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Preface

The organic and evolving nature of real-world data (RWD) and real-world evidence
(RWE) responding to the fit-for-purpose requirements for expanding applications of
RWE to address payers, patients, physicians’ need along with supporting regulatory
decisions is a defining characteristic of this arena. Randomized controlled clinical
trials (RCTs) have been the gold standard for the evaluation of efficacy and safety
of medical interventions. However, the costs, duration, practicality, and limited
generalizability have incentivized many to look for alternative ways to optimize it
and address unique real-world research questions. In recent years, we have seen
an increasing usage of RWD and RWE in clinical development and life-cycle
management. The major impetus behind the interest in the use of RWE is the
increased efficiency in drug development, resulting in savings of cost and time,
ultimately getting drugs to patients sooner.

However, even with the encouragement from regulators and available guidance
and literature on the use of RWD and RWE in recent years, many challenges
remain. This book attempts to address these challenges by providing an end-to-end
guidance including strategic considerations, state-of-the-art statistical methodology
reviews, organization and infrastructure considerations, logistic challenges, and
practical use cases. The target audience is anyone involved, or with an interest, in
the use of RWE in their research for drug development and healthcare decision-
making. In particular, it includes statisticians, clinicians, pharmacometricians,
clinical operation specialists, regulators, and decision makers working in academic
or contract research organizations, government, and industry. Our goal for this book
is to provide, to the extent possible, a balanced and comprehensive coverage of key
considerations and methodologies for the uptake of RWE in drug development. This
book includes the following four parts:

• Part I: Real-World Data and Evidence to Accelerate Medical Product Develop-
ment

• Part II: Fit-for-use RWD Assessment and Data Standards
• Part III: Causal Inference Framework and Methodologies in RWE Research
• Part IV: Application and Case Studies

v



vi Preface

Part I consists of three chapters. Chapter “The Need for Real-World Evidence in
Medical Product Development and Future Directions” provides introduction and
background on the need for RWE and RWD in clinical development and life-
cycle management along with future directions. Chapter “Overview of the Current
Real-World Evidence Regulatory Landscape” reviews existing guidance documents
and precedents related to RWE by major regulatory agencies across the world.
It also outlines the key concepts underpinning evaluation of RWE and discusses
similarities and differences in those concepts in guidance documents from different
countries. When we talk about fit-for-purpose use of RWE, it is very important to
conceptualize right research questions that are clear and feasible to address. Chapter
“Key Considerations in Forming Research Questions and Conducting Research in
Real-World Setting” discusses key considerations in forming research questions.

Part II consists of four chapters. Chapter “Assessment of Fit-for-Use Real-World
Data Sources and Applications” provides valuable information to guide practitioners
on how to assess fit-for-use RWD sources via a framework and an example. As RWD
sources may contain key data elements in different places, chapter “Key Variables
Ascertainment and Validation in RW Setting” presents advanced analytics on how
to ascertain key variables such as disease status, exposure, or outcomes. Chapter
“Data Standards and Platform Interoperability” examines the role of health data
and interoperability standards, their harmonization, and role within data platforms
internationally as we see more utilization of platforms to interact with RWD for
RWE generation, from a regulatory science and Health Technology Assessment
(HTA) perspective. Often, one RWD source may not be sufficient to answer a
research question, and multiple RWD sources may need to be linked to enrich the
data and address the right research question. Chapter “Privacy-Preserving Record
Linkage for Real-World Data” discusses several aspects behind Privacy-Preserving
Record Linkage, including data pre-processing, privacy protection, linkage, and
performance evaluation.

Part III contains ten chapters. This part covers state-of-art statistical method-
ologies in causal inference with targeted learning in chapter “Causal Inference
with Targeted Learning for Producing and Evaluating Real-World Evidence”,
use of Estimand framework based on ICH E9 (R1) in RW setting along with
examples in chapter “Estimand in Real-World Evidence Study: From Frameworks
to Application”, clinical studies leveraging RWD using propensity score-based
methods in chapter “Clinical Studies Leveraging Real-World Data Using Propensity
Score-based Methods”, recent statistical development for comparative effectiveness
research beyond propensity-score methods in chapter “Recent Statistical Develop-
ment for Comparative Effectiveness Research Beyond Propensity-Score Methods”,
innovative hybrid designs and analytical approaches leveraging RWD and Clinical
Trial data in chapter “Innovative Hybrid Designs and Analytical Approaches Lever-
aging Real-World Data and Clinical Trial Data”, statistical challenges for causal
inference using time-to-event RWD in chapter “Statistical Challenges for Causal
Inference Using Time-to-Event Real-World Data”, sensitivity analyses for unmea-
sured confounding in chapter “Sensitivity Analyses for Unmeasured Confounding:
This Is the Way”, sensitivity analysis in the analysis of RWD when underlaying
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Preface vii

assumptions addressing a research question are not met in chapter “Sensitivity
Analysis in the Analysis of Real-World Data”, personalized medicine with advance
analytics in chapter “Personalized Medicine with Advanced Analytics”, and use
of RWE in HTA submissions in chapter “Use of Real-World Evidence in Health
Technology Assessment Submissions”.

Part IV contains three chapters. To promote uptake of RWE usage, practical
examples will show the way. Chapter “Examples of Applying Causal-Inference
Roadmap to Real-World Studies” demonstrates the application of causal-inference
roadmap to RW studies via examples. Chapter “Applications Using Real-World
Evidence to Accelerate Medical Product Development” presents six application
examples where the regulatory contexts are summarized, whether the use of
RWE/RWD is pivotal or supplemental for the regulatory decisions, assessment of
regulatory quality data sources, statistical methods employed, settings where the
approvals were obtained or denied, and any regulatory opinions for the submission
and regulatory decision. Finally, chapter “The Use of Real-World Data to Support
the Assessment of the Benefit and Risk of a Medicine to Treat Spinal Muscular
Atrophy” details a case study where RWD is used to support the assessment of the
benefit and risk of a medicine to treat spinal muscular atrophy.

We would like to express our sincerest gratitude to all the contributors who made
this book possible. They are the leading experts in the use of RWE and RWD from
industry, regulatory, and academia. Their in-depth discussions, thought-provoking
considerations, deep knowledge in the field, and innovative approaches based on
a wealth of experience make this book unique and valuable for a wide range of
audiences. We are indebted to Donna Chernyk of Springer Nature for providing us
with the opportunity for publication. Our immense thanks also go out to our families
for their unfailing support and understanding of the many nights and weekends that
we spent working on this book. Finally, the views expressed in this book are those
of the authors and not necessarily reflective of the positions, policies, or practices of
the authors’ respective organizations.

Westfield, NJ, USA Weili He, PhD
Lincolnshire, IL, USA Yixin Fang, PhD
Vernon Hills, IL, USA Hongwei Wang, PhD
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Accelerate Medical Product Development



The Need for Real-World Evidence
in Medical Product Development
and Future Directions

Weili He, Yixin Fang, Hongwei Wang, and Charles Lee

1 Introduction

Randomized controlled clinical trials (RCTs) have been the gold standard for the
evaluation of efficacy and safety of medical interventions. However, the costs,
duration, practicality, and limited generalizability have incentivized many to look
for alternative ways to optimize it. In recent years, we have seen an increasing usage
of real-world data (RWD) and real-world evidence (RWE) in clinical development
and life-cycle management. Especially encouraged by legislations and guidance
released by regulators and special interest groups in recent years, sponsors have
been actively seeking guidance and application use cases. In 2016, the twenty-first
Century Cures Act was signed into law [1]. It is designed to help accelerate medical
product development and bring new innovations and advances to patients who need
them faster and more efficiently. The Food and Drug Administration (FDA) PDUFA
(Prescription Drug User Fee Act) VI, released in 2017 for fiscal years 2018–2022,
enhances FDA’s ability to consider the possibilities of using “real world” (RW) data
as an important tool in evaluating drug safety and efficacy [2].

In December 2018, FDA released an FDA’s RWE Framework (henceforth called
Framework) [3]. The Framework defines RWD as “data relating to patient health
status and/or the delivery of health care routinely collected from a variety of
sources,” and RWE as “the clinical evidence about the usage and potential benefits
or risks of a medical product derived from analysis of RWD.” Examples of RWD in
the Framework include data derived from electronic health records (EHR), medical
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claims and billing data, data from product and disease registries, patient-generated
data and data from other sources, such as mobile devices. The Framework further
indicates that RWD sources can be used for data collection and to develop analysis
infrastructure to support many types of study designs to develop RWE, including,
but not limited to, randomized trials (e.g., large simple trials, pragmatic clinical
trials) and observational studies (prospective or retrospective).

More recently, the PDUFA VII Commitment letter for fiscal years 2023 through
2027 [4] provided further details on the FDA RWE program and indicated the
following key aspects:

(a) By no later than December 31, 2022, FDA will establish and communicate
publicly a pilot Advancing RWE Program.

(b) The Advancing RWE Program will include, but not be limited to, a list
of activities and components, some of which include (1) FDA will solicit
applications for RWE programs; (2) FDA will use structured review process
to evaluate and rank applications; (3) FDA will accept one to two eligible and
appropriate proposals each cycle, and several additional activities FDA will
convene following the solicitation and application.

(c) By no later than June 30, 2024, FDA will report aggregate and anonymized
information, on at least an annual basis and based on available sources (e.g.,
information provided by review divisions), describing RWE submissions to
CDER and CBER.

(d) By no later than December 31, 2025, FDA will convene a public workshop or
meeting to discuss RWE case studies with a particular focus on approaches for
generating RWE that can potentially meet regulatory requirements in support of
labeling for effectiveness.

(e) By no later than December 31, 2026, experience gained with the Advancing
RWE Program, as well as CDER’s and CBER’s RWE program in general, will
be used to update existing RWE-related guidance documents or generate new
draft guidance, as appropriate.

Chapter “Overview of Current RWE/RWD Landscape” provides more in-depth
information on the regulatory guidance documents in recent years in key regions
around the world. Further, there have also been increasing public and private
collaborations in RWE research. Examples include the International Society for
Pharmacoeconomics and Outcomes Research (ISPOR) and International Society
for Pharmaceutical Engineering (ISPE) special joint task force on “good practices
for RWD studies of treatment and/or comparative effectiveness (CER)” [5], and
“reporting to improve reproducibility and facilitate validity assessment for health-
care database studies” [6]. Launched in October 2013, the GetReal was a three-year
project of the Innovative Medicines Initiative, a Europe’s largest public-private
consortium consisting of pharmaceutical companies, academia, Health Technology
Assessment (HTA) agencies and regulators, patient organizations, and subject
matter experts (SMEs). The efforts resulted in numerous publications including
delivery of four work packages [7]. Within the statistical community in the United
States, the American Statistical Association (ASA) Biopharmaceutical Section
(BIOP) sponsored an RWE Scientific Working Group (SWG) that started in April
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2018. The primary goal of the group is to advance the understanding of the RWE
research in a precompetitive space, and the membership consists of members from
FDA, academia, and industry. The group has produced or submitted six peer-
reviewed publications:

• The Current Landscape in Biostatistics of the use of Real-World Data and
Evidence for Medical Product Development: General Considerations [8]

• The Current Landscape in Biostatistics of Real-World Data and Evidence:
Clinical Study Design and Analysis [9]

• The Current Landscape in Biostatistics of Real-World Data and Evidence:
Causal Inference Frameworks for Study Design and Analysis [10]

• Estimands – From Concepts to Applications in Real-World Setting [11]
• Statistical Consideration for Fit-For-Use Real-World Data to Support Regulatory

Decision Making in Drug Development [12]
• Examples of Applying Causal Inference Roadmap to RWE Clinical Studies [13]

With the encouragement from regulators and available guidance and literature
on the use of RWD and RWE in recent years, we have seen an increased uptake
of RWE in various stages of drug development. Figure 1, which is adapted from
the figure in [14], depicts the various uses in different stages of drug development
and their reliance on RWD in representative types of study design. Together with
guidance in the Framework on the usage of RWD, we summarize key usages of
RWD in clinical development and life-cycle management as follows, but the list is
by no means exhaustive:

• Generate hypothesis for testing in RCTs.
• Identify investigators who provide care for patients with the disease or condition

of interest, thereby selecting study sites with appropriate investigators.

RCT in clinical prac�ce se�ngs
Selected outcomes iden�fied using RWD

RCT conducted using RWD and Pragma�c RCT 

Nonrandomized, noninterven�onal study 
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• Assess disease prevalence and sub-population of patients identified by phenotype
or genotype, thus assisting with patient selection and enrollment.

• Assess the prevalence of concomitant medications for a disease, along with
prevalence of comorbidities of the disease.

• Evaluate biomarker prevalence and discover target for the development of
personalized medicine.

• Evaluate indication calibration by assessing unmet medical need and whether the
need is consistent across the targeted population.

• Identify outcome measures by ascertaining background event rate in a disease
and related population for incidence, duration, severity.

• Fulfil regulatory safety commitment, safety surveillance, and safety label update.
• Enroll patients at point of care and leverage existing RWD, such as EHR and

administrative claims, to retrieve historic information and long-term follow-up,
thereby employing a so-called hybrid study design to use both existing RWD and
prospectively collecting additional study information.

• Use RWD to build external control cohort for single-arm clinical studies or
augment concurrent control group of an RCT.

• Describe patient journey, treatment pattern, healthcare utilization to assess unmet
medical needs and disease burden and facilitate choice of comparator.

With the above delineation, the use of RWE could lead to support approval of new
molecular entities or biologics, accelerate or seek conditional approval, explore new
indication or new population, make changes to dosing administration, supplement
RCTs information for a regulatory submission, or provide complementary evidence
for comparative effectiveness and cost-effectiveness assessment for reimbursement
decisions in HTA.

For the rest of the chapter, in Sect. 2, we review the progress to date on the uptake
of RWE. Even with these recent progresses, challenges remain. We interpret these
challenges as opportunities for further research and development, as described in
Sect. 3. The final section provides discussions on future directions and concluding
remarks.

2 Where We Are Now with the Use of RWE and RWD

In the last few years, a great stride has been made in advancing the uptake of
RWE in drug development. The prevailing environment from regulators is that of
encouragement and guidance, along with concrete action plan, as shown by the
PDUFA VII Commitment letter for fiscal years 2023 through 2027 [4]. In this
section, we will discuss a few major advances as we observed in recent years,
focusing primarily on the advancement as described in this book. However, there
have been numerous literatures on RWE- or RWD-related publications, such as the
work by ASA BIOP RWE SWG, and guidance and publications by regulators and
interest groups. It should be noted that the discussion here is by no means thorough,
and any further gaps remain to be filled by further observations and research.
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2.1 Regulatory Advancement

In the regulatory arena, in rapid succession, FDA released four draft guidance in
late 2021 on RWD on assessment EHR, medical claims, and registry data to support
regulatory decisions in two guidance documents; data standard for regulatory
submission is also delineated in another guidance, along with considerations for
the use of RWD and RWE for drug and biologic products in the fourth draft
guidance. In October 2021, EMA adopted guideline on registry-base studies.
Chapter “Overview of Current RWE/RWD Landscape” provides a good coverage
of guidance documents related to RWE from the United States, Japan, China, and
the United Kingdom, and discussed similarities and differences between them. The
EuropeanMedicines Agency (EMA)’s RWEVision is that, by 2025, the use of RWE
will have been enabled and the value will have been established across the spectrum
of regulatory use cases [15]. In 2022, EMA established a Coordination Centre for
the Data Analysis and Real World Interrogation Network (DARWIN EU®) [16].
DARWIN EU will deliver RWE from across Europe on diseases, populations, and
the uses and performance of medicines.

Health Authorities responsible for reimbursement and pricing reviews in HTA
submissions have also released draft guidance documents on the use of RWE for
HTA submissions. The National Institute for Health and Care Excellence (NICE),
the United Kingdom’s HTA body, released NICE RWE framework in June 2022
[17]. The key message is that RWD can improve our understanding of health and
social care delivery, patient health and experience, and the effects of interventions
on patient and system outcomes in routine settings. As described in NICE strategy
2021–2026 [18], NICE wanted to use RWD to resolve gaps in knowledge and drive
forward access to innovations for patients. In the rest of the world, French National
Authority for Health (HAS) released a guidance in June 2021 on RW studies for the
assessment of medicinal products and medical devices [19]. Further, due to limited
recommendations to support the appropriate use of RWE, a group of experts from
top European Union (EU) academic institutions and HTA bodies in eight countries
as part of the EU’s Horizon 2020 IMPACT-HTA program published a white paper
on the use of nonrandomized evidence to estimate treatment effects in HTA [20].
The key messages are:

• RWE must be relevant for the research question.
• They recommended strategies to study design and analysis.
• The white paper deemed transparency as essential.
• The paper also recommended strengthening infrastructure and investing in

resources to design, analyze, and interpret RWE.

Chapter “Use of Real-World Evidence in Health Technology Assessment Sub-
missions” of this book provides more details on the use of RWE in HTA submis-
sions. In summary, these various guidance documents all provided a similar message
on fit-for-purpose use of RWE and RWD.
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2.2 Advancement in Operational Considerations

Several chapters in this book covered operational considerations in implementation
in the use of RWE.

In the RW studies (RWS), key variables such as exposure, treatment, outcome,
disease status, or confounders may not be captured in one place, it is therefore
important to ascertain these key variables using advance analytics, such as machine
learning and nature language processing. Misclassification is also a concern,
requiring validations. Chapter “Key Variables Ascertainment and Validation in Real-
World Setting” of this book covers these topics and walks through an example study
for which the ascertainment of key variables was found to be acceptable from a
regulatory standpoint. Once the key variables are in place for an RWD source,
assessment of fit-for-use RWD sources is a critical step in the determination of
whether an RWD source could be used. Chapter “Assessment of Fit-for-Use Real-
World Data Sources and Applications” provides guiding principles in the fit-for-use
RWD assessment and illustrates assessment steps with an application. The authors
drill down into details on the factors to consider specific to a research question and
disease condition and provides sufficient details to allow practitioners to follow in
their applications.

The role of health data and interoperability standards is another important
element to consider in their harmonization, since lack of harmonization and
common data standards would impede the foundation for a vision to achieve
large-scale interoperability in supporting technical, methodological, and evidence
generation, based on emerging trends. Chapter “Data Standards and Platform
Interoperability” presents a discussion on the need for Findable, Accessible, Inter-
operable, and Reusable (FAIR) data, and the role data standards, in particular those
emerging as leading with regards to regulatory decision, and emerging platforms
for network, at-scale evidence generation, as unified visions for standards and
platforms. It is often of great interest to aggregate and link data from several RWD
sources to provide a more comprehensive longitudinal evaluation of treatments
from different aspects. Chapter “Privacy-Preserving Data Linkage for Real-World
Datasets” reviews privacy framework and different methods in linking data sources,
while focusing on patient privacy protection, data pre-processing, linkage, and
performance evaluations.

2.3 Advancement in Statistical Methodologies in Causal
Inference

Tremendous progress has been made not only in the methodologies of causal
inference but also in the applications of these methods in the uptake of RWE
generations. Chapter “Causal Inference with Targeted Learning for Producing and
Evaluating Real-World Evidence” summarizes a Target Learning roadmap as a
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systematic guide to navigate the study design and analysis challenges inherent in
real-world studies. ICH E9 (R1) Addendum [21] presents a structured framework to
strengthen the dialogue between disciplines involved in the formulation of clinical
trial objectives, design, conduct, analysis and interpretation, as well as between
sponsor and regulator regarding the treatment effect of interest that a clinical trial
should address. Further, the guidance indicates that “The principles outlined in this
addendum are relevant whenever a treatment effect is estimated or a hypothesis
related to a treatment effect is tested, whether related to efficacy or safety. While
the main focus is on randomized clinical trials, the principles are also applicable for
single-arm trials and observational studies.” Chapter “Framework and Examples of
Estimands in Real-World Studies” presents principles for the Estimand Framework
for use in RW setting, highlights similarities and differences between RCTs and
RWS, and provides a roadmap for choosing appropriate estimand for RWS.

Chapter “Clinical Studies Leveraging Real-World Data Using Propensity Score-
Based Methods” provides a comprehensive summary of propensity score-based
methods (PSM) to minimize confounding biases in clinical studies leveraging RWD
sources. Beyond PSM, chapter “Recent Statistical Development for Comparative
Effectiveness Research Beyond Propensity-Score Methods” presents recent sta-
tistical developments for comparative effectiveness research using methods, such
as G-methods. Chapter “Innovative Hybrid Designs and Analytical Approaches
leveraging Real-Word Data and Clinical Trial Data” showcases an innovative hybrid
design and analytical approaches leveraging RWD and clinical trial data, while
chapter “Statistical Challenges for Causal Inference Using Time-to-Event Real-
World Data” highlights statistical challenges for causal inference using time to event
RWD. As we know, the lack of randomization in RWD brings the potential for
bias into any comparisons between groups or interventions of interest. Commonly
used methods such as PSM can account only for confounding variables that are
included in the analysis database, but any confounders not contained in the database
are ‘unmeasured confounders’ and may result in a biased treatment effect estimate.
Chapter “Sensitivity Analyses for Unmeasured Confounding: This is the Way”
focuses on the challenging case of comparative analyses based on RWD and the
issue of unmeasured confounding. Further, ICH E9 (R1) discusses the importance
of sensitivity analysis [21]. Chapter “Sensitivity Analysis in the Analysis of Real-
World Data” guides readers on how to conduct sensitivity analysis to explore the
robustness of inference to deviations from the underlying assumptions.

The practice of modern medicine demands personalized medicine (PM) to
improve both quality of care and efficiency of the healthcare system. Chapter
“Personalized Medicine with Advanced Analytics” dives into the application of
advanced analytics in addressing PM research questions, while chapter “Use of
Real-World Evidence in Health Technology Assessment Submissions” covers the
utility and strengths of well-developed RWE in HTA decision-making in major
regions around the world.
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2.4 Advancement in Real Case Applications

The concept of causal inference framework and use of causal inference roadmap is
crucial in the use of RWD to generate robust RWE. Chapter “Examples of Applying
Causal-Inference Roadmap to Real-World Studies” describes a few examples of
applying causal inference roadmap to RWSs. Chapter “Applications Using Real-
World Evidence to Accelerate Medical Product Development” summarizes six case
studies that regulatory agencies considered in recent years in the use of RWE/RWD
for regulatory decisions. Some of these use cases succeeded in achieving positive
regulatory decisions, while a couple of others didn’t meet the principle of adequate
and well-controlled study for evidentiary standard. This chapter includes rich details
on the analysis of each case study. Finally, chapter “The Use of Real-World Data
to Support the Assessment of the Benefit and Risk of a Medicine to Treat Spinal
Muscular Atrophy” presents a detailed case study in Spinal muscular atrophy
(SMA) and describes how RWD from publications and individual patient data were
used to support the development of risdiplam, a medicine to treat SMA.

3 Opportunities for Further Advancement

3.1 Regulatory Context

With the release of numerous regulatory guidance documents in recent years from
regions around the world, there is a prevailing need to share more use cases.
Through use case studies, practitioners could understand better the regulatory
contexts, key regulatory review issues, whether the use of RWE/RWD is pivotal or
supplemental for the regulatory decisions, assessment of fit-for-use data sources,
statistical methods employed, and whether substantial evidence of effectiveness
as stated in Regulations 21CFR314.126 is met for a specific case study. With the
encouragement from the Framework and more emerging literature on the changing
landscape of regulatory approval processes and case examples as delineated in
chapters “Applications Using Real-World Evidence to Accelerate Medical Product
Development” and “The Use of Real-World Data to Support the Assessment of the
Benefit and Risk of a Medicine to Treat Spinal Muscular Atrophy”, we believe that
we will see more and more such use cases in the coming years. Further, through
a feedback loop between sponsors and regulators, existing RWE-related guidance
documents could be updated, or new draft guidance could be developed.

Considering the evolving and diverse regulatory frameworks across jurisdictions,
sponsors are encouraged to engage with regulatory agencies and other stakehold-
ers, ideally through joint scientific advice procedures, when applicable, such as
EMA/FDA parallel scientific advice [22]. Further, the use of RWE for regulatory
submissions and decisions is still relatively new. The FDA draft guidance on data
standards for drug and biologic products submissions containing RWD provide
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guidance on data standards and data mapping, along with the development of review
guide for such submissions [23]. It’s helpful for sponsors to gain further experience
in these areas and engage regulators for further advice as needed.

3.2 Clinical Context

Up until just a few years ago, RWE has been used primarily to perform post-
marketing surveillance to monitor drug safety and detect adverse events or in HTA
submissions to understand disease burden, drug effectiveness, or economic model-
ing. To expand the use to support clinical development and life-cycle management,
it is important to consider the clinical contexts regarding the clinical question of
interest and whether RWS that generate RWE are sufficient and robust enough for
the regulatory question at hand. We believe that RW studies should not be used as a
replacement for RCTs, since all the design precautions and/or statistical techniques
could still not overcome unquantifiable or poorly recorded data inherent with RWD.
However, if used appropriately, RWE could be used to support regulatory decisions
in certain situations.

The PRECIS-2 tool [24] is a refined tool of PRECIS (Pragmatic Explanatory
Continuum Indicator Summaries) that was intended to help trialists make design
decisions consistent with the intended purpose of their trial. PRECIS-2 tool contains
nine domains – eligibility criteria, recruitment, setting, organization, flexibility
(delivery), flexibility (adherence), follow-up, primary outcome, and primary anal-
ysis, scored from 1 (very explanatory) to 5 (very pragmatic). The authors argued
that although we often refer to trials as in ideal RCT setting or in RWS, there
is no simple threshold to separate the two concepts. Rather than a dichotomy,
there is a continuum between the two, by adjusting the factors in either design or
study conduct to make a trial more RCT or RWS. Undeniably, clinical context is
critically important in determining whether the aim is to answer the question, “Can
this intervention work under ideal considerations?” or “Does this intervention work
under usual conditions?” The internal and external validity and generalizability can
be inferenced from such considerations.

3.3 Study Design and Analysis Context

Chapter “Key Considerations in Forming Research Questions” reviews and iden-
tifies key elements of forming sound research questions in RWS. The PROTECT
criteria proposed in [25] is discussed in-depth in chapter “Key Considerations in
Forming Research Questions”. Further, the authors propose a roadmap for revising
a research question and/or element of the PROTECT criteria if a question cannot
be answered as framed. The authors’ way of setting up right research questions is
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quite innovative, as they use Estimand framework as “touchstone” to gauge whether
a question can be answered or not.

There has been a flurry of literature on the statistical methodologies in analyzing
RWD and translating data into robust RWE. Given that rich literature exists on
statistical methodologies to handle potential biases and confounding with the use of
RWD [9], methodologies are discussed in several chapters in Part III of this book.
We believe that it’s important for practitioners to understand these approaches, espe-
cially sensitivity analysis, to assess the robustness of the findings and apply them
appropriately in their RWE projects. We would also like to provide some cautions
in methodology development. While many RW study design and/or methodologies
have been proposed, some of them might be more of an intellectual interest with
less appeal for practical applications. Thus, focusing on those adaptations that
are practically feasible will result in the most successful implementations as the
research enterprise is collectively gaining experience with this new and evolving
field.

3.4 Data Context

Chapter “Assessment of Fit-for-Use Real-World Data Sources and Applications” of
this book provides guiding principles for assessing fit-for-use RWD sources in data
relevancy and reliability. The authors also illustrate the approach via a hypothetical
example. However, further research may still be needed since the actual assessment
is very much disease and research question-specific. Further, it may be a good idea
for sponsors to engage regulators for discussions on the data source, and rationale
and justification on the fit-for-use assessment. As EMA/HMA calls for in [16], it
is important to establish and expand catalogues of observational data sources for
use in medicines regulation, provide sources of high-quality, validated RWD on the
uses for safe and effective medicines, and address specific questions by carrying out
high-quality, non-interventional studies, including developing scientific protocols,
interrogating relevant data sources, and interpreting and reporting study results.
In terms of data sources, technological advancements in health technology and
digital wearable devices will become potential sources of RWD. The key to their
application in RWE is to ensure that the data generated is of high quality and fit for
purpose.

We believe that it will be ideal to establish an industry standard for how an RWD
source should be assessed and what criteria constitute a fit-for-use database.

3.5 Governance and Infrastructure Context

In addition to challenges as mentioned previously in this section, there are also
additional challenges from resource, logistic, operational, and organizational per-
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spectives. Utilization of RWD and RWE involves cross-functional expertise and
collaboration, so building these features into an organization’s processes, systems,
and culture is a prerequisite for uptake. An upfront investment in dedicated
resources may be needed, such as building or updating processes in clinical
development procedures, developing templates of brand development plans and
tools, and providing education on RWD sources and RWE methodologies. Change
management may be needed to overcome entrenched decision-making processes
that are skeptical about the use of RWE.

Especially, we recommend setting up governance to oversee the data acquisition
and usage; developing processes and procedures that facilitate the regulators’
requirements for transparency, pre-specification, consistency, reproducibility, and
compliance in RWE applications; understanding existing RWD sources and proper-
ties and data owner networks; developing data platform to facilitate data flow, data
harmonization from diverse sources, and connectivity for research use; and building
analytic platform with powerful computational capacity for big data processing
and re-usable analytic tools along with centralized coding library to define disease
cohorts, exposures, outcome measures, and confounders in a consistent manner.

4 Future Direction and Concluding Remarks

In the past 5 years, we have seen growing international interest among all healthcare
stakeholders regarding how to best approach the uptake of RWE and RWD
to revolutionize the drug development process. The robust legacy of scientific
groundwork as described in this book and regulatory guidance and other literature
in recent years has paved the way to the future. What will be the challenges and
opportunities for the uptake of RWE over the next 5 years?

In Sect. 3, we discuss opportunities for further advancement in the uptake
of RWE from different areas of focus. While the common elements for further
advancement have been identified, we expect that the next 5 years will see
refinement in the use of specific tools and techniques by regulators around the
world. Some agencies may focus on data quality and data platforms, while others
may explore novel approaches integrating different sources of RWD for use and
further refine guidance documents. Medicine development is a global endeavor.
Sponsors therefore will seek a consistent degree of process predictability across
target jurisdiction regulatory agencies, and this can come from the use of globally
acceptable, standardized, systematic approach to RWE, irrespective of the specific
tools and methodologies that each employ in support of its regulatory decisions.

As we have seen more and more collaborations across regions in the world,
such as EMA/FDA parallel scientific advice [22] and EUnetHTA21 [26] for an
effective and sustainable network for HTA across Europe, a structure process can
facilitate work sharing and the potential for joint reviews and improve information
sharing with industry partners and other stakeholders. These types of collaborations
could also provide a clearer understanding of rationales for different marketing and
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labeling decisions in different jurisdictions, such as clinical context and the practice
of medicine, and alignment of risk management plans. The next 5 years will also
see the growing uptake of RWE in regulatory decisions. Whether interacting with
regulatory or HTA agencies, establishing a dialogue with the stakeholders early
during medicine development can contribute to effective, ongoing communications
with a more consistent understanding and implementation of the expectations from
each stakeholder.

As RWE becomes the new information currency in healthcare, decision makers
will be challenged using these new types of data sources. Over the next 3–5 years for
some therapeutic areas, such as oncology or rare diseases, there may be a shift to the
use of integrating RWD into phase II or phase III clinical studies. As development
progresses, RWE will enhance the understanding of the product’s safety profile and
will be used to confirm clinical efficacy and RW effectiveness.

Of course, the use of RWE in drug development will not be without challenges.
Great progress has been made on the methodologies to assess the robustness
and uncertainty around factors that confound the interpretation of RWE. Further
refinement and new methodology development may be called for based on the
use cases. RWE collection will need to encompass a global view or, at the least,
focus on key markets and jurisdiction experiences. Building a federate model and
platform for data and analytic tools sharing may facilitate further leapfrogging
in the field. Building high quality RWD and making them widely available may
call for standardization of data, such as the use of common data model. Trans-
parency, pre-specification, consistency, documentation, and reproducibility will be
the cornerstone to which current and new facilitated regulatory pathways that are
designed to accelerate submissions, reviews, and patient access to medicines for
serious diseases where there is an unmet medical need will likely be accepted. These
new pathways, such as Breakthrough Therapy and Accelerated Approvals in the
United States, or Conditional Marketing Authorization in the European Union, may
increase the communications and level of commitment between the sponsors and
the agencies.

Finally, we want to emphasize that these opportunities to incorporate RWE in
drug development should be used with care. The last thing we want to do is to treat
opportunities offered haphazardly, which will result in rejected submissions and lead
to mistrust in the use. The latter will delay broad acceptance of properly designed
and executed studies and submissions incorporating RWE.
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Overview of the Current Real-World
Evidence Regulatory Landscape

Rima Izem, Ruthanna Davi, Jingyu Julia Luan, and Margaret Gamalo

1 Introduction

Understanding the regulatory landscape in real-world evidence (RWE) is strategi-
cally important in therapeutic development, as it can help better plan studies or
data collection to inform relevant regulatory questions and it can help with fair
communication of benefit–risk information relevant to patient, their doctors, and
the healthcare system [1, 2].

As we discuss in this chapter, RWE has the great potential to fill knowledge gaps
in the planning or in the life cycle of the development program of new therapies
to inform regulatory approval or payer decisions. While randomized controlled
trials are the gold standard for evaluating new medical treatments and providing
high quality internally valid evidence for judging medical product efficacy and
safety in a controlled setting, their use for all regulatory decision-making regarding
marketing and reimbursement has some limitations. Some research questions cannot
or generally are not answered with clinical trial data and real-world data (RWD)
may offer insights not otherwise possible. In addition, leveraging existing data
may increase efficiency in evidence generation and accelerate patient access to
safe and effective therapies. Statistical thinking can facilitate the leveraging of
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RWD, including data gathered as part of the delivery of health care, or other
existing external data such as registries or prior clinical trials, to generate actionable
evidence.

The guidance documents we summarize in Sect. 2 draw a balance between
leveraging RWD while keeping the standards high for regulatory decision-making.
The concept of “fitness-for-purpose” is therefore central to the regulatory theory
and practice, worldwide, around RWE. Demonstrating fitness-for-purpose starts
with a clearly stated purpose or the regulatory context for using RWD. These
include supporting a new indication, evaluating the benefit–risk in a novel subgroup,
revising the label, and more generally updating the benefit–risk profile. Then, one
needs to demonstrate that the data are of sufficient quality, reliability, and validity
and that the methodological approaches for using the data are of sufficient rigor.

In Sect. 3, we illustrate how the key concepts and principles outlined in the earlier
section have been applied in practice for different purposes with a few examples.
Each subsection focuses on a particular purpose, explains the underlying motivation,
and illustrates examples of use, data sources, and statistical methodology supporting
that use.

2 Key Concepts in Real-World Evidence Worldwide

This section will define some key concepts in the use of RWE in drug development
and discuss their similarities and differences worldwide.

We focus our source documents (Fig. 1) on those that use the terminology RWD
and RWE in drugs and biologic therapeutic development. Our sources include
important publicly available RWD/RWE guidance documents for drugs from the
United States Food and Drug Administration (FDA) [3–7], the European Medicines
Agency (EMA) [8, 9], the Medicines and Healthcare Products Regulatory Agency
(MHRA) in the United Kingdom [10, 11]. Our sources also include personal
communications relating to documents from the Japan Pharmaceutical and Medical
Device Agency (PMDA) and the Chinese Center for Drug Evaluation (CDE).

We acknowledge that while the regulatory framework of RWE has been recently
formalized worldwide, and the terminology or concepts are sometimes novel, the
use of RWD in a regulatory setting is long-standing. Thus, sources in Fig. 1 exclude
earlier guidance documents related to RWE. For example, regulators used adverse
events reporting systems for decades to evaluate post-market safety [12, 13]; they
used non-interventional studies to inform the risks of existing products and how
to mitigate them, and they used literature review or historical clinical trials to
contextualize treatment effects in single arm studies [14]. While these examples
will be discussed in the next section of this chapter, the guidance documents are not
used as source documents in this section.

There is no consensus international conference of harmonization (ICH) docu-
ment regarding RWE, but the guidance documents published by different countries
generally share a similar thinking and philosophy. The next subsections review the
key concepts, the similarities, and the differences worldwide.
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Considerations for Use of
RWD/RWE (Dec.)

RWD: Assessing
Registries (Nov.)

Data Standards for
RWD (Oct.)

RWD: Assessing EHR and Medical
Claims Data (Sep.)

RWE Program
Framework (Dec.)

Guideline for
RWE (Jan.)

Pediatric Deve.
Supported by RWE
(Aug.)

Principles of
Registry (Mar.)

Ensuring Reliability of
Registry Data (Mar.)

Guideline Registry-
based Studies (Oct.)

RCTs Generating RWE
(Dec.)

Guideline for
RWD (Apr.)

Use of RWD in Clinical
Studies (Dec.)

2018 2019 2020 2021 2022

Fig. 1 Timeline of important guidance documents in five major health authorities. This figure
shows the main milestone in regulatory guidance documents across the world, with flags from left
to right representing the US-FDA, The European EMA, the Chinese CDE, the Japanese PMDA,
and the United Kingdom’s MHRA. Refer to text for discussion of specific documents

2.1 Sources of Real-World Data and Real-World Evidence

All guidance documents agree that RWE is the evidence generated from RWD.
While the definition of RWE is similar worldwide, the needs of different regulatory
bodies vary. In the United States, decisions are based on benefit and risk evaluations
of medical products, whereas in other parts of the world, they include reimbursement
decisions. Similarly, while the definition of RWD is generally similar worldwide,
there are differences in the existing data sources.

The definitions for RWD are broad worldwide. For example, the US FDA
2018 RWE Framework guidance states that “Real-World Data (RWD) are data
relating to patient health status and/or delivery of health care routinely collected
from a variety of sources.” While the PMDA 2021 guidance states that “RWD
are data on patient’s health conditions and/or provided medical practices routinely
collected from various data sources.” These definitions are broad because they
include prospective data collection in a registry or retrospective data collection in an
electronic healthcare database. They additionally include data from interventional
studies, such as randomized pragmatic studies, or data from non-interventional
observational studies such as prospective cohorts. Thus, the data could have been
collected with a primary intent to answer the research question, for primary use, or
the data could have been collected for other purposes than research, such as clinical
care or fee-for-service reimbursement and be a secondary use source. Finally, the
definitions are specific to the setting and type of information that is collected, but
not to the sample of patients or time frame in which the information is collected.

The sources of RWD can vary worldwide due to differences between countries or
healthcare infrastructures with regard to how routine care is provided and recorded.
For example, data from traditional Chinese medicine is a more readily available
source of RWD in China than in other countries. Similarly, some healthcare systems
in the United States or Germany are federated with no expectations of a single source
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having a full longitudinal picture for a particular patient. Other healthcare systems,
for example, in the Nordic countries or in the United Kingdom, are centralized with
many existing linkages and typically have good longitudinal data capture. Finally,
given the current advances in digital technology and broad use of various digital
devices in clinical care, the sources of RWD have been evolving and expanding.

The FDA requires submission of clinical data in marketing applications. That
requirement extends to RWD [7]. Although the document recognizes the challenges
involved in standardizing study data derived from RWD sources for inclusion
in applicable drug submissions, it emphasizes the importance of documenting
processes for managing RWD.

2.2 Regulatory Acceptability and Demonstrating
Fitness-for-Purpose

All documents indicate that evidentiary standards for approval will remain high and
require substantial evidence and adequate and well-controlled studies. Assessing
fitness-for-purpose is thereby ensuring that for a given purpose, the RWD and
the methods used to generate the evidence are relevant and adequate. The RWD
attributes relative to a purpose include the following: quality, reliability, relevance,
provenance, security, and protection of personal information. Thus, rather than the
one-size-fits all approach, the RWD attributes and the proposed methods, including
the design and analysis, are tailored to a particular purpose and the regulatory
evaluation is specific to that purpose. We refer the reader to chapter “Assessment of
Fit-For-Use Real-World Data Sources and Applications” in this book for definitions
and discussion of these attributes.

In addition, the design and analyses need to minimize any potential biases
in the evaluation of treatment effectiveness or safety. Thus, any deviation from
randomization or blinding in the design must be justified, as they may increase bias.
Even though it is not explicitly expressed in all guidelines, transparency of the study
design and pre-specification of analytical methods are very important. For example,
the PMDA’s 2021 basic principle guidance document states that “For reliability
assurance of the results, it is therefore important to demonstrate the reliability of the
data and transparency of the study design and analysis.” Moreover, the MHRA’s
2021 guidance states that “From a regulatory perspective whether the study data
is all from the real-world setting or the result of a hybrid or traditional RCT is
not critical. The important thing is that the trial is designed in a way which allows
it to provide the evidence required to answer the regulatory question and a well-
designed and conducted prospective randomized controlled trial provides a high
level of evidence irrespective of the categorization of the data source.”
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3 Regulatory Precedent Examples of Fit-for-Purpose
Real-World Evidence

This section reviews regulatory precedents in RWE in the development life cycle and
provides for each example of use, or scientific purpose, the motivation behind using
RWD. The stated purposes below are similar to those outlined by the US FDA in
their review paper [1]. When relevant, we also share new developments in statistical
methodology supporting these uses. We ordered these uses from more established
to less established uses in the regulatory setting.

3.1 Scientific Purpose of Supporting Planning of Clinical
Trials

Exploratory analyses of data from clinical practice are increasingly informing
planning of design of clinical trials for new therapies. The RWD sources, their
sizes and their types, the standardization of the data structure through common data
models [15], and the sophistication and scalability of queries on these data have
evolved over the last few years. For example, although selection of inclusion and
exclusion criteria and clinical sites for a clinical trial traditionally relied on prior
experience or investigator assessment, these selections are increasingly informed
by queries of large electronic healthcare data using computable phenotypes or
algorithms (see [16] and chapter “Key Variables Ascertainment and Validation in
Real-World Setting” of this book). The query process leverages the common data
model across a data network of electronic healthcare data or insurance claims to
run validated algorithms and provide a snapshot of the population at a given time.
This may inform eligibility criteria development by examining associations with key
trial outcomes. Efficient use of the data to identify and follow participants in clinical
trials was deployed in a large scale to test new or existing COVID-19 therapies [17–
19].

Another growing area of use of RWD to inform clinical development of new
therapies is qualification of novel biomarkers supported by results of data mining
and machine learning methods. For example, the EMA qualification of Islet
Autoantibodies in Type 1 Diabetes relied on machine learning methods and data
mining of RWD to identify prognostic factors and validate the biomarker for use in
clinical trials [20].
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3.2 Scientific Purpose of Supporting Safety and Effectiveness
Evaluation

Over the past decades, post-market safety assessments often relied on what we call
today RWD and is more traditionally called safety surveillance using spontaneous
safety reporting databases or prospectively designed epidemiological studies. Thus,
using RWD to support evaluation of safety post-marketing is a relatively mature field
in pharmacoepidemiology with several existing guidance documents, all finalized
before the terminology of RWD or RWE were first coined [12, 13].

Several review papers give an overview of the regulatory landscape as well
as the statistical considerations in the post-market safety setting. Those include,
for example, the following review publications [21–24]. As these papers and the
examples discussed in them illustrate, all general RWE principles outlined in Sect.
2 hold also for RWE to support safety. In fact, many of the RWE principles were
probably inspired by the regulatory experience of using RWD in safety in the past
decades. However, a few elements are safety-specific and highly impact the fitness-
for-purpose assessment. These include the rarity and/or the importance of long-term
longitudinality in some safety events. Rarity of events results in lack of power
of smaller databases to detect the risk and lack of feasibility of some analytical
methods. Also, poor or incomplete capture of long-term or long progression safety
outcomes renders many RWD inadequate to assess these outcomes.

In terms of statistical methodology, the use of increasingly large spontaneous
reporting databases has spurred the development of several statistical methods in
disproportionality analyses [21, 25]. The main methodological challenges with these
databases are handling reporting bias and lack of information on the universe of drug
utilization (aka, no denominator). Similarly, the use of increasingly large distributed
claims databases in post-market safety spurred the use and implementation of
different cohort selection and causal inference methods in pharmacoepidemiology,
including, for example, the propensity score methods discussed in these review
publications [26, 27]. The main methodological challenges are assessing and
handling selection bias and confounding in the causal inference. The rarity of the
outcomes further challenges model fitting and adjustment. Although most safety
outcomes are binary, the choice of summary measures is simplified with rare
outcomes because hazard ratios, relative risks, and odds ratios are all asymptotically
equivalent.

When safety assessments using RWD is not sufficient, some therapeutic areas
require the design of a dedicated randomized clinical trial starting in the pre-market
setting. For example, randomized and controlled clinical trials were carried out for
the examination of the risk of asthma-related hospitalization, intubation, and death
associated with long-acting beta agonist use [28]. Also, cardiovascular outcomes
trials are often required for antidiabetic therapies [29]. These large studies require
extensive resources but were deemed necessary for multiple reasons, including the
importance of balancing baseline composition of all covariates through randomiza-
tion.
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Randomized simple pragmatic trials with data collection through electronic
healthcare data may provide similar benefits as the traditional randomized trial
approach, while conserving resources and making very large trials more feasible.
These designs were recommended for cardiovascular outcome studies in antidia-
betic drugs [30]. Statistical considerations in these designs include the degree of
pragmatism and its implication on the design, analysis, and regulatory acceptability
as well as the interoperability between data collected solely for the clinical trial with
data retrieved from the electronic healthcare system [31, 32].

In the case of the long-acting beta agonist example mentioned above, the value-
added of randomizing treatment in the clinical trial was challenged by multiple
researchers [33], who argued that large scale multinational (non-randomized) cohort
studies could have accomplished the same goal. Similarly, one of the main findings
in the RCTDUPLICATE initiative funded by the FDAwas that well designed cohort
studies could replicate the findings from pragmatic randomized clinical trials [34].

3.3 Scientific Purpose of Serving as External Control
to a Clinical Study

For many years, approval of new therapies in some rare diseases or oncology
indications relied customarily on single arm trials and comparisons to a well-
documented natural history of the disease or outcomes of active treatment in an
external comparable population. This practice is reserved for diseases with high and
predictable mortality and circumstances where the effect of the drug is self-evident
since the historical control is often not as well assessed as a concurrent control
population [14]. More recently, with the availability of a large volume of patient-
level data and using statistical methods for balancing baseline composition, there is
potential to improve the quality of these external comparisons, thereby allowing a
more nuanced inference [3, 35, 36].

The review paper [37] outlines some recent case studies using RWD as an
external control in oncology and rare disease single arm studies in the marketing
submission to the FDA. Other examples are also discussed in chapter “Applications
Using Real-World Evidence to Accelerate Medical Product Development” of this
book. In all examples, ensuring fitness-for-purpose of the RWD and the methods
were critical in the regulatory reviews. These examples include the study of
overall survival associated with selinexor in patients with penta-exposed, triple-class
refractory multiple myeloma using a Phase 2 single arm trial and an external control
cohort created from electronic medical records. The issues with assessing fitness-
for-purpose were discussed at an FDA advisory committee meeting preceding the
accelerated approval of the product [38]. The examples also include the use of
natural history studies to contextualize the findings of a single arm study in a rare
pediatric lysosomal disorder to support the approval and labeling of cerliponase
alfa. The application discussed validity of the endpoint capture in the natural
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history study, and corrected for confounding using design and analytical strategies
[39]. Another example is evaluating the treatment effect of Tecartus on objective
response rate and overall survival in relapsed/refractory adult B-cell precursor acute
lymphoblastic leukemia that was examined with a single arm trial and an external
control derived from individual patient-level data sampled from historical clinical
trials [40]. The historical data was made comparable to the single arm study using
propensity score methods. This was followed by a positive recommendation for the
product from the EMA [41].

Beyond the application of external controls to single arm trials, external data can
be used to augment a randomized control instead of replacing it [42]. For example,
such a design has been proposed in a Phase 3 registrational trial in recurrent
gliobastoma as a (3:1) randomized trial, augmented with external control patients
to form a fully powered Phase 3 registrational trial [43]. Additionally, the recently
published Phase 2 study [44] randomized fewer patients to placebo and augmented
the control with data from historical clinical trials. In both studies, the external data
came from previously conducted clinical trials. In the former, frequentist propensity
score methods were applied and, in the latter, Bayesian borrowing approaches
were used in the analyses. As the last example demonstrates, the use of external
controls to replace or augment controls in early phase development (e.g., continued
development after Phase 2 to Phase 3) is promising.

3.4 Scientific Purpose of Supporting Extrapolating Efficacy
or Safety Findings

Extrapolating efficacy or safety findings to patients outside the controlled setting and
restrictive eligibility criteria typical of clinical trials can be challenging. Patients
with comorbidities, such as older age or chronic kidney disease, at increased
risk for serious adverse reactions, or those with concomitant treatments that may
confound assessment of efficacy or that may modify exposure to the drug are often
intentionally excluded from clinical trials. However, these patients are likely to be
treated with the medical products when approved and available in clinical practice.
In addition, racial and other groups are often underrepresented in clinical trials,
possibly owing to lesser access to or willingness to participate in clinical trials.
Thus, RWD may present opportunities to fill these knowledge gaps or improve
our understanding of the therapy’s effects after an early period of marketing and
use in the clinical setting. Estimates of the so-called, real-world effectiveness
and safety, including these lesser studied or rare populations and exploration of
treatment effects by demographic, medical history, and disease characteristics, or
socioeconomic status, could be highly impactful for the treatment and care of
patients.

Because extrapolation, as a concept, was already in use in the development of
new therapies in pediatrics, RWD as a useful data source was embraced by the
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recently released international pediatric guidance discussing extrapolation [45]. For
example, Blinatumomab was approved for precursor B-cell acute lymphoblastic
leukemia in children based on efficacy data from an open-label Phase 1/2 trial and
safety data from a single-arm, open-label (observational) expanded access study
[46]. Of note, given that most pediatric trials are short, real-world data can inform
our understanding of the long-term effects of exposure to medicines [47, 48].

Beyond pediatrics, this extrapolation thinking was successful in supporting
expanding the indication of palbociclib to male cancer patients after approval of
the drug for female cancer patients based on a successful randomized clinical study
[49].

4 Conclusions and Discussion

This chapter summarizes the regulatory landscape of the use of RWD to generate
RWE. As we discuss in Sect. 2, fitness-for-purpose is a central concept in the
generation of RWE. As the regulatory precedent examples in Sect. 3 illustrate,
arguments for fitness-for-purpose are tailored to the purpose in each example.

We believe that concepts in RWE are bound to evolve in sophistication in the
next few years, as new RWD sources emerge and as some novel designs blur
the distinction between traditional clinical trials and clinical care. For example,
pragmatic studies are often randomized, but embedded in routine care and can lead
to using or collecting RWD. Similarly, decentralized studies incorporate data from
wearable digital technology, a growing source of RWD, into clinical trials.

Our summary of purposes in Sect. 3 illustrates that use of fit-for-purpose RWD
to generate RWE is well established in those situations where RWD is filling a gap
that would be difficult or impossible to fill by a typical clinical trial. Those include
using fit-for-purpose RWD to help plan a randomized study, to support post-market
safety, and to evaluate comparative effectiveness.

In other situations, it is challenging to balance the use of RWD without raising
concerns of lowering the regulatory standards. More specifically, the situations
where findings from some RWD sources are intended to replace findings from
randomized clinical trials are still being defined. While Sect. 3 had examples using
RWD as external controls in rare diseases and oncology clinical development,
using RWD to expand indication(s) for an already approved product with a well
characterized safety profile, and in using RWD to support extrapolation of a
treatment effect from one group to another, it is unclear how generalizable these
examples would be to other therapies or populations. With this evolving landscape,
a continuous open dialog and early consultation with regulators can benefit every
research program considering the use of RWD.
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Key Considerations in Forming Research
Questions and Conducting Research in
Real-World Setting

Yixin Fang and Weili He

1 Introduction

To accelerate medical product development to help patients who are in need, Food
and Drug Administration (FDA) and European Medicines Agency (EMA) develop
guidance documents on real-world data (RWD) and real-world evidence (RWE) for
industry [1–6]. These guidance documents provide recommendations to sponsors on
the use of RWE to support approval of a new indication for a medical product that
has already been approved or to help support postapproval study requirements, along
with other objectives such as investigating disease burdens and treatment patterns.
These guidance documents center on how to derive robust RWE from the analysis
of RWD and the use of RWE in regulatory decision-making.

In a statistical roadmap for journey from RWD to RWE [7], the point of departure
is forming a sound research question. As raised in ICH E9(R1) [8], “central
questions for drug development and licensing are to establish the existence, and
to estimate the magnitude, of treatment effects: how the outcome of treatment
compares to what would have happened to the same subjects under alternative
treatment (i.e., had they not received the treatment, or had they received a different
treatment).” Note that ICH I9(R1) asks the central questions in terms of potential
outcomes. The potential outcomes framework has been used in the community of
causal inference since Neyman proposed it in his 1923 Master’s thesis and Rubin in
1974 extended it into a general framework for causal inference in both interventional
studies and non-interventional settings [9, 10]. “What would have happened” is
also called counterfactual outcome, and human’s ability of imagining counterfactual
outcomes plays the most crucial role in forming research questions [13].
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According to the definitions in FDA guidance document [4], an interventional
study (a.k.a., a clinical trial) is “a study in which participants, either healthy
volunteers or volunteers with the disease being studied, are assigned to one or
more interventions, according to a study protocol, to evaluate the effects of those
interventions on subsequent health-related biomedical or behavioral outcomes.”
A non-interventional study (a.k.a., an observational study) is “a type of study
in which patients received the marketed drug of interest during routine medical
practice and are not assigned to an intervention according to a protocol.” Both
traditional randomized controlled trials (RCTs) and pragmatic clinical trials (PCTs)
are examples of interventional studies, and non-interventional study designs include
cross-sectional studies, observational cohort studies, and case–control studies. In
addition, single-arm trials with external controls from RWD can be considered as a
hybrid of interventional and non-interventional studies.

To form a well-built clinical question, the PICO criteria, as far as we know, were
first proposed in 1995 [11], which proposed that “the question must be focused and
well articulated for all 4 parts of its ‘anatomy’: (1) the patient or problem being
addressed; (2) the intervention or exposure being considered; (3) the comparison
intervention or exposure, when relevant; (4) the clinical outcomes of interest.” Since
then, many versions of the PICO criteria have also been proposed for forming a
sound clinical question, including the PICOT criteria [12], which added the fifth
part, Time.

Although the PICOT criteria are still useful for forming research questions in
clinical setting, for real-world setting, we need to revise them to take into account
the real-world features. In this chapter, we will discuss the PROTECT criteria [7],
aligning with the recent FDA guidance documents.

The remaining of the chapter is organized as follows. In Sect. 2, we discuss the
steps that we may take before we form a research question, including gathering
knowledge and evidence gap, and specifying assumptions and causal model. In
Sect. 3, we discuss five key elements of the PROTECT criteria in real-world setting.
In Sect. 4, we discuss how to enhance the assumptions or how to revise the elements
of the research question if the question cannot be answered. In Sect. 5, we discuss
the key considerations in the planning of real-world studies to answer the research
question in real-world setting. We conclude the chapter with some discussion in
Sect. 6.

2 Gathering Knowledge

“Knowledge” includes scientific experience we have had in the past, clinical
evidence we have gathered so far, or systematic literature review we have conducted
up to date. The knowledge includes two main parts, the knowledge on what we have
known (evidence) and the knowledge on what we have not known (evidence gap).
The hidden part (i.e., the unknown) is out of the scope. To fill the evidence gap is
the motivation of forming any research question.
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Let us consider an example. Assume that, after conducting a placebo-controlled
RCT, we have gathered the clinical evidence of efficacy and safety of an inves-
tigative treatment compared with placebo in clinical setting. If the treatment has
been approved by regulatory agency, now we are interested in investigating the
effectiveness and long-term safety of the treatment compared with the standard of
care (SOC) in real-world setting.

Since the central questions for drug development and licensing are phrased in
terms of potential outcomes in ICH E9(R1), we turn to one book by Pearl, The
Book of Why: The New Science of Cause and Effect [13], for guidance on how
to summarize the knowledge we have gathered into a causal model. As pointed
out in [13], the knowledge remains implicit in the mind of investigators before
investigators make them explicit by specifying a list of assumptions based on the
available knowledge.

Continue the above example. Based on the available knowledge, the investigators
may specify two assumptions: (1) one set of variables (say, income, education,
disease severity) are associated with the outcome variable and the decision of taking
the investigative treatment or SOC and (2) another set of variables (say, age, gender,
race) are associated with the outcome variables but not the treatment decision. The
first set of variables are examples of confounders and the second set of variables are
examples of effect modifiers. Defined in FDA guidance document [1], a confounder
is a variable that can be used to decrease confounding bias when properly adjusted
for in an analysis and an effect modifier is a factor that biologically, clinically,
socially, or otherwise alters the effects of another factor under study.

Following the thought in [13], these explicit assumptions can then be encapsu-
lated in a causal model. A causal model can be defined in various formats, including
causal diagrams and structural equations [14]. Continue the above example. Denote
the treatment variable as A (1 for investigative treatment and 0 for SOC) and the
outcome variable as Y . Denote the first set of covariates as C and the second set of
covariates as M . Figure 1 is an example of causal diagram encapsulating the above
two assumptions.

From here we may move forward to form research questions. But sometimes we
may want to examine the extent to which some preliminary data are compatible with
the causal model. Continue the above example. The causal model in Fig. 1 implies
that M and A are independent, and we can use some preliminary data, if available, to
test whether M and A are associated. These testable results may lead to revising the
causal model. Besides these testable implications, there are untestable assumptions,
for example, the assumption that there is no unmeasured confounder. Figure 2 shows
an example of causal diagram where there is unmeasured confounder U .

Fig. 1 An example of causal
diagram

?
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Fig. 2 With unmeasured
confounder ,

?

3 Forming Research Question

After knowledge gathering, we have a causal model. Now we are ready to form
sound research questions. Aligning with the recent FDA guidance documents, we
discuss the PROTECT criteria [7] for forming research questions in real-world
setting, with five elements discussed in the next five subsections, respectively. The
five elements of the PROTECT criteria are summarized in Table 1.

After thinking through these five elements, we are able to articulate research
questions. Here are some examples:

– What is the average treatment effect (ATE) of 4 weeks of treatment A on the
outcome Y at 12 months after treatment completion compared to 6 weeks of
treatment B, among the defined population, after adjusting for confounders
(disease severity at the treatment initiation, age, and gender)?

– What is the average treatment effect among the treated (ATT) of one-time
treatment C on the outcome Z at 6 months after treatment initiation compared
to SOC, among the population of patients who are treated by treatment C in
real-world setting?

– What is the 5-year long-term safety of treatment D after treatment initiation,
among the population of patients who are treated by treatment D in real-world
setting?

– What are the treatment patterns of treatment E from the treatment initiation up to
5 years, among the population of patients who are treated by treatment E initially
in real-world setting?

The first two examples have all the five key elements of the PROTECT criteria,
which are two specific versions of the central questions raised in ICH E9(R1).
The third example also has those five key elements, with the outcome being safety
instead of effectiveness. In the fourth example, there is no clinical outcome variable,
indicating that other research questions may be formed in real-world setting besides
the central questions.

3.1 Population

The target population is the population in which we are interested and for which
we will draw conclusions after a study is conducted. As defined in FDA guidance
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Table 1 Five elements in the PROTECT criteria

Symbol Element Explanation

P Population Study population defined via I/E criteriaa

R/O Response/outcome Dependent variable

T/E Treatment/exposure Primary independent variable

C Covariates Including confounders and effect modifiersb

T Time When variables are measured?
a In general, the ‘C’ element means counterfactual thinking
b I/E criteria are inclusion/exclusion criteria

Target popula�on 

Source popula�on 

Study popula�on Internal validity for causa�on
Analysis set  

External validity for generaliza�on 

Fig. 3 Three populations and one sample

document [4], the source population is “the population from which the study
population is drawn” and the study population is “the population for which analyses
are conducted.” In addition, the analysis set is a sample of the study population.

The difference between the target population and the source population becomes
important in real-world setting when databases are used. For example, if medical
claims data are used, the source population is only limited to those whose claims
data are collected, because the purpose of medical claims data is to support payment
for care. There is further difference between the source population and the study
population because the study population is often defined via some data entry
criterion that requires that a certain set of variables including treatment variable
and/or outcome variable are collected. The third layer of difference is that the
analysis set may not be representative of the study population without random
sampling. All these three layers of difference lead to selection bias that we should
acknowledge in forming research questions.

Figure 3 shows the above three layers of potential selection bias. Ideally,
we should collect data on variables that differentiate the analysis set from the
populations. There are other sources of selection bias that we should distinguish
from confounding bias [15], with one example showed in Fig. 4. In Fig. 4, there are
arrow from treatment variable A to S and arrow from outcome variable Y to S such
that S becomes a collider [14]. Therefore, conditioning on collider .S = 1 introduces
spurious association between A and Y , introducing selection bias (a.k.a., Berkson’s
bias [16]). To avoid such selection bias, in the definition of study population, we
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Fig. 4 Selection bias
because of .S = 1

?

= 1

should not have inclusion criteria that require the availability of both treatment data
and outcome data. It is internally valid to have inclusion criteria that only require
the availability of treatment data, as in cohort studies. It is also internally valid to
have inclusion criteria that only require the availability of outcome data, as in case–
control studies.

3.2 Response/Outcome

Response variable and outcome variable are two interchangeably used names for
dependent variable. ICH E9(R1) simply calls it “variable” when describing the
five attributes of an estimand: “The variable (or endpoint) to be obtained for each
patient that is required to address the clinical question.” However, ICH E9(R1) uses
terms “response” and “outcome” in multiple places, such as “patient’s outcome”
and “response to treatment.”

Unlike in traditional clinical setting, in real-world setting when databases are
used, we often do not have protocol-defined follow-up visits to ascertain outcome
variable. FDA guidance document [1] points out that “a crucial step in selecting
a data source is determining whether it captures the clinical outcome of interest.”
Chapters “Assessment of Fit-for-Use Real-World Data Sources and Applications”
and “Key Variables Ascertainment and Validation in RW Setting” of this book will
discuss outcome variable ascertainment in more detail. Here we propose to utilize
these two terms, response variable and outcome variable, to distinguish two different
types of dependent variables.

One type of dependent variable is outcome variable that is defined in the protocol
and is to be collected in real-world studies such as pragmatic clinical trials and
observational cohort study or outcome variable that is captured in the data source.
For example, electronic health records (EHRs) data capture outcomes that are
brought to the attention of a health care professional and documented in the medical
record. This type of dependent variable also includes outcome variable that is not
captured in the given data source but can be ascertained from another data source
via data linkage.

The other type of dependent variable is response variable that can be derived
(via the definition, construction, and validation process) from the other outcome
variables and can be used to measure the patient’s response to the investigative
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medical product. For example, if patient report outcomes (PROs) or physician report
outcomes are captured in the data source, then we can derive some response variable
based on these captured subjective outcomes. In some scenarios, response variable
may be derived from free texts such as doctors’ notes via machine learning and
natural language processing (NLP) techniques.

3.3 Treatment/Exposure

In the PICOT criteria, the “I” element stands for intervention, which is inappropriate
for non-interventional real-world setting. The “C” element in the PICOT criteria
stands for comparator, which is inappropriate for real-world setting where there is no
comparator. Therefore, these two elements are replaced by “T/E” in the PROTECT
criteria, which stands for treatment/exposure, noting that treatment variable and
exposure variable are the two names for primary independent variable that are
interchangeably used in real-world setting.

ICH E9(R1) states that “the treatment condition of interest and, as appropriate,
the alternative treatment condition to which comparison will be made” (referred to
as “treatment” through the remainder of this document). FDA guidance document
[1] stats that “the term exposure applies to the medical product or regimen of
interest being evaluated in the proposed study. The product of interest is referred
to as the treatment, and may be compared to no treatment, a placebo, standard of
care, another treatment, or a combination of the above.”

3.4 Covariates (Counterfactual Thinking)

The “C” element has two versions, tangible version and abstract version. Covariates
are not included as an element in the PICOT criteria because randomization and
blinding are usually applied in the traditional clinical setting. The tangible version of
the “C” element in the PROTECT criteria stands for key covariables, which include
(1) confounders which will be used to maintain the internal validity of causation
and (2) effect modifiers which will be used to better understand heterogeneity
of treatment effect and will be potentially used to achieve external validity of
generalization. Refer to Fig. 1 for an example of confounders and effect modifiers.
Refer to Fig. 3 for the concept of internal validity of causation and external validity
of generalization.

The abstract version of the “C” element stands for counterfactual thinking. To
form the central questions of ICH E9(R1), we need to imagine counterfactual
outcomes, i.e., what would have happened to all the subjects in a certain population
under alternative treatment conditions. The covariates ensure that such counter-
factual thinking is possible under those assumptions we make in the knowledge
gathering stage; for example, under the exchangeability assumption that the coun-
terfactual outcome and the treatment decision are independent given covariates [17].
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3.5 Time

In clinical setting, baseline and follow-up period are prespecified in the protocol. In
real-world setting, the “T” element in the PROTECT criteria plays a crucial role in
understanding all the above four elements.

In the “P” element, we should specify the time period in the definition of the
source population. We may consider the time frame as one of the inclusion criteria
in the definition of study population drawn from the source population.

In the “R/O” element, we should first identify if the variables are ascertained
at a specific time (cross-sectional), retrospectively, prospectively, or in a hybrid
fashion. Then, we should clearly define the time periods when the response/outcome
variables are measured and collected. In scenarios where baseline and follow-up
periods are needed, we should also clearly define the baseline (e.g., treatment
initiation, disease diagnosis, or patient enrollment) and follow-up periods (e.g., 6
months after baseline, 12 months after baseline, along with predetermined time
windows).

In the “T/E” element, we should first identify whether the treatment/exposure
is one-time medical product or other products that may be intended for use over a
period of time. If the medical product is one-time, likely the time when the treatment
is applied is considered as baseline. If the medical product is intended for use over
a period of time, likely the baseline is defined as the treatment initiation, and we
should make sure the source data capture the treatment/exposure duration as well,
along with data on treatment discontinuation and, if possible, data on the switched
treatments.

In the “C” element, we should first distinguish time-independent covariates and
time-dependent (a.k.a., time-varying) covariates. For time-dependent covariates, we
should describe whether and how frequently the data on these covariates can be
captured. Without collecting time-dependent confounders, it is impossible to adjust
for time-dependent confounding.

4 Revising Research Question

After a research question is formed, before we answer it, we should evaluate
whether or not the research question can be answered. Like in [13], we rely on
estimand construction to verify whether the research question can be answered or
not. ICH E9(R1) defines an estimand as “a precise description of the treatment effect
reflecting the clinical question posed by the trial objective.” We can generalize
this definition to cover both clinical setting and real-world setting. An estimand
is a statistical quantity to be estimated that provides a precise description of the
treatment effect reflecting the research question. If we can construct an estimand
reflecting the research question, we are able to answer the question. If we cannot,
we should either enhance the assumptions or revise some of the PROTECT elements
of the question.
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Knowledge Assump�ons Causal model Testable
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If NO due to intercurrent events  
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PROTECT
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Strategies

Composite variable R/O

Treatment policy T/E

Hypothe�cal C

While on treatment T

Fig. 5 The roadmap for forming a research question, revising the question if it cannot be
answered, and constructing an estimand if the question can be answered

Chapter “Estimand in Real-World Evidence Study: From Frameworks to
Application” of this book will discuss estimand in great detail. Here, we only
discuss how to revise the question being asked if the question cannot be answered
due to lack of identifiability or potential existence of intercurrent events. Figure 5
is motivated by Figure I.1 in the book of why [13]. Figure 5 provides a roadmap of
how we check if one research question can be answered and, if not, how we make it
answerable.

If the question cannot be answered due to lack of identifiability, we should
enhance the assumptions, leading to a revised causal model, such that the question
can be answered by the revised causal model. For example, in the construction of
estimand, we realize that the list of confounders includes unmeasured confounder
U , as displayed in Fig. 2, and then we should either identify a data source to
capture the data of U or go back to the knowledge gathering stage to enhance the
identifiability assumptions by assuming that U is not a confounder.

If the question cannot be answered due to intercurrent events, we should
revise some of the PROTECT elements of the question to address the intercurrent
events. ICH E9(R1) defines intercurrent events as “events occurring after treatment
initiation that affect either the interpretation or the existence of the measurements
associated with the clinical question of interest. It is necessary to address intercur-
rent events when describing the clinical question of interest in order to precisely
define the treatment effect that is to be estimated.”

Therefore, according to ICH E9(R1), we should discuss how to address inter-
current events when describing the question, instead of waiting until we conduct
research to answer the question. ICH E9(R1) proposes five strategies for how to
address intercurrent events, with each strategy corresponding to one of the five
elements of the PROTECT criteria. This provides another insight that the PROTECT
criterion is valid and comprehensive in protecting the quality of the question we
form.
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If we want to apply the treatment policy strategy to address intercurrent events,
we should revise the “T/E” element. According to ICH E9(R1), if the treatment
policy strategy is applied, “the intercurrent event is considered to be part of the
treatments being compared.” That means, we need to revise the definition of
treatment or exposure to include the intercurrent event as part of it. For example,
if the use of additional medication is considered as an intercurrent event, then this
additional medication is considered as part of the revised treatment.

If we want to apply the hypothetical strategy to address intercurrent events,
we should revise the “C” element. According to ICH E9(R1), if the hypothetical
strategy is applied, “a scenario is envisaged in which the intercurrent event would
not occur.” That means, we need to revise our counterfactual thinking to imagine
what would have happened if the intercurrent event would not occur. Following the
tangible version of “C” element, we need to capture data on covariates conditional
on which the occurrence of the intercurrent event and the counterfactual outcome
can be assumed to be independent.

If we want to apply the composite variable strategy to address intercurrent
events, we should revise the “R/O” element. According to ICH E9(R1), if the
composite variable strategy is applied, “an intercurrent event is considered in itself
to be informative about the patient’s outcome and is therefore incorporated into the
definition of the variable.” That means, we need to revise the definition of response
or outcome variable to include the intercurrent event as part of it. For example, if the
outcome variable was already success or failure, discontinuation of treatment would
simply be considered another mode of failure.

If we want to apply the while on treatment strategy to address intercurrent
events, we should revise the “T” element. According to ICH E9(R1), if the while on
treatment strategy is applied, “response to treatment prior to the occurrence of the
intercurrent event is of interest.” That means, we need to revise the definition of the
timepoint when the response or outcome variable is measured.

If we want to apply the principal stratum strategy to address intercurrent events,
we should revise the “P” element. According to ICH E9(R1), if the principal stratum
strategy is applied, “the target population might be taken to be the principal stratum
in which an intercurrent event would occur. Alternatively, the target population
might be taken to be the principal stratum in which an intercurrent event would
not occur.” That means, we need to revise the definition of the population as some
prespecified principal stratum.

To summarize, according to ICH E9(R1), we should address intercurrent events
when describing the research question of interest in order to precisely define
the treatment effect that is to be estimated. Five ICH E9(R1) strategies are
corresponding to five elements of the PROTECT criteria. If a combination of several
strategies is applied for intercurrent events, then we should revise the corresponding
combination of elements of the PROTECT criteria as well.
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5 Answering Research Question

After an answerable research question is formed and an estimand is defined
accordingly to reflect the question, we can move forward to conduct research
to answer the question. ICH E9(R1) develops a framework to align five stages
of any real-world study with estimand: planning, design, conduct, analysis, and
interpretation. The Part II and Part III of this book mainly focus on these five stages,
so here we only provide an overview of these five stages, as displayed in Fig. 6, and
some key considerations in the planning of real-world studies.

In the planning stage, the first step is to choose appropriate real-world study
designs. There are a variety of real-world study designs. Many real-world study
designs do not follow the traditional sequence: design a study, enroll subjects,
and generate data. Instead, they often intertwine real-world study, real-world data,
and/or clinical trial components, so we categorize them into three major categories
according to three scenarios. In scenario one, we design a real-world study to
prospectively generate real-world data for research purpose. In scenario two, based
on one or several existing real-world data sources, we design a retrospective real-
world study. In scenarios three, we utilize real-world data in the design, conduct,
and analysis of clinical trials.

Category one includes pragmatic clinical trials and observational studies that
generate real-world data for research purpose. We may apply some sampling
techniques to enroll participants for such studies. We may also utilize RWD to
identify potential participants for such studies.

Category two includes study designs that are exclusively based on databases such
as EHR, claims, and registries data. FDA guidance documents [1] and [3] assess
EHR/claims data and registries data to support regulatory decision-making for drug
and biological products, respectively.

Category three includes study designs that are using RWD to augment traditional
clinical trials. FDA guidance document [4] provides several such study designs: (1)

Answerable 
ques�on Es�mand

Es�mator 

Analysis Set

Trials

RWS
RWD

Trials Es�mate 

Plan Design Conduct Analyze Interpret

Fig. 6 Alignment of real-world study planning, design, conduct, analysis, and interpretation with
estimand; a study may have intertwined real-world study (RWS), real-world data (RWD), and/or
clinical trial components
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to utilize RWD to identify potential participants for an RCT, (2) to utilize RWD to
ascertain response or outcome variable for an RCT, and (3) to use RWD and data
of historical trials to augment an RCT or to construct an external control arm for a
single-arm clinical trial.

6 Discussion

In medical product development, in clinical setting, we are evaluating efficacy and
safety, asking research questions such as “Can it work?”. In real-world setting, often
we are evaluating effectiveness and safety, asking research questions such as “Does
it work?”. The PROTECT criteria consist of five elements, helping us to articulate
sound research questions.

There is a rich literature on how to form a research question, but the literature
on how to revise the research question if it is not answerable is lacking. In this
chapter, we propose that we can enhance the causal model assumptions if it is due
to lack of identifiability or revise some of the PROTECT elements of the question.
ICH E9(R1) emphasizes that “it is necessary to address intercurrent events when
describing the clinical question of interest in order to precisely define the treatment
effect that is to be estimated.” There is also a rich literature on how to address
intercurrent events, but no one else argues that it is because we need to revise the
question to make it answerable given the existence of intercurrent events. We further
demonstrate that each of the five strategies is according to revising one of the five
PROTECT elements. This important finding supports our claim that the PROTECT
criteria are useful for forming a research question and revising the research question
if it is not answerable.

In this chapter, we also argue that estimand is the “touchstone,” by which we can
verify whether or not a research question is answerable. If an estimand reflecting
the question can be constructed, then the question is answerable and the same
estimand will guide through the five stages (planning, design, conduct, analysis,
and interpretation) of research to answer the question.
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Part II
Fit-for-Use RWD Assessment and Data

Standards



Assessment of Fit-for-Use Real-World
Data Sources and Applications

Weili He, Zuoyi Zhang, and Sai Dharmarajan

1 Introduction

In December 2018, FDA released an FDA’s RWE framework (henceforth called
Framework) [1]. The framework defines RWD as “data relating to patient health
status and/or the delivery of health care routinely collected from a variety of
sources,” and RWE as “the clinical evidence about the usage and potential benefits
or risks of a medical product derived from analysis of RWD.” Examples of RWD
in the Framework include data derived from EHR, medical claims and billing data,
data from product and disease registries, patient-generated data, and data from other
sources, such as mobile devices. The Framework further indicates that RWD sources
can be used for data collection and to develop analysis infrastructure to support
many types of study designs to derive RWE, including, but not limited to, ran-
domized trials (e.g., large simple trials, pragmatic clinical trials) and observational
studies (prospective or retrospective).

As mentioned in chapter “Key Considerations in Forming Research Questions
and Conducting Research in Real-World Setting”, RWD can be prospectively
generated by designing a prospective RW study (RWS). In addition, if there are
relevant existing RWD sources, one can design a retrospective RWS to utilize
such existing RWD sources. These different RWD sources come with different
strengths and limitations. For example, the scope of claims data may contain broad
information from all doctors and providers caring for a patient, whereas EHR may
only be limited to the portion of care provided by doctors using the specific EHR
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of a provider organization. On the other hand, claims only contain information
as necessary for reimbursement (diagnoses, procedures, treatments), while EHRs
comprise more complete medical picture (diagnoses, laboratory results, vital signs,
doctors’ notes). While prospective observational studies come with obvious inherent
selection or information biases along with confounding bias due to non-randomized
nature, pragmatic randomized controlled trials (RCTs) may still result in bias due
to intercurrent events and missing data during a study even given randomization [2,
3]. Therefore, we believe that while assessment of fit-for-use RWD sources may
be disease and research question-specific, the general approach for such assessment
should be applicable to common RWD sources.

Numerous literature [4–10] have discussed different aspects and criteria for
the fitness of RWD sources. In the white papers published by Duke Margolis
[6–8], they summarized data relevancy as an “assessment of whether the data
can adequately address the regulatory questions, in part or whole,” and indicated
relevancy as including the aspects of representativeness of the population of interest
and whether the RWD source contains key variables and covariates. Data reliability
“considers whether the data adequately represent the underlying medical concepts
they are intended to represent,” and speaks to data completeness, conformance, and
plausibility. Many of these concepts brought up by the various authors as referenced
above could be summarized in general as data relevancy or data reliability following
Duke Margolis’s white papers. Following the principles as suggested in the Duke
Margolis papers, He et al. [11] further summarized key elements of fit-for-use
data sources as including the following aspects: (1) relevant patient population
supporting relevant clinical questions; (2) adequacy in recording and validation of
key exposure and outcome variables along with confounders in terms of accuracy
and correctness of data types, ranges of values, consistencies between independent
values that measure similar attributes, (3) availability of complete exposure window,
(4) longitudinality of data, (5) sufficient number of subjects, (6) data completeness,
(7) availability of key data elements of patients for linkage of different data assets,
(8) provenance in terms of transparent and traceable data sources, (9) extent of
data curation and processing, and (10) data conversion and storage that adheres to
appropriate standards.

Levenson et al. [12] provided an in-depth discussion on issues related to data
integrity, principles and approaches to ascertain key variables from RWD, principles
and approaches to validating outcomes and addressing bias from RWD, and key
considerations in determining fit-for-use RWD. Their discussions align well with the
recent draft guidance documents from FDA on assessing electronic health records
and medical claims data or registries to support regulatory decision-making for drug
and biological products [13, 14]. They further proposed a stepwise semi-quantitative
approach to assess fit-for-use RWD sources with the use of quantitative measures
for relevancy and reliability [12]. The idea is to first assess relevancy as the first
dimension that includes variables related to disease population, response/outcome,
treatment/exposure, confounders, time frame, and generalizability as to the rep-
resentativeness of the underlying disease population. If the relevancy assessment
yielded major gaps in data relevancy to answer a specific research question, then
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there is no point in assessing the second dimension for reliability that includes
quality relating to validity of the data elements, logical plausibility and consistency,
and completeness of the data, including amount of missing data for key variables.

Since such assessment of fit-for-use RWD sources is disease and research
question-specific, Levenson et al. [12] did not apply the principle and conceptual
approach to a real RWD source. In this chapter, we attempt to apply and opera-
tionalize the semi-quantitative approach as proposed by Levenson et al. [12] to a
hypothetical research question using a real RWD source. We share our learnings
and best practices on such application.

The FDA/Harvard RCT DUPLICATE Initiative [15] proposed a structured
process to assess the ability of using existing RWD sources, collected for other
purposes such as Claim databases, to duplicate results with those from RCTs.
Although the purpose of the duplicate project may be different from our own in
this chapter, the findings and conclusions from that project could provide insights
on the type of RCTs and type of outcomes that may be suitable for fit-for-use RWD
sources. In Sect. 2, we review the duplicate project and provide our analysis of the
learnings and insights. Further, we review a few typical RWD sources, including
EHR, claims, registry, survey, NCI Surveillance, Epidemiology, and End Results
(SEER) Program registries, and CDC National Health and Nutrition Examination
Survey (NHANES) to provide additional insights on different RWD sources fitting
different research goals. Section 3 is devoted to the application of the semi-
quantitative approach to real RWD sources. The final section provides discussions
and concluding remarks.

2 Gaining Insights on Aligning Research Questions
with RWD Sources

2.1 Learning from RCT DUPLICATE Initiative

Regulators are evaluating the use of non-interventional RWS to assess effectiveness
of medical products. The RCT DUPLICATE initiative (Randomized Controlled
Trials Duplicated Using Prospective Longitudinal Insurance Claims: Applying
Techniques of Epidemiology) [15] uses a structured process to design RWS
emulating RCTs and compares results. The Initiative was funded by the US FDA
to Brigham and Women’s Hospital. They initially identified 40 RCTs that were
conducted to support regulatory decision-making and estimated that 30 attempted
replications would be completed after feasibility analyses. They used Optum
Clinformatics Data Mart beginning in 2004, IBM MarketScan beginning in 2003,
and Medicare Parts A, B, and D, across varying time ranges for select therapeutic
areas for the replication project. To identify RCTs for replication, they cited Hernan
[16] and considered the following design elements in consideration of the RWD



48 W. He et al.

sources, and exclude RCTs in which some of these key design features cannot be
replicated in RWD sources:

• Large, randomized trials with relatively simple treatment protocols, which are
more likely to be replicable with RWS.

• The primary outcomes that are objectively measured are likely to be captured in
the claims, such as myocardial infarction or stroke. Endpoints that are surrogate
or symptomatic in nature are less likely to be captured in claims.

• For RCTs that include major inclusion/exclusion criteria that cannot be discerned
from claims databases, they are excluded.

• While randomization cannot be replicated in claim databases, it is important to
identify and ensure that important potential predictors of outcomes, including
demographics, disease severity and history, concomitant medication, and inten-
sity of healthcare utilizations are ascertained in the claims databases, so that they
can be balanced in design or analysis stages.

First results from the RCT DUPLICATE Initiative were published in 2021 [17].
Results of replication for three active-controlled and seven placebo-controlled RCTs
were reported. To assess RCT–RWE agreement, the authors used three binary
agreement metrics: (1) “regulatory agreement” was defined as the ability of the
RWE study to replicate the direction and statistical significance of the RCT finding,
(2) “estimate agreement” was defined as the RWE hazard ratio estimate that was
within the 95% confidence interval for the RCT estimate, and (3) hypothesis testing
to evaluate whether there was a difference in findings by calculating the standardized
difference between the RCT and RWE effect estimates.

The authors [17] found that although identifying the magnitude and direction of
residual bias attributable to the nonrandomized study design is the key objective
of calibrating RWE against RCTs, limitation of available RWD in emulation of
other design features remain and need to be minimized. Further, even though
attempts were made to emulate the features of each RCT as closely as possible,
including inclusion and exclusion criteria, exposures, and outcomes, the constraints
of the healthcare databases still made exact emulation impossible. In addition, close
emulation of placebo is impossible via RWD and, hence, any placebo controlled
RCTs for emulation for this reason. Further noted is that adherence to medications
used in routine care is often very poor, and the analysis for the replication
project used on-treatment approach that censor patients at treatment discontinuation
whereas RCTs often use intention-to-treat approach for analysis. As a result, the
follow-up time and the opportunity to capture longer term outcomes differ. The
authors further indicated that the use of claims data, which lack clinical details
but provide longitudinal data across the care continuum, affected the agreement
between RCT and RWE findings. Other RWD sources, such as EHR and patient
registries, would almost certainly have led to different results, as they often have
detailed clinical information that may improve confounding adjustment. Patorno et
al. [18], who used RWD to predict findings of an ongoing phase IV cardiovascular
outcome trial, made a few similar points.
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Although our purpose is not to replicate any RCTs using RWD but to assess
fit-for-use RWD source, the insights the investigators of the RCT DUPLCATE
Initiative provided are very helpful in focusing our attention to important design
and data elements for assessment to address specific research questions. In Sect.
2.2, we review a few specific databases and provide our assessment of the type of
research questions these RWD sources could be determined fit-for-use to answer.

2.2 Further Insights on Aligning Research Question
with RWD Sources

The data owner of the ConcertAI database is one of the leaders in enterprise
Artificial Intelligence (AI) and RWD solutions for life sciences and health care.
ConcertAI has the largest network of over 400 oncology centers across the United
States and its database contains de-identified EHR of more than 4.5 million patients
treated by 1100 hematologist or oncologists. Although clinical details, such as
biomarker or pathology, may be unstructured and requires curation, the patient
clinical charts in oncology EHR are used by clinics to track patient care and
therefore are gold standard for clinical details in oncology. Across multiple EHR
systems, ConcertAI has business associate relationships with clinics, which enable
ConcertAI comprehensive access to EHR and unstructured data to better standardize
and curate clinical data. This makes ConcertAI database a representative data source
of cancer care in the US population. Further, approximately 50 percentage of
patients’ information in the ConcertAI EHR data are also linked to claims data,
which enriches ConcertAI as a RWD source.

In 2021, ConcertAI began a five-year collaborative research program with the
US FDA. This collaboration will derive RWE across a number of clinical and
regulatory use cases through utilizing ConcertAI’s oncology RWD and advanced
AI technology solutions. ConcertAI’s oncology RWD contains millions of patients’
EHR from a variety of academic and community cancer care settings. In this chapter,
we will use acute myeloid leukemia (AML) and their treatments to showcase the
assessment of fit-for-use RWD in session 3.

Optum Clinformatics Data Mart (Optum) is one of the largest claims databases.
It is de-identified and derived from a database of administrative health claims for
members of a large healthcare company affiliated with Optum. The population
is geographically diverse and spans all 50 states. In addition to medical claims
and pharmacy claims, Optum claims data include information with member eli-
gibility and inpatients confinements, along with standard pricing for all outpatient
claims, pharmacy claims, and inpatient confinements. This database comprises both
commercial and Medicare Advantage health plan data, and therefore is useful for
healthcare research institutes to address healthcare challenges, such as cost of care
and healthcare utilization. Optum is also widely used by pharmaceutical companies
to conduct scientific research to evaluate the clinical and economic value of their
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products and medical devices. For instance, Optum data could be used to evaluate
the patients’ unmet need for certain conditions, and then investigate if their products
could fill the gap in care. Optum data is a good option to understand the treatment
patterns and medication adherence, discontinuation, and switching. It is also
useful to assess comparative effectiveness for certain medications. All the research
of treatment patterns and medication adherence, discontinuation, switching, and
comparative effectiveness in real-world setting is important to understand and
improve the gaps in care.

The Surveillance, Epidemiology, and End Results (SEER) Program of the
National Cancer Institute (NCI) is an important source of information for cancer
incidence and survival in the United States. SEER already includes cancer incidence
and survival data from various cancer registries covering approximately 48% of
the US population. The data about cancer patient demographics, primary tumor
site, tumor morphology and stage diagnosis, first line of treatment, and follow-up
of vital status is regularly collected into the SEER program registries. The SEER
data includes the comprehensive information of stage of cancer at the time of
diagnosis and survival data and is associated by age, sex, race, year of diagnosis, and
geographic areas. Many research activities are developed based on the SEER data,
such as cancer prevention and control, pattern of care and quality of care studies.

The National Health and Nutrition Examination Survey (NHANES) is a major
program developed by the National Center for Health Statistics (NCHS), part of the
Centers for Disease Control and Prevention (CDC). This program is designed to
assess the health and nutritional status of adults and children in the United States
and unique since it comprises interviews and physical examinations. The NHANES
program has been conducted as a series of surveys for various population groups
or health topics since the early 1960s. To meet the emerging needs, the survey
has become a continuous program and focused on different health and nutrition
measurements since 1999. Each year, the survey inspects a representative sample
of approximately 5000 persons from different counties across the country and
NHANES will visit 15 of the counties each year. The NHANES interview comprises
demographic, socioeconomic, dietary, and health-related questions. The medical,
dental, physiological measurements, and laboratory tests were collected during the
NHANES examination. The survey contents include the data on the prevalence of
chronic conditions and risk factors that may increase the chances of developing a
certain condition. The survey also collects smoking, alcohol consumption, sexual
practices, drug use, physical fitness and activity, weight, and dietary intake. Seven-
teen diseases, medical conditions, and health indicators are studied in NHANES,
including anemia, cardiovascular disease, diabetes, environmental exposures, eye
diseases, hearing loss, infectious diseases, kidney disease, nutrition, obesity, oral
health, osteoporosis, physical fitness history and sexual behavior, respiratory disease
(asthma, chronic bronchitis, emphysema), sexually transmitted diseases, vision. Due
to the comprehensive health information, the data from the survey has been widely
used to determine the prevalence of major diseases and risk factors for disease and
assess the nutritional status and its association with health promotion and disease
prevention. The NHANES data has been used to evaluate the relationship between
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environmental chemical exposures and adverse health outcomes. For instance, the
association between US population levels of chemicals in blood and/or urine and
biochemical indicator is extensively investigated using NHANES.

3 Semi-Quantitative Approach for Fit-for-Use RWD
Assessment – Application of a Case Study

3.1 Estimand Related to Fit-for-Use RWD Assessment

As ICH E9 (R1) [2] indicated, the “central questions for drug development and
licensing are to establish the existence, and to estimate the magnitude, of treatment
effects: how the outcome of treatment compares to what would have happened to the
same subjects under alternative treatment (i.e., had they not received the treatment
or had they received a different treatment)”. The estimand framework in E9 (R1)
includes five attributes as follows:

1. Population. Patients targeted by the clinical question
2. Treatment. The treatment condition of primary interest (e.g., new drug) and,

as appropriate, the alternative treatment condition to which comparison will be
made (i.e., comparator)

3. Variable (or endpoint). The endpoint obtained from each patient to be used to
address the clinical question

4. Intercurrent events (ICEs). Events occurring after treatment initiation that affect
either (1) the interpretation or (2) the existence of measurements of endpoints
associated with the clinical question of interest

5. Population-level summary. A summary measure for the endpoint that provides a
basis for comparison between treatment conditions

As the fit-for-use RWD assessment is very much disease and research question-
specific, the focus of our assessment should be aligned with the estimand framework
in addressing certain research questions as discussed in chapter “Estimand in Real-
World Evidence Study: From Frameworks to Application” of this book.

3.2 Evaluation of Key Variables as Determined by Research
Questions

Levenson et al. proposed a stepwise semi-quantitative approach to assess fit-for-
use RWD sources with the use of quantitative scores for relevancy and reliability
[12]. As the fit-for-use RWD assessment is very much disease and research question
specific, Levenson et al. developed a set of principles (see Table 1 of their paper).
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Using a global multiple sclerosis (MS) cohort study RWD source, Kalincik et
al. [9] proposed error rate, data density score, and generalizability score using the
MS database (MSBase). The data density score was calculated across six domains
(follow-up, demography, visits, MS relapses, paraclinical data, and therapy). The
error rate evaluated syntactic accuracy and consistency of data. The generalizability
score evaluated believability of the demographic and treatment information. Corre-
lations among the three scores and the number of patients per center were evaluated.
The authors believe that this evaluation process will facilitate further improvement
of data quality in MSBase and its collaborating centers. It will also enable quality-
driven selection of research data and will enhance quality and generalizability of the
generated evidence.

In Sect. 3.3, we apply the set of principles in evaluating relevancy and reliability
of an RWD source as proposed by Levenson et al., along with the implementation
example by Kalincik et al. to a case study. We will use a hypothetical research
question as described in Sect. 3.3, but which could also be of real clinical research
interest.

3.3 Hypothetical Research Question and Quantitative
Assessment Algorithms

For our hypothetical research question, we have the following research plan as
shown below. For the purpose of providing an implementation exercise, we blinded
the actual treatment patients received in our application, but these treatments are
real treatments in the RWD source we use.

Research question
• To assess the long-term effectiveness of AML patients treated with drug A vs.

drug B in overall survival at 2 years

Research objectives
In patients treated with drug A vs. drug B:

• To assess the long-term effectiveness of drug A vs drug B in AML patients

Hypothesis
• Treatment with drug A will result in improved overall survival as compared to

treatment with drug B in patients with AML after 2 years

Study Design
In this implementation exercise, AML patients are identified from ConcertAI using
ICD 9 and ICD 10 codes. The study cohort is defined as the AML patients taking
on drug A or drug B as first-line treatment.

See Table 1 for more detailed study design features. To make the assessment
for fit-for-use RWD source to answer our research questions, we developed the
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Table 1 Study design

Index date Initial treatment date of drug A or drug B occurred at least 1 year after
the patient’s first encounter in the database to allow larger number of
patients to be included in this study cohort

Baseline 6 months prior to the index date
Follow-up period Maximum of 2 years post the index date
Treatment Drug A and drug B
Outcome Overall survival
Censoring rules for a
subject in the
specified order on the
right

1. Switching between drug A and drug B within 2 years’ follow-up
2. Loss to follow up in the database within 2 years follow-up
3. Two years’ of follow-up in the database without outcome event of
death

Inclusion criteria Diagnosis of AML
18+ at diagnosis date
Entered ConcertAI at least 1 year before the index date
Started drug A or B as first line of treatment

Exclusion criteria AML in relapse
Study variables AML

ICD 9:
205.0205.00205.01206.0206.00206.01207.0207.00207.01207.21
ICD 10: C92.0 C92.00 C92.01 C92.4 C92.40 C92.41 C92.5 C92.50
C92.51 C92.6 C92.60 C92.61 C92.62 C92.A C92.A0 C92.A1 C93.0
C93.00 C93.01 C94.0 C94.00 C94.01 C94.2 C94.20 C94.21 C94.4
C94.40 C94.41
Confounding variablesa

Age
Gender
Race
Body mass index (BMI)
The eastern cooperative oncology group (ECOG) performance status
scale
Concomitant treatments: Posaconazole
Comorbidities: Diabetes, CHFb

Sample size The study with approximately 2360 patients, 1180 in each group, will
have 80% power to detect a 6% improvement in survival rate between
drug A and drug B at 2-year, alpha = 0.05, 2-sided. This assumes that
the treatment with drug B has an overall survival rate of 60% at
2-year, and 15% patients may be lost to follow-up or switched during
the 2-year follow-up period.

aECOG Eastern Cooperative Oncology Group (ECOG) performance status
bCHF Congestive Heart Failure

following algorithms to derive the assessment measures, as shown in Tables 2 and 3,
respectively. Relevancy assessment as shown in Table 2 is to specifically address the
adequacy of data elements as defined in Estimand for a specific research question,
such as population, treatment, outcome, confounders, and time, as indicated by the
hypothetical research question and study design in Table 1. The denominator for
Disease Population in Table 2 includes all the patients in ConcertAI that we have
access to, whereas the denominators for all other measures are specific to the study
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Table 2 Assessment of Relevancy of Fit-for-Use RWD Source

Dimensions Variable Assessment score
1st assessment dimension: Relevancy based on a specific research question

Disease
population

ICD9
ICD10

%patients (pt) in the population = (# of
patients meeting the disease condition / # of
patients in the databasea)*100

Response/outcome Overall survival %pt with events = # of patients with
outcome event of death within 2 years / # of
patients in the study cohort)*100
%pt with switch = (# of patients switching
drugs within 2 years / # of patients in the
study cohort)*100
%pt censored = (# of patients censored with
follow-up <= 2 years / # of patients in the
study cohort)*100
%pt censored after 2 yrs = (# of patients
censored with follow-up >2 years / # of
patients in the study cohort)*100

Treatment/exposure Drug A, drug B For each treatment, we calculate the score
before switching treatment separately
Score A = (# of patients receiving drug A / #
of total patients in the study cohort)*100
Score B = (# of patients receiving drug B / #
of total patients in the study cohort)*100

Confounders Age, gender, race, BMI,
ECOG, Posaconazole,
diabetes, CHF

For each identified key confounder, we
checked on whether potential confounding
variables were collected in the study cohort

Time Description of follow up
time from study entry to
censoring in the database

The intent is to describe time duration for
treatment/exposure, response/outcome, and
any time varying confounders and whether it
is sufficient to address the research questions

Generalizability
score

Describe the
representativeness of the
disease population in the
RWD source. Information
on demographics and
disease-specific indicators
may be used

Male to female ratio based on the
epidemiology of AML
Age range of AML prevalence
Reported prevalence of general AML
population as compared to the measure in the
dataset

aThe denominator is the total number of patients in the ConcertAI database with access

cohort for the hypothetical research question. Further, since most research based
on existing RWD sources are based on non-randomized groups, if effectiveness
comparison is the focus, ascertainment of potential confounding factors is critical.
As intercurrent events are more prevalent in RWD sources, reliability assessments
in Table 3 assess data quality and consistency relevant to the relevancy parameters
in Table 2.

For the assessment in Table 3, the assessment is specific to the study cohort at
baseline and key time points during follow-up period.
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Table 3 Assessment of reliability of fit-for-use RWD source

2nd assessment dimension: Reliability based on a specific research question

Quality Assess the validity of the
data elements, checking
the logical plausibility of
the data (e.g., a lab result
is within the limits of
biological possibility),
and examining the data
consistency for each
patient (within related
data fields and over time)
as well as the
conformance of the data
to any applicable internal
standards or external data
models

Completeness = proportion of missing data
for key variables such as confounding
variables as listed above
Syntactic accuracy = proportion of critical
variables with values corresponding to their
range
Consistency = proportion of the recorded
variables congruent with other recorded
variables (we could think of a few such
variables, such as BMI = 40 when weight
and height are not extreme)

Data density
score

Assess the amount of
information as
represented by data
density, such as
follow-up, clinical visit,
and symptoms or
outcome ascertainment,
standardized as
patient-year of follow-up
over the planned study
follow-up duration

Cumulative follow-up = median follow up in
year as a standardized measure
Clinical visit = (sum of #visits) / (sum of all
exposure time of each patient in year)*2 as a
standardized measure
Disease symptoms = (sum of #reported
symptoms) / (sum of all exposure time of
each patient in year)*2
Laboratory test = (sum of #lab tests) / (sum
of all exposure time of each patient in
year)*2

3.4 Results

Based on ICD 9/10 codes of AML, we first extracted a subset of the dataset with
19,064 AML patients. Two treatments of AML: drug A and drug B, were selected
for assessment of data relevancy and data reliability in this study. The data include
AML patients with diagnosis date from 1985 to 2021. Only the patients who entered
ConcertAI at least 1 year before the initiation of drug A or drug B as the index
date and whose age was ≥18 on the index date were included in this study and
the patients with AML in relapse were excluded. Finally, 2366 AML patients were
identified in the final study cohort, of which 737 AML patients were treated with
drug A and 1629 AML patients were treated with drug B. The maximum of 2 years
post the index date was the follow-up period. The objective was to evaluate the
overall survival, as the outcome, of AML patients with the treatment of drug A
vs. drug B as the first-line treatment. The censoring rules for this study included
(1) switching between drug A and drug B within 2 years’ follow-up; (2) loss to
follow up in the database within 2 years’ follow-up; and (3) 2 years of follow-
up in the database without outcome event of death. We will assess the relevancy
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and reliability of the subset of the patients’ data from ConcertAI that fit with the
inclusion/exclusion criteria, as stated in Table 1.

3.4.1 Relevancy

Assessment of Parameters Related to Estimand Attributes

For patients in ConcertAI with AML, 12.41% (2366/19064) of them fit the study
design inclusion criteria and received drug A or drug B treatments. Within the 2-
year follow-up period, 56.26% (1331/2366) AML patients were deceased, 0.21%
(5/2366) AML patients switched between drug A and drug B (for simplicity issue,
we only considered switching between Drug A and B), and 13.06% (309/2366)
AML patients were censored for loss to follow-up. In addition, 30.47% (721/2366)
AML patients were censored after 2 years’ follow-up.

In this study cohort of patients, 31.15% (737/2366) received drug A as first
line treatment and 68.85% (1629/2366) drug B as first line treatment, respectively.
Eight confounders with the assessment scores were identified for the cohort from
ConcertAI. Patients with missing confounding variables were assessed, and the
results are as follows (% shown as available data):

• Five patient characteristics: age (100%), gender (100%), race (80.81%), BMI
(79.37%), ECOG (17.58%)

• One concomitant treatment: Posaconazole (12.85%)
• Two comorbidities: diabetes (13.23%) and CHF (6%)

Generalizability

Acute myeloid leukemia (AML) is a malignant disorder of the bone marrow
which is characterized by the clonal expansion and differentiation arrest of myeloid
progenitor cells. The age-adjusted incidence of AML is 4.3 per 100,000 annually in
the United States (US). Incidence increases with age with a median age at diagnosis
of 68 years in the United States. Differences in patient outcomes are influenced
by disease characteristics, access to care, including active therapies and supportive
care, and other factors. AML is the most common form of acute leukemia in adults
and has the shortest survival (5-year survival = 24%) [19].

In this study cohort, the male to female ratio is 1.24 (1308/1058), which is very
close to the estimated ratio 1.25 in the United States [20]. However, the average age
of AML diagnosis is younger (63 ± 14 years) in the study cohort than that (68 years)
in the United States. It is uncommon that the people are diagnosed with AML before
age 45. However, 11.75% (278/2366) patients were diagnosed with AML before age
45 in the study cohort.

In addition, 0.8% (19,064/2,192,910) AML prevalence of cancers in ConcertAI
is close to the 1% AML prevalence of cancers in the United States. The 2-year
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survival rate for the AML patients since the treatment initiation in this study cohort
is 40.3%, which is slightly higher than the estimated 34.1% (since diagnosis) for
AML patients of all ages as posted on the SEER website at NCI [21].

3.4.2 Reliability

The quality and data density of this study cohort were evaluated for reliability based
on the definition in Table 3. Note that data quality, syntactic accuracy, and data
consistency are research question and RWD source-dependent, and we provide a
few illustrative assessment calculations specific to the hypothetical study design in
Table 1.

Quality

Three quality metrics were evaluated for data quality:

• Completeness
Age, BMI, ECOG, and Posaconazole treatment (concomitant treatment) were

considered as the critical variables to evaluate the data completeness. For
confounders in Table 2, all the AML patients had age values and decent number
of patients (79.37%) had BMI value in the study cohort. But only a small number
of patients in this cohort had ECOG scores (17.6%) or Posaconazole concomitant
treatment (14.0%). Based on the specific research questions, practitioners could
identify other or additional key confounding variables to check on magnitude of
missingness.

• Syntactic accuracy
In RWD, some patients had the death date prior to the last observation date

in ConcertAI. This scenario is common with date in RWD. The reasons could
be incorrect input of death date or the delayed data entries for prescription fill,
laboratory test, diagnosis in EHR system, or the incorrect patient linkage. In this
study cohort, 57.44% (1359/2366) AML patients had death date prior to the last
observation date and the death date was set as the last observation date for these
patients. Based on the specific research questions, practitioners could identify
additional key study variables and check on syntactic accuracy, such as plausible
range of values for these variables.

• Consistency
To evaluate consistency, we chose BMI and related height and weight in

deriving BMI. The height and weight of patients in the study cohort were
extracted from the database and then we calculated the BMI based on the
formula BMI = kg/m2. Among the 2366 AML patients in the study cohort,
71.4% (1689/2366) AML patients had height value(s) and 92.6% (2190/2366)
AML patients had weight value(s) at the baseline. The height and weight closest
to the index date were selected and BMI (calculated BMI) were obtained for
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1687 patients. Among the 1878 AML patients with recorded BMI in the study
cohort, only 1348 AML patients had both the calculated BMI. Among 1348 AML
patients, 25% (337/1348) had the BMI difference greater than 1 between the
calculated BMI and recorded BMI.

Data Density

Data density was evaluated across four domains in this study: cumulative follow-
up, clinical visit, laboratory test, and disease symptoms, where fatigue, fever, and
weight loss were considered the disease symptoms. This is a way to assess the time
factor in data relevancy, how often patients’ information is captured in the RWD
source, and the ability of using such an RWD source to answer a research question.

Based on the censoring rules, the last visit was defined as the death date if the
patient was deceased within the 2 years’ follow-up period, or the date switching
drug A and drug B within the 2 years’ follow-up period, or censoring date within
the 2 years’ follow-up period, or the date of 2 years post the index date if the patient
was deceased after 2 years post the index date or the last observation date was after
2 years post the index date.

• Cumulative follow-up
The cumulative follow-up for each patient was defined as from index date to

the censoring date in the database. The median follow-up time is 1.02 years for
this study cohort.

• Clinical visit
All encounter visits during the follow-up for each patient were collected.

Based on the algorithm in Table 2, the standardized average number of clinical
visit per patient is 31 visits in 2 years in this study cohort.

• Disease symptoms
We selected fatigue, fever, and weight loss as disease symptoms for each

patient in this study. Based on the algorithm in Table 2, the standardized score is
2.6, which may be underestimated than expected. The reason might be because
the disease symptoms are usually not captured as structured data in clinical care
setting but described in the clinical notes by physicians. To have more complete
disease symptoms, natural language processing may be utilized to identify the
disease symptoms from clinical notes.

• Laboratory test
Due to the complications of laboratory test, we reviewed the laboratory

test names and categorized the laboratory test as blood count, fluid test, urine
test, prothrombin time (PT), specimen, stool, and other. The data density for
laboratory test was assessed based on the categorized data of laboratory test.
Based on the algorithm in Table 2, the standardized data density score for lab test
is 12, i.e., on average, each patient from the study cohort had about 12 lab tests
in 2 years.
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4 Discussions and Conclusion

Following the semi-quantitative approach as developed by Levenson et al. [12] and
the implementation example by Kalincik et al. [9], we have applied the concept and
implemented the same in a case study using ConcertAI database.

In assessing relevancy, we started with assessing the number of relevant diseased
patients in the database. If there is insufficient number of subjects fitting the disease
conditions in the database as required in addressing the research questions and
the associated sample size needed, then there is no point in moving forward with
additional assessment for this data source. This is what we coined as a stepwise
semi-quantitative approach. Next, we checked on whether certain key variables for
relevancy assessment were collected in the database and how much missingness for
such key variables. For this hypothetical research question, we found that there are
a couple of key confounding variables with a large amount of missing data, such
as ECOG status. For posaconazole use or diabetes status, often as the convention
in RWD source, clinicians would assume that not ascertaining posaconazole use or
diabetes status meant that patients were not using posaconazole or their diabetes sta-
tus is no. However, the assumption needs to be carefully assessed. Further, to assess
whether the results from this research based on ConcertAI could be generalized to
the AML patient population at large, we selected a few key epidemiologic factors,
such as male to female ratio, incidence, and death rate in this cohort of patients. As
can be seen, the assessment of generalizability is greatly dependent on the research
question and disease under study. Practitioners should make your own judgement
on how this dimension could be assessed.

In assessing reliability, from completeness, syntactic accuracy, and consistency
perspectives, we also selected a few key variables that are relevant to the research
questions at hand. Practitioners should select variables they deemed important
to answer their research questions. This is what we did, by selecting a few key
variables to demonstrate completeness, syntactic accuracy, and consistency, with
the understanding that it may be not possible to check all the variables that were
collected in a database. We modified the concept of data density, as originally
proposed by Kalincik et al. [9], to fit with our research question. We believe that
the concept of data density is a very important one, to gage on the richness of
the database, longitudinality of the follow up, and frequency of key information
ascertained. Practitioners could identify fit-for-use data density measures of their
own based on the principles as discussed in this section.

In conclusion, we implemented a case study to assess a fit-for-use RWD source
to answer a hypothetical research question. The assessment revealed that this RWD
source may not be fit-for-use for the research question due to the following data
relevancy and/or reliability issues we identified:

• A few key confounding variables have a large amount of missing data.
• The median follow-up time is only 1.02 years for a 2-year study. It means that

50% of patients in this cohort has discontinued at 1 year, making assessment of
overall survival at 2 years quite inaccurate.



60 W. He et al.

However, we believe that such assessment may have an element of subjectivity
to it. Sponsors may need to engage regulators to have such a discussion on the data
source, providing rationale and justification based on the guiding principles and
assessment details, as delineated in this chapter.

Further research and additional implementation case studies may still be needed
to guide practitioners to fully understand the development of assessment algorithms
based on specific research questions, the rationales and justification for assessment,
and any available regulatory feedback on RWD sources that were deemed fit-for-use
or otherwise. In chapter “Applications Using Real-World Evidence to Accelerate
Medical Product Development”, six case studies are presented. Of a few case studies
in that chapter, FDA reviewers deemed the RWD sources as adequate and fit-for-use.
However, additional details on the justification of making such a conclusion are not
available to the chapter authors for further delineation in the chapter.

Disclaimer This chapter reflects the views of the authors and should not be construed to represent
FDA’s views or policies.
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Key Variables Ascertainment
and Validation in RW Setting

Sai Dharmarajan and Tae Hyun Jung

1 Introduction

In real-world data, it is important to assess whether the outcome of interest is
being correctly captured and captured consistently in a way that it is accessible.
For example, in imaging data, the frequency of imaging evaluation should be
adequate to provide a reasonably precise measure and to enhance the consistency of
image assessment [1]. At the same time, these real-world data should be accurately
ascertained. Ascertainment is difficult not only because there are multiple types of
outcomes but also their methods for ascertainment vary by data sources.

More generally, studies in real world data sources must first include a conceptual
definition for key variables that define the inclusion and exclusion criteria of study
population, exposure, outcome, and key confounders. The conceptual definition
should reflect the current clinical or scientific thinking about the variable. For
example, this could be the clinical criteria to determine if a patient has a condition
that defines the study population, outcome, or key covariate or the measurement
of drug intake that defines the exposure. Based on the conceptual definition, an
operational definition should then be developed to extract the most complete and
accurate data from the data source. An operational definition essentially translates
a theoretical, conceptual variable of interest into a set of specific operations or
procedures that define the variable’s meaning within a specific study and available
data sources. In many studies using electronic health record (EHR) or medical
claims data, the operational definition will usually be an algorithm constructed
using structured data elements such as codes indicating the presence of a diagnosis,
medical procedure or medication dispensation. For example, for identifying the
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presence of diabetes, an operational definition may be an ICD code for the diagnosis
of diabetes. In some other instances, the algorithm may be constructed using
relevant information derived from unstructured data occurring as free-text such as
clinical progress or discharge notes in combination with structured data elements.
Additional linked data, such as a patient survey, may also be used to specify an
operational definition.

The operational definition is often called the phenotype definition, with the
underlying clinical characteristic or concept being the phenotype. When a clinical
characteristic can be ascertained using an operational definition solely from the
data, either using structure or unstructured elements, in EHRs or any other clinical
data repository (including disease registries, claims data) it is called a computable
phenotype [2]. The word computable stemming from the fact that these can be
ascertained using a phenotype definition composed of data elements and logic
expressions (AND, OR, NOT) that can be interpreted and executed by a computer,
without the need for human intervention in the form of a chart review. Computable
phenotypes along with their definitions are important as they can be standardized to
facilitate identification of similar patient populations and enable efficient selection
of populations for large-scale clinical studies across multiple health care systems
and data sources [2].

The development of phenotype definitions is discussed in detail in the next
section, but it is important to note that computable phenotype definition should
include metadata and supporting information about the definition, its intended use,
the clinical rationale or research justification for the definition, and data assessing
validation in various health care settings [3]. In terms of regulatory considerations,
the computable phenotype definition should be described in the protocol and study
report and should also be available in a computer-processable format. Clinical
validation of the computable phenotype definition should be described in the
protocol and study report [4].

In the subsequent sections of the chapter we first provide an overview of available
and commonly used methods for ascertainment of key variables, followed by a
discussion of the importance and role of validation. We then lay out some special
considerations for three types of key variables: exposure, outcome, and confounders.
This is followed by a detailed discussion of a published example of RWE in the
post-market setting. Specifically, we walk through the ascertainment and validation
of key variables in studies conducted using RWD sources to successfully fulfill a
post-marketing requirement. Finally, we present a discussion of the key takeaways
and important learnings.

2 Methods for Ascertainment

Identifying patients with certain clinical characteristics of interest (outcome, expo-
sure or other key variable used for cohort definitions) in real world data sources
require looking for patterns throughout the patient’s record suggestive of those
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characteristics. Here, we describe the methods used for ascertainment of clinical
characteristics in data sources where direct ascertainment of the characteristics
through a single variable is not possible, most notably in EHR and administrative
claims databases.

2.1 Rule-Based Methods

The traditional approach to ascertainment has involved specifying inclusion and
exclusion criteria or rules based on structured data elements such as diagnosis
codes, medications, procedures, and lab values using criteria often drawn from
consensus guidelines around diagnosis and treatment [5]. These methods are often
termed as rule-based methods. A well-established example is the identification
of Type 2 Diabetes for which the requirement may include at least one mention
of the diagnosis code, evidence of at least one hypoglycemic medication, or an
HbA1c above a certain threshold [6]. Oftentimes, multiple instances or mentions
of diagnoses, or the occurrence of a diagnosis along with a medication or lab
value are required to ensure that “rule-out” diagnoses that are recorded for further
confirmation aren’t incorrectly identified as true diagnoses. Rule-based methods
tend to do well when there are clear, reliable diagnosis and procedure codes
that are used often or when there’s a reliable surrogate or proxy. There has
also been some concerted effort to improve the quality of rule-based phenotypes.
Collaborations such as the eMERGE (Electronic Medical Records and Genomics)
network [7] have developed a large catalog of generalizable EHR phenotypes,
including hypothyroidism, type 2 diabetes, atrial fibrillation, and multiple sclerosis,
and have created, PheKB (Phenotype Knowledgebase; available at http://phekb.
org) [8], a repository which facilitates the sharing and validation of phenotypes
in different health care settings and across different coding libraries (see chapter
“Privacy-Preserving Record Linkage for Real-World Data” for more details on
coding libraries). But the scope of rule-based approaches is limited in capturing
more complex phenotypes or when working in less standardized datasets. For
example, Kern et al. [9] found that rule-based queries for chronic kidney disease
among diabetic patients had poor sensitivity with a maximum of 42% when using
seven alternative ICD-9 diagnosis codes. In another instance, Wei et al. [10] showed
that a rule for capturing type 2 diabetes did not identify many true positives when
used at only a single site because patient data were often fragmented across inpatient
and outpatient data repositories.

2.2 Machine Learning (ML)-Based Methods

An improvement on rule-based methods has been made recently by leveraging
machine learning to combine numerous structured and unstructured data elements
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into an algorithm for classifying patients with the clinical characteristic or pheno-
type of interest. The ML-based approaches to build a phenotype can broadly be
categorized into supervised, semi-supervised, or weakly supervised, based on the
requirement of gold standard-labeled data, a fraction of gold standard-labeled data,
and silver standard-labeled data, respectively.

In supervised approaches, the data consist of a ‘gold-standard’ label of the
presence or absence of the phenotype. These labels are usually annotated from
a manual review of patient records but sometimes can also be derived from lab
values or registry data. With these labels, an ML algorithm (e.g., random forest,
Support Vector Machine, artificial neural net) is trained to classify patients with the
phenotype using all the relevant data elements, usually spanning in the hundreds,
as features in the model. For example, Gibson et al. [11] developed an algorithm
for identifying Rhabdomyolysis cases in the IBM Watson EHR database, where
laboratory data was leveraged to come up with gold standard labels. The best
performing algorithmwhich combined information from diagnosis codes, procedure
codes, and medication using a neural net had an AUC of 0.88. In another example,
Carrell [12] developed a phenotype for Anaphylaxis using manually abstracted
medical chart data as training data.

As manual chart abstraction is resource intensive and often infeasible, and other
sources of gold-standard labels involve challenges of their own, including poor
validity, other ML based methods such as weakly supervised or semi-supervised
methods either completely do away with the requirement of gold standard labels or
require only a limited amount of labeled data, respectively. To minimize the burden
of chart review, semi-supervised methods train ML algorithms with a large amount
of unlabeled data (e.g., unreviewed medical records), together with a small amount
of labeled data. With phenotyping hypertension as an example, Henderson et al.
[13] showed that these methods may slightly underperform compared to supervised
learning methods, but may require only a fraction of the number of reviewed charts
(e.g., AUROCsemi-supervised 0.66, AUROCsuperivsed 0.69 for hypertension).

In a weakly supervised method, a “silver-standard” or noisy label can be easily
extracted from all available records in place of doing a chart review. This silver stan-
dard label is usually a highly predictive but imperfect proxy for the gold-standard,
that is, they have a high positive predictive value, but weak sensitivity. For example,
in a study of systemic lupus erythematosus, the silver standard label for patients
having the condition was four or more disease-specific ICD-9 codes were present in
their record [14]. Well-known examples of weakly supervised phenotyping methods
include PheNorm [15] and the Automated PHenotype Routine for Observational
Definition, Identification, Training, and Evaluation (APHRODITE) [16]. These two
methods differ in their approach for constructing an ML algorithm using the silver
standard labels. In methods like PheNorm, it is assumed that the silver-standard
label follows a mixture model representing actual cases and controls. PheNorm
specifically uses Gaussian mixture-modeling and denoising self-regression with
silver standard labels based on counts of relevant billing codes such as diagnosis
and procedure codes for the condition of interest and free-text mentions of the
condition of interest in clinical notes [15]. With such a method, the authors showed



Key Variables Ascertainment and Validation in RW Setting 67

that PheNorm achieved comparable accuracy to penalized logistic regression trained
with 100–300 gold-standard labels for four phenotypes [15]. In contrast, the anchor
and learn framework of methods like APHRODITE uses supervised learning
methods trained with a silver standard whose presence unambiguously indicates
the presence of the condition, whereas the absence is uninformative. APHRODITE,
which uses a logistic regression trained using the silver standard label, was applied
to ten phenotypes across three Observational Health Data Sciences and Informatics
(OHDSI) sites in the United States and Korea, and obtained mean recall (Positive
Predictive Value; PPV) and precision (sensitivity) of 0.54 and 0.73 in the United
States, and, 0.46 and 0.24 in Korea [16]. Regional difference in the quality of silver
standard labels likely determined the difference in quality of model performance
[16].

2.3 Text Processing for Phenotyping

Asmentioned earlier, a certain amount of key clinical data in real-world data sources
such as EHR databases occur in the form of free text (e.g., clinical notes) or as other
non-standardized (e.g., images or radiology reports). Recent technological advances
in the field of artificial intelligence, including natural language processing and deep
learning, have enabled the extraction and use of this unstructured information to
identify and ascertain clinical characteristics. The most common way to process
text data has been to use an openly available NLP software or pipeline [17] to
map clinical notes, say a discharge summary, into a bunch of medical concepts
within the Unified Medical Language System (UMLS) metathesaurus [18]. These
extracted medical concepts are then engineered into features (e.g., as the number
of positive mentions of the phenotype in a patient’s discharge summary) to be fed
into an ML-based phenotyping approach mentioned in the previous section [19].
Another approach to process clinical notes gaining popularity recently is the use of
word embeddings [20]. Word embeddings typically serve as the input layer to deep
learning models, such as convolutional neural nets, for identifying a phenotype [21].
This approach has shown to have some advantages over the previously mentioned
approach of extracting medical concepts and using them as features [19].

2.4 Ascertainment Through Linkage and Using Proxy

Data linkage of one RWD source to additional sources can be used to increase the
amount of information available on individual patients, improving the capture of
key variables of interest and providing additional data for validation purposes. For
example, Zhang et al. [22] improved the capture of mortality for cancer patients in
an EHR database through a linkage with obituary information. They then validated
this composite by linking to the national death index data and showed sensitivity
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above 80%, specificity above 93%, PPV above 96%, and negative predictive value
above 75.0% across multiple cancer types. Data linkage such as performed in this
study is deterministic, as in the linked records have an exact match to a unique or
set of common identifiers, and the match status can be determined using a single or
multiple step process. Different types of data linkage and other details are discussed
in detail in chapter “Causal Inference with Targeted Learning for Producing and
Evaluating Real-World Evidence” of this book.

Data linkage is also one way to address the problem of missing data. When data
on a key variable are truly missing, it may be possible to identify a variable that
is a proxy for this variable of interest. For example, low-income subsidy status
under the Medicare Part D prescription drug program may serve as a proxy for a
patient’s socioeconomic status. Another example of the use of proxy measures is
for the identification of a tumor burden endpoints such as an achievement objective
response in real world data sources, where information on standardized clinical trial
criteria such as Response Evaluation Criteria in Solid Tumors (RECIST) are not
available. Griffith et al. [23] compared radiology-anchored and clinician-anchored
approaches to RECIST-based methodology in an EHR data source and found the
latter to be infeasible. This proxy has been used in RWE to support the approval
of Ibrance for the indication of male metastatic breast cancer [24], a case which is
discussed in chapter “The Use of Real-World Data to Support the Assessment of the
Benefit and Risk of a Medicine to Treat Spinal Muscular Atrophy”.

Regardless of the method used, it is important to ensure the validity [25] of the
derived phenotype or operational definition in external data and the portability [26]
of phenotypes across health systems and time periods before wide adoption. It must
also be ensured that any algorithm used is not amplifying existing disparities in the
healthcare system [27].

3 Validation

As operational definitions are usually imperfect in the sense that they will not
accurately capture the variable or condition of interest for every subject in the data,
steps should be taken to confirm their validity. The aim of doing so is to minimize
the bias the mismeasurement and misclassification of key variables may cause in the
findings of the study. In order to determine what steps need to be taken and for which
variables, it is important to understand the implications of potential misclassification
of a variable of interest. Thus, it is important to consider (1) the magnitude or degree
of classification or measurement error; (2) whether the error is differential or non-
differential (e.g., misclassification of outcome may occur unequally or equally by
exposure), and, independent or dependent (e.g., misclassifications of exposure and
outcome may be correlated when both are self-reported in the same survey); and (3)
the direction toward which the results might be biased because of the error.

The most thorough way to minimize misclassification error, for example, is
to conduct a complete verification of the variable by checking the variable for
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Table 1 Performance measures of an operational definition for a binary variable

Condition based on reference standard/conceptual
definition

Condition
based on
operational
definition Yes No Total

Yes a (true positive) b (false positive) a + b PPV = a/(a + b)
No c (false negative) d (true negative) c + d NPV = d/(c + d)
Total a + c b + d N

Sensitivity = a/(a + c) Specificity = d/(b + d)

each subject using a reference standard of choice and assigning an accurate value.
For example, medical record review may be conducted for all subjects in a study
using EHR data to determine if they met the conceptual definition for having
a clinical condition of interest. However, this may often be infeasible due to
lack of resources. In such scenarios, validation studies need to be conducted to
measure the performance of an operational definition. For the binary classification
case, validation studies focus on measuring performance in terms of sensitivity,
specificity, positive and negative predictive value (Table 1).

As the performance of an operational definition may depend on the data source,
study population, time frame and the reference standard, a validation is ideally
carried out in an adequately large sample of the same study population as a part of
the proposed RWE study. For example, to validate a myocardial infarction algorithm
in the US FDA sentinel system, medical chart reviews and adjudication was done on
a random sample of 143 individuals identified as having an event by the algorithm
[28]. The positive predictive value (PPV), defined as confirmation of occurrence
of the event by adjudication, was 86% in this random sample. In another example,
Desai et al. [29] and Zhang et al. [22] consider the misclassification of cause-specific
mortality outcome due to the information not being well captured in a medical
claims database. Specifically, due to lack of cause of death information in the study
data, the outcome cardiovascular death (CV death) was operationally defined as any
death within 30 days of a major CV event recorded in the database. The authors
assessed the bias implications of misclassification for this variable with a validation
dataset, from the National Death Index data, where information on the cause of
death was available and concluded that there was a possibility for substantial bias in
the estimated treatment effects with their operational definition.

Validation studies can be used in combination with methods for correcting and
adjusting bias due to misclassification and measurement error. Keogh et al. [30]
discuss the complex nature of assessing and correcting for information bias in infer-
ence and present two methods, regression calibration and simulation extrapolation,
to adjust for measurement error, when there is some availability of quantitative
information regarding the measurement error. More complex methodologies to
assess and correct biases for complex cases is presented in Shaw et al. [31].
Lian et al. [32] propose a Bayesian modeling strategy to correct for exposure
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misclassification. They apply their methods to correct for misclassification in
patient self-reported smoking status in a retrospective real-world study of diabetic
nephropathy patients. Using an external validation study to estimate the potential
bias and to assess sensitivity and specificity, they provide bias adjustment in the
comparative analysis. Even if not correcting or adjusting for biases, quantitative bias
assessments, which are a set of sensitivity analyses to assess the impact of potential
biases on a study inference [33], are recommended to demonstrate whether and how
misclassification might affect study results.

More generally, for outcomes or other binary variables of interest, the trade-
off between false-positive and false-negative cases when selecting an operational
definition should be considered and a proper outcome validation approach to
support internal validity of the study should be identified. From a regulatory
perspective, the recently published Draft FDA Guidance for Industry on [4] Real-
World Data: Assessing Electronic Health Records and Medical Claims Data To
Support Regulatory Decision Making for Drug and Biological Products offers the
following advice for sponsors submitting RWE:

Regarding outcome validation, sponsors should justify the proposed validation approach,
such as validating the outcome variable for all potential cases or non-cases, versus
assessing the performance of the proposed operational definition; if the latter will be
done, justify what performance measures will be assessed. The protocol should include
a detailed description of the outcome validation design, methods, and processes, as well as
sampling strategy (if applicable). If a previously assessed operational definition is proposed,
additional information should be provided, including (1) data source and study population;
(2) during what time frame validation was performed; (3) performance characteristics; (4)
the reference standard against which the performance was assessed; and (5) a discussion of
whether prior validation data are applicable to the proposed study.

4 Special Consideration for Key Variables

4.1 Exposure

The definition of medication exposure should include dose, formulation, strength,
route, timing, frequency, and duration. The data source used must be able to identify
the product of interest. This can be done through patient or physician reports, billing,
or procedure codes. Correspondingly, the operational definition used must reflect
the resources available such as the coding system in EHR or claims databases,
with an understanding of prescription, delivery, and reimbursement characteristics
of the drug. For example, in some data, the same billing or diagnostic code may be
used to indicate administering of multiple vaccine, making it impossible to identify
the specific vaccine formulation. Commonly, in EHR and medical claims data
sources, operational definitions for ascertaining exposures are based on structured
data elements which contain codes for the medication dispensed (e.g., National Drug
Codes associated with prescription fills in claims data) or procedure performed (e.g.,
HCPCS J code for inpatient administration of injectables). It is also possible to
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combine information from unstructured data, using medical chart review of notes
in combination with dispensing and prescribing data to confirm patient’s use of
medication after dispensation. Bustamente et al. [34] ascertain aspirin exposure in
a retrospective cohort study of veterans undergoing usual care colonoscopy using
such a method.

As some medications such as vaccines are designed as one-time exposures and
other medications are intended to be used over time, the ability of the data source
to capture the relevant duration of the exposure should be considered. In terms
of ascertainment, the operational definition should address how medication use
will be measured, how potential gaps in therapy and how refill stockpiling will be
addressed, especially in data sources ascertaining exposure through prescription fills
or dispensations.

It is important to note that RWD sources often capture only the prescription fills
or dispensations of drugs, but not the actual exposure to drug, as the latter depends
on patients obtaining and using the prescribed medication. As such, exposures
in these settings are ascertained through a proxy. Thus, validation, where the
exposure classification is compared to a reference standard to produce estimates of
misclassification that can be used in sensitivity analysis or adjusted for is important.
While validating, attention must be paid to all characteristics of exposure, including
duration, dose, and switching. Validation can be done by performing additional
studies in the same population such as by undertaking a survey of study participants
to assess drug intake. In some cases, prior studies such as published reports of
number of people taking vaccines may be relied on to estimate misclassification
rates. Apart from misclassification, other sources of bias stemming from lack of
information such as the unavailability of information on nonprescription drug usage
must also be considered.

4.2 Outcome

As noted earlier, the conceptual definition of an outcome should reflect the current
medical and scientific understanding and may vary by study. A description of the
conceptual definition in the study protocol should include the signs, symptoms, and
laboratory and radiology results needed to confirm the presence of the condition.
The conceptual definition for anaphylaxis, for example, may include sudden onset,
rapid progression of signs and symptoms, ≥1 major dermatological criterion,
and ≥1 major cardiovascular or respiratory criterion. The conceptual definition
may be operationalized using diagnosis (e.g., ICD-9-CM, ICD-10) or procedure
codes (HCPCS), laboratory tests (e.g., identified using LOINC codes) and values
or unstructured data (e.g., physician notes, radiology and pathology reports). The
operational definition description should include the coding system, if any, used in
the data source, the rationale and limitations of the definition and the impact on
misclassification.

The general considerations on validation presented in Sect. 3 apply while
validating the outcome. Perhaps, most importantly, the trade-off between false
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positive and false negative cases must be considered and inform the approach for
validation. For rare disease outcomes, it might be prudent to select an operational
definition with high sensitivity (and consequently, low PPV) and perform complete
verification (e.g., through chart review) of cases to maximize the possibility that all
true cases are captured, and false positives are minimized. In other situations with
a more common outcome (e.g., disease-specific hospitalization), misclassification
through false-positive and false-negative may both happen at a considerable rate. In
these situations, measuring PPV alone would not be enough to inform bias due to
misclassification.

4.3 Confounders

Depending on the type of variable, the specific principles and considerations
described in the above two subsections may apply to a key confounder of interest.
For example, covariates that are medical events such as comorbidities or procedure
utilizations are similar in nature to outcomes, whereas covariates such as concurrent
or past medication uses are similar to an exposure variable in terms of ascertainment
and validation. Sometimes covariates such as family history, lifestyle factors may
need to be ascertained or validated through data linkage to provider or patient
surveys.

5 A Case Study from Myrbetriq
®
Postmarketing

Requirement

This section introduces an example of rule-based ascertainments of outcome and
exposure in a post-marketing safety study using real-world data. On June 2012,
the FDA approved Myrbetriq

®
(mirabegron) to treat overactive bladder (OAB) with

symptoms of urge urinary incontinence, urgency, and urinary frequency. During the
premarket clinical development, a number of cardiovascular (CV) and malignant
events were observed in the mirabegron arm compared to the placebo arm. Thus, the
FDA required the Applicant to conduct two postmarketing safety studies to evaluate
the incidence of the adverse outcomes of interest among OAB medication users
[35]. One postmarketing study (PMR 1898-3) primarily focused on the incidence
of CV outcomes during current exposure in patients administered mirabegron. This
study adapted real-world data identified from five data sources in US and European
electronic healthcare databases with appropriate linkage: Danish National Patient
Registry (NPR), Swedish NPR, Clinical Practice Research Datalink (CPRD; UK),
Optum Research Database (ORD; USA), and Humana Database (USA). The CPRD
database included CPRD-linked and CPRD-unlinked. The study design and analysis
results are published elsewhere [36]. In this example, we introduce how the research
partners for each real-world database ascertained and identified the study outcome
and exposure.
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As the study obtained outcomes and exposures from various data sources,
methods applied for identification and ascertainment were different for each
database. However, the study clarified that research partners followed the common
protocol and statistical analysis plan along with site-specific protocols [36]. For
outcomes, the study ascertained the cases through “direct linkage to registries,
medical record review, or physician questionnaires” [36]. Particularly, ORD and
Humana ascertained mortality outcomes through linkage to the national death index
(NDI) [36, 37]. For exposure, the study classified a person-day as current exposure
to the medication if it falls under the days of supply of the prescription or dispensing
with an additional grace period of 50% [36]. This grace period accommodated
patient’s varying adherence to medications beyond the days of supply to adjust
missed scheduled dose or changes in dosing schedule [36]. The total days of supply
were estimated by different methods based on the available information in each
database. Either switching to a newly prescribed medication group from other
treatment group or reaching the end of days’ supply (after applying the grace period)
terminated the current exposure status of a given person–time for treatment group
[36]. To avoid overlap in days of supply between the prescriptions/dispensing, the
authors truncated the first prescription/dispensing on the day before the subsequent
prescription [36]. Brief introductions of each database and their ascertainments of
outcome and exposure are described as follows:

The Danish National Patient Registry (NPR) is a population-based administrative
registry that contains clinical and administrative data from all Danish hospitals since
1977 [38]. In this register, diagnosis codes are entered upon discharge according to
the International Statistical Classification of Diseases and Related Health Problems
10th Revision (ICD-10) and adapted for use in the Danish healthcare system [36,
38]. The authors stated that the outcomes were identified through a direct linkage
to patient registers using ICD-10 diagnosis codes [36]. The Danish NPR did not
have direct information on the days of supply, thus an alternative approach was
used to estimate the exposure, days of supply. A waiting-time distribution was used
to identify maximum interval between two prescriptions deemed as belonging to
the same treatment episode [39, 40]. If any interval was larger than the identified
maximum length, it was considered as a gap in treatment [36]. The accuracy of
AMI and stroke diagnoses was validated through several studies and demonstrated
fairly high PPVs of AMI (81.9–100%) [41–43] and stroke (79.3–97%) [44–47],
respectively.

Similarly, in Sweden, the National Patient Register (NPR) was used to identify
the CV outcomes using ICD-10 diagnosis codes. The Swedish National Inpatient
Register (NIPR) is a part of the NPR launched in 1964 and has completed national
coverage since 1987 [48, 49]. It is known that more than 99% of all somatic
(including surgery) and psychiatric hospital discharges are registered in the current
NIPR. The Swedish NPRs also did not have a direct linkage to the days of supply
information. Thus, the days of supply were estimated by dividing the number of
prescribed or dispensed tablets from the number of daily recommended tablets
[36]. The PPV of AMI ranged between 86–98% [50, 51] and the PPV of stroke
demonstrated 94% [52].
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The CPRD collects deidentified patient data from a network of general practi-
tioners (GPs)’ practices across the UK [53–55]. Its primary care data are linked
to a range of other health-related data to provide a longitudinal, representative
UK population health dataset. The CPRD-linked includes the data from general
practices that permitted hospital and mortality data linkage and the CV outcomes
were identified through a direct linkage to patient registers using ICD-10 codes
[55]. As the CPRD-unlinked does not have this linkage, the potential CV outcomes
were identified using the Read codes [56] and adjudicated by the GPs who provided
care for patients [36]. As the CPRD rarely record days of supply, the total days
of supply was estimated by using a combination of available information such as
recorded number of days of supply, quantity of tablets prescribed, daily dose, and
tablet strength [36]. For explicit records on days of supply, the researchers assessed
the plausibility of the prescription record values against the corresponding values
for the quantity of prescribed tablets and the daily dose for that prescription. If the
value of recorded days of supply did not match with value of the quantity of tablets
prescribed divided by the daily dose, the calculated value was used instead [36].
Physician questionnaire was used to validate the AMI and stroke outcomes [36, 57].

The ORD and Humana database used claims data to identify potential acute
myocardial infarction and stroke outcomes. These outcomes were based on ICD-9
or ICD-10 Clinical Modification (ICD-9-CM or ICD-10-CM) diagnosis codes in the
principal diagnosis position on at least one facility inpatient claim for hospitalization
[2]. For validation purpose, medical record reviews were used to adjudicate these
outcomes for both databases. To identify all-cause and CV mortality, both database
used external linkage to the National Death Index, which is a central computerized
index of death record information on file in the state vital statistics offices [37]. The
primary and underlying causes of death were recorded using ICD-10-CM diagnosis
codes. Unlike the European database described above, the ORD and Humana
database were able to directly capture the days of supply associated with outpatient
dispensing. The researchers calculated the total days of supply by summing days of
supply for all consecutive prescriptions or dispensing of a given medication [36].

The post-marketing study was performed using real-world data collected from
five different sources. As each source had different operational structure for
collecting data, no universal method was applicable to ascertain and validate the
outcome and exposure variables. Thus, each data source used its own methods for
ascertainment and validation.

6 Discussions and Concluding Remarks

Ascertainment of key variables and their validation are the most important steps
in designing a study in RWD once it has been identified that the database is fit-
for-purpose to answer the research question at hand. In this chapter, we covered
the challenges of ascertaining outcomes, specifically, identifying an operational
definition or a computable phenotype in RWD sources, and went through the many
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methods which can be employed. Particularly, with the help of rapid technological
advances, we discussed how all the data available in RWD sources can be leveraged
to identify complex clinical characteristics. While such approaches are encouraging
for the future of RWE, it must be stressed, as done here, that ensuring the internal
and external validity of any approach is of paramount importance. Validation does
not just imply calculating relevant metrics such as PPV and sensitivity but involves
the consideration and assessment of the bias that can be caused by the imperfection
of the operational definition.

We also walked through an example where RWE was used to satisfy post-
marketing safety requirements for an approved drug. The studies conducted by
the applicant used rule-based methods and data linkage to identify outcomes and
exposures in five different RWD sources to answer the same safety question.
Through the example, we highlight how a study can be designed to thoroughly
address the question of ascertainment and validation.

Disclaimer This chapter reflects the views of the authors and should not be construed to represent
FDA’s views or policies.
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1 Why We Need to Scale Up the Generation and Use
of Real-World Evidence

In recent decades the proportion of health and care information that is captured
within electronic health record systems is steadily growing [1], giving rise to a rich
but fragmented resource of “real-world data” (routinely collected health, care, and
wellness information) from which all stakeholders can discover vital insights [2].

Health systems urgently need to improve their capability to learn from the data
they hold, in order to optimize care pathways, to achieve the best possible outcomes
for patients, make the best use of resources and improve patient safety. This
need for evidence-based improvement includes the increasing societal expectation
of equity of care standards across and between health systems, and between
different population groups (for example equity on the basis of ethnicity, as recently
highlighted by Brown et al. [3]). From a regulatory science perspective, the need
for timely, assured qualifications and approval of ever more complex therapeutic
interventions, especially utilizing both clinical trial data and real-world evidence is
of paramount importance.

The need for public health systems to learn from data has never been more
acutely highlighted than in the COVID-19 pandemic when there was an urgent
need for disease and treatment understanding regarding this new infective threat
[4]. The academic and industry research sectors also need to leverage large-scale
data in order to understand the fine differences between disease sub-populations,
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Table 1 Examples of health system, population health, academic and industry research areas
needing to make use of big health data

Health systems and population health
purposes Academic and industry research purposes

Healthcare provider performance and
planning
Health services and resource planning
Quality and safety, care pathway
optimization
Population health needs assessment
Personalized medicine services
Pharmacovigilance
Public health surveillance
Prevention and wellness programs
Public health strategy

Epidemiology
Disease understanding and stratification
Digital innovation: devices, sensors, apps
AI development
Personalized medicine and bio-marker
research
Diagnostics development
Drug development
Clinical trial planning and optimization
Comparative effectiveness research

for precision medicine [5], and to develop a wide range of personalized therapies
[6], diagnostics, monitoring, and medical devices [7]. Artificial intelligence learning
needs very large data sets in order to deliver precise, accurate, and safe recommen-
dations [8], as well as for training algorithms. Large data sets are also invaluable
for the training of clinical and research personnel. Table 1 lists some examples of
knowledge discovery purposes for which health data is needed, to improve care and
to accelerate research.

The case for combining health data from heterogeneous sources in order to max-
imize this learning opportunity has never been more compelling. The opportunities
are now vast, with electronic health records (EHRs) becoming more sophisticated in
hospitals, specialty care, and primary care, and with a greater proportion of that data
needing to be structured and coded. There is increasing adoption by patients of home
monitoring devices for long-term condition management and other apps that support
them with wellness and prevention [9]. Countries continue to invest in an increasing
number of disease and procedure registries that provide great value for research,
especially in rare diseases [10]. Over the past decade, healthcare funders and
ministries have substantially invested in national scale eHealth infrastructures and
clinical research infrastructures, for example, in Germany and France [11]. There
are also important multicountry data infrastructures already operational such as the
European Union Innovative Medicines Initiative (IMI) European Health Data and
Evidence Network (EHDEN) [12], forthcoming such as the European Medicines
Agency (EMA) DARWIN EU® initiative [13] and the European Commission’s pro-
posals for a European Health Data Space (EHDS) [14]. Globally, the Observational
Health Data Sciences and Informatics (OHDSI) open science collaborative network
has been established to support rapid network studies internationally.

There is already a wealth of valuable research generated through big health
data ecosystems, demonstrating the utility and societal value of leverage of this
knowledge [15]. The European Institute for Innovation through Health Data is
starting to publish summary case studies of health data use, especially for research,
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in order to help communicate these beneficial uses of data to the public and other
stakeholders [16].

Two recent examples of research findings that illustrate the value of large-
scale data access have been published by partners of the OHDSI and EHDEN
networks. A paper published in the Lancet in 2019 by Suchard et al. reported on
small but statistically significant advantages of thiazide diuretics over angiotensin-
converting enzyme inhibitors, angiotensin receptor blockers, dihydropyridine or
non-dihydropyridine calcium channel blockers in the reduction of risk from com-
plications of hypertension, in particular myocardial infarction, stroke, and heart
failure [17]. These very small effects were detected by examining the records of 4.9
million patients treated for essential hypertension across four countries, studying
historical data going back several years. The authors estimated that this research
might have required 22,000 conventionally sized randomized clinical trials and
would have taken many years to generate results as opposed to the months that
they took. In 2022, Li et al. reported on a large data study of patients vaccinated
and unvaccinated for COVID-19, examining the incidence of rare neurological
complications [18]. This study involved over eight million people who had received
at least one inoculation with a COVID-19 vaccination, around three quarters of
a million unvaccinated individuals with COVID-19 infection and over 14 million
general population controls. The study found no increase in incidence of the
purported rare neurological conditions in vaccinated individuals, but did find a small
increase in those complications in individuals who had contracted COVID-19.

In both of these OHDSI and EHDEN supported studies, the large volumes
of health records utilized were not extracted from multiple data sources and
consolidated within a single data repository. Instead, they adopted a well-recognized
federated architecture, in which research queries are cascaded from a central
research point to multiple data sources across countries, to be executed locally on
each data source as a distributed query (often termed, ‘data visiting’). Through this
architecture, only the query results, almost always a numeric frequency distribution
or cross tabulation, is returned to the central point, and further synthesized via meta-
analysis for overall conclusion. This distributed query methodology avoids the need
to transport patient-level data between sites and between countries, which greatly
reduces the risks from a data protection and information security perspective. The
nature of this architecture, and its interoperability requirements, are discussed later
in this chapter.

2 Enabling Health Information Interoperability

It is well recognized that health data is collected through very different hospital,
General Practitioner (GP), patient facing, and other applications, stored in different
Information and Communications Technologies (ICT) products that utilize different
ways of representing health information. However, when conducting evidence
generating research questions across multiple data sources, it is necessary to
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harmonize these data representations first, in order to ensure that the data are always
correctly interpreted. Irrespective of whether data for research is combined into
large data sets and databases, or whether distributed querying (through federated
architecture) is adopted, a common representation of the data is an overarching
requirement. Clinical data standards are therefore essential for enabling the scaling
up of learning from data, for the benefits of care, strategic decision-making, and
research.

The task of representing health data is far from straightforward. This is partly
because of the inherent complexity of health data, which covers many different
categories of information ranging from health history and examination findings
through to laboratory and radiology and genomic investigation results, sophisticated
physical and psychological assessment methods, a diversity of diagnostic and
treatment data types, and monitoring information. Furthermore, health is focusing
more strongly now on wellness and prevention, which not only requires the
collection and analysis of health-related factors but also other influences such as
lifestyle and environmental considerations, which have their own data categories
and representations.

The individual data items that make up these different categories of health
information are themselves somewhat complex to represent, because the individual
data values are held within a rich context that includes the structural organization of
multidimensional clinical observations, accompanying interpretation context such
as whether a finding is present or absent, certain or uncertain, etc., when and
where the information was acquired, its provenance, and visualization management.
This context information may radically alter the meaning of a simple-looking
clinical term, as illustrated by these examples in Fig. 1, which lists many different
interpretations that might apply to a clinical term for chronic obstructive pulmonary
disease (COPD) in an electronic health record.

The EHR will also need to represent provenance information, which is sometimes
important when clinical findings are being interpreted for the generation of real-
world evidence. Interoperability standards should therefore aim to incorporate most
of the information indicated in Fig. 2.

Despite this complexity, health information interoperability standards are rel-
atively mature, capable of representing structure, content, and context faithfully
and therefore to enable the meaningful exchange of information between systems
for continuity of care and the accurate combining of information for knowledge
discovery.

However, the various international standards development organizations that are
active in the health domain, and the standards that they have developed, have
grown in response to particular needs and drivers for interoperability, giving rise
to standards for representing specific kinds of data (such as laboratory findings,
medicines, clinical observations) which have been developed by different organi-
zations at different times and do not necessarily align well when they are used in
combination. This can lead to standards adoption uncertainty and complexity when
eHealth or research infrastructures are being developed, which will need to cover a
wide range of health data types and to represent these using standards.
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Fig. 1 Different possible interpretations of a diagnostic code for chronic obstructive pulmonary
disease that could be conveyed through context information within an EHR

Fig. 2 Provenance, traceability and security context information usually represented within an
EHR system
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It is important for those responsible for making standard adoption decisions to be
aware of the different kinds of standard, and standards development organization,
within the health data ecosystem in order to make wise adoption decisions. The
next section summarizes some of the major organizations that develop health data
standards and highlight some of the main standards.

It is first helpful to distinguish

(a) Standards that have been developed and are largely used for the point-to-point
communication of patient-level data, for example, to support continuity of care
for individual patients.

(b) Standards that are used for patient-level data, but exclusively in a clinical
research (clinical trial) context and not used in routine healthcare.

(c) Standards that specify the representation of data for analysis purposes, which
still represent patient-level real-world data, but are optimized for population
level use of the data in generating real-world evidence.

For each of these interoperability use cases, the standards themselves may focus
on representing the data from one or more of these well recognized perspectives.

• Technical or structural (syntactic) interoperability, which focuses on the orga-
nizational structure of a health record or a clinical data set, the relationships
between parts of complex data structures and the detailed organizational structure
of health data types such as measured quantities.

• Semantic interoperability which represents the meaning of data items and their
observed values, which itself comprises some different layers

– Terminology systems which represent part or all of the clinical meaning
landscape with particular emphasis on textual data

– Measurement units and other term lists that specify the interpretation of
quantities and complex multimedia data types

– Detailed clinical models that specified the aggregation of data items to
represent the complete documentation pattern for an EHR entry, such as a
prescribed drug that combined several individual data items such as the drug
name, dose, frequency, etc.

The above list focuses on the representation of the health data. There are many
other standards that specify how information should be stored, or telecommunicated,
and others that specify how the information should be protected from an information
security perspective.

The complete implementation of an RWE generation ecosystem will need to
utilize standards from all of these areas. It is beyond the scope of this chapter to go
into detail on all of them. The section below summarizes the standards development
organizations, and example standards that they publish and support, that are most
widely used for the representation of various kinds of health data. Although this
chapter focuses on Real-World Evidence generation, for which the standards that
represent data for analysis would be the most relevant, it is important to recognize
that the standards used for healthcare interoperability are also relevant because they
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are likely to be supported (e.g., as export formats) by the systems such as EHR
systems from which the health data will originate (as Real-World Data).

3 The Main Standards Used to Support Continuity of Health
Care

The following standards are primarily used for the representation and communica-
tion of routinely collected clinical information, often within and between electronic
health record systems.

3.1 Health Level Seven (HL7)

HL7 [19] is an international community of health care subject matter experts and
information scientists who work together to create accredited standards for the
exchange, management, and integration of electronic health care information. The
HL7 community is organized in the form of a global organization (Health Level
Seven, Inc.) and country-specific affiliate organizations. HL7 is supported by more
than 1600 members from over 50 countries, including 500+ corporate members rep-
resenting health care providers, government stakeholders, payers, pharmaceutical
companies, vendors/suppliers, and consulting firms. HL7’s standards are accredited
by the US ANSI organization and many HL7 standards have also been adopted as
ISO standards.

Its early standards were for the representation of messages to communicate
information about a patient’s admission to a hospital, discharge or transfer between
care providers, laboratory information, treatment information, and some specialized
health information exchanges. In the mid-1990s, HL7 initiated a family set of
standards based on a common Reference Information Model (HL7 RIM). A wide
range of message models were developed during the 1990s and have had varied
success in the marketplace. One particular model that has been taken up by many
health systems worldwide is the Clinical Document Architecture (CDA). In more
recent years, HL7 has developed and is now rapidly promoting the use of smaller
building block models known as Fast Healthcare Interoperability Resources (FHIR),
which are proving more popular with industry and with national health programs
because of their flexibility and lower cost of adoption.

Most data elements exchanged by HL7 standards are encoded in a terminology
created and supported by other standards organizations such as SNOMED, LOINC,
or WHO. HL7 also actively collaborates with other accredited healthcare inter-
national and country-specific standards groups that address information domains
outside of HL7’s.



86 N. Hughes and D. Kalra

3.2 The International Organization for Standardization (ISO)

Technical Committee 215 of the International Standards Organization (ISO) on
Health Informatics was formed in 1998 following a decade of increasingly interna-
tional cooperation among health informatics standards organizations [20]. The par-
ent ISO organization is based in Geneva, and has the status of a non-governmental
organization, recognized by law in many countries. ISO accepted the United
States’ offer to hold the Secretariat for TC 215; the Secretariat is managed by
HIMSS (Healthcare Information and Management Systems Society) on behalf of
ANSI (American National Standards Institute) who is the US member to the ISO
community.

The scope of TC 215 includes architecture, frameworks, and models; systems and
device interoperability; semantic content; security, safety, and privacy; pharmacy
and medicines business; traditional medicine; personalized digital health, artificial
intelligence. Example standards that have a high profile within the technical
committee include ISO 13606 for Electronic Health Record Communication [21],
ISO 13940 System of Concepts for Continuity of Care [22], and ISO 12967 Health
Informatics Service Architecture [23].

While de novo standards are created within TC 215 working groups, increasingly
the Technical Committee is recognizing, harmonizing, or adopting standards efforts
among related standards development organizations. Internationally recognized
agreements exist for the European CEN TC251 and HL7 to “fast track” standards
balloted in those organizations. A newly established Joint Initiatives Council
includes these fast-track organizations in addition to CDISC and SNOMED, to
further strengthen international collaboration and synergy among international
health information standards organizations.

3.3 SNOMED CT

SNOMED [24] (Systematized Nomenclature of Medicine) International is a not-
for-profit organization that owns and maintains SNOMED CT, stated to be the
world’s most comprehensive clinical terminology. As stated by SNOMED Inter-
national, “SNOMED International plays an essential role in improving the health of
humankind by determining standards for a codified language that represents groups
of clinical terms. SNOMED CT enables healthcare information to be exchanged
globally for the benefit of patients/citizens, care providers and other stakeholders.”
[25]

SNOMED was initiated by the College of American Pathologies (CAP) in 1973
and revised into the 1990s, but in 1999, CAP’s SNOMED Reference Terminology
(SNOMED RT) was merged and expanded with the United Kingdom’s National
Health Service Read Codes (a coding system predominately used in primary
care electronic health record systems) to produce SNOMED Clinical Terminology
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(SNOMED CT). The structure of SNOMED CT differs from prior versions, based
on sub-type hierarchy, supported by defining relationships based on description
logic, versus a hierarchical classification system used before. A main use case of
SNOMED CT is as the core terminology for electronic health records, covering
clinical findings, symptoms, diagnoses, procedures, body structures, organisms and
other etiologies, substances, pharmaceuticals, devices, and specimens. The January
2020 release of SNOMED CT includes more than 350,000 concepts and cross
maps to other terminologies, such as ICD-9, ICD-10, LOINC, and supports ANSI,
DICOM, HL7, and ISO standards. SNOMED CT enables information input in to
an EHR system during the course of patient care, while ICD facilitates information
retrieval, or output, for secondary data purposes.

SNOMED CT consists of four primary core components: (1) concept codes,
which identify clinical terms via numerical codes; (2) descriptions, which are textual
descriptions of concept codes; (3) relationships, between concept codes that have a
related meaning; and (4) reference sets, used to group concepts or descriptions.

3.4 LOINC

Logical Observation Identifiers Names and Codes (LOINC) is a database and uni-
versal standard for identifying medical laboratory observations, initially developed
by the Regenstrief Institute, a US not-for-profit medical research organization, in
1994. It has expanded to include nursing diagnosis, nursing interventions, outcomes
classification, and patient care datasets beyond the original focus on medical
laboratory codes [26].

LOINC’s primary use case is to assist in electronic exchange and gathering
of clinical results, comprising two parts, (1) laboratory LOINC, and (2) clinical
LOINC. In 1999, the HL7 Standards Development Organization recommended
LOINC as a preferred code set for laboratory test names in transactions between
healthcare facilities, laboratories, laboratory testing devices, and public health
authorities.

3.5 The International Classification of Diseases (ICD)

The World Health Organization maintains an international classification of diseases
that has been utilized for over a century for the systematic recording, analysis,
interpretation, and comparison of mortality and morbidity data collected in different
countries or regions and at different times. It has served the epidemiological and
public health fields, and governments, to enable insights into disease causation,
prevalence, and distribution and therefore informed the design of health systems,
awareness of unmet health needs, public health strategies, and prevention program-
mers.
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The latest version of the ICD, ICD-11, was adopted by the 72nd World Health
Assembly in 2019 and came into effect on January 1, 2022. It is a significant
advance on prior releases by being both a classification, its original purpose, and
a terminology system that can provide multilingual vocabularies for clinical and
public documentation in registries, electronic health record systems, and prevention
information systems [27].

The WHO also maintains the International Classification of Functioning, Disabil-
ity and Health [28] (ICF) and the International Classification of Health Interventions
[29] (ICHI), which are similarly used on a worldwide basis in multiple languages.

3.6 DICOM

Digital Imaging and Communications in Medicine (DICOM) is the standard for
communicating and managing medical imaging information and related data. Orig-
inally developed by the American College of Radiology (ACR) and the National
Electrical Manufacturers Association (NEMA) in the early to mid-1980s. It was
originally the output of the combined standards committee of both organizations,
with the third substantive iteration being known as DICOM 3.0 in 1993, to
differentiate it from prior versions, but also to identify it as a fully-fledged standard
[30].

Large-scale deployment was initially with the US Army and Air Force, as part of
the Medical Diagnostic Imaging Support (MDIS) program, and in the first military
Picture Archiving and Communication System (PACS). The main focus to date has
been utilization with imaging equipment vendors, and healthcare IT organizations,
and utilization of other standards in addition of DICOM are necessary for clinical
applications, and for research, such as IHE, HL7, FHIR, or SNOMED CT.

3.7 IHE

Integrating the Healthcare Enterprise (IHE) is a non-profit organization in the
United States, established in 1988 by a consortium of radiologists and information
technology experts. IHE created and facilitates interoperability improvements for
health care IT systems. The IHE group collects use cases, case requirements, identi-
fying available standards, developing technical guidelines which manufacturers can
implement, focusing on a clinical information need or clinical workflow scenarios
[31].

IHE is recognized by ISO as a Standards Development Organization, although
it mainly develops profiles of other standards to be used, often in combination,
to achieve interoperability for specific use cases. The profiles are recognized
in themselves as standards. For example, IHE promotes the coordinated use of
established standards, such as HL7 and DICOM, to optimize clinical care.
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There are numerous standards developed for differing aspects of health data, for
instance, National Drug Codes (NDC) of the FDA [32], which serves as its identifier
of drugs, with a publication of the listing in the NDC Directory and updated daily.
The WHO hosts a similar Anatomical Therapeutic Chemical Code (ATC) directory
[33], with codes assigned to a medicine according to the organ or system it works
on and how it works.

A whole class of procedure codes designed to identify surgical, medical, or
diagnostic interventions with a variety of coding systems, such as SNOMED CT,
as described above (3.3), but also ICD-9 and ICD-10 procedure coding [34], as
referred to above too (3.5), initiated by the US Centers for Medicare and Medicaid
Services, in collaboration with 3M Health Information Systems in 1995, with the
now current ICD-10-PCS, updated annually since 1998.

Internationally we are seeing a coalescing of standards, with an emphasis
on interoperability of standards, versus development of additional, ad hoc, new
standards. As we seek interoperability of our data capture, data communication,
clinical interpretation, and utilization for research, we need to utilize common
standards locally, nationally, and globally. A critical issue to date has been the
lack of standards adoption in extremis, with the need for wider implementation and
agreement between differing healthcare system stakeholders via common standards
use.

Increasingly, specific standards, most covered in this chapter, are being mandated
by authorities, regulators, manufacturers, and research organizations or collabo-
rations. The development of research networks is also reinforcing the need and
use of specific standards to facilitate interoperability, syntactic and semantic, to
enhance efficiencies in research and standardization of the research process, from
data harmonization, methods to analytics. This is also a need in the regulatory
domain, both for evidence-based decision-making and rapid research requirements,
such as pharmaco-surveillance or risk management.

4 The Main Standards Used to Support Clinical Trials

4.1 CDISC

The Clinical Data Interchange Standards Consortium (CDISC) is a standards
developing organization working to, “enable information system interoperability to
improve medical research and related areas of healthcare.” [35]

Since initiating as a voluntary initiative in 1997, and then through a not-for-
profit organization, CDISC has iterated multiple standards, foundational, for data
exchange and in specific therapeutic areas. Evolving work on HL7 FHIR to CDISC
has produced an initial joint mapping implementation guide from the former to the
latter, facilitating use of real-world data with, e.g., clinical trial data, but further
development is required. Unlike the healthcare standards referred to above, CDISC
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standards cover both interchange and data content (storage), which can be used. The
standards utilized support a model for planning (Protocol Representation Model,
PRM), a model for data collection (CDASH), a Study Data Tabulation Model
(SDTM) defining the structure, attributes, and content of study datasets, an Analysis
Dataset Model (ADaM), and Operational Data Model (ODM) and a series of
vocabulary and content (Therapeutic Area) standards.

CDISC standard and processes are required by the United States’ FDA and
Japan’s PMDA, facilitating efficiencies in the approval times following clinical
research from data capture and exchange through to analytics.

4.2 Federated Data Networks

Essentially, a Federated Data Network (FDN, sometimes referred to as distributed
data network) is a managed architecture that allows for the sharing of mutual
resources for RWD use, for primary or secondary care settings and clinical care
decision-making as well as research use, whilst preserving the primacy of the
RWD at a local level. Data is not moved from its source hosting, (though hybrid
models can exist with local and central data hosting), with the research question or
query moving to where the data is originally hosted, with aggregation of the results
centrally or delivered to the researcher, so-called data visiting [36].

It is a sociotechnical construct, including the technical architecture and tools to
facilitate the network, with governance aspects (socio), based on agreements, codes
of conduct, and adherence to legal and privacy requirements (such as the EU General
Data Protection Regulation—GDPR [37]) through privacy by design, facilitating the
community’s use of the data in the network.

The technical architecture in an FDN allows for source data to remain secure
behind its sociotechnical firewalls, i.e., technical security through to approvals
and ethical oversight. Web-based tools and technologies mean source data can be
analyzed where it remains, especially if it is organized in such a way as to facilitate
this, e.g., via a common data model (CDM, see later), supported by central portals
and management, inclusive of metadata-driven catalogs.

Though different in sociotechnical aspects, FDNs such as the FDA’s SENTINEL
[38], PCORNET [39], OHDSI [40], IMI ADVANCE (now being sustained and
maintained by the vac4EU initiative [41]), IMI ConcePTION [42], IMI EHDEN
(European Health Data & Evidence Network) [12], and commercial providers,
and the future European Medicines Agency’s DARWIN EU (Data Analysis and
Real-World Interrogation Network) [13] and proposed legislative EHDS (European
Health Data Space) [14] already exist or are being built in open science or
commercial communities. Use of such principles as FAIR [43], (findable, accessible,
interoperable, and reusable) data, provides the framework for exploiting the benefits
of an FDN, enabled by the use of CDMs, metadata, standardized analytical tools,
and fit for purpose methodologies, and in particular data discovery (Fig. 3).

The FDN framework may particularly suit the European Union’s need across
diverse and heterogenous Member States with varying degrees of digital maturity.
Ultimately, a hybrid of centralized and federated approach is likely. There may
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Fig. 3 Schematic of exemplar FDN. (Source: EHDEN [12])

be technical and methodological reasons for using a centralized data hosting
architecture, albeit within a federated network, such as central databases or data
lakes. For the needs of European healthcare systems, clinical care, and research, a
mixed ecology of architectures will most probably support a diversity of needs and
use cases.

While centralized data architectures have existed for some time, whether
databases, data warehouses, or data lakes, this has been prohibitive in expense and
resources, especially at scale, and with increasing scrutiny and legal, governance,
and privacy restrictions, more complicated for the data custodian or controller
and researcher with regards to data sharing and networking. Certainly, within the
European landscape, increasing responsibilities cause additional overheads for
central architectures. Moreover, the need for transparency in the use of real-world
health data means open science sociotechnical architectures are needed, versus
proprietary and/or black box approaches, especially from a regulatory perspective.

This may be related to privacy concerns, but also for instance the need by
regulatory authorities to understand the analytical path from source data to evidence.
Europe as a consortium of 27 Member States, and as such broad, network research
require porous digital borders, as is the case for data portability to support
patient mobility, necessitating federated approaches to overcome these difficulties,
particularly in allowing remote, secure interrogation, but not movement of data.
Moreover, being able to utilize a CDM to harmonize languages is also an advantage
in network, multisite studies across borders, albeit common coding at source across
the EU would be ideal, but unlikely.

A concern expressed by some is the contemporaneous nature of the data being
mapped, i.e., how often is it refreshed following the original mapping to a CDM.
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This is highly dependent on the source data custodian’s refresh cycle, and this can
vary between, e.g., on a 24-hour cycle to weeks or months, but many aspects of the
mapping refresh, inclusive of for iterations of the CDM itself, can and are being
increasingly automated.

Access to data is more about the terms of access, rather than direct access
to RWD. The administrative burden, for instance, for approvals and contracts
in conducting real-world, and especially network studies, is significant and well
known to those conducting such research. Though clear governance requirements
are a necessity, there needs to be mechanisms to address the administrative burden
associated with them, and indeed models, such as Data Permit Authorities (DPAs),
for instance, FinData [44] in Finland, or the French Health Data Hub [45] may point
to a potential construct to do so.

4.3 What Is a Common Data Model, and Why Use One?

A CDM is essentially a construct, a means to an end to help organize RWD into a
common structure, formats, and terminologies across diverse, heterogeneous, and
multiple source datasets. It addresses a central need to be able to curate data for
analysis on a contemporaneous and continuous basis, not on a per study basis, or for
large-scale, geographically diverse, network studies of multiple data sources [29].

This inevitably has benefits with regards to reducing the latency and resource
requirements overall to conducting research at scale and ensuring quality more
rapidly, versus other methods, especially in supporting an FDN (though CDMs
can be used for centralized databases too). The mapping process itself inherently
incorporates data quality audit of both the source and the CDM-mapped data, with
iterative stages per mapping cycle and over time.

A key concept is the need to standardize data which has been collected, stored,
and curated differently, whether in an institution, or across data sources, up to an
international scale. The CDISC standard, utilized especially for randomized clinical
trials (RCT), is a common data model, facilitating regulatory authorities such as the
FDA to receive, analyze, and opine on diverse studies across the pharmaceutical
industry. The SENTINEL CDM was designed to address the need to do the
same for RWD with an emphasis on regulatory pharmacovigilance in the United
States, and the Observational Health Data Analytics and Informatics (OHDSI)
global collaboration’s Observational Medical Outcome Partnership (OMOP) CDM
is facilitating a global open science network, amongst others [29].

The FDA created the Sentinel Initiative to meet a mandate by Congress in the
FDA Amendments Act of 2007. Through the Sentinel Initiative, FDA aims to
develop new ways to assess the safety of approved medical products, including
drugs, vaccines, and medical devices [30] (Fig. 4).

The Sentinel System helps to answer the FDA’s questions on approved medical
products. It does this by creating algorithms that analyze electronic healthcare
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Fig. 4 The Sentinel Initiative infrastructure and governance. (Source: The Sentinel Initiative [38])

data, using statistical methods to study relationships and patterns in medical billing
information and electronic health records.

Within the Sentinel System is the Active Postmarket Risk Identification and
Analysis System (ARIA). The ARIA system has two main components. The first
component is the healthcare data formatted in the Sentinel CDM. The second
component includes analytical tools for internal analyses. Congress mandated ARIA
in the United States FDA Amendments Act (FDAAA) of 2007 [46]. ARIA is the
most widely used portion of the Sentinel System.

FDA-Catalyst supplements the Sentinel System. The data FDA-Catalyst provide
come from interactions with patients and/or providers. FDA-Catalyst combines this
data with data included in the Sentinel infrastructure.

Standardization can ensure that diverse data is broadly mapped to common
schema, ontologies, and vocabularies, for instance, with OMOP, SNOMED. Fur-
thermore, it can support the use also of standardized analytical methods and tools,
on top of the CDM mapped data, following extraction, transformation, and loading
(ETL), or mapping into the CDM. Exemplars of studies, such as drug utilization,
safety, regulatory, and studies for HTA, lend themselves to greater consistency and
commonality of methodological approach afforded by standardized analytics on
top of a CDM (as for instance SENTINEL ARIA’s system). The use of a CDM
can underpin the operation of an FDN via facilitation of distributed data querying
across multiple data sources, all mapped to the same CDM, from studies through to
federated predictive analytics.

Reviews and comparisons of differing CDMs exist, but the EMA’s own evalu-
ation of CDMs from a regulatory perspective probably has guiding principles that
can be utilized more broadly [49]:
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Structure

• The CDM

– Can be defined as a mechanism by which the raw data are standardized to a
common structure, format, and terminology independently from any partic-
ular study to allow a combined analysis across several databases/datasets.

– Should not be considered independently of its ecosystem, which incor-
porates standardized applications, tools and methods, and a governance
structure.

– The ability to access source data should be retained.
– Should be the simplest that achieves security, validity, and data sufficiency.
– Should be intuitive and easy to understand.
– Should enable rapid answers to urgent questions when required, be efficient

and feasible.

Operation/Governance

• The CDM

– Governance model must respect data privacy obligations across all data
partners and regions.

– The CDM should be built with sustainability as a priority.
– Development should maximally utilize data partners’ expertise. The CDM

must be agreed on and accepted by the participating data partners.
– Must have version control.
– Should be dynamic, extendable, and learn from experience.
– Value package should be clear to data partners.

Quality of Evidence Generation

• The CDM

– Must operationalize reliability and validity by building clear and consistent
business rules around transformation of data across multiple databases.
Where divergence is unavoidable this should be recorded.

– Focus should be on data characterization to understand if the data is fit for
purpose.

– Should be transparent on how data is defined, how it is measured and
incorporate and document its corresponding validation.

– Should allow transparency and reproducibility of data, tools, study design
to facilitate credible and robust evidence across multiple datasets.

Utility

• The CDM

– Should provide a common set of baseline concepts which should enable
flexibility when required and meets the needs of potential users.

– All the concepts that are commonly used in safety and effectiveness studies
should be mapped to the CDM to maximize regulatory utility.
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– Should address recognized use cases for which an established need is
present.

Currently only two CDMs cover the majority of these principal requirements
at significant scale, SENTINEL’s in the United States, and the OMOP CDM
internationally. For Europe, there is little utilization of the SENTINEL CDM,
but expanding adoption of the OMOP CDM. (The CDISC ODM referred to
earlier is a data model used for the submission of clinical trials evidence to
medicines regulators, but is not currently widely used as a real-world data analysis
representation.)

Via the EHDEN project, the European Union via IMI and 13 pharmaceutical
companies are funding AC 30 million over the duration of the project to accelerate
utilization of the OMOP CDM across the European region, with also more than 20
other IMI projects utilizing this CDM.

In recent years, the OHDSI OMOP CDM has become an international standard
for working with RWD in RWE generation, with greater than 2 billion health
records mapped to the OMOP CDM globally, equating to approximately 800
million patients, and an accelerating body of literature from international studies,
all characteristic for their scale and speed, whilst preserving quality. The FDA,
whilst running SENTINEL, is also funding OHDSI through the FDA Centre
for Biologics Evaluation and Research (CBER) [47] for biologics and vaccines
pharmacovigilance, and both the DARWIN EU® and EHDS programs potentially
look to include the OMOP CDM and OHDSI research framework.

The open science approach within OHDSI was demonstrated during the COVID-
19 pandemic, through a study-a-thon and continuing research protocols, through its
international research studies [48]. Such approaches responded to the need for the
right data to be in the right place at the right time, for the right questions, at time
of public health emergency, whereas more traditional approaches, via considerable
per study curation, would likely still have not reported, especially for large scale
studies with multiple data sources for across the European region. Outputs from
this international research collaboration were utilized via the FDA and EMA for
guidance to clinicians, for instance, on the safety profile of hydroxychloroquine
with or without azithromycin in treating COVID-19 early in the pandemic.

Comparisons of common data models exist, as discussed in the EMA report on
CDMs in 2018 and shown in Table 2.

The OMOP CDM was designed from the ground up for research purposes
initially in North America in 1997, and with an emphasis on epidemiology, utilizing,
e.g., US Claims data, but has been expanded over the following years, both in terms
of data types incorporated, and study types supported, as well as for geographies.
The original founding partners of the OMOP were the US Food and Drug Adminis-
tration (FDA), Pharmaceutical Research and Manufacturers of America (PhRMA),
and the Foundation for the National Institutes of Health (FNIH). OHDSI now
develops and iterates the OMOP CDM. More recently, this has included regulatory
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Table 2 Comparison of three CDMs

FDA SENTINEL PCORnet OMOP

Focused use
(pharmacovigilance)

Clinical care emphasis Broad use cases

US based US based Global use
Distributed data network with
data queries run locally

Predominately EHR data Broad, comprehensive model
to incorporate claims data,
EHRs and surveys

Predominately US claims
data, minimum, but
expanding EHR data

Principle of minimum
mapping

Substantial mapping of
content and concepts to
standardize multiple different
coding systems

Strict version control Strict version control Strict version control
Built upon principle of
minimal mapping and no
derived values

Flexibility for individual data
partner to add data/domains
to local CDMs

Iterative development by
community for data/domains
additions in global CDM

Source data retained Source data retained
Extendable Based on SENTINEL CDM Extendable

European Medicines Agency; A Common Data Model for Europe? – Why? Which? How?;
London 2018 [49]

Fig. 5 OMOP common data model schema. (Source: https://ohdsi.github.io/CommonData
Model/)
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use cases, and developments to enable health technology assessment (HTA) studies,
or precision medicine use cases. Due to the open science emphasis of OHDSI, there
is a focus on transparency, replication of results, and development of methodologies
for fit-for-purpose RWE generation and observational research (Fig. 5).

The OMOP CDM and OHDSI framework do not support every conceivable
use case, and likely a mixed ecology of applications, methods, and tools will
be required to do so, which is a reality of working in the real world setting,
but further interoperability, e.g., between HL7 FHIR (for facilitating health data
exchange) and OMOP CDM (designed for RWD analysis), in particular to support
outcomes research are being addressed, and hopefully accelerated (with the recent
announcement of a global collaboration). The OMOP CDM utilizes the SNOMED
and LOINC standards as its core, standard vocabularies.

On top of the OMOP CDM are the standardized analytical tools to support anal-
ysis of OMOP-mapped data, in particular supporting characterization, population-
level estimation, and patient-level prediction studies. ATLAS is a free, publicly
available, web-based tool developed by the OHDSI community that facilitates
the design and execution of analyses on standardized, patient-level, observational
data in the CDM format. The ATLAS tool is deployed as a web application in
combination with the OHDSI WebAPI and is typically hosted on Apache Tomcat.
Performing real-time analyses requires access to the patient-level data in the CDM
and is therefore typically installed behind an organization’s firewall. However, there
is also a public ATLAS, and although this ATLAS instance only has access to a few
small simulated datasets, it can still be used for many purposes including testing and
training. It is even possible to fully define an effect estimation or prediction study
using the public instance of ATLAS, and automatically generate the R code for
executing the study. That code can then be run in any environment with an available
CDM without needing to install ATLAS and the WebAPI. Other open source tools
to facilitate mapping, support data quality evaluation as well as analysis have and
are being developed, with more information available from the open access Book of
OHDSI [50].

Skilled and knowledgeable epidemiologists with multiyear experience of the
OMOP CDM, mapping datasets and analysis using the OHDSI framework is a
prerequisite now for some positions. A helpful example of this is a company’s ability
to make quicker decisions in feasibility as to the efficacy of being able to conduct a
substantive study, inclusive of with regulatory authorities, assisted by a transparent,
reproducible methodology in being able to debate the company’s viewpoint.

Federation and the use of the OMOP CDM is also now supporting therapeutic
area-focused initiatives within the company as it proceeds to expand its collabora-
tion with potential Data Partners.

Other projects in the European Innovative Medicines Initiative (IMI) have
developed CDMs, such as ADVANCE [41], or latterly ConcePTION [42], in
vaccines and pregnancy research, respectively, with the former using a CSV format
CDM and Jerboa data processing software and R scripts, and the latter using a
syntactic model, but neither have widespread adoption outside of their respective
projects.
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5 Making Data Fit for Shared Use

5.1 FAIR Principles

Findable, accessible, interoperable, and reusable are principles espoused in 2016
by Wilkinson et al. [43] As described by the authors, there is an urgent need to
improve the infrastructure supporting the reuse of scholarly data. A diverse set
of stakeholders—representing academia, industry, funding agencies, and scholarly
publishers—came together to design and jointly endorse a concise and measurable
set of principles that they referred to as the FAIR Data Principles. The intent is
that these may act as a guideline for those wishing to enhance the reusability of
their data holdings. Distinct from peer initiatives that focus on the human scholar,
the FAIR Principles put specific emphasis on enhancing the ability of machines to
automatically find and use the data, in addition to supporting its reuse by individuals.

A European program, GO-FAIR [51], a bottom-up promotion of FAIR principles,
and an IMI project, FAIRplus [52], making life science data FAIR have outlined the
practical implementations of the FAIR principles, which are outlined below:

Findable

The first step in (re)using data is to find them. Metadata and data should be
easy to find for both humans and computers. Machine-readable metadata
are essential for automatic discovery of datasets and services, so this is an
essential component of the FAIRification process.

• F1. (Meta)data are assigned a globally unique and persistent identifier.
• F2. Data are described with rich metadata (defined by R1 below).
• F3. Metadata clearly and explicitly include the identifier of the data they

describe.
• F4. (Meta)data are registered or indexed in a searchable resource.

Accessible

Once the user finds the required data, she/he/they need to know how they can be
accessed, possibly including authentication and authorization.

• A1. (Meta)data are retrievable by their identifier using a standardized
communications protocol.

• A1.1 The protocol is open, free, and universally implementable.
• A1.2 The protocol allows for an authentication and authorization proce-

dure, where necessary.
• A2. Metadata are accessible, even when the data are no longer available.

Interoperable

The data usually need to be integrated with other data. In addition, the data
need to interoperate with applications or workflows for analysis, storage, and
processing.
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• I1. (Meta)data use a formal, accessible, shared, and broadly applicable
language for knowledge representation.

• I2. (Meta)data use vocabularies that follow FAIR principles.
• I3. (Meta)data include qualified references to other (meta)data.

Reusable

The ultimate goal of FAIR is to optimize the reuse of data. To achieve this,
metadata and data should be well-described so that they can be replicated
and/or combined in different settings.

• R1. (Meta)data are richly described with a plurality of accurate and relevant
attributes.

• R1.1. (Meta)data are released with a clear and accessible data usage
license.

• R1.2. (Meta)data are associated with detailed provenance.
• R1.3. (Meta)data meet domain-relevant community standards.

The principles refer to three types of entities: data (or any digital object),
metadata (information about that digital object), and infrastructure. For instance,
principle F4 defines that both metadata and data are registered or indexed in a
searchable resource (the infrastructure component).

5.2 Data Quality

Quality of data can be viewed as in the eye of the beholder, with data and analysis
being able to answer some questions, but not all (there is perhaps not a universal
truth based on any one dataset). Intrinsic to this concept are the relative indicators
of quality of the source data, and the various attributes of measuring quality via a
growing number of quality initiatives.

Brennen et al. (JAMIA, 2000) stated that data quality in and across diverse data
sources (e.g., electronic health records, claims), “[is] the problem of ensuring the
validity of the clinical record as a representation of the true state of the patient.”
[53].

Quality of health data, or real-world data, needs to represent quality of the source
data and the curated data used for analysis, inclusive of such attributes as errors,
completeness, missingness, biologic implausibility (e.g., finding male pregnancies,
or BMI values inconsistent with humans).

Various initiatives and standards incorporate data quality processes, for instance,
OHDSI has created data quality dashboards that can evaluate the OMOP-mapped
dataset in comparison to the source dataset across a quality criterion, running a
script across the OMOP CDM [54].

The European Institute for Innovation through Health Data provides a data
quality assessment service, again criterion-driven, across nine dimensions (Fig. 6):
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Fig. 6 Nine data quality dimensions, suitable for health data, assessed by the European Institute
for Innovation through Health Data [55]

Arguably, data quality is an emerging sub-specialism, but a critically important
one in addressing confidence in being able to assess the quality of data as part of
an overall assessment to engender confidence in analytical outputs and evidence
generated. From a regulatory domain perspective, this will be a standard component
of assessing research and studies carried out and ensuring validity in the proposed
guidance from regulatory authorities using real-world data.

5.3 Research Infrastructures and Platforms

Europe is driving the momentum for big health data research through three
transnational initiatives, EHDEN, DARWIN EU®, and the EHDS, which have
been mentioned throughout this chapter. There are additionally disease-specific
networks in vaccination and pregnancy, also mentioned earlier, and a growing
number of national research infrastructures in countries such as Germany, France,
Switzerland, and the United Kingdom. The three major Europe-wide initiatives are
briefly summarized below.
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5.3.1 EHDEN

The European Health Data and Evidence network (EHDEN, 2018–2024) is an
infrastructure start-up within the Europe’s IMI, an overarching public private part-
nership fostering innovation in healthcare and earlier access to such innovation for
EU citizens. EHDEN was created to address the common bottlenecks encountered
when harmonizing datasets to the OMOP common data model, at an industrial scale
across the European region. Ultimately, EHDEN is building a region-wide federated
data network, supporting FAIR data use, with a centralized architecture to enable a
digital study workflow, data visiting/remote analysis which is privacy preserving
via standardized analytical tool pipeline within the OHDSI research framework.
As of time of writing, EHDEN is working with 187 Data Partners in 29 European
countries across the region, and is continuing to expand [12].

Successful applicant Data Partners receive financial subgrants, technical sup-
port for mapping their data to the common data model (via EHDEN-certified
small-to-medium enterprises (SMEs) in a unique marketplace of trained technical
businesses), and can join the Open Science community in terms of evidence
generation in multisite, network, and rapid studies; upskilling and training are
also provided on tools, skills, and methods to support Data Partners, SMEs, and
researchers via an EHDEN Academy (https://academy.ehden.eu). At the time of
writing, EHDEN is working with 64 SMEs in more than 20 countries. Sustainability
via a not-for-profit legal entity beyond the IMI phase will continue, expand, and
develop the EHDEN open science community and network, as well as research
programs, use cases, methodological innovation, and training.

5.3.2 DARWIN EU®

DARWIN EU® will deliver real-world evidence from across Europe on diseases,
populations, and the uses and performance of medicines. This will enable EMA and
national competent authorities in the European medicines regulatory network to use
these data whenever needed throughout the lifecycle of a medicinal product [13].

DARWIN EU® will support regulatory decision-making by

• Establishing and expanding a catalog of observational data sources for use in
medicines regulation.

• Providing a source of high-quality, validated real-world data on the uses, safety,
and efficacy of medicines.

• Addressing specific questions by carrying out high-quality, non-interventional
studies, including developing scientific protocols, interrogating relevant data
sources, and interpreting and reporting study results.

The range of approved healthcare databases enabling distributed data access via
DARWIN EU® will evolve and expand over time. The former HMA/EMA Big Data
Task Force originally recommended developing DARWIN EU®. The creation of

https://academy.ehden.eu
https://academy.ehden.eu
https://academy.ehden.eu
https://academy.ehden.eu
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DARWIN EU® features in the EMA-HMA Big Data Steering Group workplan and
the European medicines agencies network strategy to 2025.

EMA will be a principal user of DARWIN EU®, by requesting studies to support
its scientific evaluations and regulatory decision-making. A service provider will
act as the DARWIN EU® Coordination Centre and be responsible for setting up the
network and managing its day-to-day operations.

EMA will also play a central role in developing, launching, and maintaining
DARWIN EU®, by

• Providing strategic direction and setting standards
• Overseeing the coordination center and monitoring its performance
• Ensuring close links to European Commission policy initiatives, particularly the

EDHS, and delivering pilots
• Reporting to EMA’s Management Board, the HMA and European Commission

The advent of DARWIN EU® will be a paradigm shift for regulatory science
and decision-making in Europe, perhaps mirroring the FDA SENTINEL program,
but incorporating the OMOP CDM and OHDSI research framework at its core, in a
federated network. Ultimately, DARWIN EU® will be an accelerator for evidence-
based decision-making using real-world data to complement clinical trial data and
other data sources in providing insights into real-world outcomes, whether positive
or negative.

5.3.3 European Health Data Space (EHDS)

In order to unleash the full potential of health data, the European Commission
is presenting a regulation to set up the European Health Data Space, one of a
number of data spaces across multiple industries and domains. Draft legislation
was published in May 2022 for review and approval by the European Council and
European Parliament [14].

The proposal

• Supports individuals to take control of their own health data
• Supports the use of health data for better healthcare delivery, better research,

innovation, and policy-making
• Enables the EU to make full use of the potential offered by a safe and secure

exchange, use, and reuse of health data

The European Health Data Space is a health-specific ecosystem comprising rules,
common standards and practices, infrastructures, and a governance framework that
aims at

• Empowering individuals through increased digital access to and control of their
electronic personal health data, at national level and EU-wide, and support to
their free movement, as well as fostering a genuine single market for electronic
health record systems, relevant medical devices, and high-risk AI systems
(primary use of data)
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• Providing a consistent, trustworthy, and efficient setup for the use of health data
for research, innovation, policy-making, and regulatory activities (secondary use
of data)

As such, the European Health Data Space is a key pillar of the strong European
Health Union, and it is the first common EU data space in a specific area to emerge
from the European strategy for data. DARWIN EU® is designated as an EHDS
pathfinder project, paving the way in its own development for the EHDS.

The legislative path will take some time, and implementation of any eventual,
agreed legislation will not impact until the second half of the 2020s. An EC
Joint Action, Towards the European Health Data Space (TEHDAS) commenced in
February 2021 to develop European principles for the implementation of the EHDS,
supported by 25 EU member states and a myriad of NGOs, SMEs, academic and
commercial entities. TEHDAS is focused on [56].

• Solutions for the trustworthy secondary use of health and health care data with a
view to promoting the digital transformation of European health systems

• Guidance on ensuring data quality such as anonymization of data and handling
of data disparity

Work package 6 of TEHDAS is focused on excellence in data quality and has
written a number or recommendation reports in 2022 on data interoperability,
and data quality, providing frameworks and working concepts in these domains.
The former lists a number of interoperability standards on data discoverability (at
data source and variable levels) and on standards for the development of common
data models, and describes some basic features: typology of interest, utility, and
domain/s. This list is the basis for the work to come on aiming the description
of their actual use, challenges in their implementation, issues on maintenance and
sustainability.

The latter, on data quality, explores and synthesizes the existing knowledge and
experiences on data quality frameworks (DQFs) in the context of cross-border
sharing of federated secondary use health data with the aim to identify good
practice within this area and make recommendations. The report builds on the work
regarding data quality already undertaken the TEHDAS Joint Action and will be
further updated with chapters on interoperability standards. This first part of the
final report contains recommendations on the European Health Data Space (EHDS)
data quality framework.

6 Conclusion

Numerous countries across the world are advancing their work on developing
learning health systems, interoperable, federated networks, with FAIR data using
agreed, aligned standards, data models and standardized analytical tools, and are at
various stages. Most notably, the United States, the United Kingdom, certain EU
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member states, such as Germany, France, Spain, Italy, Greece, and Finland, as well
as South Korea and Singapore, China, Japan, and India are just some representing
government or bottom-up initiatives.

Health data, whether used for care delivery, continuity of care, quality improve-
ment, decision-making or research, is a critical success factor. The need to learn
from health data at scale has never been more compelling, and its interoperability
and quality are the key enablers of this scale. This chapter has explained the role and
diversity of interoperability standards that are needed across the care and research
spectrum. However, despite their individual maturity and capability of delivering
interoperability, there remains a grand challenge of standards adoption. Too many
health ICT products and networks either fail to take a standards-based approach to
the health data they process or adopt only some standards in a patchy and highly
customized way and so are not really interoperable.

The business drivers for the health ICT sector are recognized to be weak,
and procurements insufficiently precise and stringent, so that the market push for
standards adoption is too slow, as discussed in a recent multistakeholder round
table report [57]. The report includes 14 recommendations and calls to action
related to the greater uptake and promotion of interoperability, the first six of
which are reproduced here as they relate to accelerating the adoption of standards
and especially target actions the EC and Member States can make as part of
implementing the European Health Data Space.

The report lists additional calls to action on interoperability relating to enforcing
the adoption of interoperability standards by health ICT developers, the strategic
governance of interoperability and ensuring wider awareness and engagement.

What has been evident for some time is that we have been attempting to meet
increasing complex healthcare needs and evidence generation still using at best
twentieth-century methods, and with an increasing emphasis on the value and
potential of real-world data, advances have to be made. In particular in the regulatory
domain, qualifications and approvals can no longer be reliant on clinical trial data
alone, albeit remaining pivotal. Complementary developments for this type of data,
such as the adoption of the CDISC model and family of standards, is being replicated
with similar initiatives for real-world data, as described in this chapter, pointing to
a radically different environment with mandated and aligned standards and models
being implemented at scale across the global learning health system.

It is important for decision-makers, funders, ICT companies, and initiatives that
seek to establish real-world evidence generation platforms and networks to ensure
that they adopt and promote the wider adoption of interoperability standards, the
FAIR principles and data quality as described in this chapter, and thereby contribute
to a global momentum to scale up the usability of real-world data for trustworthy
evidence generation.
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Privacy-Preserving Record Linkage for
Real-World Data

Tianyu Zhan, Yixin Fang, and Weili He

1 Introduction and Motivation

Real-world data (RWD) are data relating to patient health status and/or the delivery
of health care routinely collected from a variety of sources [1]. These sources
include electronic health records (EHRs), claims or billing activities, medical
product or disease registries, patient-generated data including home-use settings,
and health data gathered from other sources including mobile devices [2]. In
addition to data from completed clinical trials, RWD is an emerging source of
healthcare data that has become more readily available by the day [1, 2]. It is of
great interest to aggregate several RWDs to provide new insights on health care
outcomes.

Combining clinical trial data with RWD offers a more comprehensive longitu-
dinal evaluation of health status beyond the maximum follow-up time of a clinical
trial [3]. For example, a randomized controlled clinical trial (RCT) of evaluating
pravastatin in preventing coronary heart disease was linked to routinely collected
administrative health records [3, 4]. By increasing the follow-up time from 5
years to 15 years, this record linkage study was able to evaluate several long-
term outcomes, including cardiovascular measures, quality-adjusted life years, and
hospital administration status [4]. New research can be continuously conducted
by performing data linkage with more recent RWD to have a better and full
understanding of the initial intervention taken in the original RCT.

Another branch is to combine multiple RWD databases. Linking administra-
tive claims data to EHR allows the researchers to leverage the complementary
advantages of each data source to enhance study validity, as claim databases
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usually contain extensive data on diagnoses, medications, healthcare utilization, and
expenditure often lacking clinical details while EHR provides clinical details often
absent in other datasets [3, 5]. EHR only captures patients’ information within the
specific healthcare network, but claim databases record all healthcare encounters.
This allows for a more accurate or complete definition and evaluation of an exposure
or outcome with proper and adequate confounding adjustment [3, 5]. Registry data
can also be linked with EHR. For example, Alberta Cancer Registry data containing
demographic and treatment information were linked to EHR, hospital discharge
data, and census data [6]. Treatment patterns, adherence to treatment guidelines, and
disparities in the receipt of treatment of colorectal cancer were investigated in this
data linkage study [3, 6]. Moreover, the same type of RWD can be combined from
different institutions. Hospital records from childhood and adulthood of patients
with type 1 diabetes were linked to determine the relationship between glycaemic
control trajectory and the long-term risk of severe complications [3, 7].

Record linkage or data linkage is a process of associating records from two or
multiple datasets with the aim of identifying connections that belong to the same
entity, for example, the same person [8]. Linking data from different sources plays
an important role in improving data quality, enriching data for further analysis,
and generating new insights [9]. This is a general method to enrich data with
applications in many areas, such as health care [3, 10–12], finance [13–15], and
business [16–18]. Generally speaking, record linkage of datasets within the same
organization does not involve privacy and confidentiality concerns [9]. For example,
a pharmaceutical company may link data from an RCT with its corresponding
long-term extension study based on a unique subject identifier to comprehensively
evaluate the maintenance of treatment effect. Similarly, the same database owner
can link its claims and EHR before deidentification.

For RWD that are usually collected from a variety of sources or institutions [1],
the process of data linkage should not disclose subject level identifying information
per laws or regulations [9], for example, the Health Insurance Portability and
Accountability Act (HIPAA) in the United States and the General Data Protection
Regulations (GDPR) in Europe. Privacy-Preserving Record Linkage (PPRL) tech-
niques are appealing in practice with the aim of identifying matching records that
refer to the same entities in different databases without compromising privacy and
confidentiality of these entities [9, 19, 20]. A cohort of quasi-identifiers is encoded
to mask confidential information and then utilized to link records [9]. To ensure
patients’ privacy, some variables, for example, status of a rare disease, will not be
allowed in linkage when there is risk of identifying specific patients.

In this chapter, we provide a high-level review of PPRL to motivate its appli-
cations to RWD. We review several methods for data preparation in Sect. 2 and
methods for linkage in Sect. 3. Some performance evaluation approaches are
discussed in Sect. 4. An illustration of performance probabilistic record linkage on
real datasets is presented in Sect. 5. Concluding remarks are provided in Sect. 6.
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2 Data Preparation Methods

2.1 Data Preprocessing Methods

Data preprocessing refers to the task of converting raw data to a standard format
for accurate and efficient matching [21, 22]. There are generally three steps in
this process. First, data cleaning is conducted to remove unrelated or unwanted
information for matching, delete duplicated records, and convert inputs to a
consistent form. Either hard-coded rules or look-up tables are used in this step [22].
The second step is utilizing look-up tables to standardize tokens, which are usually
referred to as the values that are separated by whitespace characters in attributes,
with the goal of correcting typographical errors or variations, or standardizing
abbreviations [22]. For example, “bevely park” or “bevelly park” is standardized
as “beverley park” based on the look-up table in the FEBRL system [22, 23]. The
third step is the segmentation of the tokenized attribute values into single pieces of
information that are suitable for downstream data matching [22]. The challenge is to
identify the most likely and meaningful assignment because there are often several
possible assignments of tokens [22].

Since data from multiple sources are to be harmonized, the Observational
Medical Outcomes Partnership (OMOP) Common Data Model [24] can be adopted
to allow for the systematic analysis of disparate observational databases. Data are
transformed to a common format (data model) as well as a common representation
(terminologies, vocabularies, coding schemes) and then are utilized to perform
systematic analyses using a library of standard analytic routines that have been
written based on the common format.

In PPRL, data masking or encoding is an additional step to transform original
data to masked data [25]. Data elements, such as names or social security numbers,
need to be de-identified to protect privacy. Moreover, several relatively nonsensitive
attributes need to be masked as well because their combination may reveal
identifying information. For example, nearly .90% of the U.S. population had a
unique combination of zip code, gender, and date of birth [22, 26]. The level of
such deidentification is important because a mild layer can still disclose private
and sensitive data, while a heavy one may lose discriminating power to distinguish
between matches and non-matches. Several specific techniques are reviewed in the
next section.

2.2 Privacy Protection Methods

If there is no privacy concern, one can directly link records from different
datasets with personal identifying information if available. However, in applications
to RWD, especially RWD from different institutions, such data linkage should
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be conducted without disclosing privacy and confidentiality information. In this
section, we review some techniques for protecting privacy in record linkage.

2.2.1 Separation Principle

The data can usually be separated into personally identifying data which contain
sensitive information and content data with clinical information for research [25,
27]. A data custodian sends personally identifying information to a linkage unit
or a third party, which performs data linkage to determine which records belong
to the same person. Such linkage information is sent back to the data custodian.
Then, researchers receive content data along with linkage information from the data
custodian to perform further analysis.

This separation principle is classified under the so-called three-party protocols
that utilize a third party for performing the linkage [25]. As compared with its
counterpart “two-party protocols” with no third-party involvement, three-party
protocols require fewer resources in communication and computation to compare
records but are also considered less secure due to the existence of a third party [25].

2.2.2 Secure Hash Encoding

This technique uses one-way irreversible hash encoding functions to convert sensi-
tive information to hash code [28–30]. Having access to a hash code makes it nearly
impossible with current computing technology to learn its original string value [30].
However, dictionary attack is possible with masking functions, where an adversary
masks a large list of known values using various existing masking functions until
a matching masked value is identified [30]. A possible mitigation is the Hashed
Message Authentication Code (HMAC) as a keyed masking approach [31]. With
HMAC, dataset owners exchange and add a secret code to data before masking [9].
A major limitation of secure hash encoding is that it can only adopt deterministic
linkage methods to identify exact matches, but not probabilistic linkage, because
even a single character difference in a string will lead to a completely different
hash code [30]. As discussed in Sect. 3.2, probabilistic linkage has advantages of
accommodating data entry error when performing matching between records.

2.2.3 Phonetic Encoding

Phonetic encoding techniques convert string to code based on pronunciation [32].
For example, Soundex is the best known phonetic encoding algorithm [33]. It keeps
the first letter and converts the rest into numbers according to an encoding table
[32]. Phonetic encoding inherently provides privacy and is a blocking technique of
reducing the number of comparisons in linkage to increase scalability [9]. It also
supports probabilistic linkage to tolerate typographical variations [30, 34]. Two
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drawbacks of phonetic encodings are that they are language dependent and are
vulnerable to frequency attacks, where the frequency distribution of a set of masked
values is matched with the distribution of known unmasked values in order to infer
the original values of the masked values [9, 35].

2.2.4 Bloom Filters

Bloom filters technique was proposed by Schnell et al. [20] to calculate the
similarity between two encrypted strings for use in probabilistic record linkage
procedures. It first converts a string to a set of consecutive letters (q-grams) or a
set of tokens [36] and then computes similarity between two strings by the Dice
coefficient [20]. Bloom filter demonstrates high quality in the evaluation of privacy-
preserving string comparison [25, 37]. Filtering techniques can also be applied based
on Bloom filters to increase scalability to large datasets, for example, excluding
unnecessary comparisons based on q-grams [9].

3 Linkage Methods

After strings are encrypted to mask personal identifying information, the next
step is to merge datasets by finding matching records. Deterministic linkage and
probabilistic linkage are two common methods [16, 38–40].

3.1 Deterministic Linkage

In the deterministic linkage, only record pairs that matched exactly are accepted as
links [40]. This can be based on a single attribute or several attributes. This method
is easy to implement in practice and can be applied to most methods of masking
personal identifying information including Secure Hash Encoding discussed in
Sect. 2.2.2. This method is typically computationally more efficient as compared
with the probabilistic linkage as discussed next. A major limitation of this method
is that even a single character difference of data entry error between a pair of original
values results in a matched classification [9].

3.2 Probabilistic Linkage

Probabilistic linkage methodology addresses record linkage problems under condi-
tions of uncertainty [41] and allows imperfect matches due to partially inaccurate or
missing data [40]. The Fellegi–Sunter method [39] is a popular and well-known
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algorithm for probabilistic record linkage [42]. For each record pair, a weight
is computed based on the probability that the field agrees given a record pair
matches (called the m probability) and the probability of chance agreement given
an unmatched pair (called the u probability) [39, 41]. A composite weight for each
record can also be calculated for multiple linkage variables adjusting agreement or
disagreement status for each variable, with zero weight assigned for missing values
[40]. A threshold on the weight is chosen to classify records as matches or non-
matches [40], or a consider zone for clerical review with another cutoff value [41].
The specific setting of cutoff value is critical and difficult in probabilistic linkage
[43] and can be selected to optimize f-measure, introduced in the next section [40].

Typical probabilistic linkage methods classify individual record pairs indepen-
dently from other pairs and therefore aim at a many-to-many matching scenario
[22]. Additional restrictions can be applied to accommodate one-to-one and one-to-
many matching scenarios. In one-to-one matching, a simple approach is to sort the
matched pairs based on similarity values and then assign pairs to confirmed matches
in a greedy fashion [22]. However, this method may yield a sub-optimal solution
because it does not consider all records simultaneously and it is possible that not
all records can be paired. Several more advanced methods have been developed to
solve this constrained optimization problem [44], for example, treating a class of
algorithms as an auction problem [45].

There are also quite a few Bayesian record linkage techniques proposed to
accommodate uncertainty. A fully Bayesian approach to record linkage was devel-
oped to compute posterior probability of matching [46]. In a unified Bayesian
framework, matching uncertainty is naturally accounted for in estimating population
size by using samples of multivariate categorical variables [47]. A Bayesian
graphical approach is proposed to simultaneously detect duplicate records within
files and link records across files [48]. Partial Bayes estimates were derived for
bipartite matching to quantify uncertainty in matching decisions while leaving
uncertain parts undeclared [49].

3.3 Unsupervised Classification Methods

With the objective of protecting privacy, the classification labels of either matched
or unmatched records are not available. Supervised classification methods cannot be
directly applied. Alternatively, unsupervised classification or clustering methods can
be adopted to PPRL. For example, K-means algorithm is a popular iterative cluster-
ing method based on similarity measure [50, 51]. The Damerau–Levenstein distance
[52, 53] or the Jaro–Winkler distance [54, 55] can be used to measure similarity
for text-based variables [42]. Other unsupervised methods include agglomerative
clustering (bottom-up) and divisive clustering (top-down) as two paradigms in
hierarchical clustering, self-organizing maps, etc. [56]
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4 Performance Evaluation

We first review some measures and then some methods to assess performance of
PPRL.

4.1 Measures

Since record linkage is a classification problem, there are two types of errors that
can be generated: false negative (FN) and false positive (FP) [40]. A higher number
of FNs contribute to a lower sensitivity, which is defined as

.Sensitivity = Number of True Positive

Number of True Positive + FN
, (1)

while FP is related to positive predictive value (PPV),

.PPV = Number of True Positive

Number of True Positive + FP
. (2)

Ideally, both FN and FP need to be minimized, but there is a trade-off between these
two types of error in practice [40]. F-measure,

.f-measure = 2 × Sensitivity × PPV

Sensitivity + PPV
, (3)

is a harmonic mean of sensitivity and PPV [43]. The f-measure reaches a high
value only if both sensitivity and PPV are high [40] and is more appealing in
practice than single metrics [43]. Other measures, such as area under the receiver
operating characteristic (ROC) curve and Youden’s index, can also be used to
evaluate performance.

Note that some common evaluation metrics for classification problems may not
be proper for record linkage, for example accuracy, which is defined as the total
number of true positives and true negatives divided by the total number of pairs.
The reason is that the majority of record pairs correspond to non-matched pairs (true
negatives), and the number of true negatives dominates the calculation of accuracy
[22].

4.2 Assessment Method

In practice, it is challenging to evaluate linkage performance based on the above
measures because the underlying true labels of either matched or unmatched
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pairs are not available. Manual assessment of all individual records would reveal
sensitive information, which is in contradiction to the objective of PPRL [9].
This comprehensive manual review is also not feasible given the relatively large
number of comparisons with even moderate datasets. Moreover, even with personal
identifying information, there may not exist a gold standard because several RWDs
do not share the same unique identifier [57].

A clerical review can be implemented by a third party to routinely scan and
manually review a small proportion of links [25, 58]. However, this selective
review can also be time-consuming and may not be feasible for large datasets
[25]. There is an increased privacy risk because personal sensitive information is
regularly manually examined [25]. Under the framework of interactive PPRL, parts
of sensitive data are revealed for manual assessment [9, 59]. However, there are still
some open questions in real applications, for example, how to ensure the revealed
information is limited to a certain level of detail and is also sufficient for manual
assessment [9].

An alternative approach to obtain benchmark datasets is to generate synthetic
data based on the characteristics of real data, for example, distributions of variables
and proportion of missing data [9, 57, 60, 61]. Given synthetic data with known
classification labels, one can perform cross-validation to fine-tune parameters in
data linkage, for example the cutoff values in probabilistic linkage [62]. Multiple
replicates of synthetic data can be simulated to report the average of certain
evaluation measure [57].

5 Demonstration with the R Package RecordLinkage on
Dataset NHANES

In this section, we illustrate how to perform probabilistic record linkage with the
R package RecordLinkage [63] on the real dataset NHANES (National Health
and Nutrition Examination Survey) [64] from CDC (Centers for Disease Control
and Prevention). NHANES is a program of studies designed to assess the health
and nutritional status of adults and children in the United States with interviews
including demographic, socioeconomic, dietary, and health-related questions [64].
This example is for illustrative purposes. Variables being included are not intended
to identify unique patients, as NHANES might enroll different participants across
years.

For demonstration, we consider the first ten records in two demographics files
of survey cycle 2015–2016 and 2017–2018 with variables RIAGENDR (Gender),
RIDRETH1 (Race), and DMDBORN4 (Country of Birth). RIAGENDR is utilized
as the blocking variable. String comparison is based on RIDRETH1 and DMD-
BORN4 with the Jaro–Winkler method [55] to compute the similarity between
strings. The threshold values are set as .−4 and 0, such that records with matching
weights less than .−4 are classified as non-links, records with weights greater than
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Table 1 Linked pairs
detected by probabilistic
linkage

Row index of dataset 1 Row index of dataset 2

1 2

3 2

8 2

4 8

5 3

5 7

or equal to 0 are classified as links, and remaining records are possible links for
clerical review.

There are 50 record pairs for evaluation with the blocking of RIAGENDR. Based
on the classification of probabilistic linkage, 19 pairs are categorized as non-links,
25 as possible links, and 6 as links, which are shown in Table 1. Record No. 4
from dataset 1 is uniquely linked to record No. 8 from dataset 2. Since each pair
is categorized independently, a record from one dataset can be linked to multiple
records in the other dataset. For example, records No. 1, 3, and 8 from dataset 1 are
linked to the same record No. 2 in dataset 2, while records No. 3 and 7 from dataset
2 are linked to record No. 5 in dataset 1. Clerical review can be further performed
to determine potential exact one-to-one mapping for record No. 5 in dataset 1 and
record No. 2 in dataset 2.

## load R packages
library(RecordLinkage); library(foreign)

## code to import file: https://wwwn.cdc.gov/nchs/data/tutorials/
file_download_import_R.R

## Download NHANES 2015-2016 to temporary file
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.

XPT", tf1 <- tempfile(), mode="wb")
## Create Data Frame From Temporary File
DEMO_I3 <- foreign::read.xport(tf1)

## Download NHANES 2017-2018 to temporary file
download.file("https://wwwn.cdc.gov/nchs/nhanes/2017-2018/DEMO_J.

XPT", tf2 <- tempfile(), mode="wb")
## Create Data Frame From Temporary File
DEMO_J3 <- foreign::read.xport(tf2)

## Create data with the first 10 records and three variables:
## RIAGENDR: Gender, RIDRETH1: Race, DMDBORN4: Country of birth
DEMO_I3_OUT = DEMO_I3[1:10, intersect(colnames(DEMO_I3), colnames

(DEMO_J3))[c(4, 7, 13)]]
DEMO_J3_OUT = DEMO_J3[1:10, intersect(colnames(DEMO_I3), colnames

(DEMO_J3))[c(4, 7, 13)]]

## Convert RIAGENDR and RIDRETH1 to character variables
DEMO_I3_OUT[, 2] = as.character(DEMO_I3_OUT[, 2])
DEMO_J3_OUT[, 2] = as.character(DEMO_J3_OUT[, 2])
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DEMO_I3_OUT[, 3] = as.character(DEMO_I3_OUT[, 3])
DEMO_J3_OUT[, 3] = as.character(DEMO_J3_OUT[, 3])

## Perform record linkage with RIAGENDR as a block variable, and
a similarity function based on Levenshtein distance of
variables RIAGENDR and RIDRETH1

rpairs=compare.linkage(DEMO_I3_OUT,
DEMO_J3_OUT,
blockfld=c(1),
strcmp =c(2, 3),
strcmpfun = jarowinkler
)

# calculate weights based on default m and u probabilities
rpairs.w <- fsWeights(rpairs, m = 0.95, u=rpairs$frequencies)

# classify records with thresholds -4 and 0
rpairs.fit = fsClassify(rpairs.w, threshold.upper = 0, threshold.

lower = -4)

# show results
print(summary(rpairs.fit))

# show linked records
rpairs.fit$pairs$is_match = rpairs.fit$prediction
print(rpairs.fit$pairs[rpairs.fit$pairs$is_match=="L", ])

6 Discussion

There are several additional points to consider when performing PPRL on real-world
data. First of all, missing data or missing values are common in real-world data.
A simple method is to remove records or attributes with missing values, but this
leads to information loss [22]. Rule-based imputation methods are more proper
to take account of distributions of attributes and correlations between attributes
[65, 66]. Alternatively, the probabilistic linkage method discussed in Sect. 3.2 can
intrinsically handle this by assigning zero weights for missing attributes when
calculating the composite weight.

Another challenge is scalability because the number of potential pairs for
evaluation is the product of the number of records in two datasets leading to
quadratic complexity. Blocking or indexing is a common technique to eliminate
non-matched records. For example, standard blocking uses the values of so-called
blocking key values (BKVs) to partition all records into disjoint blocks [25]. To
accommodate incorrect or missing BKVs, one can conduct blocking in an iterative
fashion. The non-matched pairs filtered by the first BKV are further sent to the
second BKV for partition, and so on and so forth to the last BKV [25]. This can
be viewed as a hybrid framework to combine deterministic linkage in Sect. 3.1
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for blocking and probabilistic linkage in Sect. 3.2 for downstream matching. Other
filtering techniques are also available to reduce the search space based on similarity
measures and the length of tokens [25].

The results from data linkage on RWD may also be used to support regulatory
decision-making for study drugs. Based on a recent FDA guidance on RWD [67], the
protocol should clearly describe data sources, the information that will be obtained,
linkage methods, and the accuracy and completeness of data linkages over time.
Sensitivity analysis should also be performed to evaluate the robustness of results
based on probabilistic linkage methods [67].

PPRL is a relatively new area in record linkage. To apply PPRL on RWD, there
are several challenges and future research topics. Additional work is needed to guide
statistical inference of estimates from integrated datasets under potential mismatch
errors. This problem is even more challenging to evaluate empirically because true
classification labels are not available due to privacy concerns. Generating realistic
synthetic data is in itself a formidable challenge [22]. The missing data issue adds
another layer of challenge because the assumption of missing not at random can be
more common in RWD.
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Causal Inference with Targeted Learning
for Producing and Evaluating
Real-World Evidence

Susan Gruber, Hana Lee, Rachael Phillips, and Mark van der Laan

1 Introduction

Targeted Learning (TL) is a statistical framework for efficient learning from data
[1]. TL’s systematic approach addresses many of the critical barriers in analyses of
studies incorporating real-world data (RWD), including any non-randomization of
the exposure, treatment non-compliance, time-varying confounding, and incomplete
capture of the outcome [2]. Core principles for valid causal inference include (1)
specifying a causal model and realistic statistical model consistent with expert
knowledge and characteristics of the data generating process; (2) specifying a target
of estimation (i.e., estimand) consistent with the goals, design, and conduct of
the study; (3) analyzing the data using targeted minimum loss-based estimation
(TMLE), a generalization of targeted maximum likelihood estimation, coupled with
super learning (SL); and (4) assessing robustness of study findings via diagnostics
and sensitivity analyses. The TL estimation roadmap codifies these principles and
the use of TMLE + SL for optimally estimating causal effects and association
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measures from data [1–3]. Despite legitimate concerns, RWD can provide valuable
insights in areas increasingly important for regulatory, policy, and clinical decision-
making.

A 2018 draft framework issued by the US Food and Drug Administration (FDA)
highlights opportunities and challenges in producing real-world evidence (RWE)
in support of regulatory decision-making [4]. RWD sources, such as electronic
health records (EHR), medical claims, product and disease registries, and personal
wearable devices, produce copious amounts of data. However, generating reliable
RWE about the use, risks, and benefits of medical products necessitates careful
study design, conduct, data analysis, and interpretation. Key considerations include
whether the RWD are fit for purpose, whether the study provides adequate scientific
evidence, and whether study conduct meets regulatory requirements [4–8].

Studies ranging from randomized controlled trials (RCT) in clinical settings, to
non-randomized interventional single arm trials with external controls, to observa-
tional studies (OS) rely in varying degrees on RWD [9]. However, RWD sometimes
suffers from incomplete or mis-specified measures of subject characteristics, expo-
sures, and outcomes. Intercurrent events can disrupt the measure or interpretation
of the outcome. Whether or not treatment is randomized, these aspects of RWD
increase the difficulty of drawing accurate, interpretable insights into safety and
efficacy in broad populations under real-world conditions.

This chapter describes the TL approach to causal inference that addresses
these challenges. The TL roadmap provides a step-by-step guide to producing and
evaluating RWE [1–3, 10, 11]. It accounts for all components of the ICH E9(R1)
Guideline definition of an estimand: population, treatment, outcome variable,
summary measure, and intercurrent events [12]. In alignment with the guidelines,
the roadmap defines the target causal estimand as a parameter of the probability
distribution of the data. Initial steps in the roadmap characterize the data-generating
process prior to data collection. This promotes transparent definitions of the causal
estimand in terms of a causal model and the statistical estimand in terms of a
statistical model. The choice of estimator and the scope of sensitivity analyses are
also pre-specified.

TMLE+SL provide efficient, consistent estimation of statistical parameters, and
inference. The final step in the roadmap offers a transparent process for assessing the
validity of a causal interpretation. These concepts are illustrated through an analysis
of time-to-event data from a single arm study with a synthetic external control arm.
The population of interest is defined by the population included in the single arm
study. TMLE+SL are used to evaluate the marginal cumulative incidence ratio of
treatment versus comparator among the treated (ATT). The chapter concludes with
a summary of other ways to utilize RWD throughout the pharmaceutical pipeline
with the help of TL.
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2 Targeted Learning Estimation Roadmap

2.1 Step 0

Step 0 of the roadmap (Fig. 1) concerns the clinical question of interest and the
plan for acquiring study data that is suitable for addressing the substantive question
of interest to domain experts. This question is initially expressed in terms of a gap
in scientific knowledge, and will ultimately be formulated as a statistical question
that can be answered from data. Each of the five ICH E9(R1) elements of an
estimand are clarified in this step: (1) Inclusion/exclusion criteria define the study
population; (2) precise definitions of the treatment, including time of initiation,
background therapies, and comparators to define each study arm; (3) clear criteria
for identifying or measuring the outcome on or before a specific follow-up period;
(4) a meaningful summary measure, such as a risk difference, hazard ratio (HR), or
dose-response curve, is decided upon [12]; (5) identify likely intercurrent events,
such as treatment non-adherence, loss-to-follow-up (LTFU), and competing risks.
These post-randomization events can potentially disrupt the treatment-outcome
associations in the data and/or have an impact on defining the (identifiable and
estimable) treatment effect. Therefore, considering intercurrent events this early
in the process allows the study team to identify an appropriate strategy for
ameliorating their impact on the eventual study finding, collecting relevant data,
and/or to define the realistic estimand that respects the underlying data-generation.
For example, experts can consider whether incorporating a competing risk into a
composite outcome is the appropriate scientific question to investigate, e.g., “stroke
or myocardial infarction” vs. “myocardial infarction” alone. With these elements in
mind, Step 0 culminates in characterizing the process that gives rise to the data over
time.

For a simple example, consider a hypothetical retrospective cohort study to
compare the impact of utilizing etomidate/midazolam as a sedative during routine
screening colonoscopy versus a comparator drug propofol/midazolam on systolic
blood pressure at the end of sedation. The summary measure will be the marginal
additive treatment effect (ATE). The population of interest consists of non-pregnant

Fig. 1 The targeted learning
estimation roadmap

Step 0. Formulate the substantive question(s), and describe 

the experiment giving rise to the data 

Step 1. Define a realistic statistical model for the data

Step 2. Define a causal model, and causal parameter of 

interest

Step 3. Specify statistical parameter, and identifying 

assumptions 

Step 4. Estimation and Inference using TMLE + SL

Step 5. Interpretation and substantive conclusion, supported 

by sensitivity analyses 
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adults between the ages of 20 and 85 who had a screening colonoscopy at the
outpatient center of an urban hospital between January 1, 2019 and December 31,
2019. The dataset will consist of independent and identically distributed (i.i.d.)
observations O = (W,A, Y), where Wis a vector of baseline covariates (age, sex,
pulse, systolic blood pressure (SBP), irritable bowel syndrome (IBS, y/n), A is a
binary indicator of treatment with etomidate (A = 1) or propofol (A = 0), and Y
is the post-sedation SBP. Assume that subject matter experts have ensured that W
contains all potential confounders of the treatment–outcome association Although
patient status during the procedure can modify the administration of the sedative
over time, this is a downstream effect of treatment choice at baseline, so is not
viewed as an intercurrent event that confounds the treatment–outcome relationship.

2.2 Step 1

Step 1 is the specification of a realistic statistical model, i.e., a set of possible joint
distributions of the data. Domain knowledge can be used to restrict the model by
ruling out distributions that are incompatible with known truth. The key is to avoid
making unrealistic restrictive assumptions that preclude the true data distribution.
For example, restricting the conditional distribution of a point treatment to the set of
main terms logistic regression models is appropriate when treatment is randomized,
but overly restrictive when treatment decisions were made by clinicians and patients,
potentially involving complex interactions among baseline patient characteristics.
In our running example, the likelihood of the data can be factorized as .L(O) =
pY (Y |A,W) pA (A | W) pW(W).

2.3 Step 2

Step 2 approaches the problem from a causal perspective. A causal model specifies
known conditional independencies in the data. Directed acyclic graphs (DAG)
provide a visual representation of a causal model [13]. Nodes in the graph represent
endogenous variables: covariates, treatment, and outcomes in the causal model.
Exogenous variables unaffected by others in the graph are denoted by U. An arrow
between two nodes depicts a possible causal relationship. The node at the origin of
the arrow is termed the parent node. The absence of an arrow encodes knowledge
of true statistical independencies. Some independencies are inherent in the time
ordering of the data, while others stem from domain knowledge. The DAG in Fig. 2.
indicates that age, sex, pulse, SBP, and IBS potentially impact the outcome. The
absence of an arrow between IBS and A indicates that treatment choice is known to
be independent of IBS status. The DAG indicates that the only potential confounders
of the treatment–outcome association are age, sex, pulse, and SBP.
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Fig. 2 Directed acyclic
graph (DAG) depicting a
causal model consistent with
the time ordering and with
expert knowledge that IBS
status does not influence the
treatment decision

The relationships depicted in the DAG can also be expressed as a collection
of functions in a structural causal model (SCM) [13]. In an SCM, each variable
is defined as a function of its parents and exogenous variables, age = fage(Uage),
sex = fsex(Usex), pulse = fpulse(Upulse), SBP = fSBP(USBP), IBS = fIBS(UIBS),
A = fA(age, sex, pulse, SBP,UA), Y = fY (age, sex, pulse, SBP, IBS,A,UY ).

We next define a causal quantity in terms of the causal model in the full
data, where potential counterfactual outcomes arising under each treatment
of interest are available. The counterfactual full data consists of observations
OFull = (W,Y0,Y1),where Ya denotes a counterfactual outcome observed under
exposure to treatment a. The estimand of interest is typically a causal contrast
between counterfactual distributions of the outcome. An individual level causal
contrast comparing two treatments, a0 and a1, is expressed as a function of .Ya0 and
.Ya1, e.g., .ψcausal

AT E = EYa1 − EYa0 is a causal additive effect of treatment (ATE),
.ψcausal

RR = EYa1/EYa0 is a causal relative risk (RR), etc. The causal quantity of
interest in our running example is the difference in post-sedation SBP, .ψcausal

AT E .

2.4 Step 3

Step 3 of the roadmap defines the statistical parameter that can be estimated from
data that can be observed in the real world, where it is only possible to capture
the outcome a subject experienced under the received treatment. This statistical
estimand, ψobs, must be defined in terms of the features of the distribution of the
observable data, O = (W,A, YA), rather than features of the underlying full data
defined in the causal model.

In our running example, the statistical ATE parameter is given by ψobs =
E[E(Y|A = 1,W) − E(Y|A = 0,W)]. Identifying assumptions link this statistical
estimand with .ψcausal

AT E [14]. The first of these is the consistency assumption stating
that for a subject, i, who experiences a treatment or exposure at level a, the observed
outcome, Yi, is equivalent to the counterfactual outcome, .Ya

i .
The positivity assumption states that within strata defined by confounders in

W, there must be a positivity probability of receiving treatment at all levels
under consideration, 0 < P(A = a | W) < 1, a = 1 or 0. In many applica-
tions, the outcome may be subject to missingness (missingness indicator � = 1
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when the outcome is observed, � = 0 when the outcome is missing). For
these situations, the SCM would contain an additional function describing the
missingness mechanism, � = f�(W,A,U�). The observed data would be given
by O = (W,A,�,�YA), where �YA = YA when � = 1 and is missing when
� = 0. The definition of the causal parameter remains unchanged, while the
statistical estimand must explicitly account for missingness, e.g., for the ATE
ψobs = E[E(Y| � = 1,A = 1,W) − E(Y| � = 1,A = 0,W)]. The positivity
assumption must hold with respect to missingness as well. Within strata defined
by A and W, there must be a positive probability that the outcome will be observed,
0 <P(� = 1 | A,W) ≤ 1.

The randomization assumption of no unmeasured confounding states that treat-
ment and outcome missingness are independent of the counterfactual outcome given
the past, Ya ⊥ A, � | W. This corresponds with assuming that � is independent of
Y, given (W, A), and A is independent of Ya given � = 1, W.

When these identifying assumptions hold, ψcausal is identifiable from the data.
Whether they hold or not, ψobs is a statistical estimand clearly defined as a function
of the true data distribution.

Working through steps 0–3 is sometimes an iterative process. It is important
to note that these steps occur without examining study data. When designing a
statistical analysis plan for the purpose of regulatory approval, the process occurs
prior to data collection. Post-market safety surveillance may involve secondary
analysis of existing data that includes some real-world elements, but the actual data
doesn’t play a role in steps 0–3.

2.5 Step 4

Step 4 focuses on the statistical estimation problem. A critical tenet of TL is that
an estimator is a pre-specified mapping from data to a scalar. Traditional parametric
modeling approaches typically regress Y on A, optionally adjusting for additional
covariates. Coefficients in the model are estimated using maximum likelihood,
and the coefficient in front of A is interpreted as the conditional treatment effect,
e.g., a log hazard ratio in a Cox model, a log odds ratio in a logistic model,
or an additive effect in a linear model. This approach is limited in that if the
model is not correct then the effect estimate will be biased (unless treatment is
randomized [15]). This model assumes the treatment effect is homogeneous and
that there are no effect modifiers, such as drug–drug interactions. It also assumes
monotonicity and linearity in the dose-response relationship between treatment and
the outcome. If any of these assumptions are unwarranted, effect estimates will be
biased. Furthermore, in high dimensional settings, it is impossible to a priori specify
a correct parametric model.

If we are interested in learning from RWD about treatment effects in diverse
populations, then adopting a more flexible methodology is a better alternative.
Desirable properties of an estimator are that it is consistent, regular, asymptotically



Causal Inference with Targeted Learning for Producing and Evaluating Real-World. . . 131

linear (RAL) and thereby asymptotically normal, efficient in the sense that the
normal limit distribution has minimal variance. Asymptotically linear means that
the estimator minus estimand equals the empirical mean of a function of Oi called
the influence curve of the estimator, plus an asymptotically negligible remainder.

Root-n convergence of such an estimator implies that .
√

n
(
ψ0 − .ψn

)
d→ N

(
0, σ 2),

where n is sample size, ψ0 is the true parameter value, ψn is the estimated value,
and σ 2 is the variance. An efficient estimator is one in which σ 2 is the variance
of what is known as the efficient influence curve (EIC) [16, 17]. The EIC is a
mathematical object that can be computed for any statistical model and bounded
pathwise differentiable target parameter. It is derived as the canonical gradient of
the derivative of the target parameter viewed as a function of the data density [18].
Theory teaches us that an estimator is asymptotically efficient if and only if it is
asymptotically linear, with influence curve the canonical gradient. TMLE possesses
each of these properties, and promotes consistency by incorporating non-parametric
estimation of the key functionals of the data distribution [1].

TMLE+SL couples an efficient estimator with machine learning to flexibly
model outcome regressions, propensity scores, and missingness mechanisms. The
combination provides estimates consistent with the process that gave rise to the
data. Unlike machine learning alone, TMLE+SL is tailored towards providing
efficient unbiased estimation of the target parameter and valid inference. Its practical
utility includes the ability to account for baseline and time-varying confounding,
intercurrent events, and missing outcomes, in estimating any pathwise-differentiable
parameter of interest, in point treatment problems, longitudinal analyses, and
analyses of time-to-event data [1, 19].

TMLE is a two-step procedure. In a point treatment problem, the first step uses
SL to obtain initial estimates of the outcome regression (Q), propensity scores and
missingness mechanisms (collectively denoted by G = (gA(A,W), g�(�,A,W)),
while it estimates the expectation over W with the empirical mean. The second, so-
called targeting step, involves fluctuating the initial outcome model to improve the
bias variance trade-off forψobs by ensuring the EIC has empirical mean 0. Statistical
theory shows that in this estimation, problem estimators having this property are
double robust (DR), i.e., consistent if either Q or G are correctly specified [16, 20,
21]. When both Q and G are correctly specified, these estimators are efficient.

The variance of ψn, .σ 2
ψn

= σ 2/n, can be used to evaluate p-values and to
construct confidence intervals. When positivity is an issue, IC-based confidence
intervals might provide less than the nominal coverage [21]. One alternative recog-
nizes that as a result of using TMLE, we have a targeted estimate of the data density,
.p∗

n.This allows us to bootstrap by sampling from .p∗
n, then carrying out the targeting

step in the bootstrapped sample and evaluating the parameter estimate to create a
finite sampling distribution. This targeted bootstrap picks up the behavior of the
second order remainder term that is asymptotically negligible, but can be relatively
large when positivity is an issue [22]. Quantile-based confidence intervalsWald-type
confidence intervals can be constructed based on the bootstrapped estimate of the
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variance, or based on the quantiles of the bootstrapped distribution. This approach
avoids re-estimation of Q and G, thus, is quite computationally feasible.

A second alternative is to recognize that .σ 2
ψn

is itself a pathwise-differentiable
parameter that can be estimated from data in a robust, targeted manner using TMLE.
We can fit the data density with a TMLE, obtaining an estimate .p∗

n targeted towards
σ 2(p), then estimate the variance with .σ 2

(
p∗

n

)
. This plug-in estimate of the variance

offers improved inference in sparse data settings.
Several features distinguish TMLE from other DR estimators. As a substitution

estimator, TMLE is guaranteed to remain within the bounds of the statistical model
(e.g., outcome regression estimates remain within the possible range) [23]. A
substitution estimator is an estimator of type .�

(
p∗

n

)
, with .p∗

n an estimator of the
true density, p0, and being an element of the statistical model .M. This plug-in
property of the TMLE improves finite sample bias and variance relative to non-plug-
in estimators, which can even produce negative estimates of a probability in sparse
data situations. Several advantages arise from targeting an initial density estimator.
TMLE can be utilized for parameters where no estimating equation approach exists
or where the estimating equations have multiple or no solutions. It also allows
TMLE to incorporate machine learning while remaining RAL [21]. For this reason,
we refer to TMLE as the bridge from machine learning to statistical inference.
Another finite sample advantage is that estimation of the G components of the
likelihood can be tailored based on residual bias in the parameter estimate evaluated
with respect to the initial estimate of Q. This approach, known as collaborative
TMLE (C-TMLE), can improve the bias/variance trade-off by conditioning on only
a subset of confounders, while remaining DR [24, 25]. C-TMLE is particularly
useful when there are near-violations of the positivity assumption and in high
dimensional settings. TMLE can also naturally incorporate additional targeting for
the purpose of additional statistical robustness properties, or simultaneously target
many parameters, including an entire survival curve [26].

Consistency and efficiency of the TMLE rest on successfully modeling the Q
and G components of the likelihood. It is impossible to know in advance which
parametric or machine learning algorithm is optimal. This challenge motivates
the use of SL to simultaneously consider multiple approaches, relying on cross-
validation to select the best algorithm (discrete SL) or the best combination of
algorithms (ensemble SL) from a user-specified collection known as the library
[27, 28]. Aside from the library specification, SL performance depends on the
complexity of the underlying prediction or regression function, the cross-validation
scheme, and choice of loss function [29, 30]. Practical advice and a flowchart for
specifying a super learner tailored to the task at hand and characteristics of the data
are available in the literature [30].

Given the theoretical properties of SL, it is natural to wonder why we do not
simply obtain SL predictions for each observation under each counterfactual value
for A of interest and evaluate the plug-in estimator. Consider the ATE and let

.Q
SL

n (a,W) be the predicted value from the SL fit of the outcome regression when

A = a. Why not directly evaluate .ψSL
n = 1

n

∑n
i=1 Q

SL

n (1,W) − Q
SL

n (0,W)?
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Table 1 Simulation study: Bias, variance (var) and mean squared error (MSE) for the unadjusted,
IPTW, and TMLE+SL estimators of the ATE

Estimator Bias Var MSE

unadj 1.774 1.024 4.170
IPTW 0.210 0.058 0.102
TMLE+SL 0.053 0.020 0.023

The answer stems from the fact that SL and other machine learning algorithms
approximate an unknown prediction function by optimizing a global loss. While
this is ideal for the purpose of prediction, it offers a less than ideal bias/variance
tradeoff for estimating ψobs. There are no guarantees on rates of convergence with
respect to the target parameter and no guarantees of asymptotic linearity. Thus
valid inference is precluded, except when using special sieve maximum likelihood
estimators (MLE), such as plug-in highly adaptive lasso-MLE [31].

2.5.1 Simulation Study

A simulation study demonstrates how following the roadmap guidelines impact
study estimates. We compare the unadjusted estimate of the ATE with an esti-
mate obtained using inverse probability of treatment weighting (IPTW) [32] and
TMLE+SL. Stabilized weights for the IPTW estimator were based on propensity
scores estimates from a main terms logistic regression model. This common practice
is a slight misspecification of the true PS model. TMLE+SL estimates were
obtained using the tmle R package, with the default settings [33]. One thousand
datasets of size n = 500 were generated (Appendix A.1). Bias, variance, mean
squared error (MSE) are reported in Table 1. Although IPTW greatly reduced
bias and variance compared with the unadjusted estimator, results illustrate that
TMLE+SL was 75% less biased than IPTW, with 66% smaller variance. These
gains stem from using machine learning to minimize model misspecification bias,
and from TMLE’s efficiency property.

2.6 Step 5

Step 5 is to assess the interpretation and robustness of the study finding resulting
from step 4. Diaz and van der Laan (2013) define the causal gap as the difference
between the statistical estimand (ψobs) and the causal estimand (ψcausal) [34].
That paper proposes a sensitivity analysis to explore how different values of the
hypothesized gap would impact the effect estimate and confidence interval bounds.
If a small causal gap would reverse the substantive conclusion, then the study
findings are not robust. This might imply that the study does not provide substantial
evidence for regulatory or other decision-making. If, on the other hand, even a
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large causal gap would not change the substantive conclusion, then the evidence
produced by the study could be acted upon with confidence. This non-parametric
sensitivity analysis can complement other sensitivity analyses deemed appropriate
by regulators.

Any causal gap would be due to violations of the underlying identifying assump-
tions. The consistency and randomization assumptions are not testable from data.
Their plausibility rests on subject matter experts with knowledge of the underlying
data generating process and data capture. The impact of practical violations of the
positivity assumption could also be evaluated as part of this sensitivity analysis. In
addition, diagnostics examining baseline differences between treatment and control
groups and assessing their overlap can provide important insight. In studies where
parametric methods are used in TMLE rather than an advanced SL, additional
sensitivity analyses addressing those restrictive statistical assumptions would also
be required. However, this approach is not recommended. A better alternative is
to set up outcome blind simulations before specifying the full TMLE and SL to
evaluate if the SL is sufficiently data adaptive and make adjustments accordingly.
The primary goal of the sensitivity analysis is to address non-testable assumptions.

3 Case Study: Single-Arm Trial with External Controls

This section illustrates how to follow the TL roadmap to foster the development of
transparent, interpretable, and reliable RWE.

RWE plays an important role in single-armed trials, where outcomes in the
treated arm can be contrasted with outcomes in external comparators. External
data sources include historical or concurrent trials with similar inclusion/exclusion
criteria or RWD. A key challenge is identifying a comparator group where the
observed causal contrast can be attributed to the effect of treatment, rather than
other differences in the populations, background therapies, monitoring schedules,
etc. [35].

We illustrate TL in this context through an analysis of time-to-event data from
a real-world single-arm study combined with a synthetic external control arm.
Data were downloaded from Project Data Sphere, a repository of oncology data
from biopharmaceutical companies, academic medical centers, and government
organizations (www.projectdatasphere.org). Our dataset consists of observations on
n = 371 subjects in the comparator arm of a Phase III RCT sponsored by Eli Lilly
and Company (IMCL CP12-0606/TRIO-012) comparing progression-free survival
(PFS) in previously untreated patients with HER2-negative, unresectable, locally
recurrent, or metastatic breast cancer [36]. The real-world comparators who received
a placebo plus docetaxel are viewed as the treated group in our case study. We
simulated data on 1000 subjects in an external comparator arm from a similar
population (Appendix A.2) and carried out a retrospective cohort study on the
combined dataset (n = 1371). The next subsections step through the TL roadmap to
generate and evaluate RWE concerning our simulated treatment effect.
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3.1 Apply the TL Estimation Roadmap

3.1.1 Step 0

The goal of our study is to understand the impact of treatment with docetaxel +
background therapy vs. placebo + background therapy on disease progression. The
target population is reflected by the real-world study’s inclusion/exclusion criteria.

• Female patients at least 18 years of age with histologically or cytologically
confirmed, HER2-negative breast adenocarcinoma

• At study entry, the disease must be metastatic or locally recurrent and inoperable
with curative intent

• Patients may not have received chemotherapy or biologic therapy for metastatic
or locally recurrent, inoperable breast cancer

The treatment under consideration in our case study (A = 1) is docetaxel
(75 mg/m2). The (simulated) comparator (A = 0) is a placebo consisting of only
the histidine-buffered formulation vehicle. Both treatments were administered as
an approximately one-hour intravenous infusion on Day 1 (± 3 days) of each 21-
day cycle. We will contrast the time-to-disease progression in each study arm. Our
primary interest is the intention-to-treat (ITT) effect, which is not affected by non-
compliance or discontinuation of treatment. The ICH guidelines refer to this as the
treatment-policy strategy for dealing with intercurrent events that are considered
irrelevant in defining the treatment effect of interest [12]. However, mortality is a
competing risk that would preclude observing the time to progression. To address
the clinically relevant question regarding progression-free survival (PFS), we define
a composite outcome, disease progression or death. The summary measure is the
cumulative incidence of disease progression or death by t = 60 months.

The data consists of n i.i.d observations .O =
(

W,A,�,
∼
T

)
, where W is a

vector of baseline covariates (age, body surface area (bsa), Eastern Cooperative
Oncology Group performance status (ecog), left ventricular ejection fraction (lvef),
measurable lesion (Y/N) (lesion), menopausal status (meno), and triple negative
status (tripleNeg)), A is a binary treatment indicator, � is an indicator of the event

type (0: censoring, 1: progression or death), .
∼
T , the last time point at which a

subject was monitored, is the minimum of the censoring and outcome event times
(C and T, respectively). All real-world participants were followed up for longer than
60 months, thus the only censoring event is administrative censoring at t = 60.

Subjects in the comparator group are younger on average than subjects in the
treatment group, and are 15% more likely to be pre-menopausal (Table 2). Among
the 91% of subjects in the comparator group who experienced an outcome event
within 60 months, the crude mean PFS was 37 months. Among the 63% of subjects
in the treatment group who experienced an outcome event within 60 months, the
crude mean PFS was 28 months.



136 S. Gruber et al.

Table 2 Mean and standard
deviation (SD) of baseline
characteristics of patients by
trial arm, and standardized
mean difference (SMD)

Mean (SD)
Covariate Comparator arm Treatment arm SMD

age 50.25 (10.80) 54.18 (10.02) −0.38
bsa 1.86 (0.18) 1.76 (0.19) 0.55
ecog 0.36 (0.02) 0.38 (0.02) −0.05
lesion 0.17 (0.01) 0.19 (0.02) −0.04
meno 0.41 (0.02) 0.27 (0.02) 0.30
tripleNeg 0.24 (0.01) 0.22 (0.02) 0.05

3.1.2 Step 1

The statistical model is most naturally expressed in terms of the intensities of the

failure and censoring time processes, .N(t) = I

(∼
T ≤ t,� = 1

)
,and .AC(t) =

I

(∼
T ≤ t,� = 0

)
, with respect to the observed history. For the sake of generality

we will assume discrete (T,C) on a discrete time scale that is sufficiently fine so that
all formulas have their analogs for continuous (T,C). We can recode the observation

.O =
(

W,A,�,
∼
T

)
in discrete time as the time-ordered longitudinal data structure

O = (W,A,N(0),AC(0), . . . ,N(τ ),AC(τ ),N(τ + 1)), where τ is a maximal follow

up time so that each .
∼
T ≤ τ + 1. This can be more succinctly expressed by

suppressing the time ordering, .O = (
W,A,N (τ + 1) , AC (τ)

)
, where the over-

bar denotes the entire history.
The likelihood of O can be factorized according to the time ordering: .p(O) =

qW (W)gA (A|W)
∏τ

t=0gAC(t)

(
AC(t)|N(t), AC (t − 1) , A,W

) ∏τ+1
t=0 qN(t) .(N(t)|

N (t − 1) , AC (t − 1) , A,W
)
, where each conditional density is conditioning on

the variables realized prior to the variable in question.
Furthermore, .gAc(t)

(
1| N(t), AC (t − 1) , A,W

) = I (AC (t − 1) = 0, N(t) = 0)
.λC (t | A,W), and .qN(t) (1 | N (t − 1) , AC (t − 1) , A,W )= I (N (t − 1) = 0,
. AC (t − 1) = 0) λT (t | A,W), where λC(t |A, W) = P(C = t |C > t − 1, N(t) = 0,
A, W) and λT (t |A, W) = P(T = t |T > t − 1, AC(t − 1) = 0, A, W). Under the
coarsening at random assumption on C stating that censoring and event times are
conditionally independent given T, A,W, the conditional hazard functions reduce to
λC(t|A,W) = P(C = t | C > t − 1, A,W) and λT (t|A,W) = P(T = t | T > t − 1, A,
W). In other words, under this assumption these intensities of N(t) and AC(t) reduce
to indicators of being at risk of changing values multiplied by the conditional
hazards of C and T, respectively. Thus, the density of O can be parameterized as
.p = pqw,λC,λT ,g . A statistical model .M for the density p of O is determined by
assumptions on λC and g, with qw and λT remaining nonparametric.
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Fig. 3 Directed acyclic
graph (DAG) representation
of the causal model for the
case study

3.1.3 Steps 2 and 3

Our causal model is represented by the DAG in Fig. 3. All baseline covariates are
potential confounders of the association between treatment and outcome event time,
T.

We are interested in contrasting the 60-month cumulative incidence of disease
progression or mortality under exposure to the study treatment vs. the comparator.
Subjects in our treatment group are representative of our target population, while
subjects in the comparator group are relatively younger and 1.5 times more likely
to be pre-menopausal. Thus, we define our causal parameter as the cumulative
incidence ratio (CIR) of disease progression or mortality by 60 months among the
treated, an average treatment effect among the treated (ATT).

Consider an intervention-specific causal parameter among the treated in terms
of the full data, .ψcausal

a = P (T a ≥ 60 | A = 1) .Then P (T a ≥ 60 | A = 1) =
E (P (T a ≥ 60 | A = 1,W) |A = 1) = EW |A=1 (P (T ≥ 60 | A = 1,W)) =
EW |A=1

∏
s≤60 (1 − λT (s| A = 1,W)) . We denote the latter expression by ψa(P),

a parameter defined in terms of the observed data distribution, establishing the
identification of .ψcausal

a (PX) under exposure a.
Note that .P (T a ≤ 60 | A = 1) = 1 − ψcausal

a . Next we define the conditional
survival function of T given A, W as .S (t |A,W) = ∏

s≤t 1 − λT (s|A,W) so that
.ψobs

1 = EW |A=1S (60|A = 1,W) and .ψobs
0 = EW |A=1S (60|A = 0,W). The CIR

among the treated is a function of these two statistical estimands, .ψobs
CIR−AT T =[

1 − ψobs
1

]
/
[
1 − ψobs

0

]
.

3.1.4 Step 4

A customized version of the survtmle R package was used to estimate the 60-
month CIR of disease progression or mortality among the treated (https://github.
com/benkeser/survtmle/tree/att) [37]. SL was used to estimate the propensity score
and the failure time process [38]. The number of cross-validation folds was set to
20, and the SL library contained logistic regression, lasso regression, and general

https://github.com/benkeser/survtmle/tree/att
https://github.com/benkeser/survtmle/tree/att
https://github.com/benkeser/survtmle/tree/att
https://github.com/benkeser/survtmle/tree/att
https://github.com/benkeser/survtmle/tree/att
https://github.com/benkeser/survtmle/tree/att
https://github.com/benkeser/survtmle/tree/att
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additive models [39–41]. Specifying “ATT = TRUE” when invoking the survtmle
function returned estimates of the cumulative event incidence among the treated in

each study arm ( .μ̂0 : comparator, μ̂1 : treatment
)
, and the covariance matrix,

.� =
[

σ̂ 2
0 σ̂0,1

σ̂0,1 σ̂ 2
1

]
. From these results, we evaluate .ψCIR−AT T

n = μ̂1/μ̂0. By the

delta method, the variance on the log scale is given by .σ 2
logCIR = σ 2

1 /μ2
1+σ 2

0 /μ2
0−

2σ0,1/ (μ1μ0) .We found a CIR among the treated of 0.77 (95% CI: 0.71, 0.83),
indicating that treatment reduced the 60-month cumulative incidence.

3.1.5 Step 5

To understand whether the study finding provides sufficiently reliable RWE to
support an actionable conclusion or regulatory decision, we consider the direction
and magnitude of the causal gap, the difference between the statistical and causal
parameters defined earlier. Fig. 4 examines how the point estimate, .ψCIR−AT T

n ,
and 95% CI bounds change as a hypothesized causal gap grows larger, towards and
away from the null value of 1. The study’s point estimate and 95% CI are at 0 on the
x-axis, representing an unbiased estimate of .ψcausal

CIR−AT T under an assumption that
there is no causal gap, δ = 0. Hypothetical gaps are shown on the x-axis in absolute
units, δ, and on an alternate x-axis in terms of “adjustment units,” the difference
between the adjusted and crude estimate (0.77–0.70=0.07).

The plot illustrates that any positive causal gap produces an even larger protective
effect of treatment on PFS. A causal gap in the negative direction would have
to be at least −0.24, or approximately 0.24/0.07=3.64 times (taking into account
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Fig. 4 Sensitivity plot showing point estimates and confidence intervals for the cumulative
incidence ratio among the treated under presumed causal gap, δ, between −0.4 and 0.4, or
approximately six times the magnitude of the adjustment due to measured confounders (Adj units)
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rounding error) larger than the adjustment due to measured confounders, for the
point estimate to be above 1, and approximately −0.32, or nearly five times larger
than the adjustment due to measured covariates for the 95% CI to exclude the null.

Next, we would confer with experts to determine plausible limits on the size and
direction of the causal gap, with the understanding that the existence of a causal gap
must stem from one or more violations the identifying assumptions. We examine
each of these in turn.

In our case study, the consistency assumption is very likely met in the treatment
arm due to the careful monitoring of the PFS by the study team throughout
follow-up. It is met in the comparator arm through simulation. The positivity
assumption only needs to hold with respect to the distribution of data in the
treatment group, since we are evaluating an ATT parameter, 0 < P(A = 0 | W) ≤ 1.
In our data, the estimated propensity score in the treated group is between 0.05
and 0.69, suggesting the positivity assumption is met. A diagnostic showing the
propensity score distribution among treated and comparator groups shows good
overlap (Fig. 5).

The randomization assumption is generally untestable, though it holds by design
in randomized studies with no right censoring. In single-arm trials that utilize
external comparator arm data the randomization assumption needs to account for all
factors, S, predictive of the outcome that determine trial arm membership, such that
Ya ⊥ S | A, Δ,W. For example, differences over time, region, inclusion criteria, and
study conduct need to be listed and evaluated for their potential to induce positivity
violations (e.g., all comparators received a now-discontinued background therapy),
and to confound the treatment–outcome associations. Differences in unmeasured
confounders can also increase the causal gap.

In our case study, all three causal assumptions appear to be met, therefore the
plausible causal gap in our study should be close to δ = 0. The point estimates
change very little when δ is small, and the CIs largely overlap. Thus, the sensitivity
analysis strongly supports interpreting the study finding as a reliable estimate of the
true causal effect of treatment, and for concluding that treatment is protective.



140 S. Gruber et al.

4 Conclusion

Essential components of a study incorporating RWD include careful study design,
conduct, and complete, accurate data capture. Producing reliable, interpretable RWE
also requires learning from data using a rigorous methodology that is transparent
and flexible. The TL roadmap provides a systematic approach to generating and
evaluating RWE. The potential outcomes framework provides a unified, systematic
approach to defining causal estimands regardless of randomization. This is in
alignment with FDA’s definition of RWE [42]. Clearly articulating the underlying
identification assumptions can contribute to evaluating whether the data are suitably
fit for purpose. TMLE+SL can appropriately adjust for bias due to baseline and
time-dependent confounders, intercurrent events, and missing outcomes. Utilizing
data-adaptive machine learning avoids imposing additional statistical assumptions
beyond those required for identification. An analysis using TMLE+SL can be
completely pre-specified to satisfy regulatory requirements, while remaining data
adaptive and providing valid inference [43].

TL is a general approach that can be tailored towards parameters of interest
beyond those traditionally evaluated, for example, mediation analysis with time-
varying mediators and exposures [44]. The approach is to first define the desired
causal quantity in a causal model, then specify the corresponding statistical
parameter identified through the G-computation formula [45], derive the efficient
influence curve, and finally develop a targeted estimator for the target parameter.

Beyond estimating causal effects, in the pre-clinical phase, TL can be used
to rank drug candidates by their potential for Phase I success, or to identify
differentially expressed genes meriting further investigation [46, 47]. TL can be
used to design sequential adaptive randomized trials to optimize trial design, or to
optimize individualized treatment rules for precision medicine [48, 49]. SL-based
outcome phenotyping is useful for cohort identification, and for identifying health
outcomes of interest in safety and efficacy studies [50]. The TL paradigm can be
utilized throughout the pharmaceutical pipeline for optimal learning from data.
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A Appendix

A.1 Simulation Study Data Generation Process

One thousand datasets of size n = 500 were generated as follows: age~U(20, 85),
sex ~ Bernoulli(0.4), pulse ~ N(70, 52), SBP ~ N(130, 102), IBS ~ Bernoulli(pIBS)
with pIBS = 0.08 + 0.07sex + 0.1I(age > 50), A ~ Bernoulli(pA) with
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pA = expit(−1.8 − 0.01age + 0.3sex + I(pulse < 65) + 0.01SBP), Y ~ N(μ, 1), with
μ = SBP− 10+ 8A+ 0.05age+ 8sex+ 5A I(pulse < 65)+ 2A I(SBP < 120)− 2IBS.

A.2 Case Study Data Generation Process

Observations in the synthetic comparator arm were generated as follows.
First, n = 1000 values for age were sampled with replacement from the real-world
data with probability inversely proportional to age, then shifted by a random amount,
εage~N(−2, 9). The remaining covariates were generated sequentially by fitting
covariate-specific main terms regression models to the real-world data, then adding
random noise to predictions from the model based on the previously generated
covariates: bsa = .Ê (bsa|age) + εbsa ∼ N (0.1, 0.034) ; ecog ~ Bernoulli(pecog),
where .pecog = Ê (ecog | bsa, age); lesion ~ Bernoulli(plesion), where
.plesion = Ê (lesion | ecog, bsa, age); meno ~ Bernoulli(ppreMeno), .ppreMeno =
Ê (preMeno| lesion, ecog, bsa, age); tripleNeg ~ Bernoulli(ptripleNeg), where
.ptripleNeg = Ê (pretripleNeg | meno, lesion, ecog, bsa, age). The outcome
event time was generated from an exponential model fit on the real-world data that
included age, bsa, ecog, lesion, meno, tripleNeg as main terms, an interaction of
tripleNeg with bsa, and an indicator of age > 75, plus a random shift in the negative
direction, εage~U(−10,−6), that injected a protective treatment effect into the data.
Administrative censoring was imposed at t = 60.

Disclaimer This chapter reflects the views of the authors and should not be construed to represent

FDA’s views or policies.
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Estimand in Real-World Evidence Study:
From Frameworks to Application

Ying Wu, Hongwei Wang, Jie Chen, and Hana Lee

1 Introduction

Estimand is the target of estimation to address the scientific question of interest
[1]. Precise definition of estimand helps elucidate what is to be estimated and thus
clarifies what question can (or cannot) be answered using observed data. The Inter-
national Council for Harmonisation of Technical Requirements for Pharmaceuticals
for Human Use (ICH) E9(R1) [1] addendum on estimands and sensitivity analysis
(henceforth abbreviated as the ICH E9(R1) or the addendum) provides a structured
framework for constructing estimands in clinical trials by focusing on five attributes:
treatments, population, variable (endpoint), intercurrent events (ICE) along with
strategies to handle these events, and population-level summary.

Although the addendum states that the framework is also applicable to single-
arm trials and observational studies, constructing estimands for real-world evidence
(RWE) studies is not as straightforward and often requires additional considera-
tions. The Real-World Evidence Scientific Working Group (SWG) of the American
Statistical Association Biopharmaceutical Section published Chen et al.’s [2] paper,
in which they discussed the challenges in constructing estimands for RWE studies
in great detail. More specifically, Chen et al. [2] elucidated (1) similarities and
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differences in estimand attributes between traditional clinical trials and RWE
studies; (2) presented points-to-consider when defining real-world estimands; and
(3) provided a roadmap for constructing real-world estimands. We expand the
discussion in Chen et al. [2] and provide additional considerations with respect to
the construction of estimands in RWE studies.

We will begin with an overview of existing frameworks that might be useful
to define real-world estimands, as in Chen et al. [2] However, we propose to
consider an additional framework which was not a part of Chen et al.—a targeted
learning framework [3]. We elucidate how each framework can be used to define
target estimand as well as to identify sources of bias and underlying assumptions
associated with the selected estimand, which are specific to RWE studies. We also
elaborate on how the use of potential outcome notation can provide a basis for
precise definition of different types of ICE and corresponding strategies handling
them, which can ultimately provide a well-defined, transparent definition of a target
estimand and thus inform appropriate study design and analysis. These are also
illustrated using various case examples.

The rest of this chapter is organized as follows: Section 2 presents an overview of
existing estimand-related frameworks. Section 3 delineates how one can define real-
world estimands based on each framework using various case examples. Section 4
provides a summary and discusses additional considerations for constructing real-
world estimands.

2 Frameworks Relevant to Real-World Estimands

This section reviews four frameworks that can provide guidance on how to define
estimands for RWE studies: the ICH E9(R1) [1], target trial framework [6], causal
inference framework [4, 5] (a.k.a., Neyman-Rubin causal inference framework in
some other literature) and targeted learning framework [3]. Of note, all of these
frameworks, except the ICH E9(R1), consider more than estimand encompassing
study question, estimand, design, analysis, and/or interpretation of findings. In
addition, the causal inference framework is the basis for all the other frameworks.
We also highlight that all of these frameworks are based on the same notion of
causality; however, each framework has its own distinct perspectives. We illustrate
how some elements in each of these frameworks can be used as guiding principles
for constructing estimands, identify sources of bias and underlying assumptions in
RWE studies.

2.1 The Estimand Framework in ICH E9(R1)

The ICH E9(R1) presents a structured framework for constructing estimands in
clinical trials by describing five attributes of an estimand. As mentioned before,
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application of the ICH E9(R1) framework to RWE studies might not be straightfor-
ward. This is mainly because specification of the five estimand attributes depends
not only on the research question, but also on real-world data (RWD) sources and
complexity in real-world clinical practice. Here, we review the ICH E9(R1) and
discuss challenges in applying the framework to real-world settings. See Chen
et al. [2] for more detailed discussion regarding similarities and differences with
respect to the five estimand attributes between traditional randomized controlled
trials (RCT) and RWE studies.

1. Treatments. The treatment condition of interest, and, as appropriate, the alter-
native treatment condition to which comparison will be made. It is important
to clearly articulate the treatment regime of interest, which could be individual
interventions, combinations of interventions administered concurrently, or a
complex sequence of interventions. In RWE studies, various treatment use
patterns (e.g., treatment non-adherence, dosage adjustment, treatment switching,
concomitant use of multiple medications, or initiation of some dynamic treat-
ment regime that adjusts for treatment strategy based on accumulated patient
information) are often observed in routine clinical practice [7–11]. Therefore,
articulating the treatment (regime) of interest is one of key considerations in
defining estimands for RWE studies. In addition, having clarity on the start of
follow-up (i.e., time zero) is crucial in RWE studies. For example, Hernán et al.
[6] illustrated how bias may be introduced when cohort entry time, follow up
time, and initiation of a treatment are not synchronized. Unlike RCT, where the
follow up starts at the time of treatment assignment, subjects in RWE studies
may have a span of time during which outcome could not occur before treatment
initiation, which will introduce immortal time bias [12]. See also Sect. 2.2 and a
single-arm trial example in Sect. 3.1.

2. Population. The population of patients targeted by the clinical question, which
can be the entire study population and/or a subgroup/stratum of patients defined
by particular characteristics such as demographic and clinical characteristics, or
ICE (non-)occurrence. The target population for RWE studies, typically defined
with a set of less restrictive inclusion and exclusion criteria than those of
traditional clinical trials, may include patients with more diverse demographics,
clinical characteristics (e.g., multiple comorbidities), geographic areas and study
sites, all of which can lead to heterogeneity in target population. Also, types and
patterns of ICE occurrence might be much more complicated in RWE studies
compared to those in RCT which require additional considerations on selecting
appropriate principal stratum.

3. Variable (endpoint). The endpoint to be obtained from each patient that is
required to address the clinical question. In RWE studies, blinding to the endpoint
data, which may already exist in selected RWD, should be enforced during
the conduct of RWE studies to avoid investigator/analyst bias. An independent
endpoint adjudication committee can be set up to ensure validity and reliability
of the endpoint when necessary. Unlike traditional clinical trials, surrogate
endpoints are less likely to be used as primary endpoint in RWE studies. Instead,
single-time measured clinical endpoints such as death or hospitalization are often
used [13].
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4. Intercurrent events and their handling strategies. ICE are events occurring
after treatment initiation that affect either the interpretation or existence of the
endpoints associated with the clinical question of interest. The ICH E9(R1) dis-
cusses five strategies for handling ICE: treatment policy, hypothetical, composite
variable, principal stratum strategy, and while-on-treatment strategies. See the
ICH E9(R1) [1] for details with regards to each strategy. In RCT, most ICE
are induced by treatment efficacy or safety profile (e.g., intolerability or lack
of efficacy) and terminal events (e.g., death) [2, 14]. ICE in RWE studies are
more complicated and likely to be induced by patient behaviors and routine care
practice. Chen et al. [2] classifies ICE in RWE studies into five categories: (1)
events due to safety concerns; (2) events due to lack of efficacy; (3) events related
to behavioral factors (e.g., preference for certain treatment, convenience use of a
treatment, doctor–patient relationship, etc.); (4) events related to non-behavioral
factors (such as change of medical insurance policy affecting the use of current
treatments, improvement of health condition, etc.); and (5) terminal events.

5. Population-level summary. Population-level summary of variables/endpoints that
serves as a basis for comparison between different treatments (or treatment
strategies), such as difference in mean/median survival time, response rate, etc.
Unlike RCT, where some standard statistical methods (e.g., regression models)
are used to estimate causal treatment effects, specific causal inference methods
are often required in RWE studies to ensure comparability of study groups in
terms of measured covariates. In addition, ascertainment bias due to baseline
window/period [15] and selection bias due to missing information may appear in
RWE studies. These biases are often hard to address via analytic methods because
reasons for missingness are typically unknown or not well-captured in RWD. In
this perspective, defining an estimand in RWE studies can be an iterative process
dependent upon RWD quality. Not only that, but all causal methods require
some form of untestable assumptions such as no unmeasured confounding [16].
Therefore, it is essential to understand sources of bias and identify underlying
assumptions associated with the selected population-level summary (as well
as to other attributes such as endpoint). To support interpretation and evaluate
robustness of study findings, it is important to consider sensitivity analyses
under various, clinically plausible departures from the underlying assumptions.
These include, but are not limited to, different mechanisms of missing data,
different definitions of analysis set, different causal inference methods, different
combinations of covariates in analysis models, and assumptions on unknown or
unmeasured confounding variables.

2.2 Target Trial Framework

Target trial framework is a useful tool to identify and prevent some common
methodological pitfalls that may introduce biases in observational studies by
thinking through an ideal, hypothetical randomized trial called target trial and by
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attempting to emulate the trial using large observational databases [6]. Therefore,
this framework allows to explicitly delineate potential sources of bias in RWE
studies and enables to evaluate RWD fit-for-purpose. In this framework, a causal
question and corresponding study design are articulated by specifying the following
seven attributes referred to as target trial protocol components: (1) eligibility
criteria, (2) treatment strategies, (3) treatment assignment, (4) start and end of
follow-up, (5) outcomes, (6) causal contrasts, and (7) a data-analysis plan. These
attributes can be mapped into the ICH E9(R1) estimand attributes and can be
used to construct real-world estimands. For example, the eligibility criteria in (1)
correspond to the population attribute of the ICH E9(R1), treatment strategies and
assignment in (2) and (3) correspond to the treatment and ICE attributes of the ICH
E9(R1), etc. Hampson et al. and Umemura et al. [33–35] illustrated the utility of
the target trial framework as a tool to define estimands for RWE studies. The target
trial framework might be particularly useful to facilitate communications between
statisticians and other domain experts because: (a) it is directly connected with
a notion of RCT and (b) all estimand and design components are illustrated in
non-technical language. This framework has been widely used in various scientific
domains including pharmaco-epidemiology [31, 32].

As mentioned earlier, feasibility of the target trial emulation can serve as a basis
to evaluate whether (1) a selected estimand is an addressable quantity based on
available data and/or (2) the data is fit-for-purpose to address the selected casual
question of interest. Therefore, the selection of estimand and evaluation of data fit-
for-purpose may require iterative operations in the study development process. In
other words, the key scientific question may be determined by the availability in
RWD sources, rather than a pre-specified question determining the rest of the study
development process. Such iteration should be minimized, and the design should be
chosen to match the study objectives and estimands.

Although the framework highlights the importance of articulating the treatment
strategy, the lack of specification of ICE and strategies to handle the ICE might be
concerning due to complexity and high frequency of ICE in RWE studies, as well
as limitations in RWD sources. Combined with the ICH E9(R1) estimand attributes,
the target trial protocol components may help articulate the treatment of interest.

2.3 Causal Inference Framework

Causal inference framework that utilizes the potential outcome (or counterfactual)
language and corresponding mathematical notation can provide a basis to define
estimands in a precise and transparent manner, even under highly complicated sce-
narios such as multiple time-varying ICE or confounders, informative missingness,
etc. An appealing feature of this framework is that it provides a quantitative form
of estimands that assists to understand the assumptions needed to estimate them
from the available data. Ho et al. [17] and Lipkovich et al. [18] demonstrate how the
use of the causal inference framework and potential outcome language/notation can
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help define causal estimands for both randomized and non-randomized studies. We
illustrate how the potential outcome notation can be applied to define estimands by
focusing on different strategies to address ICE [18–21]. We adapt the notation used
in Chen et al. [2]

Consider a study in which we are interested in comparing two different treatment
strategies. Let Y(a; t) be the potential outcome under treatment strategy a and receipt
of treatment status t. Note that a and t may differ, for example, a person prescribed
treatment 1 might not take the drug as directed, or switched to another drug, say
drug 0. Let T(a) be the receipt of treatment under initiation of treatment a, and
Y(a) = Y(a; T(a)) be the potential outcome under initiation of treatment a. This
notation is useful to define subgroups of interest. For example, T(1) = 1 represent
patients who initiated treatment 1 and continued to take the treatment 1. Similarly,
T(0) = 0 represent patients initiated treatment 0 and continued to take the treatment
0. In other words, T(1) = 1 and T(0) = 0 are so called “compliers.” In addition, this
notation is useful to set a hypothetical scenario and to re-define potential outcomes
under such scenario. For example, we can force T(a) to be at a specific level,
say T(a) = t regardless of patients’ actual treatment receipt status, and examine
a treatment effect where everybody in a population is forced to initiate and stay on
treatment t.

Based on this notation, we can now define various estimands of interest:

1. Treatment policy estimand. An average treatment effect (ATE) measured in mean
difference under the treatment policy strategy (i.e., regardless of ICE) can be
defined as E[Y(1)] − E[Y(0)]. To paraphrase in words, this estimand corresponds
to the difference in mean of potential outcomes in a world in which everyone
had initiated the treatment strategy a = 1 versus the same person had initiated a
reference treatment strategy a = 0, regardless of any ICE experience. Similarly,
an average treatment effect among the treated group (ATT) under the same
population-level summary and the same ICE-handling strategy can be defined
as E[Y(1)| T(1)] − E[Y(0)| T(1)]. If one concerns a treatment policy strategy
intended to apply to all qualifying patients, the target population should be the
whole (indicated) patient population and estimand should be the ATE. If the
question concerns a policy of withholding a treatment among those currently
receiving (or not receiving it), the estimand should be ATT (or average treatment
effect among the untreated, ATU).

2. Hypothetical estimand. Now suppose that we are interested in the treatment effect
under no ICE occurrence that are plausible in practice. For example, suppose that
additional medications other than study treatment 0 or 1 should be available in an
RWE study for ethical reasons. However, our interest lies on a treatment effect in
the absence of the additional medications (or when they are not available). Define
a new set of potential outcomes, Y (0; t) = Y (1; t) = Z(t). Then an ATE under
the hypothetical strategy can be defined as E[Z(1)] − E[Z(0)], which represents
the difference in mean of potential outcomes in a world in which everyone was
forced to take treatment a = 1 versus a world in which everyone was forced to
take treatment a = 0. It is important to ensure that a hypothetical scenario of
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interest is precisely defined and clinically relevant, as well as that selected RWD
are sufficient quality to support corresponding analysis. For example, suppose
that a study that considers an additional medication use as an intercurrent event
and the hypothetical strategy to handle the event. Corresponding analysis should
account for potential non-random selection of the additional medication use
which requires sufficient and accurate (covariate) information on reasons for the
additional medication use. If some of the information are not collected in RWD,
the target hypothetical estimand should not be selected as no reliable estimator
exists. More often than not, hypothetical estimands require additional, untestable
assumptions than the other estimands and thus anticipate more comprehensive
set of sensitivity analyses. See chapter “The Need for Real World Data/Evidence
in Clinical Development and Life Cycle Management, and Future Directions” of
this book for more details.

3. Composite variable estimand. With the composite variable strategy, an estimand
incorporates ICE as a part of outcome definition. Of note, there could be many
possible outcomes after incorporating ICE and thus there is a need to pre-define
a set of clinically relevant outcomes of interest. For example, if a binary outcome
such as heart failure (yes/no) is the primary interest, but receipt of a rescue
medication, which is an intercurrent event, is considered to define an outcome,
there are four different combinations—heart failure with and without receiving
the rescue medication, no heart failure with and without receiving the rescue
medication. If the occurrence of an intercurrent event is considered a treatment
failure, some of these combinations can be merged and the primary outcome may
only consider two levels—no heart failure and no rescue medication as success
versus others. In this case, an ATE measured in difference in means under the
composite variable strategy can be defined as E[Y

′(1)] − E[Y
′(0)], with Y

′
(a) = 1

indicating (potential) occurrence of heart failure and/or receipt of the rescue
medication under treatment a. For continuous outcomes, defining a composite
variable estimand is more complex. Approaches, including dichotomization of
original continuous scale, assignment of specific values for patients with ICE,
using the worst value and modified summary measures such as quality-adjusted
survival or trimmed means, can be employed [22–27]. It is also possible to
rank patients with ICE according to timing or severity of the ICE, incorporating
more granular level information about the ICE [28, 29]. In general, treatment
discontinuations due to lack of efficacy or tolerability is regarded as treatment
failure, and it is reasonable to assign an unfavorable value (e.g., worst possible
score).

4. Principle stratum estimand. With the principal stratum strategy, we are interested
in a sub-population defined by occurrence of a specific intercurrent event. For
example, we may be interested in a treatment effect in a (principle) stratum
of patients who can tolerate study treatments (including both the treatment and
control). Let S be an indicator of the intercurrent event which corresponds to the
treatment tolerability (S = 1 if tolerated and 0 otherwise). Then the principal
stratum consists of patients that would tolerate under both treatment and control,
i.e., {S(1) = 1}∩{S(0) = 1}. Therefore, an ATE in the principal stratum can be
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expressed as E{Y(1) | S(1) = 1, S(0) = 1} – E{Y(0) | S(1) = 1, S(0) = 1}.
Note that the principal stratum estimand is a local average treatment effect.
To draw inference about this estimand, the principal stratum of patients’ needs
to be identified and thus some additional (identification) assumptions are often
required [30]. For more detailed examples of this estimand, see Bornkamp et al.
[30]

5. While-on estimand. With this strategy, we are interested in a treatment
effect under treatment adherence. Therefore, the ATE can be defined as
E[Y(1)|T(1) = 1] − E[Y(0)|T(0) = 0], i.e., the effect among the compliers.
If per-protocol is considered, we are interested in the treatment effect among
those who complied to the study protocol.

Although we do not present here, the benefit of considering potential outcome
notation is even greater for longitudinal studies with potential time-varying con-
founding and informative censoring. See Gruber et al. [51] for more details on
how potential outcome notation enables to define complex RWE study estimands
for observational longitudinal studies in a precise and transparent way. As the
definition of estimand further informs the choice of analytic methods, estimation,
and inference, the clarity in estimand is also important from a design as well as
from an analytic perspective.

As Chen et al. [2] pointed out, a limitation of this framework is that stakeholders
other than statisticians might not be familiar with the notation and may need
extensive training to understand the concept. Therefore, this framework might be
useful to facilitate communication on estimands particularly among statisticians
(e.g., when used in statistical analysis plan), but not involving the other stakeholders.

2.4 Targeted Learning Framework

Targeted learning (TL) by van der Laan and colleagues [3] is a statistical framework
that provides a systematic roadmap on defining, generating, and evaluating evidence
from data, while utilizing an efficient estimation approach [36–38]. Also see chapter
“Causal Inference with Targeted Learning for Producing and Evaluating Real-World
Evidence” of this book for more details. The TL roadmap [39] consists of a pre-
requisite step 0 and 5 subsequent steps:

Step 0. Formulate a well-defined question. Describe the study objective reflecting
underlying data generating mechanism. The key estimand attributes in the
ICH E9(R1), including ICE, are naturally integrated in this step.

Step 1. Define a realistic statistical model for the data. Here, “realistic” implies
NOT imposing any unknown/unnecessary modeling assumptions such as
parametric modeling assumptions. It also includes exploiting knowledge to
reduce the size of the statistical model, e.g., known bounds on the outcome,
knowledge of the treatment assignment mechanism.
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Step 2. Define a causal model and causal estimand (i.e., target causal parameter) in
terms of potential outcomes. The causal estimand should be consistent with
the pre-specified ICE and ICE strategies considered in the pre-requisite Step
0.

Step 3. Specify a statistical parameter, i.e., a parameter in terms of observed data
that is aligned with or best approximates the target causal parameter. Note
that there are two different parameters—causal parameter (the ultimate
target parameter, but defined based on potential outcomes) and statistical
parameter (now defined based on observed data). In this step, one needs to
identify and specify assumptions needed to link the causal parameter to the
statistical parameter.

Step 4. Conduct statistical estimation and draw causal inference. The TL frame-
work utilizes targeted maximum likelihood estimation (or targeted mini-
mum loss-based estimation; TMLE) coupled with super learning (which is
an ensemble of various machine learners) as an efficient estimation tool [3].
Other types of estimators can be used to estimate the same causal estimand.
See chapter “Recent Statistical Development for Comparative Effectiveness
Research Beyond Propensity-Score Methods” on recent statistical devel-
opment for comparative effectiveness research beyond propensity-score
methods.

Step 5. Sensitivity analyses to assess findings under different hypothetical magni-
tudes of the causal gap and interpretation of results.

Steps 0–3 in the TL framework are relevant to construct estimands as well
as to evaluate RWD fit-for-purpose. Strengths of this framework include, but
are not limited to, the fact that it (1) provides a unified, systematic way to
construct estimands based on the potential outcome language/notation; (2) provides
a guidance on designing a study consistent with the selected estimands and thus
helps evaluate data-fit-for-use; (3) enforces to think through and clearly state
underlying assumptions associated with the selected estimand which helps planning
on sensitivity analyses; and (4) avoids unnecessary probabilistic and modeling
assumptions (e.g., linearity, normality, etc.), which enables to use an efficient
estimation approach utilizing the state-of-the-art machine learning techniques. A
potential limitation of this framework is that it does not explicitly state estimand
or design attributes as in the ICH E9(R1) or the target trial frameworks. Therefore,
the TL framework might be best utilized when used together with the ICH E9(R1)
and/or the target trial frameworks, for the purpose of defining estimands.

3 Examples of Estimands in Real-World Evidence Studies

This section presents three RWE study examples and delineates how estimands
can be defined using the four frameworks. Within each example, estimands are
described based on two frameworks. We use the ICH E9(R1) for all three examples,
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then consider one additional framework to illustrate potential utility of the other
framework to further enhance clarity on estimand definition. See also chapter
“Examples of Applying Causal-Inference Roadmap to Real-World Studies” of this
book for more illustrative examples using the TL framework.

3.1 Single-Arm Trial with External Control

For some disease areas where RCT are infeasible (e.g., a disease with extremely low
incidence rate) or unethical (e.g., a life-threatening disease for which no efficacious
treatments are available), single-arm trials might be considered to demonstrate
efficacy and safety of a medical product. Single-arm trials often use RWD to
construct external controls (historical or concurrent). See the FDA draft Guidance
on Rare Diseases: Common Issues in Drug Development [40] and the ICH E10
on the choice of control group in clinical trials [41] for situations where external
controls can be used.

Gökbuget et al. [42] provide an example of a single-arm trial using RWD to form
an external control. They compared outcomes from a phase 2 single-arm study [43]
of safety and activity of blinatumomab among 189 adult patients with B-precursor
Ph-negative relapsed or refractory acute lymphoblastic leukemia (R/R ALL). For
the external control, the authors used a historical data from European national study
groups as well as large historical sites data from Europe and the United States. Chen
et al. [2] provided the five, ICH E9(R1) estimand attributes of the primary estimand
for this study in great detail. Here we revisit this example using both the ICH E9(R1)
and the target trial frameworks to provide specification of the target estimand (Table
1). Note that Gökbuget et al. [42] did not consider the target trial emulation and
therefore there is no benchmark information. Here, we present what we consider to
be a target trial for the Gökbuget et al. [42] study, and demonstrate an estimand and
potential sources of bias on the basis of the assumed target trial.

The primary study objective for the Gökbuget et al. [42] study might be expressed
as:

To evaluate the effect of blinatumomab among adult patients with B-precursor
Ph-negative relapsed/refractory acute lymphoblastic leukemia. Now this can be
much elaborated by using the ICH E9(R1). Here, we excerpted the primary estimand
attributes from Chen et al. [2]:

• Population: adult patients (≥18 years) with B-precursor Ph-negative relapsed/re-
fractory acute lymphoblastic leukemia (R/R ALL)

• Treatment: blinatumomab (9 ug/day for the first 7 days and 28 ug/day thereafter)
by continuous intravenous infusion over 4 weeks every 6 weeks (up to five cycles)
(experimental arm), or salvage therapy (possibly multiple lines) (historical
control arm)
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Table 1 Specification of a target trial protocol and the target trial emulation using a single-arm
trial with external control in Gökbuget et al. [42]

Protocol
component Target trial Emulation in Gökbuget et al. [42]

Eligibility
criteria

Same as the population
attribute in the ICH E9(R1)

The single arm: Same as the target trial.
The external control: The historical data did not
capture all eligibility criteria applied in the
original single-arm trial due to the limited
availability in some variable information

Treatment
strategies

Same as the treatment
attribute in the ICH E9(R1)

The single arm: Same as the target trial
The external control: Among patients in historical
data with information on several lines of salvage
therapy, only the endpoints for the last available
salvage therapy were selected. This was to mimic
the likely period when a patient would enter the
single-arm trial, as the time period of the historical
data was from 1990 to 2013, and the patients in the
single-arm trial were enrolled over the period
2010–2014

Treatment
assign-
ment

Randomly assign eligible
patients to each treatment
strategy—blinatumomab
or salvage therapy

Randomization was emulated through weighting
outcomes using propensity score-based inverse
probability of treatment methods to balance
predetermined prognostic baseline factors between
patients in the single-arm trial and patients in the
historical data set

Outcomes Same as the endpoint
attribute in the ICH E9(R1)

CR was defined differently between the single-arm
trial and historical data

Follow-up Patients were followed
from the random treatment
assignment until the CS
occurrence, or until
maximum 24 months after
the randomization

The single arm: Same as the target trial.
The external control: Start of last salvage therapy
in the historical data. Patients in the historical data
were not subject to a maximum length of
follow-up and could be followed until death

ICE and
strategies

Same as the ICE and ICE
strategy attribute in the
ICH E9(R1)

The single arm: Same as the target trial
The external control: Patients with missing CR
information in historical data were excluded. We
are unable to quantify how accurately the ICE
information was identified and ascertained from
the RWD sources

Statistical
analysis

Direct between-group
comparison of CR rates
measured in OR scale

Same as the population-level summary attribute in
the ICH E9(R1)

• Endpoint: complete remission (CR) within the first two treatment cycles in
all blinatumomab-treated patients (experimental arm) or after salvage therapy
(historical control arm)

• ICE: death before the first response assessment or adverse events leading to
treatment discontinuation before the first response assessment. Treatment policy
strategy was considered for primary objective.
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• Population-level summary: comparison of rates of CR between the two groups
measured in odds ratio (OR) scale, after inverse probability of treatment weight-
ing using propensity score

Now Table 1 provides how considering target trial components can help iden-
tify feasibility of considering the ICH E9(R1)-based estimand, or the estimand
attributes, for the Gökbuget et al. [42] study. Deviations from target trial components
may inform potential sources of bias and limitation of the historical data.

As illustrated in this example, the use of target trial components can further
increase the clarity of estimands (or estimand attributes) and help identify potential
sources of bias.

3.2 Longitudinal Study with a Static Treatment Regime

A multinational RWE study called CVD REAL aimed to examine whether the
benefits of sodium-glucose cotransporter-2 inhibitor (SGLT-2i) empagliflozin in
lowering hospitalization for heart failure (HHF) rate among patients with type
2 diabetes mellitus (T2DM), that were observed from a previous randomized
trial [44], can be also seen in real-world practice. RWD sources include data
collected from health insurance claims, electronic health records of primary care
and hospitals, and national registries from six countries. The ICH E9(R1) attributes
of the primary estimand for the CVD REAL can be summarized as follows:

• Population: Adult T2DM patients who initiated either SGLT-2i or other glucose-
lowering drugs (oGLD), who had at least 1 year data history in the databases

• Treatment: SGLT-2i or oGLD. Note that this is a static treatment regime which
does not vary over time based on patients’ response to a (sequence of) previous
treatment uptake

• Endpoint: HHF, death, and combination of both
• ICE: discontinuation of initiated treatment, change in background glucose-

lowering medication, loss to follow-up. While-on-strategy was considered.
• Population-level summary: hazard ratio for time to first endpoint event, estimated

from a Cox proportional hazard model after propensity score matching.

Some of these estimand attributes are linked to certain assumptions which are
not apparent when verbalized. Focusing on HHF as a sole endpoint outcome for
simplicity, now we see how the estimand can be expressed in terms of potential
outcome notation and requires to specify some inherent assumptions. In this case,
the use of propensity score matching implies that we are interested in the causal
hazard ratio, assuming the matching could fully address systematic differences
between the two treatment groups. Also, the specification of ICE, particularly the
loss to follow-up, assumes that the time of HHF is subject to right censoring.
Let .Ta be the potential time of HHF under a specific treatment history .a which
could be different from the actual, observed treatment history denoted by .A(t) =
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{A(u); 0 ≤ u < t} , where A(t) represents the actual, observed treatment status at t.
At this moment, assume there is no censoring for the sake of illustration. Let .λa(t)

be the potential hazard of HHF at time t when all patients in this study followed
a treatment history .a through time t. Then the causal estimand, which is measured
in hazard ratio scale, can be expressed as a causal parameter exp(βcausal) in the
following marginal structural Cox model [46]:

λa(t) = λ0(t) exp {βcausal ∗ a(t)} ,

where λ0(t) is an unspecified baseline hazard. After propensity score matching, we
assume that the parameter βcausal is equivalent to β in the following Cox model
.λT

(
t |A(t)

) = λ0(t) exp {β ∗ A(t)}, where T represents a patient’s actual, observed
time of HHF. Therefore, the use of potential outcome notation makes us differentiate
what the target causal parameter is and what we estimate using observed data. From
the target causal parameter βcausal to the statistical parameter β, we make various
assumptions regarding data and model, such as “the matching can fully address
systematic differences between the two treatment groups.” This requires three causal
assumptions associated with the use of propensity score specified in the causal
inference framework—consistency, no unmeasured confounding, and positivity
assumptions. Consistency means that we assume a patient’s response under each
study treatment regime is well defined (although generally not observable) and
.TA = T for a patient whose actual treatment history .A equals to .a. No unmeasured
confounding means that information used in propensity score estimation is sufficient
to explain the treatment selection mechanism. Positivity assumption means that
probability of receiving either treatment is strictly greater than zero over all
combinations of different levels of covariates. In other words, all patients should
have some probability of receiving both treatments. In addition to these so called
“causal assumptions,” we also rely on other modeling assumptions too, such as
no model misspecifications (for both propensity score and the Cox), proportional
hazard, and non-informative censoring. Note that all of these assumptions, except
for the proportional hazard and non-informative censoring, are generally not a
concern for traditional clinical trials. Therefore, the use of RWD requires additional
assumptions and considerations within, which may not be apparent in estimand-
defining stage. As the estimand consequently defines design and analysis attributes,
having clarity on underlying assumptions with regards to each estimand attribute
and its impact on design and methodologic choice is strongly recommended in
RWE studies. In the next example, we illustrate how the TL framework provides
a systematic roadmap to delineate all of these assumptions while utilizing the
potential outcome notation.

Of note, the most widely used ICE handling strategies is treatment policy
strategy or while-on strategy. These may be suboptimal for quantifying effectiveness
of medical interventions, particularly for chronic disease when hazard ratio is a
population-level summary measure, because validity and interpretation of the sum-
mary measure estimate heavily depend on assumptions about censoring mechanism.
For example, there could be a systematic difference between those who stay on
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initial treatment versus those who discontinue or switch. Therefore, methodologies
that can account for time-varying nature of treatment assignment/receipt [3, 17,
45–47], as well as potential informative loss/drop-out [48, 49]. might be more
appropriate for RWE studies. See Sect. 3.3.

3.3 Longitudinal Study with a Dynamic Treatment Regime

A dynamic treatment regime, also known as an adaptive treatment strategy, is a
sequence of treatment decisions that are determined based on patients’ response to
the treatment. Hernán et al. [50] presented an example of a prospective study of
human immunodeficiency virus (HIV)-infected patients using observational data to
compare the acquired immunodeficiency syndrome (AIDS)-free survival under the
following two dynamic, highly active antiretroviral therapy (HAART) regimes:

• Regime 1: Start HAART when CD4 cell count first drops under 500 cells/μL
then always treat.

• Regime 2: Start HAART when CD4 cell count first drops under 200 cells/μL
then always treat.

They considered a cohort comprising 2344 HIV-infected individuals included
in the French Hospital Database on HIV who had their first CD4 cell count
measurement below 500 cells/μL during the study period and had never received
antiretroviral therapy before the first measurement. Individuals in the cohort were
followed from the first CD4 measurement until a diagnosis of AIDS, death, or end
of study period, whichever occurred earlier. Although the primary estimand was not
explicitly stated in the original study, the five attributes for the primary estimand
might be summarized as follows.

• Population: HIV infected patients with CD4 cell count never below 500 cells/μL
and had never received antiretroviral therapy before or at study entry.

• Treatment: Regime 1 and 2 shown above.
• Endpoint: Diagnosis of AIDS, death, or the end of follow-up, whichever comes

first.
• ICE: Deviation from one of the two study treatment regimes, e.g., did not start

HAART use within 1 month of the first CD4 cell count measurement below
500 cells/μL but started HAART before the CD4 cell count dropped below
200 cells/μL. While-on treatment strategy was considered to censor those who
deviated from the two study regimes of interest.

• Population-level summary: Hazard ratio to compare endpoint rates (including
mortality rate) estimated from a Cox proportional hazard model after accounting
for time-varying nature of treatment and (potential) informative censoring via
propensity score weighting.

We now describe how to elaborate this estimand, express it based on potential
outcome notation, and identify underlying assumptions following the TL frame-
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work. Throughout, we assume that the above estimand attributes are final and focus
on the death endpoint for the sake of illustration. As mentioned earlier in Sect.
3.2, the selection of the Cox proportional hazard model as an analytic approach
automatically imposes a parametric modeling assumption. Later, in Step 1 of the
TL roadmap, we demonstrate how this assumption limits a set of possible data
distributions and collection of statistical models. We continue to use the notation
introduced in Sect. 3.2.

Step 0: A well-defined question in Step 0 should be able to address the five
estimand attributes in ICH E9(R1), which are stated above [51]. In addition, this step
of the TL roadmap emphasizes a precise description of the experiment generating
the data. This requires specification of data structure including treatment, covariate,
and ICE sequence for the longitudinal study. We did not find information on
measurement times and frequency from Hernán et al. [50]. However, in general, the
data structure considering time-to-event outcome can be expressed as O = (L, A,

.
∼
T =min(T,C), � = I( .

∼
T = T)), where L is a vector of time-varying covariates and

C is the time of treatment deviation (i.e., the time of ICE occurrence; henceforth
censoring time). Assuming the time scale is discretized and 3 time points, data
structure may be depicted in Fig. 1:

Step 1: If we were followed the TL roadmap, we would have defined a realistic
statistical model, say M, respecting the time ordering of the data generating process
O to be consistent with study inclusion/exclusion criteria and would have not
imposed any unknown assumptions. Therefore, unlike Hernán et al. [50], we might
have not imposed a parametric modeling assumption on the mortality rate (i.e., the
Cox model), as well as on the conditional probability of being censored (i.e., a
parametric propensity score modeling for the censoring). It is also worth mentioning
that the hazard ratio measure is not a quantity that admits a causal interpretation,
even in some RCT settings (Aalen et al. [52], Hernán [53]). Alternatively, difference
in mean survival time [54] or restricted mean survival time analysis might be
considered. Acknowledging these limitations, we will continue to describe how to
follow the TL roadmap assuming the setting where Hernán et al. [50] is valid.

Step 2: The causal model under the treatment-confounder feedback as well as
informative censoring is represented by the following DAG in Fig. 2:

The causal hazard ratio parameter associated with the while-on treatment strategy
can be expressed as the exp (βcausal) in the same marginal structural model shown
in Sect. 3.2, but now with the treatment being a dynamic regime.

Fig. 1 Longitudinal process of giving rise to the data over time. L and A are collected until the

time of event or censoring .
∼
T =min(T, C)
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Fig. 2 A causal diagram for three time points with treatment-confounder feedback

Step 3: A statistical parameter in terms of observed data under the assumptions
imposed in Hernán et al. [50] and given the above estimand attributes, consists of
the following attributes:

1. Is based on inverse probability of informative censoring weight accounting for
censoring patients when they stop following one of the study treatment regimes.

2. Compares the survival of the uncensored individuals under each study regime in
a weighted analysis adjusting for the treatment-confounder feedback via inverse
probability of (time-varying) treatment weights.

Hernán et al. [50] state that g-estimation of nested structural models could
be an alternative approach. Regardless, the following assumptions are imposed
to link the statistical parameter with the causal parameter of the effect of the
dynamic treatment regimes: consistency, no unmeasured confounding, positivity
assumptions, no model misspecifications, and no unmeasured reasons for censoring.
In particular, the assumptions on no unmeasured confounding and no unmeasured
reasons for censoring dictate that the RWD contains sufficient information on all
joint risk factors for treatment initiation/discontinuation and mortality (i.e., data is
fit-for-purpose).

This example demonstrates that the TL framework is more specific to identify
limitations associated with selected estimand attributes or modeling approach than
the causal inference framework. Considerations on underlying data generating
mechanism, causal model, causal gaps provide a guidance on data fit-for-use
evaluation and sensitivity analysis, which could ultimately inform the interpretation
of study findings and support decision-making.

4 Summary and Discussion

Table 2 provides a summary of the four frameworks. Broadly speaking, both the
ICH E9(R1) and target trial frameworks use non-technical language while the causal
inference and TL frameworks utilize potential outcome notation. Therefore, the
ICH E9(R1) and target trial frameworks could facilitate communication between
various disciplines involved in the formulation of RWE study objectives, while the
causal inference and TL frameworks could provide additional clarity on estimand
and corresponding choice of statistical methods among statisticians and quantitative
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scientists. Compared to the ICH E9(R1), the target trial framework considers
more direct and comprehensive components on RWE study design which allows
to explicitly delineate potential sources of bias and enables to evaluate RWD fit-
for-purpose. The causal inference framework provides a basis to formally define
estimands. Rooted in the causal inference framework, the TL framework further
provides a systematic roadmap, from the start to the end of an RWE study, that is
more specific in terms of identifying assumptions associated with selected estimand
attributes and embedded modeling approach.

Constructing RWE study estimands is complex. It involves increasing level of
heterogeneity and complexity in defining attributes of an estimand which could,
in part, be driven by RWD fit-for-purpose, patient behaviors, and routine clinical
practice. In addition, it is important to understand stakeholders and their research
questions for the construction of estimands for RWE studies [2].

Lastly, it is crucial to understand the inherent assumptions connecting the target
causal estimand with the corresponding statistical estimand. Unlike traditional
clinical trials in which the randomization (and some other factors such as rigorous
patient follow-up) could approximately warrant the validity of those assumptions,
some of them are not even empirically testable in RWE studies. As different
strategies for handling ICE and the choice of estimators require different sets of
assumptions, interpretability of study findings will heavily rely on the validity
of the underlying assumptions. Rigorous sensitivity analysis should always be
accompanied to ensure robustness of study findings.

Disclaimer This chapter reflects the views of the authors and should not be construed to represent
FDA’s views or policies.

References

1. ICH E9(R1) (2021): Statistical Principles for Clinical Trials: Addendum: Estimands and
Sensitivity Analysis in Clinical Trials, https://www.ema.europa.eu/en/documents/scientific-
guideline/ich-e9-r1-addendum-estimands-sensitivity-analysis-clinical-trials-guideline-
statistical-principles_en.pdf

2. Chen, J., Scharfstein, D., Wang, H., Yu, B., Song, Y., He, W., Scott, J., Lin, X., Lee, H.:
Estimands in Real-World Evidence Studies. (Submitted 2022).

3. van der Laan, M., Rose, S.: Targeted Learning: Causal Inference for Observational and
Experimental Data. New York: Springer. (2011).

4. Neyman, J.: On the Application of Probability Theory to Agricultural Experiments: Essay on
Principles, Section 9. Translated in Statistical Science. 5, 465–480 (1923).

5. Rubin, D.: Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of Educational Psychology. 56, 688–701 (1974).

6. Hernán, M., Robins, J.: Using big data to emulate a target trial when a randomized trial is not
available. American Journal of Epidemiology.183(8), 758–764 (2016).

7. Hernán, M., Scharfstein, D.: Cautions as regulators move to end exclusive reliance on intention
to treat. Annals of Internal Medicine.168(7), 515–516 (2018).

8. Scharfstein, D.: A constructive critique of the draft ICH E9 Addendum. Clinical Trials.16(4),
375–380 (2019).


 15060 40319 a 15060 40319 a
 


Estimand in Real-World Evidence Study: From Frameworks to Application 163

9. Li, Z., Chen, J., Laber, E., Liu, F., Baumgartner, R. Optimal treatment regimes: An empirical
comparison of methods and applications. (Submitted 2021).

10. Ogundipe, O., Mazidi, M., Chin, K., Gor, D., McGovern, A., Sahle, B., Jermendy, G.,
Korhonen, M., Appiah, B., Ademi, Z.: Real-world adherence, persistence, and in-class
switching during use of dipeptidyl peptidase-4 inhibitors: a systematic review and meta-
analysis involving 594,138 patients with type 2 diabetes. Acta Diabetologica.58(1), 39–46
(2021).

11. Nicholas, J., Edwards, N., Edwards, R., Dellarole, A., Grosso, M., Phillips, A.: Real-world
adherence to, and persistence with, once- and twice-daily oral disease-modifying drugs in
patients with multiple sclerosis: a systematic review and meta-analysis. BMC neurology.20(1),
1–15 (2020).

12. Suissa, S.: Immortal time bias in pharmaco-epidemiology. American Journal of Epidemiology.
167, 492–499 (2008).

13. Mercon, K., Mahendraratnam, B., Eckert, J., Silcox, C., Romine, M., Lallinger, K., Kroetsch,
A., Fazili, H., Wosióska, M., McClellan, M.: A Roadmap for Developing Study End-
points in Real-World Settings (2020). Center for Health Policy at Duke University. https://
healthpolicy.duke.edu/sites/default/files/2020-08/Real-World%20Endpoints.pdf

14. Qu, Y., Shurzinske, L., Sethuraman, S.: Defining estimands using a mix of strategies to handle
intercurrent events in clinical trials. Pharmaceutical Statistics.20(2), 314–323 (2021).

15. ENCePP (2022): Guide on methodological standards in pharmacoepidemiology
(Revision 10). https://www.encepp.eu/standards_and_guidances/documents/
01.ENCePPMethodsGuideRev.10_Final.pdf

16. Rosenbaum, P., Rubin, D.: The central role of the propensity score in observational studies for
causal effects. Biometrika.70(1), 41–55 (1983).

17. Ho, M., van der Laan, M., Lee, H., Chen, J., Lee, K., Fang, Y., He, W., Irony, T., Jiang, Q., Lin,
X.: The Current Landscape in Biostatistics of Real-World Data and Evidence: Causal Inference
Frameworks for Study Design and Analysis. Statistics in Biopharmaceutical Research, 1–14
(2021).

18. Lipkovich, I., Ratitch, B., Mallinckrodt, C.: Causal inference and estimands in clinical trials.
Statistics in Biopharmaceutical Research.12(1), 54–67 (2020).

19. Boeden, J., Bornkamp, B., Glimm, E., Bretz, F.: Connecting Instrumental Variable Methods
for Causal Inference to the Estimand Framework. Statistics in Medicine. 40(25), 5605–5627
(2021).

20. Ocampo, A., Bather, J.: Single-World Intervention Graphs for Defining, Identifying, and
Communicating Estimands in Clinical Trials. arXiv preprint arXiv:2206.01249v1 (2022).

21. Qu, Y., Luo, J., Ruberg, S.: Implementation of Tripartite Estimands Using Adherence Causal
Estimators Under the Causal Inference Framework. Pharmaceutical Statistics.20(1), 55–67
(2021).

22. Billingham, L., Abrams, K.: Simultaneous Analysis of Quality of Life and Survival Data.
Statistical Methods in Medical Research. 11(1), 25–48 (2002).

23. Fay, M., Brittain, E., Shih, J., Follmann, D., Gabriel, E.: Causal estimands and confidence
intervals associated with Wilcoxon-Mann-Whitney tests in randomized experiments. Statistics
in Medicine. 37(20), 2923–2937 (2018).

24. Fay, M., Malinovsky, Y.: Confidence intervals of the Mann-Whitney parameter that are
compatible with the Wilcoxon-Mann-Whitney test. Statistics in Medicine. 37(27), 3991–4006
(2018).

25. Fedorov, V., Mannino, F., Zhang, R.: Consequences of dichotomization. Pharmaceutical
Statistics.8(1), 50–61 (2009).

26. Permutt, T., Li, F.: Trimmed Means for Symptom Trials With Dropouts. Pharmaceutical
Statistics.16(1), 20–18 (2017).

27. Keene, O.: Strategies for composite estimands in confirmatory clinical trials: Examples from
trials in nasal polyps and steroid reduction, Pharmaceutical Statistics.18(1), 78–84 (2019).

28. Lachin, J.: Worst-Rank Score Analysis With Informatively Missing Observations in Clinical
Trials. Controlled Clinical Trials.20(5), 408–422 (1999).


 32220 16298
a 32220 16298 a
 

 11742
21833 a 11742 21833 a
 


164 Y. Wu et al.

29. Wang, D., Pocock, S.: A Win Ratio Approach to Comparing Continuous Non-Normal
Outcomes in Clinical Trials. Pharmaceutical Statistics. 15(3), 238–245 (2016).

30. Bornkamp, B., Rufibach, K., Lin, J., Liu, Y., Mehrotra, D., Roychoudhury, S., Schmidli,
H., Shentu, Y., Wolbers, M.: Principal stratum strategy: Potential role in drug development.
Pharmaceutical Statistics. 20(4), 737–751 (2021).

31. Franklin, J., Patorno, E., Desai, R., Glynn, R., Martin, D., Quinto, K., Pawar, A., Bessette,
L., Lee, H., Garry, E., Gautam, N., Schneeweiss, S.: Emulating Randomized Clinical Trials
With Nonrandomized Real-World Evidence Studies: First Results From the RCT DUPLICATE
Initiative. Circulation. 143, 1002–1013 (2021).

32. Keyhani, S., Cheng, E., Hoggatt, K., Austin, P., Madden, E., Hebert P., Halm, E., Naseri, A.,
Johanning, J., Abraham, A., Bravata, D.: Comparative Effectiveness of Carotid Stenting to
Medical Therapy Among Patients With Asymptomatic Carotid Stenosis. Stroke. 53, 00–00
(2022).

33. Hampson, L., Degtyarev, E., Tang, R., Lin, J., Rufibach, K., Zheng, C.: Comment on
“Biostatistical Considerations When Using RWD and RWE in Clinical Studies for Regulatory
Purposes: A Landscape Assessment”. Statistics in Biopharmaceutical Research, 1–4 (2021).

34. Uemura, Y., Shinozaki, T., Nomura, S., Shibata, T.: Comment on “Biostatistical Considerations
When Using RWD and RWE in Clinical Studies for Regulatory Purposes: A Landscape
Assessment”. Statistics in Biopharmaceutical Research. 1–3 (2021).

35. Hampson, L., Chu, J., Zia, A., Zhang, J., Hsu, W., Parzynski, C., Hao, Y., Degtyarev, E.:
Combining the target trial and estimand frameworks to define the causal estimand: an applica-
tion using real-world data to contextualize a single-arm trial. arXiv preprint arXiv:2202.11968
(2022).

36. van der Laan, M., Rubin, D.: Targeted maximum likelihood learning. The international Journal
of Biostatistics. 2(1), Article 11 (2006).

37. van der Laan, M., Polley, E., Hubbard, A.: Super learner. Statistical Applications in Genetics
and Molecular Biology. 6, Article 25 (2007).

38. van der Laan, M., Gruber, S.: Targeted minimum loss based estimation of causal effects of
multiple time point interventions. The international Journal of Biostatistics. 8(1), Article 9
(2012).

39. Petersen, M., van der Laan, M.: Causal Models and Learning from Data: Integrating Causal
Modeling and Statistical Estimation. Epidemiology (Cambridge, Mass.).25, 418 (2014).

40. FDA (2019): Rare diseases: Common issues in drug development (Draft guidance). US Food
and Drug Administration, Silver Spring, MD. https://www.fda.gov/media/119757/download

41. ICH E10 (2010): Choice of control group in clinical trials, https://www.ema.europa.eu/en/
documents/scientific-guideline/ich-e-10-choice-control-group-clinical-trials-step-5_en.pdf

42. Gökbuget, N., Kelsh, M., Chia, V., Advani, A., Bassan, R., Dombret, H., Doubek, M.,
Fielding, A., Giebel, S., Haddad, V. Blinatumomab vs historical standard therapy of adult
relapsed/refractory acute lymphoblastic leukemia. Blood Cancer Journal.6(9), e473–e473
(2016).

43. Topp, M., Gökbuget, B., Stein, A., Zugmaier, G., O’Brien, S., Bargou, R., Dombret, H.,
Fielding, A., Heffner, L., Larson, R.: Safety and activity of blinatumomab for adult patients
with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-
arm, phase 2 study. The Lancet Oncology. 16(1), 57–66 (2015).

44. Kosiborod, M., Cavender, M., Fu, A., Wilding, J., Khunti, K., Holl, R., Norhammar, A.,
Birkeland, K., Jørgensen, M., Thuresson, M., Arya, N., Bodegard, J., Hammar, N., Fenici,
P.: Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2
inhibitors versus other glucose-lowering drugs. Circulation. 136, 249–259 (2017).

45. Hernán, M., Robins, J.: Causal Inference: What If. CRC Press. Tayler & Francis Group. A
CHAPMAN & HALL BOOK (2020).

46. Hernán, M., Brumback, B., Robins, J.: Marginal structural models to estimate the causal effect
of zidovudine on the survival of HIV-positive men. Epidemiology.11(5), 561–570 (2000).


 16804 36223 a 16804 36223 a
 

 23110
37330 a 23110 37330 a
 


Estimand in Real-World Evidence Study: From Frameworks to Application 165

47. Hernán, M., Cole, S., Margolick, J., Cohen, M., Robin, J.: Structural accelerated failure time
models for survival analysis in studies with time-varying treatments. Parmacoepidemiology
and Drug Safety. 14, 477–491 (2005).

48. Robins, J., Rotnitzky, A.: Semiparametric efficiency in multivariate regression models with
missing data. Journal of the American Statistical Association. 90, 122–129 (1995).

49. Mallinckrodt, C., Lin, Q., Molenberghs, M.: A structured framework for assessing sensitivity
to missing data assumptions in longitudinal clinical trials. Pharmaceutical Statistics. 12, 1–6
(2013).

50. Hernán, M., Lanoy, E., Costagliola, D., Robins, J.: Comparison of Dynamic Treatment
Regimes via Inverse Probability Weighting. Basic & Clinical Pharmacology & Toxicol-
ogy.98(3), 237–242 (2006).

51. Gruber, S., Lee, H., Phillips, R., Ho, M., van der Laan, M.: Developing a Targeted Learning-
Based Statistical Analysis Plan. Statistics in Biopharmaceutical Research. 2022 Aug 23, 1–20
(2022).

52. Aalen, O., Cook, R., K. Røysland: Does Cox analysis of a randomized survival study yield a
causal treatment effect. Lifetime Data Analysis. 21(4), 579–593 (2015).

53. Hernán, M.: The hazards of hazard ratio. Epidemiology.21(1), 13–15 (2010).
54. ASA RWE SWG Phase III Team 3: Examples of Applying RWE Causal-Inference Roadmap

to Clinical Studies. Statistics in Biopharmaceutical Research. (submitted 2022).



Clinical Studies Leveraging Real-World
Data Using Propensity Score-based
Methods

Heng Li and Lilly Q. Yue

1 Introduction

One of the major contributions that RWD (or more precisely the RWE they generate)
can make to the clinical development of medical products is the improvement of
efficiency of this process. The subject of this chapter is the leveraging of RWD
for this purpose via a type of study design where the study data consists of two
parts: (1) those collected on patients prospectively enrolled into a traditional clinical
study and (2) RWD. We refer to such a design as a hybrid design and a study so
designed as a hybrid study. Here “prospective” means “future” relative to the time
when the hybrid study is being planned. Therefore, by definition, when a hybrid
study is being planned, patients in the “traditional clinical study” portion of the
hybrid study are not yet available. In contrast, the RWD portion of the hybrid
study may contain patients who are already available (i.e., the intended treatment
has already been administered and/or outcome data already exist) when the hybrid
study is being planned. Henceforth, the traditional clinical study portion of a hybrid
study will be referred to by the abbreviation “TCS.” The use of RWD may be
due to ethical or practical considerations and can often save time and reduce cost,
which is what motivates these study designs. We discuss the following three kinds
of hybrid studies: (1) a non-randomized comparative study in which RWD is used
as a comparator group for the TCS. Statistical methods are implemented so that
the non-randomized study can be regarded as an approximation of a randomized
controlled trial (RCT) in some sense; (2) a single arm, non-comparative hybrid study
in which the TCS consists of M prospectively enrolled patients, and these patients
are augmented by RWD patients. All patients undergo the same treatment. Statistical
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methods are implemented so that this hybrid study approximates a traditional single
arm clinical study consisting of N (>M) prospectively enrolled patients; and (3)
a hybrid study in which the TCS is an RCT consisting of prospectively enrolled
patients, which is augmented by RWD patients to approximate a traditional RCT of a
larger sample size, using similar statistical methods, as in (2). Of course, our premise
is that the RWD being considered in a hybrid study are fit-for-purpose, a concept that
is discussed elsewhere in the book (ref. chapter “Key Variables Ascertainment and
Validation in RW Setting”) and hence will not be belabored here. In the rest of this
chapter, we assume that this premise holds true and a hybrid design is appropriate
given the objectives of the study, which may be to support a marketing application,
to seek approval for a labeling expansion, or to inform some other decisions. To
properly design and analyze a hybrid study, special statistical methods are needed as
mentioned above. These methods, including their statistical underpinnings, will be
described in the following sections. But before doing that, we provide an overview
of what statistical issues these methods are developed to address.

To justify a hybrid study design, the most fundamental issue to be dealt with
is the potential systematic differences between the RWD patients and the TCS
patients. These systematic differences are a source of bias, and they are a hindrance
to achieving the goal of a hybrid study, which is to approximate a traditional clinical
study. Bias may be categorized depending on its source and there is not a standard
taxonomy for categories of bias. Before deciding to adopt a hybrid design, it is
important to assess the risk of bias from many different sources. If this risk is too
high, then a hybrid design may not be appropriate, given that most biases cannot
be corrected by statistical means. However, one type of bias, which we will refer
to as confounding bias, can be mitigated statistically. This is the bias that can be
addressed by the statistical methods to be described in the following sections.

The phrase confounding bias, as used in this chapter, refers to the bias induced
by systematic difference between the RWD patients and the TCS patients in terms
of the distribution of covariates. It is a familiar concept in the context of non-
randomized comparison of treatment (or exposure) groups, which is instanced by
the first kind of hybrid study. The objective of such a comparison is almost always
causal inference, i.e., the evaluation of the outcome under one treatment relative
to that of the other treatment on the same set of patients. Confounding bias is
obviously an obstacle to causal inference, insofar as the covariates differentially
distributed between the treatment groups are related to the outcome. It is widely
known that a standard statistical approach to mitigating such bias is the propensity
score methodology. The concept of propensity score was introduced by Rosenbaum
and Rubin [1, 2]. The basic idea behind the propensity score methodology as applied
to non-randomized comparative studies is to form sets of patients in which the
distributions of observed covariates are equalized between the two treatment groups
being compared so that “fair” comparison of treatments can be made. This classical
application of propensity score methodology to the first kind of hybrid studies will
be described in Sect. 2.

To see how confounding bias affects the second kind of hybrid studies, recall
that such studies are designed to approximate a traditional single arm study with
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a larger sample size. For this goal to be achieved, it’s important that the RWD
patients “look like” the TCS patients. In statistical terms that means the distributions
of observed baseline covariates are similar between the TCS and RWD, so that
confounding bias is minimized. In practice, however, there is no reason to expect
this to be the case at the planning stage. In other words, confounding bias needs to
be addressed in designing the second kind of hybrid studies just as with the first
(i.e., non-randomized comparative studies). Given the ability of propensity score
methods to equalize the covariate distributions between two groups of patients, it is
not surprising that they can be applied to address confounding bias in this context
as well, as will be delineated in Sect. 3. Confounding bias affects the third kind
of hybrid studies in an analogous fashion to the way it affects the second kind of
hybrid studies, and the propensity score methods are used in a similar manner for its
mitigation, as will be shown in Sect. 4. Of course, propensity score can only be used
to address confounding bias due to observed covariates. Therefore, a key assumption
underlying any propensity score-based method is that there is no confounding bias
due to unmeasured covariates. Chapter “Sensitivity Analysis in the Analysis of Real-
World Data” provides a good discussion of situations where this assumption does
not hold.

Another issue to be considered in designing a hybrid study is how to ensure
that the amount of information contributed by the TCS and that contributed by the
RWD, which may contain a large amount of data, are proportionate so that the latter
does not overwhelm the former. This is less of an issue for the first type of hybrid
studies where the TCS contributes to the estimation of the parameter of interest
associated with the treated group and the RWD are used to estimate the parameter of
interest associated with the control group. The objective is to estimate the difference
between these two parameters, which means that the information contributed by
RWD is not going to dominate the information contributed by the traditional clinical
study. On the other hand, in the second and third kind of hybrid studies, the RWD
is used to augment the TCS in the estimation of the same parameter of interest. If
the sample size of RWD is too large, then too much information for this parameter
comes from the RWD relative to that from the TCS, which can sometimes be a
concern, depending on specific circumstances. Therefore, in designing a hybrid
study of the second or third kind, it is essential to prespecify the maximum amount
of information coming from RWD, based on clinical judgment. To make sure
that this maximum is not exceeded, the RWD often needs to be down-weighted,
or “discounted.” Such down-weighting can be achieved using various methods.
We will discuss two of these methods for Bayesian and frequentist inference,
respectively, namely, power prior and composite likelihood.

The brief discussion above is intended to tell the reader that the propensity
score methodology is a useful tool in the design of hybrid studies, and it typically
is to be used in conjunction with a discounting method such as power prior or
composite likelihood in designing the second and third kind of hybrid studies.
The description of these methods and their implementation are the topics of the
following sections. One thing to keep in mind in using these methods to design
hybrid studies is the integrity of study design. In a traditional RCT, study design
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necessarily precedes outcome data collection. However, this is not necessarily true
for hybrid studies, where study design is an extensive process, including equalizing
covariate distributions between patients in the TCS and those from the RWD,
while outcome data may be already available prior to or during this process. To
maintain the integrity of study design, thereby enhancing the interpretability of
study results, all design activities need to be carried out while blinding to outcome
data is administered. Therefore, besides statistical methodology, the practicalities of
such blinding will also be discussed.

2 Propensity Score and Type 1 Hybrid Studies

2.1 The Concept of Propensity Score

Suppose a medical product is to be evaluated in a non-randomized comparative
study following the type 1 hybrid design, in which the TCS patients constitute
the “treated group” (i.e., they undergo the medical intervention being studied)
and the RWD patients serve as the control group. A main statistical consideration
in designing an observational study like this is minimizing bias due to potential
difference in the distributions of observed baseline covariates between the treated
and the control groups (confounding bias) and ensuring the objectivity of study
design, and propensity score (PS) methodology is standard for handling such
challenges. In this subsection, we only provide a summary of the concept of PS
and refer the reader to Imbens and Rubin [3] for more details.

The PS e(X) for a patient with a vector X of observed baseline covariates in a
comparative study is the conditional probability of being in the treated group (T = 1)
rather than the control group (T = 0) given the vector of baseline covariates X [1,
2]:

e(X) = Pr (T = 1| X)

PS is a balancing score in the sense that conditional on the PS, the distribution
of observed baseline covariates is the same between the treated and control patients.
Therefore, among patients with the same value of PS, the distribution of observed
covariates is the same between these two groups of patients. In other words, the
treatment assignment indicator T and the covariate vector X are conditionally
independent given the PS e(X), or

T ⊥ X | e(X).

A practical implication of this balancing property is that, to equalize the
distribution of X (or balance X) between the treated and the control groups, one
only needs to balance e(X) between these two groups, which is easier since e(X) is
a scalar (one-dimensional).



Clinical Studies Leveraging Real-World Data Using Propensity Score-based Methods 171

Another property of PS that more directly reveals its utility in causal inference
for the treatment effect in any non-randomized comparative study (or observational
study) is as follows. Let Y(1) be the potential outcome of a patient if assigned to the
treated group and Y(0) be the potential outcome of the same patient if assigned to
the control group. Note that some assumptions are needed for the above potential
outcomes notation to make sense. However, we will not get into these assumptions
here because such potential outcomes notation is commonly used as a starting point
for a discussion of causal inference. A comparison between Y(1) and Y(0) defines a
causal effect of the investigational treatment relative to the control on a patient.

A comparison of the distribution of Y(1) on a patient population and the
distribution of Y(0) on the same patient population defines a causal effect of the
investigational treatment relative to the control on this patient population. The
treatment assignment mechanism is said to be unconfounded if

Y (1), Y (0) ⊥ T | X.

From this assumption one can deduce that

Y (1), Y (0) ⊥ T | e(X).

This property tells us that if the assignment mechanism is unconfounded, then
among patients with the same PS, the observational study reduces to an RCT. Hence,
if the unconfoundedness assumption holds and the PS of every patient is known,
then causal inference for an observational study would conceptually amount to using
a valid method for RCT to estimate treatment effect at each distinct value of PS and
combining these estimates. In a typical observational study, however, patients’ true
PSs are unknown and can only be estimated. So, in practice, estimated PSs are used
in lieu of true PSs. The strategy is to create sets of patients in which the distribution
of estimated PSs in the treated group is similar to that in the control group. This
can be achieved in several ways, with the most common ones being matching,
weighting, and stratification. Whether good estimates of PSs have been obtained
can be directly checked, by examining the distributions of observed covariates in
the treated and the control groups to assess balance. If these distributions are not
close enough to each other, or, in other words, if some covariates are not adequately
balanced according to a pre-specified criterion (more on this later), one may adjust
the estimation model for the PSs and obtain a new set of estimates. Thus, PS
estimation is an iterative process. In fact, if the PS methodology is to be applied
to estimate the treatment effect in an observational study, then this iterative process,
called PS design [4], constitutes a major part of the design of this observational
study, as will be discussed in the next subsection.

2.2 Estimation of Propensity Score and Assessment of Balance

While a variety of methods for estimating PS have been introduced, logistic
regression as suggested in Rosenbaum and Rubin [1] is perhaps still the most widely
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used. It postulates that the logit of propensity score is a polynomial in the observed
covariates. The linear model (polynomial of degree 1) is often used as the initial
PS model. Computationally, in the logistic regression the treatment assignment
indicator T is identified as the dependent variable and the observed covariates X
are identified as independent variables. After the PS is computed for each patient,
covariate balance is carried out via matching, weighting, or stratification. We now
give a brief description of each of the three schemes.

PS matching is a method of selection from a pool of control patients such that
the selected subset has better covariate balance relative to the treated group than the
set of all control patients. The selection can be achieved with a matching algorithm
[5], and one of the most common matching algorithms might be the k:1 nearest
neighbor matching [6]. In its simplest form, for each treated patient i, 1:1 nearest
neighbor matching selects a control patient with the smallest distance from i, where
the distance between two patients is usually defined by the absolute difference
between the logit of their estimated PSs. Patients in the pool of controls that are
not matched to any treated patients are not included in the subsequent estimation
of the treatment effect (i.e., “discarded”). Some matching algorithms allow treated
patients to be discarded. It should be noted that such matching algorithms are usually
not recommended for hybrid studies defined in this chapter. This is because in such
studies, patients enrolled into TCS usually represent the population for which the
investigational medical product is indicated. Discarding treated patients would risk
distortion of patient population and change of indication for use of the medical
product.

PS weighting is defined as using one function of PS to weight patients in the
treated group and another function of PS to weight patients in the control group so
that the weighted distributions of covariates in the two groups are equal [7]. While
the choice of this pair of functions is not unique, only a few of them are in common
use. Once the choice is made, the weights corresponding to the chosen functions,
called balancing weights [8], are then used to weight the outcome variable in the
subsequent estimation of the treatment effect. One of the possibilities for balancing
weights is:

w
(AT E)
1 (X) = 1

e(X)
and w

(AT E)
0 (X) = 1

1 − e(X)
.

Here the subscripts “1” and “0” represent the treated group and the control group,
respectively. The superscript “(ATE)” stands for Average Treatment Effect. When
this pair of weights are applied to the outcome variable, the estimand is the average
treatment effect on the population represented by all the patients in the study. Austin
[9] refers to these weights as IPTW-ATE weights, where “IPTW” stands for “inverse
probability of treatment weighting” [10]. Another possibility for balancing weights
is

w
(AT T )
1 (X) = 1 and w

(AT T )
0 (X) = e(X)

1 − e(X)
,
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where “(ATT)” stands for Average Treatment effect on the Treated. Austin [9] refers
to these weights as IPTW-ATT weights. When this pair of weights are applied to
the outcome variable, the estimand is the average treatment effect on the population
represented by the patients in the treated group. Since true PSs are usually unknown,
estimated PSs are plugged into the expressions for balancing weights to produce
estimated weights to be used in the estimation of the treatment effect.

PS stratification forms subsets (strata) of patients within which the treated group
and the control group are more similar than they are overall. Specifically, patients
are first sorted by their estimated PSs and then stratified based on prespecified cut
points (e.g., PS quintiles), so that within each stratum the PS distribution in the
treated group is similar with that in the control group. By the balancing property of
PS, that means within each stratum, the joint distributions of covariates are similar
between the treated and the control groups as well. In terms of the estimation of the
treatment effect, PS stratification can be viewed as a variant of PS weighting where
the estimated PSs are further smoothed before being plugged into the expressions for
the balancing weights [7]. Here is how the smoothing is carried out. Each patient’s
estimated PS is replaced by another value called coarsened PS, which, for a patient
in any given stratum, is equal to the proportion of patients who are in the treated
group in that stratum. Hence all the patients in a given stratum have the same
coarsened propensity score. To estimate balancing weights, the coarsened PS is
plugged into the expression of balancing weights. If the intended estimand is ATE,
the coarsened propensity score is plugged into .w

(AT E)
1 (x) = 1

e(x)
and .w

(AT E)
0 (x) =

1
1−e(x)

to obtain the estimated balancing weights. If the intended estimand is ATT,

the coarsened PS is plugged into .w
(AT T )
1 (x) = 1 and .w

(AT T )
0 (x) = e(x)

1−e(x)
to obtain

the estimated balancing weights. For the ATE and ATT estimands, smoothing the
estimated PSs via stratification before they are used to estimate balancing weights
may avoid the potential situation where a few subjects have extremely large weights
relative to the other subjects, thereby dominating the study results, a problem
caused by the unboundedness of IPTW-ATE and IPTW-ATT weights [7]. Of course,
coarsening the PS has the potential downside of increasing residual imbalance.
Imbens and Rubin [3] also contains a discussion on propensity score stratification
as compared to IPTW weighting.

The main purpose of the PS design is balancing observed covariates. Therefore,
the estimation of PS is followed by balance assessment, to make sure that the
estimated PSs achieve the purpose for which they are intended. Methods for
balance assessment, also called balance diagnostics [11], can be divided into two
categories: graphical and numerical. A variety of different methods have been
used in practice and some may not even be in the literature. In this section, we
present one common numerical method. It is formally for PS weighting but can
be adapted for PS matching and stratification as well. It uses a metric called
absolute standardized mean difference (ASMD), which can be defined as follows
for continuous covariates:

d = | xw.treated − xw.control |√
s2w.treated+s2w.control

2

,
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where .xw.treated ( .xw.control

)
is the weighted (using the estimated balancing weights)

sample mean of the covariate whose balance is under consideration in the treated
(control) group, and .s2w.treated .

(
s2w.control

)
is the weighted sample variance of the

covariate in the treated (control) group [7, 10]. For binary covariates, ASMD can be
defined as

d = | pw,treated − pw,control |√
pw,treated(1−pw,treated)+pw,control(1−pw,control)

2

,

where pw, treated(pw, control) is the weighted proportion corresponding to the binary
covariate in the treated (control) group [10]. To apply the metric d to a categorical
covariate with more than two categories, we may decompose it into several binary
covariates. Balance is considered adequate for this covariate if d is smaller than a
prespecified threshold d0. While there is no clear consensus on the choice of d0,
some researchers have proposed a value of 0.1 [11]. Given its form, the metric
d may also be applied to PS stratification if the weights are obtained from the
corresponding coarsened PSs. For k:1 nearest neighbor matching, balance can be
assessed using the unweighted version of d.

If balance is adequate for all observed covariates, then the PS design is complete.
Otherwise, another iteration is started by adjusting the PS model to obtain a new
set of estimated PSs. One way to adjust the PS model is to add higher order terms
of some covariates to the model. By and large the iterative process of PS design
is more of an art than a science involving trial and error. It is possible that despite
one’s best effort, adequate balance cannot be achieved. This is a risk inherent to the
application of propensity score methodology. In practice, if adequate balance cannot
be achieved, then one may consider other RWD sources. Another issue to consider
is the possibility that multiple PS models can lead to adequate balance. This kind
of multiplicity combined with the availability of outcome data prior to or during
PS design is of concern. Unless some measures are taken to preempt data dredging,
study integrity and objectivity may be compromised. These measures are discussed
in the next subsection.

2.3 The Two-Stage Paradigm for Study Design

The two-stage design proposed by Yue et al. [12] is a framework for the practical
implementation of the idea of outcome-free design [13, 14] for the application of
PS methodology. As pointed out earlier, the goal of PS design is to find a set of PS
estimates that can balance all observed covariates through a trial-and-error process,
and this set of PS estimates is not unique. Such multiplicity creates an opportunity
for data dredging, given that some outcome data, especially those of the RWD,
may already exist prior to or during PS design. Therefore, how study integrity and
objectivity can be maintained, given this opportunity for data dredging, would be
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a critical question. To be more concrete, this is a question about how to preclude
the possibility of existing outcome data influencing the PS study design. Rubin’s
[15] answer to this question is clear: outcome data should not be in sight during PS
design. This is what Yue et al. [12] refer to as the outcome-free principle, and their
two-stage design puts it to practice.

The essence of outcome-free design is blinding or masking of patient-level
outcome data to the process of PS design, which can also be referred to as building
a firewall in the biopharmaceutical arena. The scheme that Yue et al. [12] propose
is for the investigator of the study to identify an independent statistician to perform
the PS design, with no outcome data provided to the independent statistician. The
independent statistician shares with the investigator the responsibility of upholding
the outcome-free principle [4, 12, 16–18]. This independent statistician is identified
in the first design stage of the two-stage design of Yue et al. [12], so are all the
covariates to be balanced in the PS design. Otherwise, the first design stage consists
of all the elements of the design of an RCT, such as the specification of the study
endpoints, the study hypotheses (together with their significance levels), and the
initial sample sizes for the treated and the control groups. The reason for the qualifier
“initial” is that these sample sizes are revisited in the second design stage and may
be revised later prior to the unblinding of the outcome data. The PS design itself
constitutes the second design stage, in which the independent statistician identified
in the first design stage, who is blinded to outcome data, carries out PS estimation,
performs PS matching, weighting, or stratification, and assesses covariate balance.
In the next subsection, we give a numerical example to illustrate the implementation
of the two-stage design of Yue et al. [12].

2.4 An Illustrative Numerical Example of a Type 1 Hybrid
Study

Suppose a type 1 hybrid study is planned to evaluate a medical product. The treated
group consists of patients enrolled into a traditional clinical study (the TCS part of
the hybrid study) and the control group is to come from an RWD source. Based
on clinical and regulatory judgment, an existing national patient registry is thought
to be a suitable such RWD source with respect to data quality and availability of
patient-level data for both clinical outcomes and baseline covariates of interest. The
two-stage design is to be adopted. The first design stage includes the following
elements:

1. It is decided that the primary endpoint is the binary variable of treatment success.
2. The primary hypotheses are specified to be those of non-inferiority on the

difference scale (i.e., difference of the two probabilities of treatment success)
with a margin of 6% and a one-sided significance level of 0.025.

3. Fifteen baseline covariates are identified as needing to be balanced between the
treated and the control groups based on clinical considerations. It is verified that
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these covariates are collected in the chosen RWD source. The study proposal also
includes the stipulation that these covariates will be collected in the TCS.

4. PS stratification with five strata of equal size based on PS quintiles is planned.
5. The procedure described in Yue et al. [12] for calculating the initial sample size

(for the PS stratification with five strata of equal size) are directly applied. It is
determined that 300 patients in the treated group and 600 patients in the control
group may achieve 90% power.

6. An independent statistician is contracted to perform the PS design in the second
design stage. These action items are summarized in Table 1.

In this study, the plan for RWD patient acquisition is to extract from the control
data source those patients who meet the eligibility criteria of the study and enter
the registry between two given dates. It is anticipated that this simple selection
rule would yield more control patients than the 600 given by the initial sample size
calculation. In general, it is a good idea to have some extra control patients, given
the various uncertainties arising in the propensity score design.

The second stage of the two-stage design starts when the patient enrolment into
the TCS is complete and so is the patient extraction from the RWD source, at which
point baseline covariate data are available for all patients. As planned, 300 patients
are enrolled into the TCS. The number of patients extracted from the RWD source
happens to be 1000. To build the propensity score model, logistic regression is
performed by the independent statistician on those 1300 patients with treatment
group membership as the dependent variable and the 15 covariates identified in the
first design stage as the independent variables, based on which a PS is calculated for
each patient. The patients are then stratified into five PS quintiles. Table 2 shows the
number of treated and control group patients in each of the five PS quintiles.

We can see from Table 2 that the first stratum (or PS quintile) contains 250 RWD
control patients but no patients from the TCS part of the study, because there were
no TCS patients who look like those control patients with respect to propensity

Table 1 Main elements of the first design stage

Primary outcome: treatment success for a patient
Non-inferiority margin: δ = 6%
Significance level: 0.025 one-sided
Number of baseline covariates considered: 15
Propensity score stratification planned for study design and outcome analysis
Independent statistician identified
Initial sample size for the treated group: N = 300
Initial sample size for the control group: N = 600

Table 2 Distribution of all
1300 patients across the five
propensity score quintiles

Propensity score quintiles
1 2 3 4 5 Total

Control 250 244 234 186 86 1000
Investigational 0 11 20 79 190 300
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Table 3 Distribution of the
1050 patients across the five
propensity score quintiles

Propensity score quintiles
1 2 3 4 5 Total

Control 196 193 172 128 61 750
Investigational 10 33 67 80 110 300

score and with respect to some covariates. Therefore, it is considered reasonable to
discard the 250 RWD control patients in that stratum (i.e., the first PS quintile).
Note that any attempt to exclude TCS patients treated with the investigational
device is discouraged as the patient population represented by TCS is usually the
population for which the medical product is indicated. Discarding treated patients
would risk distortion of patient population and could impact the indication for use
of the medical product, as pointed out in Sect. 2.2.

After excluding the 250 RWD control subjects in the first PS quintile, the
independent statistician continues with the iterative process of PS design based
on the remaining 1050 patients. The iterative process consists of fitting a logistic
regression to estimate PSs, stratifying patients into five PS quintiles, assessing
balance between the treated and the control groups for each covariate within each
quintile, and, if balance is not adequate for some covariates, go back to fit a
new logistic regression (e.g., by adding quadratic or cross-product terms). The
process continues until balance is satisfactory (in this case ASMD <0.1) for all
the covariates. At this point, power is revisited and is found to be adequate. The
distribution of the 1050 patients (300 in the treated group and 750 in the control
group) based on the final logistic regression model is shown in Table 3. This table
is added to the statistical analysis plan, along with the final logistic regression
equation. The second design stage is now complete. During the entire PS design,
only the treatment assignment and baseline covariate data are needed. Any clinical
outcome data and follow-up information are neither needed nor accessed by the
independent statistician.

After the completion of the entire study design, the outcome data are analyzed.
The ATT estimand was specified at the planning stage (as is usually the case for
type 1 hybrid studies) and the outcome data analysis is carried out accordingly. As
it turns out, the p-value for the non-inferiority hypotheses is 0.021, which means the
null hypothesis can be rejected.

3 The Design and Analysis of Type 2 Hybrid Studies

3.1 Definition and Fundamental Statistical Issues

Section 1 introduced the concept of a hybrid study and gave a definition for each
of the three types of hybrid studies. Instead of repeating the definition for type 2
hybrid studies, let us use an example to help the reader recall what it is. Suppose a
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study is being planned that will provide evidence to support a new indication for an
approved medical product. A single-arm traditional clinical study (in this section all
traditional clinical studies are single-arm so we may drop the qualifier “single-arm”
where there is no confusion) is to be conducted that enrolls patients prospectively.
Data from the off-label use of the product have been captured in a high-quality
patient registry, forming an RWD source for the evidence. It is determined that these
RWD are reliable and relevant and can be leveraged to reduce the sample size of
the traditional clinical study. These considerations point to a type 2 hybrid study.
More specifically, suppose the evidence required for the labeling expansion can be
provided by a traditional clinical study of size N, and such a study can be well
approximated by a traditional clinical study of size M (M < N) augmented by some
RWD patients receiving the same treatment, then these M patients plus the RWD
constitute a type 2 hybrid study. The traditional clinical study of size M is the TCS
(see Sect. 1 for the meaning of this abbreviation) part of the type 2 hybrid study,
while the RWD part contributes a nominal N − M patients. Here we use the word
“nominal” to indicate that the actual number of patients that the RWD contain may
be much larger than N − M. Henceforth, in this section, type 2 hybrid study may be
referred to simply as hybrid study where there is no confusion.

Given the above definition, the first decision to be made in planning a hybrid
study, if such a study is deemed acceptable from a clinical perspective for the given
purpose, is the magnitude of M, or equivalently of N − M (which will be referred
to as A). This represents the amount of information to be leveraged from RWD
and its determination is based on clinical judgment considering various clinical
characteristics of the RWD source. Obviously, if A is too large, then it may not
be reasonable to consider the hybrid study an approximation of a traditional clinical
study. All subsequent discussion in this section is under the premise that a hybrid
study is a viable alternative to a traditional clinical study and the numerical value of
A has already been decided. We focus on the statistical issues of (1) how to ensure
that the nominal number of RWD patients does not exceed A, and (2) how to mitigate
confounding bias so that the hybrid study can better approximate a traditional
clinical study. The first issue is essentially one of down-weighting or “discounting,”
for which two alternative methods will be described, one Bayesian and the other
frequentist. The Bayesian method is that of power prior and the frequentist method
is that of composite likelihood, and both will be summarized in Sect. 3.2.

To address the second issue, let us recall from Sect. 1 that confounding bias
refers to the systematic difference between the RWD patients and the TCS patients
in terms of the distribution of covariates. The presence of such confounding bias
clearly makes it less convincing that the hybrid study can approximate a traditional
clinical study well. In Sect. 3.3, we delineate how the tool of PS methodology can
be repurposed to mitigate this confounding bias. Section 3.4 provides a step-by-step
description of the two-stage design of a hybrid study to approximate a single-arm
traditional clinical study that addresses the above two statistical issues. The second
stage of the two-stage design is a PS design analogous to that described in Sect. 2,
with an additional element associated with the down-weighting of RWD patients.
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3.2 Using Power Prior or Composite Likelihood
to Down-Weight RWD Patients

The power prior [19] is originally intended to be an informative prior constructed
from historical data [20]. If we substitute RWD for historical data, the method fits
our purpose of down-weighting RWD patients perfectly. In our context, a power
prior π for a parameter θ associated with an endpoint based on data collected on
RWD patients for that endpoint, D0, is constructed as follows:

π (θ) ∝ [L (θ |D0)]
α π0 (θ)

where L(θ |D0) is the likelihood function of θ given the RWD, π0(θ ) is the initial
prior distribution for θ , and α (0 ≤ α ≤ 1) is called the power parameter. This prior
is multiplied to the likelihood function of θ given the TCS data D1, L(θ |D1), to
obtain the posterior distribution of θ ,

π (θ |D1) ∝ [L (θ |D1)] π (θ) ,

completing the statistical inference for θ . From this construction, α can evidently be
interpreted as the fraction of information RWD patients contribute to the inference
for θ . In other words, α is the weight by which the RWD patients are discounted. For
example, if α = 0.1, each RWD patient contributes 10% of their information, and
the total amount of information the RWD patients bring to the statistical inference
is equivalent to the information contributed by 0.1 times the total number of RWD
patients, which can be interpreted as the nominal number of patients being leveraged
for some common distributions such as normal and binomial. If α = 1 then the
nominal number of patients leveraged is equal to the actual number of RWD patients
constituting D0. At the other extreme, if α = 0, then no RWD patients are leveraged.
In general, if α is equal to the nominal number, RWD patients that one wants to
leverage divided by the actual number of RWD patients constituting D0.

The composite likelihood [21] for the parameter of interest θ is a weighted
product of probability density functions:

L (θ |Y ) =
∏

i
f (yi |θ)λi

where each i represents a patient and λi is a nonnegative weight. Clearly, when
all the λi’s equal to 1, composite likelihood reduces to ordinary likelihood. To use
composite likelihood to serve the purpose of down-weighting RWD patients, we
let λi = 1 for TCS patients and 0 ≤ λi ≤ 1 for RWD patients. If statistical inference
for θ is conducted based on the composite likelihood after assigning numerical
values to λi’s in this way, then we are essentially down-weighting the RWD patients
relative to the TCS patients. For example, if λi = 0.1 for all RWD patients, then
each RWD patient contributes roughly 10% of their information, and the nominal
number of RWD patients leveraged is 0.1 times the actual number of RWD patients.



180 H. Li and L. Q. Yue

If λi = 1 for all i, then the nominal number of RWD patients leveraged is equal
to the actual number of RWD patients. If λi = 0 for all RWD patients, then no
RWD patients are leveraged. In general, λi is equal to the nominal number of RWD
patients that one wants to leverage divided by the actual number of RWD patients
for all i labeling an RWD patient. We will see that the value of α or λi is determined
before the unblinding of outcome data.

In this subsection, we provided a summary of the methods of power prior and
composite likelihood. However, we will not directly apply them to the entire dataset.
Instead, we apply them within PS strata with PS being defined in the Sect. 3.3 for
type 2 hybrid studies and Sect. 4.2 for type 3 hybrid studies. Due to the balancing
property of PS, within each PS stratum the distributions of observed covariates are
similar between the TCS and the RWD. If there is minimal confounding bias due
to unmeasured covariates, then the outcome variable is expected to be relatively
homogeneous between the TCS and RWD, making the application of power prior
or composite likelihood more justified.

3.3 The Propensity Score Redefined

In Sect. 2, we introduced the concept of PS in the context of an observational study
comparing two treatment groups: the treated group and the control group. PS is
defined as the conditional probability of being in the treated group rather than the
control group, given the vector of baseline covariates X. An immediate consequence
of this definition is that PS is a balancing score. The (joint) distribution of covariates
in the treated group is the same as that in the control group conditional on PS. In
other words, in any subset consisting of all patients whose PS is equal to a given
value, the covariates X are balanced. Thus, in any such subset confounding bias due
to X is removed, thereby removing one obstacle to the fair comparison between the
treated group and the control group. Since PSs are generally unknown, one way to
take advantage of this balancing property in practice is to estimate PS first and then
stratify patients according to the estimated PSs so that within each stratum the PS
is relatively homogeneous. Within-stratum treatment effects are estimated and then
combined into an overall treatment effect. With estimated PS, it is not expected that
confounding bias is completely removed within each PS stratum. However, if good
covariate balance is observed, confounding bias is substantially mitigated.

Given that the above scheme is now widely and successfully used to mitigate
confounding bias in non-randomized comparative studies, one may ask whether it
can be co-opted to mitigate confounding bias in type 2 hybrid studies. The answer
is yes, and here is how it can be done. First, in defining PS the treated group and
the control group are replaced with TCS and RWD, respectively. In other words,
the PS e(X) for a patient with a vector X of observed baseline covariates in a type 2
hybrid study is the conditional probability of being in the TCS (Z = 1) rather than
the RWD (Z = 0), given the vector of baseline covariates X:
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e(X) = Pr (Z = 1|X) .

Second, the estimation of PS is done in an analogous way, e.g., by conducting
a logistic regression with the indicator variable Z as the dependent variable and
the observed covariates X as independent variables. A similar two-stage outcome-
free design is carried out, with the PS design being part of the second stage. PS
stratification is performed, and the amount of down-weighting of RWD patients
is decided for each stratum. Finally, outcome data are unblinded and statistical
inference is conducted, first for the stratum-specific parameter of interest, and then
for the overall endpoint parameter by combining the stratum-specific parameters.
The rationale for the leveraging of RWD to be done within each PS stratum first
is that there is less confounding bias within each stratum thanks to the balancing
property of PS, making the leveraging more justified. This strategy is termed
propensity score-integrated approach [22–25].

In the next subsection, we provide a detailed description of the propensity score-
integrated approach to type 2 hybrid studies through a numerical example.

3.4 The Propensity Score-Integrated Approach for Type 2
Hybrid Studies

Suppose a type 2 hybrid study, as set forth in Sect. 3.1, is proposed, to which the
propensity score-integrated approach is applied. The associated two-stage design
is described in detail below, which is the same whether Bayesian or frequentist
inference is planned. For the first design stage, the primary endpoint of interest
is the occurrence of adverse event(s) within 1 year and the parameter of interest θ

is the probability of a TCS patient experiencing adverse event(s) within 1 year. The
primary endpoint hypotheses are

Ho : θ ≥ 36%vs.Ha : θ < 36%,

where 36% is called the performance goal. Assuming θ = 0.30, standard sample
size calculation tells us that to achieve 80% power at a one-sided significance level
of 0.05 (this corresponds to posterior probability threshold of 0.95 for Bayesian
inference), 380 patients are needed. The proposal is to enroll 290 patients into the
TCS part of the hybrid study and to leverage 90 RWD patients, based on clinical
input and regulatory considerations. By leveraging 90 patients, what we mean is that
the amount of information leveraged is equivalent to that of 90 patients. The idea
is to take all eligible patients from the registry (much more than 90 patients), and
down-weight those patients relative to the TCS patients in statistical inference. In
this example, eligible means meeting the inclusion/exclusion criteria in the TCS and
entering the registry during the time when the TCS is enrolling. Seventeen covariates
are identified whose distributions will ideally be similar between the TCS and the
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RWD parts of the hybrid study for it to be regarded as a good approximation of a
traditional clinical study. All the 17 covariates are collected by the registry serving
as the RWD source. The plan is to balance these covariates between the TCS and
the RWD of the hybrid study by PS stratification with the PS defined as in Sect. 3.3.
An independent statistician is thus appointed for the PS design in the second design
stage. The above elements of the first design stage are summarized in Table 4.

After the first design stage is complete, the enrolment in the TCS part of the
hybrid study begins. The second design stage starts as soon as all the 290 patients
have been enrolled into the TCS and all eligible patients have been extracted
from the RWD source, at which time the covariate data for all the patients will
be available. The number of eligible RWD patients happens to be 1000. The
independent statistician appointed in the first design stage who is blinded to outcome
data builds a logistic regression model to estimate the PS for each of the 1290
(290 + 1000) patients. Then 941 RWD patients are selected by excluding those
RWD patients whose PSs are not in the range of that of the TCS patients. This step is
called trimming. The 1231 patients (290 + 941) are grouped into 5 PS strata in such
a way that the same number of TCS patients (58 = 290/5) are in each PS stratum
(i.e., using PS quintiles among the 290 TCS patients as cut points). This guarantees
that each stratum contains TCS patients. Since within each PS stratum the TCS
patients and RWD patients are expected to be more similar than they are overall, the
leveraging of RWD patients within stratum is more justified. The numbers of RWD
patients and TCS patients in each PS stratum are displayed in Table 5.

Recall that it was decided based on clinical considerations that the total amount
of information to be borrowed is equivalent to 90 RWD patients. Since borrowing
takes place within each stratum, we need to figure out how to allocate the 90 patients
to the 5 PS strata. There are many possible ways to do so. One may allocate equal
number of (i.e., 90/5 = 18) patients to each stratum. Our strategy is to make the
nominal number of RWD patients to be leveraged in each stratum proportional to
the similarity of RWD patients and the TCS patients in terms of baseline covariates

Table 4 Main elements of the first design stage

Primary outcome: probability of adverse event within 1 year
Performance goal: 36%
Significance level: 0.05 one-sided/posterior probability threshold: 0.95
Number of baseline covariates considered: 17
Propensity score stratification planned for study design and outcome analysis
Independent statistician identified
Sample size for the current study: 290
Nominal sample size for RWD patients: 90

Table 5 Sample size in each
PS stratum

1 2 3 4 5 Total

TCS (n) 58 58 58 58 58 290
RWD (n) 281 210 154 187 109 941
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Table 6 Overlapping coefficient, standardized overlapping coefficient, nominal number of
patients to be borrowed, and power parameter (or composite likelihood exponent) in each stratum

1 2 3 4 5 Total

Overlapping coefficient 0.87 0.78 0.86 0.84 0.77
Standardized overlapping coefficient 21% 19% 21% 20% 19% 100%
Patients borrowed (=90 × Std. Overlap Coef.) 19 17 19 18 17 90
αs (or λs) (=Patients Borrowed/RWD (n)) 0.07 0.08 0.12 0.10 0.15

in that stratum. One suggestion is to measure this similarity by an overlapping
coefficient [26], the overlapping area of propensity score distributions of the two
groups of patients (you may use other reasonable measures). The overlapping
coefficients are then standardized so that they add up to 1. The standardized
overlapping coefficient times the total nominal number of patients to be borrowed
(90) determines the nominal number of RWD patients to be borrowed in each
stratum. In this example, the number of RWD patients allocated to each stratum
using the suggested strategy is close to that using equal allocation (as shown in
Table 6).

The power parameter αs in the Bayesian approach or the exponent λs in the
composite likelihood in the frequentist approach in each PS stratum can then be
obtained by dividing the nominal number of RWD patients to be leveraged by the
total number of RWD patients in that stratum. Having determined αs (or λs) in each
PS stratum we know the fraction of information RWD patient contributes, and the
study design is complete. The overlapping coefficient, the standardized overlapping
coefficient, the nominal number of patients to be borrowed, and the power parameter
(or exponent) in each stratum are presented in Table 6. Here, again, all the above
design activities are performed by an independent statistician blinded to the outcome
data.

After clinical outcomes have been observed from all the patients, the statistical
inference is conducted. For the Bayesian approach, apply the power prior method
within each stratum to get posterior distributions of stratum-specific parameters
of interest θ s [22], which are then combined to complete the inference for the
parameter of interest .θ = 1

5

∑5
s=1θs . Here the number 5 represents the number

of strata, and the simple average is because by design there is equal number of TCS
patients in each stratum. In general, θ is a weighted average of θ s with the weight
associated with s equal to the number of TCS patients in stratum s [22, 23]. In
this example, the posterior probability of θ < 36% is 96.9%, which meets the study
success criterion. For the frequentist approach, construct the composite likelihood
to get stratum-specific maximum likelihood estimates .θ̂s [23], which are then
combined to complete the inference for the parameter of interest .θ = 1

5

∑5
s=1θs .

In this example, the combined maximum likelihood estimate .θ̂ is 31%, with a one-
sided p-value = 0.01.
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3.5 More Information on Outcome Analysis

The example in the previous subsection focused on the two-stage outcome-free
design for the PS-integrated approach with a very brief description of the outcome
analysis. In this subsection, we make some comments on the statistical inference for
outcome analysis. Corresponding to the PS stratification, the parameter of interest θ ,
the probability of a patient experiencing adverse event(s) within 1 year, branches out
into S independent stratum specific parameters θ s s = 1, . . . , S (S being the number
of strata). For Bayesian inference, the idea is to apply the power prior method within
each stratum, find the posterior distributions for θ s, and then combine them to obtain
the posterior distribution of θ , via the relation

θ =
∑S

s=1 wsθs∑S
s=1 ws

where ws is number of TCS patients in stratum s. This weighting is chosen
because the goal is for the hybrid study to approximate a traditional clinical study
represented by the TCS patients. Per the power prior method, the prior distribution
of θ s is

π (θs) ∝ [
L

(
θs |Ds,0

)]αs
π0 (θs)

where Ds,0 represents data collected on the RWD patients in stratum s. The
algorithm for obtaining αs is illustrated in the previous section. The posterior
distribution of θ s is

π
(
θs |Ds,1

) ∝ [
L

(
θs |Ds,1

)]
π (θs) ,

whereDs,1 represents data collected on the TCS patients in stratum s. For frequentist
inference, the composite likelihood for θ s is

L (θs) =
∏
i∈C

f (yi; θs)
∏
j∈R

f
(
yj ; θs

)λs

where yi represents endpoint data collected on a patient, C is the index set for TCS
patients and R is the index set for RWD patients; λs is obtained in the same way
αs is obtained. Point estimate for θ s can be obtained by maximizing L(θ s), and its
variance can be obtained via the methods described in Wang et al. [23]. Finally, a
point estimate for θ is

θ̂ =
∑S

s=1 wsθ̂s∑S
s=1 ws

and its variance can be obtained by the fact that .θ̂s are independent.
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Before leaving this section, we would like to point out that, to make our
discussion more rigorous, a distinction needs to be made between true PS and
estimated PS. In defining stratum-specific parameters θ s, true PS is used for
stratification. On the other hand, in conducting statistical inference for θ s, including
the specification of likelihood functions, estimated PS is used. Therefore, the
statistical inference described in this section for θ s is approximate insofar as the
estimated PS is an approximation to the true PS.

4 The Design and Analysis of Type 3 Hybrid Studies

4.1 Definition and Fundamental Statistical Issues

The definition of a type 3 hybrid study has already been given in Sect. 1. Instead
of repeating the definition here, let us use an example to refresh our memory.
Suppose a 1:1 RCT is being planned to evaluate a medical device by comparing
the treatment with the investigational device plus optimal medical therapy to the
treatment with optimal medical therapy alone, to find out whether the device has any
net benefit. However, there are concerns about slow enrolment because of competing
trials, small patient population, etc. So, it is proposed that RWD be leveraged to
replace some of the control patients that need to be prospectively enrolled into the
RCT. Specifically, a high-quality patient registry where patients are treated with the
medical therapy for the control arm is deemed to be an appropriate source of the
RWD.

To be consistent with Sect. 3, we use A to denote the nominal number of RWD
patients being leveraged to augment the control arm. For the same reason as stated
in Sect. 3, it is desired to limit the size of A, and its determination is based on clinical
judgment considering various clinical characteristics of the RWD source. It would
be convenient to conduct a type 3 hybrid study with the TCS part being a 2:1 RCT
and let A be the number of control patients in the 2:1 RCT, so that the entire type
3 hybrid study approximates a 1:1 RCT. But again, it’s important that this choice
is deemed acceptable from a clinical perspective, given unique circumstances of
the existing data and other clinical considerations. The two main statistical issues
identified in Sect. 3 still apply: (1) how to ensure that the nominal number of RWD
patients does not exceed A, and (2) how to mitigate confounding bias so that the
hybrid study can better approximate a traditional clinical study. The tools that can
be used to address the first issue, namely, power prior and composite likelihood,
have already been introduced (see Sect. 3.2). Just as in Sects. 2 and 3, the second
issue is addressed using PS methodology, which is implemented via a two-stage
design that is almost the same as in Sect. 3. The only difference is that the TCS
is now a 2:1 RCT and therefore has two arms. As will be seen in the following
sections, this difference does not add much complexity to the two-stage design. In
particular, the definition of PS given in Sect. 3 does not need to be changed.
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4.2 The Balancing Property of Propensity Score in Type 3
Hybrid Studies

The PS e(X) for a patient with a vector X of observed baseline covariates in a type 3
hybrid study is the conditional probability of being in the TCS (Z = 1) rather than
the RWD (Z = 0) given the vector of baseline covariates X:

e(X) = Pr (Z = 1| X) .

Let T be the indicator variable with T = 1 indicating treated patients and T = 0
indicating control patients. Chen et al. [24] show that the PS as defined above has
the following balancing property:

T ,Z ⊥ X | e(X).

Note that, when RWD is leveraged to augment the control group of an RCT, we
have

Z = 0 ⇒ T = 0,

i.e., if Z = 0 then T = 0. Hence the vector (T,Z) only takes on three values, (0, 0),
(0, 1) and (1, 1), which correspond to the three groups of RWD control patients, TCS
control patients, and TCS treated patients, respectively. With this in mind, what the
balancing property of Chen et al. [24] says is that, among patients with the same
value of PS, the distribution of observed covariates is the same in the above three
groups of patients. This property is the foundation of the PS-integrated approach
for type 3 hybrid studies. It means that, when PS stratification is conducted, we can
leverage RWD to estimate the control group parameter within each PS stratum in the
same manner as in a type 2 hybrid study due to the balance between the TCS control
group and the RWD control group. Furthermore, we can estimate the treatment
effect within each stratum as in a type 1 hybrid study due to the balancing property
between the TCS treated group and the combined TCS control and RWD control
groups. In the next subsection, we provide a detailed description of the propensity
score-integrated approach for type 3 hybrid studies through a numerical example.

4.3 The Propensity Score-Integrated Approach for Type 3
Hybrid Studies

Continuing with the example in Sect. 4.1, suppose the PS-integrated approach is
considered appropriate for this trial and is implemented in the two-stage design
framework. The two-stage design is described in detail below, which is the same
whether Bayesian or frequentist inference is planned. For the first design stage,
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the primary endpoint is specified to be the binary clinical outcome variable of the
occurrence of adverse event(s) within 1 year. The primary endpoint hypotheses are

Ho : μ = 0 vs.Ha : μ �= 0,

where μ = θ (1) − θ (0) is the treatment effect in the RCT with respect to the 1
year adverse event rates θ (0) (control group) and θ (1) (treated group). A total of 17
baseline covariates are identified as potential confounders. It is confirmed that these
covariates and the outcome variable are collected in the registry referred to in Sect.
4.1. For sample size determination, the expected θ (0) and θ (1) are assumed to be 0.29
and 0.165, respectively. At the significance level of 0.05, a power of 80% would be
achieved for an RCT with a total of approximately 354 patients at 1:1 randomization
ratio. For the planned type 3 hybrid study, 267 patients are to be enrolled into the
TCS part at the randomization ratio of 2:1 and a nominal 87 control patients are to
be leveraged from the registry. Finally, an independent statistician is identified who
is to perform the PS design at the second design stage. Thus, the first design stage
of the two-stage design is complete. The main elements of the first design stage are
displayed in Table 7.

The second design stage starts when all the 267 patients have been enrolled into
the TCS part of the study, which, in this example, includes 183 patients randomly
assigned to the treated group and 84 patients randomly assigned to the control
group, and when all the eligible patients potentially to be leveraged (totaling 1570)
are obtained from the registry. Note that the ratio of the patient numbers is not
exactly 2:1, as is often the case in real trials. Using the 267 TCS patients and
1570 RWD patients, PSs are estimated, by the independent statistician identified
in the first stage who is blinded to outcome data, via logistic regression with all
17 baseline covariates included in their linear terms as independent variables, and
the indicator variable for TCS versus RWD patients as the dependent variable.
Excluding those RWD patients whose PSs are not in the range of that of the TCS
patients, 1192 RWD patients are selected. Five PS strata are formed for all the
patients (267 + 1192) with each stratum containing near equal number of TCS
patients (see Table 8 for within stratum patient numbers). Balance is assessed for
each covariate and is considered adequate. Then, overlapping coefficients of the

Table 7 Main elements of the first design stage

Primary outcome: probability of adverse event within 1 year (θ)
Hypotheses: Ho : μ = 0 vs. Ha : μ �= 0
Significance level: 0.05 two-sided/posterior probability threshold: 0.975
Number of baseline covariates considered: 17
Propensity score stratification planned for study design and outcome analysis
Independent statistician identified
Sample size for the TCS: 267 (2:1 randomization)
Nominal sample size for RWD control group patients: 87
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Table 8 Sample sizes in
each PS stratum

1 2 3 4 5 Total

TCS (n) 54 53 53 53 54 267
Treated 41 28 39 36 39 183
Control 13 25 14 17 25 84
RWD (n) 332 270 233 201 156 1192

Table 9 Overlapping coefficient, standardized overlapping coefficient, nominal number of
patients to be borrowed, and power parameter (or composite likelihood exponent) in each stratum

1 2 3 4 5 Total

Overlapping coefficient 0.85 0.81 0.72 0.74 0.82
Standardized overlapping coefficient 22% 20% 20% 18% 20% 100%
Patients borrowed (=90 × Std. Overlap Coef.) 19 17 17 16 18 87
αs (or λs) (=Patients Borrowed/ RWD (n)) 0.06 0.06 0.08 0.08 0.11

propensity score distributions defined in Inman and Bradley Jr. [26] are calculated
for all strata, and the nominal number of 87 RWD patients being leveraged are
allocated to each stratum in proportion to the overlapping coefficients (see Table 9).

After clinical outcomes have been observed from all the patients, the statistical
inference is conducted. For the Bayesian approach, the posterior probability ofμ < 0
is 97.9%, which meets the study success criterion. For the frequentist approach, the
estimate of the overall treatment effect . μ̂ is 0.18 with SE equal to 0.04. The p-
value from the Wald test is 0.01, which indicates that the adverse event rate of the
investigational device is statistically significantly lower than that of the control.

4.4 More Information on Outcome Analysis

The example in the previous subsection focused on the two-stage outcome-free
design for the PS-integrated approach with a very brief description of the outcome
analysis. In this subsection, we make some comments on the statistical inference
for outcome analysis. Corresponding to the PS stratification, the parameters θ (0)and
θ (1) both branch out into S independent stratum specific parameters .θ

(0)
s and .θ

(1)
s

s = 1, . . . , S (S being the number of strata). Accordingly, μ branches out into
.μs = θ

(1)
s − θ

(0)
s . Just as in Sect. 3, true PS is used to define stratum-specific

parameters, while estimated PS is used for the Bayesian and frequentist statistical
inference described below (see the discussion at the end of Sect. 3). For Bayesian
inference [25], the idea is to apply the power prior method for .θ

(0)
s . Per the power

prior method, the prior distribution of .θ
(0)
s is

π(0)
s

(
θ(0)
s

)
∝

[
L

(
θ(0)
s |D(0)

s,0

)]αs

π
(0)
s,0

(
θ(0)
s

)
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where .D
(0)
s,0represents data collected on the RWD control patients in stratum s and

.π
(0)
s,0 is the initial prior for .θ

(0)
s .The algorithm for obtaining αs is illustrated in the

previous section. The posterior distribution of .θ
(0)
s is

π
(0)
s,1

(
θ(0)
s |D(0)

s,1

)
∝

[
L

(
θ(0)
s |D(0)

s,1

)]
π(0)

s

(
θ(0)
s

)
,

where .D
(0)
s,1represents data collected on the TCS control group patients in stratum s.

The posterior distribution of .θ
(1)
s is

π
(1)
s,1

(
θ(1)
s |D(1)

s,1

)
∝

[
L

(
θ(1)
s |D(1)

s,1

)]
π(1)

s

(
θ(1)
s

)

where .D
(1)
s,1represents data collected on TCS treated group patients and .π

(1)
s is the

prior for .θ
(1)
s . After the posterior distributions of .θ

(0)
s and .θ

(1)
s are obtained, the

posterior distribution of μs is available. Finally, the posterior distribution of μ is
obtained via

μ =
∑S

s=1 wsμs∑S
s=1 ws

where ws is the number of TCS patients in stratum s. For frequentist inference, the
composite likelihood for .θ

(0)
s is

L
(
θ(0)
s

)
=

∏
i∈C

f
(
yi; θ(0)

s

) ∏
j∈R

f
(
yj ; θ(0)

s

)λs

where y represents endpoint data collected on a patient, C is the index set for TCS
control group patients and R is the index set for RWD patients; λs is obtained in
the same way αs is obtained. Point estimate for .θ

(0)
s can be obtained by maximizing

.L
(
θ

(0)
s

)
, and its variance can be obtained via the methods described in Chen et

al. [24]. Statistical inference for .θ
(1)
s is carried out based on the ordinary likelihood

function. Finally, point estimate for μ is

μ̂ =
∑S

s=1 ws

(
θ̂

(1)
s − θ̂

(0)
s

)

∑S
s=1 ws

and its variance can be obtained by the fact that the summands are independent.
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4.5 Discussion

While the idea of PS has been around since the early 1980s, its application in
regulatory studies for the evaluation of the safety and effectiveness of medical
products only began in the twenty-first century. Recently, the concept of PS has
been expanded so that it can be used not only for causal inference in observational
studies but also for leveraging RWD to augment a traditional single-arm study or to
augment a traditional RCT. Regarding the latter two applications, more research has
been conducted to go beyond the basic data structure and data type covered in this
chapter. Chen et al. [27] consider time-to-event endpoints. Li et al. [28] discuss
augmenting both arms of the RCT by leveraging RWD. Lu et al. [25, 29] deal
with leveraging multiple RWD sources. These extensions and variations all have the
same design elements that fit into the templates provided in the previous sections.
Specifically, they are all underpinned by the PS methodology and follow the same
outcome-free two-stage design framework illustrated above with examples. The
down-weighting of leveraged RWD patients may be achieved with Bayesian or
frequentist methods. In either case, with the methods introduced in this chapter,
the weights assigned to individual patients do not depend on the outcomes of the
patients. This feature, outcome-free study design, is very important to maintaining
the integrity and objectivity of the study, thereby strengthening the interpretability
of study results. The concept of outcome-free design within the two-stage design
framework [12] was introduced about 10 years ago and is often used in medical
device regulatory studies using all kinds of PS-based methods. In conclusion, we
hope that this chapter can serve as a handy reference for all practitioners concerned
with the development of medical products in planning, designing, and analyzing a
hybrid study.

Disclaimer This chapter reflects the views of the authors and should not be construed to represent
FDA’s views or policies.
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Recent Statistical Development for
Comparative Effectiveness Research
Beyond Propensity-Score Methods

Yixin Fang

1 Introduction

In the opening article [1] of Journal of Comparative Effectiveness Research,
the journal’s founding editors pointed out that comparative effectiveness research
(CER) “draws from the disciplines of health technology assessment, outcomes
research, clinical epidemiology and implementation science, among others, to better
answer the fundamental question ‘which treatment will work best, in which patient,
and under what circumstances?”’

Besides traditional randomized controlled clinical trials (RCTs), CER is looking
at alternative real-world study designs [2], including:

– Pragmatic clinical trials such as pragmatic RCTs and large simple trials
– Observational studies such as case–control studies and cohort studies
– Non-randomized single-arm trials with external controls

In CER, causal inference plays an important role in deriving real-world evidence
(RWE) from the analysis of real-world data (RWD) that are generated from real-
world studies [3]. Research in causality has a long history, but in modern time,
different disciplines (e.g., social science, economics, and statistics) took different
paths. In this section, we provide a brief history of the development of causal
inference in statistics before we move on to recent developments.

In The Book of Why [4], Pearl shared his regret that even the founding fathers of
modern statistics such as Pearson hindered the development of causal inference in
the community of statistics at the early stage of modern statistics. Since Neyman
proposed the concept of potential outcomes in his 1923 Master’s thesis and
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Rubin in 1974 extended it into a general framework for causal inference in both
interventional studies and non-interventional settings [5], we have seen more and
more developments of causal-inference methods in the community of statistics.
Counterfactual causal inference is the first one on the list of eight most important
statistical ideas of the past 50 years selected by a 2021 paper [6]. Here we briefly
review three milestones.

The first milestone is propensity-score (PS)-based methods developed by Rubin
and colleagues, based upon a fundamental theorem proved in their 1983 paper
[7]. The class of PS-based methods includes four methods: (1) matching, (2)
stratification, (3) PS as covariate, and (4) weighting. The second milestone is
generalized methods (G-methods) developed by Robins and colleagues in 1990s
and 2000s, including three major methods: (i) g-formula, (ii) inverse probability
of treatment weighting (IPTW), and (iii) G-estimation. Refer to their book [8] for
a comprehensive review of G-methods. The third milestone is targeted learning
developed by van der Laan and colleagues, starting with their first paper on targeted
maximum likelihood estimation [9], leading to two books on targeted learning
[10, 11].

The remaining of the chapter is organized as follows. There is a rich literature
on reviewing and tutorials of causal inference methods, so we believe we cannot
do better in providing another comprehensive review. Instead, in Sects. 2–4, we
review some influential methods by making three binary choices: (a) conditional
or marginal, (b) weighting or standardization, and (c) time-independent or time-
dependent. In Sect. 5, we provide some discussion on the application of these
methods to real-world studies with intercurrent events.

2 Conditional or Marginal

2.1 Propensity-Score Methods

We start with a simple point-exposure study, in which A is a binary exposure
variable with .A = 1 being the investigative treatment and .A = 0 being the
comparator (say, the standard of care), Y is an outcome variable that is either
continuous or binary, and W is a list of covariates, which are believed to contain
all the measured confounders along with effect modifiers. A directed acyclic graph
(DAG) for this study is displayed in Fig. 1.

Fig. 1 A directed acyclic
graph of a point-exposure
study
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We conduct causal inference to test the existence and estimate the magnitude of
the relationship .A → Y , which is confounded by one back-door path [12], .A ←
W → Y . The randomization feature in RCTs removes the arrow in .W → A, such
that

.A ⊥⊥ W, (1)

leading to removing the confounding bias in the design stage. In non-randomized
real-world studies, thanks to the following theorem in [7], we are able to achieve the
desirable independence between A and W conditional on the PS function, .e(w) =
P(A = 1|W = w).

Theorem 1 (Theorem 1 in [7]) Treatment assignment and the observed covariates
are conditionally independent given the propensity score, that is,

.A ⊥⊥ W |e(W). (2)

There are four different PS methods based on the above theorem [13]: (1)
matching on the PS, (2) stratification on the PS, (3) covariate adjustment using the
PS, and (4) IPTW using the PS. Although the validity of all these four methods
depends on whether or not PS function .e(w) is estimated consistently, in order
to understand the pros and cons among them, it is helpful to understand the
“conditional” thinking behind PS methods (1)–(3) and the “marginal” thinking
behind PS method (4).

The first method, matching on the PS, attempts to mimic an RCT, creating
a matched subset conditional on which A and W are independent. The second
method, stratification on the PS, stratifies the dataset into several subsets, such
that conditional on each subset, A and W are approximately independent. The third
method, covariate adjustment using the PS, specifies a regression model of Y against
A and .e(W), modeling the conditional relationship between Y and A given .e(W).

Unlike the first three PS methods that take the conditional thinking, IPTW
takes the marginal thinking, creating two pseudo-populations, with one pseudo-
population in which all the subjects were treated by .A = 1 and the other
pseudo-population in which all the subjects were treated by .A = 0. Furthermore,
of these four PS methods, IPTW is the only one that can be generalized to methods
that can adjust for time-dependent confounding. Hence, we can consider IPTW as
the intersection of the class of PS methods and the class of G-methods. IPTW is
often discussed with marginal structural models (MSMs) [14], where we use MSMs
to define an estimand and use the IPTW method to estimate the estimand.



196 Y. Fang

2.2 Marginal Structural Models

Continue the above point-exposure study. Let .Ya=1 denote a subject’s outcome if
treated by the investigative treatment and .Ya=0 denote the outcome if treated by the
comparator. For continuous outcome or 0–1 binary outcome, we can consider the
following marginal structural models [14]:

.E(Y a) = α + βa, (3)

which are marginal models because they model the marginal distributions of poten-
tial outcomes .Ya=1 and .Ya=0 rather than the joint distribution, are structural models
because they model the potential outcomes rather than the observed outcomes,
and are saturated models because two unknown quantities (.E(Y 1) and .E(Y 0)) are
modeled by two parameters (.α and .β). Note that .β = E(Y 1)−E(Y 0) for continuous
outcome or .β = P(Y 1 = 1) − P(Y 0 = 1) for binary outcome is the average
treatment effect (ATE). In addition, for binary outcome, we may consider different
MSMs, for example, .logitP(Y a = 1) = α′ + β ′a, where .β ′ is the log odds ratio
between .Y 1 = 1 and .Y 0 = 1. Overall, the parameters in these MSMs can be
estimated using the IPTW estimators [14].

Because of potential confounding, linear regression analysis of .Y ∼ A for
continuous outcome is biased in estimating .β, and logistic regression analysis of
.Y ∼ A for binary outcome is biased in estimating .β ′. On the other hand, assuming
that there is no unmeasured confounding, using weight .ω = A/e(W)+(1−A)/(1−
e(W)), weighted linear regression analysis and weighted logistic regression analysis
are unbiased in estimating .β and .β ′, respectively.

The approach of MSM and IPTW can be generalized to analyze studies with
multi-level treatment, studies with continuous treatment doses, and studies with
time-dependent confounding [14].

3 Weighting or Standardization

There is a rich literature of causal inference methods beyond the PS methods, which
are well reviewed in several monographs (e.g., [8, 10, 11, 15, 16]). It is not our
intention to review these recent developments comprehensively. Instead, as in [17],
in this section, we describe two basic strategies, the weighting strategy and the
standardization strategy.

We continue the above point-exposure study, which generates a dataset consisting
of .Oi = (Wi,Ai, Yi), .i = 1, · · · , n. In (3), the causal quantity is defined as
parameter .β in the MSM. Here we define the causal quantity of interest as the
following ATE directly:

.θ∗ = E(Y 1) − E(Y 0). (4)
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In order to construct an estimand, we assume three assumptions [8]: the
consistency assumption, the no-unmeasured-confounder (NUC) assumption, and
the positivity assumption,

.Consistency : Y = AY 1 + (1 − A)Y 0,

NUC : Ya ⊥⊥ A|W, a = 0, 1,

Positivity : P(A = a|W = w) > 0, a = 0, 1;w ∈ supp(W).

In addition, we may need either or both of the following two functions, the PS
function from the propensity-score model of .A ∼ W ,

.g(a|w) = P(A = a|W = w), (5)

and the regression function from the outcome-regression model of .Y ∼ A + W ,

.Q(a,w) = E(Y |A = a,W = w). (6)

3.1 The Weighting Strategy

3.1.1 Estimand

Under those three identifiability assumptions, we have

. E

{
I (A = a)

P (A = a|W)
Y

}
∵ the positivity assumption

= E

[
E

{
I (A = a)

P (A = a|W)
Y

∣∣∣∣W
}]

by the double expectation formula

= E

[
E

{
I (A = a)

P (A = a|W)
Ya

∣∣∣∣W
}]

∵ the consistency assumption

= E

[
E

{
I (A = a)

P (A = a|W)

∣∣∣∣W
}

E{Ya

∣∣∣∣W }
]

∵ the NUC assumption

= E
[
E{Ya|W }] ∵E(I (A=a|W)=P(A=a|W)

= E(Y a). by the double expectation formula

Hence, we have

.θ∗ = E(Y 1) − E(Y 0) = E

{
I (A = 1)

P (A = 1|W)
Y

}
− E

{
I (A = 0)

P (A = 0|W)
Y

}
. (7)
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This leads to the following estimand,

.θ = E

{
I (A = 1)

g(1|W)
Y

}
− E

{
I (A = 0)

g(0|W)
Y

}
. (8)

We call this strategy of defining estimand as the weighting strategy because it
uses the inverse of .g(a|w) = P(A = a|W = w) as the weights in the definition of
the estimand. Using these weights, it creates two pseudo-populations: one pseudo-
population in which all the subjects would have been treated by .a = 1, leading to
the first term in the right-hand side of (8), and the other pseudo-population in which
all the subjects would have been treated by .a = 0, leading to the second term.

3.1.2 Initial Estimator

If we obtain an estimator of the PS function, .̂g(a|w), using some statistical model,
say logistic regression model, then we can obtain an initial estimator of .θ , the IPTW
estimator,

.̂θIPT W = 1

n

n∑
i=1

I (Ai = 1)

ĝ(1|Wi)
Yi − 1

n

n∑
i=1

I (Ai = 0)

ĝ(0|Wi)
Yi. (9)

3.1.3 Doubly Robust Estimator

Although initial estimator .̂θIPT W is asymptotically consistent if the model of
.A ∼ W is correctly specified in the construction of .̂g(a|w), it is not asymptotically
efficient. Therefore, it is desirable to develop an augmented estimator that is
asymptotically efficient under some model specification requirements.

According to semi-parametric efficiency theory (e.g., [10, 18]), the efficient score
of estimating .θ is given by

.D(θ; g,Q) = 2A − 1

g(A|W)
[Y − Q(A,W)] + Q(1,W) − Q(0,W) − θ. (10)

Based on this efficient score function, we can apply the estimating equation
approach to obtain an augmented estimator of .θ , .̂θAIPT W , such that

.

n∑
i=1

D(θ̂AIPT W ; ĝ, Q̂)(Wi,Ai, Yi) = 0, (11)

where estimators .̂g and .Q̂ are obtained by specifying some models of .A ∼ W and
.Y ∼ A + W , respectively.
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Thus, by solving the estimating equation (11), we obtain the following aug-
mented inverse probability of treatment (AIPTW) estimator [19]:

.̂θAIPT W = 1

n

n∑
i=1

(
I (Ai = 1)

ĝ(1|Wi)
Yi − I (Ai = 1) − ĝ(1|Wi)

ĝ(1|Wi)
Q̂(1,Wi)

)

−1

n

n∑
i=1

(
I (Ai = 0)

ĝ(0|Wi)
Yi − I (Ai = 0) − ĝ(0|Wi)

ĝ(0|Wi)
Q̂(0,Wi)

)
. (12)

According to the theory of estimating equations [19], .̂θAIPT W is a doubly robust
estimator; that is, it is asymptotically consistent if either the propensity-score model
or the outcome-regression model is correctly specified, and it is asymptotically
efficient if both models are correctly specified.

3.2 The Standardization Strategy

3.2.1 Estimand

Under those three identifiability assumptions, we have

. E(Y a)

= E{E(Y a|W)} by the double expectation formula

= E{E(Y a|A = a,W)} ∵ the NUC assumption and positivity assumption

= E{E(Y |A = a,W)}. ∵ the consistency assumption

Hence, we have

.θ∗ = E(Y 1) − E(Y 0) = EW {E(Y |A = 1,W) − E(Y |A = 0,W)}. (13)

This leads to the following estimand:

.θ = EW {Q(1,W) − Q(0,W)} =
∫

[Q(1, w) − Q(0, w)]dPW(w), (14)

where .PW(w) is the probability distribution of W in the study population.
We call this strategy of defining estimand as the standardization strategy because

it uses the standardization expectation over the marginal distribution of W of the
study population, .EW {Q(a,W)}, for .a = 0, 1.
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3.2.2 Initial Estimator

If we obtain an estimator of the regression function, .Q̂(a,w), using some regression
model, say generalized linear model, then we can obtain an initial estimator of .θ ,

.̂θMLE = 1

n

n∑
i=1

[Q̂(1,Wi) − Q̂(0,Wi)] =
∫

[Q̂(1, w) − Q̂(0, w)]dP̂W (w), (15)

where .P̂W is the empirical distribution of W , which is a non-parametric maximum
likelihood estimator of .PW . Following [10], we call the above estimator as
maximum likelihood estimator (MLE). To understand this, let .θ = θ(Q,PW). If
.Q̂ and .P̂W are MLEs of Q and .PW , respectively, then .̂θMLE = θ(Q̂, P̂W ) is MLE
of .θ = θ(Q,PW).

3.2.3 Doubly Robust Estimator

Although initial estimator .̂θMLE is asymptotically consistent if the model of
.Y ∼ A + W is correctly specified in the construction of .Q̂(a,w), it may not be
asymptotically efficient. Therefore, it is desirable to develop a targeted estimator
that is asymptotically efficient.

The efficient score of estimating .θ = θ(Q,PW) in (10) can be written as
.D(Q,PW , g)(W,A, Y ), which equals

.
2A − 1

g(A|W)
[Y − Q(A,W)] + Q(1,W) − Q(0,W) − θ(Q,PW). (16)

Based on this efficient score function, [9] develops the targeted learning technique
to obtained estimators .(Q̂∗, P̂ ∗

W, ĝ∗) such that

.

n∑
i=1

D(Q̂∗, P̂ ∗
W, ĝ∗)(Wi,Ai, Yi) = 0, (17)

where .P̂ ∗
W = P̂W , the empirical estimator of .PW , and .̂g∗ and .Q̂∗ are some updated

estimators of initial estimators .̂g and .Q̂, respectively. Thus, we can construct the
targeted maximum likelihood estimator (TMLE),

.̂θT MLE = θ(Q̂∗, P̂W ) =
∫

[Q̂∗(1, w) − Q̂∗(0, w)]dP̂W (w). (18)
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3.3 Implementation and Comparison

Consider the implementation of the aforementioned four estimators: IPTW, AIPTW,
MLE, and TMLE. We can use SAS procedure “CAUSALTRT” to implement
.̂θIPT W , .̂θMLE , and .̂θAIPT W , along with their statistical inferences. Please see the
following skeleton of the SAS procedure:

PROC CAUSALTRT;
MODEL outcome = covariate_1 covariate_2 ... ;
PSMODEL treatment = covariate_1 covariate_2 ...;
RUN;

In the above SAS procedure, there are “PSMODEL” and “MODEL” statements:
(1) if only a generalized linear model (GLM) of .A ∼ W is specified in the
“PSMODEL” statement, it implements .̂θIPT W , (2) if only a GLM of .Y ∼ A + W

is specified in the “MODEL” statement, it implements .̂θMLE , and (3) if two GLM
models are specified in the “PSMODEL” and “MODEL” statements, respectively, it
implements .̂θAIPT W .

Furthermore, we can consider flexible models other than GLM (say, super learner
[20]) to obtain initial estimators .Q̂ and .̂g to improve the chance of consistency
in estimating functions .Q and g. For this aim, we can use R function “tmle” in
R package “tmle” [21] to implement .̂θT MLE , along with its standard error for
conducting statistical inference. Please see the following skeleton of the R function:

tmle(Y, A, W,
Q.SL.library = c("SL.glm", "tmle.SL.dbarts2", "SL.glmnet"),
g.SL.library = c("SL.glm", "tmle.SL.dbarts.k.5", "SL.gam"),
family = "gaussian", ...)

In the above R function, we see that we adopt the same set of notations for
variable names and function names in this chapter (e.g., Y , A, W , g, Q) from the R
package “tmle,” which makes it easy for us to plug in values into the arguments. For
example, the “Q.SL.library” argument allows us to specify a flexible super learner
model for the Q function, with a default library consisting of generalized linear
model (glm), discrete Bayesian additive regression tree (dbart), and glm model
regularized by elastic net (glmnet), while the “g.SL.library” argument allows us to
specify a super learner model for the g function, with a default library consisting of
glm, dbart, and generalized additive model (gam). Besides there default options, we
can prespecify other options for the super learner libraries, including highly adaptive
lasso. In addition, the “family” argument can take on default value “gaussian” for
continuous outcome and other value “binomial” for binary outcome.

Chapter 6 of [10] provides both theoretical comparisons and numerical com-
parisons (extensive simulations and case studies) between these four methods.
Here we only summarize some comparisons briefly. First, AIPTW and TMLE are
doubly robust versions of IPTW and MLE, respectively. Second, AIPTW relies on
parametric modeling of Q and g, while TMLE allows for flexible modeling of Q

and g using super learner. Third, MLE and TMLE are plug-in estimators, which
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are more stable than the weighted estimators. Fourth, all the four methods are G-
methods, which can be generalized to analyze longitudinal data with time-dependent
confounding.

4 Time-Independent or Time-Dependent

In the above point-exposure study, the treatment status is determined at a single
time (time zero) for all the subjects and the treatment effect does not need to
make references to the time at which treatment occurs [8]. On the other hand, in
longitudinal studies with time-dependent treatments or intercurrent events, we need
to incorporate time explicitly [8].

Chapter “Personalized Medicine with Advanced Analytics” of this book will
review statistical methods for personalized medicine and dynamic treatment
regimes. In this chapter, we focus on longitudinal studies with static treatment
regimes and intercurrent events.

Assume that there is one longitudinal study starting with baseline .t = 0, along
with follow-up visits, .t = 1, · · · , T . Assume that the primary endpoint Y is the
outcome variable at the final visit T . Let .A = (A0, · · · , AT −1) be the actually
received treatment sequence and .At = (A0, · · · , At ) be the treatment up to t ,
.t = 0, · · · , T − 1. Let .W0 be baseline covariates, .Wt be the vector including
time-dependent covariates and intermediate outcome, and .Wt = (W0, · · · ,Wt ) be
the vector consisting of all the observed history up to time t including baseline
covariates, time-dependent covariates, and intermediate outcomes.

Let .a = (a0, · · · , aT −1) be a given static treatment regime. At each time t ,
.at = 1 stands for treated by the investigative treatment, 0 for the comparator, .NA
for treatment discontinuation, and 2 for some rescue medication. Two examples are
.a = 1 = rep(1, T ), which means the subject is initially treated by .a0 = 1 and
throughout, and .a = 0 = rep(0, T ), which means the subject is initially treated by
.a0 = 0 and throughout.

Let .Ya0
be the potential outcome if the subject follows the static treatment regime

.a0 = (a0
0, · · · , a0

T −1). The population summary of .Ya0
is referred to as the value of

.a0 in [16]. For continuous or binary outcome variable, we define the value of .a0 as

.ν∗(a0) = E{Y a0}. (19)

In order to construct an estimand for the evaluation of the value, .ν∗(a0), we also
need three identifiability assumptions [8], the consistency assumption,

.Ya0 = Y if A = a0, (20)

the static sequential exchangeability assumption (a.k.a., the NUC assumption),
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. Ya0 ⊥⊥ A0|W0,

Y a0 ⊥⊥ At |(At−1,W t ), for t = 1, · · · , T − 1, (21)

and the positivity assumption,

.P
(
A = a0|W0 = w0

)
> 0, for w0 ∈ supp(W0). (22)

Consider a longitudinal study that generates a dataset consisting of .Oi =
(W0i , A0i , · · · ,WT −1,i , AT −1,i , Yi), i = 1, · · · , n. In the following two subsec-
tions, we will describe four major estimators, IPTW, AIPTW, MLE, and TMLE,
that are respectively generalized from those four G-estimators described in Sect. 3.
For this aim, we define two series of functions.

Propensity-Score Modeling
Let .H0 = W0 and .Ht = (W t , At−1) be the history up to t before making decision
.At , .t = 1, · · · , T − 1. Define the PS functions from modeling .At ∼ Ht ,

.gt (a|ht ) = P(At = a|Ht = ht ), t = 0, . . . , T − 1. (23)

We can obtain an estimator of .gt (a|ht ), .̂gt (a|ht ), using some statistical model such
as logistic regression model.

Outcome-Regression Modeling
We attempt to define regression functions from modeling .Y ∼ At + Ht , .t =
0, . . . , T − 1. However, the outcome variable Y is measured after the final decision
point .T − 1, which depends on decisions made between .t + 1 and .T − 1.
Therefore, we should apply some special approach to define them. The most
popular approach is the backward induction approach [16], which defines regression
functions recursively from decision point .T − 1 to decision point 0.

At decision point .T − 1, define

.QT −1(HT −1, AT −1) = E(Y |HT −1, AT −1), (24)

which can be estimated using some regression model such as GLM, with its
estimator denoted as .Q̂T −1(hT −1, aT −1). Note that .(hT −1, aT −1) = (wT −1, aT −1).
Next, define .Q̃T −1(HT −1) = QT −1(HT −1, a

0
T −1), which is the expected outcome

if the treatment at .T − 1 is consistent with the static treatment regime .a0 at .T − 1
and which can be used as the model outcome variable at decision point .T − 2.

At decision point .t = T − 2, . . . , 1, define

.Qt(Ht , At ) = E(Q̃t+1(Ht+1)|Ht,At ), (25)

which can be estimated using some regression model such as GLM, with its
estimator denoted as .Q̂t (ht , at ). Note that .(ht , at ) = (wt , at ). Next, define
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.Q̃t (Ht ) = Qt(Ht , a
0
t ), which is the expected outcome if the treatments at decision

points from t to .T − 1 are consistent with the static treatment regime .a0 at decision
points from t to .T − 1.

Finally, at decision point .t = 0, define

.Q0(W0, A0) = E(Q̃1(H1)|W0, A0), (26)

which can be estimated using some regression model such as GLM, with its
estimator denoted as .Q̂0(w0, a0). Define .Q̃0(W0) = Q0(W0, a

0
0), which is the

expected outcome if the subject takes the static treatment regime .a0 at all decision
points from 0 to .T − 1.

4.1 The Weighting Strategy

4.1.1 Estimand

By the weighting strategy, we can define the corresponding estimand for the value
of .a0. That is, under those three identifiability assumptions, .ν∗(a0) is equal to

.ν(a0) = E

{
I [A = a0]Y

g0(a
0
0 |W0)

∏T −1
t=1 gt (a

0
t |Wt,At−1)

}
, (27)

where propensity-score functions g’s are defined in (23).

4.1.2 Initial Estimator

If we obtain estimators of propensity-score functions, .̂gt , .t = 0, · · · , T − 1, then
we can obtain an initial estimator of .ν(d),

.̂νIPT W (a0) = 1

n

n∑
i=1

{
I [Ai = a0]Yi

ĝ0(a
0
0 |W0i )

∏T −1
t=1 ĝt (a

0
t |Wti, At−1,i )

}
. (28)

4.1.3 Double-Robust Estimator

According to semi-parametric efficiency theory (e.g., [11, 18]), the efficient score
of estimating .ν(a0) is given by

.D(ν(a0);P) =
T∑

t=0

Dt(ν(a0);P), (29)
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where P is the true underlying distribution of observation .Oi and

.D0(ν(a0);P) = Q0(W0, a
0
0) − ν(a0),

Dt (ν(a0;P);P) = I [At−1 = a0
t−1]∏t−1

s=0 gs(a0
s |Ws,As−1)

[Qt(Wt ,At ) − Qt−1(W t−1, At−1)],

t = 1, . . . , T − 1,

DT (ν(a0;P);P) = I [AT −1 = a0]∏T −1
t=0 gt (a

0
t |Wt,At−1)

[Y − QT −1(WT −1, AT −1)].

Therefore, if we further obtain estimators of regression functions, .Q̂t (ht , at ) (which
can be rewritten as .Q̂t (wt , at )), then we can obtain the following doubly robust
estimator for .ν(a0), by solving the estimating equation .D(ν(a0); P̂ ) = 0,

.̂νAIPT W (a0) = 1

n

n∑
i=1

{
I [Ai = a0]Yi

gT −1(WT −1,i )
+

[
1 − I [A0i = a0

0]
ĝ0(a0|W0i )

]
Q̂0(W0i , a

0
0)

+
T −1∑
t=1

[
I [At−1,i = a0

t−1]
gt−1(W t−1,i )

− I [Ati = a0
t ]

gt (W ti)

]
Q̂t (W ti, a

0
t )

}
, (30)

where .gt (W ti) = ĝ0(a0|W0i )
∏t

s=1 ĝs(a
0
s |Wsi, a

0
s−1).

4.2 The Standardization Strategy

4.2.1 Estimand

By the standardization strategy, we can define the corresponding estimand for the
value of .a0. That is, under those three identifiability assumptions, .ν∗(a0) is equal to

.ν(a0) = E{Q0(W0, a
0
0)}, (31)

where regression function .Q0 is defined in (26).

4.2.2 Initial Estimator

If we obtain an estimator of .Q0(w0, a0), .Q̂0(w0, a0), then we can obtain the
following estimator for .ν(a0):

.̂νMLE(a0) = 1

n

n∑
i=1

Q̂0(W0i , a
0
0). (32)
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4.2.3 Double-Robust Estimator

If we further obtain estimators of propensity-score functions, .̂gt , .t = 0, · · · , T − 1,
we can construct the corresponding doubly robust estimator. For this aim, we apply
the backward induction approach. At each decision point .t = T −1, T −2, . . . , 0, we
first obtain an initial estimator of regression function, .Q̂t (wt , at ), then we update
the initial estimator into .Q̂∗

t (wt , at ) via the targeted learning theory based on the
efficient score .Dt+1(ν(a0);P), where .Q̂∗

t (wt , at ) is on the least favorable submodel
that passes through .Q̂t (wt , at ). At the end, we obtain .Q̂∗

0(W0i , a
0
0) and thus the

doubly robust estimator,

.̂νT MLE(a0) = 1

n

n∑
i=1

Q̂∗
0(W0i , a

0
0). (33)

4.3 Implementation and Comparison

Similar to Sect. 3.3, here we provide some brief comparison. First, these four
methods are generalized from those four methods with the same names in Sect. 3.
Second, AIPTW and TMLE are doubly robust versions of IPTW and MLE,
respectively. Third, AIPTW relies on parametric modeling of .Qt ’s and .gt ’s, while
TMLE allows for flexible modeling of .Qt ’s and .gt ’s using super learner. Fourth,
MLE and TMLE are plug-in estimators, which are more stable than the weighted
estimators.

In practice, we can use R package “DTR” [16] to implement .̂νIPT W , .̂νMLE ,
and .̂νAIPT W , along with their statistical inferences, by specifying GLMs for .Qt ’s
and .gt ’s. We can use R package “ltmle,” with “l” standing for “longitudinal,” to
implement .̂νT MLE , by specifying either GLMs or super learner for .Qt ’s and .gt ’s.
Refer to [22] for a detailed description of R package “ltmle.” In the below, we
provide an example of using it to estimate the ATE for longitudinal studies with
intercurrent events.

Assume that we are interested in estimating the following ATE:

.θ = ν(1) − ν(0), (34)

which measures the treatment effect of the investigative static treatment regime
.a0 = 1 compared against the reference static treatment regime .a0′ = 0. In order
to understand this estimand, we should envisage one hypothetical world in which
all the patients follow .a0 = 1 throughout the study and the other hypothetical
world in which all the patients follow .a0′ = 0 throughout the study. That is,
in the construction of estimand (34), we apply the hypothetical strategy of ICH
E9(R1) [23] to handle intercurrent events (e.g., treatment discontinuation, treatment
changing, and rescue medication).
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Table 1 The structure of the
dataset in one example

Argument Variable namesa

Baseline covariates c(“L0.a”, “L0.b”, “L0.c”)

Lnodesb c(“L1.a”, “L1.b”)

Anodes c(“A0”, “A1”)

Cnodes c(“C0”, “C1”)

Ynodes c(“Y1”, “Y2”)
a The order of the variables in the dataset:

data.frame(L0.a, L0.b, L0.c, A0, C0, L1.a, L1.b,
Y1, A1, C1, Y2)

b .Lt in the Lnodes is the same as .Wt in the context

In order to estimate .θ in (34), we define the censoring variable .Ct , which is
a factor variable with two levels, “uncensored” or “censored,” at each time t ,
.t = 0, · · · , T − 1. If for time t , while .As = A0 for .s = 0, · · · , t , an intercurrent
event occurs between t and .t + 1, then .Ct = · · · = CT −1 = “censored." Note
that in this setting we consider the event that directly leads to censoring as the
intercurrent event. For example, assume that an adverse event leads to treatment
discontinuation, which directly leads to data censoring, and then we consider the
treatment discontinuation as an intercurrent event.

To demonstrate the use of R function “ltmle,” we look at one example where there
are two follow-up visits (.T = 2), three baseline covariates at .t = 0 (“L0.a”, “L0.b”,
“L0.c”), two time-dependent covariates at .t = 1 (“L1.a”, “L1.b”), treatment variable
measured at .t = 0, 1 (“A0”, “A1”), censoring variable measured at .t = 0, 1, and
outcome variable measured at .t = 1, 2 (“Y1”, “Y2”). Note that the L-node variables
form the time-dependent covariates .Wt ; that is, .Wt = Lt , .t = 0, 1. Table 1 displays
the structure of the dataset to be defined in R.

Here is an excerpt of R codes presented in [22] used to implement the TMLE
estimator in the above example, providing the point estimate and 95% confidence
interval of .θ in (34):

data <- data.frame(L0.a, L0.b, L0.c, A0, C0, L1.a, L1.b, Y1, A1,
C1, Y2)

Lnodes <- c("L1.a", "L1.b")
Anodes <- c("A0", "A1")
Cnodes <- c("C0", "C1")
Ynodes <- c("Y1", "Y2")
ltmle(data = data, Anodes = Anodes, Cnodes = Cnodes, Lnodes = Lnodes,
Ynodes = Ynodes, survivalOutcome = NULL,

abar = list(treament = c(1, 1), control = c(0,0)))

Here is a remark on how these methods can be extended to survival outcome
(a.k.a., time-to-event outcome). In the above R function, “survivalOutcome =
NULL” indicates that the outcome variable is either continuous variable or binary
having single Ynodes. We set “survivalOutcome = FALSE” for binary outcome
variable with multiple Ynodes. For survival outcome, we set “survivalOutcome =
TRUE” to indicate that .Yt nodes are indicators of an event, and if .Yt at some time
point t is 1, then .Ys , .s = t + 1, · · · , T − 1, should be 1.
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5 Discussion

In this chapter, we briefly review some recent statistical development of causal
inference methods beyond PS methods. Instead of providing a comprehensive
review, we investigate three checkpoints, which may be helpful for guiding us to
select an appropriate approach for any study at hand.

If we want to consider one of the four PS methods, then the first checkpoint is
whether the conditional approaches (matching, stratification, PS as covariate) or the
marginal approach (IPTW). IPTW is a G-method, which can be generalized from
point-exposure studies to longitudinal studies.

If we want to consider one of the G-methods, then the second checkpoint is the
weighting approaches (e.g., IPTW and AIPTW) or the standardization approaches
(e.g., MLE and TMLE). AIPTW is the doubly robust version of IPTW and TMLE
is the doubly robust version of MLE.

The third checkpoint is to consider the problem as a time-independent problem or
a time-dependent problem. Every G-method has two versions, one simple version
for time-independent problem and the other complex version for time-dependent
problem. Therefore, all the four methods (IPTW, AIPTW, MLE, and TMLE) have
versions for time-dependent problem.

We conclude the chapter with a brief discussion on how to apply these methods
to studies with intercurrent events (ICEs). ICH E9(R1) defines ICEs as “events
occurring after treatment initiation that affect either the interpretation or the
existence of the measurements associated with the clinical question of interest. It
is necessary to address intercurrent events when describing the clinical question of
interest in order to precisely define the treatment effect that is to be estimated.”
Therefore, we should specify how to handle ICEs in the definition of the estimand
and then select an appropriate causal inference method to estimate the estimand.

There are five ICH E9(R1) strategies for handling ICEs: (1) hypothetical
strategy, (2) treatment-policy strategy, (3) composite-variable strategy, (4) while-
on-treatment strategy, and (5) principal-stratum strategy.

5.1 Hypothetical Strategy for ICEs in Estimand Definition

Applying this strategy, we envision a scenario in which ICEs would not occur and
define the estimand of interest as in (34), comparing the treatment regime of taking
.A0 = 1 throughout against the treatment regime of taking .A0 = 0 throughout. The
methods described in Sect. 4.3 can be applied to estimate this estimand.

5.2 Treatment-Policy Strategy for ICEs in Estimand Definition

This strategy requires that we collect data even after the ICE occurrence. Applying
this strategy, we can use the value of the outcome variable regardless of whether
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or not the ICE occurs and define the estimand of interest as in (8) or (14). All
the methods described in Sect. 3 can be applied to estimate this estimand without
revising the definition of outcome variable.

5.3 Composite-Variable Strategy for ICEs in Estimand
Definition

Applying this strategy, we need to revise the definition of outcome variable. The
new outcome variable is a composite variable of the original outcome variable and
the ICE occurrence, and the estimand of interest can be defined as in (8) or (14)
with the new outcome variable. All the methods described in Sect. 3 can be applied
to estimate this estimand using the new outcome variable.

5.4 While-on-treatment Strategy for ICEs in Estimand
Definition

Applying this strategy, we need to revise the definition of outcome variable as well.
The new outcome variable is a function of the outcome variable measured prior to
the ICE occurrence and the time of ICE occurrence (e.g., the rate of change). The
estimand of interest can be defined as in (8) or (14) with the new outcome variable.
All the methods described in Sect. 3 can be applied to estimate this estimand using
the new outcome variable.

5.5 Principal-Stratum Strategy for ICEs in Estimand
Definition

Applying this strategy, as proposed by ICH E9(R1), “the target population might be
taken to be the principal stratum in which an ICE event would occur. Alternatively,
the target population might be taken to be the principal stratum in which an ICE
would not occur.” The estimand of interest can be defined as in (8) or (14), with
the outer expectation taken over the principal stratum of interest. To estimate this
estimand, we need to estimate the membership of the principal stratum. Then, all
the methods described in Sect. 3 can be applied, considering the estimated principal
stratum as the target population.
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Innovative Hybrid Designs
and Analytical Approaches Leveraging
Real-World Data and Clinical Trial Data

Lisa V. Hampson and Rima Izem

1 Introduction

There are a variety of ways in which real-world data (RWD) can enhance clinical
trials in hybrid designs and associated analytical methods. The different design
strategies are illustrated in Fig. 1. Pragmatic randomized controlled trials are
designed to address the question of whether an intervention works under usual
conditions with some, or all, outcomes captured in routine care settings. These trials
therefore inform point-of-care clinical decision-making with evidence that targets
health-care systems and payers. The approaches shown in the middle row of Fig.
1 span a range of design options and are further illustrated in Figs. 2 and 3. We
may integrate a conventional randomized controlled trial (RCT) with pragmatic
design aspects to leverage RWD or remotely collected data outside of routine care
on patients whilst preserving randomization. Alternatively, we may enrich patients
in the RCT with real-world (RW) patients. Finally, incorporating external control
data into the study design to contextualize the results of a single arm interventional
trial can be a more ethical, feasible, or efficient way forward than conducting an
RCT in certain settings. In this chapter, we refer to all the approaches illustrated in
Fig. 1 as hybrid approaches, in the sense that they prospectively plan to incorporate
RWD and clinical trial data in the evaluation of new medicines. More specifically,
we first review the use of external controls to complement and augment clinical
trials in Sect. 2. Then, we review approaches using RWD, in place of some more
traditional methods of data capture in clinical trials, in pragmatic and decentralized
randomized controlled trials in Sect. 3.
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Fig. 1 Hybrid designs for clinical trials-RWD. Abbreviations: SoC = Standard of care; FU =
Follow-up
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Fig. 2 RWD augmenting RCT data by adding more patients

2 Hybrid Designs and Analytical Approaches Leveraging
Real-World External Controls and Clinical Trial Data

External controls are characterized by several features including their (a) source
(other clinical trials or RWD); (b) type (patient-level or synthetic, where the latter
are data generated from a synthesis of trial-external evidence on control); (c)
level of the data (aggregate or individual patient data); and (d) timing relative to
the new clinical trial (historical or concurrent). In this section, we will discuss
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Fig. 3 RWD augmenting RCT data by adding more attributes on the same patients (e.g., through
linkage)

how patient-level external controls can be leveraged to support the analysis and
interpretation of a new clinical trial and how these uses of external controls, as
well as prior uncertainty about their relevance, can be reflected in the design of the
trial. Discussion of simulated patient-level data, sometimes referred to as synthetic
controls, “in silico” data or virtual twins, will be out of scope for this chapter.
Instead, we will assume external controls are drawn from a combination of RWD
and clinical trials, where [1] refer to this collection of trial-external complementary
data on control as “co-data.” To mitigate selection bias, external control cohorts and
patients should be identified through a systematic review that is planned, and ideally
completed, before outcome data from the new clinical trial becomes available [2].

2.1 An Overview of Approaches for Leveraging External
Control Data to Support Drug Development

When outcomes are available on our external controls, Figs. 1 and 4 show that
use of this patient-level data to augment or replace the control arm of an RCT lies
somewhere on a continuum. We can use the external controls to create a “hybrid”
control arm, which is a mixture of internal controls drawn from an RCT and external
controls. Or we can use them to create an “external control arm” (ECA), which is
then compared indirectly with data from a single-arm trial (SAT). As we move from
augmenting trial patients with external controls to replacing hypothetical internal
controls with observed external controls, our reliance on the appropriateness of this
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Internal control arm

Arm Label Study Design Control Data Sources
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Fig. 4 From internal control arm to synthetic external control arm, different ways of leveraging
trial external data

external data increases [3]. One advantage of choosing a hybrid control arm over an
ECA is that there is still the opportunity to detect and react to a conflict between the
internal and external controls.

The feasibility of leveraging external controls to create a hybrid or external
control arm will depend on several scientific and strategic factors, with their quality,
completeness, relevance to the research question, and “similarity” to the clinical
trial data being crucial [4, 5]. From a strategic perspective, settings where the use
of external controls in any guise is currently more acceptable include early phase
clinical trials and scenarios where traditional stand-alone RCTs are less practical,
ethical, or relevant [6]. Concern about the impact of biases driven by residual
differences between the clinical trial data and external controls may be smaller
when transformational treatment effects are anticipated. Six stringent criteria have
been proposed by Pocock [7] for selecting external controls drawn from completed
RCTs to augment a new RCT performed by the same investigators. Pocock’s criteria
stipulate that the external controls should be contemporaneous with the controls in
the new trial and comparable in terms of baseline patient characteristics, while both
groups should also be the same with respect to the treatment received and method
of treatment evaluation. Similar principles also apply when selecting patients to
create an ECA. While it is rare to strictly apply all six of Pocock’s criteria in
practice, they do shed light on scenarios when using external controls is most likely
to be scientifically feasible. For example, the requirement for external controls to
be drawn from a “recent” clinical trial or data source should be interpreted in
the context of how rapidly standard of care has evolved prior to the new clinical
trial: in a quickly advancing field, we may only be willing to consider strictly
concurrent controls, whereas if standard of care has remained stable for several
years, a wider timeframe may be regarded as sufficiently contemporaneous. More
recently, updates to Pocock’s criteria have been proposed which reflect advances in
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statistical techniques which can control for some differences between external and
internal controls and the greater variety of use cases for external controls [8].

As an aside, we note that not all uses of external controls require outcome
data on these patients. One such application highlighted in Fig. 1 is the use of
baseline covariate data on external controls to “generalize” the findings of an RCT
[9, 10] to a target population. More specifically, this approach requires data on
key baseline prognostic and/or predictive variables from external controls who are
considered to be representative of a target population. For example, this target
population might be real-world “treatment-eligible patients” who would meet the
inclusion/exclusion criteria of the original RCT and will be prescribed the test
therapy after regulatory approval and reimbursement coverage. In this case, baseline
covariates could be distributed rather differently in the target population compared
with the RCT population due to the selection bias introduced by the trial recruitment
process. To address this discrepancy, we can use the covariate data on the external
controls to “generalize” [11] the average causal treatment effect from the original
RCT to the target population, so long as covariate distributions for the target and trial
populations share a common support or at least an adequate overlap after trimming
of the external controls if necessary. More discussion of the statistical methods for
generalization will be provided later in Sect. 2.4.4.

Let us return now to focus on uses of external controls for whom outcome
data are available. At the time of designing a new clinical trial with a hybrid or
external control arm, we can first use the ICH E9(R1) estimand framework [12] to
define the causal estimand of interest, and then use the target trial framework [13]
to define the corresponding RCT we would have performed in an ideal world to
estimate the estimand. We can then design our new clinical trial to try to emulate
the target RCT. However, this process may reveal that the trial we can emulate
differs from the trial we want to emulate due to potential limitations in the external
controls. For example, it may be apparent early on that it will be infeasible to
apply all of the inclusion/exclusion criteria defining the target population to select
our external controls. Even if this process doesn’t reveal any serious limitations in
the external controls given what is known at the time of designing our new trial,
uncertainties will likely remain about just how comparable our external controls
will be with the future trial participants in terms of measured prognostic factors.
This will translate into uncertainty about how we should design the clinical trial and
the degree of reliance we should place on the external controls. In the next section,
we explore adaptive hybrid designs which can accommodate prior uncertainty about
their relevance.

2.2 Adaptive Designs That Mitigate Uncertainty About
the Relevance of External Controls

Typically, if it is feasible to conduct an RCT then it will be highly preferable to
incorporate some randomization into the design of a future trial, and the role of any
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external controls will be to augment the trial control arm. For example, this will
be the case if we are working in late phase clinical development and seeking to
generate substantial evidence of efficacy, where obtaining an unbiased estimate of
the causal effect of the test drug relative to control is of paramount importance.
One strategy for planning RCTs with hybrid control arms is to design the trial
sample size and randomization ratio so that the amount of statistical information
for the control parameter contributed by the internal and external controls combined
is equal to what would have been generated by a conventional RCT. However, if
there is uncertainty about the relevance of the external controls and the amount of
information they will contribute, this will translate into uncertainty about how many
patients we should randomize to control in the new trial and thus the target sample
size. Section 2.2.1 discusses adaptive designs as solutions to this challenge.

Alternatively, in phase II, there are certain therapeutic areas, such as oncology,
where single-arm trials have historically been common practice, and there has
been debate about the pros and cons of randomization [14]. In this context, where
the evidence generated by the early phase trial is not intended to be used for
confirmatory purposes, a different trade-off between costs, complexity, time, and
the risks of potential biases may be tolerated by the sponsor. Consequently, there are
scenarios, such as cancers which are uncommon but not rare, where a SAT could be
countenanced as a design option even though an RCT, while potentially challenging
operationally, is not infeasible. Of course, even in these cases, the acceptability of a
SAT will depend on having access to a comparable group of external controls so that
decisions of whether to invest in large-scale phase III trials can be based on estimates
of more interpretable causal estimands rather than single-group parameters. A priori
uncertainty about the relevance of the external controls may lead to uncertainty
about whether to design the phase II trial as an RCT or SAT. In a recent paper, Götte
and co-authors [15] propose an adaptive approach which can be used to mitigate
this uncertainty in a quantitative and pre-planned way. We provide an overview of
this adaptive design in Sect. 2.2.2.

2.2.1 Adaptive Approaches to Determining the Sample Size of an RCT
with a Hybrid Control Arm

The effective sample size (ESS) of a Bayesian distribution for an unknown
parameter quantifies the amount of statistical information it represents in terms
of an equivalent number of observations. While it is relatively straightforward to
calculate the ESS of a conjugate distribution for a single parameter, this is not
the case for non-conjugate distributions. Indeed, several alternative information-
based approaches to defining and evaluating the ESS of a non-conjugate distribution
have been proposed, which can return markedly different results. For example, see
the approach proposed by Morita and co-authors [16] in their seminal paper on
calculating the ESS of a parametric prior distribution. More recently, the expected-
local-information-ratio (ELIR) method has been proposed for calculating the ESS of
a distribution of a single parameter [17]. The ELIR method, which is implemented
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in the RBesT R package [18], has the advantage that it is predictively consistent
in the sense that the ESS of a posterior distribution after collecting N observations
is equal to the prior ESS + N. In what follows, we describe an adaptive strategy
for determining the sample size of an RCT with a hybrid control arm, which uses
the ESS to calculate how much information we have on a control-group parameter
when leveraging external controls. The adaptive strategy is not prescriptive as to
which method should be used to calculate the ESS, although we assume the ELIR
method will often be preferred where possible.

When planning RCTs with hybrid control arms, we typically begin by calculating
the sample size and decision rule needed for a conventional RCT to control the
probabilities of erroneous decisions at specified levels. Denote the corresponding
sample sizes on the test treatment and control by NE and NC, respectively: these can
be thought of as targets for the ESS of the posterior distributions of key parameters
(e.g., response probabilities on test and control) at the end of the hybrid trial. If
our prior ESS for the parameter on control based on the external controls is ESSC,0,
a naive approach would be to plan the hybrid trial to randomize (NC − ESSC,0)
internal controls. However, when using a Bayesian dynamic borrowing approach
[19] to combine the internal and external controls, the external controls will be
severely downweighted should we find outcomes are distributed very differently
in these two groups, in which case, the ESS for the control parameter at the final
analysis will miss our target NC, inflating the risk of a false negative conclusion.
In response to this concern, Schmidli et al. [20] propose the two-stage adaptive
design given below. Note that while the authors’ proposal assumes the external
controls are incorporated via a robust Bayesian meta-analytic-predictive (MAP)
prior, in principle the adaptive strategy could be applied using other Bayesian
dynamic borrowing approaches (see Sect. 2.4 for further details). The adaptive
design proceeds as follows:

Stage 1: Randomize NE,1 patients to test treatment and NC,1 to control.

Interim analysis (IA): Using the Stage 1 controls, update the robust MAP prior
and calculate the ESS of the posterior, denoted by ESSC,1. If the Stage 1 controls are
consistent with the robust MAP prior, ESSC,1 ≈ ESSC,0 + NC,1 [20].

Stage 2: Randomize NE,2 = NE − NE,1 patients to test treatment and
NC,2 = max (NC − ESSC,1, nC,min) to control. Setting nC,min > 0 will facilitate
blinding and identification of drifts in the control outcome distribution over the
study.

When using this adaptive approach, the Stage 1 group sizes NE,1 and NC,1 need to
be chosen carefully on a case-by-case basis. If NC,1 is too small, it will be difficult to
distinguish a prior data conflict from sampling variability. However, if we time the
IA too late, the adaptation will have little impact, and we may find a smaller number
of internal controls would have sufficed. Simulations can be used to identify values
of NE,1 and NC,1 which adequately balance these risks.
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2.2.2 Adaptive Clinical Trial Designs Mitigating the Risk of an External
Control Arm

As mentioned earlier in the preamble to Sect. 2.2, phase II proof-of-concept (PoC)
trials in oncology are often run as SATs [21], even when an RCT would be ethical
and feasible. Götte et al. [15] propose an adaptive two-stage design for determining
whether to conduct a PoC study as an RCT or as a SAT with an external control
arm when there is uncertainty about the relevance of the NC external controls.
The proposed design is reasonably complex, requiring careful pre-specification of
several design parameters which could be further tuned using simulation. Despite
this, we find this systematic and pre-planned approach to evaluating the adequacy of
a single-arm design to be interesting and offering potential advantages for improving
the reliability of early phase decision-making. For ease of presentation, we do not
provide details on all specifications for the adaptive design, and instead refer the
interested reader to [15].

The adaptive phase II study proceeds in two stages:

Stage 1: Proceed as a SAT allocating NE,1 patients to the test treatment.

Interim analysis: Quantify how comparable the NE,1 patients from Stage 1 are
with the NC external controls with respect to measured baseline prognostic factors.
Note that access to outcome data is not needed for this evaluation.

Stage 2: If the Stage 1 patients and external controls are deemed to be sufficiently
similar according to a pre-specified decision rule, continue in Stage 2 as a SAT
allocating patients only to the test treatment. Otherwise, randomize patients between
treatment and control.

Final analysis: If Stage 2 proceeded using randomization, at the final analysis use
data from Stages 1 and 2 on the test treatment and the Stage 2 internal controls to
estimate the causal estimand. Note that as no outcome data were used to inform the
interim adaptation, a standard analysis can be used with minimal impact on type
I error rate control. If Stage 2 proceeded as a SAT, use all available data and a
propensity score (PS)-based approach to emulate randomization and estimate the
average effect of treatment on the treated.

One clarifying comment on the adaptive design is necessary. To evaluate the
comparability of trial participants with the external controls at the IA, the design
stipulates that a preference score (Pi) [22] be calculated for patient i, for each i = 1,
· · · , NE, 1 + NC, which is given by:

log

(
Pi

1 − Pi

)
= log

(
ei

1 − ei

)
− log

(
π1

1 − π1

)

where π1 = NE,1/(NE,1 + NC) and ei is the estimated propensity score (PS) for
patient i, defined as the probability they are enrolled in the trial and exposed to
the test drug given their baseline covariates. The definition of the preference score
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implies that Pi = 0.5 when ei = π1. Therefore, a preference score of 0.5 indicates
that given a patient’s baseline covariates, they are no more or less likely to be in
the clinical trial than they would have been had the external controls and Stage
1 patients been randomly allocated to groups in an R:1 ratio, with R = NE, 1/NC,
agnostic to their baseline covariates. If a patient’s preference score deviates from
0.5, this indicates that they have a different propensity to be in the trial than simple
randomization would suggest. If this is replicated across many patients, it suggests
a lack of overlap between the distributions of measured covariates between groups.
Therefore, one can define criteria for similarity between the Stage 1 trial patients
and external controls in terms of the proportions of patients in each group who have
preference scores in the neighborhood of 0.5.

2.3 Hybrid Adaptive Clinical Trials Using External Controls
to Support Interim Decision-Making

So far, we have discussed designs for hybrid clinical trials which intend to leverage
external controls in the final analysis. However, when planning a group sequential
or adaptive trial, we may look to use external controls to support early stopping
decisions or adaptations at an IA, and then use only trial-internal data at the final
analysis. For example, external controls could be used to inform early stopping
decisions for futility; a sample size reassessment; a population enrichment decision;
or a dose-selection decision. Intuitively, by combining the trial-internal and trial-
external controls, we should be able to increase the reliability of our interim
decision-making (thus improving the trial operating characteristics) or alternatively,
we can time the IA earlier and still make reliable decisions.

To give a flavor of these approaches, we share a recent proposal for a Bayesian
scheme to leverage patient-level external controls to support a futility IA [23]. The
aim of leveraging the external controls is to increase the probability of correctly
stopping the trial early when the test treatment is inferior to control and to reduce
the risk of erroneous stopping when it is superior. While frequentist approaches to
combining the trial-internal and trial-external controls are possible, for this use-case
Bayesian approaches may be preferred since they also facilitate the calculation of
Bayesian metrics such as the posterior predictive probability of trial success and
the posterior probability of a clinically relevant advantage of the test treatment
versus control, which can be useful for supporting quantitative decision-making. By
combining resampling and Bayesian multiple-imputation techniques, the authors
in [23] sample from the predictive distribution of Z2, the usual standardized test
statistic at the final analysis, given the external controls and interim data. Then, the
trial is stopped early for futility if the Bayesian predictive probability of statistical
significance at the final analysis is sufficiently low [24]. The stopping threshold
itself must be tailored to each trial and reflects how much power we are willing
to sacrifice in order to be able to stop for futility with a high probability under the
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null hypothesis. To compute Bayesian predictive power, several multiple imputation
approaches are proposed which differ by how they make use of information on
patient baseline covariates. For example, assuming a binary endpoint, the trial
data and external controls can be used to fit a Bayesian logistic outcome model
adjusting for treatment and baseline covariates. Sampling from the joint posterior
distribution of the model parameters, and resampling with replacement baseline
covariate vectors from trial-internal patients, we can impute the “missing” baseline
profiles and outcomes of patients yet to be recruited and/or followed-up at the time
of the IA and thus calculate Z2. Repeating this process N times and counting the
proportion of times Z2 exceeds the final success threshold reveals the predictive
probability of statistical significance given the data available at the IA. It is possible
to extend this procedure by fitting different outcome models, for example, replacing
the baseline covariates in the logistic regression by the logit of the PS or adjusting
for both the covariates and the logit of the PS.

Returning now to hybrid clinical trials which intend to leverage our external
controls in the final analysis, the authors in [6] highlight two popular schools of
analytical techniques which can combine various sources of control data while
accounting for between-source heterogeneity: PS approaches and Bayesian meta-
analytic approaches. In the following section, we introduce the Bayesian meta-
analytic approach to borrowing, compare and contrast this with PS-based methods,
and discuss recent advances which have fused the two approaches together to
leverage patient-level external controls.

2.4 Analytical Approaches for Combining External Controls
and Clinical Trial Data

2.4.1 Comparing Bayesian Dynamic Borrowing and Propensity Score
Analytic Approaches

PS methods are widely applied in the epidemiological literature for the analysis of
patient-level data from observational studies. In the context of clinical trials lever-
aging external controls, a patient’s propensity score is interpreted as the conditional
probability they are in the clinical trial given their vector of baseline covariates.
The goal of PS methods is to draw inferences about causal treatment effects by
emulating randomization. This can be done by using the PS to match, stratify or
weight patients, or adjust for the PS as a covariate in an outcome regression, to
ensure groups are balanced with respect to measured baseline confounders. We refer
the interested reader to chapter “Clinical Studies Leveraging RWD using Propensity
Score-Based Methods” for more details.

Meanwhile, in recent years, a rich literature has emerged in the clinical trials
community exploring how Bayesian methods can be used to augment an RCT with
external controls. While in principle these approaches can be applied with external
controls drawn either from clinical trials or RWD, there are few published examples
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of their use with RWD [6]. Of particular interest are Bayesian approaches which
facilitate dynamic borrowing, that is, inconsistencies between observed outcomes
among the external and internal controls are taken to imply the external and internal
controls differ with respect to key parameters of their outcome distributions, which
prompts the external controls to be discounted. Note that priors for Bayesian model
parameters and other parameters influencing the borrowing behavior are specified
ahead of time. Therefore, while the weight attributed to the external controls in
the posterior is outcome adaptive, the method determining this is pre-specified. We
see that Bayesian dynamic borrowing characterizes between-source heterogeneity
in terms of differences between parameters of the outcome distribution (such as
the log-odds of response), whereas PS methods focus on differences between the
distributions of measured baseline confounders.

Bayesian dynamic borrowing approaches include modified power priors (which
raise the likelihood of the historical data to an unknown power, regarded as a
random variable); commensurate priors; and the (robust) MAP prior [25]. When
applied to external controls, these three Bayesian dynamic borrowing approaches
differ in terms of how they relate parameters in the different sources of controls.
However, there are equivalencies between the methods for the case of a single source
of external controls, with each method assuming that source-specific parameters
in the external controls and new clinical trial are similar but not identical [1].
Note that the power prior which raises the likelihood of the historical data to a
fixed power does not facilitate dynamic borrowing, only static borrowing, since the
weight attributed to the external controls is pre-specified and therefore cannot react
to an observed prior-data conflict. Several simulation studies have been reported
comparing different dynamic and static approaches to leveraging external controls
[19, 25].

In the authors’ experience, Bayesian dynamic borrowing approaches are popular
in practical applications. To be concrete, we describe the MAP prior for the case
that we have access to K sources of external control data which we want to leverage
in the analysis of a new study *. The approach can accommodate K ≥ 1, and thus
can be applied even if there is only one source of external controls. While the MAP
prior was first proposed with aggregate data, for several common types of outcome
data it is straightforward to accommodate patient-level data or a mixture of patient-
level and aggregate data [26]. For the purposes of illustrating the MAP approach,
suppose each patient provides a binary response so that the ith patient on control in
source k is distributed as Yik | pk ~ Bern(pk), for i = 1, · · · , nk. Furthermore, define
θk=log {pk/(1−pk)}, for each k = 1, · · · , K,*, and the source-specific log-odds on
control are connected via a random-effects distribution, that is,

θ1, · · · , θK, θ∗ | μ, τ ∼ N
(
μ, τ 2

)
, (1)

where τ captures the heterogeneity in the source-specific log-odds parameters and
μ is interpreted as the global average log-odds of response on control. Typically,
the parameter which is of primary interest in this model is θ ∗ , the log-odds of
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response on control in the new trial, rather than μ. The Bayesian hierarchical
model is completed by placing priors on μ and τ. Random-effects model (1) can
be extended to accommodate several strata of external controls such as controls
from RCTs, prospectively generated RWD, secondary-use RWD, each of which are
characterized by a different heterogeneity parameter [1]. One can use the control
data from sources 1, ..., K, to fit the Bayesian hierarchical model and derive a MAP
prior for θ ∗ .

In practice, a robust version of the MAP prior for θ ∗ is usually taken forward for
the analysis of study *, which is a mixture of a weakly informative prior and the
MAP prior. It is referred to as “robust” because its heavier tails means it discounts
the external control information more quickly in the event of a prior-data conflict.
If trial * is an RCT, the robust MAP prior will be updated with the internal controls
once they become available. If, instead, trial * is designed as a SAT, the robust
MAP prior will not be updated. We see that in contrast to PS approaches, where
the contribution of external controls is determined at the patient-level given their
baseline covariates, Bayesian approaches discount at the level of the data source.

The Bayesian hierarchical model defined above does not incorporate information
on baseline covariates which will often be available with patient-level external
controls. However, this covariate data may be useful for explaining between-source
heterogeneity. With this in mind, several approaches combining PS and Bayesian
dynamic borrowing approaches are available and are reviewed below.

2.4.2 Combining PS Matching and Bayesian Dynamic Borrowing

A case-study in oncology submitted as part of the FDA’s Complex Innovative
Design (CID) pilot program proposed using a two-stage approach to leverage
patient-level controls from a partially concurrent RCT to augment the analysis of
a key secondary endpoint (Overall Survival) in a planned RCT [27]. First, in Step
1, PS matching is used to identify similar external controls. Then in Step 2, a
Bayesian commensurate prior is used to dynamically borrow information from the
trial-external controls [28]. A recent simulation study has evaluated the performance
of several Bayesian approaches to leveraging external controls when preceded by a
matching procedure to identify relevant external controls [29].

2.4.3 Combining PS Stratification and Bayesian Dynamic Borrowing

The authors in [30] propose an alternative approach to combining PS with the
Bayesian MAP approach to leverage external controls from K sources to augment a
new RCT or SAT. The approach begins by using the trial participants and external
controls to fit a PS model, and then trims the external controls to discard those
with estimated PS outside the range seen in the trial. S strata are then defined for
the PS, which are chosen to contain approximately equal numbers of trial patients.
Within each stratum, the data are assumed to follow a Bayesian hierarchical model
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which stipulates that parameters, such as the log-odds of response, in the trial
controls and each source of external controls are samples from a normal random-
effects distribution with a stratum-specific mean and standard deviation. The target
parameter is defined as the weighted average of the stratum-specific parameters for
the trial controls, which we denote by θ*. Hyperparameters of the prior distributions
for the stratum-specific standard deviations are calibrated to ensure the ESS of the
MAP prior for θ* is equal to a pre-specified target.

2.4.4 Combining PS Weighting or Parametric g-Estimation
with the Bayesian Meta-analytic Approach

To account for differences in the distribution of baseline covariates (referred to as
“case mix”) between studies, the authors in [31] propose a novel approach to the
meta-analysis of individual patient data from comparative RCTs which proceeds in
two stages. First, the analyst generalizes the treatment effect estimate for each RCT
to the covariate distribution of the target trial of interest. Second, these generalized
estimates are combined via a (frequentist) random-effects meta-analysis. Through
this process, we can disentangle the heterogeneity due to differences in the distri-
bution of baseline covariates and heterogeneity due to other (perhaps unmeasured)
factors such as differences in trial protocol, definition of treatments, etc.

While [31] assumes each study is an RCT providing a comparative treatment
effect estimate, it is possible to extend their ideas to the scenario where we want
to leverage K sources of external controls in the analysis of a new hybrid clinical
trial. In this case, first we generalize estimates of single-group parameters (e.g.,
response probability) from each control data source to the case-mix in the new trial,
which is regarded as the target population. Generalization can either be achieved
through outcome regression and standardization or through PS weighting. Second,
we combine these estimates via a Bayesian random-effects meta-analysis to create
a robust MAP prior for the control parameter of interest in the new study (i.e., θ ∗ ).

The outcome regression and standardization approach for generalizing results
from one population to another has advantages and disadvantages compared with
the weighting by odds technique. One advantage is that if external control dataset
k is large, it might still be possible to obtain reliable estimates for the prognostic
effects of covariate levels which occur with a low prevalence in the external
controls but are common in the new trial. However, one disadvantage is that without
careful consideration, it is easy to extrapolate beyond the range of observation [31].
Therefore, the choice of approach and their relative merits need to be considered on
a case-by-case basis.

Clearly this two-stage approach has advantages over a one-step procedure using
only PS weighting, only outcome modelling and standardization, or only meta-
analysis to combine marginal parameter estimates. By first generalizing estimates
to a common target population, we ameliorate between-source heterogeneity, which
should facilitate borrowing from the external controls. However, the method is
flexible enough to accommodate between-source differences which go beyond
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differences in case mix. As an aside, techniques such as outcome regression and
standardization or weighting can also be used to generalize study results from an
RCT to a more representative real-world population.

3 Randomized Controlled Studies Incorporating Real-World
Data

3.1 Pragmatic Randomized Designs and Decentralized
Randomized Designs

Multiple novel hybrid designs aim to maintain the high level of evidentiary stan-
dards of the RCT, for example by incorporating randomization and pre-specifying
hypotheses of interest, while trying to add flexibility in the design to achieve other
aims. The evidentiary standards are maintained high to inform effectiveness or
safety of medical products to multiple stakeholders including patients, clinicians,
healthcare administrators, and policy-makers. Those designs are either named by
the type of flexibility they use or the additional aims they are trying to achieve.

More specifically, pragmatic randomized studies or point-of-care studies
(PCTs) maintain randomization while incorporating more clinical-practice-like
design strategies [32, 33]. Similarly, virtual clinical trials, direct-to-patient or
decentralized clinical trials (DCTs) maintain randomization while incorporating
more patient-centric design strategies [34, 35]. Relative to traditional RCTs, PCTs
and DCTs share similar goals of decreasing burden on patient or investigator
participation in the trial, increasing diversity of the cohort participating in the trial,
and accelerating evidence generation in research.

Both designs are considered hybrid because they can leverage existing RWD, for
example by linkage to electronic healthcare systems collected as part of a patient’s
standard of care. In addition, DCTs may incorporate home visits, or other sources of
RWD such as patient’s self-report, or use of digital technology, at discrete times or
continuously over the trial’s follow-up period. Thus, in the hybrid design spectrum,
DCTs and PCTs augment the data as shown in Fig. 4 by allowing RWD to add more
variables on the same patients recruited into the randomized clinical trials.

While PCTs and DCTs may share similar goals and methods of recruitment
and consent of patients, they are distinct in their philosophies about outcome data
collection. On one hand, fully pragmatic studies take a minimalist approach to
data collection as they aim to seamlessly integrate in a clinician’s workflow and
their interactions with their patients (e.g., match frequency and timing of visits).
On the other hand, fully decentralized studies are maximalist as they try to have a
more comprehensive view of the patient health journey frommultiple patient-centric
sources, including but not limited to their interactions with their clinicians.

In therapeutic development, PCT designs are more common in the post-market
setting to evaluate effectiveness or safety of approved therapies. For example, the
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PCT study ACHIEVE Control investigated the safety and effectiveness of insulin
glargine 300 U/ml, after it was approved, relative to first-generation basal insulin
analogues in patients with uncontrolled type 2 diabetes mellitus [36]. Similarly,
the large DAPA-MI trial is embedded in routine care and registries in Sweden and
the United Kingdom, to support a label expansion of dapagliflozin [37]. The large
Salford Lung Study was the first PCT of its kind, in collaboration with the UK
healthcare system, and was successful at investigating the effectiveness of a new
inhaler combination against standard of care [38].

When DCTs incorporate digital technology elements explored as biomarkers,
they are used in the proof of concept setting to validate new endpoints. For example,
a new phone application assessing visual activity at home instead of the clinic
could be used in clinical trials [39, 40]. Also, the use of the actigraphy tracking
device to measure moderate to vigorous physical activity is gaining regulatory
acceptance as a primary endpoint in clinical trials [41, 42]. With the COVID-19
pandemic disruption of on-site clinical care, many studies across therapeutic areas
incorporated decentralized elements and thereby increased the interest in using DCT
designs [43–46] beyond early and late development.

Pragmatic study designs fall in a spectrum from more controlled to more
pragmatic and closer to clinical practice. The PRECIS-2 tool [47] can help guide
discussions among the research team or stakeholders to balance the sometimes
conflicting goals of optimizing flexibility, feasibility, and fitness-for-purpose. The
PRECIS-2 tool has nine domains (eligibility criteria, recruitment, setting, organi-
zation, flexibility of therapy delivery, flexibility in therapy adherence, follow-up,
primary outcome, and primary analysis) and scores the acceptable level of flexibility
of each domain from 1 (very explanatory) to 5 (very pragmatic).

Decentralized studies also fall in a spectrum from fully on-site procedures for all
patients to fully off-site or patient-centric for all procedures and for all patients. The
procedures can fall anywhere in the patient journey including outreach, determining
eligibility, accessing therapy, or collecting clinical outcomes over time until the end
of the study. The scope of decentralization is also multi-factorial including having
decentralized outcomes for only a subset of patients, or for a subset of visits, or for
a subset of outcomes, or any combination of subsetting in the above.

3.2 Scientific Considerations with PCT and DCT Hybrid
Designs

3.2.1 Real-World Considerations, the Scientific Question/Estimand,
and the Study Hypotheses

Novel designs like PCT or DCT can increase the breadth of questions that can be
answered with a randomized study. Thus, one strategic consideration of interest is
whether these novel designs are answering a scientific question that could not be
answered otherwise or whether they are answering these questions more efficiently.
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The timing of when to answer specific scientific questions in the development
program is also important because while generalizability of findings from a trial
to the overall indicated population in real-world setting is of interest for all trials,
demonstrating a good benefit-risk profile for a new compound takes priority. Also,
less frequent on-site monitoring may not protect patient safety for a new molecular
entity but may be acceptable for a molecular entity with a better known benefit-
risk safety profile. Also, because effect sizes in efficacy are typically higher than
for effectiveness, one would typically demonstrate the former before the latter.
Similarly, one would demonstrate safety in the short term before investigating safety
in the long term.

To tease out the importance of real-word considerations on the scientific question
of interest, it is helpful to use the estimand framework outlined in the ICH-E9
addendum and also in chapter “Estimand in Real-World Evidence Study: From
Frameworks to Application” of this book. This framework helps spell out the
scientific questions in detail regarding all five attributes (population, the treatment,
variable, intercurrent event, and summary measure) [12]. For example, are novel
designs more promising at targeting the indicated population? Will they enable
better mimicking of the indicated decision to initiate or use the treatment? Will the
designs enable one to target novel endpoints or endpoints that matter to different
decision-makers? Will the designs minimize the concern for some intercurrent
events?

Real-world considerations may impact the hypotheses of interest and whether
these will aim for superiority, non-inferiority, or equivalence. Pragmatic safety
studies may also aim for a hypothesis to rule out an excess risk. Planning for a
superiority hypothesis to standard of care in real-world settings may be different
than planning for superiority against placebo in a more controlled RCT. More
specifically, the input and considerations in a sample size calculation to power the
study to detect a change will need to be tailored to the expected recruitment rate,
variability, effect size against an active control, and the handling of intercurrent
events to reach the estimand of interest. Also, justifying a non-inferiority margin,
a rule-out margin, or an equivalence margin based on past performance of the
comparator drug in traditional RCTs when one plans for a novel design in real-
world conditions may prove difficult.

3.2.2 Real-World Endpoints and Statistical Methods Used to Support
Validity and Fitness-for-Purpose

When the PCTs or DCTs are using novel endpoints, one may have to demonstrate
fitness-for-purpose of these endpoints in label-enabling studies [48–50]. For a
clinical outcome assessment, this process starts with a justification for the target
construct that the endpoint is purported to measure and a purpose for using this
endpoint in the study or the clinical development (e.g., for a labeling claim or
a marketing claim). The construct justification includes information on why the
endpoint would be meaningful to the indicated patients and how they feel or live
their life, for example through survey of patients, their families, or their healthcare


 12916 15693 a 12916 15693 a
 


Innovative Hybrid Designs and Analytical Approaches Leveraging Real-World. . . 227

support network. Then, showing fitness-for-purpose requires evidence of the validity
of the clinical outcome assessment and that the strength of the evidence matches the
stated purpose. Validating an assessment’s use in a clinical study typically requires
showing that the use is accurate at capturing the target construct with reproducible
results and small measurement error.

Being clear about the target construct and the regulatory purpose is therefore
very important in a fitness-for-purpose assessment of the endpoint. For example,
codes for myocardial infarction in insurance claims databases accurately reflect
the physician’s diagnosis of this event as reported in the patient’s medical records
with a positive predictive value above 90% [51]. While this accuracy may be
sufficient for the purpose of post-market safety assessment, it may not be so for
marketing approval where the target construct goes beyond real-world assessment
of a cardiovascular event to an adjudication of each event by the same independent
committee of cardiologists.

Although the setting of data capture of all study outcomes in PCTs and DCTs
may be different than traditional RCTs, this does not necessarily imply a loss of
accuracy or an increase in variability relative to the target construct. For example,
real-world data capture in real time of patient-reported outcomes in a DCT may
be less prone to recall bias than a capture at set visits in an RCT [52]. Similarly,
electronic healthcare records or insurance claims records related to a particular
hospitalization may have more comprehensive information on procedures preceding
or following hospitalization to inform assessment of causality to therapy than the
protocol pre-specified variables reported in a case report form in an RCT.

Another element of accuracy is timeliness of the data sources for a given target
construct. For example, death or cause of death may be missing or inaccurately
captured in electronic healthcare records used in PCTs or DCTs and linkage to death
records that are generally more accurate may have a time gap of a few years. Thus,
complementing these sources with additional data capture from patients or other
data sources may be necessary to increase accuracy and timeliness.

When there are multiple sources for the same target construct, for example if the
same measure is collected on-site and off-site between or across subjects, then one
has to establish equivalence and exchangeability or prioritization in case of conflict.
This evaluation can be within the same study or in a separate study where a subset
of patients received both methods of measurements. Several psychometric analyses
and measures developed to evaluate inter-rater agreement, such as Cronbach’s
alpha and Kappa statistic for dichotomous measures and intra-class correlation
for continuous measures, can help establish equivalence or evaluate differences. In
addition, interoperability of data sources that may be using different ontologies of
data collection and storage may be necessary to integrate information from these
multiple sources.

Data mining and machine-learning methods are also important in handling the
large volume of wearable device data in clinical trials. For example, artificial
intelligence methods have been used to establish authenticity of this data in risk-
based monitoring and verify that the data comes from the patient and not another
source. In addition, dimensionality reduction methods can help compress the
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complex time series to the relevant features (e.g., mean, peak, or area under the
curve, over a time window).

Lastly, in the design of a DCT or PCT, one has to balance the convenience of
recruitment and participation with a potential increase in variability in the endpoint.
On the one hand, relative to a typical RCT, PCTs and DCTs are expected to recruit
more patients and/or shorten the study duration, by design, because of greater
convenience to patients. On the other hand, PCTs and DCTs could suffer from a
larger measurement error, a larger between source variability or a larger between
subject variability in the endpoint of interest that will impact study power to detect
a change.

4 Discussion

This chapter reviewed innovative hybrid designs and analytical strategies that inte-
grate RWD with clinical trials. We have particularly focused on designs combining
the advantage of planning and randomization in RCTs with leveraging existing or
conveniently collected RWD.

Based on the examples discussed in this chapter, we believe that the use
of external controls to create hybrid control arms in RCTs should be routinely
considered for early phase clinical trials, as well as in pivotal settings where
conventional stand-alone RCTs are less practical or relevant, such as in the treatment
of rare disorders, in pediatric studies, or in epidemics [10]. More broadly, external
controls can also play a useful role to support interim decision-making in an adaptive
early or late phase clinical trial, supporting futility stopping decisions or mid-
study adaptations. Conversely, PCTs are more promising as label expansion or
post-market safety studies, when prescribing the product is easier to implement
at point-of-care and less frequent monitoring of patients to increase convenience
does not put these patients at risk. Fully virtual DCTs have been used in early
development to validate new digital endpoints or new methods of recruitment of
patients but have not been fully tested in clinical development. There are however
some indications that tomorrow’s patients will expect flexibility in their interactions
with the healthcare system and a mix of in-person, remote interaction, and data
sharing through wearables may become the norm [53].

We have seen in this chapter that adaptive clinical trial designs can play an
important role in mitigating some of the risks associated with leveraging external
controls where there is a prior uncertainty about comparability between the trial
and real-world patients (which we speculate will typically be the case in practice).
However, even with this additional flexibility, careful evaluation is still needed at
the design stage of the strategic and scientific feasibility of proposed design options
in light of the scientific question the study is intended to address and the level of
evidence required [54].

Lastly, real-life follow-up is prone to intercurrent events that may be hard to
plan for or minimize and that will impact the main analyses, and the interpretation
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of a treatment policy treatment effect estimate of a PCT or DCT relative to more
controlled clinical trials. Similarly, compared to a typical RCT, missed visits, loss
of follow-up, or departure from randomized treatment may be more common in an
external control data source or in study arms of a PCT. Wearable devices used in
DCTs offer the opportunity of more frequent longitudinal assessments on the same
patient but also have novel sources of measurement error such as inaccuracy or
missingness due to loss of connectivity on the device [55]. All of the designs we have
discussed in this chapter put a large emphasis on time 0 and comparability at start
of follow-up for leveraging external control RWD or randomization in PCTs and
DCTs. However, once the hurdle of comparability at time 0 is overcome, we need
to increase our understanding of the impact of different RWD-specific intercurrent
events on the question of interest and the main analyses.

For any hybrid design to be successful, planning, recruitment, and data capture
in clinical trials need to be nimble, easily integrating evidence from different
sources. Similarly, electronic healthcare systems need to more easily be used
and accessed for answering research questions. Stronger collaborations between
healthcare systems, regulators, and industry, such as was seen in the development of
treatments for COVID-19, can facilitate these designs in answering questions that
go beyond a particular development program to be in the realm of public health.
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Statistical Challenges for Causal
Inference Using Time-to-Event
Real-World Data

Jixian Wang, Hongtao Zhang, and Ram Tiwari

1 Introduction

RWD have been increasingly used in drug development, particularly in combination
with clinical trial data. As treatments are not randomized in real-world settings, a
major challenge is how to adjust for population difference for subjects receiving
different treatments to eliminate or reduce confounding biases; hence, causal
inference is a key component in using RWD. Several approaches applicable to
RWD have been nicely summarized in Levenson et al. [22] and Ho et al. [15], as
well as in chapters “Causal Inference with Targeted Learning for Producing and
Evaluating Real-World Evidence”, “Clinical Studies Leveraging Real-World Data
Using Propensity Score-based Methods”, and “Recent Statistical Development for
Comparative Effectiveness Research Beyond Propensity-Score Methods”. Hernan
and Robins [14] gave more details, in particular, time-to-event (TTE)-related
methods in Chapter 17 in [14]. Our focus here is on some specific challenges in
using RWD for TTE outcomes and to offer some practical solutions.

RWD can be used for multiple purposes. The following list is by no means
exhaustive:

1. Indirect comparisons in which the RWD form the external control for a single-
arm trial

2. Augmenting a small internal control arm in an RCT

J. Wang (�)
GBDS, Bristol Myers Squibb, Boudry, Switzerland
e-mail: jixian.wang@bms.com

H. Zhang
Merck & Co., Inc., North Wales, PA, USA

R. Tiwari
GBDS, Bristol Myers Squibb, Lawrenceville, NJ, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
W. He et al. (eds.), Real-World Evidence in Medical Product Development,
https://doi.org/10.1007/978-3-031-26328-6_13

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26328-6protect T1	extunderscore 13&domain=pdf

 7350 29705
a 7350 29705 a
 

 14372 31038 a 14372
31038 a
 

 19179 32372 a 19179 32372 a
 

 885 51310 a 885 51310 a
 
mailto:jixian.wang@bms.com
mailto:jixian.wang@bms.com
mailto:jixian.wang@bms.com
https://doi.org/10.1007/978-3-031-26328-6_13
https://doi.org/10.1007/978-3-031-26328-6_13
https://doi.org/10.1007/978-3-031-26328-6_13
https://doi.org/10.1007/978-3-031-26328-6_13
https://doi.org/10.1007/978-3-031-26328-6_13
https://doi.org/10.1007/978-3-031-26328-6_13
https://doi.org/10.1007/978-3-031-26328-6_13
https://doi.org/10.1007/978-3-031-26328-6_13
https://doi.org/10.1007/978-3-031-26328-6_13
https://doi.org/10.1007/978-3-031-26328-6_13
https://doi.org/10.1007/978-3-031-26328-6_13


234 J. Wang et al.

3. Estimating treatment effects based on RWD, e.g., for designing a trial or as a
reference

4. Generalizing evidence, e.g., from an RCT to a population specified by RWD

In fact, the key step in these tasks is adjusting for the population difference between
RWD and the trial or between subgroups receiving different treatments in compari-
son in RWD. Many general approaches such as propensity score (PS) matching and
weighting [32, 33], covariate balancing [9, 53], and direct adjustment using models
[34], also known as g-formula [14] in more general situations can be used, although
the analysis of TTE presents extra challenges. Therefore, we will emphasize on the
first two tasks and specific considerations on TTE analysis. The last topic, evidence
generalization, that we will only briefly mention is closely related to the population
adjustment above and shares the same methodology toolbox. For example, using
RWD as external control can be considered as generalizing the evidence in RWD to
the trial population, if they are different.

Recent development on causal estimand in the Neyman–Rubin framework
[27, 35] especially in pharmaceutical context [5, 23] also has strong influence on
using RWD, since the analysis using RWD should take into account all elements that
determine an estimand (chapter “Estimand in Real-World Evidence Study: From
Frameworks to Application”), which is more complex for TTE RWD. Here, we
use estimands in the narrow sense of being a quantity to be estimated, rather
than the more general sense used in the E9(R1) guidance [17]. The estimation
of causal estimands using TTE presents additional challenges due to the impact
of censoring. The intercurrent event that either changes the treatment or causes
missing information is often more common in real-world settings. Although the
hazard ratio (HR) is the most commonly used measure of treatment effect of
TTE data [6], alternative estimands have been increasingly used. Among them, the
restricted mean survival time (RMST) is a common choice, since it does not need
a strong assumption such as proportional hazard [6]. Its estimation, especially with
adjustment for confounding biases, can be simplified by using pseudo-observations
(POs) [2].

Another issue related to causal estimands for TTE RWD is the choice of starting
time (time zero). Often, there are multiple choices for time zero; however, a choice
may change attributes of an estimand, e.g., the population in which the estimand
is defined. The trial emulation approach is a novel approach [13], which we will
explore in Sect. 4. The concept of emulating a hypothetical target trial was devel-
oped for epidemiology. In our context, the trial to be compared/combined naturally
forms the target of emulation, and hence their approaches can be adapted easily.
Classical causal inference was mainly developed under the frequentist framework.
Nevertheless, Bayesian approaches also have its advantage in its own perspective.
For using RWD as external controls, the Bayesian borrowing using power priors [16]
has been a hot research area. In addition, some frequentist approaches have their
Bayesian interpretation or can be adapted as an approximate Bayesian approach.
The adjustment for confounders relies on some untestable assumptions, e.g., no
unobserved confounders, which cannot be verified by the data. When using RWD to
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augment an internal control arm, a Bayesian borrowing approach can provide extra
protection when these assumptions are not valid.

This chapter provides an overview of challenges and some solutions to using TTE
RWD in combination with trial data, mainly focusing on using RWD in combination
with clinical trial data, and practical implementation of these solutions. We examine
additional issues of using HR for RWD and assumptions needed for HR being
a valid casual estimand. Then, we explore using alternatives such as RMST as
an alternative to HR in the well-developed causal estimand framework. The use
of approaches for causal inference such as the PS matching and weighting and
g-formula for TTE will be briefly described. We also give a brief overview of
recent development on using Bayesian approaches in combination with classical
confounding adjustment when using RWD for indirect comparisons and augmenting
an internal control arm. The issue of time zero selection, as well as other topics such
as using aggregated RWD, will also be discussed.

2 Causal Estimands, Confounding Bias, and Population
Adjustment When Using RWD

For notations in this chapter, we denote the event and censoring times, treatment,
and covariates of patient i by .Ti, Ci,Di , and .Xi , respectively. For simplicity, we
assume that .Ti and .Ci take on integer values 0,1,...; e.g., in days, as they are often
recorded in clinical data. Some other advantages of doing so can be seen later. Here,
we assume that .i = 1, ..., n include patients from the trial and as well as from
RWD. The two populations and the treatments are labeled by two indicators .Hi and
.Di , with .Hi = 1 if i belongs to RWD and .Hi = 0, otherwise, and with .Di = 1 for
the test treatment and .Di = 0 for the control. When the RWD is the only control for
a single-armed trial, we have .Di = 1 − Hi . To focus on population adjustment, we
assume non-informative censoring. Therefore, standard survival analysis methods
such as the Kaplan–Meier (KM) estimator [19] and Cox regression [6] can be used,
with adjustment for covariate-dependent censoring using, e.g., inverse probability
of censoring weighting (IPCW) [31], if necessary.

Causal estimands for treatment effects in TTE endpoints are an important but also
difficult topic and has been playing an increasingly important role in the estimand
framework. The most commonly used estimand for treatment effect for TTE is the
HR [6]. It is a single number as an overall measure of the treatment effect and has
been widely used for a long time. It may also be used as a population summary: one
of the five attributes in an estimand [17]. Nevertheless, it has a number of drawbacks
as a causal estimand, even for RCTs [1, 11]. At a given time t , the hazard function
under treatment d is defined as .hd(t) = P(Ti = t |Ti ≥ t, Di = d) (since t is an
integer), and the HR is .γ (t) = h1(t)/h0(t). The proportional hazard assumption
assumes a constant HR at all time, hence .γ (t) = γ . Under this assumption, .γ can
be estimated by the Cox regression model
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.hd(t) = hb(t) exp(γ d), (1)

where .hb(t) is the baseline hazard, known as the marginal hazard model [25].
However, the assumption is rarely true. A typical scenario is that since .hd(t) is
defined in a subpopulation at risk with .Ti ≥ t , we may have .γ (t) �= 1 because of
not only treatment effects but also the population difference between treated and
controls in the at-risk set. Suppose that patients can be classified into high- and low-
risk groups and the treatment only reduces the risk at .t = 1 in the high-risk group;
hence we have .γ (1) < 1. However, the treated at-risk set at .t = 2 will have more
high-risk patients than that of control group, hence .γ (2) > 1, although the treatment
has no effect after .t = 1. When the assumption of .γ (t) = γ is violated, what the
estimated HR based on a Cox model represents is not clear; furthermore, it depends
on the censoring mechanism. The latter can be fixed by a weighting approach, but
the former remains an unsolved issue. The issue is more complex when using RWD,
since the assumption is population dependent. This is because, intuitively, at any
event time, the risk of event should be constant among those still at risk, which
obviously depends on the population. This issue also occurs in hazard difference as
it also depends on comparison based on .hd(t).

Given these issues, we examine causal estimands in the classical Neyman–Rubin
framework to look for alternatives. This framework has been well developed in
terms of the concept as well as methods of estimation. The reader is referred to
chapter “Causal Inference with Targeted Learning for Producing and Evaluating
Real-World Evidence” and [5] for details. The most common estimand is the
average treatment effect (ATE) defined as

.� = E(Y 1
i − Y 0

i ), (2)

where .Yd
i , d = 0, 1, is the (counterfactual) outcome when subject i takes treatment

d, but we only observe .Yi = DiY
1
i − (1 − Di)Y

0
i [35]. Here, the expectation is

taken over the whole population of the trial and RWD subjects. Another commonly
used estimand is the average treatment effect among treated (ATT), for which the
expectation in (2) is taken over the treated ones. ATT is appropriate when we use the
RWD as an external control and will be our main focus here. For ATT, .E(Y 1

i ) can be
estimated by the sample mean among the treated. It is .E(Y 0

i ) that needs population
adjustment, if the population of .Di = 0 is different from that of .Di = 1. Several
approaches have been developed for the inference of .�; see references [14, 15, 22]
for details of estimating causal estimands using different approaches.

For TTE, due to censoring, it is not possible to replace .Yd
i with .T d

i in (2) to
estimate .�, the mean survival time difference, without a distributional assumption.
Nevertheless, we can use the framework for other TTE estimands. For example,
with survival functions .Sd(t) = E(T d

i > t), d = 0, 1, where the expectation is
taken over the target population, we can take the difference between them

.�S(t) = S1(t) − S0(t) (3)
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as a causal estimand at a specific time t and it can be estimated without distributional
assumptions. As an ATT estimand in (3), .S1(t) can be easily estimated, but the
estimation of .S0(t) needs population adjustment. Some other causal estimands can
be derived from .Sd(t). A commonly used is the difference between RMST for a
given end time t

.�R(t) =
∫ t

0
S1(u)du −

∫ t

0
S0(u)du. (4)

A similar summary to .γ is the cumulative hazard ratio:

.�(t) = H 1(t)

H 0(t)
, (5)

where .Hd(t) = ∫ t

0 hd(u)du. .�(t) is always defined and is also a causal estimand.
But it depends on the time t and hence has the same problems as the difference
in survival rate or RMST at t . One may take t sufficiently large to capture all the
cumulative differences in the hazard, but in this way early differences may not be
captured. For example, .�(t) at .t = 10 years could be close to 1 for patients with
advanced cancer, and hence it would not be a useful global estimand. Although
RMST does not have this problem, it is still t-dependent even when the proportional
hazard assumption holds.

In summary, although HR is problematic as a causal estimand, no alternatives
have the same simplicity as a single measure. The most appropriate causal estimand
depends on multiple factors including clinical relevance, the nature of the data, and
often more than one estimand may be needed. For their estimation, some approaches
in the rest of the chapter are provided as general tools, and some are specific to a
specific choice of estimand.

3 Adjustments for Causal Inference

The estimation of a causal estimand often needs adjustment since treatments are
not randomized in real-world settings. Adjustment methods for other types of
outcomes can be found in chapters “Clinical Studies Leveraging Real-World Data
Using Propensity Score-based Methods” and “Recent Statistical Development for
Comparative Effectiveness Research Beyond Propensity-Score Methods”. Here,
we will concentrate on those related to TTE. We classify the methods into two
classes: those specifically for TTE and those independent of the outcomes, although
combinations between them are also commonly used.

The first uses an outcome model to directly adjust population differences,
also known as g-formula [14]. As it depends on modeling the outcome–covariate
relationship, it is sensitive to model misspecification. Here, we describe the method
with a Cox model for the outcome. Other models such as the additive hazard models
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or parametric models can also be used. Suppose that we would like to estimate the
ATT estimand .�S(t) (i.e., in the treated population). As .S1(t) can be estimated with
normal KM method [19] without adjustment, we only need to adjust control patients
in RWD to estimate .S0(t). To this end, we take the following steps:

1. Fit a Cox model .h(t |Xi) = hb(t) exp(βT
0 Xi) to data of control patients and

obtain .β̂0, where .hb(t) is the baseline hazard with a corresponding baseline
survival function .Sb(t).

2. Calculate .Ŝ0
i = Ŝb(t)

exp(β̂
T

0 Xi) for .Xi of all treated (.Hi = 0) patients, where .Ŝb(t)

is the estimated baseline survival function from the fitted Cox model in Step 1.
Note that .Ŝ0

i is t-specific.

3. Calculate .Ŝ0(t) = ∑n
i=1(1 − Hi)Ŝ

0
i /n1, where .n1 is the number of treated

patients in the trial.

In the presence of covariate-dependent censoring, IPCW may be needed to adjust
for it by fitting the Cox model with the inverse of the probability of censoring
as a function of covariates at a given time as weights [31]. The probability of
censoring may be estimated by fitting another Cox model to time to censoring data.
A parametric model such as a Weibull model instead of the Cox model can also be
used in step 1, which is known as parametric g-formula [14]. The advantage of this
approach is that none of the above steps need more than conventional regression
tools. However, the uncertainty of estimating .β should be taken into account. An
R-package stdreg [40] performs the above steps and provides the SE of .Ŝ0(t) based
on the delta approximation. An alternative is to run a bootstrap over the above steps
to obtain either an estimate of the SE or a bootstrapped confidence interval (CI)
directly.

In practice, some multivariate analyses involving treatments and covariates are
based on a Cox model which includes .Xi and .di

.h(t |Xi, di) = hb(t) exp(βT Xi + γ ∗di) (6)

in which .γ ∗ is often reported as adjusted treatment effect. However, .γ ∗ is not the
same as the marginal HR .γ , as the model is conditional on .Xi . A correct approach
to estimating .γ , given the assumption holds, is to fit a marginal Cox model to the
predicted survival curves after adjustment for .Xi . Suppose that our estimand is the
ATT HR, and the following algorithm can be used:

1. Fit model .h(t |Xi) = hb(t) exp(βT
0 Xi) to control patients and obtain .β̂0.

2. Calculate .Ŝ0(ti) = Ŝb(ti)
exp(β̂

T

0 Xi) for .ti and .Xi of all treated patients.
3. Obtain .Ŝ1(ti) from the survival curve of treated patients.
4. Fit a generalized linear model (GLM) with a log–log link function to data

.Ŝ1(ti), di = 1, and .Ŝ0(ti), di = 0, with .di as the only independent variable.

The first two steps estimate .Ŝ0(t) at multiple time points. The last step utilizes
a well-known relationship between the HR (if exists) and survival function, and
that will also be used in Sect. 5. One needs to check (e.g., by comparing the
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survival curves .Ŝ1(ti) and .Ŝ0(ti)) the proportional hazard assumption. This approach
depends on a correct Cox model at the first step too and hence is less robust than the
other approaches below.

The second class includes a wide range of standard causal inference methods.
The following methods are commonly used:

• Propensity score matching (PSM) and stratification
• Inverse probability weighting (IPW)
• Covariate balancing

The first two [32, 33] are based on PS defined as the probability of subject i being
in the RWD, given .Xi : .pi ≡ P(Hi = 1|Xi ). In most of our context, this means
.pi = P(Di = 0|Xi ). A logistic regression can be used to obtain .p̂i : an estimate of
.pi . The above methods have multiple variants. For example, the IPW has a stable
version and a truncated version that may perform better under some situations.
Matching and stratification can also be based on prognostic factors if feasible.
Also we assume covariate-independent censoring, although IPCW can be used for
covariate-dependent censoring. We will focus on the basic version and covariate-
independent censoring due to space limit.

Using these approaches to estimate some estimands such as .�S(t) is straight-
forward. But the implementation depends on the target population of the estimand.
Again, we will consider the ATT estimand with the trial population as the target
and RWD are the only source of control. For IPW, we use .wi = (1 − p̂i)/p̂i to
“generalize” subjects in RWD to the trial population; that is, we weight the RWD
KM curve by .wi and take the difference between it and the (unweighted) treated KM
curve. For PSM, we match each trial patient with one or more RWD patients based
on their PS and then compare the KM curves of the matched patients. Note that
weights may be needed if more than one RWD patient are matched to a treated
patient. For example, if subject i in the trial population is matched to .ni RWD
patients, then the .ni patients should contribute as one, and hence each patient has
weight .n−1

i .
Covariate balancing [9, 53] is also a weighting approach. For ATT estimands, the

weights are determined so that for RWD patients their weighted summary statistics
of key prognostic factors match those of trial patients. That is, we find weights .wi

such that

.

n∑
i=1

HiwiXi = X̄1, (7)

where .X̄1 is the mean of .Xi over the trial population. Then, the outcome data
are weighted with the same weights in the KM estimate [50]. The weights that
satisfy (7) are not unique. Hence, we can find the optimal weights that are closest
to the uniform weights .wi = 1/n0, where .n0 is the number of patients in RWD
depending on the distance to measure the closeness. One common option is the
squared distance, while another is the entropy .wi log(wi). The latter leads to an
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estimator also known as the matching-adjusted indirect comparison (MAIC) [39],
which is commonly used in health technology assessment. Also, the latter results in
unique non-negative weights and such weights that satisfy (7) may not exist if the
distributions of .Xi in the RWD and trial population do not overlap.

For changing the target population to the RWD population, one just needs to
switch the role of the two populations. If the target is the joint population of both,
the above procedures need some adaptation. For IPW, each patient is weighted by
the inverse of the propensity of being in the actual population, i.e., an RWD patient
is weighted by .1/pi and a trial patient .1/(1 − pi). For matching, a full matching
[10] that allows matching one trial patients to one or more RWD patients and vice
versa is needed. The matched data should also be properly weighted so that the
weighted population represents the target one. For covariate balancing, weights are
determined for all patients so that weighted summary statistics of both trial and
RWD populations all match those of the target population, that is,

.

n∑
i=1

HiwiXi =
n∑

i=1

(1 − Hi)wiXi = n−1
n∑

i=1

Xi. (8)

We have only described approaches for .�S(t). For other estimands such as
RMST, the difference in RMST .�R(t) can be estimated by weighted mean
difference using the same weights as above. The same approaches can be applied
for the estimation of HR, although the assumption of constant HR should hold in the
weighted population. Again we only describe the estimation of treatment effect in
the trial population here. To estimate HR with IPW, we fit a Cox model with .Di as
the only covariate and weight subjects with weights .wi = (1−p̂i)/p̂i for those with
.Hi = 1 and .wi = 1 for those with .Hi = 0. The covariate balancing approach can
also be applied in the same way as before. For using PSM, we match in the same way
as for the KM estimation and then fit the Cox model to the matched dataset. For each
method, one should also check the proportional hazard assumption by the weighted
or matched Kaplan–Meier curves. Note that for PSM adjustment, one may have the
choice of stratifying by matched pair or not. As Austin [4] pointed out, stratification
changes the target estimand, although it may gain some power of hypothesis testing.
Therefore, he suggests estimating the HR unstratified, while using stratification for
hypothesis testing.

Some theoretical issues dealing with censoring and asymptotic properties can be
avoided by considering discrete survival time. With this setting, TTE is converted
into longitudinal data with survival and censoring times represented by indicators
at discrete time points, which fits our assumption of integer t , and hence a wide
range of methods for causal inference for longitudinal data can be applied. For
example, one can define the hazard and model it at each time point. In more complex
situations, a general framework using IPW and g-formula to deal with complex data
including competing risks has also been developed [51]. This approach models the
events at time .t + 1, given the information upon time t , and then uses either IPW or
g-formula to adjust time-varying confounders.
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4 The Selection of Time Zero

The starting time or time zero is key to defining the estimand for survival analyses.
Although in many situations its selection is straightforward, it could be a real
challenge for using TTE RWD (or simply RWD). The following hypothetical
example illustrates the difficulty it involves. Suppose that we compare a test
treatment in a clinical trial with control treatments (e.g., the standard of care (SoC),
which is nonspecific and may consist of multiple treatments) in a disease (e.g.,
cancer) registry. Similar scenarios can be found in chronic diseases (e.g., type
II diabetes and resistant hypertension) for which multiple treatment options are
available depending on the progress of the disease. Table 1 shows hypothetical
patient records and Fig. 1 presents some examples (see below) graphically. For
example, trial patient 1 was diagnosed and treated with control A at day 1 and then
switched to control C on day 30. He/she was randomized on day 75, and the trial
treatment T started on day 90. The time of randomization could also be the time
of enrollment in a single-armed trial. In this scenario, there are two issues with
time zero selection. First, if the SoC consists of all controls A,B, C, and D, how
should time zero be set for the SoC for registry patients? Second, even if our control
treatment is specific; e.g., B, so we may take the start of first dose of B (here, 30
and 120 days for the two RWD patients) as the time zero, since the waiting period
between randomization and treatment start (e.g., day 75 to day 90 for RWD patient
1) has no counterpart in RWD, how should we treat them, as treated or untreated
with the trial treatment?

Here, we follow the approach of emulating the trial [12], that is, to make the real-
world setting as similar as the trial as possible. We will first consider the waiting
period issue since it closely relates to the classical immortal time bias [41] with
extensive research work done on how to deal with it. There are multiple ways, but
none is prefect: (1) excluding it, so time zero is the time of trial treatment start (hence
trial patient 1 starts from day 90 rather than day 75), (2) including it, so time zero
is the time of randomization, and (3) including it but counting it not under the trial
treatment. For (3), a time-varying Cox model approach has been proposed. These
approaches change the estimand of the trial, e.g., (1) estimates the ITT estimand
and (2) the as-treated one. An approach similar to the trial emulation approach

Table 1 A hypothetical dataset for trial and RWD patients

Randomization or treatment start and change/days since diagnosis

Source ID 1 2 3 4

Trial 1 Control A/1 Control C/30 Randomization/75 Trial treatment/90

Trial 2 Control A/1 Randomization/45 Trial treatment/60 Control C/100

. . .

RWD 1 Control A/1 Control B/30 Control C/80 Control D/100

RWD 2 Control C/1 Control A/60 Control B/120

. . .
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Fig. 1 Three different scenarios of determining time zero
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adds comparable waiting times to the RWD data so that they are comparable to
the trial data [52]. To this end, for each RWD patient, we sample such a period from
the waiting period distribution of trial patients with similar prognostic factors. For
example, RWD patient 1 matches to trial patient 2 by previous treatment (A only).
Hence, we assume a waiting time 15 days before B and set starting time 15, rather
than 30, as shown in Panel 1, Fig. 1. Another approach is landmarking [26]. It uses
a fixed landmark time as time zero for all patients. Although a simple approach, its
clinical relevance is often questionable.

The issue of waiting time has impact beyond the specific period; it may also
induce selection bias because more vulnerable patients in the trial are more likely
to become unsuitable to the treatment during the waiting time, and hence those
receiving the treatment may have better prognosis than those in the RWD, even if the
two populations were similar otherwise. To adjust for this bias, we have to assume
no unobserved factor that affects the probability (propensity) of receiving the trial
treatment. With this assumption, we can apply the approaches such as PS weighing
or matching described in the previous sections. For example, the prevalent new-
user cohort designs [42], although proposed for drug safety studies, can be adapted
for comparison between RWD and trial data. More details and alternatives will be
described later.

Next, we consider the situation of using nonspecific SoC as the control in which
there are multiple choices of time zero, that may lead to ambiguity, but may also
provide flexibility of making the best choice. For example, patients 1 and 2 in the
trial can be matched to patients 1 and 2 in the RWD, respectively, with time zero
of 80 and 60 by the number previous treatments and, approximately, days since
diagnosis (Panel 2, Fig. 1), while in the situation when the comparator is fixed,
previous disease/treatment history may be more difficult to match. Even with the
flexibility, adjusting for all individual factors, including previous treatment/disease
history, may be impossible. In this case, PS plays a key role here. Again, we consider
the trial as a part of the whole cohort, with some patients receiving an additional
option: the trial treatment in addition to the controls. Therefore, the PS can be
defined as the probability of receiving the trial treatment .qi = P(Trial treat.|Xi),
given all prognostic factors .Xi for patient i in the whole cohort. However, when
.Xi includes time since diagnosis or the number of lines of previous treatments,
the propensity depends on the choice of time zero. Hence, we need to define
.qik = P(Trial treat. after kth control|Xik), where .Xik includes all factors upon
the kth control. For example, for RWD patient 1, the days since diagnosis for
propensities .qi0, qi1, and .qi2 are 1, 30, and 80, respectively (Table 1).

Based on propensity .qiks, two approaches can be used. The first one matches
each trial patient with one or more RWD patients. For example, an optimal 1:1
match method is to find one match for each trial patient among all candidates to
minimize a distance between the PS values of the trial and RWD patients, with the
restriction that each RWD patient can only be used once. After matching, analysis
methods for PSM can be used. This matching approach was first proposed by Suissa
et al. [42] for drug safety studies.
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Another approach uses multiple starting points for each RWD patient, adjusted
by .qik as well as the correlation within patient [12]. For this purpose, .ni records are
generated with different time zeros for patient i. For example, as shown in Panel 3,
Fig. 1, for RWD patient 2, suppose he had an event on day 150, and the three records
have TTE 150, 90, and 30, respectively, with varying treatment history among them.
If HR is the estimand of interest (assuming its validity), the Wei, Lin, and Weissfeld
approach [49] can be used to take the correlation between, e.g., the three TTEs of
RWD patient 2 into account. For this purpose, one can use patient’s ID to specify
correlated records in SAS PROC PHREG or R-function coxph, weighted by .wik =
qik/(1 − qik) for all RWD patients and 1 for trial patients. Note the difference in
weights from those in Sect. 3 is due to the difference in the definition of the PS.
If the survival function is the estimand, the weighted KM approach [50] is easy
to use, although the CI band needs separate estimation. One practical approach is
bootstrapping which resamples at patient level and repeats the estimation B times.
Then, the .α/2 and 1-.α/2 quantiles of the B-bootstrap sample can be used as the CI
at level .α.

5 Pseudo-observations: An Approach for Easy Use of
Complex Causal Inference Methods

The pseudo-observation (PO) approach is a powerful tool to simplify causal
inference using TTE data. [2, 3]. The PO for the survival function of subject i is
estimated as

.Ŝd
i (t) = ndŜd(t) − (nd − 1)Ŝd

−i (t),

where .nd is the number of subjects with treatment .Di = d and .Ŝd (t) and .Ŝd
−i (t) are

the KM estimators using all .nd subjects and that leaving out subject i, respectively.
With POs, .Ŝd

i (t), we can derive POs of other estimands. For example, the PO for
RMST can be calculated as

.R̂d
i (t) =

∫ t

0
Ŝd

i (u)du. (9)

The calculation has been implemented in R-package pseudo [20] and is very easy
to use. Although covariate-dependent censoring can be adjusted by IPCW for POs
[29], pseudo does not implement it.

The asymptotic properties of the PO have been examined in [8, 28]. They showed
that, with large sample size,

.E(Ŝd
i (t)|Xi) ≈ Sd(t |Xi) (10)
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Hence, .Ŝd
i (t) can be considered as a measure of the counterfactual survival rate at

t , for subject i, had (s)he received treatment d. Therefore, general approaches for
the estimation of mean difference (2) can be used for .�S(t) and .�R(t). We again
consider using RWD as external control to estimate the ATT in survival rate. As
discussed, the key step is to estimate .S0(t) using RWD. For example, with .pi ≡
P(Hi = 1|Xi ), the IPW estimator [3] is

.n−1
1

n∑
i=1

Hi(1 − p̂i)Ŝ
0
i (t)

p̂i

, (11)

where .Ŝ0
i (t) is the PO of subject i in RWD and .p̂i is an estimate of .pi . The same

approach can be used for matched or stratified population, with weights determined
by the number of matched or stratified patients.

The PO approach can also be used for direct adjustment. For the outcome model
for POs, the Cox model can be converted to a GLM with the complementary log–log
link function: .g(x) = log(− log(x)) [2]:

.g−1(E(Ŝd
i (t)|Xi)) ≈ βd(t) + XT

i βd , (12)

where .βd(t) = − ∫ t

0 hd
0(u)du is to be estimated as an unknown parameter. This

model can be used to estimate .βd in the Cox model for adjustment.
The above model can be used to adjust for .Xi for using RWD to estimate .S0(t)

in an ATT estimand. First, we calculate .Ŝ0
i (t) for each i in RWD and fit model (12).

Then, a direct adjustment estimator is

.n−1
1

n∑
i=1

(1 − Hi)μ̂
0
i , (13)

where .μ̂0
i = exp(− exp(β̂0(t) + XT

i β̂
0
)) is an estimate of .E(S0

i (t)|Xi) for all trial
patients. Combining (11) and (13), one can construct a PO-based DR estimator [46]
which is valid when either the PS model or the outcome model is correct. The DR
estimator for .S0(t) is

.n−1
1

n∑
i=1

p̂−1
i [Hi(1 − p̂i)Ŝ

0
i (t) − (Hi − p̂i)μ̂

0
i ]. (14)

The model (12) can also be used for estimating the HR by marginal survival
function 1 for a specific population. For the estimation of HR in the trial population
using IPW, assuming it exists, we calculate .Sd

i (tk), d = 0, 1, at multiple time points
.t1, ..., tK , then fit the following model with log–log link function:

.g−1(E(Ŝd
i (tk)|Xi)) ≈ γ0(tk) + γ di (15)
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with weights .wi = 1 for all trial patients and .wi = (1 − p̂i)/p̂i for RWD patients.
This approach uses the same model as the HR estimation algorithm in Sect. 3, but
with IPW, rather than the outcome model, for adjustment.

6 Bayesian Approaches for Indirect Comparisons and
Augmenting an Internal Control Arm

This section gives a brief review on Bayesian methods for indirect comparisons
with RWD as the only control source, as well as using RWD to augment a small
trial with an internal control arm, with emphasis on the latter. The estimand can be,
e.g., .�S(t), defined in the trial population and hence is an ATT estimand. Note that
for both tasks, the key step is to use both control sources to estimate, e.g., .S0(t).
Bayesian borrowing approaches [7, 16, 44] are powerful tools to properly discount
the historical data and to mitigate the impact of insufficient adjustment.

First, we introduce the power prior in Bayesian modeling in a general form in the
setting of augmenting trial control arm. Let .D0 and .Dh denote data including .Ti, Ci ,
and .Xi from the internal and RWD control data, respectively, .θ denotes model
parameter, which may be, or contain, the estimand to be estimated, e.g., .S0(t), and
.L(θ;D) denote the likelihood function given data D. Our goal is to estimate .θ given
control data .D0 and .Dh. The power prior, conditional on .Dh, is formulated as

.π(θ |Dh, a0) ∝ L(θ |Dh)a0π0(θ), (16)

where .0 ≤ a0 ≤ 1 is the power prior (discount) parameter in the likelihood of
historical data, and .π0(θ) is the initial prior for .θ . The corresponding posterior
distribution can be written as

.π(θ |Dh,D0, a0) ∝ L(θ |D0)π(θ |Dh, a0) ∝ L(θ |D0)L(θ |Dh)a0π0(θ). (17)

The parameter .a0 allows us to control the contribution of historical data in (17).
The likelihood functions in (17) can be replaced by a partial likelihood function,

so the approaches can be applied to TTE analysis using a Cox regression model.
We can also use a quasi-likelihood for POs. The following is an example for
estimating .S0(t), hence .θ = S0(t), with POs .Ŝh

i , i = 1, ..., nh from RWD as .Dh

and .Ŝ0
i , i = 1, ..., n0 from the trial control arm as .D0. Also, we drop t in the POs to

simplify the notation. Although the POs are not exactly binary variables, we can use
the binomial distribution as a quasi-likelihood. Therefore, with a prior distribution
.S0(t) ∼ Beta(1, 1), an approximate posterior distribution is

.π(S0(t)|Dh,D0, a0) ∼ Beta(a0S
h· +S0· + 1, n0 +a0(nh −Sh· )−S0· + 1), (18)

where .S0· and .S1· are sums of .Ŝh
i and .Ŝ0

i , respectively, and .a0 controls the
contribution of the RWD data.
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The power parameter .a0 can be fixed so that the amount of information borrowed
from historical data is independent of the trial data. However, intuitively, one should
choose a small .a0 when the survival rates of the trial control arm and RWD are
very different and a large one when they are similar. This intuition leads to dynamic
borrowing that determines .a0 based on .S0· and .Sh· . A full Bayesian approach is
to include .a0 as a parameter with a prior distribution. Then, the joint posterior
distribution can be derived but often needs intensive computation. Empirical Bayes
approach is an alternative that estimates .a0 with a marginal likelihood function [7].
For binary outcomes, the marginal likelihood for .a0 is

.π(a0|Dh,D0) ∝ Beta(a0S
h· + S0· + 1, n0 + a0(nh − Sh· ) − S0· + 1)

Beta(a0Sh· + 1, a0(nh − S0· ) + 1)
. (19)

Then, we can use a grid search for the .a0 that maximizes (19). Intuitively, .a0 should
be high when .Sh· /nh and .S0· /n0 are similar. This is indeed so with (19), although
not explicitly in the formula. Dynamic borrowing should be used with care, due to
its outcome-dependent nature.

Till now, we have not considered the difference in prognostic factors between the
trial and external populations. If the difference in the outcome is mainly due to the
difference in these factors, one may determine .a0 based on the latter. For this, we
have an easy measure of similarity based on the PS. The determination of .a0 can be
combined with adjustment for these factors. To this end, the composite (also known
as weighted) likelihood function approach [43] allows subject level weights. The
RWD part (16) can be written as

.π(θ |Dh
i , a0, wi) ∝ L(θ |Dh

i )a0wi π0(θ), (20)

where .Dh
i represents the data of the ith patient in .Dh, and .wi is the corresponding

weight. As a frequentist approach, Wang et al. [45] propose to use stratification
based on the PS and, within stratum k, the weights are proportional to .rk: the
overlapping area between the PS distributions of RWD patients and internal control
patients within the stratum k [18]. A Bayesian approach [44] follows the same route,
but instead of using fixed .rk , it draws samples from a Dirichlet distribution with the
parameters proportional to .rk for the weight. In this way, the amount of borrowing
depends on the similarity after the adjustment (here, stratification). Other adjustment
methods such as weighting and balancing can also be used. For example, Sachdeva
et al. [37] utilize sampling importance resampling method based on propensity score
.pi and weight RWD patients with the odds ratio of the probability of being in the
study population .(1−pi)/pi . This approach has a close link to the IPW adjustment,
as both use the same weights.

The covariate adjustment approaches can be combined with dynamic borrowing.
Intuitively, if the adjustment can reduce the difference between the trial and RWD
controls, more can be borrowed. For example, we can adjust .Sh· with IPW weighting
first and then replace the .Sh· in (19) with the adjusted one to determine .a0. An
efficient adjustment should lead to a higher .a0. As for statistical inference of the
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causal estimand with borrowing, recent development on Bayesian methods without
a fully specified model, in particular, weighted/Bayesian bootstrap provides some
simple alternatives to the full Bayesian approaches [24]. Wang et al. [48] showed
that one can combine the estimation of .a0 together with IPW to obtain approximate
posterior distribution of the causal estimand using Bayesian bootstrap.

The Bayesian borrowing approaches generally do not control the frequentist
type I error. Due to the potential biases and extra variability induced by dynamic
borrowing, the type I error is inflated if the ordinary tests at a given level are applied.
Although it is possible to approximately control type I errors by recalibrating the test
under restrictive assumptions, in general, it is not possible to always gain power if
exact type I error control is needed [21].

7 On the Use of Aggregated RWD

In many situations, the RWD information is given in an aggregated form in publica-
tions, e.g., the KM curves or survival rates at given times. Meta-analysis or network
meta-analysis, when there are multiple sources of RWD with different treatments,
are well-developed methods for aggregated data analysis. Early work was not aimed
at causal inference and confounding adjustment, but recently research [30, 38] in
this direction is increasing. Although none of them is specifically for TTE analysis,
it is possible to adapt these methods for estimating causal estimands similarly as
described above, but with assumptions such as no unobserved confounding factors
at population level. Schnitzer et al. [38] give a systemic approach to causal inference
with meta-analyses.

We start from simple ones that can directly use the methods above and then
explore approaches adapted for using aggregated data. Suppose that the RWD
information includes a summary of TTE, e.g., a KM curve or an estimate of RMST,
the means of covariates .X̄, and that we would like to compare it with a trial. Then,
the covariate balancing method can be used directly to find weights to balance the
weighted covariates in the trial. If a collaborator owns the RWD but cannot transfer
individual data due to, e.g., data privacy concern, it is also possible to use PSM with
aggregated data with Fisher’s discriminant as a quasi-propensity score [47]. Both
approaches are based on the assumption that aggregated data such as the mean and
pooled variance of .Xi of a population determine the probability of the population
being the trial or RWD. If aggregated RWD are from publication, in general, RWD
are the only feasible target population, since one can only weight trial data to make
them similar to the RWD, not vice versa.

When there are multiple (.K > 1) RWD sources with mean covariates .X̄k , it
might be possible to target the trial population, depending on not only the population
level assumptions but also the distribution of .X̄k and the mean covariates of the
trial .X̄0. For using IPW, the key assumption is that the propensity of data source
.k, k = 0, ..., K , belonging to RWD depends only on .X̄k . For covariate balancing,
we can balance .X̄k between the trial and RWD by finding weights .wk so that
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.

K∑
k=1

wkX̄k = X̄0. (21)

For categorical .Xis, we balance the proportion of each category, which is the mean
of its indicator. This approach not only needs that balancing .X̄ks is sufficient but
also that .X̄0 is not outside of the distribution of .X̄ks of RWD, so that non-negative
.wks exist for (21).

The g-formula can also be used with a meta-regression model at the population
level. Let .R̂k be the RMST of the kth source, and we can fit model

.g(E(R̂k)|X̄k) = βT X̄k (22)

to the data from the k sources. Then, the RMST adjusted to the trial population can
be estimated as

.R̂ =
K∑

k=1

wkg
−1(β̂

T
X̄0), (23)

where .wk depends on the variance of .R̂k . Although we allow .g(.) being a nonlinear
model, the adjustment at population level may not be sufficient if .g(.) is highly
nonlinear. See [38] for details of population level assumptions.

If aggregated RWD data are used for augmenting the control arm of a trial, we
may also use dynamic Bayesian borrowing with a power prior, as described in
Sect. 6. The amount of borrowing will depend on the similarity of the (adjusted)
outcome (e.g., RMST) between the RWD and the control arm. As we have shown
with an example, in Sect. 6, the estimation of .a0 only uses aggregated data. This
approach provides an extra safeguard against unobserved confounding bias and
insufficient adjustment.

8 Other Topics

Several areas we have not touched upon include using RWD only for treatment
comparisons and evidence generalization from or to the RWD population. Here,
we provide a brief summary on other topics, in particular, evidence generalization,
closely related to the key approaches in previous sections.

Evidence generalization provides further insight into approaches above. Suppose
that we have evaluated the treatment effect based on RCT, so that the internal
validity is guaranteed. But a remaining question is how can the evidence be
generalized to a target population? This question is often asked by a payer or a
health authority when their population of concern, as described by RWD, is not
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represented in the trial. To generalize the RCT evidence to another population
involves population difference adjustment used throughout this chapter.

Some general rules for weighting and matching can be summarized as follows:
for IPW, (1) weighting by the inverse PS generalizes the effect out of the specific
population, (2) weighting by the PS generalizes the effect into a specific population.
Combining (1) and (2), we have (3) weighting by the inverse odds of PS generalizes
the effect in one population to the other. As an application of (3), the IPW approach
for indirect comparison to estimate ATT includes weighting RWD patients out of
the RWD population and into the trial population in one step, and hence the weight
needed is the inverse odds ratio of the PS of belonging to the RWD. For covariate
balancing by weighting, we weight the source population so that their weighted
summary of prognostic factors matches to that of the target population. Matching
approaches use the same principle; i.e., a patient in the target population is matched
to one or more patients in the source population.

All these rules depend on the assumption of overlapped populations. Empirically,
it means that the PS, .pi > 0, for patients in the source population for IPW, and that
for each .pi in the source population, there is at least one .pi′ that is considered similar
to .pi for PSM. For covariate balancing, the lack of overlap between the populations
is indicated by no solution to (7) with non-negative .wi .

The g-formula is another way of evidence generalization. For example, after

fitting model (12): .g−1(E(Ŝd
i (t)|Xi)) = β̂d

t + XT
i β̂

d
to POs of the source

population, we can use .β̂d
t and .β̂

d
to generalize the survival rate under treatment,

d, to any population represented with sample .Zi, i = 1, ..., m. The generalized
survival rate under treatment d is given by the g-formula

.m−1
m∑

i=1

g(β̂d
t + ZT

i β̂
d
). (24)

Unlike the other approaches that rely on overlapped populations, this approach
instead relies on a correct model (12).

These approaches not only apply directly to estimators such as (11) but also to
likelihood functions and estimating equations. In general, weighting an estimating
equation

.S(γ ) =
n∑

i=1

HiS(Ti,Di,Xi, Ci) = 0 (25)

by .wi = (1 − pi)/pi , we generalize the RWD to the trial population. When .S(.)

is the score function of Cox model, this approach gives the HR estimated by RWD
but generalized to the trial population. Note that a constant HR may hold in the
trial population, but not in the RWD population, and hence the proportional hazard
assumption should be checked after weighting.
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Another use of RWD is to estimate the effect of a treatment of interest using
RWD only. Even for treatment comparison within RWD, as treatments are rarely
randomized in RWD, population adjustment is necessary for treatment comparison.
Some of the above approaches apply directly by considering the subgroup of
patients treated with the test treatment as the trial and those treated with the
comparator as the RWD. However, it is important to specify the target population.
For example, if a trial is designed to compare treatment A vs C, while treatment
B and C have been used in RWD. To make a fair comparison, one may set the trial
population as the target and estimate the treatment effect of B vs C in this population
such that the B vs C and A vs C effects are comparable.

Some of these approaches can also be used to form a hypothetical estimand of
given treatment regimes. For example, if cancer patients in a disease registry start
with treatment A, with an option to switch to B upon disease progression, it is often
of interest to know the effect of continuing with treatment A in the population that
have switched to B. The PS-based and g-formula approaches can be used, but the
point to apply adjustment is not the start of treatments, but the time of event (e.g.,
disease progression) that may trigger the switching. The validity of these approaches
depends on the assumption of no unobserved confounding factor upon progression,
or that there is an outcome model to correctly predict post-progression survival,
none can be verified by the data.

Another important approach is targeted maximum likelihood estimation
(TMLE). It is a powerful method for causal inference [15], although initially not
developed as so. As it is based on a rather different framework than that this chapter
is based, we cannot cover it here and refer the reader to [15] and its references.

9 Summary and Areas of Further Researches

We have given a brief review of the challenges and approaches to using TTE RWD,
in particular, for the adjustment of confounding biases due to population differences.
The choice of causal estimand for TTE as well as time zero are difficult tasks
and should be dealt with care. Multiple approaches for causal inference can be
used. Among them, some are universal and outcome independent, such as IPW,
PSM, and covariate balancing. However, we should pay attention to using them
for specific estimand, e.g., the assumption of proportional hazard. Some other
approaches depend on outcome modeling such as the g-formula approach and hence
are TTE specific. The doubly robust approaches are a combination of the two, and
the use of POs makes the combination easy.

The challenges of using TTE RWD indicate further work is needed in multiple
areas. We only covered Bayesian approaches in the last section. Although the
majority of population adjustment methods are frequentist and are non-likelihood
based, recent development shows Bayesian adaptation of such approaches, such
as Bayesian IPW and DR estimators [36]. Approximate posterior sample can be
obtained via some simple approaches such as the Bayesian bootstrap. Further
simulation for evaluation as well as practical experiences on using them is needed.
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Dealing with missing data is another important topic that we did not cover here,
and it is a topic worth further research. See chapter “Assessment of Fit-for-Use
Real-World Data Sources and Applications” for details. Missing is more common in
real-world settings than in clinical trials, and hence its impact should be considered
carefully. Some issues may be more difficult to deal with for TTE analysis. Although
general approaches based on assumptions such as missing at random can still apply,
it may be more difficult to justify due to the limitation of data capture by RWD.

The use of POs allows simple implementation of causal inference approaches
to TTE data. To our best knowledge, comparison between PO-based and standard
survival analysis approaches has not been extensively performed, especially in RWD
settings. Multiple alternatives to HR have been proposed and increasingly used in
practice. As none of them is a single number measure, multiple estimands such as
survival rate or RMST differences at multiple time points may be needed. Although
methods of estimation and inference have been developed, further practical experi-
ence is needed for practical use of them.

In summary, there are multiple statistical challenges for using TTE RWD, which
also present opportunities for developing and implementing more advanced methods
in practice. This chapter only covered a small fraction of them, but we hope it
will motivate the reader to look into these important topics from practical and
methodological aspects.
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Sensitivity Analyses for Unmeasured
Confounding: This Is the Way

Douglas Faries

1 Introduction

Having the spotlight of healthcare decision makers focused on real-world evidence
(RWE) has helped raise broader awareness of long understood challenges in the
analysis of real-world data (RWD). For instance, the lack of randomization in RWD
brings the potential for bias into any comparisons between groups or interventions
of interest. In real-world settings, patients are assigned to treatment group based
on many factors including patient and physician preferences, access/insurance
pricing issues, patient history, baseline patient characteristics, severity of disease,
safety profile of treatments under consideration, and concomitant medications.
If any of these factors is also related to the outcomes of interest – such as
the cost of care, medication persistence, or other clinical outcomes – then such
variables are ‘confounders’. Any analyses that do not appropriately account for all
confounding variables will be biased. Commonly used methods such as propensity
score matching can account only for confounding variables that are included in
the analysis database, but any confounders not contained in the database are
‘unmeasured confounders’ and may result in a biased treatment effect estimate.

The lack of randomization is not the only issue healthcare decision makers have
with RWE. Data quality issues is another area of concern – as some RWD such as
healthcare claims data is collected for reasons other than research and undergoes
fewer validity checks and open to measurement biases. For these reasons, much of
the focus of the initial wave of FDA guidance on the use of RWE [1–3] has largely
focused on ensuring quality of the RWD is sufficient for the decisions being made
on the results (fit for purpose).
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Due to the complexity in identifying and accounting for potential biases in
RWE, it is easy for healthcare decision makers simply to dichotomize their view
of research quality based solely on the presence of randomization (randomized
controlled trials, or RCT, vs RWE) and distrust all RWE. The validity of RWE relies
on more assumptions than RCT research and without further insights a distrust of
RWE is an understandable position. However, as with RCT research, the quality
of RWE can vary widely based on study design, data and analytics quality, and the
question of interest. This raises the question of how researchers should react to RWE
and how can we tell which RWE is actionable and more robust?

Here we focus on the challenging case of comparative analyses based on RWD
and the issue of unmeasured confounding. Specifically, we deal with research
comparing outcomes between two (or more) groups of patients who initiate different
treatment strategies – hoping to make some form of causal inference regarding the
potential interventions based on real-world data.

2 Causal Inference and Key Assumptions

To better understand the problem and analytical solutions for unmeasured con-
founding, a brief refresher on causal inference is needed. We will follow the Rubin
Causal model (or Neyman–Rubin model of causal inference) – a framework based
on potential outcomes [4] developed across multiple articles by Donald Rubin [5,
6] and summarized by Holland [7]. In short, the potential outcome for each patient
(given a particular treatment) is the outcome that they would have had if they had
initiated that treatment. Of course, only one potential outcome is observed for each
patient and potential outcomes under treatments possibilities they did not take are
missing and hence called ‘counterfactual’. Formally, each subject i has two (or
more) potential outcomes, Y(T = 0) and Y(T = 1), denoting the outcomes the
patient would have had given they were assigned to Treatment 0 and Treatment
1, respectively (and ignoring a subscript i to denote the patient). The quantity
Y(T = 1) − Y(T = 0) denotes the individual causal treatment effect between two
treatment options. Of course, this quantity cannot be observed as a single patient
cannot follow two treatment regimens. However, we can estimate, under a set of
assumptions discussed below, the quantity E[Y(T = 1)] − E[Y(T = 0)] across a
population of patients. A typical goal is to then estimate the average causal effect
across an entire population – often referred to as average treatment effect (ATE). Of
course, one could be interested in other estimands, such as a treatment effect across
a different population such as the treated group, but for the purposes of this chapter,
we will not need this detail.

Over the past decades, propensity score-based analyses, such as propensity score
matching, have become the gold standard analytical method for causal inference
from RWD. For valid causal inference from such analyses, one must make several
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assumptions. The first is referred to as the stable unit treatment value assumption
(SUTVA). This states that the potential outcomes for any subject do not vary
with the treatment assigned to other subjects, and there are no different forms or
versions of each treatment level which would lead to different potential outcomes.
Second, one must also assume that the data is valid – that there are no systematic
errors in variables used to identify patient populations (such as algorithms based on
diagnostic codes in claims databases), covariate, and outcomes measured without
error. In many research settings, the SUTVA assumption is deemed acceptable as
treatments are well-defined interventions and there are limited interactions between
patients. Also, let us assume we have collected or identified a quality set of data and
assume the models we use in the analyses correctly describe the true data generation
process. One still must make additional key analytic assumptions for valid causal
inference:

1. Positivity: the probability a patient is assigned to either treatment group, given a
set of pretreatment covariates, is strictly between 0 and 1 (0 < P(T|X) < 1, for all
X).

2. Unconfoundedness: the assignment to treatment for each subject is independent
of the potential outcomes, given a set of pre-treatment covariates. In practice, it
means ‘no unmeasured confounders’. That is, data on all potential confounders
have been collected and used appropriately in the analysis.

If these assumptions hold, even in a non-randomized study, analyses such as
propensity score-based methods are able to provide unbiased estimate of the causal
effect of the estimand of interest.

Positivity can be assessed by a thorough examination of the baseline charac-
teristics (assuming no unmeasured confounders) and accounted for via trimming
(though this will impact the estimand through the target population of inference).
The correctness of statistical modeling is challenging, though recent use of machine
learning based concepts in causal analyses are providing a greater check of robust-
ness to this assumption [8]. However, producing convincing evidence surrounding
the potential impact of unmeasured confounding has proven to be a more complex
challenge.

The remainder of this chapter focuses on sensitivity analyses surrounding the
assumption of ‘no unmeasured confounders’. This is a core assumption and one can
never have absolute proof that there is no bias from unmeasured confounding in
RWE research. While many analytical challenges remain, growth in research and
programs for implementation of unmeasured confounding sensitivity analysis have
made this an area where we can now provide decision makers with information
on the robustness of any RWE. Such sensitivity analysis is critical for moving us
toward optimal use of RWE and better decision making from RWE in the healthcare
industry.
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3 Current State

Where do we stand today regarding unmeasured confounding analyses? Past work
has clearly demonstrated the need for better methods to address the potential
for unmeasured confounding. Researcher from the OMOP initiative demonstrated
that the operating characteristics of comparative RWE using commonly applied
methods may be severely impacted by unmeasured confounding bias. Schuemie
and colleagues [9] work estimated that over 50% of statistically significant findings
would be non-significant after appropriate calibration and negative controls were
found to produce significant findings in 18% of cases [10]. Despite this, the use
of quantitative sensitivity for unmeasured confounding has lagged [11], with many
publications mentioning this potential bias as a limitation but not providing evidence
on the robustness of the finding to the potential bias. A literature survey by Blum
et al. [12] found that about 75% of observational research failed to mention the
potential for unmeasured confounding.

However, this is slowly changing. Publications such as Zhang et al. [13]
demonstrate how use of such methods can change inferences from statistical
significance in one direction to statistical significance in the opposite direction
when information on a key unmeasured confounder is collected. Other publications
have utilized unmeasured confounding sensitivity analysis methods to show both
stronger robustness [14] as well as a lack of robustness [15, 16]. Development
of new methods such as the E-value, which is broadly applicable, along with a
cadre of R-packages have prepared this space for a transformation from ‘just state
unmeasured confounding as a limitation’ to ‘apply commonly used of quantitative
analyses following best practices in the literature’. We discuss several best practice
proposals below.

3.1 Some Notation

While it is likely that some level of unmeasured confounding exists in all non-
randomized research, the key challenge for an analyst is to understand whether
the unmeasured confounding is of sufficient strength to change the inference that
one is concluding from the RW-based comparative analysis. In Fig. 1a, we have
a directed acyclic graph (DAG) portraying a simple confounding situation. The
variable(s) X is a confounder as it influences treatment selection Z and outcome Y
(independent of Z). We assume in this case that X represents a baseline confounder
that is measured in the study. Standard bias adjustment methods – such as propensity
score matching – will remove a significant portion of any bias caused by X.

Now consider the DAG portrayed in Fig. 1b. This describes the more likely
scenario where in addition to the confounder X, we have a variable (or variables)
U which denote covariates NOT collected or available for use in the analysis for the
study. U is also a confounder as it influences both treatment selection and outcome.
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Fig. 1 Directed acyclic
graphs portraying standard
confounding (graph a) and
both measured and
unmeasured confounding
(graph b)

X

Y

Z

X

YZ

U
a b

In the scenario of Fig. 1b, standard analyses such as propensity score matching will
be biased by some unknown amount. How much bias the analysis contains is driven
by two factors (denoted by the two arrows extending from U in the DAG): (1) the
strength of the influence of U on Z and (2) the strength of influence of U on Y.
These two factors are the key quantities in sensitivity analysis methods such as the
E-value, rule out, and simulation-based approaches discussed below.

Of course, the situation could be more complex as U and X could be related.
However, for most sensitivity analysis approaches, we will make the simplifying
assumption of independence of X andU. While technically this is unlikely to be true,
we can simply conceptualizeU as denoting the remaining impact of the unmeasured
confounding not captured through any relationship with measured covariates X.

4 Methods for Unmeasured Confounding Sensitivity
Analyses

Three literature reviews [17–19] summarized the various methodology available
for sensitivity analysis for unmeasured confounding. One challenge in selecting
a method or comparing between methods is due to the simple fact that many
methods apply only in specific settings. That is, the applicability of each method
depends on the type of information available on the unmeasured confounder.
Scenarios include those where there is no additional information on unmeasured
confounding – one may not even have an idea of what the unmeasured con-
founder may be. Alternatively, one may be able to identify a specific unmeasured
confounder and information about the strength of confounding (relationship to
treatment selection and/or relationship to outcome) is available externally (patient-
level data or summary-level information from patients other than those in the current
research dataset). Lastly, a researcher may be able to identify a specific unmeasured
confounder and information about the strength of confounding can be obtained
internally – that is, information on the unmeasured confounder can be obtained from
a subset of the patients in the current study via linking, surveys, chart reviews, or
some other method. For this reason, there is a noted lack of comparisons of operating
characteristics between available methods in the literature.

The Zhang et al. review article [19] provided an overview of available methods
stratified by the type of information on the unmeasured confounder necessary for
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None External Internal

Information on Unmeasured Confounder

Plausibility Methods
• E-value
• Simulation Framework
• Negative Controls
• Empirical Calibration
• …
Adjustment Methods
• Instrumental Variable
• Difference in Difference
• Regression Discontinuity
• …

Plausibility Methods
• Rosenbaum sensitivity
• Rosenbaum & Rubin

Sensitivity
• E-value
• Simulation-Based

Adjustment Methods
• Bayes Twin Regression
• Propensity Calibra�on

Plausibility Methods
• (Same list as other 

scenarios)

Adjustment Methods
• Bayes Twin Regression
• Propensity Calibra�on
• Multiple Imputation

Fig. 2 Overview of methods for sensitivity analysis for unmeasured confounding

implementation. Figure 2 is an adaptation of that work – updated to include select
publications since 2018 – and with the three columns representing the types of
available information (None, External, Internal).

A second differentiator (incorporated into Fig. 2) among existing methods is that
some simply provide bounds for how much of an impact unmeasured confounders
could have (plausibility methods) and some provide treatment effect estimates
adjusted for an unmeasured confounder (adjustment methods). In the former case,
the goal is often to understand how much confounding would be required to change
inferences – such as from an observed statistically significant finding to a non-
significant result. This is the case with the Rule Out [20] and E-value [21–23]
approaches. Conceptually, if the amount of confounding required to produce the
observed effect is very high, then the observed result is considered more robust than
in scenarios where it is low.

In the latter case (adjustment methods), as with propensity score calibration
or Bayesian twin regression modeling, one uses additional information about the
unmeasured confounder to adjust the treatment effect estimate. This additional
information makes it possible to directly estimate the impact of the confounding
and provide greater amount of information on the robustness of the RWE. For
instance, Zhang et al. [13] provided an example of gathering external information
to re-analyze a claims base analysis where baseline BMD was a known unmeasured
confounder. They utilized data on BMD from a prospective observational study, the
literature (information on the relationship between BMD and fracture rates), and
survey data all incorporated into Bayesian regression models to produce a treatment
effect estimate adjusted for BMD information. Similarly, Faries et al. [14] obtained
internal information on HbA1c values – considered to be a potential unmeasured
confounder – for a subset of patients from a linked file to supplement a claims-
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based comparative analysis of costs of care. They demonstrated the use of Bayesian
modeling, multiple imputation, and propensity score calibration to provide adjusted
treatment effect estimates.

5 Advances in Broadly Applicable Methods

Since the publication of the review articles [17–19], several additional promising
methods have been put forward that are broadly applicable requiring no knowledge
of specific unmeasured confounders. First, VanderWeele and colleagues, in a series
of publications, put forth the notion of the E-value, or ‘evidence for causality’
[21–23]. The E-value is defined by VanderWeele as ‘ . . . the minimum strength
of association on the risk ratio scale that an unmeasured confounder would
need to have with both the treatment and the outcome to fully explain away a
specific treatment-outcome association, conditional on the measured covariates’.
The strength of the impact of the unmeasured confounder is based on the two
correlations discussed in Fig. 1: the influence of the unmeasured confounder on the
treatment selection and on the outcome of interest. The strengths of this approach
include its simplicity and broad applicability. The E-value can be computed even
without identifying a specific known unmeasured confounder (thus applies in any
of the settings of Fig. 2). The approach makes the simplifying assumption that the
relationship of the unmeasured confounder on the treatment and on the outcome
is the same. This allows the result to be a single number statistic. Calculations are
easily implemented in R-package ‘E-value’ [24] and the strength of confounding
is presented on a risk ratio scale. Without the simplifying assumption of equal
relationships mentioned above, one can no longer compute a single summary
statistic but the same concepts can be achieved through contour or other plots as
outlined later in this work.

For a risk ratio outcome, RR > 1 (take the inverse if RR < 1) the E-value is
calculated as .Evalue = RR + √

RR · (RR − 1) , where RR is the observed RR.
Approximations are available if the outcome is based on a continuous, odds ratio,
or hazard ratio scale. Typically, researchers will be interested not just in what
degree of confounding would account for the observed treatment effect, but what
strength of confounding would reverse/render insignificant the inference drawn
from the analysis. Thus, it is recommended that one also compute an E-value for the
lower confidence limit of the treatment effect (assuming a statistically significant
finding where a higher value is greater effect). This would provide the amount of
confounding necessary to eliminate the statistical significance of the finding and is
helpful for establishing the robustness of the observed effect.

What is a sufficiently high E-value to claim robustness? VanderWeel and
Mather [23] note there are no fixed ‘cut off’ scores for interpretation as what
is considered robust and that the decision is context dependent. Of course, the
observed effect size drives the size of the E-value. However, in some settings
such as analyses from healthcare claims databases, the analysis may be missing
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known strong confounders. In other cases, a researcher may have had the ability
to do extensive prospective data collection and conducting research in a field
with multiple prior studies and well-established knowledge on factors driving the
outcome and treatment selection. Thus, the possibility for stronger unmeasured
confounders can vary greatly, which affects the interpretation whether an observed
E-value is a signal of robustness or not. To help with interpretation of the E-value
(e.g. understanding of whether the E-value is signaling a robust finding or not), a
couple of recommendations are given. If an unmeasured confounder is identified and
external data from the literature or other studies is available (such as the strength of
relationship between the confounder and outcome or the confounder and treatment
selection), this can greatly help the interpretation of the E-value. While one has
to address potential issues with transportability when using information from other
data sources, this can provide strong evidence regarding the expected direction and
strength of confounding. If an unmeasured confounder has not been identified or no
information is available, one can compare the E-value to the strength of confounding
from the strongest measured confounding variable. In many research settings, a
strong potential confounder is collected and used in the analysis, so one can compare
the strength of this confounder to the E-value. If the E-value is larger, then this is
evidence for robustness as any unmeasured confounding would need to be stronger
than the strongest known confounders in order to change inferences from the results.

A second recent promising and broadly applicable method is the Simulation
Framework [25, 26]. Following the notation of Dorie et al. [25], we introduce the
following formulas:

Y | X,U,Z ∼ N
(
βXy + ζ yU + τZ, σ 2

Y

)

Z | X,U ∼ Bernoulli
(
�

(
βXZ + ζZU

))

U ∼ Bernoulli
(
πy

)

where Y is the outcome, X a set of measured covariates, U a single unmeasured
confounder, Z denoting a binary treatment option, and with Φ denoting the standard
normal cumulative distribution function. Y depends upon the confounders X and U
along with treatment Z, while of course the potentially biased analysis has proceeded
without information onU. AsU is a confounder, treatment also depends upon X and
U. For simplification, U is assumed to be a binary variable. The concept behind the
simulation-based approach is to first specify a grid of plausible values for ζ y and
ζ Z which characterize the level of strength of the unknown confounder (again think
back to the drivers of the strength of unmeasured confounding in Fig. 1b). Given
each specified pair of values for ζ y and ζ Z , one then can sample values of U from
the distribution of U conditional on the observed data and conduct analyses as if U
were a measured covariate. They derived the conditional distribution for U|Z, Y, X,
and thus sampling is consistent with the observed data Z, Y, and X. For each pair
of values of ζ y and ζ Z one then generates an average treatment effect adjusting for
the assumed level of confounding, using the same scale and models as for the actual
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data analyses. Results are presented graphically in a contour plot (as discussed later).
This is implemented in the R-package ‘treatSens’.

This simulation approach provides several advantages. First, the confounding
and results are provided on the same scale as the original analysis (no need to
transform to a RR scale). It also provides adjusted treatment effect estimates for
any combination of the two driving factors from Fig. 1 (a) strength of relationship
between U and Z (b) strength of relationship between U and Y. Of course, the result
is presented either in a table or graphical format (contour plot) and is no longer
represented by a single summary statistic as is the E-value. Like the E-value this
approach can be applied in all scenarios – even if a specific unmeasured confounder
is not identified. However, in the case where a specific unmeasured confounder is
identified and external information is available, one can also use this approach to
generate a treatment effect adjusted for the unmeasured confounder.

A third recent approach of note is the work of Cinelli and Hazlett [11]. They
expand on the omitted variables framework (as also in [25]) and utilize the partial R2

statistic, which is available from standard software output, to describe the strength
of evidence. They propose the Robustness Coefficient, RVq, as an alternative to the
E-value. This is defined as the strength of the relationship between the unmeasured
confounder and both treatment and outcome needed to reduce the treatment effect
by 100 × q% (to eliminate the treatment effect altogether we would select q = 1).
As with the E-value, both relationships are assumed to be equal, here based on a per-
centage of variance explained approach with .R2

Y∼U |X,Z = R2
Z∼U |X = RV q . The

Robustness Coefficient can be calculated as .RV q = 1
2

{√
f 4

q + f 2
q − f 2

q

}
,where

fq = q|fY~Z | X| is the partial Cohen’s f statistic (Cohen 1988) of the treatment with
the outcome times q, which is a proportion of reduction of the treatment effect.
Typically one selects q = 1 to represent the strength of confounding needed to
explain fully the observed treatment effect and the value of q such that the lower
confidence limit becomes zero. A high Robustness Coefficient (near 1) means that it
would take an unmeasured confounder that could explain almost all of the residual
variance in both the outcome and treatment models in order to change the inferences
from the study.

To visualize the impact of various levels of confounding on the treatment
effect estimate, they utilize contour plots. The X axis describes the strength of
relationship between unmeasured confounder and treatment using the partial R2

of the unmeasured confounder with treatment ( .R2
Z∼U |X). This is driven by the

imbalance between groups in the unmeasured confounder. The Y axis depicts the
strength of relationship between unmeasured confounder and outcome using the
partial R2 of the unmeasured confounder with outcome ( .R2

Y∼U |Z,X). The contour
plot (see Fig. 3 for a hypothetical example with an observed treatment difference
around 1.5) then displays the treatment effect estimate adjusted for an unmeasured
confounder with strength denoted on each axis. For example, an unmeasured
confounder would need to explain about 25% of the residual variation in both the
outcome and treatment models to move the estimated treatment effect to zero. These
plots can also denote the points at which the unmeasured confounding would be
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Fig. 3 Example unmeasured confounding sensitivity contour plot

strong enough to change inferences (calculations based on the lower CI instead
of the treatment effect), as well as denoting where either external information on
specific unmeasured confounders would fall on the plot and where strong measured
confounders fall on the plot.

This formulation offers another option of extreme confounding – where
researchers can assume that .R2

Y∼U |Z,X = 1 (extreme case where the unmeasured
confounder accounts for all of the residual variability) – and then assess how
strongly would a confounder have to be associated with treatment in order to
change inferences. This is helpful when researchers may have some knowledge
of the relationship between the unmeasured confounder and treatment but not
outcome. Also, to help researchers assess the plausibility of whether confounders
could exist, they propose quantifying the strength of evidence in terms of multiples
of the strength of an observed strong measured confounder. They note this approach
has benefits over bounding based on regression coefficients as in Carnegie et al. [26]
by demonstrating a characterization of Z and X that the previous approach would
fail to recognize as sufficient confounding to eliminate an observed effect.

6 Proposed Best Practice

More and more authors are urging for a systematic implementation of sensitivity
analyses for unmeasured confounding [11, 21, 27–29]. We are in full agreement
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with this. In fact, proposals appear to be zeroing in on a consensus of concepts
though not yet on specific methodology. VanderWeele and Ding [21], noting the
broad applicability and simplicity of the E-value, proposed it as a standard analysis
that could be completed alongside of every comparative analysis based on non-
randomized data.

Zhang, Stamey, and Mather [28] proposed a best practice flowchart in order
to guide researchers on how to perform sensitivity analyses for unmeasured
confounding. The proposal recommends that an E-value be the initial sensitivity
analyses for all comparative real-world studies as it applies across all research
settings. Then, one moves on to methods requiring additional information only if
necessary. While the details of the process are contained in Fig. 1 of their paper, at
a high level, the steps are as follows:

1. Compute the E-value for both the treatment effect estimate and the key confi-
dence interval limit in order to assess the strength any unmeasured confounder
would need to have in order to change inferences being made from the study. If
the E-value is larger than any plausible confounder, then stop.

2. If the unmeasured confounder of concern is a binary variable with known very
low or very high prevalence, then perform a Rule Out analysis. This is basically
a second assessment of plausibility to see if additional more complex work is
warranted.

3. If plausibility analyses fail to demonstrate robustness, then additional informa-
tion regarding the confounder will likely be necessary. Follow the guidance of
Zhang et al. [19] to select from among potential methods given the type of
information that can be gathered. For instance, if the strength of the relationship
of a known confounder with either the outcome or treatment choice is available
in the literature, then Bayesian Twin Regression modeling [14] could incorporate
the information and re-estimate the treatment effect.

Cinelli and Hazlett [11] propose a three-step process:

1. Compute the strength an unmeasured confounder would need to have (in terms
of influence on both treatment and outcome) to change inferences regarding the
causal effect estimate. They argue for the use of the partial R2 scale for the
strength of the confounding – as opposed the E-value or parameter estimates
as in other approaches – but the overarching concept is similar to the E-value.

2. Complete a worst-case scenario analysis to see if assuming unmeasured con-
founding accounted for all of the remaining variability in the outcome would
change inferences. The concept here is that in some cases, a researcher may be
able to demonstrate strong evidence for robustness if the above is true.

3. Help researchers assess whether the amount of confounding needed to alter
inferences is plausible in their setting. Cinelli and Hazlett [11] propose to
assess this relative to multiples of the strength of an existing strong measured
confounder.

While these approaches differ in specifics, the high-level concepts are similar.
Start with a broadly applicable summary statistic and graphical approach such as a
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contour plot. Apply plausibility techniques, extreme case examination, and draw on
external data if available. This conceptual approach should serve as a foundation for
standard best practices.

One aspect that has not received enough attention is the importance of quanti-
tative assessment of the potential for unmeasured confounding at the design stage
of the study. This was discussed by Girman et al. [29] and tools such as DAGs and
the E-value are beneficial at this stage. It is common that researchers think about
unmeasured confounding when they assess the appropriateness of the database
(if retrospective study) or variables to collect (if prospective study). However,
the DAG is a well-established tool that pictorially depicts your assumptions on
the relationships between factors – independent of the current data collection or
database at hand. This will help the process of identification of potential unmeasured
confounders.

Step 2 is the discussion of the expected direction and strength of unmeasured
confounders relative to the expected treatment effect. The E-value – based on
an expected or minimally clinically relevant treatment effect (as opposed to the
observed effect after conducting the analysis) – is a valuable tool at this point. If
the E-value is low relative to expected strength of unmeasured confounders, then it
is likely that the study will not lead to robust causal inference. This clearly points
to whether gathering additional information on unmeasured confounding – either
internally in the study design or externally through other studies – is likely to be
necessary for actionable RWE from the study. Fang et al. [30] proposed assessing
the potential size of bias from unmeasured confounding via the E-value prior to
the study. They then demonstrated the value of computing the sample size based
on not only the expected effect size but adjusting for potential uncertainty from
unmeasured confounding.

For critical decision making from RWE such as regulatory decisions, the step of
additional data gathering to ensure minimal impact of unmeasured confounding may
be necessary in some settings. In addition, quantitative bias analysis techniques [31]
are also valuable to assess concerns in the lack of quality of the data at this point,
demonstrating whether robust conclusions from such data are even possible.

It is also important to have carefully planned sensitivity analyses plan described
in the study protocol. This demonstrates that thought was put into accounting for as
much bias before data collection (e.g. through a DAG and plans for any necessary
internal or external data gathering) and assessing the potential for uncontrolled bias
after data collection. The plans laid out in both Zhang et al. [28] and in Cinelli
and Hazlett [11] are excellent approaches that should serve as the foundation for
standard practice moving forward. These begin with broadly applicable quantitative
measures that are directed at the core interpretation of the effect (the objective of the
study!) and how confident we are that the result should be incorporated into medical
decision making. Analysis for this has been made practical through the publishing
of R-packages: ‘E-value’, ‘treatSens’, and ‘Sensmaker’. It is less clear regarding
best practices when external information is necessary. The Bayesian framework
is well suited for incorporating information from multiple sources and could be
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extremely beneficial here. More work towards standardizing and implementation
tools for those approaches would benefit the field.

In addition to E-value, we believe the simulation based and partial R2 approaches
are potentially useful as initial sensitivity analyses. These methods apply broadly
(even if unmeasured confounder not identified), there is no need to transform
confounders to a risk ratio scale, and single graphic (contour plot) provides an
adjusted treatment effect for an array of possible confounders, not just assuming
the impact of unmeasured confounder on treatment and outcome is the same.

At its core, unmeasured confounding is a problem of missing data. There is no
better solution for missing data than to gather the data! While overly simplistic, this
does emphasize the value of gathering additional data which may be necessary to
provide higher level confidence in a RWE finding. When an unmeasured confounder
can be identified, a chart review, data linkage, survey, or any other means of
obtaining information on the confounder may be possible at least in a subset of data.
Using techniques such as multiple imputation or Bayesian regression modeling,
this data can provide strong evidence that the full sample findings are robust [14].
In cases where an unmeasured confounder cannot be identified, the challenge of
generating convincing additional data is tougher. However, data on other outcomes
and controls (empirical calibration [9, 10]) or prior data (prior rate ratio [32]) or
instrumental variables [15] are other approaches to providing additional evidence
when the standard E-value or RV or Simulation framework are insufficient.

7 Conclusions

No unmeasured confounding is a critical assumption for causal inference. For
reliable decision making based on RWE, researchers must address potential bias
resulting from the violation of this assumption in order to generate credible RWE.
New and broadly applicable quantitative approaches are available along with freely
available software for implementation. It is no longer acceptable to just state in
the discussion section of a publication that unmeasured confounding is a potential
limitation of the work. Prior surveys showing the lack of attention paid to this
potential bias are alarming. The field is demanding more and analysts now can
efficiently provide guidance on the robustness of any findings.

While we emphasize the availability of broadly applicable methods at this point,
it is acknowledged that gaps in research and uncertainty in best practices remain.
For instance, research and tools for implementation are needed for the scenarios
with longitudinal bias adjustment such as g-methods. Similarly, focusing on best
practices for personalized medicine causal inference analyses or the application of
external controls are also less developed.

We support recent efforts from researchers to establish structured best practices
for quantitatively evaluating the potential impact of unmeasured confounding. Such
efforts, combined with better planning at the design stage, will provide meaningful
information that will guide consumers of RWE toward better decision making. In
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the Disney Mandolorian series, the characters use the phrase ‘This is the way’ –
a saying that refers to agreement that their way of living is the right way. For
comparative analyses from non-randomized studies, ‘the way’ needs to include
addressing unmeasured confounding both at the design stage and with quantitative
sensitivity analysis during the analysis stage of the research. While research gaps
remain and best practices do change, statisticians now have sufficient tools and
understanding of assumptions to provide critical insight to help improve appropriate
use and decision making from RWE. ‘The way’ forward – to establishing better
quality RWE – includes a transformation where quantitative sensitivity analyses for
unmeasured confounding are a regular part of all comparative analysis based on
RWE. This will enhance decision making based on RWE and thus improve patient
outcomes.
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Sensitivity Analysis in the Analysis of
Real-World Data

Yixin Fang and Weili He

1 Introduction

ICH E9(R1) [1] defines estimand as “a precise description of the treatment effect
reflecting the clinical question posed by the trial objective. It summarises at a
population-level what the outcomes would be in the same patients under different
treatment conditions being compared.” In chapter “Key Considerations in Forming
Research Questions and Conducting Research in Real-World Setting”, we discuss
key considerations for forming sound research questions in real-world setting and
suggest that we can use estimand as the “touchstone” to test whether or not a
research question can be answered. For a research question, if an estimand reflecting
the question can be defined, then the question is answerable. If not, we may need to
enhance the causal identifiability assumptions or revise the PROTECT elements to
make the question answerable.

Figure 1 shows the flowchart of forming, revising, and answering a research
question in real-world setting. Figure 1 also shows the three sets of assumptions
behind the scene. These three sets of assumptions are (1) the set of causal
identifiability assumptions behind the causal model, (2) the set of intercurrent events
(ICE) assumptions behind the strategies of ICE handling, and (3) the set of statistical
assumptions behind the estimation process of the estimand.

As defined in ICH E9(R1), sensitivity analysis is “a series of analyses conducted
with the intent to explore the robustness of inferences from the main estimator
to deviations from its underlying modeling assumptions and limitations in the
data.” Figure 1 shows the anatomy of the “underlying modeling assumptions and
limitations,” where the underlying modeling assumptions are mainly coming from
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Fig. 1 The flowchart of forming, revising, and answering a research question in real-world setting,
and the three sets of assumptions in the defining and estimating an estimand

the three places numbered in the figure and the limitations are mainly coming from
the data quality and the external validity between the analysis set and the study
population. In this chapter, we discuss how to conduct sensitivity analysis of the
robustness of inferences from the main estimator to deviations from those three sets
of assumptions. Such sensitivity analysis findings reflect the internal validity of the
inferences from the main estimator.

The remaining of the chapter is organized as follows. In Sects. 2–4, we discuss
how to conduct sensitivity analysis of the robustness of inferences from the main
estimator to deviations from those three sets of assumptions, respectively. In Sect. 5,
we conclude with some discussion and an emphasis on the difference between
sensitivity analysis and supplemental analysis.

2 Sensitivity Analysis of Identifiability Assumptions

Different answerable research question is in need of different set of identifiability
assumptions. As pointed out in ICH E9(R1), “central questions for drug develop-
ment and licensing are to establish the existence, and to estimate the magnitude,
of treatment effects: how the outcome of treatment compares to what would have
happened to the same subjects under alternative treatment (i.e., had they not received
the treatment, or had they received a different treatment).”

We start with a simple but generic example with the following research question
in terms of the average treatment effect (ATE) of treatment .A = 1 compared to
the standard of care (SOC) .A = 0: how the outcome Y (continuous or binary) at
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time T after treatment initiation compares to what would have happened to the same
subjects of a defined population under .A = 0? This research question has all the five
PROTECT elements discussed in chapter “Key Considerations in Forming Research
Questions and Conducting Research in Real-World Setting”: (1) Population of the
subjects to whom the treatments would be applied; (2) Response/Outcome is Y ; (3)
Treatment/Exposure is A, (4) the abstract meaning of “C” element is counterfactual
thinking and the tangible meaning is that a covariate vector W will be used to adjust
for confounding, and (5) W and A are measured at baseline (treatment initiation)
and Y is measured at time T after baseline.

The counterfactual thinking plays an important role in forming the research and
defining the estimand of interest [2]. Let .Ya be the potential outcome if the subject is
treated by .A = a, .a = 0, 1. For each subject, only one of the two potential outcomes
is observed, and the other is counterfactual (i.e., what would have happened if the
same subject under alternative treatment). Under the following three identifiability
assumptions [3], the consistency assumption,

.Y = AY 1 + (1 − A)Y 0, (1)

the no-unmeasured confounder (NUC) assumption,

.Ya ⊥⊥ A|W, for a = 1, 2, (2)

and the positivity assumption,

.P(A = a|W = w) > 0, for a = 1, 2, and w with PW(w) > 0, (3)

where .PW is the probability distribution of W , we can define the following estimand
reflecting the research question,

.E(Y 1 − Y 0) = E{E(Y |A = 1,W) − E(Y |A = 0,W)} � θ. (4)

Assume that we construct an estimator .̂Θ by some method discussed in chap-
ters “Clinical Studies Leveraging Real-World Data Using Propensity Score-based
Methods” and “Recent Statistical Development for Comparative Effectiveness
Research Beyond Propensity-Score Methods” of this book, obtain an analysis set
.D = {(Wi,Ai, Yi), i = 1, · · · , n}, and produce an estimate .̂θ = ̂Θ(D). Now we
want to explore the robustness of inferences from .̂θ to deviations from the three
identifiability assumptions.

2.1 Sensitivity Analysis of the Consistency Assumption

The consistency assumption assumes that: if .A = 1, then .Y = Y 1; if .A = 0, then
.Y = Y 0. If the consistency assumption is violated, then for some subjects with
.A = 1, .Y �= Y 1, while for some subjects .A = 0, .Y �= Y 0. This violation may come
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from the discrepancy between the observed A and the true treatment .A∗ received by
some subjects.

In clinical trials, the intervention variable is explicitly defined in a pre-specified
protocol, data on the variable are well collected according to the protocol, and
any deviations from the protocol are clearly documented. However, in non-
interventional real-world setting, the data on the treatment/exposure variable is
usually captured from real-world data. Therefore, there are several ambiguities,
including potential ambiguities in codes that allow identification of the specific
medical products, about whether or not the duration can be ascertained, and
about whether or not the data on compliance and concomitant medication. These
ambiguities cause the discrepancy between A and .A∗.

For example, there are six Pancreatic Enzyme Replacement Therapy (PERT)
medications that have been approved by the Food and Drug Administration (FDA)
to treat exocrine pancreatic insufficiency (EPI). Therefore, one may define A as
taking one given PERT medication (i.e., A is 7-level categorical variables), while
the other may define A as taking any of six PERT medications (i.e., A is a binary
variable). In another example, claims data are used to capture data on one treatment
for hepatitis C virus (HCV) and a pre-specified compliance threshold is used to
distinguish .A = 1 vs. .A = 0. Therefore, different compliance thresholds (say, at
least one week treatment, or at least two weeks treatment) lead to different versions
of A.

We can conduct sensitivity analysis to explore the robustness of the inference
due to these potential ambiguities in defining A. For the selected definition of A, we
obtain estimate .̂θ along with its statistical inferences (say, 95% confidence interval
estimate and p-value). Meanwhile, we provide some alternative definitions of A,
denoted as .A(1), · · · , A(k), producing the corresponding estimates, .̂θ(1), · · · ,̂θ(k),
along with their statistical inferences.

2.2 Sensitivity Analysis of the NUC Assumption

In randomized controlled clinical trials (RCTs), the randomization technique
ensures the NUC assumption is automatically satisfied, where W is empty for
unstratified RCTs and contains stratification factors for stratified RCTs.

However, in non-randomized real-world setting, we need to check the validity of
the NUC assumption. As defined in FDA guidance document [4], a confounder is
a “variable that can be used to decrease confounding bias when properly adjusted
for in an analysis.” We can apply the backdoor criterion [5] to identify a confounder
vector W such that the NUC assumption is satisfied. In a directed acyclic graph
(DAG), there may be several versions of W such that the NUC assumption is
satisfied. We attempt to select a version of W such that all the confounders in W

are measured.
If every version of W includes some unmeasured confounder(s), there are two

ways to proceed. One way is to look for other data sources to collect some of
these unmeasured confounders such that we are able to identify a version of W
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consisting of only measured confounders. Chapter “Key Variables Ascertainment
and Validation in RWSetting” of this book discusses the key variables ascertainment
and validation in real-world setting, including ascertainment of covariates (con-
founders and effect modifiers). The other way is to select one version of W , exclude
those unmeasured confounders from W , and then conduct sensitivity analysis to
explore the robustness of the inference if there is unmeasured confounding. Chapter
“Sensitivity Analyses for Unmeasured Confounding: This Is the Way” of this book
focuses on conducting sensitivity analysis for unmeasured confounding.

For the purpose of completeness, we briefly review one recent method for
conducting sensitivity analysis of unmeasured confounding, the E-value [6]. Let .̂θ

be the estimate of the estimand .θ under the NUC assumption, U be an unmeasured
confounder, and .̂θ(U) be the estimate with the presence of U . As the association
of U with both A and Y increases, the estimated treatment effect .̂θ(U) becomes
weaker. The E-value is the minimum strength of association that an unmeasured
confounder U would need to have with both the exposure A and the outcome
Y , conditional on the measured confounders W , to fully explain away a specific
exposure-outcome association .̂θ(U). The bigger E-value the more robust of the
inference based on .̂θ . Formulas of E-value for binary, continuous, and time-to-event
outcomes have been developed along with R package “EValue” [6].

2.3 Sensitivity Analysis of the Positivity Assumption

The positivity assumption requires sufficient variability in treatment or exposure
assignment within strata of confounders. Positivity violations can arise for two
reasons [7]. First, it may be impossible in the population level for subjects with
certain covariate values to receive a given exposure of interest. For example, the
investigative treatment .A = 1 is only available to female and the SOC .A = 0 is
available to both male and female, leading to .P(A = 1|male) = 0, which violates
the positivity assumption. If the positivity violation is due to this reason, we may
redefine the estimand by restricting the population to some subpopulation or by
restricting the treatment levels that do not result in positivity violation. This is one
topic that has been discussed in chapter “Key Considerations in Forming Research
Questions and Conducting Research in Real-World Setting”, how to make a research
question answerable.

Second, violations or near violations of the positivity assumption can arise in
finite samples due to chance, in particular, in the settings where the sample size
is small or the set of covariates is large. In this section, we discuss how to conduct
sensitivity analysis to explore the robustness of the inference when there is violation
or near violation due to this reason. As in [7], here we use the term “sparsity” to refer
to positivity violations or near violations.

Continue the example with data .D = {(Wi,Ai, Yi), i = 1, · · · , n}. Let

.g(a|w) = P(A = a|W = w), (5)
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Fig. 2 Positivity violations happen in the left-most bar and in the two bars on the right-most, while
one near violation happens on the second left-most bar

where .a = 1, 0, be the propensity score function, which is estimated by .̂g(a|w)

based on the data. Let

.Q(a,w) = E(Y |A = a,W = w), (6)

be the regression function for either binary or continuous outcome, which is
estimated by .̂Q(a,w) based on the data.

Figure 2 shows an example of sparsity. Let .S = {(Wsi, Asi, Ysi), i = 1, · · · ,m}
consist of those of subjects with propensity scores at two extreme ends, say, with
.̂g(1|Wi) > 1− 0.05 or .̂g(1|Wi) < 0.05, where .0.05 is some pre-specified threshold
to be used to truncate the propensity scores. Since the robustness to the positivity
violations is estimator-specific, let us discuss the sparsity-triggered behaviors of two
basic classes estimators reviewed in [8]: one class of estimators constructed using
the standardization approach and the other class of estimators constructed using the
weighting approach.

One estimator constructed by the standardization approach is maximum likeli-
hood estimator (MLE),

.̂θMLE = 1

n

n
∑

i=1

{

̂Q(1,Wi) − ̂Q(0,Wi)
}

. (7)

For each subject in .S , one of the two estimates in the summand of the above formula,
.̂Q(1,Wi) and .̂Q(0,Wi), is not supported by data due to sparsity and therefore
requires extrapolation, resulting in potential bias in .̂θMLE .

One estimator constructed by the weighting approach is inverse probability of
treatment-weighted estimator (IPTW),
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.̂θIPT W = 1

n

n
∑

i=1

{

Ai

ĝ(1|Wi)
Yi − 1 − Ai

ĝ(0|Wi)
Yi

}

. (8)

For each subject in .S , one of the two weights in the summand of the above formula,
.1/ĝ(0|Wi) and .1/ĝ(1|Wi), is very large due to sparsity, resulting in large variance
of .̂θIPT W . Using some threshold, such as 0.05 displayed in Fig. 2, to truncate the
denominators of the weights can reduce the variance but can increase the bias in
.̂θIPT W .

Doubly robust estimators including Augmented IPTW (AIPTW, [3]) and Tar-
geted MLE (TMLE, [7]) combine the strength of the above two approaches. Doubly
robust estimators are consistent if either (1) .̂g is a consistent estimator of g and g

satisfies positivity or (2) .̂Q is a consistent estimator of Q and a truncated version of
.̂g converges to a distribution .g∗ that satisfies positivity. However, the potential bias
due to sparsity still remains due to the implicit extrapolation in .̂Q if some propensity
truncation is applied.

After we think through the source of potential bias due to sparsity, we can add
some disturbance to explore the robustness. If the bigger value in continuous Y

means better performance or 1 in binary Y means success, then a positive estimate
.̂θ indicates a favorable treatment effect. Hence, we subtract a positive disturbance
.δ from .̂Q(1,Wi) − ̂Q(0,Wi) for each subject in .S to manifest the unfavorable
extrapolation bias, leading to a disturbed estimate

.̂θ(δ) = ̂θ − mδ/n. (9)

We may solve .δ0 such that .̂θ(δ0) = 0, which is similar to E-value or the tipping-
point method in the literature of missing data. The bigger .δ0 the more robust to
sparsity. If .δ0 is unrealistically large, we may conclude the finding is trustful even
under positivity violations.

3 Sensitivity Analysis of ICE Assumptions

We refer to the assumptions behind the ICH E9(R1) strategies for ICE handling as
the ICE assumptions. The literature on sensitivity analysis in missing data handling
is rich, but the literature on sensitivity analysis in ICE handling is lacking. The ICH
E9(R1) covers both estimand and sensitivity analysis. Although the ICH E9(R1)
provides the definition and emphasizes the importance of sensitivity analysis, it
does not explicitly address how to conduct sensitivity analysis to the ways of ICE
handling. As far as we know, Chapter 16 of book “Estimands, Estimators, and
Sensitivity Analysis in Clinical Trials” [9] is the only literature on how to conduct
sensitivity analysis to the ways of ICE handling. In this section, we follow their
thoughts to discuss the ICE assumptions and how to conduct sensitivity analysis of
the ICE assumptions.
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We start with a brief review of two basic classes of methods for sensitivity
analysis in missing data handling, which we can adopt for sensitivity analysis in ICE
handling. The first class includes the delta adjustment, along with the tipping-point
method [10]. The second class includes pattern-mixture modeling, in particular, the
reference-based imputation methods [10]. In practice, we often consider the analysis
under the missing at random (MAR) assumption as the main analysis, and then
select a sensitivity analysis method to explore the robustness of the inference when
the MAR assumption is violated, that is, under the missing not at random (MNAR)
assumption.

The multiple imputation procedure (MI) [11] is often used for analysis under
the MAR assumption. Consider traditional MI using a regression on residuals. Each
subject’s deviation from their respective arm (e.g., the mean of their respective arm)
prior to the missing data occurrence is used to impute the missing residuals. Under
MAR, imputed values are computed based on the imputed residuals plus the mean
of the arm to which the subject is initially in. Both the delta adjustment and the
reference-based imputation can be implemented by SAS procedure “PROC MI.”

In delta adjustment, a sensitivity parameter called delta (.δ) is added to the
imputation model, with .δ = 0 associated with the MAR assumption. We increase
.δ from zero across a range of values that progressively deviates further from the
MAR assumption to explore the robustness of the inference. If the treatment effect
remains significant across plausible deviations from the MAR assumption, we can
conclude that the inference from the primary analysis is robust. This comes with
the tipping-point method, which determines the tipping-point .δ0 when the inference
turns into non-significance from significance. The bigger .δ0 means the more robust
inference based on the primary analysis. The use of delta adjustment is not limited to
assessing deviations from the MAR assumption. It can also be used in combination
with MI to assess departures from any specific assumption, including any certain
MNAR assumption or any certain ICE assumption.

Reference-based imputation is a specific version of pattern-mixture modeling, in
which the control or reference arm (the arm with .A = 0, the SOC arm, the external
control arm, etc.) is used to envision some hypothetical scenarios or patterns under
the MNAR assumption. Two variants of reference-based imputation are jump-to-
reference (J2R) imputation and copy-reference (CR) imputation. In J2R imputation,
the imputed values for patients in the investigative treatment arm (the arm with
.A = 1) takes on the attributes of the reference arm immediately after missing data
occur. In CR imputation, the investigative treatment effect that has been obtained
up to the time when missing data occur gradually diminishes after missing data
occur, in accordance with the correlation structure implied by the imputation model.
Recently, a wide class of imputation models including CR and J2R as two extreme
ends has been proposed [12].

Let .Yt be outcome variable measured at visit t , where .t = 1, · · · , T , and .t = 0
be the baseline. Assume that the outcome at the final visit T , .YT , is defined as
the primary endpoint. Define .Y t = (Y1, · · · , Yt )

′, the vector of all outcomes up
to visit t , .t = 1, · · · , T , and .Y = (Y1, · · · , YT )′, the vector of the outcomes at
all visits. Let L be the random variable denoting the last visit prior to treatment
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Table 1 Some examples of treatment sequences and ICEs

Sequence Explanation

.1 = rep(1, T ) Initially treated by 1 and through

.0 = rep(0, T ) Initially treated by 0 and through

.1L,0 = (rep(1, L + 1), rep(0, T − L − 1)) Initially 1, change to 0 after L

.1L,NA = (rep(1, L + 1), rep(NA, T − L − 1)) Initially 1, change to .NA after L

.0L,NA = (rep(0, L + 1), rep(NA, T − L − 1)) Initially 0, change to .NA after L

.1L,2 = (rep(1, L + 1), rep(2, T − L − 1)) Initially 1, change to 2 after L

.0L,2 = (rep(0, L + 1), rep(2, T − L − 1)) Initially 0, change to 2 after L

1 stands for the investigative treatment
0 stands for the reference treatment
.NA stands for no treatment
2 stands for other treatment such as rescue medication

discontinuing (e.g., withdrawal, loss of follow up) or treatment changing (e.g.,
change to rescue treatment, add an alternative treatment). Let .A = (A0, · · · , AT −1)

be the actually received treatment sequence, and .At = (A0, · · · , At ) be the
treatment up to t , .t = 0, · · · , T − 1. Let .W0 be baseline covariates, and let .Wt =
(W0, · · · ,Wt ) be the vector consisting of all the observed history up to time t includ-
ing baseline covariates, time-dependent covariates, and intermediate outcomes,
.t = 0, · · · , T − 1.

Let .a = (a0, · · · , aT −1) be a given treatment sequence and .rep(a, p) be a p-dim
vector of all a’s. Let .Ya

T be the potential outcome at time T for any given treatment
sequence .a. Some examples of treatment sequence .a are in Table 1. In .1 and .0, there
is no ICE. In all the other sequences in the table, there is one ICE occurring between
visit .L + 1 and L after visit L.

3.1 Sensitivity Analysis for the Hypothetical Strategy

According to ICH E9(R1), if the hypothetical strategy is applied to handle ICEs,
“a scenario is envisaged in which the intercurrent event would not occur.” In this
hypothetical scenario in which the ICE would not occur, if .A0 = 1, then .A = 1, and
if .A0 = 0, then .A = 0. Therefore, the average treat effect comparing two treatment
sequences, .a = 1 and .a = 0, is expressed in terms of potential outcomes as
.E{Ya=1

T } − E{Ya=0
T }. Under the consistency assumption, the positivity assumption,

and the following static sequential exchangeability assumption [3]:

. Ya
T ⊥⊥ A0|W 0, for any a, . (10)

Ya
T ⊥⊥ At |At−1,W t , for any a and t = 1, · · · , T − 1, (11)

we can show that via the g-formula [3],
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. E{Ya
T } =

∑

w

[

E(YT |W = w,A = a) × (12)

{ T −1
∏

t=1

P
(

Wt = wt

∣

∣

∣Wt−1 = wt−1, At = at )
)

}

P(W0 = w0)

]

,

where the summation is over the sample space of .W . Here for demonstration
purpose we assume .W is discrete, and for general case we can replace summation by
integration and probability by density. Hence, under the above three assumptions,
.E{Ya=1

T } − E{Ya=0
T } is equal to the following estimand,

.θh =
∑

w

[

E(YT |W = w,A = 1) ×
T −1
∏

t=1

P(wt |wt−1, 1t ))P (W0 = w0)

]

−

∑

w

[

E(YT |W = w,A = 0) ×
T −1
∏

t=1

P(wt |wt−1, 0t ))P (W0 = w0)

]

. (13)

Assume that we construct an estimator .̂θh to estimate .θh. Note the estimand (13)
does not depend on data after the occurrence of an ICE, regardless of being collected
or not. Therefore, if the hypothetical strategy is applied to handle the ICE, all the
data after the occurrence of an ICE are considered as “missing data.” Hence, the
sensitivity analysis for the hypothetical strategy becomes the sensitivity analysis
for missing data handling. This can also be seen by breaking the static sequential
exchangeability assumption into two parts, the first part (10) at .t = 0 that is the same
as the NUC assumption, and the second part (11) at .t > 0 that is the same as the
MAR assumption, equalizing the occurrence of ICE to the occurrence of “missing
data.” The sensitivity analyses of the consistency, positivity, and NUC assumptions
are discussed in Sect. 2. And we can adopt the missing data sensitivity methods for
conducting sensitivity analysis of the MAR assumption (11).

Both the delta adjustment and reference-based imputation can be applied in
combination with the multiple imputation procedure. Let .Dh be the data excluding
all the data after ICE occurrence even if they are collected. For each given delta
value in the adjustment or each given scenario in the reference-based imputation
(e.g., CR, J2R), let .D(k)

h , .k = 1, · · · , I , be multiple versions of completed dataset
with “missing data” imputed by the multiple imputation procedure. For each version
.D(k)

h , we use some method (e.g., MLE, IPTW, AIPTW, TMLE) to construct an

estimate .̂θ
(k)
h of .θ . Then we apply Rubin’s rule to combine I versions of estimate

and produce an estimate .̂θ
(·)
h . When we vary the delta values or the reference-

based scenarios, we obtain a series of .̂θ
(·)
h estimates to explore the robustness of

the inference based on the primary estimate .̂θh.
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3.2 Sensitivity Analysis for the Treatment Policy Strategy

According to ICH E9(R1), if the treatment policy strategy is applied, “the intercur-
rent event is considered to be part of the treatments being compared.” Therefore,
by the treatment policy strategy, the treatment variable of interest becomes a set of
treatment regimes that include more than just the initial treatment. Table 1 shows
some examples of treatment regimes, where .1 and .0 stand for regimes of adhering
to the initially received, .1L,0 stands for regime of switching from the investigative
treatment to the reference treatment (e.g., the SOC), .1L,NA and .0L,NA stand for
regimes of treatment discontinuation to no treatment, and .1L,2 and .0L,2 stand for
regimes of treatment changing to an alternative treatment (e.g., rescue medication
or added-on treatment).

To apply the treatment policy strategy, we first identify a set of treatment
regimes of interest through clinical judgement, or through empirical evidence on the
treatment patterns, such that they are relevant to the clinical practice in real-world
setting, and the data after the ICE occurrence are still collected with high percentage.
For example, if data after rescue medication and switching to the SOC are collected
and the SOC and rescue medication are relevant to the clinical practice real-world
setting, we can consider the comparison between the investigative treatment policy
.A1 = {1, 1L,0, 1L,2} and the reference treatment policy .A0 = {0, 0L,2}.

The treatment policy strategy is often applied along with the hypothetical
strategy, because usually there are certain treatment regimes that are not relevant
to the clinical practice and there are missing data due to loss of follow up. For the
ICEs that are not included in the treatment policies .A1 and .A0 and the ICEs that lead
to missing data, we apply the hypothetical strategy to handle them, which means we
need to envisage a hypothetical scenario in which these other intercurrent events
would not occur.

First, if all types of ICEs are incorporated in either the investigative treatment
policy .A1 or the reference treatment policy .A0 and the data after ICE occurrences
are collected, then by the treatment policy strategy, under the consistency, positivity,
and NUC assumption, the estimand of interest is

.θtp = E
{

E(YT |A ∈ A1,W0) − E(YT |A ∈ A0,W0)
}

= E {E(YT |A0 = 1,W0) − E(YT |A0 = 0,W0)} . (14)

Assume that we construct an estimator .̂θtp to estimate .θtp. Therefore, we can
conduct similar sensitivity analysis discussed in Sect. 2 to explore the robustness
of the inference based on .̂θtp to the deviations from the consistency assumption, the
positivity assumption, or the NUC assumption.

Second, if, besides those types of ICEs that are incorporated in policy .A1 or .A0,
there are other types of ICEs and/or missing data due to loss of follow up, then we
may apply the hypothetical strategy to handle these other ICEs and missing data, in
combination with the treatment policy strategy. By the hypothetical strategy, all the
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data collected after the occurrence of these other ICEs are treated as extra “missing
data.” Therefore, besides the sensitivity analysis for the treatment policy strategy,
we should conduct additional sensitivity analysis to explore the robustness of the
inference to the deviations from the MAR assumption (11), using methods such as
the delta adjustment and the reference-based imputation.

3.3 Sensitivity Analysis for the Composite Variable Strategy

According to ICH E9(R1), if the composite variable strategy is applied, “an
intercurrent event is considered in itself to be informative about the patient’s
outcome and is therefore incorporated into the definition of the variable.” That
means, we need to revise the definition of response or outcome variable from .YT to
.Y ∗

T to include the intercurrent event as part of it. For example, if the outcome variable
is already success or failure, discontinuation of treatment or rescue medication
would simply be considered another mode of failure. If the outcome variable is
an order categorical variable, we may assign the least favorable category as the
outcome for the subject with an ICE. If the outcome variable is a continuous
variable, we may assign the least favorable value as the outcome to the subject with
an ICE. Assume the new outcome variable .Y ∗

T is a composite variable of .YT and
ICEs. Then the estimand reflecting the treatment effect can be defined as

.θcv = E
{

E(Y ∗
T |A0 = 1,W0) − E(Y ∗

T |A0 = 0,W0)
}

. (15)

In real-world setting, we should distinguish among “good” ICEs, “bad” ICEs,
and “neutral” ICEs. For example, if treatment discontinuation is an ICE, there may
be treatment discontinuation due to early response (“good” ICE), due to lack of
effectiveness (“bad” ICE), or due to insurance change (“neutral” ICE). If we are
able to distinguish these types of ICEs, we may consider “good” ICE as success,
“bad” ICE as failure, and “neutral” ICE as censoring.

Assume that we construct an estimator .̂θcp to estimate .θtp. We need to conduct
sensitivity analysis for the identifiability assumptions discussed in Sect. 2, along
with sensitivity analysis for the validity of the composite outcome .Y ∗

T , exploring the
robustness of the inference to different ways of defining .Y ∗

T .
If we assign all the ICEs as another mode of failure in .Y ∗

T for the primary analysis,
in sensitivity analysis we may only assign some ICEs (e.g., rescue medication,
discontinuation due to lack of effectiveness) as another mode of failure, but assign
with some rate less than one for other ICEs (e.g., loss of follow up, treatment
switch). Consequently, we may adjust the rate across a range of values to explore
the robustness of the inference. If the outcome variable is continuous, we may adjust
the assigned least favorable value across a range of values to explore the robustness
of the inference.
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3.4 Sensitivity Analysis for the While on Treatment Strategy

According to ICH E9(R1), if the while on treatment strategy is applied, “response to
treatment prior to the occurrence of the intercurrent event is of interest.” Therefore,
the estimator is constructed using data at .t = 1, · · · , L, ignore the data at .t =
L + 1, · · · , T although they may be collected. An underlying assumption behind
this strategy is that the treatment effect is following some fixed trend. Here are some
examples of treatment trend over time: (i) the treatment effect is only temporary
(e.g., treating symptoms), (ii) the effect of one-time treatment is permanent (e.g.,
surgery), (iii) the treatment effect is cumulative with a constant rate. Different
assumption on the treatment trend leads to different way to define an estimand
of interest and construct an estimator to estimate it, along with corresponding
sensitivity analysis. For (iii), we should define the treatment duration carefully
and, if necessary, conduct sensitivity analysis for the consistency assumption as
discussed in Sect. 2.1.

Consider Assumption (i), which assumes that the treatment effect is only
temporary. We can consider the rate of binary outcome per unit time or the
average of continuous outcome as the new primary endpoint, that is, .Y ∗ =
∑min(T ,L)

t=1 Yt/min(T , L), where L is the last visit prior to the ICE occurrence and is
equal to infinity if there is no ICE. Then the estimand reflecting the treatment effect
can be defined as

.θwot = E
{

E(Y ∗|A0 = 1,W0) − E(Y ∗|A0 = 0,W0)
}

. (16)

Assume that we construct an estimator .̂θwot to estimate .θwot . We need to conduct
sensitivity analysis for the identifiability assumptions discussed in Sect. 2, along
with sensitivity analysis for the validity of Assumption (i). First, we treat all the
data after the ICE occurrence as “missing data.” Then we apply the delta adjustment
method in combination with multiple imputation to add a delta to impute the
“missing data.” For each delta, multiple complete datasets (in which .min(T , L) = T

for each subject) are generated, we obtain an estimate of .̂θwot using the Rubin’s rule.
After we repeat this process for a range of delta values, we explore the robustness
of the inference.

Consider Assumption (ii), which assumes that the effect of an one-time treatment
is permanent. We can consider the outcome at the last visit prior to the ICE
occurrence as the new primary endpoint, that is, .Y ∗ = Ymin (T ,L). Then the estimand
reflecting the treatment effect can be defined similarly as in (16), using the newly
defined .Y ∗. Assume that we construct an estimator .̂θwot to estimate .θwot . We can
apply the same sensitivity analysis method described in the previous paragraph,
except that in this case .Y ∗ is the outcome at the last visit instead of the average as
in the previous case.

Consider Assumption (iii), which assumes that the treatment effect is cumulative
with a constant rate. We can consider the rate of change in the outcome variable
over time as the new primary endpoint; e.g., .Y ∗ = [Ymin(T ,L) − Y0]/min(T , L),
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or the average of rates of change over .min(T , L) time intervals, or the subject-
specific slope estimated from the subject-wise linear regression or the mixed effect
model using the whole dataset. Then the estimand reflecting the treatment effect
can be defined similarly as in (16), using the newly defined .Y ∗. Assume that we
construct an estimator .̂θwot to estimate .θwot . We can apply the same sensitivity
analysis method described in the previous two paragraphs, except that in this case
.Y ∗ is the rate of change.

3.5 Sensitivity Analysis for the Principal Stratum Strategy

According to ICH E9(R1), if the principal stratum strategy is applied, “the target
population might be taken to be the principal stratum in which an intercurrent event
would occur. Alternatively, the target population might be taken to be the principal
stratum in which an intercurrent event would not occur.” The principal stratification
approaches rely on covariates to predict to which stratum each subject belongs when
in real-world setting the strata are not observable.

Define two potential outcomes for ICE occurrence, .Ca=1 and .Ca=0, where
.Ca=1 = 1 is the indicator that an ICE would occur if the subject was treated by
.a = 1 and .Ca=0 = 1 is the indicator that an ICE would occur if the subject was
treated by .a = 0. Therefore, the principal stratum in which an ICE would occur
(.PS1) and the principal stratum in which an ICE would not occur (.PS2) can be
defined as

.PS1 = {Ca=1 = 1, Ca=0 = 1},
PS2 = {Ca=1 = 0, Ca=0 = 0}.

Using the data, we can train a ICE predictive model .̂C(w, a), based on which we
can predict the corresponding principal strata,

.̂PS1 = {1 ≤ i ≤ n|̂C(W0,i , 1) = 1, ̂C(W0,i , 0) = 1},
̂PS2 = {1 ≤ i ≤ n|̂C(W0,i , 1) = 0, ̂C(W0,i , 0) = 0},

where .W0,i is the baseline covariate vector for subject i. For a given principal
stratum that is identified as the target population, assume that an estimand reflecting
the treatment effect is defined, and an estimator is constructed aligned with the
estimand.

Therefore, an sensitivity analysis for the principal stratum strategy is to explore
the robustness of the inference to deviations between the predicted stratum mem-
berships and the true stratum memberships. For this aim, we may consider a series
of predictive models, such as logistic regression, logistic regression with LASSO,
random forest, boosting, support vector machine, and other predictive models in the
statistical learning literature [13]. If the estimates based on the predicted principal
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strata using different predictive models are similar, then we may conclude that the
finding is robust.

4 Sensitivity Analysis of Statistical Assumptions

Under the identifiability assumptions and the ICE assumptions, an estimand .θ

reflecting the research question is defined. Then the causal inference problem
becomes a statistical inference problem. Under some statistical assumptions, we
construct an estimator .̂θ . This section is focused on sensitivity analysis of statistical
assumptions.

Although the identifiability and ICE assumptions are untestable, statistical
assumptions are often testable. For example, if the analysis of variance (ANOVA)
depends on the normality assumption, we can conduct a test (e.g., Kolmogorov–
Smirnov test) to test the normality, and then we should conduct sensitivity analysis
to explore the robustness of the results if the normality assumption is violated. On
the other hand, we can consider a non-parametric version of ANOVA, say Kruskal–
Wallis one-way analysis of variance, without making the normality assumption,
avoiding the need of conduct sensitivity analysis of the normality assumption.

Continue the example in Sect. 2 with data .D = {(W,A, Y )}. If we apply
linear regression analysis to estimate the regression function .Q(a,w) and logistic
regression analysis to estimate the propensity score .g(a|w), then behind the scene
we assume that the regression function .Q(a,w) is linear and the logarithm of the
propensity odds .log{g(1|w)/g(0|w)} is also linear. Hence we should conduct sensi-
tivity analysis to explore the robustness of the results if the linearity assumptions are
violated. On the other hand, if we apply some non-parametric method (say, super
learner [14]), then there is no need to conduct sensitivity analysis to explore the
robustness of the results for the linearity assumptions.

Semi-parametric theory plays a critical role in reducing statistical assumptions
[15]. The estimand .θ defined in (4) can be written as

.θ =
∫

[Q(1, w) − Q(0, w)]dPW (w), (17)

which is a function of regression .Q(a,w) and marginal distribution of W , .PW(w).
If we make any parametric assumptions on .Q(a,w) and .PW(w), we need to conduct
sensitivity analysis for them. Therefore, in order to lighten the burden of sensitivity
analysis, we do not want to make any parametric assumptions on .Q(a,w) and
.PW(w). Then the estimation problem becomes a semi-parametric problem, with
.θ being a parameter of interest and .Q(a,w) and .PW(w) being two non-parametric
functions. The targeted learning framework reviewed in chapter “Causal Inference
with Targeted Learning for Producing and Evaluating Real-World Evidence” of this
book has been developed based upon the semi-parametric theory to construct an
efficient and semi-parametric estimator of estimand .θ .
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5 Discussion

In order to make a real-world research question answerable, we often make a
set of identifiability assumptions and a set of ICE assumptions. An estimand is
defined to reflect the answerable question. In order to estimate the estimand, we
sometimes make a set of statistical assumptions. This chapter discusses how to
conduct sensitivity analysis to explore the robustness of the inference based on the
primary analysis to the violations of these assumptions.

Here is some discussion on the novelty of the contents of this chapter. The
literature on the sensitivity analysis of the NUC assumption is rich. The literature
on the sensitivity analysis of the consistency and positivity assumptions is lacking.
Chapter 9 of [7] discusses the role of the positivity assumption and proposes a
method to detect the potential bias due to the positivity violation, but without
discussion on sensitivity analysis. The sensitivity analysis of positivity violation dis-
cussed in Sect. 2 is novel. The sensitivity analysis methods of the ICE assumptions
discussed in Sect. 3 are motivated by Chapter 16 of [9], but Sect. 3 contains much
more practical details. The discussion in Sect. 4 on the role of the semi-parametric
theory in lightening the burden of sensitivity analysis for statistical assumptions is
also novel.

We conclude this chapter by emphasizing the difference between sensitivity
analysis and supplementary analysis, which is defined in ICH E9(R1) as “a general
description for analyses that are conducted in addition to the main and sensitivity
analysis with the intent to provide additional insights into the understanding of
the treatment effect.” Assume that there is a primary estimand that is aligned
with the research question and objective. Also assume that the main analysis and
sensitivity analysis associated with the main analysis are pre-specified for the
primary estimand. Then the analysis other than the main analysis (e.g., using a
different statistical method, under a different set of assumptions, using a different
dataset) is considered as supplemental analysis. In addition, if there are other
estimands defined differently but for the same research question and objective,
all the analyses corresponding to these other estimands are also considered as
supplemental analysis. Therefore, if a series of estimands are defined using different
ICE strategies, except that the analysis for the primary estimand is the main analysis,
the analyses associated with the other estimands are supplement analysis rather than
sensitivity analysis.
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Personalized Medicine with Advanced
Analytics

Hongwei Wang, Dai Feng, and Yingyi Liu

1 Background

1.1 What Is Personalized Medicine

Personalized medicine has been an integral part of modern time medicine. From
treatment choice at daily patient–physician interaction in routine clinical practice to
major regulatory and reimbursement decision by health authority, from bench work
at basic research lab to large-scale real-world study quantifying benefit-risk profiles
of different interventions, PM supported by evidence plays a central role in drug
development, improving patients’ quality of life and increasing the productivity of
healthcare system. There is no universal definition of PM, and the Horizon 2020
Advisory Group of the EU defines personalized medicine as “a medical model using
characterization of individuals’ phenotypes and genotypes (e.g., molecular profiling,
medical imaging, lifestyle data) for tailoring the right therapeutic strategy for the
right person at the right time, and/or to determine the predisposition to disease
and/or to deliver timely and targeted prevention” [1].

An example of PM is the biomarker-driven treatment choice in breast cancer.
Three molecular biomarkers, namely estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2 (HER2), provide prognostic
information and guide the choice of therapies [2]. This is enabled by breakthrough
in sciences which shed light on the mechanism of disease. Drug development in
this area centers around the patient segmentation defined by these biomarkers, and
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biomarker screening has also been part of treatment guidelines and routine clinical
practice.

Another example of PM is the more recent introduction of CAR-T (chimeric
antigen receptors T-cell) therapies for the management of specific blood cancers.
This is a highly individualized intervention where a sample of a patient’s T cells
are collected and specifically modified, then reinfused into the patient to kill the
tumor cells [3]. Many of these therapies demonstrate impressive efficacy effect size
and durability in hematological malignancies [4]. The complexity nature of such
interventions also means they are resource intensive and can be costly. How to
balance PM with generalizability and resource constrain remains a challenge here,
e.g., “off-the-shelf” allogeneic CAR-T.

1.2 Why Personalized Medicine

As demonstrated by the examples in Sect. 1.1, evolvement of sciences and technolo-
gies are bringing more and more treatment options for patients in needs. However,
not all patients are the same, and there is usually no one-size-fits-all solution. The
patients’ demographics, lifestyle, social-economic status, geographic environment,
comorbidities, concurrent medications, genetics, and healthcare system are part
of many which may predispose them to different courses of disease progression
and varying level of response to a given treatment. To achieve best outcomes, the
treatment choice, including initiation, optimization, adjustment, and sequencing,
will need to be customized for each individual patient.

PM is also a must for an efficient healthcare system. With an aging society and
financial constrain facing all the payers worldwide, avoiding treatments with low
probability of success and going with the interventions associated with highest
expected outcomes will save resource, improve productivity, and serve patients
better.

1.3 How to Practice Personalized Medicine

PM requires systematic collection of wide range of data for a heterogeneous
population. This has not been practical in the era of pencil-and-paper for recording
medical records. With wide adoption of electronic health records (EHRs) in the
current digital age, interaction between tens of millions of patients and healthcare
systems are being accumulated on a daily basis. In countries with a single payer
system, almost each of the citizen is contributing data continuously from birth to
advanced age. This provides a unique opportunity for researchers to tap into the rich
real-world data (RWD) sources to conduct research for the purpose of PM.

In the meantime, the pure volume of RWD, the complexity of RWD types (e.g.,
structured and unstructured data elements), the higher proportion of missingness of
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certain variables than the randomized clinical trials also pose challenges for robust
PM research. To address these road blockers, on the one hand, cloud computing
or parallel distributed computing infrastructure enables researchers to analyze big
data in real-time. On the other hand, the active research in machine learning, the
advancement beyond the classical statistics to effectively analyze unstructured data
such as free text, imaging, voice provide the tools for researchers to gain further
insights despite the challenges.

This chapter is organized as follows. Section 2 introduces the important role
of causal inference framework in personalized medicine and advanced analytics to
check its underlying assumption. Also included are advanced analytic methodolo-
gies to address linked data sources and unstructured data. Section 3 reports subgroup
identification and individualized treatment regimens at a single time point under
causal inference framework with advanced analytics to implement specific steps.
Section 4 extends it to multiple time points, i.e., dynamic treatment regimens (DTR).
Concluding remarks are summarized in Sect. 5.

2 Role of Causal Inference and Advanced Analytics

2.1 Conditional Average Treatment Effects

As stated in ICH E9(R1) [5], the fundamental research question in drug development
is to establish causal relationship between medical intervention and outcomes. The
causal inference framework based on counterfactual outcome plays a central role
in effectiveness assessment. Chapters “Causal Inference with Targeted Learning for
Producing and Evaluating Real-World Evidence”, “Recent Statistical Development
for Comparative Effectiveness Research Beyond Propensity-Score Methods”, and
“Sensitivity Analysis in the Analysis of Real-World Data” of this book describe the
causal framework and different causal inference methodologies in more detail. One
important and commonly used measure for causal inference is the average treatment
effect (ATE), which measures the difference in mean (average) outcomes between
the treatment and control groups. The potential outcome framework provides a
useful way of identifying ATEs in observational studies. The conditional ATE
(CATE) which follows the same concept as ATE but conditioned on patient’s
characteristics is of special relevance for personalized medicine and serves as the
criteria for treatment decision making specific to that patient.

Let {(Xi,Ai,Yi), i = 1, · · · , n} denote the data, where Xi is the covariate vector
for subject i, Ai = a ∈ {0, 1} is the treatment assignment, and Yi is the observed
outcome. Using the notation of potential outcome under causal inference framework
[6], let Yi(1) and Yi(0) denote the potential outcome for subject i receiving the new
treatment Ai = 1 and standard treatment Ai = 0. CATE is defined as the conditional
mean difference between potential outcomes given X = x:

�(x) = E (Y (1)|X = x) − E (Y (0)|X = x)
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Under the strongly ignorable treatment assignment assumption (A ⊥ {Y(0),
Y(1)}|X), consistency (the potential outcome is Y(a) = Y for every individual with
A = a), and positivity (P(A = a|X = x) > 0) assumptions,

�(x) = E (Y (1)|X = x) − E (Y (0)|X = x)

= E (Y (1)|A = 1, X = x) − E (Y (0)|A = 0, X = x)

= E (Y |A = 1, X = x) − E (Y |A = 0, X = x.)

Note that the last expression only involves conditional expectations from
observed values.

For causal inference to be valid, the underlying assumptions described above
need to hold. Sensitivity analysis plays an important role in assessing the impact
of violating such assumptions (see chapter “Sensitivity Analysis in the Analysis
of Real-World Data” for a detailed account of this topic). Here, we focus on
some recent developments on quantifying and addressing two of the assumptions,
positivity and strongly ignorable treatment assignment assumption (also known as
unconfoundness).

Positivity requires each patient to have a non-zero probability of receiving each
treatment. If certain patients always receive a specific treatment, we would not be
able to quantify the treatment difference for them without additional assumptions.
This can be especially challenging for high dimensional patients’ characteristics.
To this end, several machine-learning methods have been developed to identify
overlapping regions where different treatment groups are well represented. As
recommended in the review paper of Bica [7], the algorithm OverRule [8] outputs
rule-based characterization of overlap where positivity assumption is valid. The
authors formalize the problem as finding minimum volume sets subject to coverage
constraints and reduce it to a binary classification. They further demonstrated
that the algorithm leads to intuitive and informative explanations via application
to several real-world case studies. The open source code built upon Python is
available at https://github.com/clinicalml/overlap-code. In practice, this step can be
conducted before the formal inference, either to verify if there is sufficient overlap
in the overall region or identify specific regions where positive assumption holds to
allow valid causal inference.

Unconfoundness refers to no unobserved confounders. This is a strong assump-
tion and usually cannot be tested in practice. The domain knowledge is critical
in assessing this, e.g., opinions from subject matter experts on completeness and
relevance of the data, established causal links from previous research. As an effort
to weaken the requirements of no unobserved confounder, Wang and Blei [9]
proposed the deconfounder which employs unsupervised machine learning to derive
latent variable that will substitute the unobserved confounders in multiple-cause
setting. The idea is to fit a good latent variable model of the treatment assignment
mechanism to capture the joint distribution of all causes. A probabilistic factor
model such as mixture models, mixed-membership models, and deep generative
models are good candidates. Assume the fitted factor model works well, all causes
will be conditionally independent given the local latent factors. This is the same
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idea as generalized propensity score where the latent variables are used in place
of confounders. This approach has two advantages: (1) Instead of the nontestable
unconfoundness assumption, the performance of the latent variable model can
be quantitatively assessed and (2) it requires weaker assumption than classical
causal inference. In practice, this approach represents an attractive alternative to
the propensity score based or other causal inference methods.

2.2 Data Source for Personalized Medicine

Randomized clinical trials (RCTs) remain the gold standard to establish the efficacy
and safety of a medical intervention. It continues to be the foundation for vast
majority of regulatory approvals due to its high internal validity and strong control
of Type I error rate. However, two main limitations of RCT are the external
generalizability to a more diverse, more heterogeneous patient population and the
controlled experimental environment which is systematically different from the
routine clinical practice. For these reasons, real-world data provides unique value
in the era of personalized medicine. For optimal treatment recommendation, there is
the distinction of static or longitudinal setting. In the static setting, the objective is to
make a one-time treatment decision (see Sect. 3 for more details). In the longitudinal
setting, the aim is to choose a sequence of treatments and associated timing (covered
in Sect. 4 of dynamic treatment regimes, or DTR).

The data for constructing optimal DTR usually comes from either sequentially
randomized trials or longitudinal observational studies. A special class of sequen-
tially randomized trials called Sequentially Multiple Assignment Randomized Trial
(SMART) is designed with a goal to inform development of optimal DTRs [10–12].
In SMART design, same subjects proceed through multiple treatment stages, and at
each stage, subjects may be randomized to one of the available treatment options
based on information collected after previous treatments, but prior to assigning the
new treatment. SMART data provides high-quality evidence free from confounding
bias through randomization. But it is limited to reflect real-world circumstances and
usually requires substantial resource to conduct a high-quality trial with adequate
power. This is where longitudinal observational studies have several advantages over
sequentially randomized trials as it is less costly, more feasible, better reflects the
heterogeneity among patients and treatment options in real-world.

Challenges remain when leveraging RWD for personalized medicine. As many
of the RWDs are repurposed for research purposes, one single data source may
not contain all the necessary data elements. Linking different data sources can
substantially increase their breadth and depth to enable more robust RWE gener-
ation. Chapter “Privacy-Preserving Record Linkage for Real-World Data” details
the methodology and practical consideration for data linkage. While integrating,
synthesizing different data sources, data disparity, which refers to the fact that not all
data sources contain comparable information, needs to be carefully addressed. One
example is that a national health insurance claims database may contain information


 5277 53008 a 5277 53008
a
 


294 H. Wang et al.

on millions of patients’ encounter with the healthcare system while a regional
electronic health records database captures more detailed clinical info for a subset
of patients. There are rich literatures existing to address data disparity involving
multiple data sources and we report two below.

Chatterjee et al. [13] built regression models using individual-level data from one
source (“internal” study) and aggregated data information from another (“external”
study). The “internal” study contains the outcome and all covariates of interest
while the “external” study includes the outcome and a subset of these covariates.
They adopted a semiparametric framework which allows the distributions of all
covariates to be unspecified. By assuming the distribution functions of all covariates
to be the same for the “external” and “internal” studies, the external information is
converted into a set of constrains when the full model is correctly specified. This
allows the improvement of efficiency of parameter estimates and generalizability
of models via Lagrange multipliers for model calibration. The assumption that the
underlying populations for the internal and external studies are identical may not
be practical. Deviation from this assumption can lead to severe bias for any type of
calibration method. The performance of the model can be improved by availability
of an external reference sample that can estimate the covariate distribution for the
external population unbiasedly.

A more recent literature [14] considered the estimation of causal effects to
combine a big main data and a subset of the main as validation data. The main
data is large but has unmeasured confounders while the validation data is carefully
designed to provide supplementary information of unmeasured confounders. Causal
inference solely based on the large main data leads to error-prone estimator. The
estimators solely based on validation dataset are valid but may not be efficient. The
authors applied the same error-prone procedure to both the main and validation
data, i.e., leaving out the supplemental information of unmeasured confounders
in the validation data. The only requirement for the two error-prone estimators is
they are consistent for the same parameter such that their difference is a consistent
estimator of 0. Furthermore, this difference is associated with the average causal
effect estimated from the full validation data. Therefore, the difference of two error-
prone estimators can be leveraged to improve the efficiency of initial estimator
solely based on validation data. This framework can be applied to the commonly
used causal inference estimators such as regression imputation, inverse probability
weighting, augmented inverse probability weighting, and matching. And it does not
require the patients in the validation study to be a random sample of those from
the large main study. This framework can also cover the setting with multiple data
sources.

Another key feature of RWD is the availability of free text data that can substan-
tially augment the structured data elements. For example, physician notes captured
in the electronic health records can reflect the underlying reasoning, context of the
clinical decision making, such as rationale for initiating, switching, discontinuing a
medical intervention. They can also capture more detailed information of patients’
characteristics and outcomes, e.g., the pain level as measured by a score, emerging,
worsening, resolving of an adverse event, environmental or genetic risk factors.
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Natural language processing (NLP) is developed to more effectively process free
text data, and great progress has been made in this area. In November 2018, Google
researchers published the source code of a new language representation model
called Bidirectional Encoder Representations from Transformers (BERT) where the
algorithm exceeded human performance in the very competitive Stanford Question
Answering Dataset [15]. This is a pre-trained model that can be fine-tuned with
just one additional output layer for customization toward specific task. Therefore, it
enables effective transfer learning.

In a pilot project we conducted [16], the outcome was generated from a logit
model where the linear predictor includes 10 correlated biomarkers (structured data)
and one text predictor describing loneliness. The text predictor includes one to three
sentences with noise added. The training dataset consists of 300 records and the
testing dataset includes another 300 records. Without labeling the text predictor,
the customization of BERT extracted a total of 1024 features using the training
dataset. These features were then combined with the 10 biomarkers to assess their
performance in the testing dataset. Compared with the model solely based on
structured data, the area under curve (AUC) increases from 0.765 to 0.885 after the
incorporation of the unstructured data. Although each of the 1024 features extracted
from text predictor does not allow a clinically relevant interpretation, the text score
calculated from a generalized linear model has clear interpretation with the high
score corresponding to a feeling of loneliness.

3 Subgroup Analysis

One aspect of personalized medicine is to understand heterogeneity in patient
populations and hence to develop new treatments that target a subgroup of patients
with enhanced risk-benefit profile or tailor the currently available therapies to a
given patient. The question of identifying the right patient for a given treatment is
fundamentally different from asking which treatment performs the best in the overall
population [17].

Wijn et al. [18] reviewed guidance from industry, health technology assessment
(HTA) organizations, academic/non-profit research organizations, and regulatory
bodies on subgroup analysis. They found that statistical recommendations were less
common and often limited to a formal test of interaction. Detection of interaction
between treatment and covariates is essential for subgroup analysis. However, such
an approach has faced several challenges. First, the predefined subgroups may not
identify all true heterogeneity structure of the effect of the investigational treatment.
Second, significance testing of many subgroups leads to the challenge of multiplicity
control and a potential lack of power. Third, it might be hard to clearly define
subgroups a priori, even for the field experts. Fourth, the form of interactions can be
linear vs. non-linear, order can be first- second- vs. high-order. Fifth, the interaction
on one scale can disappear when the data have been transformed to another scale
[19–21]. In the RW setting, the multiplicity issue could be of less concern for a
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study that is exploratory in nature. For a RW study, however, the handling of casual
inference and potentially high-dimensional complex data introduces an additional
layer of complexity.

In the remainder of this section, we first review three different classes of methods
for subgroup identification for RWD in Sect. 3.1, and then provide some discussions
in Sect. 3.2.

3.1 Methods for Subgroup Identification

We witness the recent development of a variety of approaches for subgroup
identification. In this subsection, we review three different classes of methods
for RWD. The promising methods feature a duet between causal inference and
statistical/machine learning. To address causal effect inference for observational
studies, G-formula [22], weighting [23], and doubly robust methods [24] are widely
used. To analyze RWD of larger size and more complexity, regression with regu-
larization and supervised learning [25] are broadly adopted. In the following, we
introduce different methods for subgroup identification addressing causal inference
for observational studies. Furthermore, we summarize statistical/machine-learning
methods for implementation of different proposals.

3.1.1 Identify a Subgroup by Thresholding Treatment Effect

We can identify a subgroup by specifying a predetermined threshold of clinical
significance, and then searching for subjects whose treatment effect satisfy the
prespecified criterion. Following the notation in Sect. 2, we can obtain a subgroup
S(x) based on the value of estimate of CATE: .�̂(x), we can obtain a subgroup
S(x). For example, .S(x) = {x : �̂(x) > δ}, a subgroup in which every subject
has a conditional CATE larger than δ. Note that a subgroup can also be obtained
based on the estimate of E(Y|A = 1, X = x)/E(Y|A = 0, X = x) or E(U(Y)|A = 1,
X = x) − E(U(Y)|A = 0, X = x), where U(·) is a monotone transformation.

To estimate a treatment effect, we can first fit respective response surface for
different treatment groups. We can use one model/algorithm m(x, a) to estimate the
conditional mean E(Y|A = a, X = x). For example, we can fit a regression model
to both treatment groups. Alternatively, we can adopt different models/algorithms
for different treatment groups: E(Y|A = a, X = x) = ma(x), where a ∈ {0, 1} and
m1 �= m0. Furthermore, we can select different covariates for m1 and m0. Following
[26], we hereafter refer to the approach using a single model/algorithm as “S-
learner” (with “S” being short for single), and the approach fitting different groups
separately as “T-learner” (with “T” being short for two). Künze et al. [26] recently
proposed a “X-learner,” which builds on the T-learner and uses each observation
in the training set in an “X”-like shape. There are three stages in X-learner. First,
obtain the estimate of response for new and standard treatment .m̂1 and .m̂0. Second,
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obtain the imputed individual treatment effect for a subject i in new treatment group
as .Yi − m̂0 (Xi) and a subject j in standard treatment group as .m̂1

(
Xj

) − Yj . Using
the imputed treatment effects as the response variable in the new treatment group
to obtain .�̂1(x) and similarly in the standard treatment group to obtain .�̂0(x).
Finally, a weighted average of the two estimates in stage 2 is the final estimate:
.�̂(x) = w(x)�̂0(x) + (1 − w(x)) �̂1(x), where w(x) ∈ [0, 1] is a weight function.
We can use propensity score as an estimate of w(x).

For covariates, we can distinguish between prognostic and predictive ones Xprog

and Xpred, where Xprog are the main terms in the model and Xpred are incorporated
into the model as interaction terms with treatment. There can be overlap between
Xprog and Xpred, and the number of Xpred is typically less than the number of Xprog.

To mitigate the confounding, the counterfactual framework or potential outcomes
model using g-formula was studied, for examples, in [21, 27–30]. Modeling a
response surface that depends on estimates of the propensity score as a covariate
was proposed in [31].

Motived by estimating parametric components in partially linear models (Robin-
son’s transformation) [32], an example of a doubly robust estimator, Nie and
Wager [33] recently developed a general two-step algorithms for treatment effect
estimation in observational studies. This approach was referred to as “R-learner” in
recognition of Robison’s work.

Let m∗ (x) = E(Y|X = x) and π (x) = P(A = 1|X = x), by [32],

Yi − m∗ (xi) = (Ai − π (xi)) � (xi) + εi .

The estimate .�̂ (·) can be obtained by empirical loss minimization,

�̂ (·) = argmin�

{
1

n

n∑

i=1

[(
Yi − m∗ (xi)

) − (Ai − π (xi)) � (xi)
]2 + �n [�(·)]

}

(1)

where �n[�(·)] is a regularization term on the complexity of the �(·) function.
A two-step estimation was proposed. In the first step, obtain estimate .m̂∗ and

.π̂ with cross-validation for optimal predictive accuracy. In the second step, with a
plug-in estimate .m̂∗ and .π̂ , solve the optimization with respect to � in Eq. (1).

Motived by the R-leaner, a forest-based method named causal forest was
implemented in an R package ‘grf’ [34, 35]. Causal forest starts by obtaining out-
of-bag estimate .m̂∗ and .π̂ , and then grow a causal forest via:

�̂ (x) =
∑n

i=1 αi(x)
(
Yi − m̂∗ (xi)

) (
Ai − π̂ (xi)

)

∑n
i=1 αi(x)

(
Ai − π̂ (xi)

)2 ,

where αi(x) measures how often the i-th training example falls in the same leaf as x.
Causal forests with different values of the tuning parameters are trained to choose
the ones that minimize the loss in Eq. (1).
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Instead of first estimating the outcome from different treatment groups respec-
tively, we can focus on the treatment effect �(x) directly. A transformed/modified
outcome method used to estimate the treatment effect directly by modeling the
interaction effect without modeling of the main effects for continuous endpoints was
proposed in [36]. To conduct causal inference, a transformed/modified outcome was
defined using weighting method as follows [37, 38]:

Y ∗
i = Ai

Yi(1)

π (Xi)
− (1 − Ai)

Yi(0)

1 − π (Xi)
.

Note that E(Y∗ |X = x) = �(x) and transformed outcome only depends on the
potential outcome corresponding to the realized treatment level, and hence can be
calculated from the observed outcome of Yi. With the transformed outcome

Y ∗
i = Yi · A∗

i ,

where .A∗
i = Ai

π(Xi)
− 1−Ai

1−π(Xi)
, we can implement any existing methods to directly

estimate the treatment effect.
To handle binary and time-to-event outcome, Tian et al. [36] proposed a modified

covariate estimator. However, as a limitation, the modified covariate method is
primarily meant for analyzing the data from randomized clinical trials.

For implementation of different approaches, regression models were widely
used. Different models and parameter estimation approaches were adopted. Para-
metric (linear, generalized linear), semi-parametric (generalized additive models),
and non-parametric (kernel regression) models can be adopted to model outcome
[27, 39]. Various regulation methods including L2, Lasso penalty and different
Lasso penalties for prognostic and predictive variables were utilized. Furthermore,
to fit model with regularization, constrained cross-validation and generalized cross-
validation were proposed. In the Bayesian framework, a Bayesian two-step Lasso
method was proposed in [40] for variable selection. The first step used a group
Lasso to screen out unimportant variables and a more efficient variable selection
could be achieved in the second step using an adaptive Lasso. In addition to
accommodating variable selection, to handle multiplicity issue, Schnell et al. [41]
developed Bayesian simultaneous credible bands for continuous endpoints. The
method was extended to survival and count data in [42, 43].

In addition to regression modeling, tree ensemble methods were proposed in the
literature to model outcomes, which can provide better predictive performance for
high dimensional data. A random forest (RF) was used to estimate the outcome in
[21]. Instead of using the ordinary RF, the counterfactual synthetic RF provided
even more promising results [28]. In [30], gradient boosting trees (GBT) was
proposed to estimate the treatment effect for continuous, binary, and time-to-event
endpoints. The Bayesian adaptive regression trees (BART) (which can be viewed
as a Bayesian regularized tree boosting method) [44] has been demonstrated as a
promising method for causal inference [31]. Estimate of treatment effect using the



Personalized Medicine with Advanced Analytics 299

counterfactual approach for continuous and time-to-event outcomes was studied in
[28, 29, 45].

3.1.2 Identify a Subgroup by Maximizing Difference of Treatment Effect
Using Tree-Based Method

Another class of methods directly search subgroups using tree-based methods. They
focus on maximization of the difference of treatment effect between two resultant
child nodes during construction of a tree. In other words, the best split demonstrates
the greatest interaction with the treatment.

The interaction trees (IT) using the classification and regression trees was
proposed to conduct subgroup analysis. In [46], the best split s∗ when constructing a
tree is the one that maximizes the following G statistic among all permissible splits:

G(s) =
⎛

⎝
(
yL

1 − yL
0

) − (
yR

1 − yR
0

)

σ̂

√∑
1/nC

A

⎞

⎠

2

,

where .yC
A is the sample mean in left (C = L) or right (C = R) child node for treatment

group A, .nC
A is the corresponding sample size, and .σ̂ 2is the estimate of variance.

An initial large tree was constructed given the constraint of purity of a node,
size of a node, and depth of the tree. A pruning and selection of the best subtree
after generating a nested sequence of subtrees was proposed based on the trade-off
between interaction and complexity of a tree (in the same spirit as model section
criteria AIC, BIC, etc.). Furthermore, they proposed to have an “honest” estimate
of the goodness-of-split using an independent subset of the data or cross-validation
or bootstrapping method when finding the best subtree. IT method for subgroup
analysis of survival, continuous, and longitudinal data were studied in [47, 46, 19],
respectively.

For observational studies, a causal inference tree (CIT) which splits data in a way
that both the propensity and the treatment effect become more homogeneous within
each resultant partition was proposed in [20].

There are other tree-based methods for subgroup identification for randomized
studies. Focusing on the identification of “interesting” areas in the covariate space,
instead of the whole covariate space, a subgroup identification based on differential
effect search (SIDES) approach was proposed in [48]. Only variables that have not
been previously chosen are considered for splitting each node. Methods proposed in
[49] extends the generalized unbiased interaction detection and estimation (GUIDE)
methods [50] to overcome selection bias. Furthermore, a sequential bootstrapping
and aggregating of thresholds from trees (BATTing) was proposed in [51] to address
the potential issue of unstableness of tree to small perturbations in the data and
proneness to over-fitting. The extension of these methods to conduction of causal
inference for observational data, however, warrants further research.
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3.1.3 Identify a Subgroup by Selection of an Optimal Treatment Regime

Different patients may benefit from different available treatments. A patient can
be assigned to a subgroup by identification of an optimal individualized treatment
rule/regime (ITR). Patients of the same optimal ITR form a subgroup. Let d(X) be
a decision rule (map/scoring system) guiding a treatment assignment decision. An
optimal ITR, dopt, is a rule that maximizes the value function: an expectation of
weighted outcome as follows:

E

[
I (T = d(X))

T π(X) + (1 − T ) /2
Y

]
(2)

where I is the indicator function, π is the propensity score, and T = 2A − 1. Note
that the ITR focuses on the decision at a single timepoint, which is a special case of a
sequence of decision rules at different timepoints as discussed in dynamic treatment
regime in Sect. 4.

Maximizing the value function in Eq. (2) is equal to minimizing:

E

[
Y

T π(X) + (1 − T ) /2
I (T �= d(X))

]

which can be viewed as a weighted classification error, i.e., we classify T (assign
treatment) using covariates X with weight of each misclassification equal to
Y/(Tπ + (1 − T)/2). This was referred to as the outcome weighted learning (OWL)
in [39].

Furthermore, since d(X) can always be represented as sign(g(X)), for some
scoring function g(·), given observed data, the optimal ITR can be obtained by
finding a solution to minimize the following weighted classification error:

1

n

n∑

i=1

Yi

Tiπ (Xi) + (1 − Ti) /2
I (Ti �= sign (g (Xi))) (3)

The dopt can be obtained by finding the solution g∗ (Xi) to the above optimization
and then setting dopt = sign (g∗ (Xi)). For a subject with large outcome, this rule
is more likely to recommend the same treatment assignment that the subject has
received. However, for a subject with small outcome, the rule tends to assign the
opposite treatment assignment to what has been received. See [39] for details.

Note that the above-described method solves the ITR question by optimization
of an inverse probability weighted estimator (IPWE). A doubly robust augmented
inverse probability weighted estimator (AIPWE) was proposed in [52]. An optimal
ITR, dopt, is a rule that maximizes the following function:
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E

[
I (T = D(X))

T π(X) + (1 − T ) /2
Y

−m
(
X,D(x)

) {
I (T = D(X)) − {T π(X) + (1 − T ) /2}

T π(X) + (1 − T ) /2

}]

The estimate is consistent if either propensity score or the response model, but
not both, is mis-specified.

A general framework using either propensity weighting or advantage learning
(A-learning) was proposed in [53]. Note that the A-learning was originally proposed
for estimating optimal dynamic treatment regime. It focuses on modeling the
treatment effect and has double robustness property. See Sect. 4 for more details.

For the weighting method, we need to find a score function g(X) that minimizes
the following quantity

LW (g,X) = E

[
M {Y, T g(X)}

T π(X) + (1 − T ) /2
|X = x

]
(4)

For the A-learning method, we need to find a score function g(X) that minimizes
the following quantity

LA (g,X) = E
[
M

{
Y, ((T + 1) /2 − π(X)) g(X)

}
|X = x

]
(5)

where M{Y, ν} is a loss function. Note that let .g∗
W = argmingLW(g) and .g∗

A =
argmingLA(g), the dopt equals .sign

{
g∗

W(X)
}

and .sign
{
g∗

A(X)
}

for weighting and
A-learning, respectively. Furthermore, the magnitude of treatment effect can be
estimated.

Different loss functions were described for continuous, binary, and survival
outcomes in [53]. For examples, quadratic loss for continuous, logistic loss for
binary outcome, and negative log partial likelihood for the time-to-event outcome.
In addition, a doubly robust AIPWE estimator proposed in [52] can be obtained
using a generalized augmented loss.

Minimization of Eq. (3) can be solved in the context of solving a classification
problem. A support vector machine (SVM) with a hinge loss as a convex surrogate
loss to 0–1 loss was proposed in [39]. For model assumptions of g(X) in solving
minimization of Eqs. (4) and (5), a linear model with regularization term, such as
lasso-type of penalty, can be used when the number of covariates is large. When
there are functional baseline covariates in addition to scalar ones, we can represent
the functional covariates and their corresponding coefficient functions in terms of
some suitably chosen set of basic functions, then we can view the loss function
as wholly consisting of scalar quantities. Refer to [53, 54] for details. A boosting
approach can be implemented as well.
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3.2 Discussion

As we described in Sect. 3.1, different subgroup identification approaches fit for
different purposes. For example, approaches introduced in Sects. 3.1.1 and 3.1.2
identify subgroups of patients achieving a target treatment effect and maximized
treatment effect difference, respectively.

For implementation of different subgroup identification methods, there is no
universally optimal learner or model/algorithm. A learner and model/algorithm will
be competitive when they approximate the data-generation process sufficiently. For
example, among learners introduced in Sect. 3.1.1, the R-learner stands out in
certain simulation setups but is not as good as the T-learner when the two treatment
groups are unrelated [33]. If the response surfaces of the outcomes under new and
standard treatment are very different, fitting different treatment group separately
using a T-learner will outperform a S-learner, which pools the data. The X-learner
performs well especially when one of the treatment groups is much larger than
the other or when the separate parts of it are able to capture the properties of the
response and treatment effect functions [26].

With respect to model/algorithm, we need to continue tapping into the develop-
ment of statistical/machine learning, a field of rapid growth. For examples, a sparse
Gaussian process regression model, using recursive partitioning in Bayesian addi-
tive frame work, was proposed in [55]. The new proposal can capture both global
trends and local refinements. By using the pseudo values, a deep neural network
method that reduces a complex survival analysis to a standard regression problem
was proposed in [56]. The method greatly simplified the neural network construction
and provided promising results. These new approaches can potentially improve
results when integrated into the subgroup analysis. Furthermore, when there are
multiple models/algorithms (base learners) to estimate outcome or propensity score,
a super learner can be built to ensemble a group of base learners [57].

When there are different approaches to estimate treatment effect of a subgroup,
one may choose the one which gives us the largest subset of patients; the largest area
under the treatment effect curve (AUC) or consider the area between treatment effect
curves (which measures the relative improvement from one method to another). See
reference [58] for details.

We need to synergize successful estimation using highly adaptive and more
accurate methodologies with ease of interpretability. To identify key covariates
for subgroup identification, the variable importance can be measured in different
ways, e.g., by permutation of each covariate and assessing the loss in performance.
An example of identification of important predictive biomarkers using RF and
boosting methods can be found in [59]. A general discussion on measuring predictor
importance with different outcomes and models/algorithms can be found in [60].
An advantage of tree-based methods is that we can directly obtain the information
on subgroups as space partitioning in the form of Xj ≤ cj or Xj > cj. To facilitate
interpretation, in [21] a tree was used after obtaining estimate of treatment effect
using RF.
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The missing data can be handled as an integrated part of algorithms/methods
described in previous subsections, in addition to pre-imputation. Missing data can be
simultaneously imputed while using tree-ensemble methods including RF, BART,
and GBT [61–63].

The approaches described in this section focus on two treatment groups. The
generalization to multiple treatments can be naturally accommodated for response
surface fitting methods by either pooling all treatment groups together or fitting indi-
vidual group separately. An extension was proposed with an additional assumption
on the loss M{Y, ν} using the weighting method in [53]. A multivariate version of
Robinson’s transformation with regularization term reflecting relationships between
the treatment effects of different arms was described in [33].

After identification of a promising subgroup (or multiple subgroups), we need to
assess how good a subgroup really is. The usual statistical inference on treatment
effect, assuming that the subgroup is chosen independent of the data, may lead to
an overly optimistic evaluation due to selection bias (see [64, 65] and references
therein for details). Cross-validation or repeated cross-validation were proposed
in [21, 51, 58] to assess the treatment effect in subgroup. Parametric bootstrap
and bias-corrected bootstrap methods were studied in [21]. Bootstrap method was
also proposed in [49] to obtain confidence interval of treatment effect. Asymptotic
confidence intervals for the treatment effect were derived using honesty tree, where
an observation is used to estimate treatment effect or to construct a tree, but not
both [66]. The posterior intervals can be used to quantify uncertainty for Bayesian
methods such as the BART.

BioPharmNet has a website dedicated to subgroup analysis software: https://
biopharmnet.com/subgroup-analysis-software/. The website collects a variety of
tools (mostly R packages and code) for execution of subgroup analysis.

4 Dynamic Treatment Regime

Personalized medicine is a medical paradigm offering data-driven decision support
for treating patients in the presence of heterogeneity. The goal of personalized
medicine is to enhance patient outcomes by tailoring treatment based on patient
characteristics. A dynamic treatment regime provides a framework for formalizing
personalized medicine. A dynamic treatment regime is a set of sequential decision
rules, one per stage of treatment. Each decision rule takes input information on the
patient (such as demographics, prior medical history, genetic information, evolving
physiological and clinical variables, results of diagnostic tests, genetic information,
etc.) and returns a recommended treatment option. Dynamic treatment regimes
have also been referred to as adaptive treatment strategies [10, 12, 67]. Identifying
optimal DTRs offers an effective tool for personalized management of diseases and
helps physicians tailor the treatment strategies dynamically and individually based
on clinical evidence, which provides a key foundation for enhanced care of chronic
disease [67, 68].

https://biopharmnet.com/subgroup-analysis-software/
https://biopharmnet.com/subgroup-analysis-software/
https://biopharmnet.com/subgroup-analysis-software/
https://biopharmnet.com/subgroup-analysis-software/
https://biopharmnet.com/subgroup-analysis-software/
https://biopharmnet.com/subgroup-analysis-software/
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In the remainder of this section, we will first introduce the statistical framework
of dynamic treatment regime in Sect. 4.1, then review different classes of methods
for estimation optimal DTRs in Sect. 4.2. Finally, we will provide some discussion
in Sect. 4.3.

4.1 Basic Framework

To formalize the concept of DTR, we introduce the basic definitions of a regime
involving K ≥ 2 stages defined in the book [69]. At each stage, a treatment must
be selected from a set of available treatment options. We can index the stages by j
where j = 1, . . . , K.

For j= 1, . . . , K, let .Aj be the set of treatment options available to decision point
j, where aj denotes an option in .Aj . For simplicity, we consider the case where the
number of options in .Aj is finite. It is possible for .Aj to be an infinite set, i.e., when
the treatment options are drug doses in a continuous range of possible doses, which
we will discuss later in this section.

Let X1 denote baseline information, Xj denote intermediate information collected
between decision j − 1 and j, j = 2, . . . , K. In general, let .Xj denote the support
of Xj, j = 1, . . . , K. Let Y denote the final outcome and let Yj denote stage-specific
outcome following decision point j. For simplicity, only continuous outcome and
binary outcome are considered here assuming larger outcome is preferred. Let Hj

denote the accrued information or history at decision point j. At decision 1, the
accrued information or history is simply the baseline information, H1 = X1. At
subsequent decision points, Hj = {X1,A1, . . . ,Xj − 1,Aj − 1, Xj} for j = 2, . . . , K.
In general, let .Hj denote support of Hj.

For j = 1, . . . , K, let .Xj = (
X1, . . . , Xj

) ∈ X j = X1 × · · · × Xj and .Aj =(
A1, . . . , Aj

) ∈ Aj = A1 × · · · × Aj . It follows that .H1 = X1, and .Hj =
X j × Aj−1, j = 2, . . . , K.

At decision j, a decision rule dj(hj) is a function that maps an individual’s history
to a treatment option in .Aj , that is, .dj : Hj → Aj , j = 1, . . . , K. This means
that at decision j, a decision rule is a function that takes the patient history as input
and returns a treatment option from the available options. Then a dynamic treatment
regime d under this setting is defined as a sequence of such rules; that is

d = {d1 (h1) , d2 (h2) , . . . , dK (hK)}

For simplicity, we express it as d = {d1, d2, . . . , dK}. Similarly, we can refer to
the subset of the first j rules in a K-decision regime d as

dj = {
d1, d2, . . . , dj

}
, j = 1, . . . , K

d = dK = {d1, d2, . . . , dK }
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Let .D denote the class of all possible dynamic treatment regimes d. The
performance of regime .d ∈ D is represented by the expected outcome that would
be achieved if all patients in the population were to receive treatment according to
regime d; that is, the value of d. Assuming larger outcomes are preferred, the optimal
treatment regime .dopt ∈ D is the one that maximizes the expectation of cumulative
outcome among all .d ∈ D.

To formalize this, we state it under potential outcomes framework [6] following
the book [69]. Consider a randomly chosen patient with baseline information X1.
At decision 1, H1 = X1. Suppose the patient receives treatment option .a1 ∈ A1,
then the information that would accrue on this individual between decision 1 and
2 depends on the treatment option the patient received at decision 1. Let a random
variable .X∗

2 (a1) represent the potential intervening information between decision
1 and 2 that would occur if a randomly chosen individual were to receive option
.a1 ∈ A1 at decision 1. Continuing in this way, for the sequence .aj−1 at decision 1
to j − 1, the potential intervening information that would occur between decision
j− 1 and j is represented by the random variable .X∗

j

(
aj−1

)
, j= 2, . . . , K. If options

a1, a2, . . . , aK were given at all K decisions, the potential outcome that would
be achieved if a randomly chosen individual were to receive treatment sequence
.a = aK = (a1, . . . , aK) across all K decision points is

Y ∗ (aK) = Y ∗ (a)

The potential information arising between decision points throughout the K
decisions and the potential outcome arising if an individual were to receive the K-
stage sequence of treatments .a = aK = (a1, . . . , aK) is

{
X1, X

∗
2 (a1) ,X∗

3 (a2) , . . . , X∗
K (aK−1) , Y ∗ (a)

}

Therefore, for a given regime .d ∈ D, the potential outcome that would be
achieved if an individual were to receive treatment according to the K rules in d
is denoted by

Y ∗(d) = Y ∗ (
dK

)

We can also write the potential outcomes associated with regime .d ∈ D as

{
X1, X

∗
2 (d1) ,X∗

3

(
d2

)
, . . . , X∗

K

(
dK−1

)
, Y ∗(d)

}

We define the value of regime .d ∈ D as the expected outcome that would be
achieved if all K rules in d were followed to select treatment.

V (d) = EY ∗(d)
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Therefore, an optimal regime, denoted .dopt ∈ D is the one that maximizes the
value among all .d ∈ D. That is

EY ∗(dopt ) ≥ EY ∗(d) for all d ∈ D

Or, equivalently

dopt = argmax
d∈D

EY ∗(d) = argmax
d∈D

V (d)

In order to estimate a DTR from either randomized or observational data, we
need to make the following identifiability assumptions [69]. Detailed description of
these assumptions can also be found in Sect. 2.

1. Stable unit treatment value assumption (SUTVA): A subject’s outcome is not
influenced by other subjects’ treatment allocation. This assumption has also been
referred as consistency assumption.

2. Positivity: every subject follows a specific DTR with a non-negative probability,
which is bounded away from 0. We can state it as P(Aj = aj|Hj = hj) > 0
for options aj that are feasible for history hj and for all possible histories hj that
satisfy P(Hj = hj) > 0.

3. Sequential Randomization Assumption (SRA): this assumption is a generaliza-
tion of the no unmeasured confounders assumption to the multiple decision case.
It states that treatment selection at decision j depends only on an individual’s
observed history Hj and not additionally on potential outcomes.

4.2 Methods for Estimating Optimal Dynamic Treatment
Regimes

An optimal DTR is the one that optimizes the expected cumulative clinical
outcome. The optimal DTRs can provide evidence-driven precision medicine and
are especially valuable in chronic disease management. Various methods have been
proposed to estimate the optimal DTRs, which can be generally classified as either
indirect or direct estimation methods [70–72]. Indirect estimation methods use
approximate dynamic programming with parametric or semiparametric methods to
first estimate models for the conditional means or contrasts of conditional mean
outcomes and then from these models infer the optimal DTR [70]. Methods under
this class include g-estimation in structural nested models [73–75] and its variations,
Q-learning [72, 76–78], A-learning [68, 79], and regret regression [80]. Direct
estimation methods, also known as value maximization methods [81] or policy
search methods [72, 81], directly estimate the value or marginal mean for all DTRs
in a pre-specified class and then select the regime that maximizes the estimated
value. A variety of methods, such as marginal structural models [82, 83] and inverse
probability weighting [84], fall into this class. We will not give a comprehensive
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review of all the methods, instead we will review some influential and commonly
used methods. A more thorough review could be found in these books [69, 72].

4.2.1 Indirect Estimation Methods

One of the most commonly used indirect estimation methods for estimating optimal
DTR is Q-learning, where “Q” denotes “quality” [70, 85]. This method models the
conditional expectation of the outcome given history and action. Q-learning is an
analog of dynamic programming. It moves backward and recursively estimate the
conditional mean, which is known as Q-function. The Q-function is defined as:

Qj

(
Hj ,Aj

) = E

[
Yj + max

aj+1
Qj+1

(
Hj+1, aj+1

) |Hj = hj ,Aj = aj

]

where QK + 1 ≡ 0, Yj is the reward observed at the end of each stage, j = 1, . . . , K.

The estimated optimal DTR is given by .

(
d̂1, . . . , d̂j

)
:

d̂j

(
hj

) = argmax
aj

Q̂j

(
Hj , aj

)

In practice, the true Q-functions are unknown and must be estimated from the
data. Since Q-functions are conditional expectation, a typical approach to model
them is through linear regression models. However, one can use more flexible
models (e.g., splines, neural networks, etc.) for the Q-functions. Q-learning is
appealing because of computational and conceptual simplicity. Regression models
are easy to implement and allowing the use of standard diagnostic tools. In addition,
it can be performed in most statistical software. However, it suffers the problem
of model misspecification as linear models are rarely correctly specified for Q-
function.

Other indirect methods estimate optimal DTRs by modeling contrasts of condi-
tional mean outcomes, rather than modeling conditional means themselves (e.g., Q-
learning). Popular methods include G-estimation, A-learning, and regret regression.
G-estimation relies on structural nested mean models (SNMM) [86, 87]. Typically,
the SNMM parameterizes the difference between the conditional expectation of
the outcome following observed treatment and the conditional expectation of the
counterfactual outcome under potentially unobserved treatment regime. Here, we
give a brief introduction of this method following the book [72]. The optimal blip-to-
zero function γ j(hj, aj) at any stage j is defined as the expected difference in outcome
when using a “zero” treatment (refers to placebo or standard of care) instead of aj
at stage j, in persons with treatment and history hj who subsequently receive the
optimal regime .d

opt

j+1:

γj

(
hj , aj

) = E
[
Y

(
aj , d

opt

j+1

)
− Y

(
aj−1, 0, d

opt

j+1

)
|Hj = hj

]
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Let ψ be parameters of the optimal blip function. If the true form of the optimal
blip function and the true value of ψ were known, then the optimal regime is

d
opt
j = arg max

aj

γj

(
hj , aj ;ψ

)
, j = 1, . . . , K

Robins [79] proposed a method for finding the parameters ψ of the optimal
blip function through G-estimation. The expected counterfactual outcome Gj(ψ) is
defined as

Gj (ψ) = Y +
∑K

k=j

[
γk

(
hk, d

opt
k ;ψ

)
− γk (hk, ak;ψ)

]

= Y +
∑K

k=j
E

[
Y

(
ak−1, d

opt
k

)
− Y

(
ak, d

opt

k+1

)
|Hk = hk

]

Gj(ψ) then can be interpreted as subject’s outcome adjusted by the expected dif-
ference between the average outcome for individual who received aj and individual
who was given the optimal treatment at stage j, where both had the same treatment
and history to the start of stage j − 1 and were subsequently treated optimal.

Robins [79] has proposed the following estimating equation:

U (ψ, α) =
∑K

j=1
Gj (ψ)

{
Sj

(
Aj

) − E
[
Sj

(
Aj

) |Hj ;αj

]}

where Sj (Aj) is a vector-valued function that contains variables thought to interact
with treatment to affect a difference in expected outcome, here let Sj (Aj)=
.
∂γj

∂ψj
= H

ψ
j Aj . Then E[Sj(Aj)|Hj; αj ] is a function of treatment probability

pj (Aj = 1|Hj; αj), and αj is usually estimated from the data using logistic regression.
Then G-estimation algorithm proceeds in a recursive manner. It begins with
estimating ψ j by solving the equation system Uj(ψ j) = 0, then moving backward.
Assuming the blip function is always correctly specified, the estimators would have
the double robustness property.

A-learning is proposed by Murphy [68], where “A” stands for “Advantage”.
Similar to Q-learning, it also involves recursive backward induction algorithm to
find the optimal DTR. The main distinctive feature is the form of the underlying
models. While Q-learning models the conditional mean outcomes, A-learning
models the contrast function, or equivalently the regret function, which represents
the loss incurred by not following the optimal treatment regime. Minimizing the
regret function leads to the optimal decision rule at each stage.

For simplicity, we consider the case of two treatment options denoted as
Aj ∈ {0, 1} at each stage j = 1, . . . , K, where option 0 is the control or reference
treatment. The contrast function is given by

Cj

(
hj

) = Qj

(
Hj , 1

) − Qj

(
Hj , 0

)

The optimal treatment regime is defined as
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d
opt
j

(
hj

) = I
{
Cj

(
hj

)
> 0

}

Since aj is a binary indicator, Qj(Hj, aj) can be written as

Qj

(
hj , aj

) = vj

(
hj

) + ajCj

(
hj

)

where vj(hj) = Qj(hj, 0). In [79], Qj(hj, aj) − Qj(hj, 0) = ajCj(hj) is referred as the
optimal blip-to-zero function, which compares the expected difference in outcome
between using the reference treatment 0 and using ajamong patients with history
hj. A-learning is based on postulating a model Cj(hj; ψj) for the contrast function
or blip-to-zero function, depending on a parameter vector ψj. Once the estimator
of ψj is constructed, the estimated optimal regime is obtained by maximizing the
estimated optimal blip-to-zero function.

We can see that A-learning does not require full knowledge of Q-function
to characterize and estimate an optimal regime. It only requires part of the Q-
function representing contrasts among treatments. By reducing the dependence of
the estimation procedure on the full data distribution, A-learning is more robust
to model misspecification than Q-learning for consistent estimation of the optimal
DTR. Schulte et al. [78] have examined the performance of A-learning and Q-
learning to identify regions in which one method is superior to the other. The
simulation studies suggested that A-learning may be inefficient relative to Q-
learning in estimating parameters when having correctly specified models, but
A-learning produced more accurate estimator if the Q-function was mis-specified.
A-learning may be preferred in settings where it is expected that the form of the
decision rules defining the optimal regime is not overly complex. However, A-
learning increases in complexity with more than two treatment options at each stage,
which may limit its attractiveness.

Another commonly used method in this class is regret regression method, which
is similar to G-estimation. Henderson et al. [80] and Almirall et al. [88] proposed
two similar methods to model blip or regret function parameters using regret
regression. Henderson et al. [80] proposed a method, namely regret-regression,
incorporates the regret function of Murphy [68] with regression model for observed
response. Almirall et al. [88] proposed a similar methods in a two-stage setting.
Review of these methods could be found in the book [72]. Compared with G-
estimation, the regression-based estimators have lower variability with correct
model specification. In addition, regret regression is appealing as it can make use
of the standard regression functions in statistical software, and we can apply the
common diagnostic techniques used in linear regression for the choice of the regret
function.

In this subsection, we have reviewed indirect methods to estimate the optimal
DTR via modeling conditional mean outcomes or contrasts of conditional mean
outcomes. All of these methods discussed above can be applied for observational
data, and several of them have double-robust property. One advantage of the indirect
methods is that the outcome models can be developed using standard statistical
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models and be assessed for goodness of fit. However, a major drawback is that
the estimator of the optimal DTR requires correct model specification. It is possible
that either the Q-functions or the contrast functions are poorly fitted, and thus the
derived DTRs may be far from optimal.

4.2.2 Direct Estimation Methods

The methods described above indirectly estimate the optimal DTRs. Another class
of methods on the contrary directly estimates the value of each subject in a
pre-specified class of regimes .D, and then select the regime that maximizes the
estimated value. The estimated optimal regime is given by

d̂opt = arg max
d∈D

V̂ (d)

where .V̂ (d) is the estimated value function of the regime d.
The most essential part of the above procedures is the estimation of the value

function for regime d. A variety of methods have been proposed for estimating V(d).
One well-known value estimator .V̂ (d) from the literature is the IPWE [84]. This
approach is motivated by a representation of EY ∗(d) in terms of the observed data
depending on the conditional probability of receiving treatment given past history.
Following the notations in the book [72], let π j(aj|Hj) denote the probability of
taking treatment aj given history Hj, j = 1, . . . , K. We assume that π j(aj| hj) > 0
for each action .aj ∈ Aj and for each possible value hj. This is the positivity
assumption we discussed before. Let Y be the final outcome. Let .I

[
Aj = dj

(
Hj

)]

be the indication function of whether or not the treatment option an individual
actually received is the same as the one selected by d, j = 1, . . . , K. Then the
inverse probability weighted estimator of the value V(d) = EY∗(d) is given by

V̂IPWE(d) = Pn

⎡

⎣
K∏

j=1

I
[
Aj = dj

(
Hj

)]
Y

πj

(
Aj |Hj

)

⎤

⎦

where Pn is the empirical average over a sample of size n. In the case of a SMART,
π j(Aj|Hj) is the randomization probabilities and is known by design, while for an
observational study, this can be estimated by the propensity score.

Under the SUTVA, the SRA and the positivity assumption, the IPWE is
asymptotically consistent. However, the IPWE estimator is known to be unstable
under certain generative models [52]. Zhang et al. [52] proposed a doubly robust
estimator of the value function for a single-stage treatment regime, namely AIPWE.
In addition to being more robust to model misspecification, double robust estimators
tend to be more efficient than IPWE [79]. However, even the principle is straightfor-
ward, the implementation is challenging as the AIPWE is a discontinuous function
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of the observed data, which makes the optimization computationally demanding
even in moderate-sized problems. Details on AIPWE can be found in Sect. 3.1.3.

An alternative approach for estimation of the value of a fixed regime is Marginal
Structural Models (MSMs). Marginal structural models are well-established meth-
ods to address the problem of time-varying confounding. These models estimate
the marginal expectation of a counterfactual outcome under a specific treatment
regime. The introduction of MSMs can be found in chapter “Recent Statistical
Development for Comparative Effectiveness Research Beyond Propensity-Score
Methods”. Marginal structural models were initially introduced to estimate the
value for static treatment regime [84, 89, 90]. Now these models are becoming
increasingly popular for the estimation of optimal DTRs. Orellana et al. [82]
proposed method based on an extension of the marginal structural mean model
of Robins [89, 91], termed dynamic regime marginal structural mean model, is
suitable for estimating the optimal treatment regime with low-dimensional histories
and a small class of potential regimes D. They introduced both parametric and
semiparametric dynamic regime marginal structural models and proposed double
robust AIPWE and non-augmented IPWE for the parameters of the dynamic
regime MSMs. The attractiveness of MSMs is the simplicity of implementation.
A comprehensive review of this method can also be found in these books [69, 72].

A change in perspective for estimating optimal dynamic treatment regime is
to connect the problem of maximizing inverse probability-weighted estimator
and augmented inverse probability-weighted estimators of V(d) with weighted
classification problems. Within this framework, the class of treatment regime does
not need to be pre-specified and can instead be identified in a data-driven way by
minimizing an expected weighted misclassification error and were thereby able to
leverage existing classification algorithm to approximately compute .arg max

d∈D
V̂ (d).

Both Zhao et al. [39] and Zhang et al. [52] have transformed the problem of
estimating an optimal treatment regime into weighted classification problem for a
single stage setting. Zhang et al. [52] focused on single decision case and estimated
the optimal DTR by maximizing across all regimes in the class a suitable doubly
robust AIPWE. They showed that the classification-based estimator of the optimal
DTR using the AIPWE of the contrast is robust to misspecification of either the
propensity score model or the outcome regression model. Zhao et al. [39] developed
outcome-weighted learning (OWL) based on the IPWE to identify the optimal
regime in the single decision case. The optimal DTR can be obtained by solving a
minimization problem with weighted classification error. They employed the hinge
loss function that is used in the field of support vector machine (SVM) for solving
the classification problem. More details can be found in Sect. 3.1.3.

Zhao et al. [92] further introduced two novel methods under multi-stage setting,
named backward outcome-weighted learning (BOWL) and simultaneous outcome-
weighted learning (SOWL). These approaches formalize the problem of estimating
an optimal DTR as either sequential or simultaneous classification problem. BOWL
is a backward formulation of the classification-based approach. The estimation
proceeds backward to find the optimal decision rule at each stage to maximize


 26918 7693 a 26918 7693 a
 


312 H. Wang et al.

the cumulative rewards over the subsequent time. It estimates the optimal decision
rule at future stage first, and then estimates the optimal decision rule at current
stage by restricting the analysis to the subjects who have followed the estimated
optimal decision rules thereafter. The benefit of this method is that it is highly
flexible to mitigate the risk of model misspecification. SOWL is built on a
simultaneous optimization method, which utilizes the whole dataset for estimating
each treatment assignment. SOWL converts estimation of an optimal DTR into a
single classification problem. This is the first time that learning multi-stage decision
rules is performed simultaneously and integrated into a single algorithm. Current
algorithms from support vector machines are adjusted and further developed for
SOWL.

Compared with indirect methods, direct estimation methods usually employ
non-parametric or semi-parametric estimators of EY ∗(d), requiring only mild
assumptions about the data distribution and as a result are more robust to model
misspecification. However, one potential drawback is the high variability of the
value function estimates, which result in higher variance than indirect estimation
methods.

Estimating optimal DTRs is an extremely active area of research. In addition
to theoretical development discussed above, more tools for estimation and inference
are becoming available and are continually being improved. Q-learning is accessible
via the R package qLearn [93]. More recently, the alternative “interactive Q-
learning” approach has become available via iqLearn package [94]. Two regression-
based approaches: G-estimation can be implemented through R package DTRreg.
Some more complex approaches (e.g. BOWL, value search methods based on IPTW
and AIPTW) can be implemented with R package DynTxRegime [95].

The increasing availability of longitudinal observational studies has also pro-
vided new opportunities for the estimation of optimal DTRs. A lot of researchers
have utilized real-world data such as cohort studies, EHRs, and clinical registries
to estimate optimal DTRs. Examples include using the Center for International
Blood and Marrow Transplant Research (CIBMTR) registry database for sequential
prevention and treatment of acute graft-versus-host disease (GVHD) [96, 97], and
using electronic medical record data such as MIMIC-III (Medical Information Mart
for Intensive Care version III), MIMIC-IV (version IV) Clinical Database [98,
99]. MIMIC are openly available datasets on PhysioNet, comprising of detailed
information regarding the care of real patients [100, 101]. Statistical methods
adopted included Q-learning [97, 102], regret regression [80, 103], G-formula [104],
marginal structural models [82], and other machine learning methods (e.g., adaptive
contrast-weighted learning [105], deep reinforcement learning [96], stochastic tree-
based reinforcement learning (ST-RL) method [106]). The application have covered
different medical areas, including but not limited to HIV/AIDS, cancer, diabetes,
and psychiatric disorders [107].
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4.3 Discussion

The area of DTRs is a growing field, and there are many topics which are only
beginning to be explored. In this section, we raise a few topics for discussion.

4.3.1 Alternative Outcome Types

Most DTR application has focused on continuous outcomes (e.g., symptom scores,
CD4 count), however, research and analyses have been conducted for more com-
plicated outcome types. In this subsection, we will briefly discuss the development
of methods for alternative outcome types, including time-to-event outcomes and
discrete outcomes.

In the cancer and other chronic disease research, the outcome of interest
is usually time-to-event, for example, overall survival time or disease-free or
progression-free survival time. Censoring of the time-to-event outcomes raises
challenges to the estimation of optimal DTRs using the standard methods for non-
censored outcomes. Several methods have been proposed regarding the estimation
of optimal dynamic treatment regimes for survival outcomes. In the context of Q-
learning, Huang et al. [108] used linear regression to fit accelerated failure time
(AFT) model to estimate the optimal DRT in a time-to-event setting for a two-
stage problem, with censoring handled by inverse probability weighting. Simoneau
et al. [109] proposed a doubly robust method, named dynamic-weighted survival
modeling, for estimating optimal DTRs for survival outcomes with right-censoring.
They extended the dynamic weighted ordinary least square regression in [110] for
non-censored outcomes. However, this method has some limitation as it is restricted
to binary treatment. Recently, Cho et al. [111] proposed a reinforcement learning
method to address the limitation of existing methods for survival outcomes, which
allows a flexible number of treatment stages and arms. The estimator maximizes
either the mean survival time or the survival probability using a generalized random
survival forest-based algorithm. Simoneau et al. [109] could be implemented using
R package DTRreg, and Cho et al. [111] could be implemented using R package
dtrSurv.

The application of optimal DTR also involves discrete outcomes. The discrete
outcome could be, for example, an indicator of no myocardial infarction within
30 days (a binary outcome) or the number of emergency room visits in a given period
(a count, possibly Poisson-distributed). When the outcome is discrete, the estimation
should take into account the constraints of the outcomes. Q-learning is appealing in
terms of computational and conceptual simplicity, but it is mainly considered for
continuous outcomes. Moodie et al. [112] proposed a Q-learning framework using
generalized additive model (GAM) with penalized regression splines selected via
generalized cross-validation (GCV) for developing optimal DTRs when outcomes
are discrete (Bernoulli outcome and Poisson outcome, respectively). This approach
added flexibility to the Q-learning procedure. Based on the simulation results,
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GAM adapted Q-learning have superior performance compared with Q-learning
with linear models and other methods based on propensity scores in terms of bias,
MSE, and coverage.

4.3.2 Personalized Dose Finding

Dose finding is an important topic for personalized medicine. How to estimate the
optimal dosage regime within multi-stage is a challenging problem. Extending the
existing methods for handling finite treatment options to personalized dose finding
with continuous doses might be infeasible as there could be an infinite number of
treatment options for a given dose interval. Unlike the finite multiple-treatment DTR
problem, only a few patients may be observed using the given dose level as the dose
level follows a continuous distribution, so that the probability of observing a dose
equal to the rule-specified dose is zero [113].

Chen et al. [113] proposed a robust outcome-weighted learning method based on
a nonconvex loss function to find the optimal individualized dose rule. This is an
extension of OWL method proposed by Zhao et al. [39]. With this approach, the
dose finding problem is converted to a weighted regression with individual rewards
as weights. This method has advantages over regression-based methods through
the direct estimation of the optimal dose. However, like its originated method, this
approach is prone to retain the actual observed dose, because only an observation in
which the observed dose is close to the estimated optimal dose can contribute to the
loss function.

5 Conclusions

Modern healthcare systems and drug development demand personalized medicine
to improve patients’ care and productivity within financial constrains. Personalized
medicine has been more and more utilized to guide the drug development. Building
upon the evolution of sciences and better understanding of disease, mechanism
of action, appropriate targeted population can be hypothesized earlier in drug
development. PM as a data-driven approach can also generate unique insights
to quantify benefit-risk profiles across a heterogeneous patient population. For
example, a subset of enrolled patients in Phase II studies with promising product
profile can be carried into Phase III for confirmation.

The counterfactual outcome under the causal inference framework, specifically
the conditional average treatment effect, is a central measure in recommending
personalized treatment option. In practice, assessment of underlying assumptions of
causal inference needs to follow the recommendation detailed in other chapters of
this book. In this chapter, we also introduce two advanced analytic methods around
the underlying assumptions of causal inference, specifically the algorithm OverRule
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on identifying where the positivity assumption holds and the deconfounder method
that relaxes the no unobserved confounder assumption.

This chapter focused on leveraging the widely available real-world data sources
for PM research. Such data sources typically capture large number of patients over
an extensive period of time. Specifically, the longitudinal cohort design is most
valuable. It records the sequences of treatments for a heterogeneous population
in routine clinical practice and provides unique opportunity for conducting PM
research. To better analyze linked data sources where different data elements are
captured, we report a few advanced analytic methods from literature developed to
address such challenges. The importance and value of natural language processing
to incorporate unstructured data are also highlighted to augment structured data.

Focusing on the treatment recommendation at one static time or longitudinally,
Sects. 3 and 4 review the latest development in these areas. The existing methods
are classified into different groups with a focus on their strengths, limitations, and
general usage. Together with the availability of associated tools and examples of
their applications, we believe this will further facilitate their adoption in conducting
PM research.

In the meantime, no one methodology outperforms alternatives across all
scenarios. Each individual personalized medicine research project warrants careful
assessment of fit-for-purpose data source, study design, and analytic framework.
As Type I error control has not traditionally been the focus of personalized
medicine, the robustness of findings is of paramount importance. Some good prac-
tices include carefully assessing assumptions underlying different methodologies,
employing alternative analysis under different set of assumptions, incorporating
clinical judgments, and verifying the conclusions in independent data sources.
Overall, personalized medicine is a fast-growing research field where great advance-
ments have been made. With better awareness and further methodology research,
personalized medicine will see more applications and have bigger impact in the
clinical practice.
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Use of Real-World Evidence in Health
Technology Assessment Submissions

Yingyi Liu and Julia Ma

1 Introduction

Health technology assessment (HTA) is a process of investigating the medical,
economic, organizational, social, and ethical impacts of health technologies. The
evaluation can help determine the value of a health technology or medical inter-
vention and whether it should be made available in a health system. Guidance on
how the technology can be used in health systems will be developed and published
following the decision-making. HTA is a systematic and multidisciplinary process
as it requires a thorough assessment of every aspect of new technologies and
their impact on a healthcare system. Professionals and researchers from a range of
disciplines work together using explicit analytical frameworks drawn from a variety
of methodologies.

Technology assessment should be done in a transparent and unbiased manner,
with the major purpose to provide the best available research-based evidence and to
inform technology-related healthcare policy decision-making. HTA seeks to provide
health policymakers with accessible, useable, and evidence-based information to
guide their decisions about the appropriate use of new and existing technologies and
efficient allocation of resources. Therefore, HTA is often described as “the bridge
between evidence and policy making” [1].

HTA has a strong foundation in research on the health effects and broad
implications of the use of technology in health care. Its potential for contributing
to safer and more effective health care is widely acknowledged. Most countries
have a formal process for collecting and reporting scientific evidence to support
healthcare policy decision-making. Formal HTA has become a prerequisite for
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access to reimbursement in key markets such as the United Kingdom (UK), Canada,
Australia, and France. HTA is playing an increasingly important role in informing
reimbursement and pricing decisions and providing clinical guidance on the use of
medical technologies around the world.

A wide range of use cases of RWE can be found along different health technology
lifecycles. RWE from sources such as observational studies, registry, health surveys,
and electric health records (EHRs) have been submitted to HTA bodies to identify
treatment patterns, to characterize patients, and to provide supportive evidence for
the economic evaluations. Such evidence offers broad and rich information about
what really happens in routine clinical practice. Depending on the market prototype,
HTA appraisals appear to focus mainly on safety and clinical effectiveness, followed
by the economic and budgetary impacts of health technology. Evidence collected
from real-world clinical practice provides valuable information to fill the efficacy–
effectiveness gap which is the limitation of evidence from randomized clinical trials
(RCTs) [2].

The remainder of the chapter is organized as follows. Types of RWE included in
technology assessment, the role of RWE in market access and reimbursement, and
the impact of RWE on decision-making are discussed in Sect. 2. The strength of
RWE in addressing the specific needs of key healthcare stakeholders are recognized
and the value of RWE in HTA decision-making is surveyed in Sect. 3, together
with some recent RWE usage examples for HTA purpose. While more and more
HTA bodies are becoming more open to and more comfortable with RWE, practice
varies among the agencies and guidance development is also at different stages. An
overview of the most recent trends in the use of RWE for technology assessments,
focusing on several influential HTA bodies, such as the National Institute for Health
and Care Excellence (NICE) in the UK is provided in Sect. 4 prior to the conclusions
concerning the future of RWE in HTA submissions and decision-making.

2 Role of RWE in HTA Submissions

2.1 Data Sources and Types of RWE

Based on the definition of the Food and Drug Administration (FDA), real-world
data (RWD) are defined as data relating to patient health status and/or the delivery
of health care routinely collected from a variety of sources. RWE is the clinical
evidence regarding the usage and potential benefits or risks of a medical product
derived from the analysis of RWD [3].

The most common sources of RWD include EHRs, administrative data, claims
data, patient registries, patient-generated health data, chart reviews, patient survey
data, healthcare provider survey data, and other observational data [4]. The most
frequently utilized RWE study designs include retrospective study, prospective
study, cross-sectional study, and pragmatic clinical trials.
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2.2 Acceptability of RWE Across HTA Agencies

The growing interest in incorporating RWE into the HTA process to assess the
clinical relative effectiveness and economic value of drugs is mainly due to
the limited availability of evidence from RCTs and the desirable property of
RWE in reflecting outcomes in real-world settings. HTA agencies worldwide are
increasingly accepting RWE as part of the information they use to guide their
decisions. In this subsection, we review the acceptability and requirements for the
use of RWE by several influential HTA agencies around the world.

Makady et al. [5] investigated policies on the use of RWE for initial drug
submissions to six European HTA agencies, namely AIFA, HAS, IQWiG, NICE,
TLV, and ZIN (the full names of HTA agencies are provided in Table 1). All HTA
agencies accept all available evidence for initial drug assessments, including RWE.
Some agencies (NICE, IQWiG, ZIN) also provided advice for specific RWD sources
as well as guidance on the suitability of these sources [5]. RWD may be used
to demonstrate treatment effects only under specific circumstances. For example,
RWD may be used when lack of RCT data on drug efficacy (NICE, IQWiG,
ZIN); RWD may be utilized to inform indirect treatment comparisons (NICE, ZIN)
when head-to-head RCTs are not available; or RWD can be used to supplement
RCT data when there is no available data on specific subpopulations or long-term
follow-up (NICE, ZIN) [5]. Under these scenarios, the agencies required an explicit
justification of why RWD were used and a clear discussion of the biases associated
with the RWD and their consequences on treatment effect estimates (TLV, NICE,
IQWiG, HAS, ZIN). Makady et al. [5] found that all agencies adopted similar

Table 1 List of selected HTA agencies in the world

Country HTA agency HTA agency full name

Australia PBAC Pharmaceutical Benefits Advisory Committee
Canada CADTH Canadian Agency for Drugs and Technologies in Health
Canada INESSS Institut National d’Excellence en santé et en Services

Sociaux
Europe EUnetHTA European Network for Health Technology Assessment
Finland PPB Pharmaceuticals Pricing Board
France HAS Haute Autorité de Santé
Germany IQWiG Institute for Quality and Efficiency in Healthcare
Germany G-BA The Federal Joint Committee
Italy AIFA Italian Medicines Agency
Netherlands ZIN Zorginstituut Nederland
New Zealand PHARMAC Pharmaceutical Management Agency
Scotland SMC Scottish Medicines Consortium
Sweden TLV Dental and Pharmaceutical Benefits Agency
UK NICE National Institute for Health and Care Excellence
United States (US) ICER Institute for Clinical & Economic Review
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evidence hierarchies that placed RWD on a lower level in terms of quality and
reliability. RWD can be used to confirm or supplement RCTs, but not to replace
them. Therefore, conclusions on treatment effects that were based on RWE would
be considered with greater caution than those based on evidence from RCTs.

Another study published by CADTH in 2018 [6] reviewed the acceptabil-
ity and requirement of use of RWE by key HTA agencies around the world,
namely CADTH, EUnetHTA, HAS, INESSS, IQWiG, TLV, NICE, PBAC, PPB,
PHARMAC, SMC, and ZIN. Generally, the agencies accepted both randomized
and non-randomized clinical data as part of the initial drug submission, but the
requirements vary substantially. IQWiG in Germany had strict evidence hierarchies
that value RCT data over RWE. IQWiG required that conclusions for benefit
assessments are usually inferred only from the results of direct comparative studies.
RCTs are required to demonstrate causality; other study designs mostly cannot
answer required questions with sufficient certainty due to potential biases. The
use of non-randomized data for benefit assessment requires particular justification
or specific preconditions and special demands on quality [6]. UK NICE preferred
head-to-head RCTs, but also accepts non-RCT studies as supplementary when head-
to-head RCT data is not available or insufficient. CADTH accepted all study types,
while data from one or more RCTs are preferred. Non-RCTs may be particularly
useful when long-term follow-up evaluation is required, if RCT is impractical due
to limited number of patients or for ethical reasons, if RCT data lack relevant
comparators or when RCTs have limited external validity [6]. HAS accepted studies
according to the evidence hierarchy; meta-analysis of good methodological quality;
clinical trial, or observational study design; and implementation according to current
methodological requirements. Resubmissions are the same as initial submissions or
extension of indications [6]. Regarding additional evidence for safety, most agencies
requested additional non-RCT safety data, such as periodic safety reports (PSURs)
or other pharmacovigilance data (EUnetHTA, HAS, IQWiG, PBAC, and PPB) [6].
A comprehensive summary can be found in this document [6].

With regard to rare diseases, the policies on the use of RWE may vary. For
rare diseases, evidence available at the time of reimbursement decision-making
may have a higher degree of uncertainty. Studies may be too short for assessing
long-term outcomes, or may lack important patient-relevant outcomes, or have no
standard of care comparison [7]. In early 2020, G-BA passed a law in Germany
to mandate the collection of post-launch RWE for Advanced Therapy Medicinal
Products (ATMPs). IQWiG followed up with a G-BA commissioned report that
high-quality registries can be used to conduct added benefit assessments for new
drugs, especially in scenarios where there is limited evidence available at the time
of market authorization. However, IQWiG considered other RWE sources such as
EHRs and claims data far less promising due to concerns with data quality and
completeness [7]. On February 2021, the G-BA announced the plan for the first
mandatory collection of RWE for Zolgensma, a gene therapy approved for the
treatment of spinal muscular atrophy (SMA). Novartis will run a registry study to
collect RWE [8]. While Germany authorities are well-known as less willing to use
RWE to inform HTA decision-making and have very high standard for RWE, these
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recent advancements have demonstrated a need for RWE to inform reimbursement
decision when there is unmet need and lack of RCTs data.

Currently, the acceptability and requirement of RWE among HTA bodies varies
greatly. Generally, there has been a trend toward more openness to RWE for most
HTA agencies in the last few years.

2.3 Role of RWE in Market Access and Reimbursement

In recent years, HTA agencies are increasingly turning to RWE to enrich their
evidence base for decision-making. Several studies have summarized the use of
RWE in HTA decisions across different HTA agencies.

In a subsequent study, Markady et al. [9] reviewed appraisals by five HTA
agencies in Europe (NICE, SMC, HAS, IQWiG, and ZIN) within the context
of treatments for patients with melanoma (ipilimumab, vemurafenib, dabrafenib,
cobimetinib, trametinib, nivolumab, pembrolizumab). This review included 52 HTA
reports published on agency website between 2011 and 2016 (a full list of report
can be found in supplementary material Appendix 4 of Markady’s paper [9]),
of which 28 (54%) included RWD. The majority of appraisals included in this
study were reassessment reports. For relative effectiveness assessment (REA), RWD
were primarily used to estimate the prevalence of melanoma in all 28 reports,
and the majority of RWD used to estimate melanoma prevalence came from
registries. In addition, RWD were used to estimate effectiveness, and the RWD
included for effectiveness were mainly derived from observational studies and
non-randomized phase I/II studies [9]. For cost-effectiveness assessment (CEA),
RWDwere mainly used to extrapolate long-term effectiveness, identify drug-related
costs and medical offset, and estimate utilities using quality-of-life information.
Long-term effectiveness data usually came from registries and national statistics
databases. Costs were estimated using data from claims databases, observational
studies, or cost-of-illness studies.

Markady et al. [9] noticed differences in the use of RWE across all HTA agencies.
Among all the REAs, all NICE and ZIN reports included RWD, whereas RWDwere
included in 23% of SMC reports, 62% of HAS reports, and 53% of IQWiG. IQWiG
and ZIN did not use RWD to inform safety or efficacy in any report. SMC used
RWD for safety in 6% of cases and in effectiveness for 12% of cases. HAS used
RWD for safety and effectiveness in 9% of cases, respectively. NICE used RWD for
safety and effectiveness in 22% of cases, respectively.

The economic modeling for HTA submission usually includes CEA and budget
impact analysis (BIA). CEA is a type of economic evaluation that compares the
costs and outcomes of two or more interventions with a common health outcome but
different effectiveness [10]. For the cost-effectiveness models, the key components
include population characteristics, relative efficacy and safety, disease model for
long-term outcome, utility, and costs. BIA is an economic assessment that estimates
the expected extra budget and cost-offsets following the introduction of a new
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Table 2 Frequency and distribution of types of inputs informed by RWE

Input Category Number of RWE uses Percentage (%)

Non-drug-specific
clinical inputs

Disease progression/mortality
rates

117 28.7

Prevalence 44 10.8
Patient characteristics 23 5.7
Other clinical inputs 14 3.4
Incidence 10 2.5
Non-drug-specific
discontinuation rate

2 0.5

Drug-specific
clinical inputs

Effectiveness 6 1.5

Drug-specific discontinuation
rate

5 1.2

Adverse drug event rates 2 0.5
Utility inputs Non-drug-specific utility 38 9.3

Drug-specific utility 1 0.2
Economic inputs Healthcare costs 86 21.1

Non-healthcare costs 27 6.6
Treatment pattern/market
share

13 3.2

Assumptions RWE used to support
assumptions

19 4.7

Source : Lee et al. [13]

healthcare technology [11]. The key components for BIA include size of patient
population, market share, usage pattern, and drug costs. RWE can be used to validate
assumptions in these models and be a valuable source for inputs such as event rate,
population characteristics, utility, and treatment costs.

Lee et al. [12] reviewed CEA and BIA in 33 pharmaceuticals reports published
by ICER between January 2014 and June 2019. The 33 reports considered a total
of 123 pharmaceutical interventions and comparators for 29 diseases. All reports
included a CEA, but two reports did not include a BIA. In the 33 ICER reports,
407 RWE uses were identified in total. The description and categorization of model
inputs informed by RWE are summarized in Table 2. The results show that RWEwas
most commonly used to inform non-drug-specific clinical inputs, such as disease
progression/mortality rates (28.7%), prevalence (10.8%), and patient characteristics
(5.7%). RWE was also widely used for economic inputs, including healthcare
costs (21.1%), non-healthcare costs (6.6%), and treatment pattern/market share
(3.2%). In addition, RWE was leveraged for utility inputs, mainly non-drug specific
utility (9.3%). However, it was rarely used for drug-specific clinical inputs such
as effectiveness (1.5%), discontinuation rates (1.2%), and adverse drug event rates
(0.5%). The most frequently used study design was a retrospective cohort (207/407,
50.9%), and the most frequently used data source was registry data (163/407,
40.0%) (Tables 3 and 4). About a third (30.2%) of RWE was industry-sponsored.
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Table 3 Frequency and
distribution of study design of
RWE

Study design Percentage (%)

Retrospective cohort 50.9
Prospective cohort 17.0
Cross-sectional for surveys 12.8
Utility study 9.1
Cross-sectional 3.4
Meta-analysis/Network meta-analysis 2.2
Systematic review 1.7
Unidentifiable 2.9

Source : Lee et al. [13]

Table 4 Frequency and
distribution of data source of
RWE

Data source Percentage (%)

Registry data 40.0
Administrative claims data 18.2
Patient survey data/patient diary 18.2
EHRs 9.6
Other observational data 9.3
Synthesis of multiple previous RWE studies 3.7
Healthcare provider survey data 1.0

Source : Lee et al. [13]

Table 5 Use of RWE in HTA Submissions to NICE during 2018–2021

2018 2019 2020 2021 Total

RWE not included 36 8 6 11 61
Negative recommendation 6 1 1 8
Positive or positive with restrictions 30 7 4 10 51
No recommendation 1 1 2

RWE included 20 43 37 62 162
Negative recommendation 2 3 2 6 13
Positive or positive with restrictions 18 40 35 56 149

Total 56 51 43 73 223
Proportion of total supported by RWE 35.7% 84.3% 86.0% 84.9% 72.6%

Source : Segwagwe et al. [14]

More recent research by Segwagwe et al. [14] investigated the HTA submissions
to NICE between 2018 and 2021 utilizing IQVIA’s proprietary HTA-Accelerator
tool to quantify the use of RWE in HTA submissions. Among the 223 submissions
analyzed, 36% in 2018 included RWE, while from 2019 to 2021 the proportion
were 84%, 86% and 85% respectively. During these years, 92% of the submissions
including RWE made positive recommendations, while 84% of those excluding
RWE made positive recommendations. More details can be found in Table 5. These
findings suggest that there was an increasing trend of leveraging RWE for HTA
submissions.
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To sum up, HTA agencies are increasingly accepting RWE to inform the market
access and reimbursement decisions. RWE can provide valuable information for
various uses in CEAs and economic modeling. The principal uses of RWE for CEA
mainly include:

– Estimating the burden (e.g., prevalence and incidence) of disease
– Understanding local treatment pathways
– Determining comparative effectiveness and safety in the real world vs. relevant

comparators in the absence of RCT data
– Determining comparative effectiveness in relevant patient populations
– Demonstrating long-term effectiveness and safety

The principal use of RWE in economic modeling are as follows:

– Providing inputs for costs and healthcare resource utilization (HRU)
– Collecting data on quality of life and utility
– Providing model inputs such as transition probability

Overall, RWE has experienced an explosion of interest within the last decade.
HTA agencies worldwide are currently exploring the possibilities of using RWE to
supplement and enrich evidence. However, the use of RWE to inform drug-specific
effectiveness and safety in many countries is still limited. One of the barriers to
using RWE is the absence of drug-specific RWD available at the time of assessment,
especially during the initial technology assessment. Since the assessment usually
takes place soon after regulatory approval, there might be insufficient time to collect
drug-specific RWD from registries or observational studies. At this stage, RWD are
more likely to be utilized to provide insights on the natural history of disease, disease
burden, and unmet medical needs. Another barrier could be the lack of guidance of
the use and analysis of RWD for HTA purposes. We are expecting fast progress in
guidance development in the future.

3 Value and Strength of RWE for HTA Purposes

3.1 Efficacy–Effectiveness Gap and Strength of RWE

Evidence on drug effectiveness informing HTA submissions conventionally relies
on RCTs. RCTs remain the preferred source of evidence among HTA agencies.
However, the potential shortcomings of RCTs include the following:

– They are conducted under tightly controlled conditions that often do not reflect
the realities of treating patients in routine practice.

– The patient populations included in RCTs often do not reflect the general
population in real-world clinical practice. They may exclude or under-present
certain types of patient populations, such as pregnant women or women who are
breastfeeding, children, and elderly patients [15–17].
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– The treatment and follow-up periods are often limited, potentially preventing
measurement of long-term health outcomes [18].

– HTA generally prefers hard clinical outcomes which may not be well captured in
RCTs due to their rarity.

– HTA preferred active control may not be practical in RCTs.

Consequently, extrapolation of drug efficacy from RCTs to drug effectiveness in
real-world clinical practice is difficult. Many RCTs have limited generalizability,
and the conclusions drawn from RCTs may only be applicable to selected patients.
This discrepancy is frequently referred to as the efficacy–effectiveness gap [2, 19,
20]. In the context of HTA decision-making, which focuses on the value of a drug,
initial drug funding decisions are based on the clinical benefits observed from RCTs
and the value of a drug is estimated using economic models such as willingness
to pay for quality-adjusted life-year gain (QALY). The reliance on RCTs may
leave a large efficacy–effectiveness gap, increasing the risk and uncertainty of HTA
decisions [21].

In contrast, an inherent strength of RWE is its consideration of the unselected
patient population, which may be more relevant to routine practice [20, 22]. The
large diversity in inclusion and exclusion criteria provides information on treatments
in patient groups that are usually excluded from RCTs [23]. Another advantage
is that RWE is more feasible and far less expensive to gather than information
from RCTs and can provide long-term longitudinal data on safety and effectiveness.
Therefore, RWE constitutes a bridge between the evidence generated in RCTs and
routine clinical practice to fill the evidence gap. RWE could be a potentially valuable
source of evidence to provide complementary data that are important to decision
makers.

Given the strength of RWE, RWE can add value throughout the HTA process.
Before assessment, RWE can be used early in the scoping stage to identify disease
burden on both patients and the healthcare system, explore treatment patterns,
assess disease epidemiology, understand standard of care as a comparator for
future analysis. During assessment, RWE can be used to facilitate the identifica-
tion of relevant subpopulations, provide additional evidence concerning long-term
treatment effectiveness and safety, permit the inclusion and analysis of clinical
endpoints not included in RCTs but observed in real life, gather information on
the safety and effectiveness when drugs are used more broadly in the real-world
clinical setting, model cost-effectiveness, illustrate how the product will fit in the
current clinical practice, and much more. After assessment, RWE can be used
to understand real-world treatment patterns and risks of outcomes, demonstrate
real-world benefits, and gain leverage in pricing negotiations. RWE studies that
demonstrate effectiveness and acceptability in new patient groups can help inform
coverage expansion decisions for broader access.
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3.2 Case Studies

To understand the value RWE can bring to market access and reimbursement
decision, we examine several case studies. One example is the use of RWE to
support the HTA re-submission of ipilimumab for malignant melanoma in Australia
[24] (the information of this case study can be found in the public reports provided
in PBAC website [25–27]). In July 2011, the initial submission presented a single
phase III, randomized double-blind trial. The median survival for the ipilimumab
monotherapy arm was 10.12 months compared to 6.44 months in the control group
[25]. The submission described ipilimumab as “superior in terms of comparative
effectiveness” but the PBAC considered this claim may not be reasonable as
ipilimumab may be considered “inferior in terms of immune related adverse events”
[25]. Consequently, the PBAC did not recommend the drug because of an “uncertain
extent of clinical benefit, uncertain clinical place of therapy, high and uncertain cost-
effectiveness ratio and uncertain financial costs” [25]. In the first resubmission, no
additional evidence was added but additional exploratory analyses relating to safety
were presented. The company also proposed a reduced price but PBAC did not
change its decision. In the second resubmission in November 2012, Bristol–Myers
Squibb presented new evidence related to the durability of ipilimumab’s effect,
including three recent real-world post-registration data: the most recent Periodic
Safety Update Report (PSUR), Italian “real-world” data relating to efficacy, safety,
and rates of re-induction from the European Expanded Access Programme (EAP)
and submitted to the European Society for Medical Oncology (ESMO) conference
in October 2012, and Australian “real-world” data resulting from the Patient Access
Program (which existed between August 1, 2011, and April 15, 2012) [27]. The
PBAC agreed that the results from the EAP in Italy supported the results seen
in the other trials. This new data demonstrated that the drug increased survival
and confirmed the durability of the clinical effect. Finally, PBAC recommended
ipilimumab with this new evidence and a decrease in price.

Another example is the HTA submission of aflibercept for treatment of adults
with colorectal cancer to SMC in Scotland [24]. The initial submission contained
one randomized, placebo-controlled phase III study. Results of the study demon-
strated significantly longer overall survival. However, in June 2013, SMC did not
recommend aflibercept because it lacked a sufficiently robust economic analysis. In
the February 2014 resubmission, Sanofi included two on-going, open-label, single-
arm studies to assess safety and quality of life. This RWE was used to revise
the utility score within the economic model. In the resubmission, the QALY gain
slightly increased, especially due to the two open-label studies providing a stable
estimate of quality of life under the treatment [28]. The agency recommended
aflibercept because this new data demonstrated a substantial improvement in quality
of life in the patient population.

RWE can also be used to support reimbursement in a patient subgroup. One
example is the submission of Brentuximab vedotin for treating CD30-positive
Hodgkin lymphoma to NICE. To identify the high-risk group reflecting clinical
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practice in England, the company provided additional evidence citing a retrospective
study including multiple centers across England. The company redefined high-
risk patient criteria and identified a subgroup of patients which were accepted by
committee [29].

However, there are some uncertainties in the impact of RWE in reimbursement
decision-making. Jao et al. [30] conducted a wider review to look beyond melanoma
drugs across HTA agencies in seven markets (Germany, France, England, Scotland,
Canada, Australia, and South Korea). They found that the use of RWE varied from
none to 9% of HTAs between 2012 and 2017. They concluded that not only is
RWE infrequently used in HTA, but that it has rarely been influential in decision-
making. Their analysis of HTA recommendations with and without RWE in Canada,
Germany, France, England, and Scotland did not find a direct correlation between
RWE and the recommendations.

Briefly, RWE has been utilized with various purposes in HTA submissions/resub-
missions. There are variations of acceptance and influence of RWE across agencies.
For resubmission, additional evidence from RWD may play an important role in
decision-making. For initial submission, the influence on decision-making may be
uncertain.

4 Guidelines for Use of RWE in HTA and Collaborative
RWE Standard Development

There is growing interest in leveraging RWE to complement evidence from RCTs
for the purpose of decision-making for regulatory approval, reimbursement, and
pricing. Regulatory agencies such as the FDA [31, 32] and European Medicines
Agency (EMA) [33] are leading the way in developing regulatory frameworks and
guidance documents for RWE use. Some HTA agencies are also taking initiatives to
advance the use of RWE in HTA, including developing good practice guidance. In
addition, some regulatory agencies and HTA agencies have already recognized the
need for collaboration on RWE standard development and evidentiary alignment. In
this section, we provide an overview of the most recent guidance on the use of RWE
for HTA, focusing on several influential HTA agencies. Furthermore, we discuss
this regulatory and HTA synergy trend and how it is affecting pharmaceutical
companies.

4.1 NICE’s New RWE Framework

The latest guidance on the use of RWE in HTA is the RWE framework developed by
NICE in June 2022 [4]. The RWE framework is a part of NICE Strategy 2021–2026
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[34], a 5-year strategic plan focusing on the use of RWE to fill evidence gaps and
facilitate patient access to innovative healthcare interventions [4].

The aims of the RWE framework are to identify when and how RWD can be
used to improve recommendations and to describe “best practices for planning,
conducting, and reporting RWE studies to improve the quality and transparency
of the evidence” [4]. The core principles in the guidance for generating high-quality
and trusted RWE include [4] the following:

– Data suitability: Ensure data is of good provenance, sufficient quality and
relevance to answer the research question.

– Transparency: Generate evidence in a transparent way and with integrity from
study planning through to study conduct and reporting.

– Methods: Use analytical methods that minimize the risk of bias and characterize
uncertainty.

The NICE RWE framework formalizes the acceptability of RWE as a source of
evidence and outlines the role of RWE in HTA submissions. It acknowledges that
RWD and RWE are already widely used for various purposes in NICE decision-
making and discusses their potential use within NICE guidance.

The framework provides guidance and a tool for assessing data suitability. It
emphasizes that the data used to inform NICE decision-making should be reported
transparently and be of good provenance and fit-for-purpose to address the research
question. NICE has created the Data Suitability Assessment Tool (DataSAT) for
researchers to justify their data source selection.

The framework also has a dedicated section on methods for real-world studies of
comparative effects. It suggests that non-randomized studies can be used to provide
evidence on comparative effects in the absence of RCTs or to complement trial
evidence to answer a broader range of questions about the effects of intervention
[4]. It provides specific recommendations for conducting non-randomized studies,
including traditional observational studies, as well as clinical trials that use RWD to
form external control arms. The framework recommends that RWE study developers
follow the “target trial” approach when designing an RWE study. The framework
specifies the analysis to be conducted for RWE studies to limit bias, control the
confounders, and assess the robustness of the findings. To address the risk of
confounding bias, potential confounders should be identified based on a transpar-
ent, systematic approach, and causal assumptions should be clearly articulated.
Confounding bias should be controlled by using a variety of statistical methods
considering both observed and unobserved confounders. In addition, information
bias from informative censoring, missing data, and measurement error should be
addressed appropriately if needed. Sensitivity analysis should be used to assess
the robustness of the studies. Key sensitivity analyses should vary across multiple
dimensions, such as follow-up time, model specifications, use of covariates, and
algorithms for defining outcomes and covariates [4].

NICE has specified that the framework will be a “living framework,” so it
will be constantly updated to reflect evolving processes and methodologies in the
future. NICE’s RWE framework is among the most thorough RWE guidance to date
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and attempts to fill multiple gaps in prior recommendations for RWE generation.
It provides a great resource for researchers to develop RWE studies, especially
comparative effectiveness studies.

4.2 ICER’s 2020–2023 Value Assessment Framework

In February 2020, ICER in the US announced that it will generate new RWE for its
2020–2023 assessments [35]. ICER has adopted a new platform to generate RWE
and is making an effort in advancing standards for the use of transparent, replicable
RWE in technology assessment. In a pilot program, ICER will revisit assessment
24 months after initial publication to analyze RWE for drugs that received accel-
erated approval. ICER’s goal is to determine how the drug is performing in the
real-world and if any changes should be made to the cost-effectiveness model.

At the time of product launch, especially for drugs that received accelerated
approval, the evidence for comparative effectiveness is often limited. ICER is look-
ing for additional evidence post-launch to address uncertainties and provide a more
comprehensive view of the drug’s comparative effectiveness and cost-effectiveness
at multiple time points. This creates great opportunities for RWE to play a more
influential role in the decision-making. This expanding potential of RWE could also
drive a new drug-development paradigm. Pharmaceutical companies can actively
plan RWE studies, shape the role of RWE in drug development, and influence the
way RWE is incorporated into decision-making.

4.3 REALISE Guidance

The REAL World Data In ASia for HEalth Technology Assessment in Reimburse-
ment (REALISE) working group is a collaboration between global experts and 11
Asian health systems. It published REALISE Guidance in 2021 [36]. The detailed
framework provides guidance on the use of RWD/RWE in a consistent and efficient
way for drug reimbursement decision-making in Asia. The guidance provided
directions on the following: (1) When is it appropriate to consider RWD/RWE for
reimbursement decisions? (2) What types of RWD should we collect? (3) What
are the data sources for RWD? (4) How should we collect RWD? (5) Who should
collect RWD? (6) How will RWD be analyzed or processed to generate RWE? (7)
How should we use RWE in decision-making? (8) What are the potential biases
and how to deal with these biases? and (9) What are the ethical considerations in
collecting RWD and generating RWE? [36]. The guidance can increase the quality
of RWD/RWE collected and its usage in HTA in Asian countries.
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4.4 HAS’s Methodology Guidance

HAS, the national HTA agency in France, published a methodology guidance
regarding use of real-world studies in June 2021 [37]. The guidance document
consists of three chapters. The first chapter discusses the research questions that may
be raised during the clinical development of a medicinal product or a medical device
and which may justify the implementation of a real-world study. The second chapter
summarizes the main HAS recommendations for how to conduct a real-world study
for the (re)evaluation by HAS of a medicinal product or a medical device. It covers
six aspects: (1) draft a protocol, with the support of a scientific committee; (2)
propose a study design consistent with the research questions identified; (3) use pre-
existing data; (4) collect good-quality data; (5) integrate patient-reported outcome
measures; and (6) guarantee data transparency [37]. The third chapter provides the
international methodological references to be taken into account when conducting a
real-world study.

This document does not provide a “ready-made formula” that can be applied
under all scenarios; rather, it is considered as a high-level methodology guide.

4.5 Collaboration Between CADTH and Health Canada

CADTH, the HTA body in Canada, has also been actively engaged in supporting
and providing guidance on the optimal use of RWE. In addition, CADTH and
Health Canada, the federal regulatory authority in Canada, have already recognized
the need for collaboration and RWE standard development and have partnered on
incorporating RWE into both regulatory and reimbursement decision-making.

In 2018, Health Canada and CADTH held a joint workshop launching an
initiative to integrate RWE throughout the life cycle of drugs. At this workshop,
they announced their intention to codevelop an action plan to optimize and formalize
the process for the systematic use and integration of RWE into both regulatory and
reimbursement decision-making in Canada [38]. This resulted in joint work on the
use of RWE across the product lifecycle, which was published in 2019. In April
2019, Health Canada published the document “Optimizing the Use of Real World
Evidence to Inform Regulatory Decision-Making” [39], acknowledging that the use
of RWE in regulatory decision-making is increasing globally in the assessment of
drug safety, efficacy, and effectiveness. An accompanying document, “Elements of
Real World Data/Evidence Quality throughout the Prescription Drug Product Life
Cycle” [40], was also published. This document provided key principles to guide
the generation of RWE with respect to protocol development, data quality, and
prospective and retrospective data collection [40]. The document also identified that
certain diseases (such as rare diseases) placed constraints on the conduct of RCT
and that studies based on RWE could offer appropriate supporting evidence [39]. In
March 2020, a strategy document was published announcing how Health Canada, in
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collaboration with CADTH, will be formalizing the integration of RWD/RWE into
decision-making [41].

To sum up, RWE is being leveraged throughout the drug lifecycle from early
discovery and clinical development, to supporting regulatory approval, all the way
through to market access and reimbursement. The landscape of recommendations
and guidance on use of RWE evolves from fragmented position pieces to com-
prehensive guidance, although develops at different stages across regulatory and
HTA agencies. The trend toward greater use of RWE by both regulatory and HTA
agencies has great implications for pharmaceutical companies, offering them new
opportunities to complement RCTs and inform regulatory and HTA decisions.
It is essential for the industry to keep abreast of the evolving environment and
optimize their RWE strategies. Pharmaceutical companies need to identify, collect,
and analyze RWE across a drug’s lifecycle in order to support submissions. Careful
attention should be paid to ensure that data are effectively leveraged to drive product
approval and facilitate patient access to innovative medicines that demonstrate value
in the real world [42].

5 Discussion

Innovation and ever-growing research capabilities have been driving the introduc-
tion of new heath technologies and interventions in the past several decades. As
countries around the world seek to deliver universal health coverage subject to
budget constraints, HTA bodies are under increasing pressure to restrict patient
access to health technologies. Meanwhile, patients’ expectations of effective health
care are growing. Consequently, the process of deciding which health technologies
and medical interventions to invest in has become not only increasingly imperative
but getting more and more rigorous. Correspondingly, fit-in-purpose evidence is
much in demand from HTA bodies. The use and potential benefit or risk of health
technology in the real world is a major piece of information based on which the
HTA bodies make decisions.

As discussed in Sects. 2 and 3, RWE researchers investigated the use of RWE in
HTA submissions and decision-making from the period around 2011 to 2018 among
selected agencies. The use of RWE varies significantly among agencies, is generally
limited, and remains supplementary to RCTs but not influential in decision-making.

HTA bodies are facing several challenges when using RWE in their decision-
making. The quality and credibility of the effectiveness estimates reported in
real-world studies are among the hurdles for HTA bodies to use RWE in decision-
making. More importantly, HTA bodies prefer evidence from RCTs over RWEwhen
appraising health technologies. This is known as the evidence hierarchy [43]. RCTs
remain the gold standard to demonstrate efficacy not only in regulatory review
but also in technology assessment. However, the difference between the outcomes
received from RCTs and those observed in real-world clinical practices has been
recognized. The value of RWE lies in its foundation in routine clinical practice,
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thus conquers the limitation of RCTs in terms of representativeness of real-world
patient population and clinically relevant situations in real-world setting. Evidence
demonstrating a health technology’s real-world performance should be the key
pillar of assessment. What matters in an optimal decision-making framework is the
relevance and fit-for-purpose of evidence, not the source of data.

Optimizing the use of RWE in HTA decision-making might still take some
time. However, we are witnessing the significant progress that have been made
for all healthcare stakeholders including HTA bodies to recognize the value RWE
provides in technology assessment. RWE research never stops the pace of progress.
Following regulatory agencies’ steps in developing guidelines for engaging RWE to
support regulatory decision-making, HTA agencies are making efforts in advancing
standards for the use of transparent and replicable RWE in technology assessment.
The impact of well-developed and high-quality RWE in HTA decision-making will
be strengthened.

It is critical for the stakeholders including pharmaceutical companies to col-
laborate to develop a framework for evidence planning, gathering, and value
demonstration to meet the needs from the HTA bodies around the world.
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Part IV
Application and Case Studies



Examples of Applying Causal-Inference
Roadmap to Real-World Studies

Yixin Fang

1 Introduction

ICH E9(R1) [1] states that “a central question for drug development and licensing
is to establish the existence and estimate the magnitude of treatment effects: how
the outcome of treatment compares to what would have happened to the same
subjects under alternative treatment.” The question is asked in terms of potential or
counterfactual outcomes, which are a concept used in causal inference [2]. To derive
real-world evidence (RWE) from the analysis of real-world data (RWD) generated
from real-world studies, we follow the causal-inference roadmap described in
chapter “Causal Inference with Targeted Learning for Producing and Evaluating
Real-World Evidence” of this book and other papers such as [3–5].

How to form a sound research question in real-world setting is discussed
in chapter “Key Considerations in Forming Research Questions and Conducting
Research in Real-World Setting” of this book, and the research question will be
driving the choice of data, design, and analytic methods. The causal-inference
roadmap consists of six key steps:

(i) Describe the observed data and the data generating experiment
(ii) Specify a realistic model for the distribution of the observed data

(iii) Define the target estimand of the observed data distribution
(iv) Propose an estimator of the target estimand
(v) Obtain estimate, uncertainty measurement, and statistical inference

(vi) Conduct sensitivity analysis and interpret the statistical results
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In chapters “Recent Statistical Development for Comparative Effectiveness
Research Beyond Propensity-Score Methods” and “Sensitivity Analysis in the
Analysis of Real-World Data” of this book, we review methods for confounding
adjustment and for conducting sensitivity analysis, respectively. In this chapter, we
demonstrate the application of the roadmap to the following scenarios:

1. Cohort studies with continuous or binary outcomes
2. Single-arm studies with external controls
3. Cohort studies with intercurrent events (ICEs)

We utilize a subset of the NHEFS study (National Health and Nutrition Examina-
tion Survey Data I Epidemiologic Follow-up Study) to generate real-data examples,
combined with simulated outcomes, missing data, and intercurrent events. A
detailed description of the NHEFS study can be found at www.cdc.gov/nchs/nhanes/
nhefs/. The subset of the NHEFS data (including the subject ID, outcome variable,
and 9 baseline variables) was prepared by Hernan and Robins for their book [6].
The dataset can be downloaded from their book website, https://www.hsph.harvard.
edu/miguel-hernan/causal-inference-book/. The authors of book [6] used the dataset
illustrating the analyses discussed in the book and stated the following statement:
“encourage readers to improve upon and refine our analyses.”

The remaining of this chapter is organized as follows. In Sects. 2–4, we provide
examples of applying the causal-inference roadmap to the above three scenarios,
respectively. We conclude with a summary in Sect. 5.

2 Cohort Studies with Continuous or Binary Outcomes

2.1 Describe the Observed Data and the Data Generating
Experiment

The NNEFS dataset described in the introduction section can be considered as a
dataset from a cohort study, where A indicates whether or not the subject quit
smoking between 1971 and 1982, which is named qsmk in the dataset. There
is one limitation in considering qsmk as the point-exposure variable because the
exact time of quitting smoking is unknown. For the purpose of this chapter, like
in [6], we consider it as a binary point-exposure variable measured in 1971. To fit
into the pharmaceutical setting, we may consider quitting smoking as one kind of
“behavioral treatment,” and non-quitting as the comparator. The outcome variable
.Ycon is the weight change measured in kilograms (kg) defined as the body weight
in 1982 minus that in 1971, which is named .wt82_71 in the dataset. In addition,
we dichotomize this outcome variable into a binary outcome, setting .Ybin = 1 if
.Ycon > 5 kg and .Ybin = 0 if .Ycon ≤ 5 kg.

The vector W includes 9 baseline characteristics measured in 1971: (1) sex (0:
male, 1: female), (2) race (0: white, 1: other), (3) age, (4) education (1: 8th grade
or less, 2: high school dropout, 3: high school, 4: college dropout, 5: college or
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Table 1 Means and SMDs
of baseline characteristics W

between two cohorts, along
with treatment variable A and
outcome variable Y

Variable Variable Treated Control

notation name .n1 = 403 .n0 = 1163 SMD

W age 46.17 42.79 0.28

sex 0.45 0.53 −0.16

race 0.09 0.15 −0.20

exercise 1.25 1.18 0.11

active 0.69 0.63 0.09

education 2.79 2.68 0.08

smokeintensity 18.60 21.19 −0.21

smokeyrs 26.03 24.09 0.15

wt71 72.35 70.30 0.13

A qsmk

.Y .Ycon = wt82_71; .Ybin = wt82_71_bin

more), (5) cigarettes per day, (6) years of smoking, (7) exercise (0: much exercise,
1: moderate exercise, 2: little or no exercise), (8) active (0: very active, 1: moderately
active, 2: inactive), and (9) weight in 1971 in kg. There are .n1 = 403 subjects in
the quitter cohort of .A = 1 (also referred to as the treated cohort) and .n0 = 1163
subjects in the non-quitter cohort of .A = 0 (also referred to as the control cohort).

Table 1 summarizes the baseline characteristics comparison between the treated
cohort (.n1 = 403) and the control cohort (.n0 = 1163), where sex and race
are binary variables; education, exercise, and active are ordinal variables; and the
others are quantitative variables. Standardized mean difference (SMD) is used for
balance checking, defined as the mean difference between two cohorts divided by
the standard deviation among the subjects in two cohorts combined. Seven variables
have absolute SMD bigger than 0.1, indicating the need to adjust for potential
confounding bias in the estimation of treatment effect [10].

We also summarize the unadjusted comparisons of .Ycon and .Ybin between two
cohorts. The averages of .Ycon in the treated and control cohorts are 4.53 kg and
1.98 kg, respectively, and the unadjusted 95% confidence interval (CI) estimate of
the treatment effect is .(1.58, 3.50) in kg. The proportions of .Ybin in the treated and
control cohorts are 43.92% and 30.44%, respectively, and the unadjusted 95% CI
estimate of the treatment effect is .(7.96%, 19.00%).

When conducting causal inference, we should describe not only the observed
data but also the data generating process. The same Fig. 1 of chapter “Recent
Statistical Development for Comparative Effectiveness Research Beyond
Propensity-Score Methods” describes the data generating process of baseline vector
W , treatment variable A, and outcome variable Y , which could be either .Ycon or
.Ybin. Baseline vector was measured in 1971, treatment variable was measured
between 1971 up to 1982 and was dependent on W , and outcome variable was
measured in 1982 and was dependent on both W and A. Missing data are omitted
in the preparation of the original dataset. For the purpose of demonstration, we will
consider the original dataset in some examples and create missing data in some
examples.
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2.2 Specify a Realistic Model for the Observed Data

For each subject, the observed data are .O = (W,A, Y ), where .Y = Ycon or
.Ybin depending on which outcome variable is considered as the primary outcome
variable. The analysis set consists of .n = n1 + n0 independent and identically
distributed copies, .Oi, i = 1, · · · , n, following true distribution .P0. We specify our
structural causal model (SCM) according to Fig. 1 of chapter “Recent Statistical
Development for Comparative Effectiveness Research Beyond Propensity-Score
Methods”,

.W = fW (UW),

A = fA(W,UA),

Y = fY (W,A,UY ), (1)

where .U = (UW ,UA,UY ) are the exogenous variables following joint distribution
.PU , and no assumptions are made on .fW , .fA, .fY , and .PU .

2.3 Define the Target Estimand

With this SCM, for each subject, the potential outcomes are .Y 1 = fY (W, 1, UY ) and
.Y 0 = fY (W, 0, UY ) under two treatment conditions. This implies the consistency
assumption, .Y = Y 1A + Y 0(1 − A). We also make the no unmeasured confounder
(NUC) assumption, .UA ⊥⊥ UY , and the positivity assumption, .P0(A = 1,W =
w) > 0 and .P0(A = 0,W = w) > 0, for each possible realization w of W .

Under the consistency, NUC, and positivity assumptions, the average treatment
effect (ATE) can be expressed in terms of the distribution .P0 of the observed data O,

. E(Y 1) − E(Y 0)

= E0{E0(Y |A = 1,W) − E0(Y |A = 0,W)} � θAT E(P0). (2)

2.4 Propose an Estimator of the Target Estimand

To estimate the estimand of interest, .θAT E(P0), we propose to consider the targeted
maximum likelihood estimator (TMLE; [7]). First, TMLE is a plugin estimator;
that is, it is of form .θAT E(̂P) with .P0 replaced by its estimator .̂P . Second, TMLE
is a doubly robust estimator; that is, it is consistent if either the estimator of the
propensity score function .g(a|w) = P0(A = a|W = w) or the estimator of
the regression function .Q(a,w) = E0(Y |A = a,W = w) is consistent. Third,
the estimator is asymptotically efficient; roughly speaking, the variance of the
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estimator achieves the Cramer-Rao bound asymptotically. Refer to book [7] for
more discussion on the properties of TMLE.

2.5 Obtain Estimate, Uncertainty Measurement, and Inference

We use R function “tmle” of R package “tmle” to implement the TMLE estimation,
with the following excerpt of R codes:

# wt82_71 is continuous outcome so family=gaussian is set
# Q.SL.library is set for fitting regression Q(a,w)
# g.SL.library is set for fitting propensity g(a|w)
nhefs_tmle_con <- tmle(Y=data0$wt82_71, A=data0$qsmk, W=data0[,W.

vec],
Q.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.

randomForest"),
g.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.

randomForest"),
family = "gaussian")

# point estimate and 95% confidence interval
nhefs_tmle_con$estimates$ATE$psi
nhefs_tmle_con$estimates$ATE$CI

# wt82_71_bin is binary outcome so family=binomial is set
nhefs_tmle_bin <- tmle(Y=data0$wt82_71_bin, A=data0$qsmk, W=data0

[,W.vec],
Q.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.

randomForest"),
g.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.

randomForest"),
family = "binomial")

nhefs_tmle_bin$estimates$ATE$psi
nhefs_tmle_con$estimates$ATE$CI

For continuous outcome .Ycon, the point estimate of .θAT E(P0) is 3.42, with .SE =
0.43 and 95% .CI = (2.58, 4.25). For binary outcome .Ybin, the point estimate of
.θAT E(P0) is .16.70%, with .SE = 2.63% and 95% .CI = (11.54%, 21.86%).

2.6 Conduct Sensitivity Analysis and Interpret the Results

For continuous outcome .Ycon, the unadjusted estimate of .θAT E(P0) is 2.55 with
95% .CI = (1.58, 3.50). Due to non-randomization and presence of confounding
bias, we adjust for 9 confounders and assume there is no unmeasured confounder,
providing the TMLE estimate of .θAT E(P0), 3.42 with 95% .CI = (2.58, 4.25).
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We apply E-value [8] to conduct sensitivity analysis for exploring the robustness
of the result to unmeasured confounders. E-Value was originally proposed for
binary outcome. For continuous outcome, we first calculate the point estimate of
the standardized mean difference (i.e., Cohen’s d), using the standard deviation of
the outcome variable, which is equal to .SD = 7.88. Then the point estimate of
Cohen’s d is .3.42/7.88 = 0.4340 with .SE = 0.43/7.88 = 0.0546. We use R
function “evalues.MD” of R package “EValue” to calculate the E-value, with the
following R codes:

> evalues.MD(est=0.4340, se=0.0546)

From the R output, the E-value corresponding to the point estimate is 2.33 and
the E-value corresponding to the lower end of 95% CI is 2.03. This means that,
in order to explain away the estimated treatment effect, unmeasured confounder(s)
would need to more than double the probability of a subject’s being exposed versus
not being exposed and would also need to more than double the probability of being
high versus low on the outcome. This sensitivity analysis shows that the estimated
treatment effect is robust.

For binary outcome .Ybin, the unadjusted estimate of .θAT E(P0) is 13.48%,
with 95% .CI = (7.96%, 19.00%). Due to non-randomization and presence of
confounding bias, we adjust for 9 confounders and assume there is no unmeasured
confounder, providing the TMLE estimate of .θAT E(P0), 16.70% with 95% .CI =
(11.54%, 21.86%).

Similarly, we apply E-value to conduct sensitivity analysis. For binary outcome,
E-Value was originally proposed in terms of relative risk. Therefore, we obtain
TMLE of the treatment effect in terms of relative risk, which is 1.56 with 95%
.CI = (1.37, 1.78). Then, we use R function “evalues.RR” of R package “EValue”
to calculate the E-value, with the following R codes:

> evalues.RR(est=1.56, lo=1.37)

From the R output, we see that the E-value corresponding to the point estimate
is 2.49 and the E-value corresponding to the lower end of 95% CI is 2.08. This
means that, in order to explain away the estimated treatment effect, unmeasured
confounder(s) would need to more than double the probability of a subject’s being
exposed versus not being exposed and would also need to more than double the
probability of being high versus low on the outcome. This sensitivity analysis shows
that the estimated treatment effect is robust.
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3 Single-arm Studies with External Controls

3.1 Describe the Observed Data and the Data Generating
Experiment

This subsection is the same as Sect. 2.1, except that now we consider the treated
cohort of .A = 1 as the data from a single-arm study and the control cohort of .A = 0
as the external-control group. Moreover, the data generating process is the same as
that in Sect. 2.1.

One popular method for analyzing data from a single-arm study with external
controls is to construct a subset of the external-control group that is matched with the
single-arm dataset using the propensity score matching [9]. However, as discussed
in chapter “Recent Statistical Development for Comparative Effectiveness Research
Beyond Propensity-Score Methods”, the propensity score matching method is not
efficient. In the following steps, we apply the targeted learning method.

3.2 Specify a Realistic Model for the Observed Data

This subsection is the same as Sect. 2.2, except that now .A = 1 indicates the single-
arm study and .A = 0 indicates the external-control group.

3.3 Define the Target Estimand

This subsection is the same as Sect. 2.3, except that now we are interested in the
average treatment effect among the treated (ATT). Under the consistency, NUC,
and positivity assumptions, ATT can be expressed in terms of the distribution .P0 of
the observed data O,

. E(Y 1|A = 1) − E(Y 0|A = 1)

= E0,W |A=1{E0(Y |A = 1,W) − E0(Y |A = 0,W)} � θAT T (P0). (3)

3.4 Propose an Estimator of the Target Estimand

To estimate the estimand of interest, .θAT T (P0), we propose to consider the TMLE
estimator, which has good properties as discussed in Sect. 2.4.
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3.5 Obtain Estimate, Uncertainty Measurement, and Inference

The R function “tmle” of R package “tmle” can implement both the ATE and ATT
estimation, with the following R codes that output the ATT estimates:

nhefs_tmle_con$estimates$ATT$psi
nhefs_tmle_con$estimates$ATT$CI

nhefs_tmle_bin$estimates$ATT$psi
nhefs_tmle_bin$estimates$ATT$CI

For continuous outcome .Ycon, the point estimate of .θAT T (P0) is 3.46, with
.chap11SE = 0.46 and 95% .CI = (2.55, 4.37). For binary outcome .Ybin,
the point estimate of .θAT T (P0) is .16.46%, with .SE = 2.71% and 95% .CI =
(11.15%, 21.76%).

3.6 Conduct Sensitivity Analysis and Interpret the Results

This subsection is similar to Sect. 2.6, so here we only show the sensitivity analysis
for continuous outcome .Ycon. The point estimate of Cohen’s d is 3.46/7.88=0.4391
with .SE = 0.46/7.88 = 0.0584. Using the following R codes:

> evalues.MD(est=0.4391, se=0.0584)

we obtain that the E-value corresponding to the point estimate is 2.34 and the E-
value corresponding to the lower end of 95% CI is 2.02. This means that, in order
to explain away the estimated treatment effect, unmeasured confounder(s) would
need to more than double the probability of a subject’s being exposed versus not
being exposed and would also need to more than double the probability of being
high versus low on the outcome. This sensitivity analysis shows that the estimated
treatment effect is robust.

4 Cohort Studies with Intercurrent Events

In the above two examples, we consider scenarios where there are no ICEs. In
this section, we consider examples where there are ICEs. ICH E9(R1) proposes
five strategies for dealing with ICEs: (1) hypothetical strategy, (2) treatment policy
strategy, (3) composite variable strategy, (4) while on treatment strategy, and (5)
principal stratum strategy. Therefore, we consider five examples in this section,
respectively, for applying these five strategies.
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4.1 Example of Using Hypothetical Strategy

We consider the same dataset described in Table 1, along with a newly simulated
variable E (1 for ICE occurrence; 0 for no ICE), with the following log-odds:

.logit(P (E = 1)) = 0.5 × A − age/50 − 1.5 × (wt71/100)2, (4)

using the following R codes:

set.seed(1)
# ice=1 means ICE and ice=0 means no ICE
ice <- rbinom(nrow(data0), size=1, prob=plogis(0.5*data0$qsmk

- 2*(data0$age/100)-1.5*(data0$wt71/100)^2))

# data after ice=1 are considered missing
wt82_71.m <- ifelse(ice, NA, data0$wt82_71)

4.1.1 Describe the Observed Data and the Data Generating Experiment

In the treated cohort, 90 out of 403 subjects have ICE occurrence, while in the
control cohort, 204 out of 1163 subjects have ICE occurrence.

According to ICH E9(R1), if the hypothetical strategy is applied to handle the
ICE, “a scenario is envisaged in which the intercurrent event would not occur.” We
envisage a scenario that .E = 1 would not occur and the subject would be treated by
the initial treatment A throughout. Figure 1 displays the data generating experiment,
where .YE=0 is the potential outcome variable under the envisage scenario where the
subject would be treated by the initial treatment A throughout. Let .Y = YE=0 be
the outcome variable of interest using the hypothetical strategy to handle ICE. We
see that if .E = 0, then .Y = YE=0 is observed in the real-world, while if .E = 1,
then counterfactual outcome .YE=0 is considered as “missing data.” Figure 1 shows
that A depends on W , .YE=0 depends on W and A, E depends on W and A, and
there is no direct path between E and .YE=0.

4.1.2 Specify a Realistic Model for the Observed Data

For each subject, the observed data are .O = (W,A,E, (1 − E)Y ). Note that .Y =
YE=0 is only observed if .E = 0, while .(1 − E)Y is equal to 0 if .E = 1, indicating
“missing data.” The analysis set consists of .n = n1 +n0 independent and identically
distributed copies, .Oi, i = 1, · · · , n, following true distribution .P0. We specify our
SCM according to Fig. 1,

.W = fW(UW),

A = fA(W,UA),
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Fig. 1 The data generating
process using the hypothesis
strategy

E = fE(W,A,UE),

Y = fY (W,A,UY ), (5)

where .U = (UW ,UA,UE,UY ) are the exogenous variables following joint
distribution .PU , and no assumptions are made on .fW , .fA, .fE , .fY , and .PU .

4.1.3 Define the Target Estimand

Besides the consistency, NUC, and positivity assumptions that are made in Sect. 2.3,
we assume that .UE and .UY are independent, that is, the missing at random (MAR)
assumption. For each subject the potential outcomes are .YA=1,E=0 = fY (W, 1, UY )

and .YA=0,E=0 = fY (W, 0, UY ) under two treatment conditions. Under these
assumptions, we have

. E(YA=1,E=0) − E(YA=0,E=0)

= E0{E0(Y |W,A = 1, E = 0) − E0(Y |W,A = 0, E = 0)} � θh(P0). (6)

4.1.4 Propose an Estimator of the Target Estimand

To estimate the estimand of interest, .θh(P0), we propose to consider the TMLE
estimator, which has good properties as discussed in Sect. 2.4.

4.1.5 Obtain Estimate, Uncertainty Measurement, and Inference

The R function “tmle” of R package “tmle” can handle missing data, with “delta”
argument (1 - observed, 0 - missing), using the following R codes:

# delta=0 means missing outcome and delta=1 means no missing
delta <- 1-ice
# g.Delta.SL.library is set for propensity of not-missing
nhefs_tmle_fit.h <- tmle(Y=data0$wt82_71.m, A=data0$qsmk, W=data0

[,W.vec],
Delta=data0$delta,
Q.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.

randomForest"),
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g.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.
randomForest"),

g.Delta.SL.library = c("SL.rpart", "SL.glmnet", "SL.gam"),
family = "gaussian")

nhefs_tmle_fit.h$estimates$ATE$psi
nhefs_tmle_fit.h$estimates$ATE$CI

From the output, the point estimate of θh(P0) is 3.28, with SE = 0.50 and 95%
CI = (2.31, 4.28).

4.1.6 Conduct Sensitivity Analysis and Interpret the Results

We can use E-value to conduct sensitivity analysis for the NUC assumption, similar
to Sect. 2.6. Here we only show sensitivity analysis for the MAR assumption, using
two reference-based imputation methods [11], copy-reference (CR), and jump-to-
reference (J2R) imputation methods. In this example, there is only one follow-up
time point in 1982, so CR and J2R are equivalent. We use R package “mice” to
generate 100 imputations, with an excerpt of R codes,

data.ref0<-data0[(data0$qsmk==0)|(data0$delta==0), ]
data.ref <-data.ref0
data.ref[, c("wt82_71", "wt82", "qsmk", "delta")] <- NULL
data.refim <- mice(data.ref, m=100, seed=500)

For each completed dataset, we obtain an TMLE estimate. Then we use Rubin’s
rule [12] to combined 100 TMLE estimates, providing pooled estimate 3.35 with
SE = 0.49. Hence the estimate under CR or J2R is similar to the estimate under the
MAR assumption and the result is robust.

4.2 Example of Using Treatment Policy Strategy

We consider the same dataset described in Table 1, along with a newly simulated
variable E, using the following R codes:

set.seed(1)
ice <- (data0$wt82_71 < -5)
data0$ice <- ice
data0$wt82_71.tp <-data0$wt82_71
data0$wt82_71.tp[ice] <- data0$wt82_71.tp[ice]

+ rnorm(sum(ice), 5, 1)

To understand the above R codes, assume that the ICE is taking rescue med-
ication if the intermediate outcome shows non-response. If the original outcome
variable wt82_71 is less than −5, then let ice = 1 and add a random number
generated from normal distribution N(5, 1) to the outcome variable, generating the
final outcome variable wt82_71.tp, denoted as Y .
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4.2.1 Describe the Observed Data and Data Generating Experiment

In the treated cohort, 42 out of 403 subjects have E = 1, while in the control cohort,
152 out of 1163 subjects have E = 1. According to ICH E9(R1), if the treatment
policy strategy is applied, “the intercurrent event is considered to be part of the
treatments being compared.” Therefore, instead of considering treatment variable
A, now we consider a dynamic treatment regime A∗(A,E), where A∗(A,E) = 1
means “starting with A = 1 and taking rescue medication if wt82_71 < −5 kg”
and A∗(A,E) = 0 means “starting with A = 0 and taking rescue medication if
wt82_71 < −5 kg.”

Figure 2 displays the data generating experiment, where Y is the outcome
variable using the treatment policy strategy, E is incorporated into the dynamic
treatment regime A∗(A,E). Figure 2 also shows that A∗ depends on W , and Y

depends on W and A∗. In addition, note that A∗(A,E) = A in this example.

4.2.2 Specify a Realistic Model for the Observed Data

This subsection is the same as Sect. 2.2, except that the dynamic treatment regime
A∗(A,E) is of interest and Y is the observed outcome variable regardless of whether
or not the ICE occurs. For each subject, the observed data are O = (W,A,E, Y ).
The analysis set consists of n = n1 + n0 independent and identically distributed
copies, Oi, i = 1, · · · , n, following true distribution P0. We specify our SCM
according to Fig. 2 in the following:

.W = fW(UW),

A∗ = fA∗(W,UA∗),

Y = fY (W,A∗, UY ), (7)

where U = (UW ,UA∗ , UY ) are the exogenous variables following joint distribution
PU , and no assumptions are made on fW , fA∗ , fY , and PU .

4.2.3 Define the Target Estimand

For each subject, the potential outcomes are Y 1 = fY (W, 1, UY ) and Y 0 =
fY (W, 0, UY ) under two treatment conditions. Under the same consistency, NUC
(i.e., UY and UA∗ are independent), and positivity assumptions that are described

Fig. 2 The data generating
process using the treatment
policy strategy
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Sect. 2.3, we have

. E(Y 1) − E(Y 0)

= E0{E0(Y |W,A∗ = 1) − E0(Y |W,A∗ = 0)} � θtp(P0). (8)

4.2.4 Propose an Estimator of the Target Estimand

To estimate the estimand of interest, θtp(P0), we propose to consider the TMLE
estimator, which has good properties as discussed in Sect. 2.4.

4.2.5 Obtain Estimate, Uncertainty Measurement, and Inference

Similar to Sect. 2.5, the R function “tmle” of R package “tmle” can implement the
proposed method, using the following R codes:

nhefs_tmle_fit.tp <- tmle(Y=data0$wt82_71.tp, A=data0$qsmk, W=
data0[,W.vec],

Q.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.
randomForest"),

g.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.
randomForest"),

family = "gaussian")

nhefs_tmle_fit.tp$estimates$ATE$psi
nhefs_tmle_fit.tp$estimates$ATE$CI

From the output, the point estimate of θtp(P0) is 3.19, with SE = 0.41 and 95%
CI = (2.393.99).

4.2.6 Conduct Sensitivity Analysis and Interpret the Results

Similar to Sect. 2.6, we apply E-value to conduct sensitivity analysis for exploring
the robustness of the result to unmeasured confounders. We first calculate the point
estimate of Cohen’s d, using the standard deviation of the outcome variable, which
is equal to SD = 6.98. Then the point estimate of Cohen’s d is 3.19/6.98 = 0.4570
with SE = 0.41/6.98 = 0.0587. Using the following R codes:

> evalues.MD(est=0.4570, se=0.0587)

the E-value corresponding to the point estimate is 2.39 and the E-value correspond-
ing to the lower end of 95% CI is 2.07. This means that, in order to explain away
the estimated treatment effect, unmeasured confounder(s) would need to more than
double the probability of a subject’s being exposed versus not being exposed and
would also need to more than double the probability of being high versus low on
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the outcome. This sensitivity analysis shows that the estimated treatment effect is
robust.

4.3 Example of Using Composite Variable Strategy

We consider the same dataset described in Table 1, along with the same variable E

simulated in Sect. 4.1 and the binary outcome variable Y = Ybin.

4.3.1 Describe the Observed Data and the Data Generating Experiment

In the treated cohort, 90 out of 403 subjects have ICE occurrence, while in the
control cohort, 204 out of 1163 subjects have ICE occurrence. According to ICH
E9(R1), if the composite variable strategy is applied, “an intercurrent event is
considered in itself to be informative about the patient’s outcome and is therefore
incorporated into the definition of the variable.” Therefore, we incorporate the ICE
occurrence as another mode of failure; that is, we define Y ∗ = Y ∗(Y,E), letting
Y ∗ = 0 if Ybin = 0 or E = 1 and letting Y ∗ = 1 if Ybin = 1 and E = 0. The
proportions of Y ∗ = 1 in the treated cohort and control cohort are 34.24% and
25.11%, respectively.

Figure 3 displays the data generating experiment, where Y ∗ is the outcome
variable, which is composite variable combining the binary outcome variable Ybin

and ICE indicator E. Figure 3 also shows that A depends on W and Y ∗ depends on
W and A.

4.3.2 Specify a Realistic Model for the Observed Data

For each subject, the observed data are O = (W,A, Y ∗). The analysis set consists
of n = n1 + n0 independent and identically distributed copies, Oi, i = 1, · · · , n,
following true distribution P0. We specify our SCM according to Fig. 3,

.W = fW(UW),

A = fA(W,UA),

Y ∗ = fY ∗(W,A,UY ∗), (9)

Fig. 3 The data generating
process using the composite
variable strategy ∗
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where U = (UW ,UA,UY ∗) are the exogenous variables following joint distribution
PU , and no assumptions are made on fW , fA, fY ∗ , and PU .

4.3.3 Define the Target Estimand

For each subject the potential outcomes are Y ∗1 = fY ∗(W, 1, UY ∗) and Y ∗0 =
fY ∗(W, 0, UY ∗) under two treatment conditions. Under the consistency, NUC (i.e.,
UY ∗ and UA are independent), and positivity assumptions, we have

. E(Y ∗1) − E(Y ∗0)

= E0{E0(Y
∗|W,A = 1) − E0(Y

∗|W,A = 0)} � θcv(P0). (10)

4.3.4 Propose an Estimator of the Target Estimand

To estimate the estimand of interest, θcv(P0), we propose to consider the TMLE
estimator, which has good properties as discussed in Sect. 2.4.

4.3.5 Obtain Estimate, Uncertainty Measurement, and Inference

The R function “tmle” of R package “tmle” can implement the proposed method,
using the following R codes:

# Define Y.star as composite variable
data0$Y.star <- ifelse(ice, 0, data0$Y.bin)

nhefs_tmle_fit.cv <-tmle(Y=data0$Y.star, A=data0$qsmk, W=data0[,W
.vec],

Q.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.
randomForest"),

g.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.
randomForest"),

family = "binomial")

nhefs_tmle_fit.cv$estimates$ATE$psi
nhefs_tmle_fit.cv$estimates$ATE$CI

From the output, the point estimate of θcv(P0) is 11.20%, with SE = 2.72% and
95% CI = (5.86%, 16.53%).
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4.3.6 Conduct Sensitivity Analysis and Interpret the Results

We apply E-value to conduct sensitivity analysis. We first obtain the TMLE of the
treatment effect in terms of relative risk, which is 1.46 with 95% CI=(1.23, 1.72).
Using the following R codes:

> evalues.RR(est=1.46, lo=1.23)

we see that the E-value corresponding to the point estimate is 2.27 and the E-
value corresponding to the lower end of 95% CI is 1.76. This means that, in order
to explain way the estimated treatment effect, unmeasured confounder(s) would
need to increase by about 1.76 times the probability of a subject’s being exposed
versus not being exposed and would also need to increase by about 1.76 times the
probability of being high versus low on the outcome. This sensitivity analysis shows
that the estimated treatment effect is only slightly robust.

4.4 Example of Using While on Treatment Strategy

We consider the same dataset described in Table 1, along with variable E simulated
similarly as in Sect. 4.1 but with a bigger event rate, a newly simulated time of ICE
occurrence, denoted as t (E), and a newly simulated outcome variable measured at
the time, denoted as Yt(E). Specially, we simulate t (E) using a uniform distribution
between 72 and 81 and simulate Yt(E) using the projection of Ycon from year 82 to
year t (E), using the following model:

.t (E) ∼ Unif(72, 81), if E = 1; t (E) = 82, if E = 0,

Yt(E) = wt82_71 × (t (E) − 71)/(82 − 71). (11)

We use R codes to simulate the above three variables, ice, t.ice, and Y.t ,

set.seed(1)
ice<- rbinom(nrow(data0), size=1, prob=plogis(1 + 0.5*data0$qsmk

- 2*(data0$age/100)-1.5*(data0$wt71/100)^2))
t.ice <- rep(82, nrow(data0))
t.ice[ice==1] <- sample(72:81, sum(ice), replace=TRUE)
data0$Y.t <- data0$wt82_71*(t.ice-71)/(82-71)

4.4.1 Describe the Observed Data and Data Generating Experiment

In the treated cohort, 177 out of 403 subjects have ICE occurrence, while in the
control cohort, 425 out of 1163 subjects have ICE occurrence. The ICE event rate is
38.44%, which is bigger than the previous three examples.

According to ICH E9(R1), if the while on treatment strategy is applied, “response
to treatment prior to the occurrence of the intercurrent event is of interest”.
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Fig. 4 The data generating
process using the while on
treatment strategy

Therefore, we incorporate the time of the ICE occurrence into the definition of the
primary outcome variable,

.˜Y = ˜Y(Yt(E), t (E)) = Yt(E)/(t (E) − 71). (12)

The means of Yt(E) are 3.60 kg and 1.53 kg in the treated and control cohorts,
respectively. The means of ˜Y are 0.41 kg/year and 0.18 kg/year the treated and
control cohorts, respectively.

Figure 4 displays the data generating experiment, where ˜Y is the outcome
variable, which is defined as the rate of change between t (E) and 1971. Figure 4
also shows that A depends on W and ˜Y depends on W and A.

4.4.2 Specify a Realistic Model for the Observed Data

For each subject, the observed data are O = (W,A, ˜Y ). The analysis set consists
of n = n1 + n0 independent and identically distributed copies, Oi, i = 1, · · · , n,
following true distribution P0. We specify our SCM according to Fig. 4,

.W = fW (UW),

A = fA(W,UA),

˜Y = f
˜Y (W,A,U

˜Y ), (13)

where U = (UW ,UA,U
˜Y ) are the exogenous variables following joint distribution

PU , and no assumptions are made on fW , fA, f
˜Y , and PU .

4.4.3 Define the Target Estimand

For each subject the potential outcomes are ˜Y 1 = f
˜Y (W, 1, U

˜Y ) and ˜Y 0 =
f

˜Y (W, 0, U
˜Y ) under two treatment conditions. Under the same consistent, NUC (U

˜Y

and UA are independent), and positivity assumptions, we have

. E(˜Y 1) − E(˜Y 0)

= E0{E0(˜Y |W,A = 1) − E0(˜Y |W,A = 0)} � θwot (P0). (14)
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4.4.4 Propose an Estimator of the Target Estimand

To estimate the estimand of interest, θwot (P0), we propose to consider the TMLE
estimator, which has good properties as discussed in Sect. 2.4.

4.4.5 Obtain Estimate, Uncertainty Measurement, and Inference

The R function “tmle” of R package “tmle” can implement the proposed method,
using the following R codes:

data0$Y.tilde <- data0$Y.t/(t.ice-71)

nhefs_tmle_fit.wot <- tmle(Y=data0$Y.tilde, A=data0$qsmk, W=data0
[,W.vec],

Q.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.
randomForest"),

g.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.
randomForest"),

family = "gaussian")

nhefs_tmle_fit.wot$estimates$ATE$psi
nhefs_tmle_fit.wot$estimates$ATE$CI

From the output, the point estimate of θwot (P0) is 0.3071 kg/year, with SE =
0.0425 and 95% CI = (0.2238, 0.3905).

4.4.6 Conduct Sensitivity Analysis and Interpret the Results

Two main assumptions are made in the primary analysis: (1) the NUC assumption
and (2) the linearity assumption made implicitly in the definition of ˜Y according to
the while on treatment strategy.

Similar to Sect. 2.6, we apply E-value to conduct sensitivity analysis for explor-
ing the robustness of the result to the deviation of the NUC assumption. We first
calculate the standard deviation of the outcome variable ˜Y , which equals SD =
0.7164. Then the point estimate of Cohen’s d is 0.3071/0.7164 = 0.4287 with
SE = 0.0425/0.7164 = 0.0593. We use R function “evalues.MD” of R package
“EValue” to calculate the E-value, with the following R codes:

> evalues.MD(est=0.4287, se=0.0593)

From the R output, the E-value corresponding to the point estimate is 2.32 and
the E-value corresponding to the lower end of 95% CI is 1.99. This means that,
in order to explain away the estimated treatment effect, unmeasured confounder(s)
would need to double the probability of a subject’s being exposed versus not being
exposed and would also need to double the probability of being high versus low on
the outcome. This sensitivity analysis shows that the estimated treatment effect is
robust to the NUC assumption.
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Now we conduct sensitivity analysis for the linearity assumption. We introduce
the following parameter to tune the deviation from the linearity assumption:

.η = Y82 − Yt(E)

82 − t (E)
− ˜Y , (15)

where Y82 is the potential value of wt82_71 that would be measured if there were
not ICE. Hence the perturbed rate of change between 1971 and 1982 becomes

.˜Y ′ = [(˜Y + η)(82 − t (E)) + ˜Y × (t (E) − 71)]/(82 − 71). (16)

Similar to reference-based imputation, we only add perturbations in terms of η

to the subjects in the treated cohort. Because the point estimate of θwot (P0) under
the linearity assumption is about 0.3, we select 13 values for η, from −0.3 to 0.3
by 0.05. For each value, we compute perturbed outcome variable ˜Y ′, implement
same R codes in Sect. 4.4.5, and obtain a version of point estimate and 95% CI of
θwot (P0). Figure 5 displays 95% CIs of θwot (P0) corresponding to 13 values of η,
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Fig. 5 Sensitivity analysis for the linearity assumption
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where η = 0 is corresponding to the original result, and the others are corresponding
to perturbed data. Even for η = −0.3, the point estimate and 95% are 0.2361 and
(0.1613, 0.3108). Hence we can conclude that the result is robust to the deviations
of the linearity assumption.

4.5 Example of Using Principal Stratum Strategy

We consider the same dataset described in Table 1, except that we simulate variable
E using the following R codes:

set.seed(1)
ice <- rbinom(nrow(data0), size=1, prob=plogis(-1.5+2*data0$qsmk

+ 2*(data0$age/10)-1.5*data0$wt71/10))$

4.5.1 Describe the Observed Data and the Data Generating Experiment

According to ICH E9(R1), if the principal stratum strategy is applied, “(t)he target
population might be taken to be the principal stratum in which an intercurrent event
would occur. Alternatively, the target population might be taken to be the principal
stratum in which an intercurrent event would not occur.” In this example, we are
interested in the principal stratum in which the ICE would not occur. We refer to
this principal stratum as PS0. Within PS0, A depends on W and Y depends on W

and A.
The proportions of ICEs in the treated cohort and the control cohort are

167/403 = 41.44% and 190/1163 = 16.34%, respectively. The proportion of
ICEs among all the subjects is (167 + 190)/(403 + 1163) = 22.80%. Consider
a hypothetical world in which the treated subjects had been untreated and the
untreated subjects had been treated. Therefore, PS0 is the new target population
of subjects who have no ICE in the real-world and would have no ICE in the
hypothetical world either. A marginal estimate of the proportion of ICEs among all
the subjects in the hypothetical world is 41.44%(1163) + 16.34%(403) = 34.98%.

4.5.2 Specify a Realistic Model for the Observed Data

Define two potential outcomes for the ICE occurrence, Ea=1 and Ea=0, where
Ea=1 = 1 is the indicator that an ICE would occur if the subject was treated by
a = 1 and Ea=0 = 1 is the indicator that an ICE would occur if the subject was
treated by a = 0. Therefore,

.PS0 = {Ea=1 = 1, Ea=0 = 1}. (17)
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Within PS0, we specify the same SCM as in Sect. 2.2.

4.5.3 Define the Target Estimand

Within PS0, for each subject, the potential outcomes are Y 1 = fY (W, 1, UY ) and
Y 0 = fY (W, 0, UY ) under two treatment conditions. Under the same consistent,
NUC, and positivity assumptions that are made in Sect. 2.3, we have

. EPS0(Y
1) − EPS0(Y

0)

= EPS0{EPS0(Y |W,A = 1) − EPS0(Y |W,A = 0)} � θps(P0), (18)

where the expectation is over principal stratum PS0.

4.5.4 Propose an Estimator of the Target Estimand

To estimate the estimand of interest, we propose to apply logistics regression model
to predict the membership of PS0 and the TMLE estimator to estimate θps(P0).

4.5.5 Obtain Estimate, Uncertainty Measurement, and Inference

The R function “glm” can be used to estimate the PS0 membership of each subject,
using the covariates that are believed to be predictive for the membership and the
following R codes:

# Fit a logistic regression model with ICE as outcome
fit.ice = glm(formula = ice ~ qsmk + age + wt71,

data = data0, family = binomial)

# Predictive probability of ICE in the hypothetical world
data0.new <- data0
data0.new$qsmk <- ifelse(data0$qsmk, 0, 1)
prob.new <- predict(fit.delta, data0.new, type="response")

# Use marginal ICE rate 0.3498 as threshold for prediction
threshold <- quantile(prob.new, 1 - 0.3498)
pred.new <- (prob.new>threshold)

# Obtain estimated PS0, which has 920 subjects
data0.ps <- data0[(1-delta)&(1-pred.new),]
nrow(data0.ps) # 920
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The R function “tmle” of R package “tmle” can implement the proposed method
with the estimated PS0, using the following R codes:

nhefs_tmle_fit.ps <- tmle(Y=data0.ps$wt82_71, A=data0.ps$qsmk,
W=data0.ps[,W.vec],
Q.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.

randomForest"),
g.SL.library = c("SL.glm", "SL.rpart", "SL.glmnet", "SL.

randomForest"),
family = "gaussian")

nhefs_tmle_fit.ps$estimates$ATE$psi
nhefs_tmle_fit.ps$estimates$ATE$CI

From the output, the point estimate of .θps(P0) is 3.22, with .SE = 0.67 and 95%
.CI = (1.90, 4.55).

4.5.6 Conduct Sensitivity Analysis and Interpret the Results

Two main assumptions are made in the primary analysis: (1) the NUC assumption
and (2) the underlying assumption made implicitly in the prediction of the mem-
bership of .PS0 according to the marginal estimate of the proportion of subjects
with ICEs in the hypothetical world in which subjects had taken the alternative
treatment, denoted as .pe, which is .34.98%. We omit the application of E-value for
the NUC assumption. Here we demonstrate sensitivity analysis assuming different
proportions than .pe = 34.98%

.= 0.35.
For this aim, we select 7 values for .pe around 0.35, say, from 0.2 to 0.5 by 0.05.

For each value of .pe, we have an estimated .PS0 and the corresponding estimate
of .θps(P0). Figure 6 displays 95% CIs of .θps(P0) corresponding to 7 values of .pe,

l

l

l

l

l

l

l

0.2 (|PS0|=1097)

0.25 (|PS0|=1037)

0.3 (|PS0|=980)

0.35 (|PS0|=920)

0.4 (|PS0|=855)

0.45 (|PS0|=790)

0.5 (|PS0|=734)

2 3
effect

p.
e

4

Fig. 6 Sensitivity analysis to a range of values of .pe
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Table 2 Summary of features of five strategies

Strategy Variables Key feature PROTECT

Principal stratum .(W,A, Y ) Principal stratum .PS0 “P”

Composite variable .(W,A, Y ∗(Y,E)) Composite outcome .Y ∗ “R/O”

Treatment policy .(W,A∗(A,E), Y ) Treatment regime .A∗ “T/E”

While on treatment .(W,A, Yt(E)) Outcome measured at .t (E) “T”

Hypothetical .(W,A, YE=0) Counterfactual outcome .YE=0 “C”

along with the size of each estimated .PS0 showed on the y-axis, where .pe = 0.35
is corresponding to the main result. We see all the intervals are similar to each other.
Hence we can conclude the result is robust to a wide range of different versions of
the estimation of .PS0.

5 Summary

We demonstrate the application of the causal-inference roadmap, which consists
of six key steps, using seven real-data examples. The first two examples are for
the ATE estimand and the ATT estimand, respectively. In these two examples, we
demonstrate the application of the roadmap to deal with the confounding bias in
non-randomized real-world studies.

The remaining five examples are corresponding to five strategies of ICE handling.
In these examples, we demonstrate the application of the roadmap to deal with both
the confounding bias due to non-randomization and the challenge due to the exis-
tence of ICEs. Table 2 provides a summary of the features of these five examples.
The first column is the strategy in each example. The second column is the vector of
confounders, treatment variable, and outcome variable in each example. The third
and fourth columns are the key feature and the corresponding PROTECT element
as discussed in chapter “Key Considerations in Forming Research Questions and
Conducting Research in Real-World Setting” of this book.
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Applications Using Real-World Evidence
to Accelerate Medical Product
Development

Weili He, Tae Hyun Jung, Hongwei Wang, and Sai Dharmarajan

1 Introduction

In recent years, we have seen an increasing usage of RWE/RWD in clinical
development and life-cycle management. Especially encouraged by legislations and
guidance released by regulators and special interest groups, sponsors have been
actively seeking guidance and application use cases. Sponsors are now faced with
the tasks of determining regulatory contexts where RWD can be used for regulatory
decisions, proposing appropriate RW study designs to address specific research
questions, including determining and assessing fit-for-purpose data sources, be
prospectively collected or using existing RWD sources, using appropriate statistical
methods to determine causal inference from the RWD, and seeking regulatory
guidance and decisions on the application.

Although in the last few years there have been a few RWE/RWD use cases,
there is still a paucity of real examples in literature, especially lacking in-depth
analyses of such cases in a systemic manner for practitioners to draw best practices
and lessons learned. In Sect. 2, we describe six real examples with information
available in the public domain, where the background of diseases and case studies
along with the study findings are provided. Where information in the public
domain is available, our analysis in Sect. 3 is devoted to delineating the regulatory
contexts, key regulatory review issues, whether the use of RWE/RWD is pivotal or
supplemental for the regulatory decisions, assessment of fit-for-use data sources,
statistical methods employed, and whether substantial evidence of effectiveness as
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stated in Regulations 21 CFR 314.126 is met for the specific case study. Section 4
is devoted to discussions summarizing the lessons learned and best practices from
these case studies. The final section provides concluding remarks.

2 RWE/RWD Case Studies by Regulatory Purposes

In this section, we provide background of six RWE/RWD use cases for which we
will provide further analysis on the rationale of regulatory decisions in Sect. 3. We
categorize these use cases by regulatory purposes.

2.1 RWE/RWD as Part of the Original Marketing Application

2.1.1 Avelumab

Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer with 5-year survival
rate of 78% for localized disease, 52% for regional disease, and 19% for advanced or
metastatic disease [1]. MCC is chemo-sensitive, and patients with newly diagnosed
metastatic MCC (mMCC) can achieve objective response rates (ORRs) between
50% and 60%. However, early development of resistance to chemotherapy leads to
shorter duration of response (DOR) with median around 85 days [2].

Avelumab is an anti-PD-L1 monoclonal antibody developed for the treatment of
mMCC. It received accelerated approval from the FDA in 2017 as the first therapy
in this patient population. The approval is based on JAVELIN Merkel 200 trial
which was an open label, single arm, and multicenter Phase 2 study. It enrolled
mMCC patients with disease progression after prior chemotherapy. The primary
endpoint was confirmed ORR per Response Evaluation Criteria in Solid Tumors
V.1.1 and secondary endpoints included DOR, progression-free survival, overall
survival, and safety. The efficacy analyses were conducted based on Part A when
all patients had a minimal 12-month follow-up. Out of the 88 patients enrolled,
the centrally adjudicated ORR was 33% (95% Confidence Interval: 23%, 44%).
Among the 29 patients that responded, the median DOR was not reached, meaning
that = > 50% of study patients (72%) continued to have response. This treatment
effect was consistent across clinically important subgroups [3].

To quantify the natural history of disease mainly ORR and DOR under standard
of care, a retrospective chart review study in the US Oncology Network (USON)
was included in the submission package. USON includes about 1 million cancer
patients from over 470 sites across 25 states. A total of 39 patients with potential
mMCCwho received second-line chemotherapy were identified using the oncology-
specific iKnowMed electronic health record (EHR). Of those, 14 were determined
to meet similar inclusion/exclusion criteria of JAVELIN. These 14 patients had an
ORR of 28.6% (95% CI: 8.4%, 58.1%) and median DOR of 1.7 months (95%: 0.5,
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3.0) [3]. Although the sample size is small, the findings are consistent with other
literatures showing transient response.

The accelerated approval of avelumab covers both adults and pediatric patients
12 years and older. It does not require patients to receive prior systemic therapies
either. This is based on the biology of mMCC, pharmacokinetics, and pharmaco-
dynamics (PK/PD) modeling and lack of therapy in this life-threatening disease.
Confirmatory trial was required to verify the avelumab’s clinical benefit in the
extrapolated patient population, that is, pediatric patients 12–18 years old and
patients who have not received systemic therapies, as part of the approval.

2.1.2 Tafasitamab

Diffuse large B-cell lymphoma (DLBCL) is the most common high-grade non-
Hodgkin lymphomas (NHLs). The first-line standard of care regardless of stage
is the combination therapy R-CHOP (rituximab [Rituxan], cyclophosphamide
[Cytoxan], doxorubicin [Adriamycin], vincristine [Oncovin], and prednisone).
Majority of relapsed or refractory (R/R) DLBCL patients are not eligible to receive
intensive immunochemotherapy or autologous stem cell transplantation (ASCT)
and have survival times ranging from 6 to 12 months, representing a high unmet
medical need.

Tafasitamab is an Fc-modified antibody that binds to CD19 antigen. It received
the designations of fast-track review, orphan drug, and breakthrough therapy. Its
combination with lenalidomide received accelerated approval from FDA for the
treatment of adult R/R DLBCL ineligible for ASCT in 2019. The approval is based
on favorable benefit-risk profile observed from the open-label, single-arm, Phase
2 L-MIND study. A total of 71 patients out of 81 enrolled had confirmed DLBCL,
received at least one dose of both drugs and formed the primary efficacy analysis
population. The primary objective of best overall response rate (BORR) was 55%
(95% CI: 43–67%) where 37% of patients had a complete response (CR). The key
secondary objective of median DOR was 21.7 months [4]. This efficacy profile
was confirmed in the long-term L-MIND study with ≥35 months follow-up where
ORR was 57.5% including a CR of 40.0%, median DOR was 43.9 months and
median overall survival was 33.5 months [5]. The contribution in efficacy effect
from tafasitamab in this population was also confirmed by MOR208C201. In this
Phase 2a study, ORR was 26% (95% CI: 13–43%) among 35 patients received the
single agent of tafasitamab [6].

Results from L-MIND of the combo therapy were also considered in the context
of a retrospective observational cohort study MOR208C206 (RE-MIND) where all
patients received a single agent lenalidomide. Key eligibility criteria of RE-MIND
were aligned with L-MIND and the observed ORR was 32% (95% CI: 21–43%).
However, FDA deemed “formal statistical comparisons unfeasible” because of
several limitations [4]. A recommendation of post market requirement (PMR) to
confirm the benefit of tafasitamab in a RCT was issued.
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2.2 RWE/RWD as Primary Data Source for Label Expansion

2.2.1 Prograf

Prograf (tacrolimus) is an immunosuppressant indicated for the prevention of organ
rejection in adult and pediatric patients receiving transplantation. The FDA first
approved Prograf in 1994 for the prevention of organ rejection in liver trans-
plantation and then approved for kidney (1997) and heart (2006) transplantations
based on scientific evidence from randomized clinical trials. Prograf has been used
in combination with other immunosuppressants such as mycophenolate mofetil
(MMF) or azathioprine (AZA). Until the FDA approved Prograf for the prevention
of rejection of lung transplantation on July 16, 2021, no immunosuppressant had
been approved for this indication. However, many patients had been treated with
Prograf off-label of which approximately 86% of lung transplant recipients are
treated with Prograf, mostly in combination with MMF [7].

The primary objective of the study was to evaluate transplant-related outcomes
and use of tacrolimus immediate release (TAC IR) and other immunosuppressive
agents over time in United States [8]. The applicant conducted a non-interventional
study using RWD from the US Scientific Registry of Transplant Recipients (SRTR)
database to evaluate transplant-related outcomes and the use of Prograf includ-
ing other immunosuppressants in lung transplant recipients [8]. From the SRTR
database, the study identified patients who received a primary lung transplantation
(not re-transplantation) between January 1, 1999, and December 31, 2017. The
primary efficacy endpoint was the composite endpoint of time to graft failure
(GF) or death (due to any cause) within 1 year after transplantation. Patients were
followed for up to 3 years post transplant. The study was descriptive and used the
Kaplan–Meier estimates of the cumulative incidence. The primary efficacy endpoint
of 1-year graft failure or death was used for primary analysis.

The study identified 15,478 adults and 450 pediatric patients receiving Prograf
in combination with MMF [8]. The 1-year graft survival estimates from time of
discharge were 90.9% (adult) and 91.7% (pediatric), respectively. The study also
identified 4263 adults and 72 pediatric patients receiving Prograf in combination
with AZA. The 1-year graft survival estimates from time of discharge were 90.8%
(adult) and 84.7% (pediatric). Although this study did not include a comparator,
these outcomes were very unlikely to have occurred by chance alone compared to
the adequately documented natural history of a transplanted lung with no or minimal
immunosuppressant, which yielded no graft or overall survival at 1 year and survival
was largely limited to several weeks [9, 10].

In this study, the applicant generated RWE by the analyses of RWD extracted
from the SRTR database [8]. SRTR is a national transplant registry operated under
a federal contract by Hennepin Healthcare Research Institute [11]. This registry
has a well-established and robust operational structure for collecting rigorous data
on all US solid-organ transplant recipients, as required by the National Organ
Transplantation Act of 1984 [12]. SRTR directly collects the primary source of data
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from the Organ Procurement and Transplantation Network (OPTN), and they are
supplemented by data from the Centers for Medicare & Medicaid Services (CMS)
and the National Technical Information Service’s (NTIS) Death Master File [11].
SRTR releases Standard Analytic files (SAF) for bona fide research or analysis
purpose under a Data Use Agreement, and it contains data element on all solid
organ transplant candidates, recipients, and donors in the United States from Oct
1, 1987, to the present. For this application, the applicant submitted SAF including
patients receiving primary lung transplantation from Jan 1, 1999, to Dec 31, 2017
[8].

2.2.2 SurgiMend

Acellular dermal matrices (ADMs) have become a vital part of breast reconstruction
procedures because they address the tissue deficiencies resulting from mastectomy:
ADM provides reinforcement for weakened tissue, supplements thin and overly
dissected tissue, and repairs the breast boundaries that were eliminated during the
procedure. Although previous investigators have evaluated its risks, few studies
have assessed the impact of ADM on other outcomes, including patient-reported
measures.

The MROC Study (Mastectomy Reconstruction. Outcomes Consortium) was a
prospective, observational cohort study and included women undergoing first-time
reconstruction following mastectomy, for breast cancer treatment or prophylaxis,
from 11 centers and 58 participating surgeons in the United States and Canada [13].
Eligible patients were enrolled between 2012 and 2015 and included those undergo-
ing tissue expander placement for immediate unilateral or bilateral reconstruction
following mastectomy for breast cancer treatment or prophylaxis. All patients
subsequently underwent expander exchange for saline-or silicone-filled reconstruc-
tive implants. Study patients were divided into two cohorts: (1) those undergoing
expander reconstruction with ADM and (2) those receiving expander reconstruction
without ADM. After obtaining informed consent, patient demographic and clinical
information was gathered from electronic medical records (EMRs) by the site
coordinators and included age, body mass index (BMI), laterality (unilateral vs.
bilateral), indication for mastectomy (treatment vs. prophylactic), mastectomy type
(nipple sparing, simple or modified radical), smoking status, diabetes, lymph-
node management, adjuvant chemotherapy, and radiation. The MROC study was
funded and run by the U.S. National Cancer Institute (NCI). Data collection relied
on protocol-specified Patient Reported Outcome (PRO) measures, including the
BREAST-Q—a validated PRO instrument designed specifically for patients who
undergo breast reconstruction surgery [14, 15]—and other PRO questionnaires, as
well as data in the EMRs and billing records. Patients completed questionnaires,
including PRO instruments, before surgery and at 1 week, 3 months, 1 year, and
2 years after initial surgery. Postoperative complications, which were prespecified
in the protocol, were retrospectively identified in the EMR at 1 year and 2 years after
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the subject’s breast reconstruction. As of September 1, 2021, multiple peer-reviewed
publications have been published based on the MROC Study [13].

SurgiMend Acellular Bovine Dermal Matrix for Soft Tissue Reconstruction
is intended for implantation to reinforce soft tissue where weakness exists and
for the surgical repair of damaged or ruptured soft tissue membranes. Due to
enrollment challenges, the sponsor (Integra LifeSciences Corporation) and FDA
agreed that RWE could provide the best path forward to demonstrate the safety
and effectiveness of SurgiMend PRS ABDM in breast reconstruction surgeries
[16]. Integra entered discussions with FDA to consider the use of RWE generated
from the RWD in the MROC Study sponsored by the University of Michigan.
The SurgiMend study was an analysis of a subset of MROC study data using
a prospectively developed analysis plan to compare SurgiMend vs No-Acellular
Dermal Matrix (No-ADM) in immediate, two-stage, submuscular implant-based
breast reconstruction (IBBR). The inclusion/exclusion criteria were incorporated
for subject selection from the raw MROC datasets, so that the treatment group
would include only subjects who underwent immediate, two-stage submuscular
IBBR with the use of SurgiMend, and the control group would include subjects
who underwent immediate, two-stage submuscular IBBR with total submuscular
coverage, i.e., no ADM. Among 4306 MROC study subjects enrolled from January
2012 to February 2016, per the pre-specified inclusion/exclusion criteria, 1792
subjects were identified to have undergone immediate, two-stage submuscular
IBBR, among which 987 subjects were treated with either SurgiMend or control
No-ADM and were selected into the SurgiMend study. There were 119 subjects
from two investigational sites in the treatment group (SurgiMend) and 868 subjects
from nine investigational sites in the control group (noADM).

The pre-specified primary endpoint in this study was the composite clinical
success (CCS). A subject achieves the composite clinical success if both two
criteria are satisfied: (1) an assessment of BREAST-Q Physical Well-Being, Chest
score ≥ (−4) point change from baseline at 1-year post implant and (2) absence
of major complications through year 2 or through year 1 (if year 2 data are
not available). Propensity score-based stratification approach was used to reduce
potential confounding to estimate the average treatment effect on the treated (ATT)
using weights based on the number of SurgiMend treated subjects within each
propensity score stratum [17]. Multiple imputations were used to handle missing
data issues in the analyses of the primary and secondary endpoints with the
propensity score stratification method.

Using the pre-specified primary ATT approach, the primary estimated CCS rate
was 32.4% for the SurgiMend group and 21.1% for the control group. The estimated
difference for CCS rate between the SurgiMend and control groups was 11.2%
with a 95% confidence interval of (1.7%, 20.8%), excluding 0. The CCS rate for
SurgiMend group was statistically significantly higher than that for the control group
with a two-sided p-value of 0.02. For the primary endpoint CCS, approximately 25%
of data are missing. The Breast Q—Physical well-being, chest at year 1 had 44.1%
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missing data for No ADM control and 34.5% for SurgiMend group. The Breast Q—
Physical well-being, chest at year 2 had 62.9% missing data for No ADM control
and 58% for SurgiMend group. Additional details can be found in SurgiMend FDA
Briefing document 2021 [16].

2.3 RWE/RWD as One of the Data Sources for Label
Expansion

2.3.1 Orencia

Acute graft-versus-host disease (aGVHD) is a potentially fatal complication that
can occur after stem cell transplantation when the donor’s immune cells (the graft)
view the recipient’s body (the host) as foreign and the donated cells attack the body.
The chances of developing aGVHD increase when the donor and recipient are not
related or are not a perfect match. Severe (grade 3–4) aGVHD is a major cause of
death after unrelated-donor (URD) hematopoietic cell transplant (HCT), resulting
in particularly high mortality after human leukocyte antigen (HLA)-mismatched
transplantation. There are no approved agents for aGVHD prevention, underscoring
the critical unmet need for novel therapeutics.

Abatacept, sold under the brand name Orencia, is a medication used to treat
autoimmune diseases like rheumatoid arthritis, by interfering with the immune
activity of T cells.

GVHD-1 trial, also known as ABA2, was a phase II trial to rigorously assess
safety, efficacy, and immunologic effects of adding T-cell costimulation blockade
with abatacept to calcineurin inhibitor (CNI)/methotrexate (MTX)-based GVHD
prophylaxis, to test whether abatacept could decrease aGVHD.Watkins et al. (2021)
reported details in the study design, methods, and results [18]. To summarize the
study outcome, the study measured severe (grade III–IV) aGVHD-free survival,
overall survival and moderate-severe (grade II–IV) aGVHD-free survival 6 months
after transplantation. The study reported 73.6% (80% confidence interval [CI]: 62.0–
82.2) overall survival (OS) at 2 years in recipients of a 7/8 HLA-single mismatch
unrelated donor (7/8 MMUD) HSCT following treatment with abatacept + a
standard aGVHD prophylaxis regimen (calcineurin inhibitor [CNI] + methotrexate
[MTX] without [−] antithymocyte globulin [ATG]), compared with 45.3% (80%CI:
39.3%–51.1%; P = 0.002) in a standard treatment cohort (CNI + MTX − ATG) of
matched controls from the Center for International Blood and Marrow Transplant
Research (CIBMTR) [19].

GVHD-2 was a real-world study to further evaluate the impact of abatacept on
survival of 7/8 MMUD HSCT recipients, treated with CNI + MTX − ATG with
or without abatacept, from CIBMTR database of all allogeneic HSCTs performed
in the United States in recent years [20]. In this observational study, patients (≥
6 years of age with leukemia, lymphoma, or myelodysplastic syndrome, whose first
allogenic HSCT was with a 7/8 MMUD between 2011 and 2018) were treated with
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CNI + MTX − ATGwith or without abatacept. OS (defined as time between date of
transplant and documented date of death) was evaluated at 181 days post-transplant
by weighted log-rank test with inverse propensity scores, obtained using logistic
regression models as weights (inverse probability of treatment weighting [IPTW])
to reduce bias due to confounding. The marginal hazard ratio (HR) and 95% CI were
estimated by a weighted Cox proportional hazards model. Exploratory analyses
of OS were evaluated in 7/8 MMUD HSCT recipients treated with abatacept +
CNI + MTX (without ATG) versus CNI + MTX + ATG, and versus those treated
with post-transplant cyclophosphamide-based (PT-Cy) GVHD prophylaxis.

For the primary analysis, 216 patients (54 [25%] abatacept+CNI+MTX−ATG
and 162 [75%] CNI + MTX − ATG) were included. Key patient demographics
and characteristics were generally similar across treatment. Most patients were
male and had performance scores of 90–100; had acute myeloid leukemia; and
had received myeloablative conditioning, peripheral blood stem cell grafts, and
tacrolimus. Kaplan–Meier OS rates at day 181 post-transplant by weighted log-rank
test with inverse propensity scores (95% CI) were 98% (78–100%) for patients
treated with abatacept + CNI + MTX − ATG and 75% (67–82) for those treated
with CNI + MTX − ATG (P = 0.0028). The marginal HRs (95% CI) were 0.06
(0.01–0.27) and 0.07 (0.01–0.30) using treatment only and treatment plus disease
status as covariates, respectively.

2.4 RWE/RWD as Supplemental Information for
the Regulatory Decision

2.4.1 Ibrance

In terms of cancer death, breast cancer is the second leading cause among women
and the fourth leading cause overall. Metastatic breast cancer (MBC) is incurable
and the treatment of patients with MBC is palliative in nature, aiming to prolong
survival, and/ or improve disease-related symptoms. While male breast cancer is
rare, it is a serious and life-threatening condition that was estimated to affect 2620
men and kill nearly 520 in 2020 [21]. As the prognosis for men is similar to that for
women with a comparable stage of disease [22], current clinical practice standards
for the treatment of male patients with breast cancer mirror those for women
with breast cancer [23]. However, as of 2019, there were no therapies approved
specifically for the treatment of male patients with MBC.

For patients with hormone receptorpositive, human epidermal growth factor
receptor 2 (HER2)-negative metastatic breast cancer, endocrine therapy represents
the main initial therapeutic strategy [23] . Other treatment options for these patients
include endocrine therapy in combination with mTOR inhibitors (everolimus) or an
inhibitor of cyclin-dependent kinases (CDK) 4 and 6 inhibitors such as palbociclib,
ribociclib, and abemaciclib [23].
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Palbociclib (IBRANCE
®
), originally granted accelerated approval on February 3,

2015, for use in combination with letrozole in postmenopausal women was granted
regular approval on March 31, 2017 as initial endocrine-based therapy [24]. The
drug’s indication was expanded from allowing palbociclib in combination with only
letrozole to allowing it in combination with any aromatase inhibitor [24].

Updated results from 666 patients in the randomized, double-blind, placebo-
controlled phase 3 trial (Study PALOMA-2) in women with HR-positive, HER2-
negative advanced or metastatic breast cancer whose disease was not previously
treated continued to demonstrate a clinically meaningful benefit for Palbociclib [25].
The estimated median PFS in the palbociclib plus letrozole arm was 27.6 months
(95% Cl = 22.4, 30.3) compared to 14.5 months (95% Cl: 12.3, 17.1) in the placebo
plus letrozole arm (HR = 0.563 95% Cl: 0.461, 0.687; p < 0.001) [25].

However, male patients with breast cancer were ineligible to participate in
PALOMA-2 and in studies that provided the data to support prior approvals of
Palbociclib. Therefore, the applicant provided the results of an analysis of RWD
from EHRs from the Flatiron Health Analytic Database (FHAD), to support the
request for broadening the palbociclib indication to include male patients [23].
The Flatiron Database is generated from the EHR data that is collected within
the Flatiron Provider Network of cancer care providers in the United States and
includes cancer patients who are actively receiving treatment [23]. Data were
de-identified and provisions put in place to prevent re-identification before a
retrospective cohort study was initiated. The study included males aged 18 years
or older with the following inclusion criteria met in the study period from January
1, 2011 to July 31, 2017: an ICD diagnosis of breast cancer; two or more clinical
visits; an MBC diagnosis and HR-positive/HER2-negative disease (in a 60-day
window before or after MBC diagnosis date), both confirmed through unstructured
data. Two cohorts of patients were defined to compare with respect to clinical
characteristics and outcomes. Patients in Cohort A (palbociclib-treated cohort)
received a palbociclib-based regimen in any line of therapy (LOT), whereas patients
in Cohort B (non-palbociclib-treated cohort) received an endocrine therapy-based
regimen in any LOT and were never treated with a palbociclib-containing regimen
[23].

The primary outcome of interest for this study was real-world response, defined
as the treating clinician’s assessment of radiological evidence for change in burden
of disease over the course of treatment with a given LOT [23]. The assessment was
mapped to one of the following categories: CR, partial response, stable disease,
or progressive disease. Only 12 patients in cohort A and 29 patients in cohort B
had radiological follow-up visits necessary to make on-study tumor assessments.
Furthermore, in Cohort B, 13 patients whose endocrine therapy only included a
tamoxifen agent were excluded from the analysis, as tamoxifen is not approved for
use in combination with palbociclib, decreasing the size of Cohort B to 16 patients.
The observed response rates were 25% (3/12) in Cohort A and 12.5% (2/16) in
Cohort B. No formal statistical comparisons were made [23].
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3 Analysis of Key Considerations in the Regulatory Decisions

In this section, to understand the contexts for the decision, the past regulatory
interactions and approval status for each use case will be described. Furthermore,
we will provide analysis of key considerations on regulatory decisions. These may
include but not limited to the regulatory contexts, regulatory quality data source,
statistical methods employed to minimize potential biases and confounding, and
any regulatory opinions for the submission and regulatory decision.

3.1 RWE/RWD Supporting the Original Marketing Application

3.1.1 Avelumab

MCC is a rare skin cancer and each year about 2000 patients were diagnosed with
it in the United States [1]. Metastatic MCC is incurable, and there was no FDA-
approved therapy when avelumab was under review. Coupled with poor 5-year
survival rate, there is a high unmet medical need. These factors contributed to the
avelumab’s orphan drug designation.

The real-world study that was included in the avelumab FDA submission came
from USON which includes about one million cancer patients annually. The
iKnowMed EHR system was specifically designed for oncologists and hematolo-
gists. It tracks outpatient encounter across the practice of 1200 affiliated physicians.
The relevant patients’ characteristics and clinical outcomes can be abstracted from
the structured data fields as well by chart review from unstructured data. It can also
be linked with external data source such as the Social Security Administration’s
Limited Death Master File (SSALDMF) to retrieve patients’ vital status.

The real-world study identified 39 potential eligible mMCC patients where 14
were included in the final analysis to mimic comparable JAVELINEMerke 200 trial
enrollees. The FDA review recognized the small sample size and inherent selection
bias in using historical control data. It concluded that the data were exploratory in
nature and was considered only to further characterize the natural history of disease
in target population for benefit-risk assessment. This is a challenge in using RW
historic control data especially for rare disease. However, the findings are consistent
with the limited literatures [2] which reported a median DOR of 101 days based on
30 distant metastatic MCC patients who received second-line chemotherapy. FDA
review did indicate that the single-arm study “demonstrated a clinically meaningful
ORR that was significantly more durable than response rates observed for salvage
chemotherapy, which is the current treatment standard.” And for the management
of mMCC, durable ORR is considered to be a valid surrogate endpoint for clinical
benefit such as survival, how patients function or feel. There was no advisory
committee meeting before FDA granted avelumab accelerated approval.
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Following approval of avelumab for mMCC, a more recent publication [26]
reported clinical outcomes in patients with locally advanced (la) or mMCC initiating
first-line avelumab from the same RW data source USON. All patients were required
to have a minimal of 6-month follow-up or evidence of death at the time of analysis.
A total of 9 laMCC and 19 mMCC patients were identified with response rates of
66.7% and 63.2%, respectively. This patient population is similar to those enrolled
in JAVELIN Merkel 200 Part B, which is stage IV mMCC patients who had not
received prior systemic therapy. A total of 39 patients were enrolled in Part B and
a pre-planned interim analysis based on 29 patients with at least 3-month follow-up
reported similar ORR of 62.1% [27]. After linking with SSALDMF, this newer RW
study reported that median progression-free survival and overall survival were not
reached in laMCC and were 10.0, 20.2 months in mMCC, respectively. These results
showed clinical benefit of avelumab in US RW clinical setting with the limitation of
small sample size.

3.1.2 Tafasitamab

The unmet medical need for R/R DLBCL is high where limited treatment options
exist. As the accelerated approval is based on a single-arm Phase 2 study where
all patients received the combination therapy of tafasitamab and lenalidomide,
a real-world study RE-MIND was included in the FDA submission package for
comparison with monotherapy of lenalidomide. The real-word data was retrospec-
tively collected from health records in academic hospitals, public hospitals, and
private practice in North America, Europe, and Asia Pacific region using electronic
data capture. The eligibility criteria mimic that of the L-MIND study “patients
aged ≥18 years with histologically confirmed DLBCL and who had received ≥2
prior systemic therapies for R/R DLBCL (including ≥1 anti-CD20 therapy).” The
primary endpoint follows similar definition which was best ORR as assessed by the
investigator.

During a dedicated FDA Type C meeting for the use of RWD in this submission,
the following limitations were reported [4].

1. Data quality: Specifically, there may be systematic differences in type of data
being collected, covariates (measured or unmeasured), validity of outcome
assessment, amount of missing, and duration of follow-up. Evidence to support
RWD collection being adequate, accurate, and non-differential need to be
demonstrated.

2. Data completeness: As much as possible, clinically important covariates should
be included comprehensively. Further imputation of missing data could not be
accepted for the purpose of estimating propensity score. The agency recognized
that this would result in sample size attrition but felt that it is necessary to enable
assessment of comparability.

3. Population comparability: Only patients from comparable geographic regions
and relevant initial dose of lenalidomide at index date should be included
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in the monotherapy cohort. And the overlap weight-based approach was not
recommended.

To address these concerns, the following revisions were adopted and subse-
quently reported in Zinzani et al. [28]:

1. Only study sites from the EU and the United States were selected to be
consistent with L-MIND. Similarly, only patients initiating a lenalidomide dose
of 25 mg/day were included.

2. Only patients with complete data on nine prespecified baseline covariates of
clinical importance were included. A tenth covariate of Easter Cooperative
Oncology Group performance status (ECOG PS) was included as a prespecified
sensitivity analysis.

3. Outcome of ORR was validated for a subset of patients by an independent
committee following both radiological and clinical review. To address the
intercurrent event of treatment change, the ORR status has to be assessed
between lenalidomide initiation and starting a new anti-DLBCL medication or
death.

4. To enable accurate assessment of response rate, all patients were required to
have a minimal 6-month follow-up period. The 6-month requirement was met
if a patient responded to treatment or progressed or died at any time within
6 months of treatment initiation without a documented response. Patients with
unknown response status or nonresponding with first tumor assessment being
after 6 months were excluded from lenalidomide cohort.

5. Propensity score matching with 1:1 ratio and nearest neighbor algorithm was
employed to balance the two comparison groups. Standardized mean difference
(SMD) with threshold of 0.2 was prespecified to assess balance after matching.

6. Standard statistical inference such as Fisher’s exact test, logistic regression,
Kaplan–Meier curve, and log-rank test was conducted to compare the two
matched cohorts for categorical and time-to-event outcomes.

7. Multiple sensitivity analyses were included to assess the robustness of results,
including adoption of doubly robust method to relax underlying assumptions and
address residual imbalance.

Among 524 potential patient charts collected from RWD source, a total of
140 fulfilled all inclusion criteria. Out of the 81 patients enrolled in L-MIND,
76 patients met the minimal 6-month follow-up requirement and received the
combination therapy. All 76 patients were successfully matched with a control. The
two comparison cohorts were largely comparable in terms of baseline characteristics
with seven out of nine prespecified covariates having SMD < 0.2. Best ORR was
67.1% (95% CI: 55.4–77.5%) for the combination therapy versus 34.2% (95% CI:
23.7–46.0%) in the lenalidomide monotherapy. Fisher’s exact test indicates high
statistical significance (P < 0.0001). Among patients who responded, DOR was
20.5 versus 6.6 months in the combination and monotherapy cohorts, respectively.
Sensitivity analyses confirmed the findings from primary analyses.
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Overall, the real-world study RE-MINDwas judged to have many limitations and
only provided contextual evidence in the original FDA approval. The subsequent
publication incorporating the agency comments appears to support the incremental
benefits of the combination therapy versus lenalidomide monotherapy.

3.2 RWE/RWD as the Primary Data Source for Label
Expansion

3.2.1 Prograf

Since the initial approval in 1994, Prograf has been used as the mainstay of
the immunosuppressive regimens in most transplant recipients for the approved
indications of liver, kidney, and heart transplantations [29]. Off-label use of Prograf
in lung transplantation has increased since 1994 and gradually replaced cyclosporine
as the calcineurin inhibitor of choice. According to the 2018 US Annual Data Report
published by the SRTR, approximately 85% of the lung transplant patients were
treated off-label, with tacrolimus, MMF, and corticosteroids [7]. No immunosup-
pressant was approved for lung transplant recipients before the FDA approval of
Prograf in prevention of rejection of lung transplantation in July 2021.

The SRTR was the primary source of RWD used in the non-interventional study
to demonstrate the effectiveness and safety of Prograf use for the new indication.
The SRTR were considered fit-for-use because the data was relevant and reliable
to the regulatory research questions [29]. The SRTR has a well-established and
robust operational structure that captured all solid-organ transplant recipients in
United States. As a compulsory registry, the SRTR collects all U.S. population
of lung transplant recipients [30]. Thus, limitations related to a non-representative
study population did not apply in this submission. Also, the granular capture
of relevant clinical variables on each patient regarding transplantation and graft
survival outcomes enhanced the relevance of the data. The accuracy of the SRTR
could be improved through a linkage with external sources such as CMS and NTIS
Death Master File. In this submission, NTIS Death Master File supplemented the
SRTR death outcomes as a trusted repository of mortality data thus the primary
outcome of interest, death, was considered reliable. The comprehensive capture of
clinical information resulted in low percentage of missing data, which enhanced the
reliability of the data.

The FDA stated that this regulatory approval “reflects how a well-designed, non-
interventional study relying on fit-for-purpose RWD, when compared with a suitable
control, can be considered adequate and well-controlled under FDA regulations
[31].” This implies that even a non-interventional study that might have challenges
from confounding and other biases can provide robust scientific findings compa-
rable to a randomized clinical trial (RCT) and meet the regulatory requirements
depending on the fit-for-use data source (including robust data collection method),
study design, statistical analysis approach in minimizing potential confounding
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biases. An evident improvement in outcomes was observed among lung transplant
patients receiving Prograf in combination with other immunosuppressants and these
outcomes were very unlikely to have occurred by chance alone compared to the
previous natural history of a transplanted lung with no or minimal immunosuppres-
sants, where no patients survived to 1 year and the median survival was limited to
several weeks [9, 10].

In addition to the RWE generated from the non-interventional study, confirma-
tory evidence of efficacy comes from randomized controlled trials in other solid
organ transplants. Additional support for the application came from existing journal
publications relevant to lung transplantation [29].

3.2.2 SurgiMend

In the past decade prior to 2017, surgeons have begun utilizing surgical mesh
products to assist with breast reconstructive procedures, and ADM mesh products
are now used in most implant-based breast reconstruction procedures in the United
States [13]. However, the FDA has not cleared or approved any surgical mesh
device—whether synthetic, animal collagen derived, or human collagen derived—
specifically indicated for breast reconstruction. In March 2019, the FDA’s General
and Plastic Surgery Advisory Committee discussed the evidentiary requirements
needed to assess surgical mesh benefit versus risk in breast reconstruction. Trial
design considerations identified by FDA at the March 2019 Advisory Committee
meeting as critical for assessing surgical mesh of device safety and effectiveness for
breast reconstruction [32].

SurgiMend PRS Acellular Bovine Dermal Matrix, indicated for use in post-
mastectomy breast reconstruction, has not been marketed in the United States or
any foreign country. The sponsor states that the device is the same as the SurgiMend
device that was cleared under K071807 for plastic and reconstructive surgery on
August 6, 2007 with different device configurations, sizes, and thickness and is
legally marketed in the United States as well as the EU, Canada, Colombia, Israel,
Korea, Mexico, New Zealand, Panama, Peru, and Thailand. To date, the sponsor
states this SurgiMend device has not been withdrawn from marketing in any country
for any reason related to the safety or effectiveness of the device. While the sponsor
believes that only devices cleared under K071807 were used in the MROC study
based on marketing, there is no way to confirm this as fact based on the MROC
dataset. Thus, FDA included a description of all SurgiMend devices that were
available during the MROC study. There were two 510 k cleared devices that were
available between 2012 and 2015, which would align with the enrollment of patients
into the MROC Study.

The FDA supports the use of relevant and reliable RWD for regulatory decisions
[16]. FDA conducted a preliminary assessment of the MROC study data regarding
its potential relevance and reliability. This analysis concluded that the dataset
was of sufficient quality to proceed with analyses of the prespecified outcomes
and specific manufacturers’ device performance. Because FDA has access to de-
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identified patient-level MROC study data, but the sponsor does not, FDA conducted
the analysis using the prospectively defined statistical analysis plan. Integra’s PMA
relies on this prospective analysis of existing observational study data to support a
reasonable assurance of safety and effectiveness of the subject device (SurgiMend
PRS ABDM).

In the FDA’s Executive Summary [16] at the October 2021 FDA Advisory
meeting, FDA discussed limitations of using MROC datasets for the SurgiMend
study. They included lack of clinical studies to support a reasonable assurance of
safety and effectiveness of their subject device. Furthermore, MROC Study was not
designed to evaluate the safety and effectiveness of the SurgiMend PRS ABDM
device. Some of the additional key drawbacks included:

1. The MROC study was an observational, non-randomized study. The study results
are prone to confounding bias. The SurgiMend study data were a subset of the
MROC study data.

2. The propensity score study design is applied in the SurgiMend study to mitigate
the biases caused by observed confounders; however, potential biases may
remain due to unmeasured confounders. For example, clinical site information is
deidentified and surgeon-level data were not provided. Therefore, the SurgiMend
study could not consider differences in region (i.e., United States and Canada
sites), site-to-site variability, and surgeon performance.

3. There is large amount of missing data for the primary and secondary endpoints.
4. MROC followed patients for 2 years after tissue expander and SurgiMend

placement. Thus, there is a lack of information on long-term adverse events
(AEs) including cancer recurrence.

5. Limited information on AEs, serious AEs, and other AEs (for example causes of
death).

6. Limited information on patient accounting/disposition.

FDA posed three questions for the advisory committee panel to vote on:

1. There is reasonable assurance that the SurgiMend PRS ABDM is safe for the
proposed indications for use.

2. There is reasonable assurance that the SurgiMend PRS ABDM is effective for
the proposed indication for use.

3. The benefits of SurgiMend PRS ABDM outweigh the risks for the proposed
indications for us.

Of the 12 panel members, 7 voted yes and 5 no for the first question. For the
second question, 5 voted yes, 6 no, and 1 abstention, and for the third question,
5 voted yes, 7 no. The main concerns from the panel on voting no included the
following reasons:

• The dataset is small with 119 patients on SurgiMend ADM. In some categories
of outcome measures, a few patients may even flip the results.

• Some of the potential confounding variables, such as institutions and physicians
were not captured and adjusted for in the analysis.
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• Even though the BREAST-Q is a validated endpoint, as well as the complications,
it’s not validated putting the two together, so the composite endpoint was not a
validated endpoint.

• Propensity score can only adjust for measured variables. The sensitivity analyses
using average treatment effect on the treated patients showed that the endpoint
was no longer significant.

• There was differential missing data between the two groups on the BREAST-Q,
which again brings in biases; therefore, the results were hard to interpret.

3.3 RWE/RWD as One of the Data Sources for Label
Expansion

3.3.1 Orencia

Orencia was originally approved by the FDA in 2005 for the treatment of adult
rheumatoid arthritis (RA). Orencia is also approved for the treatment of polyarticu-
lar juvenile idiopathic arthritis and adult psoriatic arthritis [33]. In December 2021,
FDA approved Orencia for the prophylaxis (prevention) of aGVHD. Orencia may be
used in adults and pediatric patients 2 years of age or older undergoing hematopoi-
etic stem cell transplantation (commonly known as bone marrow transplantation
or stem cell transplantation) from an unrelated donor. The approval was based on
results from two key studies (GVHD-1 and GVHD-2) in patients undergoing stem
cell transplant as described in Sect. 2.1 for this case study.

This is the first FDA drug approval for aGVHD prevention and incorporates
RWE as supported by GVHD-2 as one component of the determination of clinical
effectiveness. GVHD-2 study is based on data from CIBMTR, which maintains
one of the world’s largest observational databases of clinical information on
hematopoietic cell transplantation (HCT). It has been collecting HCT outcomes data
for 50 years, resulting in a Research Database with information from more than
585,000 patients. These data are freely available to investigators with an interest in
HCT and treatments for cancer and other life-threatening diseases. As mentioned in
chapter “Assessment of Fit-for-Use Real-World Data Sources and Applications” of
this book [34], fit-for-purpose RWD sources can be assessed from data relevancy
and reliability perspectives. CIBMTR Research Database contains relevant baseline
recipient and donor information [19] along with follow-up recipient and donor
information including outcomes, such as survival and aGVHD for recipients and
adverse events for donors. The quality of RWD source in GVHD-2 study from
a well-known source CIBMTR was recognized as fit-for-use. To reduce bias due
to confounding, the analysis of OS employed weighted log-rank test with inverse
propensity scores, obtained using logistic regression models as weights (inverse
probability of treatment weighting [IPTW]). The marginal HR and 95% CI were
estimated by a weighted Cox proportional hazards model [20].
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The approval of Orencia showed that RWE/RWD was used as pivotal for a
regulatory approval and addressed a critical unmet medical need. With the initial
approval of Orencia in 2005 in patients with RA and other conditions, the previous
approvals afforded appropriate regulatory contexts for this approval. Dr. Pazdur,
director of the FDA’s Oncology Center of Excellence, said at the press conference
for the approval, “Acute graft versus host disease can affect different parts of
the body and become a serious post-transplant complication”, and “by potentially
preventing the disease, more patients may successfully undergo bone marrow or
stem cell transplantation with fewer complications.”

3.4 RWE/RWD as Supplemental Information for
the Regulatory Decision

3.4.1 Ibrance

The applicant submitted a supplemental new drug application (sNDA) to expand
the proposed indication of palbociclib to include male patients with HR-positive,
HER2-negative advanced, or metastatic breast cancer. Since male patients with
breast cancer were ineligible in randomized controlled studies that provided the data
to demonstrate the clinical benefit to support prior approvals, in their submission,
the applicant provided the results of an analysis of RWD from EHRs as additional
supportive data. The objective of this real-world analysis was to characterize the
use of palbociclib in combination with endocrine therapy (aromatase inhibitor or
fulvestrant) in male patients based on observed tumor responses in this rare subset
of patients with breast cancer.

The FDA reviewers noted several limitations in the real-world analyses submitted
to support the approval of palbociclib for male MBC patients. Mainly, it was
pointed out that the interpretation of the findings of the retrospective cohort study
in FHAD were limited since only 1% of the initial sample of 2500 patients were
ultimately available for analysis [35]). Furthermore, owing to the small sample size,
baseline prognostic factors could not be balanced in the palbociclib cohort and
the comparator cohort with the help of matching, weighting, or other propensity
score methods [35]. For example, the reviewers noted that the patients on the
palbociclib cohort were younger and substantially more refractory and, thus, no
direct comparison between cohorts could be made leading the palbociclib cohort
being considered as a single-arm analysis. With these considerations, the conclusion
from the reviewers seems to have been that while RWD provided some evidence
that palbociclib in combination with endocrine therapy has antitumor activity (as
measured by the real-world response rate) in men with MBC, the data did not isolate
the effect of palbociclib. The FDA relied on the large, randomized studies in women
for the isolation of the effect of palbociclib [35].

Ultimately, with the favorable benefit-risk profile of palbociclib in women based
on several large, randomized studies combined with the supportive RWD along with
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safety information from review of two phase 1 studies, the Pfizer global database and
postmarketing reports, the FDA found a favorable benefit-risk profile for palbociclib
in men [34]. To this end, the indication of palbociclib was expanded to include use
in addition to aromatase inhibitors or fulvestrant in male patients with HR-positive,
HER2-negative advanced, or metastatic breast cancer.

4 Lessons Learned and Best Practices

The six case studies demonstrated complex and multifaceted aspects with the use
of RWE in regulatory sciences. Among them, a couple of these case studies were
used in original submissions and subsequent approvals, further demonstrating the
critical and contemporary use of RWE for regulatory decisions. As shown, these
case studies were developed in rare disease area, where there are substantial unmet
medical needs. We believe that the six case studies made clear of and showcased key
considerations when utilizing RWE. We observed that most of the feedback from
regulators and/or FDA Advisory Committee panel on the six case studies centered
around fit-for-purpose RWD sources as shown in the analysis narratives in Sect. 3.
For details on assessing data elements related to relevancy and reliability of a RWD
source, please refer to chapter “Assessment of Fit-for-Use Real-World Data Sources
and Applications” of this book [34] and Levenson et al. (2022) [36].

With the Avelumab case study, the FDA review identified limitations of the small
sample size and inherent selection bias in the historical control data. It concluded
the data were exploratory in nature and considered only to further characterize the
natural history of disease in the target population for benefit-risk assessment. As a
result, the RWD was not pivotal for the market application and approval.

With the Tafasitamab case study, the key comments were focused on data quality
and data completeness as assessed in the data reliability dimension and population
comparability as in the data relevancy dimension. The applicant made several
modifications to their plan subsequently, such as restricting the study sites to align
with L-MIND study, modifying the study SAP on only including patients with
complete baseline covariates in the analysis, validating the outcome variable via
an independent committee, and including a minimum follow-up period. Overall,
though, the real-world study RE-MIND was judged to have many limitations and
only provided contextual evidence in the original FDA approval.

For each case of Prograf and Orencia, a well-known and well-established registry
data source was utilized—SRTR and CIBMTR, respectively. SRTR was considered
a fit-for-purpose data source, and the success of Prograf’s approval paves the way
that a non-interventional study with potential challenges from confounding and
other biases could still provide robust scientific findings comparable to a RCT
and meet the regulatory requirements for approval. CIBMTR is another well-
known and long-term running registry data source, and the FDA also recognized
it as fit-for-purpose. The approval of Orencia showed that RWE/RWD was used
as pivotal for a regulatory approval and addressed a critical unmet medical need.
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In the SurgiMend case, however, although the FDA supported the use of MROC
registry study data for the SurgiMend regulatory submission, both the FDA and
the Advisory Committee panel identified several data issues as not fit-for-purpose.
The majority of the Advisory Committee members voted against the approval of
SurgiMend for the intended indication. Some of the issues include absence of key
potential confounding variables in the dataset, large amount of missing data on key
components of the primary endpoint and differential missingness among the two
treatment groups, the composite endpoint with two components not being validated,
sensitivity analysis leading to a different conclusion, and limited information on
adverse events of interest, such as death.

With the Ibrance case, the small sample size of the retrospective cohort study
in FHAD precluded any statistical comparisons to make any meaningful impact in
the consideration for regulatory approval. Ultimately, with the favorable benefit-
risk profile of palbociclib in women based on several large, randomized studies
combined with the supportive RWD along with safety information from review of
two phase 1 studies, the postmarketing reports by the sponsor, the FDA found a
favorable benefit-risk profile for palbociclib in men.

5 Conclusions

The key considerations with the use of RWE require an inter-disciplinary approach
and collaboration. This book provides rich discussions on key considerations from
a range of topics. We argue that the regulatory guidance, key considerations by
stakeholders, and current gaps in applications and best practices identified through
these case studies in this chapter will provide additional insight and bring to bear the
importance of the following key considerations, although may not be comprehen-
sive, such as designing studies to minimize potential biases and confounding with
the use of RWE, especially in observational research, assessing fit-for-purpose RWD
sources and providing justification of the same, employing appropriate statistical
methods to adjust for potential confounding factors, selecting appropriate outcome
measures with relevant clinical impacts, quantifying uncertainty around the study
findings, and understanding the limitations of the research using RWE/RWD.
We especially recommend applicants proactively engage and communicate with
regulatory agencies for discussions either at study design or pre-submission stages,
since there are still great uncertainties in the use of RWE/RWD for specific
applications.

Disclaimer This chapter reflects the views of the authors and should not be construed to represent
FDA’s views or policies.
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The Use of Real-World Data to Support
the Assessment of the Benefit and Risk
of a Medicine to Treat Spinal Muscular
Atrophy

Tammy McIver, Muna El-Khairi, Wai Yin Yeung, and Herbert Pang

1 Introduction

1.1 Spinal Muscular Atrophy

Spinal muscular atrophy (SMA) is a rare, debilitating genetic neuromuscular
disease. It affects approximately 1 in 10,000 individuals and when untreated is the
leading genetic cause of infant mortality [1]. SMA is characterized by progressive
loss of motor neurons (nerve cells that control muscle movement). The disease is
caused by mutations or deletions in the survival of motor neuron 1 (SMN1) gene,
which leads to a deficiency in SMN protein [2]. SMN protein is found throughout the
body and is essential for the function of nerves that control muscles and movement.
Without SMN protein, motor neurons cannot function properly, which in turn leads
to muscle wasting over time [3]. Depending on the type of SMA, an individual’s
physical strength and their ability to walk, eat, or breathe can be significantly
diminished or lost [4].

Patients with SMA are typically classified into types 1–4 based on the age of
symptom onset and highest motor milestone achieved [5–7], with types 1, 2, and 3
SMA representing approximately 99% of the SMA population [8]. Table 1 shows a
summary of the primary SMA types.

Since 2016, the US Food and Drug Administration (FDA) has approved three
medications to treat SMA: nusinersen (SPINRAZA®), onasemnogene abeparvovec-
xioi (ZOLGENSMA®), and risdiplam (EVRYSDI®). The goal of these disease-
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Table 1 Summary of primary SMA types

Type Age at onset Impact

1 Before 6 months Never sit independently
Life expectancy less than 2 years

2 6–18 months Able to sit and may stand with assistance
Never walk

3 18 months onward Able to stand and walk
Often lose the ability to walk in early life

SMA spinal muscular atrophy

modifying treatments is to increase the availability of SMN protein, leading to
clinically meaningful improvements in muscle function.

1.2 Risdiplam

At the time of initiating the risdiplam clinical development program in 2016, there
was no approved treatment for SMA. Risdiplam was developed by Roche/Genen-
tech (the sponsor) in partnership with PTC Therapeutics and the SMA Foundation
to help address the unmet needs for children and adults with SMA. Risdiplam is
a small molecule administered daily at home in liquid form by mouth or feeding
tube. It is a selective SMN2 gene splicing modifier that increases the production of
full-length SMN protein in the central nervous system and peripheral tissues [9]. It
was hypothesized that increasing the amount of SMN protein would reduce motor
neuron degeneration thereby limiting muscle atrophy.

A series of clinical studies on risdiplam were designed to represent a broad
spectrum of people with SMA, from birth to 60 years of age.

• FIREFISH (NCT02913482): an open-label, single-arm, two-part study in infants
aged 1–7 months with type 1 SMA (N = 62).

• SUNFISH (NCT02908685): a randomized, placebo-controlled, two-part study in
children and young adults aged 2–25 years with type 2 or 3 SMA (N = 231).

• JEWELFISH (NCT03032172): an open-label, single-arm study in children and
adults aged 6 months to 60 years who have taken part in clinical trials for SMA
or received other investigational or approved SMA therapies (N = 174).

• RAINBOWFISH (NCT03779334): an open-label, single-arm study in infants
genetically diagnosed with SMA and not yet presenting symptoms (N = 26).

Table 2 shows a summary of key milestones in the development of risdiplam.
As of September 2022, risdiplam has been approved in more than 90 countries

and the dossier is under review in 18 countries. More than 7000 people have
been treated with risdiplam across clinical trials, through the Compassionate Use
Program/Pre-Approval Access and in the commercial setting.
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Table 2 Summary of key milestones in the development of risdiplam

Year Milestone

2016 First patient dosed with risdiplam in a clinical study (SUNFISH)
2017 Risdiplam was granted Orphan Drug designation by the FDA
2018 Risdiplam was granted PRIME designation by the EMA
2020 The FDA approved risdiplam for the treatment of SMA in adults and children aged

2 months and older
2021 The EMA approved risdiplam for the treatment of SMA in patients from 2 months old

with type 1, 2, or 3 SMA, or those who have up to four copies of a gene known as
SMN2

2022 The FDA approved a label extension for the use of risdiplam in infants with SMA
under 2 months of age

EMA European Medicines Agency, FDAUS Food and Drug Administration, SMA spinal muscular
atrophy, SMN2, survival of motor neuron 2, PRIME Priority Medicines

The focus of this case study will be on the two pivotal studies in the risdiplam
clinical development program, FIREFISH and SUNFISH. Both these studies had
an operationally seamless design, with an exploratory dose-finding part (Part 1)
and a confirmatory part (Part 2). Real-world data (RWD) were critical to support
the clinical development planning, data interpretation, and registration of risdiplam.
Here, we describe how RWD from publications were used to define performance
criteria for key clinical endpoints in FIREFISH and benchmark the results for
success in patients with type 1 SMA. In addition, RWD from individual patients
were used to perform a robust statistical comparison and contextualize the results
from SUNFISH in patients with type 2 and 3 SMA. In this chapter, we will discuss
why we used RWD, how we used RWD and the impact of using RWD, including a
summary of challenges and lessons learned.

2 FIREFISH Study: External Control Data
from Publications

2.1 Design and Methods

2.1.1 Study Design

FIREFISH was an operationally seamless, two-part, open-label, multicenter Phase
2/3 study to investigate the safety, tolerability, pharmacokinetics, pharmacodynam-
ics, and efficacy of risdiplam in infants with type 1 SMA aged 1–7 months at
enrolment. Figure 1 shows a summary of the FIREFISH study design.

FIREFISH Part 1 was an exploratory, dose-finding study conducted in 21 infants
with type 1 SMA, which determined the dose for use in Part 2 [10]. FIREFISH Part
2 was a confirmatory study conducted in 41 infants with type 1 SMA [11]. Part
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*Comprises dose-ranging cohorts (A=low dose, B=high dose)

FIREFISH
Type 1 SMA

Part 2: Confirmatory
Open-label
N=41

Part 1:* Dose finding
Open-label
N=21

Active treatment with risdiplam

12-month
primary analysis

24-month
analysis

Risdiplam dose 
selected from Part 1

Extension

Extension

Open-label 
extension 

Risdiplam Cohort A (n=4)

Risdiplam Cohort B (n=17)

Aged 1–7 
months

Aged 1–7 
months

Open-label 
extension 

Fig. 1 Study Design of Part 1 and Part 2 of FIREFISH. SMA spinal muscular atrophy

1 and Part 2 enrolled different infants. The primary endpoint for the confirmatory
Part 2 of the study was the proportion of infants sitting without support for at least
5 seconds (s) after 12 months of treatment, as assessed by Item 22 of the Bayley
Scales of Infant and Toddler Development, third edition (BSID-III) Gross Motor
Subscale [12]. Sitting without support was selected as the primary endpoint because
achieving this milestone illustrates a divergence from the natural course of type 1
SMA as these infants would never achieve this motor milestone without treatment.
Besides, sitting independently is clinically meaningful for infants, as it allows them
to use their upper limbs to reach for objects, grasp objects, and feed themselves. In
addition, event-free survival, defined as being alive without permanent ventilation,
was a key secondary endpoint. The overall study design and choice of endpoints
incorporated health authority advice from both the European Medicines Agency
(EMA) Committee for Medicinal Products for Human Use (CHMP) and the FDA.
The efficacy outcome measures analyzed in FIREFISH Part 1 were consistent with
those in Part 2, but no formal hypothesis testing was planned for Part 1.

RWD as a Component of Study Design in FIREFISH

The natural history of type 1 SMA is well defined and has been described in
numerous studies [13, 14]. Untreated infants with type 1 SMA are never able to
sit independently [15]. In addition, natural history shows that 50% of infants will
have died or required permanent non-invasive ventilation support by 10.5 months of
age and 92% of infants by 20 months of age [13].

Given the severity, rapid decline, and high mortality and morbidity in infants with
type 1 SMA, a placebo comparator group was not included in the FIREFISH study.
In the absence of a control arm, RWD played an important role in the design of
the study and the analysis and interpretation of the study results. Natural history
data were used to define thresholds of achievement, or “performance criteria,”
against which to assess the efficacy of risdiplam treatment in Part 2 of the study.
This approach can be acceptable in the development of new treatments for serious
and rare diseases such as type 1 SMA if the natural course of the disease is well
understood, the external comparator group is similar to the treatment group (e.g.,
with regard to patient characteristics and endpoints), and a large treatment effect
is expected with the study drug. A treatment is considered to be effective if the
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threshold for success is crossed, and when the observed treatment effect is large, it
is reasonable to exclude chance or bias as a possible explanation [16].

The FIREFISH study included objective endpoints that facilitated the compar-
ison with RWD. The primary endpoint (sitting without support for at least 5 s)
was assessed using strict criteria to minimize bias following the BSID-III manual,
objectively measured by trained clinical evaluators, video recorded and scored by
two independent reviewers. As sitting without support is never achieved in untreated
infants with type 1 SMA [13], a large divergence from natural history would be
expected when treated with an efficacious drug. Secondary endpoints included
motor function, achievement of other developmental motor milestones, survival,
and event-free survival. Performance criteria were defined for the primary and key
secondary endpoints in Part 2 of the FIREFISH study.

Identification and Selection of Historical Data Sources for Defining
Performance Criteria

First, a literature search was performed to identify publications in infants with
type 1 SMA that included an endpoint reported in FIREFISH. A PubMed search
was undertaken using the following search terms: (spinal muscular atrophy
[Title/Abstract]) AND (observational OR cohort OR natural history OR registr*
OR association OR describe OR description OR match* or control*) AND
(“2000/01/01”[Date – Publication]: “3000/01/01”[Date – Publication]), which
gave 938 hits (February 1, 2018). Titles and abstracts were reviewed to identify
articles that appeared to report on the outcome measures included in the FIREFISH
study in an observational setting, from both retrospective and prospective data
collection, in infants with type 1 SMA. This left a total of 35 articles that could be
used for comparison with the FIREFISH study. From these 35 articles, publications
were excluded for the following reasons related to usability of the data, patient
characteristics, and standard of care:

• No data relating to any of the endpoints in the FIREFISH study
• No extractable data to derive a performance criterion for any of the endpoints in

the FIREFISH study, e.g., no longitudinal data were provided to calculate change
from baseline values

• No infants with a genetic confirmation of SMA
• Standard of care not reflective of guidelines described in the consensus statement

for standards of care in SMA [17], i.e., no consistent use of non-invasive
ventilation or gastrostomy tube

Of the 35 observational studies identified, 18 were excluded for meeting one or
more of these criteria. In addition to the 17 remaining observational studies, the
untreated, matched cohort selected retrospectively as a comparator group in a Phase
1/2 study of valproic acid and carnitine in infants with type 1 SMA [18] was also
included as a potential data source. Endpoints defined in the FIREFISH study were
sometimes described in more than one of these studies. The identified studies were
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ranked based on the level of similarity of the patient population to the expected
population in the FIREFISH study. When more than one source was available for
an endpoint, the published study cohort with baseline characteristics most similar
to those targeted by the FIREFISH study inclusion and exclusion criteria (i.e.,
the published study with the highest ranking) was selected to set the performance
criterion. The following characteristics were considered when determining the
similarity of the historical cohorts to the FIREFISH study population:

• SMN2 copy number
• Age at onset of symptoms
• Age at enrolment (start of follow-up in study or presentation at treating center)
• Type 1 SMA classification
• Standard of care
• Time period
• Region
• Type of treating center

Multicenter, prospective studies were given a higher ranking, while studies were
given a lower ranking if the data collection occurred prior to the publication of the
consensus statement for standards of care in SMA [17]; if the data were collected
over a long period of time (e.g., 15 years) over which the standard of care would be
expected to change; and if there was no information provided for important infant
characteristics such as SMN2 copy number and age at onset of symptoms. Based
on these criteria, the population in the NeuroNEXT SMA infant biomarker study
[14, 19] was judged to be most similar to the expected population in the FIREFISH
study. Whenever possible, the performance criterion derived from this study was
selected as the benchmark to be used for hypothesis testing. When data for an
endpoint were not available from the NeuroNEXT SMA infant biomarker study
(e.g., for the Hammersmith Infant Neurological Examination, Module 2, which is a
secondary endpoint not described in this book chapter), the benchmark was derived
from the study conducted by De Sanctis et al. [20]. The NeuroNEXT SMA infant
biomarker study included 16 patients with two copies of the SMN2 gene, and the
study conducted by De Sanctis et al. [20] included 24 infants classified as type 1B.
The demographic and baseline characteristics of these two cohorts and of the infants
enrolled in FIREFISH Part 2 are presented in Table 3.

2.1.2 Statistical Methodology: Performance Criteria Approach

The performance criterion for the primary endpoint in Part 2 of the FIREFISH study
(the proportion of infants sitting without support for at least 5 s after 12 months of
treatment) was based on the natural history of the disease in which untreated patients
with type 1 SMA never achieve sitting without support [13]. A threshold of 5%
was chosen to provide sufficient confidence that any effect seen in the FIREFISH
study would not otherwise have occurred in the natural history of infants enrolled
in the study. An exact binomial test was performed to test the hypothesis that the
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Table 3 Demographic and baseline characteristics of patients in the NeuroNEXT SMA infant
biomarker study, the study conducted by De Sanctis et al. and FIREFISH Part 2

NeuroNEXT SMA
Infant Biomarker Study
(N = 16)

De Sanctis et al.
(N = 24)

FIREFISH Part 2
(N = 41)

Age at enrolment/first
visit (months)

≤6 Range: 2–7 Median: 5.3
Range: 2.2–6.9

Age at onset of
symptoms (months)

<1 month: 6 (38%)
1–2 months: 5 (31%)
2–3 months: 3 (19%)
4–5 months: 1 (6%)
Unknown: 1 (6%)

After first week but
before 5–6 months

Median: 1.5
Range: 1.0–3.0

SMN2 copy number
2
Unknown

16 (100%)
–

–
24 (100%)

41 (100%)
–

Country United States Italy, United States Brazil, China, Croatia,
France, Italy, Japan,
Poland, Russia, Turkey,
United States

Source: Kolb et al. [19], De Sanctis et al. [20], Darras et al. [11]

proportion of infants who sit without support on treatment (p1) was:

H0 : p1 ≤ 5% (null) versus Ha : p1 > 5% (alternative)

If the one-sided p-value was ≤5%, then the null hypothesis would be rejected. If
the lower limit of the two-sided 90% confidence interval (CI) (Clopper–Pearson)
was above the 5% threshold, then the primary objective of the study would be
considered achieved. With a sample size of 41 infants, a minimum of 6 infants sitting
without support would be needed for a statistically significant result. Infants were
classified as non-responders for the primary endpoint if they were not able to sit
without support at Month 12, did not maintain sitting achieved at an earlier time-
point, were withdrawn or died prior to Month 12, or had a missing assessment at
Month 12.

The performance criterion for the key secondary endpoint of event-free survival
was based on the NeuroNEXT SMA infant biomarker study [14]. The point estimate
and 90% CI were obtained after selecting infants with two SMN2 gene copies,
similar to the population in the FIREFISH study. The performance criterion was
based on the upper limit of the 90% CI, derived using the complementary log-
log transformation for the proportion of patients who were alive without permanent
ventilation at 18 months of age. The benchmark was set at 18 months of age to reflect
the expected average age of infants in Part 2 of the FIREFISH study after 12 months
of treatment. The estimated proportion (90% CI) of patients alive without permanent
ventilation at 18 months of age based on the available data was 20% (5–42), giving
a performance criterion of 42%. Potential performance criteria were also calculated
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from other available data sources and documented in the appendix of the Statistical
Analysis Plan, along with key selection criteria and rankings for transparency.

When a pre-defined benchmark could be determined for a secondary endpoint,
hypothesis testing was performed. For the secondary endpoint of event-free survival,
a z-test was performed to test the hypothesis that the proportion of infants alive
without permanent ventilation at Month 12 on treatment (p2) was:

H0 : p2 ≤ 42% (null) versus Ha : p2 > 42% (alternative)

To control for multiplicity across the different endpoints, a hierarchical testing
approach was implemented.

2.2 Results

The baseline characteristics of the patients enrolled in Part 1 and Part 2 of
the FIREFISH study were representative of a population with well-established,
symptomatic type 1 SMA. Of the 41 infants enrolled in Part 2, 22 (54%) were
female. At enrolment, the median age of patients was 5.3 months (range: 2.2–
6.9 months). The median age at onset of symptoms was 1.5 months (range:
1.0–3.0 months). No infants were able to sit without support at baseline. The results
for sitting without support and event-free survival in FIREFISH Part 1 and Part 2 at
Month 12 compared with the pre-defined performance criteria are shown in Table 4.
The results are presented separately for Part 1 and Part 2 as they included different
infants. In addition, the performance criteria were pre-defined for the confirmatory
Part 2 only.

The primary efficacy endpoint of the study was successfully met. Twelve of 41
infants (29%; 90% CI 18–43) in Part 2 were able to sit without support for at least
5 s after 12 months of treatment. This proportion was significantly higher than the
pre-defined performance criterion of 5% based on well-established natural history
data (p < 0.0001). At 12 months of treatment, seven of 21 infants in Part 1 (33%;
90% CI 17–54) were able to sit without support for at least 5 s. All infants who were
ongoing in the study had an assessment at Month 12. These results were clinically
meaningful, as untreated patients with type 1 SMA are unable to sit without support
at any age.

In Part 2, the proportion of infants alive without permanent ventilation at Month
12 was 85% (90% CI 73–92). Three infants died within the first 3 months following
study enrolment, and three infants met the endpoint of permanent ventilation. One
infant who attended the Month 12 visit a few days early and therefore had not yet
reached 12 months from enrolment as of the data-cutoff date was censored in the
analysis. The proportion of infants alive without permanent ventilation (85%) was
significantly higher than the pre-defined performance criterion of 42% (p < 0.0001).
Figure 2 shows a summary of the results for event-free survival.
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Table 4 Results from FIREFISH part 1 and part 2 at month 12

Part 1 Part 2

Endpoint
Risdiplam
(N = 21)

Risdiplam
(N = 41)

Performance
criterion p-valuea

Sitting without support for ≥5 s
– BSID-III
(90% CI)

33%
(17–54)

29%
(18–43)

5% <0.0001

Alive without permanent
ventilationb

(90% CI)

90%
(73–97)

85%
(73–92)

42% <0.0001

Source: Baranello et al. [10], Darras et al. [11]
BSID-III Bayley Scales of Infant and Toddler Development, third edition, CI confidence interval
ap-value for sitting without support is based on an exact binomial test; p-value for event-free
survival is based on a z-test
bProportions are estimated using Kaplan–Meier methodology
Permanent ventilation is defined as tracheostomy, or ≥16 h of non-invasive ventilation per day for
>21 consecutive days or intubation for >21 consecutive days in the absence of, or following the
resolution of, an acute reversible event

Number of patients at risk
All patients 41                                36 34
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Fig. 2 FIREFISH Part 2: Event-free survival at Month 12 (Intent-to-Treat Population). (Source:
Darras et al. [11])

In Part 1, the proportion of infants alive without permanent ventilation at
Month 12 was 90% (90% CI 73–97). Two infants died prior to Month 12, and no
infants met the definition of permanent ventilation. The median time to death or
permanent ventilation was not estimable as few patients had an event. Clinically
meaningful and statistically significant improvements were also observed for other
key secondary endpoints in FIREFISH Part 2 [11]. The results of these analyses
were used to confirm the benefits of risdiplam in type 1 SMA and thus to support
the approval and registration of risdiplam in different countries around the world.
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The results for Part 1 were used for the initial regulatory filing and are included
in the United States prescribing information (EVRYSDI® prescribing information)
[21]. This was because we filed early based on the Part 1 results, before the results
from Part 2 were available due to the clear divergence shown from natural history
and the high unmet medical need.

3 SUNFISH Study: External Control Data from Individual
Patient Data

3.1 Design and Methods

3.1.1 Study Design

SUNFISH was an operationally seamless, two-part, multicenter, randomized,
double-blind, placebo controlled, Phase 2/3 study, designed to assess the safety,
tolerability, pharmacokinetics, pharmacodynamics, and efficacy of risdiplam in a
broad patient population including children, teenagers, and adults aged 2–25 years
with type 2 and 3 SMA. Figure 3 shows a summary of the SUNFISH study design.

SUNFISH Part 1 was an exploratory, dose-finding study conducted in 51 patients
with type 2 and ambulant or non-ambulant type 3 SMA, which determined the
dose for use in Part 2. SUNFISH Part 2 was a confirmatory study conducted in
180 patients with type 2 or non-ambulant type 3 SMA [22]. Part 1 and Part 2
had different patients. The primary efficacy endpoint in Part 2 was the change in
motor function assessed using the 32-item Motor Function Measure (MFM32) from
baseline to Month 12. The MFM32 is a clinician-reported outcome measure that
evaluates different levels of motor function in individuals with SMA, from distal
fine motor movements of the hands such as using a touch-screen to more complex
gross motor function activities such as standing and transfers [23]. The 32 items of
this measure were scored using a 4-point Likert scale: 0: cannot initiate the task, 1:
can perform the task partially, 2: can perform the task incompletely or completely
but imperfectly; 3: can perform the task fully and “normally.” The raw score of the

Part 2: Confirmatory
Placebo-controlled
Risdiplam:placebo, 2:1
N=180

Part 1: * Dose-finding
Placebo-controlled
Risdiplam:placebo, 2:1
N=51

Placebo-to-risdiplam 
switch†

Risdiplam

Placebo

Open-label 
extensionRisdiplam Cohort B*

Placebo

Risdiplam at pivotal dose

Risdiplam Cohort A*

PlaceboAged 2–25 
years

Aged 2–25 
years

SUNFISH
Type 2 or 3 SMA

Open-label 
extension

24-month
analysis

12-month
primary analysis

Fig. 3 Study design of Part 1 and Part 2 of SUNFISH [*Comprises two age groups (Cohort A:
2–11 years, two dose levels; Cohort B: 12–25 years, three dose levels). †Placebo-treated patients
were switched to risdiplam in a blinded manner]
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32 items (range: 0–96) was converted to a 0–100 scale, where lower scores indicate
poorer functional ability [24].

The overall study design and choice of endpoints incorporated health authority
advice from both the EMA CHMP and the FDA.

RWD as a Component of Study Design in SUNFISH

RWD were important for determining the anticipated treatment effect for the
primary endpoint (MFM32) in the SUNFISH study as natural history data demon-
strated that patients with type 2 and 3 SMA had a decline in motor function over
time. Patients with type 2 SMA are able to sit independently and occasionally
stand or take a few steps, but are unable to walk independently [15]. Patients with
type 3 SMA are able to sit, stand, and walk independently [15], though nearly a
third of patients with type 3 SMA lose their ability to walk between the ages of
3 and 28 years [24]. Natural history studies show that patients with type 2 and
3 SMA have a decline in motor function over time, as reported in a number of
publications with different validated motor function measures. For example, natural
history data demonstrated that the overall slope of decline over time, using the
MFM32 total score, is in the range of −0.9 points/year for patients with type 2 SMA
and −0.6 points/year for patients with type 3 SMA [24]. In order to gain additional
information on the Motor Function Measure (MFM) endpoint in a broad population,
the sponsor co-funded a Natural History Study (NatHis-SMA; NCT02391831) in
patients with type 2 and 3 SMA with the Institute of Myology, which was designed
in collaboration with Patient Advisory Groups (SMA Europe, Cure SMA, SMA
Foundation). This study was also critical to ensure access to good-quality data to
perform a robust statistical analysis of the MFM endpoint in SUNFISH compared
with RWD. RWD were used to generate an external comparator group of patients
with type 2 and 3 SMA to give context to the SUNFISH Part 1 results before the
placebo-controlled results from SUNFISH Part 2 were available.

Selection of External Comparator Sources

The external comparator group used to give context to the SUNFISH Part 1
results comprised of untreated patients with SMA from the NatHis-SMA study
and the placebo arm of a Phase 2 trial of olesoxime for the treatment of SMA
(NCT01302600).

• The NatHis-SMA Study was a prospective, multicenter, longitudinal natural
history study of patients with type 2 and 3 SMA. The primary objective of
this study was to characterize the disease course in patients with type 2 and 3
SMA using standardized evaluations including the MFM. The study included 81
patients aged 2–29 years and was conducted in Europe between 2015 and 2018.
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The maximum duration of study participation for each patient was 24 months
[25].

• The Olesoxime Study was a Phase 2, parallel-group, placebo-controlled, random-
ized, double-blind, multicenter study, designed to assess the efficacy and safety
of olesoxime over a 2-year period in patients with type 2 or non-ambulant type
3 SMA. The study included 165 patients aged 2–25 years, of whom 57 were
randomized to placebo and was conducted in Europe between 2010 and 2013
[26]. The development of olesoxime has since been discontinued.

The NatHis-SMA study and olesoxime study were considered as appropriate
sources for generating an external comparator group because of the following
similarities to SUNFISH:

• Similar patient population with type 2 and 3 SMA
• All studies included the MFM scale as an outcome measure
• Studies were conducted in Europe with an overlap of some study centers
• SUNFISH and the olesoxime study were both conducted in the same controlled

clinical setting. The olesoxime study was placebo controlled which provided a
robust control arm

• Investigators from SUNFISH and the NatHis-SMA study were trained in the
same way with regard to the MFM scale application, hence the assessment was
considered similar

• The first year of follow-up in the NatHis-SMA study occurred just before study
enrolment started for SUNFISH, hence patients had similar standards of care and
calendar time bias (a bias associated with patients treated in the past progressing
differently than those treated today due to changes in standard of care over time)
was likely small.

Endpoint Used for Comparison with External Control Analysis

Although patient motor function was measured using the MFM in all three studies,
the scale was not administered in the same way. In SUNFISH, all patients completed
all 32 items (MFM32), whereas in the NatHis-SMA and olesoxime studies, patients
aged less than 6 years completed 20 items (MFM20) while patients aged 6 years
or older completed all 32 items. MFM total score was chosen to compare motor
function between SUNFISH and the external comparator group. MFM total score
was derived from the MFM20 total score for all patients aged less than 6 years
and from the MFM32 total score for all patients aged 6 years or older. Both scales
were transformed to 0–100%. Missing items on the MFM scale were recorded as 0
(i.e., cannot initiate) prior to calculation of total score. Only patients with an MFM
assessment at baseline and at least one post-baseline assessment at Month 12 or
Month 24 were included in the analysis.
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3.1.2 Statistical Methodology

Patients in the external comparator group were weighted using Inverse Probability
of Treatment Weighting based upon pre-selected prognostic factors at baseline: age
at enrolment; SMA type; SMN2 copy number; ambulatory status; presence of scolio-
sis; MFM total score at baseline; and MFM scale used. This allowed a comparison
of the treated and untreated groups with similar prognostic factors. A propensity
score was estimated for each patient using logistic regression incorporating the
pre-selected prognostic factors of treatment assignment (risdiplam vs no risdiplam)
as independent variables. Patients with missing prognostic factors were excluded.
Trimming, defined as removing extreme values and outliers [27], was applied to
include only patients with an overlapping distribution of propensity scores. Inverse
Probability of Treatment Weighting (IPTW) was applied to the propensity scores
to derive weights only for the external comparator group based on the average
effect for treated patients approach. The IPTW approach was chosen because it
was considered to be an efficient approach where patients with unknown or missing
prognostic factors were not included in the weighting procedure. A weight of 1
was given to each of the patients in the risdiplam-treated group and a weight of
pj/(1 − pj) was given to the jth patient in the untreated external comparator group,
where pj was the propensity score of the jth patient. In other words, the IPTW was
applied to the propensity scores to derive weights only for the external control group
based on the average effect for the treated patients (ATT) approach. To control
for too much influence of patients with very low propensity scores, weights were
truncated at the 99th percentile. The truncation was applied after trimming. The
variance balance between the treated and untreated groups was assessed pre- and
post-weighting. The standardized mean difference (SMD) was computed for each
of the covariates to assess if adequate balance had been achieved between the treated
and the untreated groups. Adequate balance was assumed if all SMDs were less than
0.25 [28].

The statistical analysis was performed after weighting was applied. Change
from baseline in MFM total score was analyzed using a mixed model for repeated
measures (MMRM) with treatment; time; time by treatment; MFM total score at
baseline by time; and the prognostic factors (age at enrolment; SMA type; SMN2
copy number; ambulatory status; presence of scoliosis; MFM total score at baseline;
and MFM scale used) as covariates. Estimated treatment differences in least squares
mean change from baseline between patients treated with risdiplam in SUNFISH
Part 1, and the external comparator were calculated with corresponding 95% CIs
and p-values. The proportions of patients demonstrating improvement (≥3-points
change from baseline in MFM total score) were analyzed via logistic regression. In
the responder analyses, only patients with an MFM total score at baseline and the
post-baseline time point (Month 12 or Month 24) of interest were included in the
analysis. Supplemental analyses were performed on each of the external comparator
data sources separately.



400 T. McIver et al.

3.2 Results

After excluding patients with missing information on selected prognostic factors
and trimming, 48 patients from the risdiplam arm of SUNFISH Part 1 and 109
patients from the external comparator group who had a valid MFM total score at
baseline and Month 12 or Month 24 were included in this analysis. In particular,
with the trimming, two treated patients from SUNFISH Part 1 were excluded due
to extreme weights (i.e., the prognostic profile of these two patients was not similar
to those in the external control group) and no patients from the external control
group were excluded. In addition, no patients from either group were excluded due
to truncation. After weighting was applied, weights were summed to generate an
external comparator group of 49.3. All patients from SUNFISH Part 1 were given
a weight of 1, to give a sum of weights of 48.0. The balance between the treated
and untreated groups in terms of their baseline prognostic factors profile (covariate
balance) was assessed using the SMDs. The SMDs are presented in Fig. 4 for each
of the covariates prior to and after weighting.

Prior to weighting (for “All” and “Region”), except for the MFM total score, all
covariates had already achieved balance between the treated patients in SUNFISH
Part 1 and the untreated patients in the external comparator group, with their
corresponding SMD values lying within the range of −0.25 to +0.25. After
weighting (ATT weighted region), variance balance of each covariate was achieved

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
ATT Weighted Region All Region

Age

MFM total score

SMA type

Ambulatory status

Scoliosis

SMN2 copy number

MFM scale

Logit of the
propensity score

Lower cutoff Upper cutoff

Fig. 4 Results of the covariate balance assessment (standardized mean difference values) of
SUNFISH Part 1 compared with an external comparator group. “All” means based on the
population from the external comparator group, “Region” means based on the patients included
in the analysis and “ATT weighted region” means based on the patients after weighting. ATT
average effect for treated patients, MFM motor function measure, SMA spinal muscular atrophy,
SMN2 survival of motor neuron 2
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Table 5 Summary of baseline characteristics in SUNFISH part 1 compared with an external
comparator group before and after weighting

Before weighting After weighting

Risdiplam
(N = 48)

External
comparator
(N = 109)

Risdiplam
(wN = 48.0)

External
comparator
(wN = 49.3)

Age at enrolment
(years)
mean (SD)
median (range)

9.3 (6.1)
7 (2–24)

10.5 (6.8)
8 (2–28)

9.3 (6.1)
7.0 (2–24)

9.4 (6.3)
7.0 (2–28)

Age group
(years), n (%)
2–5
6–11
12–18
>18

17 (35.4)
13 (27.1)
14 (29.2)
4 (8.3)

37 (33.9)
27 (24.8)
28 (25.7)
17 (15.6)

17.0 (35.4)
13.0 (27.1)
14.0 (29.2)
4.0 (8.3)

16.9 (34.3)
16.3 (33.2)
11.5 (23.3)
4.5 (9.1)

SMA type, n (%)
Type 2
Type 3 (ambulant)
Type 3 (non-amb.)

35 (72.9)
7 (14.6)
6 (12.5)

70 (64.2)
17 (15.6)
22 (20.2)

35.0 (72.9)
7.0 (14.6)
6.0 (12.5)

35.5 (72.0)
6.9 (14.1)
6.9 (13.9)

SMN2 copy
number, n (%)
3
4

44 (91.7)
4 (8.3)

97 (89.0)
12 (11.0)

44.0 (91.7)
4.0 (8.3)

45.5 (92.3)
3.8 (7.7)

MFM total score,
mean (SD)
MFM20

MFM32

(n = 17)
53.9 (13.6)
(n = 31)
44.4 (15.4)

(n = 37)
57.1 (16.0)
(n = 72)
50.2 (18.0)

(n = 17.0)
53.9 (13.6)
(n = 31.0)
44.4 (15.4)

(n = 16.9)
55.3 (17.2)
(n = 32.4)
43.8 (17.8)

Scoliosis, n (%) 27 (56.3) 68 (62.4) 27.0 (56.3) 29.9 (60.6)

MFM Motor Function Measure, MFM20 20-item MFM, MFM32 32-item MFM, SD standard
deviation, SMA spinal muscular atrophy, SMN2 survival of motor neuron 2, wN number of patients
after weighting, non-amb non-ambulant

with all SMDs close to 0 and lying within the −0.25 to +0.25 boundaries. Summary
results for the baseline characteristics before and after weighting are shown in
Table 5. After weighting, the baseline characteristics became more similar and
more comparable between SUNFISH Part 1 and the external comparator group.
For example, the mean age in the external comparator group was 10.5 years before
weighting and 9.4 years after weighting, compared with 9.3 years in the SUNFISH
Part 1 treated group. The proportion of patients in each age group also became more
balanced between the two groups after weighting.

For the MMRM analysis, patients with a baseline and at least one post-baseline
result at Month 12 or at Month 24 were included. In SUNFISH Part 1, all 48 patients
had a result at baseline, Month 12 and Month 24. For the external comparator group,
109 patients had a result at baseline and at Month 12, and 79 patients had a result at
Month 24. Under the MMRM analysis, for those with a result at Month 12 but not at
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Table 6 Mean (LS Mean) change in motor function (as measured using the MFM) at month 12
and month 24 in patients with type 2 or 3 SMA in SUNFISH part 1 compared with an external
comparator group

Risdiplam External comparator
MFM-derived total score (weighted N = 48.0) (weighted N = 49.3)

Month 12

Baseline, mean total score (SD) 47.8 (15.35) 47.8 (18.26)
Change from baseline at Month 12,

mean (95% CI) 2.12 (0.61–3.62) −0.56 (−2.08–0.95)
Difference from external comparator,

LS mean (95% CI) 2.68 (1.44–3.93)

p-value p < 0.0001
Month 24

Change from baseline at Month 24,

mean (95% CI) 1.99 (0.33–3.66) −2.00 (−3.73 to 0.27)
Difference from external comparator,

LS mean (95% CI) 3.99 (2.34–5.65)

p-value p < 0.0001

Source: Mercuri et al. [22]
Data analyzed using an MMRM. The statistical model included treatment group (treated and
untreated); age at enrolment; SMA type; SMN2 copy number; ambulatory status; scoliosis; MFM
scale; MFM total score at baseline; time; treatment group*time interaction; and MFM total score
at baseline*time interaction
CI confidence interval, LS least squares (a standard method for fitting a curve to a set of
points),MFM Motor Function Measure,MMRM mixed model for repeated measures, SD standard
deviation

Month 24, their missing results were assumed as missing at random, i.e., those with
missing results behaved similarly to other patients with a similar covariate profile
in the same treatment group. As shown in Table 6, at Month 12, the change from
baseline in MFM total score was greater in the risdiplam group compared with the
external comparator group, and this difference continued to increase at Month 24.
The improvement in motor function in patients who received risdiplam treatment
compared with the external comparator group was both clinically meaningful and
highly statistically significant.

Figure 5 shows that risdiplam treatment in SUNFISH Part 1 led to an increase
in mean MFM total score from baseline over 24 months, which was significantly
different from the progressive decline observed in the untreated external comparator
group [22].

After both 12 and 24 months of treatment, a significantly higher proportion of
patients treated with risdiplam showed improvement (≥3-point change) in MFM
total score compared with the untreated external comparator group (Fig. 6).

These results provided evidence of longer term efficacy of risdiplam in a broad
population of patients with type 2 and 3 SMA compared with untreated patients.
Supplemental analysis results from the weighted analysis comparing SUNFISH Part
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1 with each of the two external comparator sources were generally in agreement with
the above results, supporting the robustness of the conclusions. This retrospective
weighted analysis comparing patients with type 2 and 3 SMA from SUNFISH Part 1
with two external comparator sources, the NatHis-SMA study and the placebo arm
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of the olesoxime study, helped to further understand the benefits of risdiplam. In
summary, the improvement in motor function with risdiplam treatment in SUNFISH
Part 1 was markedly different from the untreated external comparator groups, where
the expected decline in function inherent to this progressive disease was observed.
The difference observed at Month 12 continued to increase at Month 24, supporting
and confirming the benefits of prolonged exposure to risdiplam. This analysis also
complements recent results from the placebo-controlled Part 2 of the SUNFISH
study, in which the primary endpoint of the change from baseline in MFM32 total
score at Month 12 was met. At month 12, the least squares mean (95% CI) change
from baseline in MFM32 was 1.36 (0.61–2.11) in the risdiplam group and −0.19
(−1.22–0.84) in the placebo group, with a treatment difference of 1.55 (0.30–2.81,
p = 0.016) in favor of risdiplam [29].

4 Discussion

The use of RWD and comparisons with external controls are a rapidly evolving area.
In this section, we summarize the benefits of using RWD, especially in a rare disease
setting. We also discuss some of the challenges we faced and lessons learned.

4.1 Benefits of Using RWD

The use of RWD was critical in clinical development planning, contextualizing
the results and providing substantial evidence of efficacy of a disease-modifying
therapy in a rare disease setting. Randomized, double-blind, placebo-controlled (or
active controlled if standard of care exists) clinical trials are the gold standard.
Randomization avoids systematic differences between groups with respect to known
or unknown baseline variables that could affect outcomes. Blinding minimizes
the bias due to subject and investigator expectations, and a placebo arm provides
internal evidence of assay sensitivity. However, placebo-controlled trials with
blinding are not always feasible or appropriate. When an effective therapy that
is known to prevent death or irreversible morbidity exists for a particular patient
population that population cannot usually be ethically studied in placebo-controlled
trials; the particular conditions and populations for which this is true may be
controversial (ICH E10 [30]).

Given the severity, rapid decline, and high mortality and morbidity in infants
with type 1 SMA described in natural history, a comparator placebo group was
not included in the FIREFISH study. In addition, in 2016 when the study started,
there were no approved disease-modifying therapies for SMA, which precluded an
active comparator arm. In the absence of a control arm, comparisons with external
comparators or available natural history data are a valid approach in the development
of new treatments for serious and rare diseases. Such comparisons are possible if
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the natural history of the disease course is well understood, the external comparator
group is similar to the treatment group (e.g., with regard to patient characteristics
and endpoints), and a large treatment effect is expected to be seen with the study
drug. In our case studies, the external comparators were carefully selected based on
rigorous criteria described earlier.

RWD were also important in determining the anticipated treatment effect for
the primary endpoint (MFM32) in the SUNFISH study as natural history data
demonstrated that patients with type 2 and 3 SMA had a decline in motor function
over time. In addition to clinical development planning, RWD were important in
contextualizing study results for both FIREFISH and SUNFISH.

In FIREFISH, RWD from publications were used to define the performance
criteria and benchmarks for success. Infants in FIREFISH attained motor milestones
such as sitting without support that would never be achieved in infants with type
1 SMA without treatment. Infants in FIREFISH also achieved improved rates of
event-free survival compared with those observed in natural history studies. These
results confirmed that the disease course with risdiplam treatment substantially
diverged from the natural history of the disease [11]. Infants treated with risdiplam
also continued to benefit beyond Year 1. After 3 years of treatment in the FIREFISH
study, event-free survival time was greatly improved compared with natural history
[31].

In SUNFISH, the improvement in motor function with risdiplam treatment
was markedly different from the untreated external comparator group, where the
expected progressive decline in function inherent to SMA was observed. The
comparison of SUNFISH data (Part 1 and later Part 2) with RWD also confirmed the
longer term benefit of risdiplam over 24 months [32]. This was important because
the placebo-controlled period in SUNFISH Part 2 was only for 1 year. RWD were
used to provide substantial evidence of the efficacy of risdiplam, which was used
to support registration and approval of risdiplam in different countries around the
world.

The use of RWD for type 1 SMA was pivotal for regulatory decisions. The
FDA stated, “ . . . the study [FIREFISH] showed improvements in multiple clinical
functional measures compared to the natural history of SMA, including motor
function and developmental milestones as well as survival and ventilation free
survival.” The RWD used to contextualize the FIREFISH study results were
included in the US prescribing information, “Of the patients who were treated with
the recommended dosage of EVRYSDI 0.2mg/kg/day, 41% (7/17) were able to
sit independently for ≥5 s (BSID-III, item 22). These results indicate a clinically
meaningful deviation from the natural history of untreated infantile-onset [type 1]
SMA. As described in the natural history of untreated infantile-onset SMA, patients
would not be expected to attain the ability to sit independently, and no more than
25% of these patients would be expected to survive without permanent ventilation
beyond 14 months of age.” (EVRYSDI® prescribing information [21]).

The use of RWD for type 2 and 3 SMA was supplemental for regulatory
decisions. In order to accelerate the regulatory review and approval timelines in
the United States, the exploratory dose-finding SUNFISH Part 1 motor function
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results were compared with RWD to contextualize the study results before the
confirmatory SUNFISH Part 2 placebo-controlled results were available. The RWD
used to contextualize the results in patients with type 2 and 3 SMA showed clear
divergence between patients treated with risdiplam and untreated patients from
natural history. The use of RWD also accelerated the filing and approval timelines
for risdiplam, which was crucial given the high unmet need and the severe nature of
the disease. Approval in the United States was expedited by at least 7 months.

4.2 Challenges

The role of RWD in providing substantial evidence of efficacy was different across
regulatory regions. All regions accepted RWD as the benchmark for success for type
1 SMA. However, for patients with type 2 and 3 SMA, the acceptance of RWD
as substantial evidence of efficacy differed across regions. In the United States,
the FDA accepted an early filing based on FIREFISH Part 1 and SUNFISH Part
1, supplemented with placebo-controlled data from SUNFISH Part 2 during the
review. Approval by the FDA was granted in August 2020. In contrast, in Europe,
the EMA requested all data from SUNFISH Part 1 and Part 2 at the time of filing.
Approval by the EMA was granted in March 2021. To overcome this challenge, a
flexible filing strategy was implemented across regions.

At the time of our submission to the FDA in 2019, the recent fit-for-purpose
framework for RWD to support regulatory decision making was not in place.
Statistical considerations for fit-for-use RWD to support regulatory decision making
in drug development can be found in a recent publication [33].

The requirement to provide individual patient-level data also varied across
regions. The FDA required all individual patient data in Clinical Data Interchange
Standards Consortium (CDISC) format including RWD, whereas the EMA did
not. In order to file in the United States, the legacy data from the NatHis-SMA
study were converted to CDISC standards for submission to the FDA. A good
understanding of CDISC standards and regulatory requirements, technical skills,
and upfront planning for this activity were critical to avoid a delay in submission
timelines.

Although every effort was made to derive the performance criteria from infants
who were as similar as possible to the FIREFISH study population, there were
some limitations and challenges associated with this approach. These included
potential differences in patient characteristics between the historical cohorts and
study population; the limited number of studies available for some endpoints or
small sample sizes of the historical cohorts; and studies being conducted in a limited
number of countries or sites. For some endpoints, a performance criterion could not
be derived as no suitable natural history studies were available. The results observed
for motor function and motor milestone endpoints were consistent across natural
history studies, but for other endpoints such as event-free survival, the results were
more variable. These endpoints are more dependent on individual clinician practice
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and caregiver preferences, in particular pulmonary and nutritional intervention
strategies, and so may vary across countries and sites. Different definitions of
permanent ventilation were also used in each study, including differences in the
number of hours of ventilation per day, the number of consecutive days with
this level of respiratory support, and the type of respiratory support provided.
Despite these limitations, it should be noted that standard of care guidelines were
considered during the selection of study sites, and the FIREFISH results were
clearly differentiated from the natural course of type 1 SMA described in the
literature.

Subtle differences in definitions of endpoints were also challenging for the SUN-
FISH and external comparator comparison. For example, MFM was administered
differently across studies depending on a patient’s age. To overcome this issue, an
MFM total score was derived using either the MFM32 or MFM20 items depending
on the patient’s age. Missing data were also a challenge, with more missing data
in the external comparator data sources. For example, for those included in the
analysis, in the external comparator group, 73% of patients (i.e., 79 out of 109
patients) completed the Month 24 assessment, while in SUNFISH, all patients (i.e.,
all 48 patients included in the analysis) completed the Month 24 assessment. To deal
with this, sensitivity analyses were performed to assess the robustness of the results
using different methods for dealing with missing data.

4.3 Lessons Learned

The risdiplam clinical development program highlighted a number of key planning
considerations that can be applied to other drug development programs in which
RWD may play an important role, as follows:

1. Incorporate RWD into the Clinical Development Plan

We engaged with regulators early and pushed regulatory boundaries with robust
arguments. The FDA eventually accepted a single-arm design for FIREFISH despite
a preference for a placebo-controlled study. The overall study designs and choice of
endpoints for both FIREFISH and SUNFISH incorporated Health Authority advice
from both the EMA CHMP and the FDA. We pre-planned the statistical analysis
for the confirmatory parts, documented this in a statistical analysis plan, shared the
statistical analysis plan with Health Authorities, and asked for feedback in advance
of filing.

Collaborating with healthcare providers and Patient Advisory Groups (PAGs)
was also important to the success of the program. In particular, PAGs were actively
involved in designing the NatHis-SMA study, advising on the interpretation of
the clinical study results from both FIREFISH and SUNFISH, and validating
the meaningfulness of the results from both a patient and caregiver perspective.
This feedback was further supported by data collected by PAGs (e.g., a treatment
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expectation survey conducted by SMA Europe [34]), which were incorporated into
our regulatory dossiers to further contextualize our data.

2. Take Steps to Reduce Bias When Using RWD

We selected data sources that reflected considerations from ICH E10 to minimize
bias when using external controls [30], including selecting a control population as
similar as possible to the study population and selecting more than one external
control. In FIREFISH, the identified RWD studies were documented and ranked
based on the level of similarity of the patient population to the expected population
in the FIREFISH study. The endpoints were also robust and objectively measured.

In SUNFISH, two independent studies, the NatHis-SMA study and olesoxime
study, were selected based on their similarities to SUNFISH, such as the same effi-
cacy outcome measure (change in MFM total score) and similar patient population
(type 2 and 3 SMA and age range). In addition, some of the study centers collecting
the external comparator data also enrolled patients in SUNFISH, and the first year of
follow-up in the NatHis-SMA study occurred just before trial enrolment started for
SUNFISH. These common features mitigated potential biases relating to different
endpoint bias; selection bias; regional bias; different standards of care; and calendar
time bias. The RWD in the external comparator group were weighted based on
key prognostic factors to ensure the populations were as similar as possible. The
important prognostic factors that were used to perform the weighting were defined
a priori and described in the statistical analysis plan. It was also important to ensure
that these data were available. For example, if severity of scoliosis was an important
prognostic factor and was not collected in the RWD, it could not be used for the
calculation of propensity scores.

It is also recommended to perform sensitivity analyses. For SUNFISH, the
comparison was performed on the pooled external comparator data and separately
for each study to support the robustness of the conclusions. A compilation of the
different sources of biases from various types of external controls, such as those
used in this chapter, and the potential mitigation steps can be found in a recent
publication [35].

5 Conclusion

Risdiplam has now been approved in more than 90 countries worldwide, including
the United States and the EU for the treatment of SMA in a broad patient population.
In this case study, the use of RWD was pivotal in clinical development planning,
contextualizing the results and providing substantial evidence of the efficacy of
risdiplam, a disease-modifying therapy in a rare disease setting.

The results from the comparison of SMA patients treated with risdiplam from
both the FIREFISH and SUNFISH studies versus RWD clearly diverged from the
natural history of the disease and were clinically meaningful.
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RWD were also critical in our filing strategy and led to significantly reduced
approval timelines in the United States in a rare disease setting with a high unmet
medical need. RWD were more widely accepted for objective endpoints with well-
defined natural history (e.g., motor milestones and survival).
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