
Chapter 1
Groups and Hopf Algebras

The main goal of this chapter is

• to give the definition of a Hopf algebra and to motivate it on the basis of the
notion of a group which is of fundamental importance in mathematics;

• to introduce the graphical notation of string diagrams;
• to introduce the algebraic structures closely related to Hopf algebras, namely

the notions of algebra, module, coalgebra, comodule, convolution algebra, and
bialgebra;

• to establish few basic properties of Hopf algebras.

Section 1.1 in this chapter is the most abstract one where we briefly discuss the
notions of a monoidal category, a braided monoidal category and a symmetric
monoidal category. We do so for at least three reasons. First, those notions are
used in the last Chap. 6 where knot invariants are defined in the general context
of monoidal categories. The second reason is that, we motivate the definition of
a Hopf algebra by the definition of a group (reformulated by using the structural
maps), and these two definitions differ only by the underlying symmetric monoidal
categories: vector spaces with tensor product in the case of Hopf algebras and
sets with Cartesian product in the case of groups. The third reason is that many
general constructions and statements in the book can be expressed in the language of
string diagrams, and the latter make sense also in the context of arbitrary symmetric
monoidal categories. In principle, with the exception of the last Sect. 1.1.3, where
the graphical notation of string diagrams is introduced, Sect. 1.1 is optional for five
Chaps. 1–5 where we mainly work only in the framework of multilinear algebra,
that is the symmetric monoidal category .VectF of vector spaces over a field .F with
the tensor product .⊗F as the monoidal product. Thus, one can start the reading right
from Sect. 1.1.3 and return back to Sect. 1.1 only before reading Chap. 6 dedicated
to applications in knot theory.
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2 1 Groups and Hopf Algebras

1.1 Monoidal Categories

In this section we give few basic definitions that concern monoidal or tensor
categories, without elaborating details but providing few concrete examples. It is
assumed that the reader is familiar with definitions of a category, a functor, a natural
transformation, and a commutative diagram.

Since our main example of a monoidal category is the category .VectF of vector
spaces over a fixed base field .F equipped with the tensor product .⊗F as a monoidal
product, on first reading, this section can be viewed as a summary of general
properties of the category .VectF. A more systematic and detailed presentation of
monoidal categories can be found in Chapter 1 of the book [42] and chapter XI of
the book [19].

1.1.1 Monoidal Categories

For any category .C, let .C×C be the cartesian square of .C, which is a category whose
objects are ordered pairs of objects of .C, morphisms are ordered pairs of morphisms
of .C, and the composition is component-wise composition in .C.

A category .C is called monoidal if it is equipped with a functor

.⊗: C × C → C, (A,B) �→ A ⊗ B, (f, g) �→ f ⊗ g, (1.1)

called the tensor or monoidal product, an object I called the unit or identity object,
and natural isomorphisms

.αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), A,B,C ∈ ObC, (1.2)

.λA : I ⊗ A → A, ρA : A ⊗ I → A, A ∈ ObC, (1.3)

respectively called associator, left unitor and right unitor, which satisfy two
families of coherence conditions corresponding to commutative diagrams

. (1.4)
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and

. (1.5)

respectively called the pentagon and the triangle diagrams, and the equality

.λI = ρI : I ⊗ I → I. (1.6)

A monoidal category is called strict if the natural isomorphisms .α, .λ, .ρ are
identities. It is known that any monoidal category is equivalent to a strict monoidal
category, see for the proof, for example, [19].

Example 1.1 The category .Set of sets is a monoidal category with the Cartesian
product as the monoidal product and any one-element set, say .1 = {0}, as the unit
object. This is a prototypical example of a monoidal category. ��
Example 1.2 The category .VectF of vector spaces over a base field .F with .F-linear
maps as morphisms is a monoidal category with the tensor product .⊗F as the
monoidal product and the base field .F, viewed as a vector space of dimension one,
as the unit object. This is the principal monoidal category we will be working with
in this book. ��

Just for the sake of clarity, to make the abstract definition less abstract, below we
give some more less intuitive examples of monoidal categories, although they will
not be used in any way in the following.

Before giving the next example, let us recall the definition of the direct sum of a
family of vector spaces.

Definition 1.1 Let .{Vi}i∈I be a family of vector spaces over a fixed base field. The
direct sum of this family is the vector space .V := ⊕

i∈I Vi of all maps from the
index set I to the set-theoretical union of all the vector spaces in the family,

.x : I → ∪i∈I Vi, i �→ xi, (1.7)

that satisfy the condition .xi ∈ Vi for all .i ∈ I , and .xi is the zero vector of .Vi for all
but finitely many i’s.

For each index .i ∈ I , there are two canonical linear maps associated to the direct
sum .V = ⊕

i∈I Vi of a family vector spaces indexed by I . These are the projection
map

.pi : V → Vi, x �→ xi, (1.8)
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and the inclusion map

.qi : Vi → V, v �→ x, xj =
{

v if j = i;
0 otherwise.

(1.9)

The projection and inclusion maps satisfy the following relations:

.piqj =
{

idVi
if i = j ;

0 otherwise,

∑

i∈I

qipi = idV , (1.10)

where the sum always truncates to a finite sum when applied to an element of V .

Example 1.3 The monoidal category .VectZF of .Z-graded .F-vector spaces is a
subcategory of .VectF defined as follows.

An object V of .VectZF is the direct sum of a .Z-indexed family of .F-vector spaces
.{Vn}n∈Z, while a morphism .f : V → W is a linear map such that .f (Vn) ⊂ Wn for
any .n ∈ Z. The tensor product .V ⊗F W of two .Z-graded vector spaces is the direct
sum of the family

.(V ⊗F W)n =
⊕

k∈Z

(Vk ⊗F Wn−k), n ∈ Z. (1.11)

The unit object I is the direct sum of the family

.In =
{

F if n = 0;
0 otherwise.

(1.12)

The tensor product .f ⊗F g of two morphisms .f : X → U and .g : Y → V is the
usual tensor product of linear maps. ��
Example 1.4 Define a category .Mat(F) of matrices over a field .F where the objects
are elements of the set of non-negative integers .ω = Z≥0 and a morphism .f : m →
n is a (set-theoretical) map .f : m × n → F. The composition of .f : l → m and
.g : m → n is the morphism .g ◦ f : l → n defined by

.(g ◦ f )i,j =
∑

k∈m

fi,kgk,j , ∀(i, j) ∈ l × n.

This is a strict monoidal category where .m⊗n = m+n, the unit object being 0. As
.0 = ∅, for any object .n ∈ ω, there is only one morphism from 0 to n and from n to
0.
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For two morphisms .f : m → n and .g : k → l, their tensor (monoidal) product is
the morphism .f ⊗ g : m + k → n + l defined by

.(f ⊗ g)i,j =
⎧
⎨

⎩

fi,j if (i, j) ∈ m × n;
gi−m,j−n if (i − m, j − n) ∈ k × l;

0 otherwise.

A morphism .f : m → n in the category .Mat(F) can also be viewed as a m-by-n
matrix

.Mf = (fi,j )i∈m,j∈n.

With this interpretation, the matrix associated to the composition .g ◦ f is given by
the matrix product

.Mg◦f = Mf Mg,

while the tensor product of two morphisms .f ⊗g is represented by the block matrix

.Mf ⊗g =
(

Mf 0
0 Mg

)

.

Example 1.5 Let G be a group and .H ⊂ G a normal subgroup. Denote by

.C(H) := {g ∈ G | gh = hg ∀h ∈ H }

the commutant of H in G (which is also a normal subgroup of G). We define
a category .GH,G where objects are elements of the quotient group .G/H and a
morphism .f : xH → yH is a pair .(u, v) ∈ yH × xH modulo the equivalence
relation .(u, v) ∼ (uh, vh), .h ∈ H , such that .uv−1 ∈ C(H). Notice that the
latter element does not change under the equivalence relation. The composition of
morphisms .f = (u, v) : xH → yH and .g = (p, q) : yH → zH is given by the
formula

.g ◦ f = (p, q) ◦ (u, v) = (pq−1u, v) : xH → zH.

This formula is explicitly compatible with the equivalence relation and thus is well
defined. Associativity of the composition is verified straightforwardly

.(f ◦ g) ◦ h = ((p, q) ◦ (s, t)) ◦ (u, v) = (pq−1s, t) ◦ (u, v) = (pq−1st−1u, v)

= (p, q) ◦ (st−1u, v) = (p, q) ◦ ((s, t) ◦ (u, v)) = f ◦ (g ◦ h).

The identity morphism .idxH is represented by .(x, x).
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This is a strict monoidal category where .xH ⊗yH = xyH , the unit object being
.eH = H , and for two morphisms .f = (u, v) and .g = (p, q) their tensor product is
defined by the component-wise multiplication .f ⊗ g = (up, vq), and the condition
.uv−1 ∈ C(H) for a morphism .(u, v) ensures compatibility of the tensor product
with the composition

.(a ⊗ b) ◦ (c ⊗ d) = (a ◦ c) ⊗ (b ◦ d).

Example 1.6 A special case of the previous example corresponds to a group G with
the trivial subgroup .H = {e}. In this case, the category .GH,G is given by G as the
set objects and, for any pair of objects .x, y ∈ G, there is exactly one morphism
.(y, x) : x → y. The group multiplication of G gives the monoidal structure of the
category. ��

1.1.2 Braided Monoidal Categories

For any category .C, the exchange functor

.ς : C × C → C × C (1.13)

is defined by exchanging the components, that is

.ς(A,B) = (B,A), ∀(A,B) ∈ Ob(C × C), (1.14)

for objects and

.ς(f, g) = (g, f ), (f, g) : (A,B) → (C,D), (1.15)

for arrows (morphisms).
Let .C be now a monoidal category. We have two functors

.⊗: C × C → C, (A,B) �→ A ⊗ B, (f, g) �→ f ⊗ g (1.16)

and

.⊗op = ⊗ ◦ ς : C × C → C, (A,B) �→ B ⊗ A, (f, g) �→ g ⊗ f. (1.17)

A braiding in a monoidal category .C is a natural isomorphism

.β : ⊗ → ⊗op (1.18)
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such that the following diagrams are commutative:

. (1.19)

and

. (1.20)

A braided monoidal category is a monoidal category with a braiding.
In view of applications in knot theory, braided monoidal categories constitute a

very important class of monoidal categories, and the quantum double construction
for Hopf algebras of Chap. 5 implicitly gives rise to braided monoidal categories,
see, for example, [19, 21, 41].

A symmetric monoidal category is a braided monoidal category where the
braiding satisfies the conditions

.β−1
A,B = βB,A, ∀A,B ∈ ObC. (1.21)

In this case, the braiding is called symmetry and denoted as .σ .

Example 1.7 The category .Set of sets, see Example 1.1, is a symmetric monoidal
category where the symmetry is given by the exchange maps

.σX,Y : X × Y → Y × X, (x, y) �→ (y, x). (1.22)

As we will see in Sect. 1.2, any group can be interpreted as an object of this
symmetric monoidal category. ��
Example 1.8 The category .VectF of .F-vector spaces, see Example 1.2, is a
symmetric monoidal category where the symmetry is given by the exchange maps
extended by linearity

.σV,W : V ⊗F W → W ⊗F V, x ⊗F y �→ y ⊗F x. (1.23)

Hopf algebras are objects of this category, and the symmetry enters in their
definition in one of the defining properties, see Definition 1.6 of Sect. 1.4. ��
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Example 1.9 For any .q ∈ F�=0, the category .VectZF of .Z-graded .F-vector spaces,
see Example 1.3, is a braided monoidal category with the braiding

.βU,V : U ⊗ V → V ⊗ U (1.24)

defined by

.βU,V (x ⊗F y) = qmny ⊗F x, x ∈ Um, y ∈ Vn, m, n ∈ Z. (1.25)

It is a symmetric monoidal category if .q2 = 1. ��

1.1.3 The Graphical Notation of String Diagrams

Throughout this book, we will find it convenient sometimes to use the graphical
notation of string diagrams.

Let .C be a category. To any morphism .f : X → Y in .C, we associate a graphical
picture

.

f f

X

Y

.

(1.26)

If .f : X → Y and .g : Y → Z are two composable morphisms, then their
composition is described by the vertical concatenation of graphs

.

g f = g f

Z

X

=

g
Z

f

X (1.27)

In particular, for the identity morphism .idX it is natural to use just a line

.

idX idX

X

X X

X (1.28)
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The string diagrams are especially useful in the case when .C is a strict monoidal
category, because the tensor (monoidal) product can be drawn by the horizontal
juxtaposition. Namely, for two morphisms .f : X → Y and .g : U → V , their tensor
product .f ⊗ g : X ⊗ U → Y ⊗ V is drawn as follows:

.

f g f g

Y V

X U

VY

UX

g

V

U

f

Y

X

.f g

(1.29)

By taking into account the distinguished role of the identity object I , it is natural to
associate to it the empty graph.

In this notation, for example, the commutative diagram (1.19) for a braiding, in
the context of a strict monoidal category, corresponds to the following diagrammatic
equality

.

βA,B C

B C A

A B C

βA,B

B

A B

βA,C

C A

C

A

(1.30)

and the graphical equality corresponding to the commutative diagram (1.20)

.

βA B,C

C A B

A B C

βB,C

B

B C

βA,C

C A

A

C .

(1.31)

These relations become intuitively natural and almost tautological, if one uses a
notation for a braiding borrowed from knot diagrams

.

βA,B

B

A

A

B

=:

A B

B A

(1.32)
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which, in the case of a symmetric monoidal category, can be further simplified by
removing the indication of under-passing strands.

In the case of non-strict monoidal categories, the graphical calculus becomes less
convenient because of the non-associativity of the tensor product. In this case, the
horizontal juxtaposition is not enough so that one should provide an extra structure,
for example, the relative distance between the vertical lines.

More systematic and detailed explanation of the graphical notation of string
diagrams can be found in Chapter 2 of the book [42].

1.2 Groups in Terms of Structural Maps

At first glance, the formal definition of a Hopf algebra (to be given later in Sect. 1.4)
looks neither simple nor intuitively motivated. For this reason, we start by reviewing
the notion of a group which we reformulate by using the structural maps as the
basic entities. Such a reformulation will make the definition of a Hopf algebra very
natural, at least from the viewpoint of group theory.

Recall that a group is a set G where, for any two elements .g, h ∈ G, there
corresponds a unique element gh called the product of g and h, a distinguished
element e called the identity element, and, for any element g, there corresponds a
unique element .g−1 called the inverse element such that the following axioms are
satisfied:

.associativity : (fg)h = f (gh), ∀f, g, h ∈ G, . (1.33)

unitality : eg = ge = g, ∀g ∈ G, . (1.34)

invertibility : gg−1 = g−1g = e, ∀g ∈ G. (1.35)

We formalize the definition of a group by introducing three structural maps:

.product μ : G × G → G, (g, h) �→ gh, . (1.36)

unit η : 1 → G, 0 �→ e, . (1.37)

inverse S : G → G, g �→ g−1. (1.38)

By rewriting

.(fg)h = μ(fg, h) = μ(μ(f, g), h) = μ((μ × id)(f, g, h))

= μ ◦ (μ × id)(f, g, h) (1.39)
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and

.f (gh) = μ(f, gh) = μ(f,μ(g, h)) = μ((id × μ)(f, g, h))

= μ ◦ (id × μ)(f, g, h), (1.40)

we conclude that the associativity axiom is equivalent to the following equality for
the product map

.μ ◦ (μ × id) = μ ◦ (id × μ) (1.41)

which corresponds to the commutative diagram

. (1.42)

Before going further with the unitality axiom, let us agree on the following
convention.

Let .1 := {0} be the set consisting of one element denoted by 0. For any set X, the
(cartesian) product sets .1 × X and .X × 1 are identified with X through the obvious
canonical bijections .(0, x) �→ x and .(x, 0) �→ x which allows us to have natural
identifications .(0, x) = (x, 0) = x. With this convention, for the unitality axiom,
we have

.e · g = μ(η(0), g) = μ ◦ (η × id)(0, g) = μ ◦ (η × id)(g) (1.43)

and

.g · e = μ(g, η(0)) = μ ◦ (id × η)(g, 0) = μ ◦ (id × η)(g) (1.44)

so that the unitality axiom can be stated as the following equations for the structural
maps

.μ ◦ (η × id) = id = μ ◦ (id × η) (1.45)

which correspond to the commutative diagram

. (1.46)
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In order to describe the invertibility axiom in terms of equations for the structural
maps, we need to use two other maps which are canonically defined for any set X.
These are the diagonal or coproduct map

.
 : X → X × X, x �→ (x, x), ∀x ∈ X, (1.47)

and the counit map

.ε : X → 1, x �→ 0, ∀x ∈ X. (1.48)

These names come from the fact that they are similar to the product and the unit
maps of a group in the following sense.

Definition 1.2 A commutative diagram .� is called a categorial or diagrammatic
dual of another commutative diagram .�′, if .� can be obtained from .�′ by reversing
all arrows and relabelling the objects.

The diagonal map satisfies the equality

.(id × 
) ◦ 
 = (
 × id) ◦ 
 (1.49)

corresponding to the commutative diagram

. (1.50)

which is the categorial dual of the commutative diagram (1.42) corresponding to
equality (1.41). For this reason, equality (1.49) is called the coassociativity property.

The counit map enters the counitality equalities

.(ε × id) ◦ 
 = id = (id × ε) ◦ 
. (1.51)

corresponding to the commutative diagram

. (1.52)

which is the categorial dual of the commutative diagram (1.46) corresponding to
equalities (1.45) expressing the unitality axiom.
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In order to express the invertibility axiom in terms of equations for structural
maps, we write

.gg−1 = μ(g, g−1) = μ ◦ (id × S)(g, g) = μ ◦ (id × S) ◦ 
(g), (1.53)

.g−1g = μ(g−1, g) = μ ◦ (S × id)(g, g) = μ ◦ (S × id) ◦ 
(g), (1.54)

and

.e = η(0) = η(ε(g)) = η ◦ ε(g). (1.55)

Thus, the invertibility axiom is equivalent to the equations

.μ ◦ (id × S) ◦ 
 = η ◦ ε = μ ◦ (S × id) ◦ 
 (1.56)

corresponding to the commutative diagram

. (1.57)

which is the categorial dual of itself.
Finally, by using the canonical exchange map

.σ = σG,G : G × G → G × G, (x, y) �→ (y, x), (1.58)

we remark that the product and the coproduct satisfy the compatibility equality

.(μ × μ) ◦ (id × σ × id) ◦ (
 × 
) = 
 ◦ μ : G × G → G × G (1.59)

corresponding to the commutative diagram

. (1.60)
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which is also the categorial dual of itself. Moreover, identity (1.59) holds even if G

is replaced by any set X and the product .μ by any binary operation .f : X×X → X.
Indeed, for any .(x, y) ∈ X × X, we have

.(f × f ) ◦ (id × σ × id) ◦ (
 × 
)(x, y)

= (f × f ) ◦ (id × σ × id)(x, x, y, y) = (f × f )(x, y, x, y) = (f (x, y), f (x, y))

= 
(f (x, y)) = 
 ◦ f (x, y). (1.61)

As the matter of fact, this calculation reflects an elementary general property of the
cartesian symmetric monoidal category of sets which will be described in Sect. 1.3.

1.2.1 The Structural Maps of a Group in Graphical Notation

We are ready now to use the graphical notation of string diagrams introduced
in Sect. 1.1.3 to rewrite the definition of a group. The monoidal category we are
working in is the symmetric monoidal category .Set of sets with the tensor product
specified by the Cartesian product of sets, see Example 1.7.

Let us introduce the following graphical notation for the structural maps of a
group (all lines correspond to the underlying set of the group G and the singleton .1
carries no line):

.
product

. (1.62)

coproduct
. (1.63)

unit
. (1.64)

counit
. (1.65)

inverse or antipode
. (1.66)

exchange or symmetry
(1.67)

For the inverse map in (1.66) we also put the term “antipode” in anticipation of its
counterpart in the case of Hopf algebras, see Definition 1.6 of Sect. 1.4.
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Recall from Sect. 1.1.3 that the composition of maps corresponds to vertical
concatenation of the corresponding graphical objects, while the Cartesian product
corresponds to horizontal juxtaposition. With this notation, the structural equations
of a group take the following form:

.

associativity:
. (1.68)

unitality:
. (1.69)

coassociativity:
. (1.70)

counitality:
. (1.71)

invertibility:
. (1.72)

compatibility:
(1.73)

Remark 1.1 A motivational idea behind the definition of a Hopf algebra is to think
of these diagrams in the context of other symmetric monoidal categories. The
corresponding realizations are called group objects. In particular, as we will see
later in Sect. 1.4, a Hopf algebra can be identified as a group object in the symmetric
monoidal category of vector spaces with the tensor product as the monoidal product,
see Example 1.8.

1.3 Monoids and Comonoids

Given an algebraic notion, for example a group, it is often useful and instructive
to consider other structures obtained from the initial one by dropping some of the
defining properties/axioms. In the definition of a group, if we remove the inverse
map together with the invertibility axiom, then we obtain the notion of a monoid.

Definition 1.3 A monoid is a set M together with two maps

.μ : M × M → M, η : 1 → M, (1.74)

respectively called product and unit, which satisfy the associativity axiom (1.41)
and the unitality axiom (1.45).
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Exercise 1.1 (Uniqueness of Inverses) An element .x ∈ M of a monoid M is called
invertible if there exists an element .y ∈ M , called inverse of x, such that .μ(x, y) =
μ(y, x) = η(0). Show that any invertible element x admits a unique inverse.

Definition 1.4 Let .M = (M,μM, ηM) and .N = (N,μN, ηN) be two monoids. A
map .f : M → N is called morphism of monoids if it commutes with the structural
maps in the sense of the relations

.f ◦ μM = μN ◦ (f × f ), f ◦ ηM = ηN . (1.75)

The notion of a comonoid is obtained by taking the categorial dual of the notion
of a monoid, i.e. by reversing all arrows in the definition of a monoid in terms of
commutative diagrams, see Definition 1.2.

Definition 1.5 A comonoid is a set C provided with two maps

.
 : C → C × C, ε : C → 1, (1.76)

called coproduct and counit, which satisfy the coassociativity axiom (1.49) and the
counitality axiom (1.51).

Exercise 1.2 Give a definition of a morphism of comonoids.

The following proposition shows that the notion of a comonoid is not particularly
meaningful in a set-theoretic context.

Proposition 1.1 Any set admits a unique comonoid structure and any map between
two sets is a morphism of comonoids.

Proof Notice that the counit map of any comonoid, being a map to the singleton,
is uniquely fixed, and it is thus uniquely defined also for any set. Moreover, it is
easily seen that any set X is a comonoid with the diagonal map as the coproduct and
the map to the singleton as the counit. The formal proof is identical to the case of
groups, see Eqs. (1.49)–(1.52). Let us show that there are no other comonoids.

Let .C = (C,
, ε) be a comonoid. Then the coproduct .
 corresponds to two
maps .α, β : C → C defined by

.
(x) = (α(x), β(x)). (1.77)

Substituting this into the counitality axiom (1.51), we obtain

.(ε × id) ◦ 
(x) = (ε × id)(α(x), β(x))

= (ε(α(x)), β(x)) = (0, β(x)) = β(x) = x, (1.78)
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and

.(id × ε) ◦ 
(x) = (id × ε)(α(x), β(x))

= (α(x), ε(β(x))) = (α(x), 0) = α(x) = x (1.79)

where we use the convention on the equality for the canonical identifications

.X × 1 � X � 1 × X.

Thus, the coproduct is necessarily the diagonal map .
(x) = (x, x).
Finally, any map between two sets .f : X → Y enters the obvious commutative

diagrams

. (1.80)

which mean that f is a morphism of comonoids. ��

1.4 Hopf Algebras

In this section, we introduce the central object of this book, a Hopf algebra. The
definition that follows is motivated by the notion of a group which we reformulated
in Sect. 1.2 in terms of structural maps. As the notions of a monoid or/and a
comonoid are the results of dropping some of the structural maps and axioms
from the definition of a group, in the subsequent sections of this chapter, we also
introduce the analogous notions of an algebra (Sect. 1.6) and a coalgebra (Sect. 1.7)
by dropping the corresponding structural maps and axioms from the definition of
a Hopf algebra. There is also a notion of a bialgebra (Sect. 1.10), which in the set-
theoretical context, corresponds to a monoid, but in the context of vector spaces,
it is not true that every algebra (or coalgebra) is a bialgebra, though any Hopf
algebra is a bialgebra. The reason for this difference comes from the fact that any
set is canonically a comonoid in a unique way, as we have seen in the previous
section, see Proposition 1.1, while a given vector space can admit many structures
of a coalgebra, and, for a given algebra, there could be different possibilities, for
example, non of available coalgebra structures on the underlying vector space can
be compatible with the algebra structure, etc.
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In what follows, we let .F denote a field, write .⊗ instead of .⊗F and omit the
composition symbol in the case of linear maps.

Definition 1.6 A Hopf algebra (over a field .F) is a .F-vector space H of strictly
positive dimension together with the following five linear maps:

.product μ : H ⊗ H → H, . (1.81)

coproduct 
 : H → H ⊗ H, . (1.82)

unit η : F → H, . (1.83)

counit ε : H → F, . (1.84)

antipode S : H → H, (1.85)

which satisfy the following equations (axioms):

.associativity : μ(μ ⊗ idH ) = μ(idH ⊗ μ), . (1.86)

unitality : μ(η ⊗ idH ) = idH = μ(idH ⊗ η), . (1.87)

coassociativity : (idH ⊗ 
)
 = (
 ⊗ idH )
, . (1.88)

counitality : (ε ⊗ idH )
 = idH = (idH ⊗ ε)
, . (1.89)

invertibility : μ(idH ⊗ S)
 = ηε = μ(S ⊗ idH )
, . (1.90)

compatibility : (μ ⊗ μ)(idH ⊗ σ ⊗ idH )(
 ⊗ 
) = 
μ, (1.91)

where the symmetry map .σ = σH,H : H ⊗H → H ⊗H acts by .σ(x ⊗y) = y ⊗x.

Remark 1.2 The list of axioms (1.86)–(1.91) exactly corresponds to the list of
graphical relations (1.68)–(1.73), and we will often use the same graphical notation
in this new context with the replacements:

.

sets �→ vector spaces
set theoretical maps �→ linear maps

the singleton 1 = {0} �→ the base field F (a 1-dimensional vector space)
the cartesian product �→ the tensor product.

Definition 1.7 Let

.H = (H,μH , ηH ,
H , εH , SH ) and L = (L,μL, ηL,
L, εL, SL)
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be two Hopf algebras. A linear map .f : H → L is called a morphism of Hopf
algebras or a Hopf algebra morphism if it commutes with all the structural maps,
that is the following diagrams are commutative:

. (1.92)

. (1.93)

. (1.94)

These commutative diagrams correspond to the following equalities between linear
maps

.μL(f ⊗ f ) = f μH , f ηH = ηL, (1.95)

.(f ⊗ f )
H = 
Lf, εLf = εH , (1.96)

.SLf = f SH . (1.97)

Remark 1.3 In any Hopf algebra, we have the inequality .η �= 0 as otherwise the
Hopf algebra would be zero-dimensional.

1.5 Group Algebras as Hopf Algebras

In this section we consider a class of examples of Hopf algebras coming from
groups. Given the fact that we have motivated the definition of a Hopf algebra by
considering the definition of a group, it is not very surprising that the two notions
are related.
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Definition 1.8 For any set X, we denote by .δa,b the Kronecker delta function which
is the characteristic function .χ
(X) : X×X → {0, 1} of the diagonal .
(X) in .X×X,
i.e.

.δa,b = χ
(X)(a, b) =
{

1 if a = b,

0 if a �= b.
(1.98)

Definition 1.9 Let X be a set. The vector space of all maps .f : X → F of finite
support, that is a map that takes all but finitely many values zero, is called the vector
space freely generated by X, and it is denoted as .F[X]. A natural linear basis in
.F[X] is given by the set of single element characteristic functions .{χa}a∈X defined
by

.χa(b) = δa,b, ∀(a, b) ∈ X2. (1.99)

Remark 1.4 The vector space .F[X] can also be described as the direct sum of a
family of 1-dimensional vector spaces .F indexed by the set X:

.F[X] =
⊕

x∈X

F, (1.100)

see Definition 1.1.

For any group G, let .F[G] be the vector space freely generated by the set G. We
define the product

.μ : F[G] ⊗ F[G] → F[G], (μ(f ⊗ g))(a) =
∑

b∈G

f (b)g(b−1a), ∀a ∈ G,

(1.101)

the unit

.η : F → F[G], (η1)(a) = δe,a, ∀a ∈ G, (1.102)

the coproduct

.
 : F[G] → F[G]⊗F[G], (
f )(a, b) = δa,bf (a), ∀(a, b) ∈ G2, (1.103)

the counit

.εf =
∑

a∈G

f (a), (1.104)

and the antipode

.(Sf )(a) = f (a−1), ∀a ∈ G. (1.105)
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Remark that in the definition of the product (1.101), the sum is finite due to the fact
that the functions f and g are finitely supported. For the same reason, the function
.μ(f ⊗g) is also finitely supported. Indeed if .Suppf ⊂ G is the support of .f ∈ F[G],
then we have the inclusion

. Suppμ(f ⊗g) ⊂
⋃

a∈Suppf

a Suppg . (1.106)

With respect to the natural basis of single element characteristic functions
.{χa}a∈G, the structural maps take the form

.μ(χa ⊗ χb) = χab, 
χa = χa ⊗ χa, (1.107)

.η1 = χe, εχa = 1, Sχa = χa−1 . (1.108)

Exercise 1.3 Show that the data .(F[G], μ, η,
, ε, S) satisfy the Hopf algebra
axioms.

1.6 Algebras

Here we introduce the notion of an algebra by dropping some of the data in
the definition of a Hopf algebra, namely we leave only the product and the
unit as structural maps and impose on them the axioms of associativity and
unitality corresponding to diagrammatic equations (1.68) and (1.69). An algebra is
a monoidal object in the monoidal category of vector spaces with the tensor product
as the monoidal product.

Definition 1.10 An algebra over a field .F or .F-algebra is a triple .(A,μ, η)

consisting of a .F-vector space A, a linear map .μ : A ⊗ A → A called product,
and a linear map .η : F → A called unit such that

.μ(μ ⊗ idA) = μ(idA ⊗ μ) (1.109)

and

.μ(η ⊗ idA) = μ(idA ⊗ η) = idA. (1.110)

Example 1.10 As Eqs. (1.109) and (1.110) coincide respectively with Eqs. (1.86)
and (1.87), any Hopf algebra is an algebra, if we keep the product and the unit and
forget about all other structural maps. ��
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Example 1.11 Let V be a vector space. Then, the vector space .End(V ) of all
endomorphisms of V is an algebra with the product

.μ(f ⊗ g) = fg, ∀(f, g) ∈ (End(V ))2, (1.111)

and the unit

.η1 = idV . (1.112)

In particular, the base field .F � End(F) is an algebra. ��
Definition 1.11 Let .A = (A,μA, ηA) and .B = (B,μB, ηB) be two algebras. A
linear map .f : A → B is called a morphism of algebras or an algebra morphism if
it commutes with the structural maps in the sense of the equations

.f μA = μB(f ⊗ f ) (1.113)

and

.f ηA = ηB. (1.114)

Definition 1.12 The opposite product of an algebra .A := (A,μ, η) is the linear
map .μop obtained by composing the product with the exchange map,

. (1.115)

The algebra A is called commutative if the opposite product coincides with the
product, .μop = μ.

Exercise 1.4 Show that if .A := (A,μ, η) is an algebra then .Aop := (A,μop, η) is
also an algebra.

Definition 1.13 Let .A1 = (A1, μ1, η1) and .A2 = (A2, μ2, η2) be two algebras.
The tensor product of .A1 and .A2 is the algebra

.(A1 ⊗ A2, (μ1 ⊗ μ2)(idA1 ⊗σA2,A1 ⊗ idA2), η1 ⊗ η2) (1.116)

or graphically

. (1.117)
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where the thin lines correspond to .A1 and thick lines to .A2, and we implicitly
identify .F ⊗ F with .F.

Exercise 1.5 Let .A = (A,μ, η) be an algebra. Show that the unit .η : F → A is
always a morphism of algebras, while the product .μ : A ⊗ A → A is a morphism
of algebras if and only if A is commutative.

1.6.1 Iterated Products

Let .A = (A,μ, η) be an .F-algebra. In calculations, it is the common practice to
write just xy instead of .μ(x ⊗ y). In particular, as the associativity axiom (1.109)
implies that .(xy)z = x(yz), one can just write xyz without any ambiguity.
Graphically, this means that we can use multivalent vertices:

. (1.118)

This can be formalised by introducing the set of iterated products

.{μ(m) : A⊗m → A}m∈ω (1.119)

defined recursively as follows:

.μ(m) := μ(μ(m−1) ⊗ idA), μ(0) := η, (1.120)

so that, in particular, we have

.μ(1) = idA, μ(2) = μ. (1.121)

The n-th iterated product .μ(n) graphically can be represented by any binary tree
with n inputs and one output, because the associativity of the product allows to
ensure that any such tree gives one and the same linear map which we denote by a
multivalent vertex.

Exercise 1.6 Prove that

.μ(k1+···+km) = μ(m)
(
μ(k1) ⊗ · · · ⊗ μ(km)

)
, ∀(k1, . . . , km) ∈ ωm. (1.122)

Exercise 1.7 Let .f : A → B be an algebra morphism. Prove that

.μ
(m)
B f ⊗m = f μ

(m)
A , ∀m ∈ ω. (1.123)
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1.6.2 Modules

In the context of vector spaces, the notion of a module over an algebra corresponds
to an M-set in the set-theoretical context, that is a set on which a monoid M acts.

Definition 1.14 Let .A = (A,μ, η) be an algebra over a field .F. A left module over
A (or simply a left A-module) is a .F-vector space V together with a linear map

.λ : A ⊗ V → V (1.124)

such that the diagrams

.

(1.125)

are commutative. In terms of our graphical notation, the commutative dia-
grams (1.125) correspond to the equations

. (1.126)

where the thick lines correspond to V and thin lines to A.

Remark 1.5 For two vector spaces X and Y , let .L(X, Y ) be the set of all linear maps
from X to Y . The natural bijection between two sets of linear maps

. L(A ⊗ V, V ) � L(A, End(V )) (1.127)

descents to a natural bijection between the sets of left A-module structures on V and
algebra morphisms from A to .End(V ). For this reason, a left A-module structure on
a vector space V is often called representation of A in V .

Exercise 1.8 Give a definition of a right module over an algebra A.
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1.7 Coalgebras

The notion of a coalgebra is the categorial dual of that of an algebra in the sense
that the commutative diagrams expressing the defining properties of an algebra
and coalgebra are related through the categorial duality, see Definition 1.2. The
definition of a coalgebra is obtained by dropping all the structural maps in the
definition of a Hopf algebra, apart from the coproduct and the counit, and by
keeping the axioms of coassociativity and counitality. These axioms correspond to
two diagrammatic equations (1.70) and (1.71).

Definition 1.15 A coalgebra over a field .F or a .F-coalgebra is a triple .(C,
, ε)

consisting of a .F-vector space C, a linear map .
 : C → C ⊗ C called coproduct,
and a linear map .ε : C → F called counit such that

.(
 ⊗ idC)
 = (idC ⊗ 
)
 (1.128)

and

.(ε ⊗ idC)
 = (idC ⊗ ε)
 = idC. (1.129)

Example 1.12 As Eqs. (1.128) and (1.129) coincide respectively with Eqs. (1.88)
and (1.89), any Hopf algebra is a coalgebra, if we keep the coproduct and the counit
and forget about all other structural maps. ��
Example 1.13 For a finite non-empty set I , let .F[I 2] be the .F-vector space freely
generated by the set .I 2 = I × I . Then, .F[I 2] is a coalgebra, if, for the natural linear
basis .{χ(i,j)}(i,j)∈I 2 of .F[I 2], we define a coproduct

.
χ(i,j) =
∑

k∈I

χ(i,k) ⊗ χ(k,j) (1.130)

and a counit

.εχ(i,j) = δi,j . (1.131)

Through the duality relation between algebras and coalgebras to be discussed
later, this coalgebra is closely related to the endomorphism algebra .End(V ), see
Example 1.11, associated to a vector space of dimension given by the cardinality .|I |
of the set I . This algebra, in its turn, through a choice of a basis in V , becomes the
algebra of square matrices of size .|I |. For this reason, this coalgebra is called matrix
coalgebra. ��
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Example 1.14 The vector space .F[Z>0] freely generated by the set of strictly
positive integers .Z>0 is a coalgebra with the coproduct

.
χm =
∑

a∈Div(m)

χa ⊗ χm/a, (1.132)

where .Div(m) is the set of all (positive) divisors of m, and the counit

.εχm = δ1,m. (1.133)

This coalgebra will be called Dirichlet coalgebra because of its role in analytic
number theory, see Example 1.17 in the next Sect. 1.8. ��
Exercise 1.9 Give a definition of a morphism of coalgebras.

Definition 1.16 The opposite coproduct in a coalgebra .C := (C,
, ε) is the linear
map .
op obtained by composing the coproduct with the exchange map

. (1.134)

The coalgebra C is called cocommutative if the opposite coproduct coincides with
the coproduct, .
op = 
.

Exercise 1.10 Show that if .C = (C,
, ε) is a coalgebra, then .Ccop := (C,
op, ε)

is also a coalgebra.

The following definition is motivated by the behavior of the canonical basis
elements of group (Hopf) algebras under the coproduct, see relations (1.107).

Definition 1.17 A non zero element g of a coalgebra is called grouplike if .
g =
g ⊗ g.

Exercise 1.11 Show that any set of grouplike elements of a coalgebra is linearly
independent.

Exercise 1.12 Show that the matrix coalgebra of Example 1.13 contains a group-
like element only if it is 1-dimensional.

The following definition introduces the notion of an element of a coalgebra which
can be viewed as simplest among non grouplike elements.

Definition 1.18 A non zero element x of a coalgebra is called primitive if

.
x = g ⊗ x + x ⊗ h

where .g, h are grouplike elements.
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Exercise 1.13 Find grouplike and primitive elements in the Dirichlet coalgebra of
Example 1.14.

Definition 1.19 Let .C1 = (C1,
1, ε1) and .C2 = (C2,
2, ε2) be two coalgebras.
The tensor product of .C1 and .C2 is the coalgebra

.(C1 ⊗ C2, (idC1 ⊗σC1,C2 ⊗ idC2)(
1 ⊗ 
2), ε1 ⊗ ε2) (1.135)

or graphically

. (1.136)

where the thin lines correspond to .C1 and thick lines to .C2.

1.7.1 Iterated Coproducts

Similarly to the case of algebras, due to the coassociativity property, it is convenient
to use multivalent vertices in graphical representation of iterated coproducts:

. (1.137)

Elements of the infinite set of all iterated coproducts

.{
(m) : C → C⊗m}m∈ω (1.138)

are defined recursively

.
(m) := (
(m−1) ⊗ idC)
, 
(0) = ε, (1.139)

so that, in particular, we have

.
(1) = idC, 
(2) = 
. (1.140)
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1.7.2 Sweedler’s Sigma Notation for the Iterated Coproducts

Originally introduced in the book [39], Sweedler’s sigma notation allows to write
formally the coproduct of an element of a coalgebra in the form

.
x =
∑

(x)

x(1) ⊗ x(2) (1.141)

where the meaning of the sum is that it is a finite sum of the form

.
x =
n∑

i=1

ai ⊗ bi (1.142)

where the number n and the elements .ai , .bi with .1 ≤ i ≤ n are determined non
uniquely by x. The sigma notation allows to avoid mentioning the number n and the
associated elements all together thus simplifying writing. More generally, one can
use a similar notation also for iterated coproducts

.
(m)x =
∑

(x)

x(1) ⊗ x(2) ⊗ · · · ⊗ x(m), ∀m ≥ 2. (1.143)

In this notation, for example, the equality .
(3)(x) = ((
 ⊗ idC) ◦ 
)(x) takes the
form

.

∑

(x)

x(1) ⊗ x(2) ⊗ x(3) =
∑

(x)

∑

(x(1))

x(1)(1) ⊗ x(1)(2) ⊗ x(2). (1.144)

For examples and exercices on using the sigma notation, see the book [39].

1.7.3 The Fundamental Theorem of Coalgebras

Despite the fact that coalgebras are categorially dual objects to algebras, there is an
important difference between them. Namely, there is no a conterpart for algebras of
the following theorem.

Theorem 1.1 (The Fundamental Theorem of Coalgebras) Let .C = (C,
, ε)

be a coalgebra and .x ∈ C. Then, there exists a finite dimensional sub-coalgebra
.X ⊂ C containing x.

Proof As the case .x = 0 is trivial, we assume that .x �= 0.
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Let .{αi}i∈I and .{βj }j∈J be two non empty finite sets of linearly independent
elements of C such that

.
(3)x =
∑

(i,j)∈I×J

αi ⊗ xi,j ⊗ βj (1.145)

and let .X ⊂ C be the vector subspace generated by the elements .{xi,j }(i,j)∈I×J . We
have .dim(X) ≤ |I ||J | < ∞ and

.x = (ε ⊗ idC ⊗ε)
(3)x =
∑

(i,j)∈I×J

ε(αi)ε(βj )xi,j ∈ X. (1.146)

Let us show that X is a sub-coalgebra of C, that is .
(X) ⊂ X ⊗ X.
We have the equalities

.
(4)x = (
 ⊗ idC⊗2)

(3)x =

∑

(k,j)∈I×J

(
αk) ⊗ xk,j ⊗ βj (1.147)

.
(4)x = (idC ⊗
 ⊗ idC)
(3)x =
∑

(i,j)∈I×J

αi ⊗ (
xi,j ) ⊗ βj (1.148)

.
(4)x = (idC⊗2 ⊗
)
(3)x =
∑

(i,l)∈I×J

αi ⊗ xi,l ⊗ (
βl). (1.149)

Comparing the right hand sides of (1.147) and (1.148) and using the linear
independence of the family .{βj }j∈J , we obtain the equalities

.

∑

k∈I

(
αk) ⊗ xk,j =
∑

i∈I

αi ⊗ (
xi,j ), ∀j ∈ J, (1.150)

which, in their turn, due to the linear independence of the family .{αi}i∈I , imply that

.
αk =
∑

i∈I

αi ⊗ αi,k, ∀k ∈ I, (1.151)

for some elements .{αi,k}i,k∈I ⊂ C and

.
xi,j =
∑

k∈I

αi,k ⊗ xk,j ∈ C ⊗ X, ∀(i, j) ∈ I × J. (1.152)



30 1 Groups and Hopf Algebras

By a similar reasoning, comparing the right hand sides of (1.149) and (1.148), we
obtain

.
βl =
∑

j∈I

βl,j ⊗ βj , ∀l ∈ J, (1.153)

for some elements .{βl,j }l,j∈J ⊂ C and

.
xi,j =
∑

l∈J

xi,l ⊗ βl,j ∈ X ⊗ C, ∀(i, j) ∈ I × J. (1.154)

Finally, putting together (1.152) and (1.154), we conclude that

.
xi,j ∈ X ⊗ X, ∀(i, j) ∈ I × J ⇒ 
(X) ⊂ X ⊗ X. (1.155)

��
The fundamental theorem of coalgebras allows to reduce many questions about
general coalgebras to questions about finite-dimensional coalgebras. Notice also that
the category of finite dimensional coalgebras is equivalent to the category of finite
dimensional algebras in the sense that the dual vector space of a finite dimensional
algebra is canonically a finite dimensional coalgebra and vice versa.

1.7.4 Comodules

The notion of a comodule over a coalgebra is the categorial dual to that of a module
over an algebra in the sense of Definition 1.2.

Definition 1.20 Let .C = (C,
, ε) be a coalgebra over a field .F. A right comodule
over C (or simply a right C-comodule) is a .F-vector space V together with a linear
map

.δ : V → V ⊗ C (1.156)

such that the diagrams

.

(1.157)
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are commutative which, in the graphical notation, correspond to the equations

. (1.158)

where the thick lines correspond to V and thin lines to C.

Exercise 1.14 Give a definition of a left comodule over a coalgebra C.

Example 1.15 An obvious example of a C-comodule (both right and left ones) is
the coalgebra C itself with .δ = 
. ��

1.8 Convolution Algebras

The dual vector space of any coalgebra is canonically an algebra called the
convolution algebra of a coalgebra. This is a special case of a more general
convolution algebra associated to an algebra and a coalgebra.

Proposition-Definition 1.1 Let A be an algebra and C a coalgebra. Then, the
vector space .L(C,A) of linear maps from C to A is an algebra, called convolution
algebra, with the product .μ : L(C,A) ⊗ L(C,A) → L(C,A) defined by

.μ(f ⊗ g) =: f ∗ g := μA(f ⊗ g)
C (1.159)

or diagrammatically

. (1.160)

where the thick lines correspond to C and thin lines to A, and the unit .η : F →
L(C,A) is defined by

. (1.161)
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Proof We verify the associativity property

.(f ∗ g) ∗ h = μA((f ∗ g) ⊗ h)
C = μA((μA(f ⊗ g)
C) ⊗ h)
C

= μA(μA ⊗ idA)(f ⊗ g ⊗ h)(
C ⊗ idC)
C = μ
(3)
A (f ⊗ g ⊗ h)


(3)
C

= μA(idA ⊗μA)(f ⊗ g ⊗ h)(idC ⊗
C)
C = μA(f ⊗ (μA(g ⊗ h)
C))
C

= μA(f ⊗ (g ∗ h))
C = f ∗ (g ∗ h) (1.162)

and the unitality property

.f ∗ (η1) = μA(f ⊗ (η1))
C = μA(f ⊗ (ηAεC))
C

= μA(idA ⊗ηA)f (idC ⊗εC)
C = idA f idC = f (1.163)

and similarly for the product .(η1) ∗ f . ��
Remark 1.6 In order to illustrate the effectiveness of the graphical calculus of string
diagrams in this context, here is the diagrammatic proof of the associativity of the
convolution product (cf. (1.162)):

. (1.164)

and the unitality property of the convolution product (cf. (1.163)):

.

where we are using the simplified notation for the structural maps of the algebra A

and the coalgebra C.
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As the base field .F is canonically an algebra, see Example 1.11, a particular case
of the convolution algebra .L(C,A) with .A = F corresponds to an algebra structure
on the dual vector space .C∗ = L(C,F) of a coalgebra C given by the product

.〈f ∗ g, x〉 = 〈f ⊗ g,
Cx〉 =
∑

(x)

〈f, x(1)〉〈g, x(2)〉, (1.165)

where .〈·, ·〉 : C∗ × C → F is the evaluation map of a linear form on a vector, and
the unit element .η1 = εC ∈ C∗. This algebra is called the convolution algebra of a
coalgebra.

Example 1.16 The convolution algebra of the matrix coalgebra from Example 1.13
is isomorphic to the algebra of n-by-n matrices where .n = |I | is the cardinality of
the set I . It is also identified with the endomorphism algebra .End(Fn). ��
Example 1.17 The convolution algebra of the Dirichlet coalgebra (see Exam-
ple 1.14) is known as the Dirichlet convolution algebra. Its subalgebra of arithmetic
functions plays an important role in analytic number theory, where the correspond-
ing convolution product is called Dirichlet product or Dirichlet convolution, see, for
example, Chapter 2 of the book [2]. ��
Exercise 1.15 An element of the Dirichlet convolution algebra .f ∈ (F[Z>0])∗ is
called multiplicative if .〈f, χab〉 = 〈f, χa〉〈f, χb〉 for all mutually prime pairs of
positive integers .a, b ∈ Z>0 and .〈f, χ1〉 = 1. Show that if .f, g ∈ (F[Z>0])∗ are
multiplicative, then their convolution product .f ∗ g is also a multiplicative element.

1.9 Some Properties of Hopf Algebras

For a Hopf algebra H , the invertibility axiom (1.90) is nothing else but the condition
that the antipode is the inverse of the identity map .idH in the convolution algebra
.End(H).

By the uniqueness of inverses, this means that a Hopf algebra cannot admit more
than one antipode. Indeed, assuming that .S̃ is another element of .End(H) satisfying
the invertibility axiom, we write the associativity condition for the triple of elements
.(S̃, idH , S) in the convolution algebra .End(H):

.(S̃ ∗ idH ) ∗ S = S̃ ∗ (idH ∗S) ⇔ (ηEnd(H)1) ∗ S = S̃ ∗ (ηEnd(H)1) ⇔ S = S̃.

(1.166)

Remark 1.7 Definition 1.6 of a Hopf algebra differs from the standard definition(s)
in the literature. Specifically, in Definition 1.6 we do not assume that the counit
(respectively the unit) is an algebra (respectively a coalgebra) morphism. Below, we
derive these properties from the axioms listed in Definition 1.6. These derivations
are based on the interpretations of the product .μ and the coproduct .
 as invertible
elements of the convolution algebras .L(H ⊗H,H) and .L(H,H ⊗H), respectively.
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Lemma 1.1 In any Hopf algebra .H = (H,μ, η,
, ε, S), the product .μ (respec-
tively the coproduct .
) is an invertible element of the convolution algebra .L(H ⊗
H,H) (respectively .L(H,H ⊗ H)) with the inverse

. (1.167)

Here the opposite product and the opposite coproduct are defined by

.μop := μσH,H , 
op := σH,H 
. (1.168)

Proof Here is a graphical proof of the fact that .μ̄ is a right convolution inverse of
.μ:

. (1.169)

where, in the second equality, we convert the three trivalent vertices corresponding
to the product into a multivalent vertex corresponding to an iterated product; in the
third equality, by using associativity of the product and properties of the symmetry,
we “pulled out” appropriately chosen trivalent vertex from the multivalent vertex,
and in the last three equalities, we use twice the invertibility axiom and once the
unitality axiom.

The rest of the proof goes along the same type of graphical calculations. ��
Proposition 1.2 In any Hopf algebra, the counit (respectively unit) is a morphism
of algebras (respectively coalgebras). This means that

. (1.170)

. (1.171)

. (1.172)
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Proof The compatibility, the unitality and the counitality axioms imply that

.(ηεμ) ∗ μ = μ

in the convolution algebra .L(H ⊗H,H). As .μ is an invertible element, we conclude
that

.ηεμ = ηL(H⊗H,H)1 = η(ε⊗ε) ⇒ εμ = ε⊗ε ⇒ εη = idF . (1.173)

By the duality symmetry, the compatibility, the unitality and the counitality
axioms imply that

.(
ηε) ∗ 
 = 


in the convolution algebra .L(H,H ⊗H). As .
 is an invertible element, we conclude
that

.
ηε = ηL(H,H⊗H)1 = (η ⊗ η)ε ⇒ 
η = η ⊗ η. (1.174)

��
Exercise 1.16 Show that if .H := (H,μ, η,
, ε, S) is a Hopf algebra, then

.H op,cop := (H,μop, η,
op, ε, S) (1.175)

is also a Hopf algebra.

Proposition 1.3 In any Hopf algebra H , the antipode is a Hopf algebra morphism
from H to .H op,cop.

Proof By Lemma 1.1, the convolution inverse of .μ is the map .μ̄ defined in (1.167).
On the other hand, the composition .Sμ is also the convolutional inverse of .μ as
shows the following diagrammatic calculation:

. (1.176)

and likewise for the product .(Sμ) ∗μ. Thus, by uniqueness of inverses, we have the
equality

.Sμ = μop(S ⊗ S) (1.177)
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and likewise

.
S = (S ⊗ S)
op. (1.178)

To finish the proof, we check that

. (1.179)

and similarly

.Sη = η. (1.180)

��

1.10 Bialgebras

Bialgebras, like Hopf algebras, are categorially self-dual algebraic objects (in
the sense of Definition 1.2) that carry compatible structures of an algebra and a
coalgebra but without assuming the existence of the antipode.

Definition 1.21 A bialgebra is a tuple .(B,μ, η,
, ε), where .(B,μ, η) is an
algebra, .(B,
, ε) is a coalgebra, and the linear maps .
 and .ε are algebra
morphisms (or, equivalently, .μ and .η are coalgebra morphisms).

Exercise 1.17 Give a definition of a bialgebra morphism.

Remark 1.8 By forgetting the antipode, any Hopf algebra becomes a bialgebra if
one keeps the property that the counit is a morphism of algebras. A bialgebra B

originates in this way from a Hopf algebra if and only if the identity map .idB is
invertible in the convolution algebra .End(B) of endomorphisms of B.

Example 1.18 Let M be a monoid, i.e. a set with associative product and the unit
element .e ∈ M , see Definition 1.3. The monoid bialgebra is the vector space .F[M]
freely generated by the set M , where the structure maps are given in terms of the
linear basis of characteristic functions of points .{χa}a∈M by the formulae

.μ(χa ⊗ χb) = χab, η1 = χe, (1.181)

.
χa = χa ⊗ χa, εχa = 1. (1.182)
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These relations coincide with the relations (1.107) for group algebras, so that
verification of the axioms follow the same line of reasoning as in the case of group
algebras. ��
Exercise 1.18 Show that a monoid bialgebra .F[M] admits the structure of a Hopf
algebra if and only if M is a group.
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