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Abstract. Most existing video-language modeling methods densely
sample dozens (or even hundreds) of video clips from each raw video to
learn the video representation for text-to-video retrieval. This paradigm
requires high computational overload. Therefore, sparse sampling-based
methods are proposed recently, which only sample a handful of video clips
with short time duration from each raw video. However, they still struggle
to learn a reliable video embedding with fragmented clips per raw video.
To overcome this challenge, we present a novel video-language model
called SST-VLM inspired by a Sparse Sampling-Twice (SST) strategy,
where each raw video is represented with only two holistic video clips
(each has a few frames, but throughout the entire video). For train-
ing our SST-VLM, we propose a new Dual Cross-modal MoCo (Dual
X-MoCo) algorithm, which includes two cross-modal MoCo modules to
respectively model the two clip-text pairs (for each video-text input). In
addition to the classic cross-modal contrastive objective, we devise a clip-
level alignment objective to obtain more consistent retrieval performance
by aligning the prediction distributions of the two video clips (based on
the negative queues of MoCo). Extensive experiments show that our
SST-VLM achieves new state-of-the-art in text-to-video retrieval.

1 Introduction

Video-language modeling has drawn great attention in recent years, because it
is applicable to a wide variety of practical downstream tasks, including text-to-
video retrieval [1–4], video captioning [1,5,6], and video question answering [7–9].
In this paper, we focus on text-to-video retrieval, and hopefully our work can
bring some inspirations to other video-language tasks. Since raw videos consist of
a series of image frames, processing these frames acquires tremendous computa-
tion cost and resource consumption. Therefore, how to efficiently and effectively
utilize/integrate the video frames to obtain informative video representation has
become a great challenge in text-to-video retrieval.

Existing approaches [10–19] address this challenge mainly by encoding each
raw video with multiple sampled video clips. Most of them [10–14,16] sam-
ple video clips with short time duration (e.g., 1 s for each clip) from the raw
video. Since such local clips can hardly represent the holistic content of the raw
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Fig. 1. Comparison among different sparse sampling strategies for text-to-video
retrieval. We draw one video-text pair from the original dataset (1st row). Note that
the video content of ‘meat’ (that appears in several captions) fails to be sampled in
ClipBERT [10] (2nd row), but it is correctly sampled in our SST-VLM (3rd row).

video, these methods often sample them densely (i.e., sample a large number of
local clips per raw video). Unlike these dense sampling methods, ClipBERT [10]
applies a sparse sampling strategy to each raw video (i.e., only a handful of
local clips are sampled), which has been reported to be effective. However, it
still has limitations: the sampled local clips with short time duration are sepa-
rately matched with the query text to obtain the clip-level predictions (before
aggregated into the final video-level prediction), and thus the video content of
some important concepts may be ignored by such sparse sampling strategy (see
Fig. 1). Therefore, matching sampled local clips to the whole video description
is not reliable for video-language modeling.

To overcome these limitations, in this work, we propose a new video sampling
strategy named ‘Sparse Sampling-Twice (SST)’ for text-to-video retrieval,
which sparsely and holistically samples two video clips from each raw video.
Our sampling strategy has two key characteristics: (1) Sparse Random Sampling
– we first subdivide a raw video into a handful of equal segments and then
randomly sample a single frame from each segment, resulting in a holistic video
clip. (2) Sampling-Twice – since sampling only one holistic clip may ignore some
key information of the raw video and make the video-text prediction unreliable,
we propose to sample two holistic clips by imposing the same sparse random
sampling strategy twice on each raw video. Note that we can easily sample more
clips per raw video, but in this work, we focus on sampling-twice due to the
GPU resource restriction. The detailed comparison between the sparse sampling
strategies used in ClipBERT [10] and our SST strategy is shown in Fig. 1.

Inspired by our SST, we present a novel video-language model termed SST-
VLM for text-to-video retrieval (see Fig. 2). To train our model, we propose a new
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Dual Cross-modal MoCo (Dual X-MoCo) algorithm, which includes two cross-
modal MoCo [20] modules to respectively model the two clip-text pairs for each
video-text input. For the video clip, we employ a 2D image encoder (i.e., ViT-
base [21]) to embed the sampled frames and obtain the video embedding by a
Transformer [22] module. For the text description, we employ a text encoder (i.e.,
BERT-base [23]) to obtain its embedding. Note that making retrieval prediction
with only one sparsely sampled clip is not reliable and the model’s performance
varies significantly across different sampled clips per raw video. Therefore, in
addition to the classic cross-modal contrastive objective, we devise a new clip-
level alignment objective to obtain more consistent retrieval performance based
on the two video clips sampled by SST (per raw video). Concretely, in each train-
ing step, the retrieval distributions of the two video clips are aligned by mini-
mizing the Kullback-Leibler (KL) divergence between them. Since the retrieval
distributions have actually been computed during obtaining the cross-modal con-
trastive loss, our alignment objective almost requires no extra computation cost.
Overall, our clip-level alignment objective enables our SST-VLM to achieve more
consistent performance in text-to-video retrieval. Importantly, we find that it is
even effective without using more frames per raw video (see the ablation study
in Table 1).

Our main contributions are three-fold: (1) We present a novel video-language
contrastive learning framework termed SST-VLM for text-to-video retrieval,
which is inspired by the ‘Sparse Sampling-Twice (SST)’ strategy. Different from
ClipBERT [10], our SST sparsely and holistically samples two video clips from
each raw video. (2) We propose a new Dual X-MoCo algorithm for training our
SST-VLM. It is seamlessly integrated with the SST strategy so that our model
can achieve more stable as well as better performance. (3) Extensive experiments
show that our SST-VLM achieves new state-of-the-art in text-to-video retrieval.

2 Related Work

Text-to-Video Retrieval. Text-to-video retrieval has recently become a popu-
lar video-language modeling task. Classic approaches [24,24–30] pre-extract the
video features using expert models, including those trained on other tasks such
as object recognition, and action classification. They also pre-extract the text
features using pre-trained language models [23,31]. The major drawback of this
paradigm is the lack of cross-modal interaction during feature pre-extraction.
To tackle this problem, a number of works [10–14,16,18,32] have proposed to
train video-language models without using pre-extracted features. Most of them
[11–14,16] embed each raw video with densely sampled video clips. Different
from such costly dense sampling, ClipBERT [10] introduces a sparse sampling
strategy, which samples a handful of video clips with short-time duration to
learn the video representation. In this work, instead of sampling locally multi-
ple times (like ClipBERT), our SST-VLM proposes a Sparse Sampling-Twice
strategy which sparsely and holistically samples two video clips from each raw
video. Importantly, we choose to align the clip-level prediction distributions in
the retrieval task to obtain more reliable video embeddings.
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Contrastive Learning. Contrastive learning has achieved great success in
visual recognition [20,33–39]. The infoNCE loss [33] has been widely used for
contrastive learning, where a large number of negative samples are proven to be
crucial for better performance. There are two ways of collecting negative sam-
ples: (1) SimCLR [37] utilizes the augmented view of each sample to be the
positive sample and all other samples in the current batch to be negative ones.
(2) MoCo [20] and its variant [40] introduce a momentum mechanism to main-
tain a large negative queue. Since MoCo can decouple the number of negative
samples from the batch size, MoCo-based models are applicable to the setting
with a small total batch size (less GPUs are needed for training). In this work,
we thus choose to employ MoCo for video-language modeling. Interestingly, we
have also explored BYOL [39] and SimSiam [41] in text-to-video retrieval, but
found that they fail without using negative samples.

Note that contrastive learning has already been applied to text-to-video
retrieval in the latest works [28,30]. Concretely, TACo [28] adopts token-aware
cascade contrastive learning (enhanced with hard negative mining), and HiT [30]
introduces cross-modal MoCo based on both feature-level and semantic-level
matching. They both utilize pre-extracted features as their inputs, leading to
suboptimal results. Different from them, in this work, we focus on learning bet-
ter video/text embeddings directly from raw videos/texts by proposing a new
Dual X-MoCo algorithm, which includes two cross-modal MoCo modules with
both cross-modal contrastive loss and clip-level alignment loss.

3 Methodology

3.1 Framework Overview

The flowchart of our SST-VLM model for text-to-video retrieval is illustrated
in Fig. 2. Concretely, we are given a training set of N video-text pairs D =
{Vi, Ti}N

i=1, where each video Vi has Si frames of resolution H × W and each
text Ti is represented by the natural language in English. Our model aims to
learn a video encoder fθv

and a text encoder fθt
to project each video and its

paired text into the joint embedding space so that they can be aligned with each
other. The video and text encoders of our model are presented in Sect. 3.2, and
our proposed Dual X-MoCo algorithm for model training is given in Sect. 3.3.

3.2 Video and Text Encoders

Video Encoder. Given a raw video Vi, we randomly and sparsely sample Nc = 2
video clips {ci,r}Nc

r=1, with s (s < Si) frames per video clip (see Sect. 3.3 for more
details). For each sampled video clip ci,r, we first extract the visual embeddings
F v

i,r ∈ R
s×Dv of all frames through an pre-trained image encoder fv (e.g., the

ViT-base model [21]) with an output dimension Dv:

F v
i,r[k] = fv(ci,r[k]), k = 1, · · · , s, (1)
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Fig. 2. Schematic illustration of our SST-VLM model. We sparsely and randomly sam-
ple two video clips from each raw video. Inspired by this ‘Sparse Sampling-Twice’
strategy, we devise a Dual X-MoCo algorithm to train our model. The video encoder
consists of a ViT-base model followed by a Transformer module, and the text encoder
is a BERT-base model. The momentum video/text encoders marked with dotted lines
are initialized by the video/text encoders and updated by Eqs. (8) and (9).

where ci,r[k] denotes the k-th frame of the video clip ci,r and F v
i,r[k] denotes the

k-th row of F v
i,r. We then utilize a Transformer [22] module fatt to capture the

temporal correlation across all frame embeddings:

̂F v
i,r = fatt(F v

i,r[1], F v
i,r[2], · · · , F v

i,r[s]), (2)

where ̂F v
i,r ∈ R

s×Dv are the embeddings output by the Transformer. We finally
obtain the embedding F c

i,r ∈ R
D of video clip ci,r by averaging all frame embed-

dings, which is followed by a linear projection layer:

F c
i,r = Linear(Avg( ̂F v

i,r[1], ̂F v
i,r[2], · · · , ̂F v

i,r[s])), (3)

where ̂F v
i,r[k] is the k-th row of ̂F v

i,r and D is the common dimension for video
and text embeddings. Linear(·) denotes a linear projection layer and Avg(·)
denotes the average pooling function that computes the mean of input embed-
dings. Overall, our video encoder fθv

(with parameters θv) encodes video clips
by Eqs. (1)–(3).

Text Encoder. For each text Ti, we first tokenize it into a sequence of tokens
[ti1, t

i
2, · · · , tili ], where li denotes the length of Ti. A pre-trained language model

f t (e.g., the BERT-base model [23]) is then used to map the sequence of tokens
to a Dt-dimensional embedding F t

i ∈ R
Dt :

F t
i = f t(ti1, t

i
2, · · · , tili). (4)
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Similar to Eq. (3), we obtain the final text embedding by:

F t
i = Linear(F t

i ), (5)

where Linear(·) is a linear layer with the output dimension D. Overall, our text
encoder fθt

(with parameters θt) encodes raw texts by Eqs. (4) and (5).

3.3 Dual X-MoCo

Sparse Sampling-Twice. In this work, to overcome the limitations of Clip-
BERT [10] (see Fig. 1), we propose to sparsely and holistically sample two video
clips from each raw video, noted as the ‘Sparse Sampling-Twice’ strategy. Specif-
ically, given a raw video Vi with Si frames from a mini-batch B = {Vi, Ti}B

i=1,
we first subdivide it into s equal segments, where s = 4 in our implementation.
We then randomly sample one frame from each segment to form the first video
clip ci,1. The second video clip ci,2 is obtained by the same random sampling
strategy. Finally, we feed the two sparsely sampled video clips ci,1, ci,2 and paired
text Ti separately into the video encoder and text encoder to obtain video clip
embeddings F c

i,1, F c
i,2 and text embedding F t

i :

F c
i,1 = fθv

(ci,1), F c
i,2 = fθv

(ci,2), F t
i = fθt

(Ti). (6)

Cross-Modal Contrastive Loss. As shown in Fig. 2, our Dual X-MoCo
includes two cross-modal MoCo [20] modules to respectively model the sam-
pled two clip-text pairs for each video-text input. Concretely, in a mini-batch
B = {Vi, Ti}B

i=1, we first sample two video clips ci,1 & ci,2 from each video Vi by
our SST strategy. Further, we encode the video clips ci,1, ci,2 and paired text Ti

by Eq. (6). After that, we obtain the key embeddings Kc
i,1, Kc

i,2, Kt
i of ci,1, ci,2,

Ti by the momentum encoders fθm
v

and fθm
t

:

Kc
i,1 = fθm

v
(ci,1),Kc

i,2 = fθm
v

(ci,2),Kt
i = fθm

t
(Ti), (7)

where fθm
v

(with parameters θm
v ) is initialized by the video encoder fθv

and fθm
t

(with parameters θm
t ) is initialized by the text encoder fθt

. During training,
the parameters of the momentum encoders fθm

v
and fθm

t
are updated by the

momentum-update rule as follows:

θm
v = m · θm

v + (1 − m) · θv, (8)
θm

t = m · θm
t + (1 − m) · θt, (9)

where m is a momentum coefficient. After loss calculation, with the earliest B
momentum embeddings popped out, we push {Kc

i,1}B
i=1, {Kc

i,2}B
i=1, and {Kt

i}B
i=1

respectively into queues Qc
1, Qc

2, and Qt, where Qc
1 = {nc

j,1}Nq

j=1, Qc
2 = {nc

j,2}Nq

j=1,

and Qt = {nt
j}Nq

j=1. Note that the queue size Nq is decoupled from B.
As a result, for each query text embedding F t

i , we have positive video clip
embeddings Kc

i,1, Kc
i,2 and negative video clip embeddings nc

j,1 ∈ Qc
1, nc

j,2 ∈ Qc
2.



SST-VLM 543

We thus define the text-to-video contrastive loss Lt2v as an InfoNCE-based loss:

Pi,1 = eF t
i ·Kc

i,1/τ , Pi,2 = eF t
i ·Kc

i,2/τ , (10)

Ni,1 =
Nq
∑

j=1

eF t
i ·nc

j,1/τ , Ni,2 =
Nq
∑

j=1

eF t
i ·nc

j,2/τ , (11)

Lt2v = − 1
B

B
∑

i=1

(log
Pi,1

Pi,1 + Ni,1
+ log

Pi,2

Pi,2 + Ni,2
), (12)

where τ is the temperature, Pi,1 (or Pi,2) is the similarity score between posi-
tive clip embedding Kc

i,1 (or Kc
i,2) and query text embedding F t

i . Additionally,
Ni,1 (or Ni,2) is the summed similarity score between negative clip embeddings
nc

j,1 (or nc
j,2) and query text embedding F t

i . Similarly, for query video clips
with embeddings F c

i,1, F c
i,2 computed by Eq. (6) and their positive/negative text

embeddings Kt
i , nt

j , we define the video-to-text contrastive loss Lv2t as follows:

̂Pi,1 = eF c
i,1·Kt

i/τ , ̂Pi,2 = eF c
i,2·Kt

i/τ , (13)

̂Ni,1 =
Nq
∑

j=1

eF c
i,1·nt

j/τ , ̂Ni,2 =
Nq
∑

j=1

eF c
i,2·nt

j/τ , (14)

Lv2t = − 1
B

B
∑

i=1

(log
̂Pi,1

̂Pi,1 + ̂Ni,1

+ log
̂Pi,2

̂Pi,2 + ̂Ni,2

). (15)

The total cross-modal contrastive loss Lcl is given by:

Lcl = Lt2v + Lv2t. (16)

Clip-Level Alignment Loss. Note that different video clips sampled from the
same video should correspond to the same ground-truth text. Therefore, a good
model should have consistent retrieval performance over different video clips
sampled from each video. To this end, in addition to the cross-modal contrastive
loss, we propose to enhance the performance consistency of our SST-VLM model
by minimizing a clip-level alignment loss defined with the Symmetrical Kullback-
Leibler (Sym-KL) divergence.

Given a video Vi with two video clips ci,r (r = 1, 2) and its paired text
Ti, the video-to-text retrieval probability distribution of the query video clip is
denoted as ̂Ui,r = [û0

i,r, · · · , û
Nq

i,r ] ∈ R
Nq+1. Similarly, the text-to-video retrieval

probability distribution of the query text is Ui,r = [u0
i,r, · · · , u

Nq

i,r ] ∈ R
Nq+1.

Concretely, the j-th element (j = 0, · · · , Nq) of ̂Ui,r or Ui,r is defined as:

ûj
i,r =

̂Pi,r

̂Pi,r + ̂Ni,r

, uj
i,r =

Pi,r

Pi,r + Ni,r
, (j = 0), (17)

ûj
i,r =

eF c
i,r·nt

j/τ

̂Pi,r + ̂Ni,r

, uj
i,r =

eF t
i ·nc

j,r/τ

Pi,r + Ni,r
, (j > 0), (18)
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where ̂Pi,r, ̂Ni,r, Pi,r, Ni,r have been computed in Eqs. (13), (14), (10) and (11).
We then define the clip-level alignment loss Lal with the Sym-KL divergence:

Lû =
1
B

B
∑

i=1

Nq
∑

j=0

(ûj
i,1 log

ûj
i,1

ûj
i,2

+ ûj
i,2 log

ûj
i,2

ûj
i,1

), (19)

Lu =
1
B

B
∑

i=1

Nq
∑

j=0

(uj
i,1 log

uj
i,1

uj
i,2

+ uj
i,2 log

uj
i,2

uj
i,1

), (20)

Lal = Lû + Lu. (21)

Total Loss. Our SST-VLM model is trained by minimizing both the cross-modal
contrastive loss and clip-level alignment loss. We thus have the total loss:

Ltotal = Lcl + λ ∗ Lal, (22)

where λ is the weight hyper-parameter.

3.4 Model Pre-training

Note that our model can be readily applied to the image-text retrieval task
when the temporal Transformer module is removed. Therefore, similar to Clip-
BERT [10], our model (excluding the temporal Transformer module) is pre-
trained on a widely-used image-text dataset (with overall 5.3M image-text
pairs), which consists of CC3M [42], VisGenome [43], SBU [44], COCO [45],
and Flickr30k [46]. In this work, we do not pre-train our model on a large-scale
external video-text dataset like HowTo100M [12] due to the limited computa-
tion resources. Although only pre-trained on an image-text dataset rather than
a large-scale video-text dataset, our model still achieves new state-of-the-art on
several benchmark datasets for text-to-video retrieval (see Table 3).

4 Experiments

4.1 Datasets and Settings

Datasets. We evaluate our SST-VLM on three benchmarks: (1) MSR-VTT [1]
contains 10k videos with 200k descriptions. We first follow recent works [18,24,
47], using the 1k-A split of 9k training videos and 1k test videos. Further, we
also adopt the split in [10,28] (called 7k-1k split in our work), having 7k training
and 1k test videos. (2) MSVD [2] consists of 80k English descriptions for 1,970
videos from YouTube, and each video has around 40 captions. As in [18,29,47],
we use the standard split: 1,200 videos for training, 100 videos for validation,
and 670 ones for test. (3) VATEX [3] includes 25,991 videos for training, 3000
videos for validation, and 6000 ones for test. Since the original test set is private,
we follow [29,48] to randomly split the original val set into two equal parts with
1500 videos for validation and the other 1500 videos for test.
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Table 1. Ablation study for our SST-VLM model. Text-to-video retrieval results are
reported on the MSR-VTT 1K-A test set.

Lcl Lal Frames R@1 ↑ R@5 ↑ R@10 ↑
× × 4 31.4 59.5 69.8

× × 8 31.3 59.3 70.1

� × 4 + 4 32.1 61.5 71.8

� � 4 + 4 33.4 62.5 73.5

Evaluation Metrics. We evaluate the text-to-video retrieval performance with
the widely-used evaluation metrics in information retrieval, including Recall at
K (shortened as R@K with K = 1, 5, 10) and Median Rank (shortened as MedR).
R@K refers to the percentage of queries that are correctly retrieved in the top-
K results. MedR measures the median rank of correct answers in the retrieved
ranking list, where lower score indicates better performance.

Implementation Details. We adopt ViT-base [21] as the frame feature extrac-
tor of our video encoder and BERT-base [23] as the text encoder. For visual aug-
mentation at the training stage, we apply random-crop, gray-scaling, horizontal-
flip, and color-jitter to the input video frames that are resized to 384× 384 (but
only frame-resizing and center-crop are deployed at the evaluation stage). Due to
the computation constraint, we empirically set the hyperparameters as: τ = 1,
λ = 0.1, and the initial learning rate is 5e−5. We only update the last 8 layers
of the video and text encoders (but the other layers are frozen) during training.
It takes about 2 h per epoch to train our model on MSR-VTT with 8 T V100
GPUs. In addition, different from the SST strategy (4 frames per clip) used for
model training, we sample two video clips with 8 frames from each video Vi at
the evaluation stage. With two clip embeddings F c

i,1, F c
i,2 obtained by Eq. (6),

we have the final embedding of Vi for evaluation by averaging F c
i,1 and F c

i,2.

4.2 Ablation Study

Contributions of Contrastive and Alignment Losses. We analyze the con-
tributions of cross-modal contrastive loss Lcl and clip-level alignment loss Lal

used in our SST-VLM. The obtained ablative results are shown in Table 1. The
baseline model (1st row) is formed with a single cross-modal MoCo framework
where only one video clip (with frames = 4) is sampled for each video. Based
on our SST strategy (with frames = 4 + 4), we obtain another baseline method
by removing the clip-level alignment loss Lal from our Dual X-MoCo (3rd row).
To further demonstrate the effectiveness of our full model, we train a baseline
model (2nd row) based on single cross-modal MoCo with frames = 8. We can
observe that: (1) Sampling one video clip with 4 or 8 frames leads to comparable
performance (2nd row vs. 1st row). (2) With our SST strategy (4 + 4 frames
per video), our model achieves significant improvements (3rd row vs. 1st/2nd
row). This suggests that our SST-VLM model is even effective without using
more frames per raw video. (3) The clip-level alignment loss can further improve
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Table 2. Comparative results obtained by different alignment methods used in
Eq. (21). Text-to-video retrieval results are reported on the MSR-VTT 1K-A test set.

Alignment method R@1 ↑ R@5 ↑ R@10 ↑
NC 32.8 62.0 71.7

L2 32.4 62.2 71.5

Asym-KL 33.2 62.2 72.1

Sym-KL (ours) 33.4 62.5 73.5

the performance of our SST-VLM model, yielding around 1% improvement on
all R@K (K = 1, 5, 10) results over our SST-VLM model with only contrastive
loss (4th row vs. 3rd row).
Comparison to Alternative Alignment Methods. We further analyze the
impact of alternative methods used for our clip-level alignment loss in Table 2.
Note that the alignment loss Lal in Eq. (16) is defined with the Symmetric
Kullback-Leiber (Sym-KL) divergence. This Sym-KL distance can be replaced
by the negative cosine similarity (NC), L2 distance, or Asymmetric KL (Asym-
KL) divergence. Concretely, the alternative alignment losses are defined by:

LNC
al = − 1

B

B
∑

i=1

(
̂Ui,1 · ̂Ui,2

||̂Ui,1||2||̂Ui,2||2
+

Ui,1 · Ui,2

||Ui,1||2||Ui,2||2 ), (23)

LL2
al =

1
B

B
∑

i=1

(||̂Ui,1 − ̂Ui,2||2 + ||Ui,1 − Ui,2||2), (24)

LAsym
al =

1
B

B
∑

i=1

Nq
∑

j=0

(ûj
i,1 log

ûj
i,1

ûj
i,2

+ uj
i,1 log

uj
i,1

uj
i,2

), (25)

where ̂Ui,r, Ui,r, ûi,r, ui,r are defined in Eqs. (17) and (18). We can find that
SST-VLM with NC, L2 or Asym-KL leads to slightly lower performance on R@1
and R@5, and nearly 2% performance degradation on R@10, as compared with
our SST-VLM using Sym-KL. We thus choose Sym-KL in this work.

4.3 Comparative Results

Table 3 shows the comparative results for text-to-video retrieval on MSR-VTT.
We compare our SST-VLM with a wide range of representative/state-of-the-art
methods including those [27–29] pre-trained on HowTo100M and those [10,18]
pre-trained on image-text datasets. For extensive comparison, we also include
methods [24,30,47] that utilize pre-extracted expert features. Although our SST-
VLM is pre-trained on the smallest dataset with only 5.3M image-text pairs, it
still achieves the best performance under both 7k-1k and 1k-A splits, demon-
strating the effectiveness of our Dual X-MoCo for video-language modeling. Con-
cretely, under the 7k-1k split, our SST-VLM outperforms the second best com-
petitor by 5.0% on R@1, 5.9% on R@5, and 4.2% on R@10. It also leads to the
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Table 3. Comparison to the state-of-the-art results for text-to-video retrieval on
the MSR-VTT test set. w/o PE: methods trained without using multi-modal pre-
extracted features. VLM PT: datasets for pre-training visual-language models. VL
Pairs: the number of visual-language pairs in the pre-training datasets.

Method w/o PE VLM PT VL Pairs R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓
7k-1k Split

JSFusion [11] � – – 10.2 31.2 43.2 13.0

HT MIL-NCE [12] � HowTo100M >100M 14.9 40.2 52.8 9.0

ActBERT [13] � HowTo100M >100M 16.3 42.8 56.9 10.0

HERO [14] � HowTo100M >100M 16.8 43.4 57.7 –

VidTranslate [16] � HowTo100M >100M 14.7 – 52.8 –

NoiseEstimation [26] HowTo100M >100M 17.4 41.6 53.6 8.0

UniVL [27] HowTo100M >100M 21.2 49.6 63.1 6.0

ClipBERT [10] � COCO, VisGenome 5.6M 22.0 46.8 59.9 6.0

TACo [28] HowTo100M >100M 24.8 52.1 64.5 5.0

SST-VLM (Ours) � CC3M, Others 5.3M 29.8 58.0 68.7 3.0

1k-A Split

CE [47] – – 20.9 48.8 62.4 6.0

AVLnet [25] HowTo100M >100M 27.1 55.6 66.6 4.0

MMT [24] HowTo100M >100M 26.6 57.1 69.6 4.0

Support Set [29] HowTo100M >100M 30.1 58.5 69.3 3.0

HiT [30] HowTo100M >100M 30.7 60.9 73.2 2.6

TACo [28] HowTo100M >100M 28.4 57.8 71.2 4.0

Frozen in Time [18] � CC3M, WebVid-2M 5.5M 31.0 59.5 70.5 3.0

SST-VLM (ours) � CC3M, Others 5.3M 33.4 62.5 73.5 3.0

Table 4. Comparison to the state-of-the-arts on MSVD for text-to-video retrieval.

Method R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓
VSE [49] 12.3 30.1 42.3 14.0

VSE++ [50] 15.4 39.6 53.0 9.0

Multi. Cues [51] 20.3 47.8 61.1 6.0

CE [47] 19.8 49.0 63.8 6.0

Support Set [29] 28.4 60.0 72.9 4.0

Frozen in Time [18] 33.7 64.7 76.3 3.0

SST-VLM (ours) 36.2 66.4 76.9 2.0

best MedR = 3.0. Moreover, under the 1k-A split (with more training data than
the 7k-1k split), our SST-VLM outperforms the latest state-of-the-arts [18,30]
by 2.4% on R@1 and 1.6% on R@5. In particular, as compared with HiT [30],
our SST-VLM achieves better results on R@1 and R@5, and obtains competitive
results on R@10 and MedR. This is still impressive and remarkable, given that
HiT not only is pre-trained on the much larger dataset HowTo100M but also
utilizes numerous pre-extracted expert features.

Table 4 shows the comparative results on MSVD. Our SST-VLM outperforms
all competitors, especially yielding 2.5% margin on R@1 against the latest stat-
of-the-art [18]. The results on VATEX in Table 5 further demonstrate that our
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Table 5. Comparison to the state-of-the-arts on VATEX for text-to-video retrieval.

Method R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓
VSE [49] 28.0 64.3 76.9 3.0

VSE++ [50] 33.7 70.1 81.0 2.0

Dual [51] 31.1 67.4 78.9 3.0

HGR [47] 35.1 73.5 83.5 2.0

HANet [19] 36.4 74.1 84.1 2.0

Support Set [29] 45.9 82.4 90.4 1.0

SST-VLM (ours) 53.4 85.3 92.0 1.0

Table 6. Comparison to the state-of-the-arts on MSR-VTT (1k-A split) for video-to-
text retrieval.

Method R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓
CE [47] 20.9 48.8 62.4 6.0

AVLnet [25] 28.5 54.6 65.2 4.0

MMT [51] 28.0 57.5 69.7 3.7

Support Set [29] 28.5 58.6 71.6 3.0

SST-VLM (ours) 33.2 61.2 72.0 3.0

Table 7. Comparison to the state-of-the-arts on MSVD for video-to-text retrieval.

Method R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓
VSE++ [50] 21.2 43.4 52.2 9.0

Multi. Cues [51] 31.5 51.0 61.5 5.0

Support Set [29] 34.7 59.9 70.0 3.0

SST-VLM (ours) 47.3 72.0 78.0 2.0

SST-VLM achieves 7.5% improvement on R@1, 2.9% improvement on R@5, and
1.6% improvement on R@10 over the second best competitor [29].

For comprehensive comparison, we also provide video-to-text retrieval results
on the MSR-VTT 1k-A split in Table 6, in addition to the text-to-video retrieval
results. Our SST-VLM outperforms the latest state-of-the-art (i.e., Support
Set [29] pre-trained on Howto100M [12]) by 4.7% on R@1, 2.6% on R@5, and
0.4% on R@10. It also achieves the best MedR = 3.0. Moreover, we present the
results for video-to-text retrieval on the MSVD [2] test set in Table 7. Our SST-
VLM outperforms the second best competitor [29] by 12.6% on R@1, 12.1% on
R@5, and 8.0% on R@10. It also leads to the best MedR = 2.0. These results
indicate that our SST-VLM is effective for video-language modeling on both
video-to-text and text-to-video retrieval tasks.

4.4 Visualization Results

Retrieval Rank Distribution. To show the stability of our SST-VLM, we
visualize the text-to-video retrieval rank results on MSR-VTT 1k-A test set in
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Fig. 3. Visualization results of text-to-video retrieval on the MSR-VTT 1k-A test set.
(a) The results by our SST-VLM without using the clip-level alignment loss (but with
cross-modal contrastive loss); (b) The results by our full SST-VLM.

Fig. 4. Attention visualization for our SST-VLM. The (attention) heatmaps are shown
for two video-text pairs sampled from the MSR-VTT test set. Texts in red denote key
objects for each video caption. (Color figure online)

Fig. 3. Note that we still sample two video clips (as in the training stage) from
each raw video in the test set, resulting in two video clip sets C1 = {ci,1}1,000

i=1

and C2 = {ci,2}1,000
i=1 . To show the effectiveness of our clip-level alignment loss

Lal in enhancing stability, we evaluate two related models: model in Fig. 3(a)
is trained without Lal (but with cross-modal contrastive loss Lcl), while model
in Fig. 3(b) is exactly our full SST-VLM model. For each model, we visualize
the retrieval rank (range from 1 to 1,000) distribution between video clip set
C1 (or C2) and the same set of text queries. In addition, we report the MedR
results for each distribution and KL divergence (KLDiv) between distributions
of differently sampled video clips for each model. We find that: (1) The MedR
results in Fig. 3(b) are equal to 3.0 for both C1 and C2, while those in Fig. 3(a)
are different (4.0 for C1 and 3.0 for C2). (2) The KL divergence in Fig. 3(b) is
two orders of magnitude smaller than that in Fig. 3(a). Therefore, the clip-level
alignment loss Lal indeed leads to more stable results.

Attention Visualization. To further show that our SST-VLM has learned
to understand the semantic content in videos, we adopt a recent Transformer
visualization method [52] to highlight the relevant regions of the input frames
according to the input texts. In this work, different from the original visualization
method that computes the gradients directly from the total loss backward, we
compute the separate gradients of each input frame and visualize the attention
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Fig. 5. Text-to-video retrieval examples obtained by our SST-VLM on the MSR-VTT
1k-A test set. For each query text, we visualize the top-2 retrieved videos (with 3 frames
shown per video). We also present the original paired text under each video.

maps of all frames. Concretely, as shown in Fig. 4, we present two video-text
pairs (and their visualization results) sampled from the MSR-VTT test set. The
left part presents a 4-frame video clip with text ‘Penguins wander around’. The
attention visualization shows that penguins in all frames have actually been
noticed by our model. Moreover, the right part presents a 4-frame video clip
with a longer text ‘A rocket is launching. Smoke is emerging from the base of
the rocket’. The attention visualization is rather interesting: with the rocket
launching, our model pays more attention to the rocket and its smoke. Overall,
these visualization results indicate that our SST-VLM has actually learned to
understand the semantic content in videos.

Text-to-Video Retrieval Examples. Figure 5 shows the text-to-video
retrieval qualitative results obtained by our SST-VLM on the MSR-VTT 1k-
A test set. We visualize the top-2 videos (with 3 frames show per video) for each
query text. Concretely, the left part of Fig. 5 consists of a query text ‘a little girl
does gymnastics’ and the retrieved top-2 videos (with their original paired texts)
shown below, while the right part of Fig. 5 is organized similarly. For each query
text, we have the following observations: (1) The ground-truth video is correctly
retrieved at the first place. (2) The texts of the second retrieved videos are also
similar to the query text, which means that the semantic content of these videos
is still consistent with the query text. Overall, these qualitative results indicate
that our SSL-VLM has indeed aligned the video and text embeddings well in
the learned joint space (which is crucial for video-text retrieval).

5 Conclusion

In this paper, we propose a novel video-language model called SST-VLM inspired
by the Sparse Sampling-Twice (SST) strategy that sparsely and holistically sam-
ples two video clips from each raw video. For training our SST-VLM, we devise a
new Dual X-MoCo algorithm, which includes both cross-modal contrastive and
clip-level alignment losses to enhance the performance stability of our model.
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Extensive results on several benchmarks show that our SST-VLM achieves new
state-of-the-art in text-to-video retrieval. The ablation study and attention visu-
alization further demonstrate the effectiveness of our SST-VLM. In our ongoing
research, we will apply our SST-VLM to other video-language understanding
tasks such as video captioning and video question answering.
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