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Abstract We prove new Lipschitz properties for transport maps along heat flows, 
constructed by Kim and Milman. For (semi)-log-concave measures and Gaussian 
mixtures, our bounds have several applications: eigenvalues comparisons, dimen-
sional functional inequalities, and domination of distribution functions. 

1 Introduction and Main Results 

In recent years, the study of Lipschitz transport maps has emerged as an important 
line of research, with applications in probability and functional analysis. Let us fix 
a measure . μ on . Rd . It is often desirable to write . μ as a push-forward .μ = ϕ∗η, for  a  
well-behaved measure . η and a Lipschitz map .ϕ : Rd → R

d . The main advantage of 
this approach lies in the fact that one can use the regularity of . ϕ to transfer known 
analytic properties from . η to . μ, compensating for the potential complexity of . μ. 

Perhaps the most well-known result in this direction is due to Caffarelli [7], 
which states that if . γd is the standard Gaussian in . Rd , and . μ is more log-concave 
than . γd , then there exists a 1-Lipschitz map .ϕopt such that .ϕopt∗ γd = μ. The  map  
.ϕopt is known as the optimal transport map [6]. Crucially, the Lipschitz constant 
of .ϕopt does not depend on the dimension d and, consequently, .ϕopt transfers 
functional inequalities from . γd to . μ, in a dimension-free fashion. For example, 
the optimal bounds on the Poincaré and log-Sobolev constants are recovered for 
the class of strongly log-concave measures [10]. The main goal of this work is 
to establish quantitative generalizations of this fact, for measures that are not 

D. Mikulincer (�) · Y.  Shenfeld  
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA 
e-mail: danmiku@mit.edu; shenfeld@mit.edu 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
R. Eldan et al. (eds.), Geometric Aspects of Functional Analysis, Lecture Notes 
in Mathematics 2327, https://doi.org/10.1007/978-3-031-26300-2_9

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26300-2protect T1	extunderscore 9&domain=pdf

 885 56845 a 885 56845 a
 
mailto:danmiku@mit.edu
mailto:danmiku@mit.edu

 8391 56845 a 8391 56845 a
 
mailto:shenfeld@mit.edu
mailto:shenfeld@mit.edu
https://doi.org/10.1007/978-3-031-26300-2_9
https://doi.org/10.1007/978-3-031-26300-2_9
https://doi.org/10.1007/978-3-031-26300-2_9
https://doi.org/10.1007/978-3-031-26300-2_9
https://doi.org/10.1007/978-3-031-26300-2_9
https://doi.org/10.1007/978-3-031-26300-2_9
https://doi.org/10.1007/978-3-031-26300-2_9
https://doi.org/10.1007/978-3-031-26300-2_9
https://doi.org/10.1007/978-3-031-26300-2_9
https://doi.org/10.1007/978-3-031-26300-2_9
https://doi.org/10.1007/978-3-031-26300-2_9


270 D. Mikulincer and Y. Shenfeld

necessarily strongly log-concave. To this end, we shall use a different transport map, 
.ϕflow, along the heat flow, of Kim and Milman [15], which was previously used, in 
the context of functional inequalities, by Otto and Villani [24].1 

In general, there is no reason to expect that an arbitrary measure could be 
represented as a push-forward of . γd by a Lipschitz map. Indeed, in line with the 
above discussion, such measures must satisfy certain functional inequalities with 
constants that are determined by the regularity of the mapping. Thus, we restrict our 
attention to classes of measures that contain, among others, log-concave measures 
with bounded support and Gaussian mixtures. 

We now turn to discuss, in greater detail, the types of measures for which our 
results shall hold. First, we consider log-concave measures with support contained in 
a ball of radius D. It is a classical fact that these measures satisfy Poincaré [25] and 
log-Sobolev [11] inequalities with constants of order D. For this reason, Kolesnikov 
raised the question of whether, in this setting, the optimal transport map .ϕopt is 
.O(D)-Lipschitz [17, Problem 4.3]. Up to now, the best known estimate, in [17, 
Theorem 4.2], gave a Lipschitz constant that is of order .

√
dD. One of our main 

contributions is to close this gap, for the map .ϕflow. In fact, we prove a stronger 
result that captures a trade-off between the convexity of . μ and the size of its support. 

In the sequel, for .κ ∈ R (possibly negative), we say that . μ is .κ-log-concave if its 
support is convex and, for .μ-almost every x, its density satisfies, 

. − ∇2 log

(
dμ

dx
(x)

)
� κId .

Theorem 1 Let . μ be a .κ-log-concave probability measure on . Rd , and set . D :=
diam(supp(μ)). Then, for the map .ϕflow : Rd → R

d , which satisfies .ϕflow∗ γd = μ, 
the following holds: 

1. If .κ > 0 then, 

. ‖∇ϕflow(x)‖op ≤ 1√
κ

,

for .μ-almost every x. 
2. If .κD2 < 1 then, 

. ‖∇ϕflow(x)‖op ≤ e
1−κD2

2 D,

for .μ-almost every x.

1 In general, the maps .ϕflow and .ϕopt are not the same, see [28]. 
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Item 1 of Theorem 1 follows from the result of Kim and Milman [15], and is 
analogous to Caffarelli’s result [7]. Item 2 improves and generalizes the bound in 
Item 1 in two ways: 

• When .κ > 0 and .κD2 < 1, since .e
1−κD2

2 D < 1√
κ
, Item 2 offers a strict 

improvement of the Lipschitz constant in Caffarelli’s result. 
• When .κ ≤ 0, Theorem 1 provides a Lipschitz transport map for measures that 

are not strongly log-concave. In particular, the case .κ = 0 is precisely the setting 
of Kolesnikov’s question [17, Problem 4.3]. 

Theorem 1 may also be compared with [9, Theorem 1.1], which studies Lipschitz 
properties of the optimal transport map when the target measure is a semi-log-
concave perturbation of . γd . We point out that the two results apply in different 
regimes: while our result applies to semi-log-concave measures with bounded 
support, the result of [9] requires that the support of the measure is the entire . Rd . 

The other type of measures we consider are Gaussian mixtures of the form . μ =
γd � ν, where . ν has bounded support. It was recently shown that these measures 
satisfy several dimension-free functional inequalities [3, 8, 30]. As we shall show, 
this phenomenon can be better understood and further strengthened by establishing 
the existence of a Lipschitz transport map. 

Theorem 2 Let . ν be a probability measure on . Rd with .diam(supp(ν)) ≤ R and 
consider .μ = γd � ν. Then, for the map .ϕflow : Rd → R

d , which satisfies . ϕflow∗ γd =
μ, 

. ‖∇ϕflow(x)‖op ≤ e
R2
2 ,

for almost every .x ∈ R
d . 

As mentioned above, the proofs of Theorems 1 and 2 follow from the analysis 
of Kim and Milman [15]. The main result of [15] is a generalization of Caffarelli’s 
result that establishes Lipschitz properties of .ϕflow, under an appropriate symmetry 
assumption. We shall extend the analysis to the classes of measures considered in 
Theorems 1 and 2. A similar, but in some sense orthogonal to this work, extension 
was recently performed by Klartag and Putterman [16, Section 3] where the authors 
considered transportation from . μ to .μ � γd . We also mention the concurrent work 
of Neeman in [22], which, using a similar method to one presented here, studied 
Lipschitz properties of bounded perturbations of the Gaussians, generalizing [9]. In 
the broader context, a similar map was recently used in [1]. 

Both of the results presented above deal with Lipschitz transport maps that push-
forward the standard Gaussian. As discussed, and as we shall demonstrate, the 
existence of such maps is important for applications. However, one could also ask 
the reverse question: for which measures . μ do we have .γd = ϕ∗μ, with . ϕ Lipschitz?
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To answer this question we introduce the class of .β-semi-log-convex measures, 
as measures . μ on . Rd , which satisfy, 

. − ∇2 log

(
dμ

dx
(x)

)

 βId ,

for some .β > 0. It follows from the definition that .supp(μ) = R
d (which is why 

.β > 0). In some sense, this is a complementary notion to being .κ-log-concave. Our 
next result makes this intuition precise. 

Theorem 3 Let .β > 0 and let . μ be a .β-semi-log-convex probability measure on 
. Rd . Then, for the inverse map .(ϕflow)−1 : Rd → R

d , which satisfies . (ϕflow)−1∗ μ =
γd , 

. ‖∇(ϕflow)−1(x)‖op ≤ √
β,

for almost every .x ∈ R
d . 

Let us remark that the same question was previously addressed in [17, Theorem 2.2], 
which expanded upon Caffarelli’s original proof, and obtained the same Lipschitz 
bounds, for .(ϕopt)−1. Thus, Theorem 3 gives a more complete picture by proving 
the analogous result for the map .(ϕflow)−1. 

Transport Along Heat Flows and the Brownian Transport Map It is tempting 
to compare Theorems 1 and 2 to the recent construction in [20] of the Brownian 
transport map. The results apply in similar settings, and the asymptotic dependen-
cies on all parameters are essentially the same. However, as we shall explain, the 
results are not strictly comparable. 

The constructions are qualitatively different: the domain of the Brownian 
transport map is the infinite-dimensional Wiener space, in contrast to the finite-
dimensional domain afforded by the above theorems. Since the Gaussian measure, 
also in infinite dimensional Wiener space, satisfies numerous functional inequalities 
with dimension-free constants, realizing a measure on . Rd as a push-forward of the 
Wiener measure turns out to be satisfactory for many applications. However, there 
are some applications that require a map between equal dimensions, which explains 
the need for the present work. We expand on such applications below. 

On the other hand, as demonstrated by Mikulincer and Shenfeld [20, Theorem 
1.5], in several interesting cases, the Brownian transport map is provably ’Lipschitz 
on average’. Bounding the averaged derivative of a transport map is an important 
property (related to the Kannan-Lovász-Simonovits conjecture [14] and to quanti-
tative central limit theorems [20, Theorem 1.7]) that seems to be out of reach for 
current finite-dimensional constructions. 

Having said the above, we do note that for log-concave measures, the Lipschitz 
constants of the Brownian transport map [20, Theorem 1.1] are usually better than 
the ones provided by Theorem 1. For Gaussian mixtures, the roles seem to reverse, 
at least when R is large, as Theorem 2 can be better than [20, Theorem 1.4].
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1.1 Applications 

As mentioned in the previous section, for some applications it is essential that the 
domain and image of the transport map coincide. Here we review such applications 
and state several new implications of Theorems 1 and 2. To keep the statements 
concise, we will not cover applications that could be obtained by previous results, 
as in [10, 20, 21]. 

1.1.1 Eigenvalues Comparisons 

A measure . μ is said to satisfy a Poincaré inequality if, for some constant . Cp(μ) ≥ 0
and every test function g, 

. Varμ(g) ≤ Cp(μ)

∫

Rd

‖∇g‖2dμ.

We implicitly assume that, when it exists, .Cp(μ) denotes the optimal constant. 
According to the Gaussian Poincaré inequality [2], .Cp(γd) = 1. If .μ = ϕ∗γd and . ϕ

is L-Lipschitz, this immediately implies .Cp(μ) ≤ L2. Indeed, 

. Varμ(g) = Varγd
(g ◦ ϕ) ≤

∫

Rd

‖∇(g ◦ ϕ)‖2dγd

≤
∫

Rd

‖∇ϕ‖2op (‖∇g‖ ◦ ϕ)2dγd ≤ L2
∫

Rd

‖∇g‖2dμ. (1) 

Note that the same argument works even if . ϕ is a map between spaces of different 
dimensions. However, for certain generalizations of the Poincaré inequality, as we 
now explain, it turns out that it is beneficial for the domain of . ϕ to be the same 
as the domain of . μ. If  . dμ

dx
= e−V and we define the weighted Laplacian . Lμ =

	−〈∇,∇V 〉, then .Cp(μ) corresponds to the inverse of the first non-zero eigenvalue 
of . Lμ. In [21, Theorem 1.7], E. Milman showed that a similar argument to (1) works
for higher order eigenvalues of . Lμ and . Lγd

. 
Since for .Lγd

the multiplicities of the eigenvalues grow with the dimension d, 
the full power of Milman’s argument requires that . ϕ is a map from . Rd to . Rd . 
Thus, by considering the map .ϕflow from Theorems 1 and 2 and applying Milman’s 
contraction principle, we immediately obtain:
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Corollary 4 Let . μ be a probability measure on . Rd and let .λi(Lμ) (resp. .λi(Lγd
)) 

stand for the . ith eigenvalue of . Lμ (resp. . Lγd
). Then, 

1. If . μ is .κ-log-concave, .D := diam(supp(μ)), and .κD2 < 1, 

. 
1

e1−κD2
D2

λi(Lγd
) ≤ λi(Lμ).

2. If .μ = γd � ν and .diam(supp(ν)) ≤ R, then 

. 
1

eR2 λi(Lγd
) ≤ λi(Lμ).

1.1.2 Dimensional Functional Inequalities 

Another direction for improving and generalizing the Poincaré inequality goes 
through dimensional functional inequalities, as in [4]. 

Let us give a first example, in the form of the dimensional Gaussian log-
Sobolev inequality [2], which is a strict improvement over the logarithmic Sobolev 
inequality. For .g : Rd → R+ we define its entropy relative to . μ as 

. Entμ(g) :=
∫

Rd

log(g)gdμ − log

⎛
⎜⎝

∫

Rd

gdμ

⎞
⎟⎠

∫

Rd

gdμ.

For . γd , the following holds: 

. Entγd
(g) ≤ d

2
log

⎛
⎜⎝1 + 1

d

∫

Rd

‖∇g‖2
g

dγd

⎞
⎟⎠ .

With the same argument as in (1) , and since the logarithm is monotone, we have the
corollary:

Corollary 5 Let . μ be a probability measure on . Rd and let .g : Rd → R+ be a test 
function. Then, 

1. If . μ is .κ-log-concave, .D := diam(supp(μ)), and .κD2 < 1, 

.Entμ(g) ≤ d

2
log

⎛
⎜⎝1 + e1−κD2

D2

d

∫

Rd

‖∇g‖2
g

dμ

⎞
⎟⎠ .
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2. If .μ = γd � ν and .diam(supp(ν)) ≤ R, then 

. Entμ(g) ≤ d

2
log

⎛
⎜⎝1 + eR2

d

∫

Rd

‖∇g‖2
g

dμ

⎞
⎟⎠ .

Another example is the dimensional weighted Poincaré inequality which appears 
in [5, Corrolary 5.6], according to which, 

.Varγd
(g) ≤ d(d + 3)

d − 1

∫

Rd

‖∇g(x)‖2
1 + ‖x‖2 dγd(x). (2) 

For certain test functions, this is a strict improvement of the Gaussian Poincaré
inequality. When the target measure is symmetric, we can adapt the argument in (1) ,
and obtain:

Corollary 6 Let . μ be a symmetric probability measure on . Rd . Then, for any test 
function .g : Rd → R, 

1. If . μ is .κ-log-concave, .D := diam(supp(μ)), and .κD2 < 1, 

. Varμ(g) ≤ d(d + 3)

d − 1
e1−κD2

D2
∫

Rd

‖∇g(x)‖2
1 + eκD2−1

D2 ‖x‖2
dμ(x).

2. If .μ = γd � ν and .diam(supp(ν)) ≤ R, 

. Varμ(g) ≤ d(d + 3)

d − 1
eR2

∫

Rd

‖∇g(x)‖2
1 + e−R2‖x‖2 dμ(x).

Proof Suppose that .μ = ϕ∗γd where .ϕ : Rd → R
d is L-Lipschitz and satisfies 

.ϕ(0) = 0. Then, by (2) ,

. Varμ(g) = Varγd
(g ◦ ϕ) ≤ d(d + 3)

d − 1

∫

Rd

‖∇(g ◦ ϕ(x))‖2
1 + ‖x‖2 dγd

≤ d(d + 3)L2

d − 1

∫

Rd

(‖∇g‖ ◦ ϕ(x))2

1 + ‖x‖2 dγd .

To handle the integral on the right hand side, we invoke the disintegration theorem 
[13, Theorems 1 and 2] to decompose . γd along the fibers of . ϕ in the following
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way: there exists a family of probability measures .{γx}x∈Rd , such that . supp(γx) ⊂
ϕ−1({x}), and satisfies 

. 

∫

Rd

h(x)dγd(x) =
∫

Rd

∫

ϕ−1({x})
h(y)dγx(y)dμ(x),

for every test function h. Hence, taking .h(x) = (‖∇g‖◦ϕ(x))2

1+‖x‖2 , 

. 

∫

Rd

(‖∇g‖ ◦ ϕ(x))2

1 + ‖x‖2 dγd(x) =
∫

Rd

∫

ϕ−1({x})

(‖∇g‖ ◦ ϕ(y))2

1 + ‖y‖2 dγx(y)dμ(x)

=
∫

Rd

∫

ϕ−1({x})

‖∇g(x)‖2
1 + ‖y‖2 dγx(y)dμ(x) ≤

∫

Rd

∫

ϕ−1({x})

‖∇g(x)‖2
1 + L−2‖x‖2 dγx(y)dμ(x)

=
∫

Rd

‖∇g(x)‖2
1 + L−2‖x‖2

⎛
⎜⎝

∫

ϕ−1({x})
dγx(y)

⎞
⎟⎠ dμ(x) =

∫

Rd

‖∇g(x)‖2
1 + L−2‖x‖2 dμ(x)

where in the inequality we have used the estimate .‖y‖ ≥ 1
L
‖x‖ for any y such 

that .ϕ(y) = x. Indeed, by assumption, .ϕ(0) = 0 and . ϕ is L-Lipschitz, which 
immediately yields . ‖ϕ(y)‖ ≤ L‖y‖.

Finally, when . μ is symmetric, our transport map, .ϕ := ϕflow, will turn out to 
be odd and, hence, satisfies .ϕflow(0) = 0 (see Remark 8). The result follows by 
combining the above calculations with Theorems 1 and 2. ��

1.1.3 Majorization 

For an absolutely continuous measure . μ, define its distribution function by 

. Fμ(λ) = Vol

({
x : dμ

dx
(x) ≥ λ

})
.

We say that . μ majorizes . η, denoted as .η ≺ μ, if for every .t ∈ R, 

. 

∞∫
t

Fη(λ)dλ ≤
∞∫
t

Fμ(λ)dλ.

In [19, Lemma 1.4], the following assertion is proven: If .μ = ϕ∗η for some . ϕ :
R

d → R
d , and .| det(∇ϕ(x))| ≤ 1 for every .x ∈ R

d , then .η ≺ μ.
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We use the singular value decomposition to deduce the identity . | det(∇ϕ(x))| =
d∏

i=1
σi(∇ϕ(x)), where .σi(∇ϕ(x)) stands for the . ith singular value of .∇ϕ(x). So, we 

have the implication, 

. ‖∇ϕ(x)‖op ≤ 1 �⇒ | det(∇ϕ(x))| ≤ 1.

By using Theorems 1 and 2 we can find regimes of parameters where .ϕflow is 1-
Lipschitz as required by the computation above. For log-concave measures it is 
enough to have a sufficiently bounded support, while for Gaussian mixtures one 
needs to both re-scale the variance and bound the support of the mixing measure. 
With this in mind, we get the following corollary: 

Corollary 7 Let . μ be a probability measure on . Rd . 

1. If . μ is .κ-log-concave, .D := diam(supp(μ)), .κD2 < 1, and .e
1−κD2

2 D ≤ 1, then, 

. γd ≺ μ.

2. If .μ = γ a
d � ν, where . γ a

d stands for the Gaussian measure with covariance . aId , 

and .
√

ae
diam(supp(ν))2

2a ≤ 1 then, 

. γd ≺ μ.

Proof For the first part, the condition .e
1−κD2

2 D ≤ 1, along with Theorem 1, ensures 
that the transport map .ϕflow is 1-Lipschitz. The claim follows from [19, Lemma 1.4]. 

For the second part, let .a > 0 and .X ∼ γ a
d � ν, where .diam(supp(ν)) = R. Then, 

.
1√
a
X ∼ γd � ν̃, and .diam(supp(ν̃)) ≤ R√

a
. Let .ϕflow be the .e

R2
2a -Lipschitz map, from 

Theorem 2, that transports . γd to .γd � ν̃. The above argument shows that . 
√

aϕflow

transports . γd to .γ a
d � ν and the map is .

√
ae

R2
2a -Lipschitz. Thus, if .

√
ae

R2
2a ≤ 1, there 

exists a 1-Lipschitz transport map, which implies the result. ��
The fact that a measure majorizes the standard Gaussian has some interesting 

consequences. We state here one example, which appears in the proof of [19, 
Corollary 2.14]. If .γd ≺ μ, then 

. hq(γd) ≤ hq(μ),

where, for .q > 0, 

.hq(μ) :=
log

(∫
Rd

(
dμ
dx

(x)
)q

dx

)

1 − q
,
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is the q-Rényi entropy. So, Corollary 1 allows us to bound the q-Rényi entropy from 
below for some measures. 

2 Proofs 

2.1 Preliminaries 

Before proving the main results, we briefly recall the construction of the transport 
map from [15, 24]. We take an informal approach and provide a rigorous statement 
at the end of the section. 

Let .(Qt )t≥0 stand for the Orenstein-Uhlenbeck semi-group, acting on functions 
.g : Rd → R by, 

. Qtg(x) =
∫

Rd

g(e−t x +
√
1 − e−2t y)dγd(y).

For sufficiently integrable g, we have, for almost every .x ∈ R
d , 

. Q0g(x) = g(x) and lim
t→∞ Qtg(x) = Eγd

[g].

Now, fix . μ, a measure on . Rd , with .f (x) := dμ
dγd

(x), and consider the measure-
valued path .μt := (Qtf )γd . We have  .μ0 = μ and, for well-behaved measures, 

we also have .μt
t→∞−−−→ γd. Thus, there exists a time-dependent vector field . Vt , for  

which the continuity equation holds (see [29, Chapter 8] and [26, Section 4.1.2]): 

. 
d

dt
μt + ∇ · (Vtμt ) = 0.

In other words, by differentiating under the integral sign, for any test function g, 

. 

∫

Rd

g

(
d

dt
Qtf

)
dγd =

∫

Rd

〈∇g, Vt 〉(Qtf )dγd .

We now turn to computing . Vt . Observe that, by the definition of . Qt , 

.
d

dt
Qtf (x) = 	Qtf (x) − 〈x,∇Qtf (x)〉.
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Hence, integrating by parts with respect to the standard Gaussian shows, 

. 

∫

Rd

g

(
d

dt
Qtf

)
dγd = −

∫

Rd

〈∇g,∇Qtf 〉dγd,

whence it follows that .Vt = −∇Qtf
Qtf

= −∇ logQtf. Now consider the maps 
.{St }t≥0, obtained as the solution to the differential equation 

.
d

dt
St (x) = Vt (St (x)), S0(x) = x. (3) 

The map . St turns out to be a diffeomorphism which transports . μ0 to . μt and we 
denote .Tt := S−1

t , which transports . μt to . μ0. We define the transport maps T and S 
as the limits 

. T := lim
t→∞ Tt , S := lim

t→∞ St ,

in which case, we have .T∗γd = μ and .S∗μ = γd . These are our transport maps 

. ϕflow := T and (ϕflow)−1 := S.

Remark 8 It is clear that if .f (x) = f (−x), then . Vt and, consequently, . St (see 
the discussion following [15, Lemma 3.1]) are odd functions. Hence, if the target 
measure is symmetric, .T (0) = 0. 

The above arguments are heuristic and require a rigorous justification (as in [15, 
Section 3]). For the sake of completeness, below, in Lemma 10, we prove sufficient 
conditions for the existence of the diffeomorphisms .{St }t≥0, .{Tt }t≥0 and for the 
existence of the transport maps S and T . 

We shall require the following approximation lemma, adapted from [22, Lemma 
2.1] (a generalization of [15, Lemma 3.2]), which we shall repeatedly use. 

Lemma 9 Let . η and . η′ be two probability measures on . Rd , and let .{ηk}k≥0, . {η′
k}k≥0

be two sequences of probability measures which converge to . η and . η′ in distribution. 
Suppose that for every k there exists an .Lk-Lipschitz map . ϕk with .(ϕk)∗ηk = η′

k . 
Then, if .L := lim sup

k→∞
Lk < ∞, there exists an L-Lipschitz map . ϕ with .ϕ∗η = η′. 

Moreover, by passing to a sub-sequence, we have that for .η-almost every x, 

. lim
k→∞ ϕk(x) = ϕ(x).

Proof Under the assumptions of the lemma, the existence of the limiting map . ϕ
is assured by the proof of [22, Lemma 2.1]. We are left with showing that . ϕ is 
L-Lipschitz. Let .r > 0, and observe that, since .lim supLk < ∞, there exists a sub-
sequence, still denoted . ϕk , such that, for every .k ≥ 0, . ϕk is .(L + r)-Lipschitz. It
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follows from [22, Lemma 2.1] that . ϕ is .(L + r)-Lipschitz. Since r is arbitrary the 
proof is complete. ��

We are now ready to state our main technical lemma. 

Lemma 10 Assume that . μ has a smooth density. 

• Suppose that, for every .t ≥ 0, there exists .at < ∞ such that, 

. sup
s∈[0,t]

‖∇Vs‖op ≤ at . (4) 

Then, there exists a solution, .{St }t≥0, to  (3) , which is a diffeomorphism, for every
. t ≥ 0.

• As .t → ∞, . μt converges weakly to . γd . 
• Suppose (4) holds, and that, for every .t ≥ 0, . Tt (resp. . St ) is  .Lt -Lipschitz. Then, 

if .L := lim sup
t→∞

Lt < ∞, the  map  T (resp. S) is well-defined and T (resp. S) is  

L-Lipschitz. 

Proof Combining the assumption on the smoothness of . dμ
dx

with (4) gives that, for
every .T < ∞, V is a smooth, spatially Lipschitz, function on .[0, T ] × R

d . Thus, 
by the Picard–Lindelöf theorem, [23, Theorem 3.1], there exists a unique global 
smooth (see [12, Chapter 1, Theorem 3.3] and the subsequent discussion) solution 
. St to (3). By inverting the flow, one may see that the maps . St are invertible. Indeed, 
for fixed .t > 0, consider, for .0 ≤ s ≤ t , 

. 
d

ds
Tt,s(x) = −Vt−s(Tt,s(x)), Tt,0(x) = x.

Then, .S−1
t := Tt := Tt,t , which establishes the first item. 

For the second item, note that the Orenstein-Uhlenbeck process is ergodic (see, 
for example, [15, Lemma 3.2]) and, hence, 

. lim
t→∞ ‖Qtf − Eγd

[f ]‖L1(γd ) = lim
t→∞ ‖Qtf − 1‖L1(γd ) = 0.

Thus, . μt converges to . γd in total variation, implying weak convergence. 
To see the third item, note that the first item establishes the existence of maps 

. St which satisfy, .(St )∗μ = μt , [26, Section 4.1.2]. The second item shows that, 
as .t → ∞, we may approximate . γd by . μt . These conditions allow us to invoke 

Lemma 9, which shows that there exists a sequence .tk
k→∞−−−→ 1, such that, for .μ-

almost every x, 

. S(x) := lim
k→∞ Stk (x),

is well-defined and such that .S∗μ = γd . Since . St is invertible, for every .t ≥ 0, the  
same argument, applied to . Tt , shows the existence of T .
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Finally, let us address the Lipschitz constants of S and T . We shall prove  the  
claim for S; the proof for T is identical. The previous argument shows that there 
exists a null set .E ⊂ supp(μ), such that, for every .z ∈ supp(μ) \ E, . lim

k→∞ Stk (z)

exists. So, for any .x, y ∈ supp(μ) \ E, 

. ‖S(x) − S(y)‖ = lim
k→∞ ‖Stk (x) − Stk (y)‖ ≤ lim sup

k→∞
Ltk‖x − y‖ ≤ L‖x − y‖.

This shows .‖S(x) − S(y)‖ ≤ L‖x − y‖, .μ-almost everywhere, which finishes the 
proof. ��

We shall also require the following lemma, which explains how to deduce global 
Lipschitz bounds from estimates on the derivatives of the vector fields . Vt . 

Lemma 11 Let the above notation prevail and assume that . μ has a smooth density. 
For every .t ≥ 0, let .θmax

t , θmin
t be such that 

. θmax
t ≥ λmax (−∇Vt (x)) ≥ λmin (−∇Vt (x)) ≥ θmin

t ,

for almost every .x ∈ R
d . Then, 

1. The Lipschitz constant of S is at most .exp

(
−

∞∫
0

θmin
t dt

)
. 

2. The Lipschitz constant of T is at most .exp

(∞∫
0

θmax
t dt

)
. 

Proof We begin with the first item. For every .t ≥ 0, we will show that 

.‖St (x) − St (y)‖ ≤ exp

⎛
⎝−

t∫
0

θmin
s ds

⎞
⎠ ‖x − y‖ for every x, y ∈ R

d . (5) 

The desired result will be obtained by taking .t → ∞ and invoking Item 3 of 
Lemma 10. 

Towards (5), it will suffice to show that, for every unit vector .w ∈ R
d , 

.‖∇St (x)w‖ ≤ exp

⎛
⎝−

t∫
0

θmin
s ds

⎞
⎠ .
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Fix .x,w ∈ R
d with .‖w‖ = 1, and define the function .αw(t) := ∇St (x)w. To  

understand the evolution of .‖αw(t)‖, recall that . St satisfies the differential equation 
in (3) . Thus,

. 
d

dt
‖αw(t)‖ = 1

‖αw(t)‖αw(t)T · d

dt
αw(t)

= 1

‖αw(t)‖wT∇St (x)T∇Vt (St (x))∇St (x)w

≤ −θmin
t

1

‖αw(t)‖wT∇St (x)T∇St (x)w = −θmin
t ‖∇St (x)w‖

= −θmin
t ‖αw(t)‖.

Since .‖αw(0)‖ = 1, from Gronwall’s inequality we deduce, 

. ‖∇St (x)w‖ = ‖αw(t)‖ ≤ exp

⎛
⎝−

t∫
0

θmin
s ds

⎞
⎠ .

Thus, (5) is established, as required.
The proof of the second part is similar, but this time we will need to show, for

every unit vector .w ∈ R
d , 

. ‖∇St (x)w‖ ≥ exp

⎛
⎝−

t∫
0

θmax
s ds

⎞
⎠ .

Indeed, this would imply .∇St (x)∇St (x)T � exp

(
−2

t∫
0

θmax
s ds

)
Id . Since . St is 

a diffeomorphism, and .Tt = S−1
t , by the inverse function theorem, the local 

expansiveness of . St implies 

. ∇Tt (x)∇Tt (x)T 
 exp

⎛
⎝2

t∫
0

θmax
s ds

⎞
⎠ Id .

So, for almost every .x ∈ R
d , .‖∇Tt (x)‖op ≤ exp

(
t∫
0

θmax
s ds

)
, and the claim is 

proven by, again, invoking Item 3 in Lemma 10.
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Let .αw(t) be as above. Then, 

. 
d

dt
‖αw(t)‖ = 1

‖αw(t)‖αw(t)T · d

dt
αw(t)

= 1

‖αw(t)‖wT∇St (x)T∇Vt (St (x))∇St (x)w

≥ −θmax
t

1

‖αw(t)‖wT∇St (x)T∇St (x)w = −θmax
t ‖∇St (x)w‖

= −θmax
t ‖αw(t)‖.

As before, Gronwall’s inequality implies 

. ‖∇St (x)w‖ = ‖αw(t)‖ ≥ exp

⎛
⎝−

t∫
0

θmax
s ds

⎞
⎠ ,

which concludes the proof. ��

2.2 Lipschitz Properties of Transportation Along Heat Flows 

2.2.1 Transportation from the Gaussian 

Our proofs of Theorems 1 and 2 go through bounding the derivative, . ∇Vt =
−∇2 logQtf , of the vector field constructed above, and then applying Lemma 11. 
Our main technical tools are uniform estimates on .∇2 logQtf , when the measures 
satisfy some combination of convexity and boundedness assumptions. 

Lemma 12 Let .μ = f γd and let .D := diam(supp(μ)). Then, for .μ-almost every x, 

. − ∇Vt (x) � − e−2t

1 − e−2t Id .

Furthermore, 

1. For every .t ≥ 0, 

. − ∇Vt (x) 
 e−2t
(

D2

(1 − e−2t )2
− 1

1 − e−2t

)
Id .
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2. Let .κ ∈ R and suppose that . μ is .κ-log-concave. Then, 

. − ∇Vt (x) 
 e−2t 1 − κ

κ(1 − e−2t ) + e−2t ,

where the inequality holds for any .t ≥ 0 when .κ ≥ 0, and for . t ∈[
0, 1

2 log
(

κ−1
κ

)]
if .κ < 0. 

3. If .μ := γd � ν, with .diam(supp(ν)) ≤ R, then, for .t ≥ 0, 

. − ∇Vt (x) 
 e−2tR2Id .

Proof Let .(Pt )t∈[0,1] stand for the heat semi-group, related to . Qt by . Qtf (x) =
P1−e−2t f (e−t x). In particular, 

. − ∇Vt (x) = ∇2 logQtf (x) = e−2t∇2 logP1−e−2t f (e−t x).

The desired result is now an immediate consequence of [20, Lemma 3.3 and 
Equation (3.3)], where the paper uses the notation .v(t, x) := ∇ logP1−t f (x). ��
By integrating Lemma 12 and plugging the result into Lemma 11 we can now prove 
Theorems 1 and 2. We begin with the proof of Theorem 2, which is easier. 

Proof of Theorem 2 Recall that .ϕflow is the transport map T , constructed in 
Sect. 2.1. Remark that the conditions of Lemma 10 are satisfied for the measures 
we consider: Lemma 12 ensures that (4) holds and . μ has a smooth density. 

If .μ := γd � ν, and . ν is supported on a ball of radius R, then, by Lemma 12, we  
may take .θmax

t = e−2tR2 in Lemma 11. Compute 

. 

∞∫
0

θmax
t dt = R2

2
.

Thus, .ϕflow is Lipschitz with constant . e
R2
2 . ��

The proof of Theorem 1 is similar, but the calculations involved are more tedious, 
even if elementary. 

Proof of Theorem 1 We begin by assuming that . μ has a smooth density, and handle 
the general case later with an approximation argument. Thus, as in the proof of 
Theorem 2, the conditions of Lemma 10 are satisfied, and we recall that .ϕflow is the 
transport map T . The first item of the Theorem is covered by Kim and Milman [15, 
Theorem 1.1] (the authors actually prove it for .κ = 1; the general case follows by a 

re-scaling argument), so we may assume .κD2 < 1. Set .t0 = 1
2 log

(
D2(κ−1)−1

κD2−1

)
. By
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optimizing over the first and second estimates in Lemma 12 we define, 

. θmax
t =

⎧⎨
⎩

e−2t (1−κ)

κ(1−e−2t )+e−2t if t ∈ [0, t0]
e−2t

(
D2

(1−e−2t )2
− 1

1−e−2t

)
if t > t0

.

Remark that when .κ < 0, .t0 < 1
2 log

(
κ−1
κ

)
, so the second bound of Lemma 12 

remains valid in this case. 
We compute, 

. 

∞∫
0

θmax
t dt =

t0∫
0

θmax
t dt +

∞∫
t0

θmax
t dt

=
t0∫
0

e−2t (1 − κ)

κ(1 − e−2t ) + e−2t
dt +

∞∫
t0

e−2t
(

D2

(1 − e−2t )2
− 1

1 − e−2t

)
dt

= −1

2
log(κ(1 − e−2t ) + e−2t )

∣∣∣∣
t0

0

+ 1

2

(
− D2

1 − e−2t
− log(1 − e−2t )

) ∣∣∣∣
∞

t0

= 1

2
log

(
1 − D2(κ − 1)

)
+ 1 − κD2

2
+ 1

2
log(D2)

− 1

2
log(1 − D2(κ − 1))

= 1 − κD2

2
+ 1

2
log(D2).

By Lemma 11, the Lipschitz constant of .ϕflow is at most 

. exp

⎛
⎝

∞∫
0

θmax
t dt

⎞
⎠ = e

1−κD2
2 D.

If . μ does not have a smooth density, by Lemma 9, it will be enough to show that 
. μ can be approximated in distribution by .{μk}k≥0, where each . μk is log-concave 
with bounded support and 

. lim
k→∞ diam(supp(μk)) = D.

For .ε > 0, let  .hε(x) = e
− 1

1−‖ x
ε ‖2 1{‖x‖≤ε} and define the measure . ξε with density 

proportional to . hε. Then, . ξε is a log-concave measure with smooth density and 
.diam(supp(ξε)) = ε. It is straightforward to verify that, for every .ε > 0, .με := ξε�μ
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is .κ-log-concave with smooth density. Further, as .ε → 0, . με converges to . μ, in  
distribution, and . lim

ε→0
diam(supp(με)) = D. The claim is proven. ��

2.2.2 Transportation to the Gaussian 

To prove Theorem 3 we will need an analogue of Lemma 12 with bounds in 
the other direction. This is done in the following lemma which shows that the 
evolution of log-convex functions along the heat flow is dominated by the evolution 
of Gaussian functions. The proof of the lemma is similar to the proof that strongly 
log-concave measures are preserved under convolution, [27, Theorem 3.7(b)]. The 
only difference between the proofs is that the use of the Prékopa-Leindler inequality 
is replaced by the fact that a mixture of log-convex functions is log-convex. 

Lemma 13 (Semi-Log-Convexity Under the Heat Flow) Let .dμ = f dγ be a 
.β-semi-log-convex probability measure on . Rd . Then, for almost every x, 

. − ∇Vt (x) � e−2t (1 − β)

(1 − e−2t ) (β − 1) + 1
Id .

Proof We let .(Pt )t≥0 stand for the heat semi-group, defined by 

. Ptf (x) =
∫

Rd

f (x + √
ty)dγd(y).

Since .−∇Vt (x) = ∇2 logQtf (x) = e−2t∇2 logP1−e−2t f (e−t x), it will be enough 
to prove, 

.∇2 logPtf (x) � (1 − β)

t (β − 1) + 1
Id . (6) 

We first establish the claim in the special case when . f (x) := ψβ(x) ∝
e− 1

2 (β−1)‖x‖2 , where the symbol . ∝ signifies equality up to a constant which does 
not depend on x, which corresponds to .μ = N (0, 1

β
Id). This case is facilitated 

by the fact that . Pt acts on f by convolving it with a Gaussian kernel. The result 
follows since a convolution of Gaussians is a Gaussian and since .∇2 log applied to 
a Gaussian yields the covariance matrix. To elucidate what comes next, we provide 
below the full calculation.
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For convenience denote .βt = (t (β − 1) + 1), and compute, 

. Ptψβ(x) ∝
∫

Rd

e− 1
2 (β−1)‖x+√

ty‖2e− ‖y‖2
2 dy

=
∫

Rd

exp

(
−1

2

(
(β − 1) ‖x‖2 + 2 (β − 1)

√
t〈x, y〉

+ (t (β − 1) + 1) ‖y‖2
))

dy

=
∫

Rd

exp

(
−βt

2

(
β − 1

βt

‖x‖2 + 2
√

t
β − 1

βt

〈x, y〉 + ‖y‖2
))

dy

= exp

(
−βt

2

(
β − 1

βt

(
1 − t

β − 1

βt

))
‖x‖2

)

×
∫

exp

(
−βt

2

∥∥∥∥√
t
β − 1

βt

x + y

∥∥∥∥
2
)

dy.

The integrand in the last line is proportional to the density of a Gaussian. Hence, the 
value of the integral does not depend on x, and 

. Ptψβ(x) ∝ exp

(
−βt

2

(
β − 1

βt

(
1 − t

β − 1

βt

))
‖x‖2

)

= exp

(
−1

2

(
(β − 1)

(
1 − t

β − 1

βt

))
‖x‖2

)

= exp

(
−1

2

(
β − 1

t (β − 1) + 1
‖x‖2

))
.

So, 

.∇2 logPtψβ(x) = (1 − β)

t (β − 1) + 1
Id , (7) 

which gives equality in (6).
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For the general case, the log-convexity assumption means that we can write 

.
dμ
dx

= eV (x)−β
‖x‖2
2 , for a convex function V . Hence, .f (x) ∝ eV (x)− 1

2 (β−1)‖x‖2 . 
With analogous calculations to the ones made above, we get, 

. Ptf (x) ∝
∫

Rd

eV (x+√
ty)− 1

2 (β−1)‖x+√
ty‖2e− y2

2 dy

= exp

(
−1

2

(
β − 1

t (β − 1) + 1
‖x‖2

))

×
∫

Rd

exp

(
V (x + √

ty) − βt

2

∥∥∥∥√
t
β − 1

βt

x + y

∥∥∥∥
2
)

dy

∝ Ptψβ(x)

∫

Rd

exp

(
V (x + √

ty) − βt

2

∥∥∥∥√
t
β − 1

βt

x + y

∥∥∥∥
2
)

dy.

Write .Ht(x) := ∫
Rd

exp

(
V (x + √

ty) − βt

2

∥∥∥√
t
β−1
βt

x + y

∥∥∥2
)

dy and observe by 

(7) ,

. ∇2 logPtf (x) = ∇2 logPtψβ(x) + ∇2 log(Ht (x)) = (1 − β)

t (β − 1) + 1
Id

+ ∇2 log(Ht (x)). (8) 

To finish the proof we will show that .∇2 log(Ht (x)) � 0, or , equivalently, that . Ht

is log-convex. By applying a linear change of variables, we can re-write . Ht as, 

. Ht(x) =
∫

Rd

exp

(
V

((
1 − t

β − 1

βt

)
x + √

ty

))
e− βt ‖y‖2

2 dy.

As V is convex, for every .t ≥ 0 and .y ∈ R
d , the function . x �→

V
((

1 − t
β−1
βt

)
x + √

ty
)

is convex. So, .Ht(x) is a mixture of log-convex 

functions. Since a mixture of log-convex functions is also log-convex (see [18, 
Chapter 16.B]), the proof is complete. ��

We now prove Theorem 3. 

Proof of Theorem 3 Recall that .(ϕflow)−1 is the transport map S, constructed in 
Sect. 2.1. Again, we begin by assuming that . μ has a smooth density, and one may 
verify that the conditions of Lemma 10 are satisfied, which makes S well-defined.
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Let .θmin
t = e−2t (1−β)

(1−e−2t )(β−1)+1
. Combining Lemma 13 with Lemma 11 shows 

that S is .exp
(∫ ∞

0 −θmin
t dt

)
-Lipschitz. Compute, 

. 

∫ ∞

0
−θmin

t dt =
∫ ∞

0
−e−2t (1 − β)

(1 − e−2t ) (β − 1) + 1
dt

= 1

2
log

(
(1 − e−2t )(β − 1) + 1

) ∣∣∣∞
0

= log(β)

2
.

Hence, S is .exp
(
log(β)

2

)
= √

β-Lipschitz. 

To finish the proof, we shall construct a family .{με}ε>0 of .βε-log-convex 
measures which converge to . μ in distribution as .ε → 0, and such that 

. lim
ε→0

βε = β.

The claim then follows by invoking Lemma 9. 
Let .γd,ε stand for the d-dimensional Gaussian measure with covariance . εId , and 

set .με = μ � γd,ε. It is clear that, as .ε → 0, . με converges to . μ in distribution. 
Moreover, if we replace f by . 

dμ
dx

, in  (8), we see that . με is .βε-log-convex, with, 

. βε := β

εβ + 1
ε→0−−→ β.

��
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