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Preface

The book is based on the one-semester introductory courses on Hopf algebras that
the author taught on several occasions at the mathematical department of University
of Geneva, and it is addressed mostly to those who learn the subject for the first time.
Compared to the already existing vast literature on the subject, the distinguishing
features of this book are as follows:

• We restrict ourselves to only minimal amount of material needed for applications
in knot theory, namely, construction of solutions of the Yang–Baxter equations.

• The presentation is purely algebraic, essentially based on the multilinear algebra.
• When possible, the string diagram notation for monoidal categories is used which

facilitates many proofs.
• The restricted (or finite) dual of a Hopf algebra plays the central role.
• The general theory is developed in a minimal way, while few simple examples

are considered and worked out in detail.
• The universal R-matrix is given in dual terms as a bilinear form, so that for

infinite dimensional Hopf algebras no completion is needed.

The main motivation that guides this book is the construction of solutions of the
Yang–Baxter equations which are written graphically as follows:
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viii Preface

where the labels, taking their values in a finite set E, are assigned to edges so
that the same labels are assigned to the corresponding open ends of two sides of
the graphical equations. The unknowns correspond to the crossings with the labels
around:

whereas the contribution of each labeled diagram is given by the product of the
unknowns over all crossings. So, explicitly, the equations are as follows:

.

∑

p,q,r∈E

xj,k,q,rxi,q,l,pxp,r,m,n =
∑

s,t,u∈E

xi,j,u,sxs,k,t,nxu,t,l,m, i, j, k, l,m, n ∈ E.

As there are .|E|6 nonlinear equations on .|E|4 unknowns, this system of equations
is overdetermined if .|E| > 1.

The Yang–Baxter equations were first introduced in the field of two-dimensional
lattice statistical mechanics and quantum field theory as an algebraic machinery for
treating exactly solvable models [6, 12, 47]. Their name comes from the works of
C.N. Yang [46] and R.J. Baxter [5], though the equations first appeared in the work
of J.B. McGuire [30], and their specific form, known as star-triangle relations, is
already contained in the work of L. Onsager [33].

In the 1980s, a revolutionary breakthrough in three-dimensional topology took
place with the discovery by V.R. Jones of a new polynomial invariant of knots
and links [18] which appeared to be related with the solution of the Yang–Baxter
equations associated to the six-vertex model of lattice statistical mechanics. The
discovery of the Jones polynomial has resulted in creation of a new mathematical
subject called Quantum Topology where the Yang–Baxter equations play the central
role as concerns the construction of knot and link invariants. The subsequent
development of the theory of quantum groups [11, 13, 17] has led to deep
connections of the Yang–Baxter equations with Hopf algebras, and since then the
so-called quantum invariants have proliferated and their study has been closely
tied with connections between monoidal categories and 3-manifolds [41] and the
development of topological quantum field theories [3, 38, 45].

The outline of the book by chapters is as follows.
In Chap. 1, after brief discussion of the setup and some preparatory work with

the definition of a group and the graphical notation of string diagrams, we give the
definitions of a Hopf algebra and related algebraic structures: algebras, coalgebras,
bialgebras, modules, and comodules, and discuss their general properties.

In Chap. 2, we describe how to construct Hopf algebras based on the construc-
tions of algebras, coalgebras, and bialgebras. Particular attention is paid to free
algebras on vector spaces and free bialgebras and Hopf algebras on coalgebras.

In Chap. 3, we introduce the restricted (or finite) dual of an algebra. It is a
coalgebra that accumulates all finite-dimensional representations of the algebra.
This is one of the most important ingredients for the subsequent chapters.
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In Chap. 4, we work out in detail the structure of the restricted dual for few
specific Hopf algebras.

In Chap. 5, we define Drinfel’d’s quantum double .D(H) of a Hopf algebra H in
its maximal form by using the restricted dual of H and describe its structure in the
case of the quantum group .Bq , a Hopf algebra isomorphic to the Borel subalgebra
of .Uq(sl2). We also work out in detail the calculation of the solutions of the Yang–
Baxter equations associated with irreducible finite-dimensional representations of
.D(Bq).

The last Chap. 6 is dedicated to construction of knot invariants from solutions of
the Yang–Baxter equations. In particular, we define a representation independent
universal knot invariant associated to a given Hopf algebra H with invertible
antipode. This invariant takes its values in the dual space of the restricted dual of the
quantum double of H .

The presentation of the material of Chaps. 1–5 is based mainly on the books [1,
10, 21, 29, 35, 39]. The last Chap. 6 can be complemented with some standard
introductory textbook on knot theory, for example, [23].

I would like to thank Remi Lodh and the whole team of Springer publish-
ers/editors and the anonymous referees for their help, advice, and numerous com-
ments which greatly improved the presentation of the book’s content. I am grateful
to my colleagues and students for valuable discussions related to the contents
of this book, especially to Jørgen Ellegaard Andersen, Vladimir Bazhanov, Anna
Beliakova, Christian Blanchet, Stavros Garoufalidis, Nicolas Hemelsoet, Mucyo
Karemera, Kalle Kytölä, Vladimir Mangazeev, Marcos Mariño, Jules Martel-
Tordjman, Cristina Palmer-Anghel, Martin Palmer, Eiichi Piguet-Nakazawa, Jan
Pulmann, Muze Ren, Nikolai Reshetikhin, Louis-Hadrien Robert, Sergey Sergeev,
Shamil Shakirov, Sakie Suzuki,Vladimir Turaev, and Alexis Virelizier, among
others.

This work is supported in part by the Swiss National Science Foundation,
the subsidies no .200020192081, .200020200400, and the research program The
Mathematics of Physics NCCR (SwissMAP).

Geneva, Switzerland Rinat Kashaev
December 2022



Notation and Conventions

For any non-negative integer .n ∈ Z≥0, the corresponding von Neumann ordinal
number, that is the finite set .{0, 1, . . . , n − 1}, is written as underlined n:

.n := {0, 1, . . . , n − 1}.

For example, .0 = ∅ = {}, .1 = {0}, .2 = {0, 1}, etc.
We also use .ω as an alternative notation for the set of non-negative integers .Z≥0.
For any set S, the cardinality of S is denoted by .|S|. For example, .|n| = n for any

.n ∈ ω.
For any two sets X and Y , .XY denotes the set of all mappings from Y to X. For

example, .Xω denotes the set of sequences .(x0, x1, . . .) in X, while the set .Xn is
naturally bijective to the Cartesian power .Xn through the map .Xn → Xn that sends
a function .x : n → X to its ordered image .(x0, x1, . . . , xn−1) ∈ Xn.

If sets .X, Y, . . . , Z are finite or infinite countable, then for any map

.f : X × Y × · · · × Z → W,

we often write .fx,y,...,z instead of .f (x, y, . . . , z).
An unspecified base field is denoted as .F, while for specific examples we often

work with the field .C of complex numbers or the field .R of real numbers.
For an .F-linear map .f : V → W between vector spaces over a base field .F, we

write f x instead of .f (x). For an .F-linear form .f : V → F, we also write .〈f, x〉
instead of f x.

For a composition of linear maps, we suppress the composition symbol and write
fg instead of .f ◦ g.

For two vector spaces U and V (over a field .F), the notation .L(U, V ) is used to
denote the vector space of all .F-linear maps from U to V .
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Chapter 1
Groups and Hopf Algebras

The main goal of this chapter is

• to give the definition of a Hopf algebra and to motivate it on the basis of the
notion of a group which is of fundamental importance in mathematics;

• to introduce the graphical notation of string diagrams;
• to introduce the algebraic structures closely related to Hopf algebras, namely

the notions of algebra, module, coalgebra, comodule, convolution algebra, and
bialgebra;

• to establish few basic properties of Hopf algebras.

Section 1.1 in this chapter is the most abstract one where we briefly discuss the
notions of a monoidal category, a braided monoidal category and a symmetric
monoidal category. We do so for at least three reasons. First, those notions are
used in the last Chap. 6 where knot invariants are defined in the general context
of monoidal categories. The second reason is that, we motivate the definition of
a Hopf algebra by the definition of a group (reformulated by using the structural
maps), and these two definitions differ only by the underlying symmetric monoidal
categories: vector spaces with tensor product in the case of Hopf algebras and
sets with Cartesian product in the case of groups. The third reason is that many
general constructions and statements in the book can be expressed in the language of
string diagrams, and the latter make sense also in the context of arbitrary symmetric
monoidal categories. In principle, with the exception of the last Sect. 1.1.3, where
the graphical notation of string diagrams is introduced, Sect. 1.1 is optional for five
Chaps. 1–5 where we mainly work only in the framework of multilinear algebra,
that is the symmetric monoidal category .VectF of vector spaces over a field .F with
the tensor product .⊗F as the monoidal product. Thus, one can start the reading right
from Sect. 1.1.3 and return back to Sect. 1.1 only before reading Chap. 6 dedicated
to applications in knot theory.
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2 1 Groups and Hopf Algebras

1.1 Monoidal Categories

In this section we give few basic definitions that concern monoidal or tensor
categories, without elaborating details but providing few concrete examples. It is
assumed that the reader is familiar with definitions of a category, a functor, a natural
transformation, and a commutative diagram.

Since our main example of a monoidal category is the category .VectF of vector
spaces over a fixed base field .F equipped with the tensor product .⊗F as a monoidal
product, on first reading, this section can be viewed as a summary of general
properties of the category .VectF. A more systematic and detailed presentation of
monoidal categories can be found in Chapter 1 of the book [42] and chapter XI of
the book [19].

1.1.1 Monoidal Categories

For any category .C, let .C×C be the cartesian square of .C, which is a category whose
objects are ordered pairs of objects of .C, morphisms are ordered pairs of morphisms
of .C, and the composition is component-wise composition in .C.

A category .C is called monoidal if it is equipped with a functor

.⊗: C × C → C, (A,B) �→ A ⊗ B, (f, g) �→ f ⊗ g, (1.1)

called the tensor or monoidal product, an object I called the unit or identity object,
and natural isomorphisms

.αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), A,B,C ∈ ObC, (1.2)

.λA : I ⊗ A → A, ρA : A ⊗ I → A, A ∈ ObC, (1.3)

respectively called associator, left unitor and right unitor, which satisfy two
families of coherence conditions corresponding to commutative diagrams

. (1.4)
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and

. (1.5)

respectively called the pentagon and the triangle diagrams, and the equality

.λI = ρI : I ⊗ I → I. (1.6)

A monoidal category is called strict if the natural isomorphisms .α, .λ, .ρ are
identities. It is known that any monoidal category is equivalent to a strict monoidal
category, see for the proof, for example, [19].

Example 1.1 The category .Set of sets is a monoidal category with the Cartesian
product as the monoidal product and any one-element set, say .1 = {0}, as the unit
object. This is a prototypical example of a monoidal category. ��
Example 1.2 The category .VectF of vector spaces over a base field .F with .F-linear
maps as morphisms is a monoidal category with the tensor product .⊗F as the
monoidal product and the base field .F, viewed as a vector space of dimension one,
as the unit object. This is the principal monoidal category we will be working with
in this book. ��

Just for the sake of clarity, to make the abstract definition less abstract, below we
give some more less intuitive examples of monoidal categories, although they will
not be used in any way in the following.

Before giving the next example, let us recall the definition of the direct sum of a
family of vector spaces.

Definition 1.1 Let .{Vi}i∈I be a family of vector spaces over a fixed base field. The
direct sum of this family is the vector space .V := ⊕

i∈I Vi of all maps from the
index set I to the set-theoretical union of all the vector spaces in the family,

.x : I → ∪i∈I Vi, i �→ xi, (1.7)

that satisfy the condition .xi ∈ Vi for all .i ∈ I , and .xi is the zero vector of .Vi for all
but finitely many i’s.

For each index .i ∈ I , there are two canonical linear maps associated to the direct
sum .V = ⊕

i∈I Vi of a family vector spaces indexed by I . These are the projection
map

.pi : V → Vi, x �→ xi, (1.8)
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and the inclusion map

.qi : Vi → V, v �→ x, xj =
{

v if j = i;
0 otherwise.

(1.9)

The projection and inclusion maps satisfy the following relations:

.piqj =
{

idVi
if i = j ;

0 otherwise,

∑

i∈I

qipi = idV , (1.10)

where the sum always truncates to a finite sum when applied to an element of V .

Example 1.3 The monoidal category .VectZF of .Z-graded .F-vector spaces is a
subcategory of .VectF defined as follows.

An object V of .VectZF is the direct sum of a .Z-indexed family of .F-vector spaces
.{Vn}n∈Z, while a morphism .f : V → W is a linear map such that .f (Vn) ⊂ Wn for
any .n ∈ Z. The tensor product .V ⊗F W of two .Z-graded vector spaces is the direct
sum of the family

.(V ⊗F W)n =
⊕

k∈Z

(Vk ⊗F Wn−k), n ∈ Z. (1.11)

The unit object I is the direct sum of the family

.In =
{

F if n = 0;
0 otherwise.

(1.12)

The tensor product .f ⊗F g of two morphisms .f : X → U and .g : Y → V is the
usual tensor product of linear maps. ��
Example 1.4 Define a category .Mat(F) of matrices over a field .F where the objects
are elements of the set of non-negative integers .ω = Z≥0 and a morphism .f : m →
n is a (set-theoretical) map .f : m × n → F. The composition of .f : l → m and
.g : m → n is the morphism .g ◦ f : l → n defined by

.(g ◦ f )i,j =
∑

k∈m

fi,kgk,j , ∀(i, j) ∈ l × n.

This is a strict monoidal category where .m⊗n = m+n, the unit object being 0. As
.0 = ∅, for any object .n ∈ ω, there is only one morphism from 0 to n and from n to
0.
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For two morphisms .f : m → n and .g : k → l, their tensor (monoidal) product is
the morphism .f ⊗ g : m + k → n + l defined by

.(f ⊗ g)i,j =
⎧
⎨

⎩

fi,j if (i, j) ∈ m × n;
gi−m,j−n if (i − m, j − n) ∈ k × l;

0 otherwise.

A morphism .f : m → n in the category .Mat(F) can also be viewed as a m-by-n
matrix

.Mf = (fi,j )i∈m,j∈n.

With this interpretation, the matrix associated to the composition .g ◦ f is given by
the matrix product

.Mg◦f = Mf Mg,

while the tensor product of two morphisms .f ⊗g is represented by the block matrix

.Mf ⊗g =
(

Mf 0
0 Mg

)

.

Example 1.5 Let G be a group and .H ⊂ G a normal subgroup. Denote by

.C(H) := {g ∈ G | gh = hg ∀h ∈ H }

the commutant of H in G (which is also a normal subgroup of G). We define
a category .GH,G where objects are elements of the quotient group .G/H and a
morphism .f : xH → yH is a pair .(u, v) ∈ yH × xH modulo the equivalence
relation .(u, v) ∼ (uh, vh), .h ∈ H , such that .uv−1 ∈ C(H). Notice that the
latter element does not change under the equivalence relation. The composition of
morphisms .f = (u, v) : xH → yH and .g = (p, q) : yH → zH is given by the
formula

.g ◦ f = (p, q) ◦ (u, v) = (pq−1u, v) : xH → zH.

This formula is explicitly compatible with the equivalence relation and thus is well
defined. Associativity of the composition is verified straightforwardly

.(f ◦ g) ◦ h = ((p, q) ◦ (s, t)) ◦ (u, v) = (pq−1s, t) ◦ (u, v) = (pq−1st−1u, v)

= (p, q) ◦ (st−1u, v) = (p, q) ◦ ((s, t) ◦ (u, v)) = f ◦ (g ◦ h).

The identity morphism .idxH is represented by .(x, x).



6 1 Groups and Hopf Algebras

This is a strict monoidal category where .xH ⊗yH = xyH , the unit object being
.eH = H , and for two morphisms .f = (u, v) and .g = (p, q) their tensor product is
defined by the component-wise multiplication .f ⊗ g = (up, vq), and the condition
.uv−1 ∈ C(H) for a morphism .(u, v) ensures compatibility of the tensor product
with the composition

.(a ⊗ b) ◦ (c ⊗ d) = (a ◦ c) ⊗ (b ◦ d).

Example 1.6 A special case of the previous example corresponds to a group G with
the trivial subgroup .H = {e}. In this case, the category .GH,G is given by G as the
set objects and, for any pair of objects .x, y ∈ G, there is exactly one morphism
.(y, x) : x → y. The group multiplication of G gives the monoidal structure of the
category. ��

1.1.2 Braided Monoidal Categories

For any category .C, the exchange functor

.ς : C × C → C × C (1.13)

is defined by exchanging the components, that is

.ς(A,B) = (B,A), ∀(A,B) ∈ Ob(C × C), (1.14)

for objects and

.ς(f, g) = (g, f ), (f, g) : (A,B) → (C,D), (1.15)

for arrows (morphisms).
Let .C be now a monoidal category. We have two functors

.⊗: C × C → C, (A,B) �→ A ⊗ B, (f, g) �→ f ⊗ g (1.16)

and

.⊗op = ⊗ ◦ ς : C × C → C, (A,B) �→ B ⊗ A, (f, g) �→ g ⊗ f. (1.17)

A braiding in a monoidal category .C is a natural isomorphism

.β : ⊗ → ⊗op (1.18)
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such that the following diagrams are commutative:

. (1.19)

and

. (1.20)

A braided monoidal category is a monoidal category with a braiding.
In view of applications in knot theory, braided monoidal categories constitute a

very important class of monoidal categories, and the quantum double construction
for Hopf algebras of Chap. 5 implicitly gives rise to braided monoidal categories,
see, for example, [19, 21, 41].

A symmetric monoidal category is a braided monoidal category where the
braiding satisfies the conditions

.β−1
A,B = βB,A, ∀A,B ∈ ObC. (1.21)

In this case, the braiding is called symmetry and denoted as .σ .

Example 1.7 The category .Set of sets, see Example 1.1, is a symmetric monoidal
category where the symmetry is given by the exchange maps

.σX,Y : X × Y → Y × X, (x, y) �→ (y, x). (1.22)

As we will see in Sect. 1.2, any group can be interpreted as an object of this
symmetric monoidal category. ��
Example 1.8 The category .VectF of .F-vector spaces, see Example 1.2, is a
symmetric monoidal category where the symmetry is given by the exchange maps
extended by linearity

.σV,W : V ⊗F W → W ⊗F V, x ⊗F y �→ y ⊗F x. (1.23)

Hopf algebras are objects of this category, and the symmetry enters in their
definition in one of the defining properties, see Definition 1.6 of Sect. 1.4. ��
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Example 1.9 For any .q ∈ F�=0, the category .VectZF of .Z-graded .F-vector spaces,
see Example 1.3, is a braided monoidal category with the braiding

.βU,V : U ⊗ V → V ⊗ U (1.24)

defined by

.βU,V (x ⊗F y) = qmny ⊗F x, x ∈ Um, y ∈ Vn, m, n ∈ Z. (1.25)

It is a symmetric monoidal category if .q2 = 1. ��

1.1.3 The Graphical Notation of String Diagrams

Throughout this book, we will find it convenient sometimes to use the graphical
notation of string diagrams.

Let .C be a category. To any morphism .f : X → Y in .C, we associate a graphical
picture

.

f f

X

Y

.

(1.26)

If .f : X → Y and .g : Y → Z are two composable morphisms, then their
composition is described by the vertical concatenation of graphs

.

g f = g f

Z

X

=

g
Z

f

X (1.27)

In particular, for the identity morphism .idX it is natural to use just a line

.

idX idX

X

X X

X (1.28)
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The string diagrams are especially useful in the case when .C is a strict monoidal
category, because the tensor (monoidal) product can be drawn by the horizontal
juxtaposition. Namely, for two morphisms .f : X → Y and .g : U → V , their tensor
product .f ⊗ g : X ⊗ U → Y ⊗ V is drawn as follows:

.

f g f g

Y V

X U

VY

UX

g

V

U

f

Y

X

.f g

(1.29)

By taking into account the distinguished role of the identity object I , it is natural to
associate to it the empty graph.

In this notation, for example, the commutative diagram (1.19) for a braiding, in
the context of a strict monoidal category, corresponds to the following diagrammatic
equality

.

βA,B C

B C A

A B C

βA,B

B

A B

βA,C

C A

C

A

(1.30)

and the graphical equality corresponding to the commutative diagram (1.20)

.

βA B,C

C A B

A B C

βB,C

B

B C

βA,C

C A

A

C .

(1.31)

These relations become intuitively natural and almost tautological, if one uses a
notation for a braiding borrowed from knot diagrams

.

βA,B

B

A

A

B

=:

A B

B A

(1.32)
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which, in the case of a symmetric monoidal category, can be further simplified by
removing the indication of under-passing strands.

In the case of non-strict monoidal categories, the graphical calculus becomes less
convenient because of the non-associativity of the tensor product. In this case, the
horizontal juxtaposition is not enough so that one should provide an extra structure,
for example, the relative distance between the vertical lines.

More systematic and detailed explanation of the graphical notation of string
diagrams can be found in Chapter 2 of the book [42].

1.2 Groups in Terms of Structural Maps

At first glance, the formal definition of a Hopf algebra (to be given later in Sect. 1.4)
looks neither simple nor intuitively motivated. For this reason, we start by reviewing
the notion of a group which we reformulate by using the structural maps as the
basic entities. Such a reformulation will make the definition of a Hopf algebra very
natural, at least from the viewpoint of group theory.

Recall that a group is a set G where, for any two elements .g, h ∈ G, there
corresponds a unique element gh called the product of g and h, a distinguished
element e called the identity element, and, for any element g, there corresponds a
unique element .g−1 called the inverse element such that the following axioms are
satisfied:

.associativity : (fg)h = f (gh), ∀f, g, h ∈ G, . (1.33)

unitality : eg = ge = g, ∀g ∈ G, . (1.34)

invertibility : gg−1 = g−1g = e, ∀g ∈ G. (1.35)

We formalize the definition of a group by introducing three structural maps:

.product μ : G × G → G, (g, h) �→ gh, . (1.36)

unit η : 1 → G, 0 �→ e, . (1.37)

inverse S : G → G, g �→ g−1. (1.38)

By rewriting

.(fg)h = μ(fg, h) = μ(μ(f, g), h) = μ((μ × id)(f, g, h))

= μ ◦ (μ × id)(f, g, h) (1.39)
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and

.f (gh) = μ(f, gh) = μ(f,μ(g, h)) = μ((id × μ)(f, g, h))

= μ ◦ (id × μ)(f, g, h), (1.40)

we conclude that the associativity axiom is equivalent to the following equality for
the product map

.μ ◦ (μ × id) = μ ◦ (id × μ) (1.41)

which corresponds to the commutative diagram

. (1.42)

Before going further with the unitality axiom, let us agree on the following
convention.

Let .1 := {0} be the set consisting of one element denoted by 0. For any set X, the
(cartesian) product sets .1 × X and .X × 1 are identified with X through the obvious
canonical bijections .(0, x) �→ x and .(x, 0) �→ x which allows us to have natural
identifications .(0, x) = (x, 0) = x. With this convention, for the unitality axiom,
we have

.e · g = μ(η(0), g) = μ ◦ (η × id)(0, g) = μ ◦ (η × id)(g) (1.43)

and

.g · e = μ(g, η(0)) = μ ◦ (id × η)(g, 0) = μ ◦ (id × η)(g) (1.44)

so that the unitality axiom can be stated as the following equations for the structural
maps

.μ ◦ (η × id) = id = μ ◦ (id × η) (1.45)

which correspond to the commutative diagram

. (1.46)
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In order to describe the invertibility axiom in terms of equations for the structural
maps, we need to use two other maps which are canonically defined for any set X.
These are the diagonal or coproduct map

.
 : X → X × X, x �→ (x, x), ∀x ∈ X, (1.47)

and the counit map

.ε : X → 1, x �→ 0, ∀x ∈ X. (1.48)

These names come from the fact that they are similar to the product and the unit
maps of a group in the following sense.

Definition 1.2 A commutative diagram .� is called a categorial or diagrammatic
dual of another commutative diagram .�′, if .� can be obtained from .�′ by reversing
all arrows and relabelling the objects.

The diagonal map satisfies the equality

.(id × 
) ◦ 
 = (
 × id) ◦ 
 (1.49)

corresponding to the commutative diagram

. (1.50)

which is the categorial dual of the commutative diagram (1.42) corresponding to
equality (1.41). For this reason, equality (1.49) is called the coassociativity property.

The counit map enters the counitality equalities

.(ε × id) ◦ 
 = id = (id × ε) ◦ 
. (1.51)

corresponding to the commutative diagram

. (1.52)

which is the categorial dual of the commutative diagram (1.46) corresponding to
equalities (1.45) expressing the unitality axiom.
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In order to express the invertibility axiom in terms of equations for structural
maps, we write

.gg−1 = μ(g, g−1) = μ ◦ (id × S)(g, g) = μ ◦ (id × S) ◦ 
(g), (1.53)

.g−1g = μ(g−1, g) = μ ◦ (S × id)(g, g) = μ ◦ (S × id) ◦ 
(g), (1.54)

and

.e = η(0) = η(ε(g)) = η ◦ ε(g). (1.55)

Thus, the invertibility axiom is equivalent to the equations

.μ ◦ (id × S) ◦ 
 = η ◦ ε = μ ◦ (S × id) ◦ 
 (1.56)

corresponding to the commutative diagram

. (1.57)

which is the categorial dual of itself.
Finally, by using the canonical exchange map

.σ = σG,G : G × G → G × G, (x, y) �→ (y, x), (1.58)

we remark that the product and the coproduct satisfy the compatibility equality

.(μ × μ) ◦ (id × σ × id) ◦ (
 × 
) = 
 ◦ μ : G × G → G × G (1.59)

corresponding to the commutative diagram

. (1.60)
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which is also the categorial dual of itself. Moreover, identity (1.59) holds even if G

is replaced by any set X and the product .μ by any binary operation .f : X×X → X.
Indeed, for any .(x, y) ∈ X × X, we have

.(f × f ) ◦ (id × σ × id) ◦ (
 × 
)(x, y)

= (f × f ) ◦ (id × σ × id)(x, x, y, y) = (f × f )(x, y, x, y) = (f (x, y), f (x, y))

= 
(f (x, y)) = 
 ◦ f (x, y). (1.61)

As the matter of fact, this calculation reflects an elementary general property of the
cartesian symmetric monoidal category of sets which will be described in Sect. 1.3.

1.2.1 The Structural Maps of a Group in Graphical Notation

We are ready now to use the graphical notation of string diagrams introduced
in Sect. 1.1.3 to rewrite the definition of a group. The monoidal category we are
working in is the symmetric monoidal category .Set of sets with the tensor product
specified by the Cartesian product of sets, see Example 1.7.

Let us introduce the following graphical notation for the structural maps of a
group (all lines correspond to the underlying set of the group G and the singleton .1
carries no line):

.
product

. (1.62)

coproduct
. (1.63)

unit
. (1.64)

counit
. (1.65)

inverse or antipode
. (1.66)

exchange or symmetry
(1.67)

For the inverse map in (1.66) we also put the term “antipode” in anticipation of its
counterpart in the case of Hopf algebras, see Definition 1.6 of Sect. 1.4.
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Recall from Sect. 1.1.3 that the composition of maps corresponds to vertical
concatenation of the corresponding graphical objects, while the Cartesian product
corresponds to horizontal juxtaposition. With this notation, the structural equations
of a group take the following form:

.

associativity:
. (1.68)

unitality:
. (1.69)

coassociativity:
. (1.70)

counitality:
. (1.71)

invertibility:
. (1.72)

compatibility:
(1.73)

Remark 1.1 A motivational idea behind the definition of a Hopf algebra is to think
of these diagrams in the context of other symmetric monoidal categories. The
corresponding realizations are called group objects. In particular, as we will see
later in Sect. 1.4, a Hopf algebra can be identified as a group object in the symmetric
monoidal category of vector spaces with the tensor product as the monoidal product,
see Example 1.8.

1.3 Monoids and Comonoids

Given an algebraic notion, for example a group, it is often useful and instructive
to consider other structures obtained from the initial one by dropping some of the
defining properties/axioms. In the definition of a group, if we remove the inverse
map together with the invertibility axiom, then we obtain the notion of a monoid.

Definition 1.3 A monoid is a set M together with two maps

.μ : M × M → M, η : 1 → M, (1.74)

respectively called product and unit, which satisfy the associativity axiom (1.41)
and the unitality axiom (1.45).
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Exercise 1.1 (Uniqueness of Inverses) An element .x ∈ M of a monoid M is called
invertible if there exists an element .y ∈ M , called inverse of x, such that .μ(x, y) =
μ(y, x) = η(0). Show that any invertible element x admits a unique inverse.

Definition 1.4 Let .M = (M,μM, ηM) and .N = (N,μN, ηN) be two monoids. A
map .f : M → N is called morphism of monoids if it commutes with the structural
maps in the sense of the relations

.f ◦ μM = μN ◦ (f × f ), f ◦ ηM = ηN . (1.75)

The notion of a comonoid is obtained by taking the categorial dual of the notion
of a monoid, i.e. by reversing all arrows in the definition of a monoid in terms of
commutative diagrams, see Definition 1.2.

Definition 1.5 A comonoid is a set C provided with two maps

.
 : C → C × C, ε : C → 1, (1.76)

called coproduct and counit, which satisfy the coassociativity axiom (1.49) and the
counitality axiom (1.51).

Exercise 1.2 Give a definition of a morphism of comonoids.

The following proposition shows that the notion of a comonoid is not particularly
meaningful in a set-theoretic context.

Proposition 1.1 Any set admits a unique comonoid structure and any map between
two sets is a morphism of comonoids.

Proof Notice that the counit map of any comonoid, being a map to the singleton,
is uniquely fixed, and it is thus uniquely defined also for any set. Moreover, it is
easily seen that any set X is a comonoid with the diagonal map as the coproduct and
the map to the singleton as the counit. The formal proof is identical to the case of
groups, see Eqs. (1.49)–(1.52). Let us show that there are no other comonoids.

Let .C = (C,
, ε) be a comonoid. Then the coproduct .
 corresponds to two
maps .α, β : C → C defined by

.
(x) = (α(x), β(x)). (1.77)

Substituting this into the counitality axiom (1.51), we obtain

.(ε × id) ◦ 
(x) = (ε × id)(α(x), β(x))

= (ε(α(x)), β(x)) = (0, β(x)) = β(x) = x, (1.78)
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and

.(id × ε) ◦ 
(x) = (id × ε)(α(x), β(x))

= (α(x), ε(β(x))) = (α(x), 0) = α(x) = x (1.79)

where we use the convention on the equality for the canonical identifications

.X × 1 � X � 1 × X.

Thus, the coproduct is necessarily the diagonal map .
(x) = (x, x).
Finally, any map between two sets .f : X → Y enters the obvious commutative

diagrams

. (1.80)

which mean that f is a morphism of comonoids. ��

1.4 Hopf Algebras

In this section, we introduce the central object of this book, a Hopf algebra. The
definition that follows is motivated by the notion of a group which we reformulated
in Sect. 1.2 in terms of structural maps. As the notions of a monoid or/and a
comonoid are the results of dropping some of the structural maps and axioms
from the definition of a group, in the subsequent sections of this chapter, we also
introduce the analogous notions of an algebra (Sect. 1.6) and a coalgebra (Sect. 1.7)
by dropping the corresponding structural maps and axioms from the definition of
a Hopf algebra. There is also a notion of a bialgebra (Sect. 1.10), which in the set-
theoretical context, corresponds to a monoid, but in the context of vector spaces,
it is not true that every algebra (or coalgebra) is a bialgebra, though any Hopf
algebra is a bialgebra. The reason for this difference comes from the fact that any
set is canonically a comonoid in a unique way, as we have seen in the previous
section, see Proposition 1.1, while a given vector space can admit many structures
of a coalgebra, and, for a given algebra, there could be different possibilities, for
example, non of available coalgebra structures on the underlying vector space can
be compatible with the algebra structure, etc.
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In what follows, we let .F denote a field, write .⊗ instead of .⊗F and omit the
composition symbol in the case of linear maps.

Definition 1.6 A Hopf algebra (over a field .F) is a .F-vector space H of strictly
positive dimension together with the following five linear maps:

.product μ : H ⊗ H → H, . (1.81)

coproduct 
 : H → H ⊗ H, . (1.82)

unit η : F → H, . (1.83)

counit ε : H → F, . (1.84)

antipode S : H → H, (1.85)

which satisfy the following equations (axioms):

.associativity : μ(μ ⊗ idH ) = μ(idH ⊗ μ), . (1.86)

unitality : μ(η ⊗ idH ) = idH = μ(idH ⊗ η), . (1.87)

coassociativity : (idH ⊗ 
)
 = (
 ⊗ idH )
, . (1.88)

counitality : (ε ⊗ idH )
 = idH = (idH ⊗ ε)
, . (1.89)

invertibility : μ(idH ⊗ S)
 = ηε = μ(S ⊗ idH )
, . (1.90)

compatibility : (μ ⊗ μ)(idH ⊗ σ ⊗ idH )(
 ⊗ 
) = 
μ, (1.91)

where the symmetry map .σ = σH,H : H ⊗H → H ⊗H acts by .σ(x ⊗y) = y ⊗x.

Remark 1.2 The list of axioms (1.86)–(1.91) exactly corresponds to the list of
graphical relations (1.68)–(1.73), and we will often use the same graphical notation
in this new context with the replacements:

.

sets �→ vector spaces
set theoretical maps �→ linear maps

the singleton 1 = {0} �→ the base field F (a 1-dimensional vector space)
the cartesian product �→ the tensor product.

Definition 1.7 Let

.H = (H,μH , ηH ,
H , εH , SH ) and L = (L,μL, ηL,
L, εL, SL)
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be two Hopf algebras. A linear map .f : H → L is called a morphism of Hopf
algebras or a Hopf algebra morphism if it commutes with all the structural maps,
that is the following diagrams are commutative:

. (1.92)

. (1.93)

. (1.94)

These commutative diagrams correspond to the following equalities between linear
maps

.μL(f ⊗ f ) = f μH , f ηH = ηL, (1.95)

.(f ⊗ f )
H = 
Lf, εLf = εH , (1.96)

.SLf = f SH . (1.97)

Remark 1.3 In any Hopf algebra, we have the inequality .η �= 0 as otherwise the
Hopf algebra would be zero-dimensional.

1.5 Group Algebras as Hopf Algebras

In this section we consider a class of examples of Hopf algebras coming from
groups. Given the fact that we have motivated the definition of a Hopf algebra by
considering the definition of a group, it is not very surprising that the two notions
are related.
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Definition 1.8 For any set X, we denote by .δa,b the Kronecker delta function which
is the characteristic function .χ
(X) : X×X → {0, 1} of the diagonal .
(X) in .X×X,
i.e.

.δa,b = χ
(X)(a, b) =
{

1 if a = b,

0 if a �= b.
(1.98)

Definition 1.9 Let X be a set. The vector space of all maps .f : X → F of finite
support, that is a map that takes all but finitely many values zero, is called the vector
space freely generated by X, and it is denoted as .F[X]. A natural linear basis in
.F[X] is given by the set of single element characteristic functions .{χa}a∈X defined
by

.χa(b) = δa,b, ∀(a, b) ∈ X2. (1.99)

Remark 1.4 The vector space .F[X] can also be described as the direct sum of a
family of 1-dimensional vector spaces .F indexed by the set X:

.F[X] =
⊕

x∈X

F, (1.100)

see Definition 1.1.

For any group G, let .F[G] be the vector space freely generated by the set G. We
define the product

.μ : F[G] ⊗ F[G] → F[G], (μ(f ⊗ g))(a) =
∑

b∈G

f (b)g(b−1a), ∀a ∈ G,

(1.101)

the unit

.η : F → F[G], (η1)(a) = δe,a, ∀a ∈ G, (1.102)

the coproduct

.
 : F[G] → F[G]⊗F[G], (
f )(a, b) = δa,bf (a), ∀(a, b) ∈ G2, (1.103)

the counit

.εf =
∑

a∈G

f (a), (1.104)

and the antipode

.(Sf )(a) = f (a−1), ∀a ∈ G. (1.105)
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Remark that in the definition of the product (1.101), the sum is finite due to the fact
that the functions f and g are finitely supported. For the same reason, the function
.μ(f ⊗g) is also finitely supported. Indeed if .Suppf ⊂ G is the support of .f ∈ F[G],
then we have the inclusion

. Suppμ(f ⊗g) ⊂
⋃

a∈Suppf

a Suppg . (1.106)

With respect to the natural basis of single element characteristic functions
.{χa}a∈G, the structural maps take the form

.μ(χa ⊗ χb) = χab, 
χa = χa ⊗ χa, (1.107)

.η1 = χe, εχa = 1, Sχa = χa−1 . (1.108)

Exercise 1.3 Show that the data .(F[G], μ, η,
, ε, S) satisfy the Hopf algebra
axioms.

1.6 Algebras

Here we introduce the notion of an algebra by dropping some of the data in
the definition of a Hopf algebra, namely we leave only the product and the
unit as structural maps and impose on them the axioms of associativity and
unitality corresponding to diagrammatic equations (1.68) and (1.69). An algebra is
a monoidal object in the monoidal category of vector spaces with the tensor product
as the monoidal product.

Definition 1.10 An algebra over a field .F or .F-algebra is a triple .(A,μ, η)

consisting of a .F-vector space A, a linear map .μ : A ⊗ A → A called product,
and a linear map .η : F → A called unit such that

.μ(μ ⊗ idA) = μ(idA ⊗ μ) (1.109)

and

.μ(η ⊗ idA) = μ(idA ⊗ η) = idA. (1.110)

Example 1.10 As Eqs. (1.109) and (1.110) coincide respectively with Eqs. (1.86)
and (1.87), any Hopf algebra is an algebra, if we keep the product and the unit and
forget about all other structural maps. ��
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Example 1.11 Let V be a vector space. Then, the vector space .End(V ) of all
endomorphisms of V is an algebra with the product

.μ(f ⊗ g) = fg, ∀(f, g) ∈ (End(V ))2, (1.111)

and the unit

.η1 = idV . (1.112)

In particular, the base field .F � End(F) is an algebra. ��
Definition 1.11 Let .A = (A,μA, ηA) and .B = (B,μB, ηB) be two algebras. A
linear map .f : A → B is called a morphism of algebras or an algebra morphism if
it commutes with the structural maps in the sense of the equations

.f μA = μB(f ⊗ f ) (1.113)

and

.f ηA = ηB. (1.114)

Definition 1.12 The opposite product of an algebra .A := (A,μ, η) is the linear
map .μop obtained by composing the product with the exchange map,

. (1.115)

The algebra A is called commutative if the opposite product coincides with the
product, .μop = μ.

Exercise 1.4 Show that if .A := (A,μ, η) is an algebra then .Aop := (A,μop, η) is
also an algebra.

Definition 1.13 Let .A1 = (A1, μ1, η1) and .A2 = (A2, μ2, η2) be two algebras.
The tensor product of .A1 and .A2 is the algebra

.(A1 ⊗ A2, (μ1 ⊗ μ2)(idA1 ⊗σA2,A1 ⊗ idA2), η1 ⊗ η2) (1.116)

or graphically

. (1.117)
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where the thin lines correspond to .A1 and thick lines to .A2, and we implicitly
identify .F ⊗ F with .F.

Exercise 1.5 Let .A = (A,μ, η) be an algebra. Show that the unit .η : F → A is
always a morphism of algebras, while the product .μ : A ⊗ A → A is a morphism
of algebras if and only if A is commutative.

1.6.1 Iterated Products

Let .A = (A,μ, η) be an .F-algebra. In calculations, it is the common practice to
write just xy instead of .μ(x ⊗ y). In particular, as the associativity axiom (1.109)
implies that .(xy)z = x(yz), one can just write xyz without any ambiguity.
Graphically, this means that we can use multivalent vertices:

. (1.118)

This can be formalised by introducing the set of iterated products

.{μ(m) : A⊗m → A}m∈ω (1.119)

defined recursively as follows:

.μ(m) := μ(μ(m−1) ⊗ idA), μ(0) := η, (1.120)

so that, in particular, we have

.μ(1) = idA, μ(2) = μ. (1.121)

The n-th iterated product .μ(n) graphically can be represented by any binary tree
with n inputs and one output, because the associativity of the product allows to
ensure that any such tree gives one and the same linear map which we denote by a
multivalent vertex.

Exercise 1.6 Prove that

.μ(k1+···+km) = μ(m)
(
μ(k1) ⊗ · · · ⊗ μ(km)

)
, ∀(k1, . . . , km) ∈ ωm. (1.122)

Exercise 1.7 Let .f : A → B be an algebra morphism. Prove that

.μ
(m)
B f ⊗m = f μ

(m)
A , ∀m ∈ ω. (1.123)
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1.6.2 Modules

In the context of vector spaces, the notion of a module over an algebra corresponds
to an M-set in the set-theoretical context, that is a set on which a monoid M acts.

Definition 1.14 Let .A = (A,μ, η) be an algebra over a field .F. A left module over
A (or simply a left A-module) is a .F-vector space V together with a linear map

.λ : A ⊗ V → V (1.124)

such that the diagrams

.

(1.125)

are commutative. In terms of our graphical notation, the commutative dia-
grams (1.125) correspond to the equations

. (1.126)

where the thick lines correspond to V and thin lines to A.

Remark 1.5 For two vector spaces X and Y , let .L(X, Y ) be the set of all linear maps
from X to Y . The natural bijection between two sets of linear maps

. L(A ⊗ V, V ) � L(A, End(V )) (1.127)

descents to a natural bijection between the sets of left A-module structures on V and
algebra morphisms from A to .End(V ). For this reason, a left A-module structure on
a vector space V is often called representation of A in V .

Exercise 1.8 Give a definition of a right module over an algebra A.
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1.7 Coalgebras

The notion of a coalgebra is the categorial dual of that of an algebra in the sense
that the commutative diagrams expressing the defining properties of an algebra
and coalgebra are related through the categorial duality, see Definition 1.2. The
definition of a coalgebra is obtained by dropping all the structural maps in the
definition of a Hopf algebra, apart from the coproduct and the counit, and by
keeping the axioms of coassociativity and counitality. These axioms correspond to
two diagrammatic equations (1.70) and (1.71).

Definition 1.15 A coalgebra over a field .F or a .F-coalgebra is a triple .(C,
, ε)

consisting of a .F-vector space C, a linear map .
 : C → C ⊗ C called coproduct,
and a linear map .ε : C → F called counit such that

.(
 ⊗ idC)
 = (idC ⊗ 
)
 (1.128)

and

.(ε ⊗ idC)
 = (idC ⊗ ε)
 = idC. (1.129)

Example 1.12 As Eqs. (1.128) and (1.129) coincide respectively with Eqs. (1.88)
and (1.89), any Hopf algebra is a coalgebra, if we keep the coproduct and the counit
and forget about all other structural maps. ��
Example 1.13 For a finite non-empty set I , let .F[I 2] be the .F-vector space freely
generated by the set .I 2 = I × I . Then, .F[I 2] is a coalgebra, if, for the natural linear
basis .{χ(i,j)}(i,j)∈I 2 of .F[I 2], we define a coproduct

.
χ(i,j) =
∑

k∈I

χ(i,k) ⊗ χ(k,j) (1.130)

and a counit

.εχ(i,j) = δi,j . (1.131)

Through the duality relation between algebras and coalgebras to be discussed
later, this coalgebra is closely related to the endomorphism algebra .End(V ), see
Example 1.11, associated to a vector space of dimension given by the cardinality .|I |
of the set I . This algebra, in its turn, through a choice of a basis in V , becomes the
algebra of square matrices of size .|I |. For this reason, this coalgebra is called matrix
coalgebra. ��
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Example 1.14 The vector space .F[Z>0] freely generated by the set of strictly
positive integers .Z>0 is a coalgebra with the coproduct

.
χm =
∑

a∈Div(m)

χa ⊗ χm/a, (1.132)

where .Div(m) is the set of all (positive) divisors of m, and the counit

.εχm = δ1,m. (1.133)

This coalgebra will be called Dirichlet coalgebra because of its role in analytic
number theory, see Example 1.17 in the next Sect. 1.8. ��
Exercise 1.9 Give a definition of a morphism of coalgebras.

Definition 1.16 The opposite coproduct in a coalgebra .C := (C,
, ε) is the linear
map .
op obtained by composing the coproduct with the exchange map

. (1.134)

The coalgebra C is called cocommutative if the opposite coproduct coincides with
the coproduct, .
op = 
.

Exercise 1.10 Show that if .C = (C,
, ε) is a coalgebra, then .Ccop := (C,
op, ε)

is also a coalgebra.

The following definition is motivated by the behavior of the canonical basis
elements of group (Hopf) algebras under the coproduct, see relations (1.107).

Definition 1.17 A non zero element g of a coalgebra is called grouplike if .
g =
g ⊗ g.

Exercise 1.11 Show that any set of grouplike elements of a coalgebra is linearly
independent.

Exercise 1.12 Show that the matrix coalgebra of Example 1.13 contains a group-
like element only if it is 1-dimensional.

The following definition introduces the notion of an element of a coalgebra which
can be viewed as simplest among non grouplike elements.

Definition 1.18 A non zero element x of a coalgebra is called primitive if

.
x = g ⊗ x + x ⊗ h

where .g, h are grouplike elements.
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Exercise 1.13 Find grouplike and primitive elements in the Dirichlet coalgebra of
Example 1.14.

Definition 1.19 Let .C1 = (C1,
1, ε1) and .C2 = (C2,
2, ε2) be two coalgebras.
The tensor product of .C1 and .C2 is the coalgebra

.(C1 ⊗ C2, (idC1 ⊗σC1,C2 ⊗ idC2)(
1 ⊗ 
2), ε1 ⊗ ε2) (1.135)

or graphically

. (1.136)

where the thin lines correspond to .C1 and thick lines to .C2.

1.7.1 Iterated Coproducts

Similarly to the case of algebras, due to the coassociativity property, it is convenient
to use multivalent vertices in graphical representation of iterated coproducts:

. (1.137)

Elements of the infinite set of all iterated coproducts

.{
(m) : C → C⊗m}m∈ω (1.138)

are defined recursively

.
(m) := (
(m−1) ⊗ idC)
, 
(0) = ε, (1.139)

so that, in particular, we have

.
(1) = idC, 
(2) = 
. (1.140)
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1.7.2 Sweedler’s Sigma Notation for the Iterated Coproducts

Originally introduced in the book [39], Sweedler’s sigma notation allows to write
formally the coproduct of an element of a coalgebra in the form

.
x =
∑

(x)

x(1) ⊗ x(2) (1.141)

where the meaning of the sum is that it is a finite sum of the form

.
x =
n∑

i=1

ai ⊗ bi (1.142)

where the number n and the elements .ai , .bi with .1 ≤ i ≤ n are determined non
uniquely by x. The sigma notation allows to avoid mentioning the number n and the
associated elements all together thus simplifying writing. More generally, one can
use a similar notation also for iterated coproducts

.
(m)x =
∑

(x)

x(1) ⊗ x(2) ⊗ · · · ⊗ x(m), ∀m ≥ 2. (1.143)

In this notation, for example, the equality .
(3)(x) = ((
 ⊗ idC) ◦ 
)(x) takes the
form

.

∑

(x)

x(1) ⊗ x(2) ⊗ x(3) =
∑

(x)

∑

(x(1))

x(1)(1) ⊗ x(1)(2) ⊗ x(2). (1.144)

For examples and exercices on using the sigma notation, see the book [39].

1.7.3 The Fundamental Theorem of Coalgebras

Despite the fact that coalgebras are categorially dual objects to algebras, there is an
important difference between them. Namely, there is no a conterpart for algebras of
the following theorem.

Theorem 1.1 (The Fundamental Theorem of Coalgebras) Let .C = (C,
, ε)

be a coalgebra and .x ∈ C. Then, there exists a finite dimensional sub-coalgebra
.X ⊂ C containing x.

Proof As the case .x = 0 is trivial, we assume that .x �= 0.
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Let .{αi}i∈I and .{βj }j∈J be two non empty finite sets of linearly independent
elements of C such that

.
(3)x =
∑

(i,j)∈I×J

αi ⊗ xi,j ⊗ βj (1.145)

and let .X ⊂ C be the vector subspace generated by the elements .{xi,j }(i,j)∈I×J . We
have .dim(X) ≤ |I ||J | < ∞ and

.x = (ε ⊗ idC ⊗ε)
(3)x =
∑

(i,j)∈I×J

ε(αi)ε(βj )xi,j ∈ X. (1.146)

Let us show that X is a sub-coalgebra of C, that is .
(X) ⊂ X ⊗ X.
We have the equalities

.
(4)x = (
 ⊗ idC⊗2)

(3)x =

∑

(k,j)∈I×J

(
αk) ⊗ xk,j ⊗ βj (1.147)

.
(4)x = (idC ⊗
 ⊗ idC)
(3)x =
∑

(i,j)∈I×J

αi ⊗ (
xi,j ) ⊗ βj (1.148)

.
(4)x = (idC⊗2 ⊗
)
(3)x =
∑

(i,l)∈I×J

αi ⊗ xi,l ⊗ (
βl). (1.149)

Comparing the right hand sides of (1.147) and (1.148) and using the linear
independence of the family .{βj }j∈J , we obtain the equalities

.

∑

k∈I

(
αk) ⊗ xk,j =
∑

i∈I

αi ⊗ (
xi,j ), ∀j ∈ J, (1.150)

which, in their turn, due to the linear independence of the family .{αi}i∈I , imply that

.
αk =
∑

i∈I

αi ⊗ αi,k, ∀k ∈ I, (1.151)

for some elements .{αi,k}i,k∈I ⊂ C and

.
xi,j =
∑

k∈I

αi,k ⊗ xk,j ∈ C ⊗ X, ∀(i, j) ∈ I × J. (1.152)
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By a similar reasoning, comparing the right hand sides of (1.149) and (1.148), we
obtain

.
βl =
∑

j∈I

βl,j ⊗ βj , ∀l ∈ J, (1.153)

for some elements .{βl,j }l,j∈J ⊂ C and

.
xi,j =
∑

l∈J

xi,l ⊗ βl,j ∈ X ⊗ C, ∀(i, j) ∈ I × J. (1.154)

Finally, putting together (1.152) and (1.154), we conclude that

.
xi,j ∈ X ⊗ X, ∀(i, j) ∈ I × J ⇒ 
(X) ⊂ X ⊗ X. (1.155)

��
The fundamental theorem of coalgebras allows to reduce many questions about
general coalgebras to questions about finite-dimensional coalgebras. Notice also that
the category of finite dimensional coalgebras is equivalent to the category of finite
dimensional algebras in the sense that the dual vector space of a finite dimensional
algebra is canonically a finite dimensional coalgebra and vice versa.

1.7.4 Comodules

The notion of a comodule over a coalgebra is the categorial dual to that of a module
over an algebra in the sense of Definition 1.2.

Definition 1.20 Let .C = (C,
, ε) be a coalgebra over a field .F. A right comodule
over C (or simply a right C-comodule) is a .F-vector space V together with a linear
map

.δ : V → V ⊗ C (1.156)

such that the diagrams

.

(1.157)
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are commutative which, in the graphical notation, correspond to the equations

. (1.158)

where the thick lines correspond to V and thin lines to C.

Exercise 1.14 Give a definition of a left comodule over a coalgebra C.

Example 1.15 An obvious example of a C-comodule (both right and left ones) is
the coalgebra C itself with .δ = 
. ��

1.8 Convolution Algebras

The dual vector space of any coalgebra is canonically an algebra called the
convolution algebra of a coalgebra. This is a special case of a more general
convolution algebra associated to an algebra and a coalgebra.

Proposition-Definition 1.1 Let A be an algebra and C a coalgebra. Then, the
vector space .L(C,A) of linear maps from C to A is an algebra, called convolution
algebra, with the product .μ : L(C,A) ⊗ L(C,A) → L(C,A) defined by

.μ(f ⊗ g) =: f ∗ g := μA(f ⊗ g)
C (1.159)

or diagrammatically

. (1.160)

where the thick lines correspond to C and thin lines to A, and the unit .η : F →
L(C,A) is defined by

. (1.161)
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Proof We verify the associativity property

.(f ∗ g) ∗ h = μA((f ∗ g) ⊗ h)
C = μA((μA(f ⊗ g)
C) ⊗ h)
C

= μA(μA ⊗ idA)(f ⊗ g ⊗ h)(
C ⊗ idC)
C = μ
(3)
A (f ⊗ g ⊗ h)


(3)
C

= μA(idA ⊗μA)(f ⊗ g ⊗ h)(idC ⊗
C)
C = μA(f ⊗ (μA(g ⊗ h)
C))
C

= μA(f ⊗ (g ∗ h))
C = f ∗ (g ∗ h) (1.162)

and the unitality property

.f ∗ (η1) = μA(f ⊗ (η1))
C = μA(f ⊗ (ηAεC))
C

= μA(idA ⊗ηA)f (idC ⊗εC)
C = idA f idC = f (1.163)

and similarly for the product .(η1) ∗ f . ��
Remark 1.6 In order to illustrate the effectiveness of the graphical calculus of string
diagrams in this context, here is the diagrammatic proof of the associativity of the
convolution product (cf. (1.162)):

. (1.164)

and the unitality property of the convolution product (cf. (1.163)):

.

where we are using the simplified notation for the structural maps of the algebra A

and the coalgebra C.
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As the base field .F is canonically an algebra, see Example 1.11, a particular case
of the convolution algebra .L(C,A) with .A = F corresponds to an algebra structure
on the dual vector space .C∗ = L(C,F) of a coalgebra C given by the product

.〈f ∗ g, x〉 = 〈f ⊗ g,
Cx〉 =
∑

(x)

〈f, x(1)〉〈g, x(2)〉, (1.165)

where .〈·, ·〉 : C∗ × C → F is the evaluation map of a linear form on a vector, and
the unit element .η1 = εC ∈ C∗. This algebra is called the convolution algebra of a
coalgebra.

Example 1.16 The convolution algebra of the matrix coalgebra from Example 1.13
is isomorphic to the algebra of n-by-n matrices where .n = |I | is the cardinality of
the set I . It is also identified with the endomorphism algebra .End(Fn). ��
Example 1.17 The convolution algebra of the Dirichlet coalgebra (see Exam-
ple 1.14) is known as the Dirichlet convolution algebra. Its subalgebra of arithmetic
functions plays an important role in analytic number theory, where the correspond-
ing convolution product is called Dirichlet product or Dirichlet convolution, see, for
example, Chapter 2 of the book [2]. ��
Exercise 1.15 An element of the Dirichlet convolution algebra .f ∈ (F[Z>0])∗ is
called multiplicative if .〈f, χab〉 = 〈f, χa〉〈f, χb〉 for all mutually prime pairs of
positive integers .a, b ∈ Z>0 and .〈f, χ1〉 = 1. Show that if .f, g ∈ (F[Z>0])∗ are
multiplicative, then their convolution product .f ∗ g is also a multiplicative element.

1.9 Some Properties of Hopf Algebras

For a Hopf algebra H , the invertibility axiom (1.90) is nothing else but the condition
that the antipode is the inverse of the identity map .idH in the convolution algebra
.End(H).

By the uniqueness of inverses, this means that a Hopf algebra cannot admit more
than one antipode. Indeed, assuming that .S̃ is another element of .End(H) satisfying
the invertibility axiom, we write the associativity condition for the triple of elements
.(S̃, idH , S) in the convolution algebra .End(H):

.(S̃ ∗ idH ) ∗ S = S̃ ∗ (idH ∗S) ⇔ (ηEnd(H)1) ∗ S = S̃ ∗ (ηEnd(H)1) ⇔ S = S̃.

(1.166)

Remark 1.7 Definition 1.6 of a Hopf algebra differs from the standard definition(s)
in the literature. Specifically, in Definition 1.6 we do not assume that the counit
(respectively the unit) is an algebra (respectively a coalgebra) morphism. Below, we
derive these properties from the axioms listed in Definition 1.6. These derivations
are based on the interpretations of the product .μ and the coproduct .
 as invertible
elements of the convolution algebras .L(H ⊗H,H) and .L(H,H ⊗H), respectively.
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Lemma 1.1 In any Hopf algebra .H = (H,μ, η,
, ε, S), the product .μ (respec-
tively the coproduct .
) is an invertible element of the convolution algebra .L(H ⊗
H,H) (respectively .L(H,H ⊗ H)) with the inverse

. (1.167)

Here the opposite product and the opposite coproduct are defined by

.μop := μσH,H , 
op := σH,H 
. (1.168)

Proof Here is a graphical proof of the fact that .μ̄ is a right convolution inverse of
.μ:

. (1.169)

where, in the second equality, we convert the three trivalent vertices corresponding
to the product into a multivalent vertex corresponding to an iterated product; in the
third equality, by using associativity of the product and properties of the symmetry,
we “pulled out” appropriately chosen trivalent vertex from the multivalent vertex,
and in the last three equalities, we use twice the invertibility axiom and once the
unitality axiom.

The rest of the proof goes along the same type of graphical calculations. ��
Proposition 1.2 In any Hopf algebra, the counit (respectively unit) is a morphism
of algebras (respectively coalgebras). This means that

. (1.170)

. (1.171)

. (1.172)
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Proof The compatibility, the unitality and the counitality axioms imply that

.(ηεμ) ∗ μ = μ

in the convolution algebra .L(H ⊗H,H). As .μ is an invertible element, we conclude
that

.ηεμ = ηL(H⊗H,H)1 = η(ε⊗ε) ⇒ εμ = ε⊗ε ⇒ εη = idF . (1.173)

By the duality symmetry, the compatibility, the unitality and the counitality
axioms imply that

.(
ηε) ∗ 
 = 


in the convolution algebra .L(H,H ⊗H). As .
 is an invertible element, we conclude
that

.
ηε = ηL(H,H⊗H)1 = (η ⊗ η)ε ⇒ 
η = η ⊗ η. (1.174)

��
Exercise 1.16 Show that if .H := (H,μ, η,
, ε, S) is a Hopf algebra, then

.H op,cop := (H,μop, η,
op, ε, S) (1.175)

is also a Hopf algebra.

Proposition 1.3 In any Hopf algebra H , the antipode is a Hopf algebra morphism
from H to .H op,cop.

Proof By Lemma 1.1, the convolution inverse of .μ is the map .μ̄ defined in (1.167).
On the other hand, the composition .Sμ is also the convolutional inverse of .μ as
shows the following diagrammatic calculation:

. (1.176)

and likewise for the product .(Sμ) ∗μ. Thus, by uniqueness of inverses, we have the
equality

.Sμ = μop(S ⊗ S) (1.177)
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and likewise

.
S = (S ⊗ S)
op. (1.178)

To finish the proof, we check that

. (1.179)

and similarly

.Sη = η. (1.180)

��

1.10 Bialgebras

Bialgebras, like Hopf algebras, are categorially self-dual algebraic objects (in
the sense of Definition 1.2) that carry compatible structures of an algebra and a
coalgebra but without assuming the existence of the antipode.

Definition 1.21 A bialgebra is a tuple .(B,μ, η,
, ε), where .(B,μ, η) is an
algebra, .(B,
, ε) is a coalgebra, and the linear maps .
 and .ε are algebra
morphisms (or, equivalently, .μ and .η are coalgebra morphisms).

Exercise 1.17 Give a definition of a bialgebra morphism.

Remark 1.8 By forgetting the antipode, any Hopf algebra becomes a bialgebra if
one keeps the property that the counit is a morphism of algebras. A bialgebra B

originates in this way from a Hopf algebra if and only if the identity map .idB is
invertible in the convolution algebra .End(B) of endomorphisms of B.

Example 1.18 Let M be a monoid, i.e. a set with associative product and the unit
element .e ∈ M , see Definition 1.3. The monoid bialgebra is the vector space .F[M]
freely generated by the set M , where the structure maps are given in terms of the
linear basis of characteristic functions of points .{χa}a∈M by the formulae

.μ(χa ⊗ χb) = χab, η1 = χe, (1.181)

.
χa = χa ⊗ χa, εχa = 1. (1.182)
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These relations coincide with the relations (1.107) for group algebras, so that
verification of the axioms follow the same line of reasoning as in the case of group
algebras. ��
Exercise 1.18 Show that a monoid bialgebra .F[M] admits the structure of a Hopf
algebra if and only if M is a group.



Chapter 2
Constructions of Algebras, Coalgebras,
Bialgebras, and Hopf Algebras

Our main goal in this chapter is to show that Hopf algebras are abundant, and
that there exist general methods of producing examples. We start by describing
constructions of algebras which are common and well known. Then, we proceed
with less well known constructions of coalgebras, bialgebras and Hopf algebras.

Coalgebras and algebras, being in categorial duality to each other, are closely
related. For this reason, construction of an algebra also gives us a coalgebra. By
using vector spaces as input in the case of algebras, and coalgebras in the case of
bialgebras and Hopf algebras, we describe the constructions of free objects which
have universal properties, and then realise all other objects as quotients of free
objects.

2.1 Construction of Algebras

Any algebra can be constructed by using a vector space as an input. A special role is
played by free algebras which, due to their specific property, can be used to realise
any other algebras.

Definition 2.1 Let V be an .F-vector space. A pair .(A, ı), consisting of an .F-algebra
A and a linear map .ı : V → A, is called free algebra on V if it has the following
universal property: for any .F-algebra B and any linear map .f : V → B, there exists
a unique algebra morphism .f̃ : A → B such that .f̃ ı = f .
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Remark 2.1 If we denote by .Alg(A,B) the set of all algebra morphisms from A

to B, and by .L(V ,W) the set of all linear maps from V to W , then the universal
property of a free algebra .(A, ı) on V is equivalent to the bijectivity property of the
map

.Hom(ı, B) : Alg(A,B) → L(V , B), f �→ f ı,

for any algebra B.

Exercise 2.1 Let .(A, ı) and .(B, j) be two free algebras over one and the same .F-
vector space V . Show that there exists a unique algebra isomorphism .f : A → B

such that .j = f ı.

Example 2.1 Let .F[x] be the algebra of .F-polynomials of one indeterminate x and
.ı : F → F[x], the linear map defined by .ı1 = x. Then, the pair .(F[x], ı) is a free
algebra over the one dimensional vector space .F. Indeed, for any .F-algebra B and
any linear map .f : F → B, we define an algebra morphism .f̃ : F[x] → B by
.f̃ (p(x)) = p(f 1). Then for any .a ∈ F, we have

.f a = af 1 = af̃ x = af̃ ı1 = f̃ ıa ⇒ f = f̃ ı. (2.1)

Now, if .h : F[x] → B is any other algebra morphism with the property .f = hı,
then, for any .p(x) ∈ F[x], we have

.h(p(x)) = p(hx) = p(hı1) = p(f 1) = p(f̃ ı1) = p(f̃ x) = f̃ (p(x)) ⇒ h = f̃ .

(2.2)

2.1.1 The Tensor Algebra

For a given .F-vector space V , we define recursively the tensor powers of V as
follows:

.V ⊗0 = F, V ⊗(m+1) = V ⊗m ⊗ V ∀m ∈ ω, (2.3)

with natural identifications

.V ⊗m ⊗ V ⊗n � V ⊗(m+n) ∀m, n ∈ ω. (2.4)



2.1 Construction of Algebras 41

Consider the vector space

.T (V ) :=
⊕

m∈ω

V ⊗m (2.5)

together with the canonical projections and inclusions

.pm : T (V ) → V ⊗m, im : V ⊗m → T (V ), m ∈ ω, (2.6)

with the properties

.pmin = δm,n idV ⊗n ,
∑

m∈ω

impm = idT (V ) . (2.7)

Proposition-Definition 2.1 The .F-vector space .T (V ) is an algebra, called tensor
algebra of V , with the product

.μ := μT (V ) =
∑

m,n∈ω

im+n(pm ⊗ pn) : T (V ) ⊗ T (V ) → T (V ) (2.8)

and the unit

.η := ηT (V ) = i0 : F → T (V ). (2.9)

Proof By using the (easily verifiable) equalities

.pmμ =
m∑

s=0

pm−s ⊗ ps ∀m ∈ ω, (2.10)

we calculate

.μ(μ ⊗ idT (V )) =
∑

m,n∈ω

im+n ((pmμ) ⊗ pn)

=
∑

m,n∈ω

m∑

s=0

im+n (pm−s ⊗ ps ⊗ pn) =
∑

n,s∈ω

∑

m≥s

im+n (pm−s ⊗ ps ⊗ pn)

=
∑

m,n,s∈ω

im+n+s (pm ⊗ ps ⊗ pn) (2.11)
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and

.μ(idT (V ) ⊗μ) =
∑

m,n≥0

im+n (pm ⊗ (pnμ))

=
∑

m,n∈ω

n∑

s=0

im+n (pm ⊗ ps ⊗ pn−s) =
∑

m,s∈ω

∑

n≥s

im+n (pm ⊗ ps ⊗ pn−s)

=
∑

m,n,s∈ω

im+n+s (pm ⊗ ps ⊗ pn) (2.12)

thus establishing the associativity of .μ.
The equalities

.pmη = δm,0 ∀m ∈ ω (2.13)

imply the unitality:

.μ(η ⊗ idT (V )) =
∑

m,n∈ω

im+n ((pmη) ⊗ pn) =
∑

n∈ω

inpn = idT (V ), (2.14)

and

.μ(idT (V ) ⊗η) =
∑

m,n∈ω

im+n (pm ⊗ (pnη)) =
∑

m∈ω

impm = idT (V ) . (2.15)


�
Exercise 2.2 Show that the m-th iterated product in .T (V ) is of the form

.μ(m) =
∑

(n1,...,nm)∈ωm

in1+···+nm

(
pn1 ⊗ · · · ⊗ pnm

)
. (2.16)

2.1.2 The Universal Property of the Tensor Algebra

Lemma 2.1 For any F-vector space V , the canonical embeddings im : V ⊗m →
T (V ), m ∈ ω, factorise through the iterated products of the tensor algebra T (V )

according to the formula

.im = μ(m)i⊗m
1 ∀m ∈ ω. (2.17)
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Proof First, we observe that

.ik+l = μ (ik ⊗ il) ∀k, l ∈ ω. (2.18)

Indeed, we have

.μ (ik ⊗ il) =
∑

m,n∈ω

im+n (pm ⊗ pn) (ik ⊗ il)

=
∑

m,n∈ω

im+n ((pmik) ⊗ (pnil)) =
∑

m,n∈ω

δm,kδn,l im+n

(
idV ⊗k ⊗ idV ⊗l

)

= ik+l idV ⊗(k+l) = ik+l . (2.19)

Further, we proceed by recurrence. For m = 0, formula (2.17) holds true.
Assuming it holds true for m = k ≥ 0, we have

.μ(k+1)i
⊗(k+1)
1 = μ

(
μ(k) ⊗ idT (V )

) (
i⊗k
1 ⊗ i1

)

= μ
((

μ(k)i⊗k
1

)
⊗ i1

)
= μ (ik ⊗ i1) = ik+1. (2.20)

Theorem 2.1 For any F-vector space V , the pair (T (V ), ıV := i1) is a free algebra
over V . More precisely, for any algebra B and any linear map f : V → B, the map

.f̃ :=
∑

m∈ω

μ
(m)
B f ⊗mpm : T (V ) → B (2.21)

is the unique algebra morphism such that f̃ ıV = f .

Proof (Uniqueness) Assuming the existence of f̃ , we have

.f̃ = f̃ idT (V ) =
∑

m∈ω

f̃ impm =
∑

m∈ω

f̃ μ
(m)
T (V )i

⊗m
1 pm

=
∑

m∈ω

μ
(m)
B f̃ ⊗mi⊗m

1 pm =
∑

m∈ω

μ
(m)
B (f̃ i1)

⊗mpm =
∑

m∈ω

μ
(m)
B f ⊗mpm (2.22)

where, in the third equality, we used Lemma 2.1, in the forth equality, the
assumption that f̃ is an algebra morphism, and, in the last equality, the factorisation
assumption f̃ ıV = f .
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(Existence) Let us show that the linear map f̃ defined in (2.21) is indeed an
algebra morphism. We have

.μB(f̃ ⊗ f̃ ) =
∑

m,n∈ω

μB

(
μ

(m)
B ⊗ μ

(n)
B

)
(f ⊗m ⊗ f ⊗n)(pm ⊗ pn)

=
∑

m,n∈ω

μ
(m+n)
B f ⊗(m+n)(pm ⊗ pn) =

∑

s∈ω

∑

0≤n≤s

μ
(s)
B f ⊗s(ps−n ⊗ pn)

=
∑

s∈ω

μ
(s)
B f ⊗spsμT (V ) = f̃ μT (V ) (2.23)

and

.f̃ ηT (V ) =
∑

m∈ω

μ
(m)
B f ⊗mpmi0 =

∑

m∈ω

δm,0μ
(m)
B f ⊗m idF

= μ
(0)
B f ⊗0 = ηB idF = ηB. (2.24)

(Factorisation) We have

.f̃ i1 =
∑

m∈ω

μ
(m)
B f ⊗mpmi1 =

∑

m∈ω

δm,1μ
(m)
B f ⊗m idV = μ

(1)
B f = idB f = f.

(2.25)

2.1.3 Presentations of Algebras

Definition 2.2 Let A be an F-algebra. A (two sided) ideal of A is a vector subspace
J ⊂ A that is stable under the left and right multiplications by elements of A, i.e.
AJ ⊂ J ⊃ JA.

Exercise 2.3 Show that the kernel of any algebra morphism f : A → B is a two
sided ideal of A.

Exercise 2.4 Let A be an algebra and J a two sided ideal of A. Show that the
quotient vector space A/J is an algebra with the product

.μA/J ((x + J ) ⊗ (y + J )) = μA(x ⊗ y) + J, ∀x, y ∈ A, (2.26)

and the unit

.ηA/J 1 = ηA1 + J, (2.27)

and the canonical projection from A to A/J is an algebra morphism.
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Definition 2.3 Let A be an F-algebra. A presentation of A is an expression of the
form F〈E | R〉 where E is a set and R is a subset of the tensor algebra T (F[E])
such that A � T (F[E])/J where J is the (two-sided) ideal of T (F[E]) generated
by R. In particular, the algebra freely generated by E is the tensor algebra T (F[E]),
which is also denoted as F〈E〉, has the presentation with R = ∅,

.F〈E | ∅〉 = F〈E |〉.

Let V be an F-vector space, A an F-algebra and f : V → A a linear map such
that f̃ : T (V ) → A is surjective, where f̃ is the algebra morphism induced by f

through the universal property of the pair (T (V ), ıV ). For example, one can take
for V the underlying vector space of A and f = idA. Then, one has the algebra
isomorphism T (V )/ ker(f̃ ) � A, where ker(f̃ ) is the kernel of f̃ which is a two-
sided ideal of T (V ). In this case, one can take a presentation F〈B | R〉 of the algebra
A where B ⊂ V is a linear basis of V , and R ⊂ T (V ) is a generating set for the
kernel ker(f̃ ), i.e.

. ker(f̃ ) = T (V )R T (V ).

Example 2.2 Let q ∈ F. The presentation F〈E | R〉 with

.E = {a, b}, R = {ab − qba} (2.28)

corresponds to the algebra with the underlying vector space F[B] freely generated
by the set B := {bman | m, n ∈ ω}, and the algebra structure is given by the
multiplication

.μ(bkal ⊗ bman) = qlmbk+mal+n (2.29)

and the unit element

.η1 = b0a0. (2.30)

2.2 Construction of Coalgebras

As coalgebras are categorially dual objects to algebras, their construction is closely
related to the construction of algebras.
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2.2.1 Dual Coalgebras

Let .A = (A,μ, η) be a finite dimensional .F-algebra. Then, the dual space .A∗ :=
L(A,F) is a coalgebra with the coproduct

.� := μ∗ : A∗ → (A ⊗ A)∗ � A∗ ⊗ A∗ (2.31)

and the counit

.ε := η∗ : A∗ → F∗ � F. (2.32)

Exercise 2.5 Let A be the three dimensional .F-algebra of upper triangular 2-by-2
matrices. Show that the coalgebra .A∗ contains a linear basis .{a, b, c} ⊂ A∗ with the
coproduct

.�a = a ⊗ a, �b = a ⊗ b + b ⊗ c, �c = c ⊗ c. (2.33)

Remark 2.2 Let .A = (A,μ, η) be an infinite dimensional .F-algebra. In this case,
as the inclusion .A∗ ⊗ A∗ ⊂ (A ⊗ A)∗ is strict, one does not necessarily have
the inclusion .μ∗(A∗) ⊂ A∗ ⊗ A∗, and thus the dual space .A∗ is not necessarily
a coalgebra. Nonetheless, the vector subspace .Ao := (μ∗)−1 (A∗ ⊗ A∗) ⊂ A∗
happens to be a coalgebra with the coproduct .� = μo := μ∗|Ao and the counit
.ε = ηo := η∗|Ao . This coalgebra is called the restricted or finite dual of A (see
Chap. 3 for details).

2.2.2 Quotient Coalgebras

Definition 2.4 Let C = (C,�, ε) be a F-coalgebra. A (two-sided) coideal of C is
a vector subspace J ⊂ C such that

.ε(J ) = 0, �(J ) ⊂ J ⊗ C + C ⊗ J.

Let C = (C,�, ε) be an F-coalgebra and J ⊂ C a coideal. Then, the quotient
vector space C/J is a coalgebra with the coproduct

.�C/J (x + J ) =
∑

(x)

(x(1) + J ) ⊗ (x(2) + J ), ∀x ∈ C,

and the counit εC/J (x + J ) = ε(x).
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Conversely, if f : C → D is a coalgebra morphism, then its kernel ker(f ) =
f −1(0) is a coideal, and the image f (C) is a sub-coalgebra of D isomorphic to the
quotient coalgebra C/ ker(f ). In particular, if f is surjective, then D is isomorphic
to C/ ker(f ).

2.2.3 Direct Sum Coalgebras

Proposition-Definition 2.2 For any family of coalgebras F, let

.V := ⊕C∈FC

be the direct sum of the underlying vector spaces with the canonical projections
pC : V → C and inclusions iC : C → V satisfying the relations

.pCiD = idC δC,D,
∑

C∈F
iCpC = idV .

Then, the triple (V ,�, ε), where

.� :=
∑

C∈F
(iC ⊗ iC)�CpC : V → V ⊗ V, ε :=

∑

C∈F
εCpC : V → F,

is a coalgebra called the direct sum coalgebra of the family F. 
�
Proof (Coassociativity) We have

.(� ⊗ idV )� =
∑

C∈F
(� ⊗ idV )(iC ⊗ iC)�CpC =

∑

C∈F
((�iC) ⊗ iC)�CpC

=
∑

C∈F
(((iC ⊗ iC)�C) ⊗ iC)�CpC =

∑

C∈F
(iC ⊗ iC ⊗ iC)(�C ⊗ idC)�CpC

and

.(idV ⊗�)� =
∑

C∈F
(idV ⊗�)(iC ⊗ iC)�CpC =

∑

C∈F
(iC ⊗ (�iC))�CpC

=
∑

C∈F
(iC ⊗ ((iC ⊗ iC)�C))�CpC =

∑

C∈F
(iC ⊗ iC ⊗ iC)(idC ⊗�C)�CpC.

We see that the two expressions above coincide due to the coassociativity of the
coproducts �C .
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(Counitality) We have

.(ε ⊗ idV )� =
∑

C∈F
(ε ⊗ idV )(iC ⊗ iC)�CpC =

∑

C∈F
((εiC) ⊗ iC)�CpC

=
∑

C∈F
(εC ⊗ iC)�CpC =

∑

C∈F
iC(εC ⊗ idC)�CpC

=
∑

C∈F
iC idC pC =

∑

C∈F
iCpC = idV .

and

.(idV ⊗ε)� =
∑

C∈F
(idV ⊗ε)(iC ⊗ iC)�CpC =

∑

C∈F
(iC ⊗ (εiC))�CpC

=
∑

C∈F
(iC ⊗ εC)�CpC =

∑

C∈F
iC(idC ⊗εC)�CpC

=
∑

C∈F
iC idC pC =

∑

C∈F
iCpC = idV .

2.3 Construction of Bialgebras

LetC be an .F-coalgebra and .T (C) the tensor algebra ofC (viewed as a vector space)
with the canonical linear inclusion .ıC : C → T (C). By the universal property of the
pair .(T (C), ıC), the linear maps .(ıC ⊗ıC)�C : C → T (C)⊗T (C) and .εC : C → F,
where .T (C) ⊗ T (C) and .F are considered as algebras, determine uniquely defined
algebra morphisms .�T (C) : T (C) → T (C) ⊗ T (C) and .εT (C) : T (C) → F such
that

.(ıC ⊗ ıC)�C = �T (C)ıC and εC = εT (C)ıC (2.34)

so that .ıC appears to be a coalgebra morphism provided .(T (C),�T (C), εT (C)) is a
coalgebra.

Proposition 2.1 For any .F-coalgebra C, the triple .(T (C),�T (C), εT (C)) is an
.F-coalgebra so that, by taking into account the algebra structure, .T (C) is an .F-
bialgebra and the canonical inclusion .ıC : C → T (C) is a coalgebra morphism.
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Proof In order to check the coassociativity of .�T (C), by using the first equality
of (2.34) and the coassociativity of .�C , we calculate

.(�T (C) ⊗ idT (C))�T (C)ıC = (�T (C) ⊗ idT (C))(ıC ⊗ ıC)�C

= ((�T (C)ıC) ⊗ ıC)�C = (((ıC ⊗ ıC)�C) ⊗ ıC)�C

= (ıC ⊗ ıC ⊗ ıC)(�C ⊗ idC)�C = (ıC ⊗ ıC ⊗ ıC)(idC ⊗�C)�C

= (ıC ⊗ ((ıC ⊗ ıC)�C))�C = (ıC ⊗ (�T (C)ıC))�C

= (idT (C) ⊗�T (C))((ıC ⊗ ıC)�T (C)) = (idT (C) ⊗�T (C))�T (C)ıC. (2.35)

Thus, by the uniqueness part of the universal property of .(T (C), ıC), we conclude
that .�T (C) is coassociative.

In order to check the counitality of .εT (C), by using both equalities of (2.34) and
the counitality of .εC , we calculate

.(εT (C) ⊗ idT (C))�T (C)ıC = (εT (C) ⊗ idT (C))(ıC ⊗ ıC)�C

= ((εT (C)ıC) ⊗ ıC)�C = (εC ⊗ ıC)�C = ıC(εC ⊗ idC)�C = ıC (2.36)

and likewise

.(idT (C) ⊗εT (C))�T (C)ıC = ıC. (2.37)

Thus, again, the uniqueness part of the universal property of .(T (C), ıC) implies the
counitality of .εT (C). Thus, the triple .(T (C),�T (C), εT (C)) is a coalgebra.

The fact that the maps .�T (C) and .εT (C), by construction, are algebra morphisms
immediately implies that .T (C) is an .F-bialgebra. 
�
Definition 2.5 Let C be an .F-coalgebra. A pair .(B, ı) consisting of an .F-bialgebra
B and a coalgebra morphism .ı : C → B is called free bialgebra on C if it
satisfies the following universal property: for any .F-bialgebra D and any coalgebra
morphism .f : C → D, there exists a unique bialgebra morphism .f̃ : B → D such
that .f̃ ı = f .

Remark 2.3 Similarly to the previous Remark 2.1, if we denote by .Bialg(A,B)

the set of all bialgebra morphisms from A to B, and by .Coalg(C,D) the set of all
coalgebra morphisms from C to D, then the universal property of a free bialgebra
.(A, ı) on C is equivalent to the bijectivity property of the map

.Hom(ı, B) : Alg(A,B) → Coalg(C,B), f �→ f ı,

for any bialgebra B.
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Theorem 2.2 For any .F-coalgebra C, the pair .(T (C), ıC) is a free bialgebra on C.

Proof Let B be a .F-bialgebra and .f : C → B a coalgebra morphism. Since any
bialgebra is an algebra, by the universal property of the tensor algebra, there exists
a unique algebra morphism .f̃ : T (C) → B such that .f = f̃ ıC . Thus, it suffices to
show that .f̃ is also a coalgebra morphism.

By using the fact that f and .ıC are coalgebra morphisms, we have

.�Bf̃ ıC = �Bf = (f ⊗ f )�C = ((f̃ ıC) ⊗ (f̃ ıC))�C

= (f̃ ⊗ f̃ )(ıC ⊗ ıC)�C = (f̃ ⊗ f̃ )�T (C)ıC (2.38)

and

.εBf̃ ıC = εBf = εC = εT (C)ıC. (2.39)

Thus, by the uniqueness part of the universal property of .(T (C), ıC), we conclude
that

.�Bf̃ = (f̃ ⊗ f̃ )�T (C) and εBf̃ = εT (C), (2.40)

that is .f̃ is a coalgebra morphism. 
�

2.3.1 Presentations of Bialgebras

Definition 2.6 Let B be an F-bialgebra. A vector subspace of B is called bi-ideal
if it is simultaneously a two-sided ideal and a coideal.

Exercise 2.6 Let B be a bialgebra and J ⊂ B a bi-ideal. Show that the quotient
vector space B/J carries a unique bialgebra structure such that the canonical
projection π : B → B/J is a (surjective) bialgebra morphism. Conversely, for
any bialgebra morphism f : B → D, its kernel ker(f ) = f −1(0) is a bi-ideal
of B. In particular, if f is surjective, then it induces a bialgebra isomorphism
D � B/ ker(f ).

Any bialgebra B is a quotient of a free bialgebra on a sub-coalgebra of B. It
suffices to choose a sub-coalgebra C ⊂ B which generates B as an algebra. By the
universal property of (T (C), ıC), the inclusion map g : C → B induces a surjective
bialgebra morphism g̃ : T (C) → B so that B is isomorphic to the quotient bialgebra
T (C)/ ker(g̃). This allows us to extend presentations of algebras to presentations
of bialgebras:

.B � F〈E | R,D〉 (2.41)
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where E ⊂ C is a generating set, R ⊂ ker(g̃) is a generating set of ker(g̃), that is

. ker(g̃) = T (C)RT (C), (2.42)

and

.D := {(e,�Ce) | e ∈ E}. (2.43)

encodes the coalgebra structure.

Remark 2.4 For an element (e,�Ce) of D in (2.43), one can also use a less formal
writing �e = �Ce, where � in the left hand side is the coproduct of the bialgebra
that corresponds to the presentation.

Example 2.3 The presentation F〈E | R,D〉 with

.E = {a, b}, R = {ab − ba}, D = {(a, a ⊗ a), (b, a ⊗ b + b ⊗ 1)}

corresponds to the polynomial bialgebra F[a, b] with a group-like a and the
coproduct �b = a ⊗ b + b ⊗ 1 so that the alternative less formal writing of the
set D (see Remark 2.4) is as follows:

.D = {�a = a ⊗ a, �b = a ⊗ b + b ⊗ 1}.

In this example, the counit can be determined uniquely from the counitality relations
with the result εa = 1 and εb = 0. 
�

2.4 Construction of Hopf Algebras

Hopf algebras are constructed on the basis of bialgebras. The theory of free
Hopf algebras on coalgebras has been developed originally by M. Takeuchi in the
work [40].

2.4.1 Free Hopf Algebras on Coalgebras

Definition 2.7 Let C be a coalgebra. A pair (H, ı) consisting of a Hopf algebra H

and a coalgebra morphism ı : C → H is called a free Hopf algebra on C if for
any Hopf algebra A and any coalgebra morphism f : C → A, there exists a unique
Hopf algebra morphism f̃ : H → A such that f = f̃ ı.
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For any F-coalgebraC, we associate the direct sum coalgebraC∗ := ⊕n∈ωCn where
Cn = C if n is even and Cn = Ccop if n is odd. Consider the linear maps

.ς :=
∑

n∈ω

in+1pn : C∗ → C
cop∗ and ıC∗ς : C∗ → T (C∗)op,cop (2.44)

where in : C → C∗ is the (vector space) inclusion of C as the n-th direct summand,
pn : C∗ → C is the projection to the n-th direct summand, and (T (C∗), ıC∗) is the
free bialgebra on C∗.

Lemma 2.2 The maps defined in (2.44) are coalgebra morphisms.

Proof Denoting � := �C , ε := εC , �∗ := �C∗ and ε∗ := εC∗ , we have the
following decomposition formulae

.�∗ =
∑

n∈ω

(in ⊗ in)�npn, �
op∗ =

∑

n∈ω

(in ⊗ in)�
op
n pn, ε∗ =

∑

n∈ω

εpn (2.45)

where �n is the coproduct of Cn, that is �n = � if n is even and �n = �op if n is
odd. This implies the equalities:

.�
op
n+1 = �n, ∀n ∈ ω. (2.46)

(The case of ς ) We have to verify the following two equalities

.(ς ⊗ ς)�∗ = �
op∗ ς, ε∗ς = ε∗. (2.47)

For the first one, using the substitutions from (2.44) and (2.45), we calculate

.(ς ⊗ ς)�∗ =
∑

k,l,n∈ω

(ik+1pk ⊗ il+1pl)(in ⊗ in)�npn

=
∑

k,l,n∈ω

(ik+1pkin ⊗ il+1plin)�npn =
∑

n∈ω

(in+1 ⊗ in+1)�npn (2.48)

and

.�
op∗ ς =

∑

n,k∈ω

(ik ⊗ ik)�
op
k pkin+1pn =

∑

n∈ω

(in+1 ⊗ in+1)�
op
n+1pn

=
∑

n∈ω

(in+1 ⊗ in+1)�npn (2.49)

where, in the last equality, we used (2.46).
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For the second equality of (2.47), we have

.ε∗ς =
∑

m,n∈ω

εpmin+1pn =
∑

n∈ω

εpn = ε∗ (2.50)

Thus proving that ς is a morphism of coalgebras.
The second map in (2.44) is a morphism of coalgebras as a composition of

morphisms of coalgebras. 
�
By the universal property of the free bialgebra, there exists a unique bialgebra

morphism ζ : T (C∗) → T (C∗)op,cop such that ıC∗ς = ζ ıC∗ .

Proposition 2.2 For any coalgebra C, the (two-sided) ideal J of T (C∗) generated
by the elements

.ux :=
∑

(x)

(ζx(1))x(2) − (εT (C∗)x)ηT (C∗)1,

vx :=
∑

(x)

x(1)ζ x(2) − (εT (C∗)x)ηT (C∗)1, ∀x ∈ ıC∗(C∗), (2.51)

is a bi-ideal stable under the map ζ so that the corresponding quotient space
H(C) := T (C∗)/J is a bialgebra and the canonical projection π : T (C∗) → H(C)

is a bialgebra morphism. Furthermore, H(C) is a Hopf algebra with the antipode
S induced from πζ through the universal property of the quotient space, that is
through the equation πζ = Sπ .

Proof Let us denote ε := εT (C∗), η := ηT (C∗) and � := �T (C∗). We have to show
the following three properties of J :

.ε(J ) = 0, (2.52)

.�(J ) ⊂ J ⊗ C + C ⊗ J (2.53)

and

.ζ(J ) ⊂ J. (2.54)

Due to the fact that ε,�, and ζ are bialgebra morphisms, it suffices to verify these
properties only for the generating elements ux and vx for x ∈ ıC∗(C∗). We check
them explicitly in the case of elements ux and leave the case of vx as an exercise.

Property (2.52):

.ε(ux + x) =
∑

(x)

(εζx(1))εx(2) = εζx = εx.
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Property (2.53):

.�ux + (εx)η1 ⊗ η1 =
∑

(x)

(�ζx(1))�x(2) =
∑

(x)

((ζ ⊗ ζ )(�opx(1)))(x(2) ⊗ x(3))

=
∑

(x)

(ζx(2))x(3) ⊗ (ζx(1))x(4) =
∑

(x)

(ζx(2)(1))x(2)(1) ⊗ (ζx(1))x(3)

=
∑

(x)

((ζx(2)(1))x(2)(1) − (εx(2))η1) ⊗ (ζx(1))x(3) +
∑

(x)

η1 ⊗ (ζx(1))x(2)

=
∑

(x)

ux(2) ⊗ (ζx(1))x(3) +
∑

(x)

η1 ⊗ ux + (εx)η1 ⊗ η1.

Property (2.54):

.ζux + (εx)η1 =
∑

(x)

(ζx(2))ζ ζx(1) =
∑

(x)

(ζx)(1)ζ(ζx)(2) = uζx + (εζx)η1

= uζx + (εx)η1 = uy + (εx)η1

where y := ζx ∈ ıC∗(C∗) due to the equality ıC∗ς = ζ ıC∗ .
Finally, the quotient map S induced by πζ through the equation πζ = Sπ is

the inverse of idH(C) in the convolution algebra End(H(C)) due to the definition of
the bi-ideal J and the fact that H(C), as an algebra, is generated by the coalgebra
C∗. 
�
Theorem 2.3 For any coalgebra C, let ıC : C → H(C) be defined as the
composition πıC∗ i0 = πıC∗ |C where π : T (C∗) → H(C) = T (C∗)/J is the
canonical projection from the free bialgebra (T (C∗), ıC∗) on C∗. Then, the pair
(H(C), ıC) is a free Hopf algebra on C.

Proof The map ıC is a coalgebra morphism as a composition of coalgebra
morphisms.

Let f : C → A be a coalgebra morphism to a Hopf algebra A. Then, the map
g : C∗ → A defined by

.g :=
∑

n≥0

Sn
Afpn (2.55)

extends f in the sense that gi0 = g|C = f , and it is a coalgebra morphism as
a consequence of the properties of powers of the antipode SA with respect to the
coproduct �A and the counit εA, namely

.(S2n
A ⊗ S2n

A )�A = �AS2n
A , (S2n+1

A ⊗ S2n+1
A )�A = �

op
A S2n+1

A , ∀n ∈ ω.

(2.56)
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and

.εASn
A = εA, ∀n ∈ ω. (2.57)

Indeed, we calculate

.(g ⊗ g)�C∗ =
∑

k,m,n∈ω

(Sm
A fpmik ⊗ Sn

Afpnik)�Ck
pk =

∑

k∈ω

(Sk
Af ⊗ Sk

Af )�Ck
pk

=
∑

k∈ω

(Sk
A ⊗ Sk

A)(f ⊗ f )�Ck
pk =

∑

k∈ω

(S2k
A ⊗ S2k

A )(f ⊗ f )�C2kp2k

+
∑

k∈ω

(S2k+1
A ⊗ S2k+1

A )(f ⊗ f )�C2k+1p2k+1 =
∑

k∈ω

(S2k
A ⊗ S2k

A )(f ⊗ f )�Cp2k

+
∑

k∈ω

(S2k+1
A ⊗ S2k+1

A )(f ⊗ f )�
op
C p2k+1 =

∑

k∈ω

(S2k
A ⊗ S2k

A )�Afp2k

+
∑

k∈ω

(S2k+1
A ⊗ S2k+1

A )�
op
A fp2k+1 =

∑

k∈ω

�AS2k
A fp2k +

∑

k∈ω

�AS2k+1
A fp2k+1

=
∑

n∈ω

�ASn
Afpn = �A

∑

n∈ω

Sn
Afpn = �Ag

and

.εAg =
∑

n≥0

εASn
Afpn =

∑

n≥0

εAfpn =
∑

n≥0

εCpn = εC∗ .

By the universal property of the pair (T (C∗), ıC∗), there exists a unique bialgebra
morphism g̃ : T (C∗) → A such that g = g̃ıC∗ which verifies the equality SAg̃ =
g̃ζ . Indeed, by using the property

.pnς =
∑

k≥0

pnik+1pk =
∑

k≥0

δn,k+1pk = pn−1 ∀n ≥ 1,

and the equality ıC∗ς = ζ ıC∗ , we have

.SAg̃ıC∗ = SAg =
∑

n≥0

Sn+1
A fpn =

∑

n≥1

Sn
Afpn−1

=
∑

n≥1

Sn
Afpnς = gς = g̃ıC∗ς = g̃ζ ıC∗ .

The obtained equality and the uniqueness part in the universal property of the pair
(T (C

cop∗ ), ıCcop∗ ) imply that SAg̃ = g̃ζ .
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Now, for any x ∈ ıC∗(C∗), we have

.g̃ux + (εAg̃x)ηA1 = g̃
∑

(x)

(ζx(1))x(2) =
∑

(x)

(g̃ζ x(1))g̃x(2) =
∑

(x)

(SAg̃x(1))g̃x(2)

=
∑

(x)

(SA(g̃x)(1))(g̃x)(2) = (εAg̃x)ηA1

and similarly for vx. We conclude that g̃(J ) = 0. By the universal property of the
quotient space, there exists a unique bialgebra morphism f̃ : H(C) → A such that
g̃ = f̃ π . Furthermore, the equality

.SAf̃ π = SAg̃ = g̃ζ = f̃ πζ = f̃ SH(C)π

and the surjectivity of π imply that SAf̃ = f̃ SH(C), that is f̃ is a Hopf algebra
morphism. Finally, we verify that

.f̃ ıC = f̃ πıC∗ i0 = g̃ıC∗ i0 = gi0 = f.


�

2.4.2 Presentations of Hopf Algebras

Let H be a Hopf algebra and .J ⊂ H a bi-ideal stable under the action of
the antipode, that is .SH (J ) ⊂ J . Then, the quotient bialgebra .H/J is a Hopf
algebra, and the canonical projection .π : H → H/J is a (surjective) Hopf algebra
morphism.

Indeed, the universal property of the quotient space implies that there exists a
unique linear map .S̃ : H/J → H/J such that .S̃π = πSH . For any .x ∈ H , by using
the fact that .π is a bialgebra morphism, we calculate the product .S̃ ∗ idH/J in the
convolution algebra .End(H/J ):

.(S̃ ∗ idH/J )πx =
∑

(x)

(S̃(πx)(1))(πx)(2) =
∑

(x)

(S̃πx(1))πx(2)

=
∑

(x)

(πSH x(1))πx(2) = π
∑

(x)

(SH x(1))x(2) = πηH εH x = ηH/J εH/J πx

(2.58)

and similarly for the product .idH/J ∗S̃. Thus, .S̃ is the antipode in the bialgebra .H/J .
Conversely, for any Hopf algebra morphism .f : H → L, its kernel .ker(f ) :=

f −1(0) is a bi-ideal of H stable under the action of .SH . In particular, if f is
surjective, then it induces a Hopf algebra isomorphism .L � H/ ker(f ). This allows
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us to extend presentations of bialgebras to presentations of Hopf algebras by taking
quotients of Hopf algebras with respect to bi-ideals stable by the antipode. The fact
that the antipode is always unique allows to use bialgebra presentations also for
Hopf algebras implicitly assuming the existence of the antipode. This means that
one and the same presentation can have different meanings in the case of a bialgebra
and a Hopf algebra. For example, as all group-like elements in a Hopf algebra are
invertible, all group-like generators of a Hopf algebra presentation are assumed to
be invertible, even if in the presentation it is not explicitly indicated that they are
invertible.

Example 2.4 The bialgebra presentation of Example 2.3 corresponds also to a Hopf
algebra presentation where the group-like element a is necessarily invertible. In this
way, we arrive to the polynomial algebra .F[a±1, b] with group-like element a and
the coproduct .�b = a ⊗ b + b ⊗ 1, where the antipode can be recovered just by
solving the equations corresponding to the invertibility axiom.

Indeed, in the case of the group-like element, the invertibility axiom states that

.η1 = ηεa = (Sa)a = aSa

implying that a is an invertible element with the inverse .a−1 = Sa.
In the case of element b, the invertibility axiom states that

.0 = ηεb = (Sa)b + Sb = aSb + b

implying that .Sb = −a−1b. 
�



Chapter 3
The Restricted Dual of an Algebra

As we already have seen in the previous chapters, if C is a coalgebra, then the dual
space .C∗ = L(C,F) is an algebra with the convolution product

.μC∗ = �∗|C∗⊗C∗ .

However, the categorial duality between algebras and coalgebras does not allow us
to conclude that the dual space of an algebra is a coalgebra with respect to the dual
structural maps. The reason is that for a vector space V , the inclusion .V ∗ ⊗ V ∗ ⊂
(V ⊗ V )∗ is strict if V is infinite dimensional. This means that, the dual vector
space .A∗ of an algebra is a coalgebra with respect to the dual structural maps only
if .μ∗(A∗) ⊂ A∗ ⊗ A∗. This motivates the definition of the restricted dual of an
algebra.

Definition 3.1 The restricted (or finite) dual .Ao of an algebra A is the vector
subspace of .A∗ given by the inverse image of the tensor square of the dual vector
space .A∗ by the dual of the product of A, i.e.

.Ao := (μ∗)−1(A∗ ⊗ A∗). (3.1)

3.1 The Restricted Dual and Finite Dimensional
Representations

In this section, elements of the restricted dual .Ao are characterised in terms of finite
dimensional representations of A and .Ao is shown to be a coalgebra with respect to
the dual structural maps, that is .μ∗(Ao) ⊂ Ao ⊗ Ao.

When A is finite dimensional, one always has the equality .Ao = A∗. When A

is infinite dimensional, .Ao is a subspace of .A∗ which can be both the whole space
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.Ao = A∗ or the trivial subspace .Ao = 0. The result of this section implies that

.Ao = 0 in the case when A does not admit any finite dimensional representations.
In order to characterise elements of .Ao, we consider the matrix elements of finite

dimensional representations of A.
To begin with, let .ρ : A → F be an algebra morphism which corresponds to a

one-dimensional representation. This means that .ρ is a linear form with a specific
behaviour with respect to the algebra structure of A, namely

.〈ρ, xy〉 = 〈ρ, x〉〈ρ, y〉

for any .x, y ∈ A, and .〈ρ, 1〉 = 1. Let us rewrite .〈ρ, xy〉 as follows:

.〈ρ, xy〉 = 〈ρ,μ(x ⊗ y)〉 = 〈μ∗ρ, x ⊗ y〉. (3.2)

By writing also

.〈ρ, x〉〈ρ, y〉 = 〈ρ ⊗ ρ, x ⊗ y〉, (3.3)

we see that .μ∗ρ = ρ ⊗ ρ, which means that .ρ, considered as a linear form on A, is
contained in the restricted dual of A.

Assume now, more generally, that V is an n-dimensional (left) A-module, i.e.
that we have an algebra morphism .λ : A → End(V ). Let us choose a linear basis
.{vi}i∈n ⊂ V with .n = {0, 1, . . . , n − 1}, and for any .x ∈ A and .i ∈ n, consider
the vector .(λx)vi . As any other vector in V , it is a linear combination of the basis
vectors where the coefficients are linear functions of x:

.(λx)vi =
∑

j∈n

vj 〈λj,i , x〉, (3.4)

where the elements .λj,i ∈ A∗ are called matrix coefficients of the representation .λ

with respect to the basis .{vi}i∈n. Writing

.(λ(xy))vi =
∑

j∈n

vj 〈λj,i , xy〉 =
∑

j∈n

vj 〈μ∗λj,i , x ⊗ y〉 (3.5)

and

.(λx)(λy)vi =
∑

k∈n

(λx)vk〈λk,i , y〉 =
∑

j,k∈n

vj 〈λj,k, x〉〈λk,i , y〉

=
∑

j,k∈n

vj 〈λj,k ⊗ λk,i, x ⊗ y〉,
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and using the equality .λ(ab) = (λa)(λb), we conclude that

.μ∗λj,i =
∑

k∈n

λj,k ⊗ λk,i , ∀i, j ∈ n, (3.6)

i.e. .{λj,i}i,j∈n ⊂ Ao and .μ∗({λj,i}i,j∈n) ⊂ Ao ⊗ Ao.

Remark 3.1 The matrix coefficients .{λj,i}i,j∈n generate a finite dimensional sub-
coalgebra of .Ao which is an isomorphic image of the matrix coalgebra from
Example 1.13.

Theorem 3.1 The restricted dual .Ao of any algebra A is the linear span of the
matrix coefficients of all finite dimensional representations of A.

Proof Taking into account the preceding consideration, it suffices to show that, for
any non zero element f of .Ao, there exists a finite dimensional (left) A-module .Vf

such that f is a linear combination of the matrix coefficients of this representation
(with respect to some basis).

The dual space .A∗ is a left A-module corresponding to the dual right multipli-
cations .R∗

x ∈ End(A∗), where .x ∈ A and .Rx ∈ End(A) is defined by .Rxy = yx.
Indeed, for any .x, y, z ∈ A and .α ∈ F, we verify the linearity

.Rx+αyz = z(x + αy) = zx + αzy = Rxz + αRyz = (Rx + αRy)z

⇒ Rx+αy = Rx + αRy ⇒ R∗
x+αy = R∗

x + αR∗
y

and it is easily checked that

.R∗
xR∗

y = (RyRx)∗ = R∗
xy, R∗

1 = (idA)∗ = idA∗ . (3.7)

Let .Vf := R∗
Af ⊂ A∗ be the orbit of f with respect to this action of A on .A∗. The

linear dependence of .R∗
x on x implies that the set .Vf is a vector subspace of .A∗, and

the map .λ : A → End(Vf ) defined by .λx = R∗
x |Vf is an algebra morphism.

The condition .f ∈ Ao implies that

.μ∗f =
∑

i∈n

gi ⊗ hi (3.8)

for some .n ∈ Z>0 and .g, h ∈ (A∗)n. The calculation

.〈R∗
xf, y〉 = 〈f, yx〉 = 〈μ∗f, y ⊗ x〉 =

∑

i∈n

〈gi, y〉〈hi, x〉 =
〈 ∑

i∈n

gi〈hi, x〉, y
〉

(3.9)
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shows that for any .x ∈ A, the element .R∗
xf finds itself in the linear span of the

elements .{gi}i∈n:

.R∗
xf =

∑

i∈n

gi〈hi, x〉. (3.10)

Thus, .m := dim(Vf ) ≤ n < ∞.
Let .{vi}i∈m be a linear basis of .Vf with .m = {0, 1, . . . ,m − 1}. Then, for any

.x ∈ A, we have

.R∗
xf =

∑

i∈m

vi〈wi, x〉 (3.11)

for some .w ∈ (A∗)m. In particular,

.f = R∗
1f =

∑

i∈m

vi〈wi, 1〉. (3.12)

Let .z ∈ Am be such that

.vi = R∗
zi
f, ∀i ∈ m. (3.13)

We have

.(λx)vi = (λx)R∗
zi
f = R∗

xzi
f =

∑

j∈m

vj 〈wj , xzi〉 =
∑

j∈m

vj 〈R∗
zi
wj , x〉. (3.14)

Thus, the matrix coefficients .{λi,j }i,j∈m of the representation .λ, corresponding to
the basis .{vi}i∈m, are given by

.λi,j = R∗
zj

wi, ∀i, j ∈ m. (3.15)

Let us show that f is a linear combination of .λi,j ’s.
By using (3.11), for any .x ∈ A, we write

.〈f, x〉 = 〈R∗
xf, 1〉 =

∑

i∈m

〈vi, 1〉〈wi, x〉 =
〈∑

i∈m

〈vi, 1〉wi, x
〉

(3.16)

which means that

.f =
∑

i∈m

〈vi, 1〉wi. (3.17)
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By applying .R∗
zj

to both sides of this decomposition, we obtain

.vj = R∗
zj

f =
∑

i∈m

〈vi , 1〉R∗
zj

wi =
∑

i∈m

〈vi , 1〉λi,j . (3.18)

Finally, by substituting this into (3.12), we obtain

.f =
∑

i,j∈m

〈vi , 1〉〈wj , 1〉λi,j . (3.19)

Corollary 3.1 For any algebra A, one has the inclusion .μ∗(Ao) ⊂ Ao ⊗ Ao.

This follows immediately from (3.6).

Exercise 3.1 For any algebra A let .ιA : Ao → A∗ be the canonical inclusion map.
Let .f : A → B be an algebra morphism. Show that

1. there exists a unique coalgebra morphism .f o : Bo → Ao such that

.f ∗ιB = ιAf o;

2. .(idA)o = idAo ;
3. .(fg)o = gof o for any algebra morphism .g : Z → A;

Remark 3.2 The parts (2) and (3) of Exercise 3.1 reflect the functorial nature of
the restricted dual which directly follows from the functorial nature of the duality
correspondence for vector spaces. The restricted dual is, in fact, a contravariant
functor from the category .AlgF of .F-algebras to the category .CoalgF of .F-
coalgebras. One can also show that there exists a natural equivalence

.HomAlg�(A,C∗) 
 HomCoalg�(C,Ao), ∀(A,C) ∈ AlgF × CogF. (3.20)

Exercise 3.2 Let .f : A → B be a surjective morphism of algebras. Show that
.f o : Bo → Ao is an injective morphism of coalgebras.

3.1.1 An Algebra with Trivial Restricted Dual

Theorem 3.1 implies that, if an algebra A does not admit finite dimensional
representations, then its restricted dual is trivial, i.e. .Ao = 0. For example, consider
the Heisenberg subalgebra .AHeis of .End(C[z]) generated by the multiplication and
differentiation operators x and .∂ defined by

.x(p(z)) = zp(z), ∂(p(z)) = dp(z)

dz
, ∀p(z) ∈ C[z]. (3.21)
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They satisfy the commutation relation

.∂x − x∂ = idC[z] . (3.22)

The Heisenberg algebra does not admit finite dimensional representations. Indeed,
assume that there is an algebra homomorphism .λ : AHeis → End(V ), where .n :=
dim(V ) ∈ Z>0. By taking the trace of the identity

.(λ∂)(λx) − (λx)(λ∂) = idV , (3.23)

and using the cyclic property of the trace, we obtain the equality .0 = n > 0 which
is a contradiction. Thus, .(AHeis)

o = 0.

3.1.2 An Infinite Dimensional Algebra A with Ao = A∗

Let V be an infinite dimensional vector space. Define an algebra .AV which, as a
vector space, is the direct sum .F ⊕ V and the product

.μ((α, v) ⊗ (β,w)) = (α, v)(β,w) = (αβ, αw + βv) (3.24)

Let .p ∈ A∗
V be the linear form defined by

.〈p, (α, v)〉 = α. (3.25)

For any .f ∈ A∗
V , we have

.〈μ∗f, (α, v) ⊗ (β,w)〉 = 〈f, (αβ, αw + βv)〉
= 〈f, (1, 0)〉αβ + 〈f, (0, αw + βv)〉 = 〈f, (1, 0)〉αβ + α〈f, (0, w)〉 + β〈f, (0, v)〉

= −〈f, (1, 0)〉αβ + α〈f, (β,w)〉 + β〈f, (α, v)〉
= −〈f, (1, 0)〉〈p ⊗ p, (α, v) ⊗ (β,w)〉

+ 〈p ⊗ f, (α, v) ⊗ (β,w)〉 + 〈f ⊗ p, (α, v) ⊗ (β,w)〉
= 〈p ⊗ f + f ⊗ p − 〈f, (1, 0)〉p ⊗ p, (α, v) ⊗ (β,w)〉. (3.26)

Thus, .f ∈ Ao
V with

.μ∗f = p ⊗ f + f ⊗ p − 〈f, (1, 0)〉p ⊗ p. (3.27)
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3.2 The Restricted Dual of the Tensor Product of Two
Algebras

Lemma 3.1 For any algebras A and B, the canonical embedding

.αA,B : Ao ⊗ Bo ↪→ (A ⊗ B)o (3.28)

is a coalgebra isomorphism such that, for any pair of algebra morphisms f : A →
U and g : B → V , one has the equality

.(f ⊗ g)oαU,V = αA,B(f o ⊗ go). (3.29)

Proof

(1) Let A and B be algebras. Define the canonical algebra inclusions

.ı : A ↪→ A ⊗ B, j : B ↪→ A ⊗ B,

ıx = x ⊗ 1B, jy = 1A ⊗ y, ∀(x, y) ∈ A × B. (3.30)

Denoting α := αA,B , let us show that the map

.β := (ıo ⊗ jo)�(A⊗B)o : (A ⊗ B)o → Ao ⊗ Bo (3.31)

is the inverse of α.
For any (ϕ, x, y) ∈ (A ⊗ B)o × A × B, denoting � := �(A⊗B)o , we have

.〈αβϕ, x ⊗ y〉 = 〈βϕ, x ⊗ y〉 = 〈�ϕ, ıx ⊗ jy〉 = 〈ϕ, (ıx)(jy)〉 = 〈ϕ, x ⊗ y〉
(3.32)

implying that β is a right inverse of α, and, for any (f, g, x, y) ∈ Ao × Bo ×
A × B, we also have

.〈βα(f ⊗ g), x ⊗ y〉 = 〈β(f ⊗ g), x ⊗ y〉 = 〈�(f ⊗ g), ıx ⊗ jy〉
= 〈f ⊗ g, (ıx)(jy)〉 = 〈f ⊗ g, x ⊗ y〉 (3.33)

implying that β is a left inverse of α.
(2) In order to show that αA,B is a morphism of coalgebras, it suffices to show that

.�(A⊗B)oαA,B = (αA,B ⊗ αA,B)�Ao⊗Bo (3.34)
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and

.ε(A⊗B)oαA,B = εAo ⊗ εBo . (3.35)

Indeed, for any (ϕ,ψ) ∈ Ao × Bo and (x, y, u, v) ∈ A2 × B2, we have

.〈�(A⊗B)oαA,B(ϕ⊗ψ), x ⊗u⊗y ⊗v〉 = 〈ϕ⊗ψ, xy ⊗uv〉 = 〈ϕ, xy〉〈ψ, uv〉
= 〈�Aoϕ, x ⊗ y〉〈�Boψ, u ⊗ v〉 = 〈(�Aoϕ) ⊗ (�Boψ), x ⊗ y ⊗ u ⊗ v〉

=〈�Ao⊗Bo (ϕ⊗ψ), x⊗u⊗y⊗v〉=〈(αA,B⊗αA,B)�Ao⊗Bo (ϕ⊗ψ), x⊗u⊗y⊗v〉

and

.〈ε(A⊗B)oαA,B, ϕ ⊗ ψ〉 = 〈ϕ ⊗ ψ, ηA⊗B1〉
= 〈ϕ ⊗ ψ, ηA1 ⊗ ηB1〉 = 〈ϕ, ηA1〉〈ψ, ηB1〉
= 〈εAo , ϕ〉〈εBo , ψ〉 = 〈εAo ⊗ εBo , ϕ ⊗ ψ〉.

(3) Let f : A → U and g : B → V be algebra morphisms. For any quadruple
(ϕ,ψ, x, y) ∈ Uo × V o × A × B, we have

.〈(f ⊗ g)oαU,V (ϕ ⊗ ψ), x ⊗ y〉 = 〈ϕ ⊗ ψ, f x ⊗ gy〉 = 〈ϕ, f x〉〈ψ, gy〉
= 〈f oϕ, x〉〈goψ, y〉 = 〈f oϕ⊗goψ, x⊗y〉 = 〈αA,B(f o⊗go)(ϕ⊗ψ), x⊗y〉.

3.3 The Restricted Dual of a Hopf Algebra

The restricted dual .Ho of a Hopf algebra H is defined as the restricted dual of the
underlying algebra. In this subsection we show that the Hopf algebra operations of
H imply that the restricted dual is itself a Hopf algebra.

Exercise 3.3 Let .f : X → U and .g : Y → V be two linear maps between vector
spaces. Show that

.(f ⊗ g)∗|U∗⊗V ∗ = f ∗|U∗ ⊗ g∗|V ∗ .

Proposition 3.1 For any Hopf algebra .H = (H,μ, η,�, ε, S), the restricted dual
.Ho is a Hopf algebra with respect to the dual structural maps

.μHo =�∗|Ho⊗Ho , ηHo =ε∗ : 1 �→ ε, �Ho =μ∗|Ho, εHo =ηo =η∗|Ho,

SHo = So = S∗|Ho .
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Proof By the functorial nature of the restricted dual, the vector space .Ho is a
coalgebra with the coproduct .μ∗|Ho and the counit .ηo, and the algebra morphisms
.ε : H → F and .� : H → H ⊗ H induce coalgebra morphisms .εo : F → Ho and
.�o : (H ⊗ H)o → Ho. By Lemma 3.1, the canonical inclusion

.αH,H : Ho ⊗ Ho ↪→ (H ⊗ H)o

is an isomorphism of coalgebras and the composed map

.�oαH,H : Ho ⊗ Ho → Ho

coincides with the restriction .�∗|Ho⊗Ho . This means that the triple

.(Ho,�oαH,H , εo)

is an algebra as a subalgebra of the convolution algebra .H ∗. Thus, the tuple

.(Ho,�oαH,H , εo, μ∗|Ho, ηo)

is a bialgebra.
Finally, we verify that .So is the inverse of .idHo in the convolution algebra

.End(Ho). By functoriality of the dual of a vector space, we have the equality

.ε∗η∗ = �∗(S ⊗ idH)∗μ∗ : H ∗ → H ∗ (3.36)

which implies that

.ηHoεHo = �∗(S ⊗ idH )∗μ∗|Ho = �∗(S ⊗ idH )∗|Ho⊗Ho�Ho

= �∗|Ho⊗Ho(So ⊗ idHo)�Ho = μHo(So ⊗ idHo)�Ho

where, in the third equality, we used Exercise 3.3. The second relation is verified
similarly. ��



Chapter 4
The Restricted Dual of Hopf Algebras:
Examples of Calculations

Let H be a Hopf algebra. In this chapter, we work out the structure of the Hopf
algebra Ho in few simple examples. The fact that Ho a Hopf algebra (instead of
being just a coalgebra) often facilitates its description.

It is useful to use the (restricted) evaluation form

.

(4.1)

where we use solid line for H and dotted line for Ho. It has the following algebraic
properties:

. (4.2)

in the convolution algebra (Ho ⊗ Ho ⊗ H)∗,

. (4.3)

in the convolution algebra (Ho ⊗ H ⊗ H)∗,

. (4.4)
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and

. (4.5)

The usefulness of the form E in elucidating the structure of Ho is the following
reproducing property

.E(f̌ ⊗ idH ) = f, ∀f ∈ Ho, (4.6)

where the linear map f̌ : F → Ho is defined by f̌ 1 = f .
Let {ei}i∈I ⊂ H be a linear basis and {e∗

i }i∈I ⊂ H ∗ the dual set of linear forms
defined by the relations

.〈e∗
i , ej 〉 = δi,j , ∀i, j ∈ I. (4.7)

The evaluaton form E can be written as the following formal sum

.E =
∑

i∈I

e∗∗
i ⊗ e∗

i (4.8)

where e∗∗
i ∈ (Ho)∗ are defined by 〈e∗∗

i , f 〉 = 〈f, ei〉. It has the property

.〈E, f ⊗ x〉 =
∑

i∈I

〈f, ei〉〈e∗
i , x〉. (4.9)

By using the algebra structure of H ∗, one can try to express the dual forms e∗
i in

terms of some set of generating elements of H ∗. Below, in concrete examples, we
illustrate how this works in practice.

4.1 The Hopf Algebra C[x]

The polynomial algebra C[x] is a Hopf algebra where x is a primitive element with
the coproduct

.�x = x ⊗ 1 + 1 ⊗ x. (4.10)

The monomials {xn}n∈ω form a linear basis, with the product

.xmxn = xm+n (4.11)
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and the coproduct

.�xm = (�x)m =
m∑

k=0

(
m

k

)
xm−k ⊗ xk. (4.12)

The counit and the antipode are easily calculated by using the axioms of the Hopf
algebra.

For example, in order to calculate the counit applied to the generator x, we use
the counitality property

.(ε ⊗ id)�x = x ⇔ εx + (ε1)x = x, (4.13)

which, by using the equality ε1 = 1 valid in any Hopf algebra, implies that εx = 0.
For calculation of the image of the generator x under the action of the antipode,

we use the invertibility axiom:

.μ(S ⊗ id)�x = εx ⇔ Sx + (S1)x = εx, (4.14)

which, by the previous calculation and the equality S1 = 1 valid in any Hopf
algebra, implies that Sx = −x.

Finally, by using the facts that the counit is an algebra morphism and the antipode
is an algebra anti-morphism, we conclude that

.εxm = (εx)m = δm,0, Sxm = (Sx)m = (−x)m, ∀m ∈ ω. (4.15)

Let us turn to the structure of the restricted dual of C[x].
One-dimensional representations of the algebra C[x] are indexed by the set of

complex numbers C. The matrix coefficient ρz corresponding to z ∈ C is defined as
follows:

.〈ρz, x
n〉 = zn, ∀n ∈ ω. (4.16)

It is a group-like element of the restricted dual C[x]o. The set of linear forms {ρz |
z ∈ C} is closed under multiplication according to the multiplication rule

.ρzρw = ρz+w ∀z,w ∈ C (4.17)

which is verified as follows:

.〈ρzρw, xn〉 = 〈ρz ⊗ ρw,�xn〉 = 〈ρz ⊗ ρw, (x ⊗ 1 + 1 ⊗ x)n〉
= (〈ρz, x〉〈ρw, 1〉 + 〈ρz, 1〉〈ρw, x〉)n = (z + w)n = 〈ρz+w, xn〉. (4.18)
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We define one more element of C[x]o, denoted ∂ , by formally differentiating ρz

with respect to z and then substituting z = 0:

.〈∂, xn〉 = ∂

∂z
〈ρz, x

n〉
∣∣∣∣
z=0

= δ1,n, ∀n ∈ ω. (4.19)

Let us show that the linear form ∂ is a primitive element of the Hopf algebra C[x]o.
Indeed, for any m,n ∈ ω, we have

.〈�∂, xm ⊗ xn〉 = 〈∂, xm+n〉 = δ1,m+n = δ0,mδ1,n + δ0,nδ1,m

= 〈ε, xm〉〈∂, xn〉 + 〈ε, xn〉〈∂, xm〉 = 〈ε ⊗ ∂ + ∂ ⊗ ε, xm ⊗ xn〉
⇒ �∂ = 1 ⊗ ∂ + ∂ ⊗ 1 (4.20)

where we took into account the fact that the counit ε is the identity element in the
restricted dual of a Hopf algebra.

Lemma 4.1 The set of normalized monomials {ϕn := ∂n/n!}n∈ω ⊂ C[x]o forms
the dual set of the monomial basis {xn}n∈ω ⊂ C[x].
Proof This can be proven by induction. Indeed, the case n = 0 holds true by the
fact that ϕ0 = ε (the counit of C[x]) which is the identity element of the algebra
C[x]o. Assuming that 〈ϕn−1, x

m〉 = δn−1,m for a fixed n ≥ 1 and arbitrary m, and
the definition of ∂ , we calculate

.n〈ϕn, x
m〉 = 〈ϕn−1∂, xm〉 = 〈ϕn−1⊗∂,�xm〉 =

m∑

k=0

(
m

k

)
〈ϕn−1⊗∂, xm−k ⊗xk〉

=
m∑

k=0

(
m

k

)
δn−1,m−kδ1,k = δn,m

n∑

k=0

(
n

1

)
δ1,k = nδn,m. (4.21)

Remark 4.1 To keep track the evaluations of various linear forms on the linear basis
{xn}n∈ω, it is convenient to work with the exponential generating function for this
basis

.eξx =
∞∑

n=0

ξn

n! x
n. (4.22)

For example, the set of evaluations 〈ρz, x
n〉 = zn, n ∈ ω, can be collected into the

evaluation on the generating function

.〈ρz, e
ξx〉 =

∞∑

n=0

ξn

n! 〈ρz, x
n〉 =

∞∑

n=0

ξn

n! z
n = eξz, (4.23)
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and similarly for the set of evaluations 〈∂m, xn〉 = m!δm,n, m,n ∈ ω,

.〈∂m, eξx〉 =
∞∑

n=0

ξn

n! 〈∂
m, xn〉 =

∞∑

n=0

ξn

n! m!δm,n = ξm. (4.24)

Theorem 4.1 The linear map

.v : C[C] ⊗ C[x] → C[x]o, χz ⊗ 1 �→ ρz, 1 ⊗ x �→ ∂, (4.25)

is an isomorphism of Hopf algebras.

Proof It is clear that the map v is a morphism of Hopf algebras. We only have to
show that it is a bijection.

By Lemma 4.1, the dual evaluation form EC[x] can be written as the following
formal infinite sum

.EC[x] =
∞∑

n=0

1

n! (x
n)∗∗ ⊗ ∂n (4.26)

where we have used the convolution algebra structure of the space C[x]∗. We will
use this formula in order to show the surjectivity of the map v. To this end, we
consider a representation of C[x] in a finite dimensional vector space with a fixed
linear basis which corresponds to an algebra morphism

.λ : C[x] → End(Cn). (4.27)

Such a representation is completely characterised by the matrix λx = (λi,j x)i,j∈n.
By the Jordan block decomposition of λx, it suffices to assume that there exists a
complex number z such that An = 0 where A := λx − z idCn . Starting from the
reproducing property (4.6) of the evaluation form, we proceed with the following
calculation

.λi,j = EC[x](λ̌i,j ⊗ idC[x]) =
∞∑

k=0

1

k! 〈λi,j , xk〉∂k =
∞∑

k=0

1

k!
(
(λx)k

)

i,j
∂k

=
∞∑

k=0

1

k!
k∑

m=0

(
k

m

) (
Am

)
i,j

zk−m∂k =
∞∑

m=0

∞∑

k=m

(Am)i,j zk−m

(k − m)!m! ∂k

=
∞∑

m,k=0

(Am)i,j zk

k!m! ∂k+m =
∞∑

m=0

(Am)i,j ∂m

m!
∞∑

k=0

zk

k! ∂
k =

n−1∑

m=0

(Am)i,j

m! ∂mρz

(4.28)
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where, in the last equality, we used the (formal) decomposition

.ρz = EC[x](ρ̌z ⊗ idC[x]) =
∞∑

k=0

〈ρz, x
k〉∂

k

k! =
∞∑

k=0

zk ∂k

k! , (4.29)

Thus, we obtain the formula

.λi,j = v
( n−1∑

m=0

1

m!
(
Am

)
i,j

χz ⊗ xm
)

(4.30)

implying surjectivity of the map v.
In order to show injectivity of v, assume that

.α :=
∑

w∈W

χw ⊗ pw(x) ∈ ker(v), (4.31)

where W ⊂ C is a finite set of complex numbers and pw(x) ∈ C[x] is a polynomial
for each w ∈ W . This means that

.vα =
∑

w∈W

ρwpw(∂) = 0. (4.32)

By evaluating the latter on the generating series of the basis monomials eξx , we
obtain

.0 = 〈vα, eξx 〉 =
∑

w∈W

ewξpw(ξ). (4.33)

The meaning of the obtained equality is that, by expanding the right hand side
of (4.33) in power series in ξ , all the coefficients of that expansion vanish. On the
other hand, as the series absolutely converges for any ξ ∈ C, we can view the right
hand side of (4.33) as an analytic function of ξ on the entire complex plane. It is
impossible to identically vanish for this function unless all the polynomials pw(x)

vanish. Indeed, let s ∈ C be such that the map W → C�=0, w �→ esw, is injective.
By taking the values ξ = sn, n ∈ ω, in (4.33), we obtain the equalities

.

∑

w∈W

ewsnpw(sn) = 0, ∀n ∈ ω, (4.34)

and, by Lemma 4.2 below, we conclude that pw(x) = 0 for all w ∈ W , i.e. α = 0
and thus the map v is injective. ��
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Remark 4.2 The surjectivity of the map v in Theorem 4.1 can be proven by the
following elegant and purely algebraic reasoning.1 In formula (4.33), for each w ∈
W , the term ewξpw(ξ) is a generalised eigenvector of the differentiation operator
∂
∂ξ

corresponding to the eigenvaluew, that is there exists a positive integer k ∈ Z>0

such that ewξpw(ξ) is in the kernel of the differential operator ( ∂
∂ξ

− w)k . This fact
implies that the terms in the sum in (4.33) are linearly independent.

Lemma 4.2 Let {pw(x)}w∈W ⊂ C[x] be a finite set of complex non-zero polyno-
mials indexed by a (finite) set of non-zero complex numbers W ⊂ C�=0. Then there
exists a non-negative integer n ∈ ω such that

.

∑

w∈W

wnpw(n) �= 0. (4.35)

Proof The proof is by contradiction. Assume that

.

∑

w∈W

wnpw(n) = 0, ∀n ∈ ω. (4.36)

Let z ∈ C be such that |z| > |w| for all w ∈ W . Then, for any w ∈ W , the following
series is absolutely convergent:

.

∞∑

n=0

wnpw(n)z−n = pw

(
−z

∂

∂z

) ∞∑

n=0

(
w

z

)n

= pw

(
−z

∂

∂z

)
z

z − w
= qw

(
z

z − w

)
, (4.37)

where

.qw(x) := pw

(
x(x − 1)

∂

∂x

)
x (4.38)

is a polynomial of degree

. deg(qw(x)) = 1 + deg(pw(x)) ≥ 1 (4.39)

which means that it is not a constant polynomial. On the other hand, summing (4.37)
over all w ∈ W , we obtain the identity

.

∑

w∈W

qw

(
z

z − w

)
= 0 (4.40)

1 This reasoning has been kindly suggested to the author by the anonymous referee.
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which is impossible to satisfy, because due to the inequalities (4.39), z can approach
arbitrarily close a pole w with the largest absolute value. ��

4.2 The Group Algebra C[Z]

The group algebra of the infinite cyclic group Z can be identified with the algebra
of Laurent polynomials:

.C[Z] � C[t, t−1] (4.41)

where the identification is given by χn �→ tn, so that the Hopf algebra structure
in the space of Laurent polynomials is fixed by the condition that t is a group-like
element. Let us determine the restricted dual of C[Z].

Any one-dimensional representation of the algebra C[t, t−1] is characterized by
a non-zero complex number z corresponding to the image of the generator t . Denote
the corresponding matrix coefficient by θz. It is a linear form on C[t, t−1] defined
by the formula

.〈θz, t
n〉 = zn, ∀n ∈ Z, (4.42)

which is a group-like element of the Hopf algebra C[t, t−1]o. Moreover, we have
the following multiplication rule

.θzθw = θzw ∀z,w ∈ C�=0 (4.43)

which is checked as follows:

.〈θzθw, tn〉 = 〈θz ⊗ θw,�tn〉 = 〈θz ⊗ θw, tn ⊗ tn〉 = znwn = 〈θzw, tn〉. (4.44)

In particular, θ1 is nothing else than the unit element which we will denote by 1.
Differentiating formally θz with respect to z at z = 1, we define one more linear

form ψ:

.〈ψ, tn〉 := ∂

∂z
〈θz, t

n〉
∣∣∣∣
z=1

= n ∀n ∈ Z (4.45)

which is a primitive element of C[t, t−1]o as shows the following calculation:

.〈�ψ, tm ⊗ tn〉 = 〈μ∗ψ, tm ⊗ tn〉 = 〈ψ, tm+n〉 = m + n = 〈ψ, tm〉 + 〈ψ, tn〉
= 〈ψ, tm〉〈ε, tn〉 + 〈ψ, tn〉〈ε, tm〉 = 〈ψ ⊗ ε + ε ⊗ ψ, tm ⊗ tn〉. (4.46)
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Exercise 4.1 Show that for any polynomial p(x) ∈ C[x], the following formula
holds true:

.〈p(ψ), tn〉 = p(n) ∀n ∈ Z. (4.47)

Remark 4.3 Pushing formula (4.47) even further, for any vector space valued
function g : Z → V , we can associate a linear map g(ψ) : C[t, t−1] → V defined
by

.g(ψ)tn = g(n), ∀n ∈ Z. (4.48)

In particular, the linear forms θz can alternatively be denoted as zψ .

Let {πn}n∈Z ⊂ C[t, t−1]∗ be the dual set of the canonical monomial basis
{tn}n∈Z ⊂ C[t, t−1], with the convolution algebra structure

.πmπn = δm,nπm, ∀m,n ∈ Z, (4.49)

corresponding to the coalgebra structure of C[t, t−1]. Any linear form f ∈
C[t, t−1]∗ is decomposed into a formal sum

.f =
∑

n∈Z
〈f, tn〉πn (4.50)

so that, in particular, we have

.ψ =
∑

n∈Z
〈ψ, tn〉πn =

∑

n∈Z
nπn. (4.51)

Theorem 4.2 The linear map

.u : C[C�=0] ⊗ C[x] → C[t, t−1]o, χz ⊗ 1 �→ θz, 1 ⊗ x �→ ψ, (4.52)

is an isomorphism of Hopf algebras.

Proof The map u is evidently a Hopf algebra morphism. We start by showing that
u is a surjective map.

Let λ : C[t, t−1] → End(Cn) be a finite dimensional representation which is
completely characterized by the matrix λt = (λi,j t)i,j∈n. By the Jordan block
decomposition of λt , it suffices to assume that there exists a non-zero complex
number z such that (λt − z idCn)n = 0. Consider a set of elements {ϕi,j }i,j∈n in
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C[C�=0] ⊗ C[x] defined by the formula

.ϕi,j := χz ⊗
n−1∑

k=0

(
x

k

) ((
z−1λt − idCn

)k
)

i,j

. (4.53)

where

.

(
x

k

)
:= 1

k!
k−1∏

j=0

(x − j) ∈ C[x] (4.54)

is the binomial polynomial of degree k. Let us show that uϕi,j = λi,j .
For any m ∈ Z, we have

.〈uϕi,j , t
m〉 =

〈
θz

∑

k∈n

(
ψ

k

)
, tm

〉 ((
z−1λt − idCn

)k
)

i,j

= zm
∑

k∈n

(
m

k

) ((
z−1λt − idCn

)k
)

i,j

= zm

∞∑

k=0

(
m

k

) ((
z−1λt − idCn

)k
)

i,j

= (
(λt)m

)
i,j

= 〈λi,j , t
m〉. (4.55)

In order to show injectivity of u, assume that

.α :=
∑

w∈W

χw ⊗ pw(x) ∈ ker(u), (4.56)

with a finite set of non-zero complex numbers W ⊂ C�=0 and some polynomials
pw(x) ∈ C[x]. This means that

.uα =
∑

w∈W

θwpw(ψ) = 0. (4.57)

By evaluating the latter on the basis monomials, we obtain the equalities

.0 = 〈uα, tn〉 =
∑

w∈W

wnpw(n), ∀n ∈ Z, (4.58)

which, due to Lemma 4.2, imply that all the polynomials pw(x) identically vanish,
i.e. α = 0. ��
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4.3 The Hopf Algebra Jh̄

Let us fix a scalar h̄ ∈ C. We define a Hopf algebra with the presentation

.Jh̄ = C〈a, b| ab − ba = h̄a(a − 1), �b = a ⊗ b + b ⊗ 1, �a = a ⊗ a〉 (4.59)

where it is assumed that all grouplike elements are invertible.

Exercise 4.2 Show that for any h̄ ∈ C�=0, there exists an isomorphism of Hopf
algebras Jh̄ � J1.

Exercise 4.3 Show that the set of monomials

.{bman | m ∈ ω, n ∈ Z} (4.60)

forms a linear basis in Jh̄.

In the rest of this section, we provide a detailed description of the restricted dual
of the Hopf algebra Jh̄ assuming that h̄ �= 0.

There exists a surjective morphism of Hopf algebras

.Jh̄ → C[x], a �→ 1, b �→ x, (4.61)

which induces a Hopf algebra embedding (see Exercise 3.2)

.C[x]o � C[C] ⊗ C[x] ↪→ J o
h̄ (4.62)

given by the linear forms {ρz}z∈C and ∂ defined as follows:

.〈ρz, b
man〉 = zm, 〈∂, bman〉 = δm,1, ∀m ∈ ω, ∀n ∈ Z. (4.63)

As in the case of C[x]o, it is convenient to rewrite the evaluations in (4.63) in terms
of the generating series eξb for the powers of the generator b:

.〈ρz, e
ξban〉 = eξz, 〈∂, eξban〉 = ξ, ∀n ∈ Z. (4.64)

We also consider the following two-dimensional representation

.λ : Jh̄ → End(C2), a �→
(
1 1
0 1

)
, b �→

(
0 0
0 h̄

)
, (4.65)

so that

.

(
〈λi,j , eξban〉

)

i,j∈{1,2} = eξλb(λa)n =
(
1 0
0 eξh̄

) (
1 n

0 1

)
=

(
1 n

0 eξh̄

)
. (4.66)
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We see that the lower left corner matrix coefficient is trivial, λ2,1 = 0, the diagonal
matrix coefficients are contained in the Hopf sub-algebra C[x]o:

.λ1,1 = ρ0 = 1, λ2,2 = ρh̄, (4.67)

while the upper right matrix coefficient gives a new linear form in J o
h̄ :

.λ1,2 =: φ, 〈φ, eξban〉 = n, (4.68)

with the coproduct

.�φ = 1 ⊗ φ + φ ⊗ ρh̄. (4.69)

Exercise 4.4 Let α, β, γ ∈ C be such that α �= γ . Prove the following matrix
equality:

. exp

(
ξ

(
α β

0 γ

))
=

(
eξα β(eξα − eξγ )/(α − γ )

0 eξγ

)
. (4.70)

Lemma 4.3 Let representation λ of Jh̄ be defined in (4.65). For any z ∈ C and
n ∈ Z, the following generalization of (4.66) holds true:

.λ(eξ(az+b)an) = eξz

(
1 n + (eξh̄ − 1)z/h̄
0 eξh̄

)
. (4.71)

Proof We have

.eξ(zλa+λb)(λa)n = eξz exp

(
ξ

(
0 z

0 h̄

))
(λa)n

= eξz

(
1 (eξh̄ − 1)z/h̄
0 eξh̄

) (
1 n

0 1

)
= eξz

(
1 n + (eξh̄ − 1)z/h̄
0 eξh̄

)
(4.72)

where we have used equality (4.70). ��
Proposition 4.1 For any z ∈ C, the linear forms ρz and φ satisfy the following
relation

.ρzφρ−z = φ + z(1 − ρh̄)/h̄. (4.73)
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Proof First, we calculate

.〈ρzφ, eξban〉 = 〈ρz ⊗ φ,�(eξban)〉 = 〈ρz ⊗ φ, eξ(a⊗b+b⊗1)(an ⊗ an)〉
= 〈φ, eξ(b+z)an〉 = eξz〈λ1,2, eξban〉 = eξzn (4.74)

and similarly

.〈φρz, e
ξban〉 = 〈φ ⊗ ρz,�(eξban)〉 = 〈φ ⊗ ρz, e

ξ(a⊗b+b⊗1)(an ⊗ an)〉
= 〈φ, eξ(az+b)an〉 =

[
eξzλa+λb)(λa)n

]

1,2
= eξz(n + (eξh̄ − 1)z/h̄) (4.75)

where we have used formula (4.71). Substructing this from (4.74), we obtain

.〈ρzφ − φρz, e
ξban〉 = eξz(1 − eξh̄)z/h̄ = 〈ρz(1 − ρh̄)z/h̄, eξban〉 (4.76)

which is equivalent to equality (4.73). ��
Corollary 4.1 There exists a morphism of Hopf algebras

.Jh̄ → J o
h̄ , a �→ ρ−h̄, b �→ −h̄φρ−h̄. (4.77)

Exercise 4.5 Show that

.∂φ − φ∂ = (1 − ρh̄)/h̄. (4.78)

Proposition 4.2 For any k ∈ ω, one has

.〈φk, eξban〉 = nk, ∀n ∈ Z, (4.79)

with the convention 00 = 1.

Proof We proceed by induction on k. Equality (4.79) is true for k = 0. Assume that
it is true for some k ≥ 0. Then, by using (4.71) and (4.68), we have

.〈φk+1, eξban〉 = 〈φ ⊗ φk, eξ(a⊗b+b⊗1)(an ⊗ an)〉
= 〈φk,

[
eξ(bλa+λb)(λa)n

]

1,2
an〉 = 〈φk, eξb(n + (eξh̄ − 1)b/h̄)an〉

=
(

n + (eξh̄ − 1)
1

h̄

∂

∂ξ

)
〈φk, eξban〉 =

(
n + (eξh̄ − 1)

1

h̄

∂

∂ξ

)
nk = nk+1.

(4.80)
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Exercise 4.6 Let X and Y be two linear transformations of a finite dimensional
vector space such that

.XY − YX = Y. (4.81)

Show that

.ezXYe−zX = ezY, ∀z ∈ C. (4.82)

Lemma 4.4 For any finite dimensional representation λ : Jh̄ → End(V ), the
element λa − idV is nilpotent.

Proof The element c := a−1 − 1 ∈ J1 is such that

.bc − cb = −h̄c. (4.83)

By Exercise 4.6, we have the relation

.e−zλb(λc)ezλb = eh̄zλc, ∀z ∈ C. (4.84)

Let α ∈ C be an eigenvalue of λc, and v ∈ V \ {0} the corresponding eigenvector,
i.e.

.(λc)v = αv. (4.85)

To any z ∈ C, we associate the non zero vector

.vz := ezλbv. (4.86)

Then, equality (4.84) implies that vz is an eigenvector of λc corresponding to the
eigenvalue eh̄zα:

.(λc)vz = (λc)ezλbv = ezλbeh̄z(λc)v = ezλbeh̄zαv = eh̄zαvz, ∀z ∈ C. (4.87)

This means that α = 0, otherwise the set of eigenvalues of λc would be
(uncountably) infinite and this not possible in a finite dimensional vector space.
Thus, λc = (idV −λa)(λa)−1 is a nilpotent element of End(V ). ��

The following theorem summarises the Hopf algebra structure of the restricted
dual of Jh̄.

Theorem 4.3 Let h̄ ∈ C�=0. The Hopf algebra J o
h̄ is generated by the elements

{ρz}z∈C, ∂ and φ defined by (4.64) and (4.68) with the coproducts

.�ρz = ρz ⊗ ρz, �∂ = 1 ⊗ ∂ + ∂ ⊗ 1, �φ = 1 ⊗ φ + φ ⊗ ρh̄ (4.88)
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and satisfying the relations

.ρzρw = ρz+w, ρz∂ = ∂ρz, (4.89)

.ρzφρ−z = φ + z(1 − ρh̄)/h̄, ∂φ − φ∂ = (1 − ρh̄)/h̄. (4.90)

The set

.B := {ρz∂
nφm | z ∈ C, m, n ∈ ω} (4.91)

forms a linear basis of J o
h̄ .

Proof The coproducts and the relations between the generating elements are already
derived, see Theorem 4.1, Eqs. (4.65) and (4.69), Proposition 4.1, and Exercise 4.5.

Let

.λ : Jh̄ → End(Cn) (4.92)

be arbitrary finite dimensional representation. By the formal formula for the dual
evaluation form

. evJh̄ = eb⊗∂ (a ⊗ 1)1⊗φ, (4.93)

we write for the matrix coefficients

.λi,j = evJh̄(λ̌ij ⊗ id) =
(
e(λb)∂(λa)φ

)

i,j
. (4.94)

By Lemma 4.4, there exists L ∈ ω such that (λa − idCn)L = 0 so that

.(λa)φ = (idCn +λa − idCn )φ =
L−1∑

s=0

(
φ

s

)
(λa − idCn)s , (4.95)

thus obtaining a matrix valued polynomial in φ, i.e.

.(λa)φ ∈ End(Cn)[φ]. (4.96)

Let

.S := Spec(λb) ⊂ C (4.97)
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be the spectrum of the matrix λb. By Jordan’s block structure of λb, for each
eigenvalue z ∈ S, there exist a projection matrix Pz ∈ End(Cn) and a positive
integer nz ∈ Z>0 such that

.Pzλb = (λb)Pz, P 2
z = Pz, Pz(λb − z idCn)nz = 0, (4.98)

and also

.PzPw = 0 if z �= w,
∑

z∈B

Pz = 1, (4.99)

see Exercise 4.8 below. Thus, we can write

.e(λb)∂ =
∑

z∈S

ρzPze
(λb−z id�n )∂ =

∑

z∈S

ρzPz

nz−1∑

r=0

(λb − z idCn )r

r! ∂r =
∑

z∈S

ρzpz(∂)

with matrix valued polynomials pz(x) ∈ End(Cn)[x]. Putting everything together,
we obtain a decomposition of the matrix coefficients into finite linear combinations
of the set B:

.λi,j =
∑

z∈S

ρz

(
pz(∂)(λa)φ

)
i,j

. (4.100)

Let us prove now the linear independence of B. Assume that there exist finite
sets of complex numbers Mi ⊂ C indexed by a finite set of non-negative integers
I ⊂ ω such that

.

∑

i∈I

fi(∂)φi = 0, (4.101)

where

.fi(∂) =
∑

z∈Mi

ρzpi,z(∂), pi,z(x) ∈ C[x]. (4.102)

Evaluating at the basis elements eξban, we have

.

∑

i∈I

fi(ξ)ni = 0, ∀n ∈ Z, (4.103)

and replacing ξ in this generating series by arbitrary complex numbers, we obtain

.

∑

i∈I

fi(z)n
i = 0, ∀n ∈ Z, ∀z ∈ C. (4.104)
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By applying Lemma 4.2 for each fixed z (with one polynomial
∑

i∈I fi(z)x
i), we

arrive at the equalities

.fi(z) :=
∑

w∈Mi

ewzpi,w(z) = 0, ∀i ∈ I, ∀z ∈ C, (4.105)

which, again by Lemma 4.2 (with specifications z = n ∈ ω), imply that all the
polynomials pi,w(x) identically vanish. ��
Exercise 4.7 Prove formula (4.100) by evaluating its both sides on the basis
elements of Jh̄.

Exercise 4.8 Let T ∈ End(V ) with dim(V ) < ∞. By using Jordan’s block
decomposition of T show that there exists a set of positive integers {nz}z∈S ⊂ Z>0
indexed by a finite set of complex numbers S ⊂ C such that the polynomials
pz(x) ∈ C[x] defined by

.pz(x) := 1 −
⎛

⎝1 −
∏

w∈S\{z}

(
x − w

z − w

)nw

⎞

⎠
nz

, ∀z ∈ S, (4.106)

satisfy the relations

.pz(T )pw(T ) = δz,wpz(T ),
∑

z∈S

pz(T ) = idV , pz(T )(T − z idV )nz = 0.

(4.107)

4.4 The Quantum Group Bq

Let q be a non-zero complex parameter. We define a Hopf algebra with the
presentation

.Bq = C〈a, b | ab = qba, �a = a ⊗ a, �b = a ⊗ b + b ⊗ 1〉 (4.108)

where, as in the case of the Hopf algebra Jh̄, the generator a is grouplike and thus
invertible. The Hopf algebra Bq is a smallest example of a quantum group, the
term introduced by Drinfel’d in [11]. It is a q-deformation of B1 = J0 which is the
algebra of regular functions C[Aff1(C)] on the affine linear algebraic group

.Aff1(C) := Ga(C) � Gm(C) (4.109)

of invertible upper triangular complex 2-by-2 matrices of the form
(

a b
0 1

)
where the

Hopf algebra structure is canonically induced by the group structure of Aff1(C),
see [44].
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In the algebra Bq , the monomials bman with m ∈ ω and n ∈ Z form a closed
under multiplication set with the following product

.bmanbkal = qnkbm+nan+l . (4.110)

Lemma 4.5 The monomials bman with m ∈ ω and n ∈ Z form a linear basis of
Bq .

Proof Consider the following action of the generators a and b in the space of
polynomials C[x, y, y−1]:

.a(f (x, y)) = yf (xq, y), b(f (x, y)) = xf (x, y). (4.111)

It is easily verified that this action gives rise to an algebra homomorphism from Bq

to End(C[x, y, y−1]):

.a(b(f (x, y))) = a(xf (x, y)) = xqyf (xq, y) = qy(b(f (xq, y)))

= q(b(a(f (x, y)))). (4.112)

Assume that there exists a finite set {cm,n}(m,n)∈I ⊂ C with I ⊂ ω × Z such that

.

∑

(m,n)∈I

cm,nb
man = 0. (4.113)

By using the action (4.111), we have

.

∑

(m,n)∈I

cm,nx
mynf (xqn, y) = 0, ∀f (x, y) ∈ C[x, y, y−1]. (4.114)

Choosing f (x, y) = 1, we conclude that cm,n = 0 for all (m, n) ∈ I . ��
In order to calculate the coproduct, we need the following q-binomial formula

.(u + v)m =
m∑

k=0

[
m

k

]

q

vm−kuk (4.115)

where u and v are elements of any algebra which satisfy the relation uv = qvu, and

.

[
m

k

]

q

:= (q)m

(q)m−k(q)k
, (q)k :=

k∏

j=1

(1 − qj ) (4.116)

with the convention (q)0 = 1.

Exercise 4.9 Prove the q-binomial formula (4.115).
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The coproduct of the basis elements of the algebra Bq is calculated as follows:

.�(bman) = �(b)m�(a)n = (a ⊗ b + b ⊗ 1)m(a ⊗ a)n

=
m∑

s=0

[
m

s

]

q

(b ⊗ 1)m−s(a ⊗ b)s(a ⊗ a)n =
m∑

s=0

[
m

s

]

q

bm−sas+n ⊗ bsan

(4.117)

where, in the third equality, we used the q-binomial formula (4.115) with u = a ⊗b

and v = b ⊗ 1.

Exercise 4.10 Show that the antipode of Bq acts on the basis elements as follows

.S(bman) =
(
−q−n− m+1

2

)m

bma−m−n. (4.118)

Let us now turn to the description of the restricted dual of Bq in the case when q

is not a root of unity, that is 1 �∈ qZ�=0 .
We start by remarking that there exist two morphisms of Hopf algebras

.r : Bq → C[Z] � C[t, t−1], a �→ t, b �→ 0, (4.119)

and

.s : C[t, t−1] → Bq, t �→ a, (4.120)

which satisfy the relation rs = idC[t,t−1] corresponding to the commutative diagram

. (4.121)

Thus, we have the induced commutative diagram for the restricted duals

. (4.122)

where we use the isomorphism of Hopf algebras

.C[t, t−1]o � C[C�=0] ⊗ C[x] (4.123)
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with the evaluations

.〈χz ⊗ 1, tn〉 = zn, 〈1 ⊗ x, tn〉 = n, ∀n ∈ Z. (4.124)

In particular, we see that ro is injective and so is surjective.
The Hopf subalgebra ro(C[C�=0] ⊗ C[x]) ⊂ Bo

q is generated by the grouplike
elements θz := ro(χz ⊗ 1), z ∈ C�=0, and the primitive element ψ := ro(1 ⊗ x)

determined by the formulae

.〈θz, b
man〉 = 〈χz ⊗ 1, r(bman〉 = δm,0〈χz ⊗ 1, tn〉 = δm,0z

n, (4.125)

and

.〈ψ, bman〉 = 〈1 ⊗ x, r(bman)〉 = δm,0〈1 ⊗ x, tn〉 = δm,0n (4.126)

where (m, n) ∈ ω × Z. Any f ∈ Bo
q determines a (unique) set of polynomials

.{pf,z(x)}z∈Jf ⊂ C[x] (4.127)

indexed by a finite set Jf ⊂ C�=0 such that

.sof =
∑

z∈Jf

χz ⊗ pf,z(x) ⇒ (sr)of =
∑

z∈Jf

θzpf,z(ψ). (4.128)

Next, we consider the following two-dimensional representation:

.λ : Bq → End(C2), a �→
(

q 0
0 1

)
, b �→

(
0 1 − q

0 0

)
. (4.129)

Exercise 4.11 Show that

.λ(bman) =
(

δm,0q
n δm,1(1 − q)

0 δm,0

)
, ∀m ∈ ω, n ∈ Z, (4.130)

The upper off-diagonal matrix coefficient of this representation φ := λ1,2 gives us
a new element of Bo

q :

.〈φ, bman〉 = δm,1(1 − q), ∀m ∈ ω, n ∈ Z, (4.131)

with the coproduct

.�φ = �λ1,2 = λ1,1 ⊗ λ1,2 + λ1,2 ⊗ λ2,2 = θq ⊗ φ + φ ⊗ 1 (4.132)

where we use the equalities λ1,1 = θq and λ2,2 = θ1 = 1.
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Exercise 4.12 Show that

.〈φk, bman〉 = δk,m(q)m, ∀k,m ∈ ω, n ∈ Z, (4.133)

see (4.116) for the definition of the symbol (q)m.

Proposition 4.3 The following relation is satisfied in Bo
q

.ψφ − φψ = φ. (4.134)

Proof Let us calculate

.〈ψφ, bman〉 = 〈ψ ⊗ φ, (a ⊗ b + b ⊗ 1)m(an ⊗ an)〉 = 〈ψ ⊗ φ, am+n ⊗ bman〉
= 〈ψ, am+n〉〈φ, bman〉 = (m + n)δm,1(q)1 = δm,1(n + 1)(q)1, (4.135)

and

.〈φψ, bman〉 = 〈φ ⊗ ψ, (a ⊗ b + b ⊗ 1)m(an ⊗ an)〉 = 〈φ ⊗ ψ, bman ⊗ an〉
= 〈φ, bman〉〈ψ, an〉 = nδm,1(q)1. (4.136)

Thus,

.〈ψφ − φψ, bman〉 = δm,1(q)1 = 〈φ, bman〉. (4.137)

Exercise 4.13 Show that

.θzφ = zφθz, ∀z ∈ C�=0. (4.138)

Lemma 4.6 Let λ : Bq → End(V ) be a finite dimensional representation of Bq .
Then the element λb is nilpotent.

Proof It suffices to prove that λb does not have non-zero eigenvalues. Indeed,
assume the contrary, i.e. that there exists α ∈ C�=0 and v ∈ V �=0 such that

.(λb)v = αv. (4.139)

Then, for any n ∈ Z, the vector (λa)−nv is a non-trivial eigenvector corresponding
to the eigenvalue qnα. Taking into account the fact that q is not a root of unity, the
eigenvalues {qnα}n∈Z are pairwise distinct. Thus, we come to the conclusion that
the spectrum of λb is an infinite set which is impossible for a finite dimensional
matrix. ��
Corollary 4.2 For any f ∈ Bo

q , there exists n ∈ ω such that 〈f, bm〉 = 0 for any
m ≥ n.



90 4 The Restricted Dual of Hopf Algebras: Examples of Calculations

The following theorem summarises the Hopf algebra structure of the restricted dual
of Bq .

Theorem 4.4 Let q ∈ C be such that 1 �∈ qZ�=0 . The Hopf algebra Bo
q is generated

by the elements {θz}z∈C�=0 , ψ and φ defined in (4.125), (4.126) and (4.131) with the
coproducts

.�θz = θz ⊗ θz, �ψ = 1 ⊗ ψ + ψ ⊗ 1, �φ = θq ⊗ φ + φ ⊗ 1 (4.140)

and satisfying the relations

.θzθw = θzw, θzψ = ψθz, (4.141)

.θzφ = zφθz, ψφ − φψ = φ. (4.142)

The set W := {φmθzψ
n | m,n ∈ ω, z ∈ C�=0} is a linear basis of Bo

q .

Proof The coproducts and the relations between the generating elements are already
derived, see Theorem 4.2, Eqs. (4.129)–(4.132), Proposition 4.3, and Exercise 4.13.
Let us show that any f ∈ Bo

q is a finite linear combination of elements of the set W .

Let a finite subset u ⊂ (Bo
q )2 be such that�f = ∑

g∈u g0⊗g1. By Corollary 4.2,
there exists v ∈ ω such that 〈g0, bm〉 = 0 for any g ∈ u and any m ≥ v.

Denoting v := {0, 1, . . . , v − 1}, define the element

.f̃ :=
∑

g∈u
k∈v

〈g0, bk〉
(q)k

φk(sr)og1 ∈ Bo
q . (4.143)

The following calculation shows that f̃ = f :

.〈f̃ , bman〉 =
∑

g∈u
k∈v

〈g0, bk〉
(q)k

〈φk(sr)og1, b
man〉

=
∑

g∈u
k∈v

〈g0, bk〉
(q)k

〈φk ⊗ (sr)og1,�(bman)〉 =
∑

g∈u
k∈v

〈g0, bk〉
(q)k

〈φk, bman〉〈(sr)og1, an〉

=
∑

g∈u
k∈ω

〈g0, bk〉
(q)k

δk,m(q)k〈g1, an〉 =
∑

g∈u

〈g0, bm〉〈g1, an〉

= 〈�f, bm ⊗ an〉 = 〈f, bman〉. (4.144)
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In order to prove that the set W is linearly independent, assume that there exists
a subset

.{fi}i∈I ⊂ C[t, t−1]o � C[C�=0] ⊗ C[x] (4.145)

indexed by a finite subset I ⊂ ω such that
∑

i∈I φirofi = 0. Evaluating at the basis
elements bman with m ∈ I , we obtain

.0 =
∑

i∈I

〈φirofi , b
man〉 =

∑

i∈I

〈φi ⊗ rofi ,�(bman)〉

=
∑

i∈I

〈φi ⊗ rofi , b
man ⊗ an〉 = (q)m

∑

i∈I

δi,m〈rofi , a
n〉 = (q)m〈rofm, an〉

(4.146)

which means that

.〈rofm, an〉 = 〈fm, tn〉 = 0, ∀(m, n) ∈ I × Z. (4.147)

We conclude that fm = 0 for any m ∈ I . ��



Chapter 5
The Quantum Double

The quantum double construction originally has been introduced by V. Drinfel’d
in [11]. It allows to associate to any Hopf algebra with invertible antipode another
Hopf algebra whose category of finite-dimensional representations is canonically
braided. In this chapter, following [21], we describe the construction of the quantum
double by using the notion of a cocycle over a bialgebra.

5.1 Bialgebras Twisted by Cocycles

Definition 5.1 A cocycle in a bialgebra B = (B,μ, η,�, ε) is an invertible
element ν of the convolution algebra (B ⊗ B)∗ such that

. (5.1)

and

. (5.2)

where ν ∗ μ := (ην) ∗ μ is the convolution product in the space of linear maps
L(B ⊗ B,B).

Remark 5.1 Equation (5.1) can equivalently be written as the following identity in
the convolution algebra (B⊗3)∗

.ν1,2 ∗ (ν(μ ⊗ idB)) = ν2,3 ∗ (ν(idB ⊗μ)). (5.3)
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Exercise 5.1 Show that the convolution inverse ν̄ of a cocycle ν in a bialgebra B

satisfies the conditions

. (5.4)

. (5.5)

Exercise 5.2 Let H be a Hopf algebra. Define a linear form

. (5.6)

where

. (5.7)

is the evaluation form. Show that this linear form is a cocycle in the bialgebra H ⊗
Ho,op, and the linear form

. (5.8)

is its convolution inverse.

Proposition-Definition 5.1 Let B = (B,μ,�, η, ε) be a bialgebra and ν a
cocycle in B. Then, the multiple Bν := (B,μν,�, η, ε) with the twisted product

.μν := ν ∗ μ ∗ ν̄ (5.9)

is a bialgebra called the bialgebra twisted by cocycle ν. ��
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Proof We have to check all the properties containing the product, i.e. the associa-
tivity, the unitality, the compatibility, and the compatibility of the product and the
counit. The graphical notation

. (5.10)

allows us to proceed purely graphically as follows.

(1) Associativity:

. (5.11)

.

and

. (5.12)
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.

We observe that the associativity for the twisted product is satisfied as a con-
sequence of the cocycle relations (5.1) and (5.4). Notice that the diagrammatic
calculations in (5.11) and (5.12) are mirror images of one another (with respect
to a vertical mirror) accompanied with exchange of ν and ν̄.

(2) Unitality:

. (5.13)

.

(3) Compatibility:

.

(5.14)

.
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(4) Compatibility of the twisted product with the counit:

. (5.15)

��

5.1.1 Dual Pairings

The algebraic properties of the evaluation form given by relations (4.2) and (4.3)
can be formalized into the notion of a dual pairing. One can construct cocycles as
dual pairings possessing an extra property.

Definition 5.2 A dual pairing between two bialgebras A and B is a linear form
.ϕ ∈ (A ⊗ B)∗ such that

. (5.16)

in the convolution algebra .(A ⊗ A ⊗ B)∗ and

. (5.17)

in the convolution algebra .(A ⊗ B ⊗ B)∗,

. (5.18)

and

. (5.19)

where, in the graphical notation, the dotted lines correspond to A and solid lines
to B.
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Proposition 5.1 For any bialgebras A and B, a linear form .ϕ ∈ (A⊗B)∗ is a dual
pairing between A and B if and only if one of the two following linear maps

.l : A → B∗, r : B → A∗, 〈l(a), b〉 = 〈r(b), a〉 = 〈ϕ, a ⊗ b〉, (5.20)

factorizes through a bialgebra homomorphism into the corresponding restricted
dual.

Proof Assuming that .ϕ is a dual pairing, we verify that .l(A) ⊂ Bo and .l : A → Bo

is a homomorphism of bialgebras. To this end, we first derive the equalities

.μ∗
Bl = (l ⊗ l)�A, η∗

Bl = εA (5.21)

which imply that .l(A) ⊂ Bo and that l is a homomorphism of coalgebras. Using
Sweedler’s sigma notation for the coproduct, see Sect. 1.7.2,

.�(a) :=
∑

(a)

a(1) ⊗ a(2), (5.22)

for any .a ∈ A and .α ⊗ β ∈ B⊗2, we have

.〈μ∗
B(l(a)), α ⊗ β〉 = 〈l(a), αβ〉 = 〈ϕ, a ⊗ αβ〉

=
∑

(a)

〈ϕ, a(1)⊗α〉〈ϕ, a(2)⊗β〉=
∑

(a)

〈l(a(1)), α〉〈l(a(2)), β〉=〈(l⊗l)(�A(a)), α⊗β〉,

(5.23)

obtaining the first equality of (5.21), and

.η∗
B(l(a)) = 〈l(a), ηB(1)〉 = 〈ϕ, a ⊗ ηB(1)〉 = εA(a), (5.24)

obtaining the second equality of (5.21).
Next, we show that

.�∗
B(l ⊗ l) = lμA, lηA = ε∗

B (5.25)

which imply that l is a homomorphism of algebras. For any .a⊗b ∈ A⊗2 and .α ∈ B,
we have

.〈(lμA)(a ⊗ b), α〉 = 〈l(ab), α〉 = 〈ϕ, ab ⊗ α〉
=

∑

(α)

〈ϕ, a⊗α(1)〉〈ϕ, b⊗α(2)〉 =
∑

(α)

〈l(a), α(1)〉〈l(b), α(2)〉 = 〈l(a)⊗l(b),�B(α)〉

= 〈�∗
B(l(a) ⊗ l(b)), α〉, (5.26)
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obtaining the first equality of (5.25), and

.〈l(ηA(1)), α〉 = 〈ϕ, ηA(1) ⊗ α〉 = 〈εB, α〉, (5.27)

obtaining the second equality of (5.25).
Assuming now the converse, i.e. that Eqs. (5.21) and (5.25) are satisfied, the

calculations of (5.23), (5.24), (5.26), (5.27) reproduce the definition of a dual
pairing.

The case where l is replaced with r is checked similarly.
��

Proposition 5.2 For any bialgebra B, a convolution invertible dual pairing .ϕ

between .Bop and B (or, equivalently, between B and .Bcop) is a cocycle on B if
and only if

.ϕ12 ∗ ϕ23 = ϕ23 ∗ ϕ12 (5.28)

in the convolution algebra .
(
B⊗3

)∗
.

Proof Relations (5.16) and (5.17) take the form

.ϕ(μB ⊗ idB) = ϕ23 ∗ ϕ13 (5.29)

and

.ϕ(idB ⊗μB) = ϕ12 ∗ ϕ13 (5.30)

so that (5.3) takes the form

.ϕ12 ∗ ϕ23 ∗ ϕ13 = ϕ23 ∗ ϕ12 ∗ ϕ13 ⇔ ϕ12 ∗ ϕ23 = ϕ23 ∗ ϕ12. (5.31)

��

5.2 Cobraided Bialgebras

Definition 5.3 A dual universal r-matrix in a bialgebra B = (B,μ,�, η, ε) is a
convolution invertible element ρ ∈ (B ⊗ B)∗ such that

. (5.32)
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. (5.33)

. (5.34)

A bialgebra provided with a dual universal r-matrix is called cobraided.

Exercise 5.3 Show that a dual universal r-matrix in a bialgebra B satisfies the
following Yang–Baxter relation in the convolution algebra

(
B⊗3

)∗
:

.ρ1,2 ∗ ρ1,3 ∗ ρ2,3 = ρ2,3 ∗ ρ1,3 ∗ ρ1,2. (5.35)

5.2.1 The Quantum Double

In this subsection, a Hopf algebra H will be drawn graphically by solid lines while
its restricted dual .Ho by dotted lines.

Proposition-Definition 5.2 Let H be a Hopf algebra. The quantum double .D(H)

of H is the bialgebra .H ⊗ Ho,op twisted by the cocycle

. (5.36)

It contains bialgebras H and .Ho,op as sub-bialgebras through the following
canonical bialgebra embeddings:

. (5.37)

and

. (5.38)

If the antipode of H is invertible, then .D(H) is a Hopf algebra. ��
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Proof The proof boils down to straightforward verifications which are left as
exercise. In particular, for the cocycle property, see Exercise 5.2. ��
Exercise 5.4 Show that

.

(5.39)

where

.

(5.40)

Theorem 5.1 Let H be a Hopf algebra with invertible antipode. Then the restricted
dual .D(H)o of the quantum double .D(H) is a cobraided Hopf algebra with the
following dual universal r-matrix

. (5.41)

with the convolution inverse

. (5.42)

where we use thick lines for the restricted dual .D(H)o and the graphical notation
for the inverse of the antipode of .Ho

.
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Proof Let us see first that .ρ̄ is a right inverse of .ρ

.

. .

That .ρ̄ is a left inverse of .ρ is verified similarly.
In order to verify equality (5.32), we write it in an equivalent graphical form

. (5.43)

where the equivalence is due to the fact that two linear forms on a vector space are
equal if and only if they evaluate to one and the same value on any vector.

By using the definitions of .ρ and the product of .D(H)o, we rewrite Eq. (5.43) in
the form

. . (5.44)

Next, we can use the definition of the coproduct of .D(H)o in the bottom left
parts of the diagrammatic equality (5.44) to obtain

. (5.45)
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where the units .ηH can be eliminated by using the unitality axiom for H in the left
hand side, and the definition of .ψ in the right hand side

. . (5.46)

The obtained equality is a consequence of the equality (if two vectors are equal then
their images by one and the same linear form are also equal)

. (5.47)

which, in its turn, is equivalent to the equality (two linear forms on a vector space
are equal if and only if they evaluate to one and the same value on any vector)

. . (5.48)

Now, in (5.48) we can use the definition of the product of .Ho to obtain

. . (5.49)
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By using the definitions of .ψ in the left hand side and .ıo in the right hand side
of (5.49), we obtain the equivalent equality

. (5.50)

where we can further use the definitions of the (twice iterated) coproduct of .Ho in
the left hand side and the coproduct of .D(H)o in the right hand side to obtain

. . (5.51)

In (5.51), we can use the definition of .ıo in the left hand side and the unitality axiom
for .Ho in the right hand side to obtain

. . (5.52)

In (5.52), we can use the definitions of the coproduct of .D(H)o in the left hand side
and of .ψ in the right hand side to obtain

. . (5.53)
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In the left hand side of (5.53), the definition of .ψ and the composition of it with the
unit of .Ho lead to a simplification, while in the right hand side, the co-associativity
properties of H and .Ho and the duality allow to remove the antipode by the
invertibility axiom. In this way, we obtain

. . (5.54)

In the left hand side of (5.54), the associativity and the co-associativity of H allow
to remove the last antipode through the invertibility axiom for H . In this way, we
obtain a tautological equality

. . (5.55)

Thus, equality (5.32) is proved.
Next, we verify equality (5.33)

. (5.56)

. .
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Finally, we verify equality (5.34)

. .

��
Remark 5.2 If H is a finite-dimensional Hopf algebra with a linear basis .{ei}i∈I and
.{ei}i∈I is the dual linear basis of .H ∗, then, the dual universal r-matrix is conjugate
to the universal r-matrix

.R :=
∑

i∈I

jei ⊗ ıei ∈ D(H) ⊗ D(H) (5.57)

in the sense that, for any .x, y ∈ (D(H))o = (D(H))∗, we have

.〈x ⊗ y,R〉 =
∑

i∈I

〈x, jei〉〈y, ıei〉 =
∑

i∈I

〈x, jei〉〈ıoy, ei〉

=
〈
x, j

( ∑

i∈I

〈ıoy, ei〉ei
)〉 = 〈

x, j ıoy
〉 = 〈�, x ⊗ y〉. (5.58)

In the infinite-dimensional case, formula (5.57) is formal but it is a convenient
and useful tool for actual calculations.

5.3 The Quantum Double D(Bq)

In this section, we consider the example of the quantum group .Bq described in
Sect. 4.4 of Chap. 4. Recall that the parameter q there is generic, that it is not a root
of unity.

Proposition 5.3 Let .q ∈ C�=0 be such that .1 �∈ qZ �=0 . Then, the quantum double
.D(Bq) admits the following presentation:

.C
〈
a, b, ψ, φ, {θz}z∈C �=0 | ab = qba,

ψθz = θzψ, θzθw = θzw, φψ − ψφ = φ, φθz = zθzφ,

ψa = aψ, ψb − bψ = b, θza = aθz, θzb = zbθz,

φa = qaφ, φb − qbφ = (1 − q)(1 − aθq);
�a = a ⊗ a, �b = a ⊗ b + b ⊗ 1,

�ψ = ψ ⊗ 1 + 1 ⊗ ψ, �θz = θz ⊗ θz, �φ = θq ⊗ φ + φ ⊗ 1
〉

(5.59)
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Proof As the first two lines and the last two lines in the presentation are just
the presentations of the Hopf sub-algebras .Bq and .B

o,op
q put together, we need to

check only the relations in the third and forth lines. These are relations between the
generators of .Bq and .B

o,op
q which are of the form

.(jf )(ıx) =
∑

(f ),(x)

〈f(1), x(1)〉(ıx(2))(jf(2))〈f(3), Sx(3)〉, x ∈ Bq, f ∈ B
o,op
q .

(5.60)

By writing informally just x instead of .ıx and f instead of .jf , let us write out these
relations one after another for .x ∈ {a, b} and .f ∈ {ψ, θz, φ} by using the iterated
coproducts

.�(3)a = a ⊗ a ⊗ a, �(3)b = b ⊗ 1 ⊗ 1 + a ⊗ b ⊗ 1 + a ⊗ a ⊗ b (5.61)

and

.�(3)ψ = ψ ⊗ ε ⊗ ε + ε ⊗ ψ ⊗ ε + ε ⊗ ε ⊗ ψ, �(3)θz = θz ⊗ θz ⊗ θz,

�(3)φ = φ ⊗ ε ⊗ ε + θq ⊗ φ ⊗ ε + θq ⊗ θq ⊗ φ. (5.62)

The Case .(f = ψ, x = a) The first coproducts in (5.61) and (5.62) imply that
relation (5.60) takes the form

.ψa=〈ψ, a〉a〈ε, a−1〉 + 〈ε, a〉aψ〈ε, a−1〉 + 〈ε, a〉a〈ψ, a−1〉=a + aψ − a = aψ.

(5.63)

The Case .(f = ψ, x = b) The second coproduct in (5.61) and the first one
in (5.62) imply that

.ψb = 〈ψ, b〉1〈ε, 1〉 + 〈ψ, a〉b〈ε, 1〉 + 〈ψ, a〉a〈ε,−a−1b〉
+ 〈ε, b〉ψ〈ε, 1〉 + 〈ε, a〉bψ〈ε, 1〉 + 〈ε, a〉aψ〈ε,−a−1b〉

〈ε, b〉1〈ψ, 1〉 + 〈ε, a〉b〈ψ, 1〉 + 〈ε, a〉a〈ψ,−a−1b〉
= (0 + b + 0) + (0 + bψ + 0) + (0 + 0 + 0) = b + bψ. (5.64)

The Case .(f = θz, x = a) The first coproduct in (5.61) and the second one
in (5.62) imply that

.θza = 〈θz, a〉aθz〈θz, a
−1〉 = zaθzz

−1 = aθz. (5.65)
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The Case .(f = θz, x = b) The second coproducts in (5.61) and (5.62) imply that

.θzb = 〈θz, b〉θz〈θz, 1〉 + 〈θz, a〉bθz〈θz, 1〉 + 〈θz, a〉aθz〈θz,−a−1b〉
= 0 + zbθz + 0 = zbθz. (5.66)

The Case .(f = φ, x = a) The first coproduct in (5.61) and the third one in (5.62)
imply that

.φa = 〈φ, a〉a〈ε, a−1〉 + 〈θq, a〉aφ〈ε, a−1〉 + 〈θq, a〉aθq〈φ, a−1〉
= 0 + qaφ + 0 = qaφ. (5.67)

The Case .(f = φ, x = b) The second coproduct in (5.61) and the third one
in (5.62) imply that

.φb = 〈φ, b〉1〈ε, 1〉 + 〈φ, a〉b〈ε, 1〉 + 〈φ, a〉a〈ε,−a−1b〉
+ 〈θq, b〉φ〈ε, 1〉 + 〈θq, a〉bφ〈ε, 1〉 + 〈θq, a〉aφ〈ε,−a−1b〉

+ 〈θq, b〉θq〈φ, 1〉 + 〈θq, a〉bθq〈φ, 1〉 + 〈θq, a〉aθq〈φ,−a−1b〉
= ((1 − q)1 + 0 + 0) + (0 + qbφ + 0) + (0 + 0 + qaθq〈θq,−a−1〉〈φ, b〉)

= (1 − q)1 + qbφ − aθq(1 − q) = (1 − q)(1 − aθq) + qbφ. (5.68)

��

5.3.1 Irreducible Representations of D(Bq)

Proposition 5.4 The elements c, d ∈ D(Bq) defined by the relations

.cθq = a (5.69)

and

.φb − 1 − qaθq = θqd = qbφ − q − aθq (5.70)

are central.

Proof That the element c is central is an easy check. To see that d is central, we
define two elements w,w′ ∈ D(Bq) by the relations

.φb = u + vaθq + w, qbφ = u′ + v′aθq + w′, (5.71)
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where u, u′, v, v′ ∈ C are fixed as follows. First, we impose two conditions

.u − u′ = 1 − q = v′ − v (5.72)

which, due to the defining relation between b and φ, imply that w′ = w. By
straightforward verifications one sees that w commutes with a, ψ and θz for all
z ∈ C�=0. Next, we have the equalities

.u′b + v′aθqb + wb = qbφb = qbu + qbvaθq + qbw (5.73)

which, under two more relations of the form

.u′ = qu, qv′ = v, (5.74)

imply that wb = qbw. The system of Eqs. (5.72) and (5.74) on unknowns u, u′, v, v′
admits a unique solution

.u = 1 = v′, u′ = q = v. (5.75)

Now, it is an easy check that φw = qwφ. Indeed, we have

.φw = φ(qbφ − q − aθq) = qφbφ − qφ − φaθq

= qφbφ − qφ − q2aθqφ = q(φb − 1 − qaθq)φ = qwφ. (5.76)

Finally, the equality w = θqd, together with the obtained commutation relations for
w, implies that d is central. ��
Proposition 5.5 Let q ∈ C�=0 be such that 1 �∈ qZ �=0 . The center of the algebra
D(Bq) coincides with the polynomial subalgebra C[c, c−1, d] where c and d are
defined in (5.69) and (5.70)

Proof By Proposition 5.4, for any n ∈ ω, one can easily verify by recurrence the
equality

.φnbn =
∏

k∈n

(1 + qkθqd + q2k+1θ2
q c). (5.77)

This means that any element x ∈ D(Bq) can uniquely be written in the form

.x =
∑

(u,m)∈C �=0×Z

θuempu,m(c, d, ψ), (5.78)
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where

.em :=
⎧
⎨

⎩

bm if m > 0;
1 if m = 0;

φ−m if m < 0
(5.79)

and pu,m(a, c, ψ) ∈ C[c, c−1, d, ψ] is non-zero for only finitely many pairs (u,m).
Remark that, for any m ∈ Z, the element em satisfies the relations

.ψem = em(ψ + m), θzem = zmemθz ∀z ∈ C�=0. (5.80)

Assume that x is central. Then, for any z ∈ C�=0, we have the equality

.x = θzxθ−1
z =

∑

(u,m)∈C �=0×Z

θuemzmpu,m(c, d, ψ) (5.81)

which implies that for any fixed pair (u,m) ∈ C�=0 × Z, one has the family of
equalities

.pu,m = zmpu,m ∀z ∈ C�=0. (5.82)

This means that pu,m can only be non-zero if m = 0. Thus, the element x takes the
form

.x =
∑

u∈C �=0

θupu,0(c, d, ψ). (5.83)

The equality

.bx = xb = b
∑

u∈C �=0

θuupu,0(a, c, ψ + 1) (5.84)

is equivalent to the equalities

.upu,0(c, d, ψ + 1) = pu,0(c, d, ψ) ∀u ∈ C�=0 (5.85)

which imply that the polynomial pu,0(a, c, ψ) can be non-zero only if u = 1 and if
it does not depend on ψ . We conclude that x = p1,0(c, d) ∈ C[c, c−1, d]. ��
Theorem 5.2 Let q ∈ C be such that 1 �∈ qZ �=0 . Then, any finite dimensional
irreducible representation λ : D(Bq) → End(V ) is characterized by the dimension
N := dim(V ) ∈ Z>0, a complex number γ ∈ C, and a multiplicative group
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homomorphism ξ : C�=0 → C�=0 such that there exists a linear basis {vn}n∈N of
V satisfying the relations

.(λa)vn = qN−1−nξ−1
q vn, (λψ)vn = (γ − n)vn, (λθz)vn = z−nξzvn,

(λb)vn = (1 − q−n)vn−1, (λφ)vn = (1 − qN−n−1)vn+1. (5.86)

Proof To simplify notation, we will write x̂ instead of λx for any x ∈ D(Bq), and
[x, y] instead of xy − yx.

As in an irreducible representation all central elements are realised by scalars,
there exist α ∈ C�=0 and β ∈ C such that the central elements c and d defined
in (5.69) and (5.70) are represented by scalar multiples of the identity operator:

.ĉ = α idV , d̂ = β idV . (5.87)

Let u′ ∈ V \ {0} be an eigenvector of ψ̂ corresponding to an eigenvalue γ ′ ∈ C.
Then, the vector b̂u′ either vanishes or it is an eigenvector of ψ̂ corresponding to
the eigenvalue γ ′ + 1. Indeed,

.ψ̂b̂u′ = ([ψ̂, b̂] + b̂ψ̂)u′ = b̂(1 + ψ̂)u′ = (γ ′ + 1)bu′. (5.88)

Iterating the action of b̂ and taking into account the fact that dim(V ) < ∞, we
conclude that there exists a positive integer K such that u′′ := b̂K−1u′ �= 0 and

.b̂u′′ = 0, ψ̂u′′ = γ u′′, γ := γ ′ + K − 1. (5.89)

Additionally, as the elements {θz}z∈C �=0 and ψ generate a commutative sub-algebra
A of D(Bq), and any irreducible finite dimensional representation of a commutative
algebra is one dimensional, there exists a non zero vector u ∈ λ(A)u′′ that generates
an irreducible sub-representation of A. This means that the following relations are
satisfied:

.b̂u = 0, ψ̂u = γ u, θ̂zu = ξzu, ∀z ∈ C�=0, (5.90)

where

.ξ : C�=0 → C�=0 (5.91)

is a (multiplicative) group homomorphism.
By a similar reasoning, as in the case of the vector u′ above, for any n ∈ ω,

the vector φ̂nu either vanishes or it is an eigenvector of ψ̂ corresponding to the
eigenvalue γ − n, and, as dim(V ) < ∞, there exists a positive integer M such that

.φ̂M−1u �= 0, φ̂Mu = 0. (5.92)

We denote by W the linear span of the vectors {φ̂nu}n∈M . Let us show that W = V .
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First, we note that, apart from the relations

.ψ̂φ̂nu = (γ − n)φ̂nu, n ∈ M, (5.93)

we also have

.θ̌zφ̂
nu = z−nφ̂nu, n ∈ M, (5.94)

where we have denoted

.θ̌z := θ̂z/ξz, ∀z ∈ C�=0. (5.95)

Next, by using (5.87) in (5.70), we obtain

.φ̂b̂ = idV +βθ̂q + qαθ̂2
q (5.96)

and

.b̂φ̂ = idV +q−1βθ̂q + q−1αθ̂2
q (5.97)

Applying (5.96) to u and (5.97) to φ̂M−1u, and taking into account rela-
tions (5.90), (5.92) and (5.94), we obtain

.(1 + βξq + qαξ2
q )u = 0 ⇒ 1 + βξq + αqξ2

q = 0 (5.98)

and

.(1 + βq−Mξq + αq1−2Mξ2
q )φ̂M−1u = 0 ⇒ 1 + βq−Mξq + αq1−2Mξ2

q = 0.

(5.99)

Excluding β from (5.98) and (5.99), we obtain

.(1 − αq1−Mξ2
q )(1 − qM) = 0 ⇔ α = qM−1ξ−2

q (5.100)

and also from (5.98) it follows that

.β = −ξ−1
q (1 + qM). (5.101)

By using substitutions (5.100), (5.101) and notation (5.95), we rewrite (5.96)
and (5.97) as follows:

.φ̂b̂ = idV −(1 + qM)θ̌q + qMθ̌2
q = (idV −θ̌q )(idV −qMθ̌q) (5.102)
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and

.b̂φ̂ = idV −(1 + qM)q−1θ̌q + qM−2θ̌2
q = (idV −q−1θ̌q )(idV −qM−1θ̌q ).

(5.103)

For n ∈ M \ {0}, applying relation (5.103) to the vector φ̂n−1u and taking into
account (5.94), we obtain

.b̂φ̂nu = (1 − q−n)(1 − qM−n)φ̂n−1u. (5.104)

Thus, we conclude that the subspace W of V generated by vectors {φ̂nu}n∈M is
an invariant subspace of the representation λ, and by the irreducibility of λ, we
conclude that W = V so that

.N := dim(V ) = dim(W) = M, (5.105)

and the vectors {φ̂nu}n∈M form a linear basis of V .
Let us define renormalized vectors

.vn := (q)N−n−1φ̂
nu, n ∈ N. (5.106)

Then, by using the relation

.(1 − qk)(q)k−1 = (q)k, ∀k ∈ Z>0, (5.107)

we have

.b̂vn = (q)N−n−1(1 − q−n)(1 − qN−n)φ̂n−1u = (1 − q−n)vn−1 (5.108)

and

.φ̂vn = (q)N−n−1φ̂
n+1v = (1 − qN−n−1)vn+1. (5.109)

��
Remark 5.3 The vanishing properties of the coefficients of relations (5.108) with
n = 0 and (5.109) with n = N − 1 naturally take care of the annihilation relations

.b̂v0 = φ̂vN−1 = 0. (5.110)

Exercise 5.5 For any n ∈ N , show that

.b̂kvn = (q−n; q)kvn−k, ∀k ∈ n + 1, (5.111)
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and

.φ̂kvn = (qN−n−k; q)kvn+k, ∀k ∈ N − n. (5.112)

with the notation

.(x; q)n :=
{∏n−1

k=0(1 − xqk) if k > 0;
1 if k = 0.

(5.113)

5.3.2 Quantum Group Uq(sl2)

Recall that the element .c := aθ−1
q ∈ D(Bq) is central and grouplike. This means

that the vector subspace

.Iq := (c − 1)D(Bq) ⊂ D(Bq)

is a bi-ideal stable under the action of the antipode, see Definitions 2.6, 2.2 and 2.4.
By the results of Chap. 2, Sect. 2.4.2, we conclude that the quotient vector space

.Hq := D(Bq)/Iq

admits a unique structure of a Hopf algebra such that the canonical projection
map .π : D(Bq) → Hq is a morphism of Hopf algebras. The Hopf algebra .Hq is
closely related with the quantum group .Uq(sl2) which is defined by the following
presentation:

.generators: k, e, f ;

relations: ke = q2ek, kf = q−2f k, ef − f e = k − k−1

q − q−1

coproducts: �k = k ⊗ k, �e = k ⊗ e + e ⊗ 1, �f = 1 ⊗ f + f ⊗ k−1

where we assume that .q2 �= 1 and k is invertible (as a group-like element in any
Hopf algebra).

Exercise 5.6 Determine .α, β ∈ C�=0 such that the map

.k �→ a + Iq2 , e �→ αb + Iq2 , f �→ βa−1φ + Iq2

extends to an injective morphism of Hopf algebras .h : Uq(sl2) → Hq2 .
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The algebra .Uq(sl2) was discovered in [24], and the general theory of quantum
groups has been subsequently developed in the works [11, 13, 17]. An introduction
for this subject can be found in the book [16].

5.4 The Hopf Algebra D(B1)

Let .B1 be the commutative Hopf algebra over .C corresponding to the quantum
group .Bq with .q = 1 defined and analyzed in Sect. 4.4 of Chap. 4 in the case of
generic q, that is when q is not a root of unity. Here, we consider the case of the
simplest root of unity .q = 1. This Hopf algebra coincides with .J0, the specification
of .Jh̄ to .h̄ = 0, see Sect. 4.3 of Chap. 4. In Sect. 6.5 of Chap. 6, this algebra will
be used for interpretation of the Alexander polynomial of knots as an example of
a universal invariant. For this reason, below we briefly describe the restricted dual
and the quantum double of .B1, leaving the detailed analysis to exercises.

5.4.1 The Restricted Dual Hopf Algebra B
o,op
1

The opposite .B
o,op
1 of the restricted dual Hopf algebra .Bo

1 is composed of two Hopf
subalgebras: the group algebra .C[Aff1(C)] generated by group-like elements

.χu,v, (u, v) ∈ C × C�=0, χu,vχu′,v′ = χu+vu′,vv′ , (5.114)

and the universal enveloping algebra .U(Lie Aff1(C)) generated by two primitive
elements .ψ and .φ satisfying the relation

.φψ − ψφ = φ. (5.115)

The relations between the generators of .C[Aff1(C)] and .U(Lie Aff1(C)) are of the
form

.[χu,v, ψ] = uφχu,v, χu,vφ = vφχu,v ∀(u, v) ∈ C × C�=0 (5.116)

where .[x, y] := xy − yx. As linear forms on .B1, they are defined by the relations

.〈χu,v, b
man〉 = umv−m−n,

〈φ, bman〉 = δm,1, 〈ψ, bman〉 = δm,0n, ∀(m, n) ∈ Z≥0 × Z. (5.117)

Exercise 5.7 By using the methods of Chap. 4, provide the details of the above
description of the structure of the Hopf algebra .B

o,op
1 .
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5.4.2 The Quantum Double D(B1)

The commutation relations (5.60) in the case of the quantum double .D(B1) take the
form

.[ψ, b] = b, [φ, b] = 1 − a,

bχu,v = χu,v(bv + (a − 1)u) ∀(u, v) ∈ C × C�=0 (5.118)

and a is central.

Exercise 5.8 Prove the defining relations of .D(B1) given by Eq. (5.118).

Exercise 5.9 Show that in any finite-dimensional representation of the algebra
.D(B1), the elements .1 − a, .b and .φ are nilpotent.

The formal universal r-matrix of .D(B1), see Remark 5.2, is given by the formula

.R := (1 ⊗ a)ψ⊗1eφ⊗b =
∑

m,n≥0

1

n!
(

ψ

m

)
φn ⊗ (a − 1)mbn (5.119)

and it is well defined in the context of finite-dimensional representations for the
following reason.

Any finite dimensional right comodule V over .(D(B1))
o is a left module over

.D(B1) defined by

.xv =
∑

(v)

v(0)〈v(1), x〉, ∀(x, v) ∈ D(B1) × V (5.120)

where we extend Sweedler’s sigma notation to comodules. Thus, it suffices to make
sense of formula (5.119) in the case of an arbirary finite-dimensional representation
of .D(B1) where the elements .1 − a, .b and .φ are necessarily nilpotent, so that the
formal infinite double sum truncates to a well defined finite sum.

5.4.3 The Center of D(B1)

Proposition 5.6 The center of the algebra D(B1) is the polynomial subalgebra
C[a±1, c] where

.c := φb + (a − 1)ψ. (5.121)
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Proof It is easily verified that c is central. Any element x ∈ D(B1) can uniquely be
written in the form

.x =
∑

(u,v,m)∈C×C �=0×Z

χu,vempu,v,m(a, c, ψ), (5.122)

where

.em :=
⎧
⎨

⎩

bm if m > 0;
1 if m = 0;

φ−m if m < 0
(5.123)

and the polynomial pu,v,m(a, c, ψ) ∈ C[a±1, c, ψ] is non-zero for only finitely
many triples (u, v,m).

Assume that x ∈ D(B1) is a central element. Then, for any s ∈ C�=0, we have the
equality

.x = χ−1
0,s xχ0,s =

∑

(u,v,m)∈C×C �=0×Z

χu/s,vemsmpu,v,m(a, c, ψ)

=
∑

(u,v,m)∈C×C �=0×Z

χu,vemsmpus,v,m(a, c, ψ) (5.124)

which implies that for any fixed triple (u, v,m) ∈ C × C�=0 × Z, one has the family
of equalities

.pu,v,m = smpus,v,m ∀s ∈ C�=0. (5.125)

This means that pu,v,m can only be non-zero if u = m = 0. Thus, the element x

takes the form

.x =
∑

v∈C �=0

χ0,vp0,v,0(a, c, ψ). (5.126)

The equality

.bx = xb = b
∑

v∈C �=0

χ0,vv
−1p0,v,0(a, c, ψ + 1). (5.127)

is equivalent to the equalities

.p0,v,0(a, c, ψ + 1) = v−1p0,v,0(a, c, ψ) ∀v ∈ C�=0 (5.128)



118 5 The Quantum Double

which imply that the polynomial p0,v,0(a, c, ψ) can be non-zero only if v = 1 and
if it does not depend on ψ . We conclude that x ∈ C[a±1, c]. ��

5.5 Solutions of the Yang–Baxter Equation

Definition 5.4 An r-matrix over a coalgebra C is an invertible element ρ of
the convolution algebra (C⊗2)∗ such that the following Yang–Baxter equation is
satisfied in the convolution algebra (C⊗3)∗:

.ρ1,2 ∗ ρ1,3 ∗ ρ2,3 = ρ2,3 ∗ ρ1,3 ∗ ρ1,2. (5.129)

Example 5.1 The dual universal r-matrix of a cobraided bialgebra B is an r-matrix
over the underlying coalgebra of B. ��
Definition 5.5 An r-matrix over a vector space V is an element r ∈ Aut(V ⊗2) such
that the following Yang–Baxter equation is satisfied in the algebra End(V ⊗3):

.r1,2r2,3r1,2 = r2,3r1,2r2,3, r1,2 := r ⊗ idV , r2,3 := idV ⊗r. (5.130)

By using the graphical notation , the Yang–Baxter equation (5.130) takes
the following graphical form

. (5.131)

In the particular case, where V is a finite dimensional vector space over a field F,
let B ⊂ V be a linear basis. Defining the matrix coefficients

.
{
r
c,d
a,b | a, b, c, d ∈ B

} ⊂ F, r(a ⊗ b) =
∑

c,d∈B

r
c,d
a,b c ⊗ d, a, b ∈ B, (5.132)

we reduce the Yang–Baxter equation (5.131) to a over determined system of non-
linear polynomial equations

.

∑

s,t,u∈B

r
i,j
u,sr

s,k
t,n r

u,t
l,m =

∑

s,t,u∈B

r
j,k
s,u r

i,s
l,t r

t,u
m,n, i, j, k, l,m, n ∈ B, (5.133)
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which can also be represented in a graphical form by assigning elements of the basis
B to edges in (5.131) and summing over the elements assigned to the internal edges

. (5.134)

with the identifications

. (5.135)

Proposition 5.7 Let V = (V , δ : V → V ⊗ C) be a right comodule over a
coalgebra C, and ρ ∈ (C⊗2)∗ an r-matrix over the coalgebra C. Then, the element

.

(5.136)

is an r-matrix over the vector space V . Here, in the graphical description, the thick
lines correspond to V and thin lines to C.

Proof The inverse r−1 of r is given by the formula (exercise)

. (5.137)

where ρ̄ is the convolution inverse of ρ.
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By using three times the equality (δ ⊗ idC)δ = (idV ⊗�), we transform the left
hand side of (5.130) as follows:

.

(5.138)

and, doing a similar calculation for the right hand side of (5.130), we obtain

. (5.139)

thus concluding that Eq. (5.130) is satisfied due to the convolutional Yang–Baxter
equality (5.129) for the r-matrix ρ over the coalgebra C. ��
The following proposition allows one to view any finite dimensional module over an
algebra as a comodule over the restricted dual of that algebra. In this way, one can
associate to any finite dimensional representation of a quantum double an r-matrix
over the vector space underlying that representation.

Proposition 5.8 Let V be a finite dimensional left module over an algebra A, and
B ⊂ V a linear basis. Then, V is a right comodule over the coalgebra Ao with the
coaction

.δb =
∑

b′∈B

b′ ⊗ λb′,b (5.140)

where {λb′,b | b, b′ ∈ B} ⊂ Ao are matrix coefficients of the representation
morphism λ : A → End(V ) with respect to the basis B,

.(λx)b =
∑

b′∈B

b′〈λb′,b, x〉, x ∈ A, b ∈ B. (5.141)
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Proof

(1) We start by checking the equality (δ ⊗ idAo)δ = (idV ⊗�). Indeed, for any
b ∈ B, we have

.(δ ⊗ idAo)δb =
∑

b′∈B

(δb′) ⊗ λb′,b =
∑

b′∈B

( ∑

b′′∈B

b′′ ⊗ λb′′,b′
)

⊗ λb′,b

=
∑

b′′∈B

b′′ ⊗
( ∑

b′∈B

λb′′,b′ ⊗ λb′,b
)

=
∑

b′′∈B

b′′ ⊗ (�λb′′,b)

= (idV ⊗�)
∑

b′′∈B

b′′ ⊗ λb′′,b = (idV ⊗�)δb. (5.142)

(2) It remains to check the property (idV ⊗ε)δ = idV . For any b ∈ B, we calculate

.(idV ⊗ε)δb =
∑

b′∈B

b′〈ε, λb′,b〉 =
∑

b′∈B

b′δb′,b = b. (5.143)

��
Summarizing the contents of Proposition 5.7 and Proposition 5.8, we have the

following procedure of constructing a solution of the non-linear system (5.133) of
polynomial Yang–Baxter equations.

Let A be an algebra, ρ an r-matrix over the coalgebra Ao (see Definition 5.4),
λ : A → End(V ) a finite-dimensional representation, and B ⊂ V a linear basis.
Then, the element r ∈ End(V ⊗2) defined by (5.136), which we can also write as

.r = (idV ⊗V ⊗ρ)(idV ⊗δ ⊗ idAo)(σV,V ⊗ idAo)(idV ⊗δ), (5.144)

is an r-matrix over the vector space V , where δ : V → V ⊗Ao is defined by (5.140)
by using the matrix coefficients {λa,b | a, b ∈ B} of the representation λ with
respect to the basis B (see Eq. (5.141)).

Let us calculate the matrix coefficients r
c,d
a,b of r (defined in (5.132)) in terms of

the evaluation coefficients of ρ.
For any a, b ∈ B, we have

.r(a ⊗ b) = (idV ⊗V ⊗ρ)(idV ⊗δ ⊗ idAo)(σV,V ⊗ idAo)(idV ⊗δ)(a ⊗ b)

= (idV ⊗V ⊗ρ)(idV ⊗δ ⊗ idAo)(σV,V ⊗ idAo)(a ⊗
∑

c∈B

c ⊗ λc,b)

=
∑

c∈B

(idV ⊗V ⊗ρ)(idV ⊗δ ⊗ idAo)(c ⊗ a ⊗ λc,b)

=
∑

c∈B

(idV ⊗V ⊗ρ)(c ⊗
∑

d∈B

d ⊗ λd,a ⊗ λc,b) =
∑

c,d∈B

c ⊗ d〈ρ, λd,a ⊗ λc,b〉

(5.145)
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so that

.r
c,d
a,b = 〈ρ, λd,a ⊗ λc,b〉 ∀a, b, c, d ∈ B. (5.146)

Theorem 5.3 Let λ : D(Bq) → End(V ) be an irreducible N -dimensional repre-
sentation and {vn}n∈N ⊂ V its distinguished linear basis (see Theorem 5.2). Let
{λm,n}m,n∈N ⊂ D(Bq)o be the matrix coefficients with respect to the basis {vn}n∈N

defined by

.(λx)vn =
∑

m∈N

vm〈λm,n, x〉, ∀x ∈ D(Bq). (5.147)

Then, the matrix coefficients of the corresponding r-matrix over V are given by

.r
m,k
l,n = 〈λk,l, j ıoλm,n〉

= (q−1)n(q)N−1−l

(q−1)m(q)N−1−k(q)n−m

q(n+1−N)kξN−1−n+k
q ξ−1

ξq
δk+m,l+n (5.148)

if m ≤ n and zero otherwise, see (4.116) for the notation.

Remark 5.4 In what follows, for any generating element x ∈ Bq (respectively x ∈
Bo

q ), we will distinguish it from its image ıx (respectively jx) in D(Bq) by putting
a dot above it. For example, we will write ȧ ∈ Bq and a = ıȧ ∈ D(Bq), ψ̇ ∈ Bo

q

and ψ = jψ̇ ∈ D(Bq), etc. The fact that j reverses the product implies that we
have, for example, φψ = (j φ̇)jψ̇ = j (ψ̇φ̇).

As an intermediate step towards the proof of Theorem 5.3, we first calculate the
elements ıoλm,n ∈ Bo

q .

Lemma 5.1 The images ıoλm,n, 0 ≤ m, n < N , as elements of the algebra Bo
q , are

given by the formula

.ıoλm,n =
{

(q−n;q)n−m

(q)n−m
φ̇n−mθ̇qN−1−n/ξq

if m ≤ n,

0 if m > n
(5.149)

with the notation defined in (5.113) and (4.116).

Proof Recall that for any element f ∈ Bo
q with the coproduct

.�f =
∑

(f )

f(1) ⊗ f(2)
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in Sweedler’s sigma notation, we have the decomposition formula (see Eq. (4.143)
in the proof of Theorem 4.4)

.f =
∑

k≥0

∑

(f )

〈f(1), ḃ
k〉

(q)k
φ̇k(sr)of(2) (5.150)

which, in the case when f = ıoλm,n, takes the form

.ıoλm,n =
∑

k≥0

∑

l∈N

〈ıoλm,l, ḃ
k〉

(q)k
φ̇k(ısr)oλl,n. (5.151)

Iteraring the forth formula in (5.86), we obtain

.〈ıoλm,l, ḃ
k〉 = 〈λm,l, b

k〉 = (q−l; q)kδl,m+k, (5.152)

while iterating the first formula in (5.86) and taking into account the fact that the
composed morphism of Hopf algebras sr : Bq → Bq acts on the basis elements as

.sr(ḃi ȧj ) = δ0,i ȧ
j ∀(i, j) ∈ ω × Z, (5.153)

see also (4.119) and (4.120), we obtain

.〈(ısr)oλl,n, ḃ
i ȧj 〉 = 〈λl,n, ısr(ḃ

i ȧj )〉 = δi,0〈λl,n, a
j 〉 = δi,0δl,n

(
qN−1−n/ξq

)j

= δl,n〈θ̇qN−1−n/ξq
, ḃi ȧi〉 ⇒ (ısr)oλl,n = δl,nθ̇qN−1−n/ξq

. (5.154)

Substituting (5.152) and (5.154) into (5.151), we obtain

.ıoλm,n =
∑

k≥0

∑

l∈N

(q−l; q)kδl,m+k

(q)k
φ̇kδl,nθ̇qN−1−n/ξq

=
∑

k≥0

(q−n; q)kδn,m+k

(q)k
φ̇kθ̇qN−1−n/ξq

=
{

(q−n;q)n−m

(q)n−m
φ̇n−mθ̇qN−1−n/ξq

if m ≤ n,

0 if m > n.

(5.155)

��
Proof of Theorem 5.3 From Lemma 5.1, we obtain

.jıoλm,n = (q−n; q)n−m

(q; q)n−m

θqN−1−n/ξq
φn−m (5.156)

if m ≤ n and zero otherwise. We conclude that r
m,k
l,n = 0 unless m ≤ n.
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In order to handle the case m ≤ n, we will use the formula

.〈λk,l, φ
m〉 = (qN−k; q)mδk,l+m ∀k, l,m ∈ ω (5.157)

which can be obtained by iterating the last formula of (5.86).
Assuming that m ≤ n, we calculate

.r
m,k
l,n = 〈λk,l, j ıoλm,n〉 = (q−n; q)n−m

(q; q)n−m

〈
λk,l, θqN−1−n/ξq

φn−m
〉

= (q−n; q)n−m

(q; q)n−m

(
qN−1−n/ξq

)−k

ξqN−1−n/ξq

〈
λk,l, φ

n−m
〉

= (q−n; q)n−m(qN−k; q)n−m

(q)n−m

(
qN−1−n/ξq

)−k

ξqN−1−n/ξq
δk+m,l+n

= (q−1)n(q)N−1−l

(q−1)m(q)N−1−k(q)n−m

q(n+1−N)kξN−1−n+k
q ξ−1

ξq
δk+m,l+n (5.158)

where, in the third equality, we used an iteration of the third formula in (5.86), in the
forth equality, we used (5.157) and, in the last equality, we used the multiplicative
property ξuξv = ξuv for any u, v ∈ C�=0, and the identities

.(q−n; q)n−m = (q−1)n

(q−1)m
, 0 ≤ m ≤ n, (5.159)

and

.(qN−k; q)n−m

∣∣∣
k+m=l+n

= (qN−k; q)k−l = (q)N−1−l

(q)N−1−k

, 0 ≤ l ≤ k ≤ N − 1.

(5.160)
��



Chapter 6
Applications in Knot Theory

In this chapter, we present certain aspects of quantum invariants of knots and links.
Mathematically, a knot can be defined as a smooth submanifold of the space .R3 (or
its compactification .S3 := {x ∈ R4 | ‖x‖ = 1} � R3 ∪ {∞}) diffeomorphic to the
circle .S1 := {x ∈ R2 | ‖x‖ = 1}. A link is a direct generalisation of a knot when
one considers a smooth submanifold of .R3 diffeomorphic to a disjoint union of a
finite number of circles. Here are few reasons for general interest in mathematical
study of knots and links.

• They allow to visualise intrinsic properties of the space .R3. Therefore, they are
an important part of the theory of three dimensional manifolds.

• They are well suited for learning and testing various methods of algebraic and
geometric topology.

• There are applications of knots and links in natural sciences, especially in
physics, chemistry and molecular biology.

The set .L of all links can be endowed with a natural topology and, among the
questions concerning this topological space, the most basic one is the question of
the topological classification of links: what are the arc-connected components of
the topological space .L? In the context of this question, we say that two links
are (topologically) equivalent if they belong to one and the same arc-connected
component of the space .L. The standard approach to the link classification problem
is to construct locally constant functions .f : L → S called invariants where S is a
set often endowed with an algebraic structure (e.g. groups, rings, etc.).

We will restrict ourselves exclusively to the context of long knots which can be
thought of as specific smooth submanifolds of the space .R3 diffeomorphic to the
real line .R. More generally, one can consider also the string links as a disjoint union
of finitely many long knots, but it is known that the topological classes of string
links are in bijection with the classes of ordinary (closed) links only if the number
of components is one, i.e. if a string link is a long knot.
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We will describe in detail the construction of invariants of long knots by using
rigid r-matrices in monoidal categories. The importance of long knots (as opposed
to usual closed knots) will be illustrated by considering a general class of group-
theoretical r-matrices put into the context of monoidal categories of relations and
spans over sets. These r-matrices are indexed by pointed groups that is groups with
a distinguished element (different from the identity element).

As we have seen in the previous Chap. 5, Drinfeld’s quantum double construction
gives rise to a large class of r-matrices which appear to be rigid, and the associated
invariants get factorised through universal invariants associated with the underlying
Hopf algebras. Such universal invariants were introduced and studied in a number
of works [7, 15, 25–27, 32, 36, 43] mostly either in the context of finite dimensional
Hopf algebras or for certain classes of topologically completed infinite dimensional
Hopf algebras, for example by considering formal power series. Here, we will
define the universal invariants purely algebraically and with minimal assumptions
on the underlying Hopf algebras. In particular, we will emphasize the case of
infinite dimensional Hopf algebras which can be treated rigorously and purely
algebraically due to the approach based on the use of the restricted dual of an algebra
in conjunction with the quantum double construction.

Compared to previous chapters, some technical details of proofs in Sect. 6.5,
especially those related to functional analysis and integration, are put into exercises.

6.1 Polygonal Links and Diagrams

There exist different equivalent approches for development of the theory of knots
and links. Here we briefly describe the so called Piecewise Linear (PL) or polygonal
approach. More systematic and detailed explanation can be found, for example, in
the book [23].

6.1.1 Polygonal Knots and Links

Let .I := {t ∈ R | 0 ≤ t ≤ 1} be the closed unit interval of the real line .R. For any
two points .u, v of an .R-vector space V , we define the (closed) segment .[u, v] ⊂ V

by

.[u, v] := {(1− t)u+ tv | t ∈ I }. (6.1)

In particular, we have .[0, 1] = I . An open segment .]u, v[ is the interior of the closed
segment .[u, v]:

.]u, v[:= [u, v] \ {u, v}. (6.2)
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Similarly, for any three points .u, v,w ∈ V , the (closed) triangle .[u, v,w] ⊂ V is
defined by

.[u, v,w] := {(1− s − t)u+ sv + tw | (s, t) ∈ I 2, s + t ≤ 1}. (6.3)

Definition 6.1 A subset .K ⊂ R3 is called polygonal knot if it is a piecewise linear
simple loop, that is if there exists a finite subset of points .{pi}i∈n ⊂ R3, called
vertices of K , such that

• .K = ∪i∈n[pi, pi+1] with .pn = p0;
• the open segments .]pi, pi+1[, .i ∈ n, are pairwise disjoint and they are disjoint

from the set of vertices.

Definition 6.2 A polygonal link is a disjoint union of a finite number of polygonal
knots .L = 
i∈nKi where the knots .Ki in this union are called components of L.

Definition 6.3 Let .K = ∪j∈n[pj , pj+1] be a polygonal knot. We say that a
polygonal knot .K ′ is obtained from K by a .�-move if there exist .x ∈ R3 \ K

and .k ∈ n such that

.K ′ = (
K \ [pk, pk+1]

) ∪ [pk, x] ∪ [x, pk+1]

and .[pk, x, pk+1] ∩K = [pk, pk+1],

.

Definition 6.4 Two polygonal links L and .L′ are said to be related by a .�-move if
there are components .K ⊂ L and .K ′ ⊂ L′ such that

• .L′ \K ′ = L \K;
• one of K and .K ′ is obtained from the other by a .�-move, and the associated

triangle does not intersect the other components of L.

Definition 6.5 Two polygonal links .L,L′ are said to be .�-equivalent if there exists
a finite sequence of polygonal links .L = L0, L1, . . . , Ln = L′ such that, for any
.i ∈ n, the polygonal links .Li, Li+1 are related by a .�-move.

6.1.2 Link Diagrams

Definition 6.6 Let p : R3 → R2 be the projection on the plane of the first two
coordinates (x, y, z) 
→ (x, y). We say that a polygonal link L ⊂ R3 is generic if
for any x ∈ R2, we have nx := |p−1(x) ∩ L| ∈ 3 with the condition that, for any
double point x, i.e. nx = 2, the set p−1(x) ∩ L does not contain vertices of L.
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Definition 6.7 Let L be a generic polygonal link. The diagram of L is the image
p(L) ⊂ R2 with the information over-under on each double point x to indicate the
relative position of the two segments of L containing the two points p−1(x) ∩ L.
The double points with information over-under are called crossings of the diagram.

The diagrams corresponding to the components of L are called components of
the diagram associated with L.

Definition 6.8 We say that two diagrams D and D′ are related by a Reidemeister
move of type Ri , i ∈ {−1, 0, 1, 2, 3}, if D′ = (D \ F) ∪ G or D = (D′ \ F) ∪ G

where

.

.

.

.

.

Definition 6.9 Two diagrams D and D′ are said to be R-equivalent if there exists
a finite sequence of diagrams D = D0,D1, . . . , Dn = D′ such that, for any i ∈ n,
the diagrams Di and Di+1 are related by a Reidemeister move.

Exercise 6.1 Show that the following two diagrams are R-equivalent:

.

We admit without proof the following Reidemeister theorem (for a proof see, for
example, [31]).

Theorem 6.1 (Reidemeister Theorem) Two generic polygonal links L and L′ are
�-equivalent if and only if the corresponding diagrams are R-equivalent.
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6.1.3 Oriented Links and Diagrams

Definition 6.10 A polygonal link (respectively a diagram) is said to be oriented if
a direction of travel is chosen for each of its components.

Remark 6.1 The diagram of an oriented generic polygonal link is naturally oriented.
The notions of �-move, Reidemeister move, �-equivalence, R-equivalence, as
well as the Reidemeister Theorem, naturally generalise to the context of oriented
polygonal links and oriented link diagrams.

Exercise 6.2 Describe all Reidemeister moves of type R3 for oriented diagrams.

Definition 6.11 Let D be an oriented diagram with the set of crossings CD . A
crossing is said to be positive if the ordered pair of vectors (esup, einf) generates the
standard orientation of the projection plane. Here esup (respectively einf) corresponds

to the oriented upper (respectively lower) strand of the crossing: . A crossing is

said to be negative if it is not positive: .

The sign map sgn : CD → {±1} sends positive crossings to +1 and negative
crossings to −1.

We denote by W(D) the writhe of D defined as the number of positive crossings
minus the number of negative crossings:

.W(D) :=
∑

c∈CD

sgn(c) = | sgn−1(1)| − | sgn−1(−1)|. (6.4)

Remark 6.2 The writhe of a diagram is invariant under all Reidemeister moves with
the exception of the oriented versions of the move R1.

6.2 Long Knots

Subsequently, we will construct knot invariants by using the (polygonal) long knots
which correspond to specific piecewise linear embeddings (that is injective maps)
of the real line .R into the space .R3, while the usual polygonal knots correspond
to piecewise linear embeddings of the circle in .R3. We start by preparing a
combinatorial setting for studying long knots.

Let B be the closed unit ball of .R3,

.B := {x ∈ R3 | ‖x‖ ≤ 1}, ‖x‖ :=
(∑

x2
i

)1/2
.
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Definition 6.12 A subset .K ⊂ R3 is said to be long (polygonal) knot if there exists
a finite subset of points .{p0, p1, . . . , pn} ⊂ B1, called vertices of K , such that

• .p0 = (0,−1, 0), .pn = (0, 1, 0);
• .K = (

({0} × R× {0}) \ B
) 
 ∪i∈n[pi, pi+1];

• the open segments .]pi, pi+1[, .i ∈ n, are pairwise disjoint and they are disjoint
from the set of vertices.

Any long knot has a canonical orientation induced from that of the line .{0}×R×{0}:

. (6.5)

All the notions that we have introduced in the previous Sect. 6.1 in the context of
oriented polygonal links naturally extend to the context of long knots: .�-moves,
.�-equivalence, generic long knots and their diagrams, Reidemeister moves, R-
equivalence, and the Reidemeister Theorem.

Any long knot K with vertices .{p0, . . . , pn} corresponds to an oriented polygo-
nal knot .cl(K) called the closure of K with the vertices

.{p0, . . . , pn, pn+1 = (−2, 1, 0), pn+2 = (−2,−1, 0)},

and one can show that this correspondence induces a bijection between the
respective sets of .�-equivalence classes. In particular, any invariant of long knots is
also an invariant of oriented (closed) polygonal knots.

Two long knot diagrams D and .D′ can be composed to give another long knot
diagram

. (6.6)

where the resulting diagram is appropriately (vertically) shifted and rescaled.
In what follows, we assume that the number of vertices of a (long knot) diagram

is very large so that the strands of it will be drawn as smooth curves without
indication of vertices. For example, if a diagram D represents a long knot K , then
the closure .cl(K) is represented by a diagram .cl(D) drawn as follows:

. (6.7)
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We will also assume that a long knot diagram is put into a generic position with
respect to the vertical axis so that all crossing have non-vertical strands as in the
letter X.

Definition 6.13 A (long knot) diagram is called normal if it has no local extrema
(with respect to the vertical direction) oriented from left to right like and

.
To any diagram D, we associate its normalization .Ḋ, the diagram obtained from

D by the replacements

. (6.8)

Example 6.1 The following are examples of normal long knot diagrams for the
trefoil and the figure-eight knots:

. (6.9)

It will be of special interest for us the normal long knot diagrams

. (6.10)

and

. (6.11)

where .n ∈ Z, .sgn(n) := n/|n| if .n �= 0 and 0 otherwise, and we identify the signs .±
with the numbers .±1. We have the writhe (see (6.4) for the definition) .W(ξn) = 2n.

Proposition 6.1 Any normal long knot diagram has an even number of crossings.

Proof Let D be a normal long knot diagram given in the form of a path composition
.γ0γ1 · · · γnγn+1 where .γ0 and .γn+1 are straight infinite half lines, .γ1 the path
connecting the point .(0,−1) with the first local maximum (counted along the knot),
.γ2 the path between the first local maximum and the first local minimum, and so on.
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By changing appropriately the types of crossings (positive to negative and vice
versa) along .γ1, which do not change the parity of the total number of crossings, we
can assume that .γ1 is an overpassing strand so that, by applying the Reidemeister
moves of type .R2 and .R3 (which do not change the parity of the total number of
crossings) but not the moves .R1, we can pull out the first local maximum and remove
all the crossings along .γ1:

.

The same reasoning applies to .γ2, namely, by changing the crossings, we can assume
that .γ2 is an overpassing strand so that we can pull out the first local minimum and
remove all the crossings along .γ2 by applying Reidemeister moves of type .R2 and
.R3, and so on. In this way, after n steps, we eventually obtain a normal diagram with
no crossings. �


6.3 Invariants of Long Knots from Rigid r-Matrices

In this section, we introduce the main algebraic input for the construction of
long knot invariants, a rigid r-matrix in a monoidal category, and give a detailed
description of a long knot invariant associated to a given rigid r-matrix.

Definition 6.14 We say an object G of a monoidal category .C (with tensor product
.⊗ and unit object .I ) admits a left adjoint if there exists an object F and morphisms

.ε : F ⊗G → I, η : I → G⊗ F (6.12)

such that

.(ε ⊗ idF ) ◦ (idF ⊗η) = idF , (idG⊗ε) ◦ (η ⊗ idG) = idG . (6.13)

In this case, the quadruple .(F,G, ε, η) is called duality in .C.

Example 6.2 In the monoidal category .(VectF,⊗ = ⊗F, I = F) of .F-vector
spaces, any finite-dimensional vector space V enters the duality .(V ∗, V , evV , ev∗V )

where .V ∗ = L(V ,F) is the dual vector space,

. evV : V ∗ ⊗ V → F, φ ⊗ x 
→ φx, (6.14)
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is the evaluation map and

. ev∗V : F∗ � F → V ⊗ V ∗ � (V ∗ ⊗ V )∗ (6.15)

the transpose of .evV also called the coevaluation map. The latter can be given by an
explicit formula

. ev∗V 1 =
∑

b∈B

b ⊗ b∗ (6.16)

where .B ⊂ V is a basis and .{b∗}b∈B ⊂ V ∗ is the associated dual basis. �

Definition 6.15 Let .(F,G, ε, η) be a duality in a monoidal category .C and a
morphism .f : A ⊗ G → G ⊗ B with .A,B ∈ ObC. The partial transpose of f

is the morphism .f̃ : F ⊗ A → B ⊗ F defined by

.f̃ = (ε ⊗ idB⊗F ) ◦ (idF ⊗f ⊗ idF ) ◦ (idF⊗A⊗η).

The following definition is Definition 5.5 put into the context of an arbitrary
monoidal category.

Definition 6.16 Let .C be a monoidal category. An r-matrix over an object .G ∈ ObC
is an element .r ∈ Aut(G⊗G) that satisfies the Yang–Baxter relation

.r1,2r2,3r1,2 = r2,3r1,2r2,3, r1,2 := r ⊗ idG, r2,3 := idG⊗r. (6.17)

Definition 6.17 Let .(F,G, ε, η) be a duality in a monoidal category .C. An r-matrix
r over G is called rigid if the partial transposes

.r̃±1 := (ε ⊗ idG⊗F ) ◦ (idF ⊗r±1 ⊗ idF ) ◦ (idF⊗G⊗η) (6.18)

are invertible.

We remark that the double partial transposes

.
˜̃
r±1 := (ε ⊗ idF⊗F ) ◦ (idF ⊗r̃±1 ⊗ idF ) ◦ (idF⊗F ⊗η) (6.19)

are invertible with the inverses

.

(˜̃
r±1

)−1 = ˜̃
r∓1. (6.20)

Example 6.3 Let H be a finite-dimensional Hopf algebra over a field .F and .h ∈
Aut(H) a Hopf algebra automorphism. Show that

.r : H ⊗H → H ⊗H, x ⊗ y 
→
∑

(x)

x(1)h((Sx(3))y)⊗ x(2)
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is a rigid R-matrix in the monoidal category .VectF of vector spaces over a field .F
with the tensor product .⊗ = ⊗F as the monoidal product. �


Associated to a rigid r-matrix r over G with a duality .(F,G, ε, η), the
Reshetikhin–Turaev functor .RTr associates to any normal long knot diagram D

the endomorphism .RTr(D) : G → G obtained as follows.
As the non-trivial part of D is contained in .R × [−1, 1], there exists a finite

sequence of real numbers .−1 = t0 < t1 < · · · < tn−1 < tn = 1 such that, for
any .i ∈ n, the intersection .Di := D ∩ (R × [ti , ti+1]) is an ordered (from left to
right) finite sequence of connected components each of which is isotopic relative to
boundary either to one of the four types of segments

. (6.21)

or to one of the eight types of crossings

. (6.22)

To such an intersection, we associate a morphism .fi in .C by taking the tensor
product (from left to right) of the morphisms associated to the connected fragments
of .Di according to the following rules:

. (6.23)

. (6.24)

. (6.25)

. (6.26)

. (6.27)

The morphism .RTr(D) : G → G associated to D is obtained as the composition

.RTr(D) := fn−1 ◦ · · · ◦ f1 ◦ f0. (6.28)

Example 6.4 Let .D = ξ− be defined in (6.10). Then .RTr(D) = f3 ◦ f2 ◦ f1 ◦ f0
where

.f0 = idG⊗η, f1 = idG⊗ (̃r)−1 , f2 = (̃r)−1 ⊗ idG, f3 = ε ⊗ idG .

(6.29)
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Theorem 6.2 Let r be a rigid r-matrix over an object G of a monoidal category .C

with a duality .(F,G, ε, η). Then, for any long knot diagram D, the element

.Jr(D) := RTr(Ḋ ◦ ξ−w(Ḋ)/2) ∈ End(G) (6.30)

depends on only the Reidemeister equivalence class of D.

Proof The proof follows from the functorial properties of the Reshetikhin–Turaev
functor, described in [36, 37, 41]. Here we present a proof specifically adapted to
the case of normal long knot diagrams.

Let .∼̇ be the equivalence relation on the set of normal long knot diagrams
generated by the oriented versions of the Reidemeister moves of types .R2, .R3 and
the moves .R±0 defined by the pictures

. (6.31)

with two possible orientations for the straight segment and two possibilities for
crossings. The strategy of the proof is to show first the implication

.Ḋ ∼̇ Ḋ′ ⇒ RTr(Ḋ) = RTr(Ḋ
′) (6.32)

which, by taking into account the implication for the writhe

.Ḋ ∼̇ Ḋ′ ⇒ W(Ḋ) = W(Ḋ′), (6.33)

ensures the invariance of .Jr(D) under all oriented Reidemeister moves .R2 and .R3,
and then to verify the invariance under the oriented versions of the Reidemeister
move .R1. It is in this last part of the proof where the correction of .Ḋ by .ξ−w(Ḋ)/2 is
crucial.

Invariance of Reshetikhin–Turaev functor with respect to moves .R±0 follows from
the equivalences

. (6.34)

. (6.35)

and the definitions (6.18) and (6.19) of .r̃±1 and .
˜̃
r±1.
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Invariance of .RTr with respect to oriented .R2 moves are checked first for eight
basic moves

. (6.36)

. (6.37)

. (6.38)

. (6.39)

and then for two composite moves

. (6.40)

with two possible choices for the crossings.
In order to check invariance of .RTr with respect to the oriented .R3 moves, we

introduce a specific parametrization of all those moves. Let .Sym(3) be the group of
all permutations of the set .{1, 2, 3}. We remark that altogether there are 48 oriented
.R3 moves which can be indexed by the set .Sym(3)× {±1}3 as follows.

Given an oriented .R3 move, we enumerate the strands that intervene the move by
reading their bottom open ends from left to right

. (6.41)

and we define the associated element .(σ, ε) ∈ Sym(3) × {±1}3 by the conditions
that for any .i ∈ {1, 2, 3}, .σ(i) is the number of arcs on the i-th strand and .εi = 1 if
i-th strand is oriented upwards. For example, the .R3 move

. (6.42)

corresponds to permutation .σ = (2, 3) = (1)(2, 3) and .ε = (1,−1, 1) while the
pair .(σ = id, ε = (1, 1, 1)) corresponds to the reference move associated to the
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Yang–Baxter relation

. (6.43)

with the notations .r1 := r ⊗ idG and .r2 := idG⊗r .
We can now show that by using the oriented moves .R2 and .R±0 , any oriented .R3

move is equivalent to the reference move (6.43).
Indeed, in the case .ε1 = −1, we have the equivalences

.

(6.44)

which imply the equivalence

.(σ, (−1, ε2, ε3)) ⇔ (σ ◦ (1, 2, 3), (ε2, ε3, 1)) (6.45)

in the set .Sym(3) × {±1}3 thus allowing to reduce the number of negative
components of .ε. Additionally, a right action of the permutation group .Sym(3) on
the set .Sym(3)× {±1}3 is induced by the equivalences

. (6.46)

and

. (6.47)

which correspond to the respective equivalences

.(σ, ε) ⇔ (σ, ε) ◦ (1, 2) and (σ, ε) ⇔ (σ, ε) ◦ (2, 3) (6.48)

in the set .Sym(3)× {±1}3 where we interpret .(σ, ε) ∈ Sym(3)× {±1}3 as the map

.(σ, ε) : {1, 2, 3} → {1, 2, 3} × {±1}, i 
→ (σ (i), εi). (6.49)

Thus, in conjunction with the equivalence (6.45), the right action of the group
.Sym(3) on the set .Sym(3) × {±1}3 establishes the equivalence of any oriented .R3
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move to the reference move (6.43) and thereby the invariance of .RTr with respect
to all oriented .R3 moves.

Finally, in order to prove invariance of .Jr with respect to all oriented .R1 moves,
we need to check only the invariance with respect to four basic moves of the form

. (6.50)

as all others are consequences of the basic ones and the intermediate equivalence
relation .∼̇ generated by the moves .R±0 , .R2 and .R3:

. (6.51)

and

. (6.52)

Let us analyse the four cases of (6.50) separately.

Case 1 If diagrams D and .D′ differ by the fragments

. (6.53)

then, by the definition of the normalisation of a long knot diagram, we have the
equality .Ḋ = Ḋ′. Thus, .Jr(D) = Jr(D

′).

Case 2 Diagrams D and .D′ differ by the fragments

. (6.54)

so that the normalised diagrams .Ḋ and .Ḋ′ differ by the fragments

. (6.55)

which imply that

.W(Ḋ) = 2+W(Ḋ′) ⇒ ξ+ ◦ ξ−W(Ḋ)/2 = ξ−W(Ḋ′)/2. (6.56)

On the other hand, we have the equivalence

. (6.57)
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which, together with (6.56), implies that

.Ḋ ◦ ξ−W(Ḋ)/2 ∼̇ Ḋ′ ◦ ξ+ ◦ ξ−W(Ḋ)/2 = Ḋ′ ◦ ξ−W(Ḋ′)/2 ⇒ Jr(D) = Jr(D
′).
(6.58)

Case 3 Diagrams D and .D′ differ by the fragments

. (6.59)

so that

. (6.60)

Case 4 Diagrams D and .D′ differ by the fragments

. (6.61)

so that we have for the corresponding normalised diagrams

. (6.62)

and

.W(Ḋ) = W(Ḋ′)− 2⇒ ξ− ◦ ξ−W(Ḋ)/2 = ξ−W(Ḋ′)/2. (6.63)

Thus,

.Ḋ ◦ ξ−W(Ḋ)/2 ∼̇ Ḋ′ ◦ ξ− ◦ ξ−W(Ḋ)/2 = Ḋ′ ◦ ξ−W(Ḋ′)/2 ⇒ Jr(D) = Jr(D
′).
(6.64)

�

Exercise 6.3 Let r be a rigid r-matrix over a (finite dimensional) .F-vector space V .
For any long knot diagram D and any non-zero scalar .λ ∈ F�=0, show the equality

.Jr(D) = Jλr(D). (6.65)
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6.4 Rigid r-Matrices from Racks

In this section, we consider a special class of rigid r-matrices in the categories of
relations and spans over sets. Each such r-matrix is associated to a pointed group
with a canonical structure of a rack, and Theorem 6.3 identifies the associated
invariant with the set of representations of the knot group into the group that
underlies the rack.

6.4.1 Categories of Spans and Relations

A binary relation from a set X to a set Y as a subset of the cartesian product .X×Y .
The composition of two binary relations .R ⊂ X × Y and .S ⊂ Y × Z is the binary
relation .S ◦ R ⊂ X × Z defined by

.S ◦ R := {(x, z) ∈ X × Z | ∃y ∈ Y : (x, y) ∈ R, (y, z) ∈ S}. (6.66)

A span from a set X to a set Y is a triple .U = (U, sU , tU) where U is a set,
.sU : U → X and .tU : U → Y are set theoretical maps. The composition of two
spans U from X to Y and V from Y to Z is the span from X to Z defined as
the pullback space (fibered product) .V ◦ U := U ×Y V together with the natural
projections to X and Z.

Two spans U and V from X to Y are called equivalent, .U � V , if there exists a
bijection .f : U → V such that .sV ◦f = sU and .tV ◦f = tU so that

.V = (V , sV , tV ) � (f−1(V ), sV ◦f, tV ◦f ) = (U, sU , tU) = U. (6.67)

The composition of spans induces an associative binary operation for the equiva-
lence classes of spans.

Any binary relation .R ⊂ X× Y is a special case of a span with .sR : R → X and
.tR : R → Y being the canonical projections.

Let .Set be the monoidal category of sets with the cartesian product as the
monoidal product, and .Rel (respectively .Span) the extension of .Setwith morphisms
given by binary relations (respectively equivalence classes of spans). For a mor-
phism .Z : X → Y in .Span, and any .(x, y) ∈ X × Y , we denote

.Z(x, y) := s−1Z (x) ∩ t−1Z (y). (6.68)

We have a canonical monoidal functor

.
 : Span→ Rel (6.69)
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which is identity on the level of objects and for any morphism .Z : X → Y in .Span,
the corresponding morphism in .Rel is given by

.
(Z) = {(x, y) ∈ X × Y | Z(x, y) �= ∅}. (6.70)

Notice that if Z is a relation (as a particular case of spans) then .
(Z) = Z. In what
follows, we concentrate ourselves only in the category .Span, as the results for .Rel
can always be obtained by applying functor (6.69).

Given a set theoretical map .f : X → Y , its graph

.�f := {(x, f (x)) | x ∈ X} ⊂ X × Y, (6.71)

being a special case of a binary relation, is naturally interpreted as a morphism
.�f = (�f , pX, pY ) : X → Y in .Span where .pX : �f → X and .pY : �f → Y are
the canonical projections. By using the bijectivity of .pX and the equivalence (6.67)
of morphisms in .Span, we have the equivalence

.�f = (�f , pX, pY ) � (pX(�f ), pX ◦ p−1X , pY ◦ p−1X ) = (X, idX, f ). (6.72)

The advantage of the category .Span (as well as .Rel) over .Set is its rigidity,
namely, for any set X, the diagonal .�X := �idX

, interpreted as a morphism in .Span
in two ways

.εX : X ×X → {0} (6.73)

and

.ηX : {0} → X ×X, (6.74)

gives rise to a canonical duality .(X,X, εX, ηX) in .Span.

6.4.2 Racks and Rigid r-Matrices in the Category of Spans

The notion of a rack has a rich history, see, for example, [9] and references therein.

Definition 6.18 A rack is a set X with a map

.X2 → X2, (x, y) 
→ (x · y, y ∗ x), (6.75)

such that the binary operation .x · y is left self-distributive

.x · (y · z) = (x · y) · (x · z), ∀(x, y, z) ∈ X3, (6.76)
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and

.(x · y) ∗ x = y = x · (y ∗ x), ∀(x, y) ∈ X2. (6.77)

Remark 6.3 A rack satisfying the additional condition .x · x = x is known as a
quandle.

Proposition 6.2 For any rack .(X, (x, y) 
→ (x · y, y ∗ x)), the set-theoretical map

.r : X2 → X2, (x, y) 
→ (x · y, x),

corresponds to a rigid r-matrix in the category .Span.

Proof Let us first verify the set-theoretical Yang–Baxter equation. For any .x, y, z ∈
X, we have

.r1,2 ◦ r2,3 ◦ r1,2(x, y, z) = r1,2 ◦ r2,3(x · y, x, z) = r1,2(x · y, x · z, x)

= ((x · y) · (x · z), x · y, x) (6.78)

and

.r2,3 ◦ r1,2 ◦ r2,3(x, y, z) = r2,3 ◦ r1,2(x, y · z, y) = r2,3(x · (y · z), x, y)

= (x · (y · z), x · y, x). (6.79)

The two results are the same due to the self-distributivity property (6.76).
The invertibility of r is established by the equality

.r−1 = r̄ : X2 → X2, r̄(x, y) = (y, x ∗ y). (6.80)

Indeed, for any .x, y ∈ X, we have

.r̄ ◦ r(x, y) = r̄(x · y, x) = (x, (x · y) ∗ x) = (x, y) (6.81)

where the last equality is due to the first equality of (6.77), and

.r ◦ r̄(x, y) = r(y, x ∗ y) = (y · (x ∗ y), y) = (x, y) (6.82)

where the last equality is due to the second equality of (6.77).
The rigidity of the morphism .�r in .Span, see (6.71), follows from the equiva-

lences

.̃�r � �r−1 , �̃r−1 � �
r−12,1

(6.83)
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which relate the partial transposes of .�r±1 in .Span to graphs of invertible set-
theoretical maps. Here, for any set-theoretical map

.f : X2 → X2, f (x, y) = (f1(x, y), f2(x, y)),

the map .f2,1 : X2 → X2 is defined by

.f2,1(x, y) = (f2(y, x), f1(y, x)).

Exercise 6.4 Show that, for any set-theoretical map .f : Y×X → X×Z, the partial
transpose of .�f in .Span, up to equivalence, is given by the triple

.̃�f � (Y ×X, (y, x) 
→ (f1(y, x), y), (y, x) 
→ (f2(y, x), x)) (6.84)

with the notation .f (y, x) = (f1(y, x), f2(y, x)).

By using Exercise 6.4, we prove the first equivalence of (6.83) as follows

.̃�r � (X2, (x, y) 
→ (x · y, x), (x, y) 
→ (x, y))

= (X2, r, idX2) � (r(X2), r ◦ r−1, r−1) = (X2, idX2 , r
−1) � �r−1 (6.85)

where, in the last equivalence, we used (6.72).
For the second equivalence of (6.83), again by using Exercise 6.4, we have

.̃�r−1 � (X2, (x, y) 
→ (y, x), (x, y) 
→ (x ∗ y, y))

� (X2, idX2 , (y, x) 
→ (x ∗ y, y)) = (X2, idX2 , r
−1
2,1) � �

r−12,1
. (6.86)

�

Exercise 6.5 Show that for any rack .(X, (x, y) 
→ (x ·y, y∗x)) the binary operation
.x ∗ y is right self-distributive

.(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z). (6.87)

6.4.3 Racks Associated to Pointed Groups

Let .(G, τ) be a pointed group that is a group G together with a fixed element .τ ∈ G.
Then, it is verified that the set G with the map

.G×G → G×G, (g, h) 
→ (gτg−1h, gτ−1g−1h) (6.88)
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is a rack, and, thus, it gives rise to a set-theoretical r-matrix

.rG,τ : G×G → G×G, (g, h) 
→ (gτg−1h, g), (6.89)

which, by Proposition 6.2, corresponds to a rigid r-matrix in category .Span. In this
way, through Theorem 6.2, we obtain a long knot invariant .JΓrG,τ

(D). The next
theorem reveals the topological content of this invariant.

Theorem 6.3 There exists a canonical choice of a meridian-longitude pair .(m, �)

of long knots such that the set .(JΓrG,τ
(D))(1, λ) is in bijection with the set of group

homomorphisms

.{h : π1(R
3 \ f (R), x0) → G | h(m) = τ, h(�) = λ} (6.90)

where .f : R → R3 is a long knot represented by D.

Proof Let .f : R → R3 be a long knot whose image under the projection

.p : R3 → R2, (x, y, z) 
→ (x, y). (6.91)

is the diagram .D̃ := Ḋ ◦ ξ−w(Ḋ)/2 with linearly ordered (from bottom to top) set of
arcs .a0, a1, . . . , an. As a result, the set of crossings acquires a linear order as well
.{ci | 1 ≤ i ≤ n} where .ci is the crossing separating the arcs .ai−1 and .ai and with
the over passing arc .aκi

for a uniquely defined map

.κ : {1, . . . , n} → {0, . . . , n}. (6.92)

Let .t0, t1, . . . , tn ∈ R be a strictly increasing sequence such that .f (t) = (0, t, 0)
for all .t �∈ [t0, tn], and for each .i ∈ {1, . . . , n − 1}, .p(f (ti)) belongs to arc .ai and
is distinct from any crossing. Choose a base point .x0 = (0, 0, s) with sufficiently
large .s ∈ R>0, a sufficiently small .ε ∈ R>0, and define the following paths

.α0, βi, γi : [0, 1] → R3, i ∈ {0, . . . , n},
α0(t) = (−ε sin(2πt), t0, ε cos(2πt)), βi(t) = (1− t)x0 + (f (ti)+ (0, 0, ε))t,

γi(t) = f ((1− t)ti + t t0)+ (0, 0, ε). (6.93)

To each arc .ai of .D̃, we associate the homotopy class

.ei := [βi · γi · β̄0] ∈ π1(R
3 \ f (R), x0), (6.94)

so that .e0 = 1, and the Wirtinger generator

.wi := [βi · γi · α0 · γ̄i · β̄i] ∈ π1(R
3 \ f (R), x0). (6.95)
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We have the equalities

.wi = eiw0e
−1
i , ∀i ∈ {0, 1, . . . , n}, (6.96)

.ei = wεi
κi

ei−1, ∀i ∈ {1, . . . , n}, (6.97)

where .εi ∈ {±1} is the sign of the crossing .ci , and

.ei = wεi
κi

w
εi−1
κi−1 · · ·wε1

κ1
, ∀i ∈ {1, . . . , n}. (6.98)

We define the canonical meridian-longitude pair .(m, �) as follows

.m := w0, � := en. (6.99)

Taking into account the condition .
∑n

i=1 εi = 0, we see that .� has the trivial image
in .H1(R3 \ f (R),Z).

Let us show that the following finitely presented groups are isomorphic to the
knot group .π1(R3 \ f (R), x0):

.E := 〈m, e0, . . . , en | e0 = 1, ei = eκi
mεi e−1κi

ei−1, 1 ≤ i ≤ n〉 (6.100)

and

.W := 〈w0, . . . , wn | wεi
κi

wi−1 = wiw
εi
κi

, 1 ≤ i ≤ n〉. (6.101)

As W is nothing else but the Wirtinger presentation of .π1(R3 \ f (R), x0), it suffices
to see the isomorphism .E � W . To see the latter, we remark that there are two group
homomorphisms

.u : W → E, wi 
→ eime−1i , i ∈ {0, 1, . . . , n}, (6.102)

and

.v : E → W, m 
→ w0, e0 
→ 1, ei 
→ wεi
κi

w
εi−1
κi−1 · · ·wε1

κ1
, ∀i ∈ {1, . . . , n}.

(6.103)

Indeed, we have

.u(wκi
)εi u(wi−1) = u(wi)u(wκi

)εi ⇔ u(wκi
)εi ei−1me−1i−1 = eime−1i u(wκi

)εi

⇔ e−1i u(wκi
)εi ei−1m = me−1i u(wκi

)εi ei−1 ⇐ e−1i u(wκi
)εi ei−1 = 1

⇔ ei = u(wκi
)εi ei−1 ⇔ ei = eκi

mεi e−1κi
ei−1 (6.104)
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implying that u is a group homomorphism. We also have

.v(ei) = v(eκi
)v(m)εi v(eκi

)−1v(ei−1) ⇔ v(ei)v(ei−1)−1 = v(eκi
)w

εi

0 v(eκi
)−1

⇔ wκi
= v(eκi

)w0v(eκi
)−1 ⇐ {wi = v(ei)w0v(ei)

−1}0≤i≤n (6.105)

and, for all .i ∈ {1, . . . , n},

.v(ei)w0 = wεi
κi
· · ·wε1

κ1
w0 = wεi

κi
· · ·wε2

κ2
w1w

ε1
κ1
= . . .

= wεi
κi
· · ·wεk

κk
wk−1wεk−1

κk−1 · · ·wε1
κ1
= · · · = wiw

εi
κi
· · ·wε1

κ1
= wiv(ei) (6.106)

implying that v is a group homomorphism as well.
It remains to show that .v◦u = idW and .u◦v = idE . Indeed, for all .i ∈ {0, . . . , n},

we have

.v(u(wi)) = v(eime−1i ) = v(ei)v(m)v(ei)
−1 = v(ei)w0v(ei)

−1 = wi (6.107)

implying that .v ◦ u = idW . We prove that .u(v(ei)) = ei for all .i ∈ {0, . . . , n} by
recursion on i. For .i = 0, we have

.u(v(e0)) = u(1) = 1 = e0. (6.108)

Assuming that .u(v(ek−1)) = ek−1 for some .k ∈ {1, . . . , n− 1}, we calculate

.u(v(ek)) = u(wεk
κk

v(ek−1)) = u(wκk
)εku(v(ek−1)) = eκk

mεk e−1κk
ek−1 = ek.

(6.109)

Now, any element g of the set .(JΓrG,τ
(D))(1, λ) is a map

.g : {0, 1, . . . , n} → G (6.110)

such that

.g0 = 1, gn = λ, gi = gκi
τ εi g−1κi

gi−1, ∀i ∈ {1, . . . , n}. (6.111)

That means that g determines a unique group homomorphism

.hg : E → G (6.112)

such that .hg(m) = τ and .hg(ei) = gi for all .i ∈ {0, 1, . . . , n}. On the other hand,
any group homomorphism .h : E → G such that .h(m) = τ and .h(�) = λ is of the
form .h = hg where .gi = h(ei). Thus, the map .g 
→ hg is a set-theoretical bijection
between .(JΓrG,τ

(D))(1, λ) and the set of group homomorphisms (6.90). �
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Remark 6.4 Theorem 6.3 illustrates the importance of considering long knots as
opposed to closed knots. Namely, by closing a long knot, one identifies two open
strands and all the associated data. In particular, one has to impose the equality .λ =
1 that corresponds to considering only those representations where the longitude is
realized trivially. This means that in the case of closed diagrams one would obtain
less powerful invariants.

6.5 The Alexander Polynomial as a Universal Invariant

In this section, by using the restricted dual of an algebra and Drinfeld’s quantum
double construction, see Chaps. 4 and 5, we first describe a universal invariant
associated to any Hopf algebra with invertible antipode and then illustrate the
general construction by the example corresponding to the Hopf algebra .B1 of
Sect. 5.4 of Chap. 5. In this way, we will be able to interpret the Alexander
polynomial of knots as a universal invariant associated to the Hopf algebra .B1, see
Theorem 6.4 below.

6.5.1 Universal Knot Invariants from Hopf Algebras

As follows from Proposition 5.7, any finite-dimensional right comodule over the
restricted dual of the quantum double of a Hopf algebra with invertible antipode

.δ : V → V ⊗ (D(H))o, v 
→
∑

(v)

v(0) ⊗ v(1), (6.113)

where we extend Sweedler’s sigma notation to comodules, gives rise to a rigid r-
matrix

.rV : V ⊗ V → V ⊗ V, u⊗ v 
→
∑

(u),(v)

v(0) ⊗ u(0)〈�, u(1) ⊗ v(1)〉. (6.114)

Exercise 6.6 By using dualities in the monoidal category of vector spaces, see
Example 6.2, show that the r-matrix (6.114) is rigid.

Rigidity of .rV implies that there exists a universal invariant of long knots .ZH (K)

taking its values in the convolution algebra .((D(H))o)∗ such that

.JrV (K)v =
∑

(v)

v(0)〈ZH (K), v(1)〉, ∀v ∈ V. (6.115)
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Remark 6.5 The algebra homomorphism .D(H) → ((D(H))o)∗ allows to think of
the convolution algebra .((D(H))o)∗ as a certain algebra completion of the quantum
double .D(H) reminiscent of the profinite completion of groups.

6.5.2 The Universal Invariant Associted to B1

Let .D(B1) be the quantum double of the Hopf algebra .B1 described in Sect. 5.4 of
Chap. 5 with the central grouplike element a.

Theorem 6.4 The universal invariant associated to the Hopf algebra .B1 is of
the form .ZB1(K) = (�K(a))−1 where .�K(t) is the Alexander polynomial of K

normalised so that .�K(1) = 1 and .�K(t) = �K(1/t).

Remark 6.6 As an element of the convolution algebra .((D(B1))
o)∗, the inverse of

the Alexander polynomial .(�K(a))−1 in Theorem 6.4 should be interpreted in terms
of its Taylor series expansion around .a = 1 and viewed as an element of the algebra
of formal power series .C[[a − 1]] ⊂ ((D(B1))

o)∗,

.(�K(a))−1 =
∞∑

n=0
cn(a − 1)n, cn := 1

n!∂
n�K(t)−1/∂tn|t=1. (6.116)

The rest of this section is devoted to the proof of Theorem 6.4.

6.5.3 Schrödinger’s Coherent States

One of the technical tools in the proof of Theorem 6.4 is the theory of standard
Schrödinger’s coherent states, which we briefly review here (see, for example, [34]).

For any .n ∈ Z>0, let .Hn ⊂ L2(Cn, μn) be the complex Hilbert space of square
integrable holomorphic functions .f : Cn → C with the scalar product

.〈f |g〉 :=
∫

Cn

f (z)g(z) dμn(z) (6.117)

where the measure .dμn(z) on .Cn is given by Lebesgue measure .dλ2n(z) on .Cn �
R2n multiplied by the Gaussian exponential

.
1

πn
e−‖z‖2 , ‖z‖ :=

√
∑n−1

i=0 |zi |2. (6.118)



6.5 The Alexander Polynomial as a Universal Invariant 149

Exercise 6.7 Show that the monomials

.ek(z) :=
n−1∏

i=0

z
ki

i√
ki ! , k ∈ Zn

≥0, (6.119)

form an orthonormal family of vectors in .Hn.

The orthonormal family (6.119) forms a Hilbert basis of .Hn due to the convergence
of Taylor’s (multivariable) expansion for holomorphic functions:

.f (z) =
∑

k∈Zn≥0

n−1∏

i=0

z
ki

i

ki !
∂ki f (w)

∂w
ki

i

∣∣∣∣
w=0

=
∑

k∈Zn≥0

ek(z)

n−1∏

i=0

1√
ki !

∂ki f (w)

∂w
ki

i

∣∣∣∣
w=0

.

(6.120)

Indeed, in the case when .f ∈ Hn, multiplying equality (6.120) by .ek(z), integrating
over z, using the Fubini (or dominant convergence) theorem and the orthogonality
of Exercise 6.7, we obtain

.〈ek|f 〉 =
∫

Cn

ek(z)f (z) dμn(z) =
n−1∏

i=0

1√
ki !

∂ki f (w)

∂w
ki

i

∣∣∣∣
w=0

∀k ∈ Zn
≥0 (6.121)

so that (6.120) takes the form of an orthogonal expansion in the Hilbert space

.f =
∑

k∈Zn≥0

ek〈ek|f 〉. (6.122)

For any .u ∈ Cn, multiplying both sides of (6.121) by .ek(u), summing over all
.k ∈ Zn

≥0 and, using the Fubini (or dominant convergence) theorem in the left hand
side for exchanging the integration and summation, and the Taylor formula (6.120)
in the right hand side, we obtain

.

∫

Cn

ϕu(z̄)f (z) dμn(z) = f (u) ∀(f, u) ∈ Hn × Cn (6.123)

where the holomorphic function

.ϕu : Cn → C, z 
→
∑

k∈Zn≥0

ek(u)ek(z) = e
∑n−1

i=0 uizi (6.124)

determines an element .ϕu ∈ Hn called (Schrödinger’s) coherent state. By treating
elements of .Cn as column vectors we can write

.ϕu(z) = eu"z.
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Let us also adopt the notation .w∗ := w̄" for the Hermitian conjugation, i.e. the
transposition combined with complex conjugation. With this notation we have the
equalities

.‖w‖2 = w∗w, ϕu(z̄) = ez∗u. (6.125)

The integral formula (6.123) expresses the reproducing property of coherent
states

.〈ϕū|f 〉 = f (u) ∀(f, u) ∈ Hn × Cn. (6.126)

The choice .f = ϕv in the last formula gives the scalar product between the coherent
states

.〈ϕū|ϕv〉 = ϕv(u) = ϕu(v) = eu"v. (6.127)

In particular, the norm of a coherent state .ϕv is determined by the Euclidean norm
of v through the formula

.‖ϕv‖ = e‖v‖2/2. (6.128)

6.5.4 A Dense Subspace of Hn

Another useful property of the coherent states is that the (dense) vector subspace
.An of .Hn generated by products of coherent states and polynomials is stable under
the multiplication of elements of .An as functions so that .An carries the additional
structure of a commutative algebra, and it is in the domain of any linear differential
operator with coefficients in .An.

Example 6.5 When .n = 1, the Hilbert basis of .H 1 given by the monomials

.

{
ek(z) = zk

√
k! | k ∈ Z≥0

}
⊂ A1

is the eigenvector basis of the 1-dimensional quantum harmonic oscillator with the
(self-adjoint) Hamiltonian operator .z ∂

∂z
. �
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6.5.5 Gaussian Integration Formula

Writing out explicitly the scalar product in (6.127) as an integral, we obtain an
integral identity

.

∫

Cn

ev"z+z∗u dμn(z) = ev"u (6.129)

which is a special case of the general Gaussian integration formula

.

∫

Cn

ev∗z+z∗u+z∗Mz dμn(z) = ev∗W−1u

det(W)
, W := In −M (6.130)

where M is an arbitrary complex n-by-n matrix sufficiently close to zero so that the
integral is absolutely convergent. Furthermore, the expansion of (6.130) in power
series in M with .u = v = 0 corresponds to the purely combinatorial MacMahon
Master theorem [28].

Exercise 6.8 Prove the Gaussian integration formula (6.130).

6.5.6 Representations of D(B1) in A1[[h̄]]

Recall that .A1 is the vector subspace of .H 1 generated by products of coherent states
with polynomials. Refering to Sect. 5.4 of Chap. 5, for any .λ ∈ C, the mappings

.a 
→ 1+ h̄, b 
→ ∂

∂z
, φ 
→ h̄z, ψ 
→ λ− z

∂

∂z
(6.131)

and the action

.χu,vf (z) = eh̄uzf (vz) (6.132)

determine an algebra homomorphism

.ρλ : D(B1) → End(A1[[h̄]]) (6.133)

which sends the central element c defined in (5.121) to .λh̄.
An important property of the representation .ρλ is that the image under .ρ⊗2λ of the

formal r-matrix (5.119) is a well defined element of the algebra .End(A1)⊗2[[h̄]]:

.ρ⊗2λ (R) = (1+ h̄)
λ−z0

∂
∂z0 e

h̄z0
∂

∂z1 =
∑

m,n≥0

h̄m+n

n!
(

λ− z0
∂

∂z0

m

)(
z0

∂

∂z1

)n

.

(6.134)
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In particular, the double sum in (6.134) truncates to a finite sum if the indeterminate
.h̄ is nilpotent. Thus, despite the fact that the representation .ρλ is infinite dimen-
sional, the corresponding r-matrix is well suited for calculation of the image under
.ρλ of the universal invariant .ZB1(K). Moreover, as the parameter .λ enters only
through the overall normalisation factor .(1 + h̄)λ of the r-matrix, the associated
invariant is independent of .λ, see Exercise 6.3. For that reason, in what follows, we
put .λ = 0 and work only with the representation .ρ := ρ0.

In order to apply the construction of Sect. 6.3, we define the input r-matrix

.r := ρ⊗2(R)P (6.135)

where .P ∈ Aut(A2) is the permutation operator acting by exchanging the
arguments. By using (6.134), we obtain the following explicit action of r:

.rf (z) = rf (z0, z1) = (1+ h̄)
−z0

∂
∂z0 f (z1 + h̄z0, z0)

= f
(
z1 + h̄

1+ h̄
z0,

1

1+ h̄
z0

)
= f (U"z) (6.136)

where

.U :=
(

h̄
1+h̄

1
1+h̄

1 0

)

=
(
1− t t

1 0

)
, t := 1

1+ h̄
, (6.137)

is the 2-by-2 matrix entering the definition of the (unrestricted) Burau representation
of the braid groups [8]. The action of r on the coherent states is realized by the action
of the transposed matrix on the space of parameters:

.rϕv(z) = ϕv(U
"z) = ϕUv(z) (6.138)

where the element .z ∈ C2 is treated as a column vector. In what follows, we use the
indeterminate t defined in terms of .h̄ through the formula in (6.137).

6.5.7 The Diagrammatic Rules for the Reshetikhin–Turaev
Functor

From the formula (6.138), one calculates the integral kernel of r with respect to the
coherent states

.〈ϕw|r|ϕv〉 = 〈ϕw0,w1 |r|ϕv0,v1〉 = ew∗Uv (6.139)
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which corresponds to the value of the Reshetikhin–Turaev functor associated to
positive crossings of all orientations in normal long knot diagrams with edges
coloured by complex numbers:

. (6.140)

Likewise, the integral kernel of .r−1 given by the formula

.〈ϕw|r−1|ϕv〉 = 〈ϕw0,w1 |r−1|ϕv0,v1〉 = ew∗U−1v (6.141)

is associated with negative crossings of all orientations:

. (6.142)

We complete the list of the diagrammatic rules by adding the rules for vertical
segments and local extrema

. (6.143)

where .ew̄v is the integral kernel of the identity operator .idA1 :

.〈ϕw| idA1 |ϕv〉 = 〈ϕw|ϕv〉 = ew̄v. (6.144)

For later use, we calculate the following two Reshetikhin–Turaev images

.

(6.145)
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and

.

(6.146)

where the integrals are calculated by using the Gaussian integration formula (6.130).

Proof of Theorem 6.4 Let a knot K be represented by the closure of a braid .β ∈
Bn. Let us choose a normal long knot diagram .Dβ representing K according to the
picture

. (6.147)

with the writhe

.W(Dβ) = W(β)+ n− 1 (6.148)

which is an even number by Proposition 6.1. Taking into account the value (6.145),
writing the matrix .ψn(β) in the block form

.ψn(β) =
(

β̂n bβ

cβ dβ

)
, (6.149)

and using the general Gaussian integration formula (6.130), we calculate

. (6.150)
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On the other hand, given the fact that we are calculating a central element realised
by a scalar so that on a priori grounds the result should be proportional to the integral
kernel of the identity operator .ew̄v , we conclude that the identity

.dβ + cβ(In−1 − β̂n)
−1bβ = 1 (6.151)

is satisfied for the matrix .ψn(β), a property which does not look to be easy to
prove without passing through the Gaussian integration and referring to the universal
invariant.

Finally, it remains to take into account the writhe correction, which, according to
the values in (6.145) and (6.146) is given by the formula

.〈ϕw|RTr

(
ξ−W(Dβ)/2)|ϕv〉e−w̄v = tW(Dβ)/2 = t (W(β)+n−1)/2 (6.152)

where we use the notation .ξk from Sect. 6.3 for a specific class of long knot diagrams
used to compensate the writhe of the diagram. Putting together (6.150) and (6.152),
the result for the invariant .Jr(K) reads

.〈ϕw|Jr(K)|ϕv〉e−w̄v = t (W(β)+n−1)/2

det(In−1 − β̂n)
= 1

�K(t)
(6.153)

where the last equality is due to formula (6.167) of Theorem 6.5. Taking into account
the relation between .h̄, t and the realisation of the central element a of .D(B1) as
well as the symmetry of the Alexander polynomial under the substitution .t 
→ t−1,
we conclude the proof. �

Remark 6.7 Theorem 6.4 is consistent with the Melvin–Morton–Rozansky con-
jecture, proven by Bar-Nathan and Garoufalidis in [4] and by Garoufalidis and
Lê in [14], stating that the n-th colored Jones polynomial in the limit .n → ∞
with .q = t1/n and fixed t , tends to .(�K(t))−1. Indeed, for the non-commutative
Hopf algebra .Bq with q not a root of unity, the quantum double .D(Bq) is closely
related to the quantum group .Uq(sl2). In particular, for each .n ∈ Z>0, it admits
an n-dimensional irreducible representation corresponding to the n-th colored Jones
polynomial. In the limit .n →∞ with .q = t1/n and fixed t , one recovers an infinite-
dimensional representation of the Hopf algebra .B1 where the central element .a takes
the value t .

6.6 The Alexander Polynomial from the Burau
Representation

In this section, we give a proof of Theorem 6.5 below which is used in the proof
of Theorem 6.4. Originally, Theorem 6.5 is proven in the work [22]. We adopt
the notation of [20] and first briefly describe the unreduced and reduced Burau
representations of the braid groups .Bn for .n ≥ 2.
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For any .k ≥ 1, denote by .Ik the identity .k × k matrix. Let

.ψn : Bn → GLn(�), � := Z[t±1], (6.154)

be the unrestricted Burau representation where Artin’s standard generators .σi , .1 ≤
i < n , are realised by the matrices

.ψn(σi) = Ui := Ii−1 ⊕ U ⊕ In−i−1. (6.155)

For any .k ≥ 1, define the invertible upper triangular .k × k matrix

.Ck =
∑

1≤i≤j≤k

Ei,j = Ik +
∑

1≤i<j≤k

Ei,j (6.156)

where .Ei,j is the matrix with the only non-zero element 1 at the place .(i, j). Its
inverse has the form

.C−1k = Ik −
n−1∑

i=1
Ei,i+1. (6.157)

Indeed, one easily calculates

.Ck(Ik −
n−1∑

i=1
Ei,i+1) = Ck −

∑

1≤i<j≤k

Ei,j = Ik. (6.158)

We remark on the block structure of .C±1k :

.Ck =
(

Ck−1 1k−1
0"k−1 1

)
, C−1k =

(
C−1k−1 −C−1k−11k−1
0"k−1 1

)

=
(

C−1k−1
0k−2
−1

0"k−1 1

)

(6.159)

where .0i (respectively .1i) is the column of length i composed of 0’s (respectively
of 1’s) and, in the last equality, we use the relation

.C−1k 1k =
(
0k−1
1

)
. (6.160)

As is shown in [20], for any .β ∈ Bn, one has the equality

.C−1n ψn(β)Cn =
(

ψr
n(β) 0n−1
∗β 1

)
(6.161)
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where .ψr
n : Bn → GLn−1(�) is the reduced Burau representation, and .∗β is a row

of length .n − 1 over .� linearly depending on the rows .ai , .1 ≤ i ≤ n − 1, of the
matrix .ψr

n(β)− In−1 through the formula1

.(1− tn)∗β =
n−1∑

i=1
(t i − 1)ai . (6.162)

Lemma 6.1 Let .β̂n be the .(n−1)×(n−1) matrix obtained from .ψn(β) by throwing
away the n-th row and the n-th column. Then, one has the following equality in .�:

.(t−n − 1) det(β̂n − In−1) = (t−1 − 1) det(ψr
n(β)− In−1). (6.163)

Proof We have the following equality of matrices:

.β̂n = (Cn−1ψr
n(β)+ 1n−1∗β)C−1n−1

⇔ C−1n−1β̂nCn−1 = ψr
n(β)+ C−1n−11n−1∗β = ψr

n(β)+
(
0n−2
1

)
∗β . (6.164)

One can verify this by explicit calculation based on the block structure (6.159):

.ψn(β) =
(

Cn−1 1n−1
0"n−1 1

) (
ψr

n(β) 0n−1
∗β 1

)
C−1n

=
(

Cn−1ψr
n(β)+ 1n−1∗β ∗
∗β 1

) (
C−1n−1 ∗
0"n−1 1

)

=
(

(Cn−1ψr
n(β)+ 1n−1∗β)C−1n−1 ∗

∗ 1

)
. (6.165)

Thus,

. det(β̂n − In−1) = det
(
ψr

n(β)− In−1 +
(
0n−2
1

)
∗β

)
= det

⎛

⎝

a1

...
an−2

an−1+∗β

⎞

⎠ .

(6.166)

1 This is the content of Lemma 3.10 of [20] where the formula is written with a typo.
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By multiplying both sides of (6.166) by .(1− tn) and using (6.162), we obtain

.(1−tn) det(β̂n−In−1) = det

⎛

⎝

a1

...
an−2

(1−tn)(an−1+∗β)

⎞

⎠ = det

⎛

⎜
⎝

a1

...
an−2

(1−tn)an−1+∑n−1
i=1 (t i−1)ai

⎞

⎟
⎠

= det

⎛

⎝

a1

...
an−2

(t−1−1)tnan−1

⎞

⎠ = (t−1 − 1)tn det(ψr
n(β)− In−1)

where, in the third equality, we dropped from the sum all the terms proportional to
the rows different from .n− 1. �

Theorem 6.5 Let a knot K be the closure of a braid .β ∈ Bn and .ψn(β) ∈
GLn(Z[t±1]) the image of .β under the unrestricted Burau representation (where the
images of the standard Artin generators are linear in t). Let .β̂n be the .(n−1)×(n−1)
matrix obtained from .ψn(β) by throwing away the n-th column and the n-th row.
Then, the Alexander polynomial of K is given by the formula

.�K(t) = t
1−n−W(β)

2 det(In−1 − β̂n) (6.167)

where .Ik denotes the identity .k × k matrix and the writhe .W : Bn → Z can be seen
as the group homomorphism that sends the Artin generators to 1.

Proof We have the following formula for the Alexander polynomial proven in [20,
Theorem 3.13]:

.�K(t) = (−1)n−1t (n−1−W(β))/2 t − 1

tn − 1
det(ψr

n(β)− In−1) (6.168)

which is equivalent to (6.167) due to Lemma 6.1. �
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