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1 Introduction

In the opening article [1] of Journal of Comparative Effectiveness Research,
the journal’s founding editors pointed out that comparative effectiveness research
(CER) “draws from the disciplines of health technology assessment, outcomes
research, clinical epidemiology and implementation science, among others, to better
answer the fundamental question ‘which treatment will work best, in which patient,
and under what circumstances?”’

Besides traditional randomized controlled clinical trials (RCTs), CER is looking
at alternative real-world study designs [2], including:

– Pragmatic clinical trials such as pragmatic RCTs and large simple trials
– Observational studies such as case–control studies and cohort studies
– Non-randomized single-arm trials with external controls

In CER, causal inference plays an important role in deriving real-world evidence
(RWE) from the analysis of real-world data (RWD) that are generated from real-
world studies [3]. Research in causality has a long history, but in modern time,
different disciplines (e.g., social science, economics, and statistics) took different
paths. In this section, we provide a brief history of the development of causal
inference in statistics before we move on to recent developments.

In The Book of Why [4], Pearl shared his regret that even the founding fathers of
modern statistics such as Pearson hindered the development of causal inference in
the community of statistics at the early stage of modern statistics. Since Neyman
proposed the concept of potential outcomes in his 1923 Master’s thesis and
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Rubin in 1974 extended it into a general framework for causal inference in both
interventional studies and non-interventional settings [5], we have seen more and
more developments of causal-inference methods in the community of statistics.
Counterfactual causal inference is the first one on the list of eight most important
statistical ideas of the past 50 years selected by a 2021 paper [6]. Here we briefly
review three milestones.

The first milestone is propensity-score (PS)-based methods developed by Rubin
and colleagues, based upon a fundamental theorem proved in their 1983 paper
[7]. The class of PS-based methods includes four methods: (1) matching, (2)
stratification, (3) PS as covariate, and (4) weighting. The second milestone is
generalized methods (G-methods) developed by Robins and colleagues in 1990s
and 2000s, including three major methods: (i) g-formula, (ii) inverse probability
of treatment weighting (IPTW), and (iii) G-estimation. Refer to their book [8] for
a comprehensive review of G-methods. The third milestone is targeted learning
developed by van der Laan and colleagues, starting with their first paper on targeted
maximum likelihood estimation [9], leading to two books on targeted learning
[10, 11].

The remaining of the chapter is organized as follows. There is a rich literature
on reviewing and tutorials of causal inference methods, so we believe we cannot
do better in providing another comprehensive review. Instead, in Sects. 2–4, we
review some influential methods by making three binary choices: (a) conditional
or marginal, (b) weighting or standardization, and (c) time-independent or time-
dependent. In Sect. 5, we provide some discussion on the application of these
methods to real-world studies with intercurrent events.

2 Conditional or Marginal

2.1 Propensity-Score Methods

We start with a simple point-exposure study, in which A is a binary exposure
variable with .A = 1 being the investigative treatment and .A = 0 being the
comparator (say, the standard of care), Y is an outcome variable that is either
continuous or binary, and W is a list of covariates, which are believed to contain
all the measured confounders along with effect modifiers. A directed acyclic graph
(DAG) for this study is displayed in Fig. 1.

Fig. 1 A directed acyclic
graph of a point-exposure
study
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We conduct causal inference to test the existence and estimate the magnitude of
the relationship .A → Y , which is confounded by one back-door path [12], .A ←
W → Y . The randomization feature in RCTs removes the arrow in .W → A, such
that

.A ⊥⊥ W, (1)

leading to removing the confounding bias in the design stage. In non-randomized
real-world studies, thanks to the following theorem in [7], we are able to achieve the
desirable independence between A and W conditional on the PS function, .e(w) =
P(A = 1|W = w).

Theorem 1 (Theorem 1 in [7]) Treatment assignment and the observed covariates
are conditionally independent given the propensity score, that is,

.A ⊥⊥ W |e(W). (2)

There are four different PS methods based on the above theorem [13]: (1)
matching on the PS, (2) stratification on the PS, (3) covariate adjustment using the
PS, and (4) IPTW using the PS. Although the validity of all these four methods
depends on whether or not PS function .e(w) is estimated consistently, in order
to understand the pros and cons among them, it is helpful to understand the
“conditional” thinking behind PS methods (1)–(3) and the “marginal” thinking
behind PS method (4).

The first method, matching on the PS, attempts to mimic an RCT, creating
a matched subset conditional on which A and W are independent. The second
method, stratification on the PS, stratifies the dataset into several subsets, such
that conditional on each subset, A and W are approximately independent. The third
method, covariate adjustment using the PS, specifies a regression model of Y against
A and .e(W), modeling the conditional relationship between Y and A given .e(W).

Unlike the first three PS methods that take the conditional thinking, IPTW
takes the marginal thinking, creating two pseudo-populations, with one pseudo-
population in which all the subjects were treated by .A = 1 and the other
pseudo-population in which all the subjects were treated by .A = 0. Furthermore,
of these four PS methods, IPTW is the only one that can be generalized to methods
that can adjust for time-dependent confounding. Hence, we can consider IPTW as
the intersection of the class of PS methods and the class of G-methods. IPTW is
often discussed with marginal structural models (MSMs) [14], where we use MSMs
to define an estimand and use the IPTW method to estimate the estimand.
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2.2 Marginal Structural Models

Continue the above point-exposure study. Let .Ya=1 denote a subject’s outcome if
treated by the investigative treatment and .Ya=0 denote the outcome if treated by the
comparator. For continuous outcome or 0–1 binary outcome, we can consider the
following marginal structural models [14]:

.E(Y a) = α + βa, (3)

which are marginal models because they model the marginal distributions of poten-
tial outcomes .Ya=1 and .Ya=0 rather than the joint distribution, are structural models
because they model the potential outcomes rather than the observed outcomes,
and are saturated models because two unknown quantities (.E(Y 1) and .E(Y 0)) are
modeled by two parameters (.α and .β). Note that .β = E(Y 1)−E(Y 0) for continuous
outcome or .β = P(Y 1 = 1) − P(Y 0 = 1) for binary outcome is the average
treatment effect (ATE). In addition, for binary outcome, we may consider different
MSMs, for example, .logitP(Y a = 1) = α′ + β ′a, where .β ′ is the log odds ratio
between .Y 1 = 1 and .Y 0 = 1. Overall, the parameters in these MSMs can be
estimated using the IPTW estimators [14].

Because of potential confounding, linear regression analysis of .Y ∼ A for
continuous outcome is biased in estimating .β, and logistic regression analysis of
.Y ∼ A for binary outcome is biased in estimating .β ′. On the other hand, assuming
that there is no unmeasured confounding, using weight .ω = A/e(W)+(1−A)/(1−
e(W)), weighted linear regression analysis and weighted logistic regression analysis
are unbiased in estimating .β and .β ′, respectively.

The approach of MSM and IPTW can be generalized to analyze studies with
multi-level treatment, studies with continuous treatment doses, and studies with
time-dependent confounding [14].

3 Weighting or Standardization

There is a rich literature of causal inference methods beyond the PS methods, which
are well reviewed in several monographs (e.g., [8, 10, 11, 15, 16]). It is not our
intention to review these recent developments comprehensively. Instead, as in [17],
in this section, we describe two basic strategies, the weighting strategy and the
standardization strategy.

We continue the above point-exposure study, which generates a dataset consisting
of .Oi = (Wi,Ai, Yi), .i = 1, · · · , n. In (3), the causal quantity is defined as
parameter .β in the MSM. Here we define the causal quantity of interest as the
following ATE directly:

.θ∗ = E(Y 1) − E(Y 0). (4)
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In order to construct an estimand, we assume three assumptions [8]: the
consistency assumption, the no-unmeasured-confounder (NUC) assumption, and
the positivity assumption,

.Consistency : Y = AY 1 + (1 − A)Y 0,

NUC : Ya ⊥⊥ A|W, a = 0, 1,

Positivity : P(A = a|W = w) > 0, a = 0, 1;w ∈ supp(W).

In addition, we may need either or both of the following two functions, the PS
function from the propensity-score model of .A ∼ W ,

.g(a|w) = P(A = a|W = w), (5)

and the regression function from the outcome-regression model of .Y ∼ A + W ,

.Q(a,w) = E(Y |A = a,W = w). (6)

3.1 The Weighting Strategy

3.1.1 Estimand

Under those three identifiability assumptions, we have

. E

{
I (A = a)

P (A = a|W)
Y

}
∵ the positivity assumption

= E

[
E

{
I (A = a)

P (A = a|W)
Y

∣∣∣∣W
}]

by the double expectation formula

= E

[
E

{
I (A = a)

P (A = a|W)
Ya

∣∣∣∣W
}]

∵ the consistency assumption

= E

[
E

{
I (A = a)

P (A = a|W)

∣∣∣∣W
}

E{Ya

∣∣∣∣W }
]

∵ the NUC assumption

= E
[
E{Ya|W }] ∵E(I (A=a|W)=P(A=a|W)

= E(Y a). by the double expectation formula

Hence, we have

.θ∗ = E(Y 1) − E(Y 0) = E

{
I (A = 1)

P (A = 1|W)
Y

}
− E

{
I (A = 0)

P (A = 0|W)
Y

}
. (7)
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This leads to the following estimand,

.θ = E

{
I (A = 1)

g(1|W)
Y

}
− E

{
I (A = 0)

g(0|W)
Y

}
. (8)

We call this strategy of defining estimand as the weighting strategy because it
uses the inverse of .g(a|w) = P(A = a|W = w) as the weights in the definition of
the estimand. Using these weights, it creates two pseudo-populations: one pseudo-
population in which all the subjects would have been treated by .a = 1, leading to
the first term in the right-hand side of (8), and the other pseudo-population in which
all the subjects would have been treated by .a = 0, leading to the second term.

3.1.2 Initial Estimator

If we obtain an estimator of the PS function, .̂g(a|w), using some statistical model,
say logistic regression model, then we can obtain an initial estimator of .θ , the IPTW
estimator,

.̂θIPT W = 1

n

n∑
i=1

I (Ai = 1)

ĝ(1|Wi)
Yi − 1

n

n∑
i=1

I (Ai = 0)

ĝ(0|Wi)
Yi. (9)

3.1.3 Doubly Robust Estimator

Although initial estimator .̂θIPT W is asymptotically consistent if the model of
.A ∼ W is correctly specified in the construction of .̂g(a|w), it is not asymptotically
efficient. Therefore, it is desirable to develop an augmented estimator that is
asymptotically efficient under some model specification requirements.

According to semi-parametric efficiency theory (e.g., [10, 18]), the efficient score
of estimating .θ is given by

.D(θ; g,Q) = 2A − 1

g(A|W)
[Y − Q(A,W)] + Q(1,W) − Q(0,W) − θ. (10)

Based on this efficient score function, we can apply the estimating equation
approach to obtain an augmented estimator of .θ , .̂θAIPT W , such that

.

n∑
i=1

D(θ̂AIPT W ; ĝ, Q̂)(Wi,Ai, Yi) = 0, (11)

where estimators .̂g and .Q̂ are obtained by specifying some models of .A ∼ W and
.Y ∼ A + W , respectively.
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Thus, by solving the estimating equation (11), we obtain the following aug-
mented inverse probability of treatment (AIPTW) estimator [19]:

.̂θAIPT W = 1

n

n∑
i=1

(
I (Ai = 1)

ĝ(1|Wi)
Yi − I (Ai = 1) − ĝ(1|Wi)

ĝ(1|Wi)
Q̂(1,Wi)

)

−1

n

n∑
i=1

(
I (Ai = 0)

ĝ(0|Wi)
Yi − I (Ai = 0) − ĝ(0|Wi)

ĝ(0|Wi)
Q̂(0,Wi)

)
. (12)

According to the theory of estimating equations [19], .̂θAIPT W is a doubly robust
estimator; that is, it is asymptotically consistent if either the propensity-score model
or the outcome-regression model is correctly specified, and it is asymptotically
efficient if both models are correctly specified.

3.2 The Standardization Strategy

3.2.1 Estimand

Under those three identifiability assumptions, we have

. E(Y a)

= E{E(Y a|W)} by the double expectation formula

= E{E(Y a|A = a,W)} ∵ the NUC assumption and positivity assumption

= E{E(Y |A = a,W)}. ∵ the consistency assumption

Hence, we have

.θ∗ = E(Y 1) − E(Y 0) = EW {E(Y |A = 1,W) − E(Y |A = 0,W)}. (13)

This leads to the following estimand:

.θ = EW {Q(1,W) − Q(0,W)} =
∫

[Q(1, w) − Q(0, w)]dPW(w), (14)

where .PW(w) is the probability distribution of W in the study population.
We call this strategy of defining estimand as the standardization strategy because

it uses the standardization expectation over the marginal distribution of W of the
study population, .EW {Q(a,W)}, for .a = 0, 1.
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3.2.2 Initial Estimator

If we obtain an estimator of the regression function, .Q̂(a,w), using some regression
model, say generalized linear model, then we can obtain an initial estimator of .θ ,

.̂θMLE = 1

n

n∑
i=1

[Q̂(1,Wi) − Q̂(0,Wi)] =
∫

[Q̂(1, w) − Q̂(0, w)]dP̂W (w), (15)

where .P̂W is the empirical distribution of W , which is a non-parametric maximum
likelihood estimator of .PW . Following [10], we call the above estimator as
maximum likelihood estimator (MLE). To understand this, let .θ = θ(Q,PW). If
.Q̂ and .P̂W are MLEs of Q and .PW , respectively, then .̂θMLE = θ(Q̂, P̂W ) is MLE
of .θ = θ(Q,PW).

3.2.3 Doubly Robust Estimator

Although initial estimator .̂θMLE is asymptotically consistent if the model of
.Y ∼ A + W is correctly specified in the construction of .Q̂(a,w), it may not be
asymptotically efficient. Therefore, it is desirable to develop a targeted estimator
that is asymptotically efficient.

The efficient score of estimating .θ = θ(Q,PW) in (10) can be written as
.D(Q,PW , g)(W,A, Y ), which equals

.
2A − 1

g(A|W)
[Y − Q(A,W)] + Q(1,W) − Q(0,W) − θ(Q,PW). (16)

Based on this efficient score function, [9] develops the targeted learning technique
to obtained estimators .(Q̂∗, P̂ ∗

W, ĝ∗) such that

.

n∑
i=1

D(Q̂∗, P̂ ∗
W, ĝ∗)(Wi,Ai, Yi) = 0, (17)

where .P̂ ∗
W = P̂W , the empirical estimator of .PW , and .̂g∗ and .Q̂∗ are some updated

estimators of initial estimators .̂g and .Q̂, respectively. Thus, we can construct the
targeted maximum likelihood estimator (TMLE),

.̂θT MLE = θ(Q̂∗, P̂W ) =
∫

[Q̂∗(1, w) − Q̂∗(0, w)]dP̂W (w). (18)
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3.3 Implementation and Comparison

Consider the implementation of the aforementioned four estimators: IPTW, AIPTW,
MLE, and TMLE. We can use SAS procedure “CAUSALTRT” to implement
.̂θIPT W , .̂θMLE , and .̂θAIPT W , along with their statistical inferences. Please see the
following skeleton of the SAS procedure:

PROC CAUSALTRT;
MODEL outcome = covariate_1 covariate_2 ... ;
PSMODEL treatment = covariate_1 covariate_2 ...;
RUN;

In the above SAS procedure, there are “PSMODEL” and “MODEL” statements:
(1) if only a generalized linear model (GLM) of .A ∼ W is specified in the
“PSMODEL” statement, it implements .̂θIPT W , (2) if only a GLM of .Y ∼ A + W

is specified in the “MODEL” statement, it implements .̂θMLE , and (3) if two GLM
models are specified in the “PSMODEL” and “MODEL” statements, respectively, it
implements .̂θAIPT W .

Furthermore, we can consider flexible models other than GLM (say, super learner
[20]) to obtain initial estimators .Q̂ and .̂g to improve the chance of consistency
in estimating functions .Q and g. For this aim, we can use R function “tmle” in
R package “tmle” [21] to implement .̂θT MLE , along with its standard error for
conducting statistical inference. Please see the following skeleton of the R function:

tmle(Y, A, W,
Q.SL.library = c("SL.glm", "tmle.SL.dbarts2", "SL.glmnet"),
g.SL.library = c("SL.glm", "tmle.SL.dbarts.k.5", "SL.gam"),
family = "gaussian", ...)

In the above R function, we see that we adopt the same set of notations for
variable names and function names in this chapter (e.g., Y , A, W , g, Q) from the R
package “tmle,” which makes it easy for us to plug in values into the arguments. For
example, the “Q.SL.library” argument allows us to specify a flexible super learner
model for the Q function, with a default library consisting of generalized linear
model (glm), discrete Bayesian additive regression tree (dbart), and glm model
regularized by elastic net (glmnet), while the “g.SL.library” argument allows us to
specify a super learner model for the g function, with a default library consisting of
glm, dbart, and generalized additive model (gam). Besides there default options, we
can prespecify other options for the super learner libraries, including highly adaptive
lasso. In addition, the “family” argument can take on default value “gaussian” for
continuous outcome and other value “binomial” for binary outcome.

Chapter 6 of [10] provides both theoretical comparisons and numerical com-
parisons (extensive simulations and case studies) between these four methods.
Here we only summarize some comparisons briefly. First, AIPTW and TMLE are
doubly robust versions of IPTW and MLE, respectively. Second, AIPTW relies on
parametric modeling of Q and g, while TMLE allows for flexible modeling of Q

and g using super learner. Third, MLE and TMLE are plug-in estimators, which
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are more stable than the weighted estimators. Fourth, all the four methods are G-
methods, which can be generalized to analyze longitudinal data with time-dependent
confounding.

4 Time-Independent or Time-Dependent

In the above point-exposure study, the treatment status is determined at a single
time (time zero) for all the subjects and the treatment effect does not need to
make references to the time at which treatment occurs [8]. On the other hand, in
longitudinal studies with time-dependent treatments or intercurrent events, we need
to incorporate time explicitly [8].

Chapter “Personalized Medicine with Advanced Analytics” of this book will
review statistical methods for personalized medicine and dynamic treatment
regimes. In this chapter, we focus on longitudinal studies with static treatment
regimes and intercurrent events.

Assume that there is one longitudinal study starting with baseline .t = 0, along
with follow-up visits, .t = 1, · · · , T . Assume that the primary endpoint Y is the
outcome variable at the final visit T . Let .A = (A0, · · · , AT −1) be the actually
received treatment sequence and .At = (A0, · · · , At ) be the treatment up to t ,
.t = 0, · · · , T − 1. Let .W0 be baseline covariates, .Wt be the vector including
time-dependent covariates and intermediate outcome, and .Wt = (W0, · · · ,Wt ) be
the vector consisting of all the observed history up to time t including baseline
covariates, time-dependent covariates, and intermediate outcomes.

Let .a = (a0, · · · , aT −1) be a given static treatment regime. At each time t ,
.at = 1 stands for treated by the investigative treatment, 0 for the comparator, .NA
for treatment discontinuation, and 2 for some rescue medication. Two examples are
.a = 1 = rep(1, T ), which means the subject is initially treated by .a0 = 1 and
throughout, and .a = 0 = rep(0, T ), which means the subject is initially treated by
.a0 = 0 and throughout.

Let .Ya0
be the potential outcome if the subject follows the static treatment regime

.a0 = (a0
0, · · · , a0

T −1). The population summary of .Ya0
is referred to as the value of

.a0 in [16]. For continuous or binary outcome variable, we define the value of .a0 as

.ν∗(a0) = E{Y a0}. (19)

In order to construct an estimand for the evaluation of the value, .ν∗(a0), we also
need three identifiability assumptions [8], the consistency assumption,

.Ya0 = Y if A = a0, (20)

the static sequential exchangeability assumption (a.k.a., the NUC assumption),
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. Ya0 ⊥⊥ A0|W0,

Y a0 ⊥⊥ At |(At−1,W t ), for t = 1, · · · , T − 1, (21)

and the positivity assumption,

.P
(
A = a0|W0 = w0

)
> 0, for w0 ∈ supp(W0). (22)

Consider a longitudinal study that generates a dataset consisting of .Oi =
(W0i , A0i , · · · ,WT −1,i , AT −1,i , Yi), i = 1, · · · , n. In the following two subsec-
tions, we will describe four major estimators, IPTW, AIPTW, MLE, and TMLE,
that are respectively generalized from those four G-estimators described in Sect. 3.
For this aim, we define two series of functions.

Propensity-Score Modeling
Let .H0 = W0 and .Ht = (W t , At−1) be the history up to t before making decision
.At , .t = 1, · · · , T − 1. Define the PS functions from modeling .At ∼ Ht ,

.gt (a|ht ) = P(At = a|Ht = ht ), t = 0, . . . , T − 1. (23)

We can obtain an estimator of .gt (a|ht ), .̂gt (a|ht ), using some statistical model such
as logistic regression model.

Outcome-Regression Modeling
We attempt to define regression functions from modeling .Y ∼ At + Ht , .t =
0, . . . , T − 1. However, the outcome variable Y is measured after the final decision
point .T − 1, which depends on decisions made between .t + 1 and .T − 1.
Therefore, we should apply some special approach to define them. The most
popular approach is the backward induction approach [16], which defines regression
functions recursively from decision point .T − 1 to decision point 0.

At decision point .T − 1, define

.QT −1(HT −1, AT −1) = E(Y |HT −1, AT −1), (24)

which can be estimated using some regression model such as GLM, with its
estimator denoted as .Q̂T −1(hT −1, aT −1). Note that .(hT −1, aT −1) = (wT −1, aT −1).
Next, define .Q̃T −1(HT −1) = QT −1(HT −1, a

0
T −1), which is the expected outcome

if the treatment at .T − 1 is consistent with the static treatment regime .a0 at .T − 1
and which can be used as the model outcome variable at decision point .T − 2.

At decision point .t = T − 2, . . . , 1, define

.Qt(Ht , At ) = E(Q̃t+1(Ht+1)|Ht,At ), (25)

which can be estimated using some regression model such as GLM, with its
estimator denoted as .Q̂t (ht , at ). Note that .(ht , at ) = (wt , at ). Next, define
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.Q̃t (Ht ) = Qt(Ht , a
0
t ), which is the expected outcome if the treatments at decision

points from t to .T − 1 are consistent with the static treatment regime .a0 at decision
points from t to .T − 1.

Finally, at decision point .t = 0, define

.Q0(W0, A0) = E(Q̃1(H1)|W0, A0), (26)

which can be estimated using some regression model such as GLM, with its
estimator denoted as .Q̂0(w0, a0). Define .Q̃0(W0) = Q0(W0, a

0
0), which is the

expected outcome if the subject takes the static treatment regime .a0 at all decision
points from 0 to .T − 1.

4.1 The Weighting Strategy

4.1.1 Estimand

By the weighting strategy, we can define the corresponding estimand for the value
of .a0. That is, under those three identifiability assumptions, .ν∗(a0) is equal to

.ν(a0) = E

{
I [A = a0]Y

g0(a
0
0 |W0)

∏T −1
t=1 gt (a

0
t |Wt,At−1)

}
, (27)

where propensity-score functions g’s are defined in (23).

4.1.2 Initial Estimator

If we obtain estimators of propensity-score functions, .̂gt , .t = 0, · · · , T − 1, then
we can obtain an initial estimator of .ν(d),

.̂νIPT W (a0) = 1

n

n∑
i=1

{
I [Ai = a0]Yi

ĝ0(a
0
0 |W0i )

∏T −1
t=1 ĝt (a

0
t |Wti, At−1,i )

}
. (28)

4.1.3 Double-Robust Estimator

According to semi-parametric efficiency theory (e.g., [11, 18]), the efficient score
of estimating .ν(a0) is given by

.D(ν(a0);P) =
T∑

t=0

Dt(ν(a0);P), (29)
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where P is the true underlying distribution of observation .Oi and

.D0(ν(a0);P) = Q0(W0, a
0
0) − ν(a0),

Dt (ν(a0;P);P) = I [At−1 = a0
t−1]∏t−1

s=0 gs(a0
s |Ws,As−1)

[Qt(Wt ,At ) − Qt−1(W t−1, At−1)],

t = 1, . . . , T − 1,

DT (ν(a0;P);P) = I [AT −1 = a0]∏T −1
t=0 gt (a

0
t |Wt,At−1)

[Y − QT −1(WT −1, AT −1)].

Therefore, if we further obtain estimators of regression functions, .Q̂t (ht , at ) (which
can be rewritten as .Q̂t (wt , at )), then we can obtain the following doubly robust
estimator for .ν(a0), by solving the estimating equation .D(ν(a0); P̂ ) = 0,

.̂νAIPT W (a0) = 1

n

n∑
i=1

{
I [Ai = a0]Yi

gT −1(WT −1,i )
+

[
1 − I [A0i = a0

0]
ĝ0(a0|W0i )

]
Q̂0(W0i , a

0
0)

+
T −1∑
t=1

[
I [At−1,i = a0

t−1]
gt−1(W t−1,i )

− I [Ati = a0
t ]

gt (W ti)

]
Q̂t (W ti, a

0
t )

}
, (30)

where .gt (W ti) = ĝ0(a0|W0i )
∏t

s=1 ĝs(a
0
s |Wsi, a

0
s−1).

4.2 The Standardization Strategy

4.2.1 Estimand

By the standardization strategy, we can define the corresponding estimand for the
value of .a0. That is, under those three identifiability assumptions, .ν∗(a0) is equal to

.ν(a0) = E{Q0(W0, a
0
0)}, (31)

where regression function .Q0 is defined in (26).

4.2.2 Initial Estimator

If we obtain an estimator of .Q0(w0, a0), .Q̂0(w0, a0), then we can obtain the
following estimator for .ν(a0):

.̂νMLE(a0) = 1

n

n∑
i=1

Q̂0(W0i , a
0
0). (32)
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4.2.3 Double-Robust Estimator

If we further obtain estimators of propensity-score functions, .̂gt , .t = 0, · · · , T − 1,
we can construct the corresponding doubly robust estimator. For this aim, we apply
the backward induction approach. At each decision point .t = T −1, T −2, . . . , 0, we
first obtain an initial estimator of regression function, .Q̂t (wt , at ), then we update
the initial estimator into .Q̂∗

t (wt , at ) via the targeted learning theory based on the
efficient score .Dt+1(ν(a0);P), where .Q̂∗

t (wt , at ) is on the least favorable submodel
that passes through .Q̂t (wt , at ). At the end, we obtain .Q̂∗

0(W0i , a
0
0) and thus the

doubly robust estimator,

.̂νT MLE(a0) = 1

n

n∑
i=1

Q̂∗
0(W0i , a

0
0). (33)

4.3 Implementation and Comparison

Similar to Sect. 3.3, here we provide some brief comparison. First, these four
methods are generalized from those four methods with the same names in Sect. 3.
Second, AIPTW and TMLE are doubly robust versions of IPTW and MLE,
respectively. Third, AIPTW relies on parametric modeling of .Qt ’s and .gt ’s, while
TMLE allows for flexible modeling of .Qt ’s and .gt ’s using super learner. Fourth,
MLE and TMLE are plug-in estimators, which are more stable than the weighted
estimators.

In practice, we can use R package “DTR” [16] to implement .̂νIPT W , .̂νMLE ,
and .̂νAIPT W , along with their statistical inferences, by specifying GLMs for .Qt ’s
and .gt ’s. We can use R package “ltmle,” with “l” standing for “longitudinal,” to
implement .̂νT MLE , by specifying either GLMs or super learner for .Qt ’s and .gt ’s.
Refer to [22] for a detailed description of R package “ltmle.” In the below, we
provide an example of using it to estimate the ATE for longitudinal studies with
intercurrent events.

Assume that we are interested in estimating the following ATE:

.θ = ν(1) − ν(0), (34)

which measures the treatment effect of the investigative static treatment regime
.a0 = 1 compared against the reference static treatment regime .a0′ = 0. In order
to understand this estimand, we should envisage one hypothetical world in which
all the patients follow .a0 = 1 throughout the study and the other hypothetical
world in which all the patients follow .a0′ = 0 throughout the study. That is,
in the construction of estimand (34), we apply the hypothetical strategy of ICH
E9(R1) [23] to handle intercurrent events (e.g., treatment discontinuation, treatment
changing, and rescue medication).
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Table 1 The structure of the
dataset in one example

Argument Variable namesa

Baseline covariates c(“L0.a”, “L0.b”, “L0.c”)

Lnodesb c(“L1.a”, “L1.b”)

Anodes c(“A0”, “A1”)

Cnodes c(“C0”, “C1”)

Ynodes c(“Y1”, “Y2”)
a The order of the variables in the dataset:

data.frame(L0.a, L0.b, L0.c, A0, C0, L1.a, L1.b,
Y1, A1, C1, Y2)

b .Lt in the Lnodes is the same as .Wt in the context

In order to estimate .θ in (34), we define the censoring variable .Ct , which is
a factor variable with two levels, “uncensored” or “censored,” at each time t ,
.t = 0, · · · , T − 1. If for time t , while .As = A0 for .s = 0, · · · , t , an intercurrent
event occurs between t and .t + 1, then .Ct = · · · = CT −1 = “censored." Note
that in this setting we consider the event that directly leads to censoring as the
intercurrent event. For example, assume that an adverse event leads to treatment
discontinuation, which directly leads to data censoring, and then we consider the
treatment discontinuation as an intercurrent event.

To demonstrate the use of R function “ltmle,” we look at one example where there
are two follow-up visits (.T = 2), three baseline covariates at .t = 0 (“L0.a”, “L0.b”,
“L0.c”), two time-dependent covariates at .t = 1 (“L1.a”, “L1.b”), treatment variable
measured at .t = 0, 1 (“A0”, “A1”), censoring variable measured at .t = 0, 1, and
outcome variable measured at .t = 1, 2 (“Y1”, “Y2”). Note that the L-node variables
form the time-dependent covariates .Wt ; that is, .Wt = Lt , .t = 0, 1. Table 1 displays
the structure of the dataset to be defined in R.

Here is an excerpt of R codes presented in [22] used to implement the TMLE
estimator in the above example, providing the point estimate and 95% confidence
interval of .θ in (34):

data <- data.frame(L0.a, L0.b, L0.c, A0, C0, L1.a, L1.b, Y1, A1,
C1, Y2)

Lnodes <- c("L1.a", "L1.b")
Anodes <- c("A0", "A1")
Cnodes <- c("C0", "C1")
Ynodes <- c("Y1", "Y2")
ltmle(data = data, Anodes = Anodes, Cnodes = Cnodes, Lnodes = Lnodes,
Ynodes = Ynodes, survivalOutcome = NULL,

abar = list(treament = c(1, 1), control = c(0,0)))

Here is a remark on how these methods can be extended to survival outcome
(a.k.a., time-to-event outcome). In the above R function, “survivalOutcome =
NULL” indicates that the outcome variable is either continuous variable or binary
having single Ynodes. We set “survivalOutcome = FALSE” for binary outcome
variable with multiple Ynodes. For survival outcome, we set “survivalOutcome =
TRUE” to indicate that .Yt nodes are indicators of an event, and if .Yt at some time
point t is 1, then .Ys , .s = t + 1, · · · , T − 1, should be 1.
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5 Discussion

In this chapter, we briefly review some recent statistical development of causal
inference methods beyond PS methods. Instead of providing a comprehensive
review, we investigate three checkpoints, which may be helpful for guiding us to
select an appropriate approach for any study at hand.

If we want to consider one of the four PS methods, then the first checkpoint is
whether the conditional approaches (matching, stratification, PS as covariate) or the
marginal approach (IPTW). IPTW is a G-method, which can be generalized from
point-exposure studies to longitudinal studies.

If we want to consider one of the G-methods, then the second checkpoint is the
weighting approaches (e.g., IPTW and AIPTW) or the standardization approaches
(e.g., MLE and TMLE). AIPTW is the doubly robust version of IPTW and TMLE
is the doubly robust version of MLE.

The third checkpoint is to consider the problem as a time-independent problem or
a time-dependent problem. Every G-method has two versions, one simple version
for time-independent problem and the other complex version for time-dependent
problem. Therefore, all the four methods (IPTW, AIPTW, MLE, and TMLE) have
versions for time-dependent problem.

We conclude the chapter with a brief discussion on how to apply these methods
to studies with intercurrent events (ICEs). ICH E9(R1) defines ICEs as “events
occurring after treatment initiation that affect either the interpretation or the
existence of the measurements associated with the clinical question of interest. It
is necessary to address intercurrent events when describing the clinical question of
interest in order to precisely define the treatment effect that is to be estimated.”
Therefore, we should specify how to handle ICEs in the definition of the estimand
and then select an appropriate causal inference method to estimate the estimand.

There are five ICH E9(R1) strategies for handling ICEs: (1) hypothetical
strategy, (2) treatment-policy strategy, (3) composite-variable strategy, (4) while-
on-treatment strategy, and (5) principal-stratum strategy.

5.1 Hypothetical Strategy for ICEs in Estimand Definition

Applying this strategy, we envision a scenario in which ICEs would not occur and
define the estimand of interest as in (34), comparing the treatment regime of taking
.A0 = 1 throughout against the treatment regime of taking .A0 = 0 throughout. The
methods described in Sect. 4.3 can be applied to estimate this estimand.

5.2 Treatment-Policy Strategy for ICEs in Estimand Definition

This strategy requires that we collect data even after the ICE occurrence. Applying
this strategy, we can use the value of the outcome variable regardless of whether
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or not the ICE occurs and define the estimand of interest as in (8) or (14). All
the methods described in Sect. 3 can be applied to estimate this estimand without
revising the definition of outcome variable.

5.3 Composite-Variable Strategy for ICEs in Estimand
Definition

Applying this strategy, we need to revise the definition of outcome variable. The
new outcome variable is a composite variable of the original outcome variable and
the ICE occurrence, and the estimand of interest can be defined as in (8) or (14)
with the new outcome variable. All the methods described in Sect. 3 can be applied
to estimate this estimand using the new outcome variable.

5.4 While-on-treatment Strategy for ICEs in Estimand
Definition

Applying this strategy, we need to revise the definition of outcome variable as well.
The new outcome variable is a function of the outcome variable measured prior to
the ICE occurrence and the time of ICE occurrence (e.g., the rate of change). The
estimand of interest can be defined as in (8) or (14) with the new outcome variable.
All the methods described in Sect. 3 can be applied to estimate this estimand using
the new outcome variable.

5.5 Principal-Stratum Strategy for ICEs in Estimand
Definition

Applying this strategy, as proposed by ICH E9(R1), “the target population might be
taken to be the principal stratum in which an ICE event would occur. Alternatively,
the target population might be taken to be the principal stratum in which an ICE
would not occur.” The estimand of interest can be defined as in (8) or (14), with
the outer expectation taken over the principal stratum of interest. To estimate this
estimand, we need to estimate the membership of the principal stratum. Then, all
the methods described in Sect. 3 can be applied, considering the estimated principal
stratum as the target population.
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