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Preface

The organic and evolving nature of real-world data (RWD) and real-world evidence
(RWE) responding to the fit-for-purpose requirements for expanding applications of
RWE to address payers, patients, physicians’ need along with supporting regulatory
decisions is a defining characteristic of this arena. Randomized controlled clinical
trials (RCTs) have been the gold standard for the evaluation of efficacy and safety
of medical interventions. However, the costs, duration, practicality, and limited
generalizability have incentivized many to look for alternative ways to optimize it
and address unique real-world research questions. In recent years, we have seen
an increasing usage of RWD and RWE in clinical development and life-cycle
management. The major impetus behind the interest in the use of RWE is the
increased efficiency in drug development, resulting in savings of cost and time,
ultimately getting drugs to patients sooner.

However, even with the encouragement from regulators and available guidance
and literature on the use of RWD and RWE in recent years, many challenges
remain. This book attempts to address these challenges by providing an end-to-end
guidance including strategic considerations, state-of-the-art statistical methodology
reviews, organization and infrastructure considerations, logistic challenges, and
practical use cases. The target audience is anyone involved, or with an interest, in
the use of RWE in their research for drug development and healthcare decision-
making. In particular, it includes statisticians, clinicians, pharmacometricians,
clinical operation specialists, regulators, and decision makers working in academic
or contract research organizations, government, and industry. Our goal for this book
is to provide, to the extent possible, a balanced and comprehensive coverage of key
considerations and methodologies for the uptake of RWE in drug development. This
book includes the following four parts:

e Part I: Real-World Data and Evidence to Accelerate Medical Product Develop-
ment

e Part II: Fit-for-use RWD Assessment and Data Standards

e Part III: Causal Inference Framework and Methodologies in RWE Research

* Part IV: Application and Case Studies



vi Preface

Part I consists of three chapters. Chapter “The Need for Real-World Evidence in
Medical Product Development and Future Directions” provides introduction and
background on the need for RWE and RWD in clinical development and life-
cycle management along with future directions. Chapter “Overview of the Current
Real-World Evidence Regulatory Landscape” reviews existing guidance documents
and precedents related to RWE by major regulatory agencies across the world.
It also outlines the key concepts underpinning evaluation of RWE and discusses
similarities and differences in those concepts in guidance documents from different
countries. When we talk about fit-for-purpose use of RWE, it is very important to
conceptualize right research questions that are clear and feasible to address. Chapter
“Key Considerations in Forming Research Questions and Conducting Research in
Real-World Setting” discusses key considerations in forming research questions.

Part II consists of four chapters. Chapter “Assessment of Fit-for-Use Real-World
Data Sources and Applications” provides valuable information to guide practitioners
on how to assess fit-for-use RWD sources via a framework and an example. As RWD
sources may contain key data elements in different places, chapter “Key Variables
Ascertainment and Validation in RW Setting” presents advanced analytics on how
to ascertain key variables such as disease status, exposure, or outcomes. Chapter
“Data Standards and Platform Interoperability” examines the role of health data
and interoperability standards, their harmonization, and role within data platforms
internationally as we see more utilization of platforms to interact with RWD for
RWE generation, from a regulatory science and Health Technology Assessment
(HTA) perspective. Often, one RWD source may not be sufficient to answer a
research question, and multiple RWD sources may need to be linked to enrich the
data and address the right research question. Chapter “Privacy-Preserving Record
Linkage for Real-World Data” discusses several aspects behind Privacy-Preserving
Record Linkage, including data pre-processing, privacy protection, linkage, and
performance evaluation.

Part III contains ten chapters. This part covers state-of-art statistical method-
ologies in causal inference with targeted learning in chapter “Causal Inference
with Targeted Learning for Producing and Evaluating Real-World Evidence”,
use of Estimand framework based on ICH E9 (R1) in RW setting along with
examples in chapter “Estimand in Real-World Evidence Study: From Frameworks
to Application”, clinical studies leveraging RWD using propensity score-based
methods in chapter “Clinical Studies Leveraging Real-World Data Using Propensity
Score-based Methods”, recent statistical development for comparative effectiveness
research beyond propensity-score methods in chapter “Recent Statistical Develop-
ment for Comparative Effectiveness Research Beyond Propensity-Score Methods”,
innovative hybrid designs and analytical approaches leveraging RWD and Clinical
Trial data in chapter “Innovative Hybrid Designs and Analytical Approaches Lever-
aging Real-World Data and Clinical Trial Data”, statistical challenges for causal
inference using time-to-event RWD in chapter “Statistical Challenges for Causal
Inference Using Time-to-Event Real-World Data”, sensitivity analyses for unmea-
sured confounding in chapter “Sensitivity Analyses for Unmeasured Confounding:
This Is the Way”, sensitivity analysis in the analysis of RWD when underlaying
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Preface vii

assumptions addressing a research question are not met in chapter “Sensitivity
Analysis in the Analysis of Real-World Data”, personalized medicine with advance
analytics in chapter “Personalized Medicine with Advanced Analytics”, and use
of RWE in HTA submissions in chapter “Use of Real-World Evidence in Health
Technology Assessment Submissions”.

Part IV contains three chapters. To promote uptake of RWE usage, practical
examples will show the way. Chapter “Examples of Applying Causal-Inference
Roadmap to Real-World Studies” demonstrates the application of causal-inference
roadmap to RW studies via examples. Chapter “Applications Using Real-World
Evidence to Accelerate Medical Product Development” presents six application
examples where the regulatory contexts are summarized, whether the use of
RWE/RWD is pivotal or supplemental for the regulatory decisions, assessment of
regulatory quality data sources, statistical methods employed, settings where the
approvals were obtained or denied, and any regulatory opinions for the submission
and regulatory decision. Finally, chapter “The Use of Real-World Data to Support
the Assessment of the Benefit and Risk of a Medicine to Treat Spinal Muscular
Atrophy” details a case study where RWD is used to support the assessment of the
benefit and risk of a medicine to treat spinal muscular atrophy.

We would like to express our sincerest gratitude to all the contributors who made
this book possible. They are the leading experts in the use of RWE and RWD from
industry, regulatory, and academia. Their in-depth discussions, thought-provoking
considerations, deep knowledge in the field, and innovative approaches based on
a wealth of experience make this book unique and valuable for a wide range of
audiences. We are indebted to Donna Chernyk of Springer Nature for providing us
with the opportunity for publication. Our immense thanks also go out to our families
for their unfailing support and understanding of the many nights and weekends that
we spent working on this book. Finally, the views expressed in this book are those
of the authors and not necessarily reflective of the positions, policies, or practices of
the authors’ respective organizations.

Westfield, NJ, USA Weili He, PhD
Lincolnshire, IL, USA Yixin Fang, PhD
Vernon Hills, IL, USA Hongwei Wang, PhD
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Accelerate Medical Product Development



The Need for Real-World Evidence )
in Medical Product Development Qe
and Future Directions

Weili He, Yixin Fang, Hongwei Wang, and Charles Lee

1 Introduction

Randomized controlled clinical trials (RCTs) have been the gold standard for the
evaluation of efficacy and safety of medical interventions. However, the costs,
duration, practicality, and limited generalizability have incentivized many to look
for alternative ways to optimize it. In recent years, we have seen an increasing usage
of real-world data (RWD) and real-world evidence (RWE) in clinical development
and life-cycle management. Especially encouraged by legislations and guidance
released by regulators and special interest groups in recent years, sponsors have
been actively seeking guidance and application use cases. In 2016, the twenty-first
Century Cures Act was signed into law [1]. It is designed to help accelerate medical
product development and bring new innovations and advances to patients who need
them faster and more efficiently. The Food and Drug Administration (FDA) PDUFA
(Prescription Drug User Fee Act) VI, released in 2017 for fiscal years 2018-2022,
enhances FDA’s ability to consider the possibilities of using “real world” (RW) data
as an important tool in evaluating drug safety and efficacy [2].

In December 2018, FDA released an FDA’s RWE Framework (henceforth called
Framework) [3]. The Framework defines RWD as “data relating to patient health
status and/or the delivery of health care routinely collected from a variety of
sources,” and RWE as “the clinical evidence about the usage and potential benefits
or risks of a medical product derived from analysis of RWD.” Examples of RWD in
the Framework include data derived from electronic health records (EHR), medical
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claims and billing data, data from product and disease registries, patient-generated
data and data from other sources, such as mobile devices. The Framework further
indicates that RWD sources can be used for data collection and to develop analysis
infrastructure to support many types of study designs to develop RWE, including,
but not limited to, randomized trials (e.g., large simple trials, pragmatic clinical
trials) and observational studies (prospective or retrospective).

More recently, the PDUFA VII Commitment letter for fiscal years 2023 through
2027 [4] provided further details on the FDA RWE program and indicated the
following key aspects:

(a) By no later than December 31, 2022, FDA will establish and communicate
publicly a pilot Advancing RWE Program.

(b) The Advancing RWE Program will include, but not be limited to, a list
of activities and components, some of which include (1) FDA will solicit
applications for RWE programs; (2) FDA will use structured review process
to evaluate and rank applications; (3) FDA will accept one to two eligible and
appropriate proposals each cycle, and several additional activities FDA will
convene following the solicitation and application.

(c) By no later than June 30, 2024, FDA will report aggregate and anonymized
information, on at least an annual basis and based on available sources (e.g.,
information provided by review divisions), describing RWE submissions to
CDER and CBER.

(d) By no later than December 31, 2025, FDA will convene a public workshop or
meeting to discuss RWE case studies with a particular focus on approaches for
generating RWE that can potentially meet regulatory requirements in support of
labeling for effectiveness.

(e) By no later than December 31, 2026, experience gained with the Advancing
RWE Program, as well as CDER’s and CBER’s RWE program in general, will
be used to update existing RWE-related guidance documents or generate new
draft guidance, as appropriate.

Chapter “Overview of Current RWE/RWD Landscape” provides more in-depth
information on the regulatory guidance documents in recent years in key regions
around the world. Further, there have also been increasing public and private
collaborations in RWE research. Examples include the International Society for
Pharmacoeconomics and Outcomes Research (ISPOR) and International Society
for Pharmaceutical Engineering (ISPE) special joint task force on “good practices
for RWD studies of treatment and/or comparative effectiveness (CER)” [5], and
“reporting to improve reproducibility and facilitate validity assessment for health-
care database studies” [6]. Launched in October 2013, the GetReal was a three-year
project of the Innovative Medicines Initiative, a Europe’s largest public-private
consortium consisting of pharmaceutical companies, academia, Health Technology
Assessment (HTA) agencies and regulators, patient organizations, and subject
matter experts (SMEs). The efforts resulted in numerous publications including
delivery of four work packages [7]. Within the statistical community in the United
States, the American Statistical Association (ASA) Biopharmaceutical Section
(BIOP) sponsored an RWE Scientific Working Group (SWG) that started in April
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2018. The primary goal of the group is to advance the understanding of the RWE
research in a precompetitive space, and the membership consists of members from
FDA, academia, and industry. The group has produced or submitted six peer-
reviewed publications:

e The Current Landscape in Biostatistics of the use of Real-World Data and
Evidence for Medical Product Development: General Considerations [8]

e The Current Landscape in Biostatistics of Real-World Data and Evidence:
Clinical Study Design and Analysis [9]

e The Current Landscape in Biostatistics of Real-World Data and Evidence:
Causal Inference Frameworks for Study Design and Analysis [10]

* Estimands — From Concepts to Applications in Real-World Setting [11]

 Statistical Consideration for Fit-For-Use Real-World Data to Support Regulatory
Decision Making in Drug Development [12]

e Examples of Applying Causal Inference Roadmap to RWE Clinical Studies [13]

With the encouragement from regulators and available guidance and literature
on the use of RWD and RWE in recent years, we have seen an increased uptake
of RWE in various stages of drug development. Figure 1, which is adapted from
the figure in [14], depicts the various uses in different stages of drug development
and their reliance on RWD in representative types of study design. Together with
guidance in the Framework on the usage of RWD, we summarize key usages of
RWD in clinical development and life-cycle management as follows, but the list is
by no means exhaustive:

¢ Generate hypothesis for testing in RCTs.
* Identify investigators who provide care for patients with the disease or condition
of interest, thereby selecting study sites with appropriate investigators.

Traditional RCT using RWD in planning
RWD used to assess enrollment criteria and feasibility

RWD used to support selection of trial sites

Selected outcomes identified using RWD

RCT in clinical practice settings o
RCT conducted using RWD and Pragmatic RCT

Nonrandomized, interventional study
Externally controlled trial —— RWE generation

Single-arm trial with external RWD control group

Increasing reliance on RWD

study

Observational study

<

e.g., cohort study, case-control study

Fig. 1 RWE spectrum
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» Assess disease prevalence and sub-population of patients identified by phenotype
or genotype, thus assisting with patient selection and enrollment.

* Assess the prevalence of concomitant medications for a disease, along with
prevalence of comorbidities of the disease.

e Evaluate biomarker prevalence and discover target for the development of
personalized medicine.

» Evaluate indication calibration by assessing unmet medical need and whether the
need is consistent across the targeted population.

¢ Identify outcome measures by ascertaining background event rate in a disease
and related population for incidence, duration, severity.

 Fulfil regulatory safety commitment, safety surveillance, and safety label update.

* Enroll patients at point of care and leverage existing RWD, such as EHR and
administrative claims, to retrieve historic information and long-term follow-up,
thereby employing a so-called hybrid study design to use both existing RWD and
prospectively collecting additional study information.

e Use RWD to build external control cohort for single-arm clinical studies or
augment concurrent control group of an RCT.

» Describe patient journey, treatment pattern, healthcare utilization to assess unmet
medical needs and disease burden and facilitate choice of comparator.

With the above delineation, the use of RWE could lead to support approval of new
molecular entities or biologics, accelerate or seek conditional approval, explore new
indication or new population, make changes to dosing administration, supplement
RCTs information for a regulatory submission, or provide complementary evidence
for comparative effectiveness and cost-effectiveness assessment for reimbursement
decisions in HTA.

For the rest of the chapter, in Sect. 2, we review the progress to date on the uptake
of RWE. Even with these recent progresses, challenges remain. We interpret these
challenges as opportunities for further research and development, as described in
Sect. 3. The final section provides discussions on future directions and concluding
remarks.

2 Where We Are Now with the Use of RWE and RWD

In the last few years, a great stride has been made in advancing the uptake of
RWE in drug development. The prevailing environment from regulators is that of
encouragement and guidance, along with concrete action plan, as shown by the
PDUFA VII Commitment letter for fiscal years 2023 through 2027 [4]. In this
section, we will discuss a few major advances as we observed in recent years,
focusing primarily on the advancement as described in this book. However, there
have been numerous literatures on RWE- or RWD-related publications, such as the
work by ASA BIOP RWE SWG, and guidance and publications by regulators and
interest groups. It should be noted that the discussion here is by no means thorough,
and any further gaps remain to be filled by further observations and research.
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2.1 Regulatory Advancement

In the regulatory arena, in rapid succession, FDA released four draft guidance in
late 2021 on RWD on assessment EHR, medical claims, and registry data to support
regulatory decisions in two guidance documents; data standard for regulatory
submission is also delineated in another guidance, along with considerations for
the use of RWD and RWE for drug and biologic products in the fourth draft
guidance. In October 2021, EMA adopted guideline on registry-base studies.
Chapter “Overview of Current RWE/RWD Landscape” provides a good coverage
of guidance documents related to RWE from the United States, Japan, China, and
the United Kingdom, and discussed similarities and differences between them. The
European Medicines Agency (EMA)’s RWE Vision is that, by 2025, the use of RWE
will have been enabled and the value will have been established across the spectrum
of regulatory use cases [15]. In 2022, EMA established a Coordination Centre for
the Data Analysis and Real World Interrogation Network (DARWIN EU®) [16].
DARWIN EU will deliver RWE from across Europe on diseases, populations, and
the uses and performance of medicines.

Health Authorities responsible for reimbursement and pricing reviews in HTA
submissions have also released draft guidance documents on the use of RWE for
HTA submissions. The National Institute for Health and Care Excellence (NICE),
the United Kingdom’s HTA body, released NICE RWE framework in June 2022
[17]. The key message is that RWD can improve our understanding of health and
social care delivery, patient health and experience, and the effects of interventions
on patient and system outcomes in routine settings. As described in NICE strategy
2021-2026 [18], NICE wanted to use RWD to resolve gaps in knowledge and drive
forward access to innovations for patients. In the rest of the world, French National
Authority for Health (HAS) released a guidance in June 2021 on RW studies for the
assessment of medicinal products and medical devices [19]. Further, due to limited
recommendations to support the appropriate use of RWE, a group of experts from
top European Union (EU) academic institutions and HTA bodies in eight countries
as part of the EU’s Horizon 2020 IMPACT-HTA program published a white paper
on the use of nonrandomized evidence to estimate treatment effects in HTA [20].
The key messages are:

* RWE must be relevant for the research question.

* They recommended strategies to study design and analysis.

* The white paper deemed transparency as essential.

* The paper also recommended strengthening infrastructure and investing in
resources to design, analyze, and interpret RWE.

Chapter “Use of Real-World Evidence in Health Technology Assessment Sub-
missions” of this book provides more details on the use of RWE in HTA submis-
sions. In summary, these various guidance documents all provided a similar message
on fit-for-purpose use of RWE and RWD.
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2.2 Advancement in Operational Considerations

Several chapters in this book covered operational considerations in implementation
in the use of RWE.

In the RW studies (RWS), key variables such as exposure, treatment, outcome,
disease status, or confounders may not be captured in one place, it is therefore
important to ascertain these key variables using advance analytics, such as machine
learning and nature language processing. Misclassification is also a concern,
requiring validations. Chapter “Key Variables Ascertainment and Validation in Real-
World Setting” of this book covers these topics and walks through an example study
for which the ascertainment of key variables was found to be acceptable from a
regulatory standpoint. Once the key variables are in place for an RWD source,
assessment of fit-for-use RWD sources is a critical step in the determination of
whether an RWD source could be used. Chapter “Assessment of Fit-for-Use Real-
World Data Sources and Applications” provides guiding principles in the fit-for-use
RWD assessment and illustrates assessment steps with an application. The authors
drill down into details on the factors to consider specific to a research question and
disease condition and provides sufficient details to allow practitioners to follow in
their applications.

The role of health data and interoperability standards is another important
element to consider in their harmonization, since lack of harmonization and
common data standards would impede the foundation for a vision to achieve
large-scale interoperability in supporting technical, methodological, and evidence
generation, based on emerging trends. Chapter “Data Standards and Platform
Interoperability” presents a discussion on the need for Findable, Accessible, Inter-
operable, and Reusable (FAIR) data, and the role data standards, in particular those
emerging as leading with regards to regulatory decision, and emerging platforms
for network, at-scale evidence generation, as unified visions for standards and
platforms. It is often of great interest to aggregate and link data from several RWD
sources to provide a more comprehensive longitudinal evaluation of treatments
from different aspects. Chapter “Privacy-Preserving Data Linkage for Real-World
Datasets” reviews privacy framework and different methods in linking data sources,
while focusing on patient privacy protection, data pre-processing, linkage, and
performance evaluations.

2.3 Advancement in Statistical Methodologies in Causal
Inference

Tremendous progress has been made not only in the methodologies of causal
inference but also in the applications of these methods in the uptake of RWE
generations. Chapter “Causal Inference with Targeted Learning for Producing and
Evaluating Real-World Evidence” summarizes a Target Learning roadmap as a
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systematic guide to navigate the study design and analysis challenges inherent in
real-world studies. ICH E9 (R1) Addendum [21] presents a structured framework to
strengthen the dialogue between disciplines involved in the formulation of clinical
trial objectives, design, conduct, analysis and interpretation, as well as between
sponsor and regulator regarding the treatment effect of interest that a clinical trial
should address. Further, the guidance indicates that “The principles outlined in this
addendum are relevant whenever a treatment effect is estimated or a hypothesis
related to a treatment effect is tested, whether related to efficacy or safety. While
the main focus is on randomized clinical trials, the principles are also applicable for
single-arm trials and observational studies.” Chapter “Framework and Examples of
Estimands in Real-World Studies” presents principles for the Estimand Framework
for use in RW setting, highlights similarities and differences between RCTs and
RWS, and provides a roadmap for choosing appropriate estimand for RWS.

Chapter “Clinical Studies Leveraging Real-World Data Using Propensity Score-
Based Methods” provides a comprehensive summary of propensity score-based
methods (PSM) to minimize confounding biases in clinical studies leveraging RWD
sources. Beyond PSM, chapter “Recent Statistical Development for Comparative
Effectiveness Research Beyond Propensity-Score Methods” presents recent sta-
tistical developments for comparative effectiveness research using methods, such
as G-methods. Chapter “Innovative Hybrid Designs and Analytical Approaches
leveraging Real-Word Data and Clinical Trial Data” showcases an innovative hybrid
design and analytical approaches leveraging RWD and clinical trial data, while
chapter “Statistical Challenges for Causal Inference Using Time-to-Event Real-
World Data” highlights statistical challenges for causal inference using time to event
RWD. As we know, the lack of randomization in RWD brings the potential for
bias into any comparisons between groups or interventions of interest. Commonly
used methods such as PSM can account only for confounding variables that are
included in the analysis database, but any confounders not contained in the database
are ‘unmeasured confounders’ and may result in a biased treatment effect estimate.
Chapter “Sensitivity Analyses for Unmeasured Confounding: This is the Way”
focuses on the challenging case of comparative analyses based on RWD and the
issue of unmeasured confounding. Further, ICH E9 (R1) discusses the importance
of sensitivity analysis [21]. Chapter “Sensitivity Analysis in the Analysis of Real-
World Data” guides readers on how to conduct sensitivity analysis to explore the
robustness of inference to deviations from the underlying assumptions.

The practice of modern medicine demands personalized medicine (PM) to
improve both quality of care and efficiency of the healthcare system. Chapter
“Personalized Medicine with Advanced Analytics” dives into the application of
advanced analytics in addressing PM research questions, while chapter “Use of
Real-World Evidence in Health Technology Assessment Submissions” covers the
utility and strengths of well-developed RWE in HTA decision-making in major
regions around the world.
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2.4 Advancement in Real Case Applications

The concept of causal inference framework and use of causal inference roadmap is
crucial in the use of RWD to generate robust RWE. Chapter “Examples of Applying
Causal-Inference Roadmap to Real-World Studies” describes a few examples of
applying causal inference roadmap to RWSs. Chapter “Applications Using Real-
World Evidence to Accelerate Medical Product Development” summarizes six case
studies that regulatory agencies considered in recent years in the use of RWE/RWD
for regulatory decisions. Some of these use cases succeeded in achieving positive
regulatory decisions, while a couple of others didn’t meet the principle of adequate
and well-controlled study for evidentiary standard. This chapter includes rich details
on the analysis of each case study. Finally, chapter “The Use of Real-World Data
to Support the Assessment of the Benefit and Risk of a Medicine to Treat Spinal
Muscular Atrophy” presents a detailed case study in Spinal muscular atrophy
(SMA) and describes how RWD from publications and individual patient data were
used to support the development of risdiplam, a medicine to treat SMA.

3 Opportunities for Further Advancement

3.1 Regulatory Context

With the release of numerous regulatory guidance documents in recent years from
regions around the world, there is a prevailing need to share more use cases.
Through use case studies, practitioners could understand better the regulatory
contexts, key regulatory review issues, whether the use of RWE/RWD is pivotal or
supplemental for the regulatory decisions, assessment of fit-for-use data sources,
statistical methods employed, and whether substantial evidence of effectiveness
as stated in Regulations 21CFR314.126 is met for a specific case study. With the
encouragement from the Framework and more emerging literature on the changing
landscape of regulatory approval processes and case examples as delineated in
chapters “Applications Using Real-World Evidence to Accelerate Medical Product
Development” and “The Use of Real-World Data to Support the Assessment of the
Benefit and Risk of a Medicine to Treat Spinal Muscular Atrophy”, we believe that
we will see more and more such use cases in the coming years. Further, through
a feedback loop between sponsors and regulators, existing RWE-related guidance
documents could be updated, or new draft guidance could be developed.
Considering the evolving and diverse regulatory frameworks across jurisdictions,
sponsors are encouraged to engage with regulatory agencies and other stakehold-
ers, ideally through joint scientific advice procedures, when applicable, such as
EMA/FDA parallel scientific advice [22]. Further, the use of RWE for regulatory
submissions and decisions is still relatively new. The FDA draft guidance on data
standards for drug and biologic products submissions containing RWD provide



 24871 4272 a 24871 4272 a
 

 23331 6939 a 23331 6939 a
 

 21801 14939 a 21801
14939 a
 

 2470 43137 a 2470 43137
a
 

 7074 44470 a 7074 44470
a
 

The Need for Real-World Evidence in Medical Product Development. . . 11

guidance on data standards and data mapping, along with the development of review
guide for such submissions [23]. It’s helpful for sponsors to gain further experience
in these areas and engage regulators for further advice as needed.

3.2 Clinical Context

Up until just a few years ago, RWE has been used primarily to perform post-
marketing surveillance to monitor drug safety and detect adverse events or in HTA
submissions to understand disease burden, drug effectiveness, or economic model-
ing. To expand the use to support clinical development and life-cycle management,
it is important to consider the clinical contexts regarding the clinical question of
interest and whether RWS that generate RWE are sufficient and robust enough for
the regulatory question at hand. We believe that RW studies should not be used as a
replacement for RCTs, since all the design precautions and/or statistical techniques
could still not overcome unquantifiable or poorly recorded data inherent with RWD.
However, if used appropriately, RWE could be used to support regulatory decisions
in certain situations.

The PRECIS-2 tool [24] is a refined tool of PRECIS (Pragmatic Explanatory
Continuum Indicator Summaries) that was intended to help trialists make design
decisions consistent with the intended purpose of their trial. PRECIS-2 tool contains
nine domains — eligibility criteria, recruitment, setting, organization, flexibility
(delivery), flexibility (adherence), follow-up, primary outcome, and primary anal-
ysis, scored from 1 (very explanatory) to 5 (very pragmatic). The authors argued
that although we often refer to trials as in ideal RCT setting or in RWS, there
is no simple threshold to separate the two concepts. Rather than a dichotomy,
there is a continuum between the two, by adjusting the factors in either design or
study conduct to make a trial more RCT or RWS. Undeniably, clinical context is
critically important in determining whether the aim is to answer the question, “Can
this intervention work under ideal considerations?” or “Does this intervention work
under usual conditions?” The internal and external validity and generalizability can
be inferenced from such considerations.

3.3 Study Design and Analysis Context

Chapter “Key Considerations in Forming Research Questions” reviews and iden-
tifies key elements of forming sound research questions in RWS. The PROTECT
criteria proposed in [25] is discussed in-depth in chapter “Key Considerations in
Forming Research Questions”. Further, the authors propose a roadmap for revising
a research question and/or element of the PROTECT criteria if a question cannot
be answered as framed. The authors’ way of setting up right research questions is
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quite innovative, as they use Estimand framework as “touchstone” to gauge whether
a question can be answered or not.

There has been a flurry of literature on the statistical methodologies in analyzing
RWD and translating data into robust RWE. Given that rich literature exists on
statistical methodologies to handle potential biases and confounding with the use of
RWD [9], methodologies are discussed in several chapters in Part III of this book.
We believe that it’s important for practitioners to understand these approaches, espe-
cially sensitivity analysis, to assess the robustness of the findings and apply them
appropriately in their RWE projects. We would also like to provide some cautions
in methodology development. While many RW study design and/or methodologies
have been proposed, some of them might be more of an intellectual interest with
less appeal for practical applications. Thus, focusing on those adaptations that
are practically feasible will result in the most successful implementations as the
research enterprise is collectively gaining experience with this new and evolving
field.

3.4 Data Context

Chapter “Assessment of Fit-for-Use Real-World Data Sources and Applications” of
this book provides guiding principles for assessing fit-for-use RWD sources in data
relevancy and reliability. The authors also illustrate the approach via a hypothetical
example. However, further research may still be needed since the actual assessment
is very much disease and research question-specific. Further, it may be a good idea
for sponsors to engage regulators for discussions on the data source, and rationale
and justification on the fit-for-use assessment. As EMA/HMA calls for in [16], it
is important to establish and expand catalogues of observational data sources for
use in medicines regulation, provide sources of high-quality, validated RWD on the
uses for safe and effective medicines, and address specific questions by carrying out
high-quality, non-interventional studies, including developing scientific protocols,
interrogating relevant data sources, and interpreting and reporting study results.
In terms of data sources, technological advancements in health technology and
digital wearable devices will become potential sources of RWD. The key to their
application in RWE is to ensure that the data generated is of high quality and fit for
purpose.

We believe that it will be ideal to establish an industry standard for how an RWD
source should be assessed and what criteria constitute a fit-for-use database.

3.5 Governance and Infrastructure Context

In addition to challenges as mentioned previously in this section, there are also
additional challenges from resource, logistic, operational, and organizational per-
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spectives. Utilization of RWD and RWE involves cross-functional expertise and
collaboration, so building these features into an organization’s processes, systems,
and culture is a prerequisite for uptake. An upfront investment in dedicated
resources may be needed, such as building or updating processes in clinical
development procedures, developing templates of brand development plans and
tools, and providing education on RWD sources and RWE methodologies. Change
management may be needed to overcome entrenched decision-making processes
that are skeptical about the use of RWE.

Especially, we recommend setting up governance to oversee the data acquisition
and usage; developing processes and procedures that facilitate the regulators’
requirements for transparency, pre-specification, consistency, reproducibility, and
compliance in RWE applications; understanding existing RWD sources and proper-
ties and data owner networks; developing data platform to facilitate data flow, data
harmonization from diverse sources, and connectivity for research use; and building
analytic platform with powerful computational capacity for big data processing
and re-usable analytic tools along with centralized coding library to define disease
cohorts, exposures, outcome measures, and confounders in a consistent manner.

4 Future Direction and Concluding Remarks

In the past 5 years, we have seen growing international interest among all healthcare
stakeholders regarding how to best approach the uptake of RWE and RWD
to revolutionize the drug development process. The robust legacy of scientific
groundwork as described in this book and regulatory guidance and other literature
in recent years has paved the way to the future. What will be the challenges and
opportunities for the uptake of RWE over the next 5 years?

In Sect. 3, we discuss opportunities for further advancement in the uptake
of RWE from different areas of focus. While the common elements for further
advancement have been identified, we expect that the next 5 years will see
refinement in the use of specific tools and techniques by regulators around the
world. Some agencies may focus on data quality and data platforms, while others
may explore novel approaches integrating different sources of RWD for use and
further refine guidance documents. Medicine development is a global endeavor.
Sponsors therefore will seek a consistent degree of process predictability across
target jurisdiction regulatory agencies, and this can come from the use of globally
acceptable, standardized, systematic approach to RWE, irrespective of the specific
tools and methodologies that each employ in support of its regulatory decisions.

As we have seen more and more collaborations across regions in the world,
such as EMA/FDA parallel scientific advice [22] and EUnetHTA21 [26] for an
effective and sustainable network for HTA across Europe, a structure process can
facilitate work sharing and the potential for joint reviews and improve information
sharing with industry partners and other stakeholders. These types of collaborations
could also provide a clearer understanding of rationales for different marketing and
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labeling decisions in different jurisdictions, such as clinical context and the practice
of medicine, and alignment of risk management plans. The next 5 years will also
see the growing uptake of RWE in regulatory decisions. Whether interacting with
regulatory or HTA agencies, establishing a dialogue with the stakeholders early
during medicine development can contribute to effective, ongoing communications
with a more consistent understanding and implementation of the expectations from
each stakeholder.

As RWE becomes the new information currency in healthcare, decision makers
will be challenged using these new types of data sources. Over the next 3—5 years for
some therapeutic areas, such as oncology or rare diseases, there may be a shift to the
use of integrating RWD into phase II or phase III clinical studies. As development
progresses, RWE will enhance the understanding of the product’s safety profile and
will be used to confirm clinical efficacy and RW effectiveness.

Of course, the use of RWE in drug development will not be without challenges.
Great progress has been made on the methodologies to assess the robustness
and uncertainty around factors that confound the interpretation of RWE. Further
refinement and new methodology development may be called for based on the
use cases. RWE collection will need to encompass a global view or, at the least,
focus on key markets and jurisdiction experiences. Building a federate model and
platform for data and analytic tools sharing may facilitate further leapfrogging
in the field. Building high quality RWD and making them widely available may
call for standardization of data, such as the use of common data model. Trans-
parency, pre-specification, consistency, documentation, and reproducibility will be
the cornerstone to which current and new facilitated regulatory pathways that are
designed to accelerate submissions, reviews, and patient access to medicines for
serious diseases where there is an unmet medical need will likely be accepted. These
new pathways, such as Breakthrough Therapy and Accelerated Approvals in the
United States, or Conditional Marketing Authorization in the European Union, may
increase the communications and level of commitment between the sponsors and
the agencies.

Finally, we want to emphasize that these opportunities to incorporate RWE in
drug development should be used with care. The last thing we want to do is to treat
opportunities offered haphazardly, which will result in rejected submissions and lead
to mistrust in the use. The latter will delay broad acceptance of properly designed
and executed studies and submissions incorporating RWE.
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Overview of the Current Real-World )
Evidence Regulatory Landscape Qe

Rima Izem, Ruthanna Davi, Jingyu Julia Luan, and Margaret Gamalo

1 Introduction

Understanding the regulatory landscape in real-world evidence (RWE) is strategi-
cally important in therapeutic development, as it can help better plan studies or
data collection to inform relevant regulatory questions and it can help with fair
communication of benefit-risk information relevant to patient, their doctors, and
the healthcare system [1, 2].

As we discuss in this chapter, RWE has the great potential to fill knowledge gaps
in the planning or in the life cycle of the development program of new therapies
to inform regulatory approval or payer decisions. While randomized controlled
trials are the gold standard for evaluating new medical treatments and providing
high quality internally valid evidence for judging medical product efficacy and
safety in a controlled setting, their use for all regulatory decision-making regarding
marketing and reimbursement has some limitations. Some research questions cannot
or generally are not answered with clinical trial data and real-world data (RWD)
may offer insights not otherwise possible. In addition, leveraging existing data
may increase efficiency in evidence generation and accelerate patient access to
safe and effective therapies. Statistical thinking can facilitate the leveraging of
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RWD, including data gathered as part of the delivery of health care, or other
existing external data such as registries or prior clinical trials, to generate actionable
evidence.

The guidance documents we summarize in Sect. 2 draw a balance between
leveraging RWD while keeping the standards high for regulatory decision-making.
The concept of “fitness-for-purpose” is therefore central to the regulatory theory
and practice, worldwide, around RWE. Demonstrating fitness-for-purpose starts
with a clearly stated purpose or the regulatory context for using RWD. These
include supporting a new indication, evaluating the benefit-risk in a novel subgroup,
revising the label, and more generally updating the benefit-risk profile. Then, one
needs to demonstrate that the data are of sufficient quality, reliability, and validity
and that the methodological approaches for using the data are of sufficient rigor.

In Sect. 3, we illustrate how the key concepts and principles outlined in the earlier
section have been applied in practice for different purposes with a few examples.
Each subsection focuses on a particular purpose, explains the underlying motivation,
and illustrates examples of use, data sources, and statistical methodology supporting
that use.

2 Key Concepts in Real-World Evidence Worldwide

This section will define some key concepts in the use of RWE in drug development
and discuss their similarities and differences worldwide.

We focus our source documents (Fig. 1) on those that use the terminology RWD
and RWE in drugs and biologic therapeutic development. Our sources include
important publicly available RWD/RWE guidance documents for drugs from the
United States Food and Drug Administration (FDA) [3—7], the European Medicines
Agency (EMA) [8, 9], the Medicines and Healthcare Products Regulatory Agency
(MHRA) in the United Kingdom [10, 11]. Our sources also include personal
communications relating to documents from the Japan Pharmaceutical and Medical
Device Agency (PMDA) and the Chinese Center for Drug Evaluation (CDE).

We acknowledge that while the regulatory framework of RWE has been recently
formalized worldwide, and the terminology or concepts are sometimes novel, the
use of RWD in a regulatory setting is long-standing. Thus, sources in Fig. 1 exclude
earlier guidance documents related to RWE. For example, regulators used adverse
events reporting systems for decades to evaluate post-market safety [12, 13]; they
used non-interventional studies to inform the risks of existing products and how
to mitigate them, and they used literature review or historical clinical trials to
contextualize treatment effects in single arm studies [14]. While these examples
will be discussed in the next section of this chapter, the guidance documents are not
used as source documents in this section.

There is no consensus international conference of harmonization (ICH) docu-
ment regarding RWE, but the guidance documents published by different countries
generally share a similar thinking and philosophy. The next subsections review the
key concepts, the similarities, and the differences worldwide.
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Fig. 1 Timeline of important guidance documents in five major health authorities. This figure
shows the main milestone in regulatory guidance documents across the world, with flags from left
to right representing the US-FDA, The European EMA, the Chinese CDE, the Japanese PMDA,
and the United Kingdom’s MHRA. Refer to text for discussion of specific documents

2.1 Sources of Real-World Data and Real-World Evidence

All guidance documents agree that RWE is the evidence generated from RWD.
While the definition of RWE is similar worldwide, the needs of different regulatory
bodies vary. In the United States, decisions are based on benefit and risk evaluations
of medical products, whereas in other parts of the world, they include reimbursement
decisions. Similarly, while the definition of RWD is generally similar worldwide,
there are differences in the existing data sources.

The definitions for RWD are broad worldwide. For example, the US FDA
2018 RWE Framework guidance states that “Real-World Data (RWD) are data
relating to patient health status and/or delivery of health care routinely collected
from a variety of sources.” While the PMDA 2021 guidance states that “RWD
are data on patient’s health conditions and/or provided medical practices routinely
collected from various data sources.” These definitions are broad because they
include prospective data collection in a registry or retrospective data collection in an
electronic healthcare database. They additionally include data from interventional
studies, such as randomized pragmatic studies, or data from non-interventional
observational studies such as prospective cohorts. Thus, the data could have been
collected with a primary intent to answer the research question, for primary use, or
the data could have been collected for other purposes than research, such as clinical
care or fee-for-service reimbursement and be a secondary use source. Finally, the
definitions are specific to the setting and type of information that is collected, but
not to the sample of patients or time frame in which the information is collected.

The sources of RWD can vary worldwide due to differences between countries or
healthcare infrastructures with regard to how routine care is provided and recorded.
For example, data from traditional Chinese medicine is a more readily available
source of RWD in China than in other countries. Similarly, some healthcare systems
in the United States or Germany are federated with no expectations of a single source
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having a full longitudinal picture for a particular patient. Other healthcare systems,
for example, in the Nordic countries or in the United Kingdom, are centralized with
many existing linkages and typically have good longitudinal data capture. Finally,
given the current advances in digital technology and broad use of various digital
devices in clinical care, the sources of RWD have been evolving and expanding.

The FDA requires submission of clinical data in marketing applications. That
requirement extends to RWD [7]. Although the document recognizes the challenges
involved in standardizing study data derived from RWD sources for inclusion
in applicable drug submissions, it emphasizes the importance of documenting
processes for managing RWD.

2.2 Regulatory Acceptability and Demonstrating
Fitness-for-Purpose

All documents indicate that evidentiary standards for approval will remain high and
require substantial evidence and adequate and well-controlled studies. Assessing
fitness-for-purpose is thereby ensuring that for a given purpose, the RWD and
the methods used to generate the evidence are relevant and adequate. The RWD
attributes relative to a purpose include the following: quality, reliability, relevance,
provenance, security, and protection of personal information. Thus, rather than the
one-size-fits all approach, the RWD attributes and the proposed methods, including
the design and analysis, are tailored to a particular purpose and the regulatory
evaluation is specific to that purpose. We refer the reader to chapter “Assessment of
Fit-For-Use Real-World Data Sources and Applications” in this book for definitions
and discussion of these attributes.

In addition, the design and analyses need to minimize any potential biases
in the evaluation of treatment effectiveness or safety. Thus, any deviation from
randomization or blinding in the design must be justified, as they may increase bias.
Even though it is not explicitly expressed in all guidelines, transparency of the study
design and pre-specification of analytical methods are very important. For example,
the PMDA’s 2021 basic principle guidance document states that “For reliability
assurance of the results, it is therefore important to demonstrate the reliability of the
data and transparency of the study design and analysis.” Moreover, the MHRA’s
2021 guidance states that “From a regulatory perspective whether the study data
is all from the real-world setting or the result of a hybrid or traditional RCT is
not critical. The important thing is that the trial is designed in a way which allows
it to provide the evidence required to answer the regulatory question and a well-
designed and conducted prospective randomized controlled trial provides a high
level of evidence irrespective of the categorization of the data source.”
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3 Regulatory Precedent Examples of Fit-for-Purpose
Real-World Evidence

This section reviews regulatory precedents in RWE in the development life cycle and
provides for each example of use, or scientific purpose, the motivation behind using
RWD. The stated purposes below are similar to those outlined by the US FDA in
their review paper [1]. When relevant, we also share new developments in statistical
methodology supporting these uses. We ordered these uses from more established
to less established uses in the regulatory setting.

3.1 Scientific Purpose of Supporting Planning of Clinical
Trials

Exploratory analyses of data from clinical practice are increasingly informing
planning of design of clinical trials for new therapies. The RWD sources, their
sizes and their types, the standardization of the data structure through common data
models [15], and the sophistication and scalability of queries on these data have
evolved over the last few years. For example, although selection of inclusion and
exclusion criteria and clinical sites for a clinical trial traditionally relied on prior
experience or investigator assessment, these selections are increasingly informed
by queries of large electronic healthcare data using computable phenotypes or
algorithms (see [16] and chapter “Key Variables Ascertainment and Validation in
Real-World Setting” of this book). The query process leverages the common data
model across a data network of electronic healthcare data or insurance claims to
run validated algorithms and provide a snapshot of the population at a given time.
This may inform eligibility criteria development by examining associations with key
trial outcomes. Efficient use of the data to identify and follow participants in clinical
trials was deployed in a large scale to test new or existing COVID-19 therapies [17—
19].

Another growing area of use of RWD to inform clinical development of new
therapies is qualification of novel biomarkers supported by results of data mining
and machine learning methods. For example, the EMA qualification of Islet
Autoantibodies in Type 1 Diabetes relied on machine learning methods and data
mining of RWD to identify prognostic factors and validate the biomarker for use in
clinical trials [20].
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3.2 Scientific Purpose of Supporting Safety and Effectiveness
Evaluation

Over the past decades, post-market safety assessments often relied on what we call
today RWD and is more traditionally called safety surveillance using spontaneous
safety reporting databases or prospectively designed epidemiological studies. Thus,
using RWD to support evaluation of safety post-marketing is a relatively mature field
in pharmacoepidemiology with several existing guidance documents, all finalized
before the terminology of RWD or RWE were first coined [12, 13].

Several review papers give an overview of the regulatory landscape as well
as the statistical considerations in the post-market safety setting. Those include,
for example, the following review publications [21-24]. As these papers and the
examples discussed in them illustrate, all general RWE principles outlined in Sect.
2 hold also for RWE to support safety. In fact, many of the RWE principles were
probably inspired by the regulatory experience of using RWD in safety in the past
decades. However, a few elements are safety-specific and highly impact the fitness-
for-purpose assessment. These include the rarity and/or the importance of long-term
longitudinality in some safety events. Rarity of events results in lack of power
of smaller databases to detect the risk and lack of feasibility of some analytical
methods. Also, poor or incomplete capture of long-term or long progression safety
outcomes renders many RWD inadequate to assess these outcomes.

In terms of statistical methodology, the use of increasingly large spontaneous
reporting databases has spurred the development of several statistical methods in
disproportionality analyses [21, 25]. The main methodological challenges with these
databases are handling reporting bias and lack of information on the universe of drug
utilization (aka, no denominator). Similarly, the use of increasingly large distributed
claims databases in post-market safety spurred the use and implementation of
different cohort selection and causal inference methods in pharmacoepidemiology,
including, for example, the propensity score methods discussed in these review
publications [26, 27]. The main methodological challenges are assessing and
handling selection bias and confounding in the causal inference. The rarity of the
outcomes further challenges model fitting and adjustment. Although most safety
outcomes are binary, the choice of summary measures is simplified with rare
outcomes because hazard ratios, relative risks, and odds ratios are all asymptotically
equivalent.

When safety assessments using RWD is not sufficient, some therapeutic areas
require the design of a dedicated randomized clinical trial starting in the pre-market
setting. For example, randomized and controlled clinical trials were carried out for
the examination of the risk of asthma-related hospitalization, intubation, and death
associated with long-acting beta agonist use [28]. Also, cardiovascular outcomes
trials are often required for antidiabetic therapies [29]. These large studies require
extensive resources but were deemed necessary for multiple reasons, including the
importance of balancing baseline composition of all covariates through randomiza-
tion.
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Randomized simple pragmatic trials with data collection through electronic
healthcare data may provide similar benefits as the traditional randomized trial
approach, while conserving resources and making very large trials more feasible.
These designs were recommended for cardiovascular outcome studies in antidia-
betic drugs [30]. Statistical considerations in these designs include the degree of
pragmatism and its implication on the design, analysis, and regulatory acceptability
as well as the interoperability between data collected solely for the clinical trial with
data retrieved from the electronic healthcare system [31, 32].

In the case of the long-acting beta agonist example mentioned above, the value-
added of randomizing treatment in the clinical trial was challenged by multiple
researchers [33], who argued that large scale multinational (non-randomized) cohort
studies could have accomplished the same goal. Similarly, one of the main findings
in the RCT DUPLICATE initiative funded by the FDA was that well designed cohort
studies could replicate the findings from pragmatic randomized clinical trials [34].

3.3 Scientific Purpose of Serving as External Control
to a Clinical Study

For many years, approval of new therapies in some rare diseases or oncology
indications relied customarily on single arm trials and comparisons to a well-
documented natural history of the disease or outcomes of active treatment in an
external comparable population. This practice is reserved for diseases with high and
predictable mortality and circumstances where the effect of the drug is self-evident
since the historical control is often not as well assessed as a concurrent control
population [14]. More recently, with the availability of a large volume of patient-
level data and using statistical methods for balancing baseline composition, there is
potential to improve the quality of these external comparisons, thereby allowing a
more nuanced inference [3, 35, 36].

The review paper [37] outlines some recent case studies using RWD as an
external control in oncology and rare disease single arm studies in the marketing
submission to the FDA. Other examples are also discussed in chapter “Applications
Using Real-World Evidence to Accelerate Medical Product Development” of this
book. In all examples, ensuring fitness-for-purpose of the RWD and the methods
were critical in the regulatory reviews. These examples include the study of
overall survival associated with selinexor in patients with penta-exposed, triple-class
refractory multiple myeloma using a Phase 2 single arm trial and an external control
cohort created from electronic medical records. The issues with assessing fitness-
for-purpose were discussed at an FDA advisory committee meeting preceding the
accelerated approval of the product [38]. The examples also include the use of
natural history studies to contextualize the findings of a single arm study in a rare
pediatric lysosomal disorder to support the approval and labeling of cerliponase
alfa. The application discussed validity of the endpoint capture in the natural
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history study, and corrected for confounding using design and analytical strategies
[39]. Another example is evaluating the treatment effect of Tecartus on objective
response rate and overall survival in relapsed/refractory adult B-cell precursor acute
lymphoblastic leukemia that was examined with a single arm trial and an external
control derived from individual patient-level data sampled from historical clinical
trials [40]. The historical data was made comparable to the single arm study using
propensity score methods. This was followed by a positive recommendation for the
product from the EMA [41].

Beyond the application of external controls to single arm trials, external data can
be used to augment a randomized control instead of replacing it [42]. For example,
such a design has been proposed in a Phase 3 registrational trial in recurrent
gliobastoma as a (3:1) randomized trial, augmented with external control patients
to form a fully powered Phase 3 registrational trial [43]. Additionally, the recently
published Phase 2 study [44] randomized fewer patients to placebo and augmented
the control with data from historical clinical trials. In both studies, the external data
came from previously conducted clinical trials. In the former, frequentist propensity
score methods were applied and, in the latter, Bayesian borrowing approaches
were used in the analyses. As the last example demonstrates, the use of external
controls to replace or augment controls in early phase development (e.g., continued
development after Phase 2 to Phase 3) is promising.

3.4 Scientific Purpose of Supporting Extrapolating Efficacy
or Safety Findings

Extrapolating efficacy or safety findings to patients outside the controlled setting and
restrictive eligibility criteria typical of clinical trials can be challenging. Patients
with comorbidities, such as older age or chronic kidney disease, at increased
risk for serious adverse reactions, or those with concomitant treatments that may
confound assessment of efficacy or that may modify exposure to the drug are often
intentionally excluded from clinical trials. However, these patients are likely to be
treated with the medical products when approved and available in clinical practice.
In addition, racial and other groups are often underrepresented in clinical trials,
possibly owing to lesser access to or willingness to participate in clinical trials.
Thus, RWD may present opportunities to fill these knowledge gaps or improve
our understanding of the therapy’s effects after an early period of marketing and
use in the clinical setting. Estimates of the so-called, real-world effectiveness
and safety, including these lesser studied or rare populations and exploration of
treatment effects by demographic, medical history, and disease characteristics, or
socioeconomic status, could be highly impactful for the treatment and care of
patients.

Because extrapolation, as a concept, was already in use in the development of
new therapies in pediatrics, RWD as a useful data source was embraced by the
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recently released international pediatric guidance discussing extrapolation [45]. For
example, Blinatumomab was approved for precursor B-cell acute lymphoblastic
leukemia in children based on efficacy data from an open-label Phase 1/2 trial and
safety data from a single-arm, open-label (observational) expanded access study
[46]. Of note, given that most pediatric trials are short, real-world data can inform
our understanding of the long-term effects of exposure to medicines [47, 48].

Beyond pediatrics, this extrapolation thinking was successful in supporting
expanding the indication of palbociclib to male cancer patients after approval of
the drug for female cancer patients based on a successful randomized clinical study
[49].

4 Conclusions and Discussion

This chapter summarizes the regulatory landscape of the use of RWD to generate
RWE. As we discuss in Sect. 2, fitness-for-purpose is a central concept in the
generation of RWE. As the regulatory precedent examples in Sect. 3 illustrate,
arguments for fitness-for-purpose are tailored to the purpose in each example.

We believe that concepts in RWE are bound to evolve in sophistication in the
next few years, as new RWD sources emerge and as some novel designs blur
the distinction between traditional clinical trials and clinical care. For example,
pragmatic studies are often randomized, but embedded in routine care and can lead
to using or collecting RWD. Similarly, decentralized studies incorporate data from
wearable digital technology, a growing source of RWD, into clinical trials.

Our summary of purposes in Sect. 3 illustrates that use of fit-for-purpose RWD
to generate RWE is well established in those situations where RWD is filling a gap
that would be difficult or impossible to fill by a typical clinical trial. Those include
using fit-for-purpose RWD to help plan a randomized study, to support post-market
safety, and to evaluate comparative effectiveness.

In other situations, it is challenging to balance the use of RWD without raising
concerns of lowering the regulatory standards. More specifically, the situations
where findings from some RWD sources are intended to replace findings from
randomized clinical trials are still being defined. While Sect. 3 had examples using
RWD as external controls in rare diseases and oncology clinical development,
using RWD to expand indication(s) for an already approved product with a well
characterized safety profile, and in using RWD to support extrapolation of a
treatment effect from one group to another, it is unclear how generalizable these
examples would be to other therapies or populations. With this evolving landscape,
a continuous open dialog and early consultation with regulators can benefit every
research program considering the use of RWD.
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Key Considerations in Forming Research ~ m)
Questions and Conducting Research in Qe
Real-World Setting

Yixin Fang and Weili He

1 Introduction

To accelerate medical product development to help patients who are in need, Food
and Drug Administration (FDA) and European Medicines Agency (EMA) develop
guidance documents on real-world data (RWD) and real-world evidence (RWE) for
industry [1-6]. These guidance documents provide recommendations to sponsors on
the use of RWE to support approval of a new indication for a medical product that
has already been approved or to help support postapproval study requirements, along
with other objectives such as investigating disease burdens and treatment patterns.
These guidance documents center on how to derive robust RWE from the analysis
of RWD and the use of RWE in regulatory decision-making.

In a statistical roadmap for journey from RWD to RWE [7], the point of departure
is forming a sound research question. As raised in ICH E9(R1) [8], “central
questions for drug development and licensing are to establish the existence, and
to estimate the magnitude, of treatment effects: how the outcome of treatment
compares to what would have happened to the same subjects under alternative
treatment (i.e., had they not received the treatment, or had they received a different
treatment).” Note that ICH I9(R1) asks the central questions in terms of potential
outcomes. The potential outcomes framework has been used in the community of
causal inference since Neyman proposed it in his 1923 Master’s thesis and Rubin in
1974 extended it into a general framework for causal inference in both interventional
studies and non-interventional settings [9, 10]. “What would have happened” is
also called counterfactual outcome, and human’s ability of imagining counterfactual
outcomes plays the most crucial role in forming research questions [13].

Y. Fang (<) - W. He
Data and Statistical Sciences, AbbVie, North Chicago, IL, USA
e-mail: yixin.fang@abbvie.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 29
W. He et al. (eds.), Real-World Evidence in Medical Product Development,
https://doi.org/10.1007/978-3-031-26328-6_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26328-6protect T1	extunderscore 3&domain=pdf

 885 56845
a 885 56845 a
 
mailto:yixin.fang@abbvie.com
mailto:yixin.fang@abbvie.com
mailto:yixin.fang@abbvie.com
https://doi.org/10.1007/978-3-031-26328-6_3
https://doi.org/10.1007/978-3-031-26328-6_3
https://doi.org/10.1007/978-3-031-26328-6_3
https://doi.org/10.1007/978-3-031-26328-6_3
https://doi.org/10.1007/978-3-031-26328-6_3
https://doi.org/10.1007/978-3-031-26328-6_3
https://doi.org/10.1007/978-3-031-26328-6_3
https://doi.org/10.1007/978-3-031-26328-6_3
https://doi.org/10.1007/978-3-031-26328-6_3
https://doi.org/10.1007/978-3-031-26328-6_3
https://doi.org/10.1007/978-3-031-26328-6_3

30 Y. Fang and W. He

According to the definitions in FDA guidance document [4], an interventional
study (a.k.a., a clinical trial) is “a study in which participants, either healthy
volunteers or volunteers with the disease being studied, are assigned to one or
more interventions, according to a study protocol, to evaluate the effects of those
interventions on subsequent health-related biomedical or behavioral outcomes.”
A non-interventional study (a.k.a., an observational study) is “a type of study
in which patients received the marketed drug of interest during routine medical
practice and are not assigned to an intervention according to a protocol.” Both
traditional randomized controlled trials (RCTs) and pragmatic clinical trials (PCTs)
are examples of interventional studies, and non-interventional study designs include
cross-sectional studies, observational cohort studies, and case—control studies. In
addition, single-arm trials with external controls from RWD can be considered as a
hybrid of interventional and non-interventional studies.

To form a well-built clinical question, the PICO criteria, as far as we know, were
first proposed in 1995 [11], which proposed that “the question must be focused and
well articulated for all 4 parts of its ‘anatomy’: (1) the patient or problem being
addressed; (2) the intervention or exposure being considered; (3) the comparison
intervention or exposure, when relevant; (4) the clinical outcomes of interest.” Since
then, many versions of the PICO criteria have also been proposed for forming a
sound clinical question, including the PICOT criteria [12], which added the fifth
part, Time.

Although the PICOT criteria are still useful for forming research questions in
clinical setting, for real-world setting, we need to revise them to take into account
the real-world features. In this chapter, we will discuss the PROTECT criteria [7],
aligning with the recent FDA guidance documents.

The remaining of the chapter is organized as follows. In Sect. 2, we discuss the
steps that we may take before we form a research question, including gathering
knowledge and evidence gap, and specifying assumptions and causal model. In
Sect. 3, we discuss five key elements of the PROTECT criteria in real-world setting.
In Sect. 4, we discuss how to enhance the assumptions or how to revise the elements
of the research question if the question cannot be answered. In Sect. 5, we discuss
the key considerations in the planning of real-world studies to answer the research
question in real-world setting. We conclude the chapter with some discussion in
Sect. 6.

2 Gathering Knowledge

“Knowledge” includes scientific experience we have had in the past, clinical
evidence we have gathered so far, or systematic literature review we have conducted
up to date. The knowledge includes two main parts, the knowledge on what we have
known (evidence) and the knowledge on what we have not known (evidence gap).
The hidden part (i.e., the unknown) is out of the scope. To fill the evidence gap is
the motivation of forming any research question.
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Let us consider an example. Assume that, after conducting a placebo-controlled
RCT, we have gathered the clinical evidence of efficacy and safety of an inves-
tigative treatment compared with placebo in clinical setting. If the treatment has
been approved by regulatory agency, now we are interested in investigating the
effectiveness and long-term safety of the treatment compared with the standard of
care (SOC) in real-world setting.

Since the central questions for drug development and licensing are phrased in
terms of potential outcomes in ICH E9(R1), we turn to one book by Pearl, The
Book of Why: The New Science of Cause and Effect [13], for guidance on how
to summarize the knowledge we have gathered into a causal model. As pointed
out in [13], the knowledge remains implicit in the mind of investigators before
investigators make them explicit by specifying a list of assumptions based on the
available knowledge.

Continue the above example. Based on the available knowledge, the investigators
may specify two assumptions: (1) one set of variables (say, income, education,
disease severity) are associated with the outcome variable and the decision of taking
the investigative treatment or SOC and (2) another set of variables (say, age, gender,
race) are associated with the outcome variables but not the treatment decision. The
first set of variables are examples of confounders and the second set of variables are
examples of effect modifiers. Defined in FDA guidance document [1], a confounder
is a variable that can be used to decrease confounding bias when properly adjusted
for in an analysis and an effect modifier is a factor that biologically, clinically,
socially, or otherwise alters the effects of another factor under study.

Following the thought in [13], these explicit assumptions can then be encapsu-
lated in a causal model. A causal model can be defined in various formats, including
causal diagrams and structural equations [14]. Continue the above example. Denote
the treatment variable as A (1 for investigative treatment and O for SOC) and the
outcome variable as Y. Denote the first set of covariates as C and the second set of
covariates as M. Figure 1 is an example of causal diagram encapsulating the above
two assumptions.

From here we may move forward to form research questions. But sometimes we
may want to examine the extent to which some preliminary data are compatible with
the causal model. Continue the above example. The causal model in Fig. 1 implies
that M and A are independent, and we can use some preliminary data, if available, to
test whether M and A are associated. These testable results may lead to revising the
causal model. Besides these testable implications, there are untestable assumptions,
for example, the assumption that there is no unmeasured confounder. Figure 2 shows
an example of causal diagram where there is unmeasured confounder U.
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Fig. 1 An example of causal
diagram
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Fig. 2 With unmeasured (
confounder

3 Forming Research Question

After knowledge gathering, we have a causal model. Now we are ready to form
sound research questions. Aligning with the recent FDA guidance documents, we
discuss the PROTECT criteria [7] for forming research questions in real-world
setting, with five elements discussed in the next five subsections, respectively. The
five elements of the PROTECT criteria are summarized in Table 1.

After thinking through these five elements, we are able to articulate research
questions. Here are some examples:

— What is the average treatment effect (ATE) of 4 weeks of treatment A on the
outcome Y at 12 months after treatment completion compared to 6 weeks of
treatment B, among the defined population, after adjusting for confounders
(disease severity at the treatment initiation, age, and gender)?

— What is the average treatment effect among the treated (ATT) of one-time
treatment C on the outcome Z at 6 months after treatment initiation compared
to SOC, among the population of patients who are treated by treatment C in
real-world setting?

— What is the 5-year long-term safety of treatment D after treatment initiation,
among the population of patients who are treated by treatment D in real-world
setting?

— What are the treatment patterns of treatment E from the treatment initiation up to
5 years, among the population of patients who are treated by treatment E initially
in real-world setting?

The first two examples have all the five key elements of the PROTECT criteria,
which are two specific versions of the central questions raised in ICH E9(R1).
The third example also has those five key elements, with the outcome being safety
instead of effectiveness. In the fourth example, there is no clinical outcome variable,
indicating that other research questions may be formed in real-world setting besides
the central questions.

3.1 Population

The target population is the population in which we are interested and for which
we will draw conclusions after a study is conducted. As defined in FDA guidance
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Table 1 Five elements in the PROTECT criteria

Symbol Element Explanation

P Population Study population defined via I/E criteria®
R/O Response/outcome Dependent variable

T/E Treatment/exposure Primary independent variable

C Covariates Including confounders and effect modifiers®
T Time When variables are measured?

2 In general, the ‘C” element means counterfactual thinking
b J/E criteria are inclusion/exclusion criteria

Target population External validity for generalization

. ——
Source population

Analysis set
Study population > Internal validity for causation

Fig. 3 Three populations and one sample

document [4], the source population is “the population from which the study
population is drawn” and the study population is “the population for which analyses
are conducted.” In addition, the analysis set is a sample of the study population.

The difference between the target population and the source population becomes
important in real-world setting when databases are used. For example, if medical
claims data are used, the source population is only limited to those whose claims
data are collected, because the purpose of medical claims data is to support payment
for care. There is further difference between the source population and the study
population because the study population is often defined via some data entry
criterion that requires that a certain set of variables including treatment variable
and/or outcome variable are collected. The third layer of difference is that the
analysis set may not be representative of the study population without random
sampling. All these three layers of difference lead to selection bias that we should
acknowledge in forming research questions.

Figure 3 shows the above three layers of potential selection bias. Ideally,
we should collect data on variables that differentiate the analysis set from the
populations. There are other sources of selection bias that we should distinguish
from confounding bias [15], with one example showed in Fig. 4. In Fig. 4, there are
arrow from treatment variable A to S and arrow from outcome variable Y to S such
that S becomes a collider [14]. Therefore, conditioning on collider § = 1 introduces
spurious association between A and Y, introducing selection bias (a.k.a., Berkson’s
bias [16]). To avoid such selection bias, in the definition of study population, we
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Fig. 4 Selection bias ‘T‘ ‘7‘
because of S =1 __J

? ——
H | ‘

>

s=1)

should not have inclusion criteria that require the availability of both treatment data
and outcome data. It is internally valid to have inclusion criteria that only require
the availability of treatment data, as in cohort studies. It is also internally valid to
have inclusion criteria that only require the availability of outcome data, as in case—
control studies.

3.2 Response/Outcome

Response variable and outcome variable are two interchangeably used names for
dependent variable. ICH E9(R1) simply calls it “variable” when describing the
five attributes of an estimand: “The variable (or endpoint) to be obtained for each
patient that is required to address the clinical question.” However, ICH E9(R1) uses
terms “response” and “outcome” in multiple places, such as “patient’s outcome”
and “response to treatment.”

Unlike in traditional clinical setting, in real-world setting when databases are
used, we often do not have protocol-defined follow-up visits to ascertain outcome
variable. FDA guidance document [1] points out that “a crucial step in selecting
a data source is determining whether it captures the clinical outcome of interest.”
Chapters “Assessment of Fit-for-Use Real-World Data Sources and Applications”
and “Key Variables Ascertainment and Validation in RW Setting” of this book will
discuss outcome variable ascertainment in more detail. Here we propose to utilize
these two terms, response variable and outcome variable, to distinguish two different
types of dependent variables.

One type of dependent variable is outcome variable that is defined in the protocol
and is to be collected in real-world studies such as pragmatic clinical trials and
observational cohort study or outcome variable that is captured in the data source.
For example, electronic health records (EHRs) data capture outcomes that are
brought to the attention of a health care professional and documented in the medical
record. This type of dependent variable also includes outcome variable that is not
captured in the given data source but can be ascertained from another data source
via data linkage.

The other type of dependent variable is response variable that can be derived
(via the definition, construction, and validation process) from the other outcome
variables and can be used to measure the patient’s response to the investigative
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medical product. For example, if patient report outcomes (PROs) or physician report
outcomes are captured in the data source, then we can derive some response variable
based on these captured subjective outcomes. In some scenarios, response variable
may be derived from free texts such as doctors’ notes via machine learning and
natural language processing (NLP) techniques.

3.3 Treatment/Exposure

In the PICOT criteria, the “I” element stands for intervention, which is inappropriate
for non-interventional real-world setting. The “C” element in the PICOT criteria
stands for comparator, which is inappropriate for real-world setting where there is no
comparator. Therefore, these two elements are replaced by “T/E” in the PROTECT
criteria, which stands for treatment/exposure, noting that treatment variable and
exposure variable are the two names for primary independent variable that are
interchangeably used in real-world setting.

ICH E9(R1) states that “the treatment condition of interest and, as appropriate,
the alternative treatment condition to which comparison will be made” (referred to
as “treatment” through the remainder of this document). FDA guidance document
[1] stats that “the term exposure applies to the medical product or regimen of
interest being evaluated in the proposed study. The product of interest is referred
to as the treatment, and may be compared to no treatment, a placebo, standard of
care, another treatment, or a combination of the above.”

3.4 Covariates (Counterfactual Thinking)

The “C” element has two versions, tangible version and abstract version. Covariates
are not included as an element in the PICOT criteria because randomization and
blinding are usually applied in the traditional clinical setting. The tangible version of
the “C” element in the PROTECT criteria stands for key covariables, which include
(1) confounders which will be used to maintain the internal validity of causation
and (2) effect modifiers which will be used to better understand heterogeneity
of treatment effect and will be potentially used to achieve external validity of
generalization. Refer to Fig. 1 for an example of confounders and effect modifiers.
Refer to Fig. 3 for the concept of internal validity of causation and external validity
of generalization.

The abstract version of the “C” element stands for counterfactual thinking. To
form the central questions of ICH E9(R1), we need to imagine counterfactual
outcomes, i.e., what would have happened to all the subjects in a certain population
under alternative treatment conditions. The covariates ensure that such counter-
factual thinking is possible under those assumptions we make in the knowledge
gathering stage; for example, under the exchangeability assumption that the coun-
terfactual outcome and the treatment decision are independent given covariates [17].
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3.5 Time

In clinical setting, baseline and follow-up period are prespecified in the protocol. In
real-world setting, the “T” element in the PROTECT criteria plays a crucial role in
understanding all the above four elements.

In the “P” element, we should specify the time period in the definition of the
source population. We may consider the time frame as one of the inclusion criteria
in the definition of study population drawn from the source population.

In the “R/O” element, we should first identify if the variables are ascertained
at a specific time (cross-sectional), retrospectively, prospectively, or in a hybrid
fashion. Then, we should clearly define the time periods when the response/outcome
variables are measured and collected. In scenarios where baseline and follow-up
periods are needed, we should also clearly define the baseline (e.g., treatment
initiation, disease diagnosis, or patient enrollment) and follow-up periods (e.g., 6
months after baseline, 12 months after baseline, along with predetermined time
windows).

In the “T/E” element, we should first identify whether the treatment/exposure
is one-time medical product or other products that may be intended for use over a
period of time. If the medical product is one-time, likely the time when the treatment
is applied is considered as baseline. If the medical product is intended for use over
a period of time, likely the baseline is defined as the treatment initiation, and we
should make sure the source data capture the treatment/exposure duration as well,
along with data on treatment discontinuation and, if possible, data on the switched
treatments.

In the “C” element, we should first distinguish time-independent covariates and
time-dependent (a.k.a., time-varying) covariates. For time-dependent covariates, we
should describe whether and how frequently the data on these covariates can be
captured. Without collecting time-dependent confounders, it is impossible to adjust
for time-dependent confounding.

4 Revising Research Question

After a research question is formed, before we answer it, we should evaluate
whether or not the research question can be answered. Like in [13], we rely on
estimand construction to verify whether the research question can be answered or
not. ICH E9(R1) defines an estimand as “a precise description of the treatment effect
reflecting the clinical question posed by the trial objective.” We can generalize
this definition to cover both clinical setting and real-world setting. An estimand
is a statistical quantity to be estimated that provides a precise description of the
treatment effect reflecting the research question. If we can construct an estimand
reflecting the research question, we are able to answer the question. If we cannot,
we should either enhance the assumptions or revise some of the PROTECT elements
of the question.
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While on treatment T

Fig. 5 The roadmap for forming a research question, revising the question if it cannot be
answered, and constructing an estimand if the question can be answered

Chapter “Estimand in Real-World Evidence Study: From Frameworks to
Application” of this book will discuss estimand in great detail. Here, we only
discuss how to revise the question being asked if the question cannot be answered
due to lack of identifiability or potential existence of intercurrent events. Figure 5
is motivated by Figure 1.1 in the book of why [13]. Figure 5 provides a roadmap of
how we check if one research question can be answered and, if not, how we make it
answerable.

If the question cannot be answered due to lack of identifiability, we should
enhance the assumptions, leading to a revised causal model, such that the question
can be answered by the revised causal model. For example, in the construction of
estimand, we realize that the list of confounders includes unmeasured confounder
U, as displayed in Fig.2, and then we should either identify a data source to
capture the data of U or go back to the knowledge gathering stage to enhance the
identifiability assumptions by assuming that U is not a confounder.

If the question cannot be answered due to intercurrent events, we should
revise some of the PROTECT elements of the question to address the intercurrent
events. ICH E9(R1) defines intercurrent events as “events occurring after treatment
initiation that affect either the interpretation or the existence of the measurements
associated with the clinical question of interest. It is necessary to address intercur-
rent events when describing the clinical question of interest in order to precisely
define the treatment effect that is to be estimated.”

Therefore, according to ICH E9(R1), we should discuss how to address inter-
current events when describing the question, instead of waiting until we conduct
research to answer the question. ICH E9(R1) proposes five strategies for how to
address intercurrent events, with each strategy corresponding to one of the five
elements of the PROTECT criteria. This provides another insight that the PROTECT
criterion is valid and comprehensive in protecting the quality of the question we
form.
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If we want to apply the treatment policy strategy to address intercurrent events,
we should revise the “T/E” element. According to ICH E9(R1), if the treatment
policy strategy is applied, “the intercurrent event is considered to be part of the
treatments being compared.” That means, we need to revise the definition of
treatment or exposure to include the intercurrent event as part of it. For example,
if the use of additional medication is considered as an intercurrent event, then this
additional medication is considered as part of the revised treatment.

If we want to apply the hypothetical strategy to address intercurrent events,
we should revise the “C” element. According to ICH E9(R1), if the hypothetical
strategy is applied, “a scenario is envisaged in which the intercurrent event would
not occur.” That means, we need to revise our counterfactual thinking to imagine
what would have happened if the intercurrent event would not occur. Following the
tangible version of “C” element, we need to capture data on covariates conditional
on which the occurrence of the intercurrent event and the counterfactual outcome
can be assumed to be independent.

If we want to apply the composite variable strategy to address intercurrent
events, we should revise the “R/O” element. According to ICH E9(R1), if the
composite variable strategy is applied, “an intercurrent event is considered in itself
to be informative about the patient’s outcome and is therefore incorporated into the
definition of the variable.” That means, we need to revise the definition of response
or outcome variable to include the intercurrent event as part of it. For example, if the
outcome variable was already success or failure, discontinuation of treatment would
simply be considered another mode of failure.

If we want to apply the while on treatment strategy to address intercurrent
events, we should revise the “T” element. According to ICH E9(R1), if the while on
treatment strategy is applied, “response to treatment prior to the occurrence of the
intercurrent event is of interest.” That means, we need to revise the definition of the
timepoint when the response or outcome variable is measured.

If we want to apply the principal stratum strategy to address intercurrent events,
we should revise the “P” element. According to ICH E9(R1), if the principal stratum
strategy is applied, “the target population might be taken to be the principal stratum
in which an intercurrent event would occur. Alternatively, the target population
might be taken to be the principal stratum in which an intercurrent event would
not occur.” That means, we need to revise the definition of the population as some
prespecified principal stratum.

To summarize, according to ICH E9(R1), we should address intercurrent events
when describing the research question of interest in order to precisely define
the treatment effect that is to be estimated. Five ICH E9(R1) strategies are
corresponding to five elements of the PROTECT criteria. If a combination of several
strategies is applied for intercurrent events, then we should revise the corresponding
combination of elements of the PROTECT criteria as well.
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5 Answering Research Question

After an answerable research question is formed and an estimand is defined
accordingly to reflect the question, we can move forward to conduct research
to answer the question. ICH E9(R1) develops a framework to align five stages
of any real-world study with estimand: planning, design, conduct, analysis, and
interpretation. The Part IT and Part III of this book mainly focus on these five stages,
so here we only provide an overview of these five stages, as displayed in Fig. 6, and
some key considerations in the planning of real-world studies.

In the planning stage, the first step is to choose appropriate real-world study
designs. There are a variety of real-world study designs. Many real-world study
designs do not follow the traditional sequence: design a study, enroll subjects,
and generate data. Instead, they often intertwine real-world study, real-world data,
and/or clinical trial components, so we categorize them into three major categories
according to three scenarios. In scenario one, we design a real-world study to
prospectively generate real-world data for research purpose. In scenario two, based
on one or several existing real-world data sources, we design a retrospective real-
world study. In scenarios three, we utilize real-world data in the design, conduct,
and analysis of clinical trials.

Category one includes pragmatic clinical trials and observational studies that
generate real-world data for research purpose. We may apply some sampling
techniques to enroll participants for such studies. We may also utilize RWD to
identify potential participants for such studies.

Category two includes study designs that are exclusively based on databases such
as EHR, claims, and registries data. FDA guidance documents [1] and [3] assess
EHR/claims data and registries data to support regulatory decision-making for drug
and biological products, respectively.

Category three includes study designs that are using RWD to augment traditional
clinical trials. FDA guidance document [4] provides several such study designs: (1)

»  Estimand ‘

e®
rials. H Estimator }—-{ Estimate 1
L )

— J

Analysis Set

Plan Design Conduct Analyze Interpret

Fig. 6 Alignment of real-world study planning, design, conduct, analysis, and interpretation with
estimand; a study may have intertwined real-world study (RWS), real-world data (RWD), and/or
clinical trial components
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to utilize RWD to identify potential participants for an RCT, (2) to utilize RWD to
ascertain response or outcome variable for an RCT, and (3) to use RWD and data
of historical trials to augment an RCT or to construct an external control arm for a
single-arm clinical trial.

6 Discussion

In medical product development, in clinical setting, we are evaluating efficacy and
safety, asking research questions such as “Can it work?”. In real-world setting, often
we are evaluating effectiveness and safety, asking research questions such as “Does
it work?”. The PROTECT criteria consist of five elements, helping us to articulate
sound research questions.

There is a rich literature on how to form a research question, but the literature
on how to revise the research question if it is not answerable is lacking. In this
chapter, we propose that we can enhance the causal model assumptions if it is due
to lack of identifiability or revise some of the PROTECT elements of the question.
ICH E9(R1) emphasizes that “it is necessary to address intercurrent events when
describing the clinical question of interest in order to precisely define the treatment
effect that is to be estimated.” There is also a rich literature on how to address
intercurrent events, but no one else argues that it is because we need to revise the
question to make it answerable given the existence of intercurrent events. We further
demonstrate that each of the five strategies is according to revising one of the five
PROTECT elements. This important finding supports our claim that the PROTECT
criteria are useful for forming a research question and revising the research question
if it is not answerable.

In this chapter, we also argue that estimand is the “touchstone,” by which we can
verify whether or not a research question is answerable. If an estimand reflecting
the question can be constructed, then the question is answerable and the same
estimand will guide through the five stages (planning, design, conduct, analysis,
and interpretation) of research to answer the question.
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Part 11
Fit-for-Use RWD Assessment and Data
Standards
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Data Sources and Applications Qe

Weili He, Zuoyi Zhang, and Sai Dharmarajan

1 Introduction

In December 2018, FDA released an FDA’s RWE framework (henceforth called
Framework) [1]. The framework defines RWD as “data relating to patient health
status and/or the delivery of health care routinely collected from a variety of
sources,” and RWE as “the clinical evidence about the usage and potential benefits
or risks of a medical product derived from analysis of RWD.” Examples of RWD
in the Framework include data derived from EHR, medical claims and billing data,
data from product and disease registries, patient-generated data, and data from other
sources, such as mobile devices. The Framework further indicates that RWD sources
can be used for data collection and to develop analysis infrastructure to support
many types of study designs to derive RWE, including, but not limited to, ran-
domized trials (e.g., large simple trials, pragmatic clinical trials) and observational
studies (prospective or retrospective).

As mentioned in chapter “Key Considerations in Forming Research Questions
and Conducting Research in Real-World Setting”, RWD can be prospectively
generated by designing a prospective RW study (RWS). In addition, if there are
relevant existing RWD sources, one can design a retrospective RWS to utilize
such existing RWD sources. These different RWD sources come with different
strengths and limitations. For example, the scope of claims data may contain broad
information from all doctors and providers caring for a patient, whereas EHR may
only be limited to the portion of care provided by doctors using the specific EHR
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of a provider organization. On the other hand, claims only contain information
as necessary for reimbursement (diagnoses, procedures, treatments), while EHRs
comprise more complete medical picture (diagnoses, laboratory results, vital signs,
doctors’ notes). While prospective observational studies come with obvious inherent
selection or information biases along with confounding bias due to non-randomized
nature, pragmatic randomized controlled trials (RCTs) may still result in bias due
to intercurrent events and missing data during a study even given randomization [2,
3]. Therefore, we believe that while assessment of fit-for-use RWD sources may
be disease and research question-specific, the general approach for such assessment
should be applicable to common RWD sources.

Numerous literature [4-10] have discussed different aspects and criteria for
the fitness of RWD sources. In the white papers published by Duke Margolis
[6-8], they summarized data relevancy as an ‘“assessment of whether the data
can adequately address the regulatory questions, in part or whole,” and indicated
relevancy as including the aspects of representativeness of the population of interest
and whether the RWD source contains key variables and covariates. Data reliability
“considers whether the data adequately represent the underlying medical concepts
they are intended to represent,” and speaks to data completeness, conformance, and
plausibility. Many of these concepts brought up by the various authors as referenced
above could be summarized in general as data relevancy or data reliability following
Duke Margolis’s white papers. Following the principles as suggested in the Duke
Margolis papers, He et al. [11] further summarized key elements of fit-for-use
data sources as including the following aspects: (1) relevant patient population
supporting relevant clinical questions; (2) adequacy in recording and validation of
key exposure and outcome variables along with confounders in terms of accuracy
and correctness of data types, ranges of values, consistencies between independent
values that measure similar attributes, (3) availability of complete exposure window,
(4) longitudinality of data, (5) sufficient number of subjects, (6) data completeness,
(7) availability of key data elements of patients for linkage of different data assets,
(8) provenance in terms of transparent and traceable data sources, (9) extent of
data curation and processing, and (10) data conversion and storage that adheres to
appropriate standards.

Levenson et al. [12] provided an in-depth discussion on issues related to data
integrity, principles and approaches to ascertain key variables from RWD, principles
and approaches to validating outcomes and addressing bias from RWD, and key
considerations in determining fit-for-use RWD. Their discussions align well with the
recent draft guidance documents from FDA on assessing electronic health records
and medical claims data or registries to support regulatory decision-making for drug
and biological products [13, 14]. They further proposed a stepwise semi-quantitative
approach to assess fit-for-use RWD sources with the use of quantitative measures
for relevancy and reliability [12]. The idea is to first assess relevancy as the first
dimension that includes variables related to disease population, response/outcome,
treatment/exposure, confounders, time frame, and generalizability as to the rep-
resentativeness of the underlying disease population. If the relevancy assessment
yielded major gaps in data relevancy to answer a specific research question, then
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there is no point in assessing the second dimension for reliability that includes
quality relating to validity of the data elements, logical plausibility and consistency,
and completeness of the data, including amount of missing data for key variables.

Since such assessment of fit-for-use RWD sources is disease and research
question-specific, Levenson et al. [12] did not apply the principle and conceptual
approach to a real RWD source. In this chapter, we attempt to apply and opera-
tionalize the semi-quantitative approach as proposed by Levenson et al. [12] to a
hypothetical research question using a real RWD source. We share our learnings
and best practices on such application.

The FDA/Harvard RCT DUPLICATE Initiative [15] proposed a structured
process to assess the ability of using existing RWD sources, collected for other
purposes such as Claim databases, to duplicate results with those from RCTs.
Although the purpose of the duplicate project may be different from our own in
this chapter, the findings and conclusions from that project could provide insights
on the type of RCTs and type of outcomes that may be suitable for fit-for-use RWD
sources. In Sect. 2, we review the duplicate project and provide our analysis of the
learnings and insights. Further, we review a few typical RWD sources, including
EHR, claims, registry, survey, NCI Surveillance, Epidemiology, and End Results
(SEER) Program registries, and CDC National Health and Nutrition Examination
Survey (NHANES) to provide additional insights on different RWD sources fitting
different research goals. Section 3 is devoted to the application of the semi-
quantitative approach to real RWD sources. The final section provides discussions
and concluding remarks.

2 Gaining Insights on Aligning Research Questions
with RWD Sources

2.1 Learning from RCT DUPLICATE Initiative

Regulators are evaluating the use of non-interventional RWS to assess effectiveness
of medical products. The RCT DUPLICATE initiative (Randomized Controlled
Trials Duplicated Using Prospective Longitudinal Insurance Claims: Applying
Techniques of Epidemiology) [15] uses a structured process to design RWS
emulating RCTs and compares results. The Initiative was funded by the US FDA
to Brigham and Women’s Hospital. They initially identified 40 RCTs that were
conducted to support regulatory decision-making and estimated that 30 attempted
replications would be completed after feasibility analyses. They used Optum
Clinformatics Data Mart beginning in 2004, IBM MarketScan beginning in 2003,
and Medicare Parts A, B, and D, across varying time ranges for select therapeutic
areas for the replication project. To identify RCTs for replication, they cited Hernan
[16] and considered the following design elements in consideration of the RWD
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sources, and exclude RCTs in which some of these key design features cannot be
replicated in RWD sources:

* Large, randomized trials with relatively simple treatment protocols, which are
more likely to be replicable with RWS.

* The primary outcomes that are objectively measured are likely to be captured in
the claims, such as myocardial infarction or stroke. Endpoints that are surrogate
or symptomatic in nature are less likely to be captured in claims.

* For RCTs that include major inclusion/exclusion criteria that cannot be discerned
from claims databases, they are excluded.

* While randomization cannot be replicated in claim databases, it is important to
identify and ensure that important potential predictors of outcomes, including
demographics, disease severity and history, concomitant medication, and inten-
sity of healthcare utilizations are ascertained in the claims databases, so that they
can be balanced in design or analysis stages.

First results from the RCT DUPLICATE Initiative were published in 2021 [17].
Results of replication for three active-controlled and seven placebo-controlled RCTs
were reported. To assess RCT-RWE agreement, the authors used three binary
agreement metrics: (1) “regulatory agreement” was defined as the ability of the
RWE study to replicate the direction and statistical significance of the RCT finding,
(2) “estimate agreement” was defined as the RWE hazard ratio estimate that was
within the 95% confidence interval for the RCT estimate, and (3) hypothesis testing
to evaluate whether there was a difference in findings by calculating the standardized
difference between the RCT and RWE effect estimates.

The authors [17] found that although identifying the magnitude and direction of
residual bias attributable to the nonrandomized study design is the key objective
of calibrating RWE against RCTs, limitation of available RWD in emulation of
other design features remain and need to be minimized. Further, even though
attempts were made to emulate the features of each RCT as closely as possible,
including inclusion and exclusion criteria, exposures, and outcomes, the constraints
of the healthcare databases still made exact emulation impossible. In addition, close
emulation of placebo is impossible via RWD and, hence, any placebo controlled
RCTs for emulation for this reason. Further noted is that adherence to medications
used in routine care is often very poor, and the analysis for the replication
project used on-treatment approach that censor patients at treatment discontinuation
whereas RCTs often use intention-to-treat approach for analysis. As a result, the
follow-up time and the opportunity to capture longer term outcomes differ. The
authors further indicated that the use of claims data, which lack clinical details
but provide longitudinal data across the care continuum, affected the agreement
between RCT and RWE findings. Other RWD sources, such as EHR and patient
registries, would almost certainly have led to different results, as they often have
detailed clinical information that may improve confounding adjustment. Patorno et
al. [18], who used RWD to predict findings of an ongoing phase IV cardiovascular
outcome trial, made a few similar points.
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Although our purpose is not to replicate any RCTs using RWD but to assess
fit-for-use RWD source, the insights the investigators of the RCT DUPLCATE
Initiative provided are very helpful in focusing our attention to important design
and data elements for assessment to address specific research questions. In Sect.
2.2, we review a few specific databases and provide our assessment of the type of
research questions these RWD sources could be determined fit-for-use to answer.

2.2 Further Insights on Aligning Research Question
with RWD Sources

The data owner of the ConcertAl database is one of the leaders in enterprise
Artificial Intelligence (AI) and RWD solutions for life sciences and health care.
ConcertAl has the largest network of over 400 oncology centers across the United
States and its database contains de-identified EHR of more than 4.5 million patients
treated by 1100 hematologist or oncologists. Although clinical details, such as
biomarker or pathology, may be unstructured and requires curation, the patient
clinical charts in oncology EHR are used by clinics to track patient care and
therefore are gold standard for clinical details in oncology. Across multiple EHR
systems, ConcertAl has business associate relationships with clinics, which enable
ConcertAl comprehensive access to EHR and unstructured data to better standardize
and curate clinical data. This makes ConcertAl database a representative data source
of cancer care in the US population. Further, approximately 50 percentage of
patients’ information in the ConcertAl EHR data are also linked to claims data,
which enriches ConcertAl as a RWD source.

In 2021, ConcertAl began a five-year collaborative research program with the
US FDA. This collaboration will derive RWE across a number of clinical and
regulatory use cases through utilizing ConcertAI’s oncology RWD and advanced
Al technology solutions. ConcertAI’s oncology RWD contains millions of patients’
EHR from a variety of academic and community cancer care settings. In this chapter,
we will use acute myeloid leukemia (AML) and their treatments to showcase the
assessment of fit-for-use RWD in session 3.

Optum Clinformatics Data Mart (Optum) is one of the largest claims databases.
It is de-identified and derived from a database of administrative health claims for
members of a large healthcare company affiliated with Optum. The population
is geographically diverse and spans all 50 states. In addition to medical claims
and pharmacy claims, Optum claims data include information with member eli-
gibility and inpatients confinements, along with standard pricing for all outpatient
claims, pharmacy claims, and inpatient confinements. This database comprises both
commercial and Medicare Advantage health plan data, and therefore is useful for
healthcare research institutes to address healthcare challenges, such as cost of care
and healthcare utilization. Optum is also widely used by pharmaceutical companies
to conduct scientific research to evaluate the clinical and economic value of their
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products and medical devices. For instance, Optum data could be used to evaluate
the patients” unmet need for certain conditions, and then investigate if their products
could fill the gap in care. Optum data is a good option to understand the treatment
patterns and medication adherence, discontinuation, and switching. It is also
useful to assess comparative effectiveness for certain medications. All the research
of treatment patterns and medication adherence, discontinuation, switching, and
comparative effectiveness in real-world setting is important to understand and
improve the gaps in care.

The Surveillance, Epidemiology, and End Results (SEER) Program of the
National Cancer Institute (NCI) is an important source of information for cancer
incidence and survival in the United States. SEER already includes cancer incidence
and survival data from various cancer registries covering approximately 48% of
the US population. The data about cancer patient demographics, primary tumor
site, tumor morphology and stage diagnosis, first line of treatment, and follow-up
of vital status is regularly collected into the SEER program registries. The SEER
data includes the comprehensive information of stage of cancer at the time of
diagnosis and survival data and is associated by age, sex, race, year of diagnosis, and
geographic areas. Many research activities are developed based on the SEER data,
such as cancer prevention and control, pattern of care and quality of care studies.

The National Health and Nutrition Examination Survey (NHANES) is a major
program developed by the National Center for Health Statistics (NCHS), part of the
Centers for Disease Control and Prevention (CDC). This program is designed to
assess the health and nutritional status of adults and children in the United States
and unique since it comprises interviews and physical examinations. The NHANES
program has been conducted as a series of surveys for various population groups
or health topics since the early 1960s. To meet the emerging needs, the survey
has become a continuous program and focused on different health and nutrition
measurements since 1999. Each year, the survey inspects a representative sample
of approximately 5000 persons from different counties across the country and
NHANES will visit 15 of the counties each year. The NHANES interview comprises
demographic, socioeconomic, dietary, and health-related questions. The medical,
dental, physiological measurements, and laboratory tests were collected during the
NHANES examination. The survey contents include the data on the prevalence of
chronic conditions and risk factors that may increase the chances of developing a
certain condition. The survey also collects smoking, alcohol consumption, sexual
practices, drug use, physical fitness and activity, weight, and dietary intake. Seven-
teen diseases, medical conditions, and health indicators are studied in NHANES,
including anemia, cardiovascular disease, diabetes, environmental exposures, eye
diseases, hearing loss, infectious diseases, kidney disease, nutrition, obesity, oral
health, osteoporosis, physical fitness history and sexual behavior, respiratory disease
(asthma, chronic bronchitis, emphysema), sexually transmitted diseases, vision. Due
to the comprehensive health information, the data from the survey has been widely
used to determine the prevalence of major diseases and risk factors for disease and
assess the nutritional status and its association with health promotion and disease
prevention. The NHANES data has been used to evaluate the relationship between
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environmental chemical exposures and adverse health outcomes. For instance, the
association between US population levels of chemicals in blood and/or urine and
biochemical indicator is extensively investigated using NHANES.

3 Semi-Quantitative Approach for Fit-for-Use RWD

Assessment — Application of a Case Study

3.1 Estimand Related to Fit-for-Use RWD Assessment

As ICH E9 (R1) [2] indicated, the “central questions for drug development and
licensing are to establish the existence, and to estimate the magnitude, of treatment
effects: how the outcome of treatment compares to what would have happened to the
same subjects under alternative treatment (i.e., had they not received the treatment
or had they received a different treatment)”. The estimand framework in E9 (R1)
includes five attributes as follows:

1.
2.

Population. Patients targeted by the clinical question

Treatment. The treatment condition of primary interest (e.g., new drug) and,
as appropriate, the alternative treatment condition to which comparison will be
made (i.e., comparator)

. Variable (or endpoint). The endpoint obtained from each patient to be used to

address the clinical question

. Intercurrent events (ICEs). Events occurring after treatment initiation that affect

either (1) the interpretation or (2) the existence of measurements of endpoints
associated with the clinical question of interest

. Population-level summary. A summary measure for the endpoint that provides a

basis for comparison between treatment conditions

As the fit-for-use RWD assessment is very much disease and research question-

specific, the focus of our assessment should be aligned with the estimand framework
in addressing certain research questions as discussed in chapter “Estimand in Real-
World Evidence Study: From Frameworks to Application” of this book.

3.2 Evaluation of Key Variables as Determined by Research

Questions

Levenson et al. proposed a stepwise semi-quantitative approach to assess fit-for-
use RWD sources with the use of quantitative scores for relevancy and reliability
[12]. As the fit-for-use RWD assessment is very much disease and research question
specific, Levenson et al. developed a set of principles (see Table 1 of their paper).
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Using a global multiple sclerosis (MS) cohort study RWD source, Kalincik et
al. [9] proposed error rate, data density score, and generalizability score using the
MS database (MSBase). The data density score was calculated across six domains
(follow-up, demography, visits, MS relapses, paraclinical data, and therapy). The
error rate evaluated syntactic accuracy and consistency of data. The generalizability
score evaluated believability of the demographic and treatment information. Corre-
lations among the three scores and the number of patients per center were evaluated.
The authors believe that this evaluation process will facilitate further improvement
of data quality in MSBase and its collaborating centers. It will also enable quality-
driven selection of research data and will enhance quality and generalizability of the
generated evidence.

In Sect. 3.3, we apply the set of principles in evaluating relevancy and reliability
of an RWD source as proposed by Levenson et al., along with the implementation
example by Kalincik et al. to a case study. We will use a hypothetical research
question as described in Sect. 3.3, but which could also be of real clinical research
interest.

3.3 Hypothetical Research Question and Quantitative
Assessment Algorithms

For our hypothetical research question, we have the following research plan as
shown below. For the purpose of providing an implementation exercise, we blinded
the actual treatment patients received in our application, but these treatments are
real treatments in the RWD source we use.

Research question
* To assess the long-term effectiveness of AML patients treated with drug A vs.
drug B in overall survival at 2 years

Research objectives
In patients treated with drug A vs. drug B:

¢ To assess the long-term effectiveness of drug A vs drug B in AML patients

Hypothesis
¢ Treatment with drug A will result in improved overall survival as compared to
treatment with drug B in patients with AML after 2 years

Study Design

In this implementation exercise, AML patients are identified from ConcertAl using
ICD 9 and ICD 10 codes. The study cohort is defined as the AML patients taking
on drug A or drug B as first-line treatment.

See Table 1 for more detailed study design features. To make the assessment
for fit-for-use RWD source to answer our research questions, we developed the
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Table 1 Study design
Index date

Baseline
Follow-up period
Treatment
Outcome

Censoring rules for a
subject in the
specified order on the
right

Inclusion criteria

Exclusion criteria
Study variables

Sample size

Initial treatment date of drug A or drug B occurred at least 1 year after
the patient’s first encounter in the database to allow larger number of
patients to be included in this study cohort

6 months prior to the index date

Maximum of 2 years post the index date

Drug A and drug B

Overall survival

1. Switching between drug A and drug B within 2 years’ follow-up

2. Loss to follow up in the database within 2 years follow-up

3. Two years’ of follow-up in the database without outcome event of
death

Diagnosis of AML

18+ at diagnosis date

Entered ConcertAl at least 1 year before the index date

Started drug A or B as first line of treatment

AML in relapse

AML

ICD 9:
205.0205.00205.01206.0206.00206.01207.0207.00207.01207.21

ICD 10: C92.0 C92.00 C92.01 C92.4 C92.40 C92.41 C92.5 C92.50
C92.51 C92.6 C92.60 C92.61 C92.62 C92.A C92.A0 C92.A1 C93.0
C93.00 C93.01 C94.0 C94.00 C94.01 C94.2 C94.20 C94.21 C94.4
C94.40 C94.41

Confounding variables®

Age

Gender

Race

Body mass index (BMI)

The eastern cooperative oncology group (ECOG) performance status
scale

Concomitant treatments: Posaconazole

Comorbidities: Diabetes, CHF?

The study with approximately 2360 patients, 1180 in each group, will
have 80% power to detect a 6% improvement in survival rate between
drug A and drug B at 2-year, alpha = 0.05, 2-sided. This assumes that
the treatment with drug B has an overall survival rate of 60% at
2-year, and 15% patients may be lost to follow-up or switched during
the 2-year follow-up period.

2ECOG Eastern Cooperative Oncology Group (ECOG) performance status
YCHF Congestive Heart Failure

following algorithms to derive the assessment measures, as shown in Tables 2 and 3,
respectively. Relevancy assessment as shown in Table 2 is to specifically address the
adequacy of data elements as defined in Estimand for a specific research question,
such as population, treatment, outcome, confounders, and time, as indicated by the
hypothetical research question and study design in Table 1. The denominator for
Disease Population in Table 2 includes all the patients in ConcertAl that we have
access to, whereas the denominators for all other measures are specific to the study
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Table 2 Assessment of Relevancy of Fit-for-Use RWD Source

Dimensions Variable

Assessment score

1st assessment dimension: Relevancy based on a specific research question

ICD9
ICD10

Disease
population

Response/outcome | Overall survival

Treatment/exposure Drug A, drug B

Confounders Age, gender, race, BMI,
ECOG, Posaconazole,
diabetes, CHF

Time Description of follow up

time from study entry to
censoring in the database

Describe the
representativeness of the
disease population in the
RWD source. Information
on demographics and
disease-specific indicators
may be used

Generalizability
score

Yopatients (pt) in the population = (# of
patients meeting the disease condition / # of
patients in the database?®)*100

%pt with events = # of patients with
outcome event of death within 2 years / # of
patients in the study cohort)*100

%pt with switch = (# of patients switching
drugs within 2 years / # of patients in the
study cohort)*100

%pt censored = (# of patients censored with
follow-up <= 2 years / # of patients in the
study cohort)*100

%pt censored after 2 yrs = (# of patients
censored with follow-up >2 years / # of
patients in the study cohort)*100

For each treatment, we calculate the score
before switching treatment separately

Score A = (# of patients receiving drug A / #
of total patients in the study cohort)*100
Score B = (# of patients receiving drug B / #
of total patients in the study cohort)*100

For each identified key confounder, we
checked on whether potential confounding
variables were collected in the study cohort

The intent is to describe time duration for
treatment/exposure, response/outcome, and
any time varying confounders and whether it
is sufficient to address the research questions
Male to female ratio based on the
epidemiology of AML

Age range of AML prevalence

Reported prevalence of general AML
population as compared to the measure in the
dataset

4The denominator is the total number of patients in the ConcertAl database with access

cohort for the hypothetical research question. Further, since most research based
on existing RWD sources are based on non-randomized groups, if effectiveness
comparison is the focus, ascertainment of potential confounding factors is critical.
As intercurrent events are more prevalent in RWD sources, reliability assessments
in Table 3 assess data quality and consistency relevant to the relevancy parameters
in Table 2.

For the assessment in Table 3, the assessment is specific to the study cohort at
baseline and key time points during follow-up period.
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Table 3 Assessment of reliability of fit-for-use RWD source

2nd assessment dimension: Reliability based on a specific research question

55

Quality Assess the validity of the | Completeness = proportion of missing data
data elements, checking for key variables such as confounding
the logical plausibility of | variables as listed above
the data (e.g., a lab result | Syntactic accuracy = proportion of critical
is within the limits of variables with values corresponding to their
biological possibility), range
and examining the data Consistency = proportion of the recorded
consistency for each variables congruent with other recorded
patient (within related variables (we could think of a few such
data fields and over time) | variables, such as BMI = 40 when weight
as well as the and height are not extreme)
conformance of the data
to any applicable internal
standards or external data
models
Data density Assess the amount of Cumulative follow-up = median follow up in
score information as year as a standardized measure

Clinical visit = (sum of #visits) / (sum of all
exposure time of each patient in year)*2 as a
standardized measure

Disease symptoms = (sum of #reported
symptoms) / (sum of all exposure time of
each patient in year)*2

Laboratory test = (sum of #lab tests) / (sum
of all exposure time of each patient in
year)*2

represented by data
density, such as
follow-up, clinical visit,
and symptoms or
outcome ascertainment,
standardized as
patient-year of follow-up
over the planned study
follow-up duration

3.4 Results

Based on ICD 9/10 codes of AML, we first extracted a subset of the dataset with
19,064 AML patients. Two treatments of AML: drug A and drug B, were selected
for assessment of data relevancy and data reliability in this study. The data include
AML patients with diagnosis date from 1985 to 2021. Only the patients who entered
ConcertAl at least 1 year before the initiation of drug A or drug B as the index
date and whose age was >18 on the index date were included in this study and
the patients with AML in relapse were excluded. Finally, 2366 AML patients were
identified in the final study cohort, of which 737 AML patients were treated with
drug A and 1629 AML patients were treated with drug B. The maximum of 2 years
post the index date was the follow-up period. The objective was to evaluate the
overall survival, as the outcome, of AML patients with the treatment of drug A
vs. drug B as the first-line treatment. The censoring rules for this study included
(1) switching between drug A and drug B within 2 years’ follow-up; (2) loss to
follow up in the database within 2 years’ follow-up; and (3) 2 years of follow-
up in the database without outcome event of death. We will assess the relevancy
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and reliability of the subset of the patients’ data from ConcertAl that fit with the
inclusion/exclusion criteria, as stated in Table 1.

3.4.1 Relevancy
Assessment of Parameters Related to Estimand Attributes

For patients in ConcertAl with AML, 12.41% (2366/19064) of them fit the study
design inclusion criteria and received drug A or drug B treatments. Within the 2-
year follow-up period, 56.26% (1331/2366) AML patients were deceased, 0.21%
(5/2366) AML patients switched between drug A and drug B (for simplicity issue,
we only considered switching between Drug A and B), and 13.06% (309/2366)
AML patients were censored for loss to follow-up. In addition, 30.47% (721/2366)
AML patients were censored after 2 years’ follow-up.

In this study cohort of patients, 31.15% (737/2366) received drug A as first
line treatment and 68.85% (1629/2366) drug B as first line treatment, respectively.
Eight confounders with the assessment scores were identified for the cohort from
ConcertAl. Patients with missing confounding variables were assessed, and the
results are as follows (% shown as available data):

» Five patient characteristics: age (100%), gender (100%), race (80.81%), BMI
(79.37%), ECOG (17.58%)

¢ One concomitant treatment: Posaconazole (12.85%)

¢ Two comorbidities: diabetes (13.23%) and CHF (6%)

Generalizability

Acute myeloid leukemia (AML) is a malignant disorder of the bone marrow
which is characterized by the clonal expansion and differentiation arrest of myeloid
progenitor cells. The age-adjusted incidence of AML is 4.3 per 100,000 annually in
the United States (US). Incidence increases with age with a median age at diagnosis
of 68 years in the United States. Differences in patient outcomes are influenced
by disease characteristics, access to care, including active therapies and supportive
care, and other factors. AML is the most common form of acute leukemia in adults
and has the shortest survival (5-year survival = 24%) [19].

In this study cohort, the male to female ratio is 1.24 (1308/1058), which is very
close to the estimated ratio 1.25 in the United States [20]. However, the average age
of AML diagnosis is younger (63 £ 14 years) in the study cohort than that (68 years)
in the United States. It is uncommon that the people are diagnosed with AML before
age 45. However, 11.75% (278/2366) patients were diagnosed with AML before age
45 in the study cohort.

In addition, 0.8% (19,064/2,192,910) AML prevalence of cancers in ConcertAl
is close to the 1% AML prevalence of cancers in the United States. The 2-year
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survival rate for the AML patients since the treatment initiation in this study cohort
is 40.3%, which is slightly higher than the estimated 34.1% (since diagnosis) for
AML patients of all ages as posted on the SEER website at NCI [21].

3.4.2 Reliability

The quality and data density of this study cohort were evaluated for reliability based
on the definition in Table 3. Note that data quality, syntactic accuracy, and data
consistency are research question and RWD source-dependent, and we provide a
few illustrative assessment calculations specific to the hypothetical study design in
Table 1.

Quality

Three quality metrics were evaluated for data quality:

e Completeness
Age, BMI, ECOG, and Posaconazole treatment (concomitant treatment) were
considered as the critical variables to evaluate the data completeness. For
confounders in Table 2, all the AML patients had age values and decent number
of patients (79.37%) had BMI value in the study cohort. But only a small number
of patients in this cohort had ECOG scores (17.6%) or Posaconazole concomitant
treatment (14.0%). Based on the specific research questions, practitioners could
identify other or additional key confounding variables to check on magnitude of
missingness.
* Syntactic accuracy
In RWD, some patients had the death date prior to the last observation date
in ConcertAl. This scenario is common with date in RWD. The reasons could
be incorrect input of death date or the delayed data entries for prescription fill,
laboratory test, diagnosis in EHR system, or the incorrect patient linkage. In this
study cohort, 57.44% (1359/2366) AML patients had death date prior to the last
observation date and the death date was set as the last observation date for these
patients. Based on the specific research questions, practitioners could identify
additional key study variables and check on syntactic accuracy, such as plausible
range of values for these variables.
» Consistency
To evaluate consistency, we chose BMI and related height and weight in
deriving BMI. The height and weight of patients in the study cohort were
extracted from the database and then we calculated the BMI based on the
formula BMI = kg/m2. Among the 2366 AML patients in the study cohort,
71.4% (1689/2366) AML patients had height value(s) and 92.6% (2190/2366)
AML patients had weight value(s) at the baseline. The height and weight closest
to the index date were selected and BMI (calculated BMI) were obtained for
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1687 patients. Among the 1878 AML patients with recorded BMI in the study
cohort, only 1348 AML patients had both the calculated BMI. Among 1348 AML
patients, 25% (337/1348) had the BMI difference greater than 1 between the
calculated BMI and recorded BMI.

Data Density

Data density was evaluated across four domains in this study: cumulative follow-
up, clinical visit, laboratory test, and disease symptoms, where fatigue, fever, and
weight loss were considered the disease symptoms. This is a way to assess the time
factor in data relevancy, how often patients’ information is captured in the RWD
source, and the ability of using such an RWD source to answer a research question.

Based on the censoring rules, the last visit was defined as the death date if the
patient was deceased within the 2 years’ follow-up period, or the date switching
drug A and drug B within the 2 years’ follow-up period, or censoring date within
the 2 years’ follow-up period, or the date of 2 years post the index date if the patient
was deceased after 2 years post the index date or the last observation date was after
2 years post the index date.

¢ Cumulative follow-up
The cumulative follow-up for each patient was defined as from index date to
the censoring date in the database. The median follow-up time is 1.02 years for
this study cohort.
* Clinical visit
All encounter visits during the follow-up for each patient were collected.
Based on the algorithm in Table 2, the standardized average number of clinical
visit per patient is 31 visits in 2 years in this study cohort.
* Disease symptoms
We selected fatigue, fever, and weight loss as disease symptoms for each
patient in this study. Based on the algorithm in Table 2, the standardized score is
2.6, which may be underestimated than expected. The reason might be because
the disease symptoms are usually not captured as structured data in clinical care
setting but described in the clinical notes by physicians. To have more complete
disease symptoms, natural language processing may be utilized to identify the
disease symptoms from clinical notes.
* Laboratory test
Due to the complications of laboratory test, we reviewed the laboratory
test names and categorized the laboratory test as blood count, fluid test, urine
test, prothrombin time (PT), specimen, stool, and other. The data density for
laboratory test was assessed based on the categorized data of laboratory test.
Based on the algorithm in Table 2, the standardized data density score for lab test
is 12, i.e., on average, each patient from the study cohort had about 12 lab tests
in 2 years.
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4 Discussions and Conclusion

Following the semi-quantitative approach as developed by Levenson et al. [12] and
the implementation example by Kalincik et al. [9], we have applied the concept and
implemented the same in a case study using ConcertAl database.

In assessing relevancy, we started with assessing the number of relevant diseased
patients in the database. If there is insufficient number of subjects fitting the disease
conditions in the database as required in addressing the research questions and
the associated sample size needed, then there is no point in moving forward with
additional assessment for this data source. This is what we coined as a stepwise
semi-quantitative approach. Next, we checked on whether certain key variables for
relevancy assessment were collected in the database and how much missingness for
such key variables. For this hypothetical research question, we found that there are
a couple of key confounding variables with a large amount of missing data, such
as ECOG status. For posaconazole use or diabetes status, often as the convention
in RWD source, clinicians would assume that not ascertaining posaconazole use or
diabetes status meant that patients were not using posaconazole or their diabetes sta-
tus is no. However, the assumption needs to be carefully assessed. Further, to assess
whether the results from this research based on ConcertAl could be generalized to
the AML patient population at large, we selected a few key epidemiologic factors,
such as male to female ratio, incidence, and death rate in this cohort of patients. As
can be seen, the assessment of generalizability is greatly dependent on the research
question and disease under study. Practitioners should make your own judgement
on how this dimension could be assessed.

In assessing reliability, from completeness, syntactic accuracy, and consistency
perspectives, we also selected a few key variables that are relevant to the research
questions at hand. Practitioners should select variables they deemed important
to answer their research questions. This is what we did, by selecting a few key
variables to demonstrate completeness, syntactic accuracy, and consistency, with
the understanding that it may be not possible to check all the variables that were
collected in a database. We modified the concept of data density, as originally
proposed by Kalincik et al. [9], to fit with our research question. We believe that
the concept of data density is a very important one, to gage on the richness of
the database, longitudinality of the follow up, and frequency of key information
ascertained. Practitioners could identify fit-for-use data density measures of their
own based on the principles as discussed in this section.

In conclusion, we implemented a case study to assess a fit-for-use RWD source
to answer a hypothetical research question. The assessment revealed that this RWD
source may not be fit-for-use for the research question due to the following data
relevancy and/or reliability issues we identified:

* A few key confounding variables have a large amount of missing data.

e The median follow-up time is only 1.02 years for a 2-year study. It means that
50% of patients in this cohort has discontinued at 1 year, making assessment of
overall survival at 2 years quite inaccurate.
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However, we believe that such assessment may have an element of subjectivity
to it. Sponsors may need to engage regulators to have such a discussion on the data
source, providing rationale and justification based on the guiding principles and
assessment details, as delineated in this chapter.

Further research and additional implementation case studies may still be needed
to guide practitioners to fully understand the development of assessment algorithms
based on specific research questions, the rationales and justification for assessment,
and any available regulatory feedback on RWD sources that were deemed fit-for-use
or otherwise. In chapter “Applications Using Real-World Evidence to Accelerate
Medical Product Development”, six case studies are presented. Of a few case studies
in that chapter, FDA reviewers deemed the RWD sources as adequate and fit-for-use.
However, additional details on the justification of making such a conclusion are not
available to the chapter authors for further delineation in the chapter.

Disclaimer This chapter reflects the views of the authors and should not be construed to represent
FDA'’s views or policies.
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Key Variables Ascertainment )
and Validation in RW Setting oo

Sai Dharmarajan and Tae Hyun Jung

1 Introduction

In real-world data, it is important to assess whether the outcome of interest is
being correctly captured and captured consistently in a way that it is accessible.
For example, in imaging data, the frequency of imaging evaluation should be
adequate to provide a reasonably precise measure and to enhance the consistency of
image assessment [1]. At the same time, these real-world data should be accurately
ascertained. Ascertainment is difficult not only because there are multiple types of
outcomes but also their methods for ascertainment vary by data sources.

More generally, studies in real world data sources must first include a conceptual
definition for key variables that define the inclusion and exclusion criteria of study
population, exposure, outcome, and key confounders. The conceptual definition
should reflect the current clinical or scientific thinking about the variable. For
example, this could be the clinical criteria to determine if a patient has a condition
that defines the study population, outcome, or key covariate or the measurement
of drug intake that defines the exposure. Based on the conceptual definition, an
operational definition should then be developed to extract the most complete and
accurate data from the data source. An operational definition essentially translates
a theoretical, conceptual variable of interest into a set of specific operations or
procedures that define the variable’s meaning within a specific study and available
data sources. In many studies using electronic health record (EHR) or medical
claims data, the operational definition will usually be an algorithm constructed
using structured data elements such as codes indicating the presence of a diagnosis,
medical procedure or medication dispensation. For example, for identifying the
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presence of diabetes, an operational definition may be an ICD code for the diagnosis
of diabetes. In some other instances, the algorithm may be constructed using
relevant information derived from unstructured data occurring as free-text such as
clinical progress or discharge notes in combination with structured data elements.
Additional linked data, such as a patient survey, may also be used to specify an
operational definition.

The operational definition is often called the phenotype definition, with the
underlying clinical characteristic or concept being the phenotype. When a clinical
characteristic can be ascertained using an operational definition solely from the
data, either using structure or unstructured elements, in EHRs or any other clinical
data repository (including disease registries, claims data) it is called a computable
phenotype [2]. The word computable stemming from the fact that these can be
ascertained using a phenotype definition composed of data elements and logic
expressions (AND, OR, NOT) that can be interpreted and executed by a computer,
without the need for human intervention in the form of a chart review. Computable
phenotypes along with their definitions are important as they can be standardized to
facilitate identification of similar patient populations and enable efficient selection
of populations for large-scale clinical studies across multiple health care systems
and data sources [2].

The development of phenotype definitions is discussed in detail in the next
section, but it is important to note that computable phenotype definition should
include metadata and supporting information about the definition, its intended use,
the clinical rationale or research justification for the definition, and data assessing
validation in various health care settings [3]. In terms of regulatory considerations,
the computable phenotype definition should be described in the protocol and study
report and should also be available in a computer-processable format. Clinical
validation of the computable phenotype definition should be described in the
protocol and study report [4].

In the subsequent sections of the chapter we first provide an overview of available
and commonly used methods for ascertainment of key variables, followed by a
discussion of the importance and role of validation. We then lay out some special
considerations for three types of key variables: exposure, outcome, and confounders.
This is followed by a detailed discussion of a published example of RWE in the
post-market setting. Specifically, we walk through the ascertainment and validation
of key variables in studies conducted using RWD sources to successfully fulfill a
post-marketing requirement. Finally, we present a discussion of the key takeaways
and important learnings.

2 Methods for Ascertainment

Identifying patients with certain clinical characteristics of interest (outcome, expo-
sure or other key variable used for cohort definitions) in real world data sources
require looking for patterns throughout the patient’s record suggestive of those
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characteristics. Here, we describe the methods used for ascertainment of clinical
characteristics in data sources where direct ascertainment of the characteristics
through a single variable is not possible, most notably in EHR and administrative
claims databases.

2.1 Rule-Based Methods

The traditional approach to ascertainment has involved specifying inclusion and
exclusion criteria or rules based on structured data elements such as diagnosis
codes, medications, procedures, and lab values using criteria often drawn from
consensus guidelines around diagnosis and treatment [5]. These methods are often
termed as rule-based methods. A well-established example is the identification
of Type 2 Diabetes for which the requirement may include at least one mention
of the diagnosis code, evidence of at least one hypoglycemic medication, or an
HbAlc above a certain threshold [6]. Oftentimes, multiple instances or mentions
of diagnoses, or the occurrence of a diagnosis along with a medication or lab
value are required to ensure that “rule-out” diagnoses that are recorded for further
confirmation aren’t incorrectly identified as true diagnoses. Rule-based methods
tend to do well when there are clear, reliable diagnosis and procedure codes
that are used often or when there’s a reliable surrogate or proxy. There has
also been some concerted effort to improve the quality of rule-based phenotypes.
Collaborations such as the eMERGE (Electronic Medical Records and Genomics)
network [7] have developed a large catalog of generalizable EHR phenotypes,
including hypothyroidism, type 2 diabetes, atrial fibrillation, and multiple sclerosis,
and have created, PheKB (Phenotype Knowledgebase; available at http://phekb.
org) [8], a repository which facilitates the sharing and validation of phenotypes
in different health care settings and across different coding libraries (see chapter
“Privacy-Preserving Record Linkage for Real-World Data” for more details on
coding libraries). But the scope of rule-based approaches is limited in capturing
more complex phenotypes or when working in less standardized datasets. For
example, Kern et al. [9] found that rule-based queries for chronic kidney disease
among diabetic patients had poor sensitivity with a maximum of 42% when using
seven alternative ICD-9 diagnosis codes. In another instance, Wei et al. [10] showed
that a rule for capturing type 2 diabetes did not identify many true positives when
used at only a single site because patient data were often fragmented across inpatient
and outpatient data repositories.

2.2 Machine Learning (ML)-Based Methods

An improvement on rule-based methods has been made recently by leveraging
machine learning to combine numerous structured and unstructured data elements
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into an algorithm for classifying patients with the clinical characteristic or pheno-
type of interest. The ML-based approaches to build a phenotype can broadly be
categorized into supervised, semi-supervised, or weakly supervised, based on the
requirement of gold standard-labeled data, a fraction of gold standard-labeled data,
and silver standard-labeled data, respectively.

In supervised approaches, the data consist of a ‘gold-standard’ label of the
presence or absence of the phenotype. These labels are usually annotated from
a manual review of patient records but sometimes can also be derived from lab
values or registry data. With these labels, an ML algorithm (e.g., random forest,
Support Vector Machine, artificial neural net) is trained to classify patients with the
phenotype using all the relevant data elements, usually spanning in the hundreds,
as features in the model. For example, Gibson et al. [11] developed an algorithm
for identifying Rhabdomyolysis cases in the IBM Watson EHR database, where
laboratory data was leveraged to come up with gold standard labels. The best
performing algorithm which combined information from diagnosis codes, procedure
codes, and medication using a neural net had an AUC of 0.88. In another example,
Carrell [12] developed a phenotype for Anaphylaxis using manually abstracted
medical chart data as training data.

As manual chart abstraction is resource intensive and often infeasible, and other
sources of gold-standard labels involve challenges of their own, including poor
validity, other ML based methods such as weakly supervised or semi-supervised
methods either completely do away with the requirement of gold standard labels or
require only a limited amount of labeled data, respectively. To minimize the burden
of chart review, semi-supervised methods train ML algorithms with a large amount
of unlabeled data (e.g., unreviewed medical records), together with a small amount
of labeled data. With phenotyping hypertension as an example, Henderson et al.
[13] showed that these methods may slightly underperform compared to supervised
learning methods, but may require only a fraction of the number of reviewed charts
(e.g., AUROCsemi-supervised 0.66, AUROCsuperivsed 0.69 for hypertension).

In a weakly supervised method, a “silver-standard” or noisy label can be easily
extracted from all available records in place of doing a chart review. This silver stan-
dard label is usually a highly predictive but imperfect proxy for the gold-standard,
that is, they have a high positive predictive value, but weak sensitivity. For example,
in a study of systemic lupus erythematosus, the silver standard label for patients
having the condition was four or more disease-specific ICD-9 codes were present in
their record [14]. Well-known examples of weakly supervised phenotyping methods
include PheNorm [15] and the Automated PHenotype Routine for Observational
Definition, Identification, Training, and Evaluation (APHRODITE) [16]. These two
methods differ in their approach for constructing an ML algorithm using the silver
standard labels. In methods like PheNorm, it is assumed that the silver-standard
label follows a mixture model representing actual cases and controls. PheNorm
specifically uses Gaussian mixture-modeling and denoising self-regression with
silver standard labels based on counts of relevant billing codes such as diagnosis
and procedure codes for the condition of interest and free-text mentions of the
condition of interest in clinical notes [15]. With such a method, the authors showed
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that PheNorm achieved comparable accuracy to penalized logistic regression trained
with 100-300 gold-standard labels for four phenotypes [15]. In contrast, the anchor
and learn framework of methods like APHRODITE uses supervised learning
methods trained with a silver standard whose presence unambiguously indicates
the presence of the condition, whereas the absence is uninformative. APHRODITE,
which uses a logistic regression trained using the silver standard label, was applied
to ten phenotypes across three Observational Health Data Sciences and Informatics
(OHDSI) sites in the United States and Korea, and obtained mean recall (Positive
Predictive Value; PPV) and precision (sensitivity) of 0.54 and 0.73 in the United
States, and, 0.46 and 0.24 in Korea [16]. Regional difference in the quality of silver
standard labels likely determined the difference in quality of model performance
[16].

2.3 Text Processing for Phenotyping

As mentioned earlier, a certain amount of key clinical data in real-world data sources
such as EHR databases occur in the form of free text (e.g., clinical notes) or as other
non-standardized (e.g., images or radiology reports). Recent technological advances
in the field of artificial intelligence, including natural language processing and deep
learning, have enabled the extraction and use of this unstructured information to
identify and ascertain clinical characteristics. The most common way to process
text data has been to use an openly available NLP software or pipeline [17] to
map clinical notes, say a discharge summary, into a bunch of medical concepts
within the Unified Medical Language System (UMLS) metathesaurus [18]. These
extracted medical concepts are then engineered into features (e.g., as the number
of positive mentions of the phenotype in a patient’s discharge summary) to be fed
into an ML-based phenotyping approach mentioned in the previous section [19].
Another approach to process clinical notes gaining popularity recently is the use of
word embeddings [20]. Word embeddings typically serve as the input layer to deep
learning models, such as convolutional neural nets, for identifying a phenotype [21].
This approach has shown to have some advantages over the previously mentioned
approach of extracting medical concepts and using them as features [19].

2.4 Ascertainment Through Linkage and Using Proxy

Data linkage of one RWD source to additional sources can be used to increase the
amount of information available on individual patients, improving the capture of
key variables of interest and providing additional data for validation purposes. For
example, Zhang et al. [22] improved the capture of mortality for cancer patients in
an EHR database through a linkage with obituary information. They then validated
this composite by linking to the national death index data and showed sensitivity
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above 80%, specificity above 93%, PPV above 96%, and negative predictive value
above 75.0% across multiple cancer types. Data linkage such as performed in this
study is deterministic, as in the linked records have an exact match to a unique or
set of common identifiers, and the match status can be determined using a single or
multiple step process. Different types of data linkage and other details are discussed
in detail in chapter “Causal Inference with Targeted Learning for Producing and
Evaluating Real-World Evidence” of this book.

Data linkage is also one way to address the problem of missing data. When data
on a key variable are truly missing, it may be possible to identify a variable that
is a proxy for this variable of interest. For example, low-income subsidy status
under the Medicare Part D prescription drug program may serve as a proxy for a
patient’s socioeconomic status. Another example of the use of proxy measures is
for the identification of a tumor burden endpoints such as an achievement objective
response in real world data sources, where information on standardized clinical trial
criteria such as Response Evaluation Criteria in Solid Tumors (RECIST) are not
available. Griffith et al. [23] compared radiology-anchored and clinician-anchored
approaches to RECIST-based methodology in an EHR data source and found the
latter to be infeasible. This proxy has been used in RWE to support the approval
of Ibrance for the indication of male metastatic breast cancer [24], a case which is
discussed in chapter “The Use of Real-World Data to Support the Assessment of the
Benefit and Risk of a Medicine to Treat Spinal Muscular Atrophy”.

Regardless of the method used, it is important to ensure the validity [25] of the
derived phenotype or operational definition in external data and the portability [26]
of phenotypes across health systems and time periods before wide adoption. It must
also be ensured that any algorithm used is not amplifying existing disparities in the
healthcare system [27].

3 Validation

As operational definitions are usually imperfect in the sense that they will not
accurately capture the variable or condition of interest for every subject in the data,
steps should be taken to confirm their validity. The aim of doing so is to minimize
the bias the mismeasurement and misclassification of key variables may cause in the
findings of the study. In order to determine what steps need to be taken and for which
variables, it is important to understand the implications of potential misclassification
of a variable of interest. Thus, it is important to consider (1) the magnitude or degree
of classification or measurement error; (2) whether the error is differential or non-
differential (e.g., misclassification of outcome may occur unequally or equally by
exposure), and, independent or dependent (e.g., misclassifications of exposure and
outcome may be correlated when both are self-reported in the same survey); and (3)
the direction toward which the results might be biased because of the error.

The most thorough way to minimize misclassification error, for example, is
to conduct a complete verification of the variable by checking the variable for
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Table 1 Performance measures of an operational definition for a binary variable

Condition based on reference standard/conceptual

definition
Condition
based on
operational
definition Yes No Total
Yes a (true positive) b (false positive) a+b PPV =al/(a+b)
No c (false negative) d (true negative) c+d |NPV =d/(c+4d)
Total atc b+d N

Sensitivity = a/(a 4 ¢) Specificity = d/(b + d)

each subject using a reference standard of choice and assigning an accurate value.
For example, medical record review may be conducted for all subjects in a study
using EHR data to determine if they met the conceptual definition for having
a clinical condition of interest. However, this may often be infeasible due to
lack of resources. In such scenarios, validation studies need to be conducted to
measure the performance of an operational definition. For the binary classification
case, validation studies focus on measuring performance in terms of sensitivity,
specificity, positive and negative predictive value (Table 1).

As the performance of an operational definition may depend on the data source,
study population, time frame and the reference standard, a validation is ideally
carried out in an adequately large sample of the same study population as a part of
the proposed RWE study. For example, to validate a myocardial infarction algorithm
in the US FDA sentinel system, medical chart reviews and adjudication was done on
a random sample of 143 individuals identified as having an event by the algorithm
[28]. The positive predictive value (PPV), defined as confirmation of occurrence
of the event by adjudication, was 86% in this random sample. In another example,
Desai et al. [29] and Zhang et al. [22] consider the misclassification of cause-specific
mortality outcome due to the information not being well captured in a medical
claims database. Specifically, due to lack of cause of death information in the study
data, the outcome cardiovascular death (CV death) was operationally defined as any
death within 30 days of a major CV event recorded in the database. The authors
assessed the bias implications of misclassification for this variable with a validation
dataset, from the National Death Index data, where information on the cause of
death was available and concluded that there was a possibility for substantial bias in
the estimated treatment effects with their operational definition.

Validation studies can be used in combination with methods for correcting and
adjusting bias due to misclassification and measurement error. Keogh et al. [30]
discuss the complex nature of assessing and correcting for information bias in infer-
ence and present two methods, regression calibration and simulation extrapolation,
to adjust for measurement error, when there is some availability of quantitative
information regarding the measurement error. More complex methodologies to
assess and correct biases for complex cases is presented in Shaw et al. [31].
Lian et al. [32] propose a Bayesian modeling strategy to correct for exposure
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misclassification. They apply their methods to correct for misclassification in
patient self-reported smoking status in a retrospective real-world study of diabetic
nephropathy patients. Using an external validation study to estimate the potential
bias and to assess sensitivity and specificity, they provide bias adjustment in the
comparative analysis. Even if not correcting or adjusting for biases, quantitative bias
assessments, which are a set of sensitivity analyses to assess the impact of potential
biases on a study inference [33], are recommended to demonstrate whether and how
misclassification might affect study results.

More generally, for outcomes or other binary variables of interest, the trade-
off between false-positive and false-negative cases when selecting an operational
definition should be considered and a proper outcome validation approach to
support internal validity of the study should be identified. From a regulatory
perspective, the recently published Draft FDA Guidance for Industry on [4] Real-
World Data: Assessing Electronic Health Records and Medical Claims Data To
Support Regulatory Decision Making for Drug and Biological Products offers the
following advice for sponsors submitting RWE:

Regarding outcome validation, sponsors should justify the proposed validation approach,
such as validating the outcome variable for all potential cases or non-cases, versus
assessing the performance of the proposed operational definition; if the latter will be
done, justify what performance measures will be assessed. The protocol should include
a detailed description of the outcome validation design, methods, and processes, as well as
sampling strategy (if applicable). If a previously assessed operational definition is proposed,
additional information should be provided, including (1) data source and study population;
(2) during what time frame validation was performed; (3) performance characteristics; (4)
the reference standard against which the performance was assessed; and (5) a discussion of
whether prior validation data are applicable to the proposed study.

4 Special Consideration for Key Variables

4.1 Exposure

The definition of medication exposure should include dose, formulation, strength,
route, timing, frequency, and duration. The data source used must be able to identify
the product of interest. This can be done through patient or physician reports, billing,
or procedure codes. Correspondingly, the operational definition used must reflect
the resources available such as the coding system in EHR or claims databases,
with an understanding of prescription, delivery, and reimbursement characteristics
of the drug. For example, in some data, the same billing or diagnostic code may be
used to indicate administering of multiple vaccine, making it impossible to identify
the specific vaccine formulation. Commonly, in EHR and medical claims data
sources, operational definitions for ascertaining exposures are based on structured
data elements which contain codes for the medication dispensed (e.g., National Drug
Codes associated with prescription fills in claims data) or procedure performed (e.g.,
HCPCS J code for inpatient administration of injectables). It is also possible to
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combine information from unstructured data, using medical chart review of notes
in combination with dispensing and prescribing data to confirm patient’s use of
medication after dispensation. Bustamente et al. [34] ascertain aspirin exposure in
a retrospective cohort study of veterans undergoing usual care colonoscopy using
such a method.

As some medications such as vaccines are designed as one-time exposures and
other medications are intended to be used over time, the ability of the data source
to capture the relevant duration of the exposure should be considered. In terms
of ascertainment, the operational definition should address how medication use
will be measured, how potential gaps in therapy and how refill stockpiling will be
addressed, especially in data sources ascertaining exposure through prescription fills
or dispensations.

It is important to note that RWD sources often capture only the prescription fills
or dispensations of drugs, but not the actual exposure to drug, as the latter depends
on patients obtaining and using the prescribed medication. As such, exposures
in these settings are ascertained through a proxy. Thus, validation, where the
exposure classification is compared to a reference standard to produce estimates of
misclassification that can be used in sensitivity analysis or adjusted for is important.
While validating, attention must be paid to all characteristics of exposure, including
duration, dose, and switching. Validation can be done by performing additional
studies in the same population such as by undertaking a survey of study participants
to assess drug intake. In some cases, prior studies such as published reports of
number of people taking vaccines may be relied on to estimate misclassification
rates. Apart from misclassification, other sources of bias stemming from lack of
information such as the unavailability of information on nonprescription drug usage
must also be considered.

4.2 Qutcome

As noted earlier, the conceptual definition of an outcome should reflect the current
medical and scientific understanding and may vary by study. A description of the
conceptual definition in the study protocol should include the signs, symptoms, and
laboratory and radiology results needed to confirm the presence of the condition.
The conceptual definition for anaphylaxis, for example, may include sudden onset,
rapid progression of signs and symptoms, >1 major dermatological criterion,
and >1 major cardiovascular or respiratory criterion. The conceptual definition
may be operationalized using diagnosis (e.g., ICD-9-CM, ICD-10) or procedure
codes (HCPCS), laboratory tests (e.g., identified using LOINC codes) and values
or unstructured data (e.g., physician notes, radiology and pathology reports). The
operational definition description should include the coding system, if any, used in
the data source, the rationale and limitations of the definition and the impact on
misclassification.

The general considerations on validation presented in Sect. 3 apply while
validating the outcome. Perhaps, most importantly, the trade-off between false
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positive and false negative cases must be considered and inform the approach for
validation. For rare disease outcomes, it might be prudent to select an operational
definition with high sensitivity (and consequently, low PPV) and perform complete
verification (e.g., through chart review) of cases to maximize the possibility that all
true cases are captured, and false positives are minimized. In other situations with
a more common outcome (e.g., disease-specific hospitalization), misclassification
through false-positive and false-negative may both happen at a considerable rate. In
these situations, measuring PPV alone would not be enough to inform bias due to
misclassification.

4.3 Confounders

Depending on the type of variable, the specific principles and considerations
described in the above two subsections may apply to a key confounder of interest.
For example, covariates that are medical events such as comorbidities or procedure
utilizations are similar in nature to outcomes, whereas covariates such as concurrent
or past medication uses are similar to an exposure variable in terms of ascertainment
and validation. Sometimes covariates such as family history, lifestyle factors may
need to be ascertained or validated through data linkage to provider or patient
surveys.

5 A Case Study from Myrbetriq® Postmarketing
Requirement

This section introduces an example of rule-based ascertainments of outcome and
exposure in a post-marketing safety study using real-world data. On June 2012,
the FDA approved Myrbetriq® (mirabegron) to treat overactive bladder (OAB) with
symptoms of urge urinary incontinence, urgency, and urinary frequency. During the
premarket clinical development, a number of cardiovascular (CV) and malignant
events were observed in the mirabegron arm compared to the placebo arm. Thus, the
FDA required the Applicant to conduct two postmarketing safety studies to evaluate
the incidence of the adverse outcomes of interest among OAB medication users
[35]. One postmarketing study (PMR 1898-3) primarily focused on the incidence
of CV outcomes during current exposure in patients administered mirabegron. This
study adapted real-world data identified from five data sources in US and European
electronic healthcare databases with appropriate linkage: Danish National Patient
Registry (NPR), Swedish NPR, Clinical Practice Research Datalink (CPRD; UK),
Optum Research Database (ORD; USA), and Humana Database (USA). The CPRD
database included CPRD-linked and CPRD-unlinked. The study design and analysis
results are published elsewhere [36]. In this example, we introduce how the research
partners for each real-world database ascertained and identified the study outcome
and exposure.
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As the study obtained outcomes and exposures from various data sources,
methods applied for identification and ascertainment were different for each
database. However, the study clarified that research partners followed the common
protocol and statistical analysis plan along with site-specific protocols [36]. For
outcomes, the study ascertained the cases through “direct linkage to registries,
medical record review, or physician questionnaires” [36]. Particularly, ORD and
Humana ascertained mortality outcomes through linkage to the national death index
(NDI) [36, 37]. For exposure, the study classified a person-day as current exposure
to the medication if it falls under the days of supply of the prescription or dispensing
with an additional grace period of 50% [36]. This grace period accommodated
patient’s varying adherence to medications beyond the days of supply to adjust
missed scheduled dose or changes in dosing schedule [36]. The total days of supply
were estimated by different methods based on the available information in each
database. Either switching to a newly prescribed medication group from other
treatment group or reaching the end of days’ supply (after applying the grace period)
terminated the current exposure status of a given person—time for treatment group
[36]. To avoid overlap in days of supply between the prescriptions/dispensing, the
authors truncated the first prescription/dispensing on the day before the subsequent
prescription [36]. Brief introductions of each database and their ascertainments of
outcome and exposure are described as follows:

The Danish National Patient Registry (NPR) is a population-based administrative
registry that contains clinical and administrative data from all Danish hospitals since
1977 [38]. In this register, diagnosis codes are entered upon discharge according to
the International Statistical Classification of Diseases and Related Health Problems
10th Revision (ICD-10) and adapted for use in the Danish healthcare system [36,
38]. The authors stated that the outcomes were identified through a direct linkage
to patient registers using ICD-10 diagnosis codes [36]. The Danish NPR did not
have direct information on the days of supply, thus an alternative approach was
used to estimate the exposure, days of supply. A waiting-time distribution was used
to identify maximum interval between two prescriptions deemed as belonging to
the same treatment episode [39, 40]. If any interval was larger than the identified
maximum length, it was considered as a gap in treatment [36]. The accuracy of
AMI and stroke diagnoses was validated through several studies and demonstrated
fairly high PPVs of AMI (81.9-100%) [41-43] and stroke (79.3-97%) [44—47],
respectively.

Similarly, in Sweden, the National Patient Register (NPR) was used to identify
the CV outcomes using ICD-10 diagnosis codes. The Swedish National Inpatient
Register (NIPR) is a part of the NPR launched in 1964 and has completed national
coverage since 1987 [48, 49]. It is known that more than 99% of all somatic
(including surgery) and psychiatric hospital discharges are registered in the current
NIPR. The Swedish NPRs also did not have a direct linkage to the days of supply
information. Thus, the days of supply were estimated by dividing the number of
prescribed or dispensed tablets from the number of daily recommended tablets
[36]. The PPV of AMI ranged between 86-98% [50, 51] and the PPV of stroke
demonstrated 94% [52].
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The CPRD collects deidentified patient data from a network of general practi-
tioners (GPs)’ practices across the UK [53-55]. Its primary care data are linked
to a range of other health-related data to provide a longitudinal, representative
UK population health dataset. The CPRD-linked includes the data from general
practices that permitted hospital and mortality data linkage and the CV outcomes
were identified through a direct linkage to patient registers using ICD-10 codes
[55]. As the CPRD-unlinked does not have this linkage, the potential CV outcomes
were identified using the Read codes [56] and adjudicated by the GPs who provided
care for patients [36]. As the CPRD rarely record days of supply, the total days
of supply was estimated by using a combination of available information such as
recorded number of days of supply, quantity of tablets prescribed, daily dose, and
tablet strength [36]. For explicit records on days of supply, the researchers assessed
the plausibility of the prescription record values against the corresponding values
for the quantity of prescribed tablets and the daily dose for that prescription. If the
value of recorded days of supply did not match with value of the quantity of tablets
prescribed divided by the daily dose, the calculated value was used instead [36].
Physician questionnaire was used to validate the AMI and stroke outcomes [36, 57].

The ORD and Humana database used claims data to identify potential acute
myocardial infarction and stroke outcomes. These outcomes were based on ICD-9
or ICD-10 Clinical Modification (ICD-9-CM or ICD-10-CM) diagnosis codes in the
principal diagnosis position on at least one facility inpatient claim for hospitalization
[2]. For validation purpose, medical record reviews were used to adjudicate these
outcomes for both databases. To identify all-cause and CV mortality, both database
used external linkage to the National Death Index, which is a central computerized
index of death record information on file in the state vital statistics offices [37]. The
primary and underlying causes of death were recorded using ICD-10-CM diagnosis
codes. Unlike the European database described above, the ORD and Humana
database were able to directly capture the days of supply associated with outpatient
dispensing. The researchers calculated the total days of supply by summing days of
supply for all consecutive prescriptions or dispensing of a given medication [36].

The post-marketing study was performed using real-world data collected from
five different sources. As each source had different operational structure for
collecting data, no universal method was applicable to ascertain and validate the
outcome and exposure variables. Thus, each data source used its own methods for
ascertainment and validation.

6 Discussions and Concluding Remarks

Ascertainment of key variables and their validation are the most important steps
in designing a study in RWD once it has been identified that the database is fit-
for-purpose to answer the research question at hand. In this chapter, we covered
the challenges of ascertaining outcomes, specifically, identifying an operational
definition or a computable phenotype in RWD sources, and went through the many
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methods which can be employed. Particularly, with the help of rapid technological
advances, we discussed how all the data available in RWD sources can be leveraged
to identify complex clinical characteristics. While such approaches are encouraging
for the future of RWE, it must be stressed, as done here, that ensuring the internal
and external validity of any approach is of paramount importance. Validation does
not just imply calculating relevant metrics such as PPV and sensitivity but involves
the consideration and assessment of the bias that can be caused by the imperfection
of the operational definition.

We also walked through an example where RWE was used to satisfy post-
marketing safety requirements for an approved drug. The studies conducted by
the applicant used rule-based methods and data linkage to identify outcomes and
exposures in five different RWD sources to answer the same safety question.
Through the example, we highlight how a study can be designed to thoroughly
address the question of ascertainment and validation.

Disclaimer This chapter reflects the views of the authors and should not be construed to represent
FDA'’s views or policies.
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1 Why We Need to Scale Up the Generation and Use
of Real-World Evidence

In recent decades the proportion of health and care information that is captured
within electronic health record systems is steadily growing [1], giving rise to a rich
but fragmented resource of “real-world data” (routinely collected health, care, and
wellness information) from which all stakeholders can discover vital insights [2].

Health systems urgently need to improve their capability to learn from the data
they hold, in order to optimize care pathways, to achieve the best possible outcomes
for patients, make the best use of resources and improve patient safety. This
need for evidence-based improvement includes the increasing societal expectation
of equity of care standards across and between health systems, and between
different population groups (for example equity on the basis of ethnicity, as recently
highlighted by Brown et al. [3]). From a regulatory science perspective, the need
for timely, assured qualifications and approval of ever more complex therapeutic
interventions, especially utilizing both clinical trial data and real-world evidence is
of paramount importance.

The need for public health systems to learn from data has never been more
acutely highlighted than in the COVID-19 pandemic when there was an urgent
need for disease and treatment understanding regarding this new infective threat
[4]. The academic and industry research sectors also need to leverage large-scale
data in order to understand the fine differences between disease sub-populations,
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Table 1 Examples of health system, population health, academic and industry research areas

needing to make use of big health data

Health systems and population health
purposes

Healthcare provider performance and
planning

Health services and resource planning
Quality and safety, care pathway
optimization

Population health needs assessment

N. Hughes and D. Kalra

Academic and industry research purposes
Epidemiology

Disease understanding and stratification
Digital innovation: devices, sensors, apps
Al development

Personalized medicine and bio-marker
research

Personalized medicine services
Pharmacovigilance

Public health surveillance
Prevention and wellness programs
Public health strategy

Diagnostics development

Drug development

Clinical trial planning and optimization
Comparative effectiveness research

for precision medicine [5], and to develop a wide range of personalized therapies
[6], diagnostics, monitoring, and medical devices [7]. Artificial intelligence learning
needs very large data sets in order to deliver precise, accurate, and safe recommen-
dations [8], as well as for training algorithms. Large data sets are also invaluable
for the training of clinical and research personnel. Table 1 lists some examples of
knowledge discovery purposes for which health data is needed, to improve care and
to accelerate research.

The case for combining health data from heterogeneous sources in order to max-
imize this learning opportunity has never been more compelling. The opportunities
are now vast, with electronic health records (EHRs) becoming more sophisticated in
hospitals, specialty care, and primary care, and with a greater proportion of that data
needing to be structured and coded. There is increasing adoption by patients of home
monitoring devices for long-term condition management and other apps that support
them with wellness and prevention [9]. Countries continue to invest in an increasing
number of disease and procedure registries that provide great value for research,
especially in rare diseases [10]. Over the past decade, healthcare funders and
ministries have substantially invested in national scale eHealth infrastructures and
clinical research infrastructures, for example, in Germany and France [11]. There
are also important multicountry data infrastructures already operational such as the
European Union Innovative Medicines Initiative (IMI) European Health Data and
Evidence Network (EHDEN) [12], forthcoming such as the European Medicines
Agency (EMA) DARWIN EU® initiative [13] and the European Commission’s pro-
posals for a European Health Data Space (EHDS) [14]. Globally, the Observational
Health Data Sciences and Informatics (OHDSI) open science collaborative network
has been established to support rapid network studies internationally.

There is already a wealth of valuable research generated through big health
data ecosystems, demonstrating the utility and societal value of leverage of this
knowledge [15]. The European Institute for Innovation through Health Data is
starting to publish summary case studies of health data use, especially for research,
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in order to help communicate these beneficial uses of data to the public and other
stakeholders [16].

Two recent examples of research findings that illustrate the value of large-
scale data access have been published by partners of the OHDSI and EHDEN
networks. A paper published in the Lancet in 2019 by Suchard et al. reported on
small but statistically significant advantages of thiazide diuretics over angiotensin-
converting enzyme inhibitors, angiotensin receptor blockers, dihydropyridine or
non-dihydropyridine calcium channel blockers in the reduction of risk from com-
plications of hypertension, in particular myocardial infarction, stroke, and heart
failure [17]. These very small effects were detected by examining the records of 4.9
million patients treated for essential hypertension across four countries, studying
historical data going back several years. The authors estimated that this research
might have required 22,000 conventionally sized randomized clinical trials and
would have taken many years to generate results as opposed to the months that
they took. In 2022, Li et al. reported on a large data study of patients vaccinated
and unvaccinated for COVID-19, examining the incidence of rare neurological
complications [18]. This study involved over eight million people who had received
at least one inoculation with a COVID-19 vaccination, around three quarters of
a million unvaccinated individuals with COVID-19 infection and over 14 million
general population controls. The study found no increase in incidence of the
purported rare neurological conditions in vaccinated individuals, but did find a small
increase in those complications in individuals who had contracted COVID-19.

In both of these OHDSI and EHDEN supported studies, the large volumes
of health records utilized were not extracted from multiple data sources and
consolidated within a single data repository. Instead, they adopted a well-recognized
federated architecture, in which research queries are cascaded from a central
research point to multiple data sources across countries, to be executed locally on
each data source as a distributed query (often termed, ‘data visiting’). Through this
architecture, only the query results, almost always a numeric frequency distribution
or cross tabulation, is returned to the central point, and further synthesized via meta-
analysis for overall conclusion. This distributed query methodology avoids the need
to transport patient-level data between sites and between countries, which greatly
reduces the risks from a data protection and information security perspective. The
nature of this architecture, and its interoperability requirements, are discussed later
in this chapter.

2 Enabling Health Information Interoperability

It is well recognized that health data is collected through very different hospital,
General Practitioner (GP), patient facing, and other applications, stored in different
Information and Communications Technologies (ICT) products that utilize different
ways of representing health information. However, when conducting evidence
generating research questions across multiple data sources, it is necessary to
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harmonize these data representations first, in order to ensure that the data are always
correctly interpreted. Irrespective of whether data for research is combined into
large data sets and databases, or whether distributed querying (through federated
architecture) is adopted, a common representation of the data is an overarching
requirement. Clinical data standards are therefore essential for enabling the scaling
up of learning from data, for the benefits of care, strategic decision-making, and
research.

The task of representing health data is far from straightforward. This is partly
because of the inherent complexity of health data, which covers many different
categories of information ranging from health history and examination findings
through to laboratory and radiology and genomic investigation results, sophisticated
physical and psychological assessment methods, a diversity of diagnostic and
treatment data types, and monitoring information. Furthermore, health is focusing
more strongly now on wellness and prevention, which not only requires the
collection and analysis of health-related factors but also other influences such as
lifestyle and environmental considerations, which have their own data categories
and representations.

The individual data items that make up these different categories of health
information are themselves somewhat complex to represent, because the individual
data values are held within a rich context that includes the structural organization of
multidimensional clinical observations, accompanying interpretation context such
as whether a finding is present or absent, certain or uncertain, etc., when and
where the information was acquired, its provenance, and visualization management.
This context information may radically alter the meaning of a simple-looking
clinical term, as illustrated by these examples in Fig. 1, which lists many different
interpretations that might apply to a clinical term for chronic obstructive pulmonary
disease (COPD) in an electronic health record.

The EHR will also need to represent provenance information, which is sometimes
important when clinical findings are being interpreted for the generation of real-
world evidence. Interoperability standards should therefore aim to incorporate most
of the information indicated in Fig. 2.

Despite this complexity, health information interoperability standards are rel-
atively mature, capable of representing structure, content, and context faithfully
and therefore to enable the meaningful exchange of information between systems
for continuity of care and the accurate combining of information for knowledge
discovery.

However, the various international standards development organizations that are
active in the health domain, and the standards that they have developed, have
grown in response to particular needs and drivers for interoperability, giving rise
to standards for representing specific kinds of data (such as laboratory findings,
medicines, clinical observations) which have been developed by different organi-
zations at different times and do not necessarily align well when they are used in
combination. This can lead to standards adoption uncertainty and complexity when
eHealth or research infrastructures are being developed, which will need to cover a
wide range of health data types and to represent these using standards.
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A diagnostic code for COPD might be entered in an EHR as:

a new diagnosis confirmed today as a result of lung function tests
a diagnosis suspected today on the basis of a possible history
one of a number of differential diagnoses being considered

the query diagnosis written on an order for lung function tests

a diagnosis excluded today on the basis of the tests

an incorrect diagnosis made by an inexperienced junior clinician
the indication for a flu vaccine

the condition from which the patient's mother suffers

a risk because of family history or lifestyle

a worry the patient has

because it has a higher reimbursement than asthma

a data entry error that has been corrected

Fig. 1 Different possible interpretations of a diagnostic code for chronic obstructive pulmonary
disease that could be conveyed through context information within an EHR

To trust data in a shared record environment we also
need to know:

Provenance
robust patient identification, handling duplicates, reliable
cross-provider linkage
authorship and author credentials
date and time, date formats and time zone
data integrity: units of measurement, term lists and terminology
systems, drugs databases...

Traceability
version history: confirming the latest version
reasons for changing records: typo correction, update, change of
clinical opinion, disproved...
system, sub-system and repository history, system updates, roll
back

Security

« access controls

+ indelible audit trail

« adequate protection and backup

Trustworthy data is needed for trusted use

Fig. 2 Provenance, traceability and security context information usually represented within an
EHR system
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It is important for those responsible for making standard adoption decisions to be
aware of the different kinds of standard, and standards development organization,
within the health data ecosystem in order to make wise adoption decisions. The
next section summarizes some of the major organizations that develop health data
standards and highlight some of the main standards.

It is first helpful to distinguish

(a) Standards that have been developed and are largely used for the point-to-point
communication of patient-level data, for example, to support continuity of care
for individual patients.

(b) Standards that are used for patient-level data, but exclusively in a clinical
research (clinical trial) context and not used in routine healthcare.

(c) Standards that specify the representation of data for analysis purposes, which
still represent patient-level real-world data, but are optimized for population
level use of the data in generating real-world evidence.

For each of these interoperability use cases, the standards themselves may focus
on representing the data from one or more of these well recognized perspectives.

* Technical or structural (syntactic) interoperability, which focuses on the orga-
nizational structure of a health record or a clinical data set, the relationships
between parts of complex data structures and the detailed organizational structure
of health data types such as measured quantities.

* Semantic interoperability which represents the meaning of data items and their
observed values, which itself comprises some different layers

— Terminology systems which represent part or all of the clinical meaning
landscape with particular emphasis on textual data

— Measurement units and other term lists that specify the interpretation of
quantities and complex multimedia data types

— Detailed clinical models that specified the aggregation of data items to
represent the complete documentation pattern for an EHR entry, such as a
prescribed drug that combined several individual data items such as the drug
name, dose, frequency, etc.

The above list focuses on the representation of the health data. There are many
other standards that specify how information should be stored, or telecommunicated,
and others that specify how the information should be protected from an information
security perspective.

The complete implementation of an RWE generation ecosystem will need to
utilize standards from all of these areas. It is beyond the scope of this chapter to go
into detail on all of them. The section below summarizes the standards development
organizations, and example standards that they publish and support, that are most
widely used for the representation of various kinds of health data. Although this
chapter focuses on Real-World Evidence generation, for which the standards that
represent data for analysis would be the most relevant, it is important to recognize
that the standards used for healthcare interoperability are also relevant because they
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are likely to be supported (e.g., as export formats) by the systems such as EHR
systems from which the health data will originate (as Real-World Data).

3 The Main Standards Used to Support Continuity of Health
Care

The following standards are primarily used for the representation and communica-
tion of routinely collected clinical information, often within and between electronic
health record systems.

3.1 Health Level Seven (HL7)

HL7 [19] is an international community of health care subject matter experts and
information scientists who work together to create accredited standards for the
exchange, management, and integration of electronic health care information. The
HL7 community is organized in the form of a global organization (Health Level
Seven, Inc.) and country-specific affiliate organizations. HL7 is supported by more
than 1600 members from over 50 countries, including 500+ corporate members rep-
resenting health care providers, government stakeholders, payers, pharmaceutical
companies, vendors/suppliers, and consulting firms. HL7’s standards are accredited
by the US ANSI organization and many HL7 standards have also been adopted as
ISO standards.

Its early standards were for the representation of messages to communicate
information about a patient’s admission to a hospital, discharge or transfer between
care providers, laboratory information, treatment information, and some specialized
health information exchanges. In the mid-1990s, HL7 initiated a family set of
standards based on a common Reference Information Model (HL7 RIM). A wide
range of message models were developed during the 1990s and have had varied
success in the marketplace. One particular model that has been taken up by many
health systems worldwide is the Clinical Document Architecture (CDA). In more
recent years, HL7 has developed and is now rapidly promoting the use of smaller
building block models known as Fast Healthcare Interoperability Resources (FHIR),
which are proving more popular with industry and with national health programs
because of their flexibility and lower cost of adoption.

Most data elements exchanged by HL7 standards are encoded in a terminology
created and supported by other standards organizations such as SNOMED, LOINC,
or WHO. HL7 also actively collaborates with other accredited healthcare inter-
national and country-specific standards groups that address information domains
outside of HL7’s.
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3.2 The International Organization for Standardization (ISO)

Technical Committee 215 of the International Standards Organization (ISO) on
Health Informatics was formed in 1998 following a decade of increasingly interna-
tional cooperation among health informatics standards organizations [20]. The par-
ent ISO organization is based in Geneva, and has the status of a non-governmental
organization, recognized by law in many countries. ISO accepted the United
States’ offer to hold the Secretariat for TC 215; the Secretariat is managed by
HIMSS (Healthcare Information and Management Systems Society) on behalf of
ANSI (American National Standards Institute) who is the US member to the ISO
community.

The scope of TC 215 includes architecture, frameworks, and models; systems and
device interoperability; semantic content; security, safety, and privacy; pharmacy
and medicines business; traditional medicine; personalized digital health, artificial
intelligence. Example standards that have a high profile within the technical
committee include ISO 13606 for Electronic Health Record Communication [21],
ISO 13940 System of Concepts for Continuity of Care [22], and ISO 12967 Health
Informatics Service Architecture [23].

While de novo standards are created within TC 215 working groups, increasingly
the Technical Committee is recognizing, harmonizing, or adopting standards efforts
among related standards development organizations. Internationally recognized
agreements exist for the European CEN TC251 and HL7 to “fast track” standards
balloted in those organizations. A newly established Joint Initiatives Council
includes these fast-track organizations in addition to CDISC and SNOMED, to
further strengthen international collaboration and synergy among international
health information standards organizations.

3.3 SNOMED CT

SNOMED [24] (Systematized Nomenclature of Medicine) International is a not-
for-profit organization that owns and maintains SNOMED CT, stated to be the
world’s most comprehensive clinical terminology. As stated by SNOMED Inter-
national, “SNOMED International plays an essential role in improving the health of
humankind by determining standards for a codified language that represents groups
of clinical terms. SNOMED CT enables healthcare information to be exchanged
globally for the benefit of patients/citizens, care providers and other stakeholders.”
[25]

SNOMED was initiated by the College of American Pathologies (CAP) in 1973
and revised into the 1990s, but in 1999, CAP’s SNOMED Reference Terminology
(SNOMED RT) was merged and expanded with the United Kingdom’s National
Health Service Read Codes (a coding system predominately used in primary
care electronic health record systems) to produce SNOMED Clinical Terminology
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(SNOMED CT). The structure of SNOMED CT differs from prior versions, based
on sub-type hierarchy, supported by defining relationships based on description
logic, versus a hierarchical classification system used before. A main use case of
SNOMED CT is as the core terminology for electronic health records, covering
clinical findings, symptoms, diagnoses, procedures, body structures, organisms and
other etiologies, substances, pharmaceuticals, devices, and specimens. The January
2020 release of SNOMED CT includes more than 350,000 concepts and cross
maps to other terminologies, such as ICD-9, ICD-10, LOINC, and supports ANSI,
DICOM, HL7, and ISO standards. SNOMED CT enables information input in to
an EHR system during the course of patient care, while ICD facilitates information
retrieval, or output, for secondary data purposes.

SNOMED CT consists of four primary core components: (1) concept codes,
which identify clinical terms via numerical codes; (2) descriptions, which are textual
descriptions of concept codes; (3) relationships, between concept codes that have a
related meaning; and (4) reference sets, used to group concepts or descriptions.

3.4 LOINC

Logical Observation Identifiers Names and Codes (LOINC) is a database and uni-
versal standard for identifying medical laboratory observations, initially developed
by the Regenstrief Institute, a US not-for-profit medical research organization, in
1994. It has expanded to include nursing diagnosis, nursing interventions, outcomes
classification, and patient care datasets beyond the original focus on medical
laboratory codes [26].

LOINC’s primary use case is to assist in electronic exchange and gathering
of clinical results, comprising two parts, (1) laboratory LOINC, and (2) clinical
LOINC. In 1999, the HL7 Standards Development Organization recommended
LOINC as a preferred code set for laboratory test names in transactions between
healthcare facilities, laboratories, laboratory testing devices, and public health
authorities.

3.5 The International Classification of Diseases (ICD)

The World Health Organization maintains an international classification of diseases
that has been utilized for over a century for the systematic recording, analysis,
interpretation, and comparison of mortality and morbidity data collected in different
countries or regions and at different times. It has served the epidemiological and
public health fields, and governments, to enable insights into disease causation,
prevalence, and distribution and therefore informed the design of health systems,
awareness of unmet health needs, public health strategies, and prevention program-
mers.
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The latest version of the ICD, ICD-11, was adopted by the 72nd World Health
Assembly in 2019 and came into effect on January 1, 2022. It is a significant
advance on prior releases by being both a classification, its original purpose, and
a terminology system that can provide multilingual vocabularies for clinical and
public documentation in registries, electronic health record systems, and prevention
information systems [27].

The WHO also maintains the International Classification of Functioning, Disabil-
ity and Health [28] (ICF) and the International Classification of Health Interventions
[29] (ICHI), which are similarly used on a worldwide basis in multiple languages.

3.6 DICOM

Digital Imaging and Communications in Medicine (DICOM) is the standard for
communicating and managing medical imaging information and related data. Orig-
inally developed by the American College of Radiology (ACR) and the National
Electrical Manufacturers Association (NEMA) in the early to mid-1980s. It was
originally the output of the combined standards committee of both organizations,
with the third substantive iteration being known as DICOM 3.0 in 1993, to
differentiate it from prior versions, but also to identify it as a fully-fledged standard
[30].

Large-scale deployment was initially with the US Army and Air Force, as part of
the Medical Diagnostic Imaging Support (MDIS) program, and in the first military
Picture Archiving and Communication System (PACS). The main focus to date has
been utilization with imaging equipment vendors, and healthcare IT organizations,
and utilization of other standards in addition of DICOM are necessary for clinical
applications, and for research, such as IHE, HL7, FHIR, or SNOMED CT.

3.7 IHE

Integrating the Healthcare Enterprise (IHE) is a non-profit organization in the
United States, established in 1988 by a consortium of radiologists and information
technology experts. IHE created and facilitates interoperability improvements for
health care IT systems. The IHE group collects use cases, case requirements, identi-
fying available standards, developing technical guidelines which manufacturers can
implement, focusing on a clinical information need or clinical workflow scenarios
[31].

IHE is recognized by ISO as a Standards Development Organization, although
it mainly develops profiles of other standards to be used, often in combination,
to achieve interoperability for specific use cases. The profiles are recognized
in themselves as standards. For example, IHE promotes the coordinated use of
established standards, such as HL7 and DICOM, to optimize clinical care.
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There are numerous standards developed for differing aspects of health data, for
instance, National Drug Codes (NDC) of the FDA [32], which serves as its identifier
of drugs, with a publication of the listing in the NDC Directory and updated daily.
The WHO hosts a similar Anatomical Therapeutic Chemical Code (ATC) directory
[33], with codes assigned to a medicine according to the organ or system it works
on and how it works.

A whole class of procedure codes designed to identify surgical, medical, or
diagnostic interventions with a variety of coding systems, such as SNOMED CT,
as described above (3.3), but also ICD-9 and ICD-10 procedure coding [34], as
referred to above too (3.5), initiated by the US Centers for Medicare and Medicaid
Services, in collaboration with 3M Health Information Systems in 1995, with the
now current ICD-10-PCS, updated annually since 1998.

Internationally we are seeing a coalescing of standards, with an emphasis
on interoperability of standards, versus development of additional, ad hoc, new
standards. As we seek interoperability of our data capture, data communication,
clinical interpretation, and utilization for research, we need to utilize common
standards locally, nationally, and globally. A critical issue to date has been the
lack of standards adoption in extremis, with the need for wider implementation and
agreement between differing healthcare system stakeholders via common standards
use.

Increasingly, specific standards, most covered in this chapter, are being mandated
by authorities, regulators, manufacturers, and research organizations or collabo-
rations. The development of research networks is also reinforcing the need and
use of specific standards to facilitate interoperability, syntactic and semantic, to
enhance efficiencies in research and standardization of the research process, from
data harmonization, methods to analytics. This is also a need in the regulatory
domain, both for evidence-based decision-making and rapid research requirements,
such as pharmaco-surveillance or risk management.

4 The Main Standards Used to Support Clinical Trials

4.1 CDISC

The Clinical Data Interchange Standards Consortium (CDISC) is a standards
developing organization working to, “enable information system interoperability to
improve medical research and related areas of healthcare.” [35]

Since initiating as a voluntary initiative in 1997, and then through a not-for-
profit organization, CDISC has iterated multiple standards, foundational, for data
exchange and in specific therapeutic areas. Evolving work on HL7 FHIR to CDISC
has produced an initial joint mapping implementation guide from the former to the
latter, facilitating use of real-world data with, e.g., clinical trial data, but further
development is required. Unlike the healthcare standards referred to above, CDISC
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standards cover both interchange and data content (storage), which can be used. The
standards utilized support a model for planning (Protocol Representation Model,
PRM), a model for data collection (CDASH), a Study Data Tabulation Model
(SDTM) defining the structure, attributes, and content of study datasets, an Analysis
Dataset Model (ADaM), and Operational Data Model (ODM) and a series of
vocabulary and content (Therapeutic Area) standards.

CDISC standard and processes are required by the United States’ FDA and
Japan’s PMDA, facilitating efficiencies in the approval times following clinical
research from data capture and exchange through to analytics.

4.2 Federated Data Networks

Essentially, a Federated Data Network (FDN, sometimes referred to as distributed
data network) is a managed architecture that allows for the sharing of mutual
resources for RWD use, for primary or secondary care settings and clinical care
decision-making as well as research use, whilst preserving the primacy of the
RWD at a local level. Data is not moved from its source hosting, (though hybrid
models can exist with local and central data hosting), with the research question or
query moving to where the data is originally hosted, with aggregation of the results
centrally or delivered to the researcher, so-called data visiting [36].

It is a sociotechnical construct, including the technical architecture and tools to
facilitate the network, with governance aspects (socio), based on agreements, codes
of conduct, and adherence to legal and privacy requirements (such as the EU General
Data Protection Regulation—GDPR [37]) through privacy by design, facilitating the
community’s use of the data in the network.

The technical architecture in an FDN allows for source data to remain secure
behind its sociotechnical firewalls, i.e., technical security through to approvals
and ethical oversight. Web-based tools and technologies mean source data can be
analyzed where it remains, especially if it is organized in such a way as to facilitate
this, e.g., via a common data model (CDM, see later), supported by central portals
and management, inclusive of metadata-driven catalogs.

Though different in sociotechnical aspects, FDNs such as the FDA’s SENTINEL
[38], PCORNET [39], OHDSI [40], IMI ADVANCE (now being sustained and
maintained by the vac4EU initiative [41]), IMI ConcePTION [42], IMI EHDEN
(European Health Data & Evidence Network) [12], and commercial providers,
and the future European Medicines Agency’s DARWIN EU (Data Analysis and
Real-World Interrogation Network) [13] and proposed legislative EHDS (European
Health Data Space) [14] already exist or are being built in open science or
commercial communities. Use of such principles as FAIR [43], (findable, accessible,
interoperable, and reusable) data, provides the framework for exploiting the benefits
of an FDN, enabled by the use of CDMs, metadata, standardized analytical tools,
and fit for purpose methodologies, and in particular data discovery (Fig. 3).

The FDN framework may particularly suit the European Union’s need across
diverse and heterogenous Member States with varying degrees of digital maturity.
Ultimately, a hybrid of centralized and federated approach is likely. There may
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Fig. 3 Schematic of exemplar FDN. (Source: EHDEN [12])

be technical and methodological reasons for using a centralized data hosting
architecture, albeit within a federated network, such as central databases or data
lakes. For the needs of European healthcare systems, clinical care, and research, a
mixed ecology of architectures will most probably support a diversity of needs and
use cases.

While centralized data architectures have existed for some time, whether
databases, data warehouses, or data lakes, this has been prohibitive in expense and
resources, especially at scale, and with increasing scrutiny and legal, governance,
and privacy restrictions, more complicated for the data custodian or controller
and researcher with regards to data sharing and networking. Certainly, within the
European landscape, increasing responsibilities cause additional overheads for
central architectures. Moreover, the need for transparency in the use of real-world
health data means open science sociotechnical architectures are needed, versus
proprietary and/or black box approaches, especially from a regulatory perspective.

This may be related to privacy concerns, but also for instance the need by
regulatory authorities to understand the analytical path from source data to evidence.
Europe as a consortium of 27 Member States, and as such broad, network research
require porous digital borders, as is the case for data portability to support
patient mobility, necessitating federated approaches to overcome these difficulties,
particularly in allowing remote, secure interrogation, but not movement of data.
Moreover, being able to utilize a CDM to harmonize languages is also an advantage
in network, multisite studies across borders, albeit common coding at source across
the EU would be ideal, but unlikely.

A concern expressed by some is the contemporaneous nature of the data being
mapped, i.e., how often is it refreshed following the original mapping to a CDM.
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This is highly dependent on the source data custodian’s refresh cycle, and this can
vary between, e.g., on a 24-hour cycle to weeks or months, but many aspects of the
mapping refresh, inclusive of for iterations of the CDM itself, can and are being
increasingly automated.

Access to data is more about the terms of access, rather than direct access
to RWD. The administrative burden, for instance, for approvals and contracts
in conducting real-world, and especially network studies, is significant and well
known to those conducting such research. Though clear governance requirements
are a necessity, there needs to be mechanisms to address the administrative burden
associated with them, and indeed models, such as Data Permit Authorities (DPAs),
for instance, FinData [44] in Finland, or the French Health Data Hub [45] may point
to a potential construct to do so.

4.3 What Is a Common Data Model, and Why Use One?

A CDM is essentially a construct, a means to an end to help organize RWD into a
common structure, formats, and terminologies across diverse, heterogeneous, and
multiple source datasets. It addresses a central need to be able to curate data for
analysis on a contemporaneous and continuous basis, not on a per study basis, or for
large-scale, geographically diverse, network studies of multiple data sources [29].

This inevitably has benefits with regards to reducing the latency and resource
requirements overall to conducting research at scale and ensuring quality more
rapidly, versus other methods, especially in supporting an FDN (though CDMs
can be used for centralized databases too). The mapping process itself inherently
incorporates data quality audit of both the source and the CDM-mapped data, with
iterative stages per mapping cycle and over time.

A key concept is the need to standardize data which has been collected, stored,
and curated differently, whether in an institution, or across data sources, up to an
international scale. The CDISC standard, utilized especially for randomized clinical
trials (RCT), is a common data model, facilitating regulatory authorities such as the
FDA to receive, analyze, and opine on diverse studies across the pharmaceutical
industry. The SENTINEL CDM was designed to address the need to do the
same for RWD with an emphasis on regulatory pharmacovigilance in the United
States, and the Observational Health Data Analytics and Informatics (OHDSI)
global collaboration’s Observational Medical Outcome Partnership (OMOP) CDM
is facilitating a global open science network, amongst others [29].

The FDA created the Sentinel Initiative to meet a mandate by Congress in the
FDA Amendments Act of 2007. Through the Sentinel Initiative, FDA aims to
develop new ways to assess the safety of approved medical products, including
drugs, vaccines, and medical devices [30] (Fig. 4).

The Sentinel System helps to answer the FDA’s questions on approved medical
products. It does this by creating algorithms that analyze electronic healthcare
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data, using statistical methods to study relationships and patterns in medical billing
information and electronic health records.

Within the Sentinel System is the Active Postmarket Risk Identification and
Analysis System (ARIA). The ARIA system has two main components. The first
component is the healthcare data formatted in the Sentinel CDM. The second
component includes analytical tools for internal analyses. Congress mandated ARIA
in the United States FDA Amendments Act (FDAAA) of 2007 [46]. ARIA is the
most widely used portion of the Sentinel System.

FDA-Catalyst supplements the Sentinel System. The data FDA-Catalyst provide
come from interactions with patients and/or providers. FDA-Catalyst combines this
data with data included in the Sentinel infrastructure.

Standardization can ensure that diverse data is broadly mapped to common
schema, ontologies, and vocabularies, for instance, with OMOP, SNOMED. Fur-
thermore, it can support the use also of standardized analytical methods and tools,
on top of the CDM mapped data, following extraction, transformation, and loading
(ETL), or mapping into the CDM. Exemplars of studies, such as drug utilization,
safety, regulatory, and studies for HTA, lend themselves to greater consistency and
commonality of methodological approach afforded by standardized analytics on
top of a CDM (as for instance SENTINEL ARIA’s system). The use of a CDM
can underpin the operation of an FDN via facilitation of distributed data querying
across multiple data sources, all mapped to the same CDM, from studies through to
federated predictive analytics.

Reviews and comparisons of differing CDMs exist, but the EMA’s own evalu-
ation of CDMs from a regulatory perspective probably has guiding principles that
can be utilized more broadly [49]:
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Structure

e The CDM

Can be defined as a mechanism by which the raw data are standardized to a
common structure, format, and terminology independently from any partic-
ular study to allow a combined analysis across several databases/datasets.
Should not be considered independently of its ecosystem, which incor-
porates standardized applications, tools and methods, and a governance
structure.

The ability to access source data should be retained.

Should be the simplest that achieves security, validity, and data sufficiency.
Should be intuitive and easy to understand.

Should enable rapid answers to urgent questions when required, be efficient
and feasible.

Operation/Governance

* The CDM

Governance model must respect data privacy obligations across all data
partners and regions.

The CDM should be built with sustainability as a priority.

Development should maximally utilize data partners’ expertise. The CDM
must be agreed on and accepted by the participating data partners.

Must have version control.

Should be dynamic, extendable, and learn from experience.

Value package should be clear to data partners.

Quality of Evidence Generation

* The CDM

Utility

Must operationalize reliability and validity by building clear and consistent
business rules around transformation of data across multiple databases.
Where divergence is unavoidable this should be recorded.

Focus should be on data characterization to understand if the data is fit for
purpose.

Should be transparent on how data is defined, how it is measured and
incorporate and document its corresponding validation.

Should allow transparency and reproducibility of data, tools, study design
to facilitate credible and robust evidence across multiple datasets.

e The CDM

Should provide a common set of baseline concepts which should enable
flexibility when required and meets the needs of potential users.

All the concepts that are commonly used in safety and effectiveness studies
should be mapped to the CDM to maximize regulatory utility.
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— Should address recognized use cases for which an established need is
present.

Currently only two CDMs cover the majority of these principal requirements
at significant scale, SENTINEL’s in the United States, and the OMOP CDM
internationally. For Europe, there is little utilization of the SENTINEL CDM,
but expanding adoption of the OMOP CDM. (The CDISC ODM referred to
earlier is a data model used for the submission of clinical trials evidence to
medicines regulators, but is not currently widely used as a real-world data analysis
representation.)

Via the EHDEN project, the European Union via IMI and 13 pharmaceutical
companies are funding € 30 million over the duration of the project to accelerate
utilization of the OMOP CDM across the European region, with also more than 20
other IMI projects utilizing this CDM.

In recent years, the OHDSI OMOP CDM has become an international standard
for working with RWD in RWE generation, with greater than 2 billion health
records mapped to the OMOP CDM globally, equating to approximately 800
million patients, and an accelerating body of literature from international studies,
all characteristic for their scale and speed, whilst preserving quality. The FDA,
whilst running SENTINEL, is also funding OHDSI through the FDA Centre
for Biologics Evaluation and Research (CBER) [47] for biologics and vaccines
pharmacovigilance, and both the DARWIN EU® and EHDS programs potentially
look to include the OMOP CDM and OHDSI research framework.

The open science approach within OHDSI was demonstrated during the COVID-
19 pandemic, through a study-a-thon and continuing research protocols, through its
international research studies [48]. Such approaches responded to the need for the
right data to be in the right place at the right time, for the right questions, at time
of public health emergency, whereas more traditional approaches, via considerable
per study curation, would likely still have not reported, especially for large scale
studies with multiple data sources for across the European region. Outputs from
this international research collaboration were utilized via the FDA and EMA for
guidance to clinicians, for instance, on the safety profile of hydroxychloroquine
with or without azithromycin in treating COVID-19 early in the pandemic.

Comparisons of common data models exist, as discussed in the EMA report on
CDMs in 2018 and shown in Table 2.

The OMOP CDM was designed from the ground up for research purposes
initially in North America in 1997, and with an emphasis on epidemiology, utilizing,
e.g., US Claims data, but has been expanded over the following years, both in terms
of data types incorporated, and study types supported, as well as for geographies.
The original founding partners of the OMOP were the US Food and Drug Adminis-
tration (FDA), Pharmaceutical Research and Manufacturers of America (PhRMA),
and the Foundation for the National Institutes of Health (FNIH). OHDSI now
develops and iterates the OMOP CDM. More recently, this has included regulatory
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Table 2 Comparison of three CDMs
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FDA SENTINEL PCORnet OMOP

Focused use Clinical care emphasis Broad use cases
(pharmacovigilance)

US based US based Global use

Distributed data network with | Predominately EHR data Broad, comprehensive model

data queries run locally

to incorporate claims data,
EHRs and surveys

Predominately US claims
data, minimum, but
expanding EHR data

Principle of minimum
mapping

Substantial mapping of
content and concepts to
standardize multiple different
coding systems

Strict version control

Strict version control

Strict version control

Built upon principle of
minimal mapping and no

Flexibility for individual data
partner to add data/domains

Iterative development by
community for data/domains

derived values to local CDMs additions in global CDM
Source data retained Source data retained
Extendable Based on SENTINEL CDM Extendable

European Medicines Agency; A Common Data Model for Europe? — Why? Which? How?;
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use cases, and developments to enable health technology assessment (HTA) studies,
or precision medicine use cases. Due to the open science emphasis of OHDSI, there
is a focus on transparency, replication of results, and development of methodologies
for fit-for-purpose RWE generation and observational research (Fig. 5).

The OMOP CDM and OHDSI framework do not support every conceivable
use case, and likely a mixed ecology of applications, methods, and tools will
be required to do so, which is a reality of working in the real world setting,
but further interoperability, e.g., between HL7 FHIR (for facilitating health data
exchange) and OMOP CDM (designed for RWD analysis), in particular to support
outcomes research are being addressed, and hopefully accelerated (with the recent
announcement of a global collaboration). The OMOP CDM utilizes the SNOMED
and LOINC standards as its core, standard vocabularies.

On top of the OMOP CDM are the standardized analytical tools to support anal-
ysis of OMOP-mapped data, in particular supporting characterization, population-
level estimation, and patient-level prediction studies. ATLAS is a free, publicly
available, web-based tool developed by the OHDSI community that facilitates
the design and execution of analyses on standardized, patient-level, observational
data in the CDM format. The ATLAS tool is deployed as a web application in
combination with the OHDSI WebAPI and is typically hosted on Apache Tomcat.
Performing real-time analyses requires access to the patient-level data in the CDM
and is therefore typically installed behind an organization’s firewall. However, there
is also a public ATLAS, and although this ATLAS instance only has access to a few
small simulated datasets, it can still be used for many purposes including testing and
training. It is even possible to fully define an effect estimation or prediction study
using the public instance of ATLAS, and automatically generate the R code for
executing the study. That code can then be run in any environment with an available
CDM without needing to install ATLAS and the WebAPI. Other open source tools
to facilitate mapping, support data quality evaluation as well as analysis have and
are being developed, with more information available from the open access Book of
OHDSI [50].

Skilled and knowledgeable epidemiologists with multiyear experience of the
OMOP CDM, mapping datasets and analysis using the OHDSI framework is a
prerequisite now for some positions. A helpful example of this is a company’s ability
to make quicker decisions in feasibility as to the efficacy of being able to conduct a
substantive study, inclusive of with regulatory authorities, assisted by a transparent,
reproducible methodology in being able to debate the company’s viewpoint.

Federation and the use of the OMOP CDM is also now supporting therapeutic
area-focused initiatives within the company as it proceeds to expand its collabora-
tion with potential Data Partners.

Other projects in the European Innovative Medicines Initiative (IMI) have
developed CDMs, such as ADVANCE [41], or latterly ConcePTION [42], in
vaccines and pregnancy research, respectively, with the former using a CSV format
CDM and Jerboa data processing software and R scripts, and the latter using a
syntactic model, but neither have widespread adoption outside of their respective
projects.
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5 Making Data Fit for Shared Use

5.1 FAIR Principles

Findable, accessible, interoperable, and reusable are principles espoused in 2016
by Wilkinson et al. [43] As described by the authors, there is an urgent need to
improve the infrastructure supporting the reuse of scholarly data. A diverse set
of stakeholders—representing academia, industry, funding agencies, and scholarly
publishers—came together to design and jointly endorse a concise and measurable
set of principles that they referred to as the FAIR Data Principles. The intent is
that these may act as a guideline for those wishing to enhance the reusability of
their data holdings. Distinct from peer initiatives that focus on the human scholar,
the FAIR Principles put specific emphasis on enhancing the ability of machines to
automatically find and use the data, in addition to supporting its reuse by individuals.
A European program, GO-FAIR [51], a bottom-up promotion of FAIR principles,
and an IMI project, FAIRplus [52], making life science data FAIR have outlined the
practical implementations of the FAIR principles, which are outlined below:

Findable

The first step in (re)using data is to find them. Metadata and data should be
easy to find for both humans and computers. Machine-readable metadata
are essential for automatic discovery of datasets and services, so this is an
essential component of the FAIRification process.

* FI1. (Meta)data are assigned a globally unique and persistent identifier.

* F2. Data are described with rich metadata (defined by R1 below).

* F3. Metadata clearly and explicitly include the identifier of the data they
describe.

* F4. (Meta)data are registered or indexed in a searchable resource.

Accessible

Once the user finds the required data, she/he/they need to know how they can be
accessed, possibly including authentication and authorization.

* Al. (Meta)data are retrievable by their identifier using a standardized
communications protocol.

* Al.1 The protocol is open, free, and universally implementable.

* A1.2 The protocol allows for an authentication and authorization proce-
dure, where necessary.

* A2. Metadata are accessible, even when the data are no longer available.

Interoperable

The data usually need to be integrated with other data. In addition, the data
need to interoperate with applications or workflows for analysis, storage, and
processing.
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* J1. (Meta)data use a formal, accessible, shared, and broadly applicable
language for knowledge representation.

* ]2. (Meta)data use vocabularies that follow FAIR principles.

* ]3. (Meta)data include qualified references to other (meta)data.

Reusable

The ultimate goal of FAIR is to optimize the reuse of data. To achieve this,
metadata and data should be well-described so that they can be replicated
and/or combined in different settings.

* RI1. (Meta)data are richly described with a plurality of accurate and relevant
attributes.

* RI1.1. (Meta)data are released with a clear and accessible data usage
license.

* R1.2. (Meta)data are associated with detailed provenance.

* R1.3. (Meta)data meet domain-relevant community standards.

The principles refer to three types of entities: data (or any digital object),
metadata (information about that digital object), and infrastructure. For instance,
principle F4 defines that both metadata and data are registered or indexed in a
searchable resource (the infrastructure component).

5.2 Data Quality

Quality of data can be viewed as in the eye of the beholder, with data and analysis
being able to answer some questions, but not all (there is perhaps not a universal
truth based on any one dataset). Intrinsic to this concept are the relative indicators
of quality of the source data, and the various attributes of measuring quality via a
growing number of quality initiatives.

Brennen et al. (JAMIA, 2000) stated that data quality in and across diverse data
sources (e.g., electronic health records, claims), “[is] the problem of ensuring the
validity of the clinical record as a representation of the true state of the patient.”
[53].

Quality of health data, or real-world data, needs to represent quality of the source
data and the curated data used for analysis, inclusive of such attributes as errors,
completeness, missingness, biologic implausibility (e.g., finding male pregnancies,
or BMI values inconsistent with humans).

Various initiatives and standards incorporate data quality processes, for instance,
OHDSI has created data quality dashboards that can evaluate the OMOP-mapped
dataset in comparison to the source dataset across a quality criterion, running a
script across the OMOP CDM [54].

The European Institute for Innovation through Health Data provides a data
quality assessment service, again criterion-driven, across nine dimensions (Fig. 6):
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Name Definition

Completeness | Data values are present

Data satisfy constriants (format, allowable ranges and
values, domain rules, relations)

Values are true and unbiased with respect to their
real-world state

Records representing a single patient are not replicated

Data is up-to-date to their real world state for the task
atend

Data inherent concepts and statistics are comparable
among sources (hospital, professional, etc) and over
time

[Relevance Data are useful for their task

Data are annotated with the acquisition context, their
meaning and semantics

Data can be trusted based on the reputation of the
stakeholders involved in their acquisition

Fig. 6 Nine data quality dimensions, suitable for health data, assessed by the European Institute
for Innovation through Health Data [55]

Arguably, data quality is an emerging sub-specialism, but a critically important
one in addressing confidence in being able to assess the quality of data as part of
an overall assessment to engender confidence in analytical outputs and evidence
generated. From a regulatory domain perspective, this will be a standard component
of assessing research and studies carried out and ensuring validity in the proposed
guidance from regulatory authorities using real-world data.

5.3 Research Infrastructures and Platforms

Europe is driving the momentum for big health data research through three
transnational initiatives, EHDEN, DARWIN EU®, and the EHDS, which have
been mentioned throughout this chapter. There are additionally disease-specific
networks in vaccination and pregnancy, also mentioned earlier, and a growing
number of national research infrastructures in countries such as Germany, France,
Switzerland, and the United Kingdom. The three major Europe-wide initiatives are
briefly summarized below.
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5.3.1 EHDEN

The European Health Data and Evidence network (EHDEN, 2018-2024) is an
infrastructure start-up within the Europe’s IMI, an overarching public private part-
nership fostering innovation in healthcare and earlier access to such innovation for
EU citizens. EHDEN was created to address the common bottlenecks encountered
when harmonizing datasets to the OMOP common data model, at an industrial scale
across the European region. Ultimately, EHDEN is building a region-wide federated
data network, supporting FAIR data use, with a centralized architecture to enable a
digital study workflow, data visiting/remote analysis which is privacy preserving
via standardized analytical tool pipeline within the OHDSI research framework.
As of time of writing, EHDEN is working with 187 Data Partners in 29 European
countries across the region, and is continuing to expand [12].

Successful applicant Data Partners receive financial subgrants, technical sup-
port for mapping their data to the common data model (via EHDEN-certified
small-to-medium enterprises (SMEs) in a unique marketplace of trained technical
businesses), and can join the Open Science community in terms of evidence
generation in multisite, network, and rapid studies; upskilling and training are
also provided on tools, skills, and methods to support Data Partners, SMEs, and
researchers via an EHDEN Academy (https://academy.ehden.eu). At the time of
writing, EHDEN is working with 64 SMEs in more than 20 countries. Sustainability
via a not-for-profit legal entity beyond the IMI phase will continue, expand, and
develop the EHDEN open science community and network, as well as research
programs, use cases, methodological innovation, and training.

5.3.2 DARWIN EU®

DARWIN EU® will deliver real-world evidence from across Europe on diseases,

populations, and the uses and performance of medicines. This will enable EMA and

national competent authorities in the European medicines regulatory network to use

these data whenever needed throughout the lifecycle of a medicinal product [13].
DARWIN EU® will support regulatory decision-making by

¢ Establishing and expanding a catalog of observational data sources for use in
medicines regulation.

* Providing a source of high-quality, validated real-world data on the uses, safety,
and efficacy of medicines.

* Addressing specific questions by carrying out high-quality, non-interventional
studies, including developing scientific protocols, interrogating relevant data
sources, and interpreting and reporting study results.

The range of approved healthcare databases enabling distributed data access via
DARWIN EU® will evolve and expand over time. The former HMA/EMA Big Data
Task Force originally recommended developing DARWIN EU®. The creation of
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DARWIN EU® features in the EMA-HMA Big Data Steering Group workplan and
the European medicines agencies network strategy to 2025.

EMA will be a principal user of DARWIN EU®, by requesting studies to support
its scientific evaluations and regulatory decision-making. A service provider will
act as the DARWIN EU® Coordination Centre and be responsible for setting up the
network and managing its day-to-day operations.

EMA will also play a central role in developing, launching, and maintaining
DARWIN EU®, by

* Providing strategic direction and setting standards

* Opverseeing the coordination center and monitoring its performance

* Ensuring close links to European Commission policy initiatives, particularly the
EDHS, and delivering pilots

¢ Reporting to EMA’s Management Board, the HMA and European Commission

The advent of DARWIN EU® will be a paradigm shift for regulatory science
and decision-making in Europe, perhaps mirroring the FDA SENTINEL program,
but incorporating the OMOP CDM and OHDSI research framework at its core, in a
federated network. Ultimately, DARWIN EU® will be an accelerator for evidence-
based decision-making using real-world data to complement clinical trial data and
other data sources in providing insights into real-world outcomes, whether positive
or negative.

5.3.3 European Health Data Space (EHDS)

In order to unleash the full potential of health data, the European Commission
is presenting a regulation to set up the European Health Data Space, one of a
number of data spaces across multiple industries and domains. Draft legislation
was published in May 2022 for review and approval by the European Council and
European Parliament [14].

The proposal

* Supports individuals to take control of their own health data

* Supports the use of health data for better healthcare delivery, better research,
innovation, and policy-making

* Enables the EU to make full use of the potential offered by a safe and secure
exchange, use, and reuse of health data

The European Health Data Space is a health-specific ecosystem comprising rules,
common standards and practices, infrastructures, and a governance framework that
aims at

* Empowering individuals through increased digital access to and control of their
electronic personal health data, at national level and EU-wide, and support to
their free movement, as well as fostering a genuine single market for electronic
health record systems, relevant medical devices, and high-risk Al systems
(primary use of data)
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* Providing a consistent, trustworthy, and efficient setup for the use of health data
for research, innovation, policy-making, and regulatory activities (secondary use
of data)

As such, the European Health Data Space is a key pillar of the strong European
Health Union, and it is the first common EU data space in a specific area to emerge
from the European strategy for data. DARWIN EU® is designated as an EHDS
pathfinder project, paving the way in its own development for the EHDS.

The legislative path will take some time, and implementation of any eventual,
agreed legislation will not impact until the second half of the 2020s. An EC
Joint Action, Towards the European Health Data Space (TEHDAS) commenced in
February 2021 to develop European principles for the implementation of the EHDS,
supported by 25 EU member states and a myriad of NGOs, SMEs, academic and
commercial entities. TEHDAS is focused on [56].

* Solutions for the trustworthy secondary use of health and health care data with a
view to promoting the digital transformation of European health systems

* Guidance on ensuring data quality such as anonymization of data and handling
of data disparity

Work package 6 of TEHDAS is focused on excellence in data quality and has
written a number or recommendation reports in 2022 on data interoperability,
and data quality, providing frameworks and working concepts in these domains.
The former lists a number of interoperability standards on data discoverability (at
data source and variable levels) and on standards for the development of common
data models, and describes some basic features: typology of interest, utility, and
domain/s. This list is the basis for the work to come on aiming the description
of their actual use, challenges in their implementation, issues on maintenance and
sustainability.

The latter, on data quality, explores and synthesizes the existing knowledge and
experiences on data quality frameworks (DQFs) in the context of cross-border
sharing of federated secondary use health data with the aim to identify good
practice within this area and make recommendations. The report builds on the work
regarding data quality already undertaken the TEHDAS Joint Action and will be
further updated with chapters on interoperability standards. This first part of the
final report contains recommendations on the European Health Data Space (EHDS)
data quality framework.

6 Conclusion

Numerous countries across the world are advancing their work on developing
learning health systems, interoperable, federated networks, with FAIR data using
agreed, aligned standards, data models and standardized analytical tools, and are at
various stages. Most notably, the United States, the United Kingdom, certain EU
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member states, such as Germany, France, Spain, Italy, Greece, and Finland, as well
as South Korea and Singapore, China, Japan, and India are just some representing
government or bottom-up initiatives.

Health data, whether used for care delivery, continuity of care, quality improve-
ment, decision-making or research, is a critical success factor. The need to learn
from health data at scale has never been more compelling, and its interoperability
and quality are the key enablers of this scale. This chapter has explained the role and
diversity of interoperability standards that are needed across the care and research
spectrum. However, despite their individual maturity and capability of delivering
interoperability, there remains a grand challenge of standards adoption. Too many
health ICT products and networks either fail to take a standards-based approach to
the health data they process or adopt only some standards in a patchy and highly
customized way and so are not really interoperable.

The business drivers for the health ICT sector are recognized to be weak,
and procurements insufficiently precise and stringent, so that the market push for
standards adoption is too slow, as discussed in a recent multistakeholder round
table report [57]. The report includes 14 recommendations and calls to action
related to the greater uptake and promotion of interoperability, the first six of
which are reproduced here as they relate to accelerating the adoption of standards
and especially target actions the EC and Member States can make as part of
implementing the European Health Data Space.

The report lists additional calls to action on interoperability relating to enforcing
the adoption of interoperability standards by health ICT developers, the strategic
governance of interoperability and ensuring wider awareness and engagement.

What has been evident for some time is that we have been attempting to meet
increasing complex healthcare needs and evidence generation still using at best
twentieth-century methods, and with an increasing emphasis on the value and
potential of real-world data, advances have to be made. In particular in the regulatory
domain, qualifications and approvals can no longer be reliant on clinical trial data
alone, albeit remaining pivotal. Complementary developments for this type of data,
such as the adoption of the CDISC model and family of standards, is being replicated
with similar initiatives for real-world data, as described in this chapter, pointing to
a radically different environment with mandated and aligned standards and models
being implemented at scale across the global learning health system.

It is important for decision-makers, funders, ICT companies, and initiatives that
seek to establish real-world evidence generation platforms and networks to ensure
that they adopt and promote the wider adoption of interoperability standards, the
FAIR principles and data quality as described in this chapter, and thereby contribute
to a global momentum to scale up the usability of real-world data for trustworthy
evidence generation.
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Privacy-Preserving Record Linkage for ®)
Real-World Data Qe

Tianyu Zhan, Yixin Fang, and Weili He

1 Introduction and Motivation

Real-world data (RWD) are data relating to patient health status and/or the delivery
of health care routinely collected from a variety of sources [1]. These sources
include electronic health records (EHRs), claims or billing activities, medical
product or disease registries, patient-generated data including home-use settings,
and health data gathered from other sources including mobile devices [2]. In
addition to data from completed clinical trials, RWD is an emerging source of
healthcare data that has become more readily available by the day [1, 2]. It is of
great interest to aggregate several RWDs to provide new insights on health care
outcomes.

Combining clinical trial data with RWD offers a more comprehensive longitu-
dinal evaluation of health status beyond the maximum follow-up time of a clinical
trial [3]. For example, a randomized controlled clinical trial (RCT) of evaluating
pravastatin in preventing coronary heart disease was linked to routinely collected
administrative health records [3, 4]. By increasing the follow-up time from 5
years to 15 years, this record linkage study was able to evaluate several long-
term outcomes, including cardiovascular measures, quality-adjusted life years, and
hospital administration status [4]. New research can be continuously conducted
by performing data linkage with more recent RWD to have a better and full
understanding of the initial intervention taken in the original RCT.

Another branch is to combine multiple RWD databases. Linking administra-
tive claims data to EHR allows the researchers to leverage the complementary
advantages of each data source to enhance study validity, as claim databases
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usually contain extensive data on diagnoses, medications, healthcare utilization, and
expenditure often lacking clinical details while EHR provides clinical details often
absent in other datasets [3, 5]. EHR only captures patients’ information within the
specific healthcare network, but claim databases record all healthcare encounters.
This allows for a more accurate or complete definition and evaluation of an exposure
or outcome with proper and adequate confounding adjustment [3, 5]. Registry data
can also be linked with EHR. For example, Alberta Cancer Registry data containing
demographic and treatment information were linked to EHR, hospital discharge
data, and census data [6]. Treatment patterns, adherence to treatment guidelines, and
disparities in the receipt of treatment of colorectal cancer were investigated in this
data linkage study [3, 6]. Moreover, the same type of RWD can be combined from
different institutions. Hospital records from childhood and adulthood of patients
with type 1 diabetes were linked to determine the relationship between glycaemic
control trajectory and the long-term risk of severe complications [3, 7].

Record linkage or data linkage is a process of associating records from two or
multiple datasets with the aim of identifying connections that belong to the same
entity, for example, the same person [8]. Linking data from different sources plays
an important role in improving data quality, enriching data for further analysis,
and generating new insights [9]. This is a general method to enrich data with
applications in many areas, such as health care [3, 10-12], finance [13—15], and
business [16—18]. Generally speaking, record linkage of datasets within the same
organization does not involve privacy and confidentiality concerns [9]. For example,
a pharmaceutical company may link data from an RCT with its corresponding
long-term extension study based on a unique subject identifier to comprehensively
evaluate the maintenance of treatment effect. Similarly, the same database owner
can link its claims and EHR before deidentification.

For RWD that are usually collected from a variety of sources or institutions [1],
the process of data linkage should not disclose subject level identifying information
per laws or regulations [9], for example, the Health Insurance Portability and
Accountability Act (HIPAA) in the United States and the General Data Protection
Regulations (GDPR) in Europe. Privacy-Preserving Record Linkage (PPRL) tech-
niques are appealing in practice with the aim of identifying matching records that
refer to the same entities in different databases without compromising privacy and
confidentiality of these entities [9, 19, 20]. A cohort of quasi-identifiers is encoded
to mask confidential information and then utilized to link records [9]. To ensure
patients’ privacy, some variables, for example, status of a rare disease, will not be
allowed in linkage when there is risk of identifying specific patients.

In this chapter, we provide a high-level review of PPRL to motivate its appli-
cations to RWD. We review several methods for data preparation in Sect.2 and
methods for linkage in Sect.3. Some performance evaluation approaches are
discussed in Sect. 4. An illustration of performance probabilistic record linkage on
real datasets is presented in Sect. 5. Concluding remarks are provided in Sect. 6.
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2 Data Preparation Methods

2.1 Data Preprocessing Methods

Data preprocessing refers to the task of converting raw data to a standard format
for accurate and efficient matching [21, 22]. There are generally three steps in
this process. First, data cleaning is conducted to remove unrelated or unwanted
information for matching, delete duplicated records, and convert inputs to a
consistent form. Either hard-coded rules or look-up tables are used in this step [22].
The second step is utilizing look-up tables to standardize tokens, which are usually
referred to as the values that are separated by whitespace characters in attributes,
with the goal of correcting typographical errors or variations, or standardizing
abbreviations [22]. For example, “bevely park” or “bevelly park” is standardized
as “beverley park” based on the look-up table in the FEBRL system [22, 23]. The
third step is the segmentation of the tokenized attribute values into single pieces of
information that are suitable for downstream data matching [22]. The challenge is to
identify the most likely and meaningful assignment because there are often several
possible assignments of tokens [22].

Since data from multiple sources are to be harmonized, the Observational
Medical Outcomes Partnership (OMOP) Common Data Model [24] can be adopted
to allow for the systematic analysis of disparate observational databases. Data are
transformed to a common format (data model) as well as a common representation
(terminologies, vocabularies, coding schemes) and then are utilized to perform
systematic analyses using a library of standard analytic routines that have been
written based on the common format.

In PPRL, data masking or encoding is an additional step to transform original
data to masked data [25]. Data elements, such as names or social security numbers,
need to be de-identified to protect privacy. Moreover, several relatively nonsensitive
attributes need to be masked as well because their combination may reveal
identifying information. For example, nearly 90% of the U.S. population had a
unique combination of zip code, gender, and date of birth [22, 26]. The level of
such deidentification is important because a mild layer can still disclose private
and sensitive data, while a heavy one may lose discriminating power to distinguish
between matches and non-matches. Several specific techniques are reviewed in the
next section.

2.2 Privacy Protection Methods

If there is no privacy concern, one can directly link records from different
datasets with personal identifying information if available. However, in applications
to RWD, especially RWD from different institutions, such data linkage should
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be conducted without disclosing privacy and confidentiality information. In this
section, we review some techniques for protecting privacy in record linkage.

2.2.1 Separation Principle

The data can usually be separated into personally identifying data which contain
sensitive information and content data with clinical information for research [25,
27]. A data custodian sends personally identifying information to a linkage unit
or a third party, which performs data linkage to determine which records belong
to the same person. Such linkage information is sent back to the data custodian.
Then, researchers receive content data along with linkage information from the data
custodian to perform further analysis.

This separation principle is classified under the so-called three-party protocols
that utilize a third party for performing the linkage [25]. As compared with its
counterpart “two-party protocols” with no third-party involvement, three-party
protocols require fewer resources in communication and computation to compare
records but are also considered less secure due to the existence of a third party [25].

2.2.2 Secure Hash Encoding

This technique uses one-way irreversible hash encoding functions to convert sensi-
tive information to hash code [28-30]. Having access to a hash code makes it nearly
impossible with current computing technology to learn its original string value [30].
However, dictionary attack is possible with masking functions, where an adversary
masks a large list of known values using various existing masking functions until
a matching masked value is identified [30]. A possible mitigation is the Hashed
Message Authentication Code (HMAC) as a keyed masking approach [31]. With
HMAC, dataset owners exchange and add a secret code to data before masking [9].
A major limitation of secure hash encoding is that it can only adopt deterministic
linkage methods to identify exact matches, but not probabilistic linkage, because
even a single character difference in a string will lead to a completely different
hash code [30]. As discussed in Sect. 3.2, probabilistic linkage has advantages of
accommodating data entry error when performing matching between records.

2.2.3 Phonetic Encoding

Phonetic encoding techniques convert string to code based on pronunciation [32].
For example, Soundex is the best known phonetic encoding algorithm [33]. It keeps
the first letter and converts the rest into numbers according to an encoding table
[32]. Phonetic encoding inherently provides privacy and is a blocking technique of
reducing the number of comparisons in linkage to increase scalability [9]. It also
supports probabilistic linkage to tolerate typographical variations [30, 34]. Two
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drawbacks of phonetic encodings are that they are language dependent and are
vulnerable to frequency attacks, where the frequency distribution of a set of masked
values is matched with the distribution of known unmasked values in order to infer
the original values of the masked values [9, 35].

2.2.4 Bloom Filters

Bloom filters technique was proposed by Schnell et al. [20] to calculate the
similarity between two encrypted strings for use in probabilistic record linkage
procedures. It first converts a string to a set of consecutive letters (q-grams) or a
set of tokens [36] and then computes similarity between two strings by the Dice
coefficient [20]. Bloom filter demonstrates high quality in the evaluation of privacy-
preserving string comparison [25, 37]. Filtering techniques can also be applied based
on Bloom filters to increase scalability to large datasets, for example, excluding
unnecessary comparisons based on g-grams [9].

3 Linkage Methods

After strings are encrypted to mask personal identifying information, the next
step is to merge datasets by finding matching records. Deterministic linkage and
probabilistic linkage are two common methods [16, 38—40].

3.1 Deterministic Linkage

In the deterministic linkage, only record pairs that matched exactly are accepted as
links [40]. This can be based on a single attribute or several attributes. This method
is easy to implement in practice and can be applied to most methods of masking
personal identifying information including Secure Hash Encoding discussed in
Sect. 2.2.2. This method is typically computationally more efficient as compared
with the probabilistic linkage as discussed next. A major limitation of this method
is that even a single character difference of data entry error between a pair of original
values results in a matched classification [9].

3.2 Probabilistic Linkage

Probabilistic linkage methodology addresses record linkage problems under condi-
tions of uncertainty [41] and allows imperfect matches due to partially inaccurate or
missing data [40]. The Fellegi—Sunter method [39] is a popular and well-known
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algorithm for probabilistic record linkage [42]. For each record pair, a weight
is computed based on the probability that the field agrees given a record pair
matches (called the m probability) and the probability of chance agreement given
an unmatched pair (called the u probability) [39, 41]. A composite weight for each
record can also be calculated for multiple linkage variables adjusting agreement or
disagreement status for each variable, with zero weight assigned for missing values
[40]. A threshold on the weight is chosen to classify records as matches or non-
matches [40], or a consider zone for clerical review with another cutoff value [41].
The specific setting of cutoff value is critical and difficult in probabilistic linkage
[43] and can be selected to optimize f-measure, introduced in the next section [40].

Typical probabilistic linkage methods classify individual record pairs indepen-
dently from other pairs and therefore aim at a many-to-many matching scenario
[22]. Additional restrictions can be applied to accommodate one-to-one and one-to-
many matching scenarios. In one-to-one matching, a simple approach is to sort the
matched pairs based on similarity values and then assign pairs to confirmed matches
in a greedy fashion [22]. However, this method may yield a sub-optimal solution
because it does not consider all records simultaneously and it is possible that not
all records can be paired. Several more advanced methods have been developed to
solve this constrained optimization problem [44], for example, treating a class of
algorithms as an auction problem [45].

There are also quite a few Bayesian record linkage techniques proposed to
accommodate uncertainty. A fully Bayesian approach to record linkage was devel-
oped to compute posterior probability of matching [46]. In a unified Bayesian
framework, matching uncertainty is naturally accounted for in estimating population
size by using samples of multivariate categorical variables [47]. A Bayesian
graphical approach is proposed to simultaneously detect duplicate records within
files and link records across files [48]. Partial Bayes estimates were derived for
bipartite matching to quantify uncertainty in matching decisions while leaving
uncertain parts undeclared [49].

3.3 Unsupervised Classification Methods

With the objective of protecting privacy, the classification labels of either matched
or unmatched records are not available. Supervised classification methods cannot be
directly applied. Alternatively, unsupervised classification or clustering methods can
be adopted to PPRL. For example, K -means algorithm is a popular iterative cluster-
ing method based on similarity measure [50, 51]. The Damerau-Levenstein distance
[52, 53] or the Jaro—Winkler distance [54, 55] can be used to measure similarity
for text-based variables [42]. Other unsupervised methods include agglomerative
clustering (bottom-up) and divisive clustering (top-down) as two paradigms in
hierarchical clustering, self-organizing maps, etc. [56]
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4 Performance Evaluation

We first review some measures and then some methods to assess performance of
PPRL.

4.1 Measures

Since record linkage is a classification problem, there are two types of errors that
can be generated: false negative (FN) and false positive (FP) [40]. A higher number
of FNs contribute to a lower sensitivity, which is defined as

Number of True Positive
Number of True Positive + FN’

Sensitivity =

ey

while FP is related to positive predictive value (PPV),

Number of True Positive
PPV = — . (2
Number of True Positive + FP

Ideally, both FN and FP need to be minimized, but there is a trade-off between these
two types of error in practice [40]. F-measure,

Sensitivity x PPV

f-measure = 2 x — ,
Sensitivity + PPV

3)

is a harmonic mean of sensitivity and PPV [43]. The f-measure reaches a high
value only if both sensitivity and PPV are high [40] and is more appealing in
practice than single metrics [43]. Other measures, such as area under the receiver
operating characteristic (ROC) curve and Youden’s index, can also be used to
evaluate performance.

Note that some common evaluation metrics for classification problems may not
be proper for record linkage, for example accuracy, which is defined as the total
number of true positives and true negatives divided by the total number of pairs.
The reason is that the majority of record pairs correspond to non-matched pairs (true
negatives), and the number of true negatives dominates the calculation of accuracy
[22].

4.2 Assessment Method

In practice, it is challenging to evaluate linkage performance based on the above
measures because the underlying true labels of either matched or unmatched
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pairs are not available. Manual assessment of all individual records would reveal
sensitive information, which is in contradiction to the objective of PPRL [9].
This comprehensive manual review is also not feasible given the relatively large
number of comparisons with even moderate datasets. Moreover, even with personal
identifying information, there may not exist a gold standard because several RWDs
do not share the same unique identifier [57].

A clerical review can be implemented by a third party to routinely scan and
manually review a small proportion of links [25, 58]. However, this selective
review can also be time-consuming and may not be feasible for large datasets
[25]. There is an increased privacy risk because personal sensitive information is
regularly manually examined [25]. Under the framework of interactive PPRL, parts
of sensitive data are revealed for manual assessment [9, 59]. However, there are still
some open questions in real applications, for example, how to ensure the revealed
information is limited to a certain level of detail and is also sufficient for manual
assessment [9].

An alternative approach to obtain benchmark datasets is to generate synthetic
data based on the characteristics of real data, for example, distributions of variables
and proportion of missing data [9, 57, 60, 61]. Given synthetic data with known
classification labels, one can perform cross-validation to fine-tune parameters in
data linkage, for example the cutoff values in probabilistic linkage [62]. Multiple
replicates of synthetic data can be simulated to report the average of certain
evaluation measure [57].

5 Demonstration with the R Package RecordLinkage on
Dataset NHANES

In this section, we illustrate how to perform probabilistic record linkage with the
R package RecordLinkage [63] on the real dataset NHANES (National Health
and Nutrition Examination Survey) [64] from CDC (Centers for Disease Control
and Prevention). NHANES is a program of studies designed to assess the health
and nutritional status of adults and children in the United States with interviews
including demographic, socioeconomic, dietary, and health-related questions [64].
This example is for illustrative purposes. Variables being included are not intended
to identify unique patients, as NHANES might enroll different participants across
years.

For demonstration, we consider the first ten records in two demographics files
of survey cycle 2015-2016 and 2017-2018 with variables RIAGENDR (Gender),
RIDRETHI1 (Race), and DMDBORN4 (Country of Birth). RIAGENDR s utilized
as the blocking variable. String comparison is based on RIDRETHI and DMD-
BORN4 with the Jaro—Winkler method [55] to compute the similarity between
strings. The threshold values are set as —4 and 0, such that records with matching
weights less than —4 are classified as non-links, records with weights greater than
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Table 1 Linked pairs
detected by probabilistic
linkage

Row index of dataset 1 | Row index of dataset 2
2

wh | K~ oW —
~N | W oo NN

or equal to O are classified as links, and remaining records are possible links for
clerical review.

There are 50 record pairs for evaluation with the blocking of RIAGENDR. Based
on the classification of probabilistic linkage, 19 pairs are categorized as non-links,
25 as possible links, and 6 as links, which are shown in Table 1. Record No. 4
from dataset 1 is uniquely linked to record No. 8 from dataset 2. Since each pair
is categorized independently, a record from one dataset can be linked to multiple
records in the other dataset. For example, records No. 1, 3, and 8 from dataset 1 are
linked to the same record No. 2 in dataset 2, while records No. 3 and 7 from dataset
2 are linked to record No. 5 in dataset 1. Clerical review can be further performed
to determine potential exact one-to-one mapping for record No. 5 in dataset 1 and
record No. 2 in dataset 2.

## load R packages
library (RecordLinkage); library(foreign)

## code to import file: https://wwwn.cdc.gov/nchs/data/tutorials/
file download import R.R

## Download NHANES 2015-2016 to temporary file

download.file ("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.
XPT", tfl <- tempfile(), mode="wb")

## Create Data Frame From Temporary File

DEMO_I3 <- foreign::read.xport (tfl)

## Download NHANES 2017-2018 to temporary file

download.file ("https://wwwn.cdc.gov/nchs/nhanes/2017-2018/DEMO_J.
XPT", tf2 <- tempfile(), mode="wb")

## Create Data Frame From Temporary File

DEMO_J3 <- foreign::read.xport (tf2)

## Create data with the first 10 records and three variables:

## RIAGENDR: Gender, RIDRETH1: Race, DMDBORN4: Country of birth

DEMO_I3_OUT = DEMO_I3[1:10, intersect (colnames(DEMO_I3), colnames
(DEMO_J3)) [c (4, 7, 13)]1]

DEMO_J3_OUT = DEMO_J3[1:10, intersect (colnames (DEMO I3), colnames
(DEMO_J3)) [c (4, 7, 13)1]

## Convert RIAGENDR and RIDRETH1 to character variables
DEMO_I3 OUT[, 2] = as.character (DEMO I3 OUT[, 21])
DEMO_J3_OUT[, 2] = as.character (DEMO J3 OUT[, 21)




118 T. Zhan et al.

DEMO_I3 OUT[, 3] = as.character (DEMO_I3 OUT[, 3])
DEMO_J3_OUT[, 3] = as.character (DEMO J3 OUT[, 3])

## Perform record linkage with RIAGENDR as a block variable, and
a similarity function based on Levenshtein distance of
variables RIAGENDR and RIDRETH1

rpairs=compare.linkage (DEMO_I3 OUT,

DEMO_J3 OUT,

blockfld=c (1),

strcmp =c(2, 3),

strcmpfun = jarowinkler

)

# calculate weights based on default m and u probabilities
rpairs.w <- fsWeights(rpairs, m = 0.95, u=rpairs$Sfrequencies)

# classify records with thresholds -4 and 0
rpairs.fit = fsClassify(rpairs.w, threshold.upper = 0, threshold.
lower -4)

# show results
print (summary (rpairs.fit))

# show linked records
rpairs.fit$pairs$is match = rpairs.fit$prediction
print (rpairs.fit$pairs[rpairs.fit$pairs$is match=="L", 1)

6 Discussion

There are several additional points to consider when performing PPRL on real-world
data. First of all, missing data or missing values are common in real-world data.
A simple method is to remove records or attributes with missing values, but this
leads to information loss [22]. Rule-based imputation methods are more proper
to take account of distributions of attributes and correlations between attributes
[65, 66]. Alternatively, the probabilistic linkage method discussed in Sect. 3.2 can
intrinsically handle this by assigning zero weights for missing attributes when
calculating the composite weight.

Another challenge is scalability because the number of potential pairs for
evaluation is the product of the number of records in two datasets leading to
quadratic complexity. Blocking or indexing is a common technique to eliminate
non-matched records. For example, standard blocking uses the values of so-called
blocking key values (BKVs) to partition all records into disjoint blocks [25]. To
accommodate incorrect or missing BKVs, one can conduct blocking in an iterative
fashion. The non-matched pairs filtered by the first BKV are further sent to the
second BKV for partition, and so on and so forth to the last BKV [25]. This can
be viewed as a hybrid framework to combine deterministic linkage in Sect.3.1




Privacy-Preserving Record Linkage for Real-World Data 119

for blocking and probabilistic linkage in Sect. 3.2 for downstream matching. Other
filtering techniques are also available to reduce the search space based on similarity
measures and the length of tokens [25].

The results from data linkage on RWD may also be used to support regulatory
decision-making for study drugs. Based on a recent FDA guidance on RWD [67], the
protocol should clearly describe data sources, the information that will be obtained,
linkage methods, and the accuracy and completeness of data linkages over time.
Sensitivity analysis should also be performed to evaluate the robustness of results
based on probabilistic linkage methods [67].

PPRL is a relatively new area in record linkage. To apply PPRL on RWD, there
are several challenges and future research topics. Additional work is needed to guide
statistical inference of estimates from integrated datasets under potential mismatch
errors. This problem is even more challenging to evaluate empirically because true
classification labels are not available due to privacy concerns. Generating realistic
synthetic data is in itself a formidable challenge [22]. The missing data issue adds
another layer of challenge because the assumption of missing not at random can be
more common in RWD.
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Causal Inference with Targeted Learning = m)
for Producing and Evaluating Qe
Real-World Evidence

Susan Gruber, Hana Lee, Rachael Phillips, and Mark van der Laan

1 Introduction

Targeted Learning (TL) is a statistical framework for efficient learning from data
[1]. TL’s systematic approach addresses many of the critical barriers in analyses of
studies incorporating real-world data (RWD), including any non-randomization of
the exposure, treatment non-compliance, time-varying confounding, and incomplete
capture of the outcome [2]. Core principles for valid causal inference include (1)
specifying a causal model and realistic statistical model consistent with expert
knowledge and characteristics of the data generating process; (2) specifying a target
of estimation (i.e., estimand) consistent with the goals, design, and conduct of
the study; (3) analyzing the data using targeted minimum loss-based estimation
(TMLE), a generalization of targeted maximum likelihood estimation, coupled with
super learning (SL); and (4) assessing robustness of study findings via diagnostics
and sensitivity analyses. The TL estimation roadmap codifies these principles and
the use of TMLE + SL for optimally estimating causal effects and association

S. Gruber (IX)
Putnam Data Sciences, LLC, Cambridge, MA, USA
e-mail: sgruber @putnamds.com

H. Lee
Office of Biostatistics, Center for Drug Evaluation and Research, U.S. Food and Drug
Administration, Silver Spring, MD, USA

R. Phillips - M. van der Laan
Division of Biostatistics, University of California at Berkeley, Berkeley, CA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 125
W. He et al. (eds.), Real-World Evidence in Medical Product Development,
https://doi.org/10.1007/978-3-031-26328-6_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26328-6protect T1	extunderscore 8&domain=pdf

 885 50203 a 885 50203
a
 
mailto:sgruber@putnamds.com
mailto:sgruber@putnamds.com

126 S. Gruber et al.

measures from data [1-3]. Despite legitimate concerns, RWD can provide valuable
insights in areas increasingly important for regulatory, policy, and clinical decision-
making.

A 2018 draft framework issued by the US Food and Drug Administration (FDA)
highlights opportunities and challenges in producing real-world evidence (RWE)
in support of regulatory decision-making [4]. RWD sources, such as electronic
health records (EHR), medical claims, product and disease registries, and personal
wearable devices, produce copious amounts of data. However, generating reliable
RWE about the use, risks, and benefits of medical products necessitates careful
study design, conduct, data analysis, and interpretation. Key considerations include
whether the RWD are fit for purpose, whether the study provides adequate scientific
evidence, and whether study conduct meets regulatory requirements [4—8].

Studies ranging from randomized controlled trials (RCT) in clinical settings, to
non-randomized interventional single arm trials with external controls, to observa-
tional studies (OS) rely in varying degrees on RWD [9]. However, RWD sometimes
suffers from incomplete or mis-specified measures of subject characteristics, expo-
sures, and outcomes. Intercurrent events can disrupt the measure or interpretation
of the outcome. Whether or not treatment is randomized, these aspects of RWD
increase the difficulty of drawing accurate, interpretable insights into safety and
efficacy in broad populations under real-world conditions.

This chapter describes the TL approach to causal inference that addresses
these challenges. The TL roadmap provides a step-by-step guide to producing and
evaluating RWE [1-3, 10, 11]. It accounts for all components of the ICH E9(R1)
Guideline definition of an estimand: population, treatment, outcome variable,
summary measure, and intercurrent events [12]. In alignment with the guidelines,
the roadmap defines the target causal estimand as a parameter of the probability
distribution of the data. Initial steps in the roadmap characterize the data-generating
process prior to data collection. This promotes transparent definitions of the causal
estimand in terms of a causal model and the statistical estimand in terms of a
statistical model. The choice of estimator and the scope of sensitivity analyses are
also pre-specified.

TMLE+SL provide efficient, consistent estimation of statistical parameters, and
inference. The final step in the roadmap offers a transparent process for assessing the
validity of a causal interpretation. These concepts are illustrated through an analysis
of time-to-event data from a single arm study with a synthetic external control arm.
The population of interest is defined by the population included in the single arm
study. TMLE+4-SL are used to evaluate the marginal cumulative incidence ratio of
treatment versus comparator among the treated (ATT). The chapter concludes with
a summary of other ways to utilize¢ RWD throughout the pharmaceutical pipeline
with the help of TL.
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2 Targeted Learning Estimation Roadmap

2.1 Step0

Step O of the roadmap (Fig. 1) concerns the clinical question of interest and the
plan for acquiring study data that is suitable for addressing the substantive question
of interest to domain experts. This question is initially expressed in terms of a gap
in scientific knowledge, and will ultimately be formulated as a statistical question
that can be answered from data. Each of the five ICH E9(R1) elements of an
estimand are clarified in this step: (1) Inclusion/exclusion criteria define the study
population; (2) precise definitions of the treatment, including time of initiation,
background therapies, and comparators to define each study arm; (3) clear criteria
for identifying or measuring the outcome on or before a specific follow-up period;
(4) a meaningful summary measure, such as a risk difference, hazard ratio (HR), or
dose-response curve, is decided upon [12]; (5) identify likely intercurrent events,
such as treatment non-adherence, loss-to-follow-up (LTFU), and competing risks.
These post-randomization events can potentially disrupt the treatment-outcome
associations in the data and/or have an impact on defining the (identifiable and
estimable) treatment effect. Therefore, considering intercurrent events this early
in the process allows the study team to identify an appropriate strategy for
ameliorating their impact on the eventual study finding, collecting relevant data,
and/or to define the realistic estimand that respects the underlying data-generation.
For example, experts can consider whether incorporating a competing risk into a
composite outcome is the appropriate scientific question to investigate, e.g., “stroke
or myocardial infarction” vs. “myocardial infarction” alone. With these elements in
mind, Step O culminates in characterizing the process that gives rise to the data over
time.

For a simple example, consider a hypothetical retrospective cohort study to
compare the impact of utilizing etomidate/midazolam as a sedative during routine
screening colonoscopy versus a comparator drug propofol/midazolam on systolic
blood pressure at the end of sedation. The summary measure will be the marginal
additive treatment effect (ATE). The population of interest consists of non-pregnant

Fig. 1 The targeted learning  Step 0. Formulate the substantive question(s), and describe
estimation roadmap the experiment giving rise to the data
Step 1. Define a realistic statistical model for the data
Step 2. Define a causal model, and causal parameter of
interest
Step 3. Specify statistical parameter, and identifying
assumptions
Step 4. Estimation and Inference using TMLE + SL
Step 5. Interpretation and substantive conclusion, supported
by sensitivity analyses
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adults between the ages of 20 and 85 who had a screening colonoscopy at the
outpatient center of an urban hospital between January 1, 2019 and December 31,
2019. The dataset will consist of independent and identically distributed (i.i.d.)
observations O = (W, A, Y), where Wis a vector of baseline covariates (age, sex,
pulse, systolic blood pressure (SBP), irritable bowel syndrome (IBS, y/n), A is a
binary indicator of treatment with etomidate (A = 1) or propofol (A = 0), and Y
is the post-sedation SBP. Assume that subject matter experts have ensured that W
contains all potential confounders of the treatment—outcome association Although
patient status during the procedure can modify the administration of the sedative
over time, this is a downstream effect of treatment choice at baseline, so is not
viewed as an intercurrent event that confounds the treatment—outcome relationship.

2.2 Step 1

Step 1 is the specification of a realistic statistical model, i.e., a set of possible joint
distributions of the data. Domain knowledge can be used to restrict the model by
ruling out distributions that are incompatible with known truth. The key is to avoid
making unrealistic restrictive assumptions that preclude the true data distribution.
For example, restricting the conditional distribution of a point treatment to the set of
main terms logistic regression models is appropriate when treatment is randomized,
but overly restrictive when treatment decisions were made by clinicians and patients,
potentially involving complex interactions among baseline patient characteristics.
In our running example, the likelihood of the data can be factorized as £(0) =
py YA, W) pa(A|W) pw(W).

2.3 Step 2

Step 2 approaches the problem from a causal perspective. A causal model specifies
known conditional independencies in the data. Directed acyclic graphs (DAG)
provide a visual representation of a causal model [13]. Nodes in the graph represent
endogenous variables: covariates, treatment, and outcomes in the causal model.
Exogenous variables unaffected by others in the graph are denoted by U. An arrow
between two nodes depicts a possible causal relationship. The node at the origin of
the arrow is termed the parent node. The absence of an arrow encodes knowledge
of true statistical independencies. Some independencies are inherent in the time
ordering of the data, while others stem from domain knowledge. The DAG in Fig. 2.
indicates that age, sex, pulse, SBP, and IBS potentially impact the outcome. The
absence of an arrow between IBS and A indicates that treatment choice is known to
be independent of IBS status. The DAG indicates that the only potential confounders
of the treatment—outcome association are age, sex, pulse, and SBP.
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The relationships depicted in the DAG can also be expressed as a collection
of functions in a structural causal model (SCM) [13]. In an SCM, each variable
is defined as a function of its parents and exogenous variables, age = fuge(Ugge),
sex = foex(Usex), pulse = fouise(Upuise), SBP = fspp(Uspp), IBS = fips(Uips),
A = fa(age, sex,pulse, SBP, Uy), Y = fy(age, sex, pulse, SBP, IBS, A, Uy).

We next define a causal quantity in terms of the causal model in the full
data, where potential counterfactual outcomes arising under each treatment
of interest are available. The counterfactual full data consists of observations
ofull — w, Wy 1),where Y? denotes a counterfactual outcome observed under
exposure to treatment a. The estimand of interest is typically a causal contrast
between counterfactual distributions of the outcome. An individual level causal
contrast comparing two treatments, ag and ay, is expressed as a function of Y% and
Y4 eg, 1//2‘%}"1 = EY% — EY% is a causal additive effect of treatment (ATE),
wf{jé”“l = EY“ /EY? is a causal relative risk (RR), etc. The causal quantity of

interest in our running example is the difference in post-sedation SBP, wg“Tug‘” .

2.4 Step 3

Step 3 of the roadmap defines the statistical parameter that can be estimated from
data that can be observed in the real world, where it is only possible to capture
the outcome a subject experienced under the received treatment. This statistical
estimand, ¥°?°, must be defined in terms of the features of the distribution of the
observable data, O = (W, A, Y,), rather than features of the underlying full data
defined in the causal model.

In our running example, the statistical ATE parameter is given by ¢ =
E[E(Y|A = 1,W) — E(Y|A = 0, W)]. Identifying assumptions link this statistical
estimand with wf‘“T”g“l [14]. The first of these is the consistency assumption stating
that for a subject, i, who experiences a treatment or exposure at level a, the observed
outcome, Y;, is equivalent to the counterfactual outcome, Yl.“.

The positivity assumption states that within strata defined by confounders in
W, there must be a positivity probability of receiving treatment at all levels
under consideration, 0 < P(A = a | W) < 1, a = 1 or 0. In many applica-
tions, the outcome may be subject to missingness (missingness indicator A = 1
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when the outcome is observed, A = 0 when the outcome is missing). For
these situations, the SCM would contain an additional function describing the
missingness mechanism, A = fa(W,A, Up). The observed data would be given
by O = (W,A, A, AYy), where AYy = Y4 when A = 1 and is missing when
A = 0. The definition of the causal parameter remains unchanged, while the
statistical estimand must explicitly account for missingness, e.g., for the ATE
vobs = E[E(Y|A = 1,LA = 1,W) — E(Y|A = 1,A = 0,W)]. The positivity
assumption must hold with respect to missingness as well. Within strata defined
by A and W, there must be a positive probability that the outcome will be observed,
O0<P(A=1|AW)<I.

The randomization assumption of no unmeasured confounding states that treat-
ment and outcome missingness are independent of the counterfactual outcome given
the past, Y* L A, A | W. This corresponds with assuming that A is independent of
Y, given (W, A), and A is independent of Y* given A = 1, W.

When these identifying assumptions hold, ¥ “® is identifiable from the data.
Whether they hold or not, y°” is a statistical estimand clearly defined as a function
of the true data distribution.

Working through steps 0-3 is sometimes an iterative process. It is important
to note that these steps occur without examining study data. When designing a
statistical analysis plan for the purpose of regulatory approval, the process occurs
prior to data collection. Post-market safety surveillance may involve secondary
analysis of existing data that includes some real-world elements, but the actual data
doesn’t play a role in steps 0-3.

2.5 Step4

Step 4 focuses on the statistical estimation problem. A critical tenet of TL is that
an estimator is a pre-specified mapping from data to a scalar. Traditional parametric
modeling approaches typically regress Y on A, optionally adjusting for additional
covariates. Coefficients in the model are estimated using maximum likelihood,
and the coefficient in front of A is interpreted as the conditional treatment effect,
e.g., a log hazard ratio in a Cox model, a log odds ratio in a logistic model,
or an additive effect in a linear model. This approach is limited in that if the
model is not correct then the effect estimate will be biased (unless treatment is
randomized [15]). This model assumes the treatment effect is homogeneous and
that there are no effect modifiers, such as drug—drug interactions. It also assumes
monotonicity and linearity in the dose-response relationship between treatment and
the outcome. If any of these assumptions are unwarranted, effect estimates will be
biased. Furthermore, in high dimensional settings, it is impossible to a priori specify
a correct parametric model.

If we are interested in learning from RWD about treatment effects in diverse
populations, then adopting a more flexible methodology is a better alternative.
Desirable properties of an estimator are that it is consistent, regular, asymptotically
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linear (RAL) and thereby asymptotically normal, efficient in the sense that the
normal limit distribution has minimal variance. Asymptotically linear means that
the estimator minus estimand equals the empirical mean of a function of O; called
the influence curve of the estimator, plus an asymptotically negligible remainder.
Root-n convergence of such an estimator implies that /n (1//0 — Y ) 4 N ( 0,02),
where n is sample size, ¢ is the true parameter value, v, is the estimated value,
and o is the variance. An efficient estimator is one in which o is the variance
of what is known as the efficient influence curve (EIC) [16, 17]. The EIC is a
mathematical object that can be computed for any statistical model and bounded
pathwise differentiable target parameter. It is derived as the canonical gradient of
the derivative of the target parameter viewed as a function of the data density [18].
Theory teaches us that an estimator is asymptotically efficient if and only if it is
asymptotically linear, with influence curve the canonical gradient. TMLE possesses
each of these properties, and promotes consistency by incorporating non-parametric
estimation of the key functionals of the data distribution [1].

TMLE+4-SL couples an efficient estimator with machine learning to flexibly
model outcome regressions, propensity scores, and missingness mechanisms. The
combination provides estimates consistent with the process that gave rise to the
data. Unlike machine learning alone, TMLE4-SL is tailored towards providing
efficient unbiased estimation of the target parameter and valid inference. Its practical
utility includes the ability to account for baseline and time-varying confounding,
intercurrent events, and missing outcomes, in estimating any pathwise-differentiable
parameter of interest, in point treatment problems, longitudinal analyses, and
analyses of time-to-event data [1, 19].

TMLE is a two-step procedure. In a point treatment problem, the first step uses
SL to obtain initial estimates of the outcome regression (Q), propensity scores and
missingness mechanisms (collectively denoted by G = (ga(A, W), ga(A,A, W)),
while it estimates the expectation over W with the empirical mean. The second, so-
called targeting step, involves fluctuating the initial outcome model to improve the
bias variance trade-off for v°”* by ensuring the EIC has empirical mean 0. Statistical
theory shows that in this estimation, problem estimators having this property are
double robust (DR), i.e., consistent if either Q or G are correctly specified [16, 20,
21]. When both Q and G are correctly specified, these estimators are efficient.

The variance of v, aéﬂ = o2/n, can be used to evaluate p-values and to
construct confidence intervals. When positivity is an issue, IC-based confidence
intervals might provide less than the nominal coverage [21]. One alternative recog-
nizes that as a result of using TMLE, we have a targeted estimate of the data density,
p;.This allows us to bootstrap by sampling from p}, then carrying out the targeting
step in the bootstrapped sample and evaluating the parameter estimate to create a
finite sampling distribution. This targeted bootstrap picks up the behavior of the
second order remainder term that is asymptotically negligible, but can be relatively
large when positivity is an issue [22]. Quantile-based confidence intervals Wald-type
confidence intervals can be constructed based on the bootstrapped estimate of the
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variance, or based on the quantiles of the bootstrapped distribution. This approach
avoids re-estimation of Q and G, thus, is quite computationally feasible.

A second alternative is to recognize that oén is itself a pathwise-differentiable
parameter that can be estimated from data in a robust, targeted manner using TMLE.
We can fit the data density with a TMLE, obtaining an estimate p;; targeted towards
o2(p), then estimate the variance with o2 ( pj;) This plug-in estimate of the variance
offers improved inference in sparse data settings.

Several features distinguish TMLE from other DR estimators. As a substitution
estimator, TMLE is guaranteed to remain within the bounds of the statistical model
(e.g., outcome regression estimates remain within the possible range) [23]. A
substitution estimator is an estimator of type W (p;), with p} an estimator of the
true density, pg, and being an element of the statistical model M. This plug-in
property of the TMLE improves finite sample bias and variance relative to non-plug-
in estimators, which can even produce negative estimates of a probability in sparse
data situations. Several advantages arise from targeting an initial density estimator.
TMLE can be utilized for parameters where no estimating equation approach exists
or where the estimating equations have multiple or no solutions. It also allows
TMLE to incorporate machine learning while remaining RAL [21]. For this reason,
we refer to TMLE as the bridge from machine learning to statistical inference.
Another finite sample advantage is that estimation of the G components of the
likelihood can be tailored based on residual bias in the parameter estimate evaluated
with respect to the initial estimate of Q. This approach, known as collaborative
TMLE (C-TMLE), can improve the bias/variance trade-off by conditioning on only
a subset of confounders, while remaining DR [24, 25]. C-TMLE is particularly
useful when there are near-violations of the positivity assumption and in high
dimensional settings. TMLE can also naturally incorporate additional targeting for
the purpose of additional statistical robustness properties, or simultaneously target
many parameters, including an entire survival curve [26].

Consistency and efficiency of the TMLE rest on successfully modeling the O
and G components of the likelihood. It is impossible to know in advance which
parametric or machine learning algorithm is optimal. This challenge motivates
the use of SL to simultaneously consider multiple approaches, relying on cross-
validation to select the best algorithm (discrete SL) or the best combination of
algorithms (ensemble SL) from a user-specified collection known as the library
[27, 28]. Aside from the library specification, SL performance depends on the
complexity of the underlying prediction or regression function, the cross-validation
scheme, and choice of loss function [29, 30]. Practical advice and a flowchart for
specifying a super learner tailored to the task at hand and characteristics of the data
are available in the literature [30].

Given the theoretical properties of SL, it is natural to wonder why we do not
simply obtain SL predictions for each observation under each counterfactual value
for A of interest and evaluate the plug-in estimator. Consider the ATE and let

E: L (a, W) be the predicted value from the SL fit of the outcome regression when
. —SL —SL
A = a. Why not directly evaluate 3¢ = LS 0™ (1, W) — 0, (0, W)?

n
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Table 1 Simulation study: Bias, variance (var) and mean squared error (MSE) for the unadjusted,
IPTW, and TMLE+SL estimators of the ATE

Estimator Bias Var MSE
unadj 1.774 1.024 4.170
IPTW 0.210 0.058 0.102
TMLE+SL 0.053 0.020 0.023

The answer stems from the fact that SL and other machine learning algorithms
approximate an unknown prediction function by optimizing a global loss. While
this is ideal for the purpose of prediction, it offers a less than ideal bias/variance
tradeoff for estimating °?%. There are no guarantees on rates of convergence with
respect to the target parameter and no guarantees of asymptotic linearity. Thus
valid inference is precluded, except when using special sieve maximum likelihood
estimators (MLE), such as plug-in highly adaptive lasso-MLE [31].

2.5.1 Simulation Study

A simulation study demonstrates how following the roadmap guidelines impact
study estimates. We compare the unadjusted estimate of the ATE with an esti-
mate obtained using inverse probability of treatment weighting (IPTW) [32] and
TMLE+SL. Stabilized weights for the IPTW estimator were based on propensity
scores estimates from a main terms logistic regression model. This common practice
is a slight misspecification of the true PS model. TMLE+SL estimates were
obtained using the tmle R package, with the default settings [33]. One thousand
datasets of size n = 500 were generated (Appendix A.l). Bias, variance, mean
squared error (MSE) are reported in Table 1. Although IPTW greatly reduced
bias and variance compared with the unadjusted estimator, results illustrate that
TMLE+SL was 75% less biased than IPTW, with 66% smaller variance. These
gains stem from using machine learning to minimize model misspecification bias,
and from TMLE’s efficiency property.

2.6 Step5

Step 5 is to assess the interpretation and robustness of the study finding resulting
from step 4. Diaz and van der Laan (2013) define the causal gap as the difference
between the statistical estimand (°?%) and the causal estimand (y<®sal) [34].
That paper proposes a sensitivity analysis to explore how different values of the
hypothesized gap would impact the effect estimate and confidence interval bounds.
If a small causal gap would reverse the substantive conclusion, then the study
findings are not robust. This might imply that the study does not provide substantial
evidence for regulatory or other decision-making. If, on the other hand, even a
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large causal gap would not change the substantive conclusion, then the evidence
produced by the study could be acted upon with confidence. This non-parametric
sensitivity analysis can complement other sensitivity analyses deemed appropriate
by regulators.

Any causal gap would be due to violations of the underlying identifying assump-
tions. The consistency and randomization assumptions are not testable from data.
Their plausibility rests on subject matter experts with knowledge of the underlying
data generating process and data capture. The impact of practical violations of the
positivity assumption could also be evaluated as part of this sensitivity analysis. In
addition, diagnostics examining baseline differences between treatment and control
groups and assessing their overlap can provide important insight. In studies where
parametric methods are used in TMLE rather than an advanced SL, additional
sensitivity analyses addressing those restrictive statistical assumptions would also
be required. However, this approach is not recommended. A better alternative is
to set up outcome blind simulations before specifying the full TMLE and SL to
evaluate if the SL is sufficiently data adaptive and make adjustments accordingly.
The primary goal of the sensitivity analysis is to address non-testable assumptions.

3 Case Study: Single-Arm Trial with External Controls

This section illustrates how to follow the TL roadmap to foster the development of
transparent, interpretable, and reliable RWE.

RWE plays an important role in single-armed trials, where outcomes in the
treated arm can be contrasted with outcomes in external comparators. External
data sources include historical or concurrent trials with similar inclusion/exclusion
criteria or RWD. A key challenge is identifying a comparator group where the
observed causal contrast can be attributed to the effect of treatment, rather than
other differences in the populations, background therapies, monitoring schedules,
etc. [35].

We illustrate TL in this context through an analysis of time-to-event data from
a real-world single-arm study combined with a synthetic external control arm.
Data were downloaded from Project Data Sphere, a repository of oncology data
from biopharmaceutical companies, academic medical centers, and government
organizations (www.projectdatasphere.org). Our dataset consists of observations on
n = 371 subjects in the comparator arm of a Phase III RCT sponsored by Eli Lilly
and Company (IMCL CP12-0606/TRIO-012) comparing progression-free survival
(PFS) in previously untreated patients with HER2-negative, unresectable, locally
recurrent, or metastatic breast cancer [36]. The real-world comparators who received
a placebo plus docetaxel are viewed as the treated group in our case study. We
simulated data on 1000 subjects in an external comparator arm from a similar
population (Appendix A.2) and carried out a retrospective cohort study on the
combined dataset (n = 1371). The next subsections step through the TL roadmap to
generate and evaluate RWE concerning our simulated treatment effect.
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3.1 Apply the TL Estimation Roadmap
3.1.1 Step0

The goal of our study is to understand the impact of treatment with docetaxel +
background therapy vs. placebo + background therapy on disease progression. The
target population is reflected by the real-world study’s inclusion/exclusion criteria.

* Female patients at least 18 years of age with histologically or cytologically
confirmed, HER2-negative breast adenocarcinoma

* At study entry, the disease must be metastatic or locally recurrent and inoperable
with curative intent

» Patients may not have received chemotherapy or biologic therapy for metastatic
or locally recurrent, inoperable breast cancer

The treatment under consideration in our case study (A = 1) is docetaxel
(75 mg/mz). The (simulated) comparator (A = 0) is a placebo consisting of only
the histidine-buffered formulation vehicle. Both treatments were administered as
an approximately one-hour intravenous infusion on Day 1 (£ 3 days) of each 21-
day cycle. We will contrast the time-to-disease progression in each study arm. Our
primary interest is the intention-to-treat (ITT) effect, which is not affected by non-
compliance or discontinuation of treatment. The ICH guidelines refer to this as the
treatment-policy strategy for dealing with intercurrent events that are considered
irrelevant in defining the treatment effect of interest [12]. However, mortality is a
competing risk that would preclude observing the time to progression. To address
the clinically relevant question regarding progression-free survival (PFS), we define
a composite outcome, disease progression or death. The summary measure is the
cumulative incidence of disease progression or death by = 60 months.

The data consists of n i.i.d observations O = | W, A, A, T ), where W is a

vector of baseline covariates (age, body surface area (bsa), Eastern Cooperative
Oncology Group performance status (ecog), left ventricular ejection fraction (lvef),
measurable lesion (Y/N) (lesion), menopausal status (meno), and triple negative
status (tripleNeg)), A is a binary treatment indicator, A is an indicator of the event

type (0: censoring, 1: progression or death), T, the last time point at which a
subject was monitored, is the minimum of the censoring and outcome event times
(C and T, respectively). All real-world participants were followed up for longer than
60 months, thus the only censoring event is administrative censoring at r = 60.

Subjects in the comparator group are younger on average than subjects in the
treatment group, and are 15% more likely to be pre-menopausal (Table 2). Among
the 91% of subjects in the comparator group who experienced an outcome event
within 60 months, the crude mean PFS was 37 months. Among the 63% of subjects
in the treatment group who experienced an outcome event within 60 months, the
crude mean PFS was 28 months.
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Tab.le.Z Mean and stapdard Mean (SD)
deviation (SD) of baseline

o . Covariate | Comparator arm | Treatment arm | SMD
characteristics of patients by

trial arm, and standardized age 50.25 (10.80) 54.18 (10.02) | —0.38
mean difference (SMD) bsa 1.86 (0.18) 1.76 (0.19) 0.55
ecog 0.36 (0.02) 0.38 (0.02) —0.05
lesion 0.17 (0.01) 0.19 (0.02) —0.04
meno 0.41 (0.02) 0.27 (0.02) 0.30
tripleNeg 0.24 (0.01) 0.22 (0.02) 0.05

3.1.2 Stepl

The statistical model is most naturally expressed in terms of the intensities of the

failure and censoring time processes, N(t) = [ <T <t,A= 1) ,and Ac(t) =

I\T <t,A= 0), with respect to the observed history. For the sake of generality

we will assume discrete (7, C) on a discrete time scale that is sufficiently fine so that
all formulas have their analogs for continuous (7, C). We can recode the observation

O =W, A, A, T | indiscrete time as the time-ordered longitudinal data structure
0= W,A,N©),Ac(0), ...,N(t),Ac(t),N(t + 1)), where 7 is a maximal follow

up time so that each 7 < t + 1. This can be more succinctly expressed by
suppressing the time ordering, O = (W, A NG +1),Ac (r)), where the over-
bar denotes the entire history.

The likelihood of O can be factorized according to the time ordering: p(0O) =
aw (W)ga (AIW) TTT_o8aco (AcOIN@), Ac ¢ = 1), A, W) [T anve (N®)
N@—-1),Ac(t—1),A, W), where each conditional density is conditioning on
the variables realized prior to the variable in question.

Furthermore, gac() (1| N(1), Ac (t — 1), A, W) =1 (Ac (t — 1) =0, N(t) = 0)
Ac (] A, W), and gy (1IN (@ —=1),Ac(t—1),A,W)=1(N(@—1)=0,
Ac(t—1)=0)Ar (t|A, W), where Ac(t |A, W)=P(C=t|C>t—1,N(t) =0,
A, Wyand Ar(t [A, W)=P(T =t |T >t —1,Ac(t — 1) =0, A, W). Under the
coarsening at random assumption on C stating that censoring and event times are
conditionally independent given T, A, W, the conditional hazard functions reduce to
Act|A,W)=P(C=t|C>t—1,A,Wyand A\r(t{|A, W)=P(T =t |T>t—1,A,
W). In other words, under this assumption these intensities of N(¢) and Ac(f) reduce
to indicators of being at risk of changing values multiplied by the conditional
hazards of C and T, respectively. Thus, the density of O can be parameterized as
P = Dqu.ic,ir.g- A statistical model M for the density p of O is determined by
assumptions on A¢ and g, with ¢,, and A7 remaining nonparametric.
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Fig. 3 Directed acyclic

graph (DAG) representation age*
of the causal model for the
case study bsa *
ecog
lesion -

meno

tripleNeg - ¢

3.1.3 Steps2and3

Our causal model is represented by the DAG in Fig. 3. All baseline covariates are
potential confounders of the association between treatment and outcome event time,
T.

We are interested in contrasting the 60-month cumulative incidence of disease
progression or mortality under exposure to the study treatment vs. the comparator.
Subjects in our treatment group are representative of our target population, while
subjects in the comparator group are relatively younger and 1.5 times more likely
to be pre-menopausal. Thus, we define our causal parameter as the cumulative
incidence ratio (CIR) of disease progression or mortality by 60 months among the
treated, an average treatment effect among the treated (ATT).

Consider an intervention-specific causal parameter among the treated in terms
of the full data, y<“% = P(T*>60|A=1).Then P(T* >60|A=1) =
E(P(T*>60|A=1,W)|[A=1) = Ewas(P(T=60]A=1,W)) =
Ewja=1][] <60 (1 —Ar (s| A =1, W)). We denote the latter expression by y,(P),
a parameter defined in terms of the observed data distribution, establishing the
identification of 1//5””“” (Px) under exposure a.

Note that P (T* <60|A=1) =1 — 1//5““”’. Next we define the conditional
survival function of T given A, W as S (t|A, W) = [[,., 1 — Ar (s|A, W) so that
Yo% = Ewja=1S (60|A = 1, W) and ¥3* = Ewa=1S (60]A = 0, W). The CIR
among the treated is a function of these two statistical estimands, wgbe_ ATT =

(=] /[ =vg™]

3.14 Step4

A customized version of the survimle R package was used to estimate the 60-
month CIR of disease progression or mortality among the treated (https://github.
com/benkeser/survtmle/tree/att) [37]. SL was used to estimate the propensity score
and the failure time process [38]. The number of cross-validation folds was set to
20, and the SL library contained logistic regression, lasso regression, and general
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additive models [39—41]. Specifying “ATT = TRUE” when invoking the survtmle
function returned estimates of the cumulative event incidence among the treated in

each study arm ( fig : comparator, 1] : treatment), and the covariance matrix,

A A2
(70’1 01

delta method, the variance on the log scale is given by oﬁ) eCIR = 012 / u% + 002 / u(z) -
2001/ (10) -We found a CIR among the treated of 0.77 (95% CI: 0.71, 0.83),
indicating that treatment reduced the 60-month cumulative incidence.

AD A
o5 O P
Y = [ 0 01 :| From these results, we evaluate I/JnCIR_ATT = [i1/[4o. By the

3.1.5 Step5

To understand whether the study finding provides sufficiently reliable RWE to
support an actionable conclusion or regulatory decision, we consider the direction
and magnitude of the causal gap, the difference between the statistical and causal
parameters defined earlier. Fig. 4 examines how the point estimate, wnc [R=ATT
and 95% CI bounds change as a hypothesized causal gap grows larger, towards and
away from the null value of 1. The study’s point estimate and 95% CI are at 0 on the
x-axis, representing an unbiased estimate of ng‘}"lgfl 77 under an assumption that
there is no causal gap, § = 0. Hypothetical gaps are shown on the x-axis in absolute
units, §, and on an alternate x-axis in terms of “adjustment units,” the difference
between the adjusted and crude estimate (0.77-0.70=0.07).

The plot illustrates that any positive causal gap produces an even larger protective
effect of treatment on PFS. A causal gap in the negative direction would have
to be at least —0.24, or approximately 0.24/0.07=3.64 times (taking into account
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Causal Gap

Fig. 4 Sensitivity plot showing point estimates and confidence intervals for the cumulative
incidence ratio among the treated under presumed causal gap, 8, between —0.4 and 0.4, or
approximately six times the magnitude of the adjustment due to measured confounders (Adj units)
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rounding error) larger than the adjustment due to measured confounders, for the
point estimate to be above 1, and approximately —0.32, or nearly five times larger
than the adjustment due to measured covariates for the 95% CI to exclude the null.

Next, we would confer with experts to determine plausible limits on the size and
direction of the causal gap, with the understanding that the existence of a causal gap
must stem from one or more violations the identifying assumptions. We examine
each of these in turn.

In our case study, the consistency assumption is very likely met in the treatment
arm due to the careful monitoring of the PFS by the study team throughout
follow-up. It is met in the comparator arm through simulation. The positivity
assumption only needs to hold with respect to the distribution of data in the
treatment group, since we are evaluating an ATT parameter, 0 < PA=0| W) < 1.
In our data, the estimated propensity score in the treated group is between 0.05
and 0.69, suggesting the positivity assumption is met. A diagnostic showing the
propensity score distribution among treated and comparator groups shows good
overlap (Fig. 5).

The randomization assumption is generally untestable, though it holds by design
in randomized studies with no right censoring. In single-arm trials that utilize
external comparator arm data the randomization assumption needs to account for all
factors, S, predictive of the outcome that determine trial arm membership, such that
Y* 1L S| A, A, W. For example, differences over time, region, inclusion criteria, and
study conduct need to be listed and evaluated for their potential to induce positivity
violations (e.g., all comparators received a now-discontinued background therapy),
and to confound the treatment—outcome associations. Differences in unmeasured
confounders can also increase the causal gap.

In our case study, all three causal assumptions appear to be met, therefore the
plausible causal gap in our study should be close to § = 0. The point estimates
change very little when & is small, and the CIs largely overlap. Thus, the sensitivity
analysis strongly supports interpreting the study finding as a reliable estimate of the
true causal effect of treatment, and for concluding that treatment is protective.
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4 Conclusion

Essential components of a study incorporating RWD include careful study design,
conduct, and complete, accurate data capture. Producing reliable, interpretable RWE
also requires learning from data using a rigorous methodology that is transparent
and flexible. The TL roadmap provides a systematic approach to generating and
evaluating RWE. The potential outcomes framework provides a unified, systematic
approach to defining causal estimands regardless of randomization. This is in
alignment with FDA’s definition of RWE [42]. Clearly articulating the underlying
identification assumptions can contribute to evaluating whether the data are suitably
fit for purpose. TMLE+SL can appropriately adjust for bias due to baseline and
time-dependent confounders, intercurrent events, and missing outcomes. Utilizing
data-adaptive machine learning avoids imposing additional statistical assumptions
beyond those required for identification. An analysis using TMLE+SL can be
completely pre-specified to satisfy regulatory requirements, while remaining data
adaptive and providing valid inference [43].

TL is a general approach that can be tailored towards parameters of interest
beyond those traditionally evaluated, for example, mediation analysis with time-
varying mediators and exposures [44]. The approach is to first define the desired
causal quantity in a causal model, then specify the corresponding statistical
parameter identified through the G-computation formula [45], derive the efficient
influence curve, and finally develop a targeted estimator for the target parameter.

Beyond estimating causal effects, in the pre-clinical phase, TL can be used
to rank drug candidates by their potential for Phase I success, or to identify
differentially expressed genes meriting further investigation [46, 47]. TL can be
used to design sequential adaptive randomized trials to optimize trial design, or to
optimize individualized treatment rules for precision medicine [48, 49]. SL-based
outcome phenotyping is useful for cohort identification, and for identifying health
outcomes of interest in safety and efficacy studies [50]. The TL paradigm can be
utilized throughout the pharmaceutical pipeline for optimal learning from data.
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A Appendix

A.1 Simulation Study Data Generation Process

One thousand datasets of size n = 500 were generated as follows: age~U(20, 85),
sex ~ Bernoulli(0.4), pulse ~ N(70, 52), SBP ~ N(130, 10%), IBS ~ Bernoulli(p;gs)
with pjps = 0.08 + 0.07sex + 0.1I(age > 50), A ~ Bernoulli(ps) with
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pa = expit(—1.8 — 0.0lage + 0.3sex + I(pulse < 65) + 0.01SBP), Y ~ N(u, 1), with
u=SBP — 10+ 8A 4 0.05age + 8sex + 5A I(pulse < 65) + 2A I(SBP < 120) — 2IBS.

A.2 Case Study Data Generation Process

Observations in the synthetic comparator arm were generated as follows.
First, n = 1000 values for age were sampled with replacement from the real-world
data with probability inversely proportional to age, then shifted by a random amount,
£age~N(—2,9). The remaining covariates were generated sequentially by fitting
covariate-specific main terms regression models to the real-world data, then adding
random noise to predictions from the model based on the previously generated
covariates: bsa = E (bsalage) + epsa ~ N (0.1,0.034) ; ecog ~ Bernoulli(pecog),
where  pecog = E (ecog | bsa, age); lesion ~ Bernoulli(piesion), Where
Dlesion = E (lesion | ecog, bsa, age); meno ~ Bernoulli(ppreMeno)s PpreMeno =
E (preMeno| lesion, ecog, bsa, age); tripleNeg ~ Bernoulli(pyipienes), Where
DiripleNeg = E (pretripleNeg | meno, lesion, ecog, bsa, age). The outcome
event time was generated from an exponential model fit on the real-world data that
included age, bsa, ecog, lesion, meno, tripleNeg as main terms, an interaction of
tripleNeg with bsa, and an indicator of age > 75, plus a random shift in the negative
direction, £4g.~U(—10, —6), that injected a protective treatment effect into the data.
Administrative censoring was imposed at ¢ = 60.

Disclaimer This chapter reflects the views of the authors and should not be construed to represent
FDA'’s views or policies.
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Estimand in Real-World Evidence Study: ®)
From Frameworks to Application Qe

Ying Wu, Hongwei Wang, Jie Chen, and Hana Lee

1 Introduction

Estimand is the target of estimation to address the scientific question of interest
[1]. Precise definition of estimand helps elucidate what is to be estimated and thus
clarifies what question can (or cannot) be answered using observed data. The Inter-
national Council for Harmonisation of Technical Requirements for Pharmaceuticals
for Human Use (ICH) E9(R1) [1] addendum on estimands and sensitivity analysis
(henceforth abbreviated as the ICH E9(R1) or the addendum) provides a structured
framework for constructing estimands in clinical trials by focusing on five attributes:
treatments, population, variable (endpoint), intercurrent events (ICE) along with
strategies to handle these events, and population-level summary.

Although the addendum states that the framework is also applicable to single-
arm trials and observational studies, constructing estimands for real-world evidence
(RWE) studies is not as straightforward and often requires additional considera-
tions. The Real-World Evidence Scientific Working Group (SWG) of the American
Statistical Association Biopharmaceutical Section published Chen et al.’s [2] paper,
in which they discussed the challenges in constructing estimands for RWE studies
in great detail. More specifically, Chen et al. [2] elucidated (1) similarities and
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differences in estimand attributes between traditional clinical trials and RWE
studies; (2) presented points-to-consider when defining real-world estimands; and
(3) provided a roadmap for constructing real-world estimands. We expand the
discussion in Chen et al. [2] and provide additional considerations with respect to
the construction of estimands in RWE studies.

We will begin with an overview of existing frameworks that might be useful
to define real-world estimands, as in Chen et al. [2] However, we propose to
consider an additional framework which was not a part of Chen et al.—a targeted
learning framework [3]. We elucidate how each framework can be used to define
target estimand as well as to identify sources of bias and underlying assumptions
associated with the selected estimand, which are specific to RWE studies. We also
elaborate on how the use of potential outcome notation can provide a basis for
precise definition of different types of ICE and corresponding strategies handling
them, which can ultimately provide a well-defined, transparent definition of a target
estimand and thus inform appropriate study design and analysis. These are also
illustrated using various case examples.

The rest of this chapter is organized as follows: Section 2 presents an overview of
existing estimand-related frameworks. Section 3 delineates how one can define real-
world estimands based on each framework using various case examples. Section 4
provides a summary and discusses additional considerations for constructing real-
world estimands.

2 Frameworks Relevant to Real-World Estimands

This section reviews four frameworks that can provide guidance on how to define
estimands for RWE studies: the ICH E9(R1) [1], target trial framework [6], causal
inference framework [4, 5] (a.k.a., Neyman-Rubin causal inference framework in
some other literature) and targeted learning framework [3]. Of note, all of these
frameworks, except the ICH E9(R1), consider more than estimand encompassing
study question, estimand, design, analysis, and/or interpretation of findings. In
addition, the causal inference framework is the basis for all the other frameworks.
We also highlight that all of these frameworks are based on the same notion of
causality; however, each framework has its own distinct perspectives. We illustrate
how some elements in each of these frameworks can be used as guiding principles
for constructing estimands, identify sources of bias and underlying assumptions in
RWE studies.

2.1 The Estimand Framework in ICH E9(RI1)

The ICH E9(R1) presents a structured framework for constructing estimands in
clinical trials by describing five attributes of an estimand. As mentioned before,
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application of the ICH E9(R1) framework to RWE studies might not be straightfor-
ward. This is mainly because specification of the five estimand attributes depends
not only on the research question, but also on real-world data (RWD) sources and
complexity in real-world clinical practice. Here, we review the ICH E9(R1) and
discuss challenges in applying the framework to real-world settings. See Chen
et al. [2] for more detailed discussion regarding similarities and differences with
respect to the five estimand attributes between traditional randomized controlled
trials (RCT) and RWE studies.

1. Treatments. The treatment condition of interest, and, as appropriate, the alter-
native treatment condition to which comparison will be made. It is important
to clearly articulate the treatment regime of interest, which could be individual
interventions, combinations of interventions administered concurrently, or a
complex sequence of interventions. In RWE studies, various treatment use
patterns (e.g., treatment non-adherence, dosage adjustment, treatment switching,
concomitant use of multiple medications, or initiation of some dynamic treat-
ment regime that adjusts for treatment strategy based on accumulated patient
information) are often observed in routine clinical practice [7—11]. Therefore,
articulating the treatment (regime) of interest is one of key considerations in
defining estimands for RWE studies. In addition, having clarity on the start of
follow-up (i.e., time zero) is crucial in RWE studies. For example, Hernén et al.
[6] illustrated how bias may be introduced when cohort entry time, follow up
time, and initiation of a treatment are not synchronized. Unlike RCT, where the
follow up starts at the time of treatment assignment, subjects in RWE studies
may have a span of time during which outcome could not occur before treatment
initiation, which will introduce immortal time bias [12]. See also Sect. 2.2 and a
single-arm trial example in Sect. 3.1.

2. Population. The population of patients targeted by the clinical question, which
can be the entire study population and/or a subgroup/stratum of patients defined
by particular characteristics such as demographic and clinical characteristics, or
ICE (non-)occurrence. The target population for RWE studies, typically defined
with a set of less restrictive inclusion and exclusion criteria than those of
traditional clinical trials, may include patients with more diverse demographics,
clinical characteristics (e.g., multiple comorbidities), geographic areas and study
sites, all of which can lead to heterogeneity in target population. Also, types and
patterns of ICE occurrence might be much more complicated in RWE studies
compared to those in RCT which require additional considerations on selecting
appropriate principal stratum.

3. Variable (endpoint). The endpoint to be obtained from each patient that is
required to address the clinical question. In RWE studies, blinding to the endpoint
data, which may already exist in selected RWD, should be enforced during
the conduct of RWE studies to avoid investigator/analyst bias. An independent
endpoint adjudication committee can be set up to ensure validity and reliability
of the endpoint when necessary. Unlike traditional clinical trials, surrogate
endpoints are less likely to be used as primary endpoint in RWE studies. Instead,
single-time measured clinical endpoints such as death or hospitalization are often
used [13].
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4. Intercurrent events and their handling strategies. ICE are events occurring
after treatment initiation that affect either the interpretation or existence of the
endpoints associated with the clinical question of interest. The ICH E9(R1) dis-
cusses five strategies for handling ICE: treatment policy, hypothetical, composite
variable, principal stratum strategy, and while-on-treatment strategies. See the
ICH E9(R1) [1] for details with regards to each strategy. In RCT, most ICE
are induced by treatment efficacy or safety profile (e.g., intolerability or lack
of efficacy) and terminal events (e.g., death) [2, 14]. ICE in RWE studies are
more complicated and likely to be induced by patient behaviors and routine care
practice. Chen et al. [2] classifies ICE in RWE studies into five categories: (1)
events due to safety concerns; (2) events due to lack of efficacy; (3) events related
to behavioral factors (e.g., preference for certain treatment, convenience use of a
treatment, doctor—patient relationship, etc.); (4) events related to non-behavioral
factors (such as change of medical insurance policy affecting the use of current
treatments, improvement of health condition, etc.); and (5) terminal events.

5. Population-level summary. Population-level summary of variables/endpoints that
serves as a basis for comparison between different treatments (or treatment
strategies), such as difference in mean/median survival time, response rate, etc.
Unlike RCT, where some standard statistical methods (e.g., regression models)
are used to estimate causal treatment effects, specific causal inference methods
are often required in RWE studies to ensure comparability of study groups in
terms of measured covariates. In addition, ascertainment bias due to baseline
window/period [15] and selection bias due to missing information may appear in
RWE studies. These biases are often hard to address via analytic methods because
reasons for missingness are typically unknown or not well-captured in RWD. In
this perspective, defining an estimand in RWE studies can be an iterative process
dependent upon RWD quality. Not only that, but all causal methods require
some form of untestable assumptions such as no unmeasured confounding [16].
Therefore, it is essential to understand sources of bias and identify underlying
assumptions associated with the selected population-level summary (as well
as to other attributes such as endpoint). To support interpretation and evaluate
robustness of study findings, it is important to consider sensitivity analyses
under various, clinically plausible departures from the underlying assumptions.
These include, but are not limited to, different mechanisms of missing data,
different definitions of analysis set, different causal inference methods, different
combinations of covariates in analysis models, and assumptions on unknown or
unmeasured confounding variables.

2.2 Target Trial Framework

Target trial framework is a useful tool to identify and prevent some common
methodological pitfalls that may introduce biases in observational studies by
thinking through an ideal, hypothetical randomized trial called farget trial and by
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attempting to emulate the trial using large observational databases [6]. Therefore,
this framework allows to explicitly delineate potential sources of bias in RWE
studies and enables to evaluate RWD fit-for-purpose. In this framework, a causal
question and corresponding study design are articulated by specifying the following
seven attributes referred to as target trial protocol components: (1) eligibility
criteria, (2) treatment strategies, (3) treatment assignment, (4) start and end of
follow-up, (5) outcomes, (6) causal contrasts, and (7) a data-analysis plan. These
attributes can be mapped into the ICH E9(R1) estimand attributes and can be
used to construct real-world estimands. For example, the eligibility criteria in (1)
correspond to the population attribute of the ICH E9(R1), treatment strategies and
assignment in (2) and (3) correspond to the treatment and ICE attributes of the ICH
E9(R1), etc. Hampson et al. and Umemura et al. [33-35] illustrated the utility of
the target trial framework as a tool to define estimands for RWE studies. The target
trial framework might be particularly useful to facilitate communications between
statisticians and other domain experts because: (a) it is directly connected with
a notion of RCT and (b) all estimand and design components are illustrated in
non-technical language. This framework has been widely used in various scientific
domains including pharmaco-epidemiology [31, 32].

As mentioned earlier, feasibility of the target trial emulation can serve as a basis
to evaluate whether (1) a selected estimand is an addressable quantity based on
available data and/or (2) the data is fit-for-purpose to address the selected casual
question of interest. Therefore, the selection of estimand and evaluation of data fit-
for-purpose may require iterative operations in the study development process. In
other words, the key scientific question may be determined by the availability in
RWD sources, rather than a pre-specified question determining the rest of the study
development process. Such iteration should be minimized, and the design should be
chosen to match the study objectives and estimands.

Although the framework highlights the importance of articulating the treatment
strategy, the lack of specification of ICE and strategies to handle the ICE might be
concerning due to complexity and high frequency of ICE in RWE studies, as well
as limitations in RWD sources. Combined with the ICH E9(R1) estimand attributes,
the target trial protocol components may help articulate the treatment of interest.

2.3 Causal Inference Framework

Causal inference framework that utilizes the potential outcome (or counterfactual)
language and corresponding mathematical notation can provide a basis to define
estimands in a precise and transparent manner, even under highly complicated sce-
narios such as multiple time-varying ICE or confounders, informative missingness,
etc. An appealing feature of this framework is that it provides a quantitative form
of estimands that assists to understand the assumptions needed to estimate them
from the available data. Ho et al. [17] and Lipkovich et al. [18] demonstrate how the
use of the causal inference framework and potential outcome language/notation can
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help define causal estimands for both randomized and non-randomized studies. We
illustrate how the potential outcome notation can be applied to define estimands by
focusing on different strategies to address ICE [18-21]. We adapt the notation used
in Chen et al. [2]

Consider a study in which we are interested in comparing two different treatment
strategies. Let Y(a; t) be the potential outcome under treatment strategy a and receipt
of treatment status ¢. Note that @ and 7 may differ, for example, a person prescribed
treatment 1 might not take the drug as directed, or switched to another drug, say
drug 0. Let T(a) be the receipt of treatment under initiation of treatment a, and
Y(a) = Y(a; T(a)) be the potential outcome under initiation of treatment a. This
notation is useful to define subgroups of interest. For example, 7(1) = 1 represent
patients who initiated treatment 1 and continued to take the treatment 1. Similarly,
T(0) = O represent patients initiated treatment O and continued to take the treatment
0. In other words, 7(1) = 1 and T(0) = 0 are so called “compliers.” In addition, this
notation is useful to set a hypothetical scenario and to re-define potential outcomes
under such scenario. For example, we can force T(a) to be at a specific level,
say T(a) = t regardless of patients’ actual treatment receipt status, and examine
a treatment effect where everybody in a population is forced to initiate and stay on
treatment 7.

Based on this notation, we can now define various estimands of interest:

1. Treatment policy estimand. An average treatment effect (ATE) measured in mean
difference under the treatment policy strategy (i.e., regardless of ICE) can be
defined as E[Y(1)] — E[Y(0)]. To paraphrase in words, this estimand corresponds
to the difference in mean of potential outcomes in a world in which everyone
had initiated the treatment strategy a = 1 versus the same person had initiated a
reference treatment strategy a = 0, regardless of any ICE experience. Similarly,
an average treatment effect among the treated group (ATT) under the same
population-level summary and the same ICE-handling strategy can be defined
as E[Y(1)|T(1)] — E[Y(0)| T(1)]. If one concerns a treatment policy strategy
intended to apply to all qualifying patients, the target population should be the
whole (indicated) patient population and estimand should be the ATE. If the
question concerns a policy of withholding a treatment among those currently
receiving (or not receiving it), the estimand should be ATT (or average treatment
effect among the untreated, ATU).

2. Hypothetical estimand. Now suppose that we are interested in the treatment effect
under no ICE occurrence that are plausible in practice. For example, suppose that
additional medications other than study treatment O or 1 should be available in an
RWE study for ethical reasons. However, our interest lies on a treatment effect in
the absence of the additional medications (or when they are not available). Define
a new set of potential outcomes, Y (0; 1) = Y (1; ) = Z(¢). Then an ATE under
the hypothetical strategy can be defined as E[Z(1)] — E[Z(0)], which represents
the difference in mean of potential outcomes in a world in which everyone was
forced to take treatment a = 1 versus a world in which everyone was forced to
take treatment @ = 0. It is important to ensure that a hypothetical scenario of
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interest is precisely defined and clinically relevant, as well as that selected RWD
are sufficient quality to support corresponding analysis. For example, suppose
that a study that considers an additional medication use as an intercurrent event
and the hypothetical strategy to handle the event. Corresponding analysis should
account for potential non-random selection of the additional medication use
which requires sufficient and accurate (covariate) information on reasons for the
additional medication use. If some of the information are not collected in RWD,
the target hypothetical estimand should not be selected as no reliable estimator
exists. More often than not, hypothetical estimands require additional, untestable
assumptions than the other estimands and thus anticipate more comprehensive
set of sensitivity analyses. See chapter “The Need for Real World Data/Evidence
in Clinical Development and Life Cycle Management, and Future Directions” of
this book for more details.

3. Composite variable estimand. With the composite variable strategy, an estimand
incorporates ICE as a part of outcome definition. Of note, there could be many
possible outcomes after incorporating ICE and thus there is a need to pre-define
a set of clinically relevant outcomes of interest. For example, if a binary outcome
such as heart failure (yes/no) is the primary interest, but receipt of a rescue
medication, which is an intercurrent event, is considered to define an outcome,
there are four different combinations—heart failure with and without receiving
the rescue medication, no heart failure with and without receiving the rescue
medication. If the occurrence of an intercurrent event is considered a treatment
failure, some of these combinations can be merged and the primary outcome may
only consider two levels—no heart failure and no rescue medication as success
versus others. In this case, an ATE measured in difference in means under the
composite variable strategy can be defined as E[Y (V] — E[Y©], with Y (a) = 1
indicating (potential) occurrence of heart failure and/or receipt of the rescue
medication under treatment a. For continuous outcomes, defining a composite
variable estimand is more complex. Approaches, including dichotomization of
original continuous scale, assignment of specific values for patients with ICE,
using the worst value and modified summary measures such as quality-adjusted
survival or trimmed means, can be employed [22-27]. It is also possible to
rank patients with ICE according to timing or severity of the ICE, incorporating
more granular level information about the ICE [28, 29]. In general, treatment
discontinuations due to lack of efficacy or tolerability is regarded as treatment
failure, and it is reasonable to assign an unfavorable value (e.g., worst possible
score).

4. Principle stratum estimand. With the principal stratum strategy, we are interested
in a sub-population defined by occurrence of a specific intercurrent event. For
example, we may be interested in a treatment effect in a (principle) stratum
of patients who can tolerate study treatments (including both the treatment and
control). Let S be an indicator of the intercurrent event which corresponds to the
treatment tolerability (S = 1 if tolerated and O otherwise). Then the principal
stratum consists of patients that would tolerate under both treatment and control,
ie., {S(1) = 1}N{S(0) = 1}. Therefore, an ATE in the principal stratum can be
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expressed as E{Y(1) | S(1) = 1, S(0) = 1} — E{Y(0) | S(1) = 1, S©0) = 1}.
Note that the principal stratum estimand is a local average treatment effect.
To draw inference about this estimand, the principal stratum of patients’ needs
to be identified and thus some additional (identification) assumptions are often
required [30]. For more detailed examples of this estimand, see Bornkamp et al.
[30]

5. While-on estimand. With this strategy, we are interested in a treatment
effect under treatment adherence. Therefore, the ATE can be defined as
E[Y(D)|T(1) = 1] — E[Y(0)|T(0) = 0], i.e., the effect among the compliers.
If per-protocol is considered, we are interested in the treatment effect among
those who complied to the study protocol.

Although we do not present here, the benefit of considering potential outcome
notation is even greater for longitudinal studies with potential time-varying con-
founding and informative censoring. See Gruber et al. [51] for more details on
how potential outcome notation enables to define complex RWE study estimands
for observational longitudinal studies in a precise and transparent way. As the
definition of estimand further informs the choice of analytic methods, estimation,
and inference, the clarity in estimand is also important from a design as well as
from an analytic perspective.

As Chen et al. [2] pointed out, a limitation of this framework is that stakeholders
other than statisticians might not be familiar with the notation and may need
extensive training to understand the concept. Therefore, this framework might be
useful to facilitate communication on estimands particularly among statisticians
(e.g., when used in statistical analysis plan), but not involving the other stakeholders.

2.4 Targeted Learning Framework

Targeted learning (TL) by van der Laan and colleagues [3] is a statistical framework
that provides a systematic roadmap on defining, generating, and evaluating evidence
from data, while utilizing an efficient estimation approach [36—38]. Also see chapter
“Causal Inference with Targeted Learning for Producing and Evaluating Real-World
Evidence” of this book for more details. The TL roadmap [39] consists of a pre-
requisite step 0 and 5 subsequent steps:

Step 0. Formulate a well-defined question. Describe the study objective reflecting
underlying data generating mechanism. The key estimand attributes in the
ICH E9(R1), including ICE, are naturally integrated in this step.

Step 1. Define a realistic statistical model for the data. Here, “realistic” implies
NOT imposing any unknown/unnecessary modeling assumptions such as
parametric modeling assumptions. It also includes exploiting knowledge to
reduce the size of the statistical model, e.g., known bounds on the outcome,
knowledge of the treatment assignment mechanism.
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Step 2. Define a causal model and causal estimand (i.e., target causal parameter) in
terms of potential outcomes. The causal estimand should be consistent with
the pre-specified ICE and ICE strategies considered in the pre-requisite Step
0.

Step 3. Specify a statistical parameter, i.e., a parameter in terms of observed data
that is aligned with or best approximates the target causal parameter. Note
that there are two different parameters—causal parameter (the ultimate
target parameter, but defined based on potential outcomes) and statistical
parameter (now defined based on observed data). In this step, one needs to
identify and specify assumptions needed to link the causal parameter to the
statistical parameter.

Step 4. Conduct statistical estimation and draw causal inference. The TL frame-
work utilizes targeted maximum likelihood estimation (or targeted mini-
mum loss-based estimation; TMLE) coupled with super learning (which is
an ensemble of various machine learners) as an efficient estimation tool [3].
Other types of estimators can be used to estimate the same causal estimand.
See chapter “Recent Statistical Development for Comparative Effectiveness
Research Beyond Propensity-Score Methods” on recent statistical devel-
opment for comparative effectiveness research beyond propensity-score
methods.

Step 5. Sensitivity analyses to assess findings under different hypothetical magni-
tudes of the causal gap and interpretation of results.

Steps 0-3 in the TL framework are relevant to construct estimands as well
as to evaluate RWD fit-for-purpose. Strengths of this framework include, but
are not limited to, the fact that it (1) provides a unified, systematic way to
construct estimands based on the potential outcome language/notation; (2) provides
a guidance on designing a study consistent with the selected estimands and thus
helps evaluate data-fit-for-use; (3) enforces to think through and clearly state
underlying assumptions associated with the selected estimand which helps planning
on sensitivity analyses; and (4) avoids unnecessary probabilistic and modeling
assumptions (e.g., linearity, normality, etc.), which enables to use an efficient
estimation approach utilizing the state-of-the-art machine learning techniques. A
potential limitation of this framework is that it does not explicitly state estimand
or design attributes as in the ICH E9(R1) or the target trial frameworks. Therefore,
the TL framework might be best utilized when used together with the ICH E9(R1)
and/or the target trial frameworks, for the purpose of defining estimands.

3 Examples of Estimands in Real-World Evidence Studies

This section presents three RWE study examples and delineates how estimands
can be defined using the four frameworks. Within each example, estimands are
described based on two frameworks. We use the ICH E9(R1) for all three examples,
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then consider one additional framework to illustrate potential utility of the other
framework to further enhance clarity on estimand definition. See also chapter
“Examples of Applying Causal-Inference Roadmap to Real-World Studies” of this
book for more illustrative examples using the TL framework.

3.1 Single-Arm Trial with External Control

For some disease areas where RCT are infeasible (e.g., a disease with extremely low
incidence rate) or unethical (e.g., a life-threatening disease for which no efficacious
treatments are available), single-arm trials might be considered to demonstrate
efficacy and safety of a medical product. Single-arm trials often use RWD to
construct external controls (historical or concurrent). See the FDA draft Guidance
on Rare Diseases: Common Issues in Drug Development [40] and the ICH E10
on the choice of control group in clinical trials [41] for situations where external
controls can be used.

Gokbuget et al. [42] provide an example of a single-arm trial using RWD to form
an external control. They compared outcomes from a phase 2 single-arm study [43]
of safety and activity of blinatumomab among 189 adult patients with B-precursor
Ph-negative relapsed or refractory acute lymphoblastic leukemia (R/R ALL). For
the external control, the authors used a historical data from European national study
groups as well as large historical sites data from Europe and the United States. Chen
et al. [2] provided the five, ICH E9(R1) estimand attributes of the primary estimand
for this study in great detail. Here we revisit this example using both the ICH E9(R1)
and the target trial frameworks to provide specification of the target estimand (Table
1). Note that Gokbuget et al. [42] did not consider the target trial emulation and
therefore there is no benchmark information. Here, we present what we consider to
be a target trial for the Gokbuget et al. [42] study, and demonstrate an estimand and
potential sources of bias on the basis of the assumed target trial.

The primary study objective for the Gokbuget et al. [42] study might be expressed
as:

To evaluate the effect of blinatumomab among adult patients with B-precursor
Ph-negative relapsed/refractory acute lymphoblastic leukemia. Now this can be
much elaborated by using the ICH E9(R1). Here, we excerpted the primary estimand
attributes from Chen et al. [2]:

¢ Population: adult patients (>18 years) with B-precursor Ph-negative relapsed/re-
fractory acute lymphoblastic leukemia (R/R ALL)

* Treatment: blinatumomab (9 ug/day for the first 7 days and 28 ug/day thereafter)
by continuous intravenous infusion over 4 weeks every 6 weeks (up to five cycles)
(experimental arm), or salvage therapy (possibly multiple lines) (historical
control arm)
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Table 1 Specification of a target trial protocol and the target trial emulation using a single-arm
trial with external control in Gokbuget et al. [42]

Protocol
component

Eligibility
criteria

Treatment
strategies

Treatment
assign-
ment

Outcomes

Follow-up

ICE and
strategies

Statistical
analysis

Target trial

Same as the population
attribute in the ICH E9(R1)

Same as the treatment
attribute in the ICH E9(R1)

Randomly assign eligible
patients to each treatment
strategy—blinatumomab

or salvage therapy

Same as the endpoint
attribute in the ICH E9(R1)
Patients were followed
from the random treatment
assignment until the CS
occurrence, or until
maximum 24 months after
the randomization

Same as the ICE and ICE
strategy attribute in the
ICH E9(R1)

Direct between-group
comparison of CR rates
measured in OR scale

Emulation in Gokbuget et al. [42]

The single arm: Same as the target trial.

The external control: The historical data did not
capture all eligibility criteria applied in the
original single-arm trial due to the limited
availability in some variable information

The single arm: Same as the target trial

The external control: Among patients in historical
data with information on several lines of salvage
therapy, only the endpoints for the last available
salvage therapy were selected. This was to mimic
the likely period when a patient would enter the
single-arm trial, as the time period of the historical
data was from 1990 to 2013, and the patients in the
single-arm trial were enrolled over the period
2010-2014

Randomization was emulated through weighting
outcomes using propensity score-based inverse
probability of treatment methods to balance
predetermined prognostic baseline factors between
patients in the single-arm trial and patients in the
historical data set

CR was defined differently between the single-arm
trial and historical data

The single arm: Same as the target trial.

The external control: Start of last salvage therapy
in the historical data. Patients in the historical data
were not subject to a maximum length of
follow-up and could be followed until death

The single arm: Same as the target trial

The external control: Patients with missing CR
information in historical data were excluded. We
are unable to quantify how accurately the ICE
information was identified and ascertained from
the RWD sources

Same as the population-level summary attribute in
the ICH E9(R1)

¢ Endpoint: complete remission (CR) within the first two treatment cycles in
all blinatumomab-treated patients (experimental arm) or after salvage therapy
(historical control arm)

e ICE: death before the first response assessment or adverse events leading to
treatment discontinuation before the first response assessment. Treatment policy
strategy was considered for primary objective.
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* Population-level summary: comparison of rates of CR between the two groups
measured in odds ratio (OR) scale, after inverse probability of treatment weight-
ing using propensity score

Now Table 1 provides how considering target trial components can help iden-
tify feasibility of considering the ICH E9(R1)-based estimand, or the estimand
attributes, for the Gokbuget et al. [42] study. Deviations from target trial components
may inform potential sources of bias and limitation of the historical data.

As illustrated in this example, the use of target trial components can further
increase the clarity of estimands (or estimand attributes) and help identify potential
sources of bias.

3.2 Longitudinal Study with a Static Treatment Regime

A multinational RWE study called CVD REAL aimed to examine whether the
benefits of sodium-glucose cotransporter-2 inhibitor (SGLT-2i) empagliflozin in
lowering hospitalization for heart failure (HHF) rate among patients with type
2 diabetes mellitus (T2DM), that were observed from a previous randomized
trial [44], can be also seen in real-world practice. RWD sources include data
collected from health insurance claims, electronic health records of primary care
and hospitals, and national registries from six countries. The ICH E9(R1) attributes
of the primary estimand for the CVD REAL can be summarized as follows:

e Population: Adult T2DM patients who initiated either SGLT-2i or other glucose-
lowering drugs (0GLD), who had at least 1 year data history in the databases

¢ Treatment: SGLT-2i or oGLD. Note that this is a static treatment regime which
does not vary over time based on patients’ response to a (sequence of) previous
treatment uptake

* Endpoint: HHF, death, and combination of both

e ICE: discontinuation of initiated treatment, change in background glucose-
lowering medication, loss to follow-up. While-on-strategy was considered.

* Population-level summary: hazard ratio for time to first endpoint event, estimated
from a Cox proportional hazard model after propensity score matching.

Some of these estimand attributes are linked to certain assumptions which are
not apparent when verbalized. Focusing on HHF as a sole endpoint outcome for
simplicity, now we see how the estimand can be expressed in terms of potential
outcome notation and requires to specify some inherent assumptions. In this case,
the use of propensity score matching implies that we are interested in the causal
hazard ratio, assuming the matching could fully address systematic differences
between the two treatment groups. Also, the specification of ICE, particularly the
loss to follow-up, assumes that the time of HHF is subject to right censoring.
Let 77 be the potential time of HHF under a specific treatment history a which
could be different from the actual, observed treatment history denoted by A(f) =
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{A(u); 0 < u < t}, where A(z) represents the actual, observed treatment status at ¢.
At this moment, assume there is no censoring for the sake of illustration. Let Az (¢)
be the potential hazard of HHF at time ¢ when all patients in this study followed
a treatment history a through time ¢. Then the causal estimand, which is measured
in hazard ratio scale, can be expressed as a causal parameter exp(Bcaysal) in the
following marginal structural Cox model [46]:

Az (t) = ho(?) exp {Beausal * a(t)},

where Ao(?) is an unspecified baseline hazard. After propensity score matching, we
assume that the parameter Bcausal 1S equivalent to 8 in the following Cox model
AT (IIZ(I)) = ho(t) exp {B * A(t)}, where T represents a patient’s actual, observed
time of HHF. Therefore, the use of potential outcome notation makes us differentiate
what the target causal parameter is and what we estimate using observed data. From
the target causal parameter Bcayusal to the statistical parameter 8, we make various
assumptions regarding data and model, such as “the matching can fully address
systematic differences between the two treatment groups.” This requires three causal
assumptions associated with the use of propensity score specified in the causal
inference framework—consistency, no unmeasured confounding, and positivity
assumptions. Consistency means that we assume a patient’s response under each
study treatment regime is well defined (although generally not observable) and
T = T for a patient whose actual treatment history A equals to @. No unmeasured
confounding means that information used in propensity score estimation is sufficient
to explain the treatment selection mechanism. Positivity assumption means that
probability of receiving either treatment is strictly greater than zero over all
combinations of different levels of covariates. In other words, all patients should
have some probability of receiving both treatments. In addition to these so called
“causal assumptions,” we also rely on other modeling assumptions too, such as
no model misspecifications (for both propensity score and the Cox), proportional
hazard, and non-informative censoring. Note that all of these assumptions, except
for the proportional hazard and non-informative censoring, are generally not a
concern for traditional clinical trials. Therefore, the use of RWD requires additional
assumptions and considerations within, which may not be apparent in estimand-
defining stage. As the estimand consequently defines design and analysis attributes,
having clarity on underlying assumptions with regards to each estimand attribute
and its impact on design and methodologic choice is strongly recommended in
RWE studies. In the next example, we illustrate how the TL framework provides
a systematic roadmap to delineate all of these assumptions while utilizing the
potential outcome notation.

Of note, the most widely used ICE handling strategies is treatment policy
strategy or while-on strategy. These may be suboptimal for quantifying effectiveness
of medical interventions, particularly for chronic disease when hazard ratio is a
population-level summary measure, because validity and interpretation of the sum-
mary measure estimate heavily depend on assumptions about censoring mechanism.
For example, there could be a systematic difference between those who stay on
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initial treatment versus those who discontinue or switch. Therefore, methodologies
that can account for time-varying nature of treatment assignment/receipt [3, 17,
45-47], as well as potential informative loss/drop-out [48, 49]. might be more
appropriate for RWE studies. See Sect. 3.3.

3.3 Longitudinal Study with a Dynamic Treatment Regime

A dynamic treatment regime, also known as an adaptive treatment strategy, is a
sequence of treatment decisions that are determined based on patients’ response to
the treatment. Herndn et al. [S0] presented an example of a prospective study of
human immunodeficiency virus (HIV)-infected patients using observational data to
compare the acquired immunodeficiency syndrome (AIDS)-free survival under the
following two dynamic, highly active antiretroviral therapy (HAART) regimes:

e Regime 1: Start HAART when CD4 cell count first drops under 500 cells/nL
then always treat.

¢ Regime 2: Start HAART when CD4 cell count first drops under 200 cells/nL
then always treat.

They considered a cohort comprising 2344 HIV-infected individuals included
in the French Hospital Database on HIV who had their first CD4 cell count
measurement below 500 cells/wL during the study period and had never received
antiretroviral therapy before the first measurement. Individuals in the cohort were
followed from the first CD4 measurement until a diagnosis of AIDS, death, or end
of study period, whichever occurred earlier. Although the primary estimand was not
explicitly stated in the original study, the five attributes for the primary estimand
might be summarized as follows.

* Population: HIV infected patients with CD4 cell count never below 500 cells/pnL
and had never received antiretroviral therapy before or at study entry.

e Treatment: Regime 1 and 2 shown above.

* Endpoint: Diagnosis of AIDS, death, or the end of follow-up, whichever comes
first.

* ICE: Deviation from one of the two study treatment regimes, e.g., did not start
HAART use within 1 month of the first CD4 cell count measurement below
500 cells/uL but started HAART before the CD4 cell count dropped below
200 cells/p L. While-on treatment strategy was considered to censor those who
deviated from the two study regimes of interest.

* Population-level summary: Hazard ratio to compare endpoint rates (including
mortality rate) estimated from a Cox proportional hazard model after accounting
for time-varying nature of treatment and (potential) informative censoring via
propensity score weighting.

We now describe how to elaborate this estimand, express it based on potential
outcome notation, and identify underlying assumptions following the TL frame-
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work. Throughout, we assume that the above estimand attributes are final and focus
on the death endpoint for the sake of illustration. As mentioned earlier in Sect.
3.2, the selection of the Cox proportional hazard model as an analytic approach
automatically imposes a parametric modeling assumption. Later, in Step 1 of the
TL roadmap, we demonstrate how this assumption limits a set of possible data
distributions and collection of statistical models. We continue to use the notation
introduced in Sect. 3.2.

Step 0: A well-defined question in Step O should be able to address the five
estimand attributes in ICH E9(R1), which are stated above [51]. In addition, this step
of the TL roadmap emphasizes a precise description of the experiment generating
the data. This requires specification of data structure including treatment, covariate,
and ICE sequence for the longitudinal study. We did not find information on
measurement times and frequency from Herndn et al. [S0]. However, in general, the
data structure considering time-to-event outcome can be expressed as O = (L, A,

T=min(7T,C), A = I( T = T)), where L is a vector of time-varying covariates and
C is the time of treatment deviation (i.e., the time of ICE occurrence; henceforth
censoring time). Assuming the time scale is discretized and 3 time points, data
structure may be depicted in Fig. 1:

Step 1: If we were followed the TL roadmap, we would have defined a realistic
statistical model, say M, respecting the time ordering of the data generating process
O to be consistent with study inclusion/exclusion criteria and would have not
imposed any unknown assumptions. Therefore, unlike Hernén et al. [50], we might
have not imposed a parametric modeling assumption on the mortality rate (i.e., the
Cox model), as well as on the conditional probability of being censored (i.e., a
parametric propensity score modeling for the censoring). It is also worth mentioning
that the hazard ratio measure is not a quantity that admits a causal interpretation,
even in some RCT settings (Aalen et al. [52], Herndn [53]). Alternatively, difference
in mean survival time [54] or restricted mean survival time analysis might be
considered. Acknowledging these limitations, we will continue to describe how to
follow the TL roadmap assuming the setting where Hernén et al. [50] is valid.

Step 2: The causal model under the treatment-confounder feedback as well as
informative censoring is represented by the following DAG in Fig. 2:

The causal hazard ratio parameter associated with the while-on treatment strategy
can be expressed as the exp (Bcausal) in the same marginal structural model shown
in Sect. 3.2, but now with the treatment being a dynamic regime.

time (LI 11, A1 12 , A2 T

Fig. 1 Longitudinal process of giving rise to the data over time. L and A are collected until the

time of event or censoring 7=min(7, C)
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6060600

Fig. 2 A causal diagram for three time points with treatment-confounder feedback

Step 3: A statistical parameter in terms of observed data under the assumptions
imposed in Herndn et al. [50] and given the above estimand attributes, consists of
the following attributes:

1. Is based on inverse probability of informative censoring weight accounting for
censoring patients when they stop following one of the study treatment regimes.

2. Compares the survival of the uncensored individuals under each study regime in
a weighted analysis adjusting for the treatment-confounder feedback via inverse
probability of (time-varying) treatment weights.

Hernan et al. [50] state that g-estimation of nested structural models could
be an alternative approach. Regardless, the following assumptions are imposed
to link the statistical parameter with the causal parameter of the effect of the
dynamic treatment regimes: consistency, no unmeasured confounding, positivity
assumptions, no model misspecifications, and no unmeasured reasons for censoring.
In particular, the assumptions on no unmeasured confounding and no unmeasured
reasons for censoring dictate that the RWD contains sufficient information on all
joint risk factors for treatment initiation/discontinuation and mortality (i.e., data is
fit-for-purpose).

This example demonstrates that the TL framework is more specific to identify
limitations associated with selected estimand attributes or modeling approach than
the causal inference framework. Considerations on underlying data generating
mechanism, causal model, causal gaps provide a guidance on data fit-for-use
evaluation and sensitivity analysis, which could ultimately inform the interpretation
of study findings and support decision-making.

4 Summary and Discussion

Table 2 provides a summary of the four frameworks. Broadly speaking, both the
ICH E9(R1) and target trial frameworks use non-technical language while the causal
inference and TL frameworks utilize potential outcome notation. Therefore, the
ICH E9(R1) and target trial frameworks could facilitate communication between
various disciplines involved in the formulation of RWE study objectives, while the
causal inference and TL frameworks could provide additional clarity on estimand
and corresponding choice of statistical methods among statisticians and quantitative
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scientists. Compared to the ICH E9(R1), the target trial framework considers
more direct and comprehensive components on RWE study design which allows
to explicitly delineate potential sources of bias and enables to evaluate RWD fit-
for-purpose. The causal inference framework provides a basis to formally define
estimands. Rooted in the causal inference framework, the TL framework further
provides a systematic roadmap, from the start to the end of an RWE study, that is
more specific in terms of identifying assumptions associated with selected estimand
attributes and embedded modeling approach.

Constructing RWE study estimands is complex. It involves increasing level of
heterogeneity and complexity in defining attributes of an estimand which could,
in part, be driven by RWD fit-for-purpose, patient behaviors, and routine clinical
practice. In addition, it is important to understand stakeholders and their research
questions for the construction of estimands for RWE studies [2].

Lastly, it is crucial to understand the inherent assumptions connecting the target
causal estimand with the corresponding statistical estimand. Unlike traditional
clinical trials in which the randomization (and some other factors such as rigorous
patient follow-up) could approximately warrant the validity of those assumptions,
some of them are not even empirically testable in RWE studies. As different
strategies for handling ICE and the choice of estimators require different sets of
assumptions, interpretability of study findings will heavily rely on the validity
of the underlying assumptions. Rigorous sensitivity analysis should always be
accompanied to ensure robustness of study findings.

Disclaimer This chapter reflects the views of the authors and should not be construed to represent
FDA'’s views or policies.
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Clinical Studies Leveraging Real-World )
Data Using Propensity Score-based Qe
Methods

Heng Li and Lilly Q. Yue

1 Introduction

One of the major contributions that RWD (or more precisely the RWE they generate)
can make to the clinical development of medical products is the improvement of
efficiency of this process. The subject of this chapter is the leveraging of RWD
for this purpose via a type of study design where the study data consists of two
parts: (1) those collected on patients prospectively enrolled into a traditional clinical
study and (2) RWD. We refer to such a design as a hybrid design and a study so
designed as a hybrid study. Here “prospective” means “future” relative to the time
when the hybrid study is being planned. Therefore, by definition, when a hybrid
study is being planned, patients in the “traditional clinical study” portion of the
hybrid study are not yet available. In contrast, the RWD portion of the hybrid
study may contain patients who are already available (i.e., the intended treatment
has already been administered and/or outcome data already exist) when the hybrid
study is being planned. Henceforth, the traditional clinical study portion of a hybrid
study will be referred to by the abbreviation “TCS.” The use of RWD may be
due to ethical or practical considerations and can often save time and reduce cost,
which is what motivates these study designs. We discuss the following three kinds
of hybrid studies: (1) a non-randomized comparative study in which RWD is used
as a comparator group for the TCS. Statistical methods are implemented so that
the non-randomized study can be regarded as an approximation of a randomized
controlled trial (RCT) in some sense; (2) a single arm, non-comparative hybrid study
in which the TCS consists of M prospectively enrolled patients, and these patients
are augmented by RWD patients. All patients undergo the same treatment. Statistical
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methods are implemented so that this hybrid study approximates a traditional single
arm clinical study consisting of N (>M) prospectively enrolled patients; and (3)
a hybrid study in which the TCS is an RCT consisting of prospectively enrolled
patients, which is augmented by RWD patients to approximate a traditional RCT of a
larger sample size, using similar statistical methods, as in (2). Of course, our premise
is that the RWD being considered in a hybrid study are fit-for-purpose, a concept that
is discussed elsewhere in the book (ref. chapter “Key Variables Ascertainment and
Validation in RW Setting”) and hence will not be belabored here. In the rest of this
chapter, we assume that this premise holds true and a hybrid design is appropriate
given the objectives of the study, which may be to support a marketing application,
to seek approval for a labeling expansion, or to inform some other decisions. To
properly design and analyze a hybrid study, special statistical methods are needed as
mentioned above. These methods, including their statistical underpinnings, will be
described in the following sections. But before doing that, we provide an overview
of what statistical issues these methods are developed to address.

To justify a hybrid study design, the most fundamental issue to be dealt with
is the potential systematic differences between the RWD patients and the TCS
patients. These systematic differences are a source of bias, and they are a hindrance
to achieving the goal of a hybrid study, which is to approximate a traditional clinical
study. Bias may be categorized depending on its source and there is not a standard
taxonomy for categories of bias. Before deciding to adopt a hybrid design, it is
important to assess the risk of bias from many different sources. If this risk is too
high, then a hybrid design may not be appropriate, given that most biases cannot
be corrected by statistical means. However, one type of bias, which we will refer
to as confounding bias, can be mitigated statistically. This is the bias that can be
addressed by the statistical methods to be described in the following sections.

The phrase confounding bias, as used in this chapter, refers to the bias induced
by systematic difference between the RWD patients and the TCS patients in terms
of the distribution of covariates. It is a familiar concept in the context of non-
randomized comparison of treatment (or exposure) groups, which is instanced by
the first kind of hybrid study. The objective of such a comparison is almost always
causal inference, i.e., the evaluation of the outcome under one treatment relative
to that of the other treatment on the same set of patients. Confounding bias is
obviously an obstacle to causal inference, insofar as the covariates differentially
distributed between the treatment groups are related to the outcome. It is widely
known that a standard statistical approach to mitigating such bias is the propensity
score methodology. The concept of propensity score was introduced by Rosenbaum
and Rubin [1, 2]. The basic idea behind the propensity score methodology as applied
to non-randomized comparative studies is to form sets of patients in which the
distributions of observed covariates are equalized between the two treatment groups
being compared so that “fair” comparison of treatments can be made. This classical
application of propensity score methodology to the first kind of hybrid studies will
be described in Sect. 2.

To see how confounding bias affects the second kind of hybrid studies, recall
that such studies are designed to approximate a traditional single arm study with
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a larger sample size. For this goal to be achieved, it’s important that the RWD
patients “look like” the TCS patients. In statistical terms that means the distributions
of observed baseline covariates are similar between the TCS and RWD, so that
confounding bias is minimized. In practice, however, there is no reason to expect
this to be the case at the planning stage. In other words, confounding bias needs to
be addressed in designing the second kind of hybrid studies just as with the first
(i.e., non-randomized comparative studies). Given the ability of propensity score
methods to equalize the covariate distributions between two groups of patients, it is
not surprising that they can be applied to address confounding bias in this context
as well, as will be delineated in Sect. 3. Confounding bias affects the third kind
of hybrid studies in an analogous fashion to the way it affects the second kind of
hybrid studies, and the propensity score methods are used in a similar manner for its
mitigation, as will be shown in Sect. 4. Of course, propensity score can only be used
to address confounding bias due to observed covariates. Therefore, a key assumption
underlying any propensity score-based method is that there is no confounding bias
due to unmeasured covariates. Chapter “Sensitivity Analysis in the Analysis of Real-
World Data” provides a good discussion of situations where this assumption does
not hold.

Another issue to be considered in designing a hybrid study is how to ensure
that the amount of information contributed by the TCS and that contributed by the
RWD, which may contain a large amount of data, are proportionate so that the latter
does not overwhelm the former. This is less of an issue for the first type of hybrid
studies where the TCS contributes to the estimation of the parameter of interest
associated with the treated group and the RWD are used to estimate the parameter of
interest associated with the control group. The objective is to estimate the difference
between these two parameters, which means that the information contributed by
RWD is not going to dominate the information contributed by the traditional clinical
study. On the other hand, in the second and third kind of hybrid studies, the RWD
is used to augment the TCS in the estimation of the same parameter of interest. If
the sample size of RWD is too large, then too much information for this parameter
comes from the RWD relative to that from the TCS, which can sometimes be a
concern, depending on specific circumstances. Therefore, in designing a hybrid
study of the second or third kind, it is essential to prespecify the maximum amount
of information coming from RWD, based on clinical judgment. To make sure
that this maximum is not exceeded, the RWD often needs to be down-weighted,
or “discounted.” Such down-weighting can be achieved using various methods.
We will discuss two of these methods for Bayesian and frequentist inference,
respectively, namely, power prior and composite likelihood.

The brief discussion above is intended to tell the reader that the propensity
score methodology is a useful tool in the design of hybrid studies, and it typically
is to be used in conjunction with a discounting method such as power prior or
composite likelihood in designing the second and third kind of hybrid studies.
The description of these methods and their implementation are the topics of the
following sections. One thing to keep in mind in using these methods to design
hybrid studies is the integrity of study design. In a traditional RCT, study design
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necessarily precedes outcome data collection. However, this is not necessarily true
for hybrid studies, where study design is an extensive process, including equalizing
covariate distributions between patients in the TCS and those from the RWD,
while outcome data may be already available prior to or during this process. To
maintain the integrity of study design, thereby enhancing the interpretability of
study results, all design activities need to be carried out while blinding to outcome
data is administered. Therefore, besides statistical methodology, the practicalities of
such blinding will also be discussed.

2 Propensity Score and Type 1 Hybrid Studies

2.1 The Concept of Propensity Score

Suppose a medical product is to be evaluated in a non-randomized comparative
study following the type 1 hybrid design, in which the TCS patients constitute
the “treated group” (i.e., they undergo the medical intervention being studied)
and the RWD patients serve as the control group. A main statistical consideration
in designing an observational study like this is minimizing bias due to potential
difference in the distributions of observed baseline covariates between the treated
and the control groups (confounding bias) and ensuring the objectivity of study
design, and propensity score (PS) methodology is standard for handling such
challenges. In this subsection, we only provide a summary of the concept of PS
and refer the reader to Imbens and Rubin [3] for more details.

The PS e(X) for a patient with a vector X of observed baseline covariates in a
comparative study is the conditional probability of being in the treated group (T = 1)
rather than the control group (7" = 0) given the vector of baseline covariates X [1,
2]:

e(X) =Pr(T =1] X)

PS is a balancing score in the sense that conditional on the PS, the distribution
of observed baseline covariates is the same between the treated and control patients.
Therefore, among patients with the same value of PS, the distribution of observed
covariates is the same between these two groups of patients. In other words, the
treatment assignment indicator 7' and the covariate vector X are conditionally
independent given the PS e(X), or

T L X|eX).

A practical implication of this balancing property is that, to equalize the
distribution of X (or balance X) between the treated and the control groups, one
only needs to balance e(X) between these two groups, which is easier since e(X) is
a scalar (one-dimensional).
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Another property of PS that more directly reveals its utility in causal inference
for the treatment effect in any non-randomized comparative study (or observational
study) is as follows. Let Y (1) be the potential outcome of a patient if assigned to the
treated group and Y(0) be the potential outcome of the same patient if assigned to
the control group. Note that some assumptions are needed for the above potential
outcomes notation to make sense. However, we will not get into these assumptions
here because such potential outcomes notation is commonly used as a starting point
for a discussion of causal inference. A comparison between Y (1) and Y(0) defines a
causal effect of the investigational treatment relative to the control on a patient.

A comparison of the distribution of Y(1) on a patient population and the
distribution of Y(0) on the same patient population defines a causal effect of the
investigational treatment relative to the control on this patient population. The
treatment assignment mechanism is said to be unconfounded if

Y(1),Y©O) L T]|X.
From this assumption one can deduce that
Y(1),Y(0) L T|e(X).

This property tells us that if the assignment mechanism is unconfounded, then
among patients with the same PS, the observational study reduces to an RCT. Hence,
if the unconfoundedness assumption holds and the PS of every patient is known,
then causal inference for an observational study would conceptually amount to using
a valid method for RCT to estimate treatment effect at each distinct value of PS and
combining these estimates. In a typical observational study, however, patients’ true
PSs are unknown and can only be estimated. So, in practice, estimated PSs are used
in lieu of true PSs. The strategy is to create sets of patients in which the distribution
of estimated PSs in the treated group is similar to that in the control group. This
can be achieved in several ways, with the most common ones being matching,
weighting, and stratification. Whether good estimates of PSs have been obtained
can be directly checked, by examining the distributions of observed covariates in
the treated and the control groups to assess balance. If these distributions are not
close enough to each other, or, in other words, if some covariates are not adequately
balanced according to a pre-specified criterion (more on this later), one may adjust
the estimation model for the PSs and obtain a new set of estimates. Thus, PS
estimation is an iterative process. In fact, if the PS methodology is to be applied
to estimate the treatment effect in an observational study, then this iterative process,
called PS design [4], constitutes a major part of the design of this observational
study, as will be discussed in the next subsection.

2.2 Estimation of Propensity Score and Assessment of Balance

While a variety of methods for estimating PS have been introduced, logistic
regression as suggested in Rosenbaum and Rubin [1] is perhaps still the most widely
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used. It postulates that the logit of propensity score is a polynomial in the observed
covariates. The linear model (polynomial of degree 1) is often used as the initial
PS model. Computationally, in the logistic regression the treatment assignment
indicator T is identified as the dependent variable and the observed covariates X
are identified as independent variables. After the PS is computed for each patient,
covariate balance is carried out via matching, weighting, or stratification. We now
give a brief description of each of the three schemes.

PS matching is a method of selection from a pool of control patients such that
the selected subset has better covariate balance relative to the treated group than the
set of all control patients. The selection can be achieved with a matching algorithm
[5], and one of the most common matching algorithms might be the k:1 nearest
neighbor matching [6]. In its simplest form, for each treated patient i, 1:1 nearest
neighbor matching selects a control patient with the smallest distance from i, where
the distance between two patients is usually defined by the absolute difference
between the logit of their estimated PSs. Patients in the pool of controls that are
not matched to any treated patients are not included in the subsequent estimation
of the treatment effect (i.e., “discarded”). Some matching algorithms allow treated
patients to be discarded. It should be noted that such matching algorithms are usually
not recommended for hybrid studies defined in this chapter. This is because in such
studies, patients enrolled into TCS usually represent the population for which the
investigational medical product is indicated. Discarding treated patients would risk
distortion of patient population and change of indication for use of the medical
product.

PS weighting is defined as using one function of PS to weight patients in the
treated group and another function of PS to weight patients in the control group so
that the weighted distributions of covariates in the two groups are equal [7]. While
the choice of this pair of functions is not unique, only a few of them are in common
use. Once the choice is made, the weights corresponding to the chosen functions,
called balancing weights [8], are then used to weight the outcome variable in the
subsequent estimation of the treatment effect. One of the possibilities for balancing
weights is:

1
(ATE) (ATE)
wy (X) = m and ) (X) =

1—e(X)

Here the subscripts “1”” and “0” represent the treated group and the control group,
respectively. The superscript “(ATE)” stands for Average Treatment Effect. When
this pair of weights are applied to the outcome variable, the estimand is the average
treatment effect on the population represented by all the patients in the study. Austin
[9] refers to these weights as IPTW-ATE weights, where “IPTW” stands for “inverse
probability of treatment weighting” [10]. Another possibility for balancing weights
is

e(X)

(ATT) (ATT)
w, (X) =1 and w, (X)zl_—e(X),
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where “(ATT)” stands for Average Treatment effect on the Treated. Austin [9] refers
to these weights as IPTW-ATT weights. When this pair of weights are applied to
the outcome variable, the estimand is the average treatment effect on the population
represented by the patients in the treated group. Since true PSs are usually unknown,
estimated PSs are plugged into the expressions for balancing weights to produce
estimated weights to be used in the estimation of the treatment effect.

PS stratification forms subsets (strata) of patients within which the treated group
and the control group are more similar than they are overall. Specifically, patients
are first sorted by their estimated PSs and then stratified based on prespecified cut
points (e.g., PS quintiles), so that within each stratum the PS distribution in the
treated group is similar with that in the control group. By the balancing property of
PS, that means within each stratum, the joint distributions of covariates are similar
between the treated and the control groups as well. In terms of the estimation of the
treatment effect, PS stratification can be viewed as a variant of PS weighting where
the estimated PSs are further smoothed before being plugged into the expressions for
the balancing weights [7]. Here is how the smoothing is carried out. Each patient’s
estimated PS is replaced by another value called coarsened PS, which, for a patient
in any given stratum, is equal to the proportion of patients who are in the treated
group in that stratum. Hence all the patients in a given stratum have the same
coarsened propensity score. To estimate balancing weights, the coarsened PS is
plugged into the expression of balancing weights. If the intended estimand is ATE,

ATE) 1 (ATE)
(x) = ™ and wy (x) =
?l(x) to obtain the estimated balancing weights. If the intended estimand is ATT,

the coarsened PS is plugged into wiATT)(x) = land w(()ATT) x) = lf(ex(l) to obtain

the estimated balancing weights. For the ATE and ATT estimands, smoothing the
estimated PSs via stratification before they are used to estimate balancing weights
may avoid the potential situation where a few subjects have extremely large weights
relative to the other subjects, thereby dominating the study results, a problem
caused by the unboundedness of IPTW-ATE and IPTW-ATT weights [7]. Of course,
coarsening the PS has the potential downside of increasing residual imbalance.
Imbens and Rubin [3] also contains a discussion on propensity score stratification
as compared to IPTW weighting.

The main purpose of the PS design is balancing observed covariates. Therefore,
the estimation of PS is followed by balance assessment, to make sure that the
estimated PSs achieve the purpose for which they are intended. Methods for
balance assessment, also called balance diagnostics [11], can be divided into two
categories: graphical and numerical. A variety of different methods have been
used in practice and some may not even be in the literature. In this section, we
present one common numerical method. It is formally for PS weighting but can
be adapted for PS matching and stratification as well. It uses a metric called
absolute standardized mean difference (ASMD), which can be defined as follows
for continuous covariates:

the coarsened propensity score is plugged into wi

d= | Xw.treated — Xw.control |

’

2 2
Sw.treated +Sw.cnmrol
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where Xy treated ( fw,wmm[) is the weighted (using the estimated balancing weights)

sample mean of the covariate whose balance is under consideration in the treated
(control) group, and sﬁmeme y (slzu.control) is the weighted sample variance of the
covariate in the treated (control) group [7, 10]. For binary covariates, ASMD can be

defined as

d = | Pw,treated — Pw,control |

9
\/Pw.treated ( 1 _Pw,rreared)+Pw,z:antrul ( 1 _pw.cumrol)
2

where py. reated Pw. contror) 18 the weighted proportion corresponding to the binary
covariate in the treated (control) group [10]. To apply the metric d to a categorical
covariate with more than two categories, we may decompose it into several binary
covariates. Balance is considered adequate for this covariate if d is smaller than a
prespecified threshold dyp. While there is no clear consensus on the choice of dp,
some researchers have proposed a value of 0.1 [11]. Given its form, the metric
d may also be applied to PS stratification if the weights are obtained from the
corresponding coarsened PSs. For k:1 nearest neighbor matching, balance can be
assessed using the unweighted version of d.

If balance is adequate for all observed covariates, then the PS design is complete.
Otherwise, another iteration is started by adjusting the PS model to obtain a new
set of estimated PSs. One way to adjust the PS model is to add higher order terms
of some covariates to the model. By and large the iterative process of PS design
is more of an art than a science involving trial and error. It is possible that despite
one’s best effort, adequate balance cannot be achieved. This is a risk inherent to the
application of propensity score methodology. In practice, if adequate balance cannot
be achieved, then one may consider other RWD sources. Another issue to consider
is the possibility that multiple PS models can lead to adequate balance. This kind
of multiplicity combined with the availability of outcome data prior to or during
PS design is of concern. Unless some measures are taken to preempt data dredging,
study integrity and objectivity may be compromised. These measures are discussed
in the next subsection.

2.3 The Two-Stage Paradigm for Study Design

The two-stage design proposed by Yue et al. [12] is a framework for the practical
implementation of the idea of outcome-free design [13, 14] for the application of
PS methodology. As pointed out earlier, the goal of PS design is to find a set of PS
estimates that can balance all observed covariates through a trial-and-error process,
and this set of PS estimates is not unique. Such multiplicity creates an opportunity
for data dredging, given that some outcome data, especially those of the RWD,
may already exist prior to or during PS design. Therefore, how study integrity and
objectivity can be maintained, given this opportunity for data dredging, would be
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a critical question. To be more concrete, this is a question about how to preclude
the possibility of existing outcome data influencing the PS study design. Rubin’s
[15] answer to this question is clear: outcome data should not be in sight during PS
design. This is what Yue et al. [12] refer to as the outcome-free principle, and their
two-stage design puts it to practice.

The essence of outcome-free design is blinding or masking of patient-level
outcome data to the process of PS design, which can also be referred to as building
a firewall in the biopharmaceutical arena. The scheme that Yue et al. [12] propose
is for the investigator of the study to identify an independent statistician to perform
the PS design, with no outcome data provided to the independent statistician. The
independent statistician shares with the investigator the responsibility of upholding
the outcome-free principle [4, 12, 16—18]. This independent statistician is identified
in the first design stage of the two-stage design of Yue et al. [12], so are all the
covariates to be balanced in the PS design. Otherwise, the first design stage consists
of all the elements of the design of an RCT, such as the specification of the study
endpoints, the study hypotheses (together with their significance levels), and the
initial sample sizes for the treated and the control groups. The reason for the qualifier
“initial” is that these sample sizes are revisited in the second design stage and may
be revised later prior to the unblinding of the outcome data. The PS design itself
constitutes the second design stage, in which the independent statistician identified
in the first design stage, who is blinded to outcome data, carries out PS estimation,
performs PS matching, weighting, or stratification, and assesses covariate balance.
In the next subsection, we give a numerical example to illustrate the implementation
of the two-stage design of Yue et al. [12].

2.4 An Illustrative Numerical Example of a Type 1 Hybrid
Study

Suppose a type 1 hybrid study is planned to evaluate a medical product. The treated
group consists of patients enrolled into a traditional clinical study (the TCS part of
the hybrid study) and the control group is to come from an RWD source. Based
on clinical and regulatory judgment, an existing national patient registry is thought
to be a suitable such RWD source with respect to data quality and availability of
patient-level data for both clinical outcomes and baseline covariates of interest. The
two-stage design is to be adopted. The first design stage includes the following
elements:

1. Ttis decided that the primary endpoint is the binary variable of treatment success.

2. The primary hypotheses are specified to be those of non-inferiority on the
difference scale (i.e., difference of the two probabilities of treatment success)
with a margin of 6% and a one-sided significance level of 0.025.

3. Fifteen baseline covariates are identified as needing to be balanced between the
treated and the control groups based on clinical considerations. It is verified that
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these covariates are collected in the chosen RWD source. The study proposal also
includes the stipulation that these covariates will be collected in the TCS.

4. PS stratification with five strata of equal size based on PS quintiles is planned.

5. The procedure described in Yue et al. [12] for calculating the initial sample size
(for the PS stratification with five strata of equal size) are directly applied. It is
determined that 300 patients in the treated group and 600 patients in the control
group may achieve 90% power.

6. An independent statistician is contracted to perform the PS design in the second
design stage. These action items are summarized in Table 1.

In this study, the plan for RWD patient acquisition is to extract from the control
data source those patients who meet the eligibility criteria of the study and enter
the registry between two given dates. It is anticipated that this simple selection
rule would yield more control patients than the 600 given by the initial sample size
calculation. In general, it is a good idea to have some extra control patients, given
the various uncertainties arising in the propensity score design.

The second stage of the two-stage design starts when the patient enrolment into
the TCS is complete and so is the patient extraction from the RWD source, at which
point baseline covariate data are available for all patients. As planned, 300 patients
are enrolled into the TCS. The number of patients extracted from the RWD source
happens to be 1000. To build the propensity score model, logistic regression is
performed by the independent statistician on those 1300 patients with treatment
group membership as the dependent variable and the 15 covariates identified in the
first design stage as the independent variables, based on which a PS is calculated for
each patient. The patients are then stratified into five PS quintiles. Table 2 shows the
number of treated and control group patients in each of the five PS quintiles.

We can see from Table 2 that the first stratum (or PS quintile) contains 250 RWD
control patients but no patients from the TCS part of the study, because there were
no TCS patients who look like those control patients with respect to propensity

Table 1 Main elements of the first design stage

Primary outcome: treatment success for a patient

Non-inferiority margin: § = 6%

Significance level: 0.025 one-sided

Number of baseline covariates considered: 15

Propensity score stratification planned for study design and outcome analysis
Independent statistician identified

Initial sample size for the treated group: N = 300

Initial sample size for the control group: N = 600

Table 2 Distribution of all
1300 patients across the five
propensity score quintiles

Propensity score quintiles

1 2 3 4 5 Total
Control 250 244 234 186 | 86 | 1000
Investigational 0O 11 | 20 | 79 |190 | 300
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Table 3 Distribution of the
1050 patients across the five
propensity score quintiles

Propensity score quintiles

1 2 3 4 5 Total
Control 196 193 | 172 | 128 | 61 | 750
Investigational | 10 | 33 | 67 | 80 |110 |300

score and with respect to some covariates. Therefore, it is considered reasonable to
discard the 250 RWD control patients in that stratum (i.e., the first PS quintile).
Note that any attempt to exclude TCS patients treated with the investigational
device is discouraged as the patient population represented by TCS is usually the
population for which the medical product is indicated. Discarding treated patients
would risk distortion of patient population and could impact the indication for use
of the medical product, as pointed out in Sect. 2.2.

After excluding the 250 RWD control subjects in the first PS quintile, the
independent statistician continues with the iterative process of PS design based
on the remaining 1050 patients. The iterative process consists of fitting a logistic
regression to estimate PSs, stratifying patients into five PS quintiles, assessing
balance between the treated and the control groups for each covariate within each
quintile, and, if balance is not adequate for some covariates, go back to fit a
new logistic regression (e.g., by adding quadratic or cross-product terms). The
process continues until balance is satisfactory (in this case ASMD <0.1) for all
the covariates. At this point, power is revisited and is found to be adequate. The
distribution of the 1050 patients (300 in the treated group and 750 in the control
group) based on the final logistic regression model is shown in Table 3. This table
is added to the statistical analysis plan, along with the final logistic regression
equation. The second design stage is now complete. During the entire PS design,
only the treatment assignment and baseline covariate data are needed. Any clinical
outcome data and follow-up information are neither needed nor accessed by the
independent statistician.

After the completion of the entire study design, the outcome data are analyzed.
The ATT estimand was specified at the planning stage (as is usually the case for
type 1 hybrid studies) and the outcome data analysis is carried out accordingly. As
it turns out, the p-value for the non-inferiority hypotheses is 0.021, which means the
null hypothesis can be rejected.

3 The Design and Analysis of Type 2 Hybrid Studies

3.1 Definition and Fundamental Statistical Issues

Section 1 introduced the concept of a hybrid study and gave a definition for each
of the three types of hybrid studies. Instead of repeating the definition for type 2
hybrid studies, let us use an example to help the reader recall what it is. Suppose a



178 H.Liand L. Q. Yue

study is being planned that will provide evidence to support a new indication for an
approved medical product. A single-arm traditional clinical study (in this section all
traditional clinical studies are single-arm so we may drop the qualifier “single-arm”
where there is no confusion) is to be conducted that enrolls patients prospectively.
Data from the off-label use of the product have been captured in a high-quality
patient registry, forming an RWD source for the evidence. It is determined that these
RWD are reliable and relevant and can be leveraged to reduce the sample size of
the traditional clinical study. These considerations point to a type 2 hybrid study.
More specifically, suppose the evidence required for the labeling expansion can be
provided by a traditional clinical study of size N, and such a study can be well
approximated by a traditional clinical study of size M (M < N) augmented by some
RWD patients receiving the same treatment, then these M patients plus the RWD
constitute a type 2 hybrid study. The traditional clinical study of size M is the TCS
(see Sect. 1 for the meaning of this abbreviation) part of the type 2 hybrid study,
while the RWD part contributes a nominal N — M patients. Here we use the word
“nominal” to indicate that the actual number of patients that the RWD contain may
be much larger than N — M. Henceforth, in this section, type 2 hybrid study may be
referred to simply as hybrid study where there is no confusion.

Given the above definition, the first decision to be made in planning a hybrid
study, if such a study is deemed acceptable from a clinical perspective for the given
purpose, is the magnitude of M, or equivalently of N — M (which will be referred
to as A). This represents the amount of information to be leveraged from RWD
and its determination is based on clinical judgment considering various clinical
characteristics of the RWD source. Obviously, if A is too large, then it may not
be reasonable to consider the hybrid study an approximation of a traditional clinical
study. All subsequent discussion in this section is under the premise that a hybrid
study is a viable alternative to a traditional clinical study and the numerical value of
A has already been decided. We focus on the statistical issues of (1) how to ensure
that the nominal number of RWD patients does not exceed A, and (2) how to mitigate
confounding bias so that the hybrid study can better approximate a traditional
clinical study. The first issue is essentially one of down-weighting or “discounting,”
for which two alternative methods will be described, one Bayesian and the other
frequentist. The Bayesian method is that of power prior and the frequentist method
is that of composite likelihood, and both will be summarized in Sect. 3.2.

To address the second issue, let us recall from Sect. 1 that confounding bias
refers to the systematic difference between the RWD patients and the TCS patients
in terms of the distribution of covariates. The presence of such confounding bias
clearly makes it less convincing that the hybrid study can approximate a traditional
clinical study well. In Sect. 3.3, we delineate how the tool of PS methodology can
be repurposed to mitigate this confounding bias. Section 3.4 provides a step-by-step
description of the two-stage design of a hybrid study to approximate a single-arm
traditional clinical study that addresses the above two statistical issues. The second
stage of the two-stage design is a PS design analogous to that described in Sect. 2,
with an additional element associated with the down-weighting of RWD patients.
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3.2 Using Power Prior or Composite Likelihood
to Down-Weight RWD Patients

The power prior [19] is originally intended to be an informative prior constructed
from historical data [20]. If we substitute RWD for historical data, the method fits
our purpose of down-weighting RWD patients perfectly. In our context, a power
prior 7 for a parameter 6 associated with an endpoint based on data collected on
RWD patients for that endpoint, Dy, is constructed as follows:

m (0) o« [L (0] Dg)]* 70 (0)

where L(6|Dy) is the likelihood function of 6 given the RWD, m((0) is the initial
prior distribution for 8, and & (0 < @ < 1) is called the power parameter. This prior
is multiplied to the likelihood function of 6 given the TCS data Dy, L(6| Dy), to
obtain the posterior distribution of 6,

7 (0|D1) o< [L (0|Dy)] 7 (0),

completing the statistical inference for 8. From this construction, « can evidently be
interpreted as the fraction of information RWD patients contribute to the inference
for 6. In other words, « is the weight by which the RWD patients are discounted. For
example, if « = 0.1, each RWD patient contributes 10% of their information, and
the total amount of information the RWD patients bring to the statistical inference
is equivalent to the information contributed by 0.1 times the total number of RWD
patients, which can be interpreted as the nominal number of patients being leveraged
for some common distributions such as normal and binomial. If « = 1 then the
nominal number of patients leveraged is equal to the actual number of RWD patients
constituting Dy. At the other extreme, if « = 0, then no RWD patients are leveraged.
In general, if a is equal to the nominal number, RWD patients that one wants to
leverage divided by the actual number of RWD patients constituting Dy.

The composite likelihood [21] for the parameter of interest 6 is a weighted
product of probability density functions:

L@ =[] roue

where each i represents a patient and X; is a nonnegative weight. Clearly, when
all the X;’s equal to 1, composite likelihood reduces to ordinary likelihood. To use
composite likelihood to serve the purpose of down-weighting RWD patients, we
let A; = 1 for TCS patients and 0 < A; < 1 for RWD patients. If statistical inference
for 6 is conducted based on the composite likelihood after assigning numerical
values to A;’s in this way, then we are essentially down-weighting the RWD patients
relative to the TCS patients. For example, if A; = 0.1 for all RWD patients, then
each RWD patient contributes roughly 10% of their information, and the nominal
number of RWD patients leveraged is 0.1 times the actual number of RWD patients.
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If A; = 1 for all i, then the nominal number of RWD patients leveraged is equal
to the actual number of RWD patients. If A; = O for all RWD patients, then no
RWD patients are leveraged. In general, A; is equal to the nominal number of RWD
patients that one wants to leverage divided by the actual number of RWD patients
for all i labeling an RWD patient. We will see that the value of « or A; is determined
before the unblinding of outcome data.

In this subsection, we provided a summary of the methods of power prior and
composite likelihood. However, we will not directly apply them to the entire dataset.
Instead, we apply them within PS strata with PS being defined in the Sect. 3.3 for
type 2 hybrid studies and Sect. 4.2 for type 3 hybrid studies. Due to the balancing
property of PS, within each PS stratum the distributions of observed covariates are
similar between the TCS and the RWD. If there is minimal confounding bias due
to unmeasured covariates, then the outcome variable is expected to be relatively
homogeneous between the TCS and RWD, making the application of power prior
or composite likelihood more justified.

3.3 The Propensity Score Redefined

In Sect. 2, we introduced the concept of PS in the context of an observational study
comparing two treatment groups: the treated group and the control group. PS is
defined as the conditional probability of being in the treated group rather than the
control group, given the vector of baseline covariates X. An immediate consequence
of this definition is that PS is a balancing score. The (joint) distribution of covariates
in the treated group is the same as that in the control group conditional on PS. In
other words, in any subset consisting of all patients whose PS is equal to a given
value, the covariates X are balanced. Thus, in any such subset confounding bias due
to X is removed, thereby removing one obstacle to the fair comparison between the
treated group and the control group. Since PSs are generally unknown, one way to
take advantage of this balancing property in practice is to estimate PS first and then
stratify patients according to the estimated PSs so that within each stratum the PS
is relatively homogeneous. Within-stratum treatment effects are estimated and then
combined into an overall treatment effect. With estimated PS, it is not expected that
confounding bias is completely removed within each PS stratum. However, if good
covariate balance is observed, confounding bias is substantially mitigated.

Given that the above scheme is now widely and successfully used to mitigate
confounding bias in non-randomized comparative studies, one may ask whether it
can be co-opted to mitigate confounding bias in type 2 hybrid studies. The answer
is yes, and here is how it can be done. First, in defining PS the treated group and
the control group are replaced with TCS and RWD, respectively. In other words,
the PS e(X) for a patient with a vector X of observed baseline covariates in a type 2
hybrid study is the conditional probability of being in the TCS (Z = 1) rather than
the RWD (Z = 0), given the vector of baseline covariates X:
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e(X)=Pr(Z=1|X).

Second, the estimation of PS is done in an analogous way, e.g., by conducting
a logistic regression with the indicator variable Z as the dependent variable and
the observed covariates X as independent variables. A similar two-stage outcome-
free design is carried out, with the PS design being part of the second stage. PS
stratification is performed, and the amount of down-weighting of RWD patients
is decided for each stratum. Finally, outcome data are unblinded and statistical
inference is conducted, first for the stratum-specific parameter of interest, and then
for the overall endpoint parameter by combining the stratum-specific parameters.
The rationale for the leveraging of RWD to be done within each PS stratum first
is that there is less confounding bias within each stratum thanks to the balancing
property of PS, making the leveraging more justified. This strategy is termed
propensity score-integrated approach [22-25].

In the next subsection, we provide a detailed description of the propensity score-
integrated approach to type 2 hybrid studies through a numerical example.

3.4 The Propensity Score-Integrated Approach for Type 2
Hybrid Studies

Suppose a type 2 hybrid study, as set forth in Sect. 3.1, is proposed, to which the
propensity score-integrated approach is applied. The associated two-stage design
is described in detail below, which is the same whether Bayesian or frequentist
inference is planned. For the first design stage, the primary endpoint of interest
is the occurrence of adverse event(s) within 1 year and the parameter of interest 6
is the probability of a TCS patient experiencing adverse event(s) within 1 year. The
primary endpoint hypotheses are

Ho : 60 > 36%vs.Ha : 0 < 36%,

where 36% is called the performance goal. Assuming 6 = 0.30, standard sample
size calculation tells us that to achieve 80% power at a one-sided significance level
of 0.05 (this corresponds to posterior probability threshold of 0.95 for Bayesian
inference), 380 patients are needed. The proposal is to enroll 290 patients into the
TCS part of the hybrid study and to leverage 90 RWD patients, based on clinical
input and regulatory considerations. By leveraging 90 patients, what we mean is that
the amount of information leveraged is equivalent to that of 90 patients. The idea
is to take all eligible patients from the registry (much more than 90 patients), and
down-weight those patients relative to the TCS patients in statistical inference. In
this example, eligible means meeting the inclusion/exclusion criteria in the TCS and
entering the registry during the time when the TCS is enrolling. Seventeen covariates
are identified whose distributions will ideally be similar between the TCS and the
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RWD parts of the hybrid study for it to be regarded as a good approximation of a
traditional clinical study. All the 17 covariates are collected by the registry serving
as the RWD source. The plan is to balance these covariates between the TCS and
the RWD of the hybrid study by PS stratification with the PS defined as in Sect. 3.3.
An independent statistician is thus appointed for the PS design in the second design
stage. The above elements of the first design stage are summarized in Table 4.

After the first design stage is complete, the enrolment in the TCS part of the
hybrid study begins. The second design stage starts as soon as all the 290 patients
have been enrolled into the TCS and all eligible patients have been extracted
from the RWD source, at which time the covariate data for all the patients will
be available. The number of eligible RWD patients happens to be 1000. The
independent statistician appointed in the first design stage who is blinded to outcome
data builds a logistic regression model to estimate the PS for each of the 1290
(290 + 1000) patients. Then 941 RWD patients are selected by excluding those
RWD patients whose PSs are not in the range of that of the TCS patients. This step is
called trimming. The 1231 patients (290 4 941) are grouped into 5 PS strata in such
a way that the same number of TCS patients (58 = 290/5) are in each PS stratum
(i.e., using PS quintiles among the 290 TCS patients as cut points). This guarantees
that each stratum contains TCS patients. Since within each PS stratum the TCS
patients and RWD patients are expected to be more similar than they are overall, the
leveraging of RWD patients within stratum is more justified. The numbers of RWD
patients and TCS patients in each PS stratum are displayed in Table 5.

Recall that it was decided based on clinical considerations that the total amount
of information to be borrowed is equivalent to 90 RWD patients. Since borrowing
takes place within each stratum, we need to figure out how to allocate the 90 patients
to the 5 PS strata. There are many possible ways to do so. One may allocate equal
number of (i.e., 90/5 = 18) patients to each stratum. Our strategy is to make the
nominal number of RWD patients to be leveraged in each stratum proportional to
the similarity of RWD patients and the TCS patients in terms of baseline covariates

Table 4 Main elements of the first design stage

Primary outcome: probability of adverse event within 1 year

Performance goal: 36%

Significance level: 0.05 one-sided/posterior probability threshold: 0.95
Number of baseline covariates considered: 17

Propensity score stratification planned for study design and outcome analysis
Independent statistician identified

Sample size for the current study: 290

Nominal sample size for RWD patients: 90

Table 5 Sample size in each 1 2 3 4 5 Total

PS stratum
TCS (n) 58 | 58 | 58 | 58 | 58 |290
RWD (n) 281 210 | 154 | 187 | 109 | 941
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Table 6 Overlapping coefficient, standardized overlapping coefficient, nominal number of
patients to be borrowed, and power parameter (or composite likelihood exponent) in each stratum

1 2 3 4 5 Total
Overlapping coefficient 0.87 0.78 |0.86 |0.84 |0.77
Standardized overlapping coefficient 21% (19% |21% |20% |19% |100%
Patients borrowed (=90 x Std. Overlap Coef.) |19 17 19 18 17 90
oy (or Ay) (=Patients Borrowed/RWD (n)) 0.07 /0.08 |0.12 |0.10 |0.15

in that stratum. One suggestion is to measure this similarity by an overlapping
coefficient [26], the overlapping area of propensity score distributions of the two
groups of patients (you may use other reasonable measures). The overlapping
coefficients are then standardized so that they add up to 1. The standardized
overlapping coefficient times the total nominal number of patients to be borrowed
(90) determines the nominal number of RWD patients to be borrowed in each
stratum. In this example, the number of RWD patients allocated to each stratum
using the suggested strategy is close to that using equal allocation (as shown in
Table 6).

The power parameter o in the Bayesian approach or the exponent A; in the
composite likelihood in the frequentist approach in each PS stratum can then be
obtained by dividing the nominal number of RWD patients to be leveraged by the
total number of RWD patients in that stratum. Having determined o5 (or Ay) in each
PS stratum we know the fraction of information RWD patient contributes, and the
study design is complete. The overlapping coefficient, the standardized overlapping
coefficient, the nominal number of patients to be borrowed, and the power parameter
(or exponent) in each stratum are presented in Table 6. Here, again, all the above
design activities are performed by an independent statistician blinded to the outcome
data.

After clinical outcomes have been observed from all the patients, the statistical
inference is conducted. For the Bayesian approach, apply the power prior method
within each stratum to get posterior distributions of stratum-specific parameters
of interest 6 [22], which are then combined to complete the inference for the
parameter of interest 6 = %Zlees. Here the number 5 represents the number
of strata, and the simple average is because by design there is equal number of TCS
patients in each stratum. In general, 0 is a weighted average of 6 with the weight
associated with s equal to the number of TCS patients in stratum s [22, 23]. In
this example, the posterior probability of 6 < 36% is 96.9%, which meets the study
success criterion. For the frequentist approach, construct the composite likelihood
to get stratum-specific maximum likelihood estimates 9; [23], which are then
combined to complete the inference for the parameter of interest 6 = %Zlees.

In this example, the combined maximum likelihood estimate 0 is 31%, with a one-
sided p-value = 0.01.
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3.5 More Information on Qutcome Analysis

The example in the previous subsection focused on the two-stage outcome-free
design for the PS-integrated approach with a very brief description of the outcome
analysis. In this subsection, we make some comments on the statistical inference for
outcome analysis. Corresponding to the PS stratification, the parameter of interest 9,
the probability of a patient experiencing adverse event(s) within 1 year, branches out
into S independent stratum specific parameters 65 s = 1, ..., S (S being the number
of strata). For Bayesian inference, the idea is to apply the power prior method within
each stratum, find the posterior distributions for 6, and then combine them to obtain
the posterior distribution of 8, via the relation

Zsszl wsbs
S
Zs:l Wy

where w; is number of TCS patients in stratum s. This weighting is chosen
because the goal is for the hybrid 