50 23.51M 88.0 36.4 37.5 38.6 41.1

+ SGE 23.51M 88.1 37.5 38.7 39.6 42.6

ResNet101 42.50M 167.9 38.1 39.4 40.4 42.6

+ SGE 42.50M 168.1 38.9 41.0 42.1 44.4
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Experiments on State-of-the-Art Detectors . We embed the SGE mod-
ules into the popular detector framework separately to check if the enhanced
feature map helps to detect objects. We select four popular detection frame-
works, including RetinaNet [46], Faster RCNN [47], Mask RCNN [43], and Cas-
cade RCNN [48], and choose the widely used FPN [44] as the detection neck.
For a fair comparison, we only replace the pretrained backbone model on Ima-
geNet while keeping the other components in the entire detector intact. Table 7
shows the performance of embedding the backbone with the SGE module on
these state-of-the-art detectors. We find that although SGE introduces almost
no additional parameters and calculations, the gain of detection performance is
still very noticeable with basically more than 1% AP point. It is worth noting
that SGE can be more prominently advanced on stronger detectors (+1.5% AP
on ResNet50 and +1.8% on ResNet101 in Cascade RCNN).

Table 8. Various AP (%) comparisons based on the state-of-the-art detectors (Faster
[47]/Mask [43]/Cascade [48] RCNN) and backbone ResNet101 [14] on COCO [42]
dataset. The Parm. and GFLOPs are only with the backbone parts, given that all the
remaining structures are kept the same. The numbers in brackets denote the improve-
ments over the baseline backbones. The best records are marked as bold.

Backbone Param GFLOPs Detector AP50:95 AP50 AP75 APsmall APmedia APlarge

ResNet101 [14] 42.5 M 167.9 Faster 39.4 60.7 43.0 22.1 43.6 52.1

+ SE [1] 47.3 M 168.3 Faster 40.4(+1.0) 61.9 44.2 23.7(+1.6) 44.5 51.9

+ CBAM [3] 47.3 M 168.5 Faster 40.1(+0.7) 61.9 43.6 23.3(+1.2) 44.5 51.2

+ GC(r16) [4] 47.3 M 168.3 Faster 40.3(+0.9) 62.1 43.8 23.4(+1.3) 44.8 51.8

+ GE(-θ−) [7] 42.5M 168.1 Faster 39.5(+0.1) 61.2 43.4 23.2(+1.1) 44.4 50.5

+ SGE 42.5M 168.1 Faster 41.0(+1.6) 63.0 44.3 24.5(+2.4) 45.1 52.9

ResNet101 [14] 42.5 M 167.9 Mask 40.4 61.6 44.2 22.3 44.8 52.9

+ SE [1] 47.3 M 168.3 Mask 41.5(+1.1) 63.0 45.3 23.8(+1.5) 45.5 54.7

+ CBAM [3] 47.3 M 168.5 Mask 41.2(+0.8) 62.9 44.8 24.6(+2.3) 45.5 53.1

+ GC(r16) [4] 47.3 M 168.3 Mask 41.6(+1.2) 63.2 45.6 24.7(+2.4) 45.8 53.8

+ GE(-θ−) [7] 42.5M 168.1 Mask 40.6(+0.2) 62.5 44.0 24.0(+1.7) 45.2 52.8

+ SGE 42.5M 168.1 Mask 42.1(+1.7) 63.7 46.1 24.8(+2.5) 46.6 55.1

ResNet101 [14] 42.5 M 167.9 Cascade 42.6 60.9 46.4 23.7 46.1 56.9

+ SE [1] 47.3 M 168.3 Cascade 43.4(+0.8) 62.2 47.2 24.1(+0.4) 47.5 57.9

+ CBAM [3] 47.3 M 168.5 Cascade 43.3(+0.7) 62.1 47.1 24.5(+0.8) 47.4 57.7

+ GC(r16) [4] 47.3 M 168.3 Cascade 43.4(+0.8) 62.2 47.4 24.8(+1.1) 47.4 57.9

+ GE(-θ−) [7] 42.5M 168.1 Cascade 42.8(+0.2) 61.8 46.5 24.1(+0.4) 47.0 57.2

+ SGE 42.5M 168.1 Cascade 44.4(+1.8) 63.2 48.4 25.7(+2.0) 48.3 58.7

Comparisons with State-of-the-Art Attention Modules . Next, based on
backbone ResNet101, we compare SGE with several representative strong atten-
tion modules on various competitive state-of-the-art detectors, and report the
detailed AP scores including the metrics over three different scales. The origi-
nal backbones are replaced with the corresponding attention embedded ResNets,
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which are pretrained on ImageNet. In Table 8, thanks to the enhancement of crit-
ical regions, SGE greatly improves the accuracy of detection for small objects
(> 2% absolute AP gain) while its performance of the media and large objects
still significantly competitive. This is consistent with our visualization in Fig. 3,
which demonstrates that the SGE module is able to retain the feature represen-
tation of the spatial region well. Conversely for the others, in each channel, they
give the same importance coefficient for every single location, resulting in a loss
of the expression of the micro-region to some extent. In the case of general met-
ric AP50:95, SGE outperforms the popular SE by a considerably nonnegligible
margin, including 0.6% absolute improvement on Faster/Mask RCNN and 1%
on Cascade RCNN.

4.3 Visualization and Interpretation

In order to verify that our approach achieves the goal of improving the seman-
tic feature representation, we first demonstrate several examples with specific
semantic visual clues (in Fig. 3) and show how SGE helps to improve detection
accuracy especially in small objects (in Fig. 4).

Fig. 3. We select several feature groups with representative semantics to display before
and after using SGE on ResNet50. We sample images of different shapes, categories,
and angles to verify the robustness of the SGE module.

Visualization of Different Semantic Enhancement. We train a network
based on ResNet50 on ImageNet [12] and place the SGE module after the last
BatchNorm [32] layer of each bottleneck with reference to SENet [1], by setting G
= 64. To better reflect the semantic information while preserving the large spatial
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Fig. 4. Grad-CAM [15] visualization results for detection backbone. We compare the
visualization results of SE-ResNet101 and SGE-ResNet101 with the ResNet101 base-
line. It is clear that our SGE module shows good coverage of target semantic spatial
features than other counterparts.

resolution as much as possible, we choose to examine the feature maps of the 4th
stage with output size of 14 × 14. For each feature vector of each group, we use
its length (i.e., ‖xi‖) to indicate their activation value and linearly normalize it to
the interval [0, 1] for a better view. Figure 3 shows three representative groups
with semantic responses. As listed in three large columns, they are the 18th,
22nd, and 41st group, which are empirically found to correspond to the concept
of the nose, tongue, and eyes. Each large column contains three small columns,
where the first small column is the original image, the second small column is
the feature map response from the original ResNet50, and the third one is the
feature map response enhanced by the SGE module. We select images of dogs of
different angles and types to test the robustness of SGE for feature enhancement.
Despite its simplicity, the SGE module is very effective in improving the feature
representation of specific semantics at corresponding locations while suppressing
a large amount of noise. It is worth noting that in the 4th and 7th rows, SGE
can strongly emphasize the activation of the eye areas, although their eyes are
almost closed. In contrast, the original ResNet fails to capture such patterns.

Activation Map for Detecting Objects. We apply Grad-CAM [15] to sev-
eral backbones using the images from COCO test set. Grad-CAM can explicitly
emphasize the critical regions for semantic feature representations through the
gradient guidance. As the regions are considered as important clues for the net-
work to predict correctly, we attempt to judge how the model is making good
use of image features. From Fig. 4, thanks to the explicit spatial enhancement
mechanism, SGE module is able to cover more critical and accurate locations
for semantic expressions, which clearly explains why the detection performance
of small or middle objects could be boosted significantly as show in Table 8.



330 Y. Li et al.

5 Conclusion

To explore the two missing ingredients for attention mechanism in CNN: multiple
spatial semantics and local-global similarities, we propose a Spatial Group-wise
Enhance (SGE) module that enables each of its feature groups to enhance the
learnt semantic representation, guided by its respective local-global similarities.
SGE is designed nearly without introducing additional parameters and compu-
tational complexity. We visually show that the feature groups have the ability
to express different semantics, while the SGE module can significantly enhance
this ability. Despite its simplicity, SGE has achieved a steady improvement in
both image classification and detection tasks, which demonstrates its compelling
effectiveness in practice.
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Abstract. In this work, we address the Zero-Shot Domain Generaliza-
tion (ZSDG) task, where the goal is to learn a model from multiple source
domains, such that it can generalize well to both unseen classes and
unseen domains during testing. Since it combines the tasks of Domain
Generalization (DG) and Zero-Shot Learning (ZSL), here we explore
whether advances in these fields also translate to improved performance
for the ZSDG task. Specifically, we build upon a state-of-the-art approach
for domain generalization and appropriately modify it such that it can
generalize to unseen classes during the testing stage. Towards this goal,
we propose to make the feature embedding space semantically meaning-
ful, by not only making an image feature close to its semantic attributes,
but also taking into account its similarity with the other neighbouring
classes. In addition, in order to reserve space for the unseen classes in the
embedding space, we propose to introduce pseudo intermediate classes
in between the semantically similar classes during training. This reduces
confusion of the similar classes and thus increases the discriminability of
the embedding space. Extensive experiments on two large-scale bench-
mark datasets, namely DomainNet and DomainNet-LS and comparisons
with the state-of-the-art approaches show that the proposed framework
outperforms all the other techniques on both the datasets.

1 Introduction

The recent advancement in deep neural networks has achieved enormous success
in numerous areas of computer vision, such as classification [13,49], segmenta-
tion [40], retrieval [34,38,50], playing Atari games with reinforcement learning
[32], etc. In standard supervised training, we assume that the training and the
test data belong to the same distribution, and the test data contains only the
classes that were seen during training. Such models can fail when they encounter
images from classes and domains unseen during the training process, as often
encountered in real scenarios. Since it is impractical to collect examples from
all possible classes and domains during training, it is important that the learnt
models generalize well to these challenging scenarios. This has led to a significant
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amount of research focused in areas like domain generalization (DG) and zero-
shot learning (ZSL). The DG task [25,27,39,48] aims to classify samples from
unseen target domains after learning from multiple source domains which have
the same classes as the target data. On the other hand, the ZSL task [23,33]
aims to classify samples belonging to classes unseen during training, but from
the same domain as the training data. It is only recently, that researchers have
started addressing the more realistic and challenging zero-shot domain general-
ization (ZSDG) task [8,28,29], where during testing, the samples can not only
belong to unseen classes, but also unseen domains.

ZSDG being a combination of DG and ZSL tasks, an advancement in any of
these fields should translate to an advancement in the ZSDG problem. But recent
research [8] indicates that naively combining DG and ZSL approaches does not
help to improve the performance on the ZSDG task. In this work, we explore
whether a state-of-the-art DG approach can be appropriately modified so that
it also achieves state-of-the-art performance for the ZSDG task. Specifically, we
build upon MixStyle [51], which computes the convex combination of instance-
level feature statistics of different samples to generate diverse domains/styles for
training, while keeping the semantic information intact for the DG task.

In this work, we propose simple, yet effective modifications which can gen-
eralize the MixStyle [51] framework for classifying unseen classes (from unseen
domains) during testing. Towards this goal, we want to make the feature embed-
ding space semantically meaningful, so that unseen class images/features can be
matched with their semantic attributes, as well as discriminative, so that the
classification performance in this space is satisfactory. To account for both these
objectives, we propose two modifications to the original DG approach, namely (1)
We introduce intermediate (pseudo) classes between semantically similar classes
in the embedding space, to reserve space for the unseen classes during testing; (2)
Each image feature is encouraged to be not only close to its true attribute vector,
but also at semantically meaningful distances from the attributes of its neigh-
bouring classes. The combined framework is termed as Semantic Embedding
with Intermediate Classes (SEIC). To summarize, our contributions are as fol-
lows:

1. We propose a simple, yet effective framework termed SEIC, to address the
problem of zero-shot domain generalization.

2. We propose to make the feature embedding space semantically meaningful
and discriminative by accounting for the neighbouring class information as
well as by introducing intermediate pseudo classes.

3. We show that a state-of-the-art DG method can be appropriately modified
to get state-of-the-art result for the related ZSDG problem.

4. Extensive experiments and comparisons on the challenging DomainNet and
DomainNet-LS datasets [35] justify the effectiveness of the SEIC framework.

2 Related Work

Here, we briefly describe the related literature on domain generalization (DG),
zero-shot learning (ZSL) and finally zero-shot domain generalization (ZSDG).
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Domain Generalization: First proposed in [5], domain generalization is a
problem gaining rapid attention in the vision community. A broad category
of approaches can be summarized by domain-invariant representation learning,
i.e., learning representations that eliminate domain-specific variations within the
dataset. This approach was first examined in the context of domain adaptation
in [4], which was used to construct a domain-adversarial neural network in [11].
Several algorithms have been proposed for domain generalization via adversarial
learning [25,27,39,48]. MixStyle [51] is motivated by the observation that visual
domain is closely related to image style (or domain). [20] augments the feature-
space by identifying the dominant modes of change in the source domain. [14,47]
transform images into frequency space to perform domain generalization. Single-
source DG methods, tackle a more challenging scenario, where only a single
source domain is available during training [14,37,39,42]. Some works also address
the DG problem during the testing phase [16].

Zero Shot Learning: ZSL [23,33] aims to transfer the model trained on the
seen classes to the unseen ones, usually using a semantic space between seen
classes and unseen classes. Early works in ZSL focused on the conventional ZSL
[1,2,6,7,22], where the test data only belongs to the unseen classes, and the pre-
dicted class is calculated based on the feature similarity with the attributes of
the unseen test classes in the embedding space. In generalized ZSL (GZSL), both
seen and unseen classes can be present during testing, making it a more challeng-
ing task. The works in [3,9,15,46] addresses the overfitting problem that arises
due to training on only the seen classes [44]. Many works [19,31,45] employ gen-
erative methods for converting the problem into a supervised learning problem
using Generative Adversarial Networks (GANs) [12] and Variational Autoen-
coder (VAEs) [21] to synthesize images of the unseen classes. [18] uses adaptive
metric learning to check the compatibility of a sample with the class semantics.

Zero Shot Domain Generalization: In general, the ZSL and DG tasks have
been considered separately. But recently, ZSDG is being researched actively
because of its more realistic and practical applications. Cumix [28] aims to simu-
late the test-time domain and semantic shift using images from unseen domains
and categories by mixing up the images available in source domains and cate-
gories during the training phase. It also uses a curriculum-based mixing policy
to generate increasingly complex training samples. SLE-Net [8] uses visual and
semantic encoders to learn domain-agnostic structured latent embeddings by
projecting images from different domains and their class-specific semantic rep-
resentations to a common latent space. SnMpNet [34] addresses the problem
of image retrieval, where the test data can belong to classes or domains which
are unseen during training. Our work is similar in spirit to [29], which effectively
exploits semantic information of the classes to adapt the existing DG methods to
tackle the ZSDG task. Zero-shot domain adaptation is another research area sim-
ilar to ZSDG, which aims to transfer the knowledge from a single source domain
to a target domain. [26] projects the samples of source and target domains to
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a common space and then learns unseen class prototypes of the target domain.
[17] learns class-agnostic domain feature representations and prevents negative
transfer effects using adversarial learning. [41] introduces a new scenario where
labelled samples are available for a subset of target domain classes and proposes
a method to transform samples from source domain to target domain without
loss of class information.

3 Problem Definition

Zero-shot domain generalization (ZSDG) aims to classify unseen classes in unseen
domains. Let X denote the image space, Y the set of possible classes and D the
set of possible domains. The classes are divided into two sets, one is used for
training or the seen classes (Ys ∈ Y) and the other for testing or the unseen
classes (Yu ∈ Y). Similarly, we have seen domains (Ds ∈ D) and unseen domains
(Du ∈ D). For training, we are given the set, M = {(x, y,ay, d)|x ∈ X , y ∈
Ys,ay ∈ E , d ∈ Ds}, where x is an image belonging to a seen class and a seen
domain, and has a class label y belonging to the seen class set Ys. ay is the
semantic embedding in E for class y in Ys, where E is the embedding space. d is
x’s domain label from the seen domain set.

During testing, the goal is to classify the test data N = {x}, which belong
to an unseen class, i.e. y ∈ Yu and also an unseen domain, i.e. d ∈ Du. In
standard ZSL, training is done on the set of seen classes and testing on the set
of unseen classes which are mutually disjoint, but the domains remain the same,
i.e., Ys ∩ Yu = φ and Ds ≡ Du. In DG, training is done on images belonging to
a set of domains that is disjoint to the set of domains used for testing, but the
set of classes is shared, i.e., Ds ∩ Du = φ and Ys ≡ Yu. Each domain can have
different distributions, i.e., pX (x|di) �= pX (x|dj),∀i �= j. Here, we address the
more challenging ZSDG problem where testing is done on domains and classes
unseen during training, i.e., Ds ∩ Du = φ and Ys ∩ Yu = φ.

4 Proposed Method

Now, we describe the proposed framework, termed SEIC for the ZSDG task.
First, we describe the recent state-of-the-art DG technique MixStyle [51] that we
use as the backbone for SEIC framework, followed by the proposed modifications.

4.1 Handling Unseen Domains Using Domain Generalization

Here, we briefly describe the MixStyle [51] approach, where given training data
from multiple source domains, the goal is to learn a model which can generalize
well to unseen target domains. MixStyle regularizes CNN training by perturbing
the style information of the samples from the source domains. It mixes the feature
statistics of two instances with a random convex weight to simulate new styles.
The framework broadly consists of a feature extractor FDG and a classifier gDG
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to get the output, yDG = gDG ◦ FDG. The mixing is done using the statistics
of features from the output of different CNN layers in the feature extractor.
Let fi and fj be the feature maps corresponding to samples xi and xj after a
particular CNN layer. It computes the mixed style feature statistics for fi using
fj as follows:

μms(fi; fj) = λμ(fi) + (1 − λ)μ(fj) (1)

σms(fi; fj) = λσ(fi) + (1 − λ)σ(fj) (2)

where λ ∼ β(α, α) and α ∈ (0,∞) is a hyper parameter. σ(.) and μ(.) are
standard deviation and mean, respectively, computed along the height and width
of each channel. Finally, the style-normalized features fms(fi; fj) are computed
by using the mixed feature statistics as follows:

fms(fi; fj) = σms(fi; fj) ∗ f ′
i + μms(fi; fj) (3)

where, f ′
i =

fi − μ(fi)
σ(fi)

(4)

The mixing of the statistics does not alter the class information (i.e. class is
same as that of xi) even if the two features being mixed belong to different
classes. This module can be easily plugged in after different layers of the CNN
to get more diversity in the source domains and achieve better generalizability
for unseen domains.

4.2 Handling Unseen Classes Using the Proposed SEIC Framework

We will now describe the proposed modifications, such that the above model also
performs well for unseen classes during testing. Specifically, we make the follow-
ing three modifications: (i) First, to establish the connection between the seen
and unseen classes, we replace the classifier weights using the semantic vectors,
which are automatically obtained using the class names. (ii) To reserve space
for the unseen classes which will be encountered during testing, we introduce
intermediate pseudo-classes in the training process; (iii) We utilize the neigh-
bourhood class information to make the feature embedding space semantically
meaningful. These modifications (details below) enable the proposed framework
(SEIC) to handle unseen classes as well during the testing stage.

(i) Utilizing Class Attributes to Link the Seen and Unseen Classes:
In ZSDG task, since unseen classes can be encountered during testing, it is
important to link the seen and unseen classes. Specifically, the goal is to learn
the relation between the feature embeddings and the class semantics, such that
the class label of the test data can be predicted by comparing it with the semantic
embeddings of all the classes. The semantic embeddings can be obtained using
unsupervised Natural Language Processing algorithms like Word2Vec [30], GloVe
vectors [36], etc. As discussed earlier, in MixStyle, the model architecture has a
feature extractor FDG followed by a classifier gDG. For handling unseen classes,
we replace the weights in the classification layer by the semantic vectors of each



338 B. Mondal and S. Biswas

Fig. 1. Depiction of the proposed method. For training, samples from seen domains
and seen classes are fed to the feature extractor, which consists of CNN blocks, each
followed by a mixing module. The mixing module consists of the domain and class
mixing modules to simulate unseen domains and classes. To learn distinctive features,
especially between similar classes, the mixing module is given the information of pair-
wise mixing probabilities of the classes, PMix and intermediate pseudo classes are
inserted at the output layer. During testing, the model has no mixing module and
pseudo-class nodes, and predicts the samples from unseen classes and unseen domains.

class, i.e., we want the predicted semantic embeddings extracted from the model
to be similar to the semantic embeddings, g : Y → E . The modified feature
extractor and embedding function are denoted as F : X → E and g : Y → E
respectively. In this work, g is the Word2Vec embedding of the class name. For
an image x, the model predicts the class as follows:

y∗ = argmax
y

g(y)TF(x). (5)

With this modification, the model is capable of recognizing unseen classes. But
currently, since the model is trained using only the seen classes, the feature
embedding space may not be discriminative enough to distinguish between the
seen and unseen classes, which we address using the intermediate pseudo-classes.

(ii) Introducing Intermediate Pseudo Classes. Now, we discuss how we
address the challenge of correctly classifying unseen classes during testing. The
current model will try to embed the features of the unseen classes to its class
attributes, but since these classes were not used for model training, their embed-
dings are usually confused, specifically with those of the semantically similar
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seen classes. For example, a new bee class feature may be easily confused with
features of other insects, but will probably not be confused with features from
animals like cat or vehicles like buses, etc. To improve class discrimination and
thus reduce this confusion, we propose to introduce additional pseudo classes
in between the existing training classes, with more emphasis on semantically
similar classes. These intermediate classes act as proxies for the unseen classes,
that might be encountered during testing. We propose to generate data for the
intermediate classes using the available training data as explained below.

Given two classes yi, yj ∈ Ys in the seen class set with their respective
semantic embeddings as ayi

,ayj
∈ E , we form an intermediate pseudo class yij

(or equivalently yji) and assign it a semantic embedding equal to the average of
the semantic embeddings of yi and yj , i.e.,

ayij
=

ayi
+ ayj

2
(6)

To generate the training data for these intermediate pseudo-classes, we propose
to mix pairs of samples belonging to classes yi and yj in the feature space after
different CNN layers. Given the feature maps fi and fj of two training instances
after some CNN layer, we obtain the intermediate class feature fic as:

fic(fi; fj) = γfi + (1 − γ)fj (7)

where γ ∈ R is sampled from a uniform distribution, i.e., γ ∼ U(t1, t2). Since
the pseudo classes are generated using the average of two semantic embeddings,
as shown in Eq. (6), we choose t1 and t2 such that the feature of one class does
not overshadow the feature of the other class.

We have discussed handling of unseen domains by mixing the statistics and
handling the unseen classes by mixing the features. Now, we combine them to
get our final mixing module:

fMix(fi; fj) = fic(f ′
i ; f

′
j) ∗ σms(fi; fj) + μms(fi; fj) (8)

where f ′
i and f ′

j are defined as per Eq. (4). Since we also want to retain the original
samples with their class and domain information, the mixing is done only if a
generated random number (r) is less than a pre-set threshold (τ), otherwise the
original features with their class information are used for training. This random
number is generated independently for each mixing module and for every batch
in every epoch. Depending on whether mixing has happened or not, we have two
separate losses. The final loss for the image xi belonging to class yi is given as:

LMix(xi;xj) =

{
LCE(g(y)TF(xi;xj), yij), r < τ

LCE(g(y)TF(xi), yi), otherwise
(9)

where LCE is the cross-entropy loss, g(y) is the set of semantic embeddings cor-
responding to each class node, F is the feature extractor consisting of the CNN
layers and the mixing modules inserted between the layers, yij is the pseudo
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class in-between the classes corresponding to xi and xj . When the random num-
ber r (generated uniformly in the range 0 to 1) is greater than or equal to the
threshold τ , then the mixing module acts as an identity function.

As discussed earlier, to learn distinctive features for closely related classes,
we focus more on learning the pseudo classes that are between two semantically
close classes. First, we calculate the Euclidean distance between the semantic
embeddings of every pair of classes to find the similarity among them. A class
is mixed with another class following a probability distribution based on the
semantic similarity of the classes. For e.g., if we are given only three classes yi,
yj and yk, with their pair-wise distances from ayi

as, dist(ayi
,ayj

) = dij and
dist(ayi

,ayk
) = dik. Then, the probability of mixing a sample of class yi with a

sample of class yj will be:

PMix(yi, yj ; yk) =
exp(−dij)

exp(−dij) + exp(−dik)
(10)

The probability of mixing a sample of class yi with a sample of class yk can be
calculated in a similar manner. Another reason why we mix semantically close
classes is that it has more potential to generate meaningful novel classes. For
example, mixing two types of insects may produce another insect, but mixing
an insect with a dog might not produce anything realistic.

(iii) Incorporating Information from Neighbouring Classes: With the
above modifications, the model is now capable of handling both unseen classes
and unseen domains during testing. But, the success of the unseen class pre-
dictions depend upon how semantically meaningful the feature embeddings are.
Here, we propose to guide the feature embeddings not only using its correct
ground truth attribute (using the classification loss), but also using the infor-
mation of its semantically similar neighbouring classes. For e.g., the feature
embedding of an insect class wasp can be guided by its class attribute, and also
by its relative distances from the other insect classes. This is specially important
during the feature computation of the unseen classes, where in absence of its
ground truth attributes, the embedding has to be solely guided by the seen class
attributes.

The standard classification loss encourages the model to predict a score of 1
for the ground truth class and 0 for all other classes. In contrast, we propose to
calculate the loss not just with respect to the ground truth attribute, but also
with respect to the other classes, appropriately weighted by their similarity with
the ground truth class. Given an image xi ∈ X , belonging to class yi ∈ Ys with
semantic vector ayi

∈ E , we propose to use an additional loss term as follows:

LMSE(xi) =
∑
y∈Ys

exp(− ‖(ayi
− ay)‖2

maxz∈Ys ‖(ayi
− az)‖2 )(‖F(xi) − ay‖2 − ‖ayi

− ay‖2)2

(11)
where ay is the semantic vector of an arbitrary class y. ‖F(xi) − ay‖2 is the
distance between the predicted embedding of the sample xi and the ground
truth semantic vector of class y. Similarly, ‖ayi

− ay‖2 is the distance between



SEIC 341

the ground truth semantic vector of xi and the ground truth semantic vector of
class y. The term inside the second parentheses encourages the embedding of the
image feature and its ground truth attribute vector with respect to the attributes
of the neighbouring classes to be similar. The term inside the first parentheses is
an exponential weighting factor so that this strict relative positioning is mainly
applied for the semantically similar classes.

Note that when the mixing module is not activated, we directly follow
Eq. (11). For the case when mixing is done, we calculate the LMSE loss by
replacing ayi

with the average of the attributes of the mixed classes, i.e., ayij
as

given in Eq. (6). We combine the two losses to get the final loss as:

L = LMix + ηLMSE (12)

where η is a hyper-parameter to balance the relative effects of the two losses.
Similar idea has been explored in SnMpNet [34] for the retrieval task.

5 Experimental Evaluation

Here, we describe in detail the datasets used, implementation details, results and
further analysis of the proposed approach.

Datasets Used: For evaluation of our method, we use two large-scale bench-
mark datasets, namely DomainNet and DomainNet-LS, as used in the recent
works in ZSDG [8,28]. DomainNet [35] consists of 345 classes and 6 domains,
namely clipart, infograph, painting, quickdraw, real and sketch, spread across
approximately 0.6 million images. We follow the same experimental protocol
defined in the literature. Out of 345 classes, we use 300 for training as the seen
classes and the remaining 45 for testing as unseen classes. Out of 6 domains, we
use 5 domains at a time for training as seen domains and the remaining domain
is used for testing as unseen domain. We hold-out each domain (except real)
one-by-one and repeat the training process using the 300 classes in the remain-
ing 5 domains. The testing is not done on the real domain, since the backbone
is pre-trained on the ImageNet dataset, and thus the real domain can not be
considered as an unseen domain. For the DomainNet-LS benchmark, only real
and painting domains are used for training and the rest are used for testing, the
splitting of the classes remains same. Clearly, it is a more challenging setting,
since the domain invariant features have to be learnt only using two domains.

Implementation Details: For fair comparison with the state-of-the-art
approaches, we use the ResNet-50 backbone, which has four CNN blocks. We
have the mixing modules only after the 1st three blocks, as done in [51]. To learn
the features in the semantic space, we use the 300-dimension semantic vectors
from the Word2Vec [30] representation. Following [51], we use α = 0.1 as the
input parameter of the Beta distribution. Inspired from [52], we sample γ from
a distribution uniform in t1 = 0.4 to t2 = 0.6, i.e. γ ∼ U(0.4, 0.6). Based on the
analysis shown in Fig. 3(b), we set η = 1 to give equal weightage to both the
losses. For training, we use the Adam optimizer with a learning rate of 10−5 and
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a batch size of 80. We find that setting the probability threshold, with which
the mixing module is activated, equal to 0.2, i.e., τ = 0.2 gives the best results,
as shown in Fig. 3(a).

5.1 Results on DomainNet and DomainNet-LS Datasets

Table 1. Leave-one-domain-out ZSDG results on DomainNet using average per-class
accuracy metric.

Method Target Domain Average

DG ZSL Clipart Infograph Painting Quickdraw Sketch

– DEVISE [10] 20.1 11.7 17.6 6.1 16.7 14.4

ALE [1] 22.7 12.7 20.2 6.8 18.5 16.2

SPNet [43] 26.0 16.9 23.8 8.2 21.8 19.4

DANN DEVISE [10] 20.5 10.4 16.4 7.1 15.1 13.9

ALE [1] 21.2 12.5 19.7 7.4 17.9 15.7

SPNet [43] 25.9 15.8 24.1 8.4 21.3 19.1

Epi-FCR DEVISE [10] 21.6 13.9 19.3 7.3 17.2 15.9

ALE [1] 23.2 14.1 21.4 7.8 20.9 17.5

SPNet [43] 26.4 16.7 24.6 9.2 23.2 20.0

CuMix (img only) [28] 25.2 16.3 24.4 8.7 21.7 19.2

CuMix (two-level) [28] 26.6 17.0 25.3 8.8 21.9 19.9

CuMix [28] 27.6±0.5 17.8±0.2 25.5±0.4 9.9±0.3 22.6±0.3 20.7±0.3

SLE-Net [8] 27.8±0.3 18.4±0.4 26.6±0.3 11.5±0.2 25.2±0.3 21.9±0.3

Proposed SEIC 29.9±0.2 17.4±0.1 26.7±0.4 12.0±0.4 27.3±0.3 22.7±0.3

Table 2. Leave-one-domain-out ZSDG results on DomainNet using standard accuracy
metric.

Method Clipart Infograph Painting Quickdraw Sketch Average

CuMix [28] 27.8 16.3 27.6 9.7 25.9 21.5
SLE-Net [8] 29.1 17.6 28.8 11.5 26.3 22.7
Proposed SEIC 32.7 18.3 27.5 11.9 30.4 24.2

Here, we perform extensive experiments to evaluate the effectiveness of the pro-
posed SEIC framework for the ZSDG task.

Results on DomainNet Dataset: For DomainNet dataset, we compare our
results using two metrics: average per-class accuracy and standard accuracy.
We follow the same experimental protocol as the previous works in the litera-
ture, namely Cumix [28] and SLE-Net [8]. Fisrt, we report the results on stan-
dalone ZSL methods such as DEVISE [10], ALE [1] and SPNet [43] and combi-
nation of the ZSL methods with DG methods, like DANN [11] and Epi-FCR [24].
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Along with SLE-Net [8], we report the results of CuMix and its variants: CuMix
(img only) where MixUp is applied only at the image level and CuMix (two-level)
where MixUp is applied at both image and feature level, as given in [28].

In Table 1, we report the average per-class accuracy for the five test domains
using various methods. The results of all the previous approaches have been
directly taken from [8]. On using only the standalone ZSL methods DEVISE
[10], ALE [1] and SPNet [43], we get 14.4%, 16.2% and 19.4% accuracy, respec-
tively. On integrating the DANN [11] framework with the above ZSL methods,
there is a drop in accuracy. Instead of DANN [11], if we combine Epi-FCR [24]
with the ZSL methods, the average accuracies improve to 15.9%, 17.5% and
20.0%, respectively. The proposed SEIC framework outperforms the state-of-
the-art SLE-Net [8] on four out of the five domains with an average accuracy of
22.7%, which is better than [8] by 0.8%.

Table 3. Leave-one-domain-out ZSDG results on DomainNet-LS using average per-
class accuracy metric.

Method Clipart Infograph Quickdraw Sketch Average

SPNet [43] 21.5 14.1 4.8 17.3 14.4
Epi-FCR+SPNet [43] 22.5 14.9 5.6 18.7 15.4
CuMix (img only) [28] 21.2 14.0 4.8 17.3 14.3
CuMix (two-level) [28] 22.7 16.5 4.9 19.1 15.8
CuMix (reverse) [28] 22.9 15.8 4.8 18.2 15.4
CuMix [28] 23.7 17.1 5.5 19.7 16.5
SLE-Net [8] 24.0 16.0 7.2 20.5 16.9
Proposed SEIC 25.9 16.0 8.5 22.9 18.3

In Table 2, we show the standard accuracies of the proposed approach for the
DomainNet dataset and compare it with the previous two ZSDG methods. SLE-
Net [8] obtains average accuracy of 22.7%. Here also, our method outperforms
the other methods with an average accuracy of 24.2%, which is an increase of
1.5% over SLE-Net [8].

Results on DomainNet-LS Dataset: In Table 3, we show the results on the
DomainNet-LS dataset, where we train the model only on 2 domains: real and
painting. An average accuracy of 14.4% is attained by SPNet [8]. On combining
it with Epi-FCR [24], the accuracy improves by 1.0%. CuMix [28] achieves an
average accuracy of 16.5% beating its other variants like CuMix (reverse) [28].
Our method achieves an average accuracy of 18.3% which is better than SLE-Net
[8] by 1.4%.
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5.2 Additional Analysis

Ablation Study: In Table 4, each of the components is deactivated one-by-one
while keeping the others activated. The baseline here is the original backbone
with the fixed semantic embeddings as the classifiers. We do this analysis on the
DomainNet-LS dataset by taking the following five cases:
(a) Here, domain mixing, which generates mixed style features is deactivated,
rest of the components are active. The mixing of two samples is done only on
the feature level, the statistics of the features are not altered. Here, the model’s
ability to generalize to unseen domains would be hampered.
(b) Here, the CE loss corresponding to the intermediate class features fic is
absent, thereby making the model less effective at recognizing unseen test classes.
(c) Our proposed method uses the knowledge of semantically similar classes for
generating the pseudo intermediate classes for increasing the class discriminabil-
ity. Here, we turn off this component making the model inefficient at distin-
guishing between similar classes. Here, for creating the intermediate classes, two
randomly picked samples are used instead of semantically similar classes.
(d) Here, the information provided by the neighbouring classes i.e. LMSE defined
in Eq. (11) is not used.
(e) This is the proposed SEIC framework which uses all the components. We
observe that all the proposed modules help towards improving the performance
of the SEIC framework for the ZSDG task.

Table 4. Analysis of the contribution of each component in the proposed method using
DomainNet-LS dataset.

fms fic PMix LMSE Clipart Infograph Quickdraw Sketch Average

Case (a): ✗ ✓ ✓ ✓ 24.9 15.0 6.5 21.9 17.1

Case (b): ✓ ✗ ✓ ✓ 25.8 14.2 6.4 21.7 17.0

Case (c): ✓ ✓ ✗ ✓ 24.2 15.4 5.4 20.2 16.3

Case (d): ✓ ✓ ✓ ✗ 25.2 15.9 8.0 21.2 17.6

Case (e): ✓ ✓ ✓ ✓ 25.9 16.0 8.5 22.9 18.3

Visualization of the Semantic Space: Here, we visualize the feature embed-
ding space which is learnt using the proposed SEIC framework. Figure 2 shows
the t-SNE plots of the feature embeddings for 10 randomly chosen unseen test
classes for the DomainNet dataset. We observe that the unseen test classes form
reasonably nice clusters in the embedding space, even though the model has not
been trained using data from these classes or domains. Also, the clusters are
semantically meaningful, for example, in Fig. 2(c), we observe that semantically
similar classes (living creatures) like parrot, dolphin and octopus are closer to
each other compared to other different classes like scissors and boomerang.
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Fig. 2. t-SNE plots of the semantic space of test domains: (a) Clipart, (b) Painting
and (c) Sketch in the DomainNet dataset for 10 unseen classes.

Table 5. Model predictions for some test images in 5 domains of the DomainNet
dataset. The ground truth is given at the top of each image. The correct (green) and
incorrect (red) predictions are shown at the bottom of each image.
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Fig. 3. Effect of variations in hyperparameters.

Visual Examples of Correct and Incorrect Predictions: Table 5 shows
few examples which are correctly and wrongly classified by the proposed SEIC
framework. These images are from two domains of the DomainNet dataset. We
observe that many of the wrong predictions are quite intuitive and may be
wrongly classified even by humans. For example, the last image of painting, i.e.
cloud is wrongly predicted as moon, the last image of quickdraw, i.e. sweater is
wrongly predicted as windmill, etc.

Effect of Varying Different Hyperparameters: First, we show the variation
in performance for different values of τ , which controls how frequently a mixing
module is activated. We analyze the performance for τ = {0.1, 0.2, 0.3, 0.4}, on
DomainNet-LS. In Fig. 3(a), we observe that the best result for each domain is
obtained at τ = 0.2. But the degradation of performance for different values of
τ is very gradual, indicating that the model performance is quite stable with
respect to this hyperparameter. In Fig. 3(b), we show the accuracy variation for
different values of η, which is a hyperparameter weighting the importance of the
MSE loss term in Eq. (12). We analyze the results for η = {0.6, 0.8, 1.0, 1.2, 1.4}.
Clearly, the best result is achieved when the value of η is set equal to 1. The trend
is consistent across each of the four domains. Therefore, both the loss terms are
given equal weightage in the final loss equation in our experiments.

6 Conclusion

In this work, we propose a novel framework termed SEIC, to address the ZSDG
task. Specifically, we extend a state-of-the-art DG method capable of generalizing
across unseen domains into a ZSDG framework which can handle unknown test
classes as well. Generalization across unseen domains is achieved by generating
intermediate domains by mixing the feature statistics of the different training
samples. Similarly, generalization across unseen classes is handled by generating
pseudo classes between similar seen classes using mixed features of the training
samples. In addition, we also utilize the information of the neighbourhood classes
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to learn the semantically meaningful feature embeddings. Extensive experiments
on two large-scale benchmark datasets and comparison with the state-of-the-art
show the effectiveness of the proposed SEIC framework.
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Abstract. Person re-identification (Re-ID) has been widely studied and
achieved significant progress. However, traditional person Re-ID meth-
ods primarily rely on cloth-related color appearance, which is unreli-
able under real-world scenarios when people change their clothes. Cloth-
changing person Re-ID that takes this problem into account has received
increasing attention recently, but it is more challenging to learn discrim-
inative person identity features, since larger intra-class variation and
smaller inter-class easily occur in the image feature space with clothing
changes. Beyond appearance features, some known identity-related fea-
tures can be implicitly encoded in images (e.g., body shapes). In this
paper, we first design a novel Shape Semantics Embedding (SSE) mod-
ule to encode body shape semantic information, which is one of the
essential clues to distinguish pedestrians when their clothes change. To
better complement image features, we further propose a Co-attention
Aligned Mutual Cross-attention (CAMC) framework. Different from pre-
vious attention-based fusion strategies, it first aligns features from multi-
ple modalities, then effectively interacts and transfers identity-aware but
cloth-irrelevant knowledge between the image space and the body shape
space, resulting in a more robust feature representation. To the best of
our knowledge, this is the first work to adopt Transformer to handle
the multi-modal interaction for cloth-changing person Re-ID. Extensive
experiments demonstrate the effectiveness of our proposed method and
show the superior performance achieved on several cloth-changing per-
son Re-ID benchmarks. Codes will be available at https://github.com/
QizaoWang/CAMC-CCReID.

1 Introduction

Person re-identification (Re-ID) aims at identifying and associating the same
person across different cameras, which has great potential applications in
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video surveillance, including suspect tracking, activity analysis, human-computer
interaction, etc.. Depending on application scenarios, existing person re-
identification approaches can be broadly grouped into two categories, short-
term and long-term. Short-term person Re-ID has been widely studied in the
past decades, involved in multiple challenges and research directions, including
occlusion [30,37,55] and infrared-visible modalities [53,54], supervised [26,34,68]
and unsupervised learning [21,51,58], representation [5,50,56] and metric learn-
ing [7,13,45]. However, all of these methods assume that the same person would
always wear the same clothes, so the learned features may mostly rely on cloth-
ing appearances. On the contrary, long-term person Re-ID focuses more on the
application in real-world scenarios, which takes into account practical problems,
such as changing clothes and incremental identities. Among them, the cloth-
changing problem has attracted more and more attention, which is also known
as cloth-changing person Re-ID.

To deal with the challenge of clothing changes, it is important to use robust
identity-related features. Many researchers naturally turn their attention to
human body shape information, since the body shape of a person usually remains
unchanged for a relatively long duration. However, it is extremely difficult
to mine it from RGB color images. Consequently, most cloth-changing Re-ID
methods draw support from other modalities, such as 2D human posture key-
points [39], contour sketches [57], gaits [22] and 3D shapes [6]. In this paper, we
also target cloth-changing person Re-ID, but propose a novel Shape Semantics
Embedding (SSE) module. It uses heatmaps of human postures to encode body
shape semantic information, which is more lightweight and robust in long-term
scenarios.

When integrating useful information from multiple modalities, one of the
challenges is how to make them interact effectively. Unfortunately, in previous
cloth-changing Re-ID methods, the interaction between appearance features and
features extracted from other modalities is relatively simple. Intuitively, there is
an inevitable gap in the representations of different modalities even for the same
person, so a simple interaction between modalities could not make full of use of
abundant multi-modal information. In recent years, Transformer [48] has been
widely used, and many researches have shown its effectiveness in computer vision
tasks, such as object detection [3,70], and person re-identification [12,30,35].
The attention mechanism in Transformer can effectively capture the contex-
tual semantic information of input sequences. Inspired by it, we propose a
Co-Attention Aligned Mutual Cross-attention (CAMC) framework for cloth-
changing person Re-ID.

More specifically, an appearance branch and a shape branch are first designed
in our framework. The former uses a conventional backbone (e.g., ResNet-50 [10])
to extract appearance features, and the latter is exactly our proposed SSE mod-
ule for obtaining body shape information. To relieve the gap between both fea-
tures from different modalities, we adopt element-wise attention for alignment.
Subsequently, a symmetrical mutual cross-attention module is applied to effec-
tively distill appearance and body shape information from each other. With our
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proposed CAMC framework, appearance features are refined with the help of
body shape semantic information which is cloth-irrelevant, while body shape
semantic features are supplemented with aligned appearance features robust to
clothing changes.

In summary, our contributions are listed as follows:

1. We propose a Shape Semantics Embedding module based on the self-attention
mechanism to encode body shape semantics irrelevant to clothes, which is
essential to identify a person when changing clothes.

2. We propose a novel mutual interaction module based on the cross-attention
mechanism to interact appearance and body shape features effectively, result-
ing in a fused feature more robust to clothing changes. To mitigate the fea-
ture gap from different modalities and improve the efficiency and effective-
ness of their feature interaction, we additionally introduce an element-wise
co-attention alignment module for alignment.

3. To the best of our knowledge, it is the first work to adopt Transformer to
handle multi-modal interaction for cloth-changing person Re-ID. Extensive
experiments demonstrate the efficacy of our proposed model on several cloth-
changing Re-ID benchmarks.

2 Related Work

2.1 Person Re-identification

Person Re-ID task aims at identifying a specific person across different cameras
and locations. With the rise of deep learning, person Re-ID technology has made
great progress and is widely used in smart cities, intelligent security, human-
computer interaction, etc.. Many works try to explore fine-grained pedestrian
identity features via metric learning, for instance, hard triplet loss [7,13] to
encourage a closer feature distance among the same identity, and classification
loss [41,64,66] to learn a high-level global feature from the whole input. There
are also some other works dealing with spatial misalignment problems, such as
occlusion [11,65], variant camera views [33,44], diverse poses [28,38], different
resolutions [27], and manifold domains [18,23]. However, these models are well-
trained based on the assumption that the same person has the same clothing in a
short duration, which seriously hinders their applications in long-term real-world
scenarios. In this paper, we focus on the more realistic long-term cloth-changing
person Re-ID task and further explore a robust person identity feature extraction
model to solve the problem of unreliable appearance information.

2.2 Cloth-Changing Person Re-identication

To further improve the applicability and practicability of person Re-ID models
in real-world scenarios, more and more researchers turn to studying the cloth-
changing person Re-ID task, which targets to match the same person across dif-
ferent locations over a long duration and inevitably faces the cases of changing
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clothes. In this situation, appearance/texture information can no longer be used
as an accurate representation to distinguish different pedestrians, which makes it
difficult for many previous methods to achieve satisfactory results. Thus, nowa-
days, many studies have tried to solve the problem via learning more stable
biological representation, for example, Wan et al. [49] and Yu et al. [60] extract
facial features to improve the person Re-ID accuracy; Yang et al. [57] utilize
contour sketches to indicate discriminative characteristics; and Qian et al. [39]
and Li et al. [29] use shape information to help feature learning. Different from
existing works, we not only focus on extracting precise biological body shape
semantic information, but also try to better align the two modality features of
appearance and body shape, which can further boost the cloth-changing person
Re-ID performance.

2.3 Transformer-Based Person Re-identification

Transformer [48] has made great achievements in the field of natural language
processing. Inspired by the self-attention mechanism, many researchers apply
Transformers to computer vision tasks and find such Transformers can be as
effective as CNNs over feature extraction. For example, Dosovitskiy et al. pro-
pose ViT [9] which processes images directly as sequences, Touvron et al. intro-
duce a teacher-student strategy specific for Transformers to speed up the ViT
training without using any large-scale pretraining data, and Carionet al. design
DETR [3] performing cross-attention between the object query and the feature
map to transform the detection task into a one-to-one matching problem. Since
Transformer can capture long-distance dependency and help models pay atten-
tion to different parts of the human body, such as the head, shoulder, waist,
and thigh, and obtain rich local relevant semantic information, Li et al. [30] and
He et al. [12] adopt Transformer to solve the person partial-observation prob-
lem in occlusion person Re-ID task. In this paper, we take the advantage of the
Transformer cross-attention mechanism to interact appearance and body shape
semantic information, and generate a robust fused pedestrian feature under the
cloth-changing scenario. Different from the latest work [2], which uses ViT as
backbone only, we explore to effectively use Transformer to interact multiple
modalities in cloth-changing person Re-ID.

3 Methodology

3.1 Overview

In this paper, we aim to address the problem of person Re-ID under the long-
term cloth-changing setting, where the clothing appearance is unreliable and
even would hinder the network to extract discriminative features. Considering
that body shape is more robust against clothing changes, we draw support from
heatmaps of human postures to encode body shape semantic information. Fur-
thermore, we propose a Co-attention Aligned Mutual Cross-attention framework
to effectively align and interact multi-modality features.
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Fig. 1. Overview of our Co-attention Aligned Mutual Cross-attention (CAMC) frame-
work. It consists of an appearance branch, and a body shape branch implemented by our
proposed Shape Semantics Embedding (SSE) module. We propose a co-attention align-
ment module to align the two modalities. Then a symmetrical mutual cross-attention
module is applied to effectively interact and fuse appearance and body shape semantic
information, outputting a fused feature robust to clothing changes.

The overall framework is shown in Fig. 1, which consists of an appearance
branch and a body shape branch. Concretely, the former is designed to extract
appearance features from the given person image x ∈ R

H×W×c. Following [46],
we use ResNet-50 [10] as backbone, and the stride of the first convolution layer
in res4 block is set to 1 to increase the feature resolution. The output feature
is flattened in the spatial dimensions to obtain the appearance feature sequence
fa ∈ R

hw×d, where h and w are the height and width of the feature map, d
denotes the feature dimension.

In the rest of this section, we first introduce how the body shape branch
extracts rich semantic information about body shapes (see Sect. 3.2). Second,
we propose a co-attention alignment module to align multi-modal information
(see Sect. 3.3). Then, we elaborate on the mutual cross-attention module, which
plays a key role in the multi-modal feature interaction (see Sec. 3.4). Lastly, we
briefly describe the procedures of training and inference in Sect. 3.5.

3.2 Shape Semantics Embedding Module

When people change their clothes, although most appearance clues, such as the
color of clothes, change significantly, their body shapes are relatively stable even
for a long time. Therefore, it is useful to encode and utilize the body shape
semantic information, which is more robust to clothing changes. To achieve such
a goal, we propose a Shape Semantics Embedding (SSE) module to encode it
from heatmaps of human postures. Our proposed SSE module especially lever-
ages the self-attention mechanism to learn relations between different human
posture keypoints. The intuition is that biological information is contained in
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Fig. 2. Illustration of our proposed co-attention alignment module. By encoding the
concatenated appearance and body shape semantic features, element-wise attention
scores are obtained to effectively align features from different branches.

these relations (e.g., hip to knee). Compared with encoding individual keypoint,
such a design is more stable and robust, even if people change their postures.

As shown in Fig. 1, we employ an off-the-shelf estimator HRNet [43] to
obtain heatmaps of human postures. Given an input image x, HRNet returns
K heatmaps of human postures, where each heatmap represents the location
distribution of one posture keypoint. We regard K as the feature dimension and
apply a convolution layer to increase the dimension from K to d, outputting a
human posture feature fk ∈ R

hw×d, where h and w represent the height and
width of the feature map. To encode the relations between each pair of human
posture parts, we feed fk into an encoder layer, which consists of one multi-head
self-attention layer [48] with a skip connection and layer normalization [1]. A
standard feed-forward network [48] is further attached to output the body shape
semantic feature fs ∈ R

hw×d. More details on the structure design are discussed
in the supplemental material.

Benefiting from the ability to effectively capture the long-distance and short-
distance semantic information of inputs, the self-attention mechanism can encode
the correlations between different parts of human postures, which present the
body shape semantics. Meanwhile, the multi-head mechanism enables different
heads to effectively focus on all kinds of semantic details.

3.3 Co-attention Alignment Module

Intuitively, the appearance feature fa and the body shape feature fs are from
two different modalities, so they may not correspond, containing mismatched
redundancy and interference information. To effectively match and integrate
their useful information, we propose a co-attention alignment module, as shown
in Fig. 2, to align both features before further interaction and fusion.
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Specifically, the input of the co-attention alignment module is the concate-
nated two branch features fc = [fa; fs] ∈ R

hw×2d, where [∗ ; ∗] means the
concatenation operation. Then it further goes through two fully-connected (FC)
layers. Similar to [16], the first FC layer compresses the feature dimension to a
quarter and the second one decodes it back to the original dimension, not only
reducing the number of parameters, but also achieving the information bottle-
neck effect. After that, a sigmoid function is attached to produce element-wise
attention scores for feature alignment. For training stability, we further intro-
duce a skip connection from the input to the output. The overall formulation
can be expressed as,

s = σ(φ(fcW1 + b1)W2 + b2) (1)

[f̃a; f̃s] = f̃c ; f̃c = s ⊗ fc + fc (2)

where W1 ∈ R
2d×(d/2), W2 ∈ R

(d/2)×2d, b1 ∈ R
1×(d/2) and b2 ∈ R

1×2d are weights
and biases of two fully-connected layers; φ is the ReLU activation function and
σ denotes the sigmoid function; ⊗ means the element-wise multiplication. We
divide the aligned features f̃c ∈ R

hw×2d in half, to separately get the aligned
appearance feature sequence f̃a ∈ R

hw×d and the aligned body shape semantic
feature sequence f̃s ∈ R

hw×d.

3.4 Mutual Cross-Attention Module

After successfully aligning appearance and body shape semantic features, we
introduce a cross-attention module to realize the information interaction between
the two modalities. As shown in Fig. 1, this module is performed mutually and
symmetrically, that is, the body shape features are integrated into the appear-
ance features and vice versa.

Take one side as an example, we first apply the multi-head cross-attention
mechanism to do interaction by computing the dot-product similarity between
the appearance feature f̃a and the body shape feature f̃s. The similarity is
scaled by

√
d and normalized by a softmax function. Subsequently, the result

is regarded as an attention weight to perform a weighted sum of f̃s. In this
way, for each appearance feature f̃a

i ∈ R
1×d, where i ∈ [1, hw], we can find

body shape semantic information with similar responses in f̃s, and integrate it
effectively. In other words, the appearance features f̃a are well refined with the
help of the cloth-irrelevant body shape semantic information f̃s. The formulation
is expressed as,

Q = f̃a ; K = f̃s ; V = f̃s (3)

fs→a = ψ

(
softmax

(
QKT

√
d

)
V + f̃a

)
(4)

where fs→a ∈ R
hw×d and ψ denotes the layer normalization [1]. It is similar to

the standard multi-head cross-attention module in Transformer [48], but there
is no necessary for linear projection for query, key, and value space, thanks to
our proposed co-attention alignment module.
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For the other side of the interaction, we adopt the same formulation but set
Q = f̃s, K = f̃a, V = f̃a, to integrate the matched appearance features into the
body shape semantic features. Finally, we get fa→s ∈ R

hw×d, which represents
body shape semantic features that are supplemented with aligned appearance
features robust to clothing changes.

3.5 Training and Inference

Thanks to the symmetrical mutual cross-attention interaction between the
aligned features from the two branches, we take full use of appearance and
body shape semantic information. We concatenate the two features after inter-
action together to obtain a more robust and discriminative feature, which can
be formulated as follows:

F = [fs→a; fa→s] ∈ R
hw×2d (5)

For training, we adopt a linear classifier with the input of the fused feature F ,
and optimize the model by cross-entropy loss with label smoothing. For inference,
we directly use F as final features to compute the cosine distance between two
person images for retrieval.

4 Experiment

4.1 Experimental Setup

Datasets. We mainly evaluate our method on two widely used long-term cloth-
changing person Re-ID datasets: Celeb-reID [20] and LTCC [39]. Celeb-reID is
acquired from the Internet using street snapshots of celebrities, which contains
34,186 images of 1,052 identities. Specifically, more than 70% images of each
person show different clothes on average. LTCC is an indoor cloth-changing
person Re-ID dataset, which has 17,138 images of 152 identities with 478 different
outfits captured from 12 camera views. LTCC is challenging as it contains diverse
human poses, large changes of illumination, and large variations of occlusion. To
better illustrate our model efficacy on the general person Re-ID task, we also
evaluate our method on Market-1501 [63], which is a benchmark dataset for
the standard person Re-ID without clothing changes.

Implementation Details. Our method is implemented on the Pytorch frame-
work. We adopt ResNet-50 [10] initialized by ImageNet [8] as backbone to extract
person appearance features. The input images are resized to 256× 128. For data
augmentation, color jitter, random horizontal flipping, padding, random crop-
ping, and random erasing [67] are used. We use Adam optimizer [24] for 150
epochs, with the warmup strategy that linearly increases the learning rate from
3 × 10−5 to 3 × 10−4 in the first 10 epochs. Then decrease the learning rate by
a factor of 10 at epoch 40 and 80. The batch size is set to 64 for Celeb-reID
and Market-1501, and 32 for LTCC, with 4 images per ID. To get the heatmaps



Co-attention Aligned Mutual Cross-Attention for CC ReID 359

Table 1. Comparison of our method with the state-of-the-art methods on Celeb-reID.
The best results are shown in bold.

Methods Rank-1 Rank-5 mAP

ResNet-Mid [59] 43.3 54.6 5.8

Two-Stream [66] 36.3 54.5 7.8

MLFN [4] 41.4 54.7 6.0

HACNN [26] 47.6 63.3 9.5

Part-Bilinear [42] 19.4 40.6 6.4

PCB [46] 37.1 57.0 8.2

MGN [52] 49.0 64.9 10.8

ReIDCaps [20] 51.2 65.4 9.8

CESD [39] 50.9 66.3 9.8

RCSANet [19] 54.9 – 11.0

Baseline (ResNet-50) 52.9 66.2 9.9

Ours 57.5 71.5 12.3

of human postures, we employ HRNet [43] pre-trained on COCO dataset [32],
where the number of heatmaps is 17. We merge the 5 heatmaps corresponding
to the nose, ears, and eyes as “face”, resulting in 13 heatmaps. We simply freeze
all weights of HRNet during training.

Evaluation Metrics. For evaluation, we adopt standard metrics as in most
person Re-ID literature, namely Cumulative Matching Characteristic (CMC)
curves and mean average precision (mAP). To make a fair comparison with
the existing research works, for LTCC, we evaluate our method under both the
standard setting and the cloth-changing setting. Specifically, for the standard
setting, images in the testing set with the same identity and the same camera
view are discarded when computing evaluation scores. In other words, there
are both cloth-consistent and cloth-changing samples in the testing set. For the
cloth-changing setting, images with the same identity, camera view, and clothes
are discarded during testing, so there are only cloth-changing samples in the
testing set.

4.2 Quantitative Results

Performance on the Celeb-reID Dataset. We evaluate our proposed
method on Celeb-reID and compare it with other state-of-the-art competitors.
Results are shown in Table 1. Among them, ReIDCaps [20], CESD [39] and
RCSANet [19] are specially designed for the cloth-changing person Re-ID prob-
lem. For a fair comparison, the results of ReIDCaps [20] and RCSANet [19]
are achieved without applying the fine-grained body parts learning strategy.
The results of ReIDCaps [20] are copied from the original paper and it uses
deeper DenseNet-121 [17] as the backbone. Our method outperforms all com-
pared methods on the challenging cloth-changing dataset Celeb-reID which con-
tains great clothing variations. Our method outperforms the state-of-the-art
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Table 2. Comparison of our method with the state-of-the-art methods on LTCC.
The best results of the state-of-the-art method and our method are shown in bold.
“Standard” and “Cloth-Changing” mean the standard setting and the cloth-changing
setting, respectively.

Methods Cloth-Changing Standard
Rank-1 mAP Rank-1 mAP

LOMO [31] + KISSME [25] 10.75 5.25 26.57 9.11
LOMO [31] + XQDA [31] 10.95 6.2 25.35 9.54
PCB [46] 23.52 10.03 61.86 27.52
HACNN [26] 21.59 9.25 60.24 26.71
RGA-SC [62] 31.4 14.0 65.0 27.5
ISP [69] 27.8 11.9 66.3 29.6
GI-ReID [22] 23.7 10.4 63.2 29.4
CESD [39] 25.15 12.40 71.39 34.41
Chen et al. [6] 31.2 14.8 – –
FSAM [14] 38.5 16.2 73.2 35.4
Baseline (ResNet-50) 31.89 13.07 69.17 33.16
Ours 35.97 15.43 73.23 35.31

method RCSANet [19] by 2.6% in Rank-1 accuracy. The great improvement of
our method compared with our baseline model (ResNet-50) also demonstrates
that our method can help tackle the cloth-changing challenge of person Re-ID.

Performance on the LTCC Dataset. We also evaluate our proposed method
on LTCC and compare it with several competitors. In Table 2, competitors
include methods based on hand-crafted feature representations, deep learning
baselines, and methods specially designed for cloth-changing person Re-ID. All
state-of-the-art standard person Re-ID methods achieve relatively inferior perfor-
mance, because they do not take the clothing changes into account. To reduce the
interference of clothes, some cloth-changing person Re-ID methods use informa-
tion from different modalities. For example, FSAM [14] integrates three modal-
ities and fine-tunes the parsing network while training, while our method only
uses an off-the-shelf human posture keypoints extractor. Results show that our
method achieves comparable results with the state-of-the-art cloth-changing per-
son Re-ID methods.

Performance on the Market-1501 Dataset. To further show the feasibil-
ity of our method for the cases without clothing changes in the short term,
we additionally evaluate our method on the standard benchmark person Re-ID
dataset Market-1501. As shown in Table 3, our method is comparable with the
state-of-the-art methods on Market-1501. Specifically, our method still achieves
improvement compared with the baseline model (ResNet-50), which shows that
our method can take advantage of the body shape information to extract more
discriminative person identity features.
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Table 3. Comparison of our method with state-of-the-art methods on Market-1501.

Methods Rank-1 mAP

PCB [46] 93.8 81.6
IANet [15] 94.9 83.1
AANet [47] 93.9 83.4
DSA-reID [61] 95.7 87.6
RGA-SC [62] 96.1 88.4
ISP [69] 95.3 88.6
Baseline (ResNet-50) 93.1 82.9
Ours 94.0 84.6

Table 4. Ablation study on the Celeb-reID dataset. “S→A” denotes the one-way cross-
attention interaction from the body shape branch to the appearance branch, while “A
→ S” denotes the one-way cross-attention interaction from the appearance branch to
the body shape branch.

Methods SSE Co-Attention S → A A → S Rank-1 mAP

1 (Baseline) 52.86 9.92

2 � 52.59 9.97

3 � � 53.23 10.19

4 � � 54.24 10.51

5 � � 55.85 11.37

6 � � � 55.92 11.27

7 � � � 53.87 10.39

8 � � � 57.17 12.09

9 (Ours) � � � � 57.47 12.27

4.3 Ablation Study

To verify the effectiveness of our method, detailed ablation experiments are
carried out on each proposed module, on the large-scale long-term cloth-changing
person Re-ID dataset Celeb-reID. Results are shown in Table 4.

The Effectiveness of SSE and Mutual Cross-Attention. Although body
shape is more robust against clothing changes than color appearance, intuitively,
we cannot distinguish a person only by his/her body shape. Experiments also
demonstrate that the performance is quite low if we only use the body shape
branch. The results of method 2 in Table 4 show that if we directly concatenate
appearance features with body shape semantic features extracted by the SSE
module, the performance is close to baseline. It shows the performance improve-
ment is gained from our well-designed mutual cross-attention strategy, rather
than just the extra introduction of the body shape branch. By comparing meth-
ods 2 and 6 in Table 4, we can see that our proposed mutual cross-attention
strategy improves Rank-1 by 3.33%, and mAP by 1.30%. It also indicates that
the SSE module has encoded useful body shape semantic information.
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Fig. 3. Visualization of retrieval results. The left side of (a) and (b) is the input query
image. For the right side, the first and the second row are the ordered matching results
obtained by using the benchmark network ResNet-50 and our proposed network, respec-
tively. Images with green borders and red borders indicate correct and error matching
results, respectively. Best viewed in color and zoomed in. (Color figure online)

Design Effectiveness of Mutual Cross-Attention. Aiming for adequate
interaction and information fusion between the two branches, we propose a sym-
metrical mutual cross-attention module. As shown in Table 4, compared with
baseline, when we only apply the one-way cross-attention interaction either “S
→ A” or “A → S”, the performance is improved. However, due to the unidi-
rectional nature of information interaction, the network still cannot make full
use of the information between the two modalities. When we apply the pro-
posed mutual cross-attention interaction strategy, much greater improvement is
achieved, which validates the effectiveness of our mutual cross-attention design.

It is worth noting that, as the results of methods 4 and 7 in Table 4 show,
if only use the one-way cross-attention interaction, applying the co-attention
alignment mechanism may not improve the performance effectively. Therefore,
our proposed mutual cross-attention strategy is more stable and conducive to
multi-modal feature fusion.

The Effectiveness of the Proposed Co-attention Alignment Mod-
ule. As shown in Table 4, even without the mutual cross-attention module,
compared with baseline, the co-attention alignment module can still improve
the performance. Together with our proposed mutual cross-attention module,
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(a) features from the appearance branch, (b) features from the body shape branch, (c) fused features extracted from CAMC,

Fig. 4. t-SNE visualizations of features from the appearance branch and the body shape
branch, as well as ones extracted from CAMC. Samples are randomly selected from
the testing set of the LTCC dataset. Each color represents an identity, and different
symbols indicate different clothes. Best viewed in color and zoomed in. (Color figure
online)

the performance can be further improved. It is worth noting that, as the results
of methods 4 ∼ 6 in Table 4 shown, when we discard our proposed co-attention
alignment module, the mutual cross-attention strategy may not improve the
performance effectively compared with the one-way cross-attention. The results
confirm the necessity and effectiveness of our co-attention alignment operation.
As the results of methods 7 ∼ 9 in Table 4 shown, when we apply our pro-
posed co-attention aligned mutual cross-attention mechanism, the best results
are achieved. It indicates features from various modalities, that are aligned with
each other well, can interact and fuse more effectively, and better help the net-
work to extract more discriminative and cloth-irrelevant identity features.

Visualization of Retrieval Results. With the introduction of the body shape
semantic information and our proposed modality-aligned mutual fusion strat-
egy, our method can help meet the challenge of changing clothes. To intuitively
demonstrate this conclusion, we visualize the top 10 ranked retrieval results of the
baseline network ResNet-50 and our proposed network under the cloth-changing
setting on LTCC.

As shown in Fig. 3, our proposed network can better recognize the same
person with different clothes. For example, in the second row of Fig. 3 (a), the
top retrieval results have the same identity as the input query person, but with
different clothes. However, for the matching results of ResNet-50, that is, the
first row of Fig. 3 (a), the matching images have similar clothing textures to the
input query image, but with different identities. For another example, we can
see in Fig. 3 (b), the retrieved persons in the first row wear clothes with similar
colors, resulting in some matching errors. However, benefiting from paying more
attention to body shape information rather than volatile color appearance, our
method can still correctly identify pedestrians even if they change clothes.

Visualization of Features. To verify our motivation and show the effectiveness
of our proposed method, we use t-SNE [36] to visualize the learned features.
As shown in Fig. 4, features from the appearance branch are relatively more
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chaotic than ones extracted from CAMC, indicating that different persons are
misidentified under the influence of similar clothes. We can observe that although
features from the body shape branch themselves are randomly distributed, our
proposed CAMC framework can make use of them to obtain more discriminative
fused features. More discussions and analyses are provided in the supplemental
material.

5 Conclusion

In this paper, we study the more realistic and challenging long-term cloth-
changing person Re-ID problem and propose a unified framework adopting
Transformer to handle multiple modalities for the first time. Especially, with our
proposed Shape Semantics Embedding (SSE) module, we can extract body shape
semantic features, which are robust against clothing changes in the long term.
To further integrate and make full use of the body shape semantic information,
we propose a Co-attention Aligned Mutual Cross-attention (CAMC) framework
and effectively fuse multiple modalities. As a result, features encoding useful
appearance and body shape semantic information are distilled to an identity-
related and discriminative feature, that is more robust to clothing changes. The
effectiveness of our proposed method is validated through extensive experiments
on several datasets.

Broader Impact. Our proposed CAMC framework can be easily used in exist-
ing person Re-ID methods to make long-term person Re-ID technology more
practicable in intelligent video monitoring systems, and hopefully inspire more
valuable and innovative studies. However, in reality, person Re-ID systems typi-
cally use unauthorized surveillance data, which may cause privacy breaches. As
a result, governments and officials must take action to govern the use of person
Re-ID data and technology, and researchers should avoid using datasets that
may raise ethical concerns. For example, the dataset DukeMTMC [40] should no
longer be used after it was shut down for violating data collection restrictions.
It is worth noting that, all datasets used in our paper are publicly available and
involve no ethical issues.
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Abstract. Object detection in aerial images is a challenging task due to
the oriented and densely packed objects. However, densely packed objects
constitute a significant characteristic of aerial images: objects are not
randomly scattered around in images but in groups sharing similar ori-
entations. Such a recurring pattern of object arrangement could enhance
the rotated features and improve the detection performance. This paper
proposes a novel and flexible Affinity-Aware Relation Network based on
two-stage detectors. Specifically, an affinity-graph construction module
is adopted to measure the affinity among objects and to select bound-
ing boxes sharing high similarity with the reference box. Furthermore, we
design a dynamic enhancement module, which uses the attention to learn
neighbourhood message and dynamically determines weights for feature
enhancement. Finally, we conduct experiments on several public bench-
marks and achieve notable AP improvements as well as state-of-the-art
performances on DOTA, HRSC2016 and UCAS-AOD datasets.

1 Introduction

Oriented object detection of aerial images is a significant yet challenging task in
computer vision. Unlike object detection in ordinary scenes, aerial images with
high resolution often contain a larger number of densely packed objects. In this
case, detection performance of horizontal object detection models [2,3,26,29,54]
deteriorates considerably due to the intersection of axis-aligned receptive fields
between objects. Existing methods mainly contribute to solving this challenge
from two aspects: One is to optimize the extraction of rotated features [5,10,42,
43,45], such as using rotation-equivariant backbones or enhancing the feature
fusion. The other is to perform well-designed bounding box representations [7,
38,44,46,52], such as using eight-parameter or convex-hull to represent boxes.

However, these densely packed objects form a pattern of object arrangements.
For each object in each category, we count the average number of its similar
objects with an angle difference less than 5 degrees inside a 1024 × 1024 image.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. (a) For each object in each category, we count the average number (grey pillar)
of its similar objects with an angle difference less than 5 degrees inside a 1024 ×
1024 image. (b) Objects inside each red box share high similarity in categories and
orientations. (Color figure online)

The edge of the object is 
obscured by shadows.

(a) Test image (b) ReDet (c) Our method

Fig. 2. (a) The edge of a tennis court is obscured by shadows. (b) and (c) are visual-
izations of ReDet [10] and our method on DOTA. Here red and green boxes represent
predictions and ground truth. ReDet does not perform well on the obscured boundary,
while our Affinity-Aware Relation Network perceives correct boundary information of
the tennis court.

The result in Fig. 1(a) shows that each object can find 3–5 objects with similar
categories and orientations on average, and some categories can even find more
than 20 objects. Figure 1(b) displays the recurring pattern of object arrangement.
Each object can be allocated to an imaginary red box, such that objects inside
the same box share high similarity in categories and orientations. Therefore, the
semantic information of one object can imply information of other objects in the
same box, which can be utilized as an enhancement for the detection task.

This paper proposes an Affinity-Aware Relation Network(AARN) based on
the two-stage detector, which aims to enhance the Rotated Region of Inter-
est(RRoI) Align feature for classification and regression in the second stage.
Specifically, the proposed AARN consists of two modules. One is a graph con-
struction module, which measures the affinity among objects and dynamically
selects bounding boxes sharing high similarity with the reference box. The other
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is a dynamic enhancement module, which use the attention module to learn
neighbourhood message and dynamically determines weights for feature enhance-
ment.

The effectiveness of the method can be simply illustrated by Fig. 2. The
input image, detection results on ReDet [10] and results on our method are
respectively shown in Fig. 2(a), (b) and (c). The edge of the tennis court on
the right in Fig. 2(a) is obscured by the shadows. Figure 2(b) shows that ReDet
cannot perceive the object shape correctly in this case. However, Fig. 2(c) shows
our method performs well in understanding the accurate boundary of the tennis
court, based on a semantic feature implying the height and width information
from the other two tennis courts. Therefore, it is meaningful to construct a
relation graph among objects and enhance the current object’s feature using
extra information aggregating from objects with high affinity. Our contributions
can be summarized as follows:

• We propose an Affinity-Aware Relation Network, using the affinity among
densely packed oriented objects to improve detection performance.

• A Graph Construction Module is proposed, designing KFIoU similarity to
measure the affinity among objects and selecting high-quality neighbours for
subsequent feature enhancement in a dynamic way.

• A Dynamic Enhancement Module is proposed, using the attention module
to learn neighbourhood message and dynamically determining the weight for
feature enhancement.

• Extensive experiments are conducted to show that the proposed two modules
can notably improve detection performance based on two-stage methods.

2 Related Work

2.1 Oriented Object Detection

Existing oriented object detection methods mainly improve the detection accu-
racy from three aspects: enhancing rotated features, designing sampling assign-
ment strategy and exploring the representation of bounding box.

Feature enhancement mainly aims at densely packed objects with arbitrary
orientations. RoI Transformer [5] and ReDet [10] respectively design a detector
with rotation-invariance and rotation-equivariance. R3Det [42] proposes a Fea-
ture Refinement Module (FRM), improving the single-stage method performance
to a level comparable to two-stage ones. Mask OBB [32], CenterMap Net [33],
SCRDet [45], SCRDet++ [43] introduce pixel-level semantic information and
provides more granular feature fusion branch.

Well-designed assigner alleviates the inconsistency between classification and
regression task. Both DAL [22] and CFC-Net [20] incorporate the Intersection
of Union(IoU) [11] metric, which directly reflects the localization capability of
predicted boxes, into the assignment strategy of positive samples. SASM [13]
dynamically selects the IoU threshold for each object according to its shape.
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Oriented RepPoints [17] selects sample points not only from the classification
and localization but also from the orientation and point-wise feature correlation.

Studies on box representation and loss function mainly contribute to solv-
ing the boundary problem in regression-based methods. BBAVector [49] and
PolarDet [51] represent the bounding box in coordinate systems. CFA [7] pro-
poses a convex hull representation method. Gliding Vertex [38] predicts quadri-
lateral by learning the offset of the four corners of the horizontal bounding boxes.
RIL [21] adopts the Hungarian loss. CSL [41] and DCL [40] transform the regres-
sion into a classification problem. GWD [44], KLD [46] and KFIoU [47] model
the oriented object as a Gaussian distribution to construct a new loss function.
P2PLoss [48] describes the spatial distance and morphological similarity of two
convex polygons. Unlike our approach, none of these methods consider learning
additional information from the affinity among objects for feature enhancement.

2.2 Graph Convolutional Neural Networks

The graph convolutional neural network extends the convolutional neural net-
work to the non-Euclidean space. The graph convolutions fall into two categories:
spectral [1,4,15,16,35] and spatial [6,8,23,28] methods.

The spectral methods define the convolution in the spectral domain via the
convolution theorem. The first graph convolutional neural network SCNN [1]
defines its operator in the spectral domain. ChebNet [4] and GCN [15] param-
eterize the convolution kernel, significantly reducing the time and space com-
plexity. The spatial methods define the node correlation in the spatial domain.
GNN [12] selects a fixed number of neighbour nodes by a random walk algorithm.
GraphSAGE [8] divides the convolution process into sampling and aggregation.
GAT [31] uses the attention mechanism to differentiate the aggregation of neigh-
bour nodes. PGC [39] defines convolution as the sum of a specific sampling func-
tion multiplied by a particular weight function. Our approach uses the idea of
graph convolution for neighbour message learning and feature aggregation.

3 Methods

3.1 Overview

An overview of the proposed Affinity-Aware Relation Network is illustrated in
Fig. 3. The model consists of a basic two-stage detector, a Graph Construction
Module(GC-Module) and a Dynamic Enhancement Module(DE-Module).

An image is first fed into the pipeline of the basic detector. The GC-Module
uses the proposal quintuples from RPN as well as RRoI features from RRoI
Align to calculate the affinity matrix and dynamically determines the threshold
to filter out low-quality neighbours. For each proposal, GC-Module selects pro-
posals(neighbour) sharing high similarity with the current proposal(reference).
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Fig. 3. An overview of the proposed AARN. Our approach is based on the basic two-
stage detector ReDet.

The DE-Module consists of neighbour message learning and feature enhance-
ment weight learning. Neighbour message learning performs an attention mecha-
nism over the high-quality neighbours to obtain messages and weights for aggre-
gation. Feature enhancement weight learning determines the feature enhance-
ment factor in consideration of the proposal aspect ratios. Then the neighbour
message is used for node aggregation to get the aggregation feature of each node,
and the feature enhancement weight is used to dynamically add the aggregation
feature to the original feature to obtain the final enhanced feature. Finally, the
detection result is achieved after classification and box regression branches of the
basic detector. Our proposed method is based on the two-stage model ReDet [10],
which in fact can be easily applied to various modern two-stage detectors.

3.2 Graph Construction Module

This module aims to construct a graph to represent the relationship between
proposal regions. Formally, given Nr proposal regions of the input image, the
relationship among regions can be modeled as an undirected graph G(V,E),
where vi in vertex set V = {vi}Nr

i=1 corresponds to the i -th proposal and eij in
E ∈ R

Nr×Nr quantifies the relationship between vi and vj . GC-Module calculates
the affinity between proposal regions to filter out neighbours with low-similarity
for each reference node, and then retains only the edges with high affinity in G.

Affinity Matrix Calculation. Affinity matrix M ∈ R
Nr×Nr reflects the simi-

larity between proposals. We should consider two aspects when calculating the
affinity: the semantic similarity inside the proposal and the shape similarity of
the bounding box.

Feature Similarity. RRoI features characterize object semantics. Given a visual
feature F ∈ R

Nr×D extracted by RRoI Align, we first employ a nonlinear trans-
formation ψ(·) : RNr×D → R

Nr×L , projecting F into the latent semantic space
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denoted by
F′ = ψ(F) (1)

where F′ ∈ R
Nr×L. We adopt a simple form of ψ(·) which is implemented by

a stack of two fully-connected layers followed by layer normalization and ReLU
in order. Each row f ′

i ∈ F′ corresponds to a proposal’s latent semantic feature.
Then we apply the cosine similarity to calculate the semantic affinity matrix M1

between f ′
i(i = 1, 2, .., Nr), as shown in Eq. (2).

M1[i][j] =
f ′

if
′
j

∥
∥f

′
i

∥
∥

∥
∥f

′
j

∥
∥

(2)

where ‖·‖ is a modulus operation.

KFIoU Similarity. The calculation of shape similarity should involve the height,
width and rotation angle of objects. As an evaluation metric, IoU well combines
these factors. To overcome the high computational complexity of Skew-IoU, we
approximate oriented boxes as Gaussian distributions and use the overlap of two
Gaussian distributions to measure the shape similarity, as shown in Fig. 4. The
conversion from a rotated box to a Gaussian distribution has been discussed in
some previous works [14,44,47], described as follows.

Fig. 4. First, we convert the oriented bounding boxes to Gaussian distributions. Then
we make two Gaussian distributions be concentric and introduce Kalman Filter to
simulate the distribution overlapping.

The oriented box can be represented by a quintuple B(cx, cy, h, w, θ), where
(cx, cy) are the center point coordinates. h,w and θ respectively refer to the
height, width and rotation angle. The transformation from the proposal quintu-
ple to the Gaussian distribution N(μ,Σ) is shown in Eq. (3).

Σ
1
2 =

(
cosθ −sinθ
sinθ cosθ

)(
w
2 0
0 h

2

)(
cosθ sinθ

−sinθ cosθ

)

, μ = (cx, cy) (3)

After obtaining a 2D Gaussian distribution, we can easily calculate the box area
from its covariance of the corresponding distribution.

SB(Σ) = 4
√∏

eig(Σ) = 4 · |Σ| 1
2 (4)
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Then the overlapping distribution can be intuitively derived by multiplication of
two Gaussian distributions. The probability density function of multiplying two
Gaussian distributions N1(μ1, Σ1) and N2(μ2, Σ2) can be expressed as

f1(X)f2(X) = Sg · 1√
2πΣ

e− 1
2 (X−μ)T Σ−1(X−μ) (5)

Sg =
1

√

2π(Σ1 + Σ2)
e− 1

2 (μ1−μ2)
T (Σ1+Σ2)

−1(μ1−μ2) (6)

μ = (μ2Σ1 + μ1Σ2)(Σ1 + Σ2)−1, Σ = Σ1Σ2(Σ1 + Σ2)−1 (7)
That is, the multiplication of two Gaussian distributions is equal to a compressed
or enlarged Gaussian distribution. The constant Sg is a scaling factor.

Inspired by [47], we perform Kalman Filter to calculate the overlapping areas.
Unlike the loss design in [47], the similarity should not be affected by the center
distance. Therefore, we let μ1 = μ2 = μ to make two Gaussian distributions be
concentric. In this case, Sg is decoupled from center points and IoU similarity
can be calculated as Eq. (8).

IoU(N1,N2) =
SB(Σ)

SB1(Σ1) + SB2(Σ2) − SB(Σ)
=

Σ
1
2

Σ
1
2
1 + Σ

1
2
2 − Σ

1
2

(8)

The shape affinity matrix M2 ∈ R
Nr×Nr is obtained by

mij = IoU(ϕ(cxi, cyi, hi, wi, θi), ϕ(cxj , cyj , hj , wj , θj)) (9)

where mij ∈ M2 and ϕ represents the box to Gaussian distribution function.
We use min-max normalization to scale the value of M1 and M2 ranging

from 0 to 1. The final affinity matrix M satisfies M = M1 � M2, where �
represents the point-wise multiplication.

High-Quality Neighbour Selection. Similar to ATSS [50], High-Quality
Neighbour Selection is proposed to dynamically select high-quality neighbour
nodes according to their statistical characteristics. We first keep the top-k largest
values of each row in affinity matrix M for each proposal, and then use the mean
and standard deviation of selected proposals’ affinity values to determine the
threshold Γi for i-th proposal.

Γi = ui + σi (10)

ui =
1
k

idxk∑

j=idx1

mij , σi =

√
√
√
√

1
k

idxk∑

j=idx1

(mij − ui)2 (11)

where mij ∈ M and idxi indicates the index of selected k boxes.
For each proposal, absorbing neighbours with inaccurate positions and shapes

will degrade its detection performance due to the introduction of noise. There-
fore, we perform a non-maximum suppression(NMS) on the neighbour nodes
according to the score from the RPN, so that the aggregation nodes tend to
be samples from different positions rather than overlapping proposals from the
adjacent center points.
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3.3 Dynamic Enhancement Module

After determining the reference nodes and neighbour nodes, we design a dynamic
enhancement module consisting of neighbour message learning and feature
enhancement weight learning. The former uses the attention to learn neighbour
message for node aggregation, and the latter dynamically determines the weight
for feature enhancement.

Neighbour Message Learning. We use an attention mechanism drawing
global dependencies to learn the weighted messages between neighbour and ref-
erence nodes. As shown in Fig. 5, this module is implemented based on the
Multi-Head Attention in [30]. Embedding Feature F′ ∈ R

Nr×L is used as the
query (Q), key (K) and value (V) of the Multi-Head Attention in [30].

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (12)

where the dk is the channel dimension. A = softmax(QKT

√
dk

) ∈ R
Nr×Nr rep-

resents the attention weight matrix used for neighbourhood aggregation sub-
sequently. It is worth noting that Eq. (12) only displays the structure of the
single head. In practice, multiple heads are concatenated to get the Multi-Head
Attention(Q,K,V) ∈ R

Nr×L.
The final enhanced node features are obtained by residual connections, as

shown in Eq. (13). Then the message mij delivered from the j-th neighbour to
the i-th reference node can be expressed as Eq. (14).

Enhanced Node Feature = Attention(Q,K,V) + Embedding Feature (13)

mij = Aij · Enhanced Node Featurei (14)

Feature Enhancement Weight Learning. Figure 6 displays two objects with
the same angle offset ω. However, the box1 with a lower aspect ratio outperforms
box2 on the IoU metric, indicating that objects with high aspect ratio are more
sensitive to the angular deviation. Therefore, it is necessary to treat objects with
high aspect ratios more cautiously in neighbourhood aggregation.

Intuitively, the message delivered to a reference node with high aspect ratio
should be assigned a smaller weight before enhancement. Furthermore, for
objects with drastic changes in aspect ratio, it tends to be difficult to learn
a universal feature generalizing characteristic of all neighbour nodes. We should
also tone down the enhancement of features from these objects.
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Fig. 5. Flowchart of the Multi-Head Attention Module. Enhanced Node Feature and
Attention Weight Matrix respectively represent the neighbour message and the weight
used for aggregation.

Fig. 6. The red and green box represent prediction and ground truth. The box1 with
a lower aspect ratio outperforms box2 on the IoU metric, indicating that objects with
high aspect ratio are more sensitive to the angular deviation. (Color figure online)

In response, we design the Feature Enhancement Weight Learning, which can
dynamically adjust enhancement weight wi according to the i -th object’s aspect
ratio, as shown in Eq. (15)-(16).

uratio
i =

1
Nr

idxik∑

j=idxi1

rj , σratio
i =

√
√
√
√

1
Nr

idxik∑

j=idxi1

(rj − ui)2 (15)

wi = (α − e
uratio

i
β ) · e−σratio

i (16)

where idxi = {idxij}k
j=1 denotes indices of k boxes most relevant to the i-

th reference box, selected in High-Quality Neighbour Selection. And rj is the
aspect ratio of the j-th proposal. Equation (15) computes the mean and standard
deviation of the aspect ratios of the top-k boxes. The mean value reflects the
estimated aspect ratio and the standard deviation implies the fluctuation of
aspect ratio. Given α > 0 and β > 0, wi decreases as the mean or standard
deviation increases.
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Feature Enhancement and Final Prediction. The enhanced feature of the
i-th proposal is obtained by combining the original feature with the aggregation
feature, described as

Enhanced featurei = featurei + ε · wi

Ni

Ni∑

j=1

mij (17)

where Ni is the number of selected neighbours of the i-th reference proposal.
The meaning of mij and wi are as same as mentioned above. ε is a learnable
parameter with an initial value of 1.0, in order to implement a dynamic residual
connection. Finally, the enhanced features are fed into the classification and
regression branches of the basic detector to get prediction results.

4 Experiments

4.1 Experimental Setup

Datasets. DOTA-v1.0 [36] is a large-scale dataset for oriented objects detection
in aerial images, which contains 2806 images ranging from 800× 800 to 4k× 4k
pixels, 188,282 instances and 15 categories: Plane (PL), Baseball diamond (BD),
Bridge (BR), Ground track field (GTF), Small vehicle (SV), Large vehicle (LV),
Ship (SH), Tennis court (TC), Basketball court(BC), Storage tank (ST), Soccer-
ball field (SBF), Roundabout (RA), Harbor (HA), Swimming pool (SP), and
Helicopter (HC). The proportions of the training, validation and testing set are
1/2, 1/6, and 1/3, respectively. All images of training and validation set are split
into 1024× 1024 with an overlap of 200 pixels during training.

HRSC2016 [18] is a high-resolution optical remote sensing dataset for ship
recognition, which contains 1061 images (436 for training, 181 for validation
and 444 for testing) ranging from 300×300 to 1,500×512 pixels. All images of
training and validation set are resized to 800×512 pixels during training.

UCAS-AOD [53] contains 1,510 images with approximately 659×1280 pixels,
14,596 instances and two categories: plane and car. Like other works [43,44,47],
we randomly select 1100 images for training and 400 for testing.

Implementation Details. We use a two-stage detector ReDet [10] as our
baseline and ReResNet-50 pretrained on ImageNet [27] following ReDet as our
backbone. All modules before the RRoI Align follow the settings of ReDet.

As for the implementation of AARN, we first use two linear layers of size
512 (L = 512) to learn the latent feature F′ in Eq. (1). Then top k = 9 largest
values of each row in the affinity matrix are kept to determine the threshold
Γi for i-th proposal in Eq. (11). NMS with threshold = 0.1 is performed over
selected neighbour nodes before DE-M to avoid the introduction of noise. For the
neighbour message learning in DE-M, all linear layers of Q, K and V produce
outputs of dimension dmodel = L = 512. And we employ h = 8 parallel attention
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heads so dk = dmodel/h = 64 in Eq. (12). For the feature enhancement weight
learning, α and β in Eq. (16) are set to 2 and 3.5 respectively.

In the inference phase, RPN will generate 2000 proposals. If such a large
number of proposals are input into AAFN, great noise will be introduced. There-
fore, we set filter threshold as 0.9 in line with scores from RPN stage, so that
only boxes with high confidence can participate in graph construction and fea-
ture enhancement. The weights of modules before RRoI Align are frozen during
training. We adopt a stochastic gradient descent (SGD) optimizer with an initial
learning rate of 0.0001, the momentum of 0.9 and weight decay of 0.0001. We
train the model for 12, 40, 120 epochs on the DOTA, HRSC2016 and UCAS-
AOD datasets. We use 2 TITAN RTX GPUs with a total batch size of 4 for
training and one TITAN RTX GPU for inference.

4.2 Comparisons with the State-of-the-Art

Table 1 compares our method with the state-of-the-art detectors on DOTA-v1.0.
Without random rotation and multi-scale data augmentation, we improve by
1.07% AP over the baseline ReDet. Especially categories with low aspect ratios
or less semantic information achieve more notable AP improvements: 4.7% on
roundabout (RA), 3.77% on helicopter (HC), 2.21% on soccer-ball-field (SF),
and 2.04% on ground-track-field (GTF). For multi-scale training with random
rotation, our method achieves the state-of-the-art 80.79% AP and the best
performance on 6 categories. Figure 7 displays results of ReDet, results of our
method, and visualization of Graph Construction Module results on DOTA. In
Fig. 7(a) and (b), we mark some instances which are accurate under our method
but inaccurate under ReDet with white circles. It shows a better performance of
our method. In Fig. 7(c), the reference box (green) is connected to its selected
neighbour boxes (red). It can be found that a reference box always share high
similarity in category and orientation with its neighbour boxes.

Table 2 lists the performances of our method and state-of-the-art detectors
on HRSC2016. Our method achieves the best performance of 90.57% under the
VOC2007 metric. Table 3 shows results on UCAS-AOD. Our method achieves
the state-of-the-art 89.94% and 97.45% mAP under VOC2007 and VOC2012
metrics respectively, and the mAP of VOC2012 improves by 1.22%.

4.3 Ablation Study

To prove the effectiveness of our proposed method, we choose ReDet as our
baseline and perform a detailed ablative analysis on DOTA-v1.0 test set. Fol-
lowing previous works, random horizontal flipping without any other tricks is
applied for data augmentation. Ablation study result is shown in Table 4, which
demonstrates the effectiveness of each module.

Affinity Matrix Calculation. Affinity Matrix Calculation consists of feature
similarity and shape similarity. As shown in Table 5, the absence of either com-
ponent results in a lower performance than baseline. We also discuss the effec-
tiveness of different ways to compute shape similarity. Theta similarity refers to
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Table 1. AP for each class and AP50 on DOTA-v1.0. R-50, RX-101 and H-104 respec-
tively stand for ResNet-50, ResNeXt-101 and Hourglass-104. MS/RR denotes random
rotation and multi-scale used for augmentation during training.

Method Backbone MS/RR PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC AP50

Single-stage/Anchor-free

Oriented RepPoints [17] R-101 89.53 84.07 59.86 71.76 79.95 80.03 87.33 90.84 87.54 85.23 59.15 66.37 75.23 73.75 57.23 76.52

CFA [7] R-152 89.08 83.20 54.37 66.87 81.23 80.96 87.17 90.21 84.32 86.09 52.34 69.94 75.52 80.76 67.96 76.67

O2-DNet [34] H-104 � 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04

DRN [24] H-104 � 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23

BBAVectors [49] R-101 � 88.63 84.06 52.13 69.56 78.26 80.40 88.06 90.87 87.23 86.39 56.11 65.62 67.10 72.08 63.96 75.36

CSL [41] R-152 � 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17

PolarDet [51] R-101 � 89.65 87.07 48.14 70.97 78.53 80.34 87.45 90.76 85.63 86.87 61.64 70.32 71.92 73.09 67.15 76.64

SASM [13] R-101 � 89.54 85.94 57.73 78.41 79.78 84.19 89.25 90.87 85.80 87.27 63.82 67.81 78.67 79.35 69.37 79.17

RetinaNet-P2P [48] R-101 � 89.22 86.12 55.23 81.39 80.34 83.45 88.25 90.87 86.63 87.08 71.74 69.87 77.34 76.01 59.59 79.15

Two/Refined-stage

Gliding Vertex [38] R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

SCRDet++ [43] R-101 89.77 83.90 56.30 73.98 72.60 75.63 82.82 90.76 87.89 86.14 65.24 63.17 76.05 68.06 70.24 76.20

ReDet [10](baseline) ReR-50 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25

Oriented R-CNN [37] R-101 88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28

KFIoU [47] R-101 89.04 84.04 52.98 73.00 78.69 83.60 87.61 90.79 85.97 85.47 64.77 63.29 69.18 76.38 65.63 76.70

Mask OBB [11] RX-101 � 89.56 85.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33

S2A-Ne [9] R-50 � 89.07 82.22 53.63 69.88 80.94 82.12 88.72 90.73 83.77 86.92 63.78 67.86 76.51 73.03 56.60 76.38

RSDet-II [25] R-152 � 89.93 84.45 53.77 74.35 71.52 78.31 78.12 91.14 87.35 86.93 65.64 65.17 75.35 79.74 63.31 76.34

R3Det [42] R-152 � 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62 76.47

DAL [22] R-50 � 89.69 83.11 55.03 71.00 78.30 81.90 88.46 90.89 84.97 87.46 64.41 65.65 76.86 72.09 64.35 76.95

DCL [40] R-152 � 89.26 83.60 53.54 72.76 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 77.37

OSKDet [19] R-101 � 90.04 87.25 54.41 79.48 72.66 80.29 88.20 90.84 83.91 86.90 63.39 71.76 75.63 72.59 69.75 77.81

GWD [44] R-152 � 89.66 84.99 59.26 82.19 78.97 84.83 87.70 90.21 86.54 86.85 73.47 67.77 76.92 79.22 74.92 80.23

KLD [46] R-152 � 89.92 85.13 59.19 81.33 78.82 84.38 87.50 89.80 87.33 87.00 72.57 71.35 77.12 79.34 78.68 80.63

AARN(Ours) ReR-50 89.18 84.31 52.65 76.04 78.22 84.29 88.29 91.87 86.82 86.85 63.97 65.09 74.64 70.33 67.36 77.32

AARN-MS(Ours) ReR-50 � 89.60 85.72 62.11 81.18 78.98 86.01 88.68 90.90 89.13 88.23 69.90 68.68 79.12 78.72 74.89 80.79

Table 2. Performances of AARN and state-of-the-art detectors on HRSC2016.

Method RoI-Trans [5] Gliding Vertex [38] R3Det [42] CFC [20] DAL [22] GWD [44]

mAP(07) 86.20 88.20 89.26 89.70 89.77 89.85

Method KLD [46] S2A-Net Oriented RepPoints [17] ReDet [10] Oriented R-CNN [37] AARN(Ours)

mAP(07) 89.97 90.17 90.38 90.46 90.50 90.57

angle cosine similarity. SkewIoU refers to the regular IoU calculation between
skewed boxes. KFIoU refers to the Gaussian distribution overlapping method
in this paper, which achieves the highest 77.32% mAP. It shows that KFIoU
similarity can better describe the affinity of objects.

Table 3. Performances of AARN and
state-of-the-art detectors on UCAS-AOD.

Method VOC2007 VOC2012

Car Plane mAP Car Plane mAP

RIDet-O [21] 88.88 90.35 89.62 – – –

DAL [22] 89.25 90.49 89.87 – – –

R3Det [42] – – – 94.14 98.20 96.17

SCRDet++ [43] – – – 94.97 98.93 96.95

OSKDet [19] – – – 95.29 99.09 97.18

ReDet [10] 88.00 90.30 89.15 94.10 98.30 96.23

AARN(Ours) 89.10 90.80 89.94 96.30 98.60 97.45

Table 4. Ablation study for High-Quality
Neighbour Selection (HQNS), Neighbour
Message Learning (NML) and Feature
Enhancement Weight Learning (FEWL)
on DOTA-v1.0 test set.

Method HQNS NML FEWL AP50 Individual

improvement

Total

improvement

ReDet × × × 76.25 – –

ReDet-AARN � × × 76.63 +0.38 +0.38

� � × 77.04 +0.41 +0.79

� × � 76.98 +0.35 +0.73

� � � 77.32 – +1.07

High-Quality Neighbour Selection. We discuss the effects of different selec-
tion strategies and NMS thresholds on the performance of objects with different
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Fig. 7. (a) ReDet (the basic detector) detection results. (b) ReDet with AARN detec-
tion results. (c) Visualization of graph construction module results.

Table 5. Performance of Affinity Matrix Calculation Module and comparisons of dif-
ferent methods to compute shape similarity.

Method Feature
Similarity

Shape Similarity HQNS NML FEWL AP50

Theta
Similarity

SkewIoU
Similarity

KFIoU
Similarity

ReDet × × × × × 76.25

ReDet- AARN � � × × � � � 76.95

× � × 77.11

× × � 77.32

� × 76.13

× � 75.98

aspect ratios. We collect the aspect ratio distribution for each category in Fig. 1.
As shown in Table 6, the dynamic selection strategy contributes to reducing the
sensitivity of high aspect ratio objects, such as harbor (HA) and basketball-court
(BC), to noisy neighbours. Furthermore, a lower neighbour NMS value, which
corresponds to a more strict NMS strategy, aims to filter out more low-quality
neighbour boxes with high aspect ratios.

Neighbour Message Learning. We compare the performance of three meth-
ods to learn message passing weight in Table 7. Gaussian refers to using a Gaus-
sian distribution on similarity to model the edge weight as [23]. Affinity refers
to aggregation with only affinity values. Attention refers to the aggregation with
a multi-head attention, which achieves the highest 77.32% mAP and 0.21%
mAP improvements than gaussian modeling. It shows that the attention module
can better perceive neighbour features and represent neighbour messages.

Feature Enhancement Weight Learning. We compare the performance of
different values of the two hyperparameters in Eq. (16). As shown in Table 8,
the best performance is 77.32% mAP when α = 2.0 and β = 3.5. Especially for
objects with low values and variances of aspect ratio such as roundabout (RA)
and storage-tank (ST), the AP improvement is more obvious, with an increase of
1.12% and 0.62% AP compared to the situation without Feature Enhancement
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Table 6. Comparisons of different selection strategies and effects of different NMS
thresholds on detection performance.

Method HQNS NML FE
WL

width
height

�1 width
height

≈1 AP50

Threshold Neighbour
NMS

Dynamic
Threshold

Fixed
Threshold

HA BC RA BD

ReDet × × × × × 75.96 87.78 60.39 82.64 76.25

ReDet- AARN × 0.5 × 71.45 83.72 62.89 83.22 75.97

× 0.7 × 72.50 85.96 62.12 82.93 76.23

× 0.9 × 73.69 86.24 61.37 82.76 76.31

� × × 74.13 86.52 63.47 83.62 76.52

� × 0.5 74.40 86.60 63.63 83.78 76.56

� × 0.3 74.36 86.69 63.65 83.82 76.58

� × 0.1 74.51 86.73 63.70 83.81 76.63

Table 7. Comparisons of different methods learning neighbourhood message.

Method HQNS NML FEWL AP50

Gaussian Affinity Attention

ReDet-AARN � × � × � 76.98

� × × 77.11

× × � 77.32

Table 8. The performances on different value of two hyperparameters in Eq. (16) and
effects of Feature Enhancement Weight Learning (FEWL) on objects with low aspect
ratios.

Method HQNS NML FEWL width
height

≈1 &

std( width
height

) is low

AP50

Dynamic Feature
Enhancement

α β RA BD ST

ReDet-AARN � � × 63.97 83.87 86.23 77.04

2.0 4 64.93 84.35 86.73 77.27

3.5 65.09 84.31 86.85 77.32

3.0 65.00 84.04 86.94 77.23

1.5 3.5 65.11 83.99 86.51 77.13

2.5 65.07 84.29 86.32 77.09

Weight Learning. It shows this dynamic feature enhancement strategy is espe-
cially effective for objects with low aspect ratios and little semantic information.

5 Conclusions

In this paper, we propose an Affinity-Aware Relation Network, using the affinity
among densely packed oriented objects, which consists of two parts: an affinity-
graph construction module selecting bounding boxes sharing high similarity with
the reference box, and a dynamic enhancement module using the attention mod-
ule to learn neighbourhood message and dynamically determining the weight for
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feature enhancement. We conduct experiments on several public benchmarks
and achieve the state-of-the-art performance.

Acknowledgements. This work is supported by the Natural Resources Science and
Technology Project of Anhui Province (Grant No. 2021-K-14).

References

1. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

2. Chen, T., Saxena, S., Li, L., Fleet, D.J., Hinton, G.: Pix2seq: a language modeling
framework for object detection. arXiv preprint arXiv:2109.10852 (2021)

3. Chen, X., Gupta, A.: An implementation of faster RCNN with study for region
sampling. arXiv preprint arXiv:1702.02138 (2017)

4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural information
Processing Systems, vol. 29 (2016)

5. Ding, J., Xue, N., Long, Y., Xia, G.S., Lu, Q.: Learning ROI transformer for
oriented object detection in aerial images. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 2849–2858 (2019)

6. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: International Conference on Machine Learning,
pp. 1263–1272. PMLR (2017)

7. Guo, Z., Liu, C., Zhang, X., Jiao, J., Ji, X., Ye, Q.: Beyond bounding-box: convex-
hull feature adaptation for oriented and densely packed object detection. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 8792–8801 (2021)

8. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

9. Han, J., Ding, J., Li, J., Xia, G.S.: Align deep features for oriented object detection.
IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2021)

10. Han, J., Ding, J., Xue, N., Xia, G.S.: Redet: a rotation-equivariant detector for
aerial object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2786–2795 (2021)

11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

12. Hechtlinger, Y., Chakravarti, P., Qin, J.: A generalization of convolutional neural
networks to graph-structured data. arXiv preprint arXiv:1704.08165 (2017)

13. Hou, L., Lu, K., Xue, J., Li, Y.: Shape-adaptive selection and measurement for
oriented object detection. In: Proceedings of the AAAI Conference on Artificial
Intelligence (2022)

14. Huang, Z., Li, W., Xia, X.G., Tao, R.: A general gaussian heatmap label assignment
for arbitrary-oriented object detection. IEEE Trans. Image Process. 31, 1895–1910
(2022)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)
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Abstract. Many applications require robustness, or ideally invariance,
of neural networks to certain transformations of input data. Most com-
monly, this requirement is addressed by training data augmentation,
using adversarial training, or defining network architectures that include
the desired invariance by design. In this work, we propose a method
to make network architectures provably invariant with respect to group
actions by choosing one element from a (possibly continuous) orbit based
on a fixed criterion. In a nutshell, we intend to ’undo’ any possible trans-
formation before feeding the data into the actual network. Further, we
empirically analyze the properties of different approaches which incorpo-
rate invariance via training or architecture, and demonstrate the advan-
tages of our method in terms of robustness and computational efficiency.
In particular, we investigate the robustness with respect to rotations of
images (which can hold up to discretization artifacts) as well as the prov-
able orientation and scaling invariance of 3D point cloud classification.

1 Introduction

Deep neural networks have revolutionized the field of computer vision over the
past decade. Yet, deep networks trained in a straight-forward way often lack
desired robustness. In image classification, for instance, rotational, scale, and
shift invariance are often highly desirable properties. While training deep net-
works with millions of realistic images in datasets like Imagenet [1] confers some
degree of in/equi-variance [2–4], these properties however, cannot be guaranteed.
On the contrary, networks are susceptible to adversarial attacks with respect to
these transformations (see e.g. [5–8]), and small perturbations can significantly
affect their predictions. To counteract this behavior, the two major directions
of research are to either modify the training procedure or the network architec-
ture. Modifications of the training procedure replace the common training of a
network G with parameters θ on training examples (xi, yi) via a loss function L,

min
θ

∑

examples i

L(G(xi; θ); yi), (1)
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a) Samples of the orbit
b) Orbit mapping

element

Fig. 1. (Left) Picture of a cat in 4 different rotation samples from the continuous
orbit of rotations. Our orbit mapping selects the element with mean gradient direction
(marked in red) along circle pointing upwards. (Right) Softmax probabilities of the
true label when rotating an image by 0◦ − 360◦. Our method (in blue) is robust for
any angle, which cannot be guaranteed through data augmentations (green) or adv.
training (red). (Color Figure Online)

with a loss function that considers all perturbations in a given set S of transfor-
mations to be invariant towards. The most common choices are taking the mean
loss of all predictions {G(g(xi); θ) | g ∈ S} (training with data augmentation),
or the maximum loss among all predictions (adversarial training). However, such
training schemes cannot guarantee provable invariance. In particular, trainingwith
data augmentation is far from being robust to transformations as illustrated in
Fig. 1. The plot shows the softmax probabilities of the true label when feeding the
exemplary image at rotations ranging from 0 to 2π into a network trained with
rotational augmentation (green), adversarial training (red) and undoing rotations
using a learned network (black). As we can see, rotational data augmentation is
not sufficient to truly make a classification network robust towards rotations, and
even the significantly more expensive adversarial training shows instabilities.

While modifications of the training scheme remain the best option for complex
or hard-to-characterize transformations, more structured transformations, e.g.,
those arising from a group action, allow modifications to the network architecture
to yield provable invariance. As opposed to previous works that largely rely on the
ability to enlist all transformations of an inputx (i.e., assume a finite orbit), we pro-
pose to make neural networks invariant by selecting a specific element from a (pos-
sibly infinite) orbit generated by a group action, through an application-specific
orbit mapping. Simply put, we undo and fix the transformation or pose. Our pro-
posed approach is significantly easier to train than adversarial training methods
while being at least equally performant, robust, and computationally cheaper. We
illustrate these findings on the rotation invariant classification of images (on which
discretization artifacts from the interpolation after any rotation play a crucial role)
as well as on the scale, rotation, and translation invariant classification of 3D point
clouds. Our contributions can be summarized as follows:

– We present orbit mapping, a simple way to adapt neural networks to be in-(or
equi)variant to transformations from sets S associated with a group action.

– We propose a gradient based orbit mapping strategy for image rotations,
which can provably select unique orientation for continuous image models.

– Our proposed orbit mapping improves robustness of standard networks to
transformations even without additional changes in training or architecture.
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– Existing invariant approaches also demonstrate gain in robustness to discrete
image rotations when combined with orbit mapping.

– We demonstrate orbit mappings to provable scale and orientation invariant
3D point cloud classification using well known scale normalization and PCA.

2 Related Work

Several approaches have been developed in the literature to encourage models
to exhibit invariance or robustness to desired transformations of data. These
include i) data augmentation using desired transformations, ii) regularization
to encourage network output to be robust to transformations on the input [9],
iii) adversarial training [10,11] and regularization [12], iv) unsupervised or self-
supervised pretraining to learn transformation robust representations [13–17],
v) parameterized learning of augmentations to learn invariances from training
data[18,19], vi) use of hand-crafted invariant shallow [20–24] or deep [25–27]
features for downstream classification tasks vii) incorporating desired invari-
ance properties in to the network design [28–32], and viii) train time/test time
data transformation. Recent works [33,34] have also explored certifying geomet-
ric robustness of networks. The approaches i)-v) can improve robustness but
cannot yield provable invariance to transformations. Hand-crafting features can
yield desired invariance, but is difficult and often sacrifices accuracy. Provable
invariance to a finite number of transformations is achievable by applying all such
transformations to the each input data point and pooling the corresponding fea-
tures [35,36]. While this strategy can even be applied only during test time, it can
not be extended to sets with infinitely many transformations. Recent approaches
[28,30,37] incorporate in-/equivariances when the desired transformations of the
data can be formulated as a group action, e.g. enforcing equivariance in each layer
separately. Layer wise approaches for equivariance to finite groups such as [28]
typically use all possible transformations at each layer.

Canonicalization. Closely related to our approach are methods which align
input to a normalized or canonical pose. The use of PCA or scale renormalization
are well known approaches to normalizing point clouds. However, PCA-based
pose canonicalization is known to suffer from ambiguities, and learning based
approaches [32,38,39] have been proposed for disambiguation. Several recent
works directly leverage deep learning for 3d pose canonicalization, for example
training with ground truth poses [40,41] or self-supervised learning [42–44]. For
2D images, PCA-based canonicalization is possible only with binary images [45];
the use of Radon transformations [46] requires an expensive, fine discretization of
continuous rotations. The use of spatial transformer networks [47] is an alternate
learning based approach to 2D/3D pose normalization which can be used along
with an application-dependent coordinate transformation [48,49]. Such learning-
based approaches, however, require additional training with data augmentation
and cannot guarantee invariance. Since our orbit mappings essentially select
a canonical group orbit element, our work can be interpreted as a formaliza-
tion of canonicalization for group transformations. In contrast to learning based
approaches, we select a canonical element from the orbit using simple analytical
solutions, which can improve robustness even without data augmentations.
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Provable Rotational In-/Equivariance in 2D. Several works [26–28,50–
52] have considered layer wise equivariance to discrete rotations using multiple
rotated versions of filters at each layer, which was formalized using group convo-
lutions in [28]. While [28,50–52] learn these filters by training, [26,27] make use
of rotated and scaled copies of fixed wavelet filters at each layer. For equivari-
ance to continuous rotations, Worrall et al. [29] utilize circular harmonic filters at
each layer. All these layer wise approaches for group equivariance in images were
unified in a single framework in [30]. Instead of layer-wise approaches, [36,53,54]
pool the features of multiple rotated copies of images input to the network.

Rotation Invariance in 3D. Due to the different representations of 3D data
(e.g. voxels, point clouds, meshes), many strategies exist. Some techniques for
image invariances can be adapted to voxel representations, e.g. probing several
rotations at test time [55,56], use of rotationally equivariant convolution kernels
[57–59]. Spatial transformers have also been used to learn 3D pose normalization,
e.g. in the classical PointNet architecture [60], and its extension PointNet++ [61]
which additionally considers hierarchical and neighborhood information. While
point clouds do not suffer from discretization artifacts after rotations, they strug-
gle with less clear neighborhood information due to unordered coordinate lists.
[62] solve this by adding hierarchical graph connections to point clouds and using
graph convolutions. However, the features learned using graph convolutions still
depend on the rotation of the input data. [63,64] propose graph convolution net-
works equivariant to isometric transformations. [65,66] project point clouds onto
2D sphere and employ spherical convolutions to achieve rotational equivariance.
[67] and [68] achieve rotation invariance on point clouds by considering pairs of
features in the tangent plane of each point. While local operations and convo-
lutions on the surface of triangular meshes are invariant to global rotations by
definition [69], they however do not capture global information. MeshCNN [70]
addresses this by adding pooling operations through edge collapse. [71] defines
a representation independent network structure based on heat diffusion which
can balance between local and global information.

3 Proposed Approach

Our idea is straightforward. We make neural networks invariant by consistently
selecting a fixed element from the orbit of group transformations, i.e., we modify
the input pose such that every element from the orbit of transformations maps to
the same canonical element. For example, different rotated versions of an image
are mapped to have the same orientation as visualized in Fig. 2. In conjunction
with such orbit mapping, any standard network architecture can achieve provable
invariance. In the following, we formalize our approach to achieve invariance.

3.1 Invariant Networks W.r.t. Group Actions

We consider a network G to be a function G : X × R
p → Y that maps data

x ∈ X from some suitable input space X to some prediction G(x; θ) ∈ Y in an
output space Y where the way this mapping is performed depends on parameters
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θ ∈ R
p. The question is how, for a given set S ⊂ {g : X → X} of transformations

of the input data, we can achieve the invariance of G to S defined as

G(g(x); θ) = G(x; θ) ∀x ∈ X , g ∈ S, θ ∈ R
p. (2)

The invariance of a network with respect to transformations in S is of particular
interest when S induces a group action1 on X , which is what we will assume about
S for the remainder of this paper. Of particular importance for the construction of
invariant networks, is the set of all possible transformations of input data x,

S · x = {g(x) | g ∈ S}, (3)

which is called the orbit of x. A basic observation for constructing invariant
networks is that any network acting on the orbit of the input is automatically
invariant to transformations in S:

Fact 1. Characterization of Invariant Functions via the Orbit: Let S
define a group action on X . A network G : X × R

p → Y is invariant under the
group action of S if and only if it can be written as G(x; θ) = G1(S · x; θ) for
some other network G1 : 2X × R

p → Y.

The above observation is based on the fact that S · x = S · g(x) holds for any
g ∈ S, provided that S is a group. Although not taking the general perspective
of Fact 1, approaches, like [36], which integrate (or sum over finite elements
of) the mappings of G over a (discrete) group can be interpreted as instances of
Fact 1 where G1 corresponds to the summation. Similar strategies of applying all
transformations in S to the input x can be pursued for the design of equivariant
networks, see supplementary material.

3.2 Orbit Mappings

While Fact 1 is stated for general (even infinite) groups, realizations of such
constructions from the literature often assume a finite orbit. In this work we
would like to include an efficient solution even for cases in which the orbit is
not finite, and utilize Fact 1 in the most straight-forward way: We propose to
construct provably invariant networks G(x; θ) = G1(S · x; θ) by simply using an

orbit mapping h : {S · x | x ∈ X} → X ,

which uniquely selects a particular element from an orbit as a first layer in G1.
Subsequently, we can proceed with any standard network architecture and Fact
1 still guarantees the desired invariance. A key in designing instances of orbit
mappings is that they should not require enlisting all elements of S · x in order
to evaluate h(S · x). Let us provide more concrete examples of orbit mappings.

Example 1 (Mean-subtraction). A common approach in data classification tasks
is to first normalize the input by subtracting its mean. Considering X = R

n and
S = {g : R

n → R
n | g(x) = x + a1, for some a ∈ R}, with 1 ∈ R

n being
a vector of all ones, input-mean-subtraction is an orbit mapping that selects the
unique element from any S · x which has zero mean.
1
A (left) group action of a group S with the identity element e, on a set X is a map σ : S ×X → X,
that satisfies i) σ(e, x) = x and ii) σ(g, σ(h, x)) = σ(gh, x), ∀g, h ∈ S and ∀x ∈ X. When the
action being considered is clear from the context, we write g(x) instead of σ(g, x).
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Fig. 2. Images of different orientations (top) are consistently aligned with the proposed
gradient-based orbit mapping (bottom).

Example 2 (Permutation invariance via sorting). Consider X = R
n, and S

to be all permutations of vectors in R
n, i.e., S = {s ∈ {0, 1}n×n | ∑

i si,j =
1 ∀j,

∑
j si,j = 1 ∀i}. We could define an orbit mapping that selects the element

from an orbit whose entries are sorted by magnitude in an ascending order.

With the very natural condition that orbit mappings really select an element
from the orbit, i.e., h(S ·x) ∈ S ·x, we can readily construct equivariant networks
by applying the inverse mapping, see supplementary material. In our Example
2, undoing the sort operation at the end of the network allows to transfer from
an invariant, to an equivariant network.

As a final note, our concept of orbit mappings can further be generalized by
h not mapping to the input space X , but to a different representation, which
can be beneficial for particular, complex groups. In geometry processing, for
instance, an important group action are isometric deformations of shapes. A
common strategy to handle these (c.f. [72]) is to identify any shape with the
eigenfunctions of its Laplace-Beltrami operator [73], which represents a natural
(generalized) orbit mapping. We refer to [74–76] for exemplary deep learning
applications.

4 Applications

We will now present two specific instances of orbit mappings for handling contin-
uous rotations of images as well as for invariances in 3D point cloud classification.

4.1 Invariance to Continous Image Rotations

Images as Functions. Let us consider the important example of invariance to
continuous rotations of images. To do so, consider X ⊂ {u : Ω ⊂ R

2 → R} to
represent images as functions. For the sake of simplicity, we consider grayscale
images only, but this extends to color images in a straight-forward way. In our
notation z ∈ R

2 represents spatial coordinates of an image (to avoid an overlap
with our previous x ∈ X , which we used for the input of a network). We set

S = {g : X → X | g ◦ u(z) = u(r(α)z), for α ∈ R},

and r(α) =
(

cos(α) − sin(α)
sin(α) cos(α)

)
.

(4)
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As S has infinitely many elements, approaches that worked well for rotations by
90 degrees like [28] are not applicable anymore. We instead propose to uniquely
select an element from the continuous orbit of rotation g ∈ S by choosing a
rotation that makes the average gradient of the image

∫
Z

∇(g ◦ u)(z) dz over a
suitable set Z, e.g. a circle around the image center point upwards. It holds that

∇(g ◦ u)(z) = rT (α)∇u (r(α)z) such that
∫

Z

∇(g ◦ u)(z)dz =
∫

Z

rT (α)∇u (r(α)z) dz.

Substituting ϕ = r(α)z, we obtain
∫

Z

rT (α)∇u (r(α)z) dz =
∫

rT (α)Z

rT (α)∇u (ϕ) dϕ = rT (α)
∫

Z

∇u (ϕ) dϕ (5)

where we used that Z is rotationally invariant. Thus, choosing a rotation that
makes

∫
Z

∇(g ◦ u)(z) dz point upwards is equivalent to solving

r(α̂) = arg max
r(α)

〈(
1
0

)
, rT (α)

∫

Z

∇u(ϕ) dϕ

〉
(6)

whose solution is given by α̂ such that
(

cos α̂
sin α̂

)
=

( ∫
Z

∇u(z) dz

‖ ∫
Z

∇u(z) dz‖
)

. (7)

Note that (7) yields unique solution to the maximization problem. Since a consis-
tent pose is always selected2, it is an invariant mapping. When

∫
Z

∇u(z) dz = 0,
any g ∈ S maximizes (6). However, numerically

∫
Z

∇u(z) dz rarely evaluates to
exact zero and its magnitude of determines the stability of orbit mapping.

Discretization. For a discrete (grayscale) image given a matrix ũ ∈ R
ny×nx ,

we first apply Gaussian blur with a standard deviation of σ = 1.5 (to reduce
the effect of noise and create a smooth image), and subsequently construct an
underlying continuous function u : Ω ⊂ R

2 → R by bilinear interpolation. For
the set Z we choose two circles of radii 0.05 and 0.4 (for Ω being normalized
to [0, 1]2). We approximate the integral by a sum over finite evaluations of the
derivative along each circle, using exact differentiation of the continuous image
model. This strategy can stabilize arbitrary rotations successfully as illustrated
in Fig. 2. However, in practice, the magnitude of

∫
Z

∇u(z) dz and interpolation
artifacts affect the stability of the orbit mapping. We analyze the stability of
the proposed gradient based orbit-mapping for discrete images in Sect. 3 of the
supplementary, where we observe that use of forward or central differences to
approximate gradients further deteriorates the stability of orbit mapping. Since
the orbit mapping for discrete images has instabilities, exact invariance to rota-
tions cannot be guaranteed. Even when the integral values are large leading to
2 Note that rT (α) = r(−α), therefore if the predicted rotation for u(z) is β, then for

u(r(γ)z), it is β − γ, i.e. the same element is consistently selected.



394 K. V. Gandikota et al.

Table 1. Comparison of orbit mapping (OM) with training and architecture based
methods. Robustness to rotations is compared using the average and worst case accu-
racies over 5 runs with test images rotated in steps of 1◦ using bilinear interpolation.

Method OM(Ours) CIFAR10 HAM10000 CUB200

Clean Avg. Worst Clean Avg. Worst Clean Avg. Worst

Std. ✗ 93.98 40.06 1.31 93.82 91.73 82.52 77.41 53.45 8.07

✓ Train+Test 87.99 84.12 68.60 93.31 91.38 87.96 71.19 71.56 58.80

RA ✗ 85.54 75.99 44.71 93.30 90.81 82.30 69.89 70.12 41.01

✓ Train+Test 85.40 81.82 71.09 93.41 92.13 88.55 70.35 70.72 57.54

STN ✗ 83.74 78.86 54.03 – – – – – –

ETN ✗ 84.39 80.30 64.08 92.47 90.85 84.32 64.14 66.95 52.85

Adv. ✗ 69.32 68.54 50.21 92.28 91.87 85.04 64.54 64.07 42.82

Mixed ✗ 91.15 68.37 17.15 93.71 92.13 84.53 68.56 65.91 42.87

Adv.-KL ✗ 72.28 70.29 51.05 92.54 91.79 85.42 64.47 64.65 43.04

Adv.-ALP ✗ 71.25 70.30 52.29 92.89 91.84 85.98 64.63 64.34 43.63

TIpool ✗ 93.56 66.46 20.22 93.19 91.87 88.16 76.80 74.90 59.04

✓ Train+Test 91.94 88.77 76.26 93.83 92.05 89.81 76.82 77.18 69.19

TIpool-RA ✗ 91.40 84.65 67.28 93.39 91.87 88.12 73.47 74.71 62.82

✓ Train+Test 90.47 87.92 80.07 93.68 92.78 89.30 74.78 75.89 67.78

a stable orbit mapping, our approach does not need to give the same rotation
angle for semantically similar content, for example, different cars are not neces-
sarily rotated to have the same orientation. Due to these reasons, our approach
can further benefit from augmentation.

Experiments. To evaluate our approach, we use orbit mapping in conjunction
with image classification networks on three datasets: On CIFAR10, we train
a Resnet-18 [77] from scratch. On the HAM10000 skin image dataset [78], we
finetune an NFNet-F0 network [79], and on CUB-200 [80] we finetune a Resnet-
50 [77], both pretrained on ImageNet. While the datasets CIFAR10 and CUB-
200 have an inherent variance in orientation, for the HAM10000 skin lesion
classification, exact rotation invariance is desirable. Finally, we also perform
experiments with RotMNIST using state of the art E2CNN network [30]. The
details of the protocol used for training all our networks as well as some addi-
tional experiments are provided in the supplementary material. We compare
with following approaches on CIFAR10, HAM10000, and CUB-200: i) adversar-
ial training: minθ

∑
examples i L(G(x̂i; θ); yi), for x̂i = arg maxz∈S·xi L(G(z); yi).

This is approximated by selecting the worst out of 10 different random rota-
tions for each image in every iteration, following [10]. It is referred to as Adv. in
Table 1. ii) mixed mode training: minθ

∑
examples i L(G(x̂i; θ); yi)+L(G(xi; θ); yi)

which uses both natural and adversarial examples x̂i. iii) adversarial training
with regularization: Use of adversarial logit pairing and KL-divergence regular-
izers [12] along with adversarial training (indicated as Adv.-ALP and Adv.-KL
in Table 1):

a) adversarial logit pairing (ALP): RALP (G, xi, yi) = ‖G(xi; θ) − G(x̂i; θ)‖22 ,
b) KL-divergence:RKL(G, xi, yi) = DKL(G(xi; θ)||G(x̂i; θ)).

iv) transformation invariant pooling (TIpool): which is a provably invariant app-
roach for discrete rotations [36], where the features of multiple rotated copies of
input image are pooled before the final classification. We use 4 rotated copies
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Table 2. Effect of augmentation on robustness to rotations with different interpola-
tions. Shown are clean accuracy on standard CIFAR10 test set, average and worst-case
accuracies on rotated test set with mean and standard deviations over 5 runs.

Train OM Clean Average Worst-case

Nearest Bilinear Bicubic Nearest Bilinear Bicubic

Std. ✗ 93.98± 0.32 35.12± 0.81 40.06± 0.44 42.81± 0.50 0.79± 0.38 1.31± 0.13 2.22± 0.17

✓ Train+Test 87.99± 0.43 72.40± 0.33 84.12± 0.55 86.61± 0.49 34.57± 0.94 68.60± 0.81 74.49± 0.84

RA ✗ 85.54± 0.72 80.47± 0.74 75.99± 0.72 79.47± 0.65 45.50± 0.83 44.71± 0.74 50.50± 0.78

✓ Test 79.26± 0.42 74.93± 0.51 69.31± 0.65 73.94± 0.63 48.93± 0.75 52.18± 0.91 58.69± 0.78

✓ Train+Test 85.40± 0.57 84.37± 0.58 81.82± 0.59 84.82± 0.52 66.22± 0.75 71.09± 1.01 76.44± 0.89

RA-
combined

✗ 92.42± 0.21 80.90± 0.64 82.23± 0.74 82.71± 0.69 36.98± 1.27 48.07± 1.66 49.51± 1.47

✓ Test 82.55± 0.86 76.33± 0.95 77.93± 0.68 78.42± 0.64 45.44± 1.32 60.23 ± 1.24 62.18± 1.33

✓ Train+Test 86.69± 0.12 84.06± 0.21 85.27± 0.23 86.06± 0.20 61.75± 0.76 75.29± 0.42 77.25± 0.27

Adv. ✗ 69.32± 1.61 61.73± 1.12 68.54± 0.68 68.00± 0.31 36.95± 0.97 50.21± 0.55 49.73± 0.98

Mixed ✗ 91.15± 0.15 54.55± 0.40 68.37± 0.66 68.48± 0.37 3.86± 0.13 17.15± 1.25 16.85± 0.93

Adv.-KL ✗ 72.28± 2.05 62.60± 1.72 70.29± 1.42 69.84± 1.29 32.60± 0.74 51.05± 2.47 51.11± 1.03

Adv.-ALP ✗ 71.25± 0.97 62.36± 2.19 70.30± 1.50 69.71± 1.22 33.98± 1.44 52.29± 1.76 52.57± 1.57

STN ✗ 83.74± 0.50 81.94± 0.51 78.86± 0.73 82.21± 0.55 51.23± 1.01 54.03± 1.36 59.65± 1.31

ETN ✗ 84.39± 0.09 82.98± 0.28 80.30± 0.55 83.31± 0.31 59.40± 0.76 64.08± 0.78 68.75± 0.83

Augerino ✗ 83.68± 0.76 80.17± 0.70 82.27± 0.69 81.69± 0.72 52.44± 0.66 60.36± 1.00 60.63± 0.94

TIpool ✗ 93.56± 0.25 55.96± 0.39 66.46± 1.36 70.70± 0.77 3.14± 1.09 20.22± 1.51 27.88± 1.09

TIpool-RA ✗ 91.40± 0.17 87.50± 0.24 84.65± 0.51 87.31± 0.29 66.52± 1.31 67.28± 1.03 72.35± 0.83

TIpool ✓Train+Test 91.94± 0.38 78.66± 0.83 88.77± 0.51 90.76± 0.40 42.01± 1.07 76.26± 1.12 81.46± 1.02

TIpool-RA ✓Train+Test 90.47± 0.36 89.37± 0.36 87.92± 0.36 89.91± 0.34 74.51± 0.79 80.07± 0.69 83.76± 0.60

TIpool-RA
Combined

✓Train+Test 91.09± 0.40 89.02± 0.30 90.13± 0.34 90.64± 0.30 70.18± 1.12 82.71± 0.62 84.26± 0.41

of images rotated in multiples of 90◦C. v) Spatial transformer networks (STN):
which learns to undo the transformation by training using appropriate data
augmentation [47]. vi) Equivariant transformer networks (ETN): which addi-
tionally uses appropriate coordinate transformation along with a learned spatial
transformer to undo the transformation [48]. We also compare with the simple
baseline of augmenting with random rotations, referred to as RA in Table 1.
Additionally, we also compare with [19], an approach which learns distribution
of augmentations on the task of rotated CIFAR10 classification, referred to as
Augerino in Table 2. We use 4 samples from the learned distribution of aug-
mentations during both training and test. We would also like to point out that
adversarial training using the worst of 10 samples roughly increases the training
effort of the underlying model by a factor of 5.

Results.We measure the accuracy on the original testset(Clean), as well as
the average (Avg.) and worst-case (Worst) accuracies in the orbit of rotations
discretized in steps of 1◦C, where ‘Worst ’ counts an image as misclassified as
soon as there exists a rotation at which the network makes a wrong prediction.

As we can see in Table 1, networks trained without rotation augmentation per-
form poorly in terms of both, the average and worst-case accuracy if the data set
contains an inherent orientation. While augmenting with rotations during train-
ing results in improvements, there is still a huge gap (∼ 30% for CIFAR10 and
CUB200) between the average and worst-case accuracies. While adversarial train-
ing approaches [10,12] improve the performance in the worst case, there is a clear
drop in the clean and average accuracies when compared to data augmentation.
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Learned approaches to correct orientation i.e. STN [47], ETN [48] showan improve-
ment over adversarial training schemes in terms of average and worst case accura-
cies, when training from scratch, with ETN demonstrating even higher robustness
than plain STNs. While pooling over features of rotated versions of image pro-
vides provable invariance to discrete rotations, this approach is still susceptible to
continuous image rotations. The robustness of this approach to continuous rota-
tions is boosted by rotation augmentation, with improvements over even learned
transformers. Note that using TI-pooling with 4 rotated copies increases the com-
putation by 4 times. In contrast, our orbit mapping effortlessly leads to signifi-
cant improvements in robustness even without augmenting with rotations, with
performance better than adversarial training, learned transformers and discrete
invariance based approaches. Since our orbit mapping for discrete images has some
instabilities, our approach also benefits from augmentation with image rotations.
Further, when combined with discrete invariant approach [36], we obtain the best
accuracies for average and worst case rotations.

Even when finetuning networks, we observe that orbit mapping readily
improves robustness to rotations over standard training, even without the use
of augmentations. Furthermore, combination of orbit mapping with the discrete
invariant approach of pooling over rotated features yields the best performance.
For the birds dataset with inherent orientation, undoing rotations using ETN sig-
nificantly improves robustness when compared to adversarial training schemes,
which only marginally improve robustness over rotation augmentation. We found
it difficult to train STN with higher accuracies (Clean/Avg./Worst) than plain
augmentation with rotated images for CUB200 and HAM10000, despite extensive
hyperparameter optimization, thereforewedonot report the numbers here3.When
the data itself does not contain a prominent orientation as in the HAM10000 data
set, the general trend in accuracies still holds (Clean>Avg.>Worst), but the drops
in accuracies are not drastic, and adversarial training schemes provide improve-
ments over undoing transormations using ETN. Further, orbit mapping and pool-
ing over rotated images provide comparable improvements in robustness, with
their combination achieving the best results.

Discretization Artifacts: It is interesting to see that while consistently select-
ing a single element from the continuous orbit of rotations leads to provable rota-
tional invariance when considering images as continuous functions, discretization
artifacts and boundary effects still play a crucial role in practice, and rotations
cannot be fully stabilized. As a result, there is still discrepancy between the aver-
age and worst case accuracies, and the performance is further improved when our
approach also uses rotation augmentation. Motivated by the strong effect the dis-
cretization seems to have, we investigate different interpolation schemes used to
rotate the image in more detail: Table 2 shows the results different training schemes
with and without our orbit mapping (OM ) obtained with a ResNet-18 architec-
ture on CIFAR-10 when using different types of interpolation. Besides standard
training (Std.), we use rotation augmentation (RA) using the Pytorch-default of
nearest-neighbor interpolation, a combined augmentation scheme (RA-combined)

3
We use a single spatial transformer as opposed to multiple STNs used in [47] and train on randomly
rotated images.
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Table 3. Effect of orbit mapping and rotation augmentation on RotMNIST classifica-
tion using regular D4/C4 and D16/C16 E2CNN models. Shown are clean accuracy on
standard test set and average and worst-case accuracies on test set rotated in steps of
1 ◦C, with mean and standard deviations over 5 runs.

Train. OM D4/C4 D16/C16

Clean Avg Worst Clean Avg Worst

Std. ✗ 98.73± 0.04 98.61± 0.04 96.84± 0.08 99.16± 0.03 99.02± 0.04 98.19± 0.08

Std. ✓(Train+Test) 98.86± 0.02 98.74± 0.03 98.31± 0.05 99.21± 0.01 99.11± 0.03 98.82± 0.06

RA. ✗ 99.19± 0.02 99.11± 0.01 98.39± 0.05 99.31± 0.02 99.27± 0.02 98.89± 0.03

RA ✓(Train+Test) 98.99± 0.03 98.90± 0.01 98.60± 0.02 99.28± 0.02 99.23± 0.01 99.04± 0.02

that applies random rotation only to a fraction of images in a batch using at least
one nearest neighbor, one bilinear and one bicubic interpolation. The adversarial
training and regularization from [10,12] are trained using bilinear interpolation
(following the authors’ implementation).

Results show that interpolation used in image rotation impacts accuracies
in all the baselines. Most notably, the worst-case accuracies between different
types of interpolation may differ by more than 20%, indicating a huge influence
of the interpolation scheme. Adversarial training with bi-linear interpolation
still leaves a large vulnerability to image rotations with nearest neighbor inter-
polation. Further, applying an orbit mapping at test time to a network trained
with rotated images readily improves its worst case accuracy, however, there is
a clear drop in clean and average case accuracies, possibly due to the network
not having seen doubly interpolated images during training. While our app-
roach without rotation augmentation is also vulnerable to interpolation effects,
it is ameliorated when using orbit mapping along with rotation augmentation.
We observe that including different augmentations (RA-combined) improves the
robustness significantly. Combining the orbit mapping with the discrete invari-
ant approach [36] boosts the robustness, with different augmentations further
reducing the gap between clean, average case and worst case performance.

Experiments with RotMNIST. We investigate the effect of orbit mapping on
RotMNIST classification with the state of the art network from [30] employing
regular steerable equivariant models[81]. This model uses 16 rotations and flips
of the learned filters (with flips being restricted till layer3). We also compare
with a variation of the same architecture with 4 rotations. We refer to these
models as D16/C16 and D4/C4 respectively. We train and evaluate these mod-
els using their publicly available code4. Results in Tab. 3 indicate that even for
these state of the art models, there is a discrepancy between the accuracy on the
standard test set and the worst case accuracies, and their robustness can be fur-
ther improved by orbit mapping. Notably, orbit mapping significantly improves
worst case accuracy (by around 1.5%) for D4/C4 steerable model trained with-
out augmenting using rotations, showing gains in robustness even over naively
trained D16/C16 model of much higher complexity. Training with augmentation
leads to improvement in robustness, with orbit mapping providing gains further
in robustness. However, artifacts due to double interpolation affect performance
of orbit mapping.
4 code url https://github.com/QUVA-Lab/e2cnn experiments.

https://github.com/QUVA-Lab/e2cnn_experiments
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Table 4. Scaling invariance in 3D pointcloud classification with PointNet trained on
modelnet40, with and without data augmentation, with and without STNs or scale
normalization. Mean and standard deviations over 10 runs are reported.

Augment. Unscaling With STN Without STN

Clean Avg Worst Clean Avg Worst

[0.8, 1.25] ✗ 86.15± 0.52 24.40± 1.56 0.01± 0.02 85.31± 0.39 33.57± 2.00 2.37± 0.06

[0.8, 1.25] ✓(Train+Test) 86.15± 0.28 86.15± 0.28 86.15± 0.28 85.25± 0.43 85.25± 0.43 85.25± 0.43

[0.8, 1.25] ✓(Test) 86.15± 0.52 85.59± 0.79 85.59± 0.79 85.31± 0.39 83.76± 0.35 83.76± 0.35

[0.1, 10] ✗ 85.40± 0.46 47.25± 1.36 0.04± 0.05 75.34± 0.84 47.58± 1.69 1.06± 0.87

[0.1, 10] ✓(Test) 85.40± 0.46 85.85± 0.73 85.85± 0.73 75.34± 0.84 81.45± 0.56 81.45± 0.56

[0.001, 1000] ✗ 33.33± 7.58 42.38± 1.54 2.25± 0.22 5.07± 2.37 25.42± 0.73 2.24± 0.11

[0.001, 1000] ✓(Train+Test) 85.66± 0.39 85.66± 0.39 85.66± 0.39 85.05± 0.43 85.05± 0.43 85.05± 0.43

Table 5. Rotation and translation invariances in 3D pointcloud classification with
PointNet trained on modelnet40, with and without rotation augmentation, with and
without STNs or PCA. Mean and standard deviations over 10 runs are reported.

RA STN PCA Clean Rotation Translation

Avg Worst Avg Worst

✗ ✓ ✗ 86.15± 0.52 10.37± 0.18 0.09± 0.07 10.96± 1.22 0.00± 0.00

✗ ✗ ✗ 85.31± 0.39 10.59± 0.25 0.26± 0.10 6.53± 0.12 0.00± 0.00

✗ ✓ ✓(Train+Test) 74.12± 1.80 74.12± 1.80 74.12± 1.80 74.12± 1.80 74.12± 1.80

✗ ✗ ✓(Train+Test) 75.36± 0.70 75.36± 0.70 75.36± 0.70 75.36± 0.70 75.36± 0.70

✓ ✓ ✗ 72.13± 5.84 72.39± 5.60 35.91± 4.87 5.35± 0.98 0.00± 0.00

✓ ✗ ✗ 63.93± 0.65 64.75± 0.57 45.53± 0.29 3.90± 0.71 0.00± 0.00

✓ ✓ ✓(Test) 72.13± 5.84 72.96± 5.85 72.96± 5.85 72.96± 5.85 72.96± 5.85

✓ ✗ ✓(Test) 64.56± 0.91 64.56± 0.91 64.56± 0.91 64.56± 0.91 64.56± 0.91

✓ ✓ ✓(Train+Test) 72.84± 0.77 72.84± 0.77 72.84± 0.77 72.84± 0.77 72.84± 0.77

✓ ✗ ✓(Train+Test) 74.84± 0.86 74.84± 0.86 74.84± 0.86 74.84± 0.86 74.84± 0.86

4.2 Invariances in 3D Point Cloud Classification

Invariance to orientation and scale is often desired in networks classifying objects
given as 3D point clouds. Popular architectures, such as PointNet [60] and its
extensions [61], rely on the ability of spatial transformer networks to learn such
invariances by training on large datasets and extensive data augmentations. We
analyze the robustness of these networks to transformations with experiments
using Pointnet on modelnet40 dataset [55]. We compare the class accuracy of the
final iterate for the clean validation set (Clean), and transformed validation sets
in the average (Avg.) and worst-case (Worst). We show that PointNet performs
better with our orbit mappings than with augmentation alone.

In this setting, X = R
d×N are N many d-dimensional coordinates (usually

with d = 3). The desired group actions for invariance are left-multiplication
with a rotation matrix, and multiplication with any number c ∈ R

+ to account
for different scaling. We also consider translation by adding a fixed coordinate
ct ∈ R

3 to each entry in X . Desired invariances in point cloud classification
range from class-dependent variances to geometric properties. For example, the
classification of airplanes should be invariant to the specific wing shape, as well as
the scale or translation of the model. While networks can learn some invariance
from training data, our experiments show that even simple transformations like
scaling and translation are not learned robustly outside the scope of what was
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Table 6. Combined Scale, rotation and translation invariances in 3D pointcloud classi-
fication with PointNet trained on modelnet40, with data augmentation and analytical
inclusion of each invariance. Mean and standard deviations over 10 runs are reported.

Augmentation STN OM Clean Scaling Rotation Translation

Scale RA Translation All Avg Worst Avg Worst Avg Worst

[0.8, 1.25] ✓ [−0.1, 0.1] ✓ ✗ 72.13± 5.84 19.74± 4.01 0.16± 0.42 72.39± 5.60 35.91± 4.87 5.35± 0.98 0.00± 0.00

[0.8, 1.25] ✓ [−0.1, 0.1] ✓ ✓ Test 67.38± 7.96 64.88± 12.16 64.88± 12.16 64.88± 12.16 64.88± 12.16 64.88± 12.16 64.88± 12.16

[0.8, 1.25] ✓ [−0.1, 0.1] ✓ ✓ Train+Test 77.52± 1.03 77.52± 1.03 77.52± 1.03 77.52± 1.03 77.52± 1.03 77.52± 1.03 77.52± 1.03

[0.8, 1.25] ✓ [−0.1, 0.1] ✗ ✗ 63.93± 0.65 12.85± 0.29 0.27± 0.55 64.75± 0.57 45.53± 0.29 3.90± 0.71 0.00± 0.00

[0.8, 1.25] ✓ [−0.1, 0.1] ✗ ✓Test 64.71± 0.92 57.10± 1.14 57.10± 1.14 57.10± 1.14 57.10± 1.14 57.10± 1.14 57.10± 1.14

[0.8, 1.25] ✓ [−0.1, 0.1] ✗ ✓Train+Test 74.41± 0.58 74.41± 0.58 74.41± 0.58 74.41± 0.58 74.41± 0.58 74.41± 0.58 74.41± 0.58

provided in the training data, see Tables 4, 5, 6. This is surprising, considering
that both can be undone by centering around the origin and re-scaling.

Scaling. Invariance to scaling can be achieved in the sense of Sect. 3 by scaling
input point-clouds by the average distance of all points to the origin. Our exper-
iments show that this leads to robustness against much more extreme transfor-
mation values without the need for expensive training, both for average as well
as worst-case accuracy. We tested the worst-case accuracy on the following scales:
{0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10, 100, 1000}. While our approach performs well on
all cases, training PointNet on random data augmentation in the range of possible
values actually reduces the accuracy on clean, not scaled test data. This indicates
that the added complexity of the task cannot be well represented within the net-
work although it includes spatial transformers. Even when restricting the training
to a subset of the interval of scales, the spatial transformers cannot fully learn to
undo the scaling, resulting in a significant drop in average and worst-case robust-
ness, see Table 4. While training the original Pointnet including the desired invari-
ance in the network achieves the best performance, dropping the spatial transform-
ers from the architecture results in only a tiny drop in accuracy with significant
gains in training and computation time5. This either indicates that in the absence
of rigid deformation the spatial transformers do not add much knowledge and is
strictly inferior to modeling invariance, at least on this dataset.

Rotation and Translation. In this section, we show that 3D rotations and
translations exhibit a similar behavior and can be more robustly treated via
orbit mapping than through data augmentation. This is even more meaningful
than scaling as both have three degrees of freedom and sampling their respec-
tive spaces requires a lot more examples. For rotations, we choose the unique
element of the orbit to be the rotation of X that aligns its principle components
with the coordinate axes. The optimal transformation involves subtracting the
center of mass from all coordinates and then applying the singular value decom-
position X = UΣV of the point cloud X up to the arbitrary orientation of the
principle axes, a process also known as PCA. Rotation and translation can be
treated together, as undoing the translation is a substep of PCA. To remove
the sign ambiguity in the principle axes, we choose signs of the first row of U
and encode them into a diagonal matrix D, such that the final transform is
5
Model size of PointNet with STNs is 41.8 MB, and without STNs 9.8 MB.
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given by X̂ = XV �D. We apply this rotational alignment to PointNet with
and without spatial transformers and evaluate its robustness to rotations in
average-case and worst-case when rotating the validation dataset in 16 × 16
increments (i.e. with 16 discrete angles along each of the two angular degrees
of freedom of a 3D rotation). We test robustness to translations in average-
case and worst-case for the following shifts in each of x, y and z directions:
{−10.0,−1.0,−0.5,−0.1, 0.1, 0.5, 1.0, 10.0}. Table 5 shows that PointNet trained
without augmentation is susceptible in worst-case and average-case rotations
and even translations. The vulnerability to rotations can be ameliorated in the
average-case by training with random rotations, but the worst-case accuracy
is still significantly lower, even when spatial transformers are employed. Also
notable is the high variance in performance of Pointnets with STNs trained
using augmentations. On the other hand, explicitly training and testing with
stabilized rotations using PCA does provide effortless invariance to rotations
and translations, even without augmentation. Interestingly, the best accuracy
here is reached when training PointNet entirely without spatial transformers,
which offer no additional benefits when the rotations are stabilized. The pro-
cess for invariance against translation is well-known and well-used due to its
simplicity and robustness. We show that this approach arises naturally from
our framework, and that its extension to rotational invariance inherits the same
numerical behavior, i.e., provable invariance outperforms learning to undo the
transformation via data augmentation.

Combined invariance to Scaling, Rotation, Translation. Our approach
can be extended to make a model simultaneously invariant to scaling, rotations
and translations. In this setup, we apply a PCA alignment before normalizing
the scale of input point cloud. Table 6 shows that PointNet trained with such
combined orbit mapping does achieve the desired invariances.

5 Discussion and Conclusions

We proposed a simple and general way of incorporating invariances to group
actions in neural networks by uniquely selecting a specific element from the orbit
of group transformations. This guarantees provable invariance to group trans-
formations for 3D point clouds, and demonstrates significant improvements in
robustness to continuous rotations of images with a limited computational over-
head. However, for images, a large discrepancy between the theoretical provable
invariance (in the perspective of images as continuous functions) and the practi-
cal discrete setting remains. We conjecture that this is related to discretization
artifacts when applying rotations that change the gradient directions, especially
at low resolutions. Notably, such artifacts appear more frequently in artificial
settings, e.g. during data augmentation or when testing for worst-case accuracy,
than in photographs of rotating objects that only get discretized once. While we
found a consistent advantage of enforcing the desired invariance via orbit map-
ping rather than training alone, combination of data augmentation and orbit
mappings yields additional advantages (in cases where discretization artifacts
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prevent a provable invariance of the latter). Moreover, our orbit mapping can be
combined with existing invariant approaches for improved robustness.
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Abstract. One fundamental limitation to the research of bird strike pre-
vention is the lack of a large-scale dataset taken directly from real-world
airports. Existing relevant datasets are either small in size or not dedi-
cated for this purpose. To advance the research and practical solutions
for bird strike prevention, in this paper, we present a large-scale challeng-
ing dataset AirBirds that consists of 118,312 time-series images, where
a total of 409,967 bounding boxes of flying birds are manually, carefully
annotated. The average size of all annotated instances is smaller than
10 pixels in 1920×1080 images. Images in the dataset are captured over
4 seasons of a whole year by a network of cameras deployed at a real-
world airport, covering diverse bird species, lighting conditions and 13
meteorological scenarios. To the best of our knowledge, it is the first
large-scale image dataset that directly collects flying birds in real-world
airports for bird strike prevention. This dataset is publicly available at
https://airbirdsdata.github.io/.

Keywords: Large-scale dataset · Bird detection in airport · Bird
strike prevention

1 Introduction

Bird strike accidents cause not only financial debts but also human casualties.
According to Federal Aviation Administration (FAA)1, from 1990 to 2019, there
have been more than 220 thousand wildlife strikes with civil aircraft in USA alone
and 97% of all strikes involve birds. An estimated economic loss could be as high
as $500 million per year. Furthermore, more than 200 human fatalities and 300
injuries attributed to bird strikes. Bird strikes happen most near or at airports
during takeoff, landing and associated phrases. About 61% of bird strikes with
civil aircraft occur during landing phases of flight (descent, approach and landing
roll). 36% occur during takeoff run and climb2. It is the airspace that the airport
1 https://www.faa.gov/airports/airport safety/wildlife/faq/.
2 https://en.wikipedia.org/wiki/Bird strike.
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Fig. 1. (a) The deployment of a network of cameras in a real-world airport (b) A bird
example in AirBirds (c) Examples of birds in CUB [25,27], Birdsnap [1], NABirds [24]
and CIFAR10 [10].

should be responsible for so that the prevention of bird strikes is one of the most
significant safety concerns. Although various systems are designed for preventing
bird strikes, accidents keep occurring with increasing commercial activities and
flights. Improving the performances of bird strike prevention systems remains
a research challenge. One fundamental limitation to the performances is the
lack of large-scale data collected at real-world airports. On the one hand, real-
world airports have strict rules on security and privacy regarding camera system
deployment. On the other hand, it is inevitably expensive to develop a large-scale
dataset that involves a series of time-consuming and laborious tasks.

Existing relevant datasets are either small in size or not dedicated for bird
strike prevention. The wildlife strike database created by FAA provides valuable
information, while each record in this database only contains a few fields in text
form, such as date and time, aircraft and airport information, environment con-
ditions, lacking informative pictures and videos. The relevant dataset developed
by Yoshihashi et al aims at preventing birds from hitting the blades of turbines
in a wind farm [29], rather than in real-world airports, and its size is less than one
seventh of ours. Well-known datasets like ImageNet [5], COCO [14], VOC [6],
CIFAR [10] collects millions of common objects and animals, including birds, but
they are developed for the research of general image recognition, object detec-
tion and segmentation. Another branch of datasets, such as CUB series [25,27],
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Birdsnap [1] and NABirds [24] containing hundreds of bird species, focus on
fine-grained categorization and part localization. And the size of these datasets
is less than 50% of ours. One of the most significant differences between the
above-mentioned datasets and ours is that birds in previous datasets are care-
fully selected and tailored, which means they are often centered in the image,
occupy the main part of an image and have clear outlines, referring to Fig. 1c.

However, it is unlikely that birds in the images captured in real-world airports
have these idealized characteristics. The deployment of a network of cameras
around a runway in a real-world airport is shown in Fig. 1a. Each camera is
responsible for monitoring an area of hundreds of meters so that flying birds
that appear are tiny in size even in a high-resolution image. For example, in our
dataset, the average size of all annotated birds is smaller than 10 pixels in the
1920×1080 images, taking up only ∼0.5% of the image width, shown in Fig. 1b.

To advance the research and practical solutions for bird strike prevention, we
collaborate with a real-world airport for two years and finally present AirBirds,
a large-scale challenging dataset consisting of 118,312 time-series images with
1920×1080 resolution and 409,967 bounding box annotations of flying birds. The
images are extracted from videos recorded by a network of cameras over one year,
from September 2020 to August 2021, thus cover various bird species in different
seasons. Diverse scenarios are also included in AirBirds, e.g., changing lighting
and 13 meteorological conditions. Planning, deployment and joint commissioning
of the monitoring system last for one year. The data collection process takes
another whole year and subsequent cleaning, labeling, sorting and experimental
analysis consume parallel 12 months. To the best of our knowledge, AirBirds
is the first large-scale challenging image dataset that collects flying birds in
real airports for bird strike prevention. The core contributions of this paper are
summarized as follows.

– A large-scale dataset, namely AirBirds, that consists of 118,312 time-series
images with 1920×1080 resolution containing flying birds in real-world air-
ports is publicly presented, where there exist 409,967 instances with carefully
manual bounding box annotations. The dataset covers various kinds of birds
in 4 different seasons and diverse scenarios that include day and night, 13
meteorological and lighting conditions, e.g., overcast, sunny, cloudy, rainy,
windy, haze, etc.

– To reflect significant differences with other relevant datasets, we make com-
prehensive statistics on AirBirds and compare it with relevant datasets. There
are three appealing features. (i) The images in AirBirds are dedicatedly
taken from a real-world airport, which provide rare first-hand sources for
the research of bird strike prevention. (ii) Abundant bird instances in differ-
ent seasons and changing scenarios are also covered by AirBirds as the data
collection spans a full year. (iii) The distribution of AirBirds is distinctive
with existing datasets since 88% of instances are smaller than 10 pixels, and
the remaining 12% are more than 10 and less than 50 pixels in 1920×1080
images.

– To understand the difficulty of AirBirds, a wide range of strong baselines
are evaluated on this dataset for bird discovering. Specifically, 16 detectors
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Table 1. Comparisons of AirBirds and relevant datasets. Density is the average
instances in each image. Duration refers to the period of data collection.

Dataset Format #Images Resolution #Instances Density Duration

FAA Database text - – 227,005 – 30 years

CUB-200-2010 [27] image 6,033 ∼500×300 6,033 1.00 –

CUB-200-2011 [25] image 11,788 ∼500×300 11,788 1.00 –

Birdsnap [1] image 49,829 various ∼49,829 1.00 –

NABirds [24] image 48,562 various ∼48,562 1.00 –

Wind Farm [29] image 16,200 ∼5616×3744 32,000 1.97 3 days

VB100 [7] video - ∼848×464 1,416 – –

AirBirds image 118,312 1920×1080 409,967 3.47 1 year

are trained from scratch based on AirBirds with careful configurations and
parameter optimization. The consistently unsatisfactory results reveal the
non-trivial challenges of bird discovering and bird strike prevention in real-
world airports, which deserve further investigation.

As far as we know, bird strike prevention remains a open research problem since
it is not well solved by existing technologies. We believe AirBirds will benefit
the researchers, facilitate the research field and push the boundary of practical
solutions in real-world airports.

2 Related Work

In this section, we review the datasets that are either closely relevant to bird
strike prevention or contain transferable information to this topic.

FAA Wildlife Strike Database. One of the most relevant datasets is the
Wildlife Strike Database3 maintained by FAA. This database contains more
than 220K records of reported wildlife strikes since 1990 and 97% of strikes
attribute to birds. The detailed descriptions for each incident can be divided
into the following parts: bird species, date and time, airport information, aircraft
information, environment conditions, etc. An obvious limitation is the contents
in this database are mainly in text form, lacking informative pictures and videos.

Bird Dataset of a Wind Farm. Yoshihashi et al. develop this dataset for
preventing birds striking the blades of the turbines in a wind farm [29]. 32,000
birds and 4,900 non-birds are annotated in total to conduct experiments of a
two-class categorization. It is similar to us that the ratio of bird size and the
image size is extremely small. However, compared to AirBirds’ data collection
process spanning a whole year, this dataset collects images only for 3 days so
that the number of samples and scenarios are much less than those of AirBirds.

3 https://wildlife.faa.gov.

https://wildlife.faa.gov
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Fig. 2. The number of images per month in AirBirds.

Bird Datasets with Multiple Species. Bird species probably provide valu-
able information for bird strike prevention. Another branch of the relevant
datasets, such as CUB series [25,27], Birdsnap [1], NABirds [24] and VB100 [7],
focuses on fine-grained categorization of bird species. Images in these datasets
are mainly collected from public sources, e.g., Flickr4, or by professionals. One of
the most significant differences between the datasets in this branch and AirBirds
is that birds in these datasets are carefully tailored, which means they are often
centered in the image, occupy the main part and have clear outlines. However,
it is unlikely for birds captured in real-world airports to have these wonderful
characteristics. Moreover, bounding box annotations are absent in some of them,
e.g., VB100 [7], thus they are not suitable for the research of tiny bird detection.

Well-Known Datasets Containing Birds. Commonly used datasets in com-
puter vision are also relevant as the bird belongs to one of the predefined cate-
gories in those datasets and there exist numbers of samples, such as ImageNet [5],
COCO [14], VOC [6], CIFAR [10]. However, the above-mentioned datasets are
dedicatedly designed for the research of general image classification, object detec-
tion and segmentation, not for bird strike prevention. And their data distribu-
tions differ from AirBirds, thus limited information can be transferred to this
task.

The comparisons with related work are summarized in Table 1. AirBirds offers
the most instances, the longest duration and the richest scenarios in image form.

4 https://www.flickr.com/search/?text=bird.

https://www.flickr.com/search/?text=bird
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3 AirBirds Construction

This section describes the process of constructing the AirBirds dataset, includ-
ing raw data collection, subsequent cleaning, annotation, splits and sorting to
complete it.

3.1 Collection

To cover diverse scenarios and prepare adequate raw data, we decide to record in
a real-world airport (Shuangliu International Airport, Sichuan Province, China)
over 4 seasons of a whole year. The process of data collection starts from Septem-
ber 2020 and ends in August 2021.

Considering frequent takeoffs and landings, airport runways and their sur-
roundings are major monitoring areas. We deployed a network of high-resolution
cameras along the runways, as Fig. 1a shows. All deployed cameras use identi-
cal configurations. The camera brand is AXIS Q1798-LE5, recording 1920×1080
images at a frame rate of 25. Due to the vast volume of raw data but a limited
number of disks, it is infeasible to save all videos. We split into two parallel
groups, one group for data collection and the other for data processing, so disk
spaces can be recycled once the second group finishes data processing.

3.2 Preprocessing

This step aims to process raw videos month by month and save 1920×1080
images in chronological order. 25 frames per second in raw videos lead to numer-
ous redundant images. To avoid dense distribution of similar scenarios, a suitable
sampling strategy is required. One crucial observation is that the video clips
where flying birds appear are very sparse compared to other clips. Hence, at
first, we manually locate all clips where there exist birds, then sample one every
5 continuous frames in previously selected clips instead of all of them, resulting
in an average of 300+ images per day, ∼10000 images per month, 118,312 in
total. The number of images per month is shown in Fig. 2 and 13 meteorological
conditions and the corresponding number of days are depicted in Fig. 3.

3.3 Annotation

To ensure quality and minimize costs, we divide the labeling process into three
rounds. The first round that generates initial bounding box annotations for birds
in the images is done by machines. The second round refines previous annotations
manually by a team of employed workers. It should be noted that the team does
not have to discover birds from scratch. In the third round, we are responsible
for verifying those manual annotations and requiring further improvements of
low-quality instances.

5 https://www.axis.com/products/axis-q1798-le.

https://www.axis.com/products/axis-q1798-le
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Fig. 3. The number of days of different weather in AirBirds.

It is not a simple task for humans to discover tiny birds from collected images
with broad scenes. In the first round, we develop an algorithm for generating
initial annotations and run on a computer. The idea of this algorithm is related
to background subtraction in image processing. In our context, cameras are
fixed in real-world airports, thus the background is static in the monitoring
views. Since the images in each sequence are in chronological order, considering
two consecutive frames, by computing the pixel differences between the first
and second frame, the static part, namely the background, is removed while
other moving targets, such as flying birds in the monitoring areas, are probably
discovered. Algorithm 1 describes the detailed process. Initially, we treat the
first frame as background, convert it to gray mode, apply Gaussian blur6 to
this gray image, and denote the output image as b, then remove the first image
from the input sequence S. The set of initial bounding box annotations B is
empty. Then we traverse the image Ii in S. In the loop, Ii is also converted to
gray image gi. After that, Gaussian blur is applied to gi to generate a denoised
image ci. Then we compute differences between b and ci, resulting in d. Fourth,
regions in d whose pixel values are in the range of [min, max] are considered
as areas of interest, e.g., if the pixel differences of the same area in those 2
consecutive frames are more than 30, there probably are moving targets in this
area. The dilation operation is applied to those areas to expand contours for
finding possible moving objects ci, including flying birds. After that, heuristic
rules are used to filter candidates according to the object size, e.g., big targets
like airplanes, working vehicles, workers, are removed, resulting in bi. Then bi

is inserted into B. Finally, we set background b as ci and move forward. The key
steps of this algorithm are visualized in Fig. 4.

Refinement is required since previously discovered moving objects are not
necessarily birds. In the second round, we cooperate with a team of workers
to accomplish the task. According to the predefined instructions, every single
image should be zoomed in to 250+% to check the initial annotations in detail

6 https://en.wikipedia.org/wiki/Gaussian blur.

https://en.wikipedia.org/wiki/Gaussian_blur
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Algorithm 1. The First Round of Annotations
Input: S = {I1, I2, . . . , In}, an image sequence, where n is the sequence length.

Constants min and max
Output: B = {b1,b2, . . . ,bn}, the bounding boxes set for birds in S, where

bi = {b1i , b
2
i , . . . , b

m
i }, m is the number of detected birds in image Ii

1: g ← imRead(I1, 0) � read image in gray mode
2: b ← gaussBlur(g) � denoise the image
3: S ← S \ I1 � remove I1 from S
4: B ← ∅ � initialize B
5: for Ii in S do
6: gi ← imRead(Ii, 0)
7: ci ← gaussBlur(gi)
8: d ← Diff(b, ci) � compute differences
9: d ← Thresh(d, min, max) � apply threshold

10: di ← Dilate(d) � dilate areas further
11: ci ← findContours(di) � find candidates
12: bi ← Filter(ci) � filter candidates
13: B ← B ∪ bi � insert annotations
14: b ← ci � move background next
15: end for

and the team mainly handles 3 types of issues that arose in the first round (i) add
missed annotations, (ii) delete false-positive annotations, (iii) update inaccurate
annotations. In the third round, we go through the annotations refined by the
team, requiring further improvements where inappropriate.

3.4 Splits

To facilitate further explorations of bird strike prevention based on this dataset,
it is necessary to split AirBirds into training and test set.

We need to pay attention to three key aspects when splitting the dataset.
First, we should keep a proper ratio between the size of the training and the test
set. Second, it is essential to ensure training and test sets have a similar distri-
bution. Third, considering the characteristic of chronological order, we should
put a complete sequence into either the training or the test set rather than split
it into different sets.

At last, we divide 98,312 images into the training set and keep the remain-
ing 20,000 images in the test set, a nearly 5:1 ratio. All images and labels are
publicly available, but excluding the labels in the test set. The validation set is
not explicitly distinguished as the primary evaluation should take place on the
test set, and users can customize the ratio between training and validation set
individually. We are actively building an evaluation server and the labels in the
test will be kept there.

In addition, the images in AirBirds can also be divided into 13 groups accord-
ing to 13 kinds of scenarios shown in Fig. 3. This division is easy to achieve since
each image is recorded on a specific day and each day corresponds to one type of
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Fig. 4. Visualization of key steps in Algorithm 1.

meteorological condition, according to the official weather report. Based on the
division, we can evaluate the difficulty of bird discovering in different scenarios
in real-world airports.

4 Experiments

In this section, a series of comprehensive statistics and experiments based on
AirBirds are presented. First, we investigate the data distribution in AirBirds
and compare with relevant datasets to reflect their significant differences. Second,
a wide range of SOTA detectors are evaluated on the developed dataset for bird
discovering and the results are analyzed in detail to understand the non-trivial
challenges of bird strike prevention. Third, the effectiveness of Algorithm1 is
evaluated since it plays an important role in the first round of annotations when
constructing AirBirds.

4.1 Distribution

In this subsection, we investigate the distribution of AirBirds and compare with
relevant datasets. Figure 5 shows the distribution of width and height of bound-
ing box in different datasets. Obviously, objects in AirBirds have much smaller
sizes. Further, Fig. 6 depicts the proportion of objects with various sizes in rele-
vant datasets. 88% of all instances in AirBirds are smaller than 10 pixels and the
rest 12% are mainly in the interval [10, 50). Therefore, data distribution in real-
world airports is significantly different from that in web-crawled and tailor-made
datasets.

4.2 Configurations

A wide range of detectors are tested on AirBirds for bird discovering. Before
reporting their performances, it is necessary to elaborate on the specific mod-
ifications we made to accommodate the AirBirds dataset and the detectors.
Concretely, we customize the following settings.
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Fig. 5. Distributions of width and height of annotated instances in COCO and Air-
Birds.

Models. To avoid AirBirds preferring a certain type of detectors, various kinds
of strong baselines are picked for evaluation, including one-stage, multi-stage,
transformer-based, anchor-free, and other types of models, referring to Table 2.

Devices. 6 NVIDIA RTX 2080Ti GPUs are used during training and a single
GPU device is used during test for all models.

Data Format. The format of annotations in AirBirds is consistent with
YOLO [16] style. Then we convert them to COCO format when training models
other than YOLOv5.

Anchor Ratios and Scales. We need to adapt the ratios and scales for anchor-
based detectors to succeed in custom training because objects in AirBirds have
notable differences in size with that in the commonly used COCO dataset. The
k-means clustering is applied to the labels of AirBirds, finally the ratios are set
to [ 8

13 , 9
12 , 11

9 ] and the scales are set to [20, 2
1
3 , 2

2
3 ].

Learning Schedules. All models are trained from scratch with optimized
settings, e.g., training epochs, learning rate, optimizer, batch size, etc. We sum-
marize these settings in Sect. 2 in the supplementary material.

Algorithm 1. The thresholds of pixel differences in Algorithm 1, min and
max, are set to 25 and 255, respectively.

4.3 Results and Analysis

Both accuracy and efficiency are equivalently important for bird discovering in a
real-world airport. The accuracy is measured by average precision (AP) and the
efficiency is judged by frames per second (FPS). Results are recorded in Table 2.
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Fig. 6. Comparisons of the ratio of the number of objects with different sizes in the
datasets Birdsnap, COCO, VOC and AirBirds. The numbers in each bar are in %.
Here the object size in pixel level is divided into 4 intervals: (0,10), [10,50), [50, 300)
and [300,+∞).

Table 2. Comparisons of various kinds of object detectors on AirBirds test set. The
column APl has been removed as there are few large objects in AirBirds and the
corresponding scores are all 0. EffiDet: EfficientDet-D2, Faster: Faster RCNN, Cas-
cade: Cascade RCNN, Deform: Deformable DETR. These abbreviations have the same
meaning in the following figure or table.

Method Type Backone AP AP@50 AP@75 APs APm FPS

FCOS [22] one-stage ResNet50 [9] 0.3 1.3 0.0 0.3 0.2 18.5

EffiDet [21] EffiNet-B2 [20] 0.6 1.0 1.0 0.6 4.3 4.88

YOLOv3 [17] DarkNet53 [15] 5.8 24.1 1.4 5.8 6.8 19.5

YOLOv5 [23] CSPNet [26] 11.9 49.5 – – – 109.9

Faster [18] multi-stage ResNet50 [9] 7.1 26.9 1.3 7.1 0.2 16.0

Cascade [2] 6.8 24.0 1.8 6.8 1.8 13.4

DETR [3] transformer ResNet50 [9] 0.0 0.0 0.0 0.0 0.0 19.7

Deform [33] 0.4 2.2 0.0 0.4 1.0 11.6

FPN [12] FPN RetinaNet [13] 2.9 12.5 0.3 2.9 8.0 21.3

NASFPN [8] 3.0 12.5 0.4 2.9 15.8 25.0

RepPoints [28] anchor-free ResNet50 [31] 4.8 22.6 0.3 4.9 0.0 37.1

CornerNet [11] HourglassNet 4.5 19.5 0.6 5.0 2.5 5.5

FreeAnchor [30] ResNet101 [9] 6.6 26.5 1.1 6.7 9.0 53.5

HRNet [19] high-resolution HRNet [19] 8.9 33.0 1.3 9.0 0.3 21.7

DCN [4] deformable ResNet50 [9] 9.7 34.6 1.8 9.8 2.4 41.9

DCNv2 [32] ResNet50 [9] 4.2 17.5 0.5 4.6 0.0 14.2

For accuracy, the primary metric AP seems unsatisfactory, e.g., the highest
score achieved by YOLOv5 is only 11.9, and the scores of all other models are
less than 10. We also compare the performances of those detectors on COCO and
AirBirds, shown in Fig. 7. Under the same detector, however, the performance
gap is surprisingly large. For instance, the AP score of EfficientDet-D2 on COCO
exceeds the one on AirBirds by 41.5(=42.1-0.6).

Besides, precision-recall relationship are also investigated, and results are
shown in Fig. 8. The trend in all curves is that precision decreases with increased
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recall because more and more false-positive birds produce as more and more birds
are recalled. YOLOv5 outperforms others while precision drops to 0 when recall
reaches 0.7.

At this point, we wonder whether these detectors are well trained on AirBirds.
Hence, their training losses are visualized in Fig. 9. We observe the losses of
all detectors drop rapidly in the initial rounds of iterations, then progressively
become smooth, indicating the training process is normal and converges to the
target.

In terms of efficiency, YOLOv5 also outperforms others, surpassing 100 FPS
on a 2080Ti GPU. However, most of detectors fail to operate in real-time
efficiency even with GPU acceleration, which deviates a key principle of bird
strike prevention.

We also wonder why a wide range of detectors work poorly on AirBirds.
Reasons are detailed in Sect. 3 in the supplementary material due to space limi-
tation.

In short, existing strong detectors show decent performances on commonly
used datasets e.g. COCO, VOC etc. However, even with carefully customized
configurations, they have room for significant improvements when validating on
AirBirds. The results also imply the non-trivial challenges of the research of bird
strike prevention in real-world airports, where AirBirds can serve as a valuable
benchmark.

4.4 Effectiveness of the First Round of Annotations

As mentioned in Sect. 3, Algorithm 1 provides the first round of bounding box
annotations for possible flying birds and the annotations are saved. Here we
validate its effectiveness and compare it with the best performing YOLOv5. Dif-
ferent from average precision that sets strict IoU thresholds between detections
and groundtruth, actually precision, recall and f1 score are more meaningful
metrics for evaluating initial annotations.

Table 3 shows Algorithm 1 recalls more than 95% of birds in the initial round,
which saves workers numerous efforts of discovering birds in subsequent rounds
from scratch thus save costs. In addition, the results indicate that sequence
information is helpful for tiny flying birds detection as the input images in Algo-
rithm1 are in chronological order. The star symbol in the second row in Table 3
means the results of Algorithm 1 are obtained on an ordinary computer(i5 CPU,
16GB memory), without GPU support.

Table 3. Comparisons of Algorithm 1 and YOLOv5 in terms of precision, recall and f1
score. Algorithm 1 runs on a common computer and YOLOv5 is tested with a 2080Ti
GPU.

Method Precision Recall F1 FPS

YOLOv5 68.10% 55.50% 61.16% 109.89

Algorithm 1 58.29% 95.91% 72.51% 67.44�
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Fig. 7. Comparisons of the performances among representative detectors on AirBirds
and COCO.

Fig. 8. Precision-Recall curves of different detectors in VOC [6] style.
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Fig. 9. Training losses of different types of detectors.

5 Conclusion

In this paper, we present AirBirds, a large-scale challenging dataset for bird strike
prevention constructed directly from a real-world airport, to close the notable
gap of data distribution between real world and other tailor-made datasets.
Thorough statistical analysis and extensive experiments are conducted based
on the developed dataset, revealing the non-trivial challenges of bird discover-
ing and bird strike prevention in real-world airports, which deserves increasing
and further investigation, where AirBirds can serve as a first-hand and valuable
benchmark.

We believe AirBirds will alleviate the fundamental limitation of the lack of
a large-scale dataset dedicated for bird strike prevention in real-world airports,
benefit researchers and the field. In the future, we will develop advanced detectors
for flying bird discovering based on AirBirds.
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Abstract. We present a new dataset of images of pinned insects from
museum collections along with a ground truth phylogeny (a graph rep-
resenting the relative evolutionary distance between species). The images
include segmentations, and can be used for clustering and deep hierarchical
metric learning. As far as we know, this is the first dataset released specifi-
cally for generating phylogenetic trees. We provide several benchmarks for
deep metric learning using a selection of state-of-the-art methods.
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1 Introduction

A phylogeny is a fundamental knowledge frame which hypothesizes how different
species relate to each other [11]. A fully annotated phylogeny, i.e. a tree of life
anchored in time scale, placed in the geographic context, and with a multitude
of organismal traits mapped along the tree branches is an important tool in biol-
ogy. It explains biodiversity changes over millennia or geological epochs, traces
organismal movements in space and evolution of their properties, models popu-
lations response to climate change, navigates new species discovery and advises
classification and taxonomy. An example phylogeny from our dataset is shown
in Fig. 1 along with some example images from the most abundant species in the
dataset.

Traditionally biologists generate phylogenies [9,10] using genetic data or mor-
phological features (relating to the shape or development of the organism, for
example the head shape, or the pattern of the veins on the wings). Despite genetic
data dominating phylogenetic research in recent years, morphological features
extracted by visual inspection of specimens are still of use. Fossils, for example,
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Fig. 1. Subset of phylogeny from the Rove-Tree-11 dataset, for the 10 genera with
the most images in the dataset. Each leaf represents a genus. Genera which are closer
together on the tree are more closely related, and nodes in the tree represent common
ancestors. Nodes with more than two branches are considered not yet fully resolved.
Many phylogenetic trees include estimations of time representing when the speciation
event occurred (when the common ancestor split into two species). These dates are
usually based on fossil evidence. This dated information is unfortunately not currently
available for our ground truth tree. Example specimens from each genera are shown
for reference.

contain no genetic data, but morphological features on the fossils can be used to
relate them to existing biodiversity [26]. Occasionally morphological and genetic
data are even combined to generate a so called ’total-evidence’ phylogeny [34].
Morphological features are also of importance for species/specimens which lack
good quality genetic data. Much of phylogenetic research on insects is done from
museum specimens captured many years ago. Often the DNA of such specimens
has degraded and is no longer of use. Genetic extraction is also expensive, time
consuming, and a destructive process which can require completely destroying
the specimen, particularly in the case of small insects.

However, the traditional process of generating morphological features is
slow, meticulous and introduces some aspects of subjectivity by the researcher
performing the analysis. Typically a phylogenetic researcher would generate a
matrix of discrete traits (although the use of continuous traits has recently been
explored [35]) which they hypothesize are of use in distinguishing the species and
are evolutionary important. With thousands of new species of insects discovered
each year [1], it is difficult for phylogeneticists to keep up.

Deep metric learning [22,38] is a proven technique to generate informative
embedding matrices from images, and we posit that it can be used to generate
morphological embeddings which more objectively represent the morphological
features of a specimen. In this dataset we are unfortunately only looking at one
view of the insect, in our case, the dorsal view (the back), whereas biologists
would ideally examine and compare all external and internal features of the
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insect. However, we hypothesize that this can be offset by the model’s ability
to learn minute details. Our intention is that these methods could eventually
be improved and used as a tool for biologists to inform their decision making
process. Additionally, many natural history museums worldwide [8,20] are dig-
itizing their collections, including in many cases, taking images of millions of
museum insects. The Natural History Museum of Denmark (NHMD) alone esti-
mates they have over 3.5 million pinned and dried insect specimens spanning
100,000 described species [32] and is in the process of digitizing their collections
[31]. The importance of such digitization efforts have been studied from a biol-
ogy research perspective [17,36]. Thus, given the increased data availability, we
predict that phylogenetic generation from images will become a growing field of
research within computer vision and related areas of artificial intelligence.

Despite the rapidly growing availability of images of pinned insects from
natural history museums, the ongoing push from the biological community to
generate phylogenies, and the increasing ability of deep learning to learn com-
plex shapes and relationships, few publicly available datasets exist targeting the
generation of phylogenies from images using deep learning techniques. There are
several reasons for this, as we will explore in more detail in Sect. 2.1, when we
compare with existing datasets. In brief, although the number of image analysis
datasets is steadily growing, often the graphs which are included in the datasets
are subjectively resolved (such as [5]) or the groupings they provide are too
coarse-grained (such as [12]) or, particularly for biological datasets, the images
are natural photos taken in the wild, meaning they are from various viewpoints
and often obscured (such as [40,41]). This makes it difficult for the model to
learn which distinct morphological features are more related to those from oth-
ers species. Typical morphology based phylogenies are generated from careful
inspection and comparison of features, meaning we expect direct comparison to
be very important for this task.

In this paper we present ’Rove-Tree-11’, a dataset of 13,887 segmented dorsal
images of rove beetles along with a ground truth phylogeny down to genus level1.
The species-level phylogeny is not included, because this level of information
is not yet readily available. Our intention with releasing this data is that it
can further research on deep hierarchical metric learning and computer vision
solutions for building morphological phylogenies on interesting biological groups,
leveraging the current digitization-wave that is gripping natural history museums
worldwide.

The contributions of this paper are:

1. The release of a new hierarchically structured image dataset including seg-
mentations and ground truth genus-level phylogeny

2. We provide baseline results on this dataset for the tasks of classification,
clustering, and for predicting phylogenetic trees.

1 To genus-level means that each species within a genus is considered unresolved, or
equally likely to be related to any other species within that genus.
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2 Related Work

2.1 Comparison with Existing Datasets

Hierarchically structured data is often found in computer vision related tasks.
Examples include cognitive synonym relations between object categories such as
clothing items [27] and is especially found in tasks concerning nature. However,
current datasets which present a ground truth hierarchical grouping of the data
are not intended for morphological phylogenetic research, and therefore poorly
suited to the task.

There are several natural history related image datasets which do, or could
easily be adapted to, include a taxonomy (i.e. IP102 [44], CUB-200-2011 [41],
iNaturalist [40], Mammal dataset [12], PlantCLEF 2021 [13] and ImageNet [6]).
With the exception of PlantCLEF, these are however all ’in the wild’ images and
identification has typically been done by non-experts with the naked eye. The
phylogenies are also usually superficial - including only a few levels, and typically
based only on the current taxonomy, which is not fine-grained and not necessarily
representative of the state of the art phylogenetic tree, as taxonomies have a
longer review process2. In the case of PlantCLEF the majority of the training
images are of herbaria sheets, and therefore not ’in-the-wild’, however only a
shallow taxonomy is provided with the PlantCLEF dataset. In the case of IP102,
the hierarchical tree is grouped by the plant the insect parasitizes, and is not
related to ancestral traits at all. With the exception of CUB-200-2011, iNaturalist
and PlantCLEF, the species are also easily identified by a layman/amateur by
the images alone, which is not necessarily the case in our dataset, where many
of the identifications traditionally require a microscope or dissection. It is also
often the case that the taxonomy is not properly updated until years after the
phylogeny has been altered, particularly in the case of entomology where new
species are discovered regularly, so using the most recent taxonomy may not
actually represent the state-of-the-art knowledge of the evolution of the species.
In the case of iNaturalist, the dataset does include a tree with the same number of
levels as Rove-Tree-11, however, this depth begins from kingdom-level, whereas
ours begins from family level (four taxonomic ranks lower on the taxonomic
hierarchy), and represents the most recent phylogeny.

Additionally there are non-biological hierarchical datasets, such as DeepFash-
ion [27], for which others have created their own hierarchy [5]. This hierarchy is
however based on loose groupings of clothing items which are highly subjective.
For example, the top-level groupings are: top, bottom, onepiece, outer and spe-
cial, where special includes fashion items such as kaftan, robe, and onesie, which
might morphologically be more related to coats, which are in the ’outer’ cate-

2 The taxonomy represents how the organism is classified - ie which class, order, family
the organism belongs to, and is a non binary tree. The phylogeny represents how
related different species are together, and would ideally be a binary tree. In an ideal
world the taxonomy would be a congruent to the phylogeny, but in reality they tend
to diverge as taxonomic revisions take longer.
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Table 1. Comparison of dataset properties. The table indicates number of images and
categories, tree depth and whether or not the images are ’in the wild’. Tree depth is
calculated as the maximum number of levels in the tree. For example, with iNaturalist
this is 7 (corresponding to: kingdom, phylum, class, order, family, genus and species)

Dataset No. Images No. Cat Tree Depth Wild? Year

Rove-Tree-11 13,887 215 11 No 2022

ImageNet [6] 14,197,122 21,841 2 Yes 2018

IP102 [44] 75,222 102 4 Yes 2019

CUB-200-2011 [41] 11,788 200 4 [2] Yes 2011

Cars196 [24] 16,185 196 1 Yes 2013

INaturalist 2021 [40] 857,877 5,089 7 Yes 2021

PlantCLEF 2021 [13] 330,772 997 3 Mixed 2021

DeepFashion [27] 800,000 50 4a Yes 2016
ahierarchy presented in [5]

gory. This kind of subjective hierarchy can be useful in other applications, but
not particularly for research on generating relationships based on morphology.

The Rove-Tree-11 dataset on the other hand is a well-curated museum col-
lection, where the identification has been done by experts, often using a micro-
scope, and the ground truth phylogeny is as up to date as possible. Additionally,
because the images are of museum collections and not ’in-the-wild’, the spec-
imen is always fully visible, and the dataset has been curated to include only
whole dorsal images. Whether dorsal-view images are sufficient to generate a
phylogeny remains to be seen. Typically biologists would use features from all
over the body, including ventral and sometimes internal organs. We hypothesize
that dorsal view may be sufficient given the ability of deep learning models to
learn patterns which are difficult for the human eye to distinguish. Additionally
results from our classification experiments shown in Table 3 suggest that dis-
tinguishing features can be learnt from the images, supporting our belief that
phylogenies may be learnt from this dataset.

2.2 Related Methodologies

Classification. Classification is one of the most developed fields in computer
vision and deep learning, with numerous new state of the art architectures and
methods discovered each year. However, there are some architectures which have
gained widespread usage in recent years, which we will use to give baselines for
this dataset. In particular, we will compare classification results using ResNet
[16] and EfficientNet B0 [39]. ResNet is a series of models, introduced in 2015,
which uses residual convolution blocks. EfficientNet was introduced in 2019 and
is known for achieving high accuracies with few parameters. Classification is not
the main focus of this dataset, but we provide classification results for comparison
with similar datasets.
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Fig. 2. Example image of museum unit tray from Stage 1 of image processing.

Deep Metric Learning. The goal of deep metric learning (DML) is to learn
an embedding of the data which represents the dataset and distances between
datapoints meaningfully. This could be through clustering related data together,
or through creating independence and interpretability in the variables. Recent
research into deep metric learning can be split into three groups [38]. Ranking-
based methods attempt to pull instances from the same class (positive examples)
closer together in the embedding space, and typically push examples from other
classes further away (eg, [15] [43]). Classification-based methods, such as
ArcFace [7], work by modifying the discriminative classification task. Finally
Proxy Based methods, such as Proxy NCA [29] compare each sample with a
learned distribution for each class.

In this paper we demonstrate results for this dataset using seven deep metric
learning methods; Five ranking-based losses: margin loss [43], triplet loss [43],
contrastive loss [15], multisimilarity loss [42], lifted loss [45], one classification-
based loss: arcface loss [7] and one proxy-based loss: proxynca [29]. With many
state of the art methods and variations on these, choosing which to use is difficult.
We chose these firstly because they are all used in [38] as benchmarks, making
our results directly comparable. Of the 23 described in [38], we focus on seven
which represented some of the better results and show a variety of methods. For
a detailed description of each loss we refer the reader to [38].

During training DML models are typically evaluated not just on the loss, but
also on a number of clustering metrics. In our case, to do this the dataset is evalu-
ated using nearest neighbors Recall@1 (R1) and Normalized Mutual Information
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(NMI) after clustering using the k-means algorithm [28]. NMI is presented in our
main results, and R1 in the supplemental material. NMI is a symmetric quantity
measuring the overlap between clusters. A NMI of 1 indicates that the clusters
are the same. Recall@1 is a measure of the % of results with a nearest neighbour
in the same class. Both are described in further detail in [38].

Generating a Phylogeny from Embeddings. In order to use this dataset
for deep phylogenetic generation, we need methods to generate binary graphs
from embedding spaces. We could treat this as a classification problem, however,
with only one graph to generate, this dataset is not large enough to perform
direct graph generation. Instead, the graph can be generated indirectly from
the embedding space and compared with the ground truth. This is analogous to
how biologists would traditionally generate phylogenetic trees for small datasets
using morphological matrices. Biologists use maximum parsimony or bayesian
methods [10] to find the best-fitting tree based on discrete characters (either
morphological or genetic). However, the use of continuous characters in improv-
ing phylogeny generation has been recently explored [35]. Therefore if we assume
our embedding space represents morphological features and is a morphological
space, this could similarly be used to generate a phylogeny using the same con-
tinuous trait bayesian phylogenetic inference methods. We use RevBayes [19], a
popular bayesian inference package to complete the analysis. Similar methods
have been used to generate phylogenetic trees [23].

Phylogenetic Comparison. The main purpose of this dataset is to allow
exploration of methods for generating phylogenetic trees based on morphology.
To do this, we need methods for comparing phylogenies. There are many stan-
dard methods of doing this in biology, a thorough comparison of them is provided
in [25]. In brief, the metrics can be split into those which do and do not compare
branch lengths. As branch lengths (i.e. evolutionary time) are not yet avail-
able in our ground truth phylogeny, we will focus on those which do not include
branch lengths, called topology-only comparison methods. The most widely used
of these is called the Robinson-Foulds (RF) metric, introduced in 1981 [37]. The
RF metric defines the dissimilarity between two trees as the number of oper-
ations that would be required to turn one tree into another3. However, it has
some notable disadvantages, including that apparently similar trees can have a
disproportionately high RF score.

One of the more recently introduced metrics is called the Align Score [33].
The Align Score works in two stages. In the first stage, a 1:1 mapping of edges
from each tree (T1 and T2) is assigned. This is done by calculating a similarity
score s(i, j) between the edges, i and j in T1 and T2 respectively, based on how
similarly they partition the tree. More concretely, in tree T1, edge i will partition
the tree into two disjoint subsets Pi0 and Pi1. The similarity scores can then by

3 it is, however, different from the edit distance popular in computer science.
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Fig. 3. Examples of specimen images before (above) and after (below) segmentation
and rotation adjustment.

computed as:

s(i, j) = 1 − max(min(a00, a11),min(a01, a10)) (1)

where ars is the intersection over the union of the partitions:

ars = |Pir ∩ Pjs

Pir ∪ Pjs
| (2)

The munkres algorithm is then used to find the edge j = f(i) that minimizes
the assignment problem, and then the group with the minimum pairs are summed
as follows to calculate the total align score for the two trees:

∑

i∈T1

s(i, f(i)) (3)

Unlike the RF score, for each set of partitions the align score calculates the
similarity, s(i, j), as a continuous variable instead of a binary value. That said,
it has the disadvantage that the value is not normalized - a larger tree will likely
have a larger align score, making the result difficult to interpret. Despite this,
we choose to use it as it is a more accurate representation of the topological
similarity between two trees[25].

3 An Overview of Rove-Tree-11

3.1 Image Collection

The images in the dataset were collected and prepared in 4 stages [14]:

Stage 1: Unit Tray Image Collection Rove-Tree-11 was collected by taking
overview images of 619 unit trays from the entomology collection at Natural
History Museum of Denmark, see Fig. 2. A Canon EOS R5 mounted on a camera
stand with a macro lens was used to take images of 5760 × 3840 pixels (px)
resolution. Since the camera height and focus were kept fixed, the images can
be related to physical distance as approx. 400 px per cm. Artificial lighting was
used to minimize lighting variance over the images.
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Table 2. Species-level classification results on segmented and unsegmented images.
We can see that using segmentations drastically reduces the accuracy, indicating that
the model is learning from the background and not the morphology of the beetle, as
desired. Top-1 and Top-5 represent accuracies. Uncertainties represent 95% confidence
intervals.

Model Dataset Top-1 Top-5

ResNet-18 [16] Segmented 90.9 ± 1.2 99.1 ± 1.2

ResNet-18 [16] Unsegmented 99.1 ± 0.3 99.9 ± 0.3

Stage 2: Bounding Box Identification and Sorting. After image capture,
bounding boxes for the individual specimens were then manually annotated using
Inselect [18]. Images of 19,722 individual specimens were then sorted. Only dor-
sal views (views from the ’back’ of the beetle) where the specimen was largely
intact and limbs were mostly visible were included, resulting in images of 13,887
specimens in final dataset. See Fig. 3 for examples of bounding boxes around
specimens. Estimates of body rotation were also annotated in 45◦C increments
which allows for coarse correction of the orientation of the crops.

Stage 3: Segmentation. Segmentations were then generated through an itera-
tive process. First 200 images were manually segmented. Then U-Net was trained
on these 200 images and was used to generate predictions for the rest of the
images. 3000 of these segmentations were considered good enough. U-Net was
then retrained with these images, then rerun and new segmentations produced.
The final segmentations were then manually corrected. Examples of segmenta-
tion masks and final segmented specimens can be seen in Fig. 3 and Fig. 4. The
dataset is released with both the original crops and the segmentation masks,
however, as we show in Table 2, the segmentations are extremely important for
phylogenetic analysis, as the background of the image is highly correlated with
the species. This is because many of the same species were collected at the same
time in the same place by the same person, meaning whether the specimen was
glued to a card, the age and color of the card, could be correlated with the species,
despite being unrelated to the phylogeny. The segmentations are not perfect. In
particular they cut off some of the finer hairs on the body; It could therefore
be the case that the segmentations are removing vital information which the
model can use to complete classification. We consider this unlikely and suspect
the model is instead learning from the backgrounds.

Stage 4: Rotation Adjustment. Rotations were corrected by finding the prin-
cipal axis of inertia of the segmentation masks, (see [21] for details). Since all the
beetles are more or less oval shaped, the minimal axis of rotation of their masks
tends to line up well with their heads and tails. Using this we further standardized
the rotations of the segmentations. This process is shown in Fig. 4.
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Fig. 4. Illustration of rotation adjustment algorithm. Example original masks (top) and
rotated masks (bottom). The red line represents the principal axis of inertia found.

3.2 Preparation of Phylogeny

A current genus-level phylogeny of the closely related subfamilies Staphylininae,
Xantholininae and Paederinae is provided for the sample of genera used in our
analysis. The full phylogeny is visualized in Fig. 1 our supplementary mate-
rial. A subset is shown in Fig. 1. This phylogeny represents the current state of
knowledge as it was pieced together from the most relevant recently published
phylogenetic analyses, such as [47] for sister-group relationships among all three
subfamilies and the backbone topology of Xantholininae and Staphylininae, [3]
for the subtribe Staphylinina, [4] for the subtribe Philonthina and [46] for the
subfamily Paederinae. Below genus-level the phylogeny is considered unresolved
as we were unable to find species-level phylogenies for the 215 species included
in Rove-Tree-11. A newick file of the phylogeny is provided with the dataset.

3.3 Dataset Statistics

In total, 13,887 images of beetles from the family Staphylinidae, commonly
known as rove beetles, are included from 215 species - spanning 44 genera, 9
tribes and 3 subfamilies. Example images are shown in Fig. 1.

The distribution of the dataset per genus is shown in Fig. 7. A species-level dis-
tribution is provided in the supplementary material. From this we can see that
the dataset is not evenly distributed, with the species with the highest number of
specimens having 261 examples and the lowest having 2 with the genus Philonthus
accounting for 24.8% of the dataset. This is due to the number of specimens the
museum had in the unit trays that were accessed and imaged at the time, although
the curators also includes samples of species which were easily distinguishable from
each other, and examples which were hard and can only usually be determined by
genital extraction by experts (i.e. Lathrobium geminum and Lathrobium elonga-
tum. Examples from these two species are shown in Fig. 5 to demonstate the diffi-
culty of the task). The distribution of image sizes in the dataset is shown in Fig. 6.
The majority of the images (82%) are under 500 × 250 pixels.
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Fig. 5. Example images of Lathrobium geminum (top) and Lathrobium elongatum
(bottom) from the dataset. Typically even experts need to dissect the specimen to
complete the determination between these two species.

Fig. 6. Distribution of image sizes included in the dataset. The majority (82%) of
images are under 500 × 250 pixels.

Fig. 7. Distribution of specimens per genus (bottom left) and per subfamily (top right).
Each slice in the stacked bar chart represents a different species within that genus.
Subfamily distribution is included as it is used to generate the validations and test sets
for the clustering results in Sect. 4.2. A full species level distribution is shown in the
supplemental material.
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Table 3. Classification results using deep learning architectures. Top-1 and Top-5
represent accuracies. Uncertainties represent 95% confidence intervals based on 3 runs.

Model Species Genus

Params Top-1 Top-5 Top-1 Top-5

ResNet-18 [16] 11.4 M 90.9± 1.2 99.2± 1.2 98.9± 0.3 100± 0.3

ResNet-50 [16] 23.9 M 89.4± 1.4 99.2± 1.4 98.2± 0.4 100± 0.4

EfficientNet B0 [39] 5.3 M 91.9± 1.8 99.3± 1.8 99.1± 0.2 100± 0.2

4 Evaluation

Here we evaluate the dataset by performing benchmark experiments. As stated
previously, the main purpose of this dataset is for deep metric learning on hier-
archical phylogenetic relationships, so this is also the focus of the benchmarks,
although we also provide benchmarks for the classification and clustering tasks.
The same augmentations were applied to the dataset as for CUB200 and Cars176
and as in [38], with the exception that the RandomHorizontalFlip was changed
to a RandomVerticalFlip, as this makes more sense for the Rove-Tree-11 dataset.
Gradient accumulation was also used in some cases due to memory constraints
on the available clusters. The details of which experiments this was applied to
are provided in the codebase.

4.1 Classification

Results from classification experiments are provided in Table 3. For these exper-
iments the official pytorch implementations were used with default parameters:
categorical cross entropy loss with an initial learning rate of 0.1, momentum of
0.9, weight decay of 1e − 4 and SGD optimizer. Training details are released
with the code for this dataset. The only alterations from the defaults were to
reduce the batch-size to 32 due to memory constraints and to alter the data
augmentations, detailed in the code. A species-stratified train/val/test split of
70/15/15 was used. The split is provided with the code.

As shown in Table 3, the models are able to achieve a top-1 species-level
accuracy of 92% with no hyperparameter tuning, and a top-1 genus level of
almost 100%. These results suggest that although this dataset could be used for
classification tasks and might be useful as such for biologists, classification of
this dataset is not particularly difficult, and this dataset is probably not ideal
as a benchmark for classification in deep learning.

4.2 Clustering and Phylogenetic Results

In Table 4, we present benchmark results of applying state of the art methods
for deep metric learning to the Rove-Tree-11 dataset and comparing phylogenies

https://github.com/robertahunt/Rove-Tree-11
https://github.com/robertahunt/Rove-Tree-11


Rove-Tree-11 437

generated using phylogenetic bayesian methods on the embedding space to the
ground truth phylogeny as described in Sect. 2. A more complete table showing
R1 scores and Cars176 results, is provided for reference in the supplementary
material (Table 1). The ’Random’ row represents the align score of a randomly
generated tree with the 9 genera leaves included in the test set, against the
ground truth tree based on 5 random initializations. Since the align score is not
normalized, this random baseline is useful to gauge our results and represents an
upper bound our models should achieve. Following best practice, as described in
[30], the dataset was split into three groups for training, validation and testing.
To properly test the ability of the model to generalize, the groups were split
at subfamily level, so the train, validation and test sets should be as phyloge-
netically distinct as possible, in the sense that they belong to different parts of
the phylogenetic tree. This results in 8534 training images from the subfamily
Staphylininae, 4399 validation images from the subfamily Paederinae and 954
test images from the subfamily Xantholininae.

All results on Rove-Tree-11 were generated using implementations used in
[38], modified to calculate the align score. A forked codebase is provided as a
submodule in the github repository.

Based on the clustering results in Table 4, we see that Rove-Tree-11 has
similar NMI scores to CUB200, suggesting this dataset has a similar clustering
difficulty to CUB200 and may be appropriate as a clustering benchmark. As with
CUB200, the best models on Rove-Tree-11 are Triplet [43] and Multisimilarity
[42]. We can also see that the align score results somewhat correspond with
the NMI, with the best results being achieved with Triplet Loss. We can also
see that the best test set align score of 4.0 is a marked improvement to the
random align score baseline of 6.6, but still significantly far away from a perfect

Table 4. Benchmark clustering and Align-Score results on Rove-Tree-11 dataset. ’Ran-
dom’ represents the average align score of 5 randomly generated trees. This gives us a
metric to compare our results with. A perfect align score would be 0. 95% confidence
errors are provided based on 5 runs.

CUB200 Rove-Tree-11

Test Validation Test

Loss NMI Align NMI Align NMI Align

Random – 21.9± 0.2 – 15.8± 0.9 – 6.6± 0.5

Triplet 64.8± 0.5 9.9± 0.9 68.9± 0.4 7.8±1.1 66.3± 0.3 4.1± 0.5

Margin 60.7± 0.3 10.6± 1.2 68.0± 0.7 8.2± 0.7 65.9± 0.5 4.2± 0.7

Lifted 34.8± 3.0 15.9± 2.0 55.0± 0.6 10.5± 0.7 56.0± 1.1 4.9± 0.8

Constrast. 59.0± 1.0 11.0± 1.2 66.7± 0.5 8.5± 1.0 65.4± 0.5 4.5± 0.6

Multisim. 68.2±0.3 8.6±0.8 70.7±0.2 8.2± 0.4 67.3±0.5 4.0±0.5

ProxyNCA 66.8± 0.4 9.8± 0.8 67.5± 0.7 9.0± 0.8 65.5± 0.3 4.2± 0.4

Arcface 67.5± 0.4 9.8± 0.8 66.9± 0.9 8.5± 0.4 64.8± 0.5 4.1± 0.4

https://github.com/robertahunt/Rove-Tree-11
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align score of 0, suggesting there is room for improvement. We find it surprising
that the align score of the best model on the CUB200 dataset shows a 60%
improvement to the random score, while on Rove-Tree-11 the improvement is
only 40% on the test set and 51% on the validation set. This suggests that
either CUB200 is an easier dataset to generate phylogenies from, or could be
an artifact of the align score on trees of different depths (CUB200 has a depth
of 4, while Rove-Tree-11 has a depth of 11). It is surprising that it could be an
easier dataset, given that the images are in-the-wild, but this could also be due
to phylogenetically close birds having similar backgrounds in the images (water-
faring birds might typically have ocean backgrounds, for example, and be more
closely phylogenetically related). The phylogenetic tree produced by the best
model is provided in the supplementary material along with the ground truth
tree for visual inspection.

5 Conclusions

In this paper we present Rove-Tree-11, a novel dataset of segmented images of
and research-grade classifications of rove beetles for researching methods for gen-
erating phylogenies from images. We provide an eleven-level fine-grained ground
truth phylogeny for the 44 (train, validation and test) genera included in this
dataset.

We start by demonstrating the importance of the provided segmentations
as the model can learn from the background. We show benchmark results on
this dataset for classification, deep metric learning methods and tree alignment.
We further demonstrate that this dataset shows similar clustering results to the
CUB200 dataset suggesting it may be appropriate as an alternative clustering
benchmark. Finally, we demonstrate how this dataset can be used to generate
and compare phylogenies based on the align score, and show that while it is
possible to generate such trees, there is plenty of room for improvement and we
hope this will be a growing field of research. Code and data are available (code:
https://github.com/robertahunt/Rove-Tree-11, data: http://doi.org/10.17894/
ucph.39619bba-4569-4415-9f25-d6a0ff64f0e3).
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Abstract. Deep learning methods have demonstrated encouraging per-
formance on open-air visual object tracking (VOT) benchmarks, how-
ever, their strength remains unexplored on underwater video sequences
due to the lack of challenging underwater VOT benchmarks. Apart from
the open-air tracking challenges, videos captured in underwater envi-
ronments pose additional challenges for tracking such as low visibility,
poor video quality, distortions in sharpness and contrast, reflections from
suspended particles, and non-uniform lighting. In the current work, we
propose a new Underwater Tracking Benchmark (UTB180) dataset con-
sisting of 180 sequences to facilitate the development of underwater deep
trackers. The sequences in UTB180 are selected from both underwater
natural and online sources with over 58,000 annotated frames. Video-
level attributes are also provided to facilitate the development of robust
trackers for specific challenges. We benchmark 15 existing pre-trained
State-Of-The-Art (SOTA) trackers on UTB180 and compare their perfor-
mance on another publicly available underwater benchmark. The trackers
consistently perform worse on UTB180 showing that it poses more chal-
lenging scenarios. Moreover, we show that fine-tuning five high-quality
SOTA trackers on UTB180 still does not sufficiently boost their tracking
performance. Our experiments show that the UTB180 sequences pose a
major burden on the SOTA trackers as compared to their open-air track-
ing performance. The performance gap reveals the need for a dedicated
end-to-end underwater deep tracker that takes into account the inher-
ent properties of underwater environments. We believe that our proposed
dataset will be of great value to the tracking community in advancing the
SOTA in underwater VOT. Our dataset is publicly available on Kaggle.

1 Introduction

Visual Object Tracking (VOT) is the task of estimating the trajectory and state
of an arbitrary target object in a video sequence [20]. Given the location of the
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Fig. 1. Sample images of our proposed UTB180 benchmark dataset. The tracking
results of some representative State-Of-The-Art (SOTA) trackers including ATOM [8],
TrTr [41], SiamRPN [25,26], TransT [5], and SiamFC [1] are shown in terms of bounding
boxes. The frame indexes and sequence names are also shown in each row.

target in the first frame, the main objective is to learn a robust appearance
model to be used when searching for the target object in subsequent frames
[1,18]. VOT has numerous open-air applications including autonomous driving,
video surveillance, robotics, medical imaging, and sports video analysis [10,16].
In recent years, dominant deep learning trackers such as Siamese [1,25,26], corre-
lation filters [2,8] and transformers [29] have advanced the SOTA performance in
tracking. Despite the recent progress, VOT is still an open problem in computer
vision because of its challenging nature [16].

Underwater video analysis is an emerging research area where VOT has sig-
nificant importance in robotics applications including ocean exploration, home-
land and maritime security, sea-life monitoring, search and rescue operations to
name a few [4,14,16]. Over the years, considerable progress has been made by the
tracking community in the development of SOTA end-to-end open-air trackers
[16,17,19,19,21,22]. One of the main reasons behind this success is the availabil-
ity of a variety of large-scale open-air tracking benchmarks such as LASOT [9],
GOT-10K [15], and TrackingNet [31] to train, objectively evaluate and compare
the different trackers. For instance, as shown in Fig. 2, these datasets exist in
small and large scale from a few hundreds of video sequences such as the VOT
dataset series [13,23,24], Object Tracking Benchmark (OTB100) [37], Unmanned
Aerial Vehicle (UAV) [30], Temple Color (TC) [27] to several thousands of video
sequences such as Large-Scale Single Object Tracking (LaSOT) [9], Generic
Object Tracking (GOT-10K) [15], and TrackingNet [31]. These datasets pro-
vide high quality dense annotations (i.e. per frame) to ensure more accurate
evaluations of open-air deep trackers [9,31]. As shown by the average sequence
duration (see Fig. 2 and Table 1), they are available for both short-term (aver-
age sequence length less than 600 frames) [13,23,24,37] and long-term [9,30]
tracking with video specific attributes to further enhance the tracking perfor-
mance. Furthermore, the large number of video sequences and span variability
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Fig. 2. Summary of open-air and underwater tracking benchmark datasets. Open-air
datasets includes OTB100 [37], TC128 [27], UAV123 [30], VOT2014 [13], VOT2018 [24],
and LaSOT [9]. Underwater datasets include UOT100 [32] and our proposed UTB180.
Span means the difference between the minimum and the maximum number of frames
per sequence.

have encouraged the direct training of deep open-air trackers for generic object
tracking in these datasets [9,15,31].

All these aforementioned characteristics have immensely contributed towards
open-air tracking. However, the same cannot be said for underwater VOT despite
its importance. All solutions in this context have simply deployed open-air track-
ers directly on underwater visual data [32]. One of the major reasons for such
stagnation is the unavailability of high-quality benchmarks for underwater track-
ing exhibiting the challenges of underwater scenes such as of poor visibility, non-
uniform lighting conditions, scattering, absorption, blurring of light, flickering of
caustic patterns, photometric artifacts, and color variations. To the best of our
knowledge, Underwater Object Tracking (UOT100) benchmark is the only avail-
able dataset containing 100 underwater sequences covering diverse categories of
objects [32]. Our frame-wise evaluation on UOT100 reveals that it belongs to
the category of sparsely annotated benchmark datasets using a semi-automatic
annotation approach i.e. manual annotations performed every 20 frames and the
rest are generated by a tracker. While such an approach speeds up the annota-
tion process, it often yields less accurate ground-truth bounding box predictions
due to the propagation and accumulation of the tracker’s prediction errors in
subsequent frames. All the above motivate us to propose a novel high-quality
benchmark dataset UTB180 for the tracking community.

1.1 Contributions

Following are the main contributions of this paper:
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Fig. 3. Zoomed-in samples from the (a) UOT100 underwater benchmark dataset and
(b) our proposed UTB180 dataset. The green rectangles show the ground-truth annota-
tions. The red ovals highlight annotation errors in the UOT100 dataset. Our proposed
dataset provides more accurate annotations of the target objects compared to UOT100.
(Color figure online)

1. Creation of aDense andDiversifiedHigh-QualityUnderwater Track-
ing Benchmark (UTB180) dataset. Our dataset consists of 180 sequences
with over 58,000 annotated frames. Each frame is carefully manually anno-
tated and then visually verified to ensure its correctness. The dataset includes
both natural and artificial videos under varying visibility levels sourced from
our local marine facilities and several online underwater videos. Additionally,
10 underwater-adapted video-level attributes are also provided to benchmark
the tracking performance under various challenges e.g. motion blur and occlu-
sions etc. Although UOT100 has a larger average sequence length and span than
UTB180 (Fig. 2), our proposed UTB180 provides more accurate, precise, and
reliable annotations (Fig. 3) and a higher number of video sequences.

2. Benchmarking. We conducted an extensive benchmarking of 15 high-quality
SOTA deep learning trackers on our UTB180 and the UOT100 datasets. Our
experiments demonstrate that the majority of the SOTA trackers consistently
show lower performance on several underwater challenging attributes reveal-
ing the more challenging nature of the proposed UTB180 dataset compared
to existing ones (details in Sect. 4). Visual results comparison of some of the
SOTA trackers is shown in Fig. 1 using six sequences captured from our pro-
posed UTB180 dataset.

3. Fine-Tuning Recent SOTATrackers on UTB180 Benchmark. We fine-
tune five recent SOTA trackers on our dataset and show that performance
improvements are small. This experiment demonstrates that there is still a sig-
nificant performance gap of the existing trackers on underwater data compared
to open-air data. This motivates the need to develop specialized end-to-end
underwater trackers capable of handling the inherent challenges of underwater
scenes.
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2 Related Work

In recent years, the tracking community has put significant efforts towards open-
air VOT, thanks to the availability of a variety of open-air tracking benchmarks.
Since the main objective of the current work relates to underwater benchmarks,
we discuss the available underwater datasets in this section. However, we also
briefly explain the open-air datasets for comparison and completeness. Table 1
presents the summary of the available open-air and underwater VOT bench-
marks. Surprisingly, 9 out of 11 presented datasets are utilized for open-air
tracking. This shows the lagging state of underwater VOT.

2.1 Open-Air Tracking Datasets

Several open-air VOT datasets have been proposed in the past decade as shown
in Table 1. For instance, Wu et al. proposed OTB100 that consists of 100 videos
with 11 tracking attributes with an average frame resolution of 356× 530 pixels
[37]. Liang et al. proposed TC128 to evaluate the significance of color infor-
mation for tracking [27]. This dataset consists of 128 video sequences with 11
distinct tracking challenges with an average resolution of 461×737 pixels. Muller
et al. proposed UAV123 dataset for short term tracking [30]. This dataset con-
tains 123 short sequences of nine diverse object categories. The average resolu-
tion of each sequences is 1231×699 with 12 tracking attributes. The VOT2014
[13], VOT2016 [23], and VOT2018 [24] are the datasets accompanying the
VOT challenge competition to benchmark short-term and long-term tracking
performance. As described in Table 1, the VOT2014-2018 series contain 25, 60,
and 60 sequences and 12 tracking attributes with an average frame resolution of
757× 480, 758× 465, and 758× 465 pixels, respectively. LaSOT [9], GOT-10k
[15], and TrackingNet [31] are relatively larger open-air tracking benchmarks.
LaSOT contains 1120 training sequences (2.8M frames) and 280 test sequences
(685K frames). GOT-10k contains 10, 000 sequences in which 9, 340 are used for
training and remaining 420 sequences used for testing purpose. Similarly, Track-
ingNet contains a total of 30, 643 sequences where 30, 130 sequences are used for
training and remaining 511 sequences used for testing. These large-scale datasets
also contain 14–16 distinct tracking attributes with average frame resolutions of
632 × 1089, 929 × 1638, and 591 × 1013 respectively. Due to the large diversity
in these benchmarks, many SOTA open-air trackers have been entirely trained
and tested on these datasets.

2.2 Underwater Tracking Datasets

Compared to open-air tracking benchmarks, underwater tracking datasets are
scarcely available. To the best of our knowledge, the UOT100 is the only available
underwater tracking benchmark [32]. This dataset comprises 104 underwater
sequences selected from YouTube. It contains a total of 74, 042 annotated frames
with 702 average number of frames per sequence. The dataset captures a wide
variety of underwater distortions and non-uniform lighting conditions. However,
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this dataset is not sufficiently diverse for generic object tracking in underwater
settings. Moreover, it is also sparsely annotated, containing annotation errors
that lead to inaccuracies in tracking. In contrast, our proposed UTB180 dataset
is more accurate and densely-annotated benchmark for underwater tracking.

Table 1. Summary of the existing open-air and underwater SOTA VOT benchmark
datasets and our proposed UTB180 dataset.

Dataset/Publication Video

Sequences

Attributes Min

Frames

Average

Frames

Max

Frames

Open-Air Under-

water

OTB100 100 11 71 598 3872 �
PAMI2015 [37]

TC128 128 11 71 431 3872 �
TIP2015 [27]

UAV123 123 12 109 1247 3085 �
ECCV2016 [30]

VOT2014 25 12 164 409 1210 �
ECCV-W2014 [13]

VOT2016 60 12 48 1507 �
ECCV-W2016 [23]

VOT2018 60 12 41 356 1500 �
ICCV-W2018 [24]

LaSOT 1.4 k 14 1000 2506 11397 �
CVPR2019 [9]

GOT-10k 10 k 6 51 920 �
PAMI2019 [15]

TrackingNet 30.643 k 15 96 471 2368 �
ECCV2018 [31]

UOT100 104 3 264 702 1764 �
IEEE JOE

2022 [32]

Proposed 180 10 40 338 1226 �
UTB180

3 Proposed High-Quality UTB180 Benchmark

In this section, we explain our proposed Underwater Tracking Benchmark
(UTB180) dataset in detail including data collection step, bounding box anno-
tation process, and several video-level attributes included with the dataset.

3.1 Dataset

UTB180 consists of 180 videos selected from underwater environments offer-
ing dense (i.e. frame by frame), carefully, and manually annotated frames (58K
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bounding boxes). It spans sequences for both short-term and long-term under-
water tracking. The minimum, average, and maximum number of frames per
sequence are 40, 338, and 1226, respectively (shown in Table 1). Our dataset
also contains a large variety of diverse underwater creature objects including
diverse species of fishes (e.g., dwarf lantern shark, jelly fish, juvenile frog fish,
cookie cutter shark, bristle mouths, angler fish, viper fish, grass carp, peruvian
anchoveta, and silver carp etc.), crab, sea horse, turtle, squid, octopus, and seal.
It aims to offer the tracking community a high-quality benchmark for underwater
VOT.

3.2 Data Collection

UTB180 has been sourced from several publicly available online sources such
as YouTube, pexel [33] and underwater change detection [34]. We also collected
sequences from our marine observatory pond, adding thus more diversity to the
dataset. The minimum, average, and maximum frame resolution of the sequences
are 1520 × 2704, 1080 × 1920, and 959 × 1277 at 30 frames per second.

3.3 Annotation

To annotate target ground-truth bounding boxes in a sequence, each frame
undergoes five sequential processes: 1) Rough estimate of the bounding box is
done using a Computer Vision Annotation Tool (CVAT) [7], 2) Each bounding
box is then manually and carefully examined, afterwards, to ensure accurate and
precise bounding box values around each target object, 3) Each bounding box
is then further inspected by a validator to ascertain the accurateness. If it fails
at this validation step, it is returned to step 2. 4) For each video sequence, its
attributes are labeled, and finally, 5) the sequence is validated with the attributes
to ascertain the accurateness. Using these steps, we are able to create a high-
quality error-free annotated sequences. It should be noted that each bounding
box is a rectangle of four values using the format [x, y, w, h], where x and y
denotes the top and left coordinates, w and h denotes the width and height of
the rectangle, respectively.

3.4 Underwater Tracking Attributes

Attributes, are video content’s aspects that are used to better assess the trackers
performance on specific challenges. In this work, we have carefully selected 10
underwater-adapted video-level attributes covering most of the essential varia-
tions expected in an underwater environment. These attributes are summarized
as follows:

– Unclear Water (UW): It presents the low visibility tracking challenge indi-
cating if the water is clear or not.

– Target Scale Variation (SV): It indicates whether or not the target varies
in scale above a certain degree across the frames.
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– Out-of-View (OV): It indicates that some portion of the target object
leaves the scene.

– Partial Occlusion (PO): Accounts for partial occlusion of the target by
other objects in the scene.

– Full Occlusion (FO): Indicates if the target is fully occluded by another
object.

– Deformation (DF): It tells if the object is deformed probably due to camera
angle or view.

– Low Resolution (LR): It indicates if a frame is of low resolution typically
less than 300 dots per inch (dpi).

– Fast Motion (FM): It indicates if the target moves fast across the frames
in the sequence.

– Motion Blur (MB): This indicates if the target is blurry.
– Similar Object (SO): This attribute indicates if there are object(s) similar

to the target in the frames.

Note that all attributes assume binary values, i.e. 1 (presence) or 0 (absence).
An attribute is considered present in a sequence if it is present in at least one
frame. The sequence-level and frame-level distributions of the attributes in our
proposed UTB180 dataset are shown in Fig. 4(a). Moreover, for each of the
attributes, a sample image with red colored ground truth bounding box is also
shown in Fig. 4(b) except for the UW attribute which shows three sample images
illustrating the diverse and challenging nature of underwater visual data. In the
next section, we benchmark and compare several SOTA trackers on the UTB180
dataset.

4 Experimental Evaluations

We evaluate and analyse the performance of existing trackers on our proposed
UTB180 dataset and further compare with the publicly available underwater
tracking benchmark UOT100 [32]. We also fine-tune 5 high-quality SOTA track-
ers on a training split of UTB180 dataset to improve their tracking performance.
In addition, we analyse the attributes-wise tracking performance to further test
the robustness of the trackers on specific challenges. All experiments are con-
ducted on a workstation with a 128 GB of memory, CPU Intel Xeon E5-2698 V4
2.2 Gz (20-cores), and two Tesla V100 GPUs. All the trackers are implemented
using the official source codes provided by the respective authors.

4.1 Evaluated Trackers

We evaluated the tracking performance of several popular SOTA deep tracking
algorithms. These include end-to-end Discriminative Correlation Filters (DCFs)-
based trackers such as ATOM [8], DiMP [2], and KYS [3], deep Siamese-based
trackers such as SiamFC [1,38], SiamMask [36], SiamRPN [25,26], SiamCAR
[12], DaSiamRPN [40], SiamBAN [6], and SiamGAT [11], and the recently pro-
posed transformer-driven DCFs and Siamese-based trackers such as TrSiam [35],
TrDimp [35], TrTr [41], TransT [5], and Stark [39].
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Fig. 4. Proposed UTB180 dataset statistics and sample images. (a) Statistics of
sequence-level and frame-level attributes. (b) Sample images of distinct tracking
attributes. From left to right, top row shows UW, UW, UW, and SV tracking chal-
lenges. Mid row represents OV, PO, FO, and DF attributes. Bottom row shows sample
images involving LR, FM, MB, and SO attributes. A red bounding box shows the
ground-truth target object. Three UW attribute samples are shown to illustrate the
diverse and challenging nature of underwater visual data. (Color figure online)

4.2 Performance Metrics

Following popular tracking protocols developed in open-air tracking datasets e.g.
OTB100 [37] and LaSOT [9], we performed the One-Pass Evaluation (OPE) on
the benchmarks and measured the precision, normalized precision, and success
of different tracking algorithms. The tracking performance metrics are defined
as follows:

1. Precision: This metric is computed by estimating the distance between a
predicted bounding box and a ground-truth bounding box in pixels. Similar
to the protocols defined by Wu et al. [37], we ranked different trackers using
this metric with a threshold of 20 pixels.

2. Success: Since the precision metric only measures the localization perfor-
mance, it does not measure the scale of the predicted bounding boxes in
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relation to the ground truth. The success metric takes this into account by
employing the intersection over union (IOU) to evaluate the tracker [37]. The
IOU is the ratio of the intersection and union of the predicted and the ground
truth bounding box. The success plot is then generate by varying the IOU
from 0 to 1. The trackers are ranked at a success rate of 0.5.

3. Normalized Precision: As the precision metric is sensitive to target size
and image resolution, we also used the normalized precision as defined in [31].
With the normalized precision measure, we ranked the SOTA trackers using
the area under the curve between 0 to 0.5. More details about this metric can
be found in [31].

4.3 Evaluation Protocols

Similar to [9], we used two different protocols and evaluated the SOTA trackers
on UTB180 dataset. In Protocol I, we used all 180 videos of UTB180 and
evaluated the open-air pre-trained models of the SOTA tracking algorithms.
This protocol aims to provide large-scale evaluations of the tracking algorithms.
In Protocol II, we firstly divided the UTB180 into training and testing subsets
and then fine-tuned recent SOTA trackers on the training split. Using a 70/30
split, we select 14 out of 20 videos in each category for training and the rest for
testing. More specifically, the training subset contains 130 sequences with 41K
frames, and the testing subset consists of 50 sequences with 17K frames. The
evaluation of SOTA trackers is performed on the testing subset. This protocol
aims to provide a large set of underwater videos for training and testing trackers.

4.4 Experiments on Protocol I: Pre-trained Trackers Evaluation

Overall Performance: In this experiment, we benchmark the pre-trained mod-
els of the SOTA trackers on the UTB180 and UOT100 [32] datasets. The overall
performance in terms of success, normalized precision, and precision is shown in
Table 2. Further, the success and precision plots are shown in Fig. 5(first row)
and 5(second row) for the UOT100 and UTB180 respectively.

From the results, it can be observed that the Siamese and transformer-driven
trackers achieved the best performance on UTB180. Among the compared SOTA
trackers, TransT achieved the best results of 58.4% and 51.2% in terms of success
and precision rates. In terms of normalized precision rate, SiamBAN achieved
the best results of 67.9%. All compared trackers achieved consistently lower
performance on all metrics on the UTB180 compared to the UOT100 despite
the fact that UTB180 has fewer annotated frames compared to UOT100. The
low performance obtained by the SOTA trackers evidenced the novel challenging
scenarios in the UTB180 benchmark, and therefore, the need for the development
of more powerful underwater trackers.

4.5 Experiments on Protocol II: Fine-Tuned Trackers Evaluation

Overall Performance: In this experiment, we investigated the ability of the
open-air pre-trained trackers to generalize to underwater dataset. For this pur-



452 B. Alawode et al.

Table 2. Comparative results of pre-trained trackers on UTB180 and UOT100 bench-
marks under protocol I. The best three trackers are shown in red, green, and blue
colors, respectively.

Tracker Sucess ↑ Norm Precision ↑ Precision ↑
UOT100 UTB180 UOT100 UTB180 UOT100 UTB180

SiamFC [1] 0.438 0.350 0.534 0.412 0.304 0.228

SiamRPN [25,26] 0.597 0.534 0.748 0.635 0.487 0.419

SiamBAN [6] 0.570 0.562 0.749 0.679 0.522 0.462

SiamMASK [36] 0.547 0.523 0.723 0.640 0.467 0.418

SiamCAR [12] 0.528 0.461 0.665 0.549 0.450 0.389

DaSiamRPN [40] 0.364 0.355 0.411 0.370 0.184 0.180

ATOM [8] 0.545 0.477 0.692 0.555 0.444 0.348

DiMP [2] 0.568 0.467 0.698 0.529 0.449 0.332

KYS [3] 0.585 0.529 0.729 0.613 0.480 0.401

KeepTrack [28] 0.609 0.543 0.779 0.637 0.515 0.421

Stark [39] 0.614 0.482 0.757 0.542 0.532 0.400

TrDiMP [35] 0.599 0.580 0.759 0.676 0.503 0.455

TrSiam [35] 0.598 0.566 0.752 0.656 0.492 0.438

TrTr [41] 0.535 0.500 0.713 0.601 0.486 0.406

TransT [5] 0.624 0.584 0.789 0.672 0.555 0.512

pose, we fine-tuned five SOTA trackers including SiamFC, SiamRPN, ATOM,
TrTr, and TransT using the training split (130 videos) of UTB180 dataset. We
froze the backbone of each pre-trained tracker for feature extraction and fine-
tuned their prediction heads. For the most part during fine-tuning, the default
training parameters were unchanged except for the learning rate which was
reduced. The pre-trained and fine-tuned trackers performance evaluated on the
testing split (50 videos) are presented in Table 3. The success and precision plots
are also presented in the Fig. 6(first row) and 6(second row) respectively.

Table 3. Comparative results of the pre-trained and fine-tuned trackers on UTB180
benchmark under protocol II. The best two trackers are shown in red and green colors,
respectively.

Tracker Pretrained ↑ Finetuned ↑
Success Norm Precision Success Norm Precision

SiamFC [1] 0.308 0.355 0.287 0.315 0.368 0.294

SiamRPN [25,26] 0.486 0.568 0.450 0.491 0.596 0.459

ATOM [8] 0.451 0.532 0.460 0.500 0.600 0.516

TrTr [41] 0.490 0.597 0.486 0.490 0.605 0.499

TransT [5] 0.492 0.562 0.508 0.494 0.570 0.510
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Fig. 5. Evaluation results on UOT100 and UTB180 benchmarks under protocol I using
success and precision measures. The legend of precision plot contains threshold scores
at 20 pixels, while the legend of success rate contains area-under-the-curve score for
each tracker. Overall, the TransT tracker performs better against the SOTA trackers.

The following conclusions are drawn from this experiment:

1. While fine-tuning the trackers on underwater data slightly improved the
tracking performance, it is still not comparable with the performance on open-
air data. This suggests that specialized trackers are needed to be developed
for underwater applications.

2. While the recent transformer-based trackers such as TrTr and TransT perform
better, other trackers benefited more from the fine-tuning. This suggests that
with the availability of enough data, trackers can be trained longer to achieve
better performance.

4.6 Attribute-Wise Evaluation

We also investigated the attribute-wise performance on the UTB180 dataset. We
selected a recently proposed TransT tracker since it achieved the best perfor-
mance shown in Tables 3- 2. We benchmark the TransT on sequences belonging
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Fig. 6. Evaluation results on UTB50 dataset under protocol I (a) and II (b) using
success and precision measure. The legend also contains area under the curve score for
each tracker.

to each of the attributes discussed in Sect. 3.4. Table 4 shows the tracking per-
formance in terms of success, normalized precision, and precision. The attribute-
wise performance plots can be found in our supplementary material. It can be
observed from the results that each of the attributes tend to degrade the per-
formance when compared to the whole dataset. Overall, TransT achieved the
best performance on UW attribute while it could hardly achieve 50% tracking
performance on other attributes.

Conclusively, their is still a significant performance gap that needs to be filled
for reliable and robust underwater tracking. The difficult target state estimation
and several other environmental variations such as low visibility condition make
the field of underwater VOT challenging.
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Table 4. Attribute-wise performance of pre-trained TransT tracker on UTB180
dataset. The best three trackers are shown in red, green, and blue colors, respectively.
More details can be found in the supplementary material.

Attribute Acronym Number
of
Videos

Success ↑ Norm Precision ↑ Precision ↑

UTB180 180 0.584 0.672 0.512

Unclear Water UW 64 0.636 0.743 0.586

Scale Variation SV 88 0.559 0.640 0.478

Out of View OV 7 0.566 0.660 0.475

Partial Occlusion PO 92 0.475 0.542 0.409

Full Occlusion FO 12 0.342 0.375 0.330

Deformation DF 24 0.564 0.657 0.402

Low Resolution LR 12 0.489 0.583 0.390

Fast Motion FM 33 0.515 0.593 0.486

Motion Blur MB 8 0.485 0.540 0.417

Similar Objects SO 116 0.513 0.583 0.472

5 Conclusion and Future Research Directions

5.1 Conclusion

In this work, we proposed a new VOT dataset dedicated to underwater scenes. It
is a dense and diversified high-quality underwater VOT dataset with 180 video
sequences and over 58, 000 carefully and manually annotated frames. We bench-
marked and fine-tuned existing SOTA Simaese and transformer trackers on the
proposed dataset. Our results demonstrate that there is still a significant per-
formance gap between open-air and underwater VOT. We showed that UTB180
presents more challenging sequences compared to the publicly available UOT100
dataset. It is expected that UTB180 will play an instrumental role in boosting
the underwater VOT research.

5.2 Future Research Directions

When compared to open-air, the available underwater datasets are still insignif-
icant. At the moment, the available underwater datasets can only be utilized for
benchmarking and fine-tuning of the designed trackers. They are insufficient for
the direct training of deep trackers. As such, we intend to extend this work to
enable not only fine-tuning but also the training and testing of deep underwater
trackers with underwater datasets.

From our experiments, we showed that recent transformer-based trackers
consistently performed better than their DCFs and Siamese-based counterparts.
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While this performance still lags compared to the open-air performance, it sug-
gests that variants of transformer-based trackers could pave the way for the
development of better underwater trackers. Improved backbone feature extrac-
tion, sophisticated target state estimation, and the role of implicit or explicit
underwater video denoising approaches are required for robust end-to-end under-
water VOT. Such extensions could lead to more generic algorithms suited for
both open-air and underwater VOT.
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Abstract. We present Eyecandies, a novel synthetic dataset for unsu-
pervised anomaly detection and localization. Photo-realistic images of
procedurally generated candies are rendered in a controlled environment
under multiple lightning conditions, also providing depth and normal
maps in an industrial conveyor scenario. We make available anomaly-
free samples for model training and validation, while anomalous instances
with precise ground-truth annotations are provided only in the test set.
The dataset comprises ten classes of candies, each showing different chal-
lenges, such as complex textures, self-occlusions and specularities. Fur-
thermore, we achieve large intra-class variation by randomly drawing
key parameters of a procedural rendering pipeline, which enables the
creation of an arbitrary number of instances with photo-realistic appear-
ance. Likewise, anomalies are injected into the rendering graph and pixel-
wise annotations are automatically generated, overcoming human-biases
and possible inconsistencies.

We believe this dataset may encourage the exploration of original
approaches to solve the anomaly detection task, e.g. by combining color,
depth and normal maps, as they are not provided by most of the exist-
ing datasets. Indeed, in order to demonstrate how exploiting additional
information may actually lead to higher detection performance, we show
the results obtained by training a deep convolutional autoencoder to
reconstruct different combinations of inputs.

Keywords: Synthetic dataset · Anomaly detection · Deep learning

1 Introduction

Recent years have seen an increasing interest in visual unsupervised anomaly
detection [34], the task of determining whether an example never seen before
presents any aspects that deviate from a defect-free domain, which was learned
during training. Similar to one-class classification [18,23,27], in unsupervised
anomaly detection the model has absolutely no knowledge of the appearance of
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anomalous structures and must learn to detect them solely by looking at good
examples. There is a practical reason behind this apparent limitation: being
anomalies rare by definition, collecting real-world data with enough examples
of each possible deviation from a target domain may prove to be unreason-
ably expensive. Furthermore, the nature of all possible anomalies might even be
unknown, so treating anomaly detection as a supervised classification task may
hinder the ability of the model to generalize to new unseen types of defects.

Historically, a common evaluation practice for proposed AD methods was
to exploit existing multi-class classification datasets, such as MNIST [21] and
CIFAR [20], re-labeling a subset of related classes as inliers and the remaining
as outliers [25]. The major drawback of this practice is that clean and anomalous
domains are often completely unrelated, whereas in real-world scenarios, such
as industrial quality assurance or autonomous driving, anomalies usually appear
as subtle changes within a common scene, as for the anomalies presented in [6].
In the recent years this adaptation of classification datasets was discouraged in
favor of using new datasets specifically designed for visual anomaly detection and
localization, such as [9], which focuses on industrial inspection. However, most
of the available datasets provide only color images with ground-truth annota-
tions and very few add 3D information [8]. Moreover, all of them have to face
the problem of manual labelling, which can be human-biased and error-prone,
especially in the 3D domain.

The Eyecandies dataset is our main contribution to tackle these issues and
provide a new and challenging benchmark for unsupervised anomaly detec-
tion, including a total of 90000 photo-realistic shots of procedurally generated
synthetic objects, spanning across 10 classes of candies, cookies and sweets
(cfr. Figure 1). Different classes present entirely different shapes, color patterns
and materials, while intra-class variance is given by randomly altering param-
eters of the same model. The Eyecandies dataset comprises defect-free samples
for training, as well as anomalous ones used for testing, each of them with auto-
matically generated per-pixel ground-truth labels, thus removing the need for
expensive (and often biased) manual annotation procedures. Of each sample, we
also provide six renderings with different controlled lighting conditions, together
with ground-truth depth and normal maps, encouraging the exploration and
comparison of many alternative approaches.

We found that performance of existing methods on synthetic data are in line
with the results obtained on real data, such as [9], though our dataset appears
to be more challenging. Moreover, being the use of 3D data not common in the
AD field, we deployed a deep convolutional autoencoder trained to reconstruct
different combination of inputs, showing that the inclusion of 3D data results in
better anomaly detection and localization performance.

To explore the data and evaluate a method, please go to https://eyecan-
ai.github.io/eyecandies. Please refer to https://github.com/eyecan-ai/eyecandies
for examples and tutorials on how to use the Eyecandies dataset.

https://eyecan-ai.github.io/eyecandies
https://eyecan-ai.github.io/eyecandies
https://github.com/eyecan-ai/eyecandies
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Fig. 1. Examples from the Eyecandies dataset. Each row shows good and bad samples
from the same object category (best viewed in color). (Color figure online)

2 Related Work

Anomaly detection and localization on images (hereinafter AD) is an ubiqui-
tous theme in many fields, from autonomous driving [12] to visual industrial
inspection [9,30,33]. Likewise, the use of synthetic datasets to evaluate the
performance of proposed methods has been already explored in many contexts
[13,17,29,32]. However, very few works investigate how synthetic data can be
effectively exploited to advance the AD field, which is indeed the focus of the
dataset we are presenting. In the next sections we will first review the publicly
available datasets for AD, then we will briefly analyze the most successful meth-
ods proposed to solve the AD task, showing how our work may help the research
community.

2.1 Anomaly Detection Datasets

Different public AD datasets exists, some designed for industrial inspection of
a very specialized type of objects, while other trying to be more generic. An
example of the former group is the Magnetic Tile Dataset [33], composed by
952 anomaly-free images and 5 types of anomalies, for a total of 1501 manually
annotated images of various resolutions. Despite being a reference in the field,
this dataset comprises only a single texture category and it is limited to grayscale
images. Though much larger, [30] is another similar dataset presented on Kaggle,
focused on a single object class.
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The NanoTWICE dataset [14] provides high resolution images (1024× 696),
although of little interest for deep learning approaches, since it is composed by
only 5 anomaly-free images and 40 images with anomalies of different sizes.

In [22] the authors generate a synthetic dataset of 1000 good images and 150
anomalous images, with ground-truth labels approximated by ellipses. The test
set comprises 2000 non defective images and 300 defective ones as 8-bit grayscale
with a resolution of 512× 512. Though larger than usual, it shows low texture
variation and the ground-truth is very coarse. Instead, our synthetic pipeline
aims at photo-realistic images with large intra-class variation and pixel-precise
ground-truth masks.

MVTec AD [9], which is focused on the industrial inspection scenario, fea-
tures a total of 5354 real-world images, spanning across 5 texture and 10 object
categories. The test set includes 73 distinct types of anomalies (on average 5 per
category) with a total of 1725 images. Anomalous regions have been manually
annotated, though introducing small inconsistencies and unclear resolution of
missing object parts. In our work we purposely avoid these undefined situations,
while providing pixel-precise annotations in an automated way.

MVTec LOCO AD [6] introduces the concept of “structural” and “logical”
anomalies: the former being local irregularities like scratches or dents, and the
latter being violations of underlying logical constraints that require a deeper
understanding of the scene. The dataset consists of 3644 images, distributed
across 6 categories. Though interesting and challenging, the detection of logical
anomalies is out of the scope of this work, where we focus on localized defects
only. Moreover, such defects are usually specific for a particular object class,
while we aim at automated and consistent defect generation. Finally, being the
subject fairly new, there is no clear consensus on how to annotate the images
and evaluate the performance of a method.

MVTec 3D-AD [8] has been the first 3D dataset for AD. Authors believe
that the use of 3D data is not common in the AD field due to the lack of
suitable datasets. They provide 4147 point clouds, acquired by an industrial 3D
sensor, and a complementary RGB image for 10 object categories. The test set
comprises 948 anomalous objects and 41 types of defects, all manually annotated.
The objects are captured on a black background, useful for data augmentation,
but not very common in real-world scenarios. Moreover, the use of a 3D device
caused the presence of occlusions, reflections and inaccuracies, introducing a
source of noise that may hinder a fair comparison of different AD proposals. Of
course, our synthetic generation does not suffer from such nuisances.

Synthetic generation of defective samples is introduced in [13] to enhance the
performance of an AD classifier. As in our work, they use Blender [11] to create
the new data, though they focus on combining real and synthetic images, while
we aim at providing a comprehensive dataset for evaluation and comparison.
Also, the authors of [13] did not release their dataset.

In [29] another non-publicly available dataset is presented. They render 2D
images from 3D models in a procedural way, where randomized parameters con-
trol defects, illumination, camera poses and texture. Their rendering pipeline is
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similar to ours, though, as in [13], their focus is on generating huge amounts
of synthetic anomalous examples to train a model in a supervised fashion that
could generalize to real data.

Finally, in [17] the authors propose to apply synthetic defects on the 3D
reconstruction of a target object. The rendering pipeline shares some of our
intuitions, such as parametric modeling of defects and rendering. However, the
use of expensive hardware and the need of a physical object hinder general appli-
cability to build up a comprehensive dataset. Moreover the approach followed in
this and in the previously cited papers [13,17] about synthetic augmentation is
different from ours since the model is trained on anomalous data.

2.2 Methods

In the last few years, many novel proposals emerged to tackle the AD task.
Generally, methods can be categorized as discriminative or generative, where the
former often model the distribution of features extracted, e.g., from a pre-trained
neural network [7,15,26,35], while the latter prefer an end-to-end training [2,10,
28,33]. Due to the lack of diverse 3D dataset for AD, very few proposals are
explicitly designed to exploit more than just a single 2D color image [5,31].
Therefore, we give the community a novel dataset to further investigate the use
of 3D geometry, normal directions and lighting patterns in the context of AD.

3 The Eyecandies Dataset

The Eyecandies dataset comprises ten different categories of candies, chosen to
provide a variety of shapes, textures and materials:

– Candy Cane
– Chocolate Cookie
– Chocolate Praline
– Confetto
– Gummy Bear
– Hazelnut Truffle
– Licorice Sandwich
– Lollipop
– Marshmallow
– Peppermint Candy.

Our pipeline generates a large number of unique instances of each object cate-
gory, all of them differing in some controlled aspects. A subset of samples, labeled
as defective, present one or more anomalies on their surface. An automatically
annotated ground-truth segmentation mask provides pixel-precise classification
labels.

In the next subsection we will generally describe the setup and the data
produced by our pipeline, then in Sec. 3.2 we will present the available types of
defects. More details on the data generation process are found in Sect. 4.
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3.1 General Setup
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Fig. 2. An axonometric view of the camera and the surrounding lights. The object,
represented as a cube, is placed at the center of the world (O). The camera (C) faces
the object at a distance r making an angle α with the X axis. Four square-shaped
lights (Lt, Lr, Lb and Ll) are placed on a circle of radius l, centered at C, at intervals
of 90◦. Every light is tilted of an angle β in order to face the center of the world. The
value of β depends on the distances r and l.

We designed the Eyecandies dataset to be a full-fledged, multi-purpose source of
data, fully exploiting the inherently controlled nature of a synthetic environment.
First, we created a virtual scene resembling an industrial conveyor belt passing
through a light box. Four light sources are placed on the four corners of the box,
illuminating the whole scene. The camera is placed inside the light box, facing
the conveyor at an angle, surrounded by other four square-shaped light sources,
as depicted in Fig. 2). We will hereinafter use the terms “box lights” and “camera
lights” meaning, respectively, the spotlights at the light box corners, and the light
sources surrounding the camera. Among the many different conceivable lighting
patterns, we chose to provide six shots for each sample object:

1. one with box lights only.
2. four with only one camera light (one per light).
3. one with all camera lights at the same time.

To the best of our knowledge, no other existing dataset for anomaly detection
include multiple light patterns for each object, hence paving the way for novel
and exciting approaches to solve the anomaly detection task. Indeed, as shown
in Fig. 3, strong directional shadows enable the detection of surface irregularities
otherwise hard to see: while the presence of a defect can appear unclear under
some specific lighting conditions, when comparing multiple shots of the same
object with different lighting, the detection becomes much easier.
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Fig. 3. An anomalous sample from Peppermint Candy category with a bump on its
surface. The first figure shows the full picture with the anomalous area highlighted in
red. The following figures all show the same crop around the bump, but each one with
a different lighting condition.

Alongside RGB color images, depth and normal maps are rendered for each
scene. Both are computed by ray-casting the mesh from the same camera point-
of-view, i.e., the depth is the Z coordinate in camera reference frame, likewise
normal directions are expressed as unit vectors in the camera reference frame as
well (see an example in Fig. 4). The benefit of considering these additional data
sources will be discussed in Sect. 5, where we will show that simply concate-
nating color, depth and surface normals can boost the performance of a naive
autoencoder. Interestingly, combining depth, normal and RGB images rendered
in multiple lighting scenarios allows for addressing many more tasks than just
anomaly detection and localization, such as photometric normal estimation and
stereo reconstruction, depth from mono and scene relighting.

Since we do not aim at simulating the acquisition from any real devices, no
noise is intentionally added to the data. Also, we do not claim that training mod-
els on our synthetic dataset may somehow help solving real-world applications.
Instead, we provide a clean, though challenging, benchmark to fairly compare
existing and future proposals.

3.2 Synthetic Defects

Real-world defects come in various shapes and appearances, often tied to par-
ticular object features and to the production process. However, we identified
common properties and decided to focus on three general groups of anomalies
that can occur on many different types of objects:

1. color alterations, such as stains and burns;
2. shape deformations, i.e., bumps or dents;
3. scratches and other small surface imperfections.

All these groups can be viewed as local anomalies applied on different input
data, i.e., color alterations change the RGB image, shape deformations modify
the 3D geometry and surface imperfections only alter the normal directions. We
chose to include defects that modify the surface normals without affecting the
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3D geometry to represent small imperfections hardly captured on a depth map,
like, for example, a scratch on a metallic surface. Therefore, we actively change
the mesh only in case of surface bumps or dents, while modifications to the
normal map have a clear effect only on how the light is reflected or refracted.
Finally, for each local defect we provide a corresponding pixel-wise binary mask,
rendered directly from the 3D object model, to highlight the area a detector
should identify as anomalous.

We purposely left for future investigations the inclusion of two class of anoma-
lies. Firstly, we avoided class-specific defects, which would have been relevant for
only one object class. An example might be altering the number of stripes of the
Marshmallow or changing the text printed on the Confetto. However, this would
introduce much more effort in designing how such anomalies should interact with
the rendering pipeline, while current defects can be applied in an automated way
with no prior information, as described in Sect. 4. Secondly, we did not include
logical anomalies, as described in [6], because we believe there is no clear con-
sensus on how to evaluate the localization performance of a detector on, e.g.,
finding missing object regions, and neither on how to annotate such regions in
ground-truth anomaly masks.

Unlike many existing dataset, we do not require any human intervention,
thus removing a possible source of biases and inconsistencies.

Fig. 4. Image data of a Gummy Bear sample from the test set. Renderings with a
single light source are shown in Fig. a–d. In Fig. e all the camera lights are active. In
Fig. f, the light comes instead from four spotlights at the corners of the surrounding
lightbox, and the camera lights are switched off. Figure g and h show the rendered
depth and normal maps.
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4 Data Generation

We generated the Eyecandies dataset within the Blender framework [11], a pop-
ular 3D modeling software that provides a good level of interoperability with
the Python programming language via the BlenderProc package [16], a useful
tool for procedural synthetic data generation. Every candy class is modelled as
a parametric prototype, i.e., a rendering pipeline where geometry, textures and
materials are defined through a programming language. In this way, object fea-
tures can be controlled by a set of scalar values, so that each combination of
parameters leads to a unique output.

To generate different object instances, we treat all parameters as uniformly
distributed random variables, where bounds are chosen to produce a reason-
able variance among them, though preserving a realistic aspect for each candy.
Furthermore, to achieve a high degree of photo-realism as well as intra-class
variance, key to any procedural object generation pipeline is the use of noise
textures, useful to produce slight random deformations (as in Licorice Sand-
wich) or fine-grained irregularities in a rough surface. Unlike the parameters
described above, these textures are controlled by setting a generic random seed,
hence letting blender generate them within a geometry modifier or shader. No
other noise source is intentionally added, e.g., we do not model any real acqui-
sition device. However, since Cycles, the chosen rendering engine, inevitably
introduces random imperfections when computing surface colors, we counteract
them by applying NVIDIA OptixTM de-noising [24].

Anomalous samples differ in that they are given four more textures as param-
eters, one for each possible defect, i.e., following Sect. 3.2, colors, bumps, dents
and normals. In order to get a realistic appearance, these textures are mapped
onto the object mesh through a UV mapping and rendered as part of the object.
However, non-trivial constraints must be applied, since simply generating a ran-
dom blob on a black background would not suffice: it could end up outside of
UV map islands, having no effect on the object, or worse, on the edge between
two islands, resulting in multiple anomalies with spurious shape. Instead, we
export the original UV map of the object from blender, compute a binary mask
of the valid areas, then separate all connected components and for each of them
compute the maximum inbound rectangle. A random blob is then generated and
stitched into one of the inbound rectangles, chosen randomly. This ensures that
the anomalies are always entirely visible and never lying on the border of a UV
map island. The quality achieved can be appreciated in Fig. 1: modifying the 3D
model produces more realistic images than artificially applying the defects on
the 2D renderings, while still being able to auto-generate pixel-wise ground-truth
masks with no human intervention.

Every object category contains a total of 1500 samples, split between training,
validation and test sets consisting of, respectively, 1000, 100 and 400 samples.
Training and validation sets provide good examples only, whereas half of the
test samples are defective candies. Also, these 200 anomalous samples contain a
balanced mixture of the four anomaly types: 40 examples for each one totalling
to 160 examples, the remaining 40 containing all possible anomalies together.
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5 Experiments

First, we evaluated existing methods for AD on Eyecandies and compared
with the results obtained on MVTec AD [9]. In Table 1 the area under ROC
curve (AUROC) is reported for Ganomaly (G) [2], Deep Feature Kernel Den-
sity Estimation (DFKDE) [4], Probabilistic Modeling of Deep Features (DFM)
[1], Student-Teacher Feature Pyramid Matching (STFPM) [7] and PaDiM [15],
all run within the Anomalib framework [3]. We notice a significant correlation
between the performance on the real dataset MVTec AD and Eyecandies, thus
suggesting that our proposal, though synthetic, is a valid approach to evaluate
AD methods. Furthermore, all methods, with the exception of Ganomaly [2],
show a large performance drop when trained and tested on Eyecandies, proving
the increased complexity of the task w.r.t. popular AD datasets, such as MVTec
AD.

Table 1. Image AUROC of existing AD methods on eyecandies dataset, considering
only RGB images. We compared feature-based methods with both Resnet18 (r18) and
Wide-Resnet50 (wr50) pre-trained backbones.

Category G [2] DFKDE [4] DFM [1] STFPM [7] PaDiM [15] Ours

R18 Wr50 R18 Wr50 R18 Wr50 R18 Wr50 RGB

Candy Cane 0.485 0.537 0.539 0.529 0.532 0.527 0.551 0.537 0.531 0.527

Chocolate C. 0.512 0.589 0.577 0.759 0.776 0.628 0.654 0.765 0.816 0.848

Chocolate P. 0.532 0.517 0.482 0.587 0.624 0.766 0.576 0.754 0.821 0.772

Confetto 0.504 0.490 0.548 0.649 0.675 0.666 0.784 0.794 0.856 0.734

Gummy Bear 0.558 0.591 0.541 0.655 0.681 0.728 0.737 0.798 0.826 0.590

Hazelnut T. 0.486 0.490 0.492 0.611 0.596 0.727 0.790 0.645 0.727 0.508

Licorice S. 0.467 0.532 0.524 0.692 0.685 0.738 0.778 0.752 0.784 0.693

Lollipop 0.511 0.536 0.602 0.599 0.618 0.572 0.620 0.621 0.665 0.760

Marshmallow 0.481 0.646 0.658 0.942 0.964 0.893 0.840 0.978 0.987 0.851

Peppermint C. 0.528 0.518 0.591 0.736 0.770 0.631 0.749 0.894 0.924 0.730

Avg. Eyecandies 0.507 0.545 0.555 0.676 0.692 0.688 0.708 0.754 0.794 0.701

Avg. MVTecAD 0.421 0.762 0.774 0.894 0.891 0.893 0.876 0.891 0.950

As for understanding the contribution of the 3D data to the AD task, we
trained a different deep convolutional autoencoder on each of the 10 categories
of the Eyecandies dataset. The model has been trained to reconstruct defect-
free examples and evaluated on the test set containing a mixture of good and
bad examples. Since the network sees only defect-free data during training, we
expect anomalous areas to give large reconstruction errors. Thus, beside image-
wise metrics, a per-pixel anomaly score can be computed as the L1 distance
between the input image and its reconstruction, averaging over the image chan-
nels. Similarly, the image-wise anomaly score is computed as the maximum of
the per-pixel score.
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The model consists of two symmetrical parts, i.e., the encoder and the
decoder, connected by a linear fully-connected bottleneck layer. Every encoder
block increases the number of filters by a factor of 2 with respect to the previous
one and halves the spatial resolution by means of strided convolutions. Each
decoder block, on the other hand, halves the number of filters while doubling
the spatial resolution. Both the encoder and the decoder comprise 4 blocks and
the initial number of filters is set to 32, hence, starting from an input of size
3 × 256 × 256, the bottleneck layer is fed with a 256 × 16 × 16 tensor which is
projected onto a latent space with 256 dimensions. Then, the decoder expands
this feature vector back to 256× 16× 16 and up to the same initial dimensions.
The inner block layers are detailed in Fig. 5.

Fig. 5. The encoder (left) and decoder (right) blocks inner structure.

For every object category, we trained the autoencoder with different input
combinations: RGB, RGB + Depth (RGBD), RGB + Depth + Normals
(RGBDN), all downscaled to a fixed resolution of 256× 256 pixels. To this end,
being the color image as well as the depth and the normal maps of equivalent
resolution, we simply concatenated them along the channel dimension, chang-
ing the number of input and output channels of the autoencoder accordingly.
Therefore, the total number of channels is 3 for the RGB case, 4 when adding
the depth and 7 when using all the available inputs, i.e., color, depth and nor-
mals. When using the depth maps, the values are re-scaled between 0 and 1
with a per-image min-max normalization. As for data augmentation, we used
the following random transforms:

– random shift between -5% and 5% with probability 0.9;
– random scale between 0% and 5% with probability 0.9;
– random rotation between -2◦ and 2◦ with probability 0.9;
– HSV color jittering of 5◦ with probability 0.9 (RGB only).

Following [10], we defined the loss function as follows:

L
(
I, Î

)
= LL1

(
I, Î

)
+ LSSIM

(
I, Î

)
(1)

where I is the autoencoder input, Î its reconstruction, LL1

(
I, Î

)
=

∥∥∥I − Î
∥∥∥
1

is the reconstruction error and LSSIM the Multi-Scale Structural Similarity as
defined in [10]. The SSIM window size is set to 7 pixels. When RGB, depth
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and normals maps are concatenated, the loss is computed as the sum of all the
individual loss components:

LRGBDN

(
I, Î

)
= L

(
RGB, ˆRGB

)
+ L

(
D, D̂

)
+ L

(
N, N̂

)
(2)

where RGB, D and N are, respectively, the color image, the depth map and the
normals map, each reconstructed as ˆRGB, D̂ and N̂ . All models are trained for
5000 epochs with Adam [19] optimizer with learning rate 0.001, β1 set to 0.9
and β2 to 0.999. The mini-batch size is set to 32, enforced by dropping the last
batch of every epoch if the required batch size is not met.

Fig. 6. On the left, the height map of a row from the depth image of an anomalous
sample, containing a bump and a dent on its surface. On the center, its reconstruction
with no surface anomalies, but with a slightly misaligned contour (the dashed line
represents the original depth). On the right, the absolute difference of the two. The
reconstruction error in the anomalous areas is negligible with respect to the error on
the object contour.

The results, summarized in Table 2 and Table 3 as, respectively, image and
pixel AUROC scores, suggest that a naive autoencoder trained on RGB data
alone fails to effectively separate good and bad samples on most object cate-
gories. The worst performance is reached on Candy Cane and Hazelnut Truffle,
where the results are comparable to a random classifier. In the former case,
though the reconstruction quality is good, the anomalies may be too small to be
effectively detected. In the latter, the detection possibly fails because of the low
reconstruction quality, due to the roughness of the surface and known issues of
convolutional autoencoders with high frequency spatial features [10]. Conversely,
Gummy Bear exhibits a smooth and glossy surface, where edges are surrounded
by bright glares, making the reconstruction from color images hardly conceivable.
In fact, we achieve acceptable results only on objects with regular and opaque
surfaces, thus easier to reconstruct, such as Chocolate Cookie and Marshmallow,
where, moreover, anomalies appear on a fairly large scale.

Adding the depth map to the reconstruction task has little impact on the
network performance. To understand the diverse reasons behind this, first con-
sider that only two types of anomalies, namely bumps and dents, have an effect
on the object depth, since color and normal alterations do not affect the geom-
etry of the object. Furthermore, as depicted in Fig. 6, the average height of a
bump or a dent is very small if compared to the size of the object, so that the
reconstruction error of the anomalous regions is often negligible with respect to



The Eyecandies Dataset 471

the error found on the silhouette of the object, where a naive autoencoder often
produces slightly misaligned shapes. Also, extending the input and the output
with depth information, the task becomes more complex and the reconstruction
quality of the color image worsens when compared to the RGB-only scenario.
This, eventually, leads to no improvement or even a drop in performance for
most of the objects, being the color texture usually more informative.

Introducing the normals into the reconstruction task drastically improves the
performance in almost every object category. Although normal maps do not pro-
vide any meaningful information to detect color alteration anomalies, they prove
to be crucial to detect bumps, dents and surface normal alterations. Moreover,
unlike the RGB image, normal maps do not suffer from glossy materials, reflec-
tions and sharp edged in the object texture, hence easing the reconstruction
task.

We made an attempt to mitigate the problem with the low visibility of anoma-
lies on the error maps obtained from depth reconstruction (the one described
in Fig. 6), by clamping the depth maps between fixed lower and upper bounds.
This helps reducing the contrast - and thus the reconstruction error - between
pixels on the object silhouette and the background. Bounds were chosen so that
the final depth range would be as small as possible, with the constraint to never
affect pixels belonging to the object: the lower bound is always smaller than the
closest point, the upper bound is always greater than the farthest visible point.

We repeated the RGB-D and RGB-D-N experiments described before, under
the exact same settings, but clamping the depth maps. Results are summarized
in the columns “RGB-cD” and “RGB-cD-N” of Table 2 and Table 3. As for RGB-
D and RGB-cD, we can observe that the depth clamping results in slightly better
performances across most object categories, both for image and pixel AUROC.
When using also normal maps, the benefits of having a clamped depth range
seem to have less relevance: only 6 categories out of 10 see an improvement in
image AUROC, but pixel metrics improve only in 2 cases.

Table 2. Autoencoder image AUROC on the eyecandies dataset.

Category RGB RGB-D RGB-D-N RGB-cD RGB-cD-N

Candy Cane 0.527 0.529 0.587 0.537 0.596

Chocolate Cookie 0.848 0.861 0.846 0.847 0.843

Chocolate Praline 0.772 0.739 0.807 0.748 0.819

Confetto 0.734 0.752 0.833 0.779 0.846

Gummy Bear 0.590 0.594 0.833 0.635 0.833

Hazelnut Truffle 0.508 0.498 0.543 0.511 0.550

Licorice Sandwich 0.693 0.679 0.744 0.691 0.750

Lollipop 0.760 0.651 0.870 0.699 0.846

Marshmallow 0.851 0.838 0.946 0.871 0.940

Peppermint Candy 0.730 0.750 0.835 0.740 0.848
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Table 3. Autoencoder pixel AUROC on the eyecandies dataset.

Category RGB RGB-D RGB-D-N RGB-cD RGB-cD-N

Candy Cane 0.972 0.973 0.982 0.975 0.980

Chocolate Cookie 0.933 0.927 0.979 0.939 0.979

Chocolate Praline 0.960 0.958 0.981 0.954 0.982

Confetto 0.945 0.945 0.979 0.957 0.978

Gummy Bear 0.929 0.929 0.951 0.933 0.951

Hazelnut Truffle 0.815 0.806 0.850 0.822 0.853

Licorice Sandwich 0.855 0.827 0.972 0.897 0.971

Lollipop 0.977 0.977 0.981 0.978 0.978

Marshmallow 0.931 0.931 0.986 0.940 0.985

Peppermint Candy 0.928 0.928 0.967 0.940 0.967

6 Conclusions and Future Works

We presented Eycandies, a novel synthetic dataset for anomaly detection and
localization. Unlike existing datasets, for each unique object instance we provide
RGB color images as well as depth and normals maps, captured under multi-
ple light conditions. We have shown how unique candies are generated from a
parametric reference model, with photo-realistic appearance and large intra-class
variance. Likewise, random anomalies are carefully applied on color, depth and
normals, then reprojected to 2D to get pixel-precise ground-truth data, avoiding
any human intervention. Our experiments suggest that combining color and 3D
data may open new possibilities to tackle the anomaly detection task and our
dataset might be crucial to validate such new results.

As for future works, we see four main subjects to investigate. Firstly, we
should expand the dataset by moving the camera around the target object,
hence generating a full view. Secondly, we might add logical anomalies, such as
missing parts, together with a sensible ground truth and a clear evaluation pro-
cedure. Thirdly, we could generate object-specific defects, such as wrong stripes
on the Candy Cane, though the challenging part would be to leave the whole
pipeline completely automated. Finally, we might model the noise, artifacts and
deformations introduced by acquisition devices.
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10. Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C.: Improving unsu-
pervised defect segmentation by applying structural similarity to autoencoders.
In: Proceedings of the 14th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications, vol. 130(1), pp. 372–
380 (2019). https://doi.org/10.5220/0007364503720380

11. Blender Online Community: Blender - a 3D modelling and rendering package.
Blender Foundation, Blender Institute, Amsterdam (2022). http://www.blender.
org

12. Blum, H., Sarlin, P.E., Nieto, J.I., Siegwart, R.Y., Cadena, C.: Fishyscapes:
A benchmark for safe semantic segmentation in autonomous driving. In: 2019
IEEE/CVF International Conference on Computer Vision Workshop (ICCVW),
pp. 2403–2412 (2019)

13. Boikov, A., Payor, V., Savelev, R., Kolesnikov, A.: Synthetic data genera-
tion for steel defect detection and classification using deep learning. Symme-
try 13(7) (2021). https://doi.org/10.3390/sym13071176, https://www.mdpi.com/
2073-8994/13/7/1176

14. Carrera, D., Manganini, F., Boracchi, G., Lanzarone, E.: Defect detection in sem
images of nanofibrous materials. IEEE Trans. Industr. Inf. 13(2), 551–561 (2017).
https://doi.org/10.1109/TII.2016.2641472

15. Defard, T., Setkov, A., Loesch, A., Audigier, R.: PaDiM: a patch distribution
modeling framework for anomaly detection and localization. In: Del Bimbo, A.,
Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J.,
Vezzani, R. (eds.) ICPR 2021. LNCS, vol. 12664, pp. 475–489. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-68799-1 35

16. Denninger, M., et al.: Blenderproc. Arxiv (2019)
17. Gutierrez, P., Luschkova, M., Cordier, A., Shukor, M., Schappert, M., Dahmen,

T.: Synthetic training data generation for deep learning based quality inspection
(2021)

https://arxiv.org/abs/2202.08341
https://arxiv.org/abs/2202.08341
http://github.com/openvinotoolkit/anomalib
http://github.com/openvinotoolkit/anomalib
https://doi.org/10.1109/CVPR42600.2020.00424
https://doi.org/10.5220/0007364503720380
http://www.blender.org
http://www.blender.org
https://doi.org/10.3390/sym13071176
https://www.mdpi.com/2073-8994/13/7/1176
https://www.mdpi.com/2073-8994/13/7/1176
https://doi.org/10.1109/TII.2016.2641472
https://doi.org/10.1007/978-3-030-68799-1_35


474 L. Bonfiglioli et al.

18. Kemmler, M., Rodner, E., Wacker, E.S., Denzler, J.: One-class classification with
gaussian processes. Pattern Recogn. 46(12), 3507–3518 (2013). https://doi.org/
10.1016/j.patcog.2013.06.005, https://www.sciencedirect.com/science/article/pii/
S0031320313002574

19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

20. Krizhevsky, A., Nair, V., Hinton, G.: Learning Multiple Layers of Features From
Tiny Images. University of Toronto, Tech. rep. (2009)

21. LeCun, Y., Cortes, C.: Mnist handwritten digit database (2010), http://yann.
lecun.com/exdb/mnist/

22. M., W., T., H.: Weakly supervised learning for industrial optical inspection. In:
29th Annual Symposium of the German Association for Pattern Recognition (2007)

23. Moya, M.M., Hush, D.R.: Network constraints and multi-objective optimization
for one-class classification. Neural Netw. 9(3), 463–474 (1996)

24. Parker, S.G., et al.: Optix: A general purpose ray tracing engine. ACM Trans.
Graph. 29(4) (2010). https://doi.org/10.1145/1778765.1778803, https://doi.org/
10.1145/1778765.1778803

25. Perera, P., Patel, V.M.: Deep transfer learning for multiple class novelty detection.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2019)

26. Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P.: Towards total
recall in industrial anomaly detection (2021). https://doi.org/10.48550/ARXIV.
2106.08265, https://arxiv.org/abs/2106.08265

27. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class
classifier for novelty detection. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 3379–3388 (2018)
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Abstract. In this work we present two video test data sets for the novel
computer vision (CV) task of out of distribution tracking (OOD tracking).
Here, OOD objects are understood as objects with a semantic class outside
the semantic space of an underlying image segmentation algorithm, or an
instancewithin the semantic spacewhich however looks decisively different
from the instances contained in the training data. OOD objects occurring
on video sequences should be detected on single frames as early as possi-
ble and tracked over their time of appearance as long as possible. During
the time of appearance, they should be segmented as precisely as possible.
We present the SOS data set containing 20 video sequences of street scenes
and more than 1000 labeled frames with up to two OOD objects. We fur-
thermore publish the synthetic CARLA-WildLife data set that consists of
26 video sequences containing up to four OOD objects on a single frame.
We propose metrics to measure the success of OOD tracking and develop
a baseline algorithm that efficiently tracks the OOD objects. As an appli-
cation that benefits from OOD tracking, we retrieve OOD sequences from
unlabeled videos of street scenes containing OOD objects.

Keywords: Computer vision · Video · Data sets · Out of distribution

1 Introduction

Semantic segmentation decomposes the pixels of an image into segments that
adhere to a pre-defined set of semantic classes. In recent years, using fully con-
volutional deep neural networks [48] and training on publicly available data sets
[14,18,28,29,68,82], this technology has undergone a remarkable learning curve.
Recent networks interpret street scenes with a high degree of precision [17,78].

When semantic segmentation is used in open world scenarios, like in auto-
mated driving as area of application, objects could be present on images, which
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adhere to none of the semantic classes the network has been trained on and there-
fore force an error. Such objects from outside the network’s semantic space form
a specific class of out of distribution (OOD) objects. Naturally, it is desirable
that the segmentation algorithm identifies such objects and abstains a decision
on the semantic class for those pixels that are covered by the OOD object. At the
same time, this additional requirement should not much deteriorate the perfor-
mance on the primary segmentation task, if no OOD object is present. In other
cases, an OOD object might be from a known class, however with an appearance
that is very different from the objects of the same class in the training data, so
that a stable prediction for this object is unrealistic. Also in this case, an indica-
tion as OOD object is preferable over the likely event of a misclassification. The
computer vision (CV) task to mark the pixels of both kinds of objects can be sub-
sumed under the notion of OOD segmentation. See [10,11,15,16,22,31,32,54,55]
for recent contributions to this emerging field.

In many applications, images do not come as single frames, but are embedded
in video sequences. If present, OOD objects occur persistently on subsequent
frames. Tracking of OOD objects therefore is the logical next step past OOD
segmentation. This ideally means identifying OOD objects in each frame on
which they are present and give them a persistent identifier from the frame of
first occurrence to the frame in which the OOD object leaves the image.

In this article we introduce the novel task of OOD tracking as a hybrid CV
task inheriting from the established fields of OOD detection, OOD segmenta-
tion and object tracking. CV tasks often are dependent on suitable data sets,
and OOD tracking is no exception in this regard. As our main contribution,
we present two new labeled data sets of video sequences that will support the
research effort in this field. The Street Obstacle Sequences (SOS) data set is
a real world data set that contains more than 1,000 single frames in 20 video
sequences containing one or two labeled OOD objects on streets along with fur-
ther meta information, like distance or object ID. The SOS data set thus allows
to evaluate the success of OOD tracking quantitatively for different kinds of
OOD objects. As a second data set, we present CARLA-WildLife (CWL), a
synthetic data set that consists of 26 fully annotated frames from the CARLA
driving simulator in which a number of OOD objects from the Unreal Engine [27]
collection of free 3D assets are introduced. Each frame in these video sequences
contains in between 1 and 4 OOD instances. The meta data is consistent with
SOS. In addition, the labeling policy is largely consistent with the single frame
based road obstacle track in the SegmentMeIfYouCan benchmark [15]. Thereby,
both data sets will also support standard OOD segmentation benchmarks. As
a second contribution, we propose numerous metrics that can systematically
measure the success of an OOD tracking algorithm. As a third contribution,
we provide a first baseline that combines single frame OOD segmentation with
tracking of segments. Using a single frame Nvidia DeepLabV3+ as a single frame
segmentation network, we employ entropy maximization training for OOD seg-
mentation with meta-classification to reduce the number of false positive OOD
objects, following [16]. We then track the obtained OOD masks over the video
sequences using an adjusted version of the light-weight tracking algorithm based
on semantic masks introduced in [57–59]. We hope that this simple baseline will
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motivate researchers to develop their own OOD tracking algorithms and compare
performance against our baseline.

It remains to show that OOD tracking is useful. Here we present an example
from the context of automated driving and apply OOD tracking on the unsuper-
vised retrieval of OOD objects. To this purpose, we combine our OOD tracking
baseline with feature extractor based on DenseNet [42]. For each detected OOD
object, we obtain a time series of feature vectors on which we employ a low
dimensional embedding via the t-SNE algorithm [60]. Here the time series view-
point makes it easy to clean the data and avoid false positives, e.g. by setting a
filter to the minimum length. Clustering of similar objects, either on the basis
of frames or on time series meta-clusters then enables the retrieval of previously
unseen objects [69,77]. We apply this on the SOS and the CWL data sets as
well as on self-recorded unlabeled data that contains OOD road obstacles. This
provides a first method that enables the unsupervised detection of potentially
critical situations or corner cases related to OOD objects from video data. The
source code is publicly available at https://github.com/kmaag/OOD-Tracking
and the datasets at https://zenodo.org/communities/buw-ood-tracking/.

This paper is organized as follows: Sect. 2 relates our work with existing
OOD data sets as well as approaches in OOD segmentation, object tracking and
object retrieval. The following Sect. 3 introduces our data sets for OOD tracking
in street scenes and details on our labeling policy. In Sect. 4, we introduce a set
of metrics to measure the success of OOD segmentation, tracking and clustering,
respectively. The experiments are presented in Sect. 5 consisting of the method
description, i.e., details of our OOD segmentation backbone, the tracking algo-
rithm for OOD objects as well as OOD retrieval, and numerical results for the
SOS as well as the CWL data set. Our findings are summarized in Sect. 6, where
we also shortly comment on future research directions.

2 Related Work

OOD Data Sets. OOD detection in the field of CV is commonly tested by sep-
arating entire images that originate from different data sources. This includes e.g.
separating MNIST [49] from FashionMNIST [80], NotMNIST [12], or Omniglot
[46], and, as more complex task, separating CIFAR-10 [45] from SVHN [30] or
LSUN [83]. Other data sets specifically designed to OOD detection in semantic
segmentation are for instance Fishyscapes [10] and CAOS [38]. These two data
sets either rely on synthetic data or generate OOD examples by excluding certain
classes during model training. To overcome the latter limitations, data sets such
as LostAndFound [71], RoadAnomaly [55], and also RoadObstacle21 [15] include
images containing realOODobjects appearing in realworld scenes.To this end, the
established labeling policy of the semantic segmentation data set Cityscapes [18]
serves as basis to decide whether an object is considered as OOD or not. However,
all the outlined OOD data sets are based on single frames only. Although CAOS
[38], LostAndFound [71], and RoadObstacle21 [15] include several images in the
same scenes, they do not provide video sequences with (annotated) consecutive
frames. In particular, mainly due to the labeling effort, none of the real world data
sets provides a sufficient density of consecutive frames such that tracking of OOD

https://github.com/kmaag/OOD-Tracking
https://zenodo.org/communities/buw-ood-tracking/
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objects could be applied and evaluated properly. One such but synthetic data set
is StreetHazards [38]. This latter data set, however, mostly contains street scenes
with OOD objects appearing in safety-irrelevant locations such as the background
of the scene or in non-driveable areas.

In this work, we provide two novel video data sets with OOD objects on the
road as region of interest. Therefore, our data sets can be understood to tackle
the safety-relevant problem of obstacle segmentation [15]. While one of these
two data sets consists of real-world images only, the other consists of synthetic
ones. Both data sets include multiple sequences with pixel level annotations of
consecutive frames, which for the first time enable tracking of OOD objects.

OOD Segmentation. OOD detection on image data was first tackled in the
context of image classification. Methods such as [37,39,50,51,63] have proven
to successfully identify entire OOD images by lowering model confidence scores.
These methods can be easily extended to semantic segmentation by treating each
pixel individually, forming common baselines for OOD detection in semantic
segmentation [1,9], i.e., OOD segmentation. In particular, many of these OOD
detection approaches are intuitively based on quantifying prediction uncertainty.
This can also be accomplished e.g. via Monte-Carlo dropout [26] or an ensemble
of neural networks [34,47], which has been extended to semantic segmentation
in [3,44,65]. Another popular approach is training for OOD detection [21,40,63],
which includes several current state-of-the-art works on OOD segmentation such
as [7,8,16,22,32]. This type of approach relies on incorporating some kind of
auxiliary training data, not necessarily real-world data, but disjoint from the
original training data. In this regard, the most promising methods are based on
OOD training samples generated by generative models as extensively examined
in [19,54,55,66,79].

All existing methods are developed to operate on single frames. In this present
work, we aim at investigating how such OOD segmentation methods could be
extended to operate on video sequences with OOD objects appearing in multiple
consecutive frames.

Object Tracking. In applications such as automated driving, tracking mul-
tiple objects in image sequences is an important computer vision task [64]. In
instance segmentation, the detection, segmentation and tracking tasks are often
performed simultaneously in terms of extending the Mask R-CNN network by an
additional branch [6,81] or by building a variational autoencoder architecture on
top [52]. In contrast, the tracking-by-detection methods first perform segmenta-
tion and then tracking using for example a temporal aggregation network [43] or
the MOTSNet [72]. In addition, a more light-weight approach is presented in [13]
based on the optical flow and the Hungarian algorithm. The tracking method
introduced in [59] serves as a post-processing step, i.e., is independent of the
instance segmentation network, and is light-weight solely based on the overlap
of instances in consecutive frames. A modified version of this algorithm is used
for semantic segmentation in [58].
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Despite all the outlined works on object tracking, none of them were devel-
oped for OOD objects. In this present work, we therefore extend the post-
processing method for tracking entire segments in semantic segmentation, that
has originally been proposed in [58], to the unprecedented task of tracking OOD
objects in image sequences.

Object Retrieval. Retrieval methods in general tackle the task of seeking
related samples from a large database corresponding to a given query. Early
works in this context aim to retrieve images that match best a query text or vice
versa [2,33,41,62]. Another sub task deals with content-based image retrieval,
which can be sub-categorized into instance- and category level retrieval. This
is, given a query image depicting an object or scene, retrieving images repre-
senting the same object/scene or objects/scenes of the same category, respec-
tively. To this end, these images must satisfy some similarity criteria based on
some abstract description. In a first approach called QBIC [25], images are
retrieved based on (global) low level features such as color, texture or shape.
More advanced approaches utilize local level features [4,56], still they cannot
fully address the problem of semantic gap [75], which describes the disparity
between different representation systems [36]. Recent methods such as [61,67]
apply machine/deep learning to learn visual features directly from the images
instead of using hand-crafted features.

In this work, we do not directly retrieve images for some given query image,
but instead we cluster all objects/images that are contained in our database
based on their visual similarity, as it has been proposed in [69]. This particularly
includes OOD objects. We extend this described single frame based approach
to video sequences, i.e., we enhance the effectiveness by incorporating tracking
information over multiple frames.

3 Data Sets

As already discussed in Sect. 2, in general there is a shortage of data sets that
are dedicated to OOD detection in semantic segmentation. In particular, at
the time of writing, there does not exist any OOD segmentation data set con-
taining annotated video sequences. We therefore introduce the Street Obstacle
Sequences (SOS), CARLA-WildLife (CWL) and Wuppertal Obstacle Sequences
(WOS) data sets. Example images and more details can be found in Appendix A.

3.1 Street Obstacle Sequences

The SOS data set contains 20 real-world video sequences in total. The given
scenes are shown from a perspective of a vehicle that is approaching objects
placed on the street, starting from a distance of 20 m to the street obstacle. The
outlined street obstacles are chosen such that they could cause hazardous street
scenarios. Moreover, each object corresponds to a class that is semantically OOD
according to the Cityscapes labeling policy [18]. In SOS, there are 13 different



Two Video Data Sets for Tracking and Retrieval of OOD Objects 481

Fig. 1. Some exemplary OOD objects from our (a) SOS and (b) CWL data sets.

object types, which include e.g. bags, umbrellas, balls, toys, or scooters, cf. also
Fig. 1(a). They represent potential causes of hazardous street scenarios, making
their detection and localization particularly crucial in terms of safety.

Each sequence in SOS was recorded at a rate of 25 frames per second, of
which every eighth frame is labeled. This yields a total number of 1,129 pixel-
accurately labeled frames. As region of interest, we restrict the segmentation to
the drivable area, i.e., the street. Consequently, SOS contains two classes, either

1) street obstacle / OOD , or 2) street / not OOD .

Note that image regions outside the drivable area are labeled as void and are
ignored during evaluation.

Given the unique density of consecutive annotated frames, SOS allows for
proper evaluation of tracking OOD objects besides their detection and pixel level
localization. In this way, SOS facilitates the approach to the novel and practically
relevant CV task of combining object tracking and OOD segmentation.

For a more in-depth evaluation, we further provide meta data to each obstacle
in the SOS data set. This includes information such as the size of an object and
their distance to the camera. In this regard, the size is approximated by the
number of annotated pixels and the distance by markings on the street.

3.2 CARLA-WildLife

Since the generation of the SOS data set is time consuming and the selection of
diverse real-world OOD objects is limited in practice, we additionally introduce
a synthetic data set for OOD detection offering a large variety of OOD object
types. The main advantage of synthetic data is that they can be produced inex-
pensively with accurate pixel-wise labels of full scenes, besides being able to
manipulate the scenes as desired.

By adding freely available assets from Unreal Engine 4 [27] to the driving
simulation software CARLA [23], we generate sequences in the same fashion as
the SOS data set that we provide in the additional CWL data set. It contains
26 synthetic video sequences recorded at a rate of 10 frames per second with
18 different object types placed on the streets of CARLA. The objects include
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e.g. dogs, balls, canoes, pylons, or bags, cf. also Fig. 1(b). Again, the objects
were chosen based on whether they could cause hazardous street scenarios. Since
these objects are not included in the standard set of semantic labels provided by
CARLA, each object type is added as extra class retroactively. In addition to the
semantic segmentation based on the Cityscapes labeling policy (and including
the OOD class), CWL further provides instance segmentation, i.e., individual
OOD objects of the same class can be distinguished within each frame, and
tracking information, i.e., the same object instance can be identified over the
course of video frames. Moreover, we provide pixel-wise distance information for
each frame of entire sequences as well as aggregated depth information per OOD
object depicting the shortest distance to the ego-vehicle.

3.3 Wuppertal Obstacle Sequences

While the SOS data set considers video sequences where the camera moves
towards the static OOD objects located on the street, we provide additional mov-
ing OOD objects in the WOS data set. It contains 44 real-world video sequences
recorded from the viewpoint of a moving vehicle. The moving objects are mostly
dogs, rolling or bouncing balls, skateboards or bags and were captured with
either a static or a moving camera. This data set comes without labels and is
used for test purposes for our OOD tracking and retrieval application.

4 Performance Metrics

In this section, we describe the performance metrics for the task of OOD tracking,
i.e., OOD segmentation and object tracking, as well as clustering.

4.1 OOD Segmentation

Hereafter, we assume that the OOD segmentation model provides pixel-wise
OOD scores s for a pixel discrimination between OOD and not OOD, see also
Sect. 3. As proposed in [15], the separability of these pixel-wise scores is evalu-
ated using the area under the precision recall curve (AuPRC) where precision
and recall values are varied over some score thresholds τ ∈ R applied to s. Fur-
thermore, we consider the false positive rate at 95% true positive rate (FPR95)
as safety critical evaluation metric. This metric indicates how many false positive
errors have to be made to achieve the desired rate of true positive predictions.

As already implied, the final OOD segmentation is obtained by thresholding
on s. In practice, it is crucial to detect and localize each single OOD object.
For this reason, we evaluate the OOD segmentation quality on segment level.
To this end, we consider a connected component of pixels sharing the same class
label in a segmentation mask as segment. From a practitioner’s point of view,
it is often sufficient to only recognize a fraction of OOD objects to detect and
localize them. As quality measure to decide whether one segment is considered
as detected, we stick to an adjusted version of the segment-wise intersection
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over union (sIoU ) as introduced in [73]. Then, given some detection threshold
κ ∈ [0, 1), the number of true positive (TP ), false negative (FN) and false
positive (FP ) segments can be computed. These quantities are summarized by
the F1 = 2TP/(2TP + FN + FP ) score, which represents a metric for the
segmentation quality (for some fixed score threshold κ). As the numbers of TP ,
FN and FP depend on the detection threshold κ, we additionally average the F1

score over different κ. This yields F̄1 as our main evaluation metric on segment
level as it is less affected by the detection threshold.

For a more detailed description of the presented performance metrics for
OOD segmentation, we refer to [15].

4.2 Tracking

To evaluate OOD object tracking, we use object tracking metrics such as mul-
tiple object tracking accuracy (MOTA) and precision (MOTP) as performance
measures [5]. MOTA is based on three error ratios: the ratio of false positives,
false negatives and mismatches (mme) over the total number of ground truth
objects in all frames. A mismatch error is defined as the ID change of two pre-
dicted objects that are matched with the same ground truth object. MOTP
is the averaged distance between geometric centers of matched pairs of ground
truth and predicted objects.

For the tracking measures introduced in [64], all ground truth objects of an
image sequence are identified by different IDs and denoted by GT . These are
divided into three cases: mostly tracked (MT ) if it is tracked for at least 80%
of frames (whether the object was detected or not), mostly lost (ML) if it is
tracked for less than 20%, else partially tracked (PT ). These common multiple
object tracking metrics are created for the object detection task using bounding
boxes and also applicable to instance segmentation. Thus, we can apply these
measures to our detected OOD objects without any modification.

Moreover, we consider the tracking length metric lt which counts the num-
ber of all frames where a ground truth object is tracked divided by the total
number of frames where this ground truth object occurs. In comparison to the
presented metrics which require ground truth information in each frame, the
tracking length additionally uses non-annotated frames if present. Note that
we find this case within the SOS data set where about every eighth frame is
labeled. To this end, we consider frames t, . . . , t + i, i > 1, with available labels
for frames t and t+ i. If the ground truth object in frame t has a match and the
corresponding tracking ID of the predicted object occurs in consecutive frames
t + 1, . . . , t + i − 1, we increment the tracking length.

4.3 Clustering

The evaluation of OOD object clusters Ci ∈ {C1, . . . , Cn}, which contain the
two-dimensional representatives of the segments k of OOD object predictions,
depends on the differentiation level of these objects. We consider an instance
level and a semantic level based on object classes. Let Y = {1, . . . , q} and
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YID = {1, . . . , p} denote the set of semantic class and instance IDs, respectively.
For some given OOD segment k, yk and yID

k correspond to the ground truth
class and instance ID with which k has the highest overlap. On instance level,
we aspire that OOD objects which belong to the same instance in an image
sequence are contained in the same cluster. This is, we compute the relative
amount of OOD objects per instance in the same cluster,

CSinst =
1
p

p∑

i=1

max
C∈{C1,...,Cn}

|{k ∈ C | yID
k = i}|

∑
C∈{C1,...,Cn}

|{k ∈ C | yID
k = i}| ∈ [0, 1] , (1)

averaged over all instances. On a semantic level, we pursue two objectives. The
first concerns the semantic class impurity of the clusters,

CSimp =
1
n

n∑

i=1

|{yk|k ∈ Ci}| ∈ [1, q] , (2)

averaged over all clusters Ci ∈ {C1, . . . , Cn}. Secondly, we aspire a low fragmen-
tation of classes into different clusters

CSfrag =
1
q

q∑

i=1

|{C ∈ {C1, . . . , Cn}|∃k ∈ C : yk = i}| , (3)

i.e., ideally, each class constitutes exactly one cluster. Here, we average over the
semantic classes in Y.

5 Experiments

In this section, we first introduce the methods which we use for OOD segmenta-
tion, tracking as well as retrieval and second, we show the numerical and quali-
tative results on our two main data sets, SOS and CWL. Qualitative results on
OOD object retrieval from the WOS data set are given in the appendix.

5.1 Method

Our method consists of the CV tasks OOD segmentation and object tracking.
For OOD segmentation, we consider the predicted region of interest and the
entropy heatmap obtained by a semantic segmentation network. Via entropy
thresholding, the OOD objects are created and the prediction quality is assessed
by meta classification in order to discard false positive OOD predictions. In
the next step, the OOD objects are tracked in an image sequence to generate
tracking IDs. Furthermore, we study the retrieval of detected OOD objects using
tracking information. An overview of our method is shown in Fig. 2.

OOD Object Segmentation. For the segmentation of OOD objects, we use
the publicly available segmentation method that has been introduced in [16]. In
the latter work, a DeepLabV3+ model [84], initially trained on Cityscapes [18],
has been extended to OOD segmentation by including auxiliary OOD samples
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Fig. 2. Overview of our method. The input image is fed into a semantic segmentation
network to extract the region of interest (here road) and the entropy heatmap. The
resulting OOD prediction is used to produce the tracking IDs and a 2D embedding.

extracted from the COCO data set [53]. To this end, the model has been trained
for high softmax entropy responses on the induced known unknowns (provided by
COCO), which showed generalization capabilities with respect to truly unknown
objects available in data sets such as LostAndFound [71] and RoadObstacle21
[15]. This outlined method is applied to single frames and utilizes the pixel-wise
softmax entropy as OOD score.

Further, we apply meta classification [73,74] to OOD object predictions for
the purpose of reducing false positive OOD indications. These false positives
are identified by means of hand-crafted metrics, which are in turn based on
dispersion measures like entropy as well as geometry and location information,
see also [16]. These hand-crafted metrics form a structured data set where the
rows correspond to predicted segments and the columns to features. Given this
meta data set, we employ logistic regression with L1-penalty on the weights
(LASSO [76]) as post-processing (meta) model to remove false positive OOD
object predictions, without requiring ground truth information at run time.

For more details on the construction of the structured data set, we refer
the reader to [73,74]. An illustration of the single steps of the OOD object
segmentation method can be found in Fig. 3.

OOD Object Tracking. In this section, we present the light-weight tracking
approach that we use to track predicted OOD objects. This method has originally
been introduced for semantic segmentation in [58] and does not require any
training as it is an heuristic solely based on the overlap of OOD objects in
consecutive frames. We assume that an OOD object segmentation is available
for each frame x, as e.g. described in Sect. 5.1. The idea of employing this tracking
method is to match segments based on their overlap (measured by the segment-
wise intersection over union, shorthand IoU ) and proximity of their geometric
centers in consecutive frames.
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Fig. 3. Segmentation of OOD objects (orange in ground truth) on the street via entropy
thresholding & prediction quality rating via meta classification (green corresponds to a
high confidence of being a correct OOD object prediction, red to a low one), resulting
in final prediction mask. (Color figure online)

We apply the tracking approach sequentially to each frame x ∈ {xt}Tt=1 of an
image sequence of length T . In more detail, the segments in the first frame, i.e.,
t = 1, are assigned with random IDs. Then, for each of the remaining frames
t, t > 1, the segments are matched with the segment IDs of its respective previous
frame t − 1. To this end, we use a tracking procedure consisting of five steps,
which we will briefly describe in what follows. For a detailed description, we
refer the reader to [58]. In step 1, OOD segments that are predicted in the same
frame are aggregated by means of their distance. In steps 2 and 3, segments
are matched if their geometric centers are close together or if their overlap is
sufficiently large in consecutive frames, respectively. In step 4, linear regression
is used to account for “flashing” segments (over a series of consecutive frames)
or temporarily occluded as well as non-detected ones, i.e., false negatives. As
final step 5, segments are assigned new IDs in case they have not received any
in the steps 1–4 of the matching process.

OOD Object Retrieval. On top of the segmentation and tracking of OOD
objects, we perform a method similar to content-based image retrieval in order to
form clusters of the OOD objects that constitute novel semantic concepts. To this
end we adapt an existing approach [69,77] to video sequences by incorporating
the tracking information which we obtain e.g. as described in Sect. 5.1. This
is, we require the tracking information to be available for each frame x and
apply OOD object retrieval as a post-processing step which does not depend on
the underlying semantic segmentation network nor on the OOD segmentation
method but on given OOD segmentation masks.

For each frame x and OOD segment k ∈ K̂(x), let ŷID
k denote the pre-

dicted tracking ID. To diminish the number of the false positives, we only
cluster predicted segments that are tracked over multiple frames of an image
sequence {xt}Tt=1, based on some length parameter � ∈ N Further, each frame
x is tailored to boxes around the remaining OOD segments k, which are ver-
tically bounded by the pixel locations min(zv,zh)∈k zv and max(zv,zh)∈k zv, hor-
izontally by min(zv,zh)∈k zh and max(zv,zh)∈k zh. Image clustering usually takes
place in a lower dimensional latent space due to the curse of dimensionality. To
this end, the image patches are fed into an image classification ResNet152 [35]
(without its final classification layer) trained on ImageNet [20], which produces
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Table 1. OOD object segmentation, tracking and clustering results for the SOS and
the CWL data set.

Data set AuPRC ↑ FPR95 ↓ F̄1 ↑ MOTA ↑ mme ↓ MOTP ↓ GT MT PT ML lt ↑
SOS 85.56 1.26 35.84 −0.0826 0.0632 12.3041 26 9 14 3 0.5510

CWL 79.54 1.38 45.46 0.4043 0.0282 16.4965 62 24 30 8 0.5389

Without tracking (� = 0) With tracking (� = 10)

Data set CSinst ↑ CSimp ↓ CSfrag ↓ CSinst ↑ CSimp ↓ CSfrag ↓
SOS 0.8652 2.5217 2.8182 0.8955 1.7917 1.9091

CWL 0.8637 2.8181 2.2500 0.8977 2.1739 1.8000

feature vectors of equal size regardless of the input dimension. These features
are projected into a low-dimensional space by successively applying two dimen-
sionality reduction techniques, namely principal component analysis (PCA [70])
and t-distributed stochastic neighbor embedding (t-SNE [60]). As final step, the
retrieved OOD object predictions are clustered in the low-dimensional space,
e.g., via the DBSCAN clustering algorithm [24].

5.2 Numerical Results

In this section, we present the numerical results on the novel task of OOD
tracking. To this end, we apply simple baseline methods introduced in Sect. 5.1
on two labeled data sets of video sequences (SOS and CWL) and motivate the
usefulness of OOD tracking using an unsupervised retrieval of OOD objects in
the context of automated driving.

OOD Segmentation. For OOD segmentation, we apply the method described
in Sect. 5.1, which provides pixel-wise softmax entropy heatmaps as OOD scores
(see Fig. 3 (center left)). The pixel-wise evaluation results for the SOS and the
CWL data sets are given in Table 1 considering AuPRC and FPR95 as metrics
(Sect. 4.1).

We achieve AuPRC scores of 85.56% and 79.54% as well as FPR95 scores of
1.26% and 1.38% on SOS and CWL, respectively.

To obtain the OOD segmentation given some input image, thresholding is
applied to the softmax entropy values. We choose the threshold τ by means of
hyperparameter optimization, yielding τ = 0.72 for SOS and τ = 0.81 for CWL.

As next step, meta classification is used as post-processing to reduce the
number of false positive OOD segments. We train the model on one data set and
evaluate on the other one, e.g. for experiments on SOS the meta classification
model is trained on CWL. The corresponding F̄1 scores on segment level are
shown in Table 1. The higher F̄1 score of 45.46% is obtained for the CWL data
set indicating that training the meta model on SOS and testing it on CWL is
more effective than vice versa. In addition, we provide results for a different
meta classification model which is trained and evaluated per leave-one-out cross
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Fig. 4. Left : Discretized distance between ground truth objects and camera vs. mean
IoU over all object types of the SOS and the CWL data set, respectively. The dot size
is proportional to mean segment size. Right : Clustering of OOD segments predicted
for the CWL data set with min. tracking frequency � = 10.

validation on the respective data set, see Appendix B. In Fig. 3, an example image
of our OOD segmentation method is presented. The final prediction mask after
entropy thresholding and meta classification contains only true OOD objects.
In Appendix C and Appendix D, more numerical results evaluated for depth
binnings and on individual OOD classes are presented, respectively.

OOD Tracking. Building upon the OOD segmentation masks obtained, in this
subsection we report OOD tracking results. We consider several object tracking
metrics (see Sect. 4.2) shown in Table 1 for the SOS and CWL data set. We
observe a comparatively low MOTA performance for the SOS data set. The
underlying reason is a high number of false positive segments that are accounted
for in this metric, as also shown in the detection metric F̄1.

Furthermore, most of the ground truth objects are at least partially tracked,
only 3 out of 26 and 8 out of 62 ground truth objects are largely lost out for SOS
and CWL, respectively. Analogously, in Fig. 4, we observe that most ground truth
objects are matched with predicted ones for the SOS data set. This plot shows
the correlation between the IoU (of ground truth and predicted objects) and the
distance of the ground truth objects to the camera as we provide meta data like
depth for our data sets. We observe for both data sets that the IoU increases
with decreasing distances, the only exception are very short distance objects to
the ego-car for the CWL data set. Moreover, we provide video sequences1 that
visualize the final OOD segmentation and object tracking results. In Appendix D,
more numerical results evaluated on individual OOD classes are presented.

Retrieval of OOD Objects. Finally, we evaluate the clustering of OOD
segments obtained by the OOD object segmentation method introduced in
Sect. 5.1. In Table 1, we report the clustering metrics CSinst, CSimp and CSfrag

1 https://youtu.be/ DbV8XprDmc.

https://youtu.be/_DbV8XprDmc
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(see Sect. 4.3) with (� = 10) and without (� = 0) incorporating the OOD tracking
information, respectively. For both, the CWL and the SOS data set, all cluster-
ing metrics improve when applying the OOD tracking as a pre-processing step.
A reason for this is, that the tracking information “tidies up” the embedding
space, e.g. by removing noise, which enhances the performance of the clustering
algorithm. For CWL (with 18 object types), 1266/1026 OOD segments are clus-
tered into 22/23 clusters without/with using tracking results, for SOS (with 13
object types), we obtain 23/24 clusters which contain 1437/888 OOD segments in
total. For the clustering, we applied the DBSCAN algorithm with hyperparam-
eters ε = 4.0 and minPts = 15. In Fig. 4, we exemplarily visualize the clustered
embedding space for the CWL data set with � = 10. The remaining visualiza-
tions as well as additional results for the second meta classification model are
provided in Appendix B. Furthermore, we visualize some clustering results for
the WOS data set in Appendix E. As WOS comes without labels, we do not
report any evaluation metrics, but provide some visualizations for the 5 largest
clusters.

6 Conclusion and Outlook

We created a baseline for the CV task of tracking OOD objects by (a) publishing
two data sets with 20 (SOS) and 26 (CWL) annotated video sequences containing
OOD objects on street scenes and (b) presenting an OOD tracking algorithm that
combines frame-wise OOD object segmentation on single frames with tracking
algorithms. We also proposed a set of evaluation metrics that permit to measure
the OOD tracking efficiency. As an application, we retrieved new, previously
unlearned objects from video data of urban street scenes.

To go beyond this baseline, several directions of research seem to be promis-
ing. First, OOD segmentation on video data could benefit from 3D CNN acting
on the spatial and temporal dimension, rather than combining 2D OOD segmen-
tation with tracking. However, at least for those OOD segmentation algorithms
that involve OOD training data, new and specific video data sets would be
required. Similarly, genuine video sequence based retrieval algorithms should be
developed to improve our revival baseline. Such algorithms could prove useful to
enhance the coverage of urban street scenes in training data sets for AI-based
perception in automated driving.
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8. Bevandić, P., Krešo, I., Oršić, M., Šegvić, S.: Simultaneous semantic segmentation
and outlier detection in presence of domain shift. In: Proceedings of the Ger-
man Conference on Pattern Recognition (GCPR), Dortmund, Germany, pp. 33–47
(2019)

9. Blum, H., Sarlin, P.E., Nieto, J., Siegwart, R., Cadena, C.: Fishyscapes: a bench-
mark for safe semantic segmentation in autonomous driving. In: Proceedings of the
IEEE International Conference on Computer Vision (ICCV) Workshops, Seoul,
Korea, pp. 2403–2412 (2019)

10. Blum, H., Sarlin, P.E., Nieto, J., Siegwart, R., Cadena, C.: The fishyscapes bench-
mark: measuring blind spots in semantic segmentation. Int. J. Comput. Vision
129(11), 3119–3135 (2021)
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Abstract. Vehicle-to-Everything (V2X) network has enabled collabora-
tive perception in autonomous driving, which is a promising solution to the
fundamental defect of stand-alone intelligence including blind zones and
long-range perception. However, the lack of datasets has severely blocked
the development of collaborative perception algorithms. In this work, we
release DOLPHINS: Dataset for cOLlaborative Perception enabled Har-
monious and INterconnected Self-driving, as a new simulated large-scale
various-scenario multi-view multi-modality autonomous driving dataset,
which provides a ground-breaking benchmark platform for interconnected
autonomous driving. DOLPHINS outperforms current datasets in six
dimensions: temporally-aligned images and point clouds from both vehi-
cles and Road Side Units (RSUs) enabling both Vehicle-to-Vehicle (V2V)
and Vehicle-to-Infrastructure (V2I) based collaborative perception; 6 typ-
ical scenarios with dynamic weather conditions make the most various
interconnected autonomous driving dataset; meticulously selected view-
points providing full coverage of the key areas and every object; 42376
frames and 292549 objects, as well as the corresponding 3D annotations,
geo-positions, and calibrations, compose the largest dataset for collabo-
rative perception; Full-HD images and 64-line LiDARs construct high-
resolution data with sufficient details; well-organized APIs and open-
source codes ensure the extensibility of DOLPHINS. We also construct a
benchmark of 2D detection, 3D detection, and multi-view collaborative
perception tasks on DOLPHINS. The experiment results show that the
raw-level fusion scheme through V2X communication can help to improve
the precision as well as to reduce the necessity of expensive LiDAR equip-
ment on vehicles when RSUs exist, which may accelerate the popularity of
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interconnected self-driving vehicles.DOLPHINSdataset and related codes
are now available on www.dolphins-dataset.net.

Keywords: Collaborative perception · Interconnected self-driving ·
Dataset

1 Introduction

One major bottleneck of achieving ultra-reliability in autonomous driving is
the fundamental defect of stand-alone intelligence due to the single perception
viewpoint. As illustrated in Fig. 1(a), the autonomous vehicle could not detect
the pedestrians in its blind zone caused by the truck, which may lead to a
severe accident. Great efforts have been put into single-vehicle multi-view object
detection with multiple heterogeneous sensors [6,8] or homogeneous sensors [20,
35], but the intrinsic limitation of stand-alone intelligence still exists.

Fig. 1. An illustration of the advantages of collaborative perception over stand-alone
intelligence.

Thanks to the Vehicle-to-Everything (V2X) network [42], interconnected
autonomous driving is a highly-anticipated solution to occlusions, and thus
enables advanced autonomous driving capabilities in complex scenarios such as
intersections and overtaking. A vehicle can exchange the local sensor data with
other terminals (as shown in Fig. 1(b)), including other vehicles and Road Side
Units (RSUs), and then perform the object detection by fusing data from mul-
tiple viewpoints. The shared sensor data might contain information about the
object in the blind zones of the ego vehicle, potentially enhancing the perception
reliability [40] as in Fig. 1(c). This procedure is named as collaborative percep-
tion, which can be categorized into three levels: raw-level (early fusion, e.g. [5]),
feature-level (middle fusion, e.g. [4,34]), and object-level (late fusion, e.g. [17]).

However, the lack of large-scale datasets for collaborative autonomous driv-
ing has been seriously restricting the research of collaborative perception algo-
rithms. Traditional datasets focus on a single viewpoint, i.e., the ego vehicle.
In the past decade, KITTI [13], nuScenes [1], and Waymo Open [33] have suc-
cessfully accelerated the development of stand-alone self-driving algorithms with

https://dolphins-dataset.net/
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a huge amount of multi-modality data. But all of the information is collected
from the ego vehicle view. Unfortunately, the most challenging but the greatest
beneficial issue is the large parallax due to strong perspective changes between
different terminals, i.e., aux vehicles and RSUs, as illustrated in Fig. 2. The large
parallax leads to various occlusion relationships between objects, which may
help the terminals to fulfill the blind zones, but also put forward the matching
of the same object from different perspectives. Recently, some pioneer works
have concentrated on datasets with multiple viewpoints, such as OPV2V [38],
V2X-Sim [21], and DAIR-V2X [41]. Nevertheless, either data from aux vehicles
(Vehicle-to-Vehicle, V2V) and RSUs (Vehicle-to-Infrastructure, V2I) are not pro-
vided simultaneously, or only an intersection scenario is considered. A more com-
prehensive dataset is required to fully support the development of V2X-based
collaborative autonomous driving algorithms.

Fig. 2. An example of multi-view object detection in DOLPHINS dataset. There is a
right merging lane in front of the ego vehicle. Because of the occlusion, the ego vehicle
can hardly detect the purple vehicle (red box) on the branch and the police car (blue
box). The auxiliary vehicle is in front of the ego vehicle, which can see both object
vehicles distinctly. Additionally, the RSU can detect another two vehicles (purple box)
on the branch. (Color figure online)

To meet the demands, we present DOLPHINS, a new Dataset for
cOLlabor-ative Perception enabled Harmonious and Interconnected Self-
driving. We use the CARLA simulator [9] to complete this work, which can
provide us with realistic environment modeling and real-time simulations of
the dynamics and sensors of various vehicles. Figure 3 briefly demonstrates the
advantages of DOLPHINS in six dimensions.

V2X DOLPHINS contains temporally-aligned images and point clouds from
both aux vehicles and RSUs simultaneously, which provides a universal
out-of-the-box benchmark platform for the development and verification of
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V2V and V2I enabled collaborative perception without extra generation of
data.

Variety DOLPHINS includes 6 typical autonomous driving scenarios, which is
second only to real-world single-vehicle datasets [1,13]. Our dataset includes
urban intersections, T-junctions, steep ramps, highways on-ramps, and moun-
tain roads, as well as dynamic weather conditions. Different scenarios raise
different challenges to autonomous driving, such as dense traffic, ramp occlu-
sions, and lane merging. More detailed information on traffic scenarios is
presented in Sect. 3.1.

Viewpoints Considering the actual driving situation, 3 different viewpoints are
meticulously set for each scenario, including both RSUs and vehicles. The
data collected from viewpoints can achieve full coverage of key areas in each
scenario as illustrated in Fig. 4. More specific locations of each viewpoint are
illustrated in Fig. 5.

Scale In total, temporally-aligned images and point clouds are recorded over
42376 frames from each viewpoint,which ismuch larger than any other dataset
for collaborative perception. 3D information of 292549 objects is annotated
in KITTI format for ease of use, along with the geo-positions and calibrations.
Statistical analysis of objects is provided in Sect. 3.4.

Resolution DOLPHINS furnishes high-resolution images and point clouds
to maintain sufficient details. Full−HD(1920× 1080)cameras and 64− line
LiDARs equipped on both vehicles and RSUs, which are both among the
highest quality in all datasets. Detailed descriptions of sensors are stated in
Sect. 3.2.

Extensibility We also release the related codes of DOLPHINS, which contains
the well-organized API to help researchers to generate additional data on
demand, which makes DOLPHINS easily extensible and highly flexible.

We also conduct a comprehensive benchmark of state-of-the-art algorithms
on DOLPHINS. Three typical tasks are considered: 2D object detection, 3D

Variety

V2XScale

Extensibility

Resolution Viewpoints

Dolphins(Ours)
OPV2V
V2X-Sim
DAIR-V2X-C
KITTI
nuScenes

Fig. 3. A comparison with 3 brand new collaborative perception datasets: OPV2V [38],
V2X-Sim [21], and DAIR-V2X-C [41], as well as 2 well-known single-vehicle
autonomous driving datasets: KITTI [13] and nuScenes [1]. A detailed comparison
is provided in Sect. 2.
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Fig. 4. An illustration of temporary-aligned images and point clouds from three view-
points. The position of each viewpoint is demonstrated in Fig. 2.

Fig. 5. All ego vehicles are driving along a pre-defined route (green arrows), while each
RSU camera is settled with a fixed direction and range (blue or brown sector mark). We
also mark positions where the ego vehicle or possible auxiliary vehicles are initialized.
Among all scenarios, (a) and (e) are two intersection scenarios; (b) is the scenario of
a T-junction with moderate rain; (c) is also a crossroads while the ego vehicle is on a
steep ramp; (d) is a scenario existing a right merging lane on the expressway, and the
weather is foggy; (f) is the scenario of a mountain road. All scenarios have plenty of
occlusion situations. (Color figure online)

object detection, and multi-view collaborative perception. Other tasks, such as
tracking, are also supported in DOLPHINS but not exhibited here. Besides, we
construct two raw-level fusion schemes: the point clouds from the ego vehicle and
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the other viewpoint, and the image from the ego vehicle and point clouds from
the RSU. The results of the raw-level fusion algorithms reveal the dual character
of interconnected self-driving: enhancing the precision with more information or
reducing the cost of sensors on the self-driving vehicles within the same precision.

As a new large-scale various-scenario multi-view multi-modality dataset, we
hope this work brings a new platform to discover the potential benefits of con-
nected intelligence. Our main contributions are summarized as:

i. release DOLPHINS dataset with different scenarios, multiple viewpoints,
and multi-modal sensors, aiming to inspire the research of collaborative
autonomous driving;

ii. provide open source codes for on-demand generation of data;
iii. benchmark several state-of-the-art methods in 2D object detection, 3D object

detection, and multi-view collaborative perception, illustrating the possibility
of solving blind zones caused by occlusions as well as cutting the cost of self-
driving vehicles by V2V and V2I communication.

2 Related Works

There are many relative research areas, such as object detection, collaborative
perception, and autonomous driving dataset. Due to the space limitation, some
representative works which inspire us are introduced here, and the differences
with our proposed dataset are highlighted.

Object detection is one of the most important tasks in autonomous driving.
Typically, there are two kinds of object detectors, distinguished by whether to
generate region proposals before the object detection and bounding box regres-
sion. R-CNN family [14–16,30] is the representative of two-stage detectors, which
exhibits epoch-making performance. On the other hand, the single-stage detec-
tors, such as SSD [23] and YOLO [27–29], focus on the inference time and per-
form significantly faster than the two-stage competitors. Recently, CenterNet [10]
and CornerNet [19] propose a new detection method without anchor genera-
tion. They directly predict the key points per-pixel, which makes the detection
pipeline much simpler. DETR [2] firstly brings transformer architecture into
object detection tasks.

Collaborative perception is a growing topic in the intelligent transportation
society. Due to the 3D information provided by point clouds, LiDAR-based data
fusion and object detection have been widely discussed. [5] proposes a raw-level
fusion on point clouds with a deep network for detection. [26,36] aim to use deep
neural networks to enhance the perception outputs for sharing. V2VNet [34] con-
siders the feature-level fusion and uses a compressor to reduce the size of original
point clouds, which is vital in bandwidth-limited V2X communications. V2V-
ViT [37] introduces vision transformer to conquer the noises from communica-
tion. [25] and [24] consider the pure image fusion on feature-level and conduct
a re-identification task during the detection. The latter uses Graph Neural Net-
work (GNN) for perception and clustering.
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Autonomous driving datasets are the key to evaluating the performance of
detection methods. The commonly used KITTI [13] and nuScenes [1] only con-
tain data from the ego vehicle. Pasadena Multi-view ReID dataset is proposed
in [25], which contains data from different viewpoints of a single object. However,
the objects are only street trees, which is not enough for autonomous driving.
OPV2V [38] uses CARLA simulator [9] to produce multi-view autonomous driv-
ing data, but it only considers V2V communication. V2X-Sim [21] is also a
CARLA-based simulated dataset. The first version of V2X-Sim only contains
point clouds from different vehicles, which can only be applied for V2V com-
munication. The second version of V2X-Sim contains both RGB images and
the infrastructure viewpoints. Nevertheless, it still only considers the intersec-
tions scenario, and the BEV Lidar on the infrastructure is not realistic. By late
February 2022, a new real-world connected autonomous driving dataset DAIR-
V2X [41] is released. It consists of images and point clouds from one vehicle and
one RSU, and contains both high-ways and intersections. However, DAIR-V2X
is not capable of V2V data fusion or any other scenarios with more than two
terminals. Our proposed dataset is generated by the CARLA simulator with six
different scenarios and reasonable settings of RSUs and aux vehicles. Besides,
with the related codes (which will also be released with the dataset), researchers
can add any type and any number of sensors at any location as needed. A com-
parison to the above datasets is provided in Table 1.

Table 1. A detailed comparison between datasets. For DAIR-V2X, we choose DAIR-
V2X-C since only this part is captured synchronously by both vehicles and infrastruc-
ture sensors.

Dataset Year V2X Scenarios Viewpoints Frames Extensibility Resolution

KITTI 2012 none – 1 15 k × 1382× 512 64 lines
nuScenes 2019 none – 1 1.4 M × 1600× 1200 32 lines
OPV2V 2021 V2V 6 2-7 (avg. 3) 11.5 k � 800× 600 64 lines
V2X-Sim 2022 V2V+V2I 1 2-5 10 k � 1600× 900 32 lines
DAIR-V2X-C 2022 V2I 1 2 39 k × 1920× 1080

I: 300 lines; V: 40 lines
DOLPHINS (Ours) 2022 V2V+V2I 6 3 42 k � 1920× 1080 64 lines

3 DOLPHINS Dataset

3.1 Settings of Traffic Scenarios

We select six typical autonomous driving scenarios and several common types of
weather from the preset scenarios of the CARLA simulator (as shown in Fig. 5).
In each scenario, we set three units (RSU or vehicles) to collect both images
and point cloud information. The first unit is attached to the vehicle we drive,
namely, the ego vehicle, which provides us with the main viewpoint. In each
simulation round, we initialized it at a specific location. The other two units will
also be set up at appropriate positions. They are set on the RSUs or the auxiliary
vehicles selected from the scenario and initialized at a specially designated point
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with a stochastic vehicle model. We initially set 20–30 vehicles as well as 10–
15 pedestrians within a specific area around the ego vehicle, which is 100–150
meters in length and 100m in width. The initial locations are randomly selected
from the preset locations provided by the CARLA simulator, which guarantees
that no collisions will happen.

In each scenario, our ego vehicle chooses a specific route. At the same time, we
collect the information of all sensors synchronously every 0.5 s in the simulation
environment, i.e., at the rate of 2 fps. After the vehicle passes through the specific
scenario, we wind up the current simulation round, reinitialize the scenario and
start a new one. During each round, except for our ego vehicle and the possible
auxiliary vehicle, all other traffic participants appear in a reasonable position
randomly at the beginning and choose their route by themselves freely.

3.2 Settings of Sensors

We equip each unit with a LiDAR and an RGB camera, whose parameters are
listed in Table 2. For the convenience of calibration between different sensors, we
install both camera and LiDAR on the same point. The position of sensors on
the vehicle is illustrated in the supplementary material.

Table 2. Parameters of sensors on different units

Sensor type Parameter attributes RSU Vehicle

RGB Camera Horizontal field of view in degrees 90 90
Resolution 1920× 1080 1920× 1080

Height in meters 4 0.3+hveh
a

LiDAR Number of lasers 64 64
Maximum distance to measure in meters 200 200
Points generated by all lasers per second 2.56× 106 2.56× 106

LiDAR rotation frequency 20 20
Angle in degrees of the highest laser 0 2
Angle in degrees of the lowest laser −40 −24.8
General proportion of points that are randomly dropped 0.1 0.1

a hveh denotes the height of the ego vehicle

3.3 Extra Data and Calibrations

For each scenario, We divide our data into the training set and the test set at
the ratio of 8:2. Each set contains the original pictures taken by the camera,
the point cloud information generated by LiDAR, and the ground truth labels,
and the calibration files. The labels include the following information: (i) 2D
bounding box of the object in the image, (ii) 3D object dimensions and loca-
tion, (iii) the value of alpha and rotation_y which are defined in the KITTI
Vision Benchmark [13]. Except for the above data, we further introduce two
extra pieces of information in DOLPHINS: the locations of key vehicles and
the context-aware labels. These two kinds of data are essential for collaborative
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autonomous driving. The geo-positions of vehicles can greatly help to align the
perceptual information from different perspectives through coordinate transfor-
mations. Actually, to the best of our knowledge, all the published multi-view
collaborative perception algorithms are based on the locations of each vehicle,
no matter image-based [24,25] or LiDAR-based [4,5,34]. Besides, the intercon-
nected autonomous vehicles can have wider perception fields with the help of
other transportation participants and the RSUs, which means they can detect
invisible objects. Most of the datasets only provide the labels of those who are in
the view angle of sensors, which is not enough for the vehicles to make safe and
timely decisions. We provide the labels of all traffic participants within 100m
in front of or behind the ego unit, as well as 40m in the left and right side
directions.

3.4 Data Analysis

To further analyze the data components of the dataset, we calculate the number
of cars and pedestrians in each scenario both in the training dataset and the test
dataset (as illustrated in Table 3). What’s more, we categorize each object into
three detection difficulty levels based on the number of laser points reflected by
it in the point clouds. Easy objects reflect more than 16 points, as well as hard
objects have no visible point, and the remaining objects are defined as moderate
ones. In other words, the difficulty level actually indicates the occlusion level
of each object. Since it is unlikely for us to manually annotate the occlusion
level, such kind of definition is a suitable and convenient approximation. From
the statistical analysis, it turns out that there is no pedestrian in scenarios 4
and 6, i.e., on high-way and mountain roads, which is self-consistent. Scenario 1
contains the most cars and pedestrians, as it is a crowded intersection. Scenario
2 is a T-junction, which has fewer directions for vehicles to travel. Scenario 3 is
a steep ramp, which will be the hardest scenario along with Scenario 6, because
of the severe occlusions caused by height difference.

Table 3. Statistical analysis of objects in DOLPHINS training and test dataset

Scenario Training dataset Test dataset
Car Pedestrians Car Pedestrians
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

1 27548 4423 1090 12370 2117 349 7048 1096 296 3079 579 96

2 15428 1290 567 5641 2281 314 3895 330 155 1481 579 79

3 14365 4029 4291 3003 3462 584 3631 1068 1049 789 889 150

4 34012 11771 4089 0 0 0 8497 2937 1053 0 0 0

5 31648 6201 1993 4797 9734 1476 7918 1578 440 1161 2446 394

6 14035 2203 8531 0 0 0 3531 513 2150 0 0 0

Total 137036 29917 20561 25811 17594 2723 34520 7522 5143 6510 4493 719



504 R. Mao et al.

4 Benchmarks

In this section, we provide benchmarks of three typical tasks on our proposed
DOLPHINS dataset: 2D object detection, 3D object detection, and multi-view
collaborative perception. For each task, we implement several classical algo-
rithms.

4.1 Metrics

We first aggregate the training datasets of six scenarios altogether. The composed
dataset will contain various background characteristics and occlusion relation-
ships, which help the model to have better generalization ability. The training
dataset is split for training and validation at the ratio of 5:3, then the perfor-
mance of each detector is examined on the test dataset. Similar to KITTI [13],
we use Average Precision (AP) at Intersection-over-Union (IoU) threshold of 0.7
and 0.5 to illustrate the goodness of detectors on cars, as well as IoU of 0.5 and
0.25 for the pedestrians since the pedestrians are much smaller than cars. The
degree of difficulty is cumulative in the test, that is, the ground truths of easy
objects are also considered in moderate and hard tests.

4.2 Experiment Details

We use MMDetection [3] and MMDetection3D [7] to construct the training and
test pipeline. As for 2D object detection tasks, we finetune the COCO [22] pre-
trained models on our dataset. We also provide the GPU memory consumption
and the inference speed to illustrate the differences between different methods,
where the experiment is set with a batch size equal to 1. All the experiments are
performed on 8 RTX 3090 GPUs.

4.3 2D Object Detection

As mentioned in Sect. 2, there are four typical detection paradigms: anchor-based
two-stage detectors, anchor-based one-stage detectors, anchor-free one-stage
detectors, and the vision transformer. In this part, we select Faster R-CNN [30]
as the representative of anchor-based two-stage detectors, YOLOv3 [29] for the
anchor-based one-stage detectors, YOLOX [12] and TOOD [11] for the anchor-
free one-stage detectors, and DETR [2] for the vision transformer. Specifically,
we set the backbone network of Faster-RCNN and YOLOv3 to be Resnet-50,
so that the size of these networks is close to each other. The experiment results
are illustrated in Table 4 (left) and Table 5. It shows that all the detectors can
have good knowledge of different scenarios. However, the modern anchor-free
detectors can significantly speed up the entire inference procedure without loss
of precision. One abnormal result is the surprising rise of AP in hard and mod-
erate tasks compared with easy tasks, especially in the pedestrian detection. A
reasonable explanation is the large proportion of moderate and hard objects due
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to the characteristics of different scenarios. For example, in Scenario 6, which is a
mountain road, nearly half of the objects are severely occluded due to the undu-
lating planes. Thus, the detectors tend to propose much more candidate objects
to match those hard objects, which leads to low AP in easy tasks because of
the false positives. It is proved by the high recall scores in easy tasks. The same
thing happens in pedestrian detection, where the pedestrians are smaller and
thus more likely to be hard ones. However, low AP is not equal to poor perfor-
mance. On the contrary, meeting the ultra-reliability demands of self-driving, a
higher recall rate is much more meaningful than the AP, which can alert the
vehicles to the potential dangers in blind zones. More detailed analysis can be
found in the supplementary material.

Table 4. 2D and 3D object detection analysis on speed and cost

2D Method Inference speed (fps) Memory usage (MB)

Faster-RCNN 35.6 2513
YOLOv3 50.7 2285
YOLOX-S 58.1 2001
YOLOX-L 36.5 2233

TOOD 26.8 2247
DETR 26.3 2419

3D Method Inference speed (fps) Memory usage (MB)

SECOND 45.7 2433
PointPillars 36.8 3483
PV-RCNN 13.1 2899
MVX-Net 11.0 11321

4.4 3D Object Detection

As for the 3D object detection tasks, different modals of sensors lead to dif-
ferent detector architectures. We choose SECOND [39], PointPillars [18], and
PV-RCNN [31] as SOTA LiDAR-based methods in this part. What’s more, the
multi-modal detectors can combine the segmentation information from images
and the depth information from LiDARs, which is an advantage to the detection
of small objects which reflect few points, e.g. pedestrians. We also test MVX-
Net [32] on our multi-modality dataset. The experiment results are illustrated
in Table 4 (right) and Table 6. The results show that Scenarios 3 and 6 are the
corner cases where the AP is significantly lower than in other scenarios. Due to
the steep ramp, the LiDAR on the ego vehicle is hard to detect the opposite vehi-
cles and pedestrians, which is the fundamental defect of stand-alone intelligence.
What’s more, PV-RCNN [31] gains significantly better performance at the cost
of taking nearly four times as long as SECOND [39]. MVX-Net [32] is inferior
to those pure LiDAR-based methods, but it achieves surprising performance in
pedestrians, which means the rich segmentation of information from images is
profitable for the detection of small objects.

4.5 Multi-view Collaborative Perception

Based on the information to exchange, collaborative perception can be catego-
rized into three levels: raw-level (early fusion), feature-level (middle fusion), and
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Table 5. 2D object detection results on DOLPHINS

Scenario Method Car AP@IoU=0.7 Car AP@IoU=0.5 Pedestrian AP@IoU=0.5 Pedestrian AP@IoU=0.25
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

1 Faster R-CNN 89.18 80.73 80.62 90.07 89.72 88.76 87.12 90.77 90.82 87.12 90.79 90.88
YOLOv3 84.76 79.36 79.19 86.93 89.90 89.79 85.22 90.41 90.54 85.40 90.66 90.79
YOLOX-S 76.21 69.18 68.31 87.57 84.79 82.44 87.19 90.21 89.54 87.46 90.63 90.40
YOLOX-L 84.72 79.58 78.79 88.95 88.90 87.42 87.76 90.66 90.70 87.82 90.73 90.81
TOOD 88.30 80.04 79.97 89.76 90.07 89.71 89.02 90.83 90.87 89.03 90.83 90.88
DETR 82.29 77.76 75.61 89.40 88.43 86.79 87.16 89.44 89.19 87.77 90.17 90.14

2 Faster R-CNN 90.50 90.31 90.19 90.82 90.81 90.80 87.36 90.49 90.18 87.36 90.66 90.60
YOLOv3 89.33 89.46 89.48 90.17 90.27 90.47 75.96 90.05 90.11 75.96 90.47 90.59
YOLOX-S 86.46 79.98 79.53 90.20 89.85 89.54 86.99 86.70 80.76 87.24 89.66 87.92
YOLOX-L 89.48 86.87 80.85 90.61 90.47 90.25 86.29 89.51 87.65 86.29 89.98 89.72
TOOD 90.39 90.20 90.10 90.85 90.84 90.82 88.12 90.75 90.53 93.67 90.80 90.76
DETR 89.90 88.52 87.30 90.60 90.53 90.47 86.80 89.63 87.12 89.83 90.51 90.12

3 Faster R-CNN 85.23 88.55 80.25 86.54 90.18 81.51 75.89 89.77 90.67 75.89 89.80 90.76
YOLOv3 84.64 78.65 71.03 87.46 88.97 80.94 44.31 88.77 89.23 44.63 89.80 90.74
YOLOX-S 85.95 76.67 66.72 89.42 87.02 77.75 82.54 87.99 81.18 86.54 89.91 85.83
YOLOX-L 88.55 80.41 71.25 89.64 89.70 80.39 86.55 90.39 89.65 89.02 90.43 90.37
TOOD 88.25 80.47 71.50 89.62 90.30 81.26 85.60 90.15 90.69 85.60 90.18 90.83
DETR 87.94 85.00 79.18 89.17 88.71 86.74 85.73 87.49 85.87 85.73 88.69 87.56

4 Faster R-CNN 89.33 81.21 81.09 89.40 89.68 88.70 N/A N/A N/A N/A N/A N/A
YOLOv3 82.43 78.22 77.66 83.95 89.21 89.50 N/A N/A N/A N/A N/A N/A
YOLOX-S 88.97 76.37 70.29 89.65 86.24 84.43 N/A N/A N/A N/A N/A N/A
YOLOX-L 89.96 80.81 79.58 90.07 89.20 88.25 N/A N/A N/A N/A N/A N/A
TOOD 90.08 81.19 80.22 90.22 90.04 81.63 N/A N/A N/A N/A N/A N/A
DETR 88.17 76.00 74.13 89.44 86.50 86.00 N/A N/A N/A N/A N/A N/A

5 Faster R-CNN 89.70 80.86 81.04 90.25 89.34 88.82 68.07 80.10 81.06 71.49 80.17 81.41
YOLOv3 83.57 78.58 78.80 85.45 89.64 89.77 38.03 87.20 86.48 40.79 89.25 90.52
YOLOX-S 79.04 75.71 70.72 88.53 86.92 85.07 65.48 79.95 77.82 65.54 85.47 79.99
YOLOX-L 87.88 80.14 80.18 89.20 89.53 88.75 64.05 87.73 81.18 64.05 88.61 87.24
TOOD 89.12 85.12 80.73 89.87 89.92 89.96 77.25 88.18 81.41 78.71 89.16 88.43
DETR 84.26 78.03 75.95 89.58 88.35 87.00 74.59 81.21 77.55 77.04 86.34 83.82

6 Faster R-CNN 77.97 79.60 90.10 78.09 79.74 90.55 N/A N/A N/A N/A N/A N/A
YOLOv3 79.67 79.68 88.85 80.00 80.12 90.35 N/A N/A N/A N/A N/A N/A
YOLOX-S 81.63 79.53 79.73 82.34 81.28 88.61 N/A N/A N/A N/A N/A N/A
YOLOX-L 76.59 76.87 87.35 76.85 77.32 90.07 N/A N/A N/A N/A N/A N/A
TOOD 82.54 81.62 90.63 82.65 81.77 89.93 N/A N/A N/A N/A N/A N/A
DETR 85.09 83.27 81.81 85.47 84.03 89.89 N/A N/A N/A N/A N/A N/A

object-level (late fusion). Due to the 3D information provided by point clouds,
LiDAR-based data fusion and object detection have been widely discussed. We
realize a raw-level fusion algorithm based on DOLPHINS LiDAR data through
the superposition of point clouds from different perspectives. However, not all
the LiDAR-based 3D detection algorithms can be adapted to raw-level fusion
schemes. Since many detectors use voxels to represent the point clouds of a dis-
trict, the height of voxels is limited to reduce the computation complexity. The
limitation will not be violated when the cooperators are on the same horizon-
tal plane, as in [5] and [38]. However, when the data are from RSUs or from
vehicles on a mountain road (as in Scenario 3 and 6 in Fig. 5), the height of
the aggregated point clouds will be too large to tackle through traditional voxel
processing. In our experiment settings, PointPillars [18] is the only algorithm to
be compatible with the raw-level fusion scheme.
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Table 6. 3D object detection results on DOLPHINS

Scenario Method Car AP@IoU=0.7 Car AP@IoU=0.5 Pedestrian AP@IoU=0.5 Pedestrian AP@IoU=0.25
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

1 SECOND 95.65 90.37 87.36 98.79 96.05 92.97 74.17 70.08 68.19 96.78 95.86 93.47
PointPillar 96.63 92.09 88.83 98.55 96.19 93.13 70.12 65.41 63.56 95.57 94.38 91.98
PV-RCNN 98.14 93.87 90.69 98.90 96.18 92.98 83.67 80.36 78.37 97.31 96.50 94.09
MVX-Net 89.25 84.3 83.99 89.62 89.51 87.02 91.36 88.93 86.49 99.61 99.55 97.06

2 SECOND 96.33 91.32 88.77 98.48 97.50 95.56 66.71 59.35 57.27 95.07 91.00 87.94
PointPillar 97.39 93.06 91.70 98.23 97.33 95.48 59.65 53.33 51.35 92.52 87.58 84.49
PV-RCNN 98.57 94.76 91.15 99.12 97.44 94.33 78.74 71.59 68.94 97.37 93.91 90.60
MVX-Net 93.77 91.04 88.63 96.33 95.91 93.72 89.12 82.22 79.78 99.37 98.72 94.19

3 SECOND 80.30 67.16 54.96 85.51 75.08 64.29 49.87 29.31 27.05 92.73 60.26 55.88
PointPillar 78.94 68.29 56.78 85.67 75.75 66.75 37.49 22.04 20.00 82.64 52.55 48.25
PV-RCNN 85.93 73.85 60.59 87.54 77.18 64.30 63.95 37.46 34.53 90.93 58.96 54.32
MVX-Net 68.96 58.47 48.73 71.80 61.67 56.25 71.96 41.36 37.10 93.99 56.62 53.85

4 SECOND 97.81 92.11 84.47 99.33 97.35 90.50 N/A N/A N/A N/A N/A N/A
PointPillar 98.07 94.00 86.52 98.79 97.57 91.01 N/A N/A N/A N/A N/A N/A
PV-RCNN 99.37 95.54 87.70 99.50 97.78 89.98 N/A N/A N/A N/A N/A N/A
MVX-Net 91.76 86.39 83.73 91.96 89.19 86.55 N/A N/A N/A N/A N/A N/A

5 SECOND 96.49 91.41 87.44 98.68 96.36 92.71 75.33 65.03 58.90 97.37 94.29 87.52
PointPillar 97.45 92.92 89.30 98.81 96.52 92.94 71.36 62.07 56.27 97.32 93.59 85.70
PV-RCNN 98.57 94.39 90.49 99.23 97.21 93.15 90.47 79.07 71.64 98.94 95.45 87.29
MVX-Net 91.69 86.67 84.17 94.45 91.94 89.39 84.87 75.83 68.91 99.52 99.36 91.81

6 SECOND 90.53 82.60 56.05 97.54 82.11 68.15 N/A N/A N/A N/A N/A N/A
PointPillar 89.31 82.30 57.32 97.44 92.66 70.62 N/A N/A N/A N/A N/A N/A
PV-RCNN 95.95 89.29 62.05 98.23 93.95 69.28 N/A N/A N/A N/A N/A N/A
MVX-Net 87.53 75.29 52.60 90.76 80.55 57.97 N/A N/A N/A N/A N/A N/A

What’s more, we also extend the MVX-Net to the collaborative autonomous
driving scenarios. With the help of the point clouds from the LiDARs on the
RSUs, whose locations are usually much higher, the ego vehicle can have a wider
view with fewer occlusions. In addition, a single LiDAR on the RSU could free
all the nearby autonomous vehicles from the necessity of equipping expensive
LiDARs by sharing its point clouds through the V2I network, which brings great
benefits to the realization of Level-5 autonomous driving. In this work, we use
the point clouds from the RSU (or the aux vehicle 1 in Scenario 5) instead of
the ego vehicle by transforming the coordinates.

Table 7 illustrates the multi-view collaborative perception on PointPillars [18]
and MVX-Net [32], and the corresponding AP difference compared with stand-
alone detection. It turns out that as for the superposition of raw point clouds, the
ego vehicle can gain plentiful benefits from the richer information directly from
another perspective. Under those circumstances with severe occlusions such as
Scenario 3 and 6 and for those hard objects, the cooperative perception-based
PointPillars [18] achieves up to 38.42% increment in AP. However, the extra
noise also infects the detection of small objects, which is also discussed in the
supplementary material. On the other hand, as for the MVX-Net with the local
camera and RSU LiDAR, the performance is nearly the same as the one with
stand-alone sensors. It shows the opportunity to enable high-level autonomous
driving on cheap, LiDAR-free vehicles through the sensors on infrastructures.
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Table 7. Multi-view collaborative perception results on DOLPHINS

Scenario Method Car AP@IoU=0.7 Car AP@IoU=0.5 Pedestrian AP@IoU=0.5 Pedestrian AP@IoU=0.25
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

1 PointPillar CP 97.13 95.19 94.57 97.63 96.40 95.89 72.73 70.60 70.23 94.01 93.69 93.31
Difference 0.52% 3.37% 6.46% −0.93% 0.22% 2.96% 3.72% 7.93% 10.49% −1.63% −0.73% 1.45%
MVX-Net CP 89.34 84.30 84.02 89.64 89.49 87.00 90.77 86.08 85.92 99.61 99.53 97.04
Difference 0.10% 0.00% 0.04% 0.02% −0.02% −0.02% −0.65% −3.20% −0.66% 0.00% −0.02% −0.02%

2 PointPillar CP 97.97 97.03 96.42 98.52 97.89 97.55 57.51 51.89 50.92 91.94 88.52 86.54
Difference 0.60% 4.27% 5.15% 0.30% 0.58% 2.17% −3.59% −2.70% −0.84% −0.63% 1.07% 2.43%
MVX-Net CP 93.75 90.99 88.47 96.41 96.19 93.81 88.52 81.72 79.25 99.29 98.76 94.13
Difference −0.02% −0.05% −0.18% 0.08% 0.29% 0.10% −0.67% −0.61% −0.66% −0.08% 0.04% −0.06%

3 PointPillar CP 81.48 72.73 66.30 86.88 77.69 72.33 32.62 19.89 18.47 73.24 48.12 44.80
Difference 3.22% 6.50% 16.77% 1.41% 2.56% 8.36% −12.99% −9.75% −7.65% −11.37% −8.43% −7.15%
MVX-Net CP 69.04 58.48 48.77 71.61 61.60 54.18 70.82 39.76 37.43 91.87 56.60 51.76
Difference 0.12% 0.02% 0.08% −0.26% −0.11% −3.68% −1.58% −3.87% 0.89% −2.26% −0.04% −3.88%

4 PointPillar CP 97.60 96.22 94.40 97.93 97.00 95.74 N/A N/A N/A N/A N/A N/A
Difference −0.48% 2.36% 9.11% −0.87% −0.58% 5.20% N/A N/A N/A N/A N/A N/A
MVX-Net CP 91.70 86.38 83.69 91.92 89.22 86.58 N/A N/A N/A N/A N/A N/A
Difference −0.07% −0.01% −0.05% −0.04% 0.03% 0.03% N/A N/A N/A N/A N/A N/A

5 PointPillar CP 96.38 94.24 92.77 96.87 95.82 94.38 65.50 61.53 58.69 93.00 91.62 87.82
Difference −1.10% 1.42% 3.89% −1.96% −0.73% 1.55% −8.21% −0.87% 4.30% −4.44% −2.10% 2.47%
MVX-Net CP 91.63 86.57 84.06 94.49 91.94 89.40 82.56 72.02 67.19 99.78 96.93 89.44
Difference −0.07% −0.12% −0.13% 0.04% 0.00% 0.01% −2.72% −5.02% −2.50% 0.26% −2.45% −2.58%

6 PointPillar CP 94.46 91.43 79.34 97.77 96.63 87.17 N/A N/A N/A N/A N/A N/A
Difference 5.77% 11.09% 38.42% 0.34% 4.28% 23.44% N/A N/A N/A N/A N/A N/A
MVX-Net CP 87.10 74.85 52.34 90.45 80.43 59.52 N/A N/A N/A N/A N/A N/A
Difference −0.49% −0.58% −0.49% −0.34% −0.15% 2.67% N/A N/A N/A N/A N/A N/A

5 Conclusions

In this paper, we present a new large-scale various-scenario multi-view multi-
modality autonomous driving dataset, DOLPHINS, to facilitate the research on
collaborative perception-enabled connected autonomous driving. All the data are
temporally-aligned and generated from three viewpoints, including both vehicles
and RSUs, in six typical driving scenarios, along with the annotations, calibra-
tions, and the geo-positions. What’s more, we benchmark several SOTA algo-
rithms on traditional 2D/3D object detection and brand-new collaborative per-
ception tasks. The experiment results suggest that not only the extra data from
V2X communication can eliminate the occlusions, but also the RSUs at appro-
priate locations can provide equivalent point clouds to the nearby vehicles, which
can greatly reduce the prime cost of self-driving cars. In the future, we are going
to further extend the number of infrastructures and aux vehicles, and construct
more realistic maps of the downtown.
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Abstract. Binary neural networks have recently begun to be used as a
highly energy- and computation-efficient image processing technique for
computer vision tasks. This paper proposes a novel extension of exist-
ing binary neural network technology based on the use of a Hadamard
transform in the input layer of a binary neural network. Previous state-of-
the-art binary neural networks require floating-point arithmetic at sev-
eral parts of the neural network model computation in order to maintain
a sufficient level of accuracy. The Hadamard transform is similar to a
Discrete Cosine Transform (used in the popular JPEG image compres-
sion method) except that it does not include expensive multiplication
operations. In this paper, it is shown that the Hadamard transform can
be used to replace the most expensive floating-point arithmetic portion
of a binary neural network. In order to test the efficacy of this proposed
method, three types of experiments were conducted: application of the
proposed method to several state-of-the-art neural network models, ver-
ification of its effectiveness in a large image dataset (ImageNet), and
experiments to verify the effectiveness of the Hadamard transform by
comparing the performance of binary neural networks with and without
the Hadamard transform. The results show that the Hadamard trans-
form can be used to implement a highly energy-efficient binary neural
network with only a miniscule loss of accuracy.

Keywords: Binary neural network · Hadamard transformation · DCT

1 Introduction

Although deep neural networks have resulted in highly accurate image classifica-
tion, object recognition, and other computer vision tasks, such networks typically
involve excessive amounts of numerical computation with excessive memory stor-
age requirements, making them difficult to use in energy or computation capa-
bility constrained environments. A popular neural network compression method
that can be used in such cases is binarization, in which 32-bit floating point
parameters are approximated using single-bit numbers.

Binary Neural Networks (BNNs) are neural networks that use extensive levels
of binarization throughout the network to achieve extreme network compression
with a concomitant but relatively small loss of accuracy. In order to maintain
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acceptable accuracy levels, such BNNs typically use a mixture of highly accurate
numbers (such as 32-bit floating point) and highly inaccurate binary numbers for
different types of parameters and/or different layers of the neural network. For
example, binarization of AlexNet [14] through the method proposed by Hubara
et al. [10], which is one of the early BNNs, can reduce the model size by 32 times
at the cost of a 28.7% reduction in accuracy [25] on the ImageNet dataset [2].
Later research works on BNNs attempted to reduce this extremely high accuracy
gap. The current state-of-the-art (SOTA) BNN [16] has approximately the same
model size as [10] with only a 1.9% reduction in accuracy on the ImageNet
dataset when compared to the equivalent non-binarized neural network model.
A standard method for measuring the inference cost of a neural network has
been proposed by Zhang et al. [31]. Referred to as arithmetic computation effort
(ACE), it counts the number of multiply-accumulate (MAC) operations, which
are the most computationally expensive operations used in a neural network,
weighted by the bit-widths of the operands used in those MAC operations.

In almost all previous state-of-the-art (SOTA) BNN models, the input layer
uses floating-point arithmetic. This is because binarization of the input layer
severely degrades the accuracy of a BNN [16–19,25]. However, due to its use
of floating-point arithmetic, the input layer has been found to be the major
contributor to the computation cost of a SOTA BNN. For example, when using
the popular SOTA BNN referred to as ReActNet [16], the input layer contributes
to approximately 65% out of the entire network ACE.

Previous studies on CNN have found that input layer extracts abstract fea-
tures such as colors and various edge directions in images [7,29]. The filters of
input layer resemble the Gabor filter [20] which analyzes specific frequency com-
ponents in each local area, so that can detect edge of image. The discrete cosine
transform (DCT), which is the encoding method used in the popular JPEG com-
pression format, also computes in a similar manner. Using this fact, Guegeun
et al. proposed to feed discrete cosine transformed data directly into a CNN,
without first decoding that JPEG compressed image into a raw image [7]. This
enabled the first few layers of the neural network to be pruned without any
accuracy loss.

The Hadamard transform, which is also known as the Walsh-Hadamard trans-
form, is similar transformation to the DCT. The main difference is that the
Hadamard transform is multiplication-free, and it only requires add/subtract
operations [23].

In this paper, we propose a new input layer using the Hadamard transform
for an energy-efficient BNN. The proposed layer is fed with raw images, and
it can replace conventional expensive floating-point MAC operations with light
8-bit add/subtract and logical operations. The input layer is expected to reduce
energy consumption of BNN, which can be measured by ACE metric, and to
achieve acceptable level of accuracy degradation. Experiments were conducted
to reveal a possibility of proposed input layer for BNN. First of all, a general-
ity of the layer was tested by applying it on binarized versions of two widely
used CNN architectures, MobileNetV1 [9] and ResNet-18 [8], on a small image
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dataset, i.e., CIFAR-10. Secondly, accuracy drop evaluation was performed on
ReActNet [16], which is the SOTA BNN in terms of the accuracy gap from its
real-valued counterpart. The test was conducted using the ImageNet dataset,
which consists of large-scale real images, so that the practicality of new layer for
real-world problem can be demonstrated. Lastly, the proposed input layer struc-
ture with trainable weight filters, instead of the Hadamard Transformation, was
investigated on ReActNet to validate the efficacy of the Hadamard transform for
BNNs.

2 Related Work

2.1 Binary Neural Networks

Parameter quantization is one of the methods of compressing convolutional neu-
ral networks. It is a method representing weight parameters and activations of
neural network, which are normally 32-bit floating point numbers, with fewer
number of N -bit width, such as 8, 4, and 2-bit. A size of the compressed net-
work can be reduced by 32/N times, and an improvement of inference speed can
be obtained [24].

A binary neural network is a special case of quantization with a single-bit
precision, which is the smallest bit width in computer system. The process of
quantization is binarization and it can be simply implemented using signum
function, which outputs the sign bit of input values. An exceptional advantage
of BNN over other quantized neural networks is in a convolution operation. The
convolution operation with the 1-bit operands requires bit-wise logical opera-
tor, which is fast and energy-efficient, instead of expensive and relatively slow
floating-point MAC unit [25]. Binary convolution refers to the convolution with
operands of single-bit precision. Therefore, BNN can save massive energy con-
sumption and reduce the size of deep neural network. Although early studies on
BNN achieved comparable level of accuracy on tiny image dataset [10], such as
MNIST [3] and SVHN [21], training results of BNNs on large-scale image showed
poor image classification accuracy [25]. So until recently, most BNN studies have
tried to mitigate the accuracy degradation.

Authors in [25], proposed that binarization error from real-valued operands to
its binarized version can be reduced by introducing scaling factor. [15] designed a
convolution layer with multiple binary convolution bases. The multiple outputs
from the multiple bases are accumulated to enhance representability of BNN.
[18] suggested adding high-precision values before binarization to the output of
binary convolution via short-cut and it improved model capacity. [17] proposed
that activations with high-precision should be binarized not simply by their
signs but by a threshold, which determines a value to be +1 or -1. The author
implemented signum function with trainable parameters to learn the appropri-
ate threshold during training time. The network with the method achieved the
smallest accuracy loss, which is caused by binarization of original full-precision
network.
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In addition to increasing the accuracy of BNNs, there is a study to reduce
inference cost of BNN. [31] presented an energy-efficient convolution block for
BNN. They also proposed arithmetical computing efficiency(ACE), which is a
metric to measure efficiency of neural network. It calculates energy consumption
on neural network inference by counting the number of MAC operations and
weighting the bit width of operands. Table 4 shows a summary of the accuracy
of this method as well as the previous methods described in this section.

2.2 Input Layer of Convolutional Neural Networks

CNN consists of convolutional layers which extract features of spatial data. Each
layer receives an data in the form of feature maps, extracts specific features,
and passes them to subsequent layer. What features to be extracted are deter-
mined through training process. More specifically, filters of convolutional layer
are shaped differently by training dataset. Interestingly, input layer of the neu-
ral network captures general features, such as color and texture. It is relatively
independent of the dataset used for training [29]. Subsequent layers are learned
to extract more detailed features based on the general features.

It is known that the general filters in the input layer resemble the Gabor
filter in image processing [7,29]. The Gabor filter is mainly used to extract
edge and texture of image [20]. Parameters in the filter, such as angle, width,
and repetition period of edge to be extracted from an image, can be selected
by engineer. The general filters of input layer, which are acquired from network
training, are similar to a set of several the Gabor filters with various combinations
of parameters.

Based on this fact, there are studies that apply the image processing tech-
nique to CNN’s input layer. For example, discrete cosine transform(DCT) is
proved its usefulness as an input layer by [7]. The paper showed that using DCT
as input layer, instead of conventional trainable input layer, can achieve better
accuracy for ResNet-50 architecture. In addition, the authors attempted to train
input layer with a regularizer, whose role is guiding the filters of input layer to
resemble DCT. But they concluded that training DCT-like filter is hard and
inefficient.

In case of BNN, all of the aforementioned methods for increasing the accuracy
of the BNN are not applied to input layer. This is because binarization of input
layer directly can degrades model’s performance severely [30], while the improve-
ment of execution time is small [25]. Recently, [30] suggested to transform input
image with thermometer encoding, which contains division, ceiling and rounding
operations, so it can avoid direct binarization of input layer. Alternatively, [31]
proposed 8-bit quantization for input layer rather than binarization.

2.3 Hadamard Transform

The Hadamard transform is used as a feature extractor in the field of image
and video processing. In [5], specific basis vectors of the Hadamard transform
is selected to detect shot boundary of videos. The transform can be used for
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image compression [4,6,28]. [4] suggested image compression method by taking
advantage of simple and efficient property of the Hadamard transform. A recent
study on CNN proposed a layer with Hadamard transform, which is designed
to replace 1 × 1 convolution layer of neural networks, to achieve faster network
inference [22].

3 Hadamard Transform as an Input Layer

3.1 Hadamard Matrix

Hadamard transform is one of the linear image transforms [26]. The transform
is an operator capable of processing 2D images and has averaging property [23].
And the transformed image can be inversely transformed into the original spatial
domain. Hadamard transform can perform the same function as DCT more effi-
ciently. This is because they are both orthogonal transforms [26] but Hadamard
transform uses Hadamard matrix, whose entries are +1 and −1, making the
operation simpler.

Hadamard matrix(H) is in square array form, and the matrix of N=2n order
can be obtained using the Kronecker product(1). When N=1, the entry is one
with 1, and for N=2n ≥ 2, the Hadamard matrix can be derived by recursively
utilizing the matrix of N=2(n−1) order. For example, when N=4, the Hadamard
matrix H4 consists of four H2, and the H2 holds four H1 which is one 1 with
appropriate sign of entries according to equation(1).

H2n = H2 ⊗ H2n−1 =
[
H2n−1 H2n−1

H2n−1 −H2n−1

]
(1)

H1 =
[
1
]

H2 =
[
1 1
1 −1

]
H4 =

⎡
⎢⎢⎣
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦ −→

ordered

⎡
⎢⎢⎣
1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎤
⎥⎥⎦ (2)

The matrix has several properties. The first property is that the matrix is
symmetric. Second, each row is orthogonal to each other. Third, how many times
the sign of the entries of the row changes is called sequency, and the Hadamard
matrix of N order consists of rows with sequency from 0 to N −1. If the rows are
ordered in ascending, it is exactly same as the Walsh matrix [23]. In this paper,
we refers to Hadamard matrix as the matrix with the rows of the ascending
ordered.

3.2 Hadamard Transform

Two-dimensional image can be processed with Hadamard transform using
Eq. (4). In the equation, the original image in spatial domain is denoted by
s(x, y) and transformed image is represented by G(u, v). The size of processed
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Fig. 1. Visualized 2D kernels of (a) DCT and (b) Hadamard transform for block size
of 8. Ordered Hadamard matrix is used to obtain (b).

image is the number of 2D kernels of Hadamard transform. The 2D kernels can
be obtained by outer product of rows and columns of Hadamard matrix. For
example, from the ordered H4, the first two kernels are 4× 4 as they are in (5).
In a same way, DCT on 2D image can be done using Eq. (3) and the kernels from
the DCT can be obtained. Figure 1 shows that the two kernel sets from DCT and
Hadamard transform are similar to each other. Additionally, transformed images
using the transforms are illustrated in Fig. 2 to provide qualitative comparison.

F (u, v) =
N−1∑
x=0

N−1∑
y=0

s(x, y) exp
(

−2πi

N
(ux + vy)

)
(3)

G(u, v) =
N−1∑
x=0

N−1∑
y=0

s(x, y)g(u,v)(x, y) (4)

g(1, 1) =

⎡
⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦ g(1, 2) =

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1

−1 −1 −1 −1
−1 −1 −1 −1

⎤
⎥⎥⎦ (5)

The characteristic of Hadamard transform is that no multiplication is
required, which results in efficient computation. Secondly, the energy before and
after transformation is preserved (6). And the computational result using the
zero sequency kernel(g(1, 1)) means the average brightness of the spatial domain
image (7). It is the same operation with average pooling layer in neural networks.
Moreover, the energy of most images is concentrated in this area, and for the
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Fig. 2. (a) Original image from ImageNet dataset and its transformed images using
(b) Hadamard transform and (c) DCT.

higher sequency kernels, relatively small amount of energy is held [23], which
enables image compression [4,6,28].

N−1∑
x=0

N−1∑
y=0

|s(x, y)|2 =
1

N2

N−1∑
u=0

N−1∑
v=0

|G(u, v)|2 (6)

G(0, 0) =
1

N2

N−1∑
x=0

N−1∑
y=0

s(x, y) (7)

3.3 Proposed Input Layer

As DCT can be used as input layer of CNN [7], and the DCT and Hadamard
transform are functionally same, it is possible to use kernels of Hadamard trans-
form input layer of the BNN. However, there are several considerations to mate-
rialize it.

Assume that there is a single-channel 2D image. Hadamard transform pro-
cesses on N by N size blocks of image in the spatial domain, where the blocks
are non-overlapped. In terms of convolution operation, this is same as window-
ing weight filters with stride step of N and producing N2 output channels.
However, to utilize Hadamard transform in input layer, the transform must be
implemented to overlap the N by N block size. This is to provide feature maps
of particular dimension, which can be different from structures of existing BNNs
but can not be covered with stride N , for subsequent layer. At the same time,
the overlapping should properly extracts features without hurting network’s per-
formance. It has been proved that overlapping 2D kernels on the spatial domain
image, which is called modified DCT(MDCT) [27], can extract features well in
CNN [11,27]. Considering the same functionality of DCT and Hadamard, it is
possible to adopting the MDCT manner on Hadamard transform.
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Fig. 3. Hadamard transform in proposed input layer. The operation can be done for
each channels with same N2 kernels. The number of kernels can be vary depending on
order of Hadamard matrix. The transformed images are concatenated in channel-wise.

In addition, an input image with 3-channels is normally fed into neural net-
work. Therefore, the kernels should be applied to each channel, which can be
regarded as grouped convolution [14], and the transform will eventually output
3×N2 channels. The process is depicted in Fig. 3. However, the aforementioned
particular dimension for subsequent layer also includes the number of chan-
nels(or depth). Therefore, the channel of 3 × N2 size need to flexibly modified
depending on possible BNN structures. To address this issue, pointwise binary
convolution with shortcut [17], which operates in bit-wise operators, is followed
by the Hadamard transform. When the dimension of shortcut and output of
pointwise convolution is not matched, channel-wise zero padding can used for
the shortcut. This proposed input layer is illustrated in Fig. 4.

Moreover, it is not necessary to have N2 kernels for transformation in the
input layer. Hadamard transform preserves the energy of the pre-transformed
spatial domain, while the high-sequency kernels could result fewer energy por-
tions. Even if these high-sequency kernels are discarded, the energy of the spatial
domain does not change significantly. This concept is used in one of the lossy
compression method, JPEG. Thus, the number of operations can be reduced by
ignoring insignificant energy loss. For example, when N = 4, the number of 2D
kernels to preserve entire energy is 16. However, our experiments witnessed that
no accuracy drop occurred using 10 kernels of low frequencies.

4 Evaluation

Experiments on proposed input layer have three parts. First of all, a generality
of proposed layer is validated. We took two representative used BNNs, whose
full-precision networks are based on ResNet and MobileNetV1 respectively, and
tested the proposed input layer on them. Also, the experiment includes compar-
ison between Hadamard transform to DCT as input layer. Next, in order to test
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Fig. 4. Structures of conventional and proposed input layer. The Hadamard transform
in proposed structure is performed by grouped convolution with 8-bit integer. Output
dimension of the operation depends on Kbasis ≤ N2, which is the number of 2-d
kernels of Hadamard transform. In this paper, we used N=4 and Kbasis=10. The
binary pointwise convolution can be operated by bitwise XNOR and bit count. And
shortcuts may requires channel-wise zero padding to match the dimension of the binary
pointwise convolution.

practicality of proposed layer, we replaced input layer of ReActNet [16], which
showed the best performance regarding accuracy degradation in this field, with
the proposed layer. The network with proposed layer was tested on real-world
large scale images, the ImageNet [2]. Lastly, we replaced the kernels of Hadamard
from the proposed input layer with binarized filters through training. Datasets
used in the experiments are CIFAR-10 [13] and ImageNet [2]. CIFAR-10 is a rep-
resentative small image(32 × 32) dataset and has 10 categories in it. The dataset
consists 50K training images and 10K test images. ImageNet contains 1.2M
training images and 50K validation images each of which can be categorized in
1K classes. Unlike CIFAR-10, the image sizes are different from one another, so
they are normally resized to fit a particular size(e.g. 224× 224) for training and
validation. Image classification accuracy and energy consumption of the MAC
operation are considered to compare the efficacy of proposed input layer. To
measure the energy consumption, we used ACE which is proposed by [31]. The
metric counts the number of MAC operations and each operation are weighted
by bit width of the operands. ACE for different precision is summarized in the
Table 1.

4.1 Generality of the Hadamard Transform as an Input Layer

Implementation Details. We implemented two BNNs based on ResNet and
MobileNet, which are widely used in BNN studies so far [15,17,19,30,31], and
trained them with CIFAR10 [13]. The binarization techniques, which are used
in this experiment, follow ReActNet [17]. On top of them, minor modifications



Energy-Efficient Image Processing Using Binary Neural Networks 521

Table 1. ACE metric [31]

Precision float int
32 16 bfloat 16 32 8 4 4 1

ACE 1024 256 256 1024 64 16 4 1

of BNN models were processed. Specifically, when experimenting with a ResNet
model, the ResNet-18 structure was used instead of ResNet-20, which has 3x3
kernel size at input layer. The same structure was used in [1]. Afterward we
refer to this network as ReActNet-18. And when testing MobileNetV1 based
BNN, we took the structure proposed by ReActNet [16] and reduced the stride
step of input layer from 2 to 1. The MobileNet-based BNN will be referred to
ReActNet-A, regardless of stride size at input layer.

There are three differences between baseline input layer and proposed input
layer. For the baseline, kernel size is 3×3 and standard 2d convolution is used. In
other words, group size is 1. And operands are high-precision with 32-bit floating
point. On the other hand, proposed input layer has a kernel size of 4 × 4, and
the grouped convolution with group size of the input channel(RGB channels
for conventional input image). Each groups take 10 2D kernels of Hadamard
transform. And binary point wise convolution is followed by the transform, to
flexibly control the number of output channels.

Two-stage training strategy, which is widely used in BNN training [17–19,31],
is adopted for training the BNNs. In the first step, only activations are binarized,
and weights remain 32-bit floating point number. In the second step, the previ-
ously trained model becomes the initial state, and then additional binarization
function for weights are added in the network. Thus in this step, both activations
and weights are binarized. Adam [12] optimizer was used, and hyperparameters
were set as follows. Training 100K steps for each stage with 256 epochs, batch
size of 128 and learning rate of 5e-4. Weight decay is used in the first stage of
learning, but not in the second stage [16].

Results. ReActNet-18 with conventional input layer, shows accuracy of 93.49%
on CIFAR10. ACE for the network is 2.36G and the input layer accounts for
76.63% out of the entire network ACE. On the other hand, in the case of using
the proposed layer, the accuracy dropped by 1.17% resulting in accuracy level of
92.51%. The network saved 75.13% of ACE compared to baseline. In ReActNet-
A, the trend were same as the ResNet-18. The accuracy of the baseline is 90.74%,
and the ACE is 1.31G. The baseline input layer occupies 69.18% of entire ACE.
However, when the input layer is replaced with the proposed layer, accuracy level
is 89.60% which is loss of 1.39% point, and the ACE is decreased by 66.70% com-
pared to the baseline. Additionally to compare Hadamard transform with DCT,
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we implemented proposed input layer with DCT instead of Hadamard trans-
form. As the two transformations are same in terms of functionality, accuracy
levels achieved with DCT are similar to with Hadamard transform. However,
DCT consumes more energy than Hadamard transform because the latter is
multiplication-free. The results are summarized in Table 2.

Table 2. Results on CIFAR10

Network Input layer Accuracy ΔAcc.(%p) ACE(1e9) Δ ACE

ReActNet-18 Baseline 93.94% – 2.36 –
DCT 92.97% –0.97 1.06 –55.18%
Proposed 92.51% –1.43 0.59 –75.13%

ReActNet-A Baseline 90.74% – 1.31 –
DCT 89.41% –1.33 0.91 –30.67%
Proposed 89.35% –1.39 0.44 –66.70%

4.2 BNN with Proposed Input Layer on ImageNet

Implementation Details. The baseline for this experiment is exactly same as
proposed in [16]. Stride step is 2 for both baseline and proposed input layer.
The two-stage strategy was applied on this experiment. The proposed network
was trained with 256 epochs, batch size of 256 and learning rate of 5e-6 for each
stage as the authors in [16] suggested. Weight decay was set 5e-6 and used only
for the first step.

Results. The baseline has a validation accuracy of 70.5% and ACE of 16.96G,
where input layer alone accounts for 65.42%. However, with the proposed input
layer, the ACE decrease by 63.08% at the cost of 1.38% of accuracy loss which
is summarized in Table 3. Compared to ReActNet’s real-valued counter part,
it was finally reduced by 3.28% point. The gap is superior to FracBNN [30],
which showed the second best result in the accuracy gap. As a result, the SOTA
BNN with the proposed input layer still showed the smallest accuracy gap from
real-valued counterpart and achieved better energy-efficiency. This result is sum-
marized in Table 4.

4.3 Hadamard Transform vs. Trained Binary Weights

As mentioned in Sect. 3, using the Hadamard transform as an input layer means
using the transform’s 2D kernels as weight filters. Since the filters consist of
only +1 and −1, the convolution operation consists of only add/sub without
multiplication. Thanks to this, we were able to implement energy-efficient BNNs.
However, this result can be attributed not to the kernels of Hadamard, but to
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Table 3. Results on ImageNet

Network Input layer Accuracy ΔAcc.(%p) ACE(1e9) Δ ACE

ReActNet-A Baseline 70.5% – 16.9 –
Proposed 69.12% –1.39 6.26 –63.08%

Table 4. Top-1 accuracy of BNNs on ImageNet.

Network Method Top-1 accuracy(%) Gap(%)

AlexNet Full-precision 56.6 –
BinaryNet [10] 27.9 –28.7
XNOR-Net [25] 44.2 –12.4

ResNet-18 Full-precision 69.3 –
ABC-Net (5 bases) [15] 65.0 –4.3
ABC-Net (1 base) 42.7 –28.6
Bi-RealNet [18] 56.4 –12.9
ReActNet [17] 65.5 –3.8

PokeBNN Full-precision 79.2 –
PokeBNN-1.0 [31] 73.4 –5.8

FracBNN Full-precision 75.6 –
FracBNN [30] 71.8 –3.8

ReActNet-A Full-precision 72.4 –
ReActNet(Adam) [16] 70.5 –1.9
Ours 69.12 –3.28

filters composed of +1 and -1. To make it clear, we created the same structure
as the proposed input layer and trained binarized weights from the scratch.

The experiment was conducted on ReActNet-A with CIFAR10 dataset. The
result showed that training filter was less accurate than proposed input layer and
the training curve was largely fluctuated as illustrated in Fig. 5. If the learning
process is unstable, the final accuracy can be deteriorated [16]. In general, it is
a phenomenon that occurs when the sign of binarized weights changes only at a
few steps, because the real-valued weights before binarization are close to zero
during the training time [16]. Empirically, this case can be solved by lowering
the learning rate, but BNN already uses a much lower learning rate than full-
precision network learning, so overall learning time can be increased to achieve
the same result.
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Fig. 5. Training curves of ReActNet-A on CIFAR10. The blue line is the network with
training input layer with binary weights, which is unstable. The orange line is the
network with the proposed input layer. Unlike the blue line, the accuracy of proposed
network increases without fluctuation even the filters are binary values.

5 Conclusion

The input layer of in state-of-the-art binary neural networks (BNNs) typically
use floating-point arithmetic because of the resulting steep drop in accuracy
when quantized and its negligible effect on inference speed. However, from an
energy consumption perspective, the layer consumes an abnormal amount of
energy. To address this issue, we proposed an energy-efficient input layer for
binary neural networks using a Hadamard transform. The proposed input layer
has been tested on ReActNet-A and ReActNet-18, which are MobileNetV1 and
ResNet-18 based BNN respectively. The energy consumption of BNN was mea-
sured by ACE, and with the proposed input layer, the networks’ ACE value was
reduced by up to 75%. In addition, the accuracy degradation caused by this
input layer was less than 1.5%.
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