
Chapter 5
The Quantum Double

The quantum double construction originally has been introduced by V. Drinfel’d
in [11]. It allows to associate to any Hopf algebra with invertible antipode another
Hopf algebra whose category of finite-dimensional representations is canonically
braided. In this chapter, following [21], we describe the construction of the quantum
double by using the notion of a cocycle over a bialgebra.

5.1 Bialgebras Twisted by Cocycles

Definition 5.1 A cocycle in a bialgebra B = (B,μ, η,�, ε) is an invertible
element ν of the convolution algebra (B ⊗ B)∗ such that

. (5.1)

and

. (5.2)

where ν ∗ μ := (ην) ∗ μ is the convolution product in the space of linear maps
L(B ⊗ B,B).

Remark 5.1 Equation (5.1) can equivalently be written as the following identity in
the convolution algebra (B⊗3)∗

.ν1,2 ∗ (ν(μ ⊗ idB)) = ν2,3 ∗ (ν(idB ⊗μ)). (5.3)
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Exercise 5.1 Show that the convolution inverse ν̄ of a cocycle ν in a bialgebra B

satisfies the conditions

. (5.4)

. (5.5)

Exercise 5.2 Let H be a Hopf algebra. Define a linear form

. (5.6)

where

. (5.7)

is the evaluation form. Show that this linear form is a cocycle in the bialgebra H ⊗
Ho,op, and the linear form

. (5.8)

is its convolution inverse.

Proposition-Definition 5.1 Let B = (B,μ,�, η, ε) be a bialgebra and ν a
cocycle in B. Then, the multiple Bν := (B,μν,�, η, ε) with the twisted product

.μν := ν ∗ μ ∗ ν̄ (5.9)

is a bialgebra called the bialgebra twisted by cocycle ν. ��
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Proof We have to check all the properties containing the product, i.e. the associa-
tivity, the unitality, the compatibility, and the compatibility of the product and the
counit. The graphical notation

. (5.10)

allows us to proceed purely graphically as follows.

(1) Associativity:

. (5.11)

.

and

. (5.12)
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.

We observe that the associativity for the twisted product is satisfied as a con-
sequence of the cocycle relations (5.1) and (5.4). Notice that the diagrammatic
calculations in (5.11) and (5.12) are mirror images of one another (with respect
to a vertical mirror) accompanied with exchange of ν and ν̄.

(2) Unitality:

. (5.13)

.

(3) Compatibility:

.

(5.14)

.
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(4) Compatibility of the twisted product with the counit:

. (5.15)

��

5.1.1 Dual Pairings

The algebraic properties of the evaluation form given by relations (4.2) and (4.3)
can be formalized into the notion of a dual pairing. One can construct cocycles as
dual pairings possessing an extra property.

Definition 5.2 A dual pairing between two bialgebras A and B is a linear form
.ϕ ∈ (A ⊗ B)∗ such that

. (5.16)

in the convolution algebra .(A ⊗ A ⊗ B)∗ and

. (5.17)

in the convolution algebra .(A ⊗ B ⊗ B)∗,

. (5.18)

and

. (5.19)

where, in the graphical notation, the dotted lines correspond to A and solid lines
to B.
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Proposition 5.1 For any bialgebras A and B, a linear form .ϕ ∈ (A⊗B)∗ is a dual
pairing between A and B if and only if one of the two following linear maps

.l : A → B∗, r : B → A∗, 〈l(a), b〉 = 〈r(b), a〉 = 〈ϕ, a ⊗ b〉, (5.20)

factorizes through a bialgebra homomorphism into the corresponding restricted
dual.

Proof Assuming that .ϕ is a dual pairing, we verify that .l(A) ⊂ Bo and .l : A → Bo

is a homomorphism of bialgebras. To this end, we first derive the equalities

.μ∗
Bl = (l ⊗ l)�A, η∗

Bl = εA (5.21)

which imply that .l(A) ⊂ Bo and that l is a homomorphism of coalgebras. Using
Sweedler’s sigma notation for the coproduct, see Sect. 1.7.2,

.�(a) :=
∑

(a)

a(1) ⊗ a(2), (5.22)

for any .a ∈ A and .α ⊗ β ∈ B⊗2, we have

.〈μ∗
B(l(a)), α ⊗ β〉 = 〈l(a), αβ〉 = 〈ϕ, a ⊗ αβ〉

=
∑

(a)

〈ϕ, a(1)⊗α〉〈ϕ, a(2)⊗β〉=
∑

(a)

〈l(a(1)), α〉〈l(a(2)), β〉=〈(l⊗l)(�A(a)), α⊗β〉,

(5.23)

obtaining the first equality of (5.21), and

.η∗
B(l(a)) = 〈l(a), ηB(1)〉 = 〈ϕ, a ⊗ ηB(1)〉 = εA(a), (5.24)

obtaining the second equality of (5.21).
Next, we show that

.�∗
B(l ⊗ l) = lμA, lηA = ε∗

B (5.25)

which imply that l is a homomorphism of algebras. For any .a⊗b ∈ A⊗2 and .α ∈ B,
we have

.〈(lμA)(a ⊗ b), α〉 = 〈l(ab), α〉 = 〈ϕ, ab ⊗ α〉
=

∑

(α)

〈ϕ, a⊗α(1)〉〈ϕ, b⊗α(2)〉 =
∑

(α)

〈l(a), α(1)〉〈l(b), α(2)〉 = 〈l(a)⊗l(b),�B(α)〉

= 〈�∗
B(l(a) ⊗ l(b)), α〉, (5.26)
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obtaining the first equality of (5.25), and

.〈l(ηA(1)), α〉 = 〈ϕ, ηA(1) ⊗ α〉 = 〈εB, α〉, (5.27)

obtaining the second equality of (5.25).
Assuming now the converse, i.e. that Eqs. (5.21) and (5.25) are satisfied, the

calculations of (5.23), (5.24), (5.26), (5.27) reproduce the definition of a dual
pairing.

The case where l is replaced with r is checked similarly.
��

Proposition 5.2 For any bialgebra B, a convolution invertible dual pairing .ϕ

between .Bop and B (or, equivalently, between B and .Bcop) is a cocycle on B if
and only if

.ϕ12 ∗ ϕ23 = ϕ23 ∗ ϕ12 (5.28)

in the convolution algebra .
(
B⊗3

)∗
.

Proof Relations (5.16) and (5.17) take the form

.ϕ(μB ⊗ idB) = ϕ23 ∗ ϕ13 (5.29)

and

.ϕ(idB ⊗μB) = ϕ12 ∗ ϕ13 (5.30)

so that (5.3) takes the form

.ϕ12 ∗ ϕ23 ∗ ϕ13 = ϕ23 ∗ ϕ12 ∗ ϕ13 ⇔ ϕ12 ∗ ϕ23 = ϕ23 ∗ ϕ12. (5.31)

��

5.2 Cobraided Bialgebras

Definition 5.3 A dual universal r-matrix in a bialgebra B = (B,μ,�, η, ε) is a
convolution invertible element ρ ∈ (B ⊗ B)∗ such that

. (5.32)
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. (5.33)

. (5.34)

A bialgebra provided with a dual universal r-matrix is called cobraided.

Exercise 5.3 Show that a dual universal r-matrix in a bialgebra B satisfies the
following Yang–Baxter relation in the convolution algebra

(
B⊗3

)∗
:

.ρ1,2 ∗ ρ1,3 ∗ ρ2,3 = ρ2,3 ∗ ρ1,3 ∗ ρ1,2. (5.35)

5.2.1 The Quantum Double

In this subsection, a Hopf algebra H will be drawn graphically by solid lines while
its restricted dual .Ho by dotted lines.

Proposition-Definition 5.2 Let H be a Hopf algebra. The quantum double .D(H)

of H is the bialgebra .H ⊗ Ho,op twisted by the cocycle

. (5.36)

It contains bialgebras H and .Ho,op as sub-bialgebras through the following
canonical bialgebra embeddings:

. (5.37)

and

. (5.38)

If the antipode of H is invertible, then .D(H) is a Hopf algebra. ��
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Proof The proof boils down to straightforward verifications which are left as
exercise. In particular, for the cocycle property, see Exercise 5.2. ��
Exercise 5.4 Show that

.

(5.39)

where

.

(5.40)

Theorem 5.1 Let H be a Hopf algebra with invertible antipode. Then the restricted
dual .D(H)o of the quantum double .D(H) is a cobraided Hopf algebra with the
following dual universal r-matrix

. (5.41)

with the convolution inverse

. (5.42)

where we use thick lines for the restricted dual .D(H)o and the graphical notation
for the inverse of the antipode of .Ho

.
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Proof Let us see first that .ρ̄ is a right inverse of .ρ

.

. .

That .ρ̄ is a left inverse of .ρ is verified similarly.
In order to verify equality (5.32), we write it in an equivalent graphical form

. (5.43)

where the equivalence is due to the fact that two linear forms on a vector space are
equal if and only if they evaluate to one and the same value on any vector.

By using the definitions of .ρ and the product of .D(H)o, we rewrite Eq. (5.43) in
the form

. . (5.44)

Next, we can use the definition of the coproduct of .D(H)o in the bottom left
parts of the diagrammatic equality (5.44) to obtain

. (5.45)
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where the units .ηH can be eliminated by using the unitality axiom for H in the left
hand side, and the definition of .ψ in the right hand side

. . (5.46)

The obtained equality is a consequence of the equality (if two vectors are equal then
their images by one and the same linear form are also equal)

. (5.47)

which, in its turn, is equivalent to the equality (two linear forms on a vector space
are equal if and only if they evaluate to one and the same value on any vector)

. . (5.48)

Now, in (5.48) we can use the definition of the product of .Ho to obtain

. . (5.49)
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By using the definitions of .ψ in the left hand side and .ıo in the right hand side
of (5.49), we obtain the equivalent equality

. (5.50)

where we can further use the definitions of the (twice iterated) coproduct of .Ho in
the left hand side and the coproduct of .D(H)o in the right hand side to obtain

. . (5.51)

In (5.51), we can use the definition of .ıo in the left hand side and the unitality axiom
for .Ho in the right hand side to obtain

. . (5.52)

In (5.52), we can use the definitions of the coproduct of .D(H)o in the left hand side
and of .ψ in the right hand side to obtain

. . (5.53)
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In the left hand side of (5.53), the definition of .ψ and the composition of it with the
unit of .Ho lead to a simplification, while in the right hand side, the co-associativity
properties of H and .Ho and the duality allow to remove the antipode by the
invertibility axiom. In this way, we obtain

. . (5.54)

In the left hand side of (5.54), the associativity and the co-associativity of H allow
to remove the last antipode through the invertibility axiom for H . In this way, we
obtain a tautological equality

. . (5.55)

Thus, equality (5.32) is proved.
Next, we verify equality (5.33)

. (5.56)

. .
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Finally, we verify equality (5.34)

. .

��
Remark 5.2 If H is a finite-dimensional Hopf algebra with a linear basis .{ei}i∈I and
.{ei}i∈I is the dual linear basis of .H ∗, then, the dual universal r-matrix is conjugate
to the universal r-matrix

.R :=
∑

i∈I

jei ⊗ ıei ∈ D(H) ⊗ D(H) (5.57)

in the sense that, for any .x, y ∈ (D(H))o = (D(H))∗, we have

.〈x ⊗ y,R〉 =
∑

i∈I

〈x, jei〉〈y, ıei〉 =
∑

i∈I

〈x, jei〉〈ıoy, ei〉

=
〈
x, j

( ∑

i∈I

〈ıoy, ei〉ei
)〉 = 〈

x, j ıoy
〉 = 〈�, x ⊗ y〉. (5.58)

In the infinite-dimensional case, formula (5.57) is formal but it is a convenient
and useful tool for actual calculations.

5.3 The Quantum Double D(Bq)

In this section, we consider the example of the quantum group .Bq described in
Sect. 4.4 of Chap. 4. Recall that the parameter q there is generic, that it is not a root
of unity.

Proposition 5.3 Let .q ∈ C�=0 be such that .1 �∈ qZ �=0 . Then, the quantum double
.D(Bq) admits the following presentation:

.C
〈
a, b, ψ, φ, {θz}z∈C �=0 | ab = qba,

ψθz = θzψ, θzθw = θzw, φψ − ψφ = φ, φθz = zθzφ,

ψa = aψ, ψb − bψ = b, θza = aθz, θzb = zbθz,

φa = qaφ, φb − qbφ = (1 − q)(1 − aθq);
�a = a ⊗ a, �b = a ⊗ b + b ⊗ 1,

�ψ = ψ ⊗ 1 + 1 ⊗ ψ, �θz = θz ⊗ θz, �φ = θq ⊗ φ + φ ⊗ 1
〉

(5.59)
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Proof As the first two lines and the last two lines in the presentation are just
the presentations of the Hopf sub-algebras .Bq and .B

o,op
q put together, we need to

check only the relations in the third and forth lines. These are relations between the
generators of .Bq and .B

o,op
q which are of the form

.(jf )(ıx) =
∑

(f ),(x)

〈f(1), x(1)〉(ıx(2))(jf(2))〈f(3), Sx(3)〉, x ∈ Bq, f ∈ B
o,op
q .

(5.60)

By writing informally just x instead of .ıx and f instead of .jf , let us write out these
relations one after another for .x ∈ {a, b} and .f ∈ {ψ, θz, φ} by using the iterated
coproducts

.�(3)a = a ⊗ a ⊗ a, �(3)b = b ⊗ 1 ⊗ 1 + a ⊗ b ⊗ 1 + a ⊗ a ⊗ b (5.61)

and

.�(3)ψ = ψ ⊗ ε ⊗ ε + ε ⊗ ψ ⊗ ε + ε ⊗ ε ⊗ ψ, �(3)θz = θz ⊗ θz ⊗ θz,

�(3)φ = φ ⊗ ε ⊗ ε + θq ⊗ φ ⊗ ε + θq ⊗ θq ⊗ φ. (5.62)

The Case .(f = ψ, x = a) The first coproducts in (5.61) and (5.62) imply that
relation (5.60) takes the form

.ψa=〈ψ, a〉a〈ε, a−1〉 + 〈ε, a〉aψ〈ε, a−1〉 + 〈ε, a〉a〈ψ, a−1〉=a + aψ − a = aψ.

(5.63)

The Case .(f = ψ, x = b) The second coproduct in (5.61) and the first one
in (5.62) imply that

.ψb = 〈ψ, b〉1〈ε, 1〉 + 〈ψ, a〉b〈ε, 1〉 + 〈ψ, a〉a〈ε,−a−1b〉
+ 〈ε, b〉ψ〈ε, 1〉 + 〈ε, a〉bψ〈ε, 1〉 + 〈ε, a〉aψ〈ε,−a−1b〉

〈ε, b〉1〈ψ, 1〉 + 〈ε, a〉b〈ψ, 1〉 + 〈ε, a〉a〈ψ,−a−1b〉
= (0 + b + 0) + (0 + bψ + 0) + (0 + 0 + 0) = b + bψ. (5.64)

The Case .(f = θz, x = a) The first coproduct in (5.61) and the second one
in (5.62) imply that

.θza = 〈θz, a〉aθz〈θz, a
−1〉 = zaθzz

−1 = aθz. (5.65)
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The Case .(f = θz, x = b) The second coproducts in (5.61) and (5.62) imply that

.θzb = 〈θz, b〉θz〈θz, 1〉 + 〈θz, a〉bθz〈θz, 1〉 + 〈θz, a〉aθz〈θz,−a−1b〉
= 0 + zbθz + 0 = zbθz. (5.66)

The Case .(f = φ, x = a) The first coproduct in (5.61) and the third one in (5.62)
imply that

.φa = 〈φ, a〉a〈ε, a−1〉 + 〈θq, a〉aφ〈ε, a−1〉 + 〈θq, a〉aθq〈φ, a−1〉
= 0 + qaφ + 0 = qaφ. (5.67)

The Case .(f = φ, x = b) The second coproduct in (5.61) and the third one
in (5.62) imply that

.φb = 〈φ, b〉1〈ε, 1〉 + 〈φ, a〉b〈ε, 1〉 + 〈φ, a〉a〈ε,−a−1b〉
+ 〈θq, b〉φ〈ε, 1〉 + 〈θq, a〉bφ〈ε, 1〉 + 〈θq, a〉aφ〈ε,−a−1b〉

+ 〈θq, b〉θq〈φ, 1〉 + 〈θq, a〉bθq〈φ, 1〉 + 〈θq, a〉aθq〈φ,−a−1b〉
= ((1 − q)1 + 0 + 0) + (0 + qbφ + 0) + (0 + 0 + qaθq〈θq,−a−1〉〈φ, b〉)

= (1 − q)1 + qbφ − aθq(1 − q) = (1 − q)(1 − aθq) + qbφ. (5.68)

��

5.3.1 Irreducible Representations of D(Bq)

Proposition 5.4 The elements c, d ∈ D(Bq) defined by the relations

.cθq = a (5.69)

and

.φb − 1 − qaθq = θqd = qbφ − q − aθq (5.70)

are central.

Proof That the element c is central is an easy check. To see that d is central, we
define two elements w,w′ ∈ D(Bq) by the relations

.φb = u + vaθq + w, qbφ = u′ + v′aθq + w′, (5.71)
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where u, u′, v, v′ ∈ C are fixed as follows. First, we impose two conditions

.u − u′ = 1 − q = v′ − v (5.72)

which, due to the defining relation between b and φ, imply that w′ = w. By
straightforward verifications one sees that w commutes with a, ψ and θz for all
z ∈ C�=0. Next, we have the equalities

.u′b + v′aθqb + wb = qbφb = qbu + qbvaθq + qbw (5.73)

which, under two more relations of the form

.u′ = qu, qv′ = v, (5.74)

imply that wb = qbw. The system of Eqs. (5.72) and (5.74) on unknowns u, u′, v, v′
admits a unique solution

.u = 1 = v′, u′ = q = v. (5.75)

Now, it is an easy check that φw = qwφ. Indeed, we have

.φw = φ(qbφ − q − aθq) = qφbφ − qφ − φaθq

= qφbφ − qφ − q2aθqφ = q(φb − 1 − qaθq)φ = qwφ. (5.76)

Finally, the equality w = θqd, together with the obtained commutation relations for
w, implies that d is central. ��
Proposition 5.5 Let q ∈ C�=0 be such that 1 �∈ qZ �=0 . The center of the algebra
D(Bq) coincides with the polynomial subalgebra C[c, c−1, d] where c and d are
defined in (5.69) and (5.70)

Proof By Proposition 5.4, for any n ∈ ω, one can easily verify by recurrence the
equality

.φnbn =
∏

k∈n

(1 + qkθqd + q2k+1θ2
q c). (5.77)

This means that any element x ∈ D(Bq) can uniquely be written in the form

.x =
∑

(u,m)∈C �=0×Z

θuempu,m(c, d, ψ), (5.78)
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where

.em :=
⎧
⎨

⎩

bm if m > 0;
1 if m = 0;

φ−m if m < 0
(5.79)

and pu,m(a, c, ψ) ∈ C[c, c−1, d, ψ] is non-zero for only finitely many pairs (u,m).
Remark that, for any m ∈ Z, the element em satisfies the relations

.ψem = em(ψ + m), θzem = zmemθz ∀z ∈ C�=0. (5.80)

Assume that x is central. Then, for any z ∈ C�=0, we have the equality

.x = θzxθ−1
z =

∑

(u,m)∈C �=0×Z

θuemzmpu,m(c, d, ψ) (5.81)

which implies that for any fixed pair (u,m) ∈ C�=0 × Z, one has the family of
equalities

.pu,m = zmpu,m ∀z ∈ C�=0. (5.82)

This means that pu,m can only be non-zero if m = 0. Thus, the element x takes the
form

.x =
∑

u∈C �=0

θupu,0(c, d, ψ). (5.83)

The equality

.bx = xb = b
∑

u∈C �=0

θuupu,0(a, c, ψ + 1) (5.84)

is equivalent to the equalities

.upu,0(c, d, ψ + 1) = pu,0(c, d, ψ) ∀u ∈ C�=0 (5.85)

which imply that the polynomial pu,0(a, c, ψ) can be non-zero only if u = 1 and if
it does not depend on ψ . We conclude that x = p1,0(c, d) ∈ C[c, c−1, d]. ��
Theorem 5.2 Let q ∈ C be such that 1 �∈ qZ �=0 . Then, any finite dimensional
irreducible representation λ : D(Bq) → End(V ) is characterized by the dimension
N := dim(V ) ∈ Z>0, a complex number γ ∈ C, and a multiplicative group
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homomorphism ξ : C�=0 → C�=0 such that there exists a linear basis {vn}n∈N of
V satisfying the relations

.(λa)vn = qN−1−nξ−1
q vn, (λψ)vn = (γ − n)vn, (λθz)vn = z−nξzvn,

(λb)vn = (1 − q−n)vn−1, (λφ)vn = (1 − qN−n−1)vn+1. (5.86)

Proof To simplify notation, we will write x̂ instead of λx for any x ∈ D(Bq), and
[x, y] instead of xy − yx.

As in an irreducible representation all central elements are realised by scalars,
there exist α ∈ C�=0 and β ∈ C such that the central elements c and d defined
in (5.69) and (5.70) are represented by scalar multiples of the identity operator:

.ĉ = α idV , d̂ = β idV . (5.87)

Let u′ ∈ V \ {0} be an eigenvector of ψ̂ corresponding to an eigenvalue γ ′ ∈ C.
Then, the vector b̂u′ either vanishes or it is an eigenvector of ψ̂ corresponding to
the eigenvalue γ ′ + 1. Indeed,

.ψ̂b̂u′ = ([ψ̂, b̂] + b̂ψ̂)u′ = b̂(1 + ψ̂)u′ = (γ ′ + 1)bu′. (5.88)

Iterating the action of b̂ and taking into account the fact that dim(V ) < ∞, we
conclude that there exists a positive integer K such that u′′ := b̂K−1u′ �= 0 and

.b̂u′′ = 0, ψ̂u′′ = γ u′′, γ := γ ′ + K − 1. (5.89)

Additionally, as the elements {θz}z∈C �=0 and ψ generate a commutative sub-algebra
A of D(Bq), and any irreducible finite dimensional representation of a commutative
algebra is one dimensional, there exists a non zero vector u ∈ λ(A)u′′ that generates
an irreducible sub-representation of A. This means that the following relations are
satisfied:

.b̂u = 0, ψ̂u = γ u, θ̂zu = ξzu, ∀z ∈ C�=0, (5.90)

where

.ξ : C�=0 → C�=0 (5.91)

is a (multiplicative) group homomorphism.
By a similar reasoning, as in the case of the vector u′ above, for any n ∈ ω,

the vector φ̂nu either vanishes or it is an eigenvector of ψ̂ corresponding to the
eigenvalue γ − n, and, as dim(V ) < ∞, there exists a positive integer M such that

.φ̂M−1u �= 0, φ̂Mu = 0. (5.92)

We denote by W the linear span of the vectors {φ̂nu}n∈M . Let us show that W = V .
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First, we note that, apart from the relations

.ψ̂φ̂nu = (γ − n)φ̂nu, n ∈ M, (5.93)

we also have

.θ̌zφ̂
nu = z−nφ̂nu, n ∈ M, (5.94)

where we have denoted

.θ̌z := θ̂z/ξz, ∀z ∈ C�=0. (5.95)

Next, by using (5.87) in (5.70), we obtain

.φ̂b̂ = idV +βθ̂q + qαθ̂2
q (5.96)

and

.b̂φ̂ = idV +q−1βθ̂q + q−1αθ̂2
q (5.97)

Applying (5.96) to u and (5.97) to φ̂M−1u, and taking into account rela-
tions (5.90), (5.92) and (5.94), we obtain

.(1 + βξq + qαξ2
q )u = 0 ⇒ 1 + βξq + αqξ2

q = 0 (5.98)

and

.(1 + βq−Mξq + αq1−2Mξ2
q )φ̂M−1u = 0 ⇒ 1 + βq−Mξq + αq1−2Mξ2

q = 0.

(5.99)

Excluding β from (5.98) and (5.99), we obtain

.(1 − αq1−Mξ2
q )(1 − qM) = 0 ⇔ α = qM−1ξ−2

q (5.100)

and also from (5.98) it follows that

.β = −ξ−1
q (1 + qM). (5.101)

By using substitutions (5.100), (5.101) and notation (5.95), we rewrite (5.96)
and (5.97) as follows:

.φ̂b̂ = idV −(1 + qM)θ̌q + qMθ̌2
q = (idV −θ̌q )(idV −qMθ̌q) (5.102)
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and

.b̂φ̂ = idV −(1 + qM)q−1θ̌q + qM−2θ̌2
q = (idV −q−1θ̌q )(idV −qM−1θ̌q ).

(5.103)

For n ∈ M \ {0}, applying relation (5.103) to the vector φ̂n−1u and taking into
account (5.94), we obtain

.b̂φ̂nu = (1 − q−n)(1 − qM−n)φ̂n−1u. (5.104)

Thus, we conclude that the subspace W of V generated by vectors {φ̂nu}n∈M is
an invariant subspace of the representation λ, and by the irreducibility of λ, we
conclude that W = V so that

.N := dim(V ) = dim(W) = M, (5.105)

and the vectors {φ̂nu}n∈M form a linear basis of V .
Let us define renormalized vectors

.vn := (q)N−n−1φ̂
nu, n ∈ N. (5.106)

Then, by using the relation

.(1 − qk)(q)k−1 = (q)k, ∀k ∈ Z>0, (5.107)

we have

.b̂vn = (q)N−n−1(1 − q−n)(1 − qN−n)φ̂n−1u = (1 − q−n)vn−1 (5.108)

and

.φ̂vn = (q)N−n−1φ̂
n+1v = (1 − qN−n−1)vn+1. (5.109)

��
Remark 5.3 The vanishing properties of the coefficients of relations (5.108) with
n = 0 and (5.109) with n = N − 1 naturally take care of the annihilation relations

.b̂v0 = φ̂vN−1 = 0. (5.110)

Exercise 5.5 For any n ∈ N , show that

.b̂kvn = (q−n; q)kvn−k, ∀k ∈ n + 1, (5.111)
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and

.φ̂kvn = (qN−n−k; q)kvn+k, ∀k ∈ N − n. (5.112)

with the notation

.(x; q)n :=
{∏n−1

k=0(1 − xqk) if k > 0;
1 if k = 0.

(5.113)

5.3.2 Quantum Group Uq(sl2)

Recall that the element .c := aθ−1
q ∈ D(Bq) is central and grouplike. This means

that the vector subspace

.Iq := (c − 1)D(Bq) ⊂ D(Bq)

is a bi-ideal stable under the action of the antipode, see Definitions 2.6, 2.2 and 2.4.
By the results of Chap. 2, Sect. 2.4.2, we conclude that the quotient vector space

.Hq := D(Bq)/Iq

admits a unique structure of a Hopf algebra such that the canonical projection
map .π : D(Bq) → Hq is a morphism of Hopf algebras. The Hopf algebra .Hq is
closely related with the quantum group .Uq(sl2) which is defined by the following
presentation:

.generators: k, e, f ;

relations: ke = q2ek, kf = q−2f k, ef − f e = k − k−1

q − q−1

coproducts: �k = k ⊗ k, �e = k ⊗ e + e ⊗ 1, �f = 1 ⊗ f + f ⊗ k−1

where we assume that .q2 �= 1 and k is invertible (as a group-like element in any
Hopf algebra).

Exercise 5.6 Determine .α, β ∈ C�=0 such that the map

.k �→ a + Iq2 , e �→ αb + Iq2 , f �→ βa−1φ + Iq2

extends to an injective morphism of Hopf algebras .h : Uq(sl2) → Hq2 .



5.4 The Hopf Algebra D(B1) 115

The algebra .Uq(sl2) was discovered in [24], and the general theory of quantum
groups has been subsequently developed in the works [11, 13, 17]. An introduction
for this subject can be found in the book [16].

5.4 The Hopf Algebra D(B1)

Let .B1 be the commutative Hopf algebra over .C corresponding to the quantum
group .Bq with .q = 1 defined and analyzed in Sect. 4.4 of Chap. 4 in the case of
generic q, that is when q is not a root of unity. Here, we consider the case of the
simplest root of unity .q = 1. This Hopf algebra coincides with .J0, the specification
of .Jh̄ to .h̄ = 0, see Sect. 4.3 of Chap. 4. In Sect. 6.5 of Chap. 6, this algebra will
be used for interpretation of the Alexander polynomial of knots as an example of
a universal invariant. For this reason, below we briefly describe the restricted dual
and the quantum double of .B1, leaving the detailed analysis to exercises.

5.4.1 The Restricted Dual Hopf Algebra B
o,op
1

The opposite .B
o,op
1 of the restricted dual Hopf algebra .Bo

1 is composed of two Hopf
subalgebras: the group algebra .C[Aff1(C)] generated by group-like elements

.χu,v, (u, v) ∈ C × C�=0, χu,vχu′,v′ = χu+vu′,vv′ , (5.114)

and the universal enveloping algebra .U(Lie Aff1(C)) generated by two primitive
elements .ψ and .φ satisfying the relation

.φψ − ψφ = φ. (5.115)

The relations between the generators of .C[Aff1(C)] and .U(Lie Aff1(C)) are of the
form

.[χu,v, ψ] = uφχu,v, χu,vφ = vφχu,v ∀(u, v) ∈ C × C�=0 (5.116)

where .[x, y] := xy − yx. As linear forms on .B1, they are defined by the relations

.〈χu,v, b
man〉 = umv−m−n,

〈φ, bman〉 = δm,1, 〈ψ, bman〉 = δm,0n, ∀(m, n) ∈ Z≥0 × Z. (5.117)

Exercise 5.7 By using the methods of Chap. 4, provide the details of the above
description of the structure of the Hopf algebra .B

o,op
1 .
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5.4.2 The Quantum Double D(B1)

The commutation relations (5.60) in the case of the quantum double .D(B1) take the
form

.[ψ, b] = b, [φ, b] = 1 − a,

bχu,v = χu,v(bv + (a − 1)u) ∀(u, v) ∈ C × C�=0 (5.118)

and a is central.

Exercise 5.8 Prove the defining relations of .D(B1) given by Eq. (5.118).

Exercise 5.9 Show that in any finite-dimensional representation of the algebra
.D(B1), the elements .1 − a, .b and .φ are nilpotent.

The formal universal r-matrix of .D(B1), see Remark 5.2, is given by the formula

.R := (1 ⊗ a)ψ⊗1eφ⊗b =
∑

m,n≥0

1

n!
(

ψ

m

)
φn ⊗ (a − 1)mbn (5.119)

and it is well defined in the context of finite-dimensional representations for the
following reason.

Any finite dimensional right comodule V over .(D(B1))
o is a left module over

.D(B1) defined by

.xv =
∑

(v)

v(0)〈v(1), x〉, ∀(x, v) ∈ D(B1) × V (5.120)

where we extend Sweedler’s sigma notation to comodules. Thus, it suffices to make
sense of formula (5.119) in the case of an arbirary finite-dimensional representation
of .D(B1) where the elements .1 − a, .b and .φ are necessarily nilpotent, so that the
formal infinite double sum truncates to a well defined finite sum.

5.4.3 The Center of D(B1)

Proposition 5.6 The center of the algebra D(B1) is the polynomial subalgebra
C[a±1, c] where

.c := φb + (a − 1)ψ. (5.121)
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Proof It is easily verified that c is central. Any element x ∈ D(B1) can uniquely be
written in the form

.x =
∑

(u,v,m)∈C×C �=0×Z

χu,vempu,v,m(a, c, ψ), (5.122)

where

.em :=
⎧
⎨

⎩

bm if m > 0;
1 if m = 0;

φ−m if m < 0
(5.123)

and the polynomial pu,v,m(a, c, ψ) ∈ C[a±1, c, ψ] is non-zero for only finitely
many triples (u, v,m).

Assume that x ∈ D(B1) is a central element. Then, for any s ∈ C�=0, we have the
equality

.x = χ−1
0,s xχ0,s =

∑

(u,v,m)∈C×C �=0×Z

χu/s,vemsmpu,v,m(a, c, ψ)

=
∑

(u,v,m)∈C×C �=0×Z

χu,vemsmpus,v,m(a, c, ψ) (5.124)

which implies that for any fixed triple (u, v,m) ∈ C × C�=0 × Z, one has the family
of equalities

.pu,v,m = smpus,v,m ∀s ∈ C�=0. (5.125)

This means that pu,v,m can only be non-zero if u = m = 0. Thus, the element x

takes the form

.x =
∑

v∈C �=0

χ0,vp0,v,0(a, c, ψ). (5.126)

The equality

.bx = xb = b
∑

v∈C �=0

χ0,vv
−1p0,v,0(a, c, ψ + 1). (5.127)

is equivalent to the equalities

.p0,v,0(a, c, ψ + 1) = v−1p0,v,0(a, c, ψ) ∀v ∈ C�=0 (5.128)
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which imply that the polynomial p0,v,0(a, c, ψ) can be non-zero only if v = 1 and
if it does not depend on ψ . We conclude that x ∈ C[a±1, c]. ��

5.5 Solutions of the Yang–Baxter Equation

Definition 5.4 An r-matrix over a coalgebra C is an invertible element ρ of
the convolution algebra (C⊗2)∗ such that the following Yang–Baxter equation is
satisfied in the convolution algebra (C⊗3)∗:

.ρ1,2 ∗ ρ1,3 ∗ ρ2,3 = ρ2,3 ∗ ρ1,3 ∗ ρ1,2. (5.129)

Example 5.1 The dual universal r-matrix of a cobraided bialgebra B is an r-matrix
over the underlying coalgebra of B. ��
Definition 5.5 An r-matrix over a vector space V is an element r ∈ Aut(V ⊗2) such
that the following Yang–Baxter equation is satisfied in the algebra End(V ⊗3):

.r1,2r2,3r1,2 = r2,3r1,2r2,3, r1,2 := r ⊗ idV , r2,3 := idV ⊗r. (5.130)

By using the graphical notation , the Yang–Baxter equation (5.130) takes
the following graphical form

. (5.131)

In the particular case, where V is a finite dimensional vector space over a field F,
let B ⊂ V be a linear basis. Defining the matrix coefficients

.
{
r
c,d
a,b | a, b, c, d ∈ B

} ⊂ F, r(a ⊗ b) =
∑

c,d∈B

r
c,d
a,b c ⊗ d, a, b ∈ B, (5.132)

we reduce the Yang–Baxter equation (5.131) to a over determined system of non-
linear polynomial equations

.

∑

s,t,u∈B

r
i,j
u,sr

s,k
t,n r

u,t
l,m =

∑

s,t,u∈B

r
j,k
s,u r

i,s
l,t r

t,u
m,n, i, j, k, l,m, n ∈ B, (5.133)
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which can also be represented in a graphical form by assigning elements of the basis
B to edges in (5.131) and summing over the elements assigned to the internal edges

. (5.134)

with the identifications

. (5.135)

Proposition 5.7 Let V = (V , δ : V → V ⊗ C) be a right comodule over a
coalgebra C, and ρ ∈ (C⊗2)∗ an r-matrix over the coalgebra C. Then, the element

.

(5.136)

is an r-matrix over the vector space V . Here, in the graphical description, the thick
lines correspond to V and thin lines to C.

Proof The inverse r−1 of r is given by the formula (exercise)

. (5.137)

where ρ̄ is the convolution inverse of ρ.
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By using three times the equality (δ ⊗ idC)δ = (idV ⊗�), we transform the left
hand side of (5.130) as follows:

.

(5.138)

and, doing a similar calculation for the right hand side of (5.130), we obtain

. (5.139)

thus concluding that Eq. (5.130) is satisfied due to the convolutional Yang–Baxter
equality (5.129) for the r-matrix ρ over the coalgebra C. ��
The following proposition allows one to view any finite dimensional module over an
algebra as a comodule over the restricted dual of that algebra. In this way, one can
associate to any finite dimensional representation of a quantum double an r-matrix
over the vector space underlying that representation.

Proposition 5.8 Let V be a finite dimensional left module over an algebra A, and
B ⊂ V a linear basis. Then, V is a right comodule over the coalgebra Ao with the
coaction

.δb =
∑

b′∈B

b′ ⊗ λb′,b (5.140)

where {λb′,b | b, b′ ∈ B} ⊂ Ao are matrix coefficients of the representation
morphism λ : A → End(V ) with respect to the basis B,

.(λx)b =
∑

b′∈B

b′〈λb′,b, x〉, x ∈ A, b ∈ B. (5.141)



5.5 Solutions of the Yang–Baxter Equation 121

Proof

(1) We start by checking the equality (δ ⊗ idAo)δ = (idV ⊗�). Indeed, for any
b ∈ B, we have

.(δ ⊗ idAo)δb =
∑

b′∈B

(δb′) ⊗ λb′,b =
∑

b′∈B

( ∑

b′′∈B

b′′ ⊗ λb′′,b′
)

⊗ λb′,b

=
∑

b′′∈B

b′′ ⊗
( ∑

b′∈B

λb′′,b′ ⊗ λb′,b
)

=
∑

b′′∈B

b′′ ⊗ (�λb′′,b)

= (idV ⊗�)
∑

b′′∈B

b′′ ⊗ λb′′,b = (idV ⊗�)δb. (5.142)

(2) It remains to check the property (idV ⊗ε)δ = idV . For any b ∈ B, we calculate

.(idV ⊗ε)δb =
∑

b′∈B

b′〈ε, λb′,b〉 =
∑

b′∈B

b′δb′,b = b. (5.143)

��
Summarizing the contents of Proposition 5.7 and Proposition 5.8, we have the

following procedure of constructing a solution of the non-linear system (5.133) of
polynomial Yang–Baxter equations.

Let A be an algebra, ρ an r-matrix over the coalgebra Ao (see Definition 5.4),
λ : A → End(V ) a finite-dimensional representation, and B ⊂ V a linear basis.
Then, the element r ∈ End(V ⊗2) defined by (5.136), which we can also write as

.r = (idV ⊗V ⊗ρ)(idV ⊗δ ⊗ idAo)(σV,V ⊗ idAo)(idV ⊗δ), (5.144)

is an r-matrix over the vector space V , where δ : V → V ⊗Ao is defined by (5.140)
by using the matrix coefficients {λa,b | a, b ∈ B} of the representation λ with
respect to the basis B (see Eq. (5.141)).

Let us calculate the matrix coefficients r
c,d
a,b of r (defined in (5.132)) in terms of

the evaluation coefficients of ρ.
For any a, b ∈ B, we have

.r(a ⊗ b) = (idV ⊗V ⊗ρ)(idV ⊗δ ⊗ idAo)(σV,V ⊗ idAo)(idV ⊗δ)(a ⊗ b)

= (idV ⊗V ⊗ρ)(idV ⊗δ ⊗ idAo)(σV,V ⊗ idAo)(a ⊗
∑

c∈B

c ⊗ λc,b)

=
∑

c∈B

(idV ⊗V ⊗ρ)(idV ⊗δ ⊗ idAo)(c ⊗ a ⊗ λc,b)

=
∑

c∈B

(idV ⊗V ⊗ρ)(c ⊗
∑

d∈B

d ⊗ λd,a ⊗ λc,b) =
∑

c,d∈B

c ⊗ d〈ρ, λd,a ⊗ λc,b〉

(5.145)
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so that

.r
c,d
a,b = 〈ρ, λd,a ⊗ λc,b〉 ∀a, b, c, d ∈ B. (5.146)

Theorem 5.3 Let λ : D(Bq) → End(V ) be an irreducible N -dimensional repre-
sentation and {vn}n∈N ⊂ V its distinguished linear basis (see Theorem 5.2). Let
{λm,n}m,n∈N ⊂ D(Bq)o be the matrix coefficients with respect to the basis {vn}n∈N

defined by

.(λx)vn =
∑

m∈N

vm〈λm,n, x〉, ∀x ∈ D(Bq). (5.147)

Then, the matrix coefficients of the corresponding r-matrix over V are given by

.r
m,k
l,n = 〈λk,l, j ıoλm,n〉

= (q−1)n(q)N−1−l

(q−1)m(q)N−1−k(q)n−m

q(n+1−N)kξN−1−n+k
q ξ−1

ξq
δk+m,l+n (5.148)

if m ≤ n and zero otherwise, see (4.116) for the notation.

Remark 5.4 In what follows, for any generating element x ∈ Bq (respectively x ∈
Bo

q ), we will distinguish it from its image ıx (respectively jx) in D(Bq) by putting
a dot above it. For example, we will write ȧ ∈ Bq and a = ıȧ ∈ D(Bq), ψ̇ ∈ Bo

q

and ψ = jψ̇ ∈ D(Bq), etc. The fact that j reverses the product implies that we
have, for example, φψ = (j φ̇)jψ̇ = j (ψ̇φ̇).

As an intermediate step towards the proof of Theorem 5.3, we first calculate the
elements ıoλm,n ∈ Bo

q .

Lemma 5.1 The images ıoλm,n, 0 ≤ m, n < N , as elements of the algebra Bo
q , are

given by the formula

.ıoλm,n =
{

(q−n;q)n−m

(q)n−m
φ̇n−mθ̇qN−1−n/ξq

if m ≤ n,

0 if m > n
(5.149)

with the notation defined in (5.113) and (4.116).

Proof Recall that for any element f ∈ Bo
q with the coproduct

.�f =
∑

(f )

f(1) ⊗ f(2)
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in Sweedler’s sigma notation, we have the decomposition formula (see Eq. (4.143)
in the proof of Theorem 4.4)

.f =
∑

k≥0

∑

(f )

〈f(1), ḃ
k〉

(q)k
φ̇k(sr)of(2) (5.150)

which, in the case when f = ıoλm,n, takes the form

.ıoλm,n =
∑

k≥0

∑

l∈N

〈ıoλm,l, ḃ
k〉

(q)k
φ̇k(ısr)oλl,n. (5.151)

Iteraring the forth formula in (5.86), we obtain

.〈ıoλm,l, ḃ
k〉 = 〈λm,l, b

k〉 = (q−l; q)kδl,m+k, (5.152)

while iterating the first formula in (5.86) and taking into account the fact that the
composed morphism of Hopf algebras sr : Bq → Bq acts on the basis elements as

.sr(ḃi ȧj ) = δ0,i ȧ
j ∀(i, j) ∈ ω × Z, (5.153)

see also (4.119) and (4.120), we obtain

.〈(ısr)oλl,n, ḃ
i ȧj 〉 = 〈λl,n, ısr(ḃ

i ȧj )〉 = δi,0〈λl,n, a
j 〉 = δi,0δl,n

(
qN−1−n/ξq

)j

= δl,n〈θ̇qN−1−n/ξq
, ḃi ȧi〉 ⇒ (ısr)oλl,n = δl,nθ̇qN−1−n/ξq

. (5.154)

Substituting (5.152) and (5.154) into (5.151), we obtain

.ıoλm,n =
∑

k≥0

∑

l∈N

(q−l; q)kδl,m+k

(q)k
φ̇kδl,nθ̇qN−1−n/ξq

=
∑

k≥0

(q−n; q)kδn,m+k

(q)k
φ̇kθ̇qN−1−n/ξq

=
{

(q−n;q)n−m

(q)n−m
φ̇n−mθ̇qN−1−n/ξq

if m ≤ n,

0 if m > n.

(5.155)

��
Proof of Theorem 5.3 From Lemma 5.1, we obtain

.jıoλm,n = (q−n; q)n−m

(q; q)n−m

θqN−1−n/ξq
φn−m (5.156)

if m ≤ n and zero otherwise. We conclude that r
m,k
l,n = 0 unless m ≤ n.
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In order to handle the case m ≤ n, we will use the formula

.〈λk,l, φ
m〉 = (qN−k; q)mδk,l+m ∀k, l,m ∈ ω (5.157)

which can be obtained by iterating the last formula of (5.86).
Assuming that m ≤ n, we calculate

.r
m,k
l,n = 〈λk,l, j ıoλm,n〉 = (q−n; q)n−m

(q; q)n−m

〈
λk,l, θqN−1−n/ξq

φn−m
〉

= (q−n; q)n−m

(q; q)n−m

(
qN−1−n/ξq

)−k

ξqN−1−n/ξq

〈
λk,l, φ

n−m
〉

= (q−n; q)n−m(qN−k; q)n−m

(q)n−m

(
qN−1−n/ξq

)−k

ξqN−1−n/ξq
δk+m,l+n

= (q−1)n(q)N−1−l

(q−1)m(q)N−1−k(q)n−m

q(n+1−N)kξN−1−n+k
q ξ−1

ξq
δk+m,l+n (5.158)

where, in the third equality, we used an iteration of the third formula in (5.86), in the
forth equality, we used (5.157) and, in the last equality, we used the multiplicative
property ξuξv = ξuv for any u, v ∈ C�=0, and the identities

.(q−n; q)n−m = (q−1)n

(q−1)m
, 0 ≤ m ≤ n, (5.159)

and

.(qN−k; q)n−m

∣∣∣
k+m=l+n

= (qN−k; q)k−l = (q)N−1−l

(q)N−1−k

, 0 ≤ l ≤ k ≤ N − 1.

(5.160)
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