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Abstract. We introduce Neural Puppeteer, an efficient neural rendering
pipeline for articulated shapes. By inverse rendering, we can predict 3D
keypoints from multi-view 2D silhouettes alone, without requiring tex-
ture information. Furthermore, we can easily predict 3D keypoints of the
same class of shapes with one and the same trained model and generalize
more easily from training with synthetic data which we demonstrate by
successfully applying zero-shot synthetic to real-world experiments. We
demonstrate the flexibility of our method by fitting models to synthetic
videos of different animals and a human, and achieve quantitative results
which outperform our baselines. Our method uses 3D keypoints in con-
junction with individual local feature vectors and a global latent code
to allow for an efficient representation of time-varying and articulated
shapes such as humans and animals. In contrast to previous work, we do
not perform reconstruction in the 3D domain, but project the 3D fea-
tures into 2D cameras and perform reconstruction of 2D RGB-D images
from these projected features, which is significantly faster than volumet-
ric rendering. Our synthetic dataset will be publicly available, to further
develop the evolving field of animal pose and shape reconstruction.

1 Introduction

Neural scene representations became an emerging trend in computer vision dur-
ing the last couple of years. They allow to represent scenes through neural net-
works which operate on 3D space, allowing for tasks like novel view synthesis of
static content, generalization over object and scene classes, body, hand and face
modelling and relighting and material editing. For a detailed overview please
refer to [53,56]. While most such methods rely on time and memory intensive
volumetric rendering, [50] proposes a method of rendering with a single net-
work evaluation per ray. In this paper we propose a single-evaluation rendering
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(a) Input View (b) Given Mask (c) Reconstruction (d) Novel view

Fig. 1. Zero-Shot Synthetic to Real Experiment: Giraffe. Reconstruction of a
giraffe in different poses. From left to right: input image, segmentation mask used as
input for keypoint estimation, estimated keypoints and shape, rendering from different
perspective (cf. supplementary for more real-world examples).

formulation based on keypoints in order to represent dynamically deforming
objects, like humans and animals. This allows us to render not only novel views
of a known shape but also new and unseen poses by adjusting the positions of
3D keypoints. We apply this flexible approach to prevalent tasks in computer
vision: the representation and reconstruction of pose for humans and animals.
More specifically, we propose a silhouette based 3D keypoint detector that is
based on inverse neural rendering. We decide to factor out appearance variation
for keypoint detection, in order to ease the bridging of domain gaps and handle
animals with few data available. Despite only relying on silhouettes, our pro-
posed approach shows promising results when compared to the state-of-the-art
3D keypoint detector [17]. Furthermore, our approach is capable of zero-shot
synthetic to real generalization, see Fig. 1.

Contributions. Our contribution is a flexible keypoint based neural scene rep-
resentation and neural rendering framework called Neural Puppeteer (NePu).

We demonstrate that NePu provides valuable gradients as a differential for-
ward map in an inverse rendering approach for 3D keypoint detection. Since we
formulate the inverse rendering exclusively on 2D silhouettes, the resulting 3D
keypoint detector is inherently robust with respect to transformations or domain
shifts. Note that common 3D keypoint estimators require a huge amount of train-
ing samples with different texture in order to predict keypoints of the same class
of shapes. Another advantage of being independent of texture is that it is easier
to generalize from training with synthetic data. This can be particularly useful
in cases where it is highly challenging to obtain a sufficient amount of real-world
annotations, such as for wild animals (cf. Fig. 1). For animal shapes, we outper-
form a state-of-the-art 3D multi-view keypoint estimator in terms of Mean Per
Joint Position Error (MPJPE) [17].

Unlike common practice, we shift rendering from the 3D to 2D domain,
requiring only a single neural network evaluation per ray. In this sense, our app-
roach can be interpreted as a locally conditioned version of Light Field Networks
(LFNs) [50]. Our formulation is capable of learning the inter-pose variations of a
single instance (constant shape and appearance) under constant lighting condi-
tions, similar to [52]. In contrast, LFNs learn a prior over inter-object variations.
We retain the rendering efficiency of LFNs and are capable of rendering color,
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depth and occupancy simultaneously at 20ms per 2562 image. This is signifi-
cantly faster than NeRF-like approaches such as [52], which typically achieve
less than 1 fps. Due to our fast renderer, fitting a target pose by inverse ren-
dering can be done at ∼1 fps using 8 cameras. Furthermore, we show that our
keypoint-based local conditioning significantly improves the neural rendering of
articulated objects, with visibly more details and quantitative improvements in
PSNR and MAE over LFNs.

Code and data sets [12] to reproduce the results in the paper are publicly
available at https://urs-waldmann.github.io/NePu/. We hope to inspire further
work on animal pose and shape reconstruction, where our synthetic dataset can
serve as a controlled environment for evaluation purposes and to experiment
with novel ideas.

2 Related Work

2.1 3D Keypoint Estimation

Human keypoint estimation is a vast field with many applications [2,6,55,57].
For further reading, we refer the reader to [9,19,25,54]. The current state-of-the-
art methods for 3D human keypoint estimation when trained on a single data set,
i.e. the famous Human3.6M data set [16], are [14,17,45] with an average MPJPE
of 18.7 mm, 20.8 mm and 26.9 mm respectively. At the time of writing, there
was no code available for [45]. That is why we choose LToHP [17] as a baseline to
quantitatively compare our model to. With the huge success of human keypoint
estimation, the prediction of 3D keypoints for animals became a sub-branch of
its own [3,13,20,21,34]. We notice that all these 3D frameworks for animals
exploit 2D keypoints with standard 3D reconstruction techniques. That is why
we also choose LToHP [17] as our baseline for animals, since it uses a learnable
approach for the 3D reconstruction part.

Please keep in mind that our pose estimation only relies on multi-view silhou-
ettes, while the above methods require RGB images. Using silhouettes gives more
robustness to changes in texture and lighting. The only other work we are aware
of that extracts keypoints from silhouettes is [5]. While [5] extracts 2D keypoints
from silhouettes for quadrupeds using a template mesh and a stacked hourglass
network [35], we are able to predict 3D coordinates for arbitrary shapes.

2.2 Morphable Models

The seminal morphable models for animals and humans are SMAL [65] and
SMPL [26] respectively. An extension of SMPL, called SMPL-X [41], includes
hands [46] and face [24]. These models have been used to estimate the 3D pose
and shape from a single image [4,47,62], from multiple unconstrained images
in the wild [49,64] or in an unsupervised manner from a sparse set of land-
marks [29]. Because creating these models is tedious, the authors of [63] present
an unsupervised disentanglement of pose and 3D mesh shape. Neural Body [43]

https://urs-waldmann.github.io/NePu/
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uses implicit neural representations where different sparse multi-view frames of
a video share the same set of latent codes anchored to the vertices of the SMPL
model. In this way the SMPL model provides a geometric prior for their model
with which they can reconstruct 3D geometry and appearance and synthesize
novel views.

While these representations are comparatively easy to handle, the need of
a parametric template mesh limits them to a pre-defined class of shapes. In
particular, models for quadrupeds can fit a large variety of relatively similar
animals like cats and horses, but run into problems if uncommon shapes are
present [65]. For example, the fitting of elephants or giraffes pose significant
problems due to their additional features (trunk) or different shapes (long neck).
Similar problems arise in case of humans and clothing, e.g. a free flowing coat.

On the contrary, [23,58] exploit implicit representations and reduce manual
intervention completely. They disentangled dynamic objects into a signed dis-
tance field defined in canonical space and a latent pose code represented by the
flow field from a canonical pose to a given shaped pose of the same identity.

2.3 Neural Fields

Neural fields are an emergent research area that has become a popular rep-
resentation for neural rendering [32,33,50,53,60], 3D reconstruction and scene
representation [31,38,51], geometry aware generative modelling [7,36,48] and
many more. For a detailed overview, we refer the reader to [56].

While these representations often rely on a global latent vector to represent
the information of interest [31,38,50,51], the importance of locally condition-
ing the neural field has been demonstrated in [8,11,33,36,44]. By relying on
local information drawn from geometrically aligned latent vectors, these meth-
ods often obtain higher quality reconstructions and generalize better due to their
translation equivariance.

Neural fields have an especially strong impact on neural rendering with the
formulation of radiance-based integration over rays introduced in NeRF [32].
While NeRF and many follow-ups [33,60] achieve high-quality renderings of sin-
gle scenes, [59] match their performance with relying on neural networks, imply-
ing that NeRF’s core competence are meaningful gradients for optimization. [52]
combines the well known NeRF pipeline [32] with a keypoint based skeleton. This
allows them to reconstruct articulate 3D representation of humans by represent-
ing the pose through the 3D positions of the keypoints. However, [52] optimizes
3D coordinates in the camera system obtained from fitting the SMPL model [26]
while we predict 3D world coordinates from multi-view silhouettes.

In contrast to the volumetric rendering of NeRF typically requiring hundreds
of evaluations of the neural network, LFN [50] propose an alternative by instantly
predicting a pixels color given the corresponding ray’s origin and direction. This
approach results in a much faster rendering compared to NeRF-like approaches.
In this work, we embrace the idea of single-evaluation rendering [50], and employ
ideas from [11] for an efficient representation and architecture. Our approach of
rendering is thus much faster than [52], allowing also for faster solutions to
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the inverse rendering problem of estimating keypoint locations from images.
Since [50] is the only other single-evaluation-rendering method we are aware of,
we quantitatively compare our method in Table 1 in terms of color and depth.

3 Neural Puppeteer

We will describe Neural Puppeteer in three parts. First, we discuss the encoding
of the pose and latent codes, as can be seen on the upper half of Fig. 2. Second,
we describe our keypoint-based neural rendering, as is depicted in the lower half
of the figure. Third and last, we discuss how our pipeline can be inverted to
perform keypoint estimation by fitting the pose generated from 3D keypoints to
input silhouette data.

3.1 3D Keypoint Encoding

Given 3D keypoint coordinates x ∈ R
K×3 of a subject with K keypoints, we aim

to learn an encoder network

enc : RK×3 → R
dz , x �→ z (1)

that encodes a pose x as a dz-dimensional global representation z, as well as to
learn a decoder network

dec : Rdz → R
K×3 × R

K×df , z �→ (x̂, f) (2)

that reconstructs the pose x̂ and obtains local features fk ∈ R
df for each key-

point. Subsequently, we use the representation (z, f) to locally condition our
neural rendering on the pose x, as explained in Sect. 3.2. Please note that we
do not require a skeleton model, i.e. connectivity between key points, since the
pose is only interpreted as a point cloud.

We build our encoder upon the vector self-attention

VSA : RK×3 × R
K×df → R

K×df , (x, f) �→ f ′ (3)

introduced in [61] as a means of a neural geometric point cloud operator. Con-
sequently, our encoder which consists of L layers produces features

f (l+1) = ETl(BNl(f (l) + VSAl(x, f (l)))), l ∈ {0, · · · , L − 1}, (4)

where BN denotes a BatchNorm layer [15] and ET denotes element-wise transfor-
mations containing a 2-layer MLP, residual connection and another BatchNorm.
Initial features f (0) ∈ R

K×df are learned as free parameters. The final global
representation z is obtained via dimension-wise global maxpooling,

z = max
k=1,...,K

f (L)
k . (5)

We decode the latent vector z using two 3-layer MLPs. Keypoints are recon-
structed using x̂ = MLPpos(z) and additionally features f̃ = MLPfeats(z) hold-
ing information for the subsequent rendering are extracted. Finally, these fea-
tures are refined to f using 3 further VSA layers, which completes the decoder
dec(z) = (x̂, f). For more architectural details we refer to the supplementary.
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Fig. 2. Neural Puppeteer: Our method takes 3D keypoints (top left) and learns
individual latent codes for each keypoint (top right). We project them into arbitrary
camera views and perform neural rendering to reconstruct 2D RGB-D images (bottom
right). The pipeline can be used to perform pose estimation by inverse rendering,
optimizing the 3D keypoint positions by performing gradient descent in the latent
code z ∈ R

dz . For rendering, we use only the closest keypoints, illustrated by the
yellow circle around the point in question (yellow dot). Connections between keypoints
are shown just for visualization and not used by the network. (Color figure online)

3.2 Keypoint-Based Neural Rendering

Contrary to many recent neural rendering approaches, we do not rely on costly
NeRF-style volumetric rendering [32]. Instead we adopt an approach similar to
LFN [50], that predicts a pixel color with a single neural network evaluation.

While LFN uses a global latent vector and the ray’s origin and orientation as
network inputs, we directly operate in pixel coordinates. Perspective information
is incorporated by projecting keypoints x and corresponding local features f into
pixel coordinates. More specifically, given camera extrinsics E and intrinsics K
and the resulting projection as πE,K we obtain 2D keypoints

x2D = πE,K(x). (6)

Additionally, we append the depth values d, such that the keypoint’s posi-
tions are x∗

2D = (x2D,d) ∈ R
K×3. Using this positional information we further
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refine the features in pixel coordinates using L = 3 layers of VSA. Specifically,
we define f (0)2D = f and

f (l+1)
2D = VSAl(x∗

2D, f (l)2D), l ∈ {0, 1, 2}. (7)

The resulting refined features f (L)
2D and coordinates x∗

2D are the basis for our
single-evaluation rendering, as described next.

Given a pixel coordinate q ∈ R
2, we follow [11] to interpolate meaningful

information from nearby features f (L)
2D and the global representation z. To be

more specific, the relevant information is

y = VCA((q, 0), z,x∗
2D, f (L)

2D ) ∈ R
df , (8)

where VCA denotes the vector cross-attention from [11] and we set the depth
for q to zero.

Finally, the predictions ĉ for color, d̂ for depth and ô for 2D occupancy values
are predicted using three feed-forward network heads

FFNcol : Rdf → [0, 1]3, FFNdep : Rdf → [0, 1], and FFNocc : Rdf → [0, 1], (9)

respectively, using the same architecture as in [44]. For convenience we define
the color rendering function

CE,K : RK×3 × R
K×df × R

dz → [0, 1]H×W×3, (10)

which renders an image seen with extrinsics E and intrinsics K conditioned on
keypoints x, encoded features f and global representation z, by executing FFNcol

for all pixels q. For the depth and silhouette modalities we similarly define DE,K

and SE,K, respectively. Note, that our silhouettes contain probabilities for a pixel
lying on the object.

3.3 Training

We consider a dataset consisting of M poses xm ∈ R
K×3 captured by C cameras

with extrinsics Ec and intrinsics Kc. For each view c and pose m we have 2D
observations

Im,c, Dm,c, Sm,c, m ∈ {1, . . . , M}, c ∈ {1, . . . , C}, (11)

corresponding to color, depth and silhouette, respectively.
All model parameters are trained jointly to minimize the composite loss

L = λposLpos + λcolLcol + λdepLdep + λsilLsil + λreg‖z‖2, (12)

where the different positive numbers λ are hyperparameters to balance the influ-
ence of the different losses. The keypoint reconstruction loss

Lpos =
M∑

m=1

‖xm − x̂m‖2 (13)
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minimizes the mean Euclidean distance between the ground truth and recon-
structed keypoint positions. The color rendering loss

Lcol =
M∑

m=1

C∑

c=1

‖CEc,Kc
(xm, fm, zm) − Im,c‖22 (14)

is the squared pixel-wise difference over all color channels, the depth loss Ldep

is given by a structurally identical formula. Finally, the silhouette loss

Lsil =
M∑

m=1

C∑

c=1

BCE (SEc,Kc
(xm, fm, zm),Sm,c) (15)

measures the binary cross entropy BCE(ô, o) = −[o · log(ô) + (1 − o) · log(1 − ô)]
over all pixels. Hence the silhouette renderer is trained to classify pixels into
inside and outside points, similar to [31].

3.4 Pose Reconstruction and Tracking

While the proposed model learns a prior over poses along with their appearance
and geometry and thus can be used to render from 3D keypoints, we can also
infer 3D keypoints by solving an inverse problem, using NePu as a differentiable
forward map from keypoints to images. We are especially interested in silhouette-
based inverse rendering, in order to obtain robustness against transformations
that leave silhouettes unchanged.

Given observed silhouettes Sc, extrinsics Ec and intrinsics Kc for cameras
c ∈ {1, . . . , C}, we optimize for

ẑ = argmin
z

∑

c=1,...,C

BCE (SEc,Kc
(dec(z), z),Sc) + λ‖z‖2. (16)

Following [41], we use the PyTorch [39] implementation of the limited-memory
BFGS (L-BFGS) [37] to solve the optimization problem. Once ẑ has been
obtained, we recover the corresponding pose as x̂ = MLPpos(ẑ).

Since the above mentioned optimization problem does not assume any prior
knowledge about the pose, the choice of an initial value is critical. For initial
values too far from the ground truth pose, we observe an unstable optimiza-
tion behavior that frequently diverges or gets stuck in local minima. To over-
come this obstacle, we run the optimization with I different starting condi-
tions z(1), . . . , z(I), which we obtain by clustering the 2-dimensional t-SNE [28]
embedding of the global latent vectors over the training set using affinity propa-
gation [10]. We obtain different solutions ẑi from minimization of Eq. (16), and
as the final optimum choose the one with best IoU to the target silhouettes,

ẑ = argmax
ẑi

∑

c=1,...,C

IoU (SEc,Kc
(dec(ẑi), ẑi),Sc) . (17)

While such a procedure carries a significant overhead, the workload is amor-
tized in a tracking scenario. When provided with a sequence of silhouettes
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Table 1. Quantitative results of the rendering on the test sets. Comparison of the color
PSNR [db] between the reconstructed RGB images and mean absolut error (MAE)
[mm] for the reconstructed depth by LFN* and NePu. The local conditioning signifi-
cantly improves reconstruction accuracy. See text for a discussion of the results.

Color PSNR [dB] Depth MAE [mm]

LFN* NePu Δ

Sy. Cow 14.95 19.17 +4.22

Sy. Giraffe 15.99 21.23 +5.24

Sy. Pigeon 21.47 28.03 +6.56

Sy. Human 20.23 27.49 +7.26

Average 18.16 23.98 +5.82

LFN* NePu Δ

43.4 22.3 −21.1

92.1 35.4 −56.7

6.9 2.5 −4.4

77.8 20.9 −56.9

55.1 20.3 −34.8

Sc,1, . . . ,Sc,T , c ∈ {1, . . . , C} of T frames, we use the above method to determine
ẑ1. For subsequent frames we initialize ẑt+1 = ẑt and fine-tune by minimizing
Eq. (16) using a few steps of gradient descent. Our unoptimized implementation
of the tracking approach runs at roughly 1 s per frame using 8 cameras.

4 Experiments

In this section, we evaluate different aspects of our method. To evaluate pose
estimation on previously unseen data, we compare our method to the state-of-
the-art multi-view keypoint detector [17], which we train for each individual
subjects using the same dataset as for NePu.

The fundamental claims of our methodology are shown by rendering novel
views and poses, quantitatively evaluating color and depth estimates and com-
paring against a version of our framework that utilizes the LFN [50] formulation
for neural rendering. For visual evidence that our method produces temporally
consistent views and additional qualitative results we refer to videos and exper-
iments in our supplemental material. In addition we compare NePu to AniN-
eRF [42] on Human3.6M [16].

4.1 Datasets

Our method can be trained for any kind of shape data that can be described by
keypoints or skeletons. Connectivity between the keypoints neither needs to be
known, nor do we make use of it in any form. We perform a thorough evaluation
of our method on multiple datasets, for two types of shapes where a keypoint
description often plays a major role: humans and animals.

For the human data we use the SMPL-X Blender add-on [41]. Here, we
evaluate both on individual poses and captured motion sequences. The poses
were obtained through the AGORA dataset [40], the animations through the
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Fig. 3. Novel view synthesis for novel poses. Our method is capable of generating
realistic renderings of the captured subject. In this figure, we show novel poses from
new perspectives. See text for a discussion of the results.

AMASS dataset, and originally captured by ACCAD and BMLmovi [1,22,30].
We describe the human pose by 33 keypoints, see additional material for details.

For the training of animal data we use hand-crafted animated 3D models
from different sources. To capture a variety of different animal shapes, we ren-
der datasets with a cow, a giraffe, and a pigeon. In particular the giraffe is
a challenging animal for template mesh based methods, as the neck is much
longer compared to most other quadrupeds. For each animal we created ani-
mations which include idle movement (e.g. looking around), walking, trotting,
running, cleaning, and eating and render between 910 and 1900 timesteps. We
use between 19 and 26 keypoints to describe the poses.

The keypoints for all shapes were created by tracking individual vertices. As
keypoints in the interior of the shape are typically preferred, we average the
position of two vertices on opposing sides of the body part. All datasets were
rendered using Blender (www.blender.org) and include multi-view data of 24
cameras placed on three rings at different heights around the object. For each
view and time step we generate ground truth RGB-D data as well as silhouettes
of the main object. The camera parameters, and 3D and 2D keypoints for each
view and timestep are also included.

4.2 Implementation Details

We implement all our models in PyTorch [39] and train using the AdamW opti-
mizer [27] with a weight decay of 0.005 and a batch size of 64 for a total of 2000
epochs. We set the initial learning rate to 5e−4, which is decayed with a factor
of 0.2 every 500 epochs. We weight the training loss in Eq. (12) with λpos = 2,

www.blender.org
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Fig. 4. 3D point cloud reconstruction. The 2D depth estimations from our method
can be used to perform 3D reconstruction of the captured shape. The raw 3D point
clouds generated by projecting the estimates from all cameras into the common ref-
erence frame already yield a good representation. The outliers originate from depth
estimates at occlusion boundaries as the L2 loss encourages smoothed depth maps and
could be easily removed by filtering the point cloud.

λcol = λdep = 1, λsil = 3 and λreg = 1/16. Other hyperparameters and architec-
tural details are presented in the supplementary.

Instead of rendering complete images during training to compute Lcol, Ldep

and Lsil, we only render a randomly sampled subset of pixels. Both for color and
depth we sample uniformly from all pixels in the ground truth mask. Hence the
color and depth rendering is unconstrained outside of the silhouette. To com-
pute Lsil we sample areas near the boundary of the silhouette more thoroughly,
similar to [8].

4.3 Baselines

We use different baselines: LToHP [17] for our pose estimation and tracking
approach and [50] for our keypoint-based locally conditioned rendering results.
In addition we compare NePu to AniNeRF [42] on Human3.6M [16].

LToHP. LToHP [17] presents two solutions for multi-view 3D human pose esti-
mation; an algebraic and volumetric one. For details see our supplementary
and [17]. We use their implementation from [18] with their provided configu-
ration file for hyperparameters. In order to obtain the quantitative results in
Table 2, we individually fine-tune [17] on every animal, using the same data that
we trained NePu on. In animal pose estimation it is common practice to fine-tune
a network that was pretrained, as in state of the art animal pose estimators like
DeepLabCut [34], due to a lack of animal pose data. For all models, including
our models, we select the epoch with minimum validation error for test.

LFNs. For the comparison to [50], we integrate their rendering formulation
in our framework, resulting in two differences. First, their rendering operates in
Plücker coordinates instead of pixel values. Second, and more importantly, we do
not use local features f for conditioning in this baseline, but global conditioning
via concatenation using z. In the following, we denote this model by LFN∗.

AniNeRF. We trained NePu using the same training regime as AniNeRF [42]:
We only trained on a single subject, using every 5th of the first 1300 frames of
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Table 2. Quantitative results for 3D keypoint estimation on the test sets. Comparison
to LToHP [17]. Values are given in MPJPE [mm] and its median of all samples [mm].
Delta shows difference to [17]. alg., vol. and vol.gt indicate that [17] is trained with its
algebraic model, volumetric model with root joint from alg. results and from ground
truth respectively.

MPJPE [mm] Median [mm]

LToHP [17] NePu Δ

Sy. Cow 124 (vol.) 15 −109

Sy. Giraffe 190 (vol.gt) 67 −123

Sy. Pigeon 10.3 (alg.) 1.3 −9.0

Sy. Human 28 (alg.) 46 +18

Average 88 32 −56

LToHP [17] NePu Δ

110 (vol.) 9 −101

154 (vol.gt) 31 −123

6.2 (alg.) 1.1 −5.1

22 (alg.) 28 +6

73 17 −56

sequence “Posing” of subject “S9” for training and every 5th of the following 665
frames for testing. Like AniNeRF, we also only used cameras 0–2 for training
and camera 3 for testing.

4.4 3D Keypoint and Pose Estimation

Quantitative results for the 3D keypoint estimation are shown in Table 2. We
report the MPJPE in mm and its median [mm] over all test samples. For
LToHP [17] we evaluate both the algebraic and volumetric model and report
the better result. In addition we report the average of MPJPE and median over
all objects. We achieve a better average MPJPE and median (32 mm and 17
mm respectively) over all objects than LToHP (88 mm and 73 mm respectively).
Note, however, that [17] achieves better results for humans only. We hypothesize
two reasons for that. First, the human-specific pre-training of LToHP transfers
well to the human data we evaluate on. Secondly, the extremities of the human
body (especially arms and hands) vanish more often in silhouettes than for the
animals we worked with. Example qualitative results can be found in Fig. 5.

4.5 Keypoint-Based Neural Rendering

Quantitative results for the keypoint-based neural rendering part are shown in
Table 1. For color comparison we report the PSNR [dB] over all test samples,
while for depth comparison we report the MAE [mm]. We achieve a better aver-
age PSNR and MAE (23.98 dB and 20.3 mm respectively) over all objects than
LFN* (18.16 dB and 55.1 mm respectively).

Qualitative results for color rendering and depth reconstruction can be found
in Fig. 3 and Sec. 3.2 of our supplementary respectively. Comparing our method
to the implementation without local conditioning shows the importance of the
local conditioning, the renderings are much more detailed, with more precise
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Fig. 5. Results for pose estimation. We show projected keypoints of the ground
truth, NePu and LToHP [17] in the first, second and third row, respectively, for a
human, a giraffe, a pigeon and a cow. Color coded dots indicate the keypoint location
and its 3D error to the ground truth. Red dots indicate a high, green dots a low 3D
error. The connections between keypoints are just for visualization and not used by
the networks. (Color figure online)

boundaries. Figure 4 shows projections of multiple depth maps from different
viewing directions as 3D point clouds. The individual views align up nicely,
yielding good input for further processing and analysis. The results of the novel
view and pose comparison with AniNeRF [42] on Human3.6M [16] are shown
in Fig. 6. Even though our rendering formulation is fundamentally different and
much less developed, our results look promising, but cannot meet the quality
of AniNeRF. While AniNeRF leverages the SMPL parameters to restrict the
problem to computing blend weight fields, our method has to solve a more com-
plex problem. In principle our rendering could also be formulated in canonical
space and leverage SMPL to model deformations. In addition, part segmenta-
tion maps, as well as, the relation of view direction and body orientation could
further help to reduce ambiguities in the 2D rendering.

Compared to A-NeRF [52] and AniNeRF [42] the fundamental differences
in the rendering pipeline result in a significant speed increase. Both render at
0.25–1 fps and 1 fps at 5122px, respectively, while we render at 50 fps at 2562px.
In contrast to both methods we do not make use of optimization techniques that
constrain the rendering to a bounding box of the 3D keypoints. Employing this
would result in a total speed increase of 50–200× at 5122px.
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(a) GT (b) NePu (c) AniNeRF (d) GT (e) NePu (f) AniNeRF

Fig. 6. Novel view and pose comparison with AniNeRF. Novel view (a–c) and
novel view + novel pose (d–f) rendering on Human3.6M dataset.

5 Limitations and Future Work

In the future we plan to extend our model to account for instance specific shape
and color variations, by incorporating the respective information in additional
latent spaces. Moreover, our 3D keypoint encoder architecture (cf. Sect. 3.1) can
for example be further improved for humans in a similar fashion to [52]. Such
an approach would intrinsically be rotation equivariant and better capture the
piece-wise rigidity of skeletons. Finally, while 2D rendering is much faster, it also
means that we do not have guaranteed consistency between the generated views
of the scene, in the sense that they are not necessarily exact renderings of the
same 3D shape. This is an inherent limitation and cannot easily be circumvented,
but our quantitative results indicate that it does not seem to impact quality of
the rendering by much.

6 Conclusions

In this paper we present a neural rendering framework called Neural Puppeteer
that projects keypoints and features into a 2D view for local conditioning. We
demonstrate that NePu can detect 3D keypoints with an inverse rendering app-
roach that takes only 2D silhouettes as input. In contrast to common 3D keypoint
estimators, this is by design robust with respect to change in texture, lighting or
domain shifts (e.g. synthetic vs. real-world data), provided that silhouettes can
be detected. Due to our single-evaluation neural rendering, inverse rendering for
downstream tasks becomes feasible. For animal shapes, we outperform a state-
of-the-art 3D multi-view keypoint estimator in terms of MPJPE [17], despite
only relying on silhouettes.

In addition, we render color, depth and occupancy simultaneously at 20ms
per 2562 image, significantly faster than NeRF-like approaches, which typically
achieve less than 1 fps. The proposed keypoint-based local conditioning sig-
nificantly improves neural rendering of articulated objects quantitatively and
qualitatively, compared to a globally conditioned baseline.
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