
Chapter 3
The Restricted Dual of an Algebra

As we already have seen in the previous chapters, if C is a coalgebra, then the dual
space .C∗ = L(C,F) is an algebra with the convolution product

.μC∗ = �∗|C∗⊗C∗ .

However, the categorial duality between algebras and coalgebras does not allow us
to conclude that the dual space of an algebra is a coalgebra with respect to the dual
structural maps. The reason is that for a vector space V , the inclusion .V ∗ ⊗ V ∗ ⊂
(V ⊗ V )∗ is strict if V is infinite dimensional. This means that, the dual vector
space .A∗ of an algebra is a coalgebra with respect to the dual structural maps only
if .μ∗(A∗) ⊂ A∗ ⊗ A∗. This motivates the definition of the restricted dual of an
algebra.

Definition 3.1 The restricted (or finite) dual .Ao of an algebra A is the vector
subspace of .A∗ given by the inverse image of the tensor square of the dual vector
space .A∗ by the dual of the product of A, i.e.

.Ao := (μ∗)−1(A∗ ⊗ A∗). (3.1)

3.1 The Restricted Dual and Finite Dimensional
Representations

In this section, elements of the restricted dual .Ao are characterised in terms of finite
dimensional representations of A and .Ao is shown to be a coalgebra with respect to
the dual structural maps, that is .μ∗(Ao) ⊂ Ao ⊗ Ao.

When A is finite dimensional, one always has the equality .Ao = A∗. When A

is infinite dimensional, .Ao is a subspace of .A∗ which can be both the whole space
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60 3 The Restricted Dual of an Algebra

.Ao = A∗ or the trivial subspace .Ao = 0. The result of this section implies that

.Ao = 0 in the case when A does not admit any finite dimensional representations.
In order to characterise elements of .Ao, we consider the matrix elements of finite

dimensional representations of A.
To begin with, let .ρ : A → F be an algebra morphism which corresponds to a

one-dimensional representation. This means that .ρ is a linear form with a specific
behaviour with respect to the algebra structure of A, namely

.〈ρ, xy〉 = 〈ρ, x〉〈ρ, y〉

for any .x, y ∈ A, and .〈ρ, 1〉 = 1. Let us rewrite .〈ρ, xy〉 as follows:

.〈ρ, xy〉 = 〈ρ,μ(x ⊗ y)〉 = 〈μ∗ρ, x ⊗ y〉. (3.2)

By writing also

.〈ρ, x〉〈ρ, y〉 = 〈ρ ⊗ ρ, x ⊗ y〉, (3.3)

we see that .μ∗ρ = ρ ⊗ ρ, which means that .ρ, considered as a linear form on A, is
contained in the restricted dual of A.

Assume now, more generally, that V is an n-dimensional (left) A-module, i.e.
that we have an algebra morphism .λ : A → End(V ). Let us choose a linear basis
.{vi}i∈n ⊂ V with .n = {0, 1, . . . , n − 1}, and for any .x ∈ A and .i ∈ n, consider
the vector .(λx)vi . As any other vector in V , it is a linear combination of the basis
vectors where the coefficients are linear functions of x:

.(λx)vi =
∑

j∈n

vj 〈λj,i , x〉, (3.4)

where the elements .λj,i ∈ A∗ are called matrix coefficients of the representation .λ

with respect to the basis .{vi}i∈n. Writing

.(λ(xy))vi =
∑

j∈n

vj 〈λj,i , xy〉 =
∑

j∈n

vj 〈μ∗λj,i , x ⊗ y〉 (3.5)

and

.(λx)(λy)vi =
∑

k∈n

(λx)vk〈λk,i , y〉 =
∑

j,k∈n

vj 〈λj,k, x〉〈λk,i , y〉

=
∑

j,k∈n

vj 〈λj,k ⊗ λk,i, x ⊗ y〉,
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and using the equality .λ(ab) = (λa)(λb), we conclude that

.μ∗λj,i =
∑

k∈n

λj,k ⊗ λk,i , ∀i, j ∈ n, (3.6)

i.e. .{λj,i}i,j∈n ⊂ Ao and .μ∗({λj,i}i,j∈n) ⊂ Ao ⊗ Ao.

Remark 3.1 The matrix coefficients .{λj,i}i,j∈n generate a finite dimensional sub-
coalgebra of .Ao which is an isomorphic image of the matrix coalgebra from
Example 1.13.

Theorem 3.1 The restricted dual .Ao of any algebra A is the linear span of the
matrix coefficients of all finite dimensional representations of A.

Proof Taking into account the preceding consideration, it suffices to show that, for
any non zero element f of .Ao, there exists a finite dimensional (left) A-module .Vf

such that f is a linear combination of the matrix coefficients of this representation
(with respect to some basis).

The dual space .A∗ is a left A-module corresponding to the dual right multipli-
cations .R∗

x ∈ End(A∗), where .x ∈ A and .Rx ∈ End(A) is defined by .Rxy = yx.
Indeed, for any .x, y, z ∈ A and .α ∈ F, we verify the linearity

.Rx+αyz = z(x + αy) = zx + αzy = Rxz + αRyz = (Rx + αRy)z

⇒ Rx+αy = Rx + αRy ⇒ R∗
x+αy = R∗

x + αR∗
y

and it is easily checked that

.R∗
xR∗

y = (RyRx)∗ = R∗
xy, R∗

1 = (idA)∗ = idA∗ . (3.7)

Let .Vf := R∗
Af ⊂ A∗ be the orbit of f with respect to this action of A on .A∗. The

linear dependence of .R∗
x on x implies that the set .Vf is a vector subspace of .A∗, and

the map .λ : A → End(Vf ) defined by .λx = R∗
x |Vf is an algebra morphism.

The condition .f ∈ Ao implies that

.μ∗f =
∑

i∈n

gi ⊗ hi (3.8)

for some .n ∈ Z>0 and .g, h ∈ (A∗)n. The calculation

.〈R∗
xf, y〉 = 〈f, yx〉 = 〈μ∗f, y ⊗ x〉 =

∑

i∈n

〈gi, y〉〈hi, x〉 =
〈 ∑

i∈n

gi〈hi, x〉, y
〉

(3.9)
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shows that for any .x ∈ A, the element .R∗
xf finds itself in the linear span of the

elements .{gi}i∈n:

.R∗
xf =

∑

i∈n

gi〈hi, x〉. (3.10)

Thus, .m := dim(Vf ) ≤ n < ∞.
Let .{vi}i∈m be a linear basis of .Vf with .m = {0, 1, . . . ,m − 1}. Then, for any

.x ∈ A, we have

.R∗
xf =

∑

i∈m

vi〈wi, x〉 (3.11)

for some .w ∈ (A∗)m. In particular,

.f = R∗
1f =

∑

i∈m

vi〈wi, 1〉. (3.12)

Let .z ∈ Am be such that

.vi = R∗
zi
f, ∀i ∈ m. (3.13)

We have

.(λx)vi = (λx)R∗
zi
f = R∗

xzi
f =

∑

j∈m

vj 〈wj , xzi〉 =
∑

j∈m

vj 〈R∗
zi
wj , x〉. (3.14)

Thus, the matrix coefficients .{λi,j }i,j∈m of the representation .λ, corresponding to
the basis .{vi}i∈m, are given by

.λi,j = R∗
zj

wi, ∀i, j ∈ m. (3.15)

Let us show that f is a linear combination of .λi,j ’s.
By using (3.11), for any .x ∈ A, we write

.〈f, x〉 = 〈R∗
xf, 1〉 =

∑

i∈m

〈vi, 1〉〈wi, x〉 =
〈∑

i∈m

〈vi, 1〉wi, x
〉

(3.16)

which means that

.f =
∑

i∈m

〈vi, 1〉wi. (3.17)
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By applying .R∗
zj

to both sides of this decomposition, we obtain

.vj = R∗
zj

f =
∑

i∈m

〈vi , 1〉R∗
zj

wi =
∑

i∈m

〈vi , 1〉λi,j . (3.18)

Finally, by substituting this into (3.12), we obtain

.f =
∑

i,j∈m

〈vi , 1〉〈wj , 1〉λi,j . (3.19)

Corollary 3.1 For any algebra A, one has the inclusion .μ∗(Ao) ⊂ Ao ⊗ Ao.

This follows immediately from (3.6).

Exercise 3.1 For any algebra A let .ιA : Ao → A∗ be the canonical inclusion map.
Let .f : A → B be an algebra morphism. Show that

1. there exists a unique coalgebra morphism .f o : Bo → Ao such that

.f ∗ιB = ιAf o;

2. .(idA)o = idAo ;
3. .(fg)o = gof o for any algebra morphism .g : Z → A;

Remark 3.2 The parts (2) and (3) of Exercise 3.1 reflect the functorial nature of
the restricted dual which directly follows from the functorial nature of the duality
correspondence for vector spaces. The restricted dual is, in fact, a contravariant
functor from the category .AlgF of .F-algebras to the category .CoalgF of .F-
coalgebras. One can also show that there exists a natural equivalence

.HomAlg�(A,C∗)  HomCoalg�(C,Ao), ∀(A,C) ∈ AlgF × CogF. (3.20)

Exercise 3.2 Let .f : A → B be a surjective morphism of algebras. Show that
.f o : Bo → Ao is an injective morphism of coalgebras.

3.1.1 An Algebra with Trivial Restricted Dual

Theorem 3.1 implies that, if an algebra A does not admit finite dimensional
representations, then its restricted dual is trivial, i.e. .Ao = 0. For example, consider
the Heisenberg subalgebra .AHeis of .End(C[z]) generated by the multiplication and
differentiation operators x and .∂ defined by

.x(p(z)) = zp(z), ∂(p(z)) = dp(z)

dz
, ∀p(z) ∈ C[z]. (3.21)



64 3 The Restricted Dual of an Algebra

They satisfy the commutation relation

.∂x − x∂ = idC[z] . (3.22)

The Heisenberg algebra does not admit finite dimensional representations. Indeed,
assume that there is an algebra homomorphism .λ : AHeis → End(V ), where .n :=
dim(V ) ∈ Z>0. By taking the trace of the identity

.(λ∂)(λx) − (λx)(λ∂) = idV , (3.23)

and using the cyclic property of the trace, we obtain the equality .0 = n > 0 which
is a contradiction. Thus, .(AHeis)

o = 0.

3.1.2 An Infinite Dimensional Algebra A with Ao = A∗

Let V be an infinite dimensional vector space. Define an algebra .AV which, as a
vector space, is the direct sum .F ⊕ V and the product

.μ((α, v) ⊗ (β,w)) = (α, v)(β,w) = (αβ, αw + βv) (3.24)

Let .p ∈ A∗
V be the linear form defined by

.〈p, (α, v)〉 = α. (3.25)

For any .f ∈ A∗
V , we have

.〈μ∗f, (α, v) ⊗ (β,w)〉 = 〈f, (αβ, αw + βv)〉
= 〈f, (1, 0)〉αβ + 〈f, (0, αw + βv)〉 = 〈f, (1, 0)〉αβ + α〈f, (0, w)〉 + β〈f, (0, v)〉

= −〈f, (1, 0)〉αβ + α〈f, (β,w)〉 + β〈f, (α, v)〉
= −〈f, (1, 0)〉〈p ⊗ p, (α, v) ⊗ (β,w)〉

+ 〈p ⊗ f, (α, v) ⊗ (β,w)〉 + 〈f ⊗ p, (α, v) ⊗ (β,w)〉
= 〈p ⊗ f + f ⊗ p − 〈f, (1, 0)〉p ⊗ p, (α, v) ⊗ (β,w)〉. (3.26)

Thus, .f ∈ Ao
V with

.μ∗f = p ⊗ f + f ⊗ p − 〈f, (1, 0)〉p ⊗ p. (3.27)
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3.2 The Restricted Dual of the Tensor Product of Two
Algebras

Lemma 3.1 For any algebras A and B, the canonical embedding

.αA,B : Ao ⊗ Bo ↪→ (A ⊗ B)o (3.28)

is a coalgebra isomorphism such that, for any pair of algebra morphisms f : A →
U and g : B → V , one has the equality

.(f ⊗ g)oαU,V = αA,B(f o ⊗ go). (3.29)

Proof

(1) Let A and B be algebras. Define the canonical algebra inclusions

.ı : A ↪→ A ⊗ B, j : B ↪→ A ⊗ B,

ıx = x ⊗ 1B, jy = 1A ⊗ y, ∀(x, y) ∈ A × B. (3.30)

Denoting α := αA,B , let us show that the map

.β := (ıo ⊗ jo)�(A⊗B)o : (A ⊗ B)o → Ao ⊗ Bo (3.31)

is the inverse of α.
For any (ϕ, x, y) ∈ (A ⊗ B)o × A × B, denoting � := �(A⊗B)o , we have

.〈αβϕ, x ⊗ y〉 = 〈βϕ, x ⊗ y〉 = 〈�ϕ, ıx ⊗ jy〉 = 〈ϕ, (ıx)(jy)〉 = 〈ϕ, x ⊗ y〉
(3.32)

implying that β is a right inverse of α, and, for any (f, g, x, y) ∈ Ao × Bo ×
A × B, we also have

.〈βα(f ⊗ g), x ⊗ y〉 = 〈β(f ⊗ g), x ⊗ y〉 = 〈�(f ⊗ g), ıx ⊗ jy〉
= 〈f ⊗ g, (ıx)(jy)〉 = 〈f ⊗ g, x ⊗ y〉 (3.33)

implying that β is a left inverse of α.
(2) In order to show that αA,B is a morphism of coalgebras, it suffices to show that

.�(A⊗B)oαA,B = (αA,B ⊗ αA,B)�Ao⊗Bo (3.34)
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and

.ε(A⊗B)oαA,B = εAo ⊗ εBo . (3.35)

Indeed, for any (ϕ,ψ) ∈ Ao × Bo and (x, y, u, v) ∈ A2 × B2, we have

.〈�(A⊗B)oαA,B(ϕ⊗ψ), x ⊗u⊗y ⊗v〉 = 〈ϕ⊗ψ, xy ⊗uv〉 = 〈ϕ, xy〉〈ψ, uv〉
= 〈�Aoϕ, x ⊗ y〉〈�Boψ, u ⊗ v〉 = 〈(�Aoϕ) ⊗ (�Boψ), x ⊗ y ⊗ u ⊗ v〉

=〈�Ao⊗Bo (ϕ⊗ψ), x⊗u⊗y⊗v〉=〈(αA,B⊗αA,B)�Ao⊗Bo (ϕ⊗ψ), x⊗u⊗y⊗v〉

and

.〈ε(A⊗B)oαA,B, ϕ ⊗ ψ〉 = 〈ϕ ⊗ ψ, ηA⊗B1〉
= 〈ϕ ⊗ ψ, ηA1 ⊗ ηB1〉 = 〈ϕ, ηA1〉〈ψ, ηB1〉
= 〈εAo , ϕ〉〈εBo , ψ〉 = 〈εAo ⊗ εBo , ϕ ⊗ ψ〉.

(3) Let f : A → U and g : B → V be algebra morphisms. For any quadruple
(ϕ,ψ, x, y) ∈ Uo × V o × A × B, we have

.〈(f ⊗ g)oαU,V (ϕ ⊗ ψ), x ⊗ y〉 = 〈ϕ ⊗ ψ, f x ⊗ gy〉 = 〈ϕ, f x〉〈ψ, gy〉
= 〈f oϕ, x〉〈goψ, y〉 = 〈f oϕ⊗goψ, x⊗y〉 = 〈αA,B(f o⊗go)(ϕ⊗ψ), x⊗y〉.

3.3 The Restricted Dual of a Hopf Algebra

The restricted dual .Ho of a Hopf algebra H is defined as the restricted dual of the
underlying algebra. In this subsection we show that the Hopf algebra operations of
H imply that the restricted dual is itself a Hopf algebra.

Exercise 3.3 Let .f : X → U and .g : Y → V be two linear maps between vector
spaces. Show that

.(f ⊗ g)∗|U∗⊗V ∗ = f ∗|U∗ ⊗ g∗|V ∗ .

Proposition 3.1 For any Hopf algebra .H = (H,μ, η,�, ε, S), the restricted dual
.Ho is a Hopf algebra with respect to the dual structural maps

.μHo =�∗|Ho⊗Ho , ηHo =ε∗ : 1 �→ ε, �Ho =μ∗|Ho, εHo =ηo =η∗|Ho,

SHo = So = S∗|Ho .
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Proof By the functorial nature of the restricted dual, the vector space .Ho is a
coalgebra with the coproduct .μ∗|Ho and the counit .ηo, and the algebra morphisms
.ε : H → F and .� : H → H ⊗ H induce coalgebra morphisms .εo : F → Ho and
.�o : (H ⊗ H)o → Ho. By Lemma 3.1, the canonical inclusion

.αH,H : Ho ⊗ Ho ↪→ (H ⊗ H)o

is an isomorphism of coalgebras and the composed map

.�oαH,H : Ho ⊗ Ho → Ho

coincides with the restriction .�∗|Ho⊗Ho . This means that the triple

.(Ho,�oαH,H , εo)

is an algebra as a subalgebra of the convolution algebra .H ∗. Thus, the tuple

.(Ho,�oαH,H , εo, μ∗|Ho, ηo)

is a bialgebra.
Finally, we verify that .So is the inverse of .idHo in the convolution algebra

.End(Ho). By functoriality of the dual of a vector space, we have the equality

.ε∗η∗ = �∗(S ⊗ idH)∗μ∗ : H ∗ → H ∗ (3.36)

which implies that

.ηHoεHo = �∗(S ⊗ idH )∗μ∗|Ho = �∗(S ⊗ idH )∗|Ho⊗Ho�Ho

= �∗|Ho⊗Ho(So ⊗ idHo)�Ho = μHo(So ⊗ idHo)�Ho

where, in the third equality, we used Exercise 3.3. The second relation is verified
similarly. ��
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