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Abstract. Video frame interpolation (VFI) is to synthesize the inter-
mediate frame given successive frames. Most existing learning-based VFI
methods generate each target pixel by using the warping operation with
either one predicted kernel or flow, or both. However, their performances
are often degraded due to the issues on the limited direction and scope
of the reference regions, especially encountering complex motions. In
this paper, we propose a novel motion-aware VFI network (MVFI-Net)
to address these issues. One of the key novelties of our method lies
in the newly developed warping operation, i.e., motion-aware convolu-
tion (MAC). By predicting multiple extensible temporal motion vectors
(MVs) and filter kernels for each target pixel, the direction and scope
could be enlarged simultaneously. Besides, we first attempt to incorpo-
rate the pyramid structure into the kernel-based VFI, which can decom-
pose large motions into smaller scales to improve the prediction efficiency.
The quantitative and qualitative experimental results have demonstrated
the proposed method delivers the state-of-the-art performance on the
diverse benchmarks with various resolutions. Our codes are available at
https://github.com/MediaLabVFI/MVFI-Net.
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1 Introduction

Video frame interpolation (VFI) has been greatly demanded in many applica-
tions such as frame-rate up conversion [4,5], slow-motion generation [19,35,39]
and video compression [10,16], etc. In recent years, deep learning shows its
strong capacity in a series of low-level tasks, some learning-based VFI meth-
ods have been subsequently developed [2,7,21,29,31,33,34,37,40,41], which can
be viewed as a two-stage process: 1) motion estimation (ME), i.e., for the output
pixels, finding their reference regions in reference frames; 2) motion compensa-
tion (MC), i.e., synthesizing the output pixels based on ME (Fig. 1).

Among the existing methods, one popular strategy is to conduct the optical
flow estimation as ME (e.g., [2,29,33,34,41]). However, the optical flow estimator
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(a) SepConv++[32] (b) GDConvNet[40] (c) MVFI-Net (Ours)

Fig. 1. Results of frame interpolation on UHD videos with large motion. The interpo-
lated frame by using our proposed MVFI-Net is sharper with more texture details than
those generated by the state-of-the-art kernel-based methods, e.g., SepConv++ [32]
and GDConvNet [40].

Fig. 2. Comparisons between the mainstream methods and our work. (a) The kernel-
based method (e.g., SepConv [31]); (b) The method based on the kernel and flow (e.g.,
SDC-Net [37]); (c) DSepConv [7]; (d) The proposed MAC.

will impose much computational complexity into the VFI algorithms, and the
quality of the interpolated frame largely depends on the quality of flows [46].
Besides, the flow-based methods more consider the most related pixel in reference
frame, while ignoring the influence of surrounding pixels, which could result in
the limited direction issues.

Instead of using optical flows, some kernel-based VFI methods are devel-
oped (e.g., [7,21,31,37,40]), which can be viewed as a convolution process. Sep-
Conv [31] estimated a separable kernel for each location, and then convolved
these kernels with the corresponding reference regions to predict the output
pixels. However, it can not deal with the motions beyond the kernel size since
its scope is fixed and limited, as demonstrated in Fig. 2(a). In this case, SDC-
Net [37] proposed a spatially-displaced convolution which predicted one flow
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and one kernel for each location, as shown in Fig. 2(b). Then, the scope could be
enlarged based on flow information, but the direction is still limited. Recently,
DSepConv [7] utilized a separably deformable convolution to expand the direc-
tion of the reference regions [seeing Fig. 2(c)]. The work [21] provided the version
without weight sharing as an independent warping operation namely AdaCoF.
Nevertheless, the issue of limited scope is exposed again, especially for videos
with a large number of complex motions.

Based on the above-mentioned discussions, there are two issues existing in
VFI: 1) the direction and scope of reference regions are limited and hard to
be loosed simultaneously; 2) kernel-based methods are non-robust for complex
motions. To tackle the aforementioned issues, we propose a novel VFI method
namely motion-aware VFI network (MVFI-Net).

For issue 1), we develop a novel warping technique called motion-aware convo-
lution (MAC), which is one of the key novelties. In specific, multiple temporally
extensible motion vectors (MVs) and corresponding spatially-varying kernels are
predicted for each target pixel. Then the target pixel is calculated by convolving
kernels with selected regions. The rationale behind this design is that during the
motion estimation via the network, it may be possible to search MVs in a very
small range and later synthesize the current pixel only based on the adjacent
pixels. Obviously, the performance would be largely degraded while dealing with
complex motion. In this case, we propose a motion-aware extension mechanism
to adaptively extend the temporal MVs for a wider search range, and improve
the efficiency of VFI. As illustrated in Fig. 2(d), compared to the previous works,
MAC can explore more directions and larger scopes, which has the potential to
overcome both limitations.

For issue 2), it has been known that many optical flow-based approaches have
used the feature pyramid network (FPN) as the feature extractor to get multi-
scale feature maps, which can be warped by internally scaling the flow in different
sizes. This operation can decompose large motions into a smaller scale, which
facilitates more accurate motion estimation. Thus, it is highly desirable to bring
FPN into kernel-based VFI methods. However, for warping multi-scale feature
maps, kernels with various sizes are required. This means that large memory
is demanded, which is impractical. To solve this problem, we propose a two-
stage warping strategy to warp reference frames and multi-scale features, while
exploiting a frame synthesis network to mix these information for generating
high-quality frame. Experimental results show that our design can improve the
robustness and performance of VFI with complex motion.

Our contributions can be summarized as follows: 1) A novel warping tech-
nique MAC is proposed to simultaneously alleviate the issues of limited direction
and scope of reference regions; 2) We propose a two-stage warping strategy to
firstly integrate the pyramid structure into the kernel-based VFI method; 3) The
proposed method delivers the state-of-the-art results on several benchmarks with
various resolutions.
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2 Related Work

In this section, we briefly review the works about VFI. The VFI methods can be
mainly divided into three categories: 1) the phase-based methods (e.g., [26,27]),
2) the optical flow-based methods (e.g., [2,3,9,22,23,28,29,33,34,41]), and 3)
the kernel-based methods (e.g., [7,8,21,31,32,40]).

Phase-Based VFI. It is commonly-known that images can be transformed to
the frequency field by Fourier Transform, and this operation has been used into
VFI by [26,27]. Specifically, they utilized a Phase-Net to conduct the motion
estimation by the linear combinations of wavelets, which achieved competitive
inference time. However, it is difficult for this category of methods to process
the large motion on the high frequency components, usually imposing artifacts
and pixel disappearance.

Optical Flow-Based VFI. In recent years, the deep learning-based optical flow
estimation [13,17,36,44,45] has delivered impressive quality on motion estima-
tion. Therefore, the optical flow estimation has been used in many subsequently
developed VFI approaches (e.g., [2,3,15,19,29,33,34]). For example, in [29], the
interpolated frame It is synthesized by forward warping the input consecutive
frames (I0 and I1) with their features, under the guidance of the estimated
optical flows t · F0→1 and (1 − t) · F1→0 via softmax splatting and a frame syn-
thesis network. Instead of using the forward-warping method, another trend in
this research have exploited the backward-warping strategy (e.g., [2,3,19,33]).
It is well-known that for these backward warping-based methods, the flows from
the target frame to the bi-directional reference frames, denoted as Ft→0 and
Ft→1, are unavailable. To address this issue, the algorithms presented in [3,19]
approximated Ft→0 and Ft→1 by linearly combining bi-directional optical flows
based on the target time step t. However, such motion estimation is under a
basic assumption that the motion is linear and symmetric. Therefore, it can
not model complex motions in real-world videos, and any initial errors imposed
by flow estimation would be inevitably propagated to the subsequent process-
ing procedures. More recently, the work proposed in [15] directly predicted the
intermediate flow via a teacher-student net architecture without any prior bi-
directional flow estimation. For the asymmetric motions in real-world videos, a
bi-directional correlation volume algorithm [34] is proposed to modify interme-
diate flows, respectively, which achieves the state-of-the-art performance.

Kernel-Based VFI. Consider that incredibly extra cost would be introduced
for predicting prior optical flow, some works (e.g., [7,8,21,30–32]) attempt to
directly synthesize the pixel by spatially-varying convolution. For example, the
work in [30] synthesized a target pixel by predicting kernels with the size of
41 × 41 for two reference frames, and then convolved them with the reference
pixels. However, a huge amount of memory is required to store the kernels with
such large size. In this case, [31,32] decomposed the convolutional kernels into
two one-dimensional vectors, and then used outer product to obtain the final
kernel. These two methods save much memory but can not handle videos with
large motions beyond the limited kernel size. To address this issue, an added
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kernel is estimated for each flow to collect local appearance information [37].
Moreover, inspired by deformable convolution, [8,40] predicted weight-sharing
offsets for each element of kernels, and thus irregular motions could be described.
In [21], the degree of freedom of square kernel is further improved, while it
is still limited by reference scopes. Obviously, compared to optical flow-based
VFI approaches, the existing kernel-based methods have drawbacks in motion
estimation due to lack of prior motion guidance. Moreover, it is hard to introduce
the pyramid structure into kernel-based VFI methods. This is because unlike the
optical flow, if kernels are down-sampled, their weights would change completely,
and there is no one-to-one correspondence between pixels. Fortunately, our work
can fill up this gap.

3 Method

In this section, we first present the problem statement, and then we give an
overview of our MVFI-Net. Later, more details of each module will be provided,
respectively.

3.1 Problem Statement

VFI is to synthesize the temporally-consistent middle frame I1 between two
consecutive frames I0 and I2. An essential step is to find a transformation func-
tion T (·) to warp reference frames based on the motion estimation (ME) results
{θ0, θ2}. Therefore, the procedure of VFI can be formulated as

I1 = Tθ0(I0) + Tθ2(I2). (1)

However, it is commonly-known that some undesirable artifacts could be
yielded during the aforementioned linear combination, when the target pixel is
only visible in one of reference frames. This phenomenon is called as the occlusion
issue. In this case, we define a soft mask [8,21] M ∈ [0, 1]H×W to tackle this
problem, where [H,W ] is the target frame size. Then, Eq. (1) can be modified
as

I1 = M � Tθ0(I0) + (J − M) � Tθ2(I2), (2)

where � is element-wise multiplication, and J ∈ RH×W is a matrix where each
element is equal to one.

3.2 Overall Architecture

The pipeline of the proposed MVFI-Net is shown in Fig. 3, which is mainly com-
posed of four modules: a motion estimation network MENet (U), a novel warp-
ing technique motion-aware convolution MAC (M), a context-pyramid feature
extractor (C) and a frame synthesis network (G). In specific, U first takes two
reference frames I0 and I2 as inputs to predict temporal MVs {F10, F12}, kernel
weights {K10,K12} and the aforementioned mask M . Concurrently, the weight-
sharing C extracts multi-scale feature maps of {I0, I2}, i.e., {c00, c

1
0, c

2
0} for I0
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Fig. 3. The overview of our proposed MVFI-Net. The network takes two consecutive
frames I0 and I2 as inputs, and finally generates the middle frame I1. Note that green
dotted line box represents the parameters of this part will be updated by gradient
descent methods, while the gray one means non-parametric warping operation. (Color
figure online)

and {c02, c
1
2, c

2
2} for I2. Then, the proposed two-stage warping strategy is used to

align these feature maps and reference frames with time step 1. Particularly, M
is adopted to warp {I0, I2} and feature maps at the first pyramid layer {c00, c

0
2}.

Next, instead of predicting multi-scale kernels, the flow information {f10, f12},
called as sumflow, is calculated by weighted summation of {F10, F12} along the
channel axis, respectively. Later, lower-resolution feature maps {c10, c

1
2, c

2
0, c

2
2}

are backward warped to the middle ones {c101, c
1
21, c

2
01, c

2
21} with the guidance

of {f10, f12} which are internally scaled to the corresponding size. Finally, the
interpolated frame I1 will be synthesized by G. More details will be analyzed
next.

3.3 Motion Estimation Network

As illustrated in Fig. 4, MENet (U) is designed based on the U-Net [38] architec-
ture, followed by nine parallel sub-nets, which are used to predict five elements:
the bi-directional temporal MVs (F10 = [u10, v10], F12 = [u12, v12]), filter kernels
(K10 = [ku

10, k
v
10], K12 = [ku

12, k
v
12]) and the soft mask M , where u and v repre-

sent the horizontal and vertical direction, respectively. Each prediction process
X can be formulated by

X = U(Cat[I0, I2]), (3)

where Cat[·] is the concatenation operation along the channel axis.
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Concatenate

32 64 128 256 512 512 256 128 64

Conv 7 7 Conv 3 3 AvgPool Bilinear upsample Sub-net

Fig. 4. Our designed MENet. Notably, each sub-net (gray box) consists of three 3 × 3
convolution layers and one bilinear up-sampling layer. Note that the weights across
sub-nets are not sharing. Therefore, temporal MVs, filter kernels and the soft mask are
predicted independently.

3.4 Motion-Aware Convolution

Let ¯̄I be the target frame and I be the reference frame. Most kernel-based VFI
methods (e.g., [31,32]) assume that T (·) is conducted by using the spatially-
varying convolution, which is described as

¯̄I(x, y) =
∑

K(x, y) � PI(x, y), (4)

where PI(x, y) is the patch centered at (x, y) in I, and the sum (
∑

) represents
the summation of all elements in Hadamard product.

Besides, K(x, y) is a 2D filter kernel obtained by the outer product of two
1D vectors, which is computed as

K(x, y) = kv(ku)T (5)

However, for these methods, the direction and scope of reference regions are
limited, and thus they fail to handle large motion beyond the kernel size. In this
case, we attempt to predict multiple extensible temporal MVs for each location,
and the corresponding Eq. (4) can be modified as

¯̄I(x, y) =
L−1∑

l=0

∑
Kl(x, y) � PI(x + ul(x, y) + du(l), y + vl(x, y) + dv(l)), (6)

where ul(x, y) and vl(x, y) are horizontal and vertical components of the lth

temporal MV, respectively, and L denotes the amount of temporal MVs. du(l)
and dv(l) are offset biases, which are adaptively calculated by our proposed
motion-aware extension mechanism (MAEM) [see Fig. 5(b) top]. du(l) can be
formulated as

du(l) = l · sign(ul(x, y)), ‖ul(x, y)‖ ≥ γ, (7)
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Fig. 5. Visualization of the effect of using the traditional dilation mechanism (TDM)
and our MAEM on the search range. The first row displays the toy examples and
qualitative results given by two methods, and the second row depicts the co-location
patches of two reference frames, where the pink cross denotes the co-location position
of the target pixel. The third row describes the endpoint of each temporal MV from
start point. (a) The result by using TDM. (b) The result by replacing TDM with our
MAEM. It can be seen that our MAEM can extend the search range effectively. (Color
figure online)

where sign(·) is the signal function, while γ is the preset threshold and we
empirically set γ = 1. Note that dv(l) can be calculated in the same way. The
motivation behind it is that we find the traditional dilation mechanism [see
Fig. 5(a) top] fails to handle irregular motions due to its fixed dilation coefficient.
To address this issue, we propose motion-aware extension mechanism (MAEM),
which is able to adaptively extend temporal MV by modifying its start position
on the basis of initial prediction. As shown in Fig. 5, our method can capture
more accurate MVs and deliver the higher quality frame.

3.5 Multi-scale Feature Aggregation

Context-Pyramid Feature Extractor. Consider that the features of frames
in VFI tasks are different from those in classification tasks. Motivated by [29],
we optimize a feature extractor (C) from scratch, rather than using the existing
pre-trained model (e.g., VGG [42] and Resnet [14]). As depicted in Fig. 6, the
features can be obtained by

cs
t = C(It)s, (8)

where s is the scale of pyramid, and t is the time step of reference frames.
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Fig. 6. The architecture of the weight-sharing context feature extractor.

As discussed previously, extremely large memory is required while predicting
different kernels (e.g., H ×W, H

2 × W
2 , H

4 × W
4 ) for each scale feature map, which

is impractical for applications. To address this issue, we only apply MAC (M)
for c00 and c02 which have the same resolutions as the target frame. Then, the
warped feature map of the first layer is obtained by

c01 = M � MF10;K10(c
0
0) + (J − M) � MF12;K12(c

0
2). (9)

For c1t and c2t , we first calculate the sumflow (f10 and f12) through the
predicted temporal MVs as

f10 = Cat[
L−1∑

l

ul
10(x, y) + du10(l),

L−1∑

l

vl
10(x, y) + dv10(l)]. (10)

f12 can be computed by the same way.
Then the backward warping operation [18] is used for the temporal alignment,

which is described as
cs
01 = backwarp((f10)↓s, cs

0),

cs
21 = backwarp((f12)↓s, cs

2),
(11)

where ↓ s denotes that sumflow has been downsampled to the same size with
sth feature map.

L L L L L L L

D D D U U U

L L L L L L

D D D U U U

L L L L L L

L

D

U

Lateral Block

Downsample Block

Upsample Block

Fig. 7. The structure of the frame synthesis network.

Frame Synthesis Network. The modified version of Grid-Net [28] is used as
our frame synthesis network. As depicted in Fig. 7, the inputs of the network are
warped frame I1 and feature maps {c01, c

1
01, c

1
21, c

2
01, c

2
21}, and the output is the

final interpolated frame.
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4 Experiments

4.1 Datasets and Implementation Details

We select four benchmarks with various video resolutions for comparison, which
are Vimeo90K [47] (448 × 256), UCF101 [24,43] (256 × 256), Middlebury [1]
(640 × 480) and SNU-FILM [11] (1280 × 720). We next describe our training
details for MVFI-Net.

Loss Functions. To evaluate the difference between the interpolated frame I1
and its ground truth Igt, we combine Charbonnier penalty function [6] with the
gradient loss [25], which can facilitate generating a sharper frame.

Ld = λ1Lchar + λ2Lgdl, (12)

where we empirically set λ1 = 1, λ2 = 1.

Training Strategy. We train the MVFI-Net for 150 epochs on the Vimeo90K
training triplets, and use AdaMax [20] optimization with β1 = 0.9, β2 = 0.999,
where the initial learning rate is set as 0.001. Note that the learning rate will be
decreased by a factor of 0.5 when the validation loss does not decrease for five
epochs.

Table 1. Quantitative comparisons on three benchmarks. We also calculate the infer-
ence time and MACs on Middlebury [1] ‘Urban’ set. All methods are tested on one
NVIDIA 2080Ti GPU. For a fair comparison, each method is only trained on Vimeo90K
triplets [47] by taking only two frames as reference.

Vimeo90K [47] UCF101 [24,43] Middlebury [1] Runtime MACs

R SSIM PSNR SSIM PSNR SSIM IE (seconds) (T)

SepConv-L1 [31] 33.86 0.974 34.96 0.966 35.79 0.978 2.25 0.051 0.19

DAIN [2] 34.70 0.979 35.00 0.968 36.70 0.982 2.07 0.130 5.79

CAIN [11] 34.76 0.976 34.98 0.968 35.11 0.974 2.73 0.041 0.42

AdaCoF [21] 34.35 0.974 34.90 0.968 35.72 0.978 2.26 0.034 0.37

BMBC [33] 35.06 0.979 35.16 0.968 36.79 0.982 2.06 0.774 2.50

SepConv++ [32] 34.83 0.977 35.27 0.968 37.28 0.984 1.96 0.110 0.14

CDFI [12] 35.17 0.978 35.21 0.967 37.14 0.983 2.01 0.221 0.26

EDSC-LC [8] 34.86 0.977 35.17 0.968 36.76 0.982 2.03 0.046 0.08

X-VFI [41] 35.07 0.977 35.08 0.968 36.71 0.982 2.05 0.097 0.14

GDConvNet [40] 34.99 0.975 35.16 0.968 35.42 0.978 2.33 1.277 0.87

MVFI-NetS (ours) 35.71 0.980 35.30 0.968 37.51 0.984 1.93 0.087 0.35

MVFI-NetL (ours) 35.83 0.981 35.33 0.969 37.48 0.984 1.94 0.189 0.49

4.2 Comparison with the State-of-the-Arts

To prove the effectiveness of our proposed algorithm, we compare our method
with other competitive works, including SepConv [31], DSepConv [7], DAIN [2],
CAIN [11], AdaCoF [21], BMBC [33], SepConv++ [32], CDFI [12], EDSC [8],
X-VFI [41] and GDConvNet [40]. For evaluation metrics, we measure the
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performance of VFI methods in terms of Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity (SSIM). Additionally, we also calculate the widely-
used Interpolation Error (IE) on Middlebury-Other set for evaluation. Note that
the code of all compared methods are publicly available.

Table 2. Quantitative results of the current competitive kernel-based methods on four
settings of SNU-FILM [11].

Easy Medium Hard Extreme

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SepConv-L1 [31] 39.68 0.990 35.06 0.977 29.39 0.928 24.32 0.856

DSepConv [7] 39.94 0.990 35.30 0.977 29.50 0.925 24.33 0.850

AdaCoF [21] 39.80 0.990 35.05 0.976 29.46 0.925 24.31 0.852

EDSC-LC [8] 40.01 0.990 35.36 0.978 29.59 0.927 24.38 0.851

CDFI [12] 40.12 0.991 35.51 0.978 29.73 0.928 24.53 0.848

MVFI-NetL (ours) 40.17 0.991 35.57 0.979 29.86 0.932 24.62 0.862

Quantitative Results. We provide two versions of MVFI-Net for comparison,
which have different model sizes. Formally, MVFI-NetS represents five temporal
MVs and corresponding 11 × 11 kernels are predicted, while MVFI-NetL pos-
sesses eleven temporal MVs and the same kernel size. As shown in Table 1, our
method is far superior to others on diverse benchmarks in terms of PSNR and
SSIM. Compared to the state-of-the-art kernel-based method SepConv++ [32],
our lightweight model MVFI-NetS improves the PSNR by 0.88 dB on Vimeo90K
with 1.5× faster inference speed. Although the fastest VFI approach Ada-
CoF [21] is 2.3× faster than us, MVFI-NetS gives 1.36 dB improvement on
Vimeo90K. Note that the gains are distinct on the other two benchmarks while
the MACs are similar. Compared to optical flow-based approaches, we com-
prehensively provide improvements either objective qualities or inference speed.
This result supports that kernel-based approaches could yield impressive results
without prior flow estimation.

To further prove that MVFI-Net is more robust for complex motions, we
compare it with current competitive kernel-based algorithms on SNU-FILM [11]
which is divided into four settings according to motions. From Table 2, it can be
obviously found that our proposed MVFI-NetL delivers better performance on
all settings. Generally, it is difficult to retain the structure and shape of objects
in the interpolated frame when large motion exists, which imposes artifacts and
blurriness with lower SSIM. Nevertheless, MVFI-NetL partly fixes this defect
and supply an impressive result.

Qualitative Results. To verify the subjective quality, we also visually compare
MVFI-Net with high-performance VFI approaches. As illustrated in Fig. 8, it
can be seen that there are no overshoot artifacts in the frames generated by our
method, while others fail. For example, in the third row and fourth row, our
method clearly keep the texture details of the airplane head and the wing of the
bird, while other methods impose serious artifacts and blur background.



MVFI-Net: Motion-Aware Video Frame Interpolation Network 351

(a) DAIN (b) SepConv++ (c) X-VFI (d) GDConvNet (e) MVFI-Net (f) GT

Fig. 8. Qualitative comparisons with DAIN [2], SepConv++ [32], XVFI [41] and
GDConvNet [40] on the test set of Vimeo90K [47] and SNU-FILM [11] extreme setting,
including the large motion and the occlusion issue.

4.3 Ablation Study

In this section, we first conduct ablation studies to demonstrate the effect of our
proposed motion-aware extension mechanism (MAEM) and the improvements
of introducing the pyramid structure. Then, we design a series of experiments
to explore the effectiveness of different amounts of temporal MVs and different
kernel sizes. Finally, we attempt to transfer our method to AdaCoF [21], in
which multiple flows are predicted for each target pixel, to analyze whether the
performance can be improved by our algorithm.

Table 3. Ablation studies of the motion-aware extension mechanism and pyramid
architecture.

MAEM Pyramid structure Middlebury [1] Vimeo90K [47] Extreme [11]

PSNR SSIM IE PSNR SSIM PSNR SSIM

1 × × 36.57 0.981 2.06 34.81 0.976 24.31 0.851

2 � × 36.84 0.983 2.02 34.83 0.976 24.39 0.852

3 � � 37.51 0.984 1.93 35.71 0.980 24.46 0.860

MAEM and Pyramid Structure. For a fair comparison, each group is
retrained under the same condition without any prior information. We first
remove the pyramid structure, and then the final interpolated frame is syn-
thesized by Eq. (2) where T (·) is MAC. Next, we continue to remove MAEM,
temporal MVs are no longer extended according to the initial prediction. From
Table 3, it can be observed that our proposed MAEM, which is non-parametric
and non-extra inference time cost, provides stable improvements on each bench-
mark in terms of two evaluation metrics. Besides, it can be demonstrated that
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(a) Overlayed (b) Baseline (c) Baseline+MAC (d) Baseline+MAC+FPN

Fig. 9. Qualitative comparisons with Baseline, Baseline+MAC and Baseline+MAC+
FPN. It can be seen that the frame quality is gradually enhanced by our design.

the pyramid structure is vital for VFI, since large motions could be decomposed
into the smaller scale that can be easier predicted and captured by the network.
It can be seen that there is nearly 1 dB gain on Vimeo90K and Middlebury,
while supplying higher structure similarity. We also illustrate a visual result for
intuitive comparison in Fig. 9.

Table 4. Ablation studies of the amounts of temporal motion vectors.

Middlebury [1] Vimeo90K [47] Extreme [11]

PSNR SSIM IE PSNR SSIM PSNR SSIM

L = 1 36.78 0.983 2.01 35.34 0.979 24.37 0.857

L = 5 37.51 0.984 1.93 35.71 0.980 24.46 0.860

L = 11 37.48 0.984 1.94 35.83 0.981 24.62 0.862

Amount of Temporal MVs. As discussed above, more reference pixels are
required for complex motions. Therefore, the amount of predicted temporal MVs
would directly influence the performance. To verify it, we first set a fixed ker-
nel size N = 11, and let the number of temporal MVs be L ∈ {1, 5, 11}. As
displayed in Table 4, increasing temporal MVs helps the network explore more
related regions, and thus the middle frame with a higher quality is synthesized.
It should be noted that for Middlebury [1], the model with five temporal MVs
is a little better than that with eleven temporal MVs. This can be explained by
the fact that the videos in Middlebury usually have small motion. This means
that the motion difference between consecutive frames is relatively small. There-
fore, redundant temporal MVs may incur dispensable appearance information,
leading to undesirable artifacts.

Kernel Size. It has been demonstrated that the quality of the interpolated
frame is closely relevant to the size of the adaptive kernel [31]. To explore the
effectiveness of the kernel size, we train several models by using the kernels with
different sizes. Similar to the above experiments, we fix the number of tempo-
ral MVs L = 5 and modify the kernel size N ∈ {1, 5, 11}. Note that N = 11
means the 11 × 11 kernel is predicted for each target pixel. From Table 5, it can
be observed that a larger kernel can facilitate generating a better interpolated
result. However, when the kernel becomes larger (i.e., N = 11), there is no
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Table 5. Ablation studies of kernel size

Middlebury [1] Vimeo90K [47] Extreme [11]

PSNR SSIM IE PSNR SSIM PSNR SSIM

N = 1 36.82 0.983 2.07 35.45 0.979 24.53 0.860

N = 5 37.08 0.984 1.98 35.68 0.980 24.59 0.861

N = 11 37.51 0.984 1.93 35.71 0.980 24.46 0.860

significant improvements. It is because our proposed MAEM has facilitated cap-
turing motions accurately, while larger kernels have little effect and may impose
repetitive local information.

Table 6. Ablation study on transferring our method to AdaCoF [21]

Middlebury [1] Vimeo90K [47] Extreme [11]

PSNR SSIM IE PSNR SSIM PSNR SSIM

AdaCoF [21] 35.72 0.978 2.26 34.35 0.974 24.31 0.852

AdaCoF-ours 36.23 0.981 2.22 35.19 0.979 24.55 0.860

Transferability. In AdaCoF [21], multiple flows are predicted for each target
pixel, which is similar to our algorithm. Moreover, they introduce a fixed dila-
tion coefficient to expand the initial point of flow for a wider searching range.
As demonstrated above, our MAEM could facilitate more accurate motion esti-
mation and the pyramid structure is vital for VFI. Therefore, we attempt to
transfer MAEM and the two-stage warping strategy into AdaCoF to analyze
their effectiveness. Table 6 illustrates that our proposed method significantly
provides stable gains for AdaCoF on the basis of each benchmark.

5 Conclusion

In this paper, we propose a novel VFI network namely MVFI-Net. There are
two novelties: (1) we design an efficient warping technique MAC, where multiple
extensible temporal MVs and corresponding filter kernels are predicted for each
target pixel, which enlarges the direction and scope of reference region simulta-
neously; (2) we firstly integrate the pyramid structure into the kernel-based VFI
approach, which can decompose complex motions to a smaller scale, improving
the efficiency of searching for temporal MVs. Extensive simulations conducted
on various datasets have demonstrated that our proposed MVFI-Net is able to
consistently deliver the state-of-the-art results in terms of the objective quality
and human perception.
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