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Abstract. With the development of self-driving vehicles, pedestrian
behavior prediction plays a vital role in constructing a safe human-
robot interactive environment. Previous methods ignored the inher-
ent uncertainty of pedestrian future actions and the temporal corre-
lations of spatial interactions. To solve the aforementioned problems,
we propose a novel social aware multi-modal pedestrian crossing behav-
ior prediction network. In this research field, our network innovatively
explores the multimodality nature of pedestrian future action prediction
and forecasts diverse and plausible futures. Also, to model the social
aware context in both the spatial and temporal domain, we construct a
spatial-temporal heterogeneous graph, bridging the spatial-temporal gap
between the scene and the pedestrian. Experiments show that our model
achieves state-of-the-art performance on pedestrian action detection and
prediction task. The code is available at https://github.com/zxll0106/
Pedestrian_Crossing_Behavior_Prediction.

Keywords: Pedestrian crossing behavior prediction · Video
understanding

1 Introduction

Predicting pedestrian behaviors plays a critical role in the human-robot interac-
tive scene. Pedestrians in the urban traffic scenario can extract useful informa-
tion from the surroundings to infer others’ motion patterns and make reasonable
decisions. We hope that autonomous systems can acquire the capability to mimic
human perception to predict pedestrian behaviors, which is important for cre-
ating a safer environment for both robots and pedestrians.
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Fig. 1. Our model captures useful information not only from the target pedestrian but
also from the social aware context. Interactions with the surrounding traffic objects
and the ego-vehicle motion are utilized to enhance the dynamical representation of the
target pedestrian. Our model also considers the uncertainty of pedestrian future actions
and performs diverse predictions. We choose the most frequently appearing action
sequence as the final prediction result. The ego-vehicle will make reactive decisions
based on the predicted action sequence of the target pedestrian. Only standing and
going towards are involved in this figure and other action labels are not involved.

Many works [10,13,14,22] explored pedestrian crossing behaviors and
achieved significant improvement in the pedestrian behavior understanding. SF-
GRU [13] designed the stacked RNNs to gradually fuse multiple inputs to esti-
mate pedestrian intention. MMH-PAP [14] modeled the temporal dynamics of
different inputs and designed an attention module to calculate the weights of
each input to predict binary crossing action. Yao et al. [22] proposed an intention
estimation and action detection network. A soft-attention module is designed to
capture spatial interaction between different traffic objects. However, they not
only neglect the multi-modal nature of pedestrian future actions, but also ignore
the temporal continuity of relations between traffic objects.

Different from previous works, we take account into the inherent uncertainty
of pedestrian behaviors which is a critical cue for inferring future actions, as
shown in Fig. 1. Under the same history states, this uncertainty can cause diverse
and plausible futures. For example, when the pedestrian comes to the crossroad,
he may cross directly or wait for the red traffic light. Deterministic models are
not suitable for capturing a one-to-many mapping and producing probabilistic
inference. As a result, we propose Multi-Modal Conditional Generative Module
to learn multiple modes of pedestrian future actions. In this module, we introduce
multiple latent variables to model the multimodality of pedestrian future and
perform diverse action predictions.

Spatial-temporal interactions between traffic objects play a vital role in refin-
ing the scene information and enhancing the pedestrian representation. Pedes-
trians observe the current and past states of other traffic objects to perceive the
surrounding environment and make reasonable decisions. To enable the robot
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with the ability of perception, we propose Social Aware Encoder to extract
the pedestrian-specific contextual information. Spatial relations between traffic
objects and the temporal continuity of these relations should also be fully con-
sidered. In Social Aware Encoder, we construct a spatial-temporal heterogeneous
graph to model spatial-temporal interactions between the target pedestrian and
heterogeneous traffic objects.

The key contributions of our work are threefold:

• We highlight a new direction in pedestrian behavior understanding, namely
the multi-modal pedestrian action prediction. Multi-Modal Conditional Gen-
erative Module is proposed to capture the multimodality of pedestrian future
actions.

• Our proposed Social Aware Encoder can jointly model spatial-temporal con-
textual interactions and augment the target pedestrian representation.

• To aggregate the above modules, we propose a social aware multi-modal
pedestrian behavior prediction network. Experiment results on the PIE
dataset and JAAD dataset show that our network achieves state-of-the-art
performance on the action detection and action prediction task. On the inten-
tion estimation task, our model improve by 1.1%–5.7% based on different
metrics.

2 Related Work

2.1 Pedestrian Intention Estimation

Pedestrian intention estimation plays a critical role in helping the autonomous
system perform safer decisions and construct a safe urban traffic environment.
Previous works [4,8,20,24] took the destination of the trajectory as pedestrian
intentions and lacked a deeper semantic interpretation of pedestrian intentions.
PIE [10] extracted pedestrian intention from RGB images, captured tempo-
ral dynamics of intention features, and utilized intentions to guide pedestrian
motion prediction. ST-DenseNet [17] proposed a real-time network that incor-
porates pedestrian detection, tracking, and intention estimation. They utilized
YOLOv3 [15] to detect pedestrians, used SORT [21] algorithm to track them,
and designed a spatial-temporal DenseNet [5] to estimate their intentions. SF-
GRU [13] collected visual inputs from pedestrians and their surrounding scenes.
Then they gradually concatenated inputs and fused them into the stacked RNNs.
Kotseruba et al. [6] analyzed the influence of the pedestrian self and the envi-
ronment on intentions. They evaluate the impact of the gaze, location, orien-
tation, and interaction of pedestrians. And locations of designated crosswalks
and curbs in the environment are also utilized to estimate pedestrian intention.
They combined the influences of these factors and used a logistic regression clas-
sifier to infer pedestrian intentions. FuSSI-Net [9] utilized the pose estimation
network to obtain human joint coordinates and designed different strategies to
fuse human joint features and visual features. Liu et al. [7] estimated intention
from the pedestrian-centric and location-centric perspectives. They constructed
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a pedestrian-centric graph based on pedestrian position relation and appearance
relation. Then the pedestrian-centric graph is modified to the location-centric
graph to predict whether there are pedestrians crossing in front of the ego-vehicle.

Considering that intentions are forward-looking, intentions will eventually
be reflected in actions. They ignored the interaction between intentions and
actions. Our network produces the multi-modal future action sequences under
the direction of intentions which fully account for relations between pedestrian
intentions and actions.

2.2 Pedestrian Behavior Prediction

In the human-robot interactive scene, uncertainties of pedestrian behaviors are
an important challenge for autonomous systems. Pedestrian behavior under-
standing can provide a reasonable inference of pedestrian behaviors which is
beneficial for robot navigation.

MMH-PAP [14] utilized LSTM to integrate temporal dynamics of visual fea-
tures and position features and applied an attention mechanism to generate
weighted representations of each input. Graph-SIM [23] proposed a pedestrian
action prediction network based on graph neural networks. Given their loca-
tions and speeds, they clustered road users and assigned importance weights
to relations with the target pedestrian. CIR-Net [2] paid particular attention
to the relation between pedestrian actions and trajectories. To couple actions
and trajectories, they aligned changes in trajectories with changes in actions.
The multi-task network proposed by [22] can estimate pedestrian intention and
detect crossing action simultaneously. They utilized the soft attention network
[3] to model spatial relations between the target pedestrian and other road com-
ponents. Previous works ignored the inherent multimodality of pedestrian future
actions and their deterministic models are not suitable for modeling a distribu-
tion over diverse futures. We take consideration into the uncertainty of pedes-
trian futures and design Multi-Modal Conditional Generative Module to produce
diverse and plausible future action sequences.

3 Method

Our goal is to produce diverse and plausible action predictions of the target
pedestrian P . At time t, we summarize P ’s current state st and history states
st−1, ..., st−H for H history time steps as input Xt = s(t−H:t). There is also
additional surrounding information St of P , including the position and type of
other traffic objects, and the ego-vehicle’s motion to which autonomous systems
have access. Given Xt and St, we aim to predict the target pedestrian’s actions
Yt = ̂A(t+1:t+F ) for the future F time steps, which is referred to P (Yt|Xt, St).
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Fig. 2. Overview of our social-aware multi-modal pedestrian behavior prediction net-
work. Our proposed network contains 3 parts, namely Social Aware Encoder, Multi-
Modal Conditional Generative Module, and Intention Directed Decoder. Social Aware
Encoder is composed of four modules: Pedestrian Dynamics Encoding Module (green),
Spatial-Temporal Heterogeneous Graph Module (blue), Ego-Vehicle Dynamics Encod-
ing Module (yellow), and Pedestrian Future Fusion Module (brown).

⊕
denotes the

concatenation operation. (Color figure online)

3.1 Social Aware Encoder

Considering the target pedestrian and the surrounding environment, we proposed
Social Aware Encoder which is composed of four modules in parallel, including
Pedestrian Dynamics Encoding, Spatial-Temporal Heterogeneous Graph, Ego-
vehicle Dynamics Encoding, and Pedestrian Future Fusion, as shown in Fig. 2.
We explore the temporal dynamics of the target pedestrian P to enhance the indi-
vidual representation XP in the Pedestrian Dynamics Encoding (PDE). Simulta-
neously, Spatial-Temporal Heterogeneous Graph (STHG) models pairwise rela-
tion between P with heterogeneous traffic objects to obtain context encoded fea-
ture XC . Meanwhile, Ego-Vehicle Dynamics Encoding (EVDE) considers deci-
sion making of autonomous systems and models the temporal dependency XE

of the ego-vehicle’s motion. We aggregate future features of P to capture rich
latent information XF from the future in the Pedestrian Future Fusion (PFF).
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We concatenate XP ,XC ,XE and XF and apply a fully-connected layer to obtain
the social-aware feature XS . Finally, an action classifier and an intent classifier
are applied on XS to estimate the current intention ̂It and the current action
̂At, respectively.

Pedestrian Dynamics Encoding (PDE). This module models temporal
dynamics of the current and history states of the target pedestrian. We note
that the current state lacks temporal context, so we merge the information of
the history states in the temporal domain. The states s(t−H:t) contain position
features pos(t−H:t) and visual features v(t−H:t). Position features are the embed-
ded bounding box of the target pedestrian through a fully-connected layer. Visual
features are captured by pretrained CNN backbone network [18] on the cropped
image patch which includes the pedestrian and the surrounding environment.
These two features have different semantic attributes, so we model their tempo-
ral dynamics separately. We input these feature sequences into the corresponding
GRU network to enrich them with temporal dynamical evolution clues. Outputs
of two GRU networks are concatenated to obtain the Pedestrian Dynamical
Feature XP which aggregates temporal dynamics from multiple inputs.

Spatial-Temporal Heterogeneous Graph (STHG). We propose the
Spatial-Temporal Heterogeneous Graph to capture other traffic objects’ influ-
ence on the target pedestrian. There are various types of traffic objects, so their
inherent heterogeneity can not be ignored. For example, traffic objects of the
same type have the same semantic attributes and relations with the target per-
son. Hence, we regard traffic objects in the traffic scenario as a heterogeneous
multi-instance system. Taking account into the inherent heterogeneity of traffic
objects, all traffic objects of the same type are aggregated in the local graph to
capture intra-type interaction. Then we model the high-order relation between
the target pedestrian and traffic objects of the same type in the global graph.

We construct a local graph Gc = (Vc, Ec) for each type c ∈ C, where the type
set C includes 5 types, namely traffic neighbors (pedestrians, cyclists, vehicles,
etc.), traffic signs, traffic lights, stations, and crosswalks. Vc = {v1, v2, ..., vNc

}
contains traffic objects of type c at the same time step. vi = {xtl, ytl, xbr, ybr, c}
represents the bounding box coordinates and the type of vi. In the edge set Ec,
we allow traffic objects belonging to the same type to connect with each other.
We propose an information propagation mechanism on the local graph Gc to
aggregate contextual information from the neighbor objects:

v(l)
c = Avgpool

(

φc(v
(l)
1 ), . . . , φc(v

(l)
Nc

)
)

(1)

v
(l+1)
i = concat

(

φc(v
(l)
i ), v(l)

c

)

(2)

where v
(l)
i is the feature of object i in the l-th layer of the local graph, v

(l)
c is

the spatial interaction feature of the type c, and v
(0)
i is the initial feature vi.
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φc is the fully connected layer and embeds the object feature of type c into the
high-dimensional spaces. Average pooling is utilized to propagate spatial context
information from neighbor objects. We stack multiple layers of the local graph
Gc to fuse features of different objects in the different layers.

In the global graph, we integrate the interaction between the target pedes-
trian and traffic objects of type c into the global feature Xc. We note that the
attention mechanism can assign an adaptive weight to each object and under-
stand underlying relations better. Hence, we utilize the attention mechanism to
calculate traffic objects’ weights of type c based on relations with target pedes-
trian:

Ai =
exp(θp(vP )T θq(vi)/

√
dθ)

∑Nc

j=1 exp(θp(vP )T θq(vj)/
√

dθ)
(3)

Xc =
Nc
∑

i=1

Ai · vi (4)

where vi ∈ Vc, vP is the target pedestrian feature, and θp and θq embed them
into the dθ-dimension space.

Previous works considered only spatial interaction [22]. Different from them,
we capture the spatial-temporal dynamics integrally to build the bridge between
the spatial and temporal context. We utilize GRU to aggregate contextual infor-
mation of Xc in the temporal domain to obtain the final context encoded feature.

XC = concat ({GRUc(Xc), c ∈ C}) (5)

Finally, we obtain the Context Encoded Feature XC which aggregates spatial-
temporal dependency of relations between the target pedestrian and heteroge-
neous traffic objects.

Ego-Vehicle Dynamics Encoding (EVDE). Interactions between pedes-
trians and the ego-vehicle contain important latent information. For example,
when observing the crossing action of the pedestrian in front of the ego-vehicle,
the controller will slow down or make way accordingly. Similarly, the pedestrian
observes the motion tendency of the ego-vehicle and then may wait for the ego-
vehicle to pass. As a result, we take into account ego-vehicle future motion plans
and infer the pedestrian intention and action from them. We consider that the
attribute of ego-vehicle motion is different from other road users, so this module
utilizes a separate bi-directional GRU to encode the ego-vehicle future motions
ME(t+1:t+F ), including speed, acceleration, yaw rate, and yaw acceleration. We
refer to the output of the GRU as Ego-vehicle Dynamical Feature XE which
integrates the bi-directional long-term dependency of the future motion plan.



282 X. Zhai et al.

Pedestrian Future Fusion (PFF). Considering that future actions can reflect
pedestrian intentions, we collect future features of the target pedestrian, namely
hidden states h of GRU cells in the Intention-Directed Decoder for the future
F time steps. Future features for the future F time steps are denoted as HF =
h(t+1:t+F ). We apply a bi-directional GRU to model the temporal dynamics of
the target pedestrian’s future features. In a bi-directional GRU, information
flows in forward and backward two directions, so bi-directional information can
be integrated. We obtain the last hidden state of the GRU and refer to it as
Pedestrian Future Features XF .

3.2 Multi-modal Conditional Generating Module

There are multiple uncertainties in action prediction since the prediction is inher-
ently probabilistic. For example, when the pedestrian faces the crosswalk, the
pedestrian may cross the road, wait for a red light or wait for other vehicles
to pass. Hence, under the same situation, there will be diverse future scenarios
where each one contains a reasonable explanation. A deterministic function that
projects one input to one output may not have the adequate capacity to repre-
sent the diverse latent space. To learn a one-to-many mapping, we adopt a deep
conditional generative model, conditional variational auto-encoder [19].

This module contains the prior network Pν(z|Xt), and the recognition net-
work Qφ(z|Xt, Yt). φ, ν refer to the weights of corresponding networks. The
latent variables z play a critical role in modeling the inherent multimodality
of the pedestrian future. In the training stage, we utilize a bi-directional GRU
to encode the ground truth future actions A(t+1:t+F ) obtaining Yt. Qφ(z|Xt, Yt)
takes Xt and Yt as inputs to predict the mean μq

z and covariance σq
z and then

sample the latent variable zq from N(μq
z, σ

q
z). The goal of Qφ is to learn a dis-

tribution from observations and ground truth to the latent variable zq. With no
prior knowledge of ground truth future actions, Pν(z|Xt) predicts the mean μp

z

and covariance σp
z based on observations. Similarly, the latent variable zp is sam-

pled from the distribution N(μp
z, σ

p
z). We optimize Kullback-Leibler divergence

between N(μq
z, σ

q
z) and N(μp

z, σ
p
z) to make zp produced by prior network learn

the distribution modeled by recognition network. During the training stage, the
latent variables z are sampled from the recognition network and then concate-
nated with XS from the encoder. In the testing stage, we sample z from the
prior network because we can not get access to ground truth future actions.

3.3 Intention-Directed Decoder

The intention is prospective and action can be described as following along
line to attain a certain intention. Under the guidance of intentions, generation
network Pθ(Yt|Xt, ̂It, z) is utilized to model the diversity of future actions. Mul-
tiple latent variables z are used to generate future actions with multiple modes.
And pedestrian intention ̂It provides a direction for the development of future
actions. Considering that future actions can be regarded as a temporal sequence,
we adopt GRU cells to construct the Intention-Directed Decoder. The input of
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the decoder is the concatenation of estimated intention ̂It and the predicted
action at the last prediction time step. Under the guidance of pedestrian inten-
tion, the decoder iteratively predicts future actions. And we collect the hidden
states h(t+1:t+F ) of the GRU cell and pass them to Social Aware Encoder to
extract important information in the future.

3.4 Multi-task Loss

The loss function of our model contains Kullback-Leibler divergence (KLD)
between Qφ and Pν , binary cross entropy loss LI for intention estimation at
time step t, cross entropy loss LA for action detection at time step t and action
prediction for future time steps from t + 1 to t + F :

L =
T

∑

t=1

(λ1KLD(Qφ(z|X,Y ), Pν(z|X)) + λ2LI(̂It, It)

+λ3LA( ̂At, At) + λ4LA( ̂A(t+1:t+F ), A(t+1:t+F )))

(6)

where T is the total sample length, ̂I and ̂A are the predicted value of intention
and action, and I and A are the ground truth of intention and action. λ1, λ2, λ3,
and λ4 are utilized to balance multiple tasks.

4 Experiments

We conduct experiments on the PIE and JAAD datasets under the original
data setting and the ‘time to event’ setting to verify the effectiveness of our
pedestrian behavior prediction model. Firstly, we introduce experiment settings,
including datasets, implementation details, data sampling strategies, and eval-
uation metrics. Secondly, we perform quantitative experiments to compare our
model with the state-of-the-art methods and then demonstrate the effective-
ness of our proposed modules through the ablation study. Finally, we present
qualitative experiments to visualize the efficiency of our proposed modules.

4.1 Experiment Settings

Datasets. There are two publicly available naturalistic pedestrian behavior
datasets, namely Pedestrian Intention Estimation (PIE) [10] and Joint Attention
in Autonomous Dataset (JAAD) [11,12].

PIE contains 6 h of driving videos under the first-person perspective which
are shot by a monocular dashboard camera. The dataset provides annotations
of 1842 pedestrians and traffic objects appearing at the same time. Pedestrian
annotations contain the bounding box coordinates, intentions, and actions. Traf-
fic objects consist of cyclists, vehicles, signs, traffic lights, crosswalks, and sta-
tions. Annotations of traffic objects contain the bounding box and the type.
In addition, the ego-vehicle motion is also captured by the onboard diagnostics
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sensor. We follow [22] to split 1842 pedestrians into 880 for training, 243 for
validation, and 719 for testing.

JAAD provides 300 video clips of 686 pedestrians which range from 5 to
15 s. The dataset also collects the video from the first-person perspective. There
are annotations of pedestrians, including the bounding box, intention, and action
labels. In addition, the dataset provides contextual tags which contain the traffic
light state and the sign type. The ego-vehicle motion state is also accessible. We
follow [22] to split 686 pedestrians into 188 for training, 32 for validation, and
126 for testing.

Implementation Details. The image patches in the input contain the pedes-
trian and the surrounding environment. We follow [10] to expand the bounding
box to twice its original size and crop the image based on the enlarged bounding
box. The VGG-16 [18] pretrained on ImageNet [16] is used as the backbone net-
work to extract the feature map of the image patch. In Multi-Modal Conditional
Generative Module, we sample K = 20 latent variables z in the prior network
and recognition network. Inspired by [22], we expand 2 action labels (walking
and standing) to 7 semantic action labels (standing, waiting, going towards the
crossing point, crossing, crossed and standing, crossed and waiting, and other
walking). And the pedestrian intention consists of two binary labels, namely
crossing and not-crossing. At each frame, we detect the intention and action of
the current frame and predict actions for the future F = 5 frames. To balance
the loss of multiple tasks, we set λ1, λ2, λ3, and λ4 as 1. To train our model, we
set the batch size as 64, learning rate as 10−5, and adopt RMSprop optimizer
with α = 0.9, ε = 10−7. In the testing stage, we consider the inconsistent length
of trajectories, so we input one trajectory at each testing time. We take the
future action sequence which appears most in K predicted sequences as the final
prediction result. We collect action prediction results at each time step of the
trajectory to calculate mAP of action prediction.

Data Sampling Strategy. We adopt two data sampling strategies that pre-
vious works widely used, and we list the results under the two strategies: (1)
the PIE strategy: all of the original data was utilized in the PIE [10]. In the
training stage, we sample the trajectories which are truncated to the length T
to make batch training feasible, where we set T as 15 and 30. (2) the time to
event (TTE) strategy: During training, we follow [13,14] to sample trajectories
with 1–2 s before the crossing event.

Evaluation Metrics. Pedestrian actions contain multiple labels, so we uti-
lize mAP to evaluate the results of action prediction and detection. Pedestrian
intention estimation is a binary classification problem, so we adopt accuracy, F1
score, precision, and area under curve (AUC) as evaluation metrics.
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Table 1. Results of pedestrian action detection and prediction are compared with state-
of-the-art methods on the PIE dataset using the PIE sampling strategy. ‘*’ indicates
the result produced by the re-implemented model. ‘Det’ represents pedestrian action
detection and ‘Pred’ represents pedestrian action prediction.

Method T = 15 T = 30
mAP(Det) mAP(Pred) mAP(Det) mAP(Pred)

Yao et al. [22] 0.23* 0.22* 0.24 0.23*
Ours 0.29 0.25 0.29 0.26

Table 2. Results of pedestrian intention estimation are compared with state-of-the-
art methods. ‘PIE(PIE)’, ‘PIE(TTE)’, ‘JAAD(TTE)’ in the first row indicate tested
on the PIE dataset using the PIE sampling strategy, on the PIE dataset using the
time to event (TTE) sampling strategy, on the JAAD dataset using the TTE sampling
strategy, respectively.

Method PIE(PIE) PIE(TTE) JAAD(TTE)
Acc F1 Prec AUC Acc F1 Prec AUC Acc F1 Prec AUC

I3D [1] – – – – 0.63 0.42 0.37 0.58 0.79 0.49 0.42 0.71
PIE [10] 0.79 0.87 0.86 0.73 – – – – – – – –
SF-GRU [13] – – – – 0.87 0.78 0.74 0.85 0.83 0.59 0.50 0.79
MMH-PAP [14] – – – – 0.89 0.81 0.77 0.88 0.84 0.62 0.54 0.8
Yao et al. [22] 0.82 0.88 0.94 0.83 0.84 0.90 0.96 0.88 0.87 0.70 0.66 0.92
Ours 0.85 0.91 0.92 0.87 0.85 0.91 0.93 0.89 0.88 0.74 0.67 0.91

4.2 Performance Evaluation and Analysis

Quantitative Results on Pedestrian Action Detection and Prediction.
To verify the effectiveness of our model on the pedestrian action detection and
prediction tasks, we compare our model with state-of-art models on the PIE
dataset using the PIE sampling strategy in Table 1. Our model surpasses the
previous works by a good margin on pedestrian action detection and prediction
under T = 15 and T = 30 sampling length. Compared with [22], our model cap-
tures the spatial-temporal interaction between the target pedestrian with other
traffic objects. The uncertainty of action prediction is also modeled in Con-
ditional Multi-Modal Generating Model to sample multi-modal future action
sequences. It is clear that our model incorporates the social aware context and
the multimodality of pedestrian futures, which significantly improves the effec-
tiveness of the pedestrian detection and prediction task.

Quantitative Results on Pedestrian Intention Estimation. In Table 2, we
also conduct pedestrian intention estimation experiments on the PIE and JAAD
datasets adopting different sampling strategies. On the PIE dataset under the
PIE sampling strategy, our model surpasses the state-of-the-art method [22]
and achieves the best 0.85 accuracy, 0.91 F1 score, and 0.87 AUC. F1 score
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Table 3. Ablation study of Spatial-Temporal Heterogeneous Graph module on the
PIE dataset using the PIE sampling strategy and sampling length T = 30. The third
row shows the result without traffic objects, namely removing the STHG module in
our model. Row 4–8 show the effect of using one type of traffic object alone. The last
row is the result with all traffic object types.

Traffic objects Action Intention
Traffic
neighbor

Crosswalk Traffic light Traffic sign Station mAP(Det) mAP(Pred) Acc F1 Prec AUC

– – – – – 0.24 0.17 0.78 0.87 0.86 0.72
� – – – – 0.25 0.21 0.80 0.88 0.88 0.75
– � – – – 0.26 0.21 0.83 0.89 0.89 0.82
– – � – – 0.27 0.22 0.84 0.90 0.90 0.82
– – – � – 0.25 0.21 0.81 0.88 0.88 0.76
– – – – � 0.26 0.21 0.81 0.88 0.88 0.77
� � � � � 0.29 0.26 0.85 0.91 0.92 0.87

Table 4. Ablation study of the local graph in Saptial-Temporal Heterogeneous Graph
on the PIE dataset using the PIE sampling strategy and sampling length T = 30.

Layers of local graphs mAP(Det) mAP(Pred) Acc F1 Prec AUC

L = 1 0.27 0.23 0.84 0.90 0.91 0.86
L = 2 0.28 0.24 0.85 0.91 0.91 0.87
L = 3 0.29 0.26 0.85 0.91 0.92 0.87
L = 4 0.28 0.24 0.85 0.90 0.92 0.86

and AUC metrics are also increased by our model on the PIE dataset using
the TTE strategy. On the JAAD dataset with the TTE sampling strategy, our
model outperforms previous methods by 1.1% to 5.7% on the multiple metrics.
Experiment results on intention estimation demonstrate the effectiveness of our
multi-task model.

Ablation Study on Spatial-Temporal Heterogeneous Graph. To explore
the impact of traffic objects belonging to different types, we conduct the abla-
tion study on the STHG module. Results in Table 3 show that adding any type
of traffic object enhances the effectiveness of the STHG module. Among them,
crosswalks and traffic lights both make a significant performance boost. We con-
sider that the crosswalk determines where pedestrians will cross, and the traffic
light determines when pedestrians can cross the road. Results also demonstrate
that our model can mimic human perception to observe the surrounding envi-
ronment and extract useful information. In addition, we investigate the impact
of different layers of the local graph in the STHG module in Table 4. As the
number of layers increases, the effectiveness on multiple metrics will improve.
And the performance achieves the best when the number of layers is three.
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Table 5. Ablation study on Multi-Modal Conditional Generative Module (MMCGM)
on the PIE dataset using PIE sampling strategy and sampling length T = 30.

MMCGM Action Intention
mAP(Det) mAP(Pred) Acc F1 Prec AUC

K = 1 0.28 0.24 0.85 0.91 0.91 0.87
K = 20 0.29 0.26 0.85 0.91 0.92 0.87

Ablation Study on Multi-modal Conditional Generating Module. As
shown in Table 5, we conduct the ablation study on Multi-Modal Conditional
Generating Module (MMCGM). The performance of the deterministic form
(K = 1) on the action prediction is degraded. We consider that the deterministic
form may not fully account for the inherent stochasticity of the future. We set
the number of samples K as 20 to evaluate the effectiveness of the multi-modal
action prediction. The result suggests that the multi-modal prediction makes
a performance improvement from 0.24 mAP to 0.26 mAP. The introduction of
multiple latent variables plays a critical role in approximating the one-to-many
distribution to model the diversity of future actions.

4.3 Qualitative Example

Figure 3 shows the visualization of the STHG module and the predicted multi-
modal action sequences. In the frame t − 2 ∼ t+ 2, the target pedestrian facing
the crosswalk intends to cross the road. Observing green traffic lights for vehi-
cles, he is waiting for crossing. At the time step t, STHG module pays attention
to the traffic lights and the crosswalk. In addition, traffic neighbors in the urban
scenario also deserve our attention. Traffic neighbor 1 and 2 waiting for cross-
ing are highlighted, since the pedestrian usually observes surrounding neighbor
pedestrians to infer the current scene information. STHG module also notes that
there are many passing vehicles, which suggests that pedestrians should wait for
vehicles to pass. At the bottom of the Fig. 3, we present multi-modal predictions
of future action sequences. At the time step t − 2, our model (K = 20) outper-
forms the deterministic form (K = 1). It is clear that our multi-modal model
considers the uncertainty of pedestrians and conducts probabilistic predictions.
In the probabilistic outputs, we take the future action sequence which appears
most as the final prediction result. The first action sequence appears 7 times and
is highly likely to happen. We consider that the multi-modal model which can
produce probabilistic inference is more preferable than the deterministic form
in some application scenarios. At the time step t, both the multi-modal and
deterministic model perform well, since the two models can capture the useful
spatial-temporal interactions and infer the correct future actions from them.
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Fig. 3. At the top of the figure, we present the visualization of attention matrices of
Spatial-Temporal Heterogeneous Graph Module at the t frame. The bottom of the
figure is the visualization of the deterministic output (K = 1) and the probabilistic
output (K = 20). Red bounding boxes indicate the correctly predicted action sequence.
‘Count’ represents the frequency the action sequence appeared. (Color figure online)

5 Conclusion

In this work, we propose a social aware multi-modal pedestrian behavior predic-
tion network. In the Social Aware Encoder, we capture the spatial-temporal inter-
action between the target pedestrian and heterogeneous traffic objects. Multi-
Modal Conditional Generative Module is designed to model the inherent uncer-
tainties of future action sequences. Experiments demonstrate that our model
outperforms previous methods on multiple tasks on the PIE and JAAD datasets
using multiple metrics. The comprehensive ablation study and visualization also
verify the effectiveness of our proposed modules.



Social Aware Multi-modal Pedestrian Crossing Behavior Prediction 289

References

1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the
kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6299–6308 (2017)

2. Chen, B., Li, D., He, Y.: Simultaneous prediction of pedestrian trajectory and
actions based on context information iterative reasoning. In: 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 1007–1014.
IEEE (2021)

3. Chen, L., et al.: SCA-CNN: spatial and channel-wise attention in convolutional net-
works for image captioning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5659–5667 (2017)

4. Gu, J., Sun, C., Zhao, H.: DenseTNT: end-to-end trajectory prediction from dense
goal sets. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 15303–15312 (2021)

5. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 2261–2269.
IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.243

6. Kotseruba, I., Rasouli, A., Tsotsos, J.K.: Do they want to cross? Understanding
pedestrian intention for behavior prediction. In: 2020 IEEE Intelligent Vehicles
Symposium (IV), pp. 1688–1693. IEEE (2020)

7. Liu, B., et al.: Spatiotemporal relationship reasoning for pedestrian intent predic-
tion. IEEE Robot. Autom. Lett. 5(2), 3485–3492 (2020)

8. Mangalam, K., et al.: It is not the journey but the destination: endpoint conditioned
trajectory prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.)
ECCV 2020. LNCS, vol. 12347, pp. 759–776. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58536-5_45

9. Piccoli, F., et al.: FuSSi-Net: fusion of spatio-temporal skeletons for intention pre-
diction network. In: 2020 54th Asilomar Conference on Signals, Systems, and Com-
puters, pp. 68–72. IEEE (2020)

10. Rasouli, A., Kotseruba, I., Kunic, T., Tsotsos, J.K.: PIE: a large-scale dataset and
models for pedestrian intention estimation and trajectory prediction. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 6262–
6271 (2019)

11. Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Are they going to cross? A benchmark
dataset and baseline for pedestrian crosswalk behavior. In: ICCVW, pp. 206–213
(2017)

12. Rasouli, A., Kotseruba, I., Tsotsos, J.K.: It’s not all about size: on the role of data
properties in pedestrian detection. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018.
LNCS, vol. 11129, pp. 210–225. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-11009-3_12

13. Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Pedestrian action anticipation using con-
textual feature fusion in stacked RNNs. arXiv preprint arXiv:2005.06582 (2020)

14. Rasouli, A., Yau, T., Rohani, M., Luo, J.: Multi-modal hybrid architecture for
pedestrian action prediction. In: 2022 IEEE Intelligent Vehicles Symposium (IV),
pp. 91–97. IEEE (2022)

15. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. CoRR
abs/1804.02767 (2018). http://arxiv.org/abs/1804.02767

https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1007/978-3-030-58536-5_45
https://doi.org/10.1007/978-3-030-58536-5_45
https://doi.org/10.1007/978-3-030-11009-3_12
https://doi.org/10.1007/978-3-030-11009-3_12
http://arxiv.org/abs/2005.06582
http://arxiv.org/abs/1804.02767


290 X. Zhai et al.

16. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

17. Saleh, K., Hossny, M., Nahavandi, S.: Real-time intent prediction of pedestrians for
autonomous ground vehicles via spatio-temporal DenseNet. In: 2019 International
Conference on Robotics and Automation (ICRA), pp. 9704–9710. IEEE (2019)

18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

19. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep
conditional generative models. In: Advances in Neural Information Processing Sys-
tems, vol. 28 (2015)

20. Wang, C., Wang, Y., Xu, M., Crandall, D.: Stepwise goal-driven networks for
trajectory prediction. IEEE Robot. Autom. Lett. 7(2), 2716–2723 (2022)

21. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep
association metric. In: 2017 IEEE International Conference on Image Processing,
ICIP 2017, Beijing, China, 17–20 September 2017, pp. 3645–3649. IEEE (2017).
https://doi.org/10.1109/ICIP.2017.8296962

22. Yao, Y., Atkins, E., Roberson, M.J., Vasudevan, R., Du, X.: Coupling intent and
action for pedestrian crossing behavior prediction. arXiv preprint arXiv:2105.04133
(2021)

23. Yau, T., Malekmohammadi, S., Rasouli, A., Lakner, P., Rohani, M., Luo, J.: Graph-
SIM: a graph-based spatiotemporal interaction modelling for pedestrian action
prediction. In: 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 8580–8586. IEEE (2021)

24. Zhao, H., et al.: TNT: target-driven trajectory prediction. arXiv preprint
arXiv:2008.08294 (2020)

https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ICIP.2017.8296962
http://arxiv.org/abs/2105.04133
http://arxiv.org/abs/2008.08294

	Social Aware Multi-modal Pedestrian Crossing Behavior Prediction*-12pt
	1 Introduction
	2 Related Work
	2.1 Pedestrian Intention Estimation
	2.2 Pedestrian Behavior Prediction

	3 Method
	3.1 Social Aware Encoder
	3.2 Multi-modal Conditional Generating Module
	3.3 Intention-Directed Decoder
	3.4 Multi-task Loss

	4 Experiments
	4.1 Experiment Settings
	4.2 Performance Evaluation and Analysis
	4.3 Qualitative Example

	5 Conclusion
	References




