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Abstract. State-of-the-art face recognition methods typically take the
multi-classification pipeline and adopt the softmax-based loss for opti-
mization. Although these methods have achieved great success, the
softmax-based loss has its limitation from the perspective of open set clas-
sification: the multi-classification objective in the training phase does not
strictly match the objective of open set classification testing. In this paper,
we derive a new loss named global boundary CosFace (GB-CosFace).
Our GB-CosFace introduces an adaptive global boundary to determine
whether two face samples belong to the same identity so that the opti-
mization objective is aligned with the testing process from the perspective
of open set classification. Meanwhile, since the loss formulation is derived
from the softmax-based loss, our GB-CosFace retains the excellent prop-
erties of the softmax-based loss, and CosFace is proved to be a special case
of the proposed loss. We analyze and explain the proposed GB-CosFace
geometrically. Comprehensive experiments on multiple face recognition
benchmarks indicate that the proposed GB-CosFace outperforms cur-
rent state-of-the-art face recognition losses in mainstream face recognition
tasks. Compared to CosFace, our GB-CosFace improves 5.30%, 0.70%,
and 0.36% at TAR@FAR=1e-6, 1e-5, 1e-4 on IJB-C benchmark.

1 Introduction

Research on the training objectives of face recognition (FR) has effectively
improved the performance of deep-learning-based face recognition [1–4]. Accord-
ing to whether a proxy is used to represent a person’s identity or a set of training
samples, face recognition methods can be divided into proxy-free methods [5–
16] and proxy-based methods [17–29]. The proxy-free methods directly compress
the intra-class distance and expand the inter-class distance based on pair-wise
learning [5–8] or triplet learning [9–13,15,16]. However, when dealing with a
large amount of training data, the hard-mining operation which is crucial for
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Fig. 1. The difference of the objective between softmax-based training and the open
set classification testing, where S(·) is the function to measure the distance between
two samples, W1 and W2 are the prototypes of two identities respectively. In (a), X1

and X2 is the given training sample, m is the margin parameter. In (b), Xa1 and Xa2

are two testing samples of ID “a”, and Xb1 is a testing sample of ID “b”. ID “a” and
“b” are not included in the training data.

proxy-free methods becomes extremely difficult. Recently, proxy-based method
have achieved great success and shown advantages in big data training. Most
of them take a softmax-based multi-classification pipeline and use cross-entropy
loss as the optimization objective. In these methods, each identity in the train-
ing set is represented by a prototype, which is the weight vector of the final
fully connected layer. We refer to this type of method as the softmax-based face
recognition method in this paper.

Despite the great success of softmax-based face recognition, this strategy has
its limitation from the perspective of the open set classification [30–33]. As is
shown in Fig. 1(a), the training objective of softmax-based multi-classification
is to make the predicted probability of the target category larger than other
categories. However, face recognition is an open set classification problem where
the test category generally does not exist in the training category [1]. A typical
requirement for a face recognition model is to determine whether two samples
belong to the same identity by comparing the similarity between them with a
global threshold T , as is shown in Fig. 1(b). The inconsistency of the objective
of training and testing limits the performance.

To reduce the impact of this inconsistency, current softmax-based face recog-
nition methods have made various improvements to the training objective. One
of the most vital improvements is to normalize the face features to the hyper-
sphere for unified comparison [18,19]. Typically, the similarity between two sam-
ples is represented by the cosine similarity of their corresponding feature vectors.
Large-margin-based methods [18,20,21,23] are proposed to further compress the
intra-class distance and expand the inter-class distance. Recently, the dynamic
schemes for the scale parameter [34] and the margin parameter [26,35] have been
studied and further improved the model performance.

From the perspective of training strategy, Lu et al. [36] proposed an optimal
sampling strategy to address the inconsistency between the direction of gradient
descent and optimizing the concerned evaluation metric. For face feature align-
ment, DAM [37] proposed a Discrepancy Alignment Metric, which introduces local
inter-class differences for each face feature obtained from a pre-trained model, in
the face verification stage. However, none of these methods consider introducing
the global boundary in the testing process into the training objective.
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In this paper, we propose a novel face recognition loss named global boundary
CosFace (GB-CosFace), which resolve the above-mentioned inconsistencies well
and can be easily applied for end-to-end training on face recognition task. In our
GB-CosFace loss, the training objective is aligned with the testing process by
introducing a global boundary determined by the proposed adaptive boundary
strategy. First, we compare the objective difference between the softmax-based
loss and the face recognition testing process. Then, we abstract the reasonable
training objective from the perspective of open set classification and derive a
antetype of the proposed loss. Furthermore, we combine the excellent properties
of softmax-based losses with the proposed antetype loss and derive the final
GB-CosFace formulation. We further prove that CosFace [20,21] is a special
case of the proposed GB-CosFace. Finally, we analyze and explain the proposed
GB-CosFace geometrically. The contributions of this paper are summarized as
follows.

– We propose GB-CosFace loss for face recognition, which matches the testing
objective of the open set classification while inheriting the advantages of the
softmax-based loss. To the best of our knowledge, we are the first work which
introduces a global boundary into the training objective for face recognition.

– We analyze the difference and connection between GB-CosFace and general
softmax-based losses, and give a reasonable geometric explanation.

– Our GB-CosFace obviously improve the performance of softmax-based face
recognition (e.g., improves 5.30%, 0.70%, and 0.36% at TAR@FAR=1e-6,
1e-5, 1e-4 on IJB-C benchmark compared to CosFace).

2 Softmax-Based Face Recognition

To better understand the proposed GB-CosFace, this section review the general
softmax-based face recognition.

2.1 Framework

The training framework of the general softmax-based face recognition is shown
in Fig. 2. In this framework, each identity in the training set has its correspond-
ing prototype. The prototypes are represented by the weight vectors of the final
fully connected layer. Given a training sample, we call the prototype represent-
ing the identity of this sample “target prototype”, and call other prototypes
“non-target prototypes”. After extracting face features from the backbone, the
predicted scores which represent the similarity between the feature vector and
each prototype are calculated through the final fully connected layer (FC layer).
The similarity between the feature vector and the target prototype is called
“target score”, and the other predicted scores are called “non-target scores”.
Generally, the output feature vector and the prototypes are normalized to the
unit hyper-sphere. Therefore, the predicted scores are usually represented by
the cosine of the feature vector and the prototype. In training, the softmax-
based loss is adopted to optimize the backbone and the final FC layer through
backpropagation.
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Fig. 2. The training framework of the general softmax-based face recognition.

2.2 Objective

For each iteration in n-class face recognition training, given a training sample
and its label y, the general softmax-based loss is as follows:

LS = −log
es(cos(θy+mθ)−mp)

es(cos(θy+mθ)−mp) +
∑

i escosθi
(1)

where θy is the arc between the predicted feature vector and the target prototype,
θi is the arc between the predicted feature vector and the non-target prototype,
y is the index of the target identity, i is the index of the non-target identities,
i ∈ [1, n] and i �= y. There are three hyper-parameters: the scale parameter “s”,
and the two margin parameters “mθ” and “mp”.

We can reach several common softmax-based losses from Eq. 1. E.g., nor-
malized softmax loss will be reached if both mθ and mp are set as zero. ArcFace
and CosFace will be reached if we respectively set mp and mθ as 0.

Softmax-based losses can be regarded as the smooth form of the following
optimization objective OS .

OS = ReLU(max(cosθi) − (cos(θy + mθ) − mp))

= lim
s→+∞ −1

s
log

es(cos(θy+mθ)−mp)

es(cos(θy+mθ)−mp) +
∑n

i=1,i �=y escosθi

= lim
s→+∞

1
s
LS

(2)

where the SoftPlus function is used as a smooth form of ReLU operator and
log

∑
exp(·) is used as a smooth form of max(·) operator. More detailed deriva-

tion is included in the supplementary material.
From this perspective, we can find that the training objective OS constrains the

target score to be larger than the maximum non-target score. The margin is intro-
duced for a stricter constraints. However, this constraint is not completely consis-
tent with the objective of the testing process. Based on Eq. 2, we can visualize the
decision boundaries of normalized softmax loss [19], CosFace [20,21], and ArcFace
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Fig. 3. Decision boundaries of different loss functions under binary classification case.
Figure (d) shows the expected decision boundary in the testing phase.

[23] under binary classification case, as is shown in Fig. 3 (a)–(c). In the testing
phase, a global threshold T of the cosine similarity needs to be fixed to determine
whether two samples belong to the same person, as is shown in Fig. 3(d). We can
see that, even if a margin is added, the decision boundaries of softmax-based losses
do not completely match the expected boundary for testing.

2.3 Properties

Current face recognition models do not directly apply OS as the training objec-
tive. On the one hand, max(·) operator only focuses on the maximum value and
the gradients will only be backpropagated to the target score and maximum
non-target score. On the other hand, if the argument of the RELU function is
less than 0, no gradient will be backpropagated. As a smooth form of OS , the
softmax-based loss can avoid the above problems. The success of softmax-based
loss is due to its excellent properties.

Property 1. The gradients of the non-target scores are proportional to their
softmax value.

For softmax-based loss, the backpropagated gradients will be assigned to
all non-target scores according to their softmax value. This property ensures
that each non-target prototype can play a role in training, and hard non-target
prototypes get more attention.

Property 2. The gradient of the target score and the sum of the gradients of
all non-target scores have the same absolute value and opposite signs.

∂LS

∂cos(θy + mθ)
= −∑

i

∂LS

∂cos(θi)
(3)

Softmax-based loss has balanced gradients for the target score and the non-
target scores. This property can maintain the stability of training and prevent
the training process from falling into a local minimum.

Considering the key role that these two properties play in face recognition
training, we expect to inherit them in the loss design. In this paper, we add
the consistency of training and testing to the loss design by introducing an
adaptive global boundary. From the expected training objective, we derive our
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GB-CosFace framework and prove compatibility with CosFace. This compati-
bility allows the proposed loss to inherit the excellent properties of the general
softmax-based loss while solving the inconsistency between the training and test-
ing objective.

3 GB-CosFace Framework

3.1 Antetype Formulation

Based on the face recognition testing process which is shown in Fig. 3(d), we
propose to introduce a global threshold pv as the boundary between target score
and non-target scores. The target score is required to be larger than pv while
the maximum of the non-target scores is required to be less than pv. Following
this idea, we improve Eq. 2 as follows:

{OT = ReLU(pv − (py − m))
ON = ReLU(max(pi) − (pv − m)) (4)

where we divide the training objective into the target score OT and the non-
target scores ON respectively. py is the target score, where py = cosθy. pi is the
non-target score, where pi = cosθi. m is the margin parameter introduced for
stricter constraints. The training objective is to minimize OT and ON .

Inspired by the success of the softmax-based loss, similar to Eq. 2, we take
the smooth form of OT and ON as the antetype of the proposed loss.

⎧
⎨

⎩

LT1 = −log es(py−m)

es(py−m)+espv

LN1 = −log es(pv−m)

es(pv−m)+
∑

ie
spi

(5)

The loss for target score and non-target scores are represented as LT1 and LN1

respectively. pv is the global boundary hyper-parameter, which also means “vir-
tual score”. For LT1, pv is a virtual non-target score. For LN1, pv is a virtual
target score. Since we take log

∑
exp(·) as the smooth form of max(·), the dis-

tribution of the gradients of non-target scores inherits Property 1. (stated in
Sect. 2.3) of the softmax-based loss.

However, the proposed antetype introduces another problem: the setting of
hyper-parameter pv. First, the inappropriate setting of pv may cause a serious
gradient imbalance problem. Since we separate the constraints on the target score
and the non-target scores, the gradient balance for target score and non-target
scores is broken and the antetype loss no longer retains Property 2. (stated in
Sect. 2.3). Second, considering the rapid rise of the exponential function and the
amplification effect of the hyper-parameter “s”, the model is extremely sensitive
to the choice of the hyper-parameter pv. As can be seen in Fig. 4, a slight change
in pv can cause an order of magnitude difference between the gradients for target
score py and non-target scores pi. Therefore, an adaptive scheme for the global
boundary is necessary.
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Fig. 4. The ratio of the target gradient to the non-target gradient varies with pv under
binary classification case using different py and pi. Hyper-parameter s and m are set to
32 and 0.15 respectively. Note that the ordinate is the base 10 logarithm of the ratio.

3.2 Adaptive Global Boundary

To control the gradient balance and adapt the global boundary to different train-
ing stages, we propose an adaptive global boundary method. We believe that
an ideal global boundary should meet the following conditions: a) Under this
boundary setting, the gradients of the target score and the non-target scores
should be roughly balanced from a global perspective; b) The global bound-
ary should change slowly during the training process to keep the training stable
while adapting to different training stages. Based on these two conditions, we
make the following design.

Gradient Balance Control. We define p̂v as the balanced threshold of the
target score and the non-target scores which satisfies ∂LT1

∂py
= −∑

i
∂LN1
∂pi

. Based
on this condition, we reach the following form of p̂v:

p̂v = (py +
1
s
log

∑
ie

spi)/2 (6)

Ideally, for each iteration, to satisfy the above condition a), we expect to
calculate p̂v for each sample in the data set and get the mean value as the
threshold pv. Considering the efficiency, we calculate the mean of p̂v for each
batch and update it by the momentum update strategy.

pvg = (1 − γ)pvg + γpvb (7)

where γ ∈ [0, 1] is the update rate, pvb is the mean of pv in a batch. A small γ
can keep the stability of pv. We empirically set γ to 0.01.

This dynamic threshold strategy makes the gradient balanced globally. How-
ever, for each sample, the problem of gradient imbalance can be very serious.
Therefore, we modify the value of pv to be the weighted sum of pvg and p̂v as
follows.
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pv = αpvg + (1 − α)p̂v (8)

where α is a hyper-parameter and α ∈ [0, 1]. When α = 0, the gradients for the
target score and the non-target scores are completely balanced. We can control
the degree of the gradient imbalance by adjusting α.

Compatible with CosFace. In Eq. 8, if we take α as 0, the proposed loss will
fully conform to Property 1 and Property 2 (stated in Sect. 2.3) of softmax-based
loss. Through the following analysis, we can further find that Cosface [20,21] is
a special case of the proposed loss when α = 0.

The gradients based on CosFace is calculated as follows.

GT−CosFace = −GN−CosFace = − s · ∑
ie

spi

es(py−m) +
∑

ie
spi

= − s · espn

es(py−m) + espn

(9)
where the gradient for the target score is represented as GT−CosFace, the sum of
the gradients of the non-target scores is represented as GN−CosFace, and pn =
1
s log

∑
i espi .

For the proposed loss, based on Eq. 5, we can get the gradient for target
score py (GT1) and the sum of the gradients for non-target scores pi (GN1) when
α is set to 0.

GT1 = −GN1 = − s · e
1
2 spn

e
1
2 s(py−2m) + e

1
2 spn

(10)

As the above equation shows, if we take pv as p̂v (Eq. 6), the difference of
the proposed loss (Eq. 5) and CosFace only lies on the margin and the scale.
The more detailed proof is included in the supplementary material.

Final Loss. For formal unity with CosFace, we rewrite the proposed loss into
the following form.

LGB−CosFace = −1
2
log

e2s(py−m)

e2s(py−m) + e2spv
− 1

2
log

e2s(pv−m)

e2s(pv−m) + e2spn

(11)

where pn = 1
s log

∑
ie

spi . The value of pv is in accordance with Eq. 8. In training,
pv is a detached parameter which does not require gradients.

This is the final form of the proposed GB-CosFace. Under this formulation,
the hyper-parameter α controls the degree of gradient imbalance. If we set α as
0, the gradients for the target score and the non-target scores are balanced, and
the proposed GB-CosFace is equivalent to CosFace which has the margin of 2m
and the scale of s.
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3.3 Geometric Analysis

To analyze the properties of the proposed loss and compare it with other softmax-
based losses, we analyze the loss boundaries in the binary classification case. The
boundaries of ArcFace [23] and CosFace [20,21] are determined by the following
Eq. 12 and Eq. 13 respectively.

|arccos(P · P1) − arccos(P · P2)| = m (12)

|P · P1 − P · P2| = m (13)

where P is the predicted normalized n-dimensional feature vector and n is the
face feature dimension, P1 and P2 are the feature vectors of ID1 and ID2 respec-
tively.

Fig. 5. Boundaries of the softmax-based losses and the proposed GB-CosFace loss. P1

and P2 are two points at a distance of 60◦. The red line and blue line are the target
boundaries for P1 and P2 respectively. For the normalized softmax loss, the boundaries
for P1 and P2 are coincident and represented in black color.(Color figure online)

For normalized softmax loss, the boundary is determined by Eq. 12 or Eq. 13
with a zero margin. We set the angle between vector P1 and P2 as 60◦ and show
the boundaries of normalized softmax, ArcFace, and CosFace in the 3D spherical
feature space in Fig. 5(a).

The boundaries of the proposed GB-CosFace can be determined according
to Eq. 14. { |P · P1| = pv + m

|P · P2| = pv + m
(14)

According to Eq. 6 and Eq. 8, in the binary classification case, pv can be
represented as follows.
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pv = αpvg + (1 − α)(P · P1 + P · P2)/2 (15)

We show the boundaries of the proposed GB-CosFace loss in Fig. 5(b), where
pvg is fixed to 0.62 (a reasonable value according to the experiments in Sect. 4)
and m is fixed to 0.15.

In the face recognition problem, feature vectors of the same identity are
expected to cluster together. However, by observing Fig. 5(a), we can find that
the boundaries in the case of binary classification do not meet this expecta-
tion. Only the positions near the line from point P1 to point P2 on the sphere
can be effectively constrained. Fortunately, the training set has far more than
two identities. Ideally, the prototypes of different identities will be evenly dis-
tributed on the sphere. The feature vectors of the same identity will be con-
strained in all directions. But actually, it cannot be guaranteed that in the sparse
high-dimensional spherical feature space, there are enough non-target prototypes
evenly distributed around each training sample.

The proposed loss LGB alleviates this problem by introducing a global bound-
ary. As is shown in Fig. 5(b), when α = 0, the boundary is the same as CosFace.
When α = 1, the boundary is a circle on the sphere centered on P1 or P2 with a
fixed radius completely determined by pvg and the margin m. With the increase
of α, the boundary is closer to the ideal open set classification objective. How-
ever, an excessively large α will cause blurring or even crossing of the boundaries
between different identities.

Fig. 6. Visualization of the toy experiments on the proposed GB-CosFace. Different
colors represent different identities.

To study the appropriate range of α, we conduct a toy experiment based on
a seven-layer convolutional neural network on a small face recognition dataset
containing ten identities. We set the feature dimension as three, and visualize the
distribution of the feature vectors on the unit sphere under different α settings,
as is shown in Fig. 6. The margin is fixed to 0.15 and α is adjusted from 0 to 1.
When α = 0, our GB-CosFace is exactly the same as CosFace with the margin
of 0.3, as indicated in Sect. 3.2. As α increases, e.g., α = 0.2, the feature vectors
of the same identity are more concentrated as expected. The model performance
will deteriorate if α is further increased, e.g., α = 0.8 or α = 1. The setting of α
will be studied in detail in the Sect. 4.2.
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4 Experiments

In this section, we verify our GB-CosFace on two important face tasks: face
recognition and face clustering. Furthermore, we conduct ablation experiments
to verify the proposed strategies and the settings of the hyper-parameters.

Dataset. We employ MS1MV3 [38], a refined version of MS1M [39] as our
training set for all the following experiments. This is a large-scale face recognition
dataset containing 5.1M face images of 93K celebrities. We use several popular
benchmarks as the validation set, including LFW [40], CFP-FP [41], CPLFW
[42], AgeDB-30 [43], and CALFW [44]. And we use IJB-B [45] and IJB-C [46]
as the testing sets.

Implementation Details. We use ResNet50 [47] and ResNet100 as the back-
bone for the following experiments. The BN-FC-BN structure is added after the
last convolution layer to output 512-dimensional face feature vectors. For data
pre-possessing, all face images are set to 112 × 112 and normalized by utilizing
five facial points following recent papers [23,26]. Each RGB pixel is normal-
ized to [−1, 1]. Random horizontal flip is the only data augmentation method
employed in the training process. For optimization, we adopt the stochastic gra-
dient descent (SGD) optimizer with a momentum of 0.9 and weight decay of
1e-4. We adopt the step learning rate decay strategy with an initial learning
rate of 0.1. We train 24 epochs and divide the learning rate by 10 at 5, 10, 15,
and 20 epochs. The training batch size is fixed to 512. Eight NVIDIA GPUS are
employed for training. We fix the hyper-parameters s, m, α and γ as 32, 0.16,
0.15 and 0.01 respectively if not specified.

4.1 Face Recognition

Analysis of Gradient Blance. Figure 7 shows the gradients and the global
boundary pv in the training process. Throughout the training process, the gra-
dient of the target score GT and the gradients sum of the non-target scores GN

maintain a same convergence trend, and the values of GT and GN are approx-
imately equal after 50k iterations. The change trend of the global boundary
parameter pv during the training process is consistent with the gradients GT

and GN , and eventually converges to 0.62. This result shows that our adaptive
global boundary strategy can guarantee the stability of model training and keep
GT and GN balanced throughout the training process, which is consistent with
our discussion in Sect. 3.2.

Results on Validation Datasets. To compare with recent state-of-the-art
competitors, we compare the results on several popular face recognition bench-
marks, including LFW, CFP-FP, AgeDB-30, CALFW, and CPLFW. LFW
focuses on unconstrained fa ce verification.
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Fig. 7. GT is the gradient of the target score, GN is the gradients sum of the non-target
scores, and pv is the global boundary in Eq. 11.

The results are shown in Table 1. We achieve the best results on two of
the five benchmarks. Even though both datasets are highly-saturated, our GB-
CosFace surpasses the recent methods on CFP-FP and CPLFW, and achieves
comparable results on other three datasets.

Results on IJB-B and IJB-C. IJB is one of the largest and most challenging
benchmarks to evaluate unconstrained face recognition. IJB-B contains 1845
identities with 55025 frames and 7011 videos. IJB-C is an extension of IJB-B
which contains about 3.5K identities from 138K face images and 11K face videos.

The results are shown in Table 2. We achieve SOTA results on IJB-B and IJB-
C. Compared to CosFace, our GB-CosFace improves 6.07%, 4.07% and 0.41% at
TAR@FAR=1e-6, 1e-5, 1e-4 on IJB-B, and improves 5.30%, 0.70% and 0.36%
at TAR@FAR=1e-6, 1e-5, 1e-4 on IJB-C.

Table 1. 1:1 verification accuracy is reported on the LFW, CFP-FP, AgeDB-30,
CALFW, CPLFW datasets. Backbone network: ResNet100.

Method Validation dataset

LFW CFP-FP AgeDB-30 CALFW CPLFW

CosFace [21] (CVPR18) 99.81 98.12 98.11 95.76 92.28

ArcFace [23] (CVPR19) 99.83 98.27 98.28 95.45 92.08

Sub-center ArcFace [48] (ECCV20) 99.83 98.80 98.45 – –

BroadFace [28] (ECCV20) 99.83 98.63 98.38 96.20 93.17

CurricularFace [25] (CVPR20) 99.80 98.37 98.32 96.20 93.13

URFace [49] (CVPR20) 99.78 98.64 – – –

CosFace+SCF [50] (CVPR21) 99.80 98.59 98.26 96.18 93.26

MagFace [26] (CVPR21) 99.83 98.46 98.17 96.15 92.87

GB-CosFace 99.80 98.84 98.31 96.15 93.55
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Table 2. The face verification accuracy on IJB-B and IJB-C. We evaluated the
TAR@FAR from 1e-4 to 1e-6. Backbone network: ResNet100.

Method IJB-B(TAR) IJB-C(TAR)

1e-6 1e-5 1e-4 1e-6 1e-5 1e-4

CosFace [21] (CVPR18) 36.49 88.11 94.80 85.91 94.10 96.37

ArcFace [23] (CVPR19) 38.28 89.33 94.25 89.06 93.94 96.03

Sub-center ArcFace [48] (ECCV20) - - 95.25 - - 96.61

BroadFace [28] (ECCV20) 46.53 90.81 94.61 90.41 94.11 96.03

CurricularFace [25] (CVPR20) - - 94.80 - - 96.10

GroupFace [51] (CVPR20) 52.12 91.24 94.93 89.28 94.53 96.26

CosFace+DAM [37] (ICCV21) - - 94.97 - - 96.45

CosFace+SCF [50] (CVPR21) - 91.02 94.95 - 94.78 96.22

MagFace [26] (CVPR21) 40.91 89.88 94.33 89.26 93.67 95.81

GB-CosFace 42.56 92.18 95.21 91.21 94.80 96.73

4.2 Ablation Study

To analyze the effect of the adaptive boundary strategy and the setting of hyper-
parameter α, we train ResNet-50 networks on MS1MV3 with different settings
and evaluated the TAR@FAR=1e-4 on IJB-C.

Hyperparameter Setting. Compared to CosFace, we introduce another
hyper-parameter α in Eq. 8. Since the settings of the scale parameter s and the
margin parameter m have been studied in detail in the previous works [20,21,23],
we empirically set s = 32 and m = 0.16 (equivalent to m = 0.32 in CosFace),
and focus on the setting of α. For more detailed theoretical analysis, please refer
to Sect. 3.3.

Table 3. The results of the proposed GB-CosFace under different settings of α.

Settings IJB-C(TAR)

FAR=1e-4, R50, adaptive pv, α = 0 96.10

FAR=1e-4, R50, adaptive pv, α = 0.05 96.15

FAR=1e-4, R50, adaptive pv, α = 0.15 96.24

FAR=1e-4, R50, adaptive pv, α = 0.25 96.35

FAR=1e-4, R50, adaptive pv, α = 0.35 96.33

FAR=1e-4, R50, adaptive pv, α = 0.60 96.08

We conduct the controlled experiment where the value of α is set from 0
to 0.6 and other parameters are fixed. The results are shown in Table 3. When
the value of α gradually increases from 0 to 0.25, the performance of the model
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gradually improves and the model performs best with α = 0.25. After the value
of α exceeds 0.35, the model performance obviously degenerates with the increase
of α. Overall, the performance of the model can maintain relatively good results
as the value of α is between 0.15 and 0.35. This result is consistent with the
previous discussion and the toy experiments in Sect. 3.3.

Effect of the Adaptive Boundary Strategy. To evaluate the effectiveness
of the adaptive boundary strategy, we compare the fixed boundary strategy and
the proposed adaptive boundary strategy in Sect. 3.2. We fix the pv in our GB-
CosFace(Eq. 11) to different values and keep the other experimental settings the
same as Sect. 4.1. Since pv converges to 0.62 in the experiment in Sect. 4.1, we
choose pv = 0.62 and additionally choose values near 0.62.

Table 4. Comparison of the results of the proposed adaptive global boundary strategy
and the fixed global boundary strategy.

Settings IJB-C(TAR@FAR= 1e-4)

FAR=1e-4, R50, α = 0.15, pv = 0.50 91.19

FAR=1e-4, R50, α = 0.15, pv = 0.58 96.27

FAR=1e-4, R50, α = 0.15, pv = 0.62 96.19

FAR=1e-4, R50, α = 0.15, pv = 0.66 96.17

FAR=1e-4, R50, α = 0.15, pv = 0.74 95.09

FAR=1e-4, R50, α = 0.15, adaptive pv 96.24

The results are shown in Table 4. For the fixed boundaries, the model per-
forms best when pv = 0.58 and gets worse rapidly when the pv changes, eg.
the TAR decreases to 91.19% when pv = 0.50. What’s more, if we reduce pv

to 0.42 or increase it to 0.82, the training will not converge. For the adaptive
boundary strategy, the performance is very close to the best fixed boundary
strategy result. This indicates that for the fixed boundary strategy, the model
performance is sensitive to the value of pv, a very careful setting of pv is required
to obtain good results. While the adaptive global boundary strategy does not
require careful tuning of hyper-parameters to achieve a similar performance.
This result is consistent with the previous discussion and the toy experiments in
Sect. 3.3.

5 Conclusion

In this work, we discuss the inconsistency between the training objective of the
softmax-based loss and the testing process of face recognition, and derive a new
loss from the perspective of open set classification, called the global bound-
ary CosFace(GB-CosFace). Our GB-CosFace aligns the training objective with
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the face recognition testing process while inheriting the good properties of the
softmax-based loss. Comprehensive experiments indicate that our GB-CosFace
has an obvious improvement over general softmax-based losses.
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