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Preface 

Since the mid-1980s, the following volumes containing collections of papers 
reflecting the activity of the Israel Seminar in Geometric Aspects of Functional 
Analysis have appeared: 

1983–1984 Published privately by Tel Aviv University 
1985–1986 Springer Lecture Notes in Mathematics, vol. 1267 
1986–1987 Springer Lecture Notes in Mathematics, vol. 1317 
1987–1988 Springer Lecture Notes in Mathematics, vol. 1376 
1989–1990 Springer Lecture Notes in Mathematics, vol. 1469 
1992–1994 Operator Theory: Advances and Applications, vol. 77, Birkhäuser 
1994–1996 MSRI Publications, vol. 34, Cambridge University Press 
1996–2000 Springer Lecture Notes in Mathematics, vol. 1745 
2001–2002 Springer Lecture Notes in Mathematics, vol. 1807 
2002–2003 Springer Lecture Notes in Mathematics, vol. 1850 
2004–2005 Springer Lecture Notes in Mathematics, vol. 1910 
2006–2010 Springer Lecture Notes in Mathematics, vol. 2050 
2011–2013 Springer Lecture Notes in Mathematics, vol. 2116 
2014–2016 Springer Lecture Notes in Mathematics, vol. 2169 
2017–2019 (I) Springer Lecture Notes in Mathematics, vol. 2256 
2017–2019 (II) Springer Lecture Notes in Mathematics, vol. 2266 

The first six were edited by J. Lindenstrauss and V. Milman, the seventh by 
K. Ball and V. Milman, the subsequent four by V. Milman and G. Schechtman, 
the subsequent one by B. Klartag, S. Mendelson and V. Milman, and the last four 
by B. Klartag and E. Milman. 

As in the previous Seminar Notes, the current volume reflects general trends 
in the study of Geometric Aspects of Functional Analysis, understood in a broad 
sense. A classical theme in the Local Theory of Banach Spaces is the Concentration 
of Measure Phenomenon, and the study of probability measures in high dimension. 
Several chapters study this phenomenon from different angles, through analysis on 
the Hamming cube, or via quantitative estimates in the Central Limit Theorem under 
thin-shell and related assumptions. Additionally, this volume includes contributions

v



vi Preface

discussing the interactions of this circle of ideas with Linear Programming and 
Sampling Algorithms, e.g. solving a question in online learning algorithms by 
using a classical convexity construction from the nineteenth century. Classical 
convexity theory plays a central role in this volume, as well as the study of 
geometric inequalities. Such inequalities, which are somewhat in spirit of the Brunn-
Minkowski inequality, shed light on convexity and on the geometry of Euclidean 
space. Probability measures with convexity or curvature properties, such as log-
concave distributions, occupy a central role, as well as the Gaussian measures and 
non-trivial properties of the heat flow in Euclidean spaces. All contributions are 
original research papers and were subject to the usual refereeing standards. 

The present volume also contains an extended introduction by Vitali Milman, 
outlining some main current directions and problems in the field of Asymptotic 
Geometric Analysis. 

Rehovot, Israel Ronen Eldan 
Rehovot, Israel Bo’az Klartag 
Edmonton, AB, Canada Alexander Litvak 
Haifa, Israel Emanuel Milman
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Asymptotic Geometric Analysis: 
Achievements and Perspective 

Vitali Milman 

Abstract The reader will have noticed the non-standard appearance of this piece. 
Indeed, we are used to reading papers which are either survey papers or research 
ones (or a mixture of both). However, it seems to be beneficial for a given field 
to sometimes take a pause and to observe the picture of the field’s development 
in a broad sense, from “above”, and to examine the directions in which things are 
progressing, in various directions, at the same time. This collection of short essays 
on some particular subdirections of the theory is an attempt to present such an 
overview. In recent years Asymptotic Geometric Analysis has grown enormously 
in its areas of interest, directions and results. Trying to understand and digest 
the picture of this development, I asked several experts who are close to me and 
represent the centers of various directions, to write for me a very concise and 
short description of their present central interests. More precisely, that part of 
their interests that relates to Asymptotic Geometric Analysis. Many agreed, and I 
am posting below the short texts I received. After each of them, I will place my 
comments, as well as some problems that arise when reading these texts. Of course, 
I know that a few promising and interesting directions are missing. Some articles 
I expected, I did not receive, and some directions are not active at present around 
me. It is my hope that such a presentation will add curiosity to some questions for 
experts, but more important, it will have, hopefully, a positive influence on the young 
generation joining this field. 

1 A Few Words About Asymptotic Geometric Analysis 

Asymptotic Geometric Analysis (AGA) studies properties of geometric objects, 
such as normed spaces, convex bodies, or convex functions on finite dimensional 
domains, when the dimensions of these objects increase to infinity. 

V. Milman (�) 
Department of Mathematics, Tel Aviv University, Tel Aviv, Israel 
e-mail: milman@tauex.tau.ac.il 
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2 V. Milman

The asymptotic approach reveals many very novel phenomena which influence 
other fields in mathematics, especially where a large data set is of main concern, 
or the number of parameters becomes uncontrollably large. One of the important 
features of this relatively new theory is in developing tools which allow studying 
high-parametric families. Among the tools developed in this theory are measure con-
centration, thin-shell estimates, stochastic localization, the geometry of Gaussian 
measures, volume inequalities for convex bodies, symmetrizations, and functional 
versions of geometric notions and inequalities (see [24] and [25]). 

This field started on the border between geometry and functional analysis in the 
1980s and 1990s. In this field, isometric problems that are typical for geometry in 
low dimensions are substituted by an “isomorphic” point of view, and an asymptotic 
approach (as dimension tends to infinity) is introduced. Geometry and analysis meet 
here in a non-trivial way. One central theme of this subject is the interaction of 
randomness and pattern. At first glance, life in a high dimension seems to mean the 
existence of multiple “possibilities”, so one may expect an increase in the diversity 
and complexity as dimension increases. However, the concentration of measure 
and effects caused by convexity show that this diversity is compensated, and order 
and patterns are created for arbitrary convex bodies in the mixture caused by high 
dimensionality. 

As mentioned in the abstract, in recent years Asymptotic Geometric Analysis 
has grown enormously in its areas of interest, directions and results. The following 
pieces, together, will hopefully help to understand and digest the picture of most of 
these development. After each short note, I am placing my comments, as well as 
some problems that arise when reading these texts. 

Throughout my comments I will use the following two references [24] and [25]. 

2 Semyon Alesker, Valuations 

2.1 Valuations on Convex Sets 

1 For a finite dimensional real vector space V let us denote by K(V ) the family 
of all convex compact subsets of V . A valuation is a functional φ : K(V ) → C 
satisfying the following additivity property 

. φ(K ∪ L) = φ(K)+ φ(L)− φ(K ∩ L),

whenever K, L, K ∪ L ∈ K(V ). Valuation is a very classical object which goes 
back at least to M. Dehn’s solution of the 3rd Hilbert problem in 1900. 

2 The class of all valuations is too large to control. It was realized by Hadwiger 
that there is a fruitful restriction of analytic nature: continuity of valuations in the 
Hausdorff metric on K(V ). It is roughly analogous to the condition of countable 
additivity of finitely additive measures. However the set of examples and most
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of intuition in the valuations theory and in the classical measure theory are quite 
different. 
There are many geometrically interesting examples of continuous valuations 
coming from convexity (e.g. mixed volumes), integral geometry, geometric 
measure theory (integration with respect to the normal cycle), and Monge-
Ampère operators. 

3 Fundamental results in the theory were obtained by Hadwiger in 1940s and 1950s 
and P. McMullen in 1970s. In 1995 there was a breakthrough in the theory: Klain 
[88] and Schneider [135] have obtained an explicit classification of translation 
invariant continuous so called simple (i.e. vanishing on convex sets with empty 
interior) valuations. Thus Klain showed that any such valuation which is also 
even is proportional to a Lebesgue measure; the odd case is due to Schneider and 
is more technical to state. The Klain-Schneider theorem turned out to be a basis 
for most of the subsequent developments. In particular it was used in the proof 
of Alesker’s irreducibility theorem [7] which says that the natural representation 
of the group GL(V ) in the space of translation invariant continuous valuations 
of given degree of homogeneity and parity is topologically irreducible, i.e. has no 
closed proper GL(V )-invariant subspaces. The irreducibility theorem also played 
a role in many of the subsequent developments. 
In the last two decades several new structures with non-trivial properties on 
valuations have been discovered. Some of them are discussed below. 
It was also realized that the notion of valuation can be extended beyond convexity, 
and one can imitate the space of valuations on an arbitrary smooth manifold [9]. 
This space retains some of the structures on valuations on convex sets. It has 
applications to integral geometry [38]. 
The main applications of valuations belong to integral geometry so far, see [89] 
for classical applications and [36, 38] for more recent ones. Most recently there 
were obtained applications of valuations to pseudo-Riemannian geometry [39], 
and geometric inequalities (discussed below). In the more recent applications the 
use of new structures plays an important role. 

4 In this note we discuss the recently discovered connection between valuations 
and geometric inequalities. Very recently Kotrbatý [99] has discovered a new 
fundamental property of valuations—the Hodge-Riemann (HR) type relations. He 
proved them for even valuations, and most recently Kotrbatý and Wannerer [100] 
proved HR for odd valuations. These results, in combination with previously 
developed theory, opened a way for applications of valuations to geometric 
inequalities. 
Furthermore Kotrbatý has formulated a conjectural more general (mixed) version 
of HR relations (MHR). We are going to formulate this conjecture as well as two 
new geometric inequalities which follow from Kotrbatý’s theorem. 

5 Let us introduce some background. Let V al∞(V ) denote the space of smooth 
translation invariant valuations on an n-dimensional vector space V equipped 
with the Garding topology. We omit here the formal definition of a smooth 
valuation as well as of the Garding topology: they are special cases of the standard 
notions of smooth vectors and the Garding topology on smooth vectors in the



4 V. Milman

representation theory (see e.g. [156], p. 33). Let us only mention that V al∞(V ) 
is dense in the space of continuous translation invariant valuations. Valuations of 
the form φ(K)  = vol(K + A) are smooth provided A has a smooth boundary 
with positive Gauss curvature. Denote 

. V al∞j (V ) := {φ ∈ V al∞(V )|φ(λK) = λjφ(K)∀λ > 0,∀K ∈ K(V )}.

We have McMullen’s decomposition with respect to degrees of homogeneity 

. V al∞(V ) = ⊕n
i=0V al∞i (V ).

Set V ali,∞(V ) := V al∞n−i (V ). 
6 The following result summarizes the first properties of the Bernig-Fu convolution. 

Theorem 2.1 (Bernig-Fu [36]) Fix a Lebesgue measure vol on V . 

(1) There exists a unique continuous (in the Garding topology) map called 
convolution 

. ∗: V al∞ × V al∞ → V al∞

such that if φ(•) = vol(• +  A), ψ(•) = vol(• +  B) then 

. (ψ ∗ ψ)(•) = vol(• + A+ B).

(2) (V al∞, ∗) is a commutative associative algebra with a unit (= vol). 
(3) V ali,∞ ∗ V alj,∞ ⊂ V ali+j,∞. 

7 Moreover (V al∞, ∗) satisfies the Poincaré duality: 

. V ali,∞ × V aln−i,∞ ∗→ V aln,∞ = C · χ

is a perfect paring, i.e. for any non-zero valuation φ ∈ V ali,∞ there exists ψ ∈ 
V aln−i,∞ such that φ ∗ ψ �= 0. 

8 In following conjecture all bodies Ai are assumed to have smooth positively 
curved boundary. Denote by VA the mixed volume VA(•) := V (•[n− 1], A). 

Conjecture 2.2 (Kotrbatý [99]) 

(1) (MHL) Let i <  n/2 then the map V ali,∞ → V aln−i,∞ given by 

. φ �→ φ ∗ VA1 ∗ · · · ∗ VAn−2i

is an isomorphism. 
(2) (MHR) Let i ≤ n/2. Define primitive subspace 

.P i = {φ ∈ V ali,∞|φ ∗ VA1 ∗ · · · ∗ VAn−2i
∗ VAn−2i+1 = 0}.
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Then on the subspace Pi the following Hermitian form is positive definite: 

. φ �→ (−1)iφ ∗ φ̄ ∗ VA1 ∗ · · · ∗ VAn−2i
≥ 0

with equality iff φ = 0. 

Remark 2.3 

(1) In the special case when all Ai = B are the Euclidean balls part (1) was 
proved by Alesker [8] (even valuations) and Bernig-Bröcker [35] (general 
case). 

(2) In the special case when all Ai = B part (2) was proved by Kotrbatý [99] for  
even valuations, and for odd ones by Kotrbatý-Wannerer [101]. 

(3) The case i = 1 of part (2) implies easily the Alexandrov-Fenchel inequalities. 
This case was proved by Kotrbatý-Wannerer [100] using the method of the 
proof of the Alexandrov-Fenchel inequality. 

9 As we have said, in the case when all Ai = B are Euclidean balls the 
Conjecture 2.2 is proven. In this case it has an equivalent version on the language 
of the product on valuations which is obtained by applying the Fourier type 
transform (this also was observed by Kotrbatý [99]). From the latter version 
Alesker obtained two new inequalities for mixed volumes as follows. We denote 
by �, ι1, ι2 : Rn → Rn × Rn = R2n the imbeddings �(x) = (x, x), ι1(x) = 
(x, 0), ι2(x) = (0, x). 

Theorem 2.4 (Alesker [12]) Let n ≥ 2. Let A1, . . . , An−1 ⊂ Rn be convex 
compact sets. Then we have two inequalities for mixed volumes (below Vn denotes 
the mixed volume in Rn and V2n denotes the mixed volume in R2n) 

. (a) V2n(ι1(A1), . . . , ι1(An−1); ι2(A1), . . . , ι2(An−1);�(B)[2]) ≥
V2n(ι1(A1), . . . , ι1(An−1);−ι2(A1), . . . ,−ι2(An−1);�(B)[2]),

(b) V2n(ι1(A1), . . . , ι1(An−1); ι2(A1), . . . , ι2(An−1);�(B)[2])+
V2n(ι1(A1), . . . , ι1(An−1);−ι2(A1), . . . ,−ι2(An−1);�(B)[2]) ≤

γnVn(A1, . . . An−1, B)2,

where γn is such a constant that the equality is achieved for A1 = · · · =  An−1 = 
B. 

2.2 Valuations on Functions 

1 While theory of valuations on convex sets is a classical part of convexity, 
the notion of valuation on a class of functions is recent. It is being mostly 
developed by M. Ludwig with her collaborators and students. This text is
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not supposed to be a survey of these developments but rather a glimpse into 
the subject. We focus on valuations on convex functions: examples and two 
recent results due to Colesanti, Ludwig, and Mussnig which are analogues of 
the classical McMullen’s decomposition [115] and Hadwiger’s characterization 
[78] on valuations on convex bodies. The choice of material reflects author’s 
taste. 

2 Let V denote a finite dimensional real vector space. Let F be a set of real valued 
functions on V (F does not have to be a linear space), e.g. the set of convex 
function, a Sobolev space etc. 

Definition 2.5 A function Z : F → R is called a valuation if 

.Z(max{f, g})+ Z(min{f, g}) = Z(f )+ Z(g) (1) 

for any f, g ∈ F such that max{f, g}, min{f, g} ∈ F .

3 Let us give two simplest examples of valuations on functions. 

Example 2.6 

(1) Z(f ) = 1 is a valuation on any class F . 
(2) Let Z be a linear functional on F (note that F does not have to be a vector 

space; the linearity of Z is understood whenever it makes sense). Then Z is 
a valuation on F . Indeed this follows from the identity 

. max{f, g} +min{f, g} = f + g.

More examples will be discussed below. 
4 Let us compare explicitly the notions of valuations on functions vs on convex 

bodies. This comparison can be considered as a motivation of Definition 2.5, 
but I am not sure that it was the historical one. Recall that a valuation φ on 
convex bodies is a functional on the class K(V ) of all convex compact sets 
φ : K(V ) → R such that 

.φ(K ∪ L)+ φ(K ∩ L) = φ(K)+ φ(L) (2) 

for any K,L ∈ K(V ) such that K ∪ L ∈ K(V ).
To see the relation between (1) and (2), recall that any convex compact set K 

is characterized uniquely by its supporting functional hK : V ∗ → R defined by 

. hK(ξ) = sup
x∈K

ξ(x).

The following properties are well known: 

(a) the map K �→ hK induces a bijection between K(V ) and the class of convex 
1-homogeneous functions on the dual space V ∗;
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(b) for K, L ∈ K(V ) one has K ∪ L ∈ K(V ) if and only if min{hK, hL} is 
convex; 

(c) if K ∪ L is convex then hK∪L = max{hK, hL} and hK∩L = min{hK, hL}; 
(d) a sequence {Ki} ⊂  K(V ) converges to K in the Hausdorff metric if and 

only if hKi → hK in C0(V ∗), i.e. uniformly on compact subsets of V ∗. 

Thus we see that valuations on K(V ) in the sense of (2) are identified with 
valuations on the class 

. F = {convex 1-homogeneous funcions on V ∗}.

Moreover valuations on K(V ) continuous in the Hausdorff metric correspond to 
valuations on F continuous with respect to C0(V ∗)-convergence. 
Translation invariant valuations on K(V ) correspond to valuations on this F 
satisfying 

.Z(f + l) = Z(f ) ∀f ∈ F and ∀ linear functional l on V ∗, (3) 

i.e. l ∈ V .
5 We have seen that valuations on K(V ) are the same as valuations on the class of 

convex 1-homogeneous functions on V ∗. Hence Definition 2.5 is more general 
than the definition of valuations on convex bodies since more general classes 
of functions F can be considered. In this note we restrict the discussion to the 
space of convex (not necessarily 1-homogeneous) functions. For valuations on 
Sobolev spaces see [108, 109, 113]. For valuation on Lp-spaces see [146]. 

6 The classical Legendre transform provides a general method to obtain new 
examples of valuations out of the known ones. To state it precisely, let us denote 

. Conv(V,R) := {f : V → R| f is convex},
Convsc(V ) := {f : V → R ∪ {+∞}| f is convex, l.s.c., and

lim|x|→∞
f (x)

|x| = ∞, f �≡ +∞}.

In the latter space the subscript sc stays for super-coersive which is the 
terminology used in the field. The l.s.c. means lower semi-continuous, i.e. for 
any x0 one has limx→x0 f (x)  ≤ f (x0). 
Recall that the Legendre transform is defined by 

. f ∗(ξ) := sup
x∈V

(ξ(x)− f (x)).

It establishes a bijection between Conv(V, R) and Convsc(V ∗), and f ∗∗ = f . 
Moreover Z is a valuation on Conv(V, R) if and only if [f �→ Z(f ∗)] is a 
valuation on Convsc(V ∗) (see [57], Section 3.2, and references therein for these
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facts). C0(V )-continuity corresponds to another kind of convergence which can 
be explicitly described; we omit the description. 

7 Let us remind the linear algebraic notion of mixed determinant. Let Hn(R) 
denote the space of real symmetric n × n matrices. The determinant 
det : Hn(R) → R is a homogenous polynomial of degree n. Then there exists a 
unique n-linear symmetric map (also denoted by det) 

. det : (Hn(R))n → R

such that det(A, . . . , A)  = det A for any A ∈ Hn(R). This map is called mixed 
determinant. 

Example 2.7 Let 0 ≤ k ≤ n. Let  In denote the identity matrix of size n. For  
any A ∈ Hn(R) the mixed determinant 

. det(A . . . , A
︸ ︷︷ ︸

k times

, In . . . , In
︸ ︷︷ ︸

n−k times

) =
(

n

k

)−1

[A]k,

where [A]k denotes the kth elementary symmetric polynomial in the eigenvalues 
of A. 

8 The following result [11] provides some examples of C0(Rn )-continuous 
valuations on Conv(Rn , R). 

Theorem 2.8 Fix 0 ≤ k ≤ n. Fix a sequence A1, . . . , An−k : Rn → Hn(R) of 
continuous functions, and a continuous function b : Rn → R. Assume that at 
least one of the functions b, A1, . . . , An−k has a compact support. 

(a) Then there is a unique C0(Rn )-continuous valuation Z on Conv(Rn , R) 
such that its value on any C2-smooth convex function f is equal to 

. Z(f ) :=
∫

Rn

b(x) det(HessRf . . . , HessRf
︸ ︷︷ ︸

k times

, A1, . . . , An−k)dx.

(b) Furthermore 

. Z(f+p)=Z(f)∀ polynomial p of degree 0 or 1 and ∀f ∈ Conv(Rn,R).

(4) 

Remark 2.9 

(1) This theorem is a relatively straightforward consequence of two general 
facts on expressions of the Monge-Ampère type. The continuity of Z 
follows from the Alexandrov’s theorem [6]. The valuation property of Z 
follows from Blocki’s theorem [42].
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(2) The class of valuations in Theorem 2.8 is not sufficient to get the Hadwiger 
type classification of valuations on convex functions obtained by Colesanti, 
Ludwig, and Mussnig [56]. We will see that the function b there might have 
a singularity at 0. 

9 Colesanti, Ludwig, and Mussnig [55] obtained an analogue of P. McMullen’s 
decomposition [115] of a valuation into homogeneous components. To state 
their result let us introduce a definition. 

Definition 2.10 A valuation Z : Conv(Rn , R) → R is called α-homogeneous 
if 

. Z(λf ) = λαZ(f )

for any f ∈ Conv(Rn , R) and any λ >  0. 

Theorem 2.11 ([55]) Let Z : Conv(Rn , R) → R be a C0(Rn )-continuous 
valuation satisfying condition (4). 

(a) Then there exist unique C0(Rn )-continuous valuations satisfying (4) 

. Z0, Z1, . . . , Zn : Conv(Rn,R) → R

such that each Zi is i-homogeneous and Z = Z0 + Z1 + · · · +  Zn. 
(b) Z is 0-homogeneous if and only if it is constant, i.e. Z(f ) is independent of 

f . 
(c) Z is n-homogeneous if and only if there is a compactly supported continu-

ous function b : Rn → R such that 

. Z(f ) =
∫

Rn

b(x) det HessR(f )dx

for any convex C2-smooth function f . 

10 Following [56] let us introduce analogues of intrinsic volumes. Let us 
denote Dn 

n := Cc([0,∞)). Let us denote by Dn 
0 the space of continuous 

functions ζ : (0, ∞) → R with bounded support such that there exists 
lims→+0

∫∞ 
s tn−1ζ(t)dt  <  ∞. Finally for 1 ≤ j ≤ n− 1 denote 

.Dn
j :=

{ζ ∈ C((0,∞))| supp(ζ ) is bounded and

lim
s→+0

sn−j ζ(s) = 0, ∃ lim
s→+0

∫ ∞

s

tn−j−1ζ(t)dt <∞}.
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Theorem 2.12 ([56]) Let 0 ≤ j ≤ n. Let ζ ∈ Dn 
j . There exists unique C0(Rn )-

continuous valuation V ∗j,ζ : Conv(Rn , R) → R such that its value on any C2-
smooth convex function f is equal to 

. V ∗j,ζ (f ) =
∫

Rn

ζ(|x|)[HessR(f )]j dx.

Clearly V ∗j,ζ is j -homogeneous, satisfies (4), and is rotation invariant, i.e. 
V ∗j,ζ (f ◦ O) = V ∗j,ζ (f ) for any convex function f and any transformation 
O ∈ SO(n). 

11 Now let us state the Hadwiger type theorem due to Colesanti, Ludwig, and 
Mussnig [56]. 

Theorem 2.13 ([56]) A functional Z : Conv(Rn , R) → R is a C0(Rn )-
continuous rotation invariant valuation satisfying condition (4) if and only if 

. Z =
n

∑

j=0

cjV
∗
j,ζ

for some constants cj ∈ R and functions ζj ∈ Dn 
j . 

2.3 Comments by V.M. 

Let us start with some comments to 2.1. I would like to explain to people 
of Functional Analysis and AGA how interesting and important the Theory of 
Valuation is. For this goal I will very compactly return to our discussion in [24] 
(see subsection “Valuation” in section B6). The definition of a function we call 
“valuation” is introduced in the first point 2.1.1. of the first Alesker’s article. Such 
a function may always be extended to finite unions of convex sets as a finitely 
additive function. Of course, after such an extension a valuation is a finitely additive 
functions on (special) subsets of a started set, and in modern terminology, finitely 
additive measure. The importance to study such measures became evident in the 
end of the nineteenth century, and Lebesgue and his student that time Emile Borel 
intensively studied this object. However, the class of such measures is too large 
to control. In order to have a more restricted class of measures which still covers 
interesting examples from geometry and analysis, one could try to look for an extra 
condition of analytic nature which would determine how the measures of sets behave 
with respect to limits. In the classical measure theory of Lebesgue this condition 
is countable additivity. To introduce such novel condition instead of more natural 
that time some kind of continuity condition was a huge step in Mathematics. Any 
kind of continuity was too restrictive for problems which occupied both, Lebesgue 
and Borel. As is well known, this condition, sigma additive measures, turned out
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to be extremely useful and is one of the pillars which created Functional Analysis. 
However, in classical convexity theory in .Rn a different condition was necessary. 
One of the most interesting examples like mixed volumes were NOT, in general, 
sigma additive. And then the mathematical mind had a step back, and a “new-
old” very useful condition of continuity of the valuation V on the class of convex 
compact sets with respect to the Hausdorff metric was introduced. To the best of 
our knowledge, this condition of continuity was first introduced and systematically 
studied by Hadwiger in 1957 (see [24] for references). To-day a continuity condition 
is a part of the definition of a valuation. 

Of course, “enough smooth” countably additive measures are the simplest 
examples of valuations. But usually valuations cannot be defined on too broad 
a class of sets, say on Borel sets. So, very different functionals, which are not 
measures are appearing when the closure of finite additive measures is taken in 
Hausdorff sense and not in the sense of sigma additivity. Let me provide only 
one simple example of valuation which is obviously extremely important. It is the 
surface area of a convex body as a functional on the class of all convex compact 
bodies in . Rn. Obviously, there is no sigma additive measure on . Rn which applying 
to a given convex body will provide its surface area. However, it is a valuation ON 
THIS CLASS. One short remark on quermassintegrals. As we noted they are not 
defined by measures on . Rn (beside the trivial one, namely volume). However, one 
may change the space on which the measure “lives”, and they will be defined by 
such new spaces with measures on them. For example, consider the space of all 
affine one dimensional lines with the uniform measure. Then for every convex body 
its measure in this space is, after proper normalization, the surface area of this body 
(this is simply “Crofton’s formula”, see for example [24, page 245]). Similarly, the 
mean-width can be defined by another “affine Grassmannian”: the uniform measure 
on all affine .(n − 1)-dimensional subspaces of . Rn. There is an even more general 
fact proved by Alesker, see e.g. [24], Theorem B.6.4. 

And now some remarks on the part 2.2. The introduction and study of valuations 
in the functional spaces is a very significant change of setting, especially because 
of its infinite dimensional background. Exactly this fact attracts me very much. 
I recall what is written above: the approach of valuation is a complimentary to 
another approach in the study of finitely additive functions/measures, which led 
Lebesgue and Borel to the notion of measure. However, the notion of a measure on 
the infinite dimensional spaces are not satisfactory. The experts who study and use 
Wiener measures, or, alternatively, Wiener process (also called Brownian motion) 
will violently disagree with me. However, I cannot feel comfortably with a measure 
which has zero value on any bounded subset of a Hilbert space. In the same time, 
we see through the work of Ludwig and then Colesanti , Ludwig and others (see 
Alesker’s article) that valuations may be defined in the infinite dimensional setting 
on important subclasses and behave very nicely. It provides some light, although 
weak, at the “end of the tunnel”. Of course, they are functionals, but not necessary 
linear functionals, and à-la-measure functionals. Of course, we may represent some 
subsets by their characteristic functions, and discuss valuation type property as 
a property of these functions. In point 2.2.4 of his article Alesker suggested, for
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the family of convex sets, another representation of these sets by functions, taking 
supporting functions as the representative family. Note, that a measure is also a 
(linear) functional on some classes of functions. But functions which are valuations 
highly increase the possibilities to play with them. 

Let me note that the use of measures in all developments in AGA was very 
crucial, but the main thing we were always interested is to know that some objects 
of interest have positive measure, because the positivity of the measure plays the 
role of existing results. We want to know that some objects exist, but we are unable 
to visualized them, and we prove their existence by proving that they exist with a 
positive measure (and usually we are able to prove that this measure is very close 
to one; one should correct and tell here that we are unable to prove a positivity 
of measure without proving that it is almost one). Very long ago, still before the 
valuation in the functional setting appeared, I dreamed to prove existence of some 
objects we are searching for in AGA, by proving that some (non-trivial) valuation is 
positive. For this goal I even “pushed” Alesker to study integration along valuations 
(not just volumes). And he created such very successful theory, but an application 
for AGA is still missing. Now, with the notion of valuation was extended to infinite 
dimensional setting, some very new applications became more visible. 

3 Shiri Artstein-Avidan, A Playground of Dualities 

In the progress of functionalization of duality [118], the importance of the Legendre 
transform [18], as the functional analogue of polarity for sets, became apparent. This 
brought about many functional theorems, as well as the framing of known functional 
inequalities as pure functional analogues of known geometric inequalities see [25, 
Chapter 9]. By this is meant more than just “a functional inequality from which 
the geometric one may be recovered” of which many were known, for example 
Bobkov’s functional isoperimetric inequality, but some more “geometric” way of 
considering all of these structures (something quite hard to define). 

In this process, a new duality transform (which we called the . A transform) 
emerged [17, 19], which was, up to linear terms, the only other order reversing 
involution on the class of geometric convex functions (non-negative lower semi 
continuous convex functions which vanish at the origin) except for the Legendre 
transform. The . A transform had its own “differential analysis” [20], where the 
gradient (and gradient map) which is closely associated with Legendre transform, 
is replaced by the “polar gradient” which points in the same direction but whose 
monotonicity is opposite in a sense (for example, in one dimension the gradient of 
a convex function is increasing but its polar gradient, when defined, is decreasing). 

The gradient map of a convex function and its properties are a key element 
in many proofs in convex geometry (for example Brenier map can be used to 
prove Brascamp-Lieb inequalities and their reverse). Understanding whether these
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properties are linked with the fact that it is the optimal transport with respect to the 
quadratic cost, in such a way that the inverse map is associated with the Legendre 
transform is an important goal. To this end, we rediscovered, and further developed 
[26] and [27], some of the optimal transport techniques for other costs. It turns out 
that the . A transform is linked with a different cost (in the same way that Legendre 
is linked with the quadratic cost), this cost being .− log(〈x, y〉 − 1)+. Further, it 
turns out that to every choice of cost, there is associated a class of sets (or functions, 
under some restrictions on the cost) on which the cost-transform serves as an order 
reversing involution [28]. In this sense, the specialty of . L and . A is that the associated 
class is the class of convex functions (or geometric convex functions) which was of 
interest to begin with. However, other costs can bring about other “convexity-type” 
classes, some of which were known to be of interest for other reasons (such as 
the class of so-called “flowers”, and the class of “reciprocal convex bodies”) and 
some of which are at the moment a curiosity, but might eventually lead us to new 
structures of interest expanding well about currently studied areas. 

In the same vein, any such cost and duality bring about their own “gradient 
map” and differential analysis, as well as other interesting directions of study, such 
as invariant sets (. L and polarity have only one, . A has many, other costs have 
none), corresponding Santaló-type inequalities, associated measure-concentration 
estimates, and many more. At the moment this serves as a big “playground” of 
possibilities, and the main challenge is to focus on the most useful members of 
this playground, which may serve to help solve and advance other problems and 
directions. 

3.1 Comments by V.M. 

It is a remarkable development to discover that the polarity-type transforms are a 
natural byproduct of the optimal transport way of thinking. Actually, it is shown in 
a number of publications by Shiri Artstein-Avidan and her collaborators (see, e.g. 
[28], Chapter 1, [25]) that any cost transform is also a polarity transform. 

In this connection I recall some question which I tried to promote around 10 years 
ago, but did not succeed, and which, may be, just inside the above development: 

Can the standard polarity transform K to .K◦ (for convex compact K with 0 in 
their interior) be realized as the solution of some extremal problem on the set of all 
n-dimensional (.dim K = n) convex compact bodies with 0 in their interior? 

Perhaps, it is just an interpretation of the above results. But it would be good to 
formulate it in such a way.



14 V. Milman

4 Ronen Eldan, Dimension-Free Concentration in 
High-Dimensional Distributions 

A functional inequality is said to be dimension-free if it has no explicit dependence 
on the dimension. This usually comes together with the fact that the extremizers 
of this functional inequality are sets defined by a constant number of directions 
in space. Perhaps the most canonical example of a distribution which exhibits 
dimension-free functional inequalities is the Gaussian space, which is just the space 
. Rn equipped with the standard Gaussian measure, whose density is 

. 
dγ

dx
:= (2π)−n/2 exp(−|x|2/2).

While the extremizers in the isoperimetric inequality in Euclidean space equipped 
with the Lebesgue measures are metric balls, in Gaussian space, the extremizers 
turn out to be halfspaces. 

Theorem 4.1 (Borell, Sudakov-Tsirelson [43, 140]) If .A ⊂ R
n is a measurable 

set and .H ⊂ R
n is a set of the form .{x; x · θ > t} with .γ (A) = γ (H) then for all 

.ε > 0 we have 

. γ (Aε) ≥ γ (Hε)

where .Aε := {x; ∃y ∈ A, |y − x| < ε}. 
Since the Gaussian measure is a product measure, the function .ε → γ (Hε) is 

independent of the dimension. A weaker fact is that the Gaussian measure satisfies 
a dimension-free Poincaré inequality. 

Corollary 4.2 For any differentiable .f : Rn → R, 

. VarX∼γ [f (X)] ≤ EX∼γ |∇f (X)|2,

and equality holds if and only if f is a linear function. 

In words, a function which does not typically vary locally in space, cannot vary 
in a global sense. 

Both linear functions and half-spaces essentially depend on one direction in 
space, in this sense the two inequalities are dictated “one-dimensional” objects. 

It is natural to look for other settings which exhibit the same behavior. Below we 
consider two such settings.
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4.1 Concentration Under a Convexity Condition 

A natural family of distributions, which contains the Gaussian distribution as a 
special case, are logarithmically-concave distributions. These are measures whose 
density is of the form . dμ(x)

dx
= exp(−V (x)) where .V : R

n → R is convex. 
An important subclass of these distributions are uniform measures over compact, 
convex sets with nonempty interior. Define the covariance matrix of a measure . μ on 
. Rn by 

. Cov(μ)i,j := E[XiXj ] − E[Xi]E[Xj ],

where .X ∼ μ. The following conjecture, by Kannan, Lovász and Simonovits ([84]) 
asserts that logarithmically concave measures exhibit dimension-free concentration. 

Conjecture 4.3 (KLS Conjecture [84]) There exists a universal constant . C > 0
such that 

. Varμ[f ] ≤ CEμ

[

|Cov(μ)−1/2∇f |2
]

.

The conjecture is known to imply the slicing problem by Bourgain [95]. 
A series of works, starting from [84], followed by works of Klartag, Guédon-

Milman and the author have been able to obtain increasigly better polynomial 
dependence on the dimension. A recent breakthrough by Chen [52] shows that the 
conjecture is true if C is replaced by .no(1), and very recently, Klartag and Lehec 
[93] have been able to replace C by a polylogarithmic factor. See [93] for history 
and references. 

4.2 The Discrete Hypercube 

Consider the discrete hypercube .Cn := {−1, 1}n equipped with a probability 
measure . ν. A natural counterpart for the Dirichlet form .E|∇f |2 is 

. Eν(f, f ) :=
∑

x∼y

ν({x})
ν({x})+ ν({y}) (f (x)− f (y))2,

where the summation is over all neighboring pairs of vertices on the discrete 
hypercube. A well-known fact is that if . ν is taken to be the uniform measure, then 
one has the Poincaré-type inequality 

.Varν[f ] ≤ CEν(f, f ), (5)
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where .C = 1/4. This is one of many senses in which the uniform measure on the 
discrete hypercube can be thought of as a discrete analogue of the Gaussian measure. 
An inequality of the above form has direct implications on the existence of sampling 
algorithms from the measure . ν, which is one motivation for studying the following 
question. 

Question 4.4 Find sufficient conditions on . ν under which (5) holds with a constant
C independent of the dimension n.

A recent line of works, starting with the work of Anari, Liu and Oveis Gharan 
[16] gives an interesting sufficient condition for a polynomial dependence on the 
dimension. For .w ∈ {−1, �, 1}n define .Rwν = ν|S(u) where . S(u) := {x; ui ∈
{xi, �}, ∀i ∈ [n]}, which we can understand as a “pinning” of some of the 
coordinates to given values. Moreover, define 

. �(ν)i,j := EX∼ν[Xi |Xj = 1] − EX∼ν[Xi |Xj = −1],

sometimes called the “influence matrix” of the measure. Finally, set . ηi(ν) =
max‖w‖=i ‖�(Rwν)‖OP where .‖w‖ = #{j,wj = ±1}. We have the following  
sufficient condition for an inequality of type (5) .

Theorem 4.5 ([16]) One has for all . ν and every test function f , 

. Varν[f ] ≤ Eν(f, f )

n−1
∏

i=0

(

1− ηi(ν)

n− i

)−1

.

This theorem ensures that a Poincaré inequality holds when the covariance structure 
of restrictions of the measures are well-behaved. 

A related condition for concentration was given in [62] in terms of the logarith-
mic Laplace transform of the measure . ν. Set 

. L[ν](θ) := log
∫

exp(〈x, θ〉)dν(x).

Theorem 4.6 ([62]) Suppose that . ν satisfies .‖∇2L[ν](θ)‖OP ≤ β for all .θ ∈ R
n. 

Then for any function f satisfying .|f (x)− f (y)| ≤ ‖x − y‖1, one has 

. Varν[f ] ≤ n2−c/(1+β)

The above theorem is just a small improvement over the trivial bound . Varν[f ] ≤
n2 which follows from the diameter of . Cn. We conjecture that a much stronger 
concentration, in the form of a dimension-free spectral gap should follow from the 
same assumption. 

Thus, the two above theorems are examples for (arguably) natural conditions 
which imply concentration inequalities, however at this point it is not quite well-
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understood what conditions should imply dimension-free concentration inequalities 
(which can easily be shown to be satisfied by the uniform measure). 

4.3 Comments by V.M. 

The goal of Eldan’s note, as I understand it, is how to increase efficiency of 
the Concentration Phenomenon approach to some problems, especially discrete 
problems. To achieve this goal, Eldan discusses different possibilities to improve 
concentration estimates. 

In my comments here I will suggest a different approach. The idea, as I will 
explain below, is taken from an old paper by M. Karpovsky and V. Milman ([87]). 
Our setting to demonstrate the idea will be an n-dimensional space .En

q over a final 
field of q elements. Let .M ⊂ En

q\0, .|M| = t and .|En
q\0| = qn − 1. Then (uniform) 

measure M in the set .E(n, q) = En
q\0 is . λ(M,En

q ) := λ = |M|/(qn−1) = t/(qn−
1). Denote .Gq(n, k) the discrete Grassmanian of all k-dimensional subspaces of the 
. En

q . The question we ask is the following: how to find the number . T = T (n, k0, q)

such that any set .M ⊂ En
q\0 of at least T elements will contain some .k0-dimensional 

subspace .E\0 ∈ Gq(n, k0). The exact answer may be found in that paper, but it is 
not the problem which interests us here, but the method to find it. So, we want to 
find E such that .λ(M ∩ E,E) = 1, but the original measure of M inside .En

q\0 is 
.λ = t/(qn − 1). 

Note that if we average .λ(M ∩E,E), E is k-dimensional, over .Gq(n, k) we will 
receive the same number . λ. However, because .λ(M ∩ E,E) · (qk − 1) must be an 
integer, we may find a subspace E such that .λ(M ∩ E,E) ≥]λ(qk − 1)[(]a[ is the 
smallest integer not less than a), and the measure of our set inside E is increased! 
One may think that this increase is insignificant and the exact answer cannot be 
achieved using such increases. However, what is shown in that paper that iterating 
this argument many times, reducing the dimension on every step only by 1 (i.e. for 
the starting dimension .dim n to go down to dimension .n − 1, then .n − 2, . . ., till 
the final dimension of . k0) we arrive at .λ(M ∩ E,E) = 1 exactly for the optimal 
dimension k. So, there is nothing lost at all if we “are not in a hurry” and repeat the 
trivial integration procedure maximal number of times. 

I would think that a similar idea should be tried, and may be useful, in the 
continuous case. 

The model problem I have in mind is the estimate in the Quotient of Subspace 
Theorem (QS-theorem): 

Theorem (Milman) Let X be an n-dimensional normed space. For every . 1 ≤ k <

n there exists a subspace .Y ∈ QS(X) with .dim(Y ) = n− k and 

. d(Y, �n−k
2 ) ≤ C

n

k
log

(

Cn

k
)

)

,

where .C > 0 is an absolute constant (see [24], th. 7.9.1, page 241).
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We would like to consider small codim. and write .k = αn. Then the estimate on 
the distance is 

. C
1

α
log

C

α
.

Note that for .k = 1 (i.e. .α = 1/n) the distance which the estimate provides 
is of the order n (I ignore here the logarithmic factor). However, we know that 
the worst possible distance of m-dim. space to the euclidean is of the order 
.
√

m. So, it is suspected that in the above estimate the correct answer should be 
.∼ C(1/

√
α) log C/α. So, where could we lose this . √? 

Recall that the original proof of the theorem used iteration of the .M∗-estimate of 
subspaces and quotient spaces (see Chapter 7 in [24]). However, we jumped in one 
step for a significant loss of dimension. But we can actually lose one dimension (or 
a few more) in one step (i.e. consider 1-codim. subspaces). This was impossible 
thinking when the original proof was discovered, but Gordon’s estimate on . M∗
which appeared later (see formula (7.3.9), p. 241, in the same book) provides such 
a possibility. 

5 Dmitry Faifman, the Weyl Principle in Valuation Theory, 
and Projective Geometries 

5.1 Intrinsic Volumes and the Weyl Principle 

The intrinsic volumes . μj in Euclidean space, also known as quermassintegrals, go 
back to Steiner’s formula. They are given by 

. vol(K + εBn) =
n

∑

j=0

μj (K)ωn−j ε
n−j ,

where K is any convex body, .Bk the k-dimensional Euclidean ball, and . ωk

its volume. The intrinsic volumes have many remarkable properties. Notably, 
Hadwiger has shown in 1957 [78] that they span the space of all continuous, rigid-
motion invariant valuations on convex bodies. 

The following remarkable property first observed by Weyl in 1939 [157] 
extended the intrinsic volumes from convexity to Riemannian geometry. Here we 
state it in a form taking advantage of the Nash embedding theorem.
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Theorem 5.1 (Weyl) Let M be a Riemannian manifold, and .Ak ⊂ M a sub-
manifold. Fix an isometric embedding .M ↪→ R

n, and denote . Aε = {x ∈ R
n :

dist(x,A) ≤ ε}. Then for .ε � 1, 

. vol(Aε) =
∑

j=0

μj (A)ωn−j ε
n−j ,

with coefficients .μj (A) that are independent of the isometric embedding. 

The statement remains true for rather general subsets A, such as compact dif-
ferentiable polyhedra. When .A = M , the values .μj (M) are known as the 
intrinsic volumes of M . They are given by integrals of the various Lipschitz-Killing 
curvatures; the most well-known is .μ0(M), which is just the Euler characteristic 
of M . Its integral representation .μ0(M) = ∫

M
LK0 is the contents of the Chern-

Gauss-Bonnet theorem. 
Weyl’s theorem took a more refined form with the introduction of the theory of 

valuations on smooth manifolds by Alesker in the early 2000s [13]. Namely, the 
k-th intrinsic volume assigns to a Riemannian manifold .(M, g) a valuation . μM

k ∈
V∞(M) which is k-homogeneous in . 

√
g, and commutes with isometric embeddings. 

Furthermore, the . μk generate a canonical finite dimensional subalgebra in . V∞(M)

with respect to the Alesker product, which in many cases can be related to the 
integral geometry of M . 

The proof of Weyl’s theorem is a rather technical but mostly straightforward 
computation; a substantial part of the computation can be sidestepped by exploiting 
the invariant theory of the orthogonal group, which was also developed by Weyl. 
However it is fair to say that a conceptual proof of Weyl’s theorem remains to be 
found. 

It is therefore natural to look for generalizations of Weyl’s theorem to other 
geometric settings, both for their own sake and in search of a unifying principle. 
Such extensions came to be known as the Weyl principle. 

In the Finsler setting, a linear Weyl principle holds. 

Theorem 5.2 (Alvarez Paiva-Fernandes [14], Bernig [34]) In a normed space 
.(Rn, F ) there exist intrinsic volumes .μF

j ∈ Val+j (Rn) which restrict to the Holmes-
Thompson k-volume on any given k-dimensional subspace. Moreover, their span is 
closed under the Alesker product. 

In fact, a multiplicative family of Holmes-Thompson intrinsic volumes is con-
structed for all reversible projective Finsler metrics. 

Contrasting the Euclidean model, it was shown recently that a full-fledged 
Finsleriean extension of the Weyl principle is not possible. 

Theorem 5.3 (Faifman-Wannerer [67]) There exists a 3-dimensional submani-
fold .M ⊂ R

6 and two different norms .F1, F2 on . R6 that induce the same Finsler 
structure on M , but the restrictions of the corresponding first intrinsic volumes 
.μ

F1
1 |M , .μF2

1 |M are distinct valuations.
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In light of those results, it is natural to ask how far the flat case can be extended. 

Question 5.4 For which families of Finsler metrics can Holmes-Thompson intrinsic 
volumes be defined? 

A particularly interesting case to understand would be that of the non-symmetric 
Funk metric, where invariance under projective polarity could be expected. For more 
on volume in Funk geometry, see the next section. 

In pseudo-Riemannian geometry, Weyl’s principle holds. The invariant valua-
tions in general have singularities. 

Theorem 5.5 (Bernig-Faifman-Solanes[40]) There is for each .k ≥ 0 a natural 
functor . μk , which assigning to a pseudo-Riemannian manifold a complex-valued 
generalized valuation .μk ∈ W−∞

k (M). The . μk extend the corresponding Rieman-
nian intrinsic volumes, and are compatible with isometric embeddings. 

A curious setting outside of metric geometry where the Weyl principle applies 
is that of contact manifolds. A contact structure is a maximally non-integrable 
hyperplane distribution on a manifold. 

Theorem 5.6 (Faifman[64]) A contact manifold .M2n+1 admits a canonical family 
of generalized valuations .μ2k ∈ W−∞

2k (M), .0 ≤ k ≤ n, which are compatible with 
contact embeddings. 

Finally, in a yet unpublished work, Bernig-Fu-Solanes-Wannerer construct a 
family of valuations on general Kähler manifolds that generalize the hermitian 
intrinsic volumes [37] in the same way Weyl’s theorem extends Euclidean intrinsic 
volumes. This last construction deviates from the Euclidean model, as the general 
Kähler manifold cannot be embedded into hermitian flat space even locally. 
Nevertheless, embedding is possible in a weaker sense, which proves sufficient. 

It is worthwhile to notice that the holonomy group of a Kähler manifold is 
restricted to the unitary group. This led to the following question of Alesker. 

Question 5.7 Which valuations, or valuation subalgebras, can naturally be defined 
on a Riemannian manifold with a specified holonomy group? 

Let us finally mention an intriguing conjecture of Alesker [10], that asserts the 
extendibility of intrinsic volumes of Riemannian manifolds to certain Alexandrov 
spaces with curvature bounded from below. 

5.2 Volume in Funk and Hilbert Geometries 

The Funk and Hilbert metrics are natural examples of projective metrics, namely 
metrics that have straight segments as geodesics. Given a convex body .K ⊂ R

n, 
the Funk metric . dF arises from the Finsler structure that has K as the unit tangent
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ball at each .x ∈ int(K), with origin at x. It amounts to the non-symmetric distance 
function 

. dF
K(x, y) = log

|xz|
|yz| , z = (x + R+(y − x)) ∩ ∂K.

The Hilbert metic is its symmetrization: .dH
K (x, y) = 1

2 (dF
K(x, y) + dF

K(y, x)). The 
Funk geometry is naturally affine-invariant, while Hilbert geometry is projectively 
invariant. Hilbert geometry has been studied quite extensively. One reason is that 
it generalizes hyperbolic geometry, and so contains hints to negative curvature 
phenomena in more general metric spaces. Another is the study of convex projective 
structures on manifolds, generalizing hyperbolic manifolds, where the Hilbert 
metric naturally replaces hyperbolic metric. Funk geometry received less attention. 

One class of problems in those geometries concerns the volume of metric 
balls. Let .BF/H

K (x,R) denote the ball of radius R around x in .K ⊂ R
n in the 

Funk/Hilbert geometry. A well-known question in Hilbert geometry, attributed to 
Colbois-Verovic, asks to maximize .EntH (K) = lim supR→∞

log vol(B(x,R))
R

, the  
volume growth entropy. 

Theorem 5.8 (Tholozan [144], Vernicos-Walsh [151]) For any K , . EntH (K) ≤
n− 1. 

The maximum is achieved by ellipsoids (corresponding to the hyperbolic metric), 
and in fact by all . C2 bodies K with positive gaussian curvature. The conjecture has 
been resolved recently, by two very different approaches: Tholozan used a difficult 
result from PDE of Cheng-Yau [54], effectively replacing the Hilbert metric with the 
Riemannian Blaschke metric; Vernicos-Walsh used subdivisions into flag simplices 
and approximated general convex sets by polyhedra. 

The question admits several refinements, which are in turn connected to some 
open questions in convex geometry. 

Question 5.9 For a fixed radius .0 < R <∞, find the extremal values of . MR(K) :=
infx∈int(K) vol(BK(x,R)) and describe all equality cases. 

Both Funk and Hilbert metrics can be addressed, and the definition of volume has to 
be specified. The connection to convex geometry is most pronounced for the Funk 
metric, with the Holmes-Thompson volume definition, which is the setting we will 
consider. 

Conjecturally, .MR(K) is maximized by ellipsoids for any R. This would 
strengthen and extend the Blaschke-Santaló inequality, which is recovered in the 
limit . R → 0. For .R → ∞, the centro-affine isoperimetric inequality is obtained. 
Presently ellipsoids are only known to maximize .MR(K) among unconditional 
convex bodies [65]. 

Minimizing .MR(K) for fixed R similarly extends the Mahler conjectured 
inequality .|K||Ko| ≥ |Bn|2, which is recovered in the regime .R → 0, with the 
same conjectured minimizers, namely the Hanner polytopes. Of particular interest 
is the regime .R →∞. The general case is well understood, as follows.
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Theorem 5.10 (Vernicos [150], Vernicos-Walsh [151]) . c(K) := lim supR→∞
MR(K)

Rn is only finite for polyhedra, and is minimized by simplices. 

In fact, .c(K) is proportional to a combinatorial invariant known as the full flag 
number—it is the number of chains vertex.⊂ · · · ⊂ k-dimensional face. ⊂ · · · ⊂
K . Under the additional assumption of central symmetry, it is an old and open 
conjecture of Kalai [83] that the full flag number of a polytope is minimized by 
Hanner polytopes. A related conjecture, also of Kalai, is the minimality of the 
total face number of all dimensions among all centrally symmetric polytopes, again 
conjectured to be achieved by Hanner polytopes. 

It’s also worthwhile to note that the full flag number of a polyhedron recently 
appeared as a limiting value of another interesting affine construction in convex 
geometry, that of floating bodies and affine surface area [41]. More precisely, letting 
. Kδ denote the .δ-floating body of K , we have  

Theorem 5.11 (Besau-Schuett-Werner) For a polyhedron .P ⊂ R
n, 

. lim
δ→0+

|P | − |Pδ|
δ(log 1

δ
)n−1

= flag(P )

n!nn−1
.

Let us finally mention a surprising property of the Funk metric. While the Funk 
metric in .int(K) is only an affine invariant, many of the invariants associated to it 
are in fact projective invariants, most notably the Holmes-Thompson volume of a 
domain .� ⊂ K , and the billiard dynamics it induces on . �. Moreover when . � is 
itself convex, both are invariant under the projective duality .(K,�) ↔ (�∨,K∨). 
This further suggests the intriguing possibility of relating Funk geometry to the 
Mahler and Viterbo conjectures 

5.3 Comments by V.M. 

I don’t feel Funk and Hilbert geometries in Convex bodies. Faifman’s article is 
about volume in these geometries. But I would like to understand the geometries 
themselves. So, the first, introductory question is: Does, say, Hilbert geometry 
uniquely define euclidean balls? 

I presume the answer is yes, and it may even be known. 
But, also, how stable is it? How does the distance of the (Funk) Hilbert metric of 

K from this distance of the euclidean ball (of some radius) influence the distance of 
K from the euclidean ball? 

What kind of Dvorestsky-type theorem is possible in this metric, or QS-theorem?
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6 Bo’az Klartag, Recent Developments Towards 
Understanding the Distribution of Volume in High 
Dimensions 

Upon first encountering geometry in high dimensions, one might think that the 
diversity and the rapid increase of the number of configurations would make it 
impossible to formulate general, interesting theorems that apply to large classes 
of high-dimensional geometric objects. However, it turns out that the contrary is 
often true. One example is the classical Central Limit Theorem, stating that product 
measures in high dimensions are rather regular and well-behaved, in the sense 
that they have approximately Gaussian marginals. Another example is Dvoretzky’s 
theorem which demonstrates that any high-dimensional convex body has nearly-
Euclidean sections of a high dimension. 

There is a strong motif in high-dimensional geometry which compensates for 
the vast amount of different possibilities. This is the concentration of measure 
phenomenon, put forth by Milman starting with his proof of Dvoretzky’s theorem. 
Quite unexpectedly, a scalar Lipschitz function on a high-dimensional space 
behaves in many cases as if it were a constant function. For example, if we sample 
10 random points from the n-dimensional unit sphere, for large n, and substitute 
them into a 1-Lipschitz function, then we will almost certainly obtain 10 numbers 
that are very close to one another. This phenomenon is reminiscent of the well-
known geometric property that in the high-dimensional Euclidean sphere, “most of 
the mass is close to the equator, for any equator”. This geometric property, which 
may be strengthened using the spherical isoperimetric inequality, is unthinkable in, 
say, three dimensions. 

Convexity assumptions fit naturally with high dimensionality, and enable us to 
harness this motif in order to formulate non-trivial theorems. For example, using 
concentration of measure ideas, we established the Central Limit Theorem for 
Convex Bodies, stating that if X is a random vector that is distributed uniformly 
in some convex body in . Rn, then there exists .0 �= θ ∈ R

n such that 

. 〈X, θ〉
is approximately a Gaussian random variable of mean zero and variance one; the 
total variation distance between .〈X, θ〉 and the Gaussian is at most .C/nα where 
.C, α > 0 are universal constants. The general understanding that has emerged is 
that geometric conditions such as convexity, or positive Ricci curvature, may replace 
strong regularity assumptions such as symmetry or independence of the random 
variables. 

Still, one of the central questions in high-dimensional convex geometry remains 
unsolved. This is the “slicing problem” originating from Bourgain’s work in the 
1980s. In its simplest formulation, the question is whether for any convex body 
.K ⊆ R

n of volume one, there exists a hyperplane .H ⊆ R
n such that 

.Voln−1(K ∩H) > c,
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where .c > 0 is a universal constant, and .Voln−1 stands for .(n − 1)-dimensional 
volume. Surprisingly, the answer to this simple-looking question is still unknown. 
It has several implications for convexity and quite a few equivalent formulations. 
Let us mention just one of these equivalent formulations: Suppose that .K ⊆ R

n is 
a convex body of volume one. Does there exist an ellipsoid .E ⊆ R

n of volume one, 
such that the volume of .K∩CE is at least . 1/2, where .C > 0 is a universal constant? 

For many years, the best estimate for Bourgain’s slicing problem has been .n1/4. 
That is, we knew that a convex body of volume one in . Rn has a hyperplane section 
whose .(n − 1)-dimensional volume is at least .c · n−1/4. A trivial bound is .c/

√
n, 

which follows from Fubini theorem (since a convex body of volume one has a 
direction in which its width is at most .C

√
n; recall that a Euclidean ball of volume 

one has a radius of the order of magnitude . 
√

n). There were reasons to believe that 
.n1/4 is the right answer, and in fact, there were three completely different proofs 
that led to this .n1/4: 

1. The original proof by Bourgain, from the 1980s, relying on comparison with 
Gaussian processes and Pisier’s deep theorem on the K-convexity constant. This 
proof yields an unnecessary logarithmic factor [47]. 

2. The author’s argument from 2005 going through random “tilts” of the original 
convex body, through the log-Laplace transform, which utilizes Paouris’ large 
deviations estimate. 

3. The Lee-Vempala approach from 2016, that used the heat flow and Eldan’s 
stochastic localization, in order to bound the thin-shell constant by .Cn1/4, which 
implies the same bound for the slicing problem. 

At the time, the impression was that one perhaps needs to construct a counter-
example. An analogous problem for projections of convex bodies was settled in 
the negative by Ball in the 1980s. Experts tried to construct a counter example by 
using random matrices: after all, if we work in dimension .n × n = n2, then we are 
aiming at estimates involving .(n2)1/4 = √n, which is a prevalent scale in random 
matrix theory. Surprisingly, towards the end of 2020, Yuansi Chen improved the 
.n1/4 bound to .Cεn

ε , for all .ε > 0. His proof relied on familiar techniques, such as 
stochastic localization, with an ingenius regularity lemma that was proved by clever 
manipulations of 3-tensors. It feels as if we had a psychological block, a fixation on 
.n1/4, and a young newcomer showed us the light. 

We now switch gears and move to a more technical description. For .n ≥ 1 define 

. 
1

Ln

:= inf
K⊆Rn

sup
H⊆Rn

Voln−1(K ∩H),

where the infimum runs over all convex bodies .K ⊆ R
n of volume one, and the 

supremum runs over all hyperplanes .H ⊆ R
n. Thus for years we knew that . Ln ≤

Cn1/4, and then Chen proved that for any .ε > 0, 

.Ln ≤ C1 exp
(

C2
√

log n ·√log log(3n)
)

≤ Cεn
ε. (6)
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Chen arrives at (6) by exploiting the relation between the slicing problem and the 
thin-shell problem, due to Eldan and Klartag, who proved that 

.Ln ≤ Cσn, (7) 

where . σn is the thin-shell constant which we will describe shortly. A probability 
density . ρ in . Rn is log-concave if the set .{ρ > 0} = {x ∈ R

n ; ρ(x) > 0} is convex, 
and .log ρ is concave in .{ρ > 0}. A probability measure in . Rn (or a random vector 
in . Rn) is log-concave if it is supported in an affine subspace of . Rn and it has a log-
concave density in this subspace. For instance, the uniform probability measure on 
any compact, convex set is log-concave, as well as all Gaussian measures. We say 
that a log-concave probability measure . μ on . Rn is isotropic if 

. 

∫

Rn

xidμ(x) = 0 and
∫

Rn

xixj dμ(x) = δij (i, j = 1, . . . , n),

(8) 

where . δij is Kronecker’s delta. Thus, a log-concave probability measure is isotropic 
when it has mean zero and identity covariance. A log-concave probability measure 
has moments of all orders and the convolution of two log-concave probability mea-
sures is again log-concave. The relevance of the class of log-concave distributions 
to the slicing problem was realized by Ball in the 1980s. The thin-shell constant . σμ

of an isotropic, log-concave probability measure . μ in . Rn is defined via 

.nσ 2
μ = V arμ(|x|2), (9) 

where .V arμ(f ) = ∫

f 2dμ− (∫

f dμ
)2. It may be shown that most of the mass of 

the measure . μ is located in a thin spherical shell whose width is at most .Cσμ, and 
this estimate for the width is always tight, hence the name thin-shell constant. The  
thin-shell constant is crucial for establishing the Central Limit Theorem for convex 
sets. The parameter . σn mentioned above is defined as 

. σn = sup
μ in Rn

σμ

where the supremum runs over all isotropic, log-concave probability measures . μ in 
. Rn. Earlier bounds for . σn utilized the Concentration of Measure Phenomenon, but 
more recent advances, due to Eldan, Lee and Vempala and to Chen, deal with the 
Poincaré constant. The Poincaré constant .CP (μ) of a Borel probability measure . μ
in . Rn is defined as the smallest constant .C ≥ 0 such that for any locally-Lipschitz 
function .f ∈ L2(μ), 

.V arμ(f ) ≤ C ·
∫

Rn

|∇f |2dμ. (10)
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The fact that .σμ ≤ 2CP (μ) for an isotropic, log-concave probability measure . μ is 
easily proven: 

.nσ 2
μ = V arμ(|x|2) ≤ 4CP (μ)

∫

Rn

|x|2dμ(x) = 4nCP (μ). (11) 

The Poincaré constant is closely related to the isoperimetric constant or the Cheeger
constant of . μ. Given a probability measure . μ in . Rn with log-concave density . ρ, its 
isoperimetric constant is 

. 
1

ψμ

= inf
A⊆Rn

∫

∂A
ρ

min{μ(A), 1− μ(A)}
where the infimum runs over all open sets .A ⊆ R

n with smooth boundary. By the 
Cheeger inequality and the Buser-Ledoux inequality, for any absolutely-continuous, 
log-concave probability measure . μ in . Rn, 

.
1

4
≤ CP (μ)

ψ2
μ

≤ π, (12) 

where the inequality on the left—Cheeger’s inequality—is rather general and does
not require log-concavity. Define

.ψn := sup
μ in Rn

ψμ (13) 

where the supremum runs over all isotropic, log-concave probability measures . μ

in . Rn. The Kannan-Lovász-Simonovits (KLS) conjecture from the 1990s suggests 
that . ψn is bounded by a universal constant. Thanks to (7), (11) and (12) we have the  
chain of inequalities 

.Ln ≤ Cσn ≤ C̃ψn, (14) 

where .C, C̃ > 0 are universal constants. The right-hand side inequality in (14) 
may be reversed, up to a logarithmic factor. A deep theorem by Eldan from 2012 
(Stochastic Localization was invented for its proof) states that 

.ψ2
n ≤ C log n ·

n
∑

k=1

σ 2
k

k
≤ C̃ log2 n · σ 2

n , (15) 

where the second inequality follows from the fact that .σn+1 ≥ σn, which follows 
from the fact that .V ar(|X|2 + Z2) ≥ V ar(|X|2) when X is a log-concave 
random vector in .Rn and Z is any real-valued, log-concave random variable that
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is independent of X. Chen uses Eldan’s stochastic localization and the analysis of 
Lee and Vempala in order to show that 

.ψn ≤ C1 exp
(

C2
√

log n ·√log log(3n)
)

, (16) 

where .C1, C2 > 0 are universal constants. This bound implies (6), in view of (14). 
The bound in (16) grows slower than any power law, and it is natural to expect that 
this bound for . ψn may be improved to a polylogarithmic one. This is indeed true, as 
we recently showed with Lehec: for any .n ≥ 2, 

.ψn ≤ C(log n)α (17) 

for some universal constants .C, α > 0. Our proof yields .α ≤ 5, though this exponent 
is probably non-optimal. For slicing, we obtain .Ln ≤ (log n)4. As of March 2022, 
it is the logarithmic factor that is yet to be understood in the slicing problem and the 
KLS isoperimetric conjecture. 

For more thorough information about the interaction between high-dimension-
ality and convexity, we may refer the reader for instance to the recent book 
“Asymptotic Geometric Analysis I+II” by Artstein-Avidan, Giannopoulos and 
Milman, and to references therein. 

6.1 Comments by V.M. 

1. For the integers 1 ≤ k <  n, define the number C(k, n) as the smallest number 
C s.t. ∀ K and T in Kn 

s (i.e. centrally symmetric convex compact bodies) the 
inequalities 

. Volk(K ∩ E) ≤ Volk(T ∩ E) ,

for every subspace E ∈ Gk,n, imply  

. Vol K ≤ C Vol T .

The result of Klartag–Lehec discussed in Klartag’s article shows that C(n − 
1, n)  ≤ C(log n)4 for some universal C >  0. This is a great result which follows 
40 years of non-trivial development. Obviously, C(1, n)  = 1 (as in this case 
K ⊆ T ). Just recently Klartag improved this to C(n − 1, 1) ≤ C

√
log n where 

C >  0 is a universal constant, see [92]. 

Question Does C(k, n) grow monotonically for a fixed n and 1 ≤ k ≤ n/2? 
It is an open question if C(2, n)  = 1 and C(3, n)  = 1. However, it is known after 

Bourgain and G. Zhang [49] that C(k, n) > 1 for any k >  3. (See Koldobsky [96].)
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But the behavior of C(k, n) for a fixed k >  3 and n → ∞  is not known. 
Assuming that C(n− 1, n)  is not bounded and, as I expect, has logarithmic growth, 
I would expect that C(k, n) has polylogarithmic growth by k (and n� k). 

2. Now, when we have an upper estimate for the slicing problem of the order of a 
multi-logarithmic of the dimension, the search for counter-examples becomes 
different. We may expect only logarithmic low bound. I will describe below 
some series of convex bodies which I suspect may have isotropic constants which 
increase with dimension. I thought about these kind of examples already 20 years 
ago, but the second proof by Klartag provided power-type upper bound again as 
in Bourgain’s results n1/4, and this created the feeling that this may be the actual 
answer. This stopped considering examples which may provide only logarithmic 
low bounds. 

We describe first the special embeddings of the sphere Sk−1 to higher-
dimensional spheres SN−1. These embeddings ϕ : Sk−1 → SN−1 will be actually a 
factor of isometry: 

. denote ϕ(Sk−1) = M ⊂ SN−1 and

dM(u, w) := the length of the shortest curve inside M joining u ∈ M with w ∈ M . 
Then 

. dM

(

ϕ(x), ϕ(y)
) = C · ρ(x, y) .

where ρ is the geodesic distance on Sk−1. 
Of course, such embeddings exist only for very special N and explicitly 

constructed using irreducible representations of SO(k) of so called Class 1. I suggest 
the excellent book by Vilenkin [154] Chapter 9, to consult on this subject. Such 
explicit embeddings use Gegenbauer polynomials. 

The dimensions when such embeddings are possible we describe by the follow-
ing formula: For any integer d = 1, 2, . . ., consider 

. N := N(k, d) =
(

k + d − 2
d

)

2d + k − 2

d + k − 2
.

For any such N the maps as we described above exist; there is ϕd : Sk−1 → SN−1. 
And the constants C := C(d) have the order around d. So, the manifold M(k, d) = 
ϕd(Sk−1) is, in some sense, highly “oscillated” on SN(k,d)−1. Now, take  

. Kk,d = Conv M(k, d) ⊂ R
N.

These are “my suspected” bodies for high slicing constants for any fixed k and 
increasing d to infinity. I suggest even to consider the case k = 3.
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Again, very long ago Klartag pointed out to me that the case Kk,2 creates the 
1-Shatten class. But what happens for d large is absolutely not clear. Note that all 
bodies Kk,d are already in isotropic positions. The group theory creates them, which 
leads to a lot of symmetries and nice properties. 

PS I would like to thank Boaz Klartag for reminding me about all this information 
from our past discussions. 

7 Alexander E. Litvak, Random Matrices and Related Topics 

7.1 Random Matrices in Asymptotic Geometric Analysis 

Many phenomena in Asymptotic Geometric Analysis (AGA) are closely related to 
the behavior of singular values of random matrices, i.e., matrices whose entries are 
random variables from a certain class. Questions on distributions of singular values 
of such matrices are of major importance due to applications in pure and applied 
mathematics, statistics, computer sciences, electrical engineering, among others. 
Classical Random Matrix Theory has extensively studied corresponding limiting 
distributions for a long time. In sharp contrast, AGA interest concentrates on a non-
limiting regime, although some results can be used to obtain limiting distributions. 
We consider a high dimensional random matrix and seek asymptotically sharp 
bounds for several parameters such as the largest and the smallest singular values 
which hold with an overwhelming probability, i.e., probability tending to 1 as 
dimensions grow to infinity (usually we ask even more—that probability tends to 
one exponentially fast in dimensions). While the Gaussian case was well understood 
for a long time (see survey [59] and references therein), till recently almost nothing 
was known for other classes of matrices (except bounds on norms). In [106] first 
results were obtained in this direction. From that time significant progress has been 
made in understanding the (non-limiting) behavior of singular values of matrices 
with independent entries [68, 130, 132, 133, 142, 143, 152]. Recall that the largest 
singular number, also called the spectral norm, is the operator norm of the matrix 
considered as a linear operator between corresponding Euclidean spaces, while the 
smallest singular number is the reciprocal of the spectral norm of the inverse (from 
the image) operator. 

7.1.1. Approximation of the Covariance Matrix In the works mentioned above 
the authors used assumptions of independence on entries. However in many 
problems coming from AGA a random matrix appears as a collection of independent 
vectors uniformly distributed on a given convex body. Among such questions are 
various questions related to random polytopes [72, 75, 76, 106] and questions on 
approximation of the covariance matrix. In the case of such vectors coordinates 
of the vector are not independent anymore. The problem of approximation of
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covariance matrix (CM) by the empirical covariance matrix (ECM) is one of 
fundamental problems in Statistics. CM of a random n-dimensional vector X is 

. S = EXXt,

where . Xt denotes the transpose. The ECM is obtained by random sampling: 

. SN = (1/N)

N
∑

i=1

XiX
t
i ,

where . Xi’s are independent copies of X. By the law of large numbers . SN converges 
to S. The quantitative question related to this convergence is: 

Question What is .N = N(n) that guarantees a good approximation with high 
probability? 

In the context of log-concave distributions this question was raised by three 
renown combinatorists, Kannan, Lovasz, and Simonovits, who studied random 
walks and needed to construct a volume computing algorithm with good bounds 
on the complexity [85]. They roughly estimated N as . n2. In 1996 Bourgain [48] 
obtained almost linear dependence .n ln3 n. Then several strong mathematicians 
worked on this problem, improving the power of logarithm. In 2010 in [3] it was  
proved that proportionally many vectors are enough, i.e. N of the order n works. 
Moreover, the approximation works with high probability. After this the main 
interest of researchers shifted to the question: under what minimal assumptions on a 
random vector X can one obtain approximation of CM? One of natural assumptions 
is the boundedness of q-sth moments of one dimensional marginals of X together 
with a bound on maximum of norms of . Xi . More precisely, we can formulate the 
questions as follows. 

Question (Covariance Matrix) Let X be an n-dimensional random vector in the 
isotropic position, that is .EXXt = I , the identity matrix. Let . Xi , .i ≤ N be 
independent copies of X and .SN = 1

N

∑N
i=1 XiX

t
i denote the sample covariance 

matrix. Assume that there exist .q ≥ 4, .C1, C2 > 1 such that 

. max
i≤N

‖Xi‖2 ≤ C1n with high probability (18) 

and

.∀u ∈ Sn−1
E|〈Xi, u〉|q ≤ C

q

2 . (19) 

Is it true that .‖SN − I‖ ≤ C(n/N)α , for an .α = α(q) and .C = C(q,C1, C2)?
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The setting in this question corresponds to well-known Bay–Yin [29] limiting 
result for matrices with independent identically distributed (i.i.d.) random entries 
with bounded 4-th moment (with .α = 1/2, see [124] for the non-limiting version). 
Several attempts were done to solve this question [98, 128, 139, 148, 153, 158], 
however either much stronger additional conditions were imposed or additional 
logarithmic factor appeared. Then in [125] this question was solved for .q > 8 with 
.α = 1/2. In [74] it was proved with .q > 4 and some .α(q). Finally Tikhomirov 
[145] showed it with .α = 1/2 and, moreover, for .q = 4 with .

√
n/N ln4(N/n) in 

place of .(n/N)α (he also proved for .q > 2, however it is known that in the absence 
of 4-th moment the condition (1) does not hold even for matrices with i.i.d. entries 
and .N = n [105, 137]). 

Question 7.1 (Optimality) Solve the above question with .q = 4 and . α = 1/2
without logarithmic factor (or prove that this logarithmic factor is necessary). 

Question 7.2 (Optimality) Let .q ≥ 4, .β ∈ (0, 1), and .n = �βN�. Does (19) imply  
(18) with . C1 depending only on . β? If not, what are (minimal) assumptions on the 
distribution required in order to get (18)? 

7.1.2. Nonhomogeneous Gaussian Matrix and Sparse Matrices A remarkable 
result of Seginer [136] states that for a square random matrix with i.i.d. symmetric 
random variables the expectation of its norm is of the order of the largest Euclidean 
norm of its rows and columns. The lower bound is obvious, while the upper bound 
is counter-intuitive. Surprisingly, a similar question about a random matrix with 
independent but not identically distributed entries was open till very recently even 
in the Gaussian case. After several steps toward the solution [31, 102, 131, 149] 
it was recently solved by Latała, van Handel, and Youssef [103]—they confirmed 
that Seginer’s result holds in the case of independent centered Gaussian variables 
(note that in the case of Gaussian variables the expectation of the largest Euclidean 
norm of rows and columns can be computed in terms of variations of the variables). 
However the corresponding question about the smallest singular value is still open 
and seems much harder. To describe formally, let .B = {bij }i,j≤n be a fixed matrix 
with non-negative entries and let . � be a random .n × n matrix with . N (0, bij )

independent entries. Let .sn(�) denote the smallest singular value of . �. Note, that 
for the standard Gaussian matrix, that is, when all .bij = 1, one has .sn(�) ≈ 1/

√
n. 

The following question is a long-term program in this direction. 

Question 7.3 (Smallest Singular Value) Describe the behaviour of .sn(�) in terms 
of B. 

A weaker interesting question is 

Question 7.4 Under what minimal assumptions on B, .sn(�) is of the order .1/
√

n? 

Some initial steps in this direction were done in [104, 107, 134].
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7.2 Approximation of Convex Bodies by Polytopes with a Small 
Number of Vertices or Faces 

Approximation of convex bodies by polytopes is one of central subjects in Convex 
Geometry. In our setting it can be formulated as follows. Let .n, d > 1. What is the 
minimal .N = N(d, n) such that every convex body can be approximated up to an 
error d (in the sense of the Banach–Mazur distance) by a convex polytope .PN with 
N vertices? More precisely, 

Question 7.5 (Approximation of Convex Bodies by Polytopes) Given .n, d > 1 what 
is the minimal N such that for every convex body .K ⊂ R

n there exist . x1, ..., xN ∈
K satisfying .PN ⊂ K ⊂ dPN , where .PN is the convex hull of these . xi’s? 

Equivalently, one can investigate the inverse function, that is, given .1 ≤ n ≤ N , 
one can ask for the minimal .d = d(N, n) with the above property. The case when 
the distance d is close to 1, say .d = 1+ ε, .ε ∈ (0, 1), is known. After several works 
[33, 50, 51, 60] an almost sharp bound 

. N(1+ ε, n) ≤ Cnε−(n−1)/2

was obtained in [127]. The case of large d is less studied. In the symmetric case, 
that is, when .K = −K , it follows from the John decomposition that Cn points 
already give the distance of the order of . 

√
n, namely, .N(3

√
n, n) ≤ 8n [33, 73]. For 

.2 ≤ d ≤ √n and .K = −K , Barvinok [33] obtained the bound 

. N(d, n) ≤ exp(C(n/d2) ln d).

In the general case of not necessarily symmetric bodies, considering the simplex of 
the maximal volume in K , one has .N(n+ 2, n) ≤ n+ 1. Brazitikos, Chasapis, and 
Hioni [50], Naszodi [126] and Szarek [141] independently proved that for . 2 ≤ d ≤
n

. N(d, n) ≤ n exp(Cn/d).

The latter bound does not look to be sharp. In particular, it is not clear when (for 
what values d) .N(d, n) changes the behaviour from polynomial (in n) to exponential 
(in n). The approaches in these three papers are completely different—while Szarek 
used a greedy algorithm to construct “good” points, the authors of two other papers 
used a random choice of points and either certain tools from combinatorics [126] or  
properties of .Lp-centroid bodies [50].
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7.3 Comments by V.M. 

I would like just explicitly state an idea which is actually implicitly presented in the 
Litvak’s text. 

One of unexpected consequences of the introduction and study of the isotropicity 
in AGA was the following observation. Recall first that convex compact K is in 
the isotropic position if a random vector in K with respect to volume measure is 
isotropic (as it is defined in Litvak’s article). It was studied in AGA in [121] and the 
authors were inspired by the earlier work by F. John [81] (see [121] and references 
there). Fix the standard Euclidean scalar product .〈., .〉 in . Rn and let .K ⊂ R

n be in 
the isotropic position in this Euclidean norm. Let X be randomly selected in K (with 
respect to the volume, and let the volume of K be equal 1). Then the coordinates 
.{xj ∈ R} of .X = (x1, ..., xn) (in the standard Euclidean decomposition) behave 
similarly to independent random variables. And this similarity became more precise 
when n tends to infinity. 

Still back in 1995 I suggested to Semyon Alesker as one of a possible interesting 
direction to study works of M. Marcus and G. Pisier on uniform convergence of 
random trigonometric series (see the book [114]). They considered trigonometric 
series and put random signs for i-th coefficient. And very interesting results were 
following for i.i.d. variables .{εi = ±1}. So, the suggestion was to consider a family 
of isotropic convex bodies .{Kj }, .dim Kj tends to infinity, and use instead of . {εi}
the coordinates of random vector .X = (x1, ..., xnj

) uniformly distributed in . Kj , 
.nj = dim Kj . However, a problem was necessary to be still formulated, as the 
results of Marcus-Pisier were for infinite series, but dimensions of . Kj were finite. 

Unfortunately, the problem was not moved as Alesker became involved in the 
valuation theory and was very successful there. 

The ideology was used later, say in O. Friedland [70] and A. Pajor and L. Pastur 
[129], but not written very explicitly, although the authors definitely understood this 
point. 

It would be nice to develop it in a more explicit form. 
I would also like also to mention that once in Paris, in the late 1990s or the 

first decade of our millennium, I attended the talk by K. Ball where he presented 
the explicit dictionary of correspondence between isotropic convex bodies in high 
dimension and the language of independent random variables. However, I don’t 
know his results on this subject to mention. 

8 Emanuel Milman, Isomorphic Version 
of the Log-Brunn–Minkowski Inequality 

One important question in contemporary Brunn–Minkowski theory is that of 
existence and uniqueness in the .Lp-Minkowski problem for .p ∈ (−∞, 1): given  
a finite non-negative Borel measure . μ on the Euclidean unit-sphere .S = Sn−1,
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determine conditions on . μ which ensure the existence and/or uniqueness of a convex 
body K in . Rn so that: 

.SpK := h
1−p
K SK = μ. (20) 

Here .hK and .SK denote the support function and surface-area measure of K , 
respectively. When .hK ∈ C2(S), 

. SK = det(D2hK)m,

where . m is the induced Lebesgue measure on . S, .D2hK = ∇2
S
hK + hKδS and 

.∇S is the Levi-Civita connection on . S with its standard Riemannian metric . δS. 
Consequently, (20) is a Monge–Ampère-type equation. 

The case .p = 1 above corresponds to the classical Minkowski problem of finding 
a convex body with prescribed surface-area measure; when . μ is not concentrated 
on any hemisphere and its barycenter is at the origin, existence and uniqueness 
(up to translation) of K were established by Minkowski, Alexandrov and Fenchel– 
Jessen. The extension to general p was put forth and publicized by E. Lutwak 
[110] as an .Lp-analog of the Minkowski problem for the .Lp surface-area measure 
.SpK = h

1−p
K SK which he introduced. Existence and uniqueness in the class of 

origin-symmetric convex bodies, when the measure . μ is even and not concentrated 
in a hemisphere, was established for .n �= p > 1 by Lutwak [110] and for . p = n

by Lutwak–Yang–Zhang [112]. A key tool in the range .p ≥ 1 is the prolific .Lp-
Brunn–Minkowski theory, initiated by Lutwak [110, 111] following Firey [69], and 
developed by Lutwak–Yang–Zhang and others, which extends the classical . p = 1
case. Recall that the .Lp-Minkowski sum .a ·K0+p b ·K1 of .K0,K1 ∈ K (.a, b ≥ 0) 
was defined by Firey for .p ≥ 1 [69], and extended by Böröczky–Lutwak–Yang– 
Zhang [44, 45] to all .p ∈ R, as the largest convex body (with respect to inclusion) 
L so that: 

. hL ≤
(

ah
p
K0
+ bh

p
K1

)1/p

(with the case .p = 0 interpreted as .ha
K0

hb
K1

when .a+b = 1). Note that for .p ≥ 1 one 
has equality above, that the case .p = 1 coincides with the usual Minkowski sum, 
and that for .p < 1 the resulting convex body .a · K0 +p b · K1 is the Alexandrov 
body associated to the continuous function on the right-hand-side. 

The case .p < 1 turns out to be more challenging because of the lack 
of an appropriate .Lp-Brunn–Minkowski theory. Existence, (non-)uniqueness and 
regularity under various conditions on . μ were studied by numerous authors when 
.p < 1 (from either side of the critical exponent .p = −n). The case .p = 0 is of 
particular importance as it corresponds to the log-Minkowski problem for the cone-
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volume measure 

. VK := 1

n
hKSK = 1

n
S0K,

obtained as the push-forward of the cone-measure on .∂K onto . S via the Gauss map, 
and having total mass .V (K), the volume of K . Being a self-similar solution to the 
isotropic Gauss curvature flow, the case .p = 0 and .μ = m of (20) describes the 
ultimate fate of a worn stone in a model proposed by Firey. 

Let . K denote the collection of convex bodies in .Rn containing the origin in 
their interior, and let . Ke denote the subset of origin-symmetric elements. In [45], 
Böröczky–Lutwak–Yang–Zhang showed that an even measure . μ is the cone-volume 
measure .VK of an origin-symmetric convex body .K ∈ Ke if and only if it 
satisfies a certain subspace concentration condition, thereby completely resolving 
the existence part of the even log-Minkowski problem. As put forth by Böröczky– 
Lutwak–Yang–Zhang in their influential work [44, 45] and further developed in [97], 
the uniqueness question is intimately related to the validity of a conjectured .L0- (or  
log-)Brunn–Minkowski inequality for origin-symmetric convex bodies .K,L ∈ Ke, 
which would constitute a remarkable strengthening of the classical .p = 1 case. 

Specifically, the following equivalence may be shown by following the argu-
ments of [44, 45]. We denote by .K2,α

+,e the subset of .Ke having .C2,α-smooth 
boundary and strictly positive curvature. 

Theorem 8.1 (After Böröczky–Lutwak–Yang–Zhang) The following statements 
are equivalent for any fixed .p ∈ (−n, 1): 

1. For any .q ∈ (p, 1), uniqueness holds in the even .Lq -Minkowski problem for any 
.K ∈ K2,α

+,e: 

.∀L ∈ Ke , SqL = SqK ⇒ L = K. (21) 

2. The even .Lp-Brunn–Minkowski inequality holds: 

. ∀λ ∈ [0, 1] ∀K,L ∈ Ke V ((1− λ) ·K +p λ · L)

≥
(

(1− λ)V (K)
p
n + λV (L)

p
n

) n
p

. (22) 

The case .p = 0, called the even log-Brunn–Minkowski inequality, is interpreted 
in the limiting sense as: 

.V ((1− λ) ·K +0 λ · L) ≥ V (K)1−λV (L)λ. (23) 

3. The even .Lp-Minkowski inequality holds: 

.∀K,L ∈ Ke

1

p

∫

S

h
p
LdSpK ≥ n

p
V (K)1− p

n V (L)
p
n . (24)
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The case .p = 0, called the even log-Minkowski inequality, is interpreted in the 
limiting sense as: 

. 
1

V (K)

∫

S

log
hL

hK

dVK ≥ 1

n
log

V (L)

V (K)
.

Using Jensen’s inequality in formulation (24) (or (22)), it is immediate to 
check that the above (equivalent) statements become stronger as p decreases. The 
restriction to origin-symmetric bodies is natural, and necessitated by the fact that 
no .Lp-Brunn–Minkowski inequality nor uniqueness in the .Lp-Minkowski problem 
can hold for general convex bodies when .p < 1. Even when restricting to origin-
symmetric bodies, it is easy to show that (22) or (24) are false for any .p < 0, and 
that uniqueness in (21) does not hold for general .K,L ∈ Ke and .q = 0, as may be 
verified by testing two different centered parallelepipeds with appropriately chosen 
parallel facets. 

Conjecture 8.2 (Böröczky–Lutwak–Yang–Zhang, “Even log-Brunn–Minkowski 
Conjecture”) Any (and hence all) of the above statements hold for origin-
symmetric convex bodies in the “logarithmic case” .p = 0 (and hence for all 
.p ∈ [0, 1) as well). 

A confirmation of this conjecture would constitute a dramatic improvement 
over the classical Brunn–Minkowski theory for the subfamily of origin-symmetric 
convex bodies, which had gone unnoticed for over a century. The conjecture is 
known to hold in the plane [44], but remains open in general for .n ≥ 3. 

Various partial results are known regarding the BLYZ conjecture (see e.g. 
[97, 120]). The main result in [97] confirmed the local uniqueness in the even .Lp-
Minkowski problem (21) for all .K ∈ K2,α

+,e and .p ∈ (p0, 1) for .p0 := 1 − c
n3/2 . In  

[53], Chen–Huang–Li–Liu established a local-to-global principle for the uniqueness 
question, and deduced (21) and (24) for all .K ∈ K2,α

+,e and .p ∈ (p0, 1). In fact, 
thanks to recent progress on the KLS conjecture due to Y. Chen [52], the estimate 
from [97] immediately improves to .p0 = 1− cε

n1+ε for any .ε > 0. 
In [120], the following isomorphic version of the conjecture regarding unique-

ness in the even log-Minkowski problem was recently resolved. We denote by 
.dG(K,L) the geometric distance between two origin-symmetric bodies .K,L, 
namely .dG(K,L) := inf{ab > 0 ; 1

b
K ⊂ L ⊂ aK}. 

Theorem 8.3 (Isomorphic Log-Minkowski) For any .K̄ ∈ Ke, there exists . K̃ ∈
K∞+,e with: 

.dG(K̄, K̃) ≤ 8,
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so that for any .T ∈ GLn, the even log-Minkowski problem for .K = T (K̃) has a 
unique solution: 

. ∀L ∈ Ke , VL = VK ⇒ L = K,

and the even log-Minkowski inequality holds for K: 

. ∀L ∈ Ke

1

V (K)

∫

S

log
hL

hK

dVK ≥ 1

n
log

V (L)

V (K)
,

with equality if and only if .L = cK for some .c > 0. 

The constant 8 obtained in the isomorphic version above is the worst case 
behavior for a general .K̄ ∈ Ke, when .D = dBM(K̄, Bn

2 ) may be as large as John’s 
upper bound . 

√
n. However, whenever .D � √

n, a slightly finer analysis yields 
an isometric version of the above results, where one only perturbs . K̄ by at most 

.γ = 1+ ε, with .ε = C
√

D
4√n

. 

Theorem 8.3 is a result about existence of an isomorphic position in a localized 
version of the log-Brunn-Minkowski inequality problem by BLYZ (Conjecture 8.2 
above). At the same time we do not know if the following problem has a positive 
solution: 

Problem 8.4 There is a universal constant .C > 0 such that for every origin-
symmetric convex body K there is an isomorphic version . K ′ such that . dG(K,K ′) <

C, and such that for any two bodies K and L, their isomorphic versions . K ′ and . L′
satisfy the log-Brunn–Minkowski inequality (23). 

8.1 Comments by V.M. 

8.1.1 Isomorphic Position of Convex Body 

I will consider only centrally symmetric convex bodies in the n-dimensional real 
space, i.e. such convex compact K that .K = −K and with non-empty interior. Of 
course, we may think of such K as the unit ball of some normed space X and, to 
emphasize this, we will write .K := K(X). For any non-degenerated linear map u in 
. Rn, of course, uK is the unit ball of isometrically the same normed space. However, 
geometrically it is a different body in . Rn. We call such a body a position of K . With 
every K there is associated with it a family of very interesting ellipsoids, which 
reflect, actually, different hidden symmetries in K . In the asymptotic study of the 
normed spaces and convex bodies, by increasing dimension to infinity the role of 
selected positions is crucial. Different remarkable properties of convex bodies (one 
may call them hidden symmetries) are recovered by considering them in different 
positions specially selected for different goals. We understand this part of the theory 
very well now.
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However, many very central problems of the Asymptotic Geometry of high-
dimensional convex bodies are still open and I would suggest here an additional 
“step of freedom” in attacking them. These reflections are inspired by two results. 
One of them has been known for a relatively long time. This is the result of Klartag 
from 2006. Another result is by Emanuel Milman presented in the contribution 
above. 

To solve some specific problem (let us call it Problem X) of the Asymptotic 
Theory, we will ask if there is a universal constant C such that for every dimension 
n and every convex body K (from our family) in .Rn one may find another body 
T (from the family, i.e. centrally symmetric convex body) and the Banach–Mazur 
distance at most C from K and such that the Problem X would have a solution for 
T . Such a T we will call now isomorphic position of K . 

And now we will recall the remarkable result of Klartag from 2006 called the 
isomorphic version of the Bourgain’s slicing problem. We suggest the books [24, 25] 
to see the details. 

Problem 8.5 Let .K, T ⊆ R
n be centrally-symmetric convex bodies such that 

.Voln−1(K ∩ θ⊥) ≤ Voln−1(T ∩ θ⊥) for all .θ ∈ Sn−1. Does it follow that 

.Voln K ≤ C · Voln T for some universal constant C? 

This is known as Bourgain’s slicing problem (from 1985, see [46]). A positive 
answer would have important consequences in convex geometry. In some sense the 
slicing problem, also called the hyperplane conjecture, is the “opening gate” to a 
better understanding of uniform measures in high dimensions. The problem is still 
open. See Klartag’s contribution in this collection. 

The problem may be reduced to estimating the isotropic constants .LK of the 
convex bodies K (see [24] for the definition of . LK ; and for the present state of 
knowledge see Klartag’s note in this collection). 

However, Klartag found another approach to the problem slightly modifying the 
question (see [90]). 

Theorem 8.6 (B. Klartag (2006)) Let .K ⊂ R
n be a convex body and .0 < ε < 1. 

Then there exists a convex body .T ⊂ R
n such that 

(i) .(1− ε)T ⊆ K ⊆ (1+ ε)T . 
(ii) .LT < C/

√
ε, where .C > 0 is a universal constant. 

Later, in 2018, Klartag additionally proved that the body T from the theorem can 
be assumed to be a projective image of K [91]. 

The problem has a positive solution but in an isomorphic sense: there is an 
isomorphic position for which the Problem 8.5 is solved. 

So we now have two problems solved in the isomorphic form: one of Klartag in 
2006 and another in this article by E. Milman, which is the isomorphic version of 
the Log-Brunn–Minkowski inequality. 

More isomorphic versions of well-known problems of AGA. 
In the article by B. Klartag and V. Milman [95] we listed a number of problems 
which are connected with the slicing problem of Bourgain and either follow from it,
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in the case of the positive solution, or implied it if they would be positively solved. In 
every of these problems one may ask if their isomorphic versions would be correct. 
Let me list some of them: 

(i) the thin shell conjecture would imply the hyperplane conjecture (see [61]) 
(ii) Kannan, Lovasz, Simonovich (KLS) isoperimetric conjecture [84] 

(iii) Mahler conjecture on the low bound for the product of the volumes of the 
convex body and its polar (see [91] for connections with slicing problem) 

(iv) problems on “quick Steiner symmetrizations” (see [94]). 

I am not introducing these problems here. I refer the reader to [95] for their 
exact formulations and to the books [24] and [25] for detail discussions of these 
major problems of the theory. As an example, let me just formulate some of these 
problems in the isomorphic form. 

(ii) Isomorphic KLS Problem: Do universal constants C and . C′ exist such that for 
every centrally-symmetric convex body K there exist another centrally-symmetric 
body . K ′ such that Banach-Mazur distance .d(K,K ′) < C and KLS conjecture is 
correct for . K ′ with a constant . C′ ? 

(iii) Isomorphic Mahler problem: Does a universal constant C exist such that for 
any centrally-symmetric convex body K there is a body . K ′ such that . d(K,K ′) < C

and the Mahler volume of . K ′ is more (or equal) to the Mahler volume of the cube 
(of the same dimension). 

Many other problems of AGA may be reformulated the same way, and all of 
them, beside what is written above, are open. 

9 Yaron Ostrover, Convex Bodies in the Classical Phase 
Space 

Consider a convex body K in the phase space of classical mechanics .R2n, where 
the latter is equipped with the standard symplectic form .ω = ∑

dxi ∧ dyi . 
There is a natural dynamical system (known as the “Reeb Dynamics”) associated 
with the body K . Indeed, the restriction of . ω to the boundary .∂K canonically 
defines a one-dimensional sub-bundle, .ker(ω|∂K), whose integral curves comprise 
the characteristic foliation of . ∂K . In local coordinates, this dynamics, which is 
the classical Hamiltonian dynamical system on the energy surface . ∂K , is given by 
.ż = J∇gK(z), where . gK is the gauge function of K , and .J 2 = −Id is the standard 
complex structure on .R2n ' C

n. 
A classical result proven independently by Rabinowitz, Weinstein, and Clarke 

asserts that the Reeb dynamics associated with a convex body always posses a 
periodic orbit. One can naturally assign a number (“action”) to a periodic orbit . γ
via .A(γ ) = ∫

γ
λ, where . λ is a primitive of . ω, i.e., .ω = dλ. The quantity .A(γ ) is 

the symplectic area of a disc spanned by the loop . γ . Let .c(K) be the minimal action 
among all closed characteristics on . ∂K . 

Fact It is known that .c(K) is a symplectic invariant, monotone with respect 
to inclusion, 2-homogenuous, and moreover satisfies a Brunn-Minkowski type
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inequality [21] i.e., 

. c1/2(K + T ) ≥ c1/2(K)+ c1/2(T ).

A weak version of a famous conjecture by C. Viterbo [155] states that 

Conjecture (Viterbo) For a convex body .K ⊂ R
2n one has 

. cn(K) ≤ n!Vol(K).

In [22] Viterbo’s conjecture was proved up to a universal constant, i.e., there 
is .A ∈ R so that .cn(K) ≤ Ann!Vol(K). By considering convex domains of the 
form .T × T ◦ ⊂ R

2n, where .T ⊂ R
n is a centrally symmetric convex body, and 

interpreting the Reeb dynamics associated with .T × T ◦ in terms of Minkowski 
billiard dynamics, it was proved in [23] that .c(T × T ◦) = 4 for every centrally 
symmetric convex .T ⊂ R

n. This immediately implies 

Theorem (Artstein-Avidan, Karasev, Ostrover) Viterbo’s volume-capacity con-
jecture implies the symmetric Mahler Conjecture. 

Remark Using a “tensor power trick” (based on 2-products), one can show [80] 
that it is enough to prove Viterbo’s conjecture in the asymptotic regime, i.e., when 
.n→∞. 

Remark It was observed in [4] that one can not use the approach of [23] to relate 
Viterbo’s conjecture with the general Mahler conjecture. Still, it might be interesting 
to find a “symplectic approach” to the Mahler conjecture also for non-symmetric 
convex bodies. 

Remark Viterbo’s conjecture is still open in general. Recent progress includes a 
proof of a “local version” in a .C3-small neighborhood of the ball (see [2], and 
Corollary 2 in [1]), and a proof of the conjecture in some special cases (see Theorem 
2.1 in [86], and Theorem 1.11 in [77]). 

In [79], P. Haim-Kislev studied Reeb dynamics on convex polytopes, and proved 
the following beautiful “combinatorial formula”: 

Theorem (Haim-Kislev) Let .P ⊂ R
2n be a convex polytope. Then, 

. c(P ) = 1

2

[

max
σ∈SPF

, (βi )∈M(P)

∑

1≤j≤i≤PF

βσ(i)βσ(j)ω(nσ(i), nσ(j))
]−1

,

where .PF is the number of facets of P , . Sm is the symmetric group of m letters, and 

.M(P) =
{

(βi)
PF

i=1 |βi ≥ 0,

PF
∑

i=1

βihi = 1,

PF
∑

i=1

βini = 0
}

,
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where . ni is the unit outer normal to the facet . Fi , and .hi = hP (ni) is the “oriented 
height”. 

This leads naturally to the following 

Question 9.1 Can one use Haim-Kislev’s theorem to prove Viterbo’s Conjecture? 

There are other natural questions regarding the quantity .c(K). For example, 

Question 9.2 For a convex body K in .R2n, study the position .A ∈ SL(2n) which 
maximizes the capacity .c(AK). 

In [5], motivated by Bang’s problem, the authors conjectured that the symplectic 
capacity of a convex body .c(K) is subadditive. More precisely, 

Conjecture (Akopyan, Karasev, Petrov) If a convex body .K ⊂ R
2n if covered by a 

finite set of convex bodies .{Ki}Mi=1, then one has 

. c(K) ≤
M
∑

i=1

c(Ki).

A partial answer for hyperplane cuts is given in [79]. Another research direction 
concerns a “symplectic characterisation” of the Euclidean ball among convex 
domains in .R2n. More precisely, we say that a smooth convex body K is “Zoll” 
if for every point .x ∈ ∂K one has a closed characteristic (of the Reeb dynamics) 
passing through x, and moreover all the closed characteristics have the same action. 
It was proved in [2] that every smooth Zoll body in . R4 is a symplectic ball. It is an 
open question whether this is true in higher dimensions. For a convex polytope P in 
.R

2n, it would be interesting to study combinatoricals/dynamical characterizations 
that imply that P is symplectomorphic to a Euclidean ball up to an .ε-neighborhood. 
Moreover, one can ask the following very general question: 

Question 9.3 How much information on a convex body K is encoded in the Reeb 
dynamics on its boundary? 

More precisely, there are several infinite families of numerical symplectic invariants 
based on the Reeb dynamics (such as the Ekeland-Hofer capacities or the ECH 
capacities). It was proved in [58] that one can relate the asymptotics of the ECH 
capacities of a convex .K ⊆ R

4 to the volume of K . It is very interesting to 
generalize this result, and understand exactly how much information about a convex 
body .K ⊂ R

2n (e.g., volume, surface area, inradius, etc.) can be recovered via these 
invariants? 

Symplectic Capacities and Billiards There is a natural connection between the 
classical billiard dynamics in a convex body K in the configuration space . Rn

q , and 
the Reeb dynamics of .K ×B in the phase space .R

n
q ×R

n
p, where B is the Euclidean 

ball (see e.g., Section 2 in [23]). Roughly speaking, this is a consequence of the fact 
that .K × B can be considered as the cotangent bundle of K . More precisely, the
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projection of any closed characteristic . γ on .∂(K × B) is a billiard trajectory inside 
K , and vice versa, any billiard trajectory of K can be lifted to a closed characteristic 
of .K×B. In particular, the symplectic capacity .c(K×B) is the length of the shortest 
periodic billiard trajectory in K . 

Remark This connection implies in particular that the length of the shortest periodic 
billiard trajectory in a convex body .K ⊂ R

n is monotone with respect to inclusion, 
and that it satisfies a Brunn-Minkowski type inequality [21]. Moreover, if one 
replaces the Euclidean ball B above with a convex body T , then the same holds 
for the so-called “Minkowski billiards” (i.e., Billiard dynamic in normed spaces, 
which model the propagation of waves in a homogeneous, anisotropic medium that 
contains perfectly reflecting mirrors). 

Remark The symplectic point of view on billiard dynamics immediately implies 
the following “duality result": the billiard dynamics in a (centrally symmetric) 
convex body K with respect to the norm associated with a (centrally symmetric) 
convex body T , is equivalent to the billiard dynamics inside T govern by the norm 
associated with the body K . We remark that the centrally symmetry assumption here 
is not really necessary. 

There are many open questions regarding the shortest periodic billiard trajectory 
in a convex body. For example, already in . R2, the following is unknown: 

Question 9.4 Which .K ⊂ R
2 with .Area(K) = 1 maximizes .c(K × B)? In other  

words, for which convex body with a given area the shortest periodic billiard orbit 
is maximal? 

Very recently, D. Tsodikovich proved a Blaschke–Santaló type inequality for 
the shortest periodic billiard trajectory in a convex body .K ⊂ R

n (see [147]). It 
would be interesting to further explore the properties of the length of the shortest 
periodic billiard trajectory in a convex body .K ⊂ R

2n, and its interrelations with 
other classical quantities associated with the convex body K . I end this note with 
the following question about billiard dynamics: 

Question 9.5 What is the length of the shortest periodic billiard trajectory in a 
“random” convex body? 

9.1 Comments by V.M. 

There are many unexpected connections between Convex Geometry, and particu-
larly AGA, and Symplectic Geometry and its methods. The first instance which 
I noted long ago was a remarkable proof by Alvarez–Paiva [15] of Schaffer’s 
conjecture. This conjecture is a purely Convex Geometry statement but its proof 
uses very essentially symplectic methods. It was later extended by D. Faifman in 
[63].
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Also in the opposite direction some methods and point of view of AGA 
influenced some proofs and questions which arose in Symplectic Geometry. 

I would like to discuss the following fact from one of the Remarks in the 
Note by Y. Ostrover: “the length of the shortest periodic billiard trajectory in a 
convex body .K ⊂ R

n is monotone with respect to inclusion, and that it satisfies 
a Brunn-Minkowski type inequality [21].” This was observed by Artstein-Avidan 
and Ostrover and considered to be “an easy consequence” of some other symplectic 
results. Although, please, stop for a second and think about this statement. It is 
absolutely not intuitive. Even knowing it, I find difficult it to believe. There are 
more such parameters associated to convex bodies which are monotone with respect 
to embedding for some reasons which are not obvious. There are very classical 
examples, e.g. monotonicity of mixed volumes observed by Minkowski. I find it 
very interesting to collect more examples. They tell us something in Convexity 
which exists behind the scenes, invisible at our first glance. 

Below is a different kind of example by Vladimir Kadets [82]: 

Theorem (V. Kadets) Let H be a Hilbert space. For a closed convex body A 
denote by .ri(A), the supremum of the radiuses of balls is contained in A. Then 
.
∑∞

n=1 r(An) ≥ r(A) for every covering of a convex closed body .A ⊂ H by a 
sequence of convex closed bodies . An, .n ∈ N . 

This fact is actually similar to Bang’s theorem which solved the so-called “plank 
problem” [32]. Indeed, let sets . Ai be planks, i.e. 

. Ai =
{

x ∈ H : |(x − x0), e)| ≤ ri
}

.

For some e and .x0 ∈ H , .ri > 0. This is a plank of the width . 2ri . And we see that 
Kadets’ theorem is parallel in this case to Bang’s plank theorem which states that 

. 2
∑

ri ≥ width(A) .

This is a very interesting turn of the problem which changes the spirit and meaning 
of the original question. Let us note that there is another generalization of the plank 
problem by K. Ball [30] in which the width is computed with respect to an arbitrary 
norm, not necessary the Euclidean norm. Such a generalization is still unknown for 
Kadets’ result. Although some progress was recently recorded (see [71]) 

To be precise, in his paper “Coverings by convex bodies and inscribed balls”, 
Kadets makes the following conjecture. 

Conjecture (Kadets) If .K,K1, . . . , KN are convex bodies in .Rn such that . K ⊂
∪N

i=1Ki , and .B ⊂ R
n defines a (non-symmetric) norm .‖ • ‖B , then the inradius 

function . rB is subadditive: 

. rB(K) ≤
∑

rB(Ki).

He proves it when B is an ellipsoid.
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This conjecture, if proved, will already imply K. Ball’s result (and, this means the 
result of Bang as well). Actually, D. Faifman [66] noted that the Kadets conjecture 
has the following equivalent form: 

Conjecture (Faifman [66]) Let f be a monotone under inclusion, translation-
invariant, 1-homogeneous, non-negative functional on convex bodies. Then it is 
subadditive: whenever .K ⊂ ∪Ki are all convex, one has 

. f (K) ≤
∑

f (Ki).

In particular, the Euclidean case that Kadets proves implies that Conjecture of 
Faifman holds for any f and . Ki whenever K is an ellipsoid. 

10 Liran Rotem, Flowers and Convex Bodies 

We describe a class of subsets of .Rn which we call flowers. Flowers are not 
necessarily convex, but they are intimately related to convex bodies and can help 
shed a light on their properties. The most direct way to define this class is as follows: 

Definition 10.1 A flower .F ⊆ R
n is a compact set which is an arbitrary union of 

closed Euclidean balls, .F =⋃

i∈I Bi , such that each ball . Bi contains the origin. 

(one may also study non-bounded flowers, but let us restrict ourselves to the 
compact case) 

Flowers correspond to convex bodies in at least two fundamental ways. For the 
first, let us write . Bx for the ball with center . x2 and radius . |x|2 , where . |·| denotes the 
Euclidean norm. In other words . Bx is the unique ball with the interval .[0, x] as a 
diameter. Every ball B containing 0 can be written as the union of balls of the form 
. Bx , and therefore the same is true for all flowers. If we consider 

. K = {

x ∈ R
n : Bx ⊆ R

n
}

then K is a compact convex set with containing the origin. Conversely, every such 
convex body is obtained from a unique flower in such a way, and we write .F = K♣. 

Alternatively, one may consider the spherical inversion map . φ : Rn \ {0} →
R

n \ {0} defined by .φ(x) = x

|x|2 . Given a flower F , there exists a unique convex 

body T such that .∂F = φ (∂T ) and vice versa. Note that .φ(T ) is not F but the 
complement of F (up to the boundary), so we summarize this relationship by writing 
.F = (coφ) (T ). 

The two convex bodies which are associated to a flower are of course intimately 
related. If .F = K♣ = (coφ) (T ) then K and T are polar to each other, which means 
that 

.T = K◦ = {

y ∈ R
n : 〈x, y〉 ≤ 1 for all x ∈ K

}

.
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Since the polarity map is an involution, i.e. .K◦◦ = K , we also have .K = T ◦. 
This is a good point to stop for a brief remark about nomenclature: The flower 

.K♣ of a convex body K was studied in stochastic geometry for its applications to 
Voronoi tessellations, so it was named the Voronoi flower of K (see e.g. [138]). 
Since we are interested in flowers for more geometric and less probabilistic reasons, 
we omit the name of Voronoi from the definition. The content of this note is based 
on the papers [123] and [122]. 

It is noteworthy that the class of flowers is closed under many operations. Most of 
the following Proposition is immediate from the definition, but this does not reduce 
its usefulness: 

Proposition 10.2 

1. Let F be a flower. Then its convex hull .conv F is also a flower. 
2. Let F be a flower and .E ⊆ R

n a linear subspace. Then the intersection . F ∩ E

and the orthogonal projection .PEF are also flowers. 
3. Let .F1, F2 be flowers. Then their Minkowski sum 

. F1 + F2 = {x + y : x ∈ F1 and y ∈ F2}

and their radial sum 

. F1+̃F2 = {x + y : x ∈ F1, y ∈ F2 and x = λy for λ ≥ 0}

are also flowers. 

As flowers correspond to convex bodies, every operation on flowers induces an 
operation on convex bodies. In some cases this resulting operation is well-known. 
For example, one may check that .(K1 +K2)

♣ = K
♣
1 +̃K

♣
2 and that . (PEK)♣ =

K♣ ∩ E, so in these cases we do not obtain anything new. However, we can also 
define a new addition . ⊕ on convex bodies by 

. (K1 ⊕K2)
♣ = K

♣
1 +K

♣
2 ,

and a new type of “projection” .QEK by .(QEK)♣ = PE

(

K♣). These operations 
are still somewhat mysterious, and it is not clear how to define them directly without 
the use of flowers. As one concrete open problem, one may ask for lower bounds on 
the volume of .K1⊕K2 which are better than the trivial bound that one obtains from 
the inclusion .K1 ⊕K2 ⊇ K1 +K2 and the Brunn–Minkowski inequality. 

As for the convex hull, we do know to describe (somewhat) explicitly the convex 
body T which satisfies .T ♣ = conv

(

K♣). Recall that the support function .hK of 
a convex body K is a function on the unit sphere, .hK : Sn−1 → R, defined by 
.hK(θ) = maxx∈K 〈x, θ〉. We may then define the reciprocal body . K ′ as the largest 
convex body such that .hK ′ ≤ 1

hK
. We then have:
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Theorem 10.3 For every convex body K we have .
(

K ′′)♣ = conv
(

K♣). In  
particular .K = K ′′ if and only if .K♣ is convex. 

Flowers are also very interesting from the point of view of high dimensional 
phenomena. Given two star bodies .A,B ⊆ R

n we define their distance as 

. d(A,B) = inf

{

a · b : 1

a
A ⊆ B ⊆ b · A

}

.

We recall the celebrated Dvoretzky’s theorem (See [116], or e.g. [24]): Let . K ⊆ R
n

be a convex body such that .K = −K . Then for every .ε > 0 there exists a subspace 
.E ⊆ R

n of dimension .dim E ≥ c(ε) · log n such that .d
(

PEK,BE
2

) ≤ 1 + ε. Here  
.BE

2 denotes the unit ball in the subspace E. 
The dependence of .dim E on the dimension n in Dvoretzky’s theorem is sharp. 

If for example 

. K = Bn
1 =

{

x = (x1, x2, . . . , xn) ∈ R
n :

n
∑

i=1

|xi | ≤ 1

}

,

then .d
(

PEK,BE
2

) ≤ 1+ε is only possible when .dim E ≥ c̃(ε) · log n. Surprisingly 
however, it turns out that Dvoretzky’s theorem also holds for flowers with a much 
better dependency on n: 

Theorem 10.4 Let .F ⊆ R
n be a flower with .F = −F . Then for every .ε > 0 there 

exists a subspace E of dimension .dim E = c(ε) · n such that 

. d
(

PEF,BE
2

)

≤ 1+ ε.

However, if one replaces the projection .PEF with the section .F ∩ E, no better 
dimension bound can be achieved then the standard bound .dim E ≥ c(ε) · log n. 

Other than this result not a lot is known about the asymptotic theory of flowers, 
and there are undoubtedly many results waiting to be discovered. 

10.1 Comments by V.M. 

As Liran Rotem wrote in his short description of Flowers, the family . F of flowers 
is in one-to-one correspondence with the family . K0 of convex bodies containing 0. 
Actually, there are two such natural correspondences: .F ∈ F corresponds to . K ∈
K0, .K♣ = F and .K◦ = ϕ(F ), where . ϕ is the spherical inversion. So, F positions 
between K and . K◦. This by itself should lead to many interesting consequences. 

(i) But I would mention the connection between some deep results in AGA with 
results in . F .
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One result (from our joint paper with Liran Rotem [122]). 

Theorem Let .rF (θ) be the radial function of a flower .F ∈ F and fix .ε > 0. 
Then there exists .N ≤ c · n

ε2 rotations .{ui}Ni=1 such that for some .r > 0, and all 

.θ ∈ Sn−1, 

. (1− ε)r ≤ 1

N

N
∑

i=1

ruiF (θ) ≤ (1+ ε)r ,

for some universal consant .c > 0. 

Think also about a partial case where F is a single petal. This is a very nontrivial 
statement. 

Both cases are highly non-trivial but follow from some AGA results just as an 
interpretation (see [122]). 

The above result leads to a similar question about Lipschitz functions on the 
sphere which are mostly not flowers. And Faifman and Klartag proved an interesting 
statement in this direction. 

Proposition (Faifman–Klartag) Let .f : Sn−1 → R be a 1-Lipschitz function of 
mean zero and .ε > 0. Assume that .k ≥ Cε−2| log ε|. Let . U1, . . . , Uk ∈ O(n)

be random, uniformly-distributed, i.i.d matrices. Then with probability of at least 
.1− C exp(−cknε2) ≥ 1− (Cε)n of choosing the matrices, 

. 

∣

∣

∣

∣

1

k

k
∑

j=1

f (Uj (x))

∣

∣

∣

∣
≤ ε for all x ∈ Sn−1.

Here, .c, C > 0 are universal constants. 

Of course, to regularize a given function as we see in the Theorem and the 
Proposition above, is a major goal. However, it is interesting to observe that different 
functions from the same class have “the same problems” (I mean the same type of 
“bad regions” which should be regularized), and they may regularize each other. Let 
me put it precisely in the case of Faifman–Klartag. 

Proposition Let .fj : Sn−1 → R be 1-Lipschitz functions of mean zero and . ε >

0. Assume that .k ≥ Cε−2| log ε|. Let .U1, . . . , Uk ∈ O(n) be random, uniformly-
distributed, i.i.d matrices. Then with probability of at least . 1 − C exp(−cknε2) ≥
1− (Cε)n of choosing the matrices, 

. 

∣

∣

∣

∣

1

k

k
∑

j=1

fj (Uj (x))

∣

∣

∣

∣
≤ ε for all x ∈ Sn−1.

Here, .c, C > 0 are universal constants. 

(The proof of the statement is exactly the same as for a single function f ).
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I did not check this type of generalization for the (Milman–Rotem) Theorem 
above, but I am sure it is also correct. 

This last point of “the sameness” of differences between different bodies (or 
functions, as it was above) may look more surprising on the results for convex 
bodies. 

Let . D be the standard euclidean ball, and .|K| means the volume of K . 

Theorem For any four centrally-symmetric convex bodies .Ki ⊂ R
n, .i = 1, 2, 3, 4, 

.|Ki | = |D|, there are .{ui}41 ⊂ SLn such that if .P1 = u1K1 ∩ u2K2, . P2 = u3K3 ∩
u4K4 and .Q = Conv P1 ∪ P2, then . 1

C
D ⊂ Q ⊂ CD for some universal constant C 

independent of the dimension n and .{Ki}41. 

Moreover, if all . Ki , .i = 1, 2, 3, 4, are in  M-position (see [24], Chapter 8), 
then operators .{ui}4i=1 are orthogonal rotations and what we call in AGA “random 
rotations”, i.e. there is exponentially (by dimension n) close to 1 probability to select 
.{ui}. This fact for the case of all . Ki is the same body K is well-known to experts 
(see [117]). 

(ii) Let us return to the theory of Flowers and bring another reformulation of a result 
from AGA to the language of Flowers. 

For the flower .F ⊂ R
n define the number 

. r�(F ) = max

{

r

∣

∣

∣

∣
rD ⊂ 1

�

(

+̃
�

∑

i=1

uiF

)

, ui ∈ SO(n)

}

.

Here . ̃+ means the radial sum of star-sets, as in Rotem’s article. 

Then Theorem 2 of [117] may be reformulated in the language of flowers as 

Theorem There is a number .c > 0 such that for any integer n, any centrally 

symmetric compact flower .F ⊂ R
n with .0 ∈ ◦

F we have 

. c ≤ r2(F ) · r3(F
∗) ,

where . F ∗ is the dual flower, i.e. if F is the flower of the convex body K , then . F ∗ is 
the flower of the polar . K◦. 

Moreover one may take .c = 1
21

√

2
3 . 

(iii) My next remark is about a flower of a quasi-concave function . f : Rn →
[0,∞). The next definition was suggested by S. Bobkov 

For .x ∈ R
n let .Hx = {y ∈ R

n : (y, x) ≥ |x|2}. 
Then a definition of a flower for such a (quasi-concave) function is 

.f♣(x) = sup
{

f (y)
∣

∣ y ∈ Hx

}

.
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Fact .∀ t > 0 we have .{f♣ ≥ t} = {f ≥ t}♣. 

(iv) Shiri Artstein-Avidan explained to me that flowers also have a cost-duality 
description. For example cost-duality leads to reciprocity. 

Recall .K ∈ K◦ : K ′ = (K♣)◦ = A
[ 1

hK

]

. 
Let cost-function .c(x, y) : Rn×Rn → (−∞,∞]. For .K ⊂ R

n define .(c)-duality 

. Kc =
⋂

x∈K

{

y ∈ R
n : c(x, y) ≥ 0

} = {

y ∈ R
n : inf c(x, y) ≥ 0

}

.

Examples 

1. c2(x, y) := 1− 〈x, y〉. 
Then Kc2 = K◦ (the standard duality is created by this cost-function through the 
cost-transform). 

2. c(x, y) := 1 − sup 
θ∈Sn−1 

(〈x, θ〉 · 〈y, θ〉). 
Then computation shows that 

. Kc = A

[

1

hK(θ)

]

= K ′,

i.e. the reciprocal is also created by some cost-transform. 
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On the Gaussian Surface Area 
of Spectrahedra 

Srinivasan Arunachalam, Oded Regev, and Penghui Yao 

Abstract We show that for sufficiently large .n ≥ 1 and .d = Cn3/4 for some uni-
versal constant .C > 0, a random spectrahedron with matrices drawn from Gaussian 
orthogonal ensemble has Gaussian surface area .�(n1/8) with high probability. 

1 Introduction 

A spectrahedron .S ⊆ R
n is a set of the form 

. S =
{

x ∈ R
n :

∑
i

xiA
(i) � B

}
,

for some .d × d symmetric matrices .A(1), . . . , A(n), B ∈ Symd . Here we will  be  
concerned with the Gaussian surface area of S, defined as 

.GSA(S) = lim inf
δ→0

Gn
(
Sout

δ

)
δ

, (1) 

where .Sout
δ = {x /∈ S : dist(x, S) ≤ δ} denotes the outer .δ-neighborhood of S under 

Euclidean distance and .Gn(·) denotes the standard Gaussian measure on . Rn whose 

S. Arunachalam 
IBM T.J. Watson Research Center, New York, NY, USA 
e-mail: Srinivasan.Arunachalam@ibm.com 

O. Regev (�) 
Courant Institute of Mathematical Sciences, New York University, New York, NY, USA 
e-mail: regev@cims.nyu.edu 

P. Yao 
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, Jiangsu, 
China 
e-mail: pyao@nju.edu.cn 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
R. Eldan et al. (eds.), Geometric Aspects of Functional Analysis, Lecture Notes 
in Mathematics 2327, https://doi.org/10.1007/978-3-031-26300-2_2

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26300-2protect T1	extunderscore 2&domain=pdf

 885 47989 a 885 47989 a
 
mailto:Srinivasan.Arunachalam@ibm.com
mailto:Srinivasan.Arunachalam@ibm.com
mailto:Srinivasan.Arunachalam@ibm.com

 885 51863 a 885 51863
a
 
mailto:regev@cims.nyu.edu
mailto:regev@cims.nyu.edu
mailto:regev@cims.nyu.edu

 885
56845 a 885 56845 a
 
mailto:pyao@nju.edu.cn
mailto:pyao@nju.edu.cn
mailto:pyao@nju.edu.cn
https://doi.org/10.1007/978-3-031-26300-2_2
https://doi.org/10.1007/978-3-031-26300-2_2
https://doi.org/10.1007/978-3-031-26300-2_2
https://doi.org/10.1007/978-3-031-26300-2_2
https://doi.org/10.1007/978-3-031-26300-2_2
https://doi.org/10.1007/978-3-031-26300-2_2
https://doi.org/10.1007/978-3-031-26300-2_2
https://doi.org/10.1007/978-3-031-26300-2_2
https://doi.org/10.1007/978-3-031-26300-2_2
https://doi.org/10.1007/978-3-031-26300-2_2
https://doi.org/10.1007/978-3-031-26300-2_2


58 S. Arunachalam et al.

density is .(2π)−n/2 exp(−‖x‖2/2). Ball showed that the .GSA of any convex body 
in . Rn is .O(n1/4) [3], which was later shown to be tight by Nazarov [11]. Moreover, 
Nazarov [8] showed that the .GSA of a d-facet polytope1 in . Rn is .O(

√
log d) and 

this fact has found application in learning theory and constructing pseudorandom 
generators for polytopes [4, 5, 8, 13]. We refer the interested reader to [5, 8] for  
more details. Motivated by recent work [2], this raises the question of whether 
the .GSA of spectrahedra is also small. In this note we answer this question in the 
negative. Recall that a matrix . A drawn from the Gaussian orthogonal ensemble is 
a symmetric matrix whose entries .

{
Ai,j

}
i≤j

are all independent normal random 
variables of mean 0 having variance 1 if .i < j and variance 2 if .i = j . 

Theorem 1 For a universal constant .C > 0 and any integers .n, d ≥ 1 satisfying 
.d ≤ n/C the following hold. If .A(1), . . . ,A(n) are i.i.d. drawn from the . d × d

Gaussian orthogonal ensemble, then the spectrahedron 

.T =
{
x ∈ R

n :
∑

i

xiA
(i) � 2

√
nd · I

}
(2) 

satisfies .GSA(T ) ≥ c · √
n/d for some absolute constant .c > 0 with probability 

at least .1 − C exp(−dn−3/4/C). Moreover, for any integer d satisfying .d ≤ n/C, 
.GSA(T ) ≤ 2

√
n/(

√
πd) holds with probability at least .1 − exp(−n/50). 

The theorem shows the existence of spectrahedra with .GSA of .�(n1/8). (In 
fact, a random spectrahedron as above satisfies this with constant probability.) This 
lower bound can be contrasted with the .GSA upper bound of Ball [3] of  . O(n1/4)

for arbitrary convex bodies. Moreover, the lower bound shows that in contrast to 
the case of polytopes, the .GSA of spectrahedra can depend polynomially on d. A  
natural open question is how large the .GSA of arbitrary spectrahedra can be; can 
spectrahedra with small d (say, polynomial in n) achieve a .GSA of .�(n1/4)? 

2 Preliminaries 

For a matrix A, .λmax(A) is the maximum eigenvalue of A. We use .g, x,A to denote 
random variables. We let .G(0, σ 2) be the normal distribution with mean 0 and 
variance . σ 2. We denote by .Hd the .d × d Gaussian orthogonal ensemble (GOE). 
Namely, .A ∼ Hd if it is a symmetric matrix with entries .

{
Ai,j

}
i≤j

independently 
distributed satisfying .Ai,j ∼ G(0, 1) for .i < j and .Ai,i ∼ G(0, 2). To keep 
notations short, for .b ≥ 0 we use .[a ± b] to represent the interval .[a − b, a + b]. For  
every .c ≥ 0, we use  .c · [a ± b] to represent the interval .[ac ± bc]. We denote the 
set of n-dimensional unit vectors by .Sn−1. Finally, we let . χn be the . χ distribution

1 A d-facet polytope is the special case of a spectrahedron when the matrices, . A(1), . . . , A(n), B

are diagonal. 
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with n degrees of freedom, which is the square root of the sum of the squares of n 
independent standard normal variables. The following are some simple facts about 
the . χ distribution. 

Fact 2 Let .n ∈ Z>0 and .h(·) be the pdf of . χn. Then the following hold. 

1. .h(x) ≥ c for .x ∈ [√n ± c], where .c > 0 is an absolute constant. 
2. .h(x) ≤ √

n/(
√

π · |x|) for .x ∈ R. 

Proof Recall that by definition 

. h(x) = 1

2
n
2−1	(n

2 )
xn−1e−x2/2

for .x ≥ 0, where .	(·) denotes the gamma function, and .h(x) = 0 otherwise. By 
elementary calculus, .xn−1e−x2/2 monotonically increases for .0 ≤ x <

√
n − 1 and 

monotonically decreases for .x >
√

n − 1. We therefore have 

.xn−1e−x2/2 ≥ min
{
(
√

n + c)n−1e−(
√

n+c)2/2, (
√

n − c)n−1e−(
√

n−c)2/2
}

(3) 

for .0 < c ≤ 1 and .x ∈ [√n ± c]. Item 1 now follows from Eq. (3) and the fact that
.	(z) ≤ √

2πzz−1/2e−z+1/(12z) for all .z > 0 [1, 7]. 
Item 2 is trivial for .x ≤ 0. For  .x > 0, it follows from the inequalities . 	(z) ≥√
2πzz−1/2e−z for all .z > 0 [1, 7] and .xne−x2/2 ≤ nn/2e−n/2, which follows from 

the same argument as above. ��
Lemma 3 ([9, Comment Below Lemma 1]) For .n ≥ 1, let . r be a random variable 
distributed according to . χn. Then for every .x > 0, we have 

. Pr
[
n − 2

√
nx ≤ r2 ≤ n + 2

√
nx + 2x

] ≥ 1 − 2e−x .

For our purposes, it will be convenient to use an alternative definition of 
Gaussian surface area in terms of the inner surface area. Namely, for . Sin

δ =
{x ∈ S : dist(x, Sc} ≤ δ) where . Sc is the complement of the body S, we define, 

.GSA(S) = lim
δ→0

Gn
(
Sin

δ

)
δ

. (4) 

It follows from Huang et al. [6, Theorem 3.3] that this definition is equivalent to the 
one in Eq. (1) when S is a convex body that contains the origin, which is sufficient
for our purposes.

To prove our main theorem, we use the following facts, starting with a well
known bound on the size of an .ε-net of the n-dimensional sphere. 

Fact 4 ([14, Lemma 2.3.4]) For every .d ≥ 1 and any .0 < ε < 1/2 there exists an 
.ε-net of the sphere .Sd−1 of cardinality at most .(3/ε)d .
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The following claim gives a formula for the pdf of the product of two real-valued 
random variables. 

Claim 5 ([12, p. 134, Theorem 3]) Let .x, y be two real-valued random variables 
and f be the pdf of .(x, y). Then the pdf of .z = x · y is given by 

. g(z) =
∫ ∞

−∞
f

(
x,

z

x

)
· 1

|x|dx.

Theorem 6 ([10, Theorem 1]) Let .A ∼ Hd . For every .0 < η < 1, it holds that 

. Pr
[
λmax(A) ∈ 2

√
d
[
1 ± η

]] ≥ 1 − C · e−dη3/2/C,

for some absolute constant .C > 0. 

3 Proof of Main Theorem 

The core of the argument is in the following lemma, bounding .q(2
√

nd) where 
q is the pdf of the largest eigenvalue of the matrix showing up in Eq. (2) . We
will later show that this value is essentially the same as .GSA(T ), where . T is the 
spectrahedron in the statement of the theorem. 

Lemma 7 For .n, d ≥ 1 and .A(1), . . . , A(n) ∈ Symd , let  .q(·) be the probability 
density function of 

. λmax

(∑
i

xiA
(i)

)
,

where .x = (x1, . . . , xn) is a random vector and each entry is i.i.d. drawn 
from .G(0, 1). If  .A(1), . . . ,A(n) are i.i.d. drawn from the .d × d Gaussian orthog-
onal ensemble, then .q(2

√
nd) ≥ c · √

1/d with probability at least . 1 −
C exp(−dn−3/4/C) (over the choice of .A(1), . . . ,A(n)) where .c, C > 0 are univer-
sal constants. Moreover, for any integer d and any .d × d matrices .A(1), . . . , A(n), 
.q(2

√
nd) ≤ 1/(2

√
πd). 

Proof Let .y ∼ Sn−1 be chosen uniformly from the unit sphere and for matrices 
.A(1), . . . , A(n), denote by p the pdf of .λmax

(∑
i yiA

(i)
)
. Let .r ∼ χn and notice that 

. ry is distributed like . x (since both are spherically symmetric and by definition, have 
equally distributed norms). Denote by h the pdf of . r . By Claim 5, we have  

.q
(
2
√

nd
)

=
∫ ∞

−∞
h
(
2
√

nd/z
)
p(z)

1

|z|dz . (5)
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Using Item 2 of Fact 2, .h(2
√

nd/z)/|z| ≤ 1/(2
√

πd) for all z. Hence Eq. (5) can
be bounded as .(1/(2

√
πd)) · ∫ ∞

−∞ p(z)dz = 1/(2
√

πd), establishing the claimed 
upper bound on q. 

To prove the lower bound on q, let  .A(1), . . . ,A(n) ∼ Hd be n matrices chosen 
i.i.d. from the Gaussian orthogonal ensemble. Observe that by Theorem 6, we have  

. Pr
[
λmax

(
n∑

i=1

yiA
(i)

)
∈ I

]
≥ 1 − C exp(−dn−3/4/C) , (6) 

where

. I = 2
√

d · [1 ± c/
√

n] ,

for some universal constants .C, c > 0. Define the set of matrices 

. G =
{(

A(1), . . . , A(n)
)

: Pr
[
λmax

(
n∑

i=1

yiA
(i)

)
∈ I

]
≥ 1

2

}
.

Then, using the definition of G and Eq. (6) , we have

. Pr
[(

A(1), . . . ,A(n)
)

∈ G
]

≥ 1 − 2C exp(−dn−3/4/C) .

Now fix any .(A(1), . . . , A(n)) ∈ G. By definition of G, .
∫
I
p(z)dz ≥ 1/2, and 

therefore the right-hand side of Eq. (5) is at least

. 

∫
I

h
(
2
√

nd/z
)
p(z)

1

z
dz ≥ c ·

∫
I

p(z)
1

z
dz

≥ c

2
√

d(1 + c/
√

n)
·
∫

I

p(z)dz ≥ c

5
√

d
, (7) 

for some absolute constant .c > 0, where we used Item 1 of Fact 2 to conclude that 
.h(2

√
nd/z) ≥ c for all .z ∈ I . ��

We next relate .q(2
√

nd) to .GSA(T ). For a vector .v ∈ Sd−1, and .d×d symmetric 
matrices .A(1), . . . , A(n), define the vector 

.Wv = (
vT A(1)v, vT A(2)v, . . . , vT A(n)v

) ∈ R
n . (8)
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Notice that . T can be written as 

. T =
{
x ∈ R

n :
∑

i

xiA
(i) � 2

√
nd · I

}

=
{
x ∈ R

n : ∀v ∈ Sd−1, 〈x,Wv〉 ≤ 2
√

nd
}

.

We say that .A(1), . . . , A(n) are good if 

. ∀v ∈ Sd−1,
1

2

√
n ≤ ‖Wv‖ ≤ 2

√
n .

Lemma 8 There exists a constant .C ≥ 1 such that for all integers n and .d ≤ n/C, 
random matrices .A(1), . . . ,A(n) drawn i.i.d. from . Hd are good with probability at 
least .1 − exp (−n/50). 

Proof For a fixed .v ∈ Sd−1, we claim that 

.Pr[n ≤ ‖W v‖2 ≤ 3n] ≥ 1 − 2 exp (−n/40). (9) 

To see this, observe that by definition of the Gaussian orthogonal ensemble, for
.A ∼ Hd and unit vector .v ∈ R

d , .vT Av = ∑
i,j vivjAi,j is distributed according to 

. 

⎛
⎝4

∑
i<j

v2i v
2
j + 2

∑
i

v4i

⎞
⎠

1/2

· G(0, 1) = √
2 · G(0, 1).

Therefore, each entry in .W v is distributed according to .G(0, 2), and Lemma 3 
implies Eq. (9). We next prove that with high probability (over the . A(i)s), for every 
unit vector z, .‖W z‖ is large. First, by Fact 4, there exists a set . V = {v1, . . . , v105d } ⊆
R

d of unit vectors that form a .10−4-net of the unit Euclidean sphere. Applying a 
union bound on . V , we have  

. Pr[∀v ∈ V : n ≤ ‖W v‖2 ≤ 3n] ≥ 1 − 2 exp (−n/40) · 105d ≥ 1 − exp (−n/50) ,

(10) 

here we used that .d ≤ n/C for a sufficiently large C. 
To conclude the proof, it suffices to show that if .A(1), . . . ,A(n) are such that 

. ∀v ∈ V, n ≤ ‖W v‖2 ≤ 3n ,

then also 

.∀z ∈ Sd−1, ‖W z‖ ≥ 1

2

√
n .



On the Gaussian Surface Area of Spectrahedra 63

Let .bmax = maxz∈Sd−1 ‖W z‖ and .bmin = minz∈Sd−1 ‖W z‖. Let  .zmax and .zmin be 
the vectors achieving the maximum and the minimum respectively. Let .vmax and 
.vmin be the vectors in . V that are closest to .zmax and .zmin, respectively. For any 
vectors .z, v ∈ Sd−1 with .‖z − v‖ ≤ 10−4, applying the spectral decomposition of 
.zzT − vvT , there exist unit vectors .u1, u2 and .0 ≤ λ ≤ 1

100 such that 

.zzT − vvT = λ ·
(
u1u

T
1 − u2u

T
2

)
. (11) 

Hence

. ‖W z − W v‖2 =
n∑

i=1

(
zT A(i)z − vT A(i)v

)2

=
n∑

i=1

(
Tr

(
A(i)

(
zzT − vvT

)))2

≤ 1

104

n∑
i=1

(
uT
1 A(i)u1 − uT

2 A(i)u2

)2

≤ 1

5000

n∑
i=1

((
uT
1 A(i)u1

)2 +
(
uT
2 A(i)u2

)2)

≤ b2max

2500
.

Choosing .z = zmax and .v = vmax, we have  

. ‖Wzmax‖ ≤ ‖Wvmax‖ + bmax

50
.

Now, since .‖Wzmax‖ = bmax, we have  

. bmax ≤ 50

49
‖Wvmax‖ ≤ 50

49

√
3n ≤ 2

√
n .

Similarly, we set .z = zmin and .v = vmin and obtain 

. bmin ≥ ‖Wvmin‖ − bmax

50
≥ √

n − 1

25

√
n >

1

2

√
n .

This concludes the result. ��
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For the following claim, we define the inner and outer shells of . T as 

. Din
δ =

{
x : λmax

( ∑
i

xiA
(i)

)
∈ √

n · [
2
√

d − δ, 2
√

d
]}

,

Dout
δ =

{
x : λmax

( ∑
i

xiA
(i)

)
∈ √

n · [
2
√

d, 2
√

d + δ
]}

.

Also recall the inner and outer neighborhoods of . T , defined as 

. T in
δ = {x ∈ T : ∃y /∈ T : ‖x − y‖ ≤ δ} ,

T out
δ = {x /∈ T : ∃y ∈ T : ‖x − y‖ ≤ δ} .

Claim 9 For sufficiently small .δ > 0 and any good .A(1), . . . , A(n), we have . Din
δ ⊆

T in
4δ and .T out

δ ⊆ Dout
2δ . 

Proof For every .x ∈ Din
δ , let  v be a unit eigenvector of .

∑
i xiA

(i) with the 
eigenvalue .λmax(

∑
i xiA

(i)). Therefore, 

. 〈x,Wv〉 = vT
( ∑

xiA
(i)

)
v ≥ (2

√
d − δ)

√
n .

Setting .y = 2δ
√

nWv/‖Wv‖2, we have  

. 〈x + y,Wv〉 = 〈x,Wv〉 + 2δ
√

n ≥
(
2
√

d − δ
)√

n + 2δ
√

n =
(
2
√

d + δ
)√

n ,

and so .x + y /∈ T . Moreover, since .A(1), . . . , A(n) are good, . ‖y‖ = 2δ
√

n/‖Wv‖ ≤
4δ and therefore .x ∈ T in

4δ , as desired. For the other containment, let .x ∈ T out
δ . Then 

for any unit vector v, by Cauchy-Schwarz and using .‖Wv‖ ≤ 2
√

n, 

. 〈x,Wv〉 ≤ 2
√

nd + 2δ
√

n ,

implying that .x ∈ Dout
2δ , as desired. ��

We now prove our main theorem. 

Proof of Theorem 1 By Lemmas 7 and 8, if  .A(1), . . . ,A(n) are i.i.d. drawn from 
the .d × d Gaussian orthogonal ensemble, then with probability at least . 1 −
C exp(−dn−3/4/C), we have that .q(2

√
nd) ≥ c · √

1/d (where .q(·) is as 
defined in Lemma 7) and that .A(1), . . . ,A(n) are good, where .c, C > 0 are some 
constants. Since .q(·) is continuous, the former implies that . Gn(Din

δ ) ≥ cδ
√

n/(2d)

for sufficiently small .δ > 0. Thus, .Gn(T in
4δ ) ≥ cδ

√
n/(2d) by Claim 9. By  

definition of .GSA(S) = limδ→0 Gn(Sin
δ )/δ, we obtain the desired lower bound 

on .GSA(T ). Similarly, by Lemmas 7 and 8, if  .A(1), . . . ,A(n) are i.i.d. drawn 
from the .d × d Gaussian orthogonal ensemble, then with probability at least
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.1 − exp (−n/50), .Gn(Dout
δ ) ≤ δ

√
n/(

√
πd) for sufficiently small .δ > 0. Thus, 

.Gn(T out
δ/2 ) ≤ δ

√
n/(

√
πd) by Claim 9. We complete the proof using . GSA(S) =

limδ→0 Gn(Sout
δ )/δ. ��
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Asymptotic Expansions and Two-Sided 
Bounds in Randomized Central Limit 
Theorems 

Sergey G. Bobkov, Gennadiy P. Chistyakov, and Friedrich Götze 

Abstract Lower and upper bounds are explored for the uniform (Kolmogorov) and 
.L2-distances between the distributions of weighted sums of dependent summands 
and the normal law. The results are illustrated for several classes of random variables 
whose joint distributions are supported on Euclidean spheres. We also survey several 
results on improved rates of normal approximation in randomized central limit 
theorems. 

Keywords Typical distributions · Normal approximation · Central limit theorem 

1 Introduction 

A random vector .X = (X1, . . . , Xn) in . Rn (.n ≥ 2) defined on the probability space 
.(�,F,P) is called isotropic, if 

. EXiXj = δij for all i, j ≤ n,

where . δij is the Kronecker symbol. Equivalently, all weighted sums 

. Sθ = θ1X1 + · · · + θnXn, θ = (θ1, . . . , θn), θ2
1 + · · · + θ2

n = 1,

with coefficients from the unit sphere .Sn−1 in . Rn have a second moment .ES2
θ = 1. 

In this case, provided that the Euclidean norm .|X| is almost constant, and if n is 
large, a theorem due to Sudakov [27] asserts that the distribution functions 

. Fθ(x) = P{Sθ ≤ x}, x ∈ R,
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are well approximated for most of .θ ∈ S
n−1 by the standard normal distribution 

function 

. �(x) = 1√
2π

∫ x

−∞
e−y2/2 dy.

Here, “most” should refer to the normalized Lebesgue measure .sn−1 on the sphere. 
This property may be quantified, for example, in terms of the Kolmogorov distance 

. ρ(Fθ ,�) = sup
x

|Fθ(x) − �(x)|.

Being rather universal (since no independence of the components . Xk is required), 
randomized central limit theorems of such type have received considerable interest 
in recent years. For the history, bibliography, and interesting connections with other 
concentration problems we refer an interested reader to [8, 9, 12]. Let us mention 
one general upper bound 

.Eθ ρ(Fθ ,�) ≤ c (1 + σ4)
log n√

n
, (1.1) 

which holds true with an absolute constant .c > 0 for any isotropic random vector X 
(cf. Theorem 1.2 in [8]). Here and elsewhere, . Eθ denotes an integral over .S

n−1 with 
respect to the measure .sn−1, and the bound involves the variance-type functional 

. σ 2
4 = σ 2

4 (X) = 1

n
Var(|X|2) (σ4 ≥ 0).

Modulo a logarithmic factor, the bound (1.1) exhibits a standard rate of normal 
approximation for . Fθ , in analogy with the classical case of independent identically 
distributed (iid) summands with equal coefficients. It turns out, however, that in the 
model with arbitrary .θ ∈ S

n−1 and independent components . Xk , the standard rate 
for .ρ(Fθ ,�) is dramatically improved to the order .1/n on average and actually 
for most of . θ . Motivated by the seminal paper of Klartag and Sodin [20], this 
interesting phenomenon was recently studied in [9, 10] for dependent data under 
certain correlation-type conditions. The last chapters of this paper provide a short 
account of these improved rates of normal approximation. 

One of the main aims of this work is to develop lower bounds with a similar 
standard rate as in (1.1) (modulo logarithmic factors) and to illustrate them with a 
number of examples of random variables . Xk often appearing in Functional Analysis. 
These results rely on a careful examination of the closely related .L2-distance 

.ω(Fθ ,�) =
( ∫ ∞

−∞
(Fθ (x) − �(x))2 dx

)1/2
.
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Similarly to (1.1), it can be shown that for the class of isotropic random vectors the 
inequality 

.Eθ ω2(Fθ ,�) ≤ c (1 + σ 2
4 )

1

n
(1.2) 

holds without an unnecessary logarithmic term. However, in order to explore the real
behavior of the average .L2-distance, some other characteristics of the distribution 
of X are required. For example, assuming that the distribution is supported on the 
sphere . 

√
nS

n−1, the .L2-distance admits an asymptotic expansion in terms of the 
moment functionals (normalized .Lp-norms) 

. mp = mp(X) = 1√
n

(
E 〈X, Y 〉p )1/p = 1√

n

(∑
(EXi1 . . . Xip )2

)1/p

.

Here, Y is an independent copy of X, and the summation is performed over all 
indices .1 ≤ i1, . . . , ip ≤ n. The second representation shows that these functionals 
are non-negative for any integer .p ≥ 1. Note that .m1 = 0 if X has mean zero, 
.m2 = 1 if X is isotropic, and .mp = 0 with odd p when the distribution of X is 
symmetric about the origin. The following expansion involves the moments .mp up 
to order 4. 

Theorem 1.1 Let X be an isotropic random vector in . Rn with mean zero and such 
that .|X|2 = n a.s. We have 

.Eθ ω2(Fθ ,�) = c

n3/2 m3
3 + O

( 1

n2 m4
4

)
(1.3) 

with .c = 1
16

√
π
. Similarly, with some absolute constants .c1, c2 > 0, 

.Eθ ρ2(Fθ ,�) ≤ c1 log n

n3/2 m3
3 + c2(log n)2

n2 m4
4. (1.4) 

As we will see, in the general isotropic case without the support assumption, 
but with bounded . σ4, the average .L2-distance is described by a more complicated 
formula 

. Eθ ω2(Fθ ,�) = 1√
2πn

(
1 + 1

8n

)
E

√
|X|2 + |Y |2

− 1√
2πn

(
1 + 1

4n

)
E |X − Y | + O

(1 + σ 2
4

n2

)
, (1.5) 

which holds whenever .E |X|2 = n. 
In the setting of Theorem 1.1, using the pointwise bound .| 〈X, Y 〉 | ≤ n together 

with the isotropy assumption, we have .E 〈X, Y 〉3 ≤ n2 and .E 〈X, Y 〉4 ≤ n3.
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Therefore, the inequalities (1.3) and (1.4) yield with some absolute constant . c > 0

.Eθ ω2(Fθ ,�) ≤ c

n
, Eθ ρ2(Fθ ,�) ≤ c (log n)2

n
, (1.6) 

thus recovering the upper bounds (1.1) and (1.2) for this particular case (since . σ4 =
0). On the other hand, for a large variety of examples, such bounds turn out to 
be optimal and may be reversed modulo a logarithmic factor (for large n). To see 
this, one may use the following lower bound which will be derived from a slightly 
modified variant of (1.5). 

Theorem 1.2 Let X be a random vector in . Rn satisfying .E |X|2 = n, and let Y be 
its independent copy. For some absolute constants .c1, c2 > 0, we have 

.Eθ ω2(Fθ ,�) ≥ c1 P

{
|X − Y | ≤ 1

2

√
n

}
− c2

1 + σ 4
4

n2 . (1.7) 

Thus, if the probability in (1.7) is of order at least .1/n, and . σ4 is bounded, the 
right-hand side of this bound will be of the same order. If, for example, . |X| = √

n

a.s., we then obtain that .Eθ ω2(Fθ ,�) ∼ 1/n. In order to derive a similar conclusion 
for the Kolmogorov distance, one may refer to the next statement. 

Theorem 1.3 Let X be an isotropic random vector in . Rn such that .|X| ≤ b
√

n a.s. 
Suppose that we have a lower bound at the standard rate 

. Eθ ω2(Fθ ,�) ≥ D

n

with some .D > 0. Then with some absolute constants . c0, c1 > 0

. Eθ ρ(Fθ , F ) ≥ c0

(1 + σ4)3 b2

D2

(log n)4
√

n
− c1 (1 + σ 2

4 )

n
.

These estimates may be employed to arrive at the two-sided bounds of the form 

.
c0

n
≤ Eθ ω2(Fθ ,�) ≤ c1

n
,

c0

(log n)4
√

n
≤ Eθ ρ(Fθ ,�) ≤ c1 log n√

n
(1.8) 

with some absolute constants .c0 > 0 and .c1 > 0. Examples where both inequalities 
in (1.8) are fulfilled include the following uniformly bounded orthonormal systems 
in .L2(�,F,P): 

(i) The trigonometric system .X = (X1, . . . , Xn) with components 

.X2k−1(t) = √
2 cos(kt),

X2k(t) = √
2 sin(kt) (−π < t < π, k = 1, . . . , n/2, n even)
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on the interval .� = (−π, π) equipped with the normalized Lebesgue measure 
. P. 

(ii) The cosine trigonometric system .X = (X1, . . . , Xn) with 

. Xk(t) = √
2 cos(kt)

on the interval .� = (0, π) equipped with the normalized Lebesgue measure . P. 
(iii) The normalized Chebyshev polynomials .X1, . . . , Xn defined by 

. Xk(t) = √
2 cos(k arccos t)

= √
2

[
tn −

(
n

2

)
tn−2(1 − t2) +

(
n

4

)
tn−4(1 − t2)2 − . . .

]

on .� = (−1, 1) equipped with the probability measure .dP(t) = 1

π
√

1−t2
dt , 

.|t | < 1. 
(iv) The systems of functions of the form 

. Xk(t, s) = 
(kt + s), k = 1, . . . , n (0 < t, s < 1)

on the square .� = (0, 1) × (0, 1) equipped with the Lebesgue measure . P. In  
this case, (1.8) holds true for any 1-periodic Lipschitz function . 
 on the real 
line such that .

∫ 1
0 
(x) dx = 0 and .

∫ 1
0 
(x)2 dx = 1 with constants . c0 and . c1

depending on . 
 only. 
(v) The Walsh system 

. X = {Xτ }τ 
=∅, τ ⊂ {1, . . . , d},

of dimension .n = 2d − 1 on the discrete cube .� = {−1, 1}d (the ordering 
of the components does not play any role). Here, . P denotes the normalized 
counting measure, and 

. Xτ (t) =
∏
k∈τ

tk for t = (t1, . . . , td ) ∈ �.

(vi) Random vectors X with associated empirical distribution functions . Fθ based 
on the “observations” .Xk = √

n θk (.1 ≤ k ≤ n). 

The paper is organized as follows. We start in Sect. 2 with a review of several 
results on the so-called typical distributions F which serve as main approximations 
for . Fθ (in general, they do not need to be normal, or even nearly normal). Sections 3– 
7 deal with the .L2-distances .ω(Fθ , F ) only, while Sects. 8–12 are mostly focused 
on the Kolmogorov distances .ρ(Fθ , F ). In Sect. 13, the examples described in items 
(i)–(vi) illustrate the applicability of Theorems 1.1–1.3, thus with a standard rate of 
normal approximation. In Sect. 14 we consider lacunary trigonometric systems and
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show that the typical rate is improved to the order .1/n. Similar improved rates are 
also reviewed in the last section in presence of certain correlation-type conditions. 
Thus an outline of all sections reads as: 

1. Introduction 
2. Typical distributions 
3. Upper bound for the .L2-distance at standard rate 
4. General approximations for the .L2-distance with error of order at most . 1/n

5. Proof of Theorem 1.1 for the .L2-distance 
6. General lower bounds for the .L2-distance. Proof of Theorem 1.2 
7. Lipschitz systems 
8. Berry-Esseen-type bounds 
9. Quantitative forms of Sudakov’s theorem for the Kolmogorov distance 

10. Proof of Theorem 1.1 for the Kolmogorov Distance 
11. Relations between . L1, . L2 and Kolmogorov distances 
12. Lower bounds. Proof of Theorem 1.3 
13. Functional examples 
14. The Walsh system; Empirical measures 
15. Improved rates for lacunary systems 
16. Improved rates for independent and log-concave summands 
17. Improved rates under correlation-type conditions 

As usual, the Euclidean space . Rn is endowed with the canonical norm .| · | and 
the inner product .〈·, ·〉. In the sequel, we denote by . Eθ an integral over .Sn−1 with 
respect to the measure . sn−1. By  c, .c1, c2, . . . , we denote positive absolute constants 
which may vary from place to place (if not stated explicitly that c depends on some 
parameter). Similarly C will denote a quantity bounded by an absolute constant. 
Throughout, we assume that X is a given random vector in . Rn (.n ≥ 2) and Y is its 
independent copy. 

2 Typical Distributions 

In the sequel, we denote by 

. F(x) = EθFθ (x) = Eθ P{Sθ ≤ x}, x ∈ R,

the mean distribution function of the weighted sums .Sθ = 〈X, θ〉 with respect to 
the uniform measure .sn−1. It is also called a typical distribution function using the 
terminology of [27]. Indeed, according to Sudakov’s theorem, if X is isotropic, then 
most of . Fθ are concentrated about F in a weak sense (cf. [1, 2, 8] for quantitative 
statements). 

However, whether or not F itself is close to the normal distribution function . �
is determined by the concentration properties of the distribution of . |X|. Note that, 
due to the rotational invariance of .sn−1, the typical distribution can be described as
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the distribution of the product .θ1 |X|, assuming that .θ = (θ1, . . . , θn) is a random 
vector which is independent of X and has distribution .sn−1. In this product, .θ1

√
n is 

almost standard normal, so that F is almost standard normal, if and only if . 1√
n

|X|
is almost 1 (like in the weak law of large numbers). This assertion can be quantified 
in terms of the weighted total variation distance by virtue of the following upper 
bound derived in [7]. 

Proposition 2.1 If .E |X|2 = n (in particular, when X is isotropic), then 

. 

∫ ∞

−∞
(1 + x2) |F(dx) − �(dx)| ≤ c

n

(
1 + Var(|X|)).

In particular, this gives a non-uniform bound for the normal approximation, 
namely 

.|F(x) − �(x)| ≤ c

n (1 + x2)

(
1 + Var(|X|)), x ∈ R. (2.1) 

In these bounds we shall rely on the following monotone functionals (of p)

.σ2p = √
n

(
E

∣∣∣ |X|2
n

− 1
∣∣∣p

)1/p

, p ≥ 1, (2.2) 

where the particular cases .p = 1 and .p = 2 will be most important. If .E |X|2 = n, 
we thus deal with a more tractable quantity 

. σ 2
4 = 1

n
Var

(|X|2).

Using an elementary inequality .Var(ξ)Eξ2 ≤ Var(ξ2) (which is true for any random 
random variable .ξ ≥ 0), we have .Var(|X|) ≤ σ 2

4 . Another similar relation 

. 
1

4
σ 2

2 ≤ Var(|X|) ≤ √
n σ2

can be found in [8]. From (2.1), we therefore obtain the following bounds for the 
normal approximation in all .Lp-norms 

. ‖F − �‖p =
( ∫ ∞

−∞
|F(x) − �(x)|p dx

)1/p

,

including the limit case 

.‖F − �‖∞ = ρ(F,�) = sup
x

|F(x) − �(x)|.
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Corollary 2.2 If .E |X|2 = n, then, for all .p ≥ 1, 

.‖F − �‖p ≤ c
1 + σ2√

n
, ‖F − �‖p ≤ c

1 + σ 2
4

n
. (2.3) 

Note that the characteristic function associated to F is given by 

.f (t) = Eθ E eit〈X,θ〉 = Eθ E eit |X| θ1 = E Jn(t |X|), t ∈ R, (2.4) 

where . Jn denotes the characteristic function of the first coordinate . θ1 of . θ under 
.sn−1. Hence, by the Plancherel theorem, 

.ω2(F,�) = 1

2π

∫ ∞

−∞
(
E Jn(t |X|) − e−t2/2)2 dt

t2 . (2.5) 

For .p = 2, the relations in (2.3) can also be derived by means of (2.5) and by virtue 
of the following Edgeworth-type approximations derived in [8] and [10]. 

Lemma 2.3 For all .t ∈ R, 

.
∣∣Jn

(
t
√

n
) − e−t2/2

∣∣ ≤ c

n
min{1, t2}. (2.6) 

Moreover,

.

∣∣∣Jn

(
t
√

n) −
(

1 − t4

4n

)
e−t2/2

∣∣∣ ≤ c

n2
min{1, t4}. (2.7) 

The functions . Jn have a subgaussian (although oscillatory) decay on a long 
interval of the real line. In particular, as was shown in [8], 

.
∣∣Jn

(
t
√

n
)∣∣ ≤ 5 e−t2/2 + 4 e−n/12, t ∈ R. (2.8) 

This bound can be used for the estimation of the characteristic function of the typical
distribution, by involving the variance-type functionals . σ2p. 

Lemma 2.4 The characteristic function of the typical distribution satisfies, for all 
.t ∈ R, 

. cp |f (t)| ≤ e−t2/4 + 1 + σ
p

2p

np/2

with constants .cp > 0 depending on .p ≥ 1 only. Consequently, for all .T > 0, 

.
cp

T

∫ T

0
|f (t)| dt ≤ 1

T
+ 1 + σ

p

2p

np/2 .
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Proof One may split the expectation in (2.4) to the event .A = {|X|2 ≤ λn} and its 
complement .B = {|X|2 > λn}, .0 < λ < 1. By (2.8), 

. E |Jn(t |X|)| 1B ≤ E
(
5 e−t2|X|2/2n + 4 e−n/12) 1B

≤ 5 e−λt2/2 + 4 e−n/12.

On the other hand, recalling the definition (2.2), we have 

. P(A) = P
{
n − |X|2 ≥ (1 − λ)n

}

≤ 1

((1 − λ)n)p
E |n − |X|2|p = σ

p

2p

(1 − λ)p np/2 . (2.9) 

Choosing .λ = 1
2 , and since .|Jn(s)| ≤ 1 for all .s ∈ R, we get 

. E |Jn(t |X|)| 1A ≤ (2σ2p)p n−p/2,

thus implying that 

. |f (t)| ≤ 5 e−t2/4 + 4 e−n/12 + (2σ2p)p n−p/2.

This readily yields the desired pointwise and integral bounds of the lemma. ��
If .|X| = √

n a.s., the typical distribution F is just the distribution of .
√

n θ1, 
the normalized first coordinate of a point on the unit sphere under .sn−1, whose 
characteristic function is .Jn(t

√
n). In this case, the subgaussian character of F 

manifests itself in corresponding deviation and moment inequalities such as the 
following. 

Lemma 2.5 For all .p > 0, 

.Eθ |θ1|p ≤ 2
(p

n

)p/2
. (2.10) 

This inequality can be derived from the well-known bound on the Laplace 
transform 

.Eθ etθ1 ≤ exp
{ t2

2(n − 1)

}
, t ∈ R,



76 S. G. Bobkov et al.

which follows from the fact that the logarithmic Sobolev constant for the unit 
sphere is equal to .n − 1 (cf. [21]). Using .xp ≤ (

p
e
)p ex , . x ≥ 0, we have  

.|x|p ≤ 2 (
p
e
)p cosh(x), .x ∈ R, and the above bound implies 

. tp Eθ |θ1|p ≤ 2
(p

e

)p

e
t2

2(n−1) for all t ≥ 0.

The latter can be optimized over t , which leads to (2.10), even in a sharper form. 
In this connection, let us emphasize that rates for the normal approximation for F 

that are better than .1/n cannot be obtained under the support assumption as above. 

Proposition 2.6 For any random vector X in . Rn such that .|X|2 = n a.s., we have 

. Eθ ρ(F,�) ≥ c

n
.

Proof One may apply the following lower bound 

.ρ(F,�) ≥ 1

3T

∣∣∣
∫ T

0
(f (t) − e−t2/2)

(
1 − t

T

)
dt

∣∣∣, (2.11) 

which holds for any .T > 0 (cf. [3]). Since .|X|2 = n a.s., we have .f (t) = Jn(t
√

n). 
Choosing .T = 1 and applying (2.7), it follows from (2.11) that .ρ(F,�) ≥ c

n
for 

all .n ≥ n0 where . n0 is determined by c only. But, a similar bound also holds for 
.n < n0 since F is supported on the interval .[−√

n,
√

n]. ��

3 Upper Bound for the L2-Distance at Standard Rate 

Like in the problem of normal approximation for the typical distribution function 
.F = EθFθ , the closeness of distribution functions .Fθ of the weighted sums 
.Sθ = 〈X, θ〉 (.θ ∈ S

n−1) to  F in the metric . ω can also be explored in terms of 
the associated characteristic functions (the Fourier-Stieltjes transforms) 

.fθ (t) = E eit〈X,θ〉 =
∫ ∞

−∞
eit〈x,θ〉 dFθ (x), t ∈ R. (3.1) 

Again, let us start with the identity 

.ω2(Fθ , F ) = 1

2π

∫ ∞

−∞
|fθ (t) − f (t)|2

t2 dt. (3.2) 

Here, the mean value of the numerator represents the variance . Eθ |fθ (t)|2 − |f (t)|2
with respect to .sn−1. Moreover, using an independent copy Y of X, we have  

.Eθ |fθ (t)|2 = Eθ E eit〈X−Y,θ〉 = EJn(t |X − Y |). (3.3)
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Hence, the Plancherel formula (3.2) together with (2.4) yields 

.Eθ ω2(Fθ , F ) = 1

2π

∫ ∞

−∞

(
EJn(t |X − Y |) − (

EJn(t |X|))2
) dt

t2 . (3.4) 

In this section our aim is to show that the above expression is of order at most 
.O(1/n) provided that the mean .a = EX, .m2 = m2(X) and .σ 2

4 = σ 2
4 (X) are of 

order 1. The next statement contains the upper bound (1.2) as a partial case. 

Proposition 3.1 Given a random vector X in . Rn with .EX = a and .E |X|2 = n, we  
have 

.Eθ ω2(Fθ , F ) ≤ cA

n
(3.5) 

with .A = 1+|a|2 +m2
2 +σ 2

4 . A similar inequality continues to hold with the normal 
distribution function . � in place of F . 

If X is isotropic, then .m2 = 1, while .|a| ≤ 1 (by Bessel’s inequality). Hence, 
both characteristics .m2 and a may be removed from the parameter A in this case. 
However, in the general case, it may happen that . m2 and . σ4 are bounded, while . |a|
is large. The example in Remark 3.2 shows that this parameter can not be removed. 

Proof Note that, for any .η > 0, 

.

∫ ∞

−∞
min{1, t2η2}

t2 dt = 4η, (3.6) 

Hence, in the formula (3.4), the expectation .EJn(t |X − Y |) can be replaced using 
the normal approximation (2.6) at the expense of an error not exceeding 

. 
c

n
E

∫ ∞

−∞
min

{
1,

t2|X − Y |2
n

} dt

t2
= 4c

n
E

|X − Y |√
n

≤ 8c

n
,

where we used that .E |X| ≤ √
n. Similarly, by (2.6) and (3.6), 

.

∫ ∞

−∞

∣∣∣ (EJn(t |X|))2 − (
E e−t2|X|2/2n

)2
∣∣∣ dt

t2 ≤ 2E
∫ ∞

−∞
∣∣Jn(t |X|) − e−t2|X|2/2n

∣∣ dt

t2

≤ 2c

n
E

∫ ∞

−∞
min

{
1,

t2|X|2
n

} dt

t2

= 8c

n
E

|X|√
n

≤ 8c

n
.
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Hence, using these bounds in (3.4), we arrive at the general approximation 

.Eθ ω2(Fθ , F ) = 1

2π

∫ ∞

−∞

(
E e−t2|X−Y |2/2n − (

E e−t2|X|2/2n
)2

) dt

t2 + C

n
, (3.7) 

where we recall that C denotes a quantity bounded by an absolute constant.
Introduce the random variable

. ρ2 = |X − Y |2
2n

(ρ ≥ 0).

By Jensen’s inequality, .E e−t2|X|2/2n ≥ e−t2/2, so that, by (3.7), 

. Eθ ω2(Fθ , F ) ≤ 1

2π
E

∫ ∞

−∞
e−ρ2t2 − e−t2

t2
dt + c

n
.

The above integral is easily evaluated (by differentiating with respect to the variable 
“. ρ2"), and we arrive at the bound 

.Eθ ω2(Fθ , F ) ≤ 1√
π

(1 − Eρ) + c

n
. (3.8) 

To further simplify, one may apply an elementary inequality . 1 − x ≤ 1
2 (1 −

x2) + (1 − x2)2 (.x ≥ 0), which gives 

. Eθ ω2(Fθ , F ) ≤ 1

2
√

π
E (1 − ρ2) + 1√

π
E (1 − ρ2)2 + c

n
.

Since 

. 1 − ρ2 = n − |X|2
2n

+ n − |Y |2
2n

+ 〈X, Y 〉
n

,

we have 

. 1 − Eρ2 = 1

n
E 〈X, Y 〉 = 1

n
|EX|2 = 1

n
|a|2.

In addition, 

.(1 − ρ2)2 ≤ 2

(
n − |X|2

2n
+ n − |Y |2

2n

)2

+ 2
〈X, Y 〉2

n2 ,
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which implies 

. E (1 − ρ2)2 ≤ Var(|X|2)
n2

+ 2
E 〈X, Y 〉2

n2
= σ 2

4 + 2m2
2

n
.

Using this estimate in (3.8), the inequality (3.5) follows immediately. 
For the second assertion, it remains to apply Corollary 2.2. ��

Remark 3.2 Let us illustrate the inequality (3.5) in the example where the random 
vector X has a normal distribution with a large mean value. Given a standard normal 
random vector .Z = (Z1, . . . , Zn−1) in .Rn−1 (which we identify with the space of 
all points in . Rn with zero last coordinate), define 

. X = αZ + λen with 1 ≤ λ ≤ n1/4, α2(n − 1) + λ2 = n,

where .en = (0, . . . , 0, 1) is the last unit vector in the canonical basis of . Rn. Since 
Z is orthogonal to . en, so that .|X|2 = α2 |Z|2 + λ2, we have .E |X|2 = n, and 

. σ 2
4 = α4

n
Var(|Z|2) = 2α4 (n − 1)

n
= 2

(n − λ2)2

n(n − 1)
< 2.

Let . Z′ be an independent copy of Z. Then .Y = αZ′ + λen is an independent 
copy of X, so that 

. m2
2 = 1

n
E 〈X, Y 〉2 = 1

n
(α4 (n − 1) + λ4) < 2.

Thus, both .m2 and . σ4 are bounded, while the mean .a = EX = λen has the 
Euclidean length .|a| = λ ≥ 1. Hence, the inequality (3.5) being stated for the 
normal distribution function in place of F simplifies to 

. Eθ ω2(Fθ ,�) ≤ cλ2

n
.

Let us show that this bound may be reversed up to an absolute factor (which 
would imply that .|a|2 may not be removed from A). For any unit vector . θ =
(θ1, . . . , θn), the linear form 

. Sθ = 〈X, θ〉 = αθ1Z1 + · · · + αθn−1Zn−1 + λθn

has a normal distribution on the line with mean .ESθ = λθn and variance . Var(Sθ ) =
α2(1 − θ2

n). Consider the normal distribution function .�μ,σ 2(x) = �(
x−μ

σ
) with 

parameters .0 ≤ μ ≤ 1 and .
1
2 ≤ σ 2 ≤ 1 (.σ > 0). If .x ≤ μ

1+σ
, then .

x−μ
σ

≤ x, and on
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the interval with these endpoints the standard normal density .ϕ(y) attains minimum 
at the left endpoint. Hence 

. |�μ,σ 2(x) − �(x)| =
∫ x

x−μ
σ

ϕ(y) dy ≥
(
x − x − μ

σ

)
ϕ
(x − μ

σ

)
,

so that 

. ω2(�μ,σ 2 ,�) ≥
∫ μ

1+σ

−∞

(
x − x − μ

σ

)2
ϕ
(x − μ

σ

)2
dx

= σ

2π

∫ − μ
1+σ

−∞
(μ − (1 − σ)y)2 e−y2/2 dy

≥ σμ2

2π

∫ − μ
1+σ

−∞
e−y2/2 dy ≥ cμ2.

In our case, since .λ ≤ n1/4 and 

. α2 = n − λ2

n − 1
≥ n − √

n

n − 1
≥ 1 − 1√

n
,

we have .|ESθ | ≤ 1 and .Var(Sθ ) ≥ 1
2 on the set .�n = {θ ∈ S

n−1 : |θn| <
log n√

n
} with 

n large enough. It follows that 

. Eθ ω2(Fθ ,�) ≥ cλ2
E θ2

n 1{θ∈�n} ≥ c′λ2

n
.

4 General Approximations for the L2-Distance with Error 
of Order at Most 1/n 

We now turn to general representations for the average .L2-distance between . Fθ and 
the typical distribution function F with error of order at most .1/n. 

Proposition 4.1 Suppose that .E |X| ≤ b
√

n for some .b ≥ 0. Then 

.Eθ ω2(Fθ , F ) = 1√
2π

ER + Cb

n2 , (4.1) 

where

.R = (|X|2 + |Y |2)1/2

√
n

(
1 + 1

4n

|X|4 + |Y |4
(|X|2 + |Y |2)2

)
− |X − Y |√

n

(
1 + 1

4n

)
. (4.2)
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We use the convention that .R = 0 if .X = Y = 0. Note that .|R| ≤ 3 |X|+|Y |√
n

, so  

.ER ≤ 3b. 
Let us give a simpler expression by involving the functional . σ 2

4 = 1
n

Var(|X|2)
and assuming that .E |X|2 = n. Since 

. 
|X|4 + |Y |4

(|X|2 + |Y |2)2 − 1

2
= (|X|2 − |Y |2)2

2 (|X|2 + |Y |2)2 ,

we may write 

.R= 1

8n3/2

(|X|2−|Y |2)2

(|X|2+|Y |2)3/2+
(|X|2+|Y |2)1/2

√
n

(
1+ 1

8n

)
−|X−Y |√

n

(
1+ 1

4n

)
. (4.3) 

As we will see, the first term here is actually of order at most .σ 2
4 /n2. As a result, we 

arrive at the relation (1.5). 

Proposition 4.2 If .E |X|2 = n, then 

.Eθ ω2(Fθ , F ) = 1√
2π

ER + C
1 + σ 2

4

n2 , (4.4) 

where

.R = (|X|2 + |Y |2)1/2

√
n

(
1 + 1

8n

)
− |X − Y |√

n

(
1 + 1

4n

)
. (4.5) 

Proof of Proposition 4.1 Let us return to the Plancherel formula (3.4). To simplify 
the integrand therein, we apply the inequality (2.7) in Lemma 2.3, by replacing . t4

with . t2 in the remainder term. Using the equality (3.6), the expectation . EJn(t |X −
Y |) in the formula (3.4) can be therefore replaced according to (2.7) at the expense 
of an error not exceeding 

. 
c

n2 E

∫ ∞

−∞
min

{
1,

t2|X − Y |2
n

} dt

t2 = 4c

n2 E
|X − Y |√

n
≤ 8cb

n2 .

As for the main term .(1 − t4

4n
) e−t2/2 in (2.7), it is bounded by an absolute 

constant, which implies that 

.Jn

(
t
√

n)Jn

(
s
√

n) =
(

1 − t4

4n

)(
1 − s4

4n

)
e−(t2+s2)/2 + O

(
n−2 min{1, t2 + s2})

=
(

1 − t4 + s4

4n

)
e−(t2+s2)/2 + O

(
n−2 min{1, t2 + s2}).
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Hence 

. |EJn(t |X|)|2 = E Jn(t |X|) Jn(t |Y |) = E

(
1 − t4 (|X|4 + |Y |4)

4n3

)
e− t2 (|X|2+|Y |2)

2n

+ O
(
n−2 min

{
1,

t2 (|X|2 + |Y |2)
n

})
.

As before, after integration in (3.4) the latter remainder term will produce a quantity 
not exceeding a multiple of .b/n2. As a preliminary step, we therefore obtain the 
representation 

.Eθ ω2(Fθ , F ) = 1

2π
I + Cb

n2 (4.6) 

with

. I = E

∫ ∞

−∞

[(
1− t4|X − Y |4

4n3

)
e− t2|X−Y |2

2n −
(
1− t4 (|X|4+|Y |4)

4n3

)
e− t2 (|X|2+|Y |2)

2n

]
dt

t2 .

To evaluate the integrals of this type, consider the functions 

. ψr(α) = 1√
2π

∫ ∞

−∞

(
(1 − rt4) e−αt2/2 − e−t2/2

) dt

t2
(α > 0, r ∈ R).

Clearly, 

. ψr(1) = − 1√
2π

∫ ∞

−∞
rt2 e−t2/2 dt = −r

and 

. ψ ′
r (α) = − 1

2
√

2π

∫ ∞

−∞
(1 − rt4) e−αt2/2 dt

= − 1

2
√

α

1√
2π

∫ ∞

−∞

(
1 − r

α2 s4
)

e−s2/2 ds = − 1

2
√

α

(
1 − 3r

α2

)
.

Hence 

. ψr(α) − ψr(1) =
∫ α

1

(
− 1

2
z−1/2 + 3r

2
z−5/2

)
dz

= (1 + r) − (α1/2 + rα−3/2),

and we get 

.ψr(α) = 1 − (α1/2 + rα−3/2). (4.7)
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Here, when . α and r both approach zero subject to the relation .r = O(α2), we get 
in the limit .ψ0(0) = 1. From this,  

. 
1√
2π

I = E (ψr1(α1) − ψr2(α2))

= E (α
1/2
2 + r2α

−3/2
2 ) − E (α

1/2
1 + r1α

−3/2
1 ),

which we need with 

. α1 = |X − Y |2
n

, r1 = |X − Y |4
4n3 ,

α2 = |X|2 + |Y |2
n

, r2 = |X|4 + |Y |4
4n3

.

It follows that 

. α
1/2
2 + r2α

−3/2
2 =

( |X|2 + |Y |2
n

)1/2 (
1 + 1

4n

|X|4 + |Y |4
(|X|2 + |Y |2)2

)
,

α
1/2
1 + r1α

−3/2
1 =

( |X − Y |2
n

)1/2(
1 + 1

4n

)

with the assumption that both expressions are equal to zero in the case .X = Y = 0. 
As a result, (4.6) yields the desired representation (4.1) with quantity R described 
in (4.2). ��

In order to modify (4.1) and (4.2) to the form (4.4) and (4.5), first let us verify 
the following general relation. 

Lemma 4.3 Let . ξ be a non-negative random variable with finite second moment 
(not identically zero), and let . η be its independent copy. Then 

. E
(ξ − η)2

(ξ + η)3/2
1{ξ+η>0} ≤ 12

Var(ξ)

(E ξ)3/2
.

Applying the lemma with .ξ = |X|2, .η = |Y |2 and assuming that .E |X|2 = n, we  
get that 

. E
(|X|2 − |Y |2)2

(|X|2 + |Y |2)3/2 ≤ 12
Var(|X|2)
(E |X|2)3/2 = 12

Var(|X|2)
n3/2 = 12

σ 2
4

n1/2 .

In view of (4.3), this proves Proposition 4.2.
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Proof of Lemma 4.3 By homogeneity, we may assume that .Eξ = 1. In particular, 
.E |ξ − η| ≤ 2. We have  

. E
(ξ − η)2

(ξ + η)3/2
1{ξ+η>1/2} ≤ 23/2

E (ξ − η)2 1{ξ+η>1/2}

≤ 23/2
E (ξ − η)2 = 4

√
2 Var(ξ).

Also note that, by Chebyshev’s inequality, 

. P {ξ ≤ 1/2} = P {1 − ξ ≥ 1/2} ≤ 4 Var(ξ)2,

so 

. P {ξ + η ≤ 1/2} ≤ P {ξ ≤ 1/2}P {η ≤ 1/2} ≤ 16 Var(ξ)2.

Hence, since . |ξ−η|
ξ+η

≤ 1 for .ξ + η > 0, we have, by Cauchy’s inequality, 

. E
(ξ − η)2

(ξ + η)3/2 1{0<ξ+η≤1/2} ≤ E
√|ξ − η| 1{0<ξ+η≤1/2}

≤ √
E |ξ − η| √P {ξ + η ≤ 1/2} ≤ 4

√
2 Var(ξ).

It remains to combine both inequalities, which yield 

. E
(ξ − η)2

(ξ + η)3/2 1{ξ+η>0} ≤ 8
√

2 Var(ξ) ≤ 12 Var(ξ).

��

5 Proof of Theorem 1.1 for the L2-Distance 

The expression (4.5) may be further simplified in the particular case where the 
distribution of X is supported on the sphere .

√
n S

n−1. Introduce the random variable 

. ξ = 〈X, Y 〉
n

,

where Y is an independent copy of X. Since .|X −Y |2 = 2n (1 − ξ), Proposition 4.2 
yields: 

Corollary 5.1 If .|X|2 = n a.s., then 

.
√

π Eθ ω2(Fθ , F ) =
(

1 + 1

4n

)
E

(
1 − (1 − ξ)1/2

)
− 1

8n
+ O

( 1

n2

)
. (5.1)
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Note that .|ξ | ≤ 1. Therefore, the relation (5.1) suggests to develop an expansion 
in powers of . ε for the function .w(ε) = 1 − √

1 − ε near zero, which will be needed 
up to the term . ε4. 

Lemma 5.2 For all .|ε| ≤ 1, 

. 1 − √
1 − ε ≤ 1

2
ε + 1

8
ε2 + 1

16
ε3 + 3ε4.

In addition, 

. 1 − √
1 − ε ≥ 1

2
ε + 1

8
ε2 + 1

16
ε3 + 0.01 ε4.

Proof By Taylor’s formula for the function .w(ε) around zero on the half-axis .ε < 1, 

. 1 − √
1 − ε = 1

2
ε + 1

8
ε2 + 1

16
ε3 + 5

128
ε4 + w(5)(ε1)

120
ε5

for some . ε1 between zero and . ε. Since .w(5)(ε) = 105
32 (1 − ε)−9/2 ≥ 0, we have an  

upper bound 

. 1 − √
1 − ε ≤ 1

2
ε + 1

8
ε2 + 1

16
ε3 + 5

128
ε4, ε ≤ 0.

Also, .w(5)(ε) ≤ 105
32 39/2 < 461 for .0 ≤ ε ≤ 2

3 , so, in this interval 

. 
5

128
ε4 + w(5)(ε1)

120
ε5 ≤ 3ε4.

Thus, in both cases, 

. 1 − √
1 − ε ≤ 1

2
ε + 1

8
ε2 + 1

16
ε3 + 3ε4, ε ≤ 2

3
.

To treat the remaining values . 23 ≤ ε ≤ 1, it is sufficient to select a positive constant 
b such that the polynomial 

. Q(ε) = 1

2
ε + 1

8
ε2 + 1

16
ε3 + bε4

is greater than or equal to 1 for .ε ≥ 2
3 . On this half-axis, .Q(ε) ≥ 11

27 + b 16
81 ≥ 1 for 

.b ≥ 3. Thus, the upper bound of the lemma is proved. 
Now, from Taylor’s formula we also get that 

.1 − √
1 − ε ≥ 1

2
ε + 1

8
ε2 + 1

16
ε3 + 5

128
ε4, ε ≥ 0.
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In addition, if .−1 ≤ ε ≤ 0, then .w(5)(ε) ≤ 105
32 , so  

. 1 − √
1 − ε = 1

2
ε + 1

8
ε2 + 1

16
ε3 + 5

128
ε4

(
1 + w(5)(ε1)

120
ε
)

≥ 1

2
ε + 1

8
ε2 + 1

16
ε3 + ε4

( 5

128
−

105
32

120

)

≥ 1

2
ε + 1

8
ε2 + 1

16
ε3 + 0.01 ε4.

��
Proof of Theorem 1.1 (First Part) Using Lemma 5.2 with .ε = ξ and applying 
Corollary 5.1, we get an asymptotic representation 

. 
√

π Eθ ω2(Fθ , F ) =
(

1 + 1

4n

) (1

8
Eξ2 + 1

16
Eξ3 + cEξ4

)
− 1

8n
+ O

( 1

n2

)

for some quantity c such that .0.01 ≤ c ≤ 3. If additionally X is isotropic, then 
.E 〈X, Y 〉2 = n, i.e. .Eξ2 = 1

n
, and the representation is simplified to 

. 
√

π Eθ ω2(Fθ , F ) =
(

1 + 1

4n

) ( 1

16
Eξ3 + cEξ4

)
+ O

( 1

n2

)
,

thus removing the term of order .1/n. Moreover, since .Eξ4 ≤ E |ξ |3 ≤ Eξ2 = 1
n

, 
the fraction . 1

4n
may be removed from the brackets at the expense of the remainder 

term. Thus 

. 
√

π Eθ ω2(Fθ , F ) = 1

16
Eξ3 + cEξ4 + O

( 1

n2

)
,

which is exactly the expansion (1.3). ��
Remark 5.3 In the isotropic case with .|X|2 = n a.s., but without the mean zero 
assumption, the above expansion takes the form 

.
√

π Eθ ω2(Fθ , F ) = 1

2
Eξ + 1

16
Eξ3 + cEξ4 + O

( 1

n2

)
. (5.2) 

Since the last two expectations are non-negative, this implies in particular that

.Eθ ω2(Fθ , F ) ≥ 1

2
√

π
Eξ + O

( 1

n2

)
. (5.3)
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6 General Lower Bounds for the L2-Distance: Proof of 
Theorem 1.2 

Proposition 4.1 may be used to establish the following general lower bound which 
will be the first step in the proof of Theorem 1.2. Recall that Y denotes an 
independent copy of a random vector X in . Rn. 

Proposition 6.1 If .E |X| ≤ b
√

n, then 

.Eθ ω2(Fθ , F ) ≥ c1 E ρ ξ4 − c2
b

n2 , (6.1) 

where

. ρ =
( |X|2 + |Y |2

2n

)1/2
, ξ = 2 〈X, Y 〉

|X|2 + |Y |2 .

The argument employs two elementary lemmas. 

Lemma 6.2 If .E |X|2 is finite, then 

.E 〈X, Y 〉2 ≥ 1

n

(
E |X|2)2

. (6.2) 

By the invariance of (6.2) under linear orthogonal transformations, we may 
assume that .EXiXj = λiδij where . λi’s appear as eigenvalues of the covariance 
operator of X. Since 

. E |X|2 =
n∑

i=1

λi, E 〈X, Y 〉2 =
n∑

i=1

λ2
i ,

the inequality (6.2) follows by applying Cauchy’s inequality. 

Lemma 6.3 If .E |X|p is finite for an integer .p ≥ 1, then, for any real number 
.0 ≤ α ≤ p, 

. E
〈X, Y 〉p

(|X|2 + |Y |2)α ≥ 0,

where the ratio is defined to be zero in case .X = Y = 0. In addition, for .α ∈ [0, 2], 

.E
〈X, Y 〉2

(|X|2 + |Y |2)α ≥ 1

n
E

|X|2 |Y |2
(|X|2 + |Y |2)α .
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Proof First, let us note that 

. E
| 〈X, Y 〉 |p

(|X|2 + |Y |2)α ≤ E
(|X| |Y |)p
(|X| |Y |)α = (E |X|p−α)2,

so, the expectation on the left is finite. Without loss of generality, we may assume 
that .0 < α ≤ p and .r = |X|2 + |Y |2 > 0 with probability 1. We use the identity 

. 

∫ ∞

0
e−rt1/α

dt = cα r−α where cα =
∫ ∞

0
e−s1/α

ds,

which gives 

. cα E 〈X, Y 〉p r−α =
∫ ∞

0
E 〈X, Y 〉p e−rt1/α

dt.

Writing .X = (X1, . . . , Xn) and .Y = (Y1, . . . , Yn), we have  

. E 〈X, Y 〉p e−rt1/α = E 〈X, Y 〉p e−t1/α(|X|2+|Y |2)

=
n∑

i1,...,ip=1

(
EXi1 . . . Xip e−t1/α |X|2)2

,

which shows that the left expectation is always non-negative. Integrating over .t > 0, 
this proves the first assertion. 

For the second assertion, write 

. cα E 〈X, Y 〉2 r−α =
∫ ∞

0
E 〈X, Y 〉2 e−t1/α(|X|2+|Y |2) dt =

∫ ∞

0
E 〈Xt, Yt 〉2 dt,

where 

. Xt = e−t1/α |X|2/2 X, Yt = e−t1/α |Y |2/2 Y.

Since . Yt represents an independent copy of . Xt , one may apply Lemma 6.2 which 
gives 

. E 〈Xt, Yt 〉2 ≥ 1

n
E |Xt |2 |Yt |2.

Hence, 

.

∫ ∞

0
E 〈Xt, Yt 〉2 dt ≥ 1

n

∫ ∞

0
E|Xt |2 |Yt |2 dt

= 1

n

∫ ∞

0
E|X|2 |Y |2 e−t1/α(|X|2+|Y |2) dt = cα

n
E |X|2 |Y |2 r−α.

��
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Proof of Proposition 6.1 Let us return to the representation (4.3) in Proposition 4.1 
and write 

. Eθ ω2(Fθ , F ) = 1√
2π

E (R0 + R1) + Cb

n2 ,

where 

. R0 = 1

8n3/2

(|X|2 − |Y |2)2

(|X|2 + |Y |2)3/2

and 

. R1 = (|X|2 + |Y |2)1/2

√
n

(
1 + 1

8n

)
− |X − Y |√

n

(
1 + 1

4n

)

= (|X|2 + |Y |2)1/2

√
n

[(
1 + 1

4n

)(
1 − √

1 − ξ
) − 1

8n

]

with the assumption that .R0 = 0 when .X = Y = 0. Since .|ξ | ≤ 1, one may apply 
Lemma 5.2 which gives 

. R1 ≥ (|X|2 + |Y |2)1/2

√
n

[(
1 + 1

4n

)(1

2
ξ + 1

8
ξ2 + 1

16
ξ3 + 0.01 ξ4

)
− 1

8n

]
.

The expectation of the terms on the right-hand side containing . ξ and . ξ3 is non-
negative according to Lemma 6.3 with .α = 1

2 , .p = 1, and with .α = 5
2 , .p = 3, 

respectively. Hence, removing the unnecessary factor .1 + 1
4n

, we get 

. Eθ ω2(Fθ , F ) ≥ 1√
2π

ER0 + 1√
2π

E
(|X|2 + |Y |2)1/2

8
√

n

(
ξ2 − 1

n

)

+ c1 E
(|X|2 + |Y |2)1/2

√
n

ξ4 − c2
b

n2 . (6.3) 

Now, by the second inequality of Lemma 6.3 applied with .α = 3/2, . p = 2, we  
have 

.E (|X|2 + |Y |2)1/2 ξ2 = 4 E
〈X, Y 〉2

(|X|2 + |Y |2)3/2

≥ 4

n
E

|X|2 |Y |2
(|X|2 + |Y |2)3/2 .
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This gives 

. E
(|X|2 + |Y |2)1/2

8
√

n

(
ξ2 − 1

n

)
≥ 1

8n3/2 E

[ 4 |X|2 |Y |2
(|X|2 + |Y |2)3/2 − (|X|2 + |Y |2)1/2

]

= − 1

8n3/2 E
(|X|2 − |Y |2)2

(|X|2 + |Y |2)3/2 = −ER0.

Thus, the summand .ER0 in (6.3) neutralizes the second expectation, and we are left 
with the term containing . ξ4. ��
Proof of Theorem 1.2 We apply Proposition 6.1. By the assumption, .Eρ2 = 1 and 
.Var(ρ2) = 1

2n
σ 2

4 , where .σ 2
4 = 1

n
Var(|X|2). Using  

. 2 〈X, Y 〉 = |X|2 + |Y |2 − |X − Y |2, ξ = 1 − |X − Y |2
|X|2 + |Y |2 ,

we have 

. ξ4 ≥ (1 − α)4 1{|X−Y |2 ≤α (|X|2+|Y |2)}

≥ (1 − α)4 1{|X−Y |2 ≤αλn, |X|2+|Y |2 ≥ λn}, 0 < α, λ < 1.

On the set .|X|2 + |Y |2 ≥ λn, we necessarily have .ρ2 ≥ λ
2 , so  

. E ρ ξ4 ≥ (1 − α)4

√
2

√
λ P

{
|X − Y |2 ≤ αλn, |X|2 + |Y |2 ≥ λn

}

≥ (1 − α)4

√
2

√
λ

(
P{|X − Y |2 ≤ αλn} − P{|X|2 + |Y |2 ≤ λn}

)
.

But, by Chebyshev’s inequality 

. P
{|X|2 ≤ λn

} = P
{
n − |X|2 ≥ (1 − λ) n

} ≤ Var(|X|2)
(1 − λ)2 n2 = σ 2

4

(1 − λ)2 n
,

implying 

. P
{|X|2 + |Y |2 ≤ λn

} ≤
(
P
{|X|2 ≤ λn

})2 ≤ 1

(1 − λ)4

σ 4
4

n2 .

Hence 

.E ρ ξ4 ≥ (1 − α)4

√
2

√
λ

(
P{|X − Y |2 ≤ αλn} − 1

(1 − λ)4

σ 4
4

n2

)
.
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Choosing, for example, .α = λ = 1
2 , we get 

. E ρ ξ4 ≥ 1

32
P

{
|X − Y |2 ≤ 1

4
n
}

− σ 4
4

2n2 .

It remains to apply (6.1) with .b = 1 and replace F with . � on the basis of (2.3). ��

7 Lipschitz Systems 

While upper bounds of order .n−1/2 for the .L2-distance .ω(Fθ , F ) on average are 
provided in (1.2) and in the more general inequality (3.5) of Proposition 3.1, in  
this section we focus on the conditions that provide similar lower bounds, as a 
consequence of Theorem 1.2. 

Let L be a fixed measurable function on the underlying probability space 
.(�,F,P). We will say that the system .X1, . . . , Xn of random variables on .(�,F,P), 
or the random vector .X = (X1, . . . , Xn) in . Rn satisfies a Lipschitz condition with 
a parameter function L, if  

. max
1≤k≤n

|Xk(t) − Xk(s)| ≤ n |L(t) − L(s)|, t, s ∈ �. (7.1) 

When . � is an interval of the real line (finite or not), and .L(t) = Lt , . L > 0, this  
condition means that every function . Xk in the system has a Lipschitz semi-norm at 
most Ln. 

As before, we use the variance functional .σ 2
4 = 1

n
Var(|X|2). 

Proposition 7.1 Suppose that .E |X|2 = n. If the random vector X satisfies the 
Lipschitz condition with a parameter function L, then 

.Eθ ω2(Fθ , F ) ≥ cL

n
− c0 (1 + σ 4

4 )

n2 (7.2) 

with some absolute constant .c0 > 0 and with a constant . cL depending on the 
distribution of L only. Moreover, if L has finite second moment, then with some 
absolute constant . c1 > 0

.Eθ ω2(Fθ , F ) ≥ c1

n
√

Var(L)
− c0 (1 + σ 4

4 )

n2
. (7.3) 

Note that, if .X1, . . . , Xn form an orthonormal system in .L2(�,F,P), i.e., the 
random vector X is isotropic, and if L has finite second moment .‖L‖2

2 = EL2, 
then this moment has to be bounded from below by a multiple of .1/n2. Indeed, 
the projection of the function .η(t) = 1 in .L2(�,F,P) to the linear hull H of
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.X1, . . . , Xn has the form .ProjH (η) = ∑n
k=1 〈η,Xk〉 Xk , and we have Bessel’s 

inequality 

. 1 = ‖η‖2
2 ≥ ‖ProjH (η)‖2

2 =
n∑

k=1

〈η,Xk〉2 =
n∑

k=1

(EXk)
2

(where we used the canonical innde product .〈·, ·〉 in .L2(�,F,P)). By the Lipschitz 
assumption, .|Xk(t) − Xk(s)|2 ≤ n2 |L(t) − L(s)|2. Integrating this inequality over 
the product measure .P(dt) ⊗ P(ds), we obtain a lower bound 

. n2 Var(L) ≥ Var(Xk) = 1 − (EXk)
2.

One may now perform summation over .k = 1, . . . , n, which together with Bessel’s 
inequality leads to 

. Var(L) ≥ n − 1

n3 ≥ 1

2n2 (n ≥ 2).

The Lipschitz condition (7.1) guarantees the validity of the following property, 
which can be combined with Theorem 1.2 to obtain (7.2) and (7.3). 

Lemma 7.2 Suppose that the random vector .X = (X1, . . . , Xn) satisfies the 
Lipschitz condition with the parameter function L. If  Y is an independent copy of 
X, then 

. P
{|X − Y |2 ≤ λn

} ≥ c
√

λ

n
, 0 ≤ λ ≤ 1,

where the constant .c > 0 depends on the distribution of L only. Moreover, if L has 
finite second moment, then 

. P
{|X − Y |2 ≤ λn

} ≥
√

λ

6n
√

Var(L)
, 0 ≤ λ ≤ n2 Var(L).

In turn, this lemma is based on the following general observation. 

Lemma 7.3 If . η is an independent copy of a random variable . ξ , then for any . ε0 >

0, 

. P{|ξ − η| ≤ ε} ≥ cε, 0 ≤ ε ≤ ε0,

with some constant .c > 0 independent of . ε. Moreover, if the standard deviation 
.σ = √

Var(ξ) is finite, then 

.P{|ξ − η| ≤ ε} ≥ 1

6σ
ε, 0 ≤ ε ≤ σ.
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Proof The difference .ξ − η has a non-negative characteristic function . h(t) =
|ψ(t)|2, where . ψ is the characteristic function of . ξ . Denoting by H the distribution 
function of .ξ − η, we start with a general identity 

.

∫ ∞

−∞
p̂(x) dH(x) =

∫ ∞

−∞
p(t)h(t) dt, (7.4) 

which is valid for any integrable function .p(t) on the real line with Fourier transform 
.p̂(x) = ∫ ∞

−∞ eitx p(t) dt , . x ∈ R. Given .ε > 0, here we take a standard pair 

. p(t) = 1

2π

( sin εt
2

εt
2

)2
, p̂(x) = 1

ε

(
1 − |x|

ε

)+
,

where we use the notation .a+ = max{a, 0}. In this case, 

. 

∫ ∞

−∞
p̂(x) dH(x) ≤ 1

ε

∫
[−ε,ε]

dH(x) = 1

ε
P{|ξ − η| ≤ ε}.

On the other hand, since the function . sin u
u

is decreasing in .0 < u < π
2 , we have  

. 

∫ ∞

−∞
p(t)h(t) dt ≥ 1

2π

(
2 sin(1/2)

)2
∫ 1/ε

−1/ε

h(t) dt ≥ 1

7

∫ 1/ε

−1/ε

h(t) dt.

Hence, whenever .0 < ε ≤ ε0, by (7.4), 

. P{|ξ − η| ≤ ε} ≥ ε

7

∫ 1/ε

−1/ε

h(t) dt ≥ ε

7

∫ 1/ε0

−1/ε0

h(t) dt.

Since .h(t) is bounded away from zero near the origin, the first assertion follows. 
One may quantify this statement in terms of the variance .σ 2 = Var(ξ) by using 

Taylor’s expansion for .h(t) about zero. Indeed, it gives .1 − h(t) ≤ σ 2t2, and thus 
for .ε ≤ ε0 = σ , 

. 

∫ 1/ε

−1/ε

h(t) dt ≥
∫ 1/σ

−1/σ

(1 − σ 2t2) dt = 4

3σ
.

Since . ε7 · 4
3σ

≥ 1
6σ

ε, the lemma is proved. ��
Proof of Lemma 7.2 Let us equip the product space .�2 = � × � with the product 
measure .P2 = P ⊗ P and redefine X on this new probability space as .X(t, s) =
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X(t), .(t, s) ∈ �2. Then one can introduce an independent copy of X in the form 
.Y (t, s) = X(s). By the Lipschitz condition, 

. |X(t, s) − Y (t, s)|2 =
n∑

k=1

|Xk(t) − Xk(s)|2 ≤ n3 |L(t) − L(s)|2.

Hence, if . η is an independent copy of the random variable .ξ = L, then 

. P
{|X − Y |2 ≤ λn

} ≥ P
{
n3 |ξ − η|2 ≤ λn

} = P

{
|ξ − η| ≤

√
λ

n

}
.

But, by Lemma 7.3 with .ε0 = 1, the latter probability is at least .c
√

λ
n

, where the 
constant c depends on L only (via its distribution). An application of the second 
inequality of Lemma 7.3 yields the second assertion. ��

To include more examples, let us now give a bit more general form of Lemma 7.2, 
assuming that .(�,P) = (�1 × �2,P1 ⊗ P2) is a product probability space. 

Lemma 7.4 Let .X = (X1, . . . , Xn) : � → R
n be a random vector such that, for 

some measurable functions . L1 and . L2 defined on . �1 and . �2 respectively, 

. max
1≤k≤n

|Xk(t1, t2)−Xk(s1, s2)| ≤ n |L1(t1)−L1(s1)|+ |L2(t2)−L2(s2)| (7.5) 

for all .(t1, t2), (s1, s2) ∈ �. If  Y is an independent copy of X, then 

.P
{|X − Y |2 ≤ λn

} ≥ cλ

n
, 0 ≤ λ ≤ 1, (7.6) 

where the constant .c > 0 depends on the distributions of . L1 and . L2 only. 

Proof Again, let us equip the product space .�2 = �×� with the product measure 
.P

2 = P ⊗ P and put .X(t, s) = X(t), .Y (t, s) = X(s) for .t = (t1, t2) ∈ � and 
.s = (s1, s2) ∈ �, so that Y is an independent copy of X. By the Lipschitz condition 
(7.5), for any .k ≤ n, 

. |Xk(t) − Xk(s)|2 ≤ 2n2 |L1(t1) − L1(s1)| + 2 |L2(t2) − L2(s2)|2,

so 

.|X(t) − Y (s)|2 =
n∑

k=1

|Xk(t) − Xk(s)|2

≤ 2n3 |L1(t1) − L1(s1)|2 + 2n |L2(t2) − L2(s2)|2.
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Putting .L1(t1, t2) = L1(t1) and .L2(t1, t2) = L2(t2), one may treat . L1 and . L2 as 
independent random variables. If . L′

1 is an independent copy of . L1 and . L′
2 is an 

independent copy of . L2, we obtain that 

. P
{|X − Y |2 ≤ λn

} ≥ P

{
n2 |L1 − L′

1|2 + |L2 − L′
2|2 ≤ λ

2

}

≥ P

{
n2 |L1 − L′

1|2 ≤ λ

4

}
P

{
|L2 − L′

2|2 ≤ λ

4

}

= P

{
|L1 − L′

1| ≤ 1

2n

√
λ

}
P

{
|L2 − L′

2| ≤ 1

2

√
λ

}
.

It remains to apply Lemma 7.3. ��
Let us now combine the inequality (1.8) of Theorem 1.2 with the inequality (7.6) 

applied with .λ = 1
4 . Then we obtain the following generalization of Proposition 7.1. 

Proposition 7.5 Under the Lipschitz condition (7.5) , we have

. Eθ ω2(Fθ , F ) ≥ c

n
− c0 (1 + σ 4

4 )

n2 ,

where .c0 > 0 is an absolute constant, while .c > 0 depends on the distributions 
of . L1 and . L2. A similar estimate also holds when F is replaced with the normal 
distribution function . �. 

The last assertion follows from the inequality (2.3), cf. Corollary 2.2. 

8 Berry-Esseen-Type Bounds 

We now turn to the study of the Kolmogorov distance 

. ρ(Fθ , F ) = sup
x

|Fθ(x) − F(x)|, θ ∈ S
n−1,

between the distribution functions . Fθ of the weighted sums .Sθ = 〈X, θ〉 and the 
typical distribution function .F = EθFθ . We are mostly interested in bounding the 
second moment .Eθ ρ2(Fθ , F ). As in the case of the .L2-distance, our basic tool will 
be a Fourier analytic approach relying upon a general Berry-Esseen-type bound 

.c ρ(U, V ) ≤
∫ T

0

|Û (t) − V̂ (t)|
t

dt + 1

T

∫ T

0
|V̂ (t)| dt, T > 0, (8.1) 

where U and V may be arbitrary distribution functions on the line with characteristic
functions . Û and . V̂ respectively (cf. e.g. [3, 23, 24]).
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As before, we denote by . fθ and f the characteristic functions associated to . Fθ

and F . Recall that .σ2p-functionals were defined in (2.2). 

Lemma 8.1 If .T ≥ T0 ≥ 1, then for all .p ≥ 1, 

. cp Eθ ρ2(Fθ , F ) ≤
∫ 1

0

Eθ |fθ (t) − f (t)|2
t2

dt + log T

∫ T0

0

Eθ |fθ (t) − f (t)|2
t

dt

+ log T

∫ T

T0

Eθ |fθ (t)|2
t

dt + 1

T 2 + 1 + σ
2p

2p

np
, (8.2) 

where the constants .cp > 0 depend on p only. 

Proof By (8.1), for any .θ ∈ S
n−1, 

. c ρ(Fθ , F ) ≤
∫ T

0

|fθ (t) − f (t)|
t

dt + 1

T

∫ T

0
|f (t)| dt,

and squaring it, we get 

. c ρ2(Fθ , F ) ≤
( ∫ T

0

|fθ (t) − f (t)|
t

dt
)2 + 1

T 2

( ∫ T

0
|f (t)| dt

)2
.

Let us split integration in the first integral into the intervals .[0, 1] and . [1, T ]. By  
Cauchy’s inequality, 

. 

( ∫ 1

0

|fθ (t) − f (t)|
t

dt
)2 ≤

∫ 1

0

|fθ (t) − f (t)|2
t2 dt,

while 

. 

( ∫ T

1

|fθ (t) − f (t)|
t

dt
)2 ≤ log T

∫ T

1

|fθ (t) − f (t)|2
t

dt.

Hence 

.c ρ2(Fθ , F ) ≤
∫ 1

0

|fθ (t) − f (t)|2
t2 dt

+ log T

∫ T

1

|fθ (t) − f (t)|2
t

dt + 1

T 2

( ∫ T

0
|f (t)| dt

)2
.
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Without an essential loss one may extend integration in the second integral to the 
larger interval .[0, T ]. Moreover, taking the expectation over . θ , we then get 

. cEθ ρ2(Fθ , F ) ≤
∫ 1

0

Eθ |fθ (t) − f (t)|2
t2 dt

+ log T

∫ T

0

Eθ |fθ (t) − f (t)|2
t

dt + 1

T 2

( ∫ T

0
|f (t)| dt

)2
.

Again, one may split integration in the second last integral to the two intervals 
.[0, T0] and .[T0, T ], so that to consider separately sufficiently large values of t for 
which .|fθ (t)| is small enough (with high probability). More precisely, since . f (t) =
Eθ fθ (t) and 

. |fθ (t) − f (t)|2 ≤ 2 |fθ (t)|2 + 2 |f (t)|2,

we have .|f (t)|2 ≤ Eθ |fθ (t)|2 and therefore 

. Eθ |fθ (t) − f (t)|2 ≤ 4Eθ |fθ (t)|2.

It remains to apply Lemma 2.4. ��
In order to control the last integral in (8.2), one may apply the upper bound (2.8) 

on . Jn in the representation (3.3) to get that, for all .t ∈ R, 

. Eθ |fθ (t)|2 ≤ 5E e−t2|X−Y |2/2n + 4 e−n/12,

where Y is an independent copy of the random vector X. Splitting the last 
expectation to the event .A = {|X − Y |2 ≤ 1

4 n} and its complement leads to 

.Eθ |fθ (t)|2 ≤ 5 e−t2/8 + 4 e−n/12 + 5P(A). (8.3) 

The latter probability may further be estimated by using the moment functionals
such as . mp. 

To recall the argument (cf. also [8], Proposition 2.5), first note that, by (2.9) with 
.λ = 3

4 , 

. P

{
|X|2 + |Y |2 ≤ 3

4
n
}

≤ P

{
|X|2 ≤ 3

4
n
}
P

{
|Y |2 ≤ 3

4
n
}

≤ (4σ2p)2p

np
.

On the other hand, by Markov’s inequality, assuming that .p ≥ 1 is integer, we have 

.P

{
| 〈X, Y 〉 | ≥ 1

4
n
}

≤ 42p
E 〈X, Y 〉2p

n2p
= 42p m

2p

2p

np
.
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Since .|X − Y |2 = |X|2 + |Y |2 − 2 〈X, Y 〉, we have  

. 

{
|X − Y |2 ≤ 1

4

}
⊂

{
|X| + |Y |2 ≤ 1

4
n
}

∪
{

〈X, Y 〉 >
1

4
n
}
,

and it follows that 

. P(A) ≤ P

{
|X|2 + |Y |2 ≤ 3

4
n
}

+ P

{
〈X, Y 〉 >

1

4
n
}

≤ 42p

np
(m

2p

2p + σ
2p

2p ).

Returning to (8.3) and noting that necessarily .m2p ≥ m2 ≥ 1 under the 
assumption that .E |X|2 = n, we thus obtain that 

. cp Eθ |fθ (t)|2 ≤ m
2p

2p + σ
2p

2p

np
+ e−t2/8.

Using this bound, the inequality (8.2) is simplified: 

Lemma 8.2 If the random vector X in . Rn satisfies .E |X|2 = n, then for all . T ≥
T0 ≥ 1 and any integer .p ≥ 1, 

. cp Eθ ρ2(Fθ , F ) ≤
∫ 1

0

Eθ |fθ (t) − f (t)|2
t2 dt + log T

∫ T0

0

Eθ |fθ (t) − f (t)|2
t

dt

+ m
2p

2p + σ
2p

2p

np
(1 + log T )2 + 1

T 2
+ e−T 2

0 /8 log T (8.4) 

with constants . cp depending on p only. 

9 Quantitative Forms of Sudakov’s Theorem for the 
Kolmogorov Distance 

Let us specialize Lemma 8.2 to the value .p = 1, assuming that the random vector 
X is isotropic in . Rn (so that .m2 = 1). If . σ2 is bounded, then choosing 

. T = 4n, T0 = 4
√

log n,

the last three terms in (8.4) produce a quantity of order at most .(log n)2/n. In order 
to bound the integrals in (8.4), one may apply the classical Poincaré inequality on 
the unit sphere . Sn−1

.Eθ |u(θ)|2 ≤ 1

n − 1
Eθ |∇u(θ)|2 (9.1)
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to the mean zero functions .ut (θ) = fθ (t)− f (t). They are well defined and smooth 
on . Rn for any fixed value .t ∈ R and have gradients (by differentiating in (3.1)) given 
by 

. 〈∇ut (θ), w〉 = it E 〈X,w〉 eit〈X,θ〉, w ∈ C
n,

where we use the canonical inner product in the product complex space. By the 
isotropy assumption, 

. | 〈∇ut (θ), w〉 | ≤ |t |E | 〈X,w〉 | ≤ |t | |w|
for all w. Hence .|∇ut (θ)|2 ≤ t2 for any .θ ∈ R

n, so that by (9.1), 

.Eθ |fθ (t) − f (t)|2 ≤ t2

n − 1
. (9.2) 

Applying this inequality in (8.4) together with the first bound in (2.3) in order to 
replace F with . �, we obtain: 

Proposition 9.1 Given an isotropic random vector X in . Rn, 

. Eθ ρ2(Fθ ,�) ≤ c (1 + σ 2
2 )

(log n)2

n
.

Since .σ2 ≤ σ4, we thus have 

.
(
Eθ ρ2(Fθ ,�)

)1/2 ≤ c (1 + σ4)
log n√

n
(9.3) 

which sharpens (1.1). The latter bound will be an essential step in the proof of 
Theorem 1.3, while (1.1) is not strong enough. 

Let us now consider another scenario in Lemma 8.2, where the distribution of X 
is supported on the sphere .

√
n S

n−1. In this case, 

. Eθ |fθ (t) − f (t)|2 = Eθ |fθ (t)|2 − |f (t)|2
= EJn(t |X − Y |) − Jn(t

√
n)2

according to (3.3), while .σ4 = 0. Hence, in (8.4) with .p = 2 we arrive at the 
following preliminary bound which is needed for the proof of Theorem 1.1 in its 
second part. Here we use again that .m4 ≥ m2 ≥ 1. 

Corollary 9.2 Suppose that .|X| = √
n a.s., and Y is an independent copy of X. 

Then 

. cEθ ρ2(Fθ , F ) ≤
∫ 1

0

�n(t)

t2
dt + log n

∫ 4
√

log n

0

�n(t)

t
dt + (log n)2

n2
m4

4,

(9.4)
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where 

.�n(t) = EJn(t |X − Y |) − Jn(t
√

n)2. (9.5) 

10 Proof of Theorem 1.1 for the Kolmogorov Distance 

To study the integrals in (9.4), assume additionally that the random vector X in . Rn

is isotropic with mean zero and put 

. ξ = 〈X, Y 〉
n

,

where Y is an independent copy of X. Note that . 1
n2 m4

4 = Eξ4 which is present in 
the last term on the right-hand side of (9.4). 

Focusing on the first integral, we need to develop an asymptotic bound on . �n(t)

for .t ∈ [0, 1]. Since .|X − Y |2 = 2n(1 − ξ), (9.5) becomes 

. �n(t) = EJn

(
t
√

2n(1 − ξ)
) − (

Jn(t
√

n)
)2

.

We use the asymptotic formula (2.7), 

.Jn

(
t
√

n) =
(

1 − t4

4n

)
e−t2/2 + εn(t), t ∈ R, (10.1) 

where .εn(t) denotes a quantity of the form .O
(
n−2 min(1, t4)

)
with a universal 

constant in O. It implies a similar representation 

.
(
Jn

(
t
√

n)
)2 =

(
1 − t4

2n

)
e−t2 + εn(t). (10.2) 

Since .|ξ | ≤ 1 a.s., we also have 

. Jn

(
t
√

2n(1 − ξ)
) =

(
1 − t4

n
(1 − ξ)2

)
e−t2(1−ξ) + εn(t).

Hence, subtracting from .et2ξ the linear term .1 + t2ξ and adding, one may write 

.�n(t) = e−t2
E

((
1 − t4

n
(1 − ξ)2

)
et2ξ −

(
1 − t4

2n

))
+ εn(t)

= e−t2
E (U + V ) + εn(t)
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with 

. U = t4

n

(1

2
− (1 − ξ)2

)
+

(
1 − t4

n
(1 − ξ)2

)
· t2ξ,

V =
(

1 − t4

n
(1 − ξ)2

)
(et2ξ − 1 − t2ξ).

Using .Eξ = 0, .Eξ2 = 1
n

and hence .E |ξ |3 ≤ Eξ2 ≤ 1
n

, we find that in the interval 
.0 ≤ t ≤ 1, 

. EU = − t4

2n
− t4

n2 + 2t6

n2 − t6

n
Eξ3 = − t4

2n
+ εn(t).

Next write 

. V = W − t4

n
(1 − ξ)2 W, W = et2ξ − 1 − t2ξ.

Using .|ex − 1 − x| ≤ 2x2 for . |x| ≤ 1, we have .|W | ≤ 2t4ξ2. Hence, the expected 
value of the second term in the representation for V does not exceed .8t8/n2. 
Moreover, by Taylor’s expansion, 

. W = 1

2
t4ξ2 + 1

6
t6ξ3 + Rt8ξ4, R =

∞∑
k=4

t2k−8

k! ξk−4,

implying that 

. EW = t4

2n
+ t6

6
Eξ3 + Ct8

Eξ4,

where C is bounded by an absolute constant. Summing the two expansions, we 
arrive at 

. E (U + V ) = t6

6
Eξ3 + Ct8

Eξ4 + εn(t)

and therefore 

. 

∫ 1

0

�n(t)

t2
dt ≤ Eξ3 + cEξ4 + O(n−2).

Here .Eξ4 ≥ (Eξ2)2 = n−2, so the term .O(n−2) may be absorbed by the 4-th 
moment of . ξ . Since .Eξ3 ≥ 0, the bound (9.4) may be simplified to 

.cEθ ρ2(Fθ , F ) ≤ Eξ3 + Eξ4 + log n

∫ 4
√

log n

0

�n(t)

t
dt + (log n)2

n2
m4

4,
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that is, 

.cEθ ρ2(Fθ , F ) ≤ log n

∫ 4
√

log n

0

�n(t)

t
dt + Eξ3 + (log n)2

Eξ4. (10.3) 

Turning to the remaining integral (which is most important), let us express it in 
terms of the functions .gn(t) = Jn(t

√
2n) and 

. ψ(α) =
∫ T

0

gn(αt) − gn(t)

t
dt, 0 ≤ α ≤ √

2, T > 1,

which will be needed with .T = 4
√

log n and .α = √
1 − ξ . Namely, we have 

.

∫ T

0

�n(t)

t
dt = Eψ

(√
1 − ξ

) +
∫ T

0

Jn(t
√

2n) − (Jn(t
√

n))2

t
dt. (10.4) 

To proceed, we need to develop a Taylor expansion for .ξ → ψ
(√

1 − ξ
)

around 
zero in powers of . ξ . Recall that .gn(t) represents the characteristic function of the 
random variable .

√
2n θ1 on the probability space .(Sn−1, sn−1). This already ensures 

that .|gn(t)| ≤ 1 and 

. |g′
n(t)| ≤ √

2nE |θ1| ≤ √
2n (E θ2

1 )1/2 = √
2

for all .t ∈ R. Hence 

. |gn(αt) − gn(t)| ≤ √
2 |α − 1| |t | ≤ 2 |t |,

so that 

. |ψ(α)| ≤
∫ 1

0

|gn(αt) − gn(t)|
t

dt +
∫ T

1

|gn(αt) − gn(t)|
t

dt

≤ 2 + 2 log T < 4 log T (10.5) 

(since .T > e). In addition, .ψ(1) = 0 and 

. ψ ′(α) =
∫ T

0
g′

n(αt) dt = 1

α
(gn(αT ) − 1).

Therefore, we arrive at another expression 

.ψ(α) =
∫ α

1

gn(T x) − 1

x
dx =

∫ α

1

gn(T x)

x
dx − log α.
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For . |ε| ≤ 1, let  

. v(ε) =
∫ (1−ε)1/2

1

gn(T x)

x
dx,

u(ε) = ψ
(
(1 − ε)1/2) = v(ε) − 1

2
log(1 − ε),

so that .Eψ
(√

1 − ξ
) = E u(ξ). Applying the non-uniform bound . |gn(t)| ≤

5 (e−t2 + e−n/12), cf. (2.8), we have that, for .−1 ≤ ε ≤ 1
2 , 

. |v(ε)| ≤ sup
1√
2
≤x≤√

2

|gn(T x)|
∫ √

2

1√
2

1

x
dx

≤ sup
z≥T/

√
2

|gn(z)| log 2 ≤ 5 log 2 (e−T 2/2 + e−n/12) ≤ c

n8
,

where the last inequality is specialized to the choice .T = 4
√

log n. Using the Taylor 
expansion on the same interval for the log-function, we also have . − log(1 − ε) ≤
ε + 1

2 ε2 + 1
3 ε3 + 2

3 ε4. Combining the two inequalities, we get 

.u(ε) ≤ 1

2
ε + 1

4
ε2 + 1

6
ε3 + 1

3
ε4 + c

n8 , −1 ≤ ε ≤ 1

2
. (10.6) 

In order to involve the remaining interval . 12 ≤ ε ≤ 1 in the inequality of a similar 
type, recall that, by (10.5), .|u(ε)| ≤ 4 log T for all .|ε| ≤ 1. Hence, the inequality 
(10.6) will hold automatically for this interval, if we increase the coefficient in front 
of . ε4 to a suitable multiple of .log T . As a result, we obtain the desired inequality on 
the whole segment, that is, 

. u(ε) ≤ 1

2
ε + 1

4
ε2 + 1

6
ε3 + (c log T ) ε4 + c

n8
. − 1 ≤ ε ≤ 1.

In particular, 

. ψ
(√

1 − ξ
) ≤ 1

2
ξ + 1

4
ξ2 + 1

6
ξ3 + (c log T ) ξ4 + c

n8
,

and taking the expectation, we get 

.Eψ
(√

1 − ξ
) ≤ 1

4n
+ 1

6
Eξ3 + (c log T )Eξ4, (10.7) 

where the term .cn−8 was absorbed by the 4-th moment of . ξ .
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Now, let us turn to the integral 

. In =
∫ T

0

Jn(t
√

2n) − (Jn(t
√

n))2

t
dt,

appearing in (10.4), and recall the asymptotic formulas (10.1) and (10.2). After 
integration, the remainder term .εn(t) = O

(
n−2 min(1, t4)

)
will create an error of 

order at most .n−2 log T , up to which . In is equal to 

. −
∫ T

0

t4

2n
e−t2 dt

t
= − 1

4n

(
1 − (T 2 + 1) e−T 2

)
= − 1

4n
+ o(n−15).

Thus, 

. In = − 1

4n
+ O(n−2 log T ).

Applying this expansion together with (10.7) in (10.4), we therefore obtain that 

. 

∫ T

0

�n(t)

t
dt ≤ 1

6
Eξ3 + c log T Eξ4.

One can now apply this estimate in (10.3), and then we eventually arrive at 

. Eθ ρ2(Fθ , F ) ≤ c1 (log n)Eξ3 + c2 (log n)2
Eξ4.

By (2.3) with .p = ∞, a similar inequality remains to hold for the standard normal 
distribution function . � in place of F . This proves the inequality (1.4). ��

11 Relations Between L1, L2 and Kolmogorov Distances 

Given a random vector X in . Rn, let us now compare the . L2 and .L∞ distances on 
average, between the distributions . Fθ of the weighted sums .〈X, θ〉 and the typical 
distribution .F = EθFθ . Such information will be needed to derive appropriate lower 
bounds on .Eθ ρ(Fθ , F ). 

Proposition 11.1 If .|X| ≤ b
√

n a.s., then, for any .α ∈ [1, 2], 

.b−α/2
Eθ ωα(Fθ , F ) ≤ 14 (log n)α/4

Eθ ρα(Fθ , F ) + 8

n4
. (11.1) 

As will be clear from the proof, at the expense of a larger coefficient in front of 
.log n, the last term .n−4 can be replaced by .n−β for any prescribed value of . β.
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A relation similar to (11.1) is also true for the Kantorovich or .L1-distance 

. W(Fθ , F ) =
∫ ∞

−∞
|Fθ(x) − F(x)| dx

in place of . L2. We state it for the case .α = 1. 

Proposition 11.2 If .|X| ≤ b
√

n a.s., then 

.Eθ W(Fθ , F ) ≤ 14 b
√

log n Eθ ρ(Fθ , F ) + 8b

n4 . (11.2) 

Proof Put .Rθ(x) = Fθ(−x) + (1 − Fθ(x)) for .x > 0 and define similarly R on the 
basis of F . Using  

. (Fθ (−x) − F(−x))2 ≤ Fθ(−x)2 + F(−x)2,

(Fθ (x) − F(x))2 ≤ (1 − Fθ(x))2 + (1 − F(x))2,

we have 

. (Fθ (−x) − F(−x))2 + (Fθ (x) − F(x))2 ≤ Rθ(x)2 + R(x)2.

Hence, given .T > 0 (to be specified later on), we have 

. ω2(Fθ , F ) =
∫ T

−T

(Fθ (x) − F(x))2 dx +
∫

|x|≥T

(Fθ (x) − F(x))2 dx

≤ 2Tρ2(Fθ , F ) +
∫ ∞

T

Rθ (x)2 dx +
∫ ∞

T

R(x)2 dx.

It follows that, for any .α ∈ [1, 2], 

. ωα(Fθ , F ) ≤ (2T )
α
2 ρα(Fθ , F ) +

( ∫ ∞

T

Rθ (x)2 dx
) α

2 +
( ∫ ∞

T

R(x)2 dx
) α

2

and therefore, by Jensen’s inequality, 

. Eθ ωα(Fθ , F ) ≤ (2T )
α
2 Eθ ρα(Fθ , F )

+
( ∫ ∞

T

Eθ Rθ (x)2 dx
) α

2 +
( ∫ ∞

T

R(x)2 dx
) α

2
.

Next, by Markov’s inequality, for any .x > 0 and .p ≥ 1, 

.Rθ(x)2 ≤
(
E | 〈X, θ〉 |p

xp

)2 ≤ E | 〈X, θ〉 |2p

x2p
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and 

. EθRθ (x)2 ≤
(
E | 〈X, θ〉 |p

xp

)2 ≤ Eθ E | 〈X, θ〉 |2p

x2p
.

Since .R = EθRθ , a similar inequality holds true for R as well (by Cauchy’s 
inequality). Hence 

. Eθ ωα(Fθ , F ) ≤ (2T )
α
2 Eθ ρα(Fθ , F ) + 2

(
Eθ E | 〈X, θ〉 |2p

∫ ∞

T

1

x2p
dx

) α
2
.

When .θ = (θ1, . . . , θn) is treated as a random vector with distribution .sn−1, which is 
independent of X, the inner product .〈X, θ〉 has the same distribution as the random 
variable .|X| θ1. Therefore, recalling Lemma 2.5 and using the assumption . |X| ≤
b
√

n a.e., we have 

. Eθ E | 〈X, θ〉 |2p = E |X|2p
Eθ |θ1|2p ≤ 2 (2b2p)p,

so that 

. 2
(
Eθ

∫ ∞

T

E | 〈X, θ〉 |2p

x2p
dx

) α
2 ≤ 2

α
2 +1

(2p − 1)
α
2

(2b2p)
αp
2

T
α(2p−1)

2

.

Thus, 

. Eθ ωα(Fθ , F ) ≤ (2T )
α
2 Eθ ρα(Fθ , F ) + 2

α
2 +1

(2p − 1)
α
2

T
α
2

(2b2p

T 2

) αp
2

.

Let us choose .T = 2b
√

p in which case the above inequality becomes 

. Eθ ωα(Fθ , F ) ≤ (4b
√

p)
α
2 Eθ ρα(Fθ , F ) + 2α+1

(2p − 1)
α
2

(b
√

p)
α
2 2− αp

2 .

To simplify, one can use .
√

p ≤ 2p − 1 for .p ≥ 1 together with .2α+1 ≤ 8 and 

.2− αp
2 ≤ 2− p

2 (since .1 ≤ α ≤ 2), which leads to 

. Eθ ωα(Fθ , F ) ≤ (4b
√

p)
α
2 Eθ ρα(Fθ , F ) + 8 b

α
2 2−p/2.

Finally, choosing .p = pn = (8 log n)/ log 2, we arrive at (11.1).



Asymptotic Expansions and Two-Sided Bounds in Randomized Central Limit Theorems 107

Now, turning to (11.2), we use the same functions . Rθ and R as before and write 

. W(Fθ , F ) =
∫ T

−T

|Fθ(x) − F(x)| dx +
∫

|x|≥T

|Fθ(x) − F(x)| dx

≤ 2Tρ(Fθ , F ) +
∫ ∞

T

Rθ (x) dx +
∫ ∞

T

R(x) dx,

which gives 

. Eθ W(Fθ , F ) ≤ 2T Eθ ρ(Fθ , F ) + 2
∫ ∞

T

R(x) dx.

By Markov’s inequality, for any .x > 0 and .p > 1, 

. Rθ(x) ≤ E | 〈X, θ〉 |p
xp

, R(x) = EθRθ (x) ≤ Eθ E | 〈X, θ〉 |p
xp

.

Hence 

. Eθ W(Fθ , F ) ≤ 2T Eθ ρ(Fθ , F ) + 2Eθ E | 〈X, θ〉 |p
∫ ∞

T

1

xp
dx.

Here, one may use once more the bound (2.10), which yields 

. Eθ E | 〈X, θ〉 |p = E |X|p Eθ |θ1|p ≤ 2
(
b2p

)p/2

and 

. Eθ W(Fθ , F ) ≤ 2T Eθ ρ(Fθ , F ) + 4

p − 1

(b2p)p/2

T p−1 .

Let us take .T = 2b
√

p in which case the above inequality becomes 

. Eθ W(Fθ , F ) ≤ 4b
√

p Eθ ρ(Fθ , F ) + 8b

√
p

p − 1
2−p.

Here we arrive at (11.2), by choosing again .p = pn and using .
√

pn < pn − 1. ��

12 Lower Bounds: Proof of Theorem 1.3 

A lower bound on .Eθ ρ2(Fθ ,�) which would be close to the upper bound (1.4) may  
be given with the help of the lower bound on .Eθ ω2(Fθ ,�). More precisely, this can 
be done in the case where the quantity . 1

n3/2 m3
3 + 1

n2 m4
4 asymptotically dominates
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.n−2 (in particular, when . m4 is essentially larger than 1). Combining the asymptotic 
expansion (1.3) of Theorem 1.1 with the bound (11.1) of Proposition 11.1 for . α = 2
and .b = 1, and recalling the second relation in (2.3) on the normal approximation 
for the typical distribution F , we therefore obtain: 

Proposition 12.1 If X is an isotropic random vector in . Rn with mean zero and such 
that .|X| = √

n a.s., then 

.
√

log n Eθ ρ2(Fθ ,�) ≥ c1

n3/2 m3
3 + c2

n2 m4
4 − c3

n2 . (12.1) 

The relation (11.2) for the Kantorovich distance W may be used to answer  
the following question: Is it possible to sharpen the lower bound (12.1) by  
replacing .Eθ ρ2(Fθ ,�) with .Eθ ρ(Fθ ,�)? To this aim, we will need an additional 
information about moments of .ω(Fθ , F ) of order higher than 2. 

Lemma 12.2 If X is isotropic and satisfies .|X| ≤ b
√

n, then 

.c
(
Eθ ω3(Fθ , F )

)1/3 ≤ (1 + σ4)
√

b
(log n)5/4

√
n

. (12.2) 

Proof For any distribution function G with finite first absolute moment, the function 
on the unit sphere .Sn−1 of the form .g(θ) = W(Fθ ,G) has a Lipschitz semi-norm 
.‖g‖Lip ≤ 1. Therefore, it admits a subgaussian large deviation bound 

.sn−1
{
W(Fθ ,G) ≥ m + r

} ≤ e−(n−1)r2/2, r ≥ 0, (12.3) 

where .m = Eθ W(Fθ ,G). Indeed, consider the elementary representation 

. W(Fθ ,G) ≡
∫ ∞

−∞
|Fθ(x) − G(x)| dx

= sup
u

[ ∫ ∞

−∞
u dFθ −

∫ ∞

−∞
u dG

]
,

where the supremum is running over all functions u on . R with .‖u‖Lip ≤ 1. For any 
such u, 

. Hu(θ) =
∫ ∞

−∞
u dFθ = E u(〈X, θ〉)

is Lipschitz on . Rn and therefore on .Sn−1. Moreover, .‖g‖Lip ≤ supu ‖Hu‖Lip ≤ 1. 
Hence, (12.3) is fulfilled as a consequence of fact that the logarithmic Sobolev 

constant for the uniform distribution on the unit sphere is equal to .n − 1 (cf. [21]). 
In particular, for any .r ≥ 0, 

.sn−1
{
W(Fθ , F ) ≥ m + r

} ≤ e−(n−1)r2/2
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with .m = Eθ W(Fθ , F ). In turn, the latter ensures that, for any .p ≥ 2, 

.

(
Eθ W(Fθ , F )p

)1/p ≤ m +
√

p√
n − 1

. (12.4) 

For the proof, put .ξ = (W(Fθ , F )−m)+. Using .�(x + 1) ≤ xx with .x = p/2 ≥ 1, 
we have 

. Eθ ξp =
∫ ∞

0
sn−1{ξ ≥ r} drp ≤

∫ ∞

0
e−(n−1) r2/2 drp

=
( √

2√
n − 1

)p

�
(p

2
+ 1

)
≤

( √
p√

n − 1

)p

≡ Ap (A ≥ 0).

Thus, .‖ξ‖p = (Eθ ξp)1/p ≤ A. Since .W(Fθ , F ) ≤ ξ + m, we conclude, by the 
triangle inequality, that 

. ‖W(Fθ , F )‖p ≤ ‖ξ‖p + m ≤ A + m,

that is, (12.4) holds. 
Let us proceed with one elementary general inequality, connecting the three 

distances, 

. ω2(Fθ , F ) =
∫ ∞

−∞
(Fθ (x) − F(x))2 dx

≤
∫ ∞

−∞
sup
x

|Fθ(x) − F(x)| |Fθ(x) − F(x)| dx = ρ(Fθ , F )W(Fθ , F ).

Putting .ω = ω(Fθ , F ), .W = W(Fθ , F ), .ρ = ρ(Fθ , F ), we thus have . ω3 ≤
W 3/2ρ3/2 and, by Hölder’s inequality with exponents .p = 4 and .q = 4/3, 

. ‖ω‖3 = (
Eθ ω3)1/3 ≤ (

Eθ W 6)1/12 (
Eθ ρ2)1/4

.

By (12.4) with . p = 6, we have  

. 
(
Eθ W 6)1/6 ≤ Eθ W + 4√

n
,

so that 

.‖ω‖3 ≤
(
Eθ W + 4√

n

)1/2 (
Eθ ρ2)1/4

.
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Applying Proposition 11.2 and noting that necessarily .b ≥ 1 in the isotrpic case, we 
get 

. ‖ω‖3 ≤ 4
√

b
(√

log n Eθ ρ + 1√
n

)1/2 (
Eθ ρ2)1/4

.

Here we employ the inequality (9.3) with F in place of . �, i.e. 

. Eθ ρ(Fθ , F ) ≤ (
Eθ ρ2(Fθ , F )

)1/2 ≤ c (1 + σ4)
log n√

n
.

Since the last expression dominates the term . 1√
n

, it follows that  

. ‖ω‖3 ≤ c
√

b
(√

log n (1 + σ4)
log n√

n

)1/2 (
(1 + σ4)

log n√
n

)1/2
,

and we arrive at the upper bound (12.2). ��
Let us now explain how this bound can be used to refine the lower bound (12.1). 

The argument is based on the following general elementary observation. Given a 
random variable . ξ , introduce the .Lp-norms .‖ξ‖p = (E |ξ |p)1/p. 

Lemma 12.3 If .ξ ≥ 0 with .0 < ‖ξ‖3 < ∞, then 

.E ξ ≥ 1

E ξ3
(E ξ2)2. (12.5) 

Moreover,

.P

{
ξ ≥ 1√

2
‖ξ‖2

}
≥ 1

8

(‖ξ‖2

‖ξ‖3

)6
. (12.6) 

Thus, in the case where .‖ξ‖2 and .‖ξ‖3 are equivalent within not too large factors, 
.‖ξ‖1 will be of a similar order. Moreover, . ξ cannot be much smaller than its mean 
. Eξ on a large part of the probability space (where it was defined). 

Proof Let . ξ be defined on the probability space .(�,F,P). By homogeneity with 
respect to . ξ , we may assume that .Eξ = 1, so that .dQ = ξdP is a probability 
measure. Then, (12.5) follows from the Cauchy inequality .(EQξ)2 ≤ EQξ2 on the 
space .(�,F,Q). 

To prove (12.6), given . r > 0, let .p = P{ξ ≥ r}. By Hölder’s inequality with 
exponents .3/2 and 3, 

.E ξ2 1{ξ≥r} ≤ (
E ξ3)2/3

p1/3.
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Hence, choosing .r = 1√
2

‖ξ‖2, we get 

. E ξ2 = E ξ2 1{ξ≥r} + E ξ2 1{ξ<r}

≤ (
E ξ3)2/3

p1/3 + r2 = (
E ξ3)2/3

p1/3 + 1

2
E ξ2.

Hence .p1/3 ≥ 1
2 (E ξ3)2/3 E ξ2 which is the desired bound (12.6). ��

We now combine Lemma 12.2 with Lemma 12.3 which is applied on the unit 
sphere to .ξ(θ) = ω(Fθ , F ) viewed as a random variable on the probability space 
.(Sn−1, sn−1). Recall that .b ≥ 1 in the isotropic case. 

Proposition 12.4 Let X be an isotropic random vector in . Rn such that . |X| ≤ b
√

n

a.s. Assume that 

. Eθ ω2(Fθ , F ) ≥ D

n

with some .D > 0. Then 

.Eθ ω(Fθ , F ) ≥ c

(1 + σ4)3 b
3
2

D2

(log n)
15
4
√

n
. (12.7) 

Moreover,

. sn−1

{
ω(Fθ , F ) ≥ 1√

2n

√
D

}
≥ c

(1 + σ4)6 b3

D3

(log n)
15
2

.

Proof of Theorem 1.3 The lower bound (12.7) implies a similar assertion about the 
Kolmogorov distance. Indeed, by Proposition 11.1 with . α = 1, we have  

. 
1√
b
Eθ ω(Fθ , F ) ≤ 14 (log n)1/4

Eθ ρ(Fθ , F ) + 8

n4 .

Using . 8
n4 < 1

n3 · 14 (log n)1/4, we therefore obtain that 

. Eθ ρ(Fθ , F ) ≥ 1

14
√

b (log n)1/4
Eθ ω(Fθ , F ) − 1

n3

≥ c

(1 + σ4)3 b2

D2

(log n)4
√

n
− 1

n3 .

To replace F with . �, it remains to recall the bound .ρ(F,�) ≤ c
n

(1+σ 2
4 ), cf. (2.3).

��
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In the isotropic case with .|X|2 = n a.s., the above lower bound is further 
simplified to 

. Eθ ρ(Fθ , F ) ≥ cD2

(log n)4
√

n
− 1

n3 .

On the other hand, let us note that the rates for the normal approximation of . Fθ that 
are better than .1/n (on average) cannot be obtained under the support assumption 
as above. That is, if .|X| = √

n a.s., then 

. Eθ ρ(Fθ ,�) ≥ c

n
.

Indeed, using the convexity of the distance function .G → ρ(G,�) and applying 
Jensen’s inequality, we have that .Eθ ρ(Fθ ,�) ≥ ρ(F,�). It remains to appeal to 
Proposition 2.6. 

13 Functional Examples 

13.1. For the trigonometric system as in item (i) of the Introduction (with n even), 
the linear forms 

. 〈X, θ〉 = √
2

n
2∑

k=1

(
θ2k−1 cos(kt) + θ2k sin(kt)

)
, θ = (θ1, . . . , θn) ∈ S

n−1,

represent trigonometric polynomials of degree at most n 
2 . The normalization√

2 is chosen in order to meet the requirement that the random vector X 
is isotropic with respect to the normalized Lebesgue measure P on � = 
(−π, π). Moreover, in this case |X| =  

√
n, so that σ4 = 0. Hence, by 

Theorem 1.1, we have the upper bounds (1.6). On the other hand, since for all 
k ≤ n 

2 

. |Xk(t) − Xk(s)| ≤ k
√

2 |t − s| ≤ n√
2

|t − s|, t, s ∈ �,

the Lipschitz condition (7.1) is fulfilled with L(t) = t√
2 
. Hence, Proposi-

tion 7.1 is applicable and yields the lower bound 

. Eθ ω2(Fθ ,�) ≥ c1

n
− c2

n2
≥ c3

n
,

where in the last inequality we assume that n ≥ n0 for some universal 
integer n0. This restriction may be dropped, since the distances ω2(Fθ ,�)
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are bounded away from zero for n < n0 uniformly over all θ ∈ S
n−1, just due 

to the property that the distributions Fθ are supported on the bounded interval 
[−√

n0, 
√

n0]. Note that the above lower estimate (may also be obtained by 
applying Theorem 1.1. Thus, for all n ≥ 2, 

.
c0

n
≤ Eθ ω2(Fθ ,�) ≤ c1

n
. (13.1) 

Applying Proposition 12.4, we obtain similar bounds for the L1-norm 
(modulo logarithmic factors). Namely, it gives 

.
c0

(log n)
15
4
√

n
≤ Eθ ω(Fθ ,�) ≤ c1√

n
. (13.2) 

We also get an analogous pointwise lower bound on the “essential” part of
the unit sphere.

A similar statement is also true for the Kolmogorov distance. Here, the
upper bound is provided in Proposition 9.1, while the lower bound is obtained 
when combining Theorem 1.3 with the left inequality in (13.1). That is, 

.
c0

(log n)4
√

n
≤ Eθ ρ(Fθ ,�) ≤ (

Eθ ρ2(Fθ ,�)
)1/2 ≤ c1 log n√

n
. (13.3) 

13.2. Analogous results remain true for the cosine trigonometric system X = 
(X1, . . . , Xn) as in item (ii). Due to the normalization

√
2, the distribution of 

X is isotropic in Rn. The property |X| =  
√

n is not true anymore; however, 
there is a pointwise bound |X| ≤  

√
2n. In addition, the variance functional 

σ 2 
4 does not depend on n. Indeed, write 

. X2
k = 2 cos2(kt) = 1 + cos(2kt) = 1 + e2ikt + e−2ikt

2
,

so that 

. 2 (|X|2 − n) =
∑

0<|k|≤n

e2ikt , 4 (|X|2 − n)2 =
∑

0<|k|,|l|≤n

e2i(k+l)t .

It follows that 

. 4 Var(|X|2) =
∑

0<|k|,|l|≤n

E e2i(k+l)t =
∑

0<|k|≤n, l=−k

1 = 2n.

Hence 

.σ 2
4 = 1

n
Var(|X|2) = 1

2
.
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As before, the Lipschitz condition is fulfilled with the function L(t) = 
t
√

2. Therefore, with similar arguments we obtain all the bounds (13.1)– 
(13.3). 

Let us also note that the sums
∑n 

k=1 cos(kt) remain bounded for growing 
n (for any fixed 0 < t  < π ). Hence the normalized sums 

. Sn = 1√
n

n∑
k=1

Xk =
√

2√
n

n∑
k=1

cos(kt),

which correspond to 〈X, θ〉 with equal coefficients, are convergent to zero 
pointwise on � as n → ∞. In particular, they fail to satisfy the central limit 
theorem. 

13.3. An example closely related to the cosine trigonometric system is represented 
by the normalized Chebyshev’s polynomials Xk as in item (iii), which we 
consider for k = 1, 2, . . . , n. These polynomials are orthonormal on the 
interval � = (−1, 1) with respect to the probability measure 

. 
dP(t)

dt
= 1

π
√

1 − t2
, −1 < t < 1,

cf. e.g. [17]. Similarly to 13.2, for the random vector X = (X1, . . . , Xn) we 
find that 

. 4 (|X|2 − n)2 =
∑

0<|k|,|l|≤n

exp{2i(k + l) arccos t}.

It follows that 

. 4 Var(|X|2) =
∑

0<|k|,|l|≤n

E exp{2i(k + l) arccos t} =
∑

0<|k|≤n

1 = 2n,

so that σ 2 
4 = 1 

n Var(|X|2) = 1 
2 . In addition, for all k ≤ n, 

. |Xk(t) − Xk(s)| ≤ k
√

2 | arccos t − arccos s|, t, s ∈ �,

which implies that the Lipschitz condition is fulfilled with the function L(t) =√
2 arccos t . As a result, we obtain the bounds (13.1)–(13.3) as well. 

13.4. Turning to item (iv), consider the functions of the form 

.Xk(t, s) = 
(kt + s),
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assuming that 
 is a 1-periodic measurable function on the real line such that 

. 

∫ 1

0

(x) dx = 0 and

∫ 1

0

(x)2 dx = 1.

These conditions ensure that the random vector X = (X1, . . . , Xn) is 
isotropic in Rn with respect to the Lebesgue measure P on the square
� = (0, 1) × (0, 1), with EXk = 0. In fact, as was emphasized in [5], 
{Xk}∞k=1 represents a strictly stationary sequence of pairwise independent 
random variables on �. The latter implies in particular that, if 
 has finite 
4-th moment on (0, 1), the variance functional 

. σ 2
4 = 1

n
Var(|X|2) =

∫ 1

0

(x)4 dx − 1

is finite and does not dependent on n. Hence, by Theorem 1.1, cf. (1.6), the 
upper bounds in (13.1)–(13.3) hold true with a constant c1 depending on the 
4-th moment of 
 on (0, 1). 

In addition, if the function 
 has finite Lipschitz constant ‖
‖Lip, then for 
all (t1, t2) and (s1, s2) in �, 

. |Xk(t1, t2) − Xk(s1, s2)| ≤ ‖
‖Lip
(
k |t1 − s1| + |t2 − s2|

)
.

This means that the Lipschitz condition (7.5) is fulfilled with linear functions 
L1 and L2. Hence, one may apply Proposition 7.5 giving the lower bound 

. Eθ ω2(Fθ , F ) ≥ c


n
− c (1 + σ 4

4 )

n2

in full analogy with item (i). Hence Eθ ω2(Fθ ,�)  ≥ c′



n for all n ≥ n0, 
where the positive constants c
 , c′


 , and an integer n0 ≥ 1 depend on the 
distribution of 
 only. Since the collection {Fθ } is separated from � in the 
weak sense for n < n0 (by the uniform boundedness of Xk’s), the latter bound 
holds true for all n ≥ 2. Also, as Lipschitz functions on (0, 1) are bounded, 
we have |X| ≤ b

√
n with b = supx |f (x)|, and one may apply Theorem 1.3. 

Let us summarize: The upper bounds in (13.1)–(13.3) hold true, if 
 has 
finite 4-th moment under the uniform distribution on (0, 1). The lower bounds 
hold under an additional assumption that 
 has a finite Lipschitz semi-norm 
(with constants depending on 
 only). 

Choosing, for example, 
(t) = cos t , we obtain the system Xk(t, s) = 
cos(kt + s), which is closely related to the cosine trigonometric system. 
The main difference is however the property that Xk’s are now pairwise 
independent. Nevertheless, the normalized sums 1√

n

∑n 
k=1 cos(kt + s) fail 

to satisfy the central limit theorem.
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14 The Walsh System; Empirical Measures 

14.1. The Walsh system on the discrete cube � = {−1, 1}d with the uniform count-
ing measure P as in item (v) in Introduction forms a complete orthonormal 
system in L2(�, P). Note that each Xτ with τ 
= ∅  is a symmetric Bernoulli 
random variable taking the values −1 and 1 with probability 1 

2 . For simplicity, 
we exclude from this family the constant X∅ = 1 and consider X = {Xτ }τ 
=∅ 
as a random vector in Rn of dimension n = 2d − 1. As before, Fθ denotes the 
distribution function of the linear form 

. 〈X, θ〉 =
∑
τ 
=∅

θτXτ , θ = {θτ }τ 
=∅ ∈ S
n−1.

Since |Xτ | =  1 and thus |X| = √
n, for the study of the asymptotic behav-

ior of the L2-distance ω(Fθ ,�)  on average, one may apply Theorem 1.1. 
Let Y be an independent copy of X, which we realize on the product space
�2 = � × � with product measure P2 = P × P by 

. Xτ (t, s) =
∏
k∈τ

tk, Yτ (t, s) =
∏
k∈τ

sk t = (t1, . . . , td ), s = (s1, . . . , sd) ∈ �.

Then the inner product 

. 〈X, Y 〉 =
∑
τ 
=∅

Xτ (t, s)Yτ (t, s) = −1 +
d∏

k=1

(1 + tksk)

takes only two values, namely 2d − 1 in the case t = s, and −1 if  t 
= s. 
Hence 

. E 〈X, Y 〉3 = (2d − 1)3 2−d + (1 − 2−d) = n3

n + 1
+

(
1 − 1

n + 1

)
∼ n2

and 

. E 〈X, Y 〉4 = (2d − 1)4 2−d + (1 − 2−d) = n4

n + 1
+

(
1 − 1

n + 1

)
∼ n3.

In other words, m3 
3 ∼ 

√
n and m4 

4 ∼ n as n → ∞. As a result, we may 
conclude that all inequalities in (13.1)–(13.3) are fulfilled for this system as 
well. 

14.2. Here is another interesting example leading to the similar rate of 
normal approximation. Let e1, . . . , en denote the canonical basis in Rn. 
Assuming that the random vector X = (X1, . . . , Xn) takes only n values,√

n e1, . . . ,  
√

n en, each with probability 1/n, the linear form 〈X, θ〉 also
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takes n values, namely,
√

n θ1, . . . ,
√

n θn, each with probability 1/n, for any 
θ = (θ1, . . . , θn) ∈ Sn−1. That is, as a measure, the distribution of 〈X, θ〉 is 
described as 

. Fθ = 1

n

n∑
k=1

δ√
n θk

,

which may be viewed as an empirical measure based on the observations 
Zk = 

√
n θk , k = 1, . . . , n. Each Zk is almost standard normal, while 

jointly they are nearly independent (we have already considered in detail its 
characteristic functions Jn(t

√
n)). 

Just taking a short break, let us recall that when Zk are indeed standard 
normal and independent, it is well-known that the empirical measures Gn =
1 
n

∑n 
k=1 δZk approximate the standard normal law � with rate 1/

√
n with 

respect to the Kolmogorov distance. More precisely, E Gn = � and there is a 
subgaussian deviation bound (cf. [22]) 

. P
{√

n ρ(Gn,�) ≥ r
} ≤ 2e−2r2

, r ≥ 0.

In particular, E ρ(Gn,�)  ≤ c√
n . Note that the characteristic function gn(t) = 

1 
n

∑n 
k=1 e

itZk of the measure Gn has mean g(t) = e−t2/2 and variance 

. E |gn(t) − g(t)|2 = 1

n
Var(eitZ1) = 1

n

(
1 − |E eitZ1 |2) = 1

n

(
1 − e−t2)

.

Hence, applying Plancherel’s theorem and using the identity (4.7) for the  
functions ψr(α) with r = α = 0, we also have 

. Eω2(Gn,�) = 1

2π

∫ ∞

−∞
E

∣∣∣gn(t) − g(t)

t

∣∣∣2
dt

= 1

2πn

∫ ∞

−∞
1 − e−t2

t2
dt = 1

n
√

π
.

Thus, on average the L2-distance ω(Gn,�)  is of order 1/
√

n as well. 
Similar properties may be expected for the random variables Zk = √

n θk 
and hence for the random vector X. Note that |X| = √

n, while 

.E 〈X, θ〉2 = 1

n

n∑
k=1

(
√

n θk)
2 = 1, θ ∈ S

n−1,
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so that X is isotropic. We now involve an asymptotic formula of Corollary 5.1 
which yields 

. Eθ ω2(Fθ ,�) = 1√
π

(
1 + 1

4n

)
E

(
1 − (1 − ξ)1/2

)
− 1

8n
√

π
+ O

( 1

n2

)
,

where ξ = 〈X,Y 〉
n with Y being an independent copy of X. By the definition, 

ξ takes only two values, 1 with probability 1 
n and 0 with probability 1 − 1 

n
. 

Hence, the last expectation is equal to 1 
n

, and we get 

. Eθ ω2(Fθ ,�) = 7/8

n
√

π
+ O

( 1

n2

)
.

As for the Kolmogorov distance, one may apply again Theorem 1.3, which 
leads to the two-sided bound (13.3). Apparently, both logarithmic terms can 
be removed. Their appearance here is explained by the use of the Fourier tools 
(in the form of the Berry-Esseen bounds), while the proof of the Dvoretzky-
Kiefer-Wolfowitz inequality on ρ(Gn,�)  in [13] is based on the entirely 
different arguments. 

15 Improved Rates for Lacunary Systems 

An orthonormal sequence of random variables .{Xk}∞k=1 in .L2(�,F,P) is called a 
lacunary system of order .p > 2, if for any sequence .(ak) in . �2, the series . 

∑∞
k=1 akXk

converges in .Lp-norm to an element of .Lp(�,F,P). This property is equivalent to 
the validity of the Khinchine-type inequality 

.
(
E |a1X1 + · · · + anXn|p

)1/p ≤ Mp (a2
1 + · · · + a2

n)
1/2 (15.1) 

for arbitrary .ak ∈ R with some constant .Mp independent of n and the choice of the 
coefficients . ak . For basic properties of such systems we refer an interested reader to 
the books [16, 17]. 

Starting from an orthonormal lacunary system of order .p = 4, consider the 
random vector .X = (X1, . . . , Xn). According to Theorem 1.1, if .|X|2 = n a.s. 
and .EX = 0, then 

.cEθ ω2(Fθ ,�) ≤ 1

n3
E 〈X, Y 〉3 + 1

n4
E 〈X, Y 〉4 , (15.2)
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where Y is an independent copy of X. A similar bound 

.cEθ ρ2(Fθ ,�) ≤ log n

n3 E 〈X, Y 〉3 + (log n)2

n4 E 〈X, Y 〉4 (15.3) 

also holds for the Kolmogorov distance. As easily follows from (15.1), 

. E | 〈X, Y 〉 |p ≤ M
2p
p np/2.

In particular, 

. E | 〈X, Y 〉 |3 ≤ M6
3 n3/2, E 〈X, Y 〉4 ≤ M8

4 n2.

Hence, the bounds (15.2) and (15.3) lead to the estimates 

. cEθ ω2(Fθ ,�) ≤ 1

n3/2 M6
3 + 1

n2 M8
4 ,

cEθ ρ2(Fθ ,�) ≤ log n

n3/2 M6
3 + (log n)2

n2 M8
4 .

Thus, if .M4 is bounded, both distances are at most of order .n−3/4 on average 
(modulo a logarithmic factor). Moreover, if 

.�3(n) ≡ E 〈X, Y 〉3 =
∑

1≤i1,i2,i3≤n

(
EXi1Xi2Xi3

)2 (15.4) 

is bounded by a multiple of n, then these distances are on average at most . 1/n

(modulo a logarithmic factor in the case of . ρ). 
For an illustration, on the interval .� = (−π, π) with the uniform measure 

.dP(t) = 1
2π

dt , consider a finite trigonometric system .X = (X1, . . . , Xn) with 
components 

. X2k−1(t) = √
2 cos(mkt),

X2k(t) = √
2 sin(mkt), k = 1, . . . , n/2,

where .mk are positive integers such that .mk+1
mk

≥ q > 1 (assuming that n is even). 

Then X is an isotropic random vector satisfying .|X|2 = n and .EX = 0, and with 
.M4 bounded by a function of q only. For evaluation of the moment .�3(n), one may 
use the identities 

. cos t = Eε eiεt , sin t = 1

i
Eε ε eiεt ,
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where . ε is a Bernoulli random variable taking the values .±1 with probability . 12 . 
Let .ε1, ε2, ε3 be independent copies of . ε. Using the property that .ε1ε3 and .ε2ε3 are 
independent, the first identity implies that, for all integers .1 ≤ n1 ≤ n2 ≤ n3, 

. E cos(n1t) cos(n2t) cos(n3t) = Eε E exp{i(ε1n1 + ε2n2 + ε3n3) t}
= Eε I {ε1n1 + ε2n2 + ε3n3 = 0}
= Eε I {ε1n1 + ε2n2 = n3} = 1

4
I {n1 + n2 = n3},

where .Eε means the expectation over .(ε1, ε2, ε3), and where .I {A} denotes the 
indicator of the event A. Similarly, involving also the identity for the sine function, 
we have 

. E sin(n1t) sin(n2t) cos(n3t) = −Eε E ε1ε2 exp{i(ε1n1 + ε2n2 + ε3n3) t}
= −Eε ε1ε2 I {ε1n1 + ε2n2 + ε3n3 = 0}
= −Eε ε1ε2 I {ε1n1 + ε2n2 = n3}
= −1

4
I {n1 + n2 = n3},

. E sin(n1t) cos(n2t) sin(n3t) = −Eε E ε1ε3 exp{i(ε1n1 + ε2n2 + ε3n3) t}
= −Eε ε1ε3 I {ε1n1 + ε2n2 + ε3n3 = 0}
= −Eε ε1 I {ε1n1 + ε2n2 = n3}
= −1

4
I {n1 + n2 = n3},

. E cos(n1t) sin(n2t) sin(n3t) = −Eε E ε2ε3 exp{i(ε1n1 + ε2n2 + ε3n3) t}
= −Eε ε2ε3 I {ε1n1 + ε2n2 + ε3n3 = 0}
= −Eε ε2 I {ε1n1 + ε2n2 = n3}
= −1

4
I {n1 + n2 = n3}.

On the other hand, if the sine function appears in the product once or three times, 
such expectations will be vanishing. They are thus vanishing in all cases where 
.n1 + n2 
= n3, and do not exceed . 14 in absolute value for any combination of sine 
and cosine terms in all cases with .n1 + n2 = n3. Therefore, the moment .�3(n) in 
(15.4) is bounded by a multiple of 

.T3(n) = card
{
(i1, i2, i3) : 1 ≤ i1 ≤ i2 < i3 ≤ n, mi1 + mi2 = mi3

}
.
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One can now involve the lacunary assumption. If .q ≥ 2, the property . i1 ≤ i2 < i3
implies .mi1 + mi2 < mi3 , so that .T3(n) = �3(n) = 0. In the case .1 < q < 2, define 
. Aq to be the (finite) collection of all couples .(k1, k2) of positive integers such that 

. q−k1 + q−k2 ≥ 1.

By the lacunary assumption, if .1 ≤ i1 ≤ i2 < i3 ≤ n, we have  

. mi1 + mi2 ≤ (
q−(i3−i1) + q−(i3−i2)

)
mi3 < mi3,

as long as the couple .(i3 − i1, i2 − i1) is not in . Aq . Hence, 

. T3(n) ≤ card
{
(i1, i2, i3) : 1 ≤ i1 ≤ i2 < i3 ≤ n, (i3 − i1, i2 − i1) ∈ Aq

}
≤ n card(Aq) ≤ cqn

with constant depending on q only. Returning to (15.2) and (15.3), we then obtain: 

Proposition 15.1 For the lacunary trigonometric system X of an even length n and 
with parameter .q > 1, we have 

. Eθ ω2(Fθ ,�) ≤ cq

n2 , Eθ ρ2(Fθ ,�) ≤ cq (log n)2

n2 ,

where the constants . cq depend q only. 

In this connection one should mention a classical result of Salem and Zygmund 
concerning distributions of the lacunary sums 

. Sn =
n∑

k=1

(ak cos(mkt) + bk sin(mkt))

with an arbitrary prescribed sequence of the coefficients .(ak)k≥1 and .(bk)k≥1. 
Assume that .mk+1

mk
≥ q > 1 for all k and put 

. v2
n = 1

2

n∑
k=1

(a2
k + b2

k) (vn ≥ 0),

so that the normalized sums .Zn = Sn/vn have mean zero and variance one under 
the measure . P. It was shown in [25] that . Zn are weakly convergent to the standard 
normal law, i.e., their distributions . Fn under . P satisfy .ρ(Fn,�) → 0 as .n → ∞, 

if and only if . a
2
n+b2

n

v2
n

→ 0 (in fact, the weak convergence was established on every 

subset of . � of positive measure). 
Restricting to the coefficients .θ2k−1 = ak/vn, .θ2k = bk/vn, Salem-Zygmund’s 

theorem may be stated as the assertion that .ρ(Fθ ,�) is small, if and only if .‖θ‖∞ =
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max1≤k≤n |θk| is small. The latter condition naturally appears in the central limit 
theorem for weighted sums of independent identically distributed random variables. 
Thus, Proposition 15.1 complements this result in terms of the rate of convergence in 
the mean on the unit sphere. It would be interesting to describe explicit coefficients 
. θk , for which we get a standard rate of normal approximation (perhaps, using other 
approaches such as the Stein method, cf. e.g. [14]). 

The result of [25] was generalized in [26]; it turns out there is no need to assume 
that all . mk are integers, and the asymptotic normality is preserved for real . mk such 
that .infk

mk+1
mk

> 1. However, in this more general situation, the rate .1/n as in 

Proposition 15.1 is no longer true (although the rate .1/
√

n is valid). The main reason 
is that the means 

. EX2k−1 = √
2E cos(mkt) = √

2
sin(πmk)

πmk

may be non-zero. For example, choosing .mk = 2k + 1
2 , we obtain an orthonormal 

system with .EX2k = 0, while 

. EX2k−1 = 2
√

2

π (2k+1 + 1)
.

Hence 

. E 〈X, Y 〉 = |EX|2 = 8

π2

n∑
k=1

1

(2k+1 + 1)2 → c (n → ∞)

for some absolute constant .c > 0 (where Y is an independent copy of X). In this 
situation, as was already mentioned in (5.3), cf. Remark 5.3, we have a lower bound 

. Eθ ω2(Fθ , F ) ≥ c

2
√

π n
+ O

( 1

n2

)
.

Since .E 〈X, Y 〉3 = O(n) and .E 〈X, Y 〉4 = O(n2), this inequality may actually be 
replaced with equality, according to (5.2). A similar asymptotic holds as well when 
F is replaced with . �. 

16 Improved Rates for Independent and Log-Concave 
Summands 

Let .X = (X1, . . . , Xn) be an isotropic random vector in . Rn with mean zero. If the 
components . Xk are independent, the normal approximation for the distributions . Fθ

of the weighted sums 

.Sθ = θ1X1 + · · · + θnXn, θ ∈ S
n−1,
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may be controlled by virtue of the Berry-Esseen theorem under the 3-rd moment 
assumption. Namely, this theorem provides an upper bound 

.ρ(Fθ ,�) ≤ c

n∑
i=1

|θi |3 E |Xi |3 (16.1) 

(cf. e.g. [23, 24]). Since .E |Xi |3 ≥ 1, the sum in (16.1) is at least . 1√
n

. On the other 
hand, (16.1) yields an upper estimate on average 

.Eθ ρ(Fθ ,�) ≤ cβ3√
n
, β3 = max

1≤i≤n
E |Xi |3, (16.2) 

which is consistent with the standard rate.
As it turns out, the relations (16.1) and (16.2) are far from being optimal for most 

of . θ , as the following statement due to Klartag and Sodin shows. 

Theorem 16.1 ([20]) If the random variables .X1, . . . , Xn are independent, have 
mean zero, variance one, and finite 4-th moments, then 

.Eθ ρ(Fθ ,�) ≤ cβ4

n
, β4 = 1

n

n∑
i=1

EX4
i . (16.3) 

Moreover, for any .r ≥ 0, 

. sn−1
{
nρ(Fθ ,�) ≥ cβ4r

} ≤ 2 e−√
r .

In the i.i.d. case, .β4 = EX4
1, and we obtain an upper bound of order at most .1/n. 

In fact, in the i.i.d. case, the relation (16.3) may be further sharpened under the 
5-th moment assumption, if .EX3

1 = 0, and if .�(x) is slightly modified to 

. G(x) = �(x) − β4 − 3

8(n + 2)
(x3 − 3x) ϕ(x), x ∈ R,

where .ϕ(x) = 1√
2π

e−x2/2 is the standard normal density. 

Theorem 16.2 If the random variables .X1, . . . , Xn are independent, identically 
distributed, and have moments .EX1 = 0, .EX2

1 = 1, .EX3
1 = 0, .EX4

1 = β4, 
.E |X1|5 = β5 < ∞, then 

.Eθ ρ(Fθ ,G) ≤ cβ5

n3/2 . (16.4)
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Moreover, for any .r ≥ 0, 

. sn−1

{
n3/2ρ(Fθ ,G) ≥ cβ4r

}
≤ 2 exp{−r2/5}.

We refer an interested reader to [4] and [11]. In the i.i.d. case, both inequalities 
(16.3) and (16.4) are sharp in the following sense. If .α3 = EX3

1 
= 0 and .β4 < ∞, 
then, for any function G of bounded total variation, such that .G(−∞) = 0 and 
.G(∞) = 1, we have  

. Eθ ρ(Fθ ,G) ≥ c

n

with a constant .c > 0 depending on . α3 and . β4. Similarly, if .α3 = 0, .β4 
= 3, 
.β5 < ∞, then 

. Eθ ρ(Fθ ,G) ≥ c

n3/2 ,

where the constant .c > 0 depends on . β4 and . β5 only. 
In the upper bounds such as (16.3), the independence assumption may be 

replaced with closely related hypotheses. The random vector X is said to have a 
log-concave distribution, when it has a density of the form .p(x) = e−V (x) where 
.V : R

n → (−∞,∞] is a convex function. Recall that the distribution of X is 
coordinatewise symmetric, if 

. p(ε1x1, . . . , εnxn) = p(x1, . . . , xn), xi ∈ R,

for any choice of signs .εi = ±1. The following theorem sharpening (16.1) is due to 
Klartag. 

Theorem 16.3 ([18]) Suppose that the isotropic random vector . X = (X1, . . . , Xn)

in .Rn has a coordinatewise symmetric log-concave distribution. For all . θ =
(θ1, . . . , θn) ∈ S

n−1, 

.‖Fθ − �‖TV ≤ c

n∑
i=1

θ4
i . (16.5) 

Here, the total variation distance is understood in the usual sense as 

. ‖Fθ − �‖TV =
∫ ∞

−∞
|pθ(x) − ϕ(x)| dx,

where . pθ denotes the density of . Sθ . By the assumptions, . pθ is symmetric about 
the origin and is log-concave for any .θ ∈ S

n−1. Note that, by the coordinatewise 
symmetry, the isotropy assumption is reduced to the moment condition . EX2

i = 1
(.1 ≤ i ≤ n).
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In particular, it follows from (16.5) that 

.Eθ ρ(Fθ ,�) ≤ Eθ ‖Fθ − �‖TV ≤ c

n
. (16.6) 

17 Improved Rates Under Correlation-Type Conditions 

Up to a logarithmically growing term, the improved rate as in the upper bound (16.3) 
can be achieved under more flexible correlation-type conditions (in comparison with 
independence). For example, one may consider an optimal value .� = �(X) in the 
relation 

.Var

( n∑
i,j=1

aijXiXj

)
≤ �

n∑
i,j=1

a2
ij (aij ∈ R), (17.1) 

which we call that the random vector .X = (X1, . . . , Xn) satisfies a second order 
correlation condition with constant . �. This quantity is finite as long as the moment 
.E |X|4 is finite. 

To relate . � to the moment-type characteristics which we discussed before, 
one may apply (17.1) with .aij = δij or (as another option) with .aij = θiθj , 
.θ = (θ1, . . . , θn) ∈ S

n−1. This gives that 

. σ 2
4 ≤ �, m2

4 ≤ sup
θ∈Sn−1

ES4
θ ≤ 1 + �,

where in the last inequality we should assume that .ES2
θ = 1 for all . θ (i.e. X is 

isotropic). In the latter case, necessarily .� ≥ n−1
n

, so that . � is bounded away from 
zero. 

If the distribution of X is “regular” in some sense, one may also bound . � from 
above. For example, this is the case when it shares a Poincaré-type inequality 

.λ1Var(u(X)) ≤ E |∇u(X)|2, (17.2) 

which is required to hold in the class of all bounded, smooth functions u on . Rn with 
a constant .λ1 > 0 independent of u (called the spectral gap). We then have 

.� ≤ 4

λ2
1

, � ≤ 4

λ1
, (17.3) 

where in the second inequality we assume that X is isotropic.
The following relation is established in [9].
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Theorem 17.1 If the distribution of X is isotropic and symmetric about the origin, 
then 

.Eθ ρ(Fθ ,�) ≤ c�
log n

n
. (17.4) 

The proof is based on the second order spherical concentration phenomenon 
which was developed in [6] with the aim of applications to randomized central 
limit theorems. It indicates that the deviations of any smooth function .u(θ) on . Sn−1

from the mean .Eθu(θ) are at most of the order .1/n, provided that u is orthogonal 
in .L2(Rn, sn−1) to all linear functions and has a “bounded” Hessian (the matrix 
of second order partial derivatives). Being applied to the characteristic functions 
.u(θ) = fθ (t), this property yields an upper bound 

. Eθ |fθ (t) − f (t)|2 ≤ c�t4

n2

on every interval .|t | ≤ An1/5 with constants .c > 0 depending on the parameter 
.A ≥ 1 only. This estimate can be used to bound the integrals in (8.4) to get a similar 
variant of (17.4). 

The symmetry hypothesis in Theorem 17.1 may be dropped, if . � is replaced 
by .λ−1

1 which is a larger quantity according to (17.3). In addition, one can control 
large deviations of the distance .ρ(Fθ ,�) for most of the directions . θ (rather than 
on average). The corresponding assertions are obtained in [10]. 

Theorem 17.2 Let X be an isotropic random vector in . Rn with mean zero and a 
positive Poincaré constant . λ1. Then 

.Eθ ρ(Fθ ,�) ≤ cλ−1
1

log n

n
. (17.5) 

Moreover, for all .r > 0, 

. sn−1

{
ρ(Fθ ,�) ≥ cλ−1

1
log n

n
r
}

≤ 2 e−√
r .

The logarithmic term in (17.5) may be removed using the less sensitive .L2-
distance: 

. Eθ ω2(Fθ ,�) ≤ c

λ2
1 n2

.

There is an extensive literature devoted to bounding the spectral gap . λ1 from 
below. In particular, it is positive for any log-concave probability distribution on . Rn. 
A well-known conjecture raised by Kannan, Lovász and Simonovits asserts that . λ1
is actually bounded away from zero, as long as the random vector X has an isotropic
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log-concave distribution (cf. [15]). The best known dimensional lower bound up to 
date is due to Klartag and Lehec [19] who showed that 

. λ1 ≥ c

(log n)α

for some absolute positive constants c and . α (one may take .α = 10). Applying this 
bound in Theorem 17.2, we therefore obtain: 

Corollary 17.3 Let X be an isotropic random vector in . Rn with mean zero and a 
log-concave probability distribution. Then with some absolute positive constants c 
and . α

.Eθ ρ(Fθ ,�) ≤ c(log n)α

n
. (17.6) 

Thus, there is a certain extension of Klartag’s bound (16.6) at the expense 
of a logarithmic factor to the entire class of isotropic log-concave probability 
distributions on . Rn. 

One may also argue in the opposite direction: upper bounds of the form 

. Eθ ρ(Fθ ,�) ≤ c(log n)β

n
, β > 0,

in the class of log-concave probability distributions on . Rn imply lower bounds . λ1 ≥
c (log n)−β ′

with some . β ′ > 0, cf. [9]. 
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The Case of Equality in Geometric 
Instances of Barthe’s Reverse 
Brascamp-Lieb Inequality 

Karoly J. Boroczky, Pavlos Kalantzopoulos, and Dongmeng Xi 

Abstract The works of Bennett, Carbery, Christ, Tao and of Valdimarsson have 
clarified when equality holds in the Brascamp-Lieb inequality. Here we characterize 
the case of equality in the Geometric case of Barthe’s reverse Brascamp-Lieb 
inequality. 

1 Introduction 

For a proper linear subspace E of . Rn (.E �= R
n and .E �= {0}), let . PE denote 

the orthogonal projection into E. We say that the subspaces .E1, . . . , Ek of . Rn and 
.c1, . . . , ck > 0 form a Geometric Brascamp-Lieb data if they satisfy 

.

k∑

i=1

ciPEi
= In. (1) 

The name “Geometric Brascamp-Lieb data” coined by Bennett et al. [15] comes 
from the following theorem, originating in the work of Brascamp and Lieb [21] and 
Ball [3, 4] in the rank one case (.dimEi = 1 for .i = 1, . . . , k), and Lieb [51] and 
Barthe [8] in the general case. In the rank one case, the Geometric Brascamp-Lieb 
data is known as Parseval frame in coding theory and computer science (see for 
example Casazza et al. [32]). 
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Theorem 1 (Brascamp-Lieb, Ball, Barthe) For the linear subspaces . E1, . . . , Ek

of . Rn and .c1, . . . , ck > 0 satisfying (1), and for non-negative .fi ∈ L1(Ei), we have 

.

∫

Rn

k∏

i=1

fi(PEi
x)ci dx ≤

k∏

i=1

(∫

Ei

fi

)ci

(2) 

Remark This is Hölder’s inequality if .E1 = . . . = Ek = R
n and .Bi = In, and 

hence .
∑k

i=1 ci = 1. 

We note that equality holds in Theorem 1 if .fi(x) = e−π‖x‖2 for .i = 1, . . . , k; 
and hence, each . fi is a Gaussian density. Actually, Theorem 1 is an important special 
case discovered by Ball [4, 5] in the rank one case and by Barthe [8] in the general 
case of the general Brascamp-Lieb inequality Theorem 5. 

After partial results by Barthe [8], Carlen et al. [31] and Bennett et al. [15], it 
was Valdimarsson [67] who characterized equality in the Geometric Brascamp-Lieb 
inequality. In order to state his result, we need some notation. Let .E1, . . . , Ek the 
proper linear subspaces of . Rn and .c1, . . . , ck > 0 satisfy (1) . In order to understand
extremizers in (5), following Carlen et al. [31] and Bennett et al. [15], we say that a 
non-zero linear subspace V is a critical subspace if 

. 

k∑

i=1

ci dim(Ei ∩ V ) = dimV,

which is turn equivalent saying that 

. Ei = (Ei ∩ V ) + (Ei ∩ V ⊥) for i = 1, . . . , k

according to [15] (see also Lemma 7). We say that a critical subspace V is 
indecomposable if V has no proper critical linear subspace. 

Valdimarsson [67] introduced the so called independent subspaces and the 
dependent space. We write J to denote the set of . 2k functions .{1, . . . , k} → {0, 1}. 
If .ε ∈ J , then let .F(ε) = ∩k

i=1E
(ε(i))
i where .E(0)

i = Ei and .E(1)
i = E⊥

i for 
.i = 1, . . . , k. We write . J0 to denote the subset of .ε ∈ J such that .dimF(ε) ≥ 1, and 
such an .F(ε) is called independent following Valdimarsson [67]. Readily .F(ε) and 
.F(ε̃) are orthogonal if .ε �= ε̃ for .ε, ε̃ ∈ J0. In addition, we write .Fdep to denote the 
orthogonal component of .⊕ε∈J0F(ε). In particular, . Rn can be written as a direct sum 
of pairwise orthogonal linear subspaces in the form 

.R
n = (⊕ε∈J0F(ε)

) ⊕ Fdep. (3) 

Here it is possible that .J0 = ∅, and hence .Rn = Fdep, or  .Fdep = {0}, and hence 
.R

n = ⊕ε∈J0F(ε) in that case.
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For a non-zero linear subspace .L ⊂ R
n, we say that a linear transformation 

.A : L → L is positive definite if .〈Ax, y〉 = 〈x,Ay〉 and .〈x,Ax〉 > 0 for any 

.x, y ∈ L\{0}. 
Theorem 2 (Valdimarsson) For the proper linear subspaces .E1, . . . , Ek of . Rn

and .c1, . . . , ck > 0 satisfying (1) , let us assume that equality holds in the Brascamp-
Lieb inequality (2) for non-negative .fi ∈ L1(Ei), .i = 1, . . . , k. If  .Fdep �= R

n, then 
let .F1, . . . , F� be the independent subspaces, and if .Fdep = R

n, then let .� = 1 and 
.F1 = {0}. There exist .b ∈ Fdep and .θi > 0 for .i = 1, . . . , k, integrable non-negative 
.hj : Fj → [0,∞) for .j = 1, . . . , �, and a positive definite matrix . A : Fdep → Fdep
such that the eigenspaces of A are critical subspaces and 

. fi(x) = θie
−〈APFdepx,PFdepx−b〉 ∏

Fj ⊂Ei

hj (PFj
(x)) for Lebesgue a.e. x ∈ Ei.

(4) 

On the other hand, if for any .i = 1, . . . , k, . fi is of the form as in (4) , then equality
holds in (2) for .f1, . . . , fk . 

Theorem 2 explains the term “independent subspaces” because the functions . hj

on . Fj are chosen freely and independently from each other. 
A reverse form of the Geometric Brascamp-Lieb inequality was proved by Barthe 

[8]. We write .
∫ ∗
Rn ϕ to denote the outer integral for a possibly non-integrable 

function .ϕ : R
n → [0,∞); namely, the infimum (actually minimum) of . 

∫
Rn ψ

where .ψ ≥ ϕ is Lebesgue measurable. 

Theorem 3 (Barthe) For the non-trivial linear subspaces .E1, . . . , Ek of . Rn and 
.c1, . . . , ck > 0 satisfying (1), and for non-negative .fi ∈ L1(Ei), we have 

.

∫ ∗

Rn

sup
x=∑k

i=1 cixi , xi∈Ei

k∏

i=1

fi(xi)
ci dx ≥

k∏

i=1

(∫

Ei

fi

)ci

. (5) 

Remark This is the Prékopa-Leindler inequality Theorem 16 if . E1 = . . . = Ek =
R

n and .Bi = In, and hence .
∑k

i=1 ci = 1. 

We say that a function .h : R
n → [0,∞) is log-concave if . h((1 − λ)x + λ y) ≥

h(x)1−λh(y)λ for any .x, y ∈ R
n and .λ ∈ (0, 1); or in other words, . h = e−W

for a convex function .W : R
n → (−∞,∞]. Our main result is the following 

characterization of equality in the Geometric Barthe’s inequality (5) .

Theorem 4 For linear subspaces .E1, . . . , Ek of . Rn and .c1, . . . , ck > 0 satisfying 
(1) , if .Fdep �= R

n, then let .F1, . . . , F� be the independent subspaces, and if . Fdep =
R

n, then let .� = 1 and .F1 = {0}.
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If equality holds in the Geometric Barthe’s inequality (5) for non-negative . fi ∈
L1(Ei) with .

∫
Ei

fi > 0, .i = 1, . . . , k, then 

. fi(x) = θie
−〈APFdepx,PFdepx−bi 〉 ∏

Fj ⊂Ei

hj (PFj
(x − wi)) for Lebesgue a.e. x ∈ Ei

(6) 

where

• .θi > 0, .bi ∈ Ei ∩ Fdep and .wi ∈ Ei for .i = 1, . . . , k, 
• .hj ∈ L1(Fj ) is non-negative for .j = 1, . . . , �, and in addition, . hj is log-concave 

if there exist .α �= β with .Fj ⊂ Eα ∩ Eβ , 
• .A : Fdep → Fdep is a positive definite matrix such that the eigenspaces of A are 

critical subspaces. 

On the other hand, if for any .i = 1, . . . , k, . fi is of the form as in (6) and equality
holds for all .x ∈ Ei in (6), then equality holds in (5) for .f1, . . . , fk . 

In particular, if for any .α = 1, . . . , k, .{Ei}i �=α spans . Rn in Theorem 4, then any 
extremizer of the Geometric Barthe’s inequality is log-concave. 

The explanation for the phenomenon concerning the log-concavity of . hj in 
Theorem 4 is as follows (see the proof of Proposition 17). Let .� ≥ 1 and . j ∈
{1, . . . , �}, and hence .

∑
Ei⊃Fj

ci = 1. If .f1, . . . , fk are of the form (6) , then equality
in Barthe’s inequality (5) yields

. 

∫ ∗

Fj

sup
x=∑

Ei⊃Fj
ci xi

xi∈Fj

hj

(
xi − PFj

wi

)ci

dx

=
∏

Ei⊃Fj

(∫

Fj

hj

(
x − PFj

wi

)
dx

)ci
(

=
∫

Fj

hj (x) dx

)
.

Therefore, if there exist .α �= β with .Fj ⊂ Eα ∩ Eβ , then the equality conditions 
in the Prékopa-Leindler inequality Proposition 16 imply that . hj is log-concave. On 
the other hand, if there exists .α ∈ {1, . . . , k} such that .Fj ⊂ E⊥

β for .β �= α, then we 
do not have any condition on . hj , and .cα = 1. 

For completeness, let us state and discuss the general Brascamp-Lieb inequality 
and its reverse form due to Barthe. The following was proved by Brascamp and Lieb 
[21] in the rank one case and Lieb [51] in general. 

Theorem 5 (Brascamp-Lieb Inequality) Let .Bi : Rn → Hi be surjective linear 
maps where . Hi is .ni-dimensional Euclidean space, .ni ≥ 1, for  .i = 1, . . . , k, and 
let .c1, . . . , ck > 0 satisfy .

∑k
i=1 cini = n. For non-negative .fi ∈ L1(Hi), we have 

.

∫

Rn

k∏

i=1

fi(Bix)ci dx ≤ C

k∏

i=1

(∫

Hi

fi

)ci

(7)
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where C is determined by choosing centered Gaussians .fi(x) = e−〈Aix,x〉, . Ai

positive definite. 

Remark The Geometric Brascamp-Lieb Inequality is readily a special case of (7) .
We note that (7) is Hölder’s inequality if .H1 = . . . = Hk = R

n and each .Bi = In, 
and hence .C = 1 and .

∑k
i=1 ci = 1 in that case. 

We say that two Brascamp-Lieb data .{(Bi, ci)}i=1,...,k and .{(B ′
i , c

′
i )}i=1,...,k′ as 

in Theorem 5 are called equivalent if .k′ = k, .c′
i = ci , and there exists linear 

isomorphism .�i : Hi → H ′
i for .i = 1, . . . , k such that .B ′

i = �i ◦ Bi . It was  
proved by Carlen et al. [31] in the rank one case, and by Bennett et al. [15] in  
general that there exists a set of extremizers .f1, . . . , fk for (7) if and only if the
Brascamp-Lieb data .{(Bi, ci)}i=1,...,k is equivalent to some Geometric Brascamp-
Lieb data. Therefore, Valdimarsson’s Theorem 2 provides a full characterization of 
the equality case in Theorem 5, as well. 

The following reverse version of the Brascamp-Lieb inequality was proved by 
Barthe in [7] in the rank one case, and in [8] in general. 

Theorem 6 (Barthe’s Inequality) Let .Bi : R
n → Hi be surjective linear maps 

where . Hi is .ni-dimensional Euclidean space, .ni ≥ 1, for  .i = 1, . . . , k, and let 
.c1, . . . , ck > 0 satisfy .

∑k
i=1 cini = n. For non-negative .fi ∈ L1(Hi), we have 

.

∫ ∗

Rn

sup
x=∑k

i=1 ciB
∗
i xi , xi∈Hi

k∏

i=1

fi(xi)
ci dx ≥ D

k∏

i=1

(∫

Hi

fi

)ci

(8) 

where D is determined by choosing centered Gaussians .fi(x) = e−〈Aix,x〉, . Ai

positive definite. 

Remark The Geometric Barthe’s Inequality is readily a special case of (8) . We note
that (8) is the Prékopa-Leindler inequality if .H1 = . . . = Hk = R

n and each 
.Bi = In, and hence .D = 1 and .

∑k
i=1 ci = 1 in that case. 

Concerning extremals in Theorem 6, Lehec [48] proved that if there exists some 
Gaussian extremizers for Barthe’s Inequality (8) , then the corresponding Brascamp-
Lieb data .{(Bi, ci)}i=1,...,k is equivalent to some Geometric Brascamp-Lieb data; 
therefore, the equality case of (8) can be understood via Theorem 4 in that case. 

However, it is still not known whether having any extremizers in Barthe’s 
Inequality (8) yields the existence of Gaussian extremizers. One possible approach
is to use iterated convolutions and renormalizations as in Bennett et al. [15] in the  
case of Brascamp-Lieb inequality. 

There are three main methods of proofs that work for proving both the Brascamp-
Lieb Inequality and its reverse form due to Barthe. The paper Barthe [8] used  
optimal transportation to prove Barthe’s Inequality (“the Reverse Brascamp-Lieb 
inequality") and reprove the Brascamp-Lieb Inequality simultaneously. A heat 
equation argument was provided in the rank one case by Carlen et al. [31] for  the  
Brascamp-Lieb Inequality and by Barthe and Cordero-Erausquin [10] for Barthe’s
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inequality. The general versions of both inequalities are proved via the heat equation 
approach by Barthe and Huet [11]. Finally, simultaneous probabilistic arguments for 
the two inequalities are due to Lehec [48]. 

We note that Chen et al. [33] and Courtade and Liu [35], as well, deal sys-
tematically with finiteness conditions in Brascamp-Lieb and Barthe’s inequalities. 
The importance of the Brascamp-Lieb inequality is shown by the fact that besides 
harmonic analysis, probability and convex geometry, it has been also even applied 
in number theory, see eg. Guo and Zhang [43]. Various versions of the Brascamp-
Lieb inequality and its reverse form have been obtained by Balogh and Kristaly 
[6] Barthe [9], Barthe and Cordero-Erausquin [10], Barthe et al. [14], Barthe and 
Wolff [12, 13], Bennett et al. [16], Bennett et al. [17], Bobkov et al. [18], Bueno and 
Pivarov [24], Carlen, Cordero-Erausquin [30], Chen et al. [33], Courtade and Liu 
[35], Duncan [38], Ghilli and Salani [41], Kolesnikov and Milman [47], Livshyts 
[52, 53], Lutwak et al. [55, 56], Maldague [57], Marsiglietti [58], Rossi and Salani 
[65, 66]. 

Concerning the proof of Theorem 4, we discuss the structure theory of a 
Brascamp-Lieb data, Barthe’s crucial determinantal inequality (cf. Proposition 11) 
and the extremality of Gaussians (cf. Proposition 13) in Sect. 2. Section 3 explains 
how Barthe’s proof of his inequality using optimal transportation in [8] yields 
the splitting along independent and dependent subspaces in the case of equality 
in Barthe’s inequality for positive . C1 probality densities .f1, . . . , fk , and how the 
equality case of the Prékopa-Leindler inequality leads to the log-concavity of certain 
functions involved. However, one still needs to produce suitably smooth extremizers 
given any extremizers of Barthe’s inequality. In order to achieve this, we discuss that 
convolution and suitable products of extremizers are also extremizers in Sect. 4. To  
show that extremizers are Gaussians on the dependent subspace, we use a version 
of Caffarelli’s Contraction Principle in Sect. 5. Finally, all ingredients are pieced 
together to prove Theorem 4 in Sect. 6. 

As an application of the understanding the equality case of Barthe’s inequality, 
we discuss the equality case of Liakopoulos’ dual Bollobas-Thomason inequality in 
Sect. 7. 

2 The Structure Theory of the Geometric Brascamp-Lieb 
Data and Barthe’s Determinantal Inequality 

We review the structural theory for a Geometric Brascamp-Lieb data based on 
Barthe [8], Bennett et al. [15] and Valdimarsson [67]. All these statements but 
Proposition 13 can be found or indicated in Valdimarsson [67], and Proposition 13 
is due to Barthe [8]. Let .E1, . . . , Ek be non-zero linear subspaces of . Rn, and let 
.c1, . . . , ck > 0 satisfying the Geometric Brascamp-Lieb condition 

.

k∑

i=1

ciPEi
= In. (9)
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Lemma 7 For linear subspaces .E1, . . . , Ek of . Rn and .c1, . . . , ck > 0 satisfying 
(9) ,

(i) if .x ∈ R
n, then .

∑k
i=1 ci‖PEi

x‖2 = ‖x‖2; 
(ii) if .V ⊂ R

n is a proper linear subspace, then 

.

k∑

i=1

ci dim(Ei ∩ V ) ≤ dimV (10) 

where equality holds if and only if .Ei = (Ei ∩V )+(Ei ∩V ⊥) for .i = 1, . . . , k; 
or equivalently, when .V = (Ei ∩ V ) + (E⊥

i ∩ V ) for .i = 1, . . . , k. 

We say that a non-zero linear subspace V is a critical subspace with respect to 
the proper linear subspaces .E1, . . . , Ek of . Rn and .c1, . . . , ck > 0 satisfying (9) if

. 

k∑

i=1

ci dim(Ei ∩ V ) = dimV.

In particular, . Rn is a critical subspace by calculating traces of both sides of (9) . For
a proper linear subspace .V ⊂ R

n, Lemma 7 yields that V is critical if and only if 
.V ⊥ is critical, which is turn equivalent saying that 

.Ei = (Ei ∩ V ) + (Ei ∩ V ⊥) for i = 1, . . . , k; (11) 

or in other words,

.V = (Ei ∩ V ) + (E⊥
i ∩ V ) for i = 1, . . . , k. (12) 

We observe that (11) has the following consequence: If . V1 and . V2 are orthogonal 
critical subspaces, then 

.Ei ∩ (V1 + V2) = (Ei ∩ V1) + (Ei ∩ V2) for i = 1, . . . , k. (13) 

We recall that a critical subspace V is indecomposable if V has no proper critical
linear subspace.

Lemma 8 If .E1, . . . , Ek are linear subspaces of . Rn and .c1, . . . , ck > 0 satisfying 
(9), and .V,W are proper critical subspaces, then .V ⊥ and .V + W are critical 
subspaces, and even .V ∩ W is critical provided that .V ∩ W �= {0}. 

We deduce from Lemma 8 that any critical subspace can be decomposed into 
indecomposable ones. 

Corollary 9 If .E1, . . . , Ek are proper linear subspaces of . Rn and . c1, . . . , ck > 0
satisfy (9), and W is a critical subspace or .W = R

n, then there exist pairwise
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orthogonal indecomposable critical subspaces .V1, . . . , Vm, .m ≥ 1, such that . W =
V1 + . . . + Vm (possibly .m = 1 and .W = V1). 

We note that the decomposition of . Rn into indecomposable critical subspaces 
is not unique in general for a Geometric Brascamp-Lieb data. Valdimarsson [67] 
provides some examples, and in addition, we provide an example where we have a 
continuous family of indecomposable critical subspaces. 

Example 10 (Continuous family of indecomposable critical subspaces) In . R4, 

let us consider the following six unit vectors: .u1(1, 0, 0, 0), .u2(
1
2 ,

√
3
2 , 0, 0), 

.u3(
−1
2 ,

√
3
2 , 0, 0) , .v1(0, 0, 1, 0), .v2(0, 0, 1

2 ,
√
3
2 ), .v3(0, 0, −1

2 ,
√
3
2 ), which satisfy 

.u2 = u1 + u3 and .v2 = v1 + v3. 
For any .x ∈ R

4, we have  

. ‖x‖2 =
3∑

i=1

2

3
· (〈x, ui〉2 + 〈x, vi〉2)

Therefore, we define the Geometric Brascamp-Lieb Data .Ei = lin{ui, vi} and 
.ci = 2

3 for .i = 1, 2, 3 satisfying (1). In this case, .Fdep = R
4. 

For any angle .t ∈ R, we have a two-dimensional indecomposable critical 
subspace 

. Vt = lin{(cos t)u1 + (sin t)v1, (cos t)u2 + (sin t)v2, (cos t)u3 + (sin t)v3}.

Next we state the crucial determinantal inequality Proposition 11 from Barthe 
[8]. While Proposition 11 has a crucial role in proving both the Brascamp-Lieb 
inequality (2) and the Barthe’s inequality (5) and their equality cases, Proposition 11 
can be actually derived from the Brascamp-Lieb inequality (2) and the characteri-
zation of the equality cases by Valdimarsson [67] (cf. Theorem 2), only we needs 
to choose .fi(z) = e−π〈Aiz,z〉 for .z ∈ Ei and .i = 1, . . . , k in the Brascamp-Lieb 
inequality. 

Proposition 11 For linear subspaces .E1, . . . , Ek of . Rn, .n ≥ 1 and . c1, . . . , ck > 0
satisfying (9) , if .Ai : Ei → Ei is a positive definite linear transformation for 
.i = 1, . . . , k, then 

. det

(
k∑

i=1

ciAiPEi

)
≥

k∏

i=1

(detAi)
ci . (14) 

Equality holds in (14) if and only if there exist linear subspaces .V1, . . . , Vm where 
.V1 = R

n if .m = 1 and .V1, . . . , Vm are pairwise orthogonal indecomposable critical 
subspaces spanning . Rn if .m ≥ 2, and a positive definite .n × n matrix . � such that 
.V1, . . . , Vm are eigenspaces of . � and .�|Ei

= Ai for .i = 1, . . . , k. In addition, 
.� = ∑k

i=1 ciAiPEi
in the case of equality.
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The next lemma shows how useful is the indecomposability of the critical 
subspaces in Proposition 11. 

Lemma 12 Let the linear subspaces .E1, . . . , Ek of . Rn and .c1, . . . , ck > 0 satisfy 
(9), let .Fdep �= R

n, and let .F1, . . . , Fl be the independent subspaces, .l ≥ 1. If  V 
is an indecomposable critical subspace, then either .V ⊂ Fdep, or there exists an 
independent subspace . Fj , .j ∈ {1, . . . , l} such that .V ⊂ Fj . 

Finally, we exhibit the basic type of Gaussian exemizers of Barthe’s inequality. 

Proposition 13 For linear subspaces .E1, . . . , Ek of . Rn, .n ≥ 1 and . c1, . . . , ck > 0
satisfying (9) , if . � is a positive definite linear transform whose eigenspaces are 
critical subspaces, then 

. 

∫ ∗

Rn

⎛

⎜⎜⎝ sup
x=∑k

i=1 ci xi
xi∈Ei

k∏

i=1

e−ci‖�xi‖2

⎞

⎟⎟⎠ dx =
k∏

i=1

(∫

Ei

e−‖�xi‖2 dxi

)ci

.

3 Splitting Smooth Extremizers Along Independent and 
Dependent Subspaces 

Optimal transportion as a tool proving geometric inequalities was introduced by 
Gromov in his Appendix to [62] in the case of the Brunn-Minkowski inequality. 
Actually, Barthe’s inequality in [8] was one of the first inequalities in probability, 
analysis or geometry that was obtained via optimal transportation. 

We write .∇� to denote the first derivative of a . C1 vector valued function . �
defined on an open subset of . Rn, and .∇2ϕ to denote the Hessian of a real . C2 function 
. ϕ. We recall that a vector valued function . � on an open set .U ⊂ R

n is . Cα for 
.α ∈ (0, 1) if for any .x0 ∈ U there exist an open neighbourhood . U0 of . x0 and a 
.c0 > 0 such that .‖�(x) − �(y)‖ ≤ c0‖x − y‖α for .x, y ∈ U0. In addition, a real 
function . ϕ is .C2,α if . ϕ is . C2 and .∇2ϕ is . Cα . 

Combining Corollary 2.30, Corollary 2.32, Theorem 4.10 and Theorem 4.13 in 
Villani [68] on the Brenier map based on McCann [59, 60] for the first two, and on 
Caffarelli [25–27] for the last two theorems, we deduce the following: 

Theorem 14 (Brenier, McCann, Caffarelli) If f and g are positive . Cα probabil-
ity density functions on . Rn, .n ≥ 1, for  .α ∈ (0, 1), then there exists a .C2,α convex 
function . ϕ on . Rn (unique up to additive constant) such that .T = ∇ϕ : R

n → R
n is 

bijective and 

.g(x) = f (T (x)) · det∇T (x) for x ∈ R
n. (15)
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Remarks The derivative .T = ∇ϕ is the Brenier (transportation) map pushing 
forward the measure on . Rn induced by g to the measure associated to f ; namely, 
.
∫
T (X)

f = ∫
X

g for any measurable .X ⊂ R
n. 

In addition, .∇T = ∇2ϕ is a positive definite symmetrix matrix in Theorem 14, 
and if f and g are . Ck for .k ≥ 1, then T is .Ck+1. 

Sometimes it is practical to consider the case .n = 0, when we set . T : {0} → {0}
to be the trivial map. 

Proof of Theorem 3 Based on Barthe [8] First we assume that each . fi is a . C1

positive probability density function on . Rn, and let us consider the Gaussian densiy 
.gi(x) = e−π‖x‖2 for .x ∈ Ei . According to Theorem 14, if  .i = 1, . . . , k, then there 
exists a . C3 convex function . ϕi on . Ei such that for the . C2 Brenier map .Ti = ∇ϕi , 
we have 

.gi(x) = det∇Ti(x) · fi(Ti(x)) for all x ∈ Ei. (16) 

It follows from the Remark after Theorem 14 that .∇Ti = ∇2ϕi(x) is positive 
definite symmetric matrix for all .x ∈ Ei . For  the  . C2 transformation . � : Rn → R

n

given by 

.�(y) =
k∑

i=1

ciTi

(
PEi

y
)
, y ∈ R

n, (17) 

its differential

. ∇�(y) =
k∑

i=1

ci∇Ti

(
PEi

y
)

is positive definite by Proposition 11. It follows that .� : Rn → R
n is injective (see 

[8]), and actually a diffeomorphism. Therefore Proposition 11, (16) and Lemma 7 
(i) imply 

.

∫ ∗

Rn

sup
x=∑k

i=1 cixi , xi∈Ei

k∏

i=1

fi(xi)
ci dx

≥
∫ ∗

Rn

⎛

⎝ sup
�(y)=∑k

i=1 cixi , xi∈Ei

k∏

i=1

fi(xi)
ci

⎞

⎠ det (∇�(y)) dy

≥
∫

Rn

(
k∏

i=1

fi

(
Ti

(
PEi

y
))ci

)
det

(
k∑

i=1

ci∇Ti

(
PEi

y
)
)

dy
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≥
∫

Rn

(
k∏

i=1 

fi

(
Ti

(
PEi y

))ci

)
k∏

i=1

(
det∇Ti

(
PEi y

))ci dy (18) 

=
∫

Rn

(
k∏

i=1

gi

(
PEi

y
)ci

)
dy =

∫

Rn

e−π‖y‖2 dy = 1.

Finally, Barthe’s inequality (5) for arbitrary non-negative integrable functions . fi

follows by scaling and approximation (see Barthe [8]). ��
We now prove that if equality holds in Barthe’s inequality (5), then the diffeo-

morphism . � in (17) in the proof of Barthe’s inequality splits along the independent
subspaces and the dependent subspace. First we explain how Barthe’s inequality
behaves under the shifts of the functions involved. Given proper linear subspaces
.E1, . . . , Ek of . Rn and .c1, . . . , ck > 0 satisfying (9) , first we discuss in what sense
Barthe’s inequality is translation invariant. For non-negative integrable function . fi

on . Ei , .i = 1, . . . , k, let us define 

. F(x) = sup
x=∑k

i=1 cixi , xi∈Ei

k∏

i=1

fi(xi)
ci .

We observe that for any .ei ∈ Ei , defining .f̃i (x) = fi(x + ei) for .x ∈ Ei , . i =
1, . . . , k, we have  

.F̃ (x) = sup
x=∑k

i=1 cixi , xi∈Ei

k∏

i=1

f̃i (xi)
ci = F

(
x +

k∑

i=1

ciei

)
. (19) 

Proposition 15 For non-trivial linear subspaces .E1, . . . , Ek of .R
n and 

.c1, . . . , ck > 0 satisfying (1), we write .F1, . . . , Fl to denote the independent 
subspaces (if exist), and . F0 to denote the dependent subspace (possibly .F0 = {0}). 
Let us assume that equality holds in (5) for positive . C1 probability densities . fi on 
. Ei , .i = 1, . . . , k, let  .gi(x) = e−π‖x‖2 for .x ∈ Ei , let  .Ti : Ei → Ei be the . C2

Brenier map satisfying 

.gi(x) = det∇Ti(x) · fi(Ti(x)) for all x ∈ Ei, (20) 

and let

.�(y) =
k∑

i=1

ciTi

(
PEi

y
)
, y ∈ R

n.
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(i) For any .i ∈ {1, . . . , k} there exists positive . C1 integrable . hi0 : F0 ∩ Ei →
[0,∞) (where .hi0(0) = 1 if .F0 ∩ Ei = {0}), and for any .i ∈ {1, . . . , k} and 
.j ∈ {1, . . . , l} with .Fj ⊂ Ei , there exists positive . C1 integrable . hij : Fj →
[0,∞) such that 

. fi(x) = hi0(PF0x) ·
∏

Fj ⊂Ei
j≥1

hij (PFj
x) for x ∈ Ei.

(ii) For .i = 1, . . . , k, .Ti(Ei ∩ Fp) = Ei ∩ Fp whenever .Ei ∩ Fp �= {0} for 
.p{0, . . . , l}, and if .x ∈ Ei , then 

. Ti(x) =
⊕

Ei∩Fp �={0}
p≥0

Ti(PFpx).

(iii) For .i = 1, . . . , k, there exist . C2 functions .i : Ei → Ei and . �i : E⊥
i → E⊥

i

such that 

. �(y) = i(PEi
y) + �i(PE⊥

i
y) for y ∈ R

n.

(iv) If .y ∈ R
n, then the eigenspaces of the positive definite matrix .∇�(y) are 

critical subspaces, and .∇Ti(PEi
y) = ∇�(y)|Ei

for .i = 1, . . . , k. 

Proof According to (19) , we may assume that

.Ti(0) = 0 for i = 1, . . . , k, (21) 

If equality holds in (5) , then equality holds in the determinantal inequality in
(18) in the proof of Barthe’s inequality; therefore, we apply the equality case of
Proposition 11. In particular, for any .x ∈ R

n, there exist .mx ≥ 1 and linear 
subspaces .V1,x, . . . , Vmx,x where .V1,x = R

n if .mx = 1, and .V1,x, . . . , Vmx,x are 
pairwise orthogonal indecomposable critical subspaces spanning . Rn if .mx ≥ 2, and 
there exist .λ1,x, . . . , λmx,x > 0 such that if .Ei ∩ Vj,x �= {0}, then 

.∇Ti(PEi
x)|Ei∩Vj,x

= λj,xIEi∩Vj,x
; (22) 

and in addition, each . Ei satisfies (cf. (13) )

.Ei = ⊕Ei∩Vj,x �={0}Ei ∩ Vj,x. (23) 

Let us consider a fixed . Ei , .i ∈ {1, . . . , k}. First we claim that if .y ∈ Ei , then 

.
∇Ti(y)(Fp) = Fp if p ≥ 1 and Ei ∩ Fp �= {0}

∇Ti(y)(F0 ∩ Ei) = F0 ∩ Ei.
(24)
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To prove (24), we take .y = x in (22) . If .p ≥ 1 and .Ei ∩ Fp �= {0}, then .Fp ⊂ Ei , 
and Lemma 12 yields that 

. ⊕Fp∩Vj,y �={0} Vj,y ⊂ Fp

⊕Fp∩Vj,y={0}Vj,y ⊂ F⊥
p .

Since the subspaces .Vj,y span . Rn, we have  

. Fp = ⊕Ei∩Vj,y �={0}
Vj,y⊂Fp

Vj,y;

therefore, (22) implies (24) if .p ≥ 1. 
For the case of . F0 in (24), it follows from (23) and Lemma 12 that if . Ei ∩ F0 �=

{0}, then 

.Ei ∩ F0 = ⊕Ei∩Vj,y �={0}
Vj,y⊂F0

Ei ∩ Vj,y . (25) 

Therefore, (22) completes the proof of (24) .
It follows from (24) that if .Ei ∩ Fp �= {0}, .y ∈ Ei , .v ∈ Ei ∩ Fp ∩ Sn−1 and 

.w ∈ Ei ∩ F⊥
p ∩ Sn−1, then 

.

〈
v,

∂

∂t
Ti(y + tw)

∣∣∣∣
t=0

〉
= 0. (26) 

In turn, (24) , (26) and .Ti(0) = 0 (cf. (21)) imply that if .y ∈ Ei , then 

.Ti(Ei ∩ Fp) = Ei ∩ Fp whenever Ei ∩ Fp �= {0} for p ≥ 0, . (27) 

Ti(y) =
⊕

Ei∩Fp �={0}
p≥0

Ti(PFpy). (28) 

We deduce from (28) that if .y ∈ Ei , then 

. det∇Ti(y) =
∏

Ei∩Fp �={0}
p≥0

det
(∇Ti(PFpy)|Fp

)
. (29) 

We conclude (i) from (26) , (27) , (28), and (29) as (20) yields that if .y ∈ Ei , then 

. fi(Ti(y)) =
∏

Ei∩Fp �={0}
p≥0

e
−π‖PFp y‖2

det
(∇Ti(PFpy)|Fp

) .

We deduce (ii) from (27) and (28).
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For (iii), it follows from Proposition 11 that for any .x ∈ R
n, the spaces . Vj,x

are eigenspaces for .∇�(x) and span . Rn; therefore, (12) implies that if .x ∈ R
n and 

.i ∈ {1, . . . , k}, then 

. ∇�(x) = ∇�(x)|Ei
⊕ ∇�(x)|E⊥

i
.

Since .�(0) = 0 by (21), for fixed .i ∈ {1, . . . , k}, we conclude 

. �(Ei) = Ei;
�(x) = �

(
PEi

x
)∣∣

Ei
⊕ �

(
PE⊥

i
x
)∣∣∣

E⊥
i

if x ∈ R
n.

Finally, (iv) directly follows from Proposition 11, completing the proof of 
Proposition 15. ��

Next we show that if the extremizers .f1, . . . , fk in Proposition 15 are of the 
form as in (i), then for any given .Fj �= {0}, the functions . hij on . Fj for all i with 
.Ei ∩ Fj �= {0} are also extremizers. We also need the Prékopa-Leindler inequality 
Theorem 16 (proved in various forms by Prékopa [63, 64], Leindler [49] and Borell 
[20]) whose equality case was clarified by Dubuc [37] (see the survey Gardner [40]). 
In turn, the Prékopa-Leindler inequality (30) is of the very similar structure like
Barthe’s inequality (5) .

Theorem 16 (Prékopa, Leindler, Dubuc) For .m ≥ 2, .λ1, . . . , λm ∈ (0, 1) with 
.λ1 + . . . + λm = 1 and integrable .ϕ1, . . . , ϕm : R

n → [0,∞), we have 

.

∫ ∗

Rn

sup
x=∑m

i=1 λixi , xi∈Rn

m∏

i=1

ϕi(xi)
λi dx ≥

m∏

i=1

(∫

Rn

ϕi

)λi

, (30) 

and if equality holds and the left hand side is positive and finite, then there exist a
log-concave function . ϕ and .ai > 0 and .bi ∈ R

n for .i = 1, . . . , m such that 

. ϕi(x) = ai ϕ(x − bi)

for Lebesgue a.e. .x ∈ R
n, .i = 1, . . . , m. 

For linear subspaces .E1, . . . , Ek of . Rn and .c1, . . . , ck > 0 satisfying (1) , we
assume that .Fdep �= R

n, and write .F1, . . . , Fl to denote the independent subspaces. 
We verify that if .j ∈ {1, . . . , l}, then 

.

∑

Ei⊃Fj

ci = 1. (31)
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For this, let .x ∈ Fj\{0}. We observe that for any . Ei , either .Fj ⊂ Ei , and hence 
.PEi

x = x, or .Fj ⊂ E⊥
i , and hence .PEi

x = o. We deduce from (1) that

. x =
k∑

i=1

ciPEi
x =

⎛

⎝
∑

Fj ⊂Ei

ci

⎞

⎠ · x,

which formula in turn implies (31) .

Proposition 17 For linear subspaces .E1, . . . , Ek of .Rn and . c1, . . . , ck > 0
satisfying (1), we write .F1, . . . , Fl to denote the independent subspaces (if exist), 
and . F0 denote the dependent subspace (possibly .F0 = {0}). Let us assume that 
equality holds in Barthe’s inequality (5) for probability densities . fi on . Ei , . i =
1, . . . , k, and for any .i ∈ {1, . . . , k} there exists integrable . hi0 : F0 ∩ Ei → [0,∞)

(where .hi0(0) = 1 if .F0 ∩ Ei = {0}), and for any .i ∈ {1, . . . , k} and . j ∈ {1, . . . , l}
with .Fj ⊂ Ei , there exists non-negative integrable .hij : Fj → [0,∞) such that 

.fi(x) = hi0(PF0x) ·
∏

Fj ⊂Ei
j≥1

hij (PFj
x) for x ∈ Ei. (32) 

(i) If .F0 �= {0}, then .
∑

Ei∩F0 �={0} ciPEi∩F0 = IdF0 and 

. 

∫ ∗

F0

sup
x=∑{cixi : xi∈Ei∩F0 &Ei∩F0 �={0}}

∏

Ei∩F0 �={0}
hi0(xi)

ci dx

=
∏

Ei∩F0 �={0}

(∫

Ei∩F0

hi0

)ci

.

(ii) If .F0 �= R
n, then there exist integrable .ψj : Fj → [0,∞) for . j = 1, . . . , l

where . ψj is log-concave whenever .Fj ⊂ Eα ∩ Eβ for .α �= β, and there exist 
.aij > 0 and .bij ∈ Fj for any .i ∈ {1, . . . , k} and .j ∈ {1, . . . , l} with . Fj ⊂ Ei

such that .hij (x) = aij · ψj (x − bij ) for .i ∈ {1, . . . , k} and .j ∈ {1, . . . , l} with 
.Fj ⊂ Ei . 

Proof We only present the argument in the case .F0 �= R
n and .F0 �= {0}. If  . F0 =

R
n, then the same argument works ignoring the parts involving .F1, . . . , Fl , and if 

.F0 = {0}, then the same argument works ignoring the parts involving . F0. 
Since .F0 ⊕F1 ⊕ . . .⊕Fl = R

n and .F0, . . . , Fl are critical subspaces, (13) yields
for .i = 1, . . . , k that 

.Ei = (Ei ∩ F0) ⊕
⊕

Fj ⊂Ei
j≥1

Fj ; (33)
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therefore, the Fubini theorem and (32) imply that

.

∫

Ei

fi =
(∫

Ei∩F0

hi0

)
·

∏

Fj ⊂Ei
j≥1

∫

Fj

hij . (34) 

On the other hand, using again .F0 ⊕ F1 ⊕ . . . ⊕ Fl = R
n, we deduce that if . x =∑l

j=0 zj where .zj ∈ Fj for .j ≥ 0, then .zj = PFj
x. It follows  from  (33) that for

any .x ∈ R
n, we have  

. sup
x=∑k

i=1 ci xi ,

xi∈Ei

k∏

i=1

fi(xi)
ci =

⎛

⎜⎜⎝ sup
PF0

x=∑k
i=1 ci x0i ,

x0i∈Ei∩F0

k∏

i=1

hi0(xi0)

⎞

⎟⎟⎠ ×

×
l∏

j=1

⎛

⎜⎜⎝ sup
PFj

x=∑
Fj ⊂Ei

ci xji ,

xj i∈Fj

∏

Fj ⊂Ei

hij (xji)
ci

⎞

⎟⎟⎠ ,

and hence 

.

∫ ∗

Rn

sup
x=∑k

i=1 ci xi ,

xi∈Ei

k∏

i=1

fi(xi)
ci dx =

⎛

⎜⎜⎝

∫ ∗

F0

sup
x=∑k

i=1 ci xi ,

xi∈Ei∩F0

k∏

i=1

hi0(xi) dx

⎞

⎟⎟⎠ × (35) 

×
l∏

j=1

⎛

⎜⎜⎝

∫ ∗

Fj

sup
x=∑

Fj ⊂Ei
ci xi ,

xi∈Fj

∏

Fj ⊂Ei

hij (xi)
ci dx

⎞

⎟⎟⎠ .

As . F0 is a critical subspace, we have 

. 

k∑

i=1

ciPEi∩F0 = IdF0 ,

and hence Barthe’s inequality (5) yields

.

∫ ∗

F0

sup
x=∑k

i=1 ci xi ,

xi∈Ei∩F0

k∏

i=1

hi0(xi) dx ≥
k∏

i=1

(∫

Ei∩F0

hi0

)ci

. (36)
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We deduce from (31) and the Prékopa-Leindler inequality (30) that if . j =
1, . . . , l, then 

.

∫ ∗

Fj

sup
x=∑

Fj ⊂Ei
ci xi ,

xi∈Fj

∏

Fj ⊂Ei

hij (xi)
ci dx ≥

∏

Ei⊃Fj

(∫

Fj

hij

)ci

. (37) 

Combining (34) , (35) , (36) and (37) with the fact that .f1, . . . , fk are extremizers 
for Barthe’s inequality (5) implies that if .j = 1, . . . , l, then 

.

∫ ∗

F0

sup
x=∑k

i=1 ci xi ,

xi∈Ei∩F0

k∏

i=1

hi0(xi) dx =
k∏

i=1

(∫

Ei∩F0

hi0

)ci

. (38) 

∫ ∗

Fj

sup
x=∑

Fj ⊂Ei
ci xi ,

xi∈Fj

∏

Fj ⊂Ei

hij (xi)
ci dx =

∏

Ei⊃Fj

(∫

Fj

hij

)ci

. (39) 

We observe that (38) is just (i). In addition, (ii) follows from the equality conditions
in the Prékopa-Leindler inequality (see Theorem 16). ��

4 Convolution and Product of Extremizers 

Given proper linear subspaces .E1, . . . , Ek of . Rn and .c1, . . . , ck > 0 satisfying (9) ,
we say that the non-negative integrable functions .f1, . . . , fk with positive integrals 
are extremizers if equality holds in (5) . In order to deal with positive smooth
functions, we use convolutions. More precisely, Lemma 2 in Barthe [8] states the 
following. 

Lemma 18 Given proper linear subspaces .E1, . . . , Ek of . Rn and . c1, . . . , ck > 0
satisfying (9) , if .f1, . . . , fk and .g1, . . . , gk are extremizers in Barthe’s inequality 
(5), then .f1 ∗ g1, . . . , fk ∗ gk are also are extremizers. 

Since in a certain case we want to work with Lebesgue integral instead of 
outer integrals, we use the following statement that can be proved via compactness 
argument. 

Lemma 19 Given proper linear subspaces .E1, . . . , Ek of . Rn and . c1, . . . , ck > 0
satisfying (9) , if . hi is a positive continuous functions satisfying .limx→∞ hi(x) = 0
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for .i = 1, . . . , k, then the function 

. h(x) = sup
x=∑k

i=1 ci xi ,

xi∈Ei

k∏

i=1

hi(xi)
ci

of .x ∈ R
n is continuous. 

Next we show that the product of a shift of a smooth extremizer and a Gaussian 
is also an extremizer for Barthe’s inequality. 

Lemma 20 Given proper linear subspaces .E1, . . . , Ek of . Rn and . c1, . . . , ck > 0
satisfying (9) , if .f1, . . . , fk are positive bounded . C1 are extremizers in Barthe’s 
inequality (5), and .gi(x) = e−π‖x‖2 for .x ∈ Ei , then there exist .zi ∈ Ei , . i =
1, . . . , k, such that the functions .y �→ fi(y − zi)gi(y) of .y ∈ Ei , .i = 1, . . . , k, are  
also extremizers for (5) .

Proof We may assume that .f1, . . . , fk are probability densities. 
Readily the functions .f̃1, . . . , f̃k defined by .f̃i (y) = fi(−y) for .y ∈ Ei and 

.i = 1, . . . , k are also extremizers. We deduce from Lemma 18 that the functions 

.f̃i ∗ gi for .i = 1, . . . , k are also extremizers where each .f̃i ∗ gi is a probability 
density on . Ei . According to Theorem 14, if  .i = 1, . . . , k, then there exists a . C2

Brenier map .Si : Ei → Ei such that 

. gi(x) = det∇Si(x) · (f̃i ∗ gi)(Si(x)) for all x ∈ Ei,

and .∇Si(x) is a positive definite symmetric matrix for all .x ∈ Ei . As in the proof of 
Theorem 3 above, we consider the . C2 diffeomorphism .� : Rn → R

n given by 

. �(y) =
k∑

i=1

ciSi

(
PEi

y
)
, y ∈ R

n.

whose positive definite differential is 

. ∇�(y) =
k∑

i=1

ci∇Si

(
PEi

y
)
.

On the one hand, we note that if .x = ∑k
i=1 cixi for .xi ∈ Ei , then 

.‖x‖2 ≤
k∑

i=1

ci‖xi‖2
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holds according to Barthe [8]; or equivalently, 

. 

k∏

i=1

gi(xi)
ci ≤ e−π‖x‖2 .

Since . fi is positive, bounded, continuous and in .L1(Ei) for .i = 1, . . . , k, we  
observe that the function 

.z �→
∫

Rn

sup
x=∑k

i=1 ci xi ,

xi∈Ei

k∏

i=1

fi

(
xi − Si(PEi

�−1z)
)ci

gi(xi)
ci dx (40) 

of .z ∈ R
n is continuous. 

Using also that .f̃1, . . . , f̃k are extremizers and probability density functions, we 
have 

. 

∫ ∗

Rn

∫ ∗

Rn

sup
z=∑k

i=1 ci zi ,

zi∈Ei

sup
x=∑k

i=1 ci xi ,

xi∈Ei

k∏

i=1

fi(xi − zi)
ci gi(xi)

ci dx dz

=
∫ ∗

Rn

∫ ∗

Rn

sup
x=∑k

i=1 ci xi ,

xi∈Ei

(
k∏

i=1

gi(xi)
ci

)
sup

z=∑k
i=1 ci zi ,

zi∈Ei

k∏

i=1

fi(xi − zi)
ci dz dx

≤
∫ ∗

Rn

e−π‖x‖2
∫ ∗

Rn

sup
x=∑k

i=1 ci xi ,

xi∈Ei

sup
z=∑k

i=1 ci zi ,

zi∈Ei

k∏

i=1

fi(xi − zi)
ci dz dx

=
∫ ∗

Rn

e−π‖x‖2
∫ ∗

Rn

sup
w=∑k

i=1 ci yi ,

yi∈Ei

k∏

i=1

f̃i (yi)
ci dw dx

=
∫

Rn

e−π‖x‖2 dx = 1.

Using Lemma 19 and (40) in (41), Barthe’s inequality (5) in (42) and Proposi-
tion 11 in (43) , we deduce that

.1 ≥
∫ ∗

Rn

∫ ∗

Rn

sup
z=∑k

i=1 ci zi
zi∈Ei

sup
x=∑k

i=1 ci xi
xi∈Ei

k∏

i=1

fi(xi − zi)
ci gi(xi)

ci dx dz
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≥
∫ ∗ 

Rn

∫ ∗ 

Rn 
sup 

x=∑k 
i=1 ci xi 

xi∈Ei 

k∏

i=1 

fi

(
xi − Si(PEi

�−1z)
)ci 

gi(xi)
ci dx dz. (41) 

=
∫

Rn

∫

Rn

sup
x=∑k

i=1 ci xi ,

xi∈Ei

k∏

i=1

fi

(
xi − Si(PEi

�−1z)
)ci

gi(xi)
ci dx dz. (42) 

≥
∫

Rn

k∏

i=1

(∫

Ei

fi

(
xi − Si(PEi

�−1z)
)

gi(xi) dxi

)ci

dz

=
∫

Rn

(
k∏

i=1

(f̃i ∗ gi)
(
Si

(
PEi

y
))ci

)
det

(
k∑

i=1

ci∇Si

(
PEi

y
)
)

dy (43) 

≥
∫

Rn

(
k∏

i=1

(f̃i ∗ gi)
(
Si

(
PEi

y
))ci

)
k∏

i=1

(
det∇Si

(
PEi

y
))ci dy

=
∫

Rn

(
k∏

i=1

gi

(
PEi

y
)ci

)
dy =

∫

Rn

e−π‖y‖2 dy = 1.

In particular, we conclude that 

. 1 ≥
∫

Rn

∫

Rn

sup
x=∑k

i=1 ci xi ,

xi∈Ei

k∏

i=1

fi

(
xi − Si(PEi

�−1z)
)ci

gi(xi)
ci dx dz

≥
∫

Rn

k∏

i=1

(∫

Ei

fi

(
xi − Si(PEi

�−1z)
)

gi(xi) dxi

)ci

dz ≥ 1.

Because of Barthe’s inequality (5), it follows from (40) that

. 

∫

Rn

sup
x=∑k

i=1 ci xi ,

xi∈Ei

k∏

i=1

fi

(
xi − Si(PEi

�−1z)
)ci

gi(xi)
ci dx

=
k∏

i=1

(∫

Ei

fi

(
xi − Si(PEi

�−1z)
)

gi(xi) dxi

)ci

for any .z ∈ R
n; therefore, we may choose .zi = Si(0) for .i = 1, . . . , k in Lemma 20.

��
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5 hi0 is Gaussian in Proposition 15 

For positive . Cα probability density functions f and g on . Rn for .α ∈ (0, 1), the  . C1

Brenier map .T : Rn → R
n in Theorem 14 pushing forward the the measure on . Rn

induced by g to the measure associated to f satisfies that .∇T is positive definite. 
We deduce that 

. 〈T (y) − T (x), y − x〉

=
∫ 1

0
〈∇T (x + t (y − x)) · (y − x), y − x〉 dt ≥ 0 for any x, y ∈ R

n.

(44) 

We say that a continuous function .T : Rn → R
m has linear growth if there exists 

a positive constant .c > 0 such that 

. ‖T (x)‖ ≤ c

√
1 + ‖x‖2

for .x ∈ R
n. It is equivalent saying that 

. lim sup
‖x‖→∞

‖T (x)‖
‖x‖ < ∞. (45) 

In general, T has polynomial growth, if there exists .k ≥ 1 such that 

. lim sup
‖x‖→∞

‖T (x)‖
‖x‖k

< ∞.

Proposition 21 related to Caffarelli Contraction Principle in Caffarelli [28] was  
proved by Emanuel Milman, see for example Colombo and Fathi [34], De Philippis 
and Figalli [36], Fathi et al. [39], Kim and Milman [44], Klartag and Putterman [45], 
Kolesnikov [46], Livshyts [52] for relevant results. 

Proposition 21 (Emanuel Milman) If a Gaussian probability density g and a 
positive . Cα , .α ∈ (0, 1), probability density f on . Rn satisfy .f ≤ c · g for some 
positive constant .c > 0, then the Brenier map .T : Rn → R

n pushing forward the 
measure on . Rn induced by g to the measure associated to f has linear growth. 

Proof We may assume that .g(x) = e−π‖x‖2 . 
We observe that .T : Rn → R

n is bijective as both f and g are positive. Let S be 
the inverse of T ; namely, .S : Rn → R

n is the bijective Brenier map pushing forward 
the measure on . Rn induced by f to the measure associated to g. In particular, any 
Borel .X ⊂ R

n satisfies 

.

∫

S(X)

g =
∫

X

f. (46)
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We note that (45), and hence Proposition 21 is equivalent saying that 

. lim inf
x→∞

‖S(x)‖
‖x‖ > 0. (47) 

The main idea of the argument is the following observation. For any unit vector
u and .θ ∈ (0, π), we consider 

. �(u, θ) = {y : 〈y, u〉 ≥ ‖y‖ · cos θ} .

Since S is surjective, and .〈S(z) − S(w), z − w〉 ≥ 0 for any .z,w ∈ R
n according to 

(44) , we deduce that

.S(w) + �(u, θ) ⊂ S
(
w + �

(
u, θ + π

2

))
(48) 

for any .u ∈ Sn−1 and .θ ∈ (0, π
2 ). 

We suppose that T does not have linear growth, and seek a contradiction. 
According to (47), there exists a sequence .{xk} of points of .Rn\{0} tending to 
infinity such that 

. lim
k→∞ ‖xk‖ = ∞ and lim

k→∞
‖S(xk)‖

‖xk‖ = 0.

In particular, we may assume that 

.‖S(xk)‖ <
‖xk‖
8

. (49) 

For any k, we consider the unit vector .ek = xk/‖xk‖. We observe that . Xk =
xk + �(ek,

3π
4 ) avoids the interior of the ball . ‖xk‖√

2
Bn; therefore, if k is large, then 

. 

∫

Xk

f ≤ c · nκn

∫ ∞

‖xk‖/
√
2
rn−1e−πr2 dr <

∫ ∞

‖xk‖/
√
2
e−2r2

√
2r dr = e−‖xk‖2

(50) 

On the other hand, .S(xk) + �(ek,
π
4 ) contains the ball 

. ̃B = S(xk) + xk

8
+ ‖xk‖

8
√
2

Bn ⊂ ‖xk‖
2

Bn

where we have used  (49). It follows form (46) and (48) that if k is large, then

.

∫

Xk

f =
∫

S(Xk)

g ≥
∫

B̃

g ≥ κn

(‖xk‖
8
√
2

)n

e−π(‖xk‖/2)2 > e−‖xk‖2 .
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This inequality contradicts (50), and in turn proves (47) . ��
Proposition 24 shows that if the whole space is the dependent subspace and the 

Brenier maps corresponding to the extremizers .f1, . . . , fk in Proposition 15 have at 
most linear growth, then each . fi is actually Gaussian. The proof of Proposition 24 
uses classical Fourier analysis, and we refer to Grafakos [42] for the main properties. 
For our purposes, we need only the action of a tempered distribution on the space of 
.C∞
0 (Rm) of .C∞ functions with compact support, do not need to consider the space 

of Schwarz functions in general. We recall that if u is a tempered distribution on 
Schwarz functions on . Rn, then the support .supp u is the intersection of all closed 
sets K such that if .ϕ ∈ C∞

0 (Rn) with .suppϕ ⊂ R
n\K , then .〈u, ϕ〉 = 0. We write . ̂u

to denote the Fourier transform of a u. In particular, if . θ is a function of polynomial 
growth and .ϕ ∈ C∞

0 (Rn), then 

.〈θ̂ , ϕ〉 =
∫

Rn

∫

Rn

θ(x)ϕ(y)e−2πi〈x,y〉 dxdy. (51) 

We consider the two well-known statements Lemma 22 and Lemma 23 about the 
support of a Fourier transform to prepare the proof of Proposition 24. 

Lemma 22 If . θ is a measurable function of polynomial growth on . Rn, and there 
exist linear subspace E with .1 ≤ dimE ≤ n − 1 and function . ω on E such that 
.θ(x) = ω(PEx), then .supp θ̂ ⊂ E. 

Proof We write a .z ∈ R
n in the form .z = (z1, z2) with .z1 ∈ E and .z2 ∈ E⊥. Let  

.ϕ ∈ C∞
0 (Rn) satisfy that .suppϕ ⊂ R

n\E, and hence .ϕ(x1, o) = 0 for .x1 ∈ E, and 
the Fourier Integral Theorem in . E⊥ implies 

. ϕ(x1, z) =
∫

E⊥

∫

E⊥
ϕ(x1, x2)e

2πi〈z−x2,y2〉 dx2dy2

for .x1 ∈ E and .z ∈ E⊥. It follows  from  (51) that

. 〈θ̂ , ϕ〉 =
∫

E⊥

∫

E

∫

E⊥

∫

E

ω(x1)ϕ(x1, x2)e
−2πi〈x1,y1〉e−2πi〈x2,y2〉 dx1dx2dy1dy2

=
∫

E

∫

E

ω(x1)e
−2πi〈x1,y1〉

(∫

E⊥

∫

E⊥
ϕ(x1, x2)e

2πi〈−x2,y2〉 dx2dy2

)
dy1dx1

=
∫

E

∫

E

ω(x1)e
−2πi〈x1,y1〉ϕ(x1, 0) dy1dx1 = 0.

��
Next, Lemma 23 directly follows from Proposition 2.4.1 in Grafakos [42]. 

Lemma 23 If . θ is a continuous function of polynomial growth on . Rn and . supp θ̂ ⊂
{0}, then . θ is a polynomial.
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Proposition 24 For linear subspaces .E1, . . . , Ek of .Rm and . c1, . . . , ck > 0
satisfying (1) , we assume that

. ∩k
i=1 (Ei ∪ E⊥

i ) = {0}. (52) 

Let .gi(x) = e−π‖x‖2 for .i = 1, . . . , k and .x ∈ Ei , let equality hold in (5) for
positive . C1 probability densities . fi on . Ei , .i = 1, . . . , k, and let .Ti : Ei → Ei be 
the . C2 Brenier map satisfying 

.gi(x) = det∇Ti(x) · fi(Ti(x)) for all x ∈ Ei. (53) 

If each . Ti , .i = 1, . . . , k, has linear growth, then there exist a positive definite matrix 
.A : Rm → R

m whose eigenspaces are critical subspaces, and .ai > 0 and .bi ∈ Ei , 
.i = 1, . . . , k, such that 

. fi(x) = aie
−〈Ax,x+bi 〉 for x ∈ Ei.

Proof We may assume that each linear subspace is non-zero. 
We note that the condition (52) is equivalent saying that .R

m itself is the 
dependent subspace with respect to the Brascamp-Lieb data. We may assume that 
for some .1 ≤ l ≤ k, we have .1 ≤ dimEi ≤ m − 1 if .i = 1, . . . , l, and still 

. ∩l
i=1 (Ei ∪ E⊥

i ) = {0}. (54) 

We use the diffeomorphism .� : Rm → R
m of Proposition 15 defined by 

. �(y) =
k∑

i=1

ciTi

(
PEi

y
)
, y ∈ R

m.

It follows from (19) that we may asssume

.Ti(0) = 0 for i = 1, . . . , k, and hence �(0) = 0. (55) 

We claim that there exists a positive definite matrix .B : R
m → R

m whose 
eigenspaces are critical subspaces, and 

.∇�(y) = B for y ∈ R
m. (56) 

Let .�(y) = (θ1(y), . . . , θm(y)) for .y ∈ R
m and .θj ∈ C2(Rm), .j = 1, . . . , m. Since 

each . Ti , .i = 1, . . . , k has linear growth, it follows that . � has linear growth, and in 
turn each . θj , .j = 1, . . . , m, has linear growth. 

According to Proposition 15 (iii), there exist . C2 functions .i : Ei → Ei and 
.�i : E⊥

i → E⊥
i such that 

.�(y) = i(PEi
y) + �i(PE⊥

i
y)
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for .i = 1, . . . , k and .y ∈ R
n. We write .i(x) = (ωi1(x), . . . , ωim(x)) and . �i(x) =

(γi1(x), . . . , γim(x)); therefore, 

.θj (y) = ωij (PEi
y) + γij (PE⊥

i
y) (57) 

for .j = 1, . . . , m and .i = 1, . . . , k. 
Fix a .j ∈ {1, . . . , m}. It follows from Lemma 22 and (57) that

. supp θ̂j ⊂ Ei ∪ E⊥
i

for .i = 1, . . . , l. Thus (54) yields that

. supp θ̂j ⊂ {0},

and in turn we deduce from Lemma 23 that . θj is a polynomial. Given that . θj has 
linear growth, it follows that there exist .wj ∈ R

m and .αj ∈ R such that . θj (y) =
〈wj , y〉 + αj . We deduce from .θj (0) = 0 (cf. (55)) that .αj = 0. 

The argument so far yields that there exists an .m×m matrix B such that . �(y) =
By for .y ∈ R

m. As  .∇�(y) = B is positive definite and its eigenspaces are critical 
subspaces, we conclude the claim (56) .

Since .∇Ti(PEi
y) = ∇�(y)|Ei

for .i = 1, . . . , k and .y ∈ R
m by Proposition 15 

(iv), we deduce that .T −1
i = B−1|Ei

for .i = 1, . . . , k. It follows from (53) that

. fi(x) = e−π‖B−1x‖2 · det
(
B−1|Ei

)
for x ∈ Ei

for .i = 1, . . . , k. Therefore, we can choose .A = πB−2. ��

6 Proof of Theorem 4 

We may assume that each linear subspace . Ei is non-zero in Theorem 4. Let  . fi be 
a probability density on . Ei in a way such that equality holds for .f1, . . . , fk in (5) .
For .i = 1, . . . , k and .x ∈ Ei , let  .gi(x) = e−π‖x‖2 , and hence . gi is a probability 
distribution on . Ei , and .g1, . . . , gk are extremizers in Barthe’s inequality (5) .

It follows from Lemma 18 that the convolutions .f1 ∗ g1, . . . , fk ∗ gk are also 
extremizers for (5). We observe that for .i = 1, . . . , k, .fi ∗ gi is a bounded positive 
.C∞ probability density on . Ei . Next we deduce from Lemma 20 that there exist 
.zi ∈ Ei and .γi > 0 for .i = 1, . . . , k such that defining 

.f̃i (x) = γi · gi(x) · (fi ∗ gi)(x − zi) for x ∈ Ei,
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.f̃1, . . . , f̃k are probability densities that are extremizers for (5). We note that if . i =
1, . . . , k, then . f̃i is positive and . C∞, and there exists .c > 1 satisfying 

.f̃i ≤ c · gi. (58) 

Let .T̃i : Ei → Ei be the .C∞ Brenier map satisfying 

.gi(x) = det∇T̃i (x) · f̃i (T̃i (x)) for all x ∈ Ei, (59) 

We deduce from (58) and Proposition 21 that . ̃Ti has linear growth. 
For .i = 1, . . . , k and .x ∈ F0 ∩ Ei , let  .gi0(x) = e−π‖x‖2 . It follows from 

Proposition 15 (i) that for .i ∈ {1, . . . , k}, there exists positive . C1 integrable 
.hi0 : F0 ∩ Ei → [0,∞) (where .hi0(0) = 1 if .F0 ∩ Ei = {0}), and for any 
.i ∈ {1, . . . , k} and .j ∈ {1, . . . , l} with .Fj ⊂ Ei , there exists positive . C1 integrable 
.h̃ij : Fj → [0,∞) such that 

. f̃i (x) = h̃i0(PF0x) ·
∏

Fj ⊂Ei
j≥1

h̃ij (PFj
x) for x ∈ Ei.

We deduce from Proposition 15 (ii) that .T̃i0 = T̃i |F0∩Ei
is the Brenier map pushing 

forward the measure on .F0 ∩ Ei determined . gi0 onto the measure determined by 
. ̃hi0. Since . ̃Ti has linear growth, . ̃Ti0 has linear growth, as well, for .i = 1, . . . , k. 

We deduce from Proposition 17 (i) that .
∑k

i=1 ciPEi∩F0 = IdF0 , the Geometric 
Brascamp Lieb data .E1 ∩F0, . . . , Ek ∩F0 in . F0 has no independent subspaces, and 
.h̃10, . . . , h̃k0 are extremizers in Barthe’s inequality for this data in . F0. 

As . ̃Ti0 has linear growth for .i = 1, . . . , k, Proposition 24 yields the existence of 
a positive definite matrix .Ã : F0 → F0 whose eigenspaces are critical subspaces, 
and .ãi > 0 and .b̃i ∈ F0 ∩ Ei for .i = 1, . . . , k, such that 

. f̃i (x) = ãie
−〈Ãx,x+b̃i 〉 ·

∏

Fj ⊂Ei
j≥1

h̃ij (PFj
x) for x ∈ Ei.

Dividing by . gi and shifting, we deduce that there exist a symmetric matrix . Ā :
F0 → F0 whose eigenspaces are critical subspaces, and .āi > 0 and . b̄i ∈ F0 ∩ Ei

for .i = 1, . . . , k, and for any .i ∈ {1, . . . , k} and .j ∈ {1, . . . , l} with .Fj ⊂ Ei , there 
exists positive .C1

.h̄ij : Fj → [0,∞) such that 

. fi ∗ gi(x) = āie
−〈Āx,x+b̄i 〉 ·

∏

Fj ⊂Ei
j≥1

h̄ij (PFj
x) for x ∈ Ei.

Since .fi ∗ gi is a probability density on . Ei , it follows that . Ā is positive definite and 
.h̄ij ∈ L1(Ei ∩ Fj ) for .i ∈ {1, . . . , k} and .j ∈ {1, . . . , l} with .Fj ⊂ Ei .
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For any .i = 1, . . . , k, we write . ̂� for the Fourier transform of a function . � ∈
L1(Ei), thus we can take the inverse Fourier transform in the sense that . � is a.e. the 
. L1 limit of 

. x �→
∫

Rn

�̂(ξ)e−a|ξ |2e2πi〈ξ,x〉 dξ

as .a > 0 tends to zero. For .i = 1, . . . , k, using that .f̂i ∗ gi = f̂i · ĝi , we deduce 
that the restriction of . f̂i to .F0 ∩ Ei is the quotient of two Gaussian densities. Since 
. f̂i is bounded and zero at infinity, we deduce that the restriction of . f̂i to . F0 ∩ Ei

is a Gaussian density for .i = 1, . . . , k, as well, with the symmetric matrix involved 
being positive definite. We conclude using the inverse Fourier transform above and 
the fact that the linear subspaces . Fj , .j = 0, . . . , l, are pairwise orthogonal that there 
exist a symmetric matrix .A : F0 → F0 whose eigenspaces are critical subspaces, 
and .ai > 0 and .bi ∈ F0 ∩ Ei for .i = 1, . . . , k, and for any .i ∈ {1, . . . , k} and 
.j ∈ {1, . . . , l} with .Fj ⊂ Ei , there exists .hij : Fj → [0,∞) such that 

. fi(x) = aie
−〈Ax,x+bi 〉 ·

∏

Fj ⊂Ei
j≥1

hij (PFj
x) for x ∈ Ei.

Since . fi is a probability density on . Ei , it follows that A is positive definite and 
each . hij is non-negative and integrable. Finally, Proposition 17 (ii) yields that there 
exist integrable .ψj : Fj → [0,∞) for .j = 1, . . . , l where . ψj is log-concave 
whenever .Fj ⊂ Eα ∩ Eβ for .α �= β, and there exist .aij > 0 and .bij ∈ Fj for any 
.i ∈ {1, . . . , k} and .j ∈ {1, . . . , l} with .Fj ⊂ Ei such that . hij (x) = aij ·ψj(x − bij )

for .i ∈ {1, . . . , k} and .j ∈ {1, . . . , l} with .Fj ⊂ Ei . 
Finally, we assume that .f1, . . . , fk are of the form as described in (6) and equality

holds for all .x ∈ Ei in (6). According to (19) , we may assume that there exist
a positive definite matrix .� : F0 → F0 whose proper eigenspaces are critical 
subspaces and a .θ̃i > 0 for .i = 1, . . . , k such that 

.fi(x) = θ̃ie
−‖�PF0x‖2 ∏

Fj ⊂Ei

hj (PFj
(x)) for x ∈ Ei. (60) 

We recall that according to (31) , if .j ∈ {1, . . . , l}, then 

.

∑

Ei⊃Fj

ci = 1. (61) 

We set .θ = ∏k
i=1 θ̃

ci

i and .h0(x) = e−‖�x‖2 for .x ∈ F0. On the left hand side 
of Barthe’s inequality (5), we use first (61) and the log-concavity of . hj whenever
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.j ≥ 1 and .Fj ⊂ Eα ∩ Eβ for .α �= β, secondly Proposition 13, thirdly  (61) , fourth
the Fubini Theorem, and finally (61) again to prove that

. 

∫ ∗

Rn

sup
x=∑k

i=1 ci xi
xi∈Ei

k∏

i=1

fi(xi)
ci dx = θ

∫ ∗

Rn

sup
x=∑k

i=1
∑l

j=0 ci xij

xij ∈Ei∩Fj

l∏

j=0

k∏

i=1

hj (xij )
ci dx

= θ

∫ ∗

Rn

l∏

j=0

sup
PFj

x=∑k
i=1 ci xij

xij ∈Ei∩Fj

k∏

i=1

hj (xij )
ci dx

= θ

∫ ∗

Rn

⎛

⎜⎜⎝ sup
PF0

x=∑k
i=1 ci xi0

xi0∈Ei∩F0

k∏

i=1

e−ci‖�xi0‖2

⎞

⎟⎟⎠

×
l∏

j=1

hj (PFj
x) dx

= θ

(
k∏

i=1

(∫

F0∩Ei

e−‖�y‖2 dy

)ci
)

×
l∏

j=1

∫

Fj

hj

=
k∏

i=1

(∫

Ei

fi

)ci

,

completing the proof of Theorem 4. ��

7 An Application: Equality in Liakopoulos’ Dual 
Bollobas-Thomason Inequality 

We write .e1, . . . , en to denote an orthonomal basis of . Rn. For a compact set . K ⊂ R
n

with .dim affK = m, we write .|K| to denote the m-dimensional Lebesgue measure 
of K . 

The starting point of this section is the classical Loomis-Whitney inequality [54]. 

Theorem 25 (Loomis, Whitney) If .K ⊂ R
n is compact and affinely spans . Rn, 

then 

.|K|n−1 ≤
k∏

i=1

|Pe⊥
i
K|, (62)
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with equality if and only if .K = ⊕n
i=1Ki where .affKi is a line parallel to . ei . 

Meyer [61] provided a dual form of the Loomis-Whitney inequality where 
equality holds for affine crosspolytopes. 

Theorem 26 (Meyer) If .K ⊂ R
n is compact convex with .o ∈ intK , then 

.|K|n−1 ≥ n!
nn

k∏

i=1

|K ∩ e⊥
i |, (63) 

with equality if and only if .K = conv{±λiei}ni=1 for .λi > 0, .i = 1, . . . , n. 

We note that various Reverse and dual Loomis-Whitney type inequalities are 
proved by Campi et al. [29], Brazitikos et al. [22, 23], Alonso-Gutiérrez et al. [1, 2]. 

To consider a genarization of the Loomis-Whitney inequality and its dual form, 
we set .[n] := {1, . . . , n}, and for a non-empty proper subset .σ ⊂ [n], we define 
.Eσ = lin{ei}i∈σ . For  .s ≥ 1, we say that the not necessarily distinct proper non-
empty subsets .σ1, . . . , σk ⊂ [n] form an s-uniform cover of . [n] if each .j ∈ [n] is 
contained in exactly s of .σ1, . . . , σk . 

The Bollobas-Thomason inequality [19] reads as follows. 

Theorem 27 (Bollobas, Thomason) If .K ⊂ R
n is compact and affinely spans . Rn, 

and .σ1, . . . , σk ⊂ [n] form an s-uniform cover of . [n] for .s ≥ 1, then 

.|K|s ≤
k∏

i=1

|PEσi
K|. (64) 

We note that additional the case when .k = n, .s = n − 1, and hence when we 
may assume that .σi = [n]\ei , is the Loomis-Whitney inequality Therem 25. 

Liakopoulos [50] managed to prove a dual form of the Bollobas-Thomason 
inequality. For a finite set . σ , we write . |σ | to denote its cardinality. 
Theorem 28 (Liakopoulos) If .K ⊂ R

n is compact convex with .o ∈ intK , and 
.σ1, . . . , σk ⊂ [n] form an s-uniform cover of . [n] for .s ≥ 1, then 

.|K|s ≥
∏k

i=1 |σi |!
(n!)s ·

k∏

i=1

|K ∩ Eσi
|. (65) 

The equality case of the Bollobas-Thomason inequality Theorem 27 based on 
Valdimarsson [67] has been known to the experts. Let .s ≥ 1, and let . σ1, . . . , σk ⊂
[n] be an s-uniform cover of . [n]. We say that .σ̃1, . . . , σ̃l ⊂ [n] form a 1-uniform 
cover of . [n] induced by the s-uniform cover .σ1, . . . , σk if .{σ̃1, . . . , σ̃l} consists of 
all non-empty distinct subsets of . [n] of the form .∩k

i=1σ
ε(i)
i where .ε(i) ∈ {0, 1} and 

.σ 0
i = σi and .σ 1

i = [n] \ σi . We observe that .σ̃1, . . . , σ̃l ⊂ [n] actually form a 
1-uniform cover of . [n]; namely, .σ̃1, . . . , σ̃l is a partition of . [n].
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Theorem 29 (Folklore) Let .K ⊂ R
n be compact and affinely span . Rn, and let 

.σ1, . . . , σk ⊂ [n] form an s-uniform cover of . [n] for .s ≥ 1. Then equality holds in 
(64) if and only if .K = ⊕l

i=1PEσ̃i
K where .σ̃1, . . . , σ̃l is the 1-uniform cover of . [n]

induced by .σ1, . . . , σk . 

Our main result in this section is the characterization of the equality case of 
the dual Bollobas-Thomason inequality Theorem 28 relating it to the Geometric 
Barthe’s inequality. 

Theorem 30 Let .K ⊂ R
n be compact convex with .o ∈ intK , and let . σ1, . . . , σk ⊂

[n] form an s-uniform cover of . [n] for .s ≥ 1. Then equality holds in (65) if and only
if .K = conv{K ∩ Fσ̃i

}li=1 where .σ̃1, . . . , σ̃l is the 1-uniform cover of . [n] induced by 
.σ1, . . . , σk . 

We set .σ 0
i = σi and .σ 1

i = [n] \ σi . When we write .σ̃1, . . . , σ̃l for the induced 
cover from .σ1, . . . , σk , we assume that the sets .σ̃1, . . . , σ̃l are pairwise disjoint. 

Lemma 31 For .s ≥ 1, let .σ1, . . . , σk ⊂ [n] form an s-uniform cover of . [n], and let 
.σ̃1, . . . , σ̃� be the 1-uniform cover of . [n] induced by .σ1, . . . , σk . Then 

(i) the subspaces .Eσi
:= lin{ej : i ∈ σi} satisfy 

.

k∑

i=1

1

s
PEσi

= In (66) 

i.e. form a Geometric Brascamp Lieb data;
(ii) For .r ∈ σ̃j , .j = 1, . . . , �, we have 

.σ̃j :=
⋂

r∈σi

σ 0
i ∩

⋂

r /∈σi

σ 1
i ; (67) 

(iii) the subspaces .Fσ̃j
:= lin{er : r ∈ σ̃j } are the independent subspaces of the 

Geometric Brascamp Lieb data (66) and .Fdep = {0}. 
Proof Since .σ1, . . . , σk form a s-uniform cover, every .ei ∈ R

n is contained in 
exactly s of .Eσ1 , . . . , Eσk

, yielding (i). 
For (ii), the definition of . σ̃j directly implies (67) .
For (iii), the linear subspaces .Fσ̃1 , . . . , Fσ̃�

are pairwise orthogonal because . σ 0
i ∩

σ 1
i = ∅ for .i = 1, . . . , k. On the other hand, for any .r ∈ [n], .r ∈ ∩n

i=1σ
ε(i)
i where 

.ε(i) = 0 if .r ∈ σi , and .ε(i) = 1 if .r �∈ σi ; therefore, .Fσ̃1, . . . , Fσ̃�
span . Rn. In  

particular, .Fdep = {0}. ��
Proof of Theorem 30 Let us introduce the notation that we use in the proof of 
Theorem 30. Let  .σ1, . . . , σk be the s cover of . [n] occuring in Theorem 30, and 
hence .Ei = Eσi

, .i = 1, . . . , k, satisfies 

.
1

s

k∑

i=1

PEσi
= In. (68)
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Let .σ̃1, . . . , σ̃l be the 1-uniform cover of . [n] induced by .σ1, . . . , σk . It follows that 

.Fj = Eσ̃j
for j = 1, . . . , l are the independent subspaces, . (69) 

Fdep = {0}. (70) 

For any .i ∈ {1, . . . , k}, we set  

. Ii = {j ∈ {1, . . . , l} : Fj ⊂ Ei},

and for any .j ∈ {1, . . . , l}, we set  

. Jj = {i ∈ {1, . . . , k} : Fj ⊂ Ei}.

To prove Theorem 30, we use two additional observations. First if M is any 
convex body with .o ∈ intM , then 

.

∫

Rn

e−‖x‖M dx =
∫ ∞

0
e−rnrn−1|M| dr = n!|M|. (71) 

Secondly, if . Fj are pairwise orthogonal subspaces and . M = conv {M1, . . . , Ml}
where .Mj ⊂ Fj is a .dimFj -dimensional compact convex set with .o ∈ relintMj , 
then for any . x ∈ R

n

.‖x‖M =
l∑

i=1

‖PFj
x‖Mj

. (72) 

In addition, we often use the fact, for a subspace F of . Rn and .x ∈ F , then . ‖x‖K =
‖x‖K∩F . 

We define 

.f (x) = e−‖x‖K , (73) 

which is a log-concave function with .f (0) = 1, and satisfying (cf (71) )

.

∫

Rn

f (y)n dy =
∫

Rn

e−n‖y‖K dy =
∫

Rn

e
−‖y‖ 1

n K = n!
∣∣∣∣
1

n
K

∣∣∣∣ = n!
nn

· |K|. (74) 

We claim that

.nn

∫

Rn

f (y)n dy ≥
k∏

i=1

( ∫

Ei

f (xi) dxi

)1/s
. (75)
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Equating the traces of the two sides of (66), we deduce that, . di := |σi | = dimEi

.

k∑

i=1

di

sn
= 1. (76) 

For .z = ∑k
i=1

1
s
xi with .xi ∈ Ei , the log-concavity of f and its definition (73) ,

imply

.f (z/n) ≥
k∏

i=1

f (xi/di)
di
ns =

k∏

i=1

f (xi)
1
ns . (77) 

Now, the monotonicity of the integral and Barthe’s inequality yield

. 

∫

Rn

f (z/n)n dz ≥
∫ ∗

Rn

sup
z=∑k

i=1
1
s
xi , xi∈Ei

k∏

i=1

f (xi)
1/s dz ≥

k∏

i=1

( ∫

Ei

f (xi) dxi

)1/s
.

(78) 

Making the change of variable .y = z/n we conclude to (75) . Computing the right
hand side of (75) , we have

.

∫

Ei

f (xi) dxi =
∫

Ei

e−‖xi‖K dxi =
∫

Ei

e−‖xi‖K∩Ei dxi = di !|K ∩ Ei |. (79) 

Therefore, (74) , (75) and (79) yield (65) .
Let us assume that equality holds in (65) , and hence we have two equalities in

(78) . We set

. M = conv{K ∩ Fj }1≤j≤l .

Clearly, .K ⊇ M . For the other inclusion, we start with .z ∈ intK , namely .‖z‖K < 1. 
Equality in the first inequality in (78) means,

. 

(
e−‖z/n‖K

)n = sup
z=∑k

i=1
1
s
xi , xi∈Ei

k∏

i=1

e−‖xi‖K1/s,

or in other words, 

.‖z‖K = 1

s
· inf
z=∑k

i=1
1
s
xi , xi∈Ei

k∑

i=1

‖xi‖K = inf
z=∑k

i=1 yi , yi∈Ei

k∑

i=1

‖yi‖K. (80)
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We deduce that there exist .yi ∈ Ei , .i = 1, . . . , k such that 

.z =
k∑

i=1

yi and
k∑

i=1

‖yi‖K < 1, (81) 

Therefore, from (81), then (72) and after the triangle inequality for .‖ · ‖K∩Fj
, we  

have 

. ‖z‖M =
∥∥∥∥∥∥

k∑

i=1

∑

j∈Ii

PFj
yi

∥∥∥∥∥∥
M

=
k∑

i=1

∥∥∥∥∥∥

∑

i∈Ii

PFj
yi

∥∥∥∥∥∥
K∩Fj

≤
k∑

i=1

∑

i∈Ii

∥∥PFj
yi

∥∥
K∩Fj

.

(82) 

It suffices to show that

.K ∩ Ei = conv{K ∩ Fj }j∈Ii
(83) 

because then, from (82), applying (72) and (81) , we have

. ‖z‖M ≤
l∑

j=1

∑

i∈Jj

∥∥PFj
yi

∥∥
K∩Fj

=
k∑

i=1

‖yi‖K∩Ei
< 1,

which means .z ∈ M . Now, to show  (83) , we start with the equality case of Barthe’s
inequality which has been applied in (78). From Theorem 4, there exist .θi > 0 and 
.wi ∈ Ei and log-concave .hj : Fj → [0,∞), namely .hj = e−ϕj for a convex 
functon . ϕj , such that 

.e−‖xi‖K∩Ei = θi

∏

j∈Ii

hj (PFj
(xi − wi)). (84) 

for Lebesgue a.e. .xi ∈ Ei . For .i ∈ [k] and .j ∈ Ii we set, .ψij : Fj → R by 

. ψij (x) = ϕj

(
x − PFj

wi

) − ϕj

(−PFj
wi

) + ln θi

|Ii | .

We see 

.ψij (0) = 0 and ψij is convex on Fj . (85) 

and also (84) yields, for . x ∈ Ei

.e−‖x‖K∩Ei = exp

⎛

⎝−
∑

j∈Ii

ψij (PFj
x)

⎞

⎠ . (86)
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For .x ∈ Fj , we apply . λx to (86) with .λ > 0, and we have from .ψim(0) = 0 for 
.m ∈ Ii\{j} that 

.ψij (λx) = λψij (x) and ψij (x) > 0. (87) 

We deduce from (85) and (87) that . ψij is a norm. Therefore, .ψij (x) = ‖x‖Cij
for 

some .(dimFj )-dimensional compact convex set .Cij ⊂ Fj with .o ∈ relintCij . Now  
(86) becomes,

. ‖x‖K∩Ei
=

∑

j∈Ii

‖PFj
x‖Cij

and hence by (72) we conclude to

. K ∩ Ei = conv {Cij }j∈Ii
.

In particular, if .i ∈ [k] and .j ∈ Ii , then .Cij = (K ∩Ei)∩Fj = K ∩Fj , completing 
the proof of (83), and in turn yielding Theorem 30. ��

Acknowledgments We thank Alessio Figalli, Greg Kuperberg and Christos Saroglou for helpful 
discussions. We are especially grateful to Emanuel Milman for providing the proof of Proposi-
tion 21, and for Franck Barthe for providing the proof of Proposition 11 and insight on the history 
of the subject, and for further ideas and extremely helpful discussions. We thank the referee for 
correcting a mistake in Theorem 4 and signicantly improving the presentation of the whole paper. 

The first named author is also grateful for the hospitality and excellent working environment 
provided by University of California, Davis and by ETH Zürich during various parts of this project. 

Karoly J. Boroczky was Supported by NKFIH 132002. Dongmeng Xi was Supported by 
National Natural Science Foundation of China (12071277). 

References 

1. D. Alonso-Gutiérrez, S. Brazitikos, Reverse Loomis-Whitney inequalities via isotropicity. 
arXiv:2001.11876 

2. D. Alonso-Gutiérrez, J. Bernués, S. Brazitikos, A. Carbery, On affine invariant and local 
Loomis-Whitney type inequalities. arXiv:2002.05794 

3. K.M. Ball, Volumes of sections of cubes and related problems, in Israel Seminar on Geometric 
Aspects of Functional Analysis, ed. by J. Lindenstrauss, V.D. Milman. Lectures Notes in 
Mathematics, vol. 1376 (Springer, Berlin, 1989) 

4. K.M. Ball, Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44, 351– 
359 (1991) 

5. K.M. Ball, Convex geometry and functional analysis, in Handbook of the Geometry of Banach 
Spaces, ed. by W.B. Johnson, L. Lindenstrauss, vol. 1 (2003), pp. 161–194 

6. Z. Balogh, A. Kristaly, Equality in Borell-Brascamp-Lieb inequalities on curved spaces. Adv. 
Math. 339, 453–494 (2018) 

7. F. Barthe, Inégalités de Brascamp-Lieb et convexité. C. R. Acad. Sci. Paris 324, 885–888 
(1997)



The Case of Equality in Geometric Instances of Barthe’s Reverse Brascamp-. . . 163

8. F. Barthe, On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134, 335–361 
(1998) 

9. F. Barthe, A continuous version of the Brascamp-Lieb inequalities, in Geometric Aspects of 
Functional Analysis. Lecture Notes in Mathematics, vol. 1850 (2004), pp. 53–63 

10. F. Barthe, D. Cordero-Erausquin, Inverse Brascamp-Lieb inequalities along the heat equation, 
in Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1850 
(Springer, Berlin, 2004), pp. 65–71 

11. F. Barthe, N. Huet, On Gaussian Brunn-Minkowski inequalities. Stud. Math. 191, 283–304 
(2009) 

12. F. Barthe, P. Wolff, Positivity improvement and Gaussian kernels. C. R. Math. Acad. Sci. Paris 
352, 1017–1021 (2014) 

13. F. Barthe, P. Wolff, Positive Gaussian kernels also have Gaussian minimizers. Mem. Am. Math. 
Soc. 276(1359), iii+90pp. (2022) 

14. F. Barthe, D. Cordero-Erausquin, M. Ledoux, B. Maurey, Correlation and Brascamp-Lieb 
inequalities for Markov semigroups. Int. Math. Res. Not. 10, 2177–2216 (2011) 

15. J. Bennett, T. Carbery, M. Christ, T. Tao, The Brascamp–Lieb inequalities: finiteness, structure 
and extremals. Geom. Funct. Anal. 17, 1343–1415 (2008) 

16. J. Bennett, N. Bez, T.C. Flock, S. Lee, Stability of the Brascamp–Lieb constant and applica-
tions. Am. J. Math. 140(2), 543–569 (2018) 

17. J. Bennett, N. Bez, S. Buschenhenke, M.G. Cowling, T.C. Flock, On the nonlinear Brascamp-
Lieb inequality. Duke Math. J. 169(17), 3291–3338 (2020) 

18. S.G. Bobkov, A. Colesanti, I. Fragalà, Quermassintegrals of quasi-concave functions and 
generalized Prékopa-Leindler inequalities. Manuscripta Math. 143, 131–169 (2014) 

19. B. Bollobas, A. Thomason, Projections of bodies and hereditary properties of hypergraphs. 
Bull. Lond. Math. Soc. 27, 417–424 (1995) 

20. C. Borell, The Brunn-Minkowski inequality in Gauss spaces. Invent. Math. 30, 207–216 (1975) 
21. H.J. Brascamp, E.H. Lieb, Best constants in Young’s inequality, its converse, and its general-

ization to more than three functions. Adv. Math. 20, 151–173 (1976) 
22. S. Brazitikos, S. Dann, A. Giannopoulos, A. Koldobsky, On the average volume of sections of 

convex bodies. Isr. J. Math. 222, 921–947 (2017) 
23. S. Brazitikos, A. Giannopoulos, D.-M. Liakopoulos, Uniform cover inequalities for the volume 

of coordinate sections and projections of convex bodies. Adv. Geom. 18, 345–354 (2018) 
24. J.R. Bueno, P. Pivarov, A stochastic Prékopa-Leindler inequality for log-concave functions. 

Commun. Contemp. Math. 23(2), 2050019, 17pp. (2021) 
25. L.A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation 

and their strict convexity. Ann. Math. 131, 129–134 (1990) 
26. L.A. Caffarelli, Interior W 2,p estimates for solutions of the Monge-Ampère equation. Ann. 

Math. 131, 135–150 (1990) 
27. L.A. Caffarelli, The regularity of mappings with a convex potential. J. Am. Math. Soc. 5, 99– 

104 (1992) 
28. L.A. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related 

inequalities. Commun. Math. Phys. 214(3), 547–563 (2000) 
29. S. Campi, R. Gardner, P. Gronchi, Reverse and dual Loomis-Whitney-type inequalities. Trans. 

Am. Math. Soc. 368, 5093–5124 (2016) 
30. E. Carlen, D. Cordero-Erausquin, Subadditivity of the entropy and its relation to Brascamp-

Lieb type inequalities. Geom. Funct. Anal. 19, 373-405 (2009) 
31. E. Carlen, E.H. Lieb, M. Loss, A sharp analog of Young’s inequality on SN and related entropy 

inequalities. J. Geom. Anal. 14, 487–520 (2004) 
32. P.G. Casazza, T.T. Tran, J.C. Tremain, Regular two-distance sets. J. Fourier Anal. Appl. 26(3), 

49, 32pp. (2020) 
33. W.-K. Chen, N. Dafnis, G. Paouris, Improved Hölder and reverse Hölder inequalities for 

Gaussian random vectors. Adv. Math. 280, 643–689 (2015) 
34. M. Colombo, M. Fathi, Bounds on optimal transport maps onto log-concave measures. J. 

Differ. Equ. 271, 1007–1022 (2021)



164 K. J. Boroczky et al.

35. T.A. Courtade, J. Liu, Euclidean forward-reverse Brascamp-Lieb inequalities: finiteness, 
structure, and extremals. J. Geom. Anal. 31, 3300–3350 (2021) 

36. G. De Philippis, A. Figalli, Rigidity and stability of Caffarelli’s log-concave perturbation 
theorem. Nonlinear Anal. 154, 59–70 (2017) 

37. S. Dubuc, Critères de convexité et inégalités intégrales. Ann. Inst. Fourier Grenoble 27(1), 
135–165 (1977) 

38. J. Duncan, An algebraic Brascamp-Lieb inequality. J. Geom. Anal. 31, 10136–10163 (2021) 
39. M. Fathi, N. Gozlan, M. Prod’hommem, A proof of the Caffarelli contraction theorem via 

entropic regularization. Calc. Var. Partial Differ. Equ. 59(3), 96, 18pp. (2020) 
40. R. Gardner, The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 39, 355–405 (2002) 
41. D. Ghilli, P. Salani, Quantitative Borell-Brascamp-Lieb inequalities for power concave func-

tions. J. Convex Anal. 24, 857–888 (2017) 
42. L. Grafakos, Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249 (Springer, 

Berlin, 2014) 
43. S. Guo, R. Zhang, On integer solutions of Parsell-Vinogradov systems. Invent. Math. 218, 1–81 

(2019) 
44. Y.-H. Kim, E. Milman, A generalization of Caffarelli’s contraction theorem via (reverse) heat 

flow. Math. Ann. 354(3), 827–862 (2012) 
45. B. Klartag, E. Putterman, Spectral monotonicity under Gaussian convolution. 

arXiv:2107.09496 
46. A.V. Kolesnikov, On Sobolev regularity of mass transport and transportation inequalities. 

Theory Probab. Appl. 57(2), 243–264 (2013) 
47. A.V. Kolesnikov, E. Milman, Local Lp-Brunn-Minkowski inequalities for p <  1. Mem. Am. 

Math. Soc. (accepted). arXiv:1711.01089 
48. J. Lehec, Short probabilistic proof of the Brascamp-Lieb and Barthe theorems. Can. Math. 

Bull. 57, 585–597 (2014) 
49. L. Leindler, On a certain converse of Hölder’s inequality. II. Acta Sci. Math. 33, 217–223 

(1972) 
50. D.-M. Liakopoulos, Reverse Brascamp-Lieb inequality and the dual Bollobás-Thomason 

inequality. Arch. Math. 112, 293–304 (2019) 
51. E.H. Lieb, Gaussian kernels have only Gaussian maximizers. Invent. Math. 102, 179–208 

(1990) 
52. G.V. Livshyts, Some remarks about the maximal perimeter of convex sets with respect to 

probability measures. Commun. Contemp. Math. 23(5), 2050037, 19pp. (2021) 
53. G.V. Livshyts, On a conjectural symmetric version of Ehrhard’s inequality. arXiv:2103.11433 
54. L.H. Loomis, H. Whitney, An inequality related to the isoperimetric inequality. Bull. Am. 

Math. Soc. 55, 961–962 (1949) 
55. E. Lutwak, D. Yang, G. Zhang, Volume inequalities for subspaces of Lp . J. Differ.  Geom.  68, 

159–184 (2004) 
56. E. Lutwak, D. Yang, G. Zhang, Volume inequalities for isotropic measures. Am. J. Math. 129, 

1711–1723 (2007) 
57. D. Maldague, Regularized brascamp–lieb inequalities and an application. Quart. J. Math. 73, 

311–331 (2022). https://doi.org/10.1093/qmath/haab032 
58. A. Marsiglietti, Borell’s generalized Prékopa-Leindler inequality: a simple proof. J. Convex 

Anal. 24, 807–817 (2017) 
59. R.J. McCann, Existence and uniqueness of monotone measure-preserving maps. Duke Math. 

J. 80, 309–323 (1995) 
60. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997) 
61. M. Meyer, A volume inequality concerning sections of convex sets. Bull. Lond. Math. Soc. 

20,15–155 (1988) 
62. V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces. With 

an appendix by M. Gromov (Springer, Berlin, 1986) 
63. A. Prékopa, Logarithmic concave measures with application to stochastic programming. Acta 

Sci. Math. 32, 301–316 (1971)

https://doi.org/10.1093/qmath/haab032
https://doi.org/10.1093/qmath/haab032
https://doi.org/10.1093/qmath/haab032
https://doi.org/10.1093/qmath/haab032
https://doi.org/10.1093/qmath/haab032
https://doi.org/10.1093/qmath/haab032
https://doi.org/10.1093/qmath/haab032


The Case of Equality in Geometric Instances of Barthe’s Reverse Brascamp-. . . 165

64. A. Prékopa, On logarithmic concave measures and functions. Acta Sci. Math. 34, 335–343 
(1973) 

65. A. Rossi, P. Salani, Stability for Borell-Brascamp-Lieb inequalities, in Geometric Aspects of 
Functional Analysis. Lecture Notes in Mathematics, vol. 2169 (Springer, Cham, 2017), pp. 
339–363 

66. A. Rossi, P. Salani, Stability for a strengthened Borell-Brascamp-Lieb inequality. Appl. Anal. 
98, 1773–1784 (2019) 

67. S.I. Valdimarsson, Optimisers for the Brascamp-Lieb inequality. Israel J. Math. 168, 253–274 
(2008) 

68. C. Villani, Topics in Optimal Transportation (AMS, Providence, 2003)



A Journey with the Integrated . �2
Criterion and its Weak Forms 

Patrick Cattiaux and Arnaud Guillin 

Abstract As the title indicates this paper will describe several extensions and 
applications of the . �2 integrated criterion introduced by M. Ledoux following ideas 
of B. Hellffer. We introduce general weak versions and show that they are equivalent 
to the weak Poincaré inequalities introduced by M. Röckner and F. Y. Wang. We also 
discuss special weak versions appropriate to the study of log-concave measures and 
log-concave perturbations of product measures. 

Keywords Poincaré inequality · . �2 operator · Log-concave measures 

1 Introduction, Framework and Presentation of the Results 

Introduced in [2] the . �2 criterion (also called .CD(ρ,∞) curvature condition) is the 
best known sufficient condition for Poincaré and log-Sobolev inequalities to hold 
for some probability measure . μ. It reads as 

. �2(f ) ≥ ρ �(f )

for some .ρ > 0 (see the definitions in the next subsection), i.e. is a pointwise 
condition. In [28], M. Ledoux introduced an integrated version 

. μ(�2(f )) ≥ ρ μ(�(f ))
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and proved that this integrated version for some .ρ > 0 is equivalent to a Poincaré 
inequality (see Theorem 1.3 below). The Poincaré inequality is thus a mean 
curvature condition. 

As it is well known, Poincaré inequality is related to the “exponential” concen-
tration of measure, to the .L

2(μ) contraction of some associated Markov semi-group 
(implying exponential stabilization) and to some isoperimetric questions. 

During the last years weaker (and also stronger) forms of the Poincaré inequality 
have been discussed. They allow us to describe weaker concentration properties 
(polynomial for instance) and slower rates of convergence to equilibrium (see 
Sect. 1.2). It is natural to ask whether these weak Poincaré inequalities are equivalent 
to some weak integrated . �2 criteria. This was the starting point of this work. 

We then describe some applications of weak integrated . �2 criteria to log-concave 
measures, perturbation of product measures or of radial measures. 

1.1 Framework (The Heart of Darkness Following [4]) 

We will first introduce the objects we are dealing with. The aficionados of [4] will 
(almost) recognize what is called a full Markov triple therein. Nevertheless in order 
to understand some of our approaches, one has to understand why this framework is 
the good one. 

Let .μ(dx) = Z−1
V e−V (x) dx be a probability measure defined on an open domain 

.D ⊆ R
n. When needed, we will require some regularity for V and assume that it 

takes finite values. We denote by .μ(f ) the integral of f w.r.t. . μ. 
If V is in .C2(D), we may introduce the operator 

. A = � − ∇V.∇

and the diffusion process 

. Xx
t = x + √

2 Bt −
∫ t

0
∇V (Xx

s )ds

living in D up to an explosion time . T x
∂ since .∇V is local Lipschitz. Of course here 

. B. is a standard Brownian motion. 
When .D = R

n, .T x
∂ = supk∈N∗ T x

k where .T x
k denotes the exit time of the 

euclidean ball of radius k, while if D is a bounded open subset, .T x
∂ denotes the 

hitting time of the boundary . ∂D, i.e. 

.T x
∂ = sup

k

T x
k where T x

k = inf{t, d(Xx
t ,Dc) ≤ 1/k} ,
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where .d(., .) denotes the euclidean distance. In the sequel we will assume that 

.T x
∂ = +∞ a.s. for all x ∈ D . (1.1) 

In other words the process . X. is conservative (in D) and we define . Ptf (x) =
E(f (Xx

t )) for bounded f ’s, so that . Pt is a markovian semi-group of contractions 
in .L∞(D). 

Definition 1.1 We shall say that Assumption (H) is satisfied if (1.1) holds true and
if in addition

.μ is a reversible (symmetric) measure for the process. (1.2) 

We will denote .〈u, v〉 the usual scalar product and introduce 

. �(f, g) = 〈∇f,∇g〉 , E(f, g) = μ(�(f, g))

the associated Dirichlet form, with domain .D(E). We will write .�(f ) for .�(f, f ). 
The next result is the key of the construction 

Proposition 1.2 Assume that (H) is satisfied. In the following two cases 

(1) .D = R
n, 

(2) D is an open bounded domain and .V ∈ C∞(D), 

then . Pt extends to a .μ-symmetric continuous Markov semi-group on .L2(μ) with 
generator . Ã and domain .D(Ã). 

In addition the generator . Ã is essentially self-adjoint on .C∞
0 (D) (.C∞ functions 

with compact support). We shall call ESA this property. In particular .C∞
0 (D) is a 

core for .D(Ã). The latter is exactly the set of .f ∈ H 2
loc(D) such that f and Af are 

in .L
2(μ). 

We shall give a proof of this Proposition in Sect. 7, where sufficient conditions for 
(H) are discussed as well as examples. For simplicity we will only use the notation 
A in the sequel both for A and . Ã. 

If .g ∈ D(A) it holds 

.E(f, g) = −μ(f Ag) . (1.3) 

If .f ∈ L
2(μ) it is well known that .Ptf ∈ D(A) for .t > 0 and 

.∂t Ptf = APtf . (1.4) 

If in addition .f ∈ D(A), 

.∂t Ptf = APtf = PtAf . (1.5)
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In particular if f is in . D(A), for .t > 0, 

.∂t APtf = ∂t PtAf = APtAf . (1.6) 

1.2 Presentation of the Main Results 

We define the Poincaré constant .CP (μ) as the smallest constant C satisfying 

.Varμ(f ) := μ(f 2) − μ2(f ) ≤ C μ(|∇f |2) , (1.7) 

for all .f ∈ C1
b(D) the set of .C1 functions which are bounded with a bounded 

derivative. For simplicity we will say that . μ satisfies a Poincaré inequality provided 
.CP (μ) is finite. 

As it is well known, the Poincaré constant is linked to the exponential stabiliza-
tion of the Markov semi-group . Pt . 

For a Diffusion Markov Triple, the following is well known (see chapter 4 in [4]), 
it extends to our situation 

Theorem 1.3 If (H) is satisfied, the following three statements are equivalent 

(1) . μ satisfies a Poincaré inequality, 
(2) there exists C such that for every .f ∈ C∞

0 (D) (or .C∞
b (D) the set of smooth 

functions with bounded derivatives of any order), it holds 

.μ(|∇f |2) ≤ C μ((Af )2) , (1.8) 

(3) there exists .C > 0 such that for every .f ∈ L
2(μ), 

.Varμ(Ptf ) ≤ e− 2t/C Varμ(f ) . (1.9) 

In addition the optimal constants in (1.8) and (1.9) are equal to .CP (μ). 

It is important to check that the previous theorem only requires the properties we 
have recalled before. Actually the proof of (1) . ⇔ (3) ([4] Theorem 4.2.5) only 
requires (1.4) so that it is always satisfied. The one of (2) . ⇔ (1) ([4] Proposition 
4.8.3) requires to use ESA. In addition one has to check that the semi-group is 
ergodic, i.e. that the only invariant functions (.Ptf = f for all t) are the constants. 
A proof is provided in the Appendix. 

Following D. Bakry we may define (provided V is . C2) the . �2 operator 

.�2(f, g) = 1

2
[A�(f, g) − �(f,Ag) − �(Af, g)] . (1.10)
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for .f, g in .C∞
b (D). A simple calculation yields in this case 

.�2(f ) := �2(f, f ) =‖ Hess(f ) ‖2
HS +〈∇f,Hess(V )∇f 〉 , (1.11) 

where .Hess(f ) denotes the Hessian matrix of f , and . ‖ Hess(f ) ‖2
HS=∑

i,j |∂2
i,j f |2. 

Using symmetry we get 

.μ(�2(f, g)) = μ((Af )(Ag)) . (1.12) 

still for .C∞
b functions since if (H) is satisfied, they belong to .D(A). The latter 

extends to .f, g in .D(A) thanks to ESA. 
It is important to see that without (H) this result is wrong in general. To justify 

(1.12) it is at least necessary to know that .�(f, g) ∈ D(A) which is not always the 
case even for .C∞

b functions if they are not all in .D(A), as in the case of reflected 
diffusions for instance. Fortunately if (H) is satisfied it suffices to verify it for . C∞

b

functions. 
Assume from now on that (1.12) is satisfied for f and g in the domain of A. It

immediately follows that, if the curvature-dimension condition .CD(ρ,N) i.e. 

. �2(f ) ≥ ρ |∇f |2 + 1

N
(Af )2

is satisfied, then 

. CP (μ) ≤ N − 1

ρ N

the result being true for .N ∈]1,+∞]. This is the famous Bakry-Emery criterion for 
the Poincaré inequality. For .N = +∞ the criterion is satisfied provided V is strictly 
convex in which case it is also a consequence of Brascamp-Lieb inequality. 

The second statement in Theorem 1.3 is thus sometimes called “the integrated 
. �2 criterion”. This statement appears in Proposition 1.3 of M. Ledoux’s paper [28] 
as “a simple instance of the Witten Laplacian approach of Sjöstrand and Helffer”, 
but part of the argument goes back to Hörmander (see e.g. [1, p. 14]). It is worth 
noticing that, if the semi-group does not appear in the statement, it is an essential 
tool of Ledoux’s proof. 

The integrated . �2 criterion is used in M. Ledoux’s work [28] on Gibbs measures. 
Under the denomination of “Bochner’s method” it appeared more or less at the same 
time in the statistical mechanics world. More recently it was used in the context of 
convex geometry in [5, 27] under the denomination of . L2 method. Lemma 1 in [5] 
contains another proof (without using the semi-group) of (2) . ⇒ (1) in the previous 
Theorem. 

The third statement in Theorem 1.3 can be improved in the following way
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Proposition 1.4 The third statement (hence the first two too) of Theorem 1.3 is 
equivalent to the following one: there exists .C > 0, such that for every f in a dense 
subset . C of .L2(μ) one can find a constant .c(f ) such that 

. Varμ(Ptf ) ≤ c(f ) e−2t/C

and the optimal C is again .CP (μ). 

The proof of this proposition lies on the log-convexity of .t �→ μ(P 2
t f ) for which 

several proofs are available (see the simplest one in [22] lemma 2.11 or in [4]). 
A natural subset . C is furnished by .L∞(μ). An exponential decay to 0 of the 

variance controlled by the initial uniform norm thus implies that the same holds for 
the . L2 norm and is equivalent to the Poincaré inequality. 

The semi-group property shows that .L
2 decay to 0 cannot be faster than 

exponential and the previous result that any uniform decay i.e. . Varμ(PT f ) ≤
c Varμ(f ) for some .T > 0, .c < 1 and .f ∈ L

2(μ) implies exponential decay. 
A natural question is then to describe what happens for slower decays. After a 
pioneering work by T. Liggett ([32]), this question was tackled by M. Röckner and F. 
Y. Wang in [38]. These authors introduced the notion of weak Poincaré inequalities 
and relate them to all possible decays of the variance along the semi-group. Let us 
recall the main result in this direction 

Theorem 1.5 Consider the following two statements 

(1) There exists a non-increasing function .βWP : (0,+∞) → R
+, such that for all 

.s > 0 and any bounded and Lipschitz function f , 

.Varμ(f ) ≤ βWP (s) μ(|∇f |2) + s Osc2(f ) , (1.13) 

where .Osc(f ) = sup f − inf f denotes the Oscillation of f . (1.13) is called
a weak Poincaré inequality (WPI) and it is clear that we may always choose
.βWP (s) = 1 for .s ≥ 1. 

(2) There exists a non-increasing function . ξ going to 0 at infinity such that 

. Varμ(Ptf ) ≤ ξ(t)Osc2(f ) .

The weak Poincaré inequality (1) implies statement (2) with 

. ξ(t) = 2 inf{s > 0, βWP (s) ln(1/s) ≤ 2t} = inf
s>0

(
s + e−2t/βWP (s)

)
.

Conversely statement (2) implies statement (1) with 

.βWP (s) = 2s inf
r>0

(
1

r
ξ−1(r exp(1 − r

s
))

)
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where .ξ−1 denotes the converse of . ξ , i.e. .ξ−1(r) = inf{s > 0, ξ(s) ≤ r}. 
Of course if .βWP (0) < +∞ one recovers the usual Poincaré inequality. 

Remark 1.6 Röckner and Wang (see [38] Corollary 2.4 (2)) introduce a trick that 
allows to improve . ξ in the previous result. The basic idea is to use repeatedly (1.13) .
We will choose four sequences:

(1) a decreasing sequence of positive numbers .(θi)i∈N such that .θ0 = 1 and . θi → 0
as .i → +∞, 

(2) for .i ≥ 1, .αi = θi−1 − θi so that .
∑

i αi = 1, 
(3) a sequence .(γi)i≥0 of positive numbers such that .γ0 = 1 and .

∏
i γi = 0, 

(4) for .i ≥ 1, .si(t) is defined by .e−2t αi/βWP (si (t)) = γi , hence . si(t) =
β−1

WP (2tαi/ ln(1/γi)). 

Applying (1.13) between . tθi and .tθi−1 we thus have 

. Varμ(Pθi−1t f ) ≤ e−2αi t/βWP (si (t)) Varμ(Pθi tf ) + si(t) Osc2(f )

= γi Varμ(Pθi tf ) + si(t) Osc2(f ) ,

which yields 

.Varμ(Ptf ) ≤
∑
i≥0

(γi si+1(t)) Osc2(f ) . (1.14) 

So that we may choose .ξ(t) = ∑
i≥0(γi si+1(t)). . ♦

Remark 1.7 In order to prove that statement (2) implies statement (1) we may 
follow another route. Using 

.Varμ(f ) − Varμ(Ptf ) = 2
∫ t

0
μ(|∇Puf |2) du (1.15) 

and the fact that .t �→ μ(|∇Ptf |2) is non-increasing (we shall recall a proof in the 
next section), we have 

. Varμ(f ) ≤ 2t μ(|∇f |2) + Varμ(Ptf ) ≤ 2t μ(|∇f |2) + ξ(t) Osc2(f )

from which we deduce that 

. βWP (s) ≤ 2ξ−1(s) .

This expression is simpler than the one in [38] we recalled in Theorem 1.5, but can 
be slightly worse. . ♦
Example 1.8 Let us give some examples of (non optimal) pairs for .(βWP , ξ)
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(1) If for .p > 0, .ξ(t) = c′ t−p one can take .βWP (s) = c s−1/p. Conversely if 
.βWP (s) = c s−1/p the previous Theorem yields .ξ(t) = c′ t−p lnp(t). 

Using the trick in remark 1.6, when .βWP (s) = cs−1/p, and choosing . γi =
2−i and .αi = 6

π2 i−2 we get that .ξ(t) ∼ t−p, for large  t’s, i.e. the logarithmic 
term disappeared as expected. 

Examples of measures satisfying such a weak Poincaré inequality are for 
.V (x) = (n+q) ln(1+|x|) for some .q > 0, i.e. measures with polynomial tails. 
For the explicit link between p and q see [38] example 1.4.a). 

(2) For .p > 0, .ξ(t) = c′ ln−p(1 + t) and .βWP (s) = c eδ/s1/p
. 

This time it corresponds to .μ(dx) = C 1
|x|n lnq (1+|x|) dx for some . q > 1, see  

[38] example 1.4.b). 
(3) For .0 < p ≤ 1, .ξ(t) = c e−c′tp and .βWP (s) = d ′ + d ln(1−p)/p(1 + 1/s). 

This case covers the Subbotin distributions .μ(dx) = Z−1 e−|x|δ dx for . δ ≤ 1
with .p = δ/(4 − 3δ), see [38] example 1.4.c). In particular for .p = 1 one 
recovers the radial exponential distribution which satisfies an usual Poincaré 
inequality. 

All the constants depend on p. . ♦
A natural question is thus to understand whether there is an integrated . �2 version 

of these weak inequalities or not. This will be done in the next section where we 
introduce a first weak version: for some decreasing . β for any bounded . g ∈ D(A)

and any .s > 0, 

.(WI�2Osc) μ(|∇g|2) ≤ β(s) μ((Ag)2) + s Osc2(g) . (1.16) 

We shall see that (WI. �2Osc) can be compared with the weak Poincaré inequality. 
In Sect. 3 we introduce another, perhaps more natural, weak version 

.(WI�2grad) μ(|∇g|2) ≤ β(s) μ((Ag)2) + s |||∇g|2||∞ , (1.17) 

which is useful in the log-concave situation, i.e. provided V is convex (not
necessarily strictly convex). It is known since S. Bobkov’s work [8], that a log-
concave probability measure always satisfies some Poincaré inequality (see [3] for a  
direct proof using Lyapunov functions). Recent results by E. Milman [35] combined 
with Brascamp-Lieb inequality allow us to get the following result: if . μ is log-
concave, 

. CP (μ) ≤ Cuniv μ(|||Hess−1V |||)

for some universal .Cuniv . Here for a real and non-negative symmetric matrix, we 
denote by 

.|||M||| := sup
|u|=1

〈u,Mu〉 = λmax(M)
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the operator norm of M , .λmax(M) being the largest eigenvalue of M . 
We recover this result in corollary 3.2 as a consequence of (WI. �2 grad) (and not 

Brascamp-Lieb) and obtain new explicit bounds in corollary 3.5 involving 

. μ(ln1+ε(1 + |||Hess−1V |||)

only. 
The next Sect. 4 deals with log-concave perturbations of either log-concave 

product measures or log-concave radially symmetric measures. Actually M. Ledoux 
introduced the integrated . �2 criterion in order to study the Poincaré inequality of 
perturbations (non necessarily log-concave but wit a potential whose curvature is 
bounded from below) of product measures and to obtain results for Gibbs measures 
on continuous spin systems [28]. In the same paper he extended his approach to the 
log-Sobolev constant (see [28] Proposition 1.5 and the comments immediately after 
its statement). This approach was then developed in [36] and several works. 

In their subsection 3.4, Barthe and Klartag [6] indicate that this method should 
be used in order to get some results on log-concave perturbations of product 
measures that are uniformly log-concave in the large, but not for heavy tailed 
product measures. In Sect. 4 we show that the weak integrated . �2 criterion allows 
us to (partly) recover similar but slightly worse results as in [6]. Other results in 
this direction are shown in [17]. We then extend the method and replace product 
measures by radial distributions. 

In all the paper, unless explicitly stated, we assume for simplicity that assumption 
(H) is in force. 

Dedication A tribute to Michel Ledoux. 

The origin of this work was an attempt to convince M. Ledoux of the interest 
of weak inequalities of Poincaré type. After reading the beautiful wink to Michel’s 
heroes [31], we understood that the only way to succeed was to introduce some 
“curvature condition” inside. It was thus natural to weaken the integrated . �2
criterion introduced in [28] and to see what happens. The byproduct results in the 
paper were a nice surprise. 

2 Weak Integrated �2 

Let us start with an obvious remark: since .∇f and Af are unchanged when 
replacing f by .f − a for any constant a, we have  

.μ(|∇f |2) = μ(|∇(f − a)|2) = −μ((f − a)A(f − a))

= −μ((f − a)Af ) ≤ 1

2
Osc(f ) μ(|Af |) ,
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by choosing .a = (sup(f ) + inf(f ))/2. Using for .s > 0, .2uv ≤ 1
s
u2 + s v2 we thus 

deduce, using Cauchy-Schwarz inequality, that for all .s > 0, 

.μ(|∇f |2) ≤ 1

16s
μ((Af )2) + s Osc2(f ) . (2.1) 

This is a special instance of (1.16) we recall here: for some decreasing . β for any 
bounded .g ∈ D(A) and any .s > 0, 

.(WI�2Osc) μ(|∇g|2) ≤ β(s) μ((Ag)2) + s Osc2(g) . (2.2) 

Hence some (very) weak form of the integrated . �2 is always satisfied. The previous 
inequality is thus certainly insufficient in order to get interesting consequences. 

Remark 2.1 Contrary to (WPI), (2.2) is not always satisfied for .s ≥ 1, so that, 
apriori, . β does not necessarily goes to 0 at infinity. However if (2.2) is satisfied with
two functions . β1 and . β2, it is also satisfied with .β = min(β1, β2). According to 
(2.1), it is thus always satisfied for .s �→ min(β(s), 1/16s), so that we may always 
assume without loss of generality that . β goes to 0 at infinity. Again in all what 
follows we denote .β−1(t) = inf{s > 0 , β(s) ≤ t}. . ♦

To see how to reinforce (2.1) it is enough to look at the proof of (2) implies (1)
in Theorem 1.3. We follow the proof in [28]. 

The starting point is again (1.15) ,

. Varμ(f ) − Varμ(Ptf ) = 2
∫ t

0
μ(|∇Puf |2) du

yielding the equality (1.7) in [28], 

. Varμ(f ) = 2
∫ +∞

0
μ(|∇Ptf |2) dμ

as soon as 

. Varμ(Ptf ) → 0 as t → +∞ .

Since . μ is symmetric, the latter is satisfied as soon as the semi-group is ergodic, 
i.e. the eigenspace of A associated to the eigenvalue 0 is reduced to the constants. 
Actually this property is ensured by our assumptions: as shown for instance in 
[38] Theorem 3.1 and the remark following this theorem, if .μ(dx) = e−V dx is 
a probability measure with V of . C1 class, hence locally bounded, . μ satisfies some 
weak Poincaré inequality so that the above convergence holds true. 

Now defining .F(t) = μ(|∇Ptf |2), one can check (using (1.3) and (1.6) ) that

.F ′(t) = −2μ((APtf )2) . (2.3)
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Notice that this equality shows that F is non increasing. 
Using this property in (1.15) we get

. Varμ(f ) ≥ Varμ(Ptf ) + 2t μ(|∇Ptf |2) ≥ 2t μ(|∇Ptf |2)

so that 

.μ(|∇Ptf |2) ≤ 1

2t
Varμ(f ) ≤ 1

2t
Osc2(f ) . (2.4) 

Assuming that a weak integrated . �2 inequality (2.2) is satisfied we get, using that
.Osc(Ptf ) ≤ Osc(f ), 

. F ′(t) ≤ − 2

β(s)
F (t) + 2s

β(s)
Osc2(f ) .

This immediately yields 

. μ(|∇Ptf |2) = F(t) ≤ e−2t/β(s) μ(|∇f |2) + s
(

1 − e−2t/β(s)
)

Osc2(f ) .

(2.5) 

We may apply the previous inequality replacing f by . Paf , next  t by .t − a and use 
again .Osc(Paf ) ≤ Osc(f ). Using  (2.4) we thus have for .t > a > 0, 

.μ(|∇Ptf |2) ≤ inf
s>0

(
s + 1

2a
e−2(t−a)/β(s)

)
Osc2(f ) = η(t) Osc2(f ). (2.6) 

We have thus obtained

Proposition 2.2 Assume that . μ satisfies a weak integrated . �2 inequality (WI 
. �2Osc) (2.2). Define for .t > a > 0, 

. η(t) = inf
s>0

(
s + 1

2a
e−2(t−a)/β(s)

)
= 2 inf{s > 0 ; β(s) ln(1/as) ≤ 2(t − a)} .

If . η is integrable at infinity, then for .t > a, 

. Varμ(Ptf ) ≤ 2

(∫ +∞

t

η(u)du

)
Osc2(f ) .

In particular . μ satisfies a (WPI) where .βWP is given in Theorem 1.5 with 

.ξ(t) = 2

(∫ +∞

t

η(u)du

)
.



178 P. Cattiaux and A. Guillin

Remark 2.3 Notice that if . μ satisfies a Poincaré inequality we recover the correct 
exponential decay thanks to proposition 1.4. 

If we come back to (2.1) we may always use .β(s) ∼ c/s. Using proposition 2.2 
with .a = t/2 the best possible .η(t) is of order .1/t (for large t’s) and thus is not 
integrable, in accordance with the fact that (2.1) cannot furnish the rate of decay to
0 since it is satisfied for all measures . μ. 

Notice that, as for the (WPI), if .β(s) = cs−1/(p+1) we obtain . η(t) =
c′ (ln(t)/t)p+1 and finally .ξ(t) ∼ c′ (ln(t)/t)p. But here again we may apply the 
trick of remark 1.6, simply replacing (1.13) by (2.5) , yielding

.μ(|∇Ptf |2) ≤
∑
i≥0

(γi si+1(t)) Osc2(f ) , (2.7) 

with

. si(t) = β−1(2tαi/ ln(1/γi)) .

As for (WPI) this remark allows us to skip the logarithmic term. . ♦
Remark 2.4 Taking .a = μ(f ) we may replace (2.1) by

. μ(|∇f |2) ≤ 1

4s
μ((Af )2) + s Varμ(f ) ,

so that we could also consider weak inequalities of the form 

.μ(|∇f |2) ≤ β(s) μ((Af )2) + s Varμ(f ) . (2.8) 

It is immediately seen that the previous derivation is unchanged if we replace
.Osc2(f ) by .Varμ(f ) so that if . η is integrable we get 

. Varμ(Ptf ) ≤ 2

(∫ +∞

t

η(u)du

)
Varμ(f ) .

But according to what we already said, such a decay implies that . μ satisfies a 
Poincaré inequality, hence thanks to Theorem 1.3 that . β is constant equal to . CP (μ)

(or if one prefers that .β(0) < +∞). Thus, in the other cases, (2.8) furnishes a
non-integrable . η. . ♦

Let us look at the converse statement. According to Theorem 1.5 we may 
associate some (WPI) inequality to any decay controlled by the Oscillation. Thus 
for .a = μ(f ), 

. μ2(|∇f |2) = −μ2((f − a)Af ) ≤ μ((Af )2) Varμ(f )

≤ μ((Af )2)
(
βWP (s) μ(|∇f |2) + s Osc2(f )

)
. (2.9)
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Since .u2 ≤ Cu + B implies that 

. u ≤ 1

2

(
C + (C2 + 4B)

1
2

)
≤ C + B

1
2 ,

we obtain 

. μ(|∇f |2) ≤ βWP (s) μ((Af )2)) + s
1
2 μ

1
2 ((Af )2) Osc(f ) ,

≤ (βWP (s) + 1

2
) μ((Af )2)) + 1

2
s Osc2(f ) .

We have thus obtained (since we know that . μ always satisfies some (WPI) 
inequality) and according to remark 2.1 

Proposition 2.5 . μ always satisfies a weak integrated . �2 inequality (WI . �2 Osc) 
(2.2) , with

. β(s) = min

(
1/2 + βWP (2s) ,

1

16s

)
.

The previous results need some comments. 
In first place, if we cannot assume that .β(s) = 1 for .s ≥ 1 in the weak integrated 

. �2 inequality (2.2), the interesting behaviour of this function is nevertheless as . s →
0 for proposition 2.2 to have some interest. 

In second place proposition 2.5 is certainly non sharp. In particular we do not 
recover the same . β when .βWP is constant, i.e. when . μ satisfies a Poincaré inequality, 
while using (2.9) with .s = 0 yields the correct value. 

A still worse remark is that the previous proposition cannot be always used in 
conjunction with proposition 2.2. Indeed if .βWP (s) ≥ c/s as it is the case in the 
second case of example 1.8 the . η obtained in proposition 2.2 is not integrable. 

Let us look at some other example. 

Example 2.6 Assume that for some .p > 0, .βWP (s) = cs−1/p. In this case one 
can improve upon the result of proposition 2.5. Indeed we may replace the weak 
Poincaré inequality by its equivalent Nash type inequality 

. Varμ(f ) ≤ c
(
p + (1/p)p

) 1
p+1 μ

p
p+1 (|∇f |2) Osc

2
p+1 (f ) .

We thus deduce 

. μ2(|∇f |2) ≤ μ((Af )2) Varμ(f ) ≤ c(p)μ((Af )2) μ
p

p+1 (|∇f |2) Osc
2

p+1 (f )

for some .c(p) that may change from line to line, so that 

.μ2(|∇f |2) ≤ c(p)μ
p+1
p+2 ((Af )2) Osc

2
p+2 (f )
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and finally that . μ satisfies a weak integrated . �2 inequality with 

. β(s) = c(p) s−1/(p+1) .

This result is of course better than the .s−1/p obtained by directly using proposi-
tion 2.5 and according to remark 1.6 allows to recover the correct decay for .ξ(t). 
. ♦

3 The Log-Concave Case 

If one wants to mimic (WPI) it seems more natural to consider another type of weak 
integrated . �2 inequalities, namely 

.(WI �2 grad) μ(|∇g|2) ≤ β(s) μ((Ag)2) + s |||∇g|2||∞ . (3.1) 

But contrary to the previous derivation it is no more true that . |||∇Ptf |2||∞ ≤
|||∇f |2||∞ so that the analogue of (2.4) will involve .supu≤t |||∇Puf |2||∞ which 
is not really tractable. 

If we want to guarantee .|||∇Ptf |2||∞ ≤ |||∇f |2||∞ a sufficient condition is that 
. μ is log-concave, i.e. V is convex. Indeed in this case on can show (see a stochastic 
immediate proof in [15]) that 

.|∇Ptf |2 ≤ P 2
t (|∇f |) ≤ Pt(|∇f |2) ≤ |||∇f |2||∞ . (3.2) 

In this case we will thus obtain the analogue of (2.5) 

.μ(|∇Ptf |2) ≤ e−2t/β(s) μ(|∇f |2) + s |||∇f |2||∞ . (3.3) 

The difference with the previous section is that (3.1) is satisfied by .β(s) = 0 for 
.s ≥ 1. The converse function .β−1 is thus bounded by 1, hence integrable at the 
origin. 

Now we can use the trick described in Remark 1.6 which yields, 

. μ(|∇Ptf |2) ≤
(+∞∑

i=0

γi β−1(2αi+1 t/ ln(1/γi+1))

)
|||∇f |2||∞

= η(t) |||∇f |2||∞ . (3.4)
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Since .β−1 is integrable at 0, we have thus obtained after a simple change of variable, 
provided . η is integrable at infinity 

. Varμ(f ) ≤ 2

(∫ +∞

0
η(u)du

)
|||∇f |2||∞

≤
(+∞∑

i=0

γi ln(1/γi+1)

αi+1

) (∫ +∞

0
β−1(t)dt

)
|||∇f |2||∞ . (3.5) 

As before we may choose .γi = 2−i and .αi = 6
π2 i−2 so that 

. 

+∞∑
i=0

γi ln(1/γi+1)

αi+1
= κ

where . κ is thus a universal constant. Hence if .β−1 is integrable with integral equal 
to .Mβ we have obtained 

.Varμ(f ) ≤ κ Mβ |||∇f |2||∞ . (3.6) 

As first shown by E. Milman in [35], for log-concave measures (3.6) implies a
Poincaré inequality. A semi-group proof of E. Milman’s result was then given by M.
Ledoux in [30]. Another semi-group proof and various improvements were recently 
shown in [16]. We shall follow the latter to give a precise result. 

Starting with 

. μ(|f − μ(f )|) ≤ Var1/2
μ (f ) ≤ κ1/2 M

1
2
β |||∇f |||∞ ,

we deduce from [16] Theorem 2.7 that the .L1 Poincaré constant .C′
C(μ) is less 

than .16
√

κ Mβ/π . Using Cheeger’s inequality .CP (μ) ≤ 4 (C′
C(μ))2 we have thus 

obtained 

Proposition 3.1 Assume that . μ is log-concave and satisfies a weak integrated . �2
inequality (WI . �2 grad) (3.1) . Then

. CP (μ) ≤ 1024

π2 κ Mβ ,

where . κ is some (explicit) universal constant and .Mβ = ∫ +∞
0 β−1(t)dt . 

It turns out that there always exists a (non necessarily optimal) function . β such 
that (3.1) is satisfied for a log-concave measure .μ
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Indeed recall (1.10) and (1.12) . We have

. μ((Af )2) = μ(||Hessf ||2HS) + μ(〈∇f,HessV ∇f 〉)

≥ 1

u
μ

(
|∇f |2 1

λmin(HessV )≥ 1
u

)

≥ 1

u
μ(|∇f |2) − 1

u
μ

(
λmin(HessV ) ≤ 1

u

)
|||∇f |2||∞ .

It follows 

. μ(|∇f |2) ≤ β(s) μ((Af )2) + s |||∇f |2||∞

where, using .|||Hess−1V ||| = 1/λmin(HessV ) one has 

.β−1(s) = μ(|||Hess−1V ||| ≥ s) . (3.7) 

Since

. μ(|||Hess−1V |||) =
∫ +∞

0
μ(|||Hess−1V ||| ≥ s) ds

we have obtained 

Corollary 3.2 If . μ is log-concave and such that .μ(|||Hess−1V |||) < +∞, then 

. CP (μ) ≤ Cuniv μ(|||Hess−1V |||) ,

for some universal constant .Cuniv . 

This result is not new and as remarked by E. Milman is an immediate consequence 
of the fact that (3.6) implies that . μ satisfies some Poincaré inequality and of one of 
the favorite inequality of M. Ledoux, namely the Brascamp-Lieb inequality 

. Varμ(f ) ≤ μ(〈∇f,Hess−1V ∇f 〉) ≤ μ(|||Hess−1V |||) |||∇f |2||∞ .

Actually this method furnishes a slightly better pre-constant than the one obtained 
with our method (since our .κ ≥ 1). 

Still in the log-concave situation, if we assume (2.2) we may derive another
control for the Poincaré constant.

Proposition 3.3 Assume that . μ is log-concave and satisfies a weak integrated . �2
inequality (WI . �2Osc) (2.2). If in addition there exists a function .s(t) such that 

.

∫ +∞

0
s(t) dt = s0

2
<

1

12
and

∫ +∞

0
e−2t/β(s(t)) dt = κ/2 < +∞ ,
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then 

.CP (μ) ≤ 64 ln(2) κ

(1 − 6s0)2
. (3.8) 

Proof Starting with (2.5) in the simplified form

. μ(|∇Ptf |2) = F(t) ≤ e−2t/β(s(t)) μ(|∇f |2) + s(t) Osc2(f ) ,

we get 

. Varμ(f ) ≤ κ μ(|∇f |2) + s0 Osc2f

so that the conclusion follows from [16] Theorem 9.2.14. ��
Still in the log-concave case it was shown by M. Ledoux in [29] that 

. |||∇Ptf |||∞ ≤ 1√
2t

||f ||∞

so that replacing f by .f − a with .a = 1
2 (inf f + sup f ) we have 

. |||∇Ptf |||∞ ≤ 1

2
√

2t
Osc(f ) .

This bound was improved in [15] replacing .
√

2 by .
√

π and is one of the key element 
in the proof of Theorem 2.7 in [16]. 

We may combine this bound with the (WI . �2grad) inequality in order to improve 
upon the previous result. If a (WI . �2grad) inequality is satisfied we have 

. μ(|∇P2t f |2) ≤ e−2t/β(s) μ(|∇Ptf |2) + s |||∇Ptf |2||∞
≤ e−2t/β(s) μ(|∇f |2) + s

4 πt
Osc2(f ) .

We have thus obtained 

Proposition 3.4 Assume that . μ is log-concave and satisfies a weak integrated . �2
inequality (WI . �2 grad) (3.1). If in addition there exists a function .s(t) such that 

. 

∫ +∞

0

s(t)

4πt
dt = s0

4
<

1

24
and

∫ +∞

0
e−2t/β(s(t)) dt = κ/4 < +∞ ,

then 

.CP (μ) ≤ 64 ln(2) κ

(1 − 6s0)2
. (3.9)
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In the previous proposition we can choose a generic function .s(t) given by 

.s(t) = θ

16

(
t 1t≤2 + ln−(1+θ)(t) 1t>2

)
, (3.10) 

so that

. 

∫ +∞

0

s(t)

4π t
dt = θ

32π
+ 1

64π lnθ (2)
≤ 1

48

as soon as .0 < θ ≤ 1. So we may always choose 

. κ = 4

(
2 +

∫ +∞

2
e−2t/β((θ/16) ln−(1+θ)(t))dt

)
, s0 = 1

12
, CP (μ) ≤ 256 ln(2) κ .

(3.11) 

As we previously saw, we may also use the previous proposition with

. β−1(s) = μ(|||Hess−1V ||| ≥ s) .

This yields 

Corollary 3.5 If . μ is log-concave and such that . Mε := μ(ln1+ε(1 +
|||Hess−1V |||)) < +∞ for some .ε > 0, then 

. CP (μ) ≤ c + 4 max

(
2, exp

([
2ε 64 Mε

θ

] 1
ε−θ

))
,

with .θ = 1 if .ε ≥ 2 and .θ = ε/2 if .ε ≤ 2, where c is some universal constant. 

Proof Denote by .Mε = μ(ln1+ε(1 + |||Hess−1V |||)). According to Markov 
inequality 

. β−1(s) ≤ Mε

ln1+ε(1 + s)
.

It follows 

. β(t) ≤ exp

[(
Mε

t

) 1
1+ε

]

so that for .t ≥ 2, 

.β(s(t)) ≤ exp

[(
8Mε

θ

) 1
1+ε

ln
1+θ
1+ε (1 + t)

]
.
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In particular, using .t2 ≥ t + 1 for .t ≥ 2, 

. 
1

2
ln(t) ≥

(
8Mε

θ

) 1
1+ε

ln
1+θ
1+ε (1 + t)

as soon as 

. t ≥ max

(
2, exp

[
2ε 64 Mε

θ

] 1
ε−θ

)
.

For such t’s we thus have 

. e−2t/β(s(t)) = e−2 exp(ln(t)−ln(β(s(t)))) ≤ e−2
√

t

so that finally 

. 
κ

4
≤ max

(
2, exp

[
2ε 64 Mε

θ

] 1
ε−θ

)
+

∫ +∞

2
e−2

√
t dt .

Hence the result choosing .θ = 1 if .ε ≥ 2 and .θ = ε/2 otherwise. ��
Of course our bounds are far from being sharp. Notice that the previous corollary 
allows to look at Subbotin distributions .μ(dx) = Z−1e−|x|p dx for large p’s, while 
Brascamp-Lieb inequality cannot be used. However other known methods (see e.g. 
S. Bobkov’s results on radial measures in [9]) furnish better bounds in this case. Of 
course the previous corollary covers non radial cases. 

Remark 3.6 If .Mε := μ(|||Hess−1V |||ε) < +∞ for some .ε > 0 we can obtain 
another explicit bound choosing .θ = 1 in (3.10) . Using again Markov inequality we
have .β(s) ≤ (Mε/s)

1/ε so that 

. 

∫ +∞

2
e−2t/β(s(t)) dt ≤

∫ +∞

2
e−2t/ ln2/ε(M

1/ε
ε t)dt

≤ 1

2
M1/ε

ε ln2/ε(M2/ε
ε ) +

∫ +∞

2
e−2t/ ln2ε(t2)dt

and finally 

. CP (μ) ≤ c(ε) + max

(
2,

1

2
M1/ε

ε ln2/ε(M2/ε
ε )

)
.

Notice that for .ε = 1 we recover a slightly worse result than corollary 3.2 since 
an extra logarithm appears. Of course choosing .s(t) with a slower decay, we may 
improve upon this result but it seems that in all cases an extra worse term always
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appears. In addition constants are quite bad. But of course the result is new for 
.ε < 1. . ♦

4 Some Applications: Perturbation of Product Measures and 
Radial Measures 

We will first recall how the (usual) integrated . �2 criterion can be used in order to 
relate the Poincaré constant of . μ to the ones of its one dimensional conditional 
distributions, in some special situations. We copy here Proposition (3.1) in [28] and 
its proof to see how to potentially extend it. In the sequel we denote 

. SG(μ) = 1

CP (μ)

the spectral gap of . μ. 

Proposition 4.1 (M. Ledoux) Let . μ(dx) = Z−1 e−W(x)−∑n
i=1 hi(xi ) dx =

Z−1 e−V (x)dx be a probability measure on . Rn, W and the . hi’s being . C2. Introduce 
the one dimensional conditional distributions 

. ηi,x(dt) = Z−1
i,x e−W(x1,...,xi−1,t,xi ,..xn)−hi(t) dt .

Let 

. S = inf
i,x

SG(ηi,x) .

Assume that .HessW(x) ≥ w and .maxi ∂2
iiW(x) ≤ w̄ for all .x ∈ R

n. 
Then 

. SG(μ) ≥ S + w − w̄ .

Proof It holds 

. �2f =
∑
i,j

(∂2
ij f )2 +

∑
i

h′′
i (xi)(∂if )2 + 〈∇f,HessW ∇f 〉

≥
∑

i

(∂2
iif )2 +

∑
i

h′′
i (xi)(∂if )2 + w|∇f |2 (4.1)

≥
∑

i

(∂2
iif )2 +

∑
i

(h′′
i (xi) + ∂2

iiW) (∂if )2 + (w − w̄) |∇f |2

≥
∑

i

�2,if + (w − w̄) |∇f |2 .
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It follows 

.μ((Af )2) = μ(�2f ) ≥
∑

i

μ(SG(ηi,x) |∂if |2) + (w − w̄) μ(|∇f |2) (4.2) 

≥ (S + w − w̄) μ(|∇f |2) ,

hence the result applying Theorem 1.3. ��
Remark 4.2 Choosing .W = 0 the previous result contains the renowned tensoriza-
tion property of Poincaré inequality if .μ = ⊗i μi , 

. CP (⊗i μi) ≤ max
i

CP (μi) .

Similar results for weak Poincaré inequalities involve a “dimension dependence” 
(see e.g. [7]). . ♦
Remark 4.3 For the proof of proposition 4.1 to be rigorous, it is enough to assume 
that ESA is satisfied for .C∞

0 (Rn) (which is implicit in M. Ledoux’s work). Indeed 
in this case one only has to consider such test functions. The delicate point in the 
previous proof is that one has to check 

. μ(�2,if ) = μ((Aif )2)

where .Aif = ∂2
iif − (h′(xi) + ∂iW)∂if in order to use the integrated . �2 criterion. 

If f is compactly supported, this is immediate as we already discussed in the 
introduction. Hence for .D = R

n, (H) ensures that the result holds true. 
The case of a bounded domain D will be discussed later. . ♦
In the previous proof, assume that .w = 0 (W is convex), we thus obtain 

. �2f ≥
∑

i

h′′
i (xi) (∂if )2

which is interesting only if the right and side is non-negative for any f , i.e. if .h′′
i ≥ 0. 

Hence as we did for obtaining (3.7) we have for .u > 0, since we may integrate w.r.t. 
. μ, 

.μ(|∇f |2) ≤ uμ((Af )2) + μ

(
min

i
(h′′

i (xi) ≤ 1/u)

)
|||∇f |2||∞ (4.3) 

that furnishes a (WI . �2 grad) inequality. Of course 

.μ

(
min

i
(h′′

i (xi) ≤ 1/u)

)
≤ n max

i
μ

(
h′′

i (xi) ≤ 1

u

)
.
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We have seen that such a weak inequality is interesting provided on one hand . μ

is log-concave and on the other hand .u �→ maxi μ
(
h′′

i (xi) ≤ 1
u

)
which is clearly 

non-increasing goes to 0 as .u → +∞. We will thus assume that all . hi are convex, 
yielding thanks to Proposition 3.4 with the choice (3.10) with .θ = 1. 

Lemma 4.4 Let .μ(dx) = Z−1 e−W(x)−∑n
i=1 hi(xi ) dx = Z−1 e−V (x)dx be a 

probability measure on . Rn, W and the . hi’s being convex and . C2. Define 

. α(v) = max
i

μ(h′′
i (xi) ≤ v)

and assume that (the non-decreasing) . α goes to 0 as .v → 0. Then 

. CP (μ) ≤ 256 ln(2) κ

with 

. κ = 4

(
2 +

∫ +∞

2
e−2t/α−1(1/16 n ln2(t)) dt

)
.

Let us illustrate this situation in the particular case .hi(u) = |u|p for .p > 1. 
We immediately see that the situation is completely different depending on whether 
.p < 2 or .p > 2. Denote by . μi the probability distribution of . xi under . μ. For . p < 2
we have to control the tails of . μi while for .p > 2 we have to control the mass of 
small intervals centered at the origin. 

Remark 4.5 For .p < 2, .hp : u �→ |u|p is not . C2. But if .p > 1, the only problem 
lies at the origin, and using that . h′′

p is integrable at the origin it is not difficult to 
check (regularizing . hp at the origin for instance) that all what was done above is 
still true. . ♦
More generally we may consider . hi’s who satisfy similar concentration bounds. Let 
us state a first result 

Proposition 4.6 Let .μ(dx) = Z−1 e−W(x) −∑n
i=1 hi(xi ) dx be a probability measure 

on . Rn. We assume that the . hi’s are even convex functions. In addition we assume 
that for all .i = 1, . . . , n, 

. h′′
i (u) ≥ ρ(|u|)

where . ρ is a non-increasing positive function going to 0 at infinity. Then for all even 
convex function W it holds 

. CP (μ) ≤ 4

(
2 +

∫ +∞

2
e−2t ρ(

√
2 maxi CP (ηi ) ln(n ln2(t)) dt

)
,

where .ηi(du) = Z−1
i e−hi(u) du.
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Proof According to Prekopa-Leindler theorem we know that the i-th marginal law 
. μi of . μ, i.e. the . μ distribution of . xi , is a one dimensional distribution, that can be 
written 

.μi(du) = Z−1
i ρi(u) e−hi(u) du , (4.4) 

with an even and log-concave (thus non increasing on . R+) function . ρi . For such 
one dimensional distributions we may use a remarkable result due to O. Roustant, 
F. Barthe and B. Ioos (see [39]) recalled in proposition 6 of [6], namely 

Lemma 4.7 (Roustant-Barthe-Ioos) Let .η(du) = e−V (u) 1(−b,b)(u) du be a prob-
ability measure on . R, with V a continuous and even function. For any even function 
. ρ which is non-increasing on . R+ and such that .ν(du) = ρ(u) η(du) is a probability 
measure, it holds 

. CP (ν) ≤ CP (η) .

Applying the lemma we get 

.CP (μi) ≤ CP (Z−1 e−hi(u) du) := CP (ηi) . (4.5) 

We can thus use the concentration of measure property obtained via the Poincaré
inequality, first shown by Bobkov and Ledoux [10]. Here we use an explicit form 
we found in [4] (4.4.6). Since .u �→ u is 1-Lipschitz and centered (again thanks to 
symmetry), it yields 

.μ(h′′(xi) ≤ 1/u) ≤ μ(|xi | ≥ ρ−1(1/u)) ≤ 6 exp

(
− ρ−1(1/u)√

CP (ηi)

)
. (4.6) 

We thus have for . v > 0

.v μ((Af )2) + 6 n max
i

exp

(
− ρ−1(1/v)√

CP (ηi)

)
||∇f |2||∞ ≥ μ(|∇f |2) , (4.7) 

yielding, for .s > 0 small enough, 

.β(s) = 1

ρ
(√

maxi CP (ηi) ln(6n/s)
) . (4.8) 

It remains to use the lemma 4.4. ��
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Remark 4.8 When .hi(u) = |u|p for some .1 < p ≤ 2, one knows that . CP (ηi) ≤
4

p2(1−1/p) according to [11] Theorem 2.1. It follows that for some (explicit) constant 
.c(p), 

. CP (μ) ≤ c(p)

p(p − 1)
(1 + ln2−p(6n)) .

The study of such . μ’s is not new. A much better result has been recently shown 
by F. Barthe and B. Klartag (see Theorem 1 in [6]), 

Theorem 4.9 (Barthe-Klartag) Let .μ(dx) = Z−1 e−W(x) −∑n
i=1 |xi |p dx be a 

probability measure. We assume that .1 ≤ p ≤ 2 and that W is an even convex 
function. Then 

. CP (μ) ≤ C ln
2−p
p (max(n, 2)) ,

where C is some universal constant. 

The key point here is naturally that the result holds true for any even and convex W . 
The proof by Barthe and Klartag lies on a lot of properties of log-concave measures 
and uses in particular the extension of the gaussian correlation inequality shown by 
Royen, to mixtures of gaussian measures. We of course refer the reader to [6]. We do 
not only loose something on the power of the logarithm, but the constant becomes 
infinite as p goes to 1, which is natural since the . �2 requires some strict convexity 
except at some point. However our result does not require the full machinery of 
gaussian mixtures, and shows that the result only depends on the behaviour of the 
second derivative of the h’s at infinity. . ♦

Remark 4.10 In the previous proof we implicitly have used the fact that (H) is 
satisfied. We know that it is the case when .W ∈ C2(Rn). If  W is only continuous, 
we may replace W by .Wε = W ∗ γε where . γε is a tiny centered gaussian density. 
.Wε is still even and convex, so that the Theorem applies. Since the bound does not 
depend on . ε we may take limits in the corresponding Poincaré inequalities and get 
the same bound for W . . ♦
Remark 4.11 Let now consider the case .p > 2. This time we have to control 

. μ
(
|xi | ≤ (p(p − 1) u)−1/(p−2)

)
,

for large u’s. 
Using (4.4) and since . ρi is even and log-concave, we see that 

.μ
(
|xi | ≤ u−1/(p−2)

)
≤ Z−1

i ρi(0) u−1/(p−2) .
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But 

. Z−1
i ρi(0) =

∫
e
−W(x1,...,xi−1,0,xi+1,...,xn)−∑

j �=i |xj |p ∏
i �=j dxj∫

e
−W(x)−∑

j |xj |p ∏
j dxj

.

Denote by 

.α = max
i

Z−1
i ρi(0) . (4.9) 

Then we get

. β(s) = 1

p(p − 1)

(αn

s

)p−2

so that we have to estimate (choosing .θ = 1 in (3.10) )

. 

∫ +∞

2
exp

(
−2p(p − 1)

(αn)p−2

t

ln2(p−2)(t)

)
dt .

Using that .t/ lnk(t) is bounded below by .c(k, ε)t1−ε for any .ε > 0, we easily obtain 

Proposition 4.12 Let .μ(dx) = Z−1 e−W(x)−∑n
i=1 |xi |p dx. We assume that . p > 2

and that W is convex and even so that . μ is log-concave. Then for all .ε > 0, there 
exists a constant .c(p, ε) such that 

. CP (μ) ≤ c(p, ε) (α n)(p−2)(1+ε)

where 

. α = max
i

∫
e
−W(x1,...,xi−1,0,xi+1,...,xn)−∑

j �=i |xj |p ∏
i �=j dxj∫

e
−W(x)−∑

j |xj |p ∏
j dxj

.

For instance if we assume that .t �→ W(x1, . . . t, . . . , xn) is . β Hölder continuous, 
uniformly in x and i, using .|W(x1, . . . t, . . . , xn) − W(x1, . . . 0, . . . , xn)| ≤ L|t |β , 
we get 

. α ≤ 1∫
e−L|t |β−|t |p dt

.

The previous result may have some interest only if .2 < p < 3. This is also quite 
natural: for large p’s, .|x|p becomes flat near the origin so that one cannot expect to 
use some convexity approach.
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The best general control (thus including the case .p > 2 for Subbotin distribu-
tions) is obtained in Theorem 18 of [6], and says that 

. CP (μ) ≤ c n max
i

(CP (νi)) .

In addition, in subsection 3.4 of [6], it is shown that the factor n is optimal by 
considering log concave perturbations of Subbotin distributions . νi with exponent p 
for large p’s for which .CP (μ) is at least of order .n(p−2)/p. 

However if W is unconditional (i.e. .W(σx) = W(x) for all .σ ∈ {−1, 1}n), one 
can deeply reinforce the previous result and show that .CP (μ) ≤ maxi (CP (νi)) as 
shown in [6] Theorem 17. . ♦
Remark 4.13 Denote by .Cov(μ) the covariance matrix, i.e. . Covi,j (μ) = μ(xixj )−
μ(xi)μ(xj ). It is immediate that .λmax(Cov(μ)) ≤ CP (μ). Our proof thus gives an 
universal bound (that does not depend on W ) for the Covariance matrix. The proofs 
by Barthe and Klartag use first estimates for this covariance matrix. . ♦

Looking at log-concave perturbations of log-concave product measures as above, 
can be partly motivated by statistical issues. We refer to [17] (in particular the final 
section) for some of them. Of course looking at product measures is interesting 
thanks to the tensorization property of Poincaré inequality, furnishing dimension 
free bounds. For log-concave measures, another case is well understood since 
S. Bobkov’s work [9], namely radial measures. The following version is due to 
Bonnefont et al. [12, Theorem 1.2] 

Theorem 4.14 (Bobkov, Bonnefont-Joulin-Ma) Let . μ be a spherically symmetric 
(radial) log-concave probability measure on . Rn, .n ≥ 2. Then 

. CP (μ) ≤ μ(|x|2)
n − 1

.

We can obtain a result similar to Proposition 4.6 or Proposition 4.12 

Theorem 4.15 Let .μ(dx) = Z−1
μ e−W(x)−h(|x|2) dx be a probability measure on 

. Rn. We assume that W is even and convex and that h is convex and non-decreasing 
on . R+, so that . μ is log-concave. W and h are also normalized so that . W(0) =
h(0) = 0 (and consequently W and h are non-negative). Introduce 

. νh(dx) = e−h(|x|2) dx .

There exists an universal constant c such that 

.CP (μ) ≤ c

⎛
⎝1 +

∫ +∞

2
e
−4t h′

(
1

(cn(μ) ln2(t))2/n

)
dt

⎞
⎠ ,



A Journey with the Integrated . �2 Criterion and its Weak Forms 193 

with 

. cn(μ) = Z−1
μ

πn/2

n�(n/2)
≤ inf

θ

{
πn/2

n�(n/2)

emax|x|=θ W(x)

νh(|x| ≤ θ)

}

= inf
θ

{
emax|x|=θ W(x)

n
∫ θ

0 rn−1 e−h(r2) dr

}
.

Remark 4.16 Let .μλ(dx) = Z−1
μ λ−n e−W(x/λ)−h(|x|2/λ2) dx a dilation of . μ. Notice 

that .λ2c
2/n
n (μλ) = cn(μ). Since one has a factor .1/λ2 in front of . h′, we partly 

recover the homogeneity of the Poincaré constant under dilations. . ♦
Proof Once again we may assume that W and h are smooth, convolving with a tiny 
gaussian kernel, that preserves convexity and parity. For simplicity we also assume 
that . h′ is (strictly) increasing, so that . h′ is one to one. 

For two vectors x and y we write xy for the vector with coordinates .(xy)i = xiyi . 
It holds 

. �2f =
∑
i,j

(∂2
ij f )2 + 〈∇f,HessW∇f 〉 + 4 h′′(|x|2) |x∇f |2 + 2 h′(|x|2)|∇f |2

≥ 2 h′(|x|2)|∇f |2

so that 

.uμ((Af )2) + μ

(
2 h′(|x|2) ≤ 1

u

)
|||∇f |2||∞ ≥ μ(|∇f |2) . (4.10) 

So . μ satisfies a (WI . �2 grad) inequality, with 

. β−1(u) = μ

(
2 h′(|x|2) ≤ 1

u

)
= μr

(
h′(r2) ≤ 1

2u

)
= μr

(
r ≤

√
(h′)−1(1/2u)

)

where . μr denotes the probability distribution of the radial part of . μ. We have  

. μr(dv) = Z−1
μ nωn vn−1 e−h(v)

(∫
Sn−1

e−W(vθ) σn(dθ)

)
dv

where . σn denotes the uniform measure on the sphere .Sn−1 and .ωn = πn/2

n�(n/2)
denotes 

the volume of the unit (euclidean) ball. It follows, since W and h are non-negative, 

.μr

(
r ≤

√
(h′)−1(1/2u)

)
≤ Z−1

μ

πn/2

n�(n/2)
((h′)−1(1/2u))n/2
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from which we deduce that we can choose 

. β(t) = 1

2 h′((s/cn)2/n)
with cn = Z−1

μ

πn/2

n�(n/2)
.

It remains to apply Proposition 3.1. 
The next step is thus to get some tractable bound for . cn, i.e a lower bound for 

. Zμ. The simplest way to do it is to use the fact that W is non-decreasing on each 
radial direction so that for all . θ > 0

. Zμ ≥
∫

|x|≤θ

e−W(x)−h(|x|2) dx ≥ e− max|x|=θ W(x) νh(|x| ≤ θ) .

��
Corollary 4.17 In particular if .h(u) = up with .p ≥ 1, we have 

. CP (μ) ≤ 12288 ln(2)
c

2(p−1)
n

n (μ)

4p
(4(p − 1))

4(p−1)
n .

Proof If .h(u) = up for .p > 1, the corresponding dilation . μλ is given by . hλ(u) =
λ−2pup. Recall that .cn(μλ) = λ−ncn(μ). 

We shall use that 

. ln(t) ≤ 1

α 2α
tα + (ln(2) − (1/α)) for t ≥ 2 and α > 0.

If .t ≥ 2, we thus have .ln(t) ≤ 1
α 2α tα if .α ≤ 1 and .ln(t) ≤ tα if .α ≥ 1. 

It follows 

. ln
4(p−1)

n (t) ≤ cβ tβ

for .t ≥ 2 and .0 < β, with 

. cβ = 2−β

(
4(p − 1)

βn

) 4(p−1)
n

if
βn

4(p − 1)
≤ 1 ; cβ = 1 if

βn

4(p − 1)
≥ 1 .

This yields 

.e
−4t h′

λ

(
1

(cn(μλ) ln2(t))2/n

)
≤ e−κβ t1−β
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for 

. κβ = 4p

cβ λ2 c
2(p−1)

n
n (μ)

.

A simple change of variables .u = κβ t1−β , together with the positivity of all 
constants yields 

. 

∫ +∞

2
e
−4t h′

λ

(
1

(cn(μλ) ln2(t))2/n

)
dt ≤ ((1 − β)κβ)−1

∫ +∞

0
u

β
1−β e−u1−β

du .

Choosing for simplicity .β = 1/n, so that .βn/4(p − 1) ≤ 1, for .n ≥ 2 the final 
integral is bounded independently of n for instance by .c = ∫ +∞

0 u e−√
u du = 12. 

It follows 

. CP (μλ) ≤ 1024 ln(2)

⎛
⎝2 + c

λ2 c
2(p−1)

n
n (μ)

4p
(4(p − 1))

4(p−1)
n

⎞
⎠ .

Using .CP (μ) = λ−2 CP (μλ) and letting . λ go to infinity furnishes the result. 
For .p = 1 the result follows from strict convexity. ��

Remark 4.18 If . μr denotes the radial distribution of . μ, 

. μr(dv) = ρ(v) vn−1 e−h(v) .

. ρ is clearly an even function. Since for a fixed . θ , .v �→ W(vθ) is even and convex, 
it is non-decreasing, so that .v �→ ρ(v) is non-increasing. . ρ is non necessarily log-
concave, but we can again apply Proposition 6 in [6] furnishing, with .ν̄h = Z−1 νh, 

.CP (μr) ≤ CP (ν̄h) . (4.11) 

The measure . ̄νh being log-concave, we know that 

. CP (ν̄h) ≤ 12 Varν̄h
(v) .

What is important here is that the Poincaré constant of the radial measure . μr can be 
bounded independently of W . . ♦
Remark 4.19 Is the bound in Corollary 4.17 of the good order ? To see it look at the 
particular case .W = 0. In this case .Zμ = n ωn

2p
�(n/2p) so that . cn(μ) = 2p

n �(n/2p)
,

and our bound furnishes 

.CP (μ) ≤ c
210(p−1)/n p6(p−1)/n

4p n2(p−1)/n

1

�2(p−1)/n(n/2p)
,
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for some universal c. In this case the following very precise bounds were obtained 
by Bonnefont, Joulin and Ma in [12], 

. 
μ(|x|2)

n
≤ CP (μ) ≤ μ(|x|2)

n − 1
.

Since 

. μ(|x|2) = �((n + 2)/2p)

�(n/2p)

for .n/p � 1 (even for large p’s) we may use 

. �(z) ∼z→+∞
√

2πzz−(1/2) e−z

so that the Bonnefont, Joulin, Ma theorem furnishes 

.CP (μ) ∼ (2ep)−1/p n1−(1/p) . (4.12) 

For the same asymptotics our bound furnishes (for some new constant c)

.CP (μ) ≤ c p3(p−1)/n n1−(1/p) . (4.13) 

Hence provided .p ln(p) ≤ Cn, we get the good order (but of course not the good 
constant). This shows that our bound is not so bad. . ♦

5 The Case of Compactly Supported Measures 

Let us come back to the proof of Proposition 4.1 starting with 

.�2f =
∑
i,j

(∂2
ij f )2 +

∑
i

h′′
i (xi)(∂if )2 + 〈∇f,HessW ∇f 〉 . (5.1) 

If W is convex, we thus have

. μ(�2f ) ≥
∑

i

μ((∂2
iif )2 +

∑
i

h′′
i (xi)(∂if )2)

=
∑

i

μ(ηi,x((∂
2
iif )2 + h′′

i (xi)(∂if )2)) (5.2)
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Instead of adding and substracting .∂2
iiW (∂if )2, consider .ηi,x as a perturbation of 

. θi(dt) = z−1
i e−hi(t)dt

using the notation 

. ηi,x(dt) = Z−1
i,x e−Wi,x(t) θi(dt) .

Since we integrate a non-negative quantity it holds 

. ηi,x((∂
2
iif )2 + h′′

i (xi)(∂if )2) ≥ e− sup Wi,x θi((∂
2
iif )2 + h′′

i (xi)(∂if )2)

≥ e− sup Wi,x SG(θi) θi((∂if )2)

≥ e−OscWi,x SG(θi) ηi,x((∂if )2) , (5.3) 

provided

. θi(�2g) = θi((Lig)2)

with .Lig = g′′−h′
ig

′. Notice since .Wi,x is convex, its Oscillation cannot be bounded 
on . R, unless .Wi,x is constant. Hence the previous result has no interest on . Rn and 
we shall only consider the case where the process lives in a bounded domain D. 

We have thus obtained some variation of the renowned Holley-Stroock perturba-
tion result namely 

Proposition 5.1 Let .μ(dx) = Z−1 e−W(x)−∑n
i=1 hi(xi ) 1D(x) dx be a probability 

measure on the hypercube .D = ∏
i]ai, bi[ . Assume that 

(G1) For all i, the one dimensional diffusion .dyi
t = √

2 dBi
t − h′

i (y
i
t )dt satisfies 

(H) on .]ai, bi[ with reversible measure .θi(du) = z−1
i e−hi(u) 1u∈]ai ,bi [ du. 

(G2) .W ∈ C∞(Rn) and is convex. 

Introduce the one dimensional conditional log-density 

. Wi,x(t) = W(x1, . . . , xi−1, t, xi, ..xn) .

Then 

. CP (μ) ≤ max
i

sup
x

eOsc(Wi,x ) max
i

CP (θi) .

Since .maxi supx eOsc(Wi,x ) ≤ eOscW we recover (provided W is convex) Holley-
Stroock result for a product reference measure on a hypercube. But what is 
important here is that we only have to consider the Oscillation of W along lines 
parallel to the axes.
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Proof The only thing remaining to prove is that we can work with .C∞
b (D) functions 

f so that .u �→ f (x1, . . . , xi−1, u, xi+1, . . . , xn) is also .C∞
b (]ai, bi[) and we may 

use (G1) to justify the calculations we have done before. It is thus enough to show 
that (H) is satisfied for the full process i.e. with .V = W + ∑

i hi . 
Since .∇W and .�W are bounded on . D̄, the law of .Xx

. is absolutely continuous 
w.r.t. to the one of .(y1

. , . . . , yn
. ) thanks to Girsanov theory. It follows that the 

exit time of D is almost surely infinite since the same holds for . (y1
. , . . . , yn

. )

according to (G1). In addition the Feynman-Kac representation of the density . FT

(on .C0([0, T ],D)) is again given by the formula of Example 7.1, so that, as we  
have seen, (H) is satisfied. ��
Corollary 5.2 Let .μ(dx) = Z−1 e−W(x)−∑n

i=1 hi(xi ) 1D(x) dx be a probability 
measure on the hypercube .D = ∏

i]ai, bi[ . Assume that the . hi’s and W are convex 
and .C2

b(D̄). Then, with the notations of Proposition 5.1 we have 

. CP (μ) ≤ 12 max
i

sup
x

eOsc(Wi,x ) max
i

CP (θi) .

Proof As usual, using smooth approximations, we may assume that .W ∈ C∞(Rn). 
We shall perturb . μ in order to apply the previous proposition. To this end, on the 
interval .]ai, bi[ define 

. hi
ε(u) = ε

(
1

u − ai

+ 1

bi − u

)
.

Consider 

. με(dx) = Z−1 e−W(x) −∑
i (hi (xi )+hi

ε(xi )) 1D(x) dx .

Denote .gi
ε = hi + hi

ε. 
Assumptions (G1) and (G2) of Proposition 5.1 are satisfied. We already assumed 

(G2). In order to show (G1) it is first enough to use Feller test of non explosion for 
a one dimensional diffusion, i.e. to check that for .ci = 1

2 (ai + bi), 

. 

∫ ai

ci

exp

(∫ y

ci

(gi
ε)

′(u)du

)
dy = −∞

(replacing . ai by . bi we similarly get .+∞) according for instance to [26] Chapter 
VI, Theorem 3.1, which is immediate. It follows that (1.1) is satisfied. In addition
.(gi

ε)
′ ∈ L

2(θ i
ε(du)) where .θi

ε(du) = z−1
ε e−gi

ε(u) 1]ai ,bi [(u) du, so that we are in the 
situation of Example 7.2 ensuring that the one dimensional . y. in (G1) satisfies (H). 

We have thus obtained 

.CP (με) ≤ max
i

sup
x

eOsc(Wi,x ) max
i

CP (θ i
ε(dt)) .
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Using Lebesgue’s bounded convergence Theorem, for all .f ∈ C0
b(D) it holds 

. lim
ε→0

∫
D

f (x) e−W(x)−∑n
i=1 gi

ε(xi ) dx =
∫

D

f (x) e−W(x)−∑n
i=1 hi(xi ) dx

so that using this result for f and 1, . με weakly converges to . μ. It follows 

. CP (μ) ≤ lim inf
ε→0

CP (με) ≤ max
i

sup
x

eOsc(Wi,x ) lim inf
ε→0

max
i

CP (θ i
ε) .

We may now use the fact that . θi
ε is log-concave since both . hi and . hi

ε are convex. We 
thus have 

. CP (θi
ε) ≤ 12 Varθi

ε
(xi) .

Once again . θi
ε weakly converges to . θi and since .xi �→ x2

i is continuous and bounded 
on .[ai, bi], 

. Varθi
ε
(xi) → Varθi

(xi)

so that the conclusion follows from the immediate .V arθi
(xi) ≤ CP (θi). ��

6 Super �2 Condition 

As there are weak Poincaré inequalities, Super Poincaré inequalities (SPI) have also 
been introduced by Wang [42] as a concise description of functional inequalities 
strictly stronger than Poincaré inequalities, in particular logarithmic Sobolev (or 
more generally F -Sobolev) inequalities. 

(SPI) is often written in the following form: .∀s > 0, there exists a non-increasing 
.β :]0,∞[�→ [1,+∞[ such that 

.μ(f 2) ≤ sμ(|∇f |2) + β(s)μ(|f |)2. (6.1) 

Applying (6.1) to constant functions one sees that .β(s) ≥ 1 for all s. Since 1 
is assumed to belong to the range of . β, the (SPI) inequality implies a Poincaré 
inequality with .CP (μ) ≤ β−1(1), and one has .β(s) = 1 for .s ≥ CP (μ) . When 
.β(s) = aeb/s for positive a and b, then the Super Poincaré inequality is equivalent 
to a logarithmic Sobolev inequality (see [23] lemma 2.5 and lemma 2.6 for a precise 
statement). 

It is also possible to consider SPI with a .Lp norm rather than the . L1 norm, so 
that we will introduce general (p-SPI) for .1 ≤ p < 2 and all .s > 0, 

.μ(f 2) ≤ sμ(|∇f |2) + β(s)μ(|f |p)2/p. (6.2)
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This time, (6.2) does not imply a Poincaré inequality, so that it is natural to assume
in addition that .CP (μ) < +∞. In this case we have the following 

Lemma 6.1 Assume that .CP (μ) < +∞ and that the following centered (cp-SPI) 
inequality is satisfied for all .s > 0, 

.Varμ(f ) ≤ sμ(|∇f |2) + βc(s)μ(|f − μ(f )|p)2/p , (6.3) 

where . β is non increasing. Then (p-SPI) holds with .β(s) = 1 + 4βc(s). 

Proof Since .CP (μ) < +∞ we may choose .βc(s) = 0 for .s > CP (μ). Let  f be 
given. It holds 

. μ(|f − μ(f )|p) ≤ 2p−1 (μ(|f |p) + μp(|f |)) ≤ 2p μ(|f |p)

yielding 

. μ(|f |2) = Varμ(f ) + μ2(f ) ≤ sμ(|∇f |2) + βc(s)μ
2/p(|f − μ(f )|p) + μ2(|f |)

≤ sμ(|∇f |2) + (4βc(s) + 1) μ2/p(|f |p) .

��
It is then natural to introduce an integrated super . �2 condition: for some . 1 ≤ p <

2, there exists a positive non-increasing function . β such that . ∀s > 0

. (pSI − �2) μ(|∇f |2) ≤ s μ(Af )2) + β(s)μ(|f |p)2/p.

In the sequel we assume that .CP (μ) < +∞, so that for all .s ≥ CP (μ) one may 
take .β(s) = 0. 

Let us begin by this simple proposition 

Proposition 6.2 We have the following 

(1) A .(p − SPI) inequality is equivalent to 

.μ((Ptf )2 ≤ e−2t/sμ(f 2) + β(s)μ(|f |p)2/p(1 − e−2t/s), (6.4) 

for all .s > 0 and all .t ≥ 0. 
(2) A .(pSI − �2) condition is equivalent to 

.μ(|∇Ptf |2 ≤ e−2t/sμ(|∇f |2) + β(s)μ(|f |p)2/p(1 − e−2t/s). (6.5) 

for all .s > 0 and all .t ≥ 0.
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Proof The first part is well known and is included in Wang’s work [42]. The second 
point will follow the same line of proof. As already emphasized in the previous 
sections, denoting 

. F(t) = μ(|∇Ptf |2)

one has 

. F ′(t) = −2μ((APtf )2)

so that the .(pSI − �2) gives directly 

. F ′(t) ≤ −2

s
F (t) + 2β(s)

s
μ(|Ptf |p)2/p

and since .μ(|Ptf |p)2/p ≤ μ(|f |p)2/p we conclude thanks to Gronwall’s lemma. 
The other implication comes from differentiating with respect to time at time 0. ��

6.1 From (p-SPI) to (pSI-�2) 

We follow the same proof as in Sect. 2, assuming that a .(p − SPI) holds, i.e. we 
use Cauchy-Schwartz inequality in order to get 

. μ(|∇f |2) = μ(−f Af )

≤
√

μ(f 2) μ((Af )2)

≤
(
s μ(|∇f |2) μ((Af )2) + β(s)μ(|f |p)2/pμ((Af )2)

)1/2
.

Recall now the already used following fact: if .0 ≤ u ≤ √
Au + B then . u ≤ A +

B1/2. It yields  

. μ(|∇f |2) ≤ s μ((Af )2) +
√

β(s)μ(|f |p)2/pμ((Af )2)

≤ 3

2
s μ((Af )2) + β(s)

2s
μ(|f |p)2/p.

We thus see that we have “lost” a factor .1/s but if we think to the logarithmic 
Sobolev inequality, it roughly means the loss of a constant.
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6.2 From (pSI-�2) to (p-SPI) 

Starting with 

. μ(|∇Ptf |2 ≤ e−2t/sμ(|∇f |2) + β(s)μ(|Ptf |p)2/p(1 − e−2t/s)

and using 

. Varμ(f ) = 2
∫ ∞

0
μ(|∇Puf |2)du

we get 

. Varμ(f ) ≤ 2
∫ ∞

0
e−2u/sμ(|∇f |2)du + 2β(s)

∫ ∞

0
μ(|Puf |p)2/p(1 − e−2u/s)du.

Assume first that f is centered. If .p > 1 then Poincaré inequality implies back an 
exponential convergence in . Lp norm (see [21] Theorem 1.3) so that for all centered 
f we get 

. μ(f 2) ≤ sμ(|∇f |2) + Kpβ(s)μ(|f |p)2/p

where .Kp depends on p and is going to infinity as p goes to 1. Applying Lemma 6.1 
we thus obtain 

. μ(|f |2) ≤ sμ(|∇f |2) + (1 + 4Kpβ(s))μ(|f |p)2/p .

7 Appendix: About the Heart of Darkness 

Let us come back to the framework of this work especially Proposition 1.2. 
First of all, if (H) is satisfied, according to Theorem 2.2.25 and its proof in 

Royer’s book [40] (also see the english version [41]), the following holds 

(A1) . Pt extends to a .μ-symmetric continuous Markov semi-group .e−tÃ on .L2(μ). 
We denote by .D(Ã) the domain of the generator . Ã of this .L2(μ) semi-group. 

(A2) Any .f ∈ C2(D) such that .|∇f | is bounded and .Af ∈ L
2(μ) belongs to 

.D(Ã), and .Ãf = Af . 
(A3) If .f ∈ D(Ã) the set of Schwartz distributions on D, then .f ∈ D′(D) and 

satisfies .Ãf = Af in .D′(D). 

Actually Royer only considers the case .D = R
n, but the key point in the proof is 

that one can apply Ito’s formula for such an f up to time t (without any stopping 
time) which is ensured by the conservativeness in D.
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In the case .D = R
n the proof of ESA for .C∞

0 the set of smooth compactly 
supported functions is contained in [43] using an elliptic regularity result Theorem 
2.1 in [24] (actually the latest result certainly appeared in other places). The proof 
is explained in Theorem 2.2.7 of [40] (also see Proposition 3.2.1 in [4]) when V is 
.C∞. The structure of .D(Ã) is also proved in the same Theorem. 

We shall explain the proof when D is bounded, still assuming for simplicity that 
.V ∈ C∞(D). The same elliptic regularity should be used to extend the result to 
.V ∈ C2(D), but will introduce too much intricacies to be explained here. 

Proof First consider the Dirichlet form .E(f, g) = μ(〈∇f,∇g〉) whose domain is 
the closure of .C∞

0 (D) denoted by .H 1
0 (μ,D). Since . E is regular, Fukushima’s theory 

(see [25]) allows us to build a symmetric Hunt process associated to .(E,H 1
0 (μ,D)). 

This process is then a solution to the martingale problem associated to A and 
.C∞

0 (D). Since .T x
∂ is almost surely infinite, this martingale problem has an unique 

solution given by the (distribution) of the stochastic process . Xx
. . 

In order to prove ESA it is enough to show that if .g ∈ L
2(μ) satisfies . μ(g (Aϕ −

ϕ)) = 0 for all .ϕ ∈ C∞
0 (D) then g vanishes (see the beginning of the proof in [40, 

p. 31]). According to the proof in [40, p. 31], it implies in particular that . g ∈ D′(D)

and satisfies .Ag = g. Using that A is hypoelliptic since .V ∈ C∞(D), we deduce 
that .g ∈ C∞(D). 

Using Ito’s formula (since the process is conservative) we have 

.
√

2
∫ t

0
〈∇g(Xs), dBs〉 = g(Xt ) − g(X0) −

∫ t

0
g(Xs) ds (7.1) 

almost surely. If .X0 is distributed according to . μ, the right hand side belongs to 
.L

2(P) (. P being the underlying probability measure on the path space), so that the 
left hand side also belongs to . L2(P). The . L2 norm of this left hand side is equal to 
.2t μ(|∇g|2) so that .∇g ∈ L

2(μ). 
As a consequence 

. t �→
∫ t

0
〈∇g(Xs), dBs〉

is a . P martingale so that for all bounded h, 

. E(h(X0)g(Xt )) = μ(gh) +
∫ t

0
E(h(X0)g(Xs)) ds .

Since a regular disintegration of . P is furnished by the distribution of the .Xx
. ’s, it 

follows 

.Ptg = g +
∫ t

0
Psg ds
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. μ almost surely, so that .g ∈ D(Ã) and satisfies .Ãg = g. Hence 

. μ(g2) = μ(gAg) = −μ(|∇g|2)

so that .g = 0. 
The proof of the remaining part of the Theorem is the same as in [40, p. 42].  ��
Finally we will indicate how to show that the semi-group is ergodic when D is 

bounded (we already mention a possible way for .D = R
n in Sect. 2) . If . Ptf = f

for all .t > 0 it follows that .f ∈ D(A) and satisfies .Af = 0 so that f is smooth 
thanks to hypoellipticity. Applying Ito’s formula we deduce that .f (Xx

t ) = f (x) a.s. 
for all .t > 0. Thanks to the Support Theorem ([26] chapter 6 section 8) we know 
that the distribution of . Xx

t admits a positive density w.r.t. Lebesgue measure, so that 
if .f (y) �= f (x) for some y, hence all z in a neighborhood N of y by continuity, 
.P(Xx

t ∈ N) > 0 and thus .f (Xx
t ) �= f (x) with positive probability, which is a 

contradiction. 
Let us give now some of the most important examples. In these examples we 

assume that .V ∈ C3. 

Example 7.1 If either 

(H1) .V (x) → +∞ as .x → ∂D (i.e. .|x| → +∞ if .D = R
n), and . 12 |∇V |2 −�V

is bounded from below, or 
(H2) .D = R

n and .〈x,∇V (x)〉 ≥ −a|x|2 − b for some .a, b in . R, 

then (H) is satisfied. If V is convex (H2) is satisfied with .a = b = 0. 
If .D = R

n these two cases are detailed in [40] subsection 2.2.2 (conservativeness is 
shown in Theorem 2.2.19 therein). In the (H1) case for a bounded domain the only 
thing to do is to replace the exit times of large balls by the . Tk’s in Lemme 2.2.21 of 
[40]. 

In all cases the law of .(Xx
t )t≤T is given by .dQ = FT dP where P is the law of a 

Wiener process starting from 0 and 

. FT =exp

(
1

2
V (x)− 1

2
V (x+√

2 WT )+ 1

2

∫ T

0
(
1

2
|∇V |2−�V )(x+√

2 Ws)ds

)
.

(7.2) 

. ♦
Example 7.2 Assume now 

.μ(|∇V |2) < +∞ . (7.3) 

(7.3) is an entropy condition related to the stationary Nelson processes (see [18– 
20, 33, 34]). The stationary (symmetric) conservative diffusion process is built in
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these papers. Conservative means here that 

.T∂D = +∞ Pμ a.s (7.4) 

i.e. if . X0 is distributed according to . μ. 
The proof in the bounded case is a simple modification of the one in [18]. The 

modification is as follows (we refer to the notations therein): 

(1) First the flow . νt is stationary with .νt = μ. 
(2) Next the drift .B = −∇V . Assuming in addition that D has a smooth boundary, 

one can approximate in .L
2(μ), B by . Bk’s which are .C∞

b (Rn) and coincide with 
B on .D̄k = {x ; , d(x, ∂D) ≥ 1/k} (for this we need .∂Dk to be smooth). 

One can then follow the “Outline of proof” (4.9 bis) in [18] replacing the . Tn therein 
by the . Tk we have introduced before (the exit times of . Dk) so that (4.14) in [18] is  
trivially satisfied. (4.16) is then justified when (1.1) is satisfied. The only remaining
thing to prove is thus (4.10) in [18]. For .f ∈ C∞

0 (Rn) whose support contains . D̄
we may then proceed as in the proof of Theorem (4.18) in [18] in order to prove it. 

In order to show the strong existence of the diffusion process starting from x 
(and not the stationary measure) it is enough to show (1.1) is satisfied (the strong
existence of the diffusion process up to .T x

∂D is ensured since V is local-Lipschitz). 
Since the stationary process is conservative, so is . Xx

. for . μ, hence Lebesgue, almost 
all x. Standard results in Dirichlet forms theory show that this result extends to all 
x outside some polar set. Actually it is true for all x using the following (itself more 
or less standard 40 years ago): choose a small ball .B(x, ε) with . ε < d(x, ∂D)/2
and introduce . Sx the exit time of this ball. For .t > 0 the distribution of . Xt 1t<Sx

has a density w.r.t. Lebesgue’s measure restricted to the ball (using e.g. Malliavin 
calculus), hence w.r.t . μ. It follows from the Markov property and (7.4) 

. P(T x
∂D < +∞) = lim

t→0
P(t < Sx ; T x

∂D < +∞) = lim
t→0

E(1t<Sx E(1
T

Xx
t

∂D <+∞)) = 0

since the second expectation in the last formula vanishes identically. 
In all cases the Feynman-Kac representation of .FT in (7.2) is obtained by using

Ito’s formula with V which is allowed since .V ∈ C3(D) and (1.1) again. . ♦
Example 7.3 If we do no more assume that the hitting time of the boundary is 
infinite, assumption (H) is not satisfied. The space of interest should be . H 1

b (μ)

the closure of .C∞
b (D) for the Dirichlet form. The corresponding process is the 

symmetric reflected diffusion process. A good reference is [37] where this normally 
reflected diffusion process is built (under much more general conditions). Assume 
that the boundary is smooth. 

A little bit more is needed. First if .f ∈ H 1
b (μ) and .g ∈ D(A), one has, according 

to Fukushima’s theory (see [25] (1.3.10)), 

.μ(〈∇f,∇g〉) = −μ(f Ag) . (7.5)
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If f is smooth (.C2(D̄)) and belongs to .D(A) it also holds 

. − μ(f Ag) = μ(〈∇f,∇g〉) +
∫

∂D

g 〈nD,∇f 〉 e−V dσD

according to Green’s identity. Here . nD denotes the normalized inward normal vector 
on .∂D and . σD denotes the surface measure on . ∂D. Since the set of the traces on . ∂D

of bounded functions in .H 1(μ) is dense in .L∞(σD), we deduce that 

. 〈nD,∇f 〉|∂D = 0 .

It is however not clear in general that .Ptf is smooth (even if V is). If one assumes 
that .∂D is .C∞ and .V ∈ C∞(D̄), .Ptf ∈ C∞(D̄) is shown in [14] Theorem 2.9 by 
using the method of [13] (see the proof of Theorem 2.11 therein). Notice that the 
proof of regularity is using Sobolev imbedding theorem, so that one should relax the 
.C∞ assumption but with dimension dependent regularity assumptions. Other more 
important difficulties will be pointed out later. 

The other major difficulty is that ESA is not satisfied in general. 
In comparison with the previous example, the boundary term will disappear if 

.e−V = 0 on . ∂D. It is what happens if (H) is satisfied, but here again we do not need 
such a proof which is not useful in the present work. . ♦
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The Entropic Barrier Is 
n-Self-Concordant 

Sinho Chewi 

Abstract For any convex body .K ⊆ R
n, S. Bubeck and R. Eldan introduced the 

entropic barrier on K and showed that it is a .(1 + o(1)) n-self-concordant barrier. In 
this note, we observe that the optimal bound of n on the self-concordance parameter 
holds as a consequence of the dimensional Brascamp–Lieb inequality. 

1 Introduction 

Let .K ⊆ R
n be a convex body. In [9], S. Bubeck and R. Eldan introduced the 

entropic barrier .f � : int K → R, defined as follows. First, let .f : Rn → R denote 
the logarithmic Laplace transform of the uniform measure on K , 

.f (θ) := ln
∫

K

exp 〈θ, x〉 dx . (1) 

Then, define . f � to be the Fenchel conjugate of f , 

. f �(x) := sup
θ∈Rn

{〈θ, x〉 − f (θ)} .

They proved the following result. 

Theorem 1 ([9, Theorem 1]) The function . f � is strictly convex on .int K . Also, the 
following statements hold. 

1. . f � is self-concordant, i.e., 

. ∇3f �(x)[h, h, h] ≤ 2 |〈h,∇2f �(x) h〉|3/2 , for all x ∈ int K , h ∈ R
n .
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2. . f � is a .ν-self-concordant barrier, i.e., 

. ∇2f �(x) 	 1

ν
∇f �(x)∇f �(x)

T
, for all x ∈ int K ,

with .ν = (1 + o(1)) n. 

Self-concordant barriers are most well-known for their prominent role in the 
theory of interior-point methods for optimization [17], but they also find applica-
tions to numerous other problems such as online linear optimization with bandit 
feedback [1] (indeed, the latter was a motivating example for the introduction of the 
entropic barrier in [9]). 

A central theoretical question in the study of self-concordant barriers is: for 
any convex domain .K ⊆ R

n, does there exist a .ν-self-concordant barrier for K , 
and if so, what the optimal value of the parameter . ν? In their seminal work [17], 
Y. Nesterov and A. Nemirovskii constructed for each K a universal barrier with 
.ν = O(n). On the other hand, explicit examples (e.g., the simplex and the cube) 
show that the best possible self-concordance parameter is .ν = n [17, Proposition 
2.3.6]. The situation was better understood for convex cones, on which the canonical 
barrier was shown to be n-self-concordant independently by Hildebrand and 
Fox [13, 15]. Then, in [9], S. Bubeck and R. Eldan introduced the entropic barrier 
and showed that it is .(1 + o(1)) n-self-concordant on general convex bodies, and 
n-self-concordant on convex cones; further, they showed that the universal barrier 
is also n-self-concordant on convex cones. Subsequently, Y. Lee and M. Yue settled 
the question of obtaining optimal self-concordant barriers for general convex bodies 
by proving that the universal barrier is always n-self-concordant [16]. 

The purpose of this note is to describe the following observation. 

Theorem 2 The entropic barrier on any convex body .K ⊆ R
n is an n-self-

concordant barrier. 

Besides improving the result of [9], the theorem shows that the entropic barrier 
provides a second example of an optimal self-concordant barrier for general convex 
bodies; to the best of the author’s knowledge, no other optimal self-concordant 
barriers are known. 

We will provide two distinct proofs of Theorem 2. First, we will observe that 
Theorem 2 is an immediate consequence of the following theorem, which was 
obtained independently in [18, 21]; see also [14]. 

Theorem 3 Let .μ ∝ exp(−V ) be a log-concave density on . Rn. Then, 

. Varμ V ≤ n .

In turn, as discussed in [7, 18], Theorem 3 is related to certain dimensional 
improvements of the Brascamp–Lieb inequality. We state a version of this inequality 
which is convenient for the present discussion.
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Theorem 4 ([7, Proposition 4.1]) Let .μ ∝ exp(−V ) be a log-concave density on 
. Rn, where V is of class . C2 and .∇2V � 0. Then, for all . C1 compactly supported 
.g : Rn → R, it holds that 

. Varμ g ≤ Eμ〈∇g, (∇2V )−1 ∇g〉 − covμ(g, V )2

n − Varμ V
.

It is straightforward to see that Theorem 4 implies Theorem 3. Indeed, via a 
routine approximation argument, we may assume that . μ satisfies the hypothesis of 
Theorem 4. Taking .g = V (which is justified via another approximation argument) 
and rearranging the inequality of Theorem 4 yields 

. Varμ V ≤ nEμ〈∇V, (∇2V )−1 ∇V 〉
n + Eμ〈∇V, (∇2V )−1 ∇V 〉 ≤ n .

Next, in our second approach to Theorem 2, we observe that a key step in the 
proof of Theorem 3 given by [21] is a tensorization principle. It is then natural 
to wonder whether such a principle can be applied directly to deduce Theorem 2. 
Indeed, we have the following elementary lemma. 

Lemma 1 Suppose that for each .n ∈ N
+ and each convex body .K ⊆ R

n, we have 
a function .φn,K : int K → R such that .φn,K is a .ν(n)-self-concordant barrier for 
K . Also, suppose that the following consistency condition holds: 

.φm+n,K×K ′(x, x′) = φm,K(x) + φn,K ′(x′) , (2) 

for all .m, n ∈ N
+, all convex bodies .K ⊆ R

m, .K ′ ⊆ R
n, and all .x ∈ K , .x′ ∈ K ′. 

Then, .φn,K is a .infk∈N+ ν(kn)/k-self-concordant barrier for K . 

We will check that the entropic barrier satisfies the consistency condition 
described in the previous lemma in Sect. 4. Combined with the second statement 
in Theorem 1, it yields another proof of Theorem 2. 

The remainder of this note is organized as follows. In Sect. 2, we will explain 
the connection between Theorems 2 and 3, thereby deducing the former from the 
latter. Then, so as to make this note more self-contained, in Sect. 3 we will provide 
two proofs of the dimensional Brascamp–Lieb inequality (Theorem 4). The first 
proof follows [7] and proceeds via a dimensional improvement of Hörmander’s . L2

method. The second “proof”, which is only sketched, shows how the dimensional 
Brascamp–Lieb inequality may be obtained from a convexity principle: the entropy 
functional is convex along generalized Wasserstein geodesics which arise from 
Bregman divergence couplings [2]. The second argument appears to be new. Finally, 
in Sect. 4, we present the tensorization argument as encapsulated in Theorem 1.
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2 From the Entropic Barrier to the Dimensional 
Brascamp–Lieb Inequality 

In this section, we follow [9]. The entropic barrier has a fruitful interpretation in 
terms of an exponential family of probability distributions defined over the convex 
body .K ⊆ R

n. For each .θ ∈ R
n, we define the density . pθ on K via 

.pθ(x) := exp 〈θ, x〉∫
K

exp 〈θ, x′〉 dx′ 1{x ∈ K} . (3) 

Since f (defined in (1) ) is essentially the logarithmic moment-generating function
of . pθ , then the derivatives of f yield cumulants of . pθ . In particular, 

. ∇f (θ) = Epθ X , ∇2f (θ) = covpθ X .

By convex duality, the mappings .∇f : Rn → int K and .∇f � : int K → R
n are 

inverses of each other. From the classical duality between the logarithmic moment-
generating function and entropy, we can also deduce that 

. f �(x) = H(p∇f �(x)) ,

where . H denotes the entropy functional1 

.H(p) :=
∫

p ln p . (4) 

The self-concordance parameter of . f � is the least .ν ≥ 0 such that 

. 〈∇f �(x), [∇2f �(x)]−1 ∇f �(x)〉 ≤ ν , for all x ∈ int K .

Taking .x = ∇f (θ), equivalently we require 

. 〈θ,∇2f (θ) θ〉 ≤ ν , for all θ ∈ R
n ,

which has the probabilistic interpretation 

. Varpθ 〈θ,X〉 ≤ ν , for all θ ∈ R
n . (5) 

From the definition (3), we see that the density .pθ ∝ exp(−V ) is log-concave, 
where .V (x) = 〈θ, x〉 for .x ∈ int K . By applying Theorem 3 to . pθ , we immediately 
deduce that (5) holds with .ν = n.

1 Note the sign convention, which is opposite the usual one in information theory. We use this 
convention as it is convenient for . H to be convex. 
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3 Proof of the Dimensional Brascamp–Lieb Inequality 

Next, we wish to give some proofs of the dimensional Brascamp–Lieb inequality 
(Theorem 4). Classically, the Brascamp–Lieb inequality reads as follows. 

Theorem 5 ([8]) Let .μ ∝ exp(−V ) be a density on . Rn, where V is a convex 
function of class . C2. Then, for every locally Lipschitz .g : Rn → R, 

. Varμ g ≤ Eμ〈∇g, (∇2V )−1 ∇g〉 . (6) 

The Brascamp–Lieb inequality is a Poincaré inequality for the measure . μ

corresponding to the Newton–Langevin diffusion [10]. When V is strongly convex, 
.∇2V 	 αIn, it recovers the usual Poincaré inequality 

. Varμ g ≤ 1

α
Eμ[‖∇g‖2] .

See [4, 6, 11] for various proofs of Theorem 5. 
Since the inequality (6) makes no explicit reference to the dimension, it actually

holds in infinite-dimensional space. In contrast, Theorem 4 asserts that (6) can be
improved by subtracting an additional non-negative term from the right-hand side
in any finite dimension. This is referred to as a dimensional improvement of the
Brascamp–Lieb inequality.

3.1 Proof by Hörmander’s L2 Method 

We now present the proof of Theorem 4 given in [7]. The starting point for 
Hörmander’s . L2 method is to first dualize the Poincaré inequality. 

Proposition 1 ([5, Lemma 1]) Let .μ ∝ exp(−V ) be a probability density on . Rn, 
where V is of class . C1. Define the corresponding generator . L on smooth functions 
.g : Rn → R via 

. L g := �g − 〈∇V,∇g〉 .

Suppose .A : Rn → PD(n) is a matrix-valued function mapping into the space of 
symmetric positive definite matrices such that for all smooth .u : Rn → R, 

.Eμ[(L u)2] ≥ Eμ〈∇u,A∇u〉 . (7) 

Then, for all .g ∈ L2(μ), it holds that 

. Varμ g ≤ Eμ〈∇g,A−1 ∇g〉 .
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Proof We may assume .Eμg = 0. This condition is certainly necessary for the 
Poisson equation .−L u = g to be solvable; in order to streamline the proof, we will 
assume that a solution u exists. (This assumption can be avoided by invoking [12] 
and using a density argument; see [5] for details.) 

Using the integration by parts formula for the generator, 

. − Eμ[g L u] = Eμ〈∇g,∇u〉 ,

we obtain 

. Varμ g = Eμ[g2] = −2Eμ[g L u] − Eμ[(L u)2]
≤ 2Eμ〈∇g,∇u〉 − Eμ〈∇u,A∇u〉 .

Next, since .2 〈x, y〉 ≤ 〈x,A x〉 + 〈y,A−1 y〉 for all .x, y ∈ R
n, it implies  

. Varμ g ≤ Eμ〈∇g,A−1 ∇g〉 .

��
The key idea now is that the condition (7) can be verified with the help of the

curvature of the potential V . Indeed, assume now that V is of class . C2 and that 
.∇2V � 0. By direct calculation, one verifies the commutation relation 

.∇L u = (L − ∇2V )∇u . (8) 

Hence,

.

Eμ[(L u)2] = −Eμ〈∇u,∇L u〉 = −Eμ〈∇u, (L − ∇2V )∇u〉
= Eμ〈∇u,∇2V ∇u〉 + Eμ[‖∇2u‖2

HS] ,
(9) 

where the last equality follows from the integration by parts formula for the
generator applied to each coordinate separately: .−Eμ〈∇u,L ∇u〉 = Eμ[‖∇2u‖2

HS]. 
Since the second term is non-negative, Proposition 1 now implies the Brascamp– 
Lieb inequality (Theorem 5). 

In order to obtain the dimensional improvement of the Brascamp–Lieb inequality 
(Theorem 4), we will imitate the proof of Proposition 1, only now we will use the 
additional term .Eμ[‖∇2u‖2

HS] in the above identity. 

Proof of Theorem 4 As before, let .Eμg = 0. However, we introduce an additional 
trick and consider u not necessarily satisfying .−L u = g; this will help to optimize
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the bound at the end of the argument. Following the computations in Proposition 1 
and using the key identity (9) , we obtain

. Varμ g = Eμ[g2] = Eμ[(g + L u)2] − 2Eμ[g L u] − Eμ[(L u)2]
= Eμ[(g + L u)2] + 2Eμ〈∇g,∇u〉 − Eμ〈∇u,∇2V ∇u〉 − Eμ[‖∇u‖2

HS]
≤ Eμ[(g + L u)2] + Eμ〈∇g, (∇2V )−1 ∇g〉 − Eμ[‖∇u‖2

HS] .

For the second term, we use the inequality 

. Eμ[‖∇u‖2
HS] ≥ 1

n
(Eμ�u)2 .

From integration by parts, 

. Eμ�u = Eμ〈∇V,∇u〉 = −Eμ[V L u] = covμ(g, V ) − Eμ[V (L u + g)] .

We now choose .−L u = g + a (V − EμV ) for some .a ≥ 0 to be chosen later. For 
brevity of notation, write .C := covμ(g, V ) and .V := Varμ V . Then, 

. Varμ g − Eμ〈∇g, (∇2V )−1 ∇g〉 ≤ a2V − 1

n
(C + aV)2

= −V (n − V)

n

(
a − C

n − V

)2

− C2V
n (n − V)

− C2

n
.

Observe that this inequality entails .V ≤ n, or else we could send .a → ∞ and arrive 
at a contradiction. Optimizing over a, we obtain 

. Varμ g ≤ Eμ〈∇g, (∇2V )−1 ∇g〉 − C2

n − V
.

��

3.2 Proof by Convexity of the Entropy Along Bregman 
Divergence Couplings 

It is well-known that Poincaré inequalities are obtained from linearizing trans-
portation inequalities. In [11], D. Cordero-Erausquin obtained the Brascamp–Lieb 
inequality (Theorem 5) by linearizing the following inequality: 

.DV (ρ ‖ μ) ≤ KL(ρ ‖ μ) , for all ρ ∈ P(Rn) . (10)
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Here, .μ ∝ exp(−V ) on . Rn; .P(Rn) denotes the space of probability measures on 
. Rn; .KL(· ‖ ·) is the Kullback–Leibler (KL) divergence; and .DV (· ‖ ·) is the Bregman 
divergence coupling cost, defined as 

. DV (ρ ‖ μ) = inf
γ∈couplings(ρ,μ)

∫
DV (x, y) dγ (x, y) ,

with 

. DV (x, y) := V (x) − V (y) − 〈∇V (y), x − y〉 .

On the other hand, together with K. Ahn in [2], the author obtained the 
transportation inequality (10) as a consequence of a convexity principle in optimal
transport. It is therefore natural to ask whether the dimensional Brascamp–Lieb
inequality (Theorem 4) can be obtained directly from (a strengthening of) this 
principle. This is indeed the case, and it is the goal of the present section to describe 
this argument. 

Making the argument fully rigorous, however, would entail substantial technical 
complications which would detract from the focus of this note. In any case, a 
complete proof of the dimensional Brascamp–Lieb inequality is already present 
in [7]. Hence, we will work on a purely formal level and assume that everything 
is smooth, bounded, etc. Also, the computations are rather similar to the proof 
of Theorem 4 given in the previous section. Nevertheless, the argument seems 
interesting enough to warrant presenting it here. 

The main difference with the preceding proof is that the Bochner formula 
(implicit in the commutation relation (8) ) is replaced by the convexity principle.

Proof Sketch of Theorem 4 Throughout the proof, let .ε > 0 be small. Let h be 
bounded and satisfy .Eμh = 0, so that .με := (1 + εh)μ defines a valid probability 
density on . Rn. Our aim is to first strengthen the transportation inequality (10) , at
least infinitesimally, and then to linearize it.

Let .(Xε,X) be an optimal coupling for the Bregman divergence coupling cost 
.DV (με ‖ μ). In [2], the following facts were proven: 

1. There is a function .uε : Rn → R such that .∇V (X) = ∇V (Xε) − ∇uε(Xε), and 
.V − uε is convex. 

2. The entropy functional (defined in (4) ) is convex in the sense that

.H(με) ≥ H(μ) + E〈[∇W2H(μ)](X),Xε − X〉 . (11) 

Here, .∇W2H(μ) = ∇ ln μ is the Wasserstein gradient of the entropy functional, 
c.f. [3, 19, 20].
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Write .Tε(x) := (∇V − ∇uε)
−1(∇V (x)). Since .(Tε)#μ = με, the change of 

variables formula implies 

.
μ(x)

με(Tε(x))
= μ(x)

μ(Tε(x)) (1 + εh(Tε(x)))
= det ∇Tε(x) . (12) 

To linearize this equation, write .uε = εu + o(ε) and .Tε(x) = x + εT (x) + o(ε). 
Then, the definition of . Tε yields 

. ∇V (x) = (∇V − ∇uε)
(
x + εT (x) + o(ε)

)

= ∇V (x) + ε ∇2V (x) T (x) − ε ∇u(x) + o(ε)

which implies 

. Tε(x) = x + ε [∇2V (x)]−1 ∇u(x) + o(ε) .

Taking logarithms and expanding to first order in . ε, 

. ln μ(x) − ln μ(Tε(x)) − ln(1 + εh(Tε(x)))

= −ε 〈∇ ln μ(x), [∇2V (x)]−1 ∇u(x)〉 − εh(x) + o(ε)

= ε 〈∇V (x), [∇2V (x)]−1 ∇u(x)〉 − εh(x) + o(ε)

and 

. ln det ∇Tε(x) = ln det ∇(
Id + ε [∇2V ]−1 ∇u + o(ε)

)
(x)

= ln det
(
In + ε ∇([∇2V ]−1 ∇u)(x) + o(ε)

)

= ε div([∇2V ]−1 ∇u)(x) + o(ε) .

To interpret this, we introduce a new generator, denoted . L̂ to avoid confusion with 
the previous section, defined by 

. L̂ u := div([∇2V ]−1 ∇u) − 〈∇V, [∇2V ]−1 ∇u〉 .

This new generator satisfies the integration by parts formula 

. Eμ[u L̂ v] = Eμ〈∇u, [∇2V ]−1 ∇v〉 .

In this notation, the preceding computations yield 

.L̂ u = −h + o(1) .
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Next, to strengthen (11), we repeat the proof. From (12) ,

. H(με) =
∫

με ln με =
∫

μ ln(με ◦ Tε) =
∫

μ ln
μ

det ∇Tε

= H(μ) −
∫

μ ln det ∇Tε .

From the second-order expansion of .− ln det around . In, 

. −
∫

μ ln det ∇Tε

≥ −
∫

μ ln det In −
∫

μ 〈In,∇Tε − In〉 + 1

2

∫
μ ‖∇Tε − In‖2

HS + o(ε2)

≥ −
∫

μ tr(∇Tε − In) + 1

2n

(∫
μ tr(∇Tε − Id)

)2 + o(ε2)

= −
∫

μ div(Tε − Id) + 1

2n

(∫
μ div(Tε − Id)

)2 + o(ε2)

=
∫

μ 〈∇ ln μ, Tε − Id〉 + 1

2n

(∫
μ 〈∇ ln μ, Tε − Id〉

)2 + o(ε2) .

Recalling that .∇W2H(μ) = ∇ ln μ, we have established 

. H(με) − H(μ) − E〈[∇W2H(μ)](X),Xε − X〉

≥ 1

2n

(∫
μ 〈∇V, Tε − Id〉

)2 + o(ε2)

= ε2

2n

(∫
μ 〈∇V, [∇2V ]−1 ∇u〉

)2 + o(ε2)

= ε2

2n
{Eμ[V L̂ u]}2 + o(ε2) .

The next step is to write down the strengthened transportation inequality. Indeed, 
if we add a suitable additive constant to V so that .μ = exp(−V ), then 

.KL(με ‖ μ) = EμεV + H(με)

≥ EV (X) + H(μ)︸ ︷︷ ︸
=KL(μ‖μ)=0

+E〈[∇V + ∇W2H(μ)](X),Xε − X〉︸ ︷︷ ︸
=[∇W2KL(·‖μ)](μ)=0

+ E[V (Xε) − V (X) − 〈∇V (X),Xε − X〉]︸ ︷︷ ︸
=DV (με‖μ)

+ ε2

2n
{Eμ[hV ]}2 + o(ε2)

≥ DV (με ‖ μ) + ε2

2n
{Eμ[hV ]}2 + o(ε2) .
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Finally, it remains to linearize the transportation inequality. On one hand, it is 
classical that 

. KL(με ‖ μ) = ε2

2
Eμ[h2] + o(ε2) .

On the other hand, we can guess that 

. DV (με ‖ μ) = 1

2
E〈Xε − X,∇2V (X) (Xε − X)〉 + o(ε2)

= ε2

2
Eμ〈∇u, (∇2V )−1 ∇u〉 + o(ε2)

≥ ε2

2

{Eμ〈∇g, (∇2V )−1 ∇u〉}2

Eμ〈∇g, (∇2V )−1 ∇g〉 + o(ε2)

= ε2

2

{Eμ[g L̂ u]}2

Eμ〈∇g, (∇2V )−1 ∇g〉 + o(ε2)

= ε2

2

{Eμ[gh]}2

Eμ〈∇g, (∇2V )−1 ∇g〉 + o(ε2) .

A rigorous proof of this inequality is given as [11, Lemma 3.1]. 
Thus, we obtain 

. 
1

2

{Eμ[gh]}2

Eμ〈∇g, (∇2V )−1 ∇g〉 + 1

2n
{Eμ[hV ]}2 ≤ 1

2
Eμ[h2] + o(1) .

Now we let .ε ↘ 0 and choose .h = g + a (V − EμV ) for some .a ∈ R. Writing 
.C := covμ(g, V ) and .V := Varμ V , it yields 

. 
(Varμ g + aC)2

Eμ〈∇g, (∇2V )−1 ∇g〉 + 1

n
(C + aV)2 ≤ Varμ g + 2aC + a2V .

Actually, choosing a to optimize this inequality and simplifying the resulting 
expression may be cumbersome, so with our foresight from the earlier proof of 
Theorem 4, we now take .a = C/(n − V). After some algebra, 

. 
(Varμ g + C2/(n − V))

2

Eμ〈∇g, (∇2V )−1 ∇g〉 ≤ Varμ g + C2

n − V
,

which of course yields 

. Varμ g ≤ Eμ〈∇g, (∇2V )−1 ∇g〉 − C2

n − V
.

��
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4 A Tensorization Trick 

We begin by verifying that the entropic barrier has the consistency property (2) . Let
.fK denote the function (1) , where we now explicitly denote the dependence on the
convex body K . Also, let .f �

K denote the corresponding entropic barrier. Then, we 
see that 

. fK×K ′(θ, θ ′) = ln
∫

K×K ′
exp(〈θ, x〉 + 〈θ ′, x′〉) dx dx′

= ln
∫

K

exp 〈θ, x〉 dx + ln
∫

K ′
exp 〈θ ′, x′〉 dx′ = fK(θ) + fK ′(θ ′) .

Hence, 

. f �
K×K ′(x, x′) = sup

θ,θ ′∈Rn

{〈θ, x〉 + 〈θ ′, x′〉 − fK(θ) − fK ′(θ ′)} = f �
K(x) + f �

K ′(x′) .

Finally, we check that the tensorization property automatically improves the 
bound on the self-concordance parameter of . f �

K obtained in [9]. 

Proof of Lemma 1 Let .x := (x1, . . . , xk) ∈ (Rn)k . By assumption, the self-
concordant barrier .φkn,Kk on .Kk satisfies .φkn,Kk (x) = ∑k

j=1 φn,K(xj ). Also, we  
are given that 

.∇2φkn,Kk (x) 	 1

ν(kn)
∇φkn,Kk (x)∇φkn,Kk (x)T . (13) 

Via elementary calculations,

. ∇φkn,Kk (x) = (∇φn,K(x1), . . . ,∇φn,K(xk)
)

and 

. ∇2φkn,Kk (x) =
⎡
⎢⎣

∇2φn,K(x1)

. . .

∇2φn,K(xk)

⎤
⎥⎦ .

Let .v ∈ R
n and let .v := (v, . . . , v) ∈ (Rn)k . Also, take .x1 = · · · = xk = x. By  (13) ,

we know that

.k 〈v,∇2φn,K(x) v〉 = 〈v,∇2φkn,Kk (x) v〉 ≥ 1

ν(kn)
〈v,∇φkn,Kk (x)〉2

= k2

ν(kn)
〈v,∇φn,K(x)〉2
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which proves 

. ∇2φn,K(x) 	 k

ν(kn)
∇φn,K(x)∇φn,K(x)T

and gives the claim. ��
Proof of Theorem 2 According to Theorem 1, we know that the entropic barrier in 
n dimensions is .(1 + εn) n-self-concordant, with .εn → 0 as .n → ∞. By Lemma 1, 
it is actually .(1 + εkn) n-self-concordant, for any . k ∈ N

+. Let .k → ∞ to deduce 
that it is in fact n-self-concordant. ��
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Local Tail Bounds for Polynomials on the 
Discrete Cube 

Bo’az Klartag and Sasha Sodin 

Abstract Let P be a polynomial of degree d in independent Bernoulli random 
variables which has zero mean and unit variance. The Bonami hypercontractivity 
bound implies that the probability that .|P | > t decays exponentially in . t2/d . 
Confirming a conjecture of Keller and Klein, we prove a local version of this bound, 
providing an upper bound on the difference between the . e−r and the .e−r−1 quantiles 
of P . 

1 Introduction 

This note is concerned with concentration inequalities for polynomials on the 
discrete cube. Concentration inequalities, i.e. tail bounds on the distribution of 
functions on high-dimensional spaces belonging to certain classes, were put forth 
by Vitali Milman in the 1970-s and have since found numerous applications; see 
e.g. [2, 3] and references therein. 

Let .X1, . . . , Xn be independent, identically distributed symmetric Bernoulli 
variables, so that .X = (X1, . . . , Xn) is distributed uniformly on the discrete 
cube .{−1, 1}n. The starting point for this work is the concentration inequality for 
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polynomials in X (see e.g. [3, Theorem 9.23]), which we now recall. Let .d ≥ 1, and 
consider a polynomial of the form 

.Pd(x) =
∑

#(S)=d

aS ·
(

∏

i∈S

xi

)
(1) 

where the sum runs over all subsets .S ⊆ {1, . . . , n} of cardinality d, and the 
coefficients .(aS) are arbitrary real numbers. In other words, . Pd is a d-homogeneous, 
square-free polynomial in . Rn. The Bonami hypercontractivity theorem [3, Chapter 
9] tells us that for any .1 < p ≤ q, 

.‖Pd(X)‖q ≤
(

q − 1

p − 1

)d/2

‖Pd(X)‖p. (2) 

A general polynomial P of degree at most d on .{−1, 1}n takes the form 

.P(x) =
d∑

k=0

Pk(x) (3) 

where . Pk is a k-homogeneous, square-free polynomial. Thanks to orthogonality 
relations we have 

. ‖P(X)‖22 =
d∑

k=0

‖Pk(X)‖22.

Hence, by the Bonami bound (2) and the Cauchy-Schwarz inequality, for any 
polynomial P of degree at most d and any .q ≥ 3, 

. ‖P(X)‖q ≤
d∑

k=0

‖Pk(X)‖q ≤
d∑

k=0

(q − 1)k/2‖Pk(X)‖2

≤
√√√√

d∑

k=0

(q − 1)k ·
√√√√

d∑

k=0

‖Pk(X)‖22

≤ √
2 · (q − 1)d/2 · ‖P(X)‖2 ≤ √

2qd/2‖P(X)‖2. (4) 

For .r > 0 (not necessarily integer), write . ar for a .e−r -quantile of .P(X), i.e. a 
number satisfying 

.P(P (X) ≥ ar) ≥ 1

er
and also P(P (X) ≤ ar) ≥ 1 − 1

er
.
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Assume the normalization .‖P(X)‖2 = 1. It follows from (4) that if .q ≥ 3 then 

. 
1

er
≤ P(P (X) ≥ ar) ≤ E|P(X)|q

a
q
r

≤
(√

2 · qd/2

ar

)q

.

Substituting .q = 2r/d (when .r ≥ 3d/2), we get 

.ar ≤ √
2 · (2er/d)d/2 ≤ (Cr/d)d/2 (r ≥ 3d/2), (5) 

with a universal constant .C = 4. Without assuming any normalisation, we obtain 

.ar − a1 ≤ Cd
( r

d
+ 1

)d/2 ‖P(X)‖2 (6) 

(with a different numerical constant .C > 0), which is valid for all .r ≥ 1. 
The estimate (6) is a a tail bound for the distribution of .P(X), i.e. concentration 

inequality. We refer to [2] and references therein for background on concentration 
inequalities, particularly, for polynomials, and to [3] for applications of (6) .  

In some applications, it is important to have bounds on .as − ar when .s ≥ r are 
close to one another, e.g. .s = r + 1. Such bounds are called local tail bounds; see 
[1] and references therein. The following proposition, confirming a conjecture of 
Nathan Keller and Ohad Klein, provides a local version of (6). In the case .d = 1, it  
follows from the results in the aforementioned work [1]. 

Proposition 1 Let P be a polynomial of degree at most d on .{−1, 1}n. Then for all 
.r ≥ 1, 

.ar+1 − ar ≤ Cd
( r

d
+ 1

) d
2 −1 ‖P(X)‖2 , (7) 

where .C > 0 is a universal constant. 

Clearly, (7) implies (6). The estimate (7) gives the right magnitute of .ar −ar+1, say,  
for 

.P(X) = (X1 + · · · + Xn)
d , n � 1 . (8) 

2 Proofs 

We now turn to the proof of Proposition 1. Write .∂iP for the partial derivative of P 
with respect to the ith variable. Thus 

.∂iP (x) = P(T 1
i x) − P(T −1

i x)

2
for x ∈ {−1, 1}n,
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where . T j
i is the map that sets the ith-coordinate of x to the value j , and keeps the 

other coordinates intact. Observe that .∂iP is a polynomial of degree at most .d −1 if 
P is of degree d. We denote by .∇P the vector function with coordinates . ∂iP . The  
first step in the proof of Proposition 1 is to sharpen the quantile bound (5). 

Lemma 2 Let P be a polynomial of degree at most d with .E|P(X)|2 = 1. Then for 
any non-empty subset .A ⊆ {−1, 1}n of relative size .ε = #(A)/2n we have 

.
1

#(A)

∑

x∈A

|P(x)|2 ≤ Cd · max

{
1,

( | log ε|
d

)d
}

, (9) 

and

.
1

#(A)

∑

x∈A

|∇P(x)|2 ≤ Cd · max

{
1,

( | log ε|
d

)d−1
}

, (10) 

for a universal constant .C > 0. 

Proof Let .q ≥ 3. By Hölder’s inequality followed by an application of (4), 

. 
∑

x∈A

|P(x)|2 ≤ (#(A))1−2/q ·
(

∑

x∈A

|P(x)|q
)2/q

= (#(A))1−2/q · 22n/q · ‖P(X)‖2q

≤ (#(A))1−2/q · 22n/q · 2qd ,

whence 

. 
1

#(A)

∑

x∈A

|P(x)|2 ≤ 2ε−2/qqd .

The estimate (9) clearly holds for .ε ≥ e− 3d
2 , therefore we assume that .ε < e− 3d

2 . 
Set 

. q = 2| log ε|/d ≥ 3

and obtain 

. 
1

#(A)

∑

x∈A

|P(x)|2 ≤
(

C

d

)d

| log ε|d .

This proves (9). Since .∂iP is a polynomial of degree at most .d − 1, from (9), 

.
1

#(A)

∑

x∈A

|(∂iP )(x)|2 ≤ Cd · max

{
1,

( | log ε|
d

)d−1
}

· E|(∂iP )(X)|2 ,
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whence 

. 
1

#(A)

∑

x∈A

|(∇P)(x)|2 ≤ Cd · max

{
1,

( | log ε|
d

)d−1
}

· E|(∇P)(X)|2 .

We decompose .P(X) = ∑d
k=0 Pk(X) as in (3), and use the orthogonality relations 

. E|∇P(X)|2 =
d∑

k=0

E|∇Pk(X)|2 =
d∑

k=0

k · E|Pk(X)|2 ≤ d · E|P(X)|2 = d.

This proves (10). 
�
Note that for any .f : {−1, 1}n → R, 

.

∑

x∈{−1,1}n
|∇f (x)|2 ≤ 2 ·

∑

x∈{−1,1}n
|∇f (x)|2 · 1{f (x) =0}. (11) 

Indeed, the expression on the left-hand side of (11) is the sum over all oriented edges 
.(x, y) ∈ E in the Hamming cube of the squared difference .|f (x) − f (y)|2/4. This  
is clearly at most twice the sum over all oriented edges .(x, y) ∈ E of the quantity 
.|f (x) − f (y)|2 · 1{f (x) =0}/4. 

Recall the log-Sobolev inequality (e.g. [3, Chapter 10]) which states that for any 
function .f : {−1, 1}n → R, 

.Ef 2(X) log f 2(X) − Ef 2(X) · logEf 2(X) ≤ 2E|∇f (X)|2. (12) 

Moreover, let .A ⊆ {−1, 1}n be a non-empty set and denote .ε = #(A)/2n. If  
the function f is supported in A and is not identicaly zero, then denoting . g =
f/

√
Ef 2(X), 

. 
Ef 2(X) log f 2(X) − Ef 2(X) · logEf 2(X) = Ef 2(X) · Eg2(X) log g2(X)

≥ Ef 2(X) · | log ε|,
(13) 

because . g2 is supported in A, and among all probability distributions supported in 
A, the maximal entropy is attained for the uniform distribution. 

Proof of Proposition 1 Without loss of generality .‖P(X)‖2 = 1. We may assume 
that .ar+1 > ar , as otherwise there is nothing to prove. Let . U = {x ∈
{−1, 1}n ; f (x) > ar } and set .ε = #(U)/2n. Then .e−(r+1) ≤ ε ≤ e−r , by the  
definition of the quantiles . ar and .ar+1. Denote .χ(t) = max(t − ar , 0); this is a
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1-Lipschitz function on the real line. Applying the log-Sobolev inequality (12) to  
the function .h = χ ◦ P : {−1, 1}n → R we get 

.Eh2(X) log h2(X) − Eh2(X) · logEh2(X) ≤ 2E|∇h|2(X). (14) 

Since h is supported in U , with .ε = #(U)/2n, by (13) and (14), 

. Eh2(X) · | log ε| ≤ 2E|∇h|2(X) ≤ 4E|∇h(X)|2 · 1{h(X)>0}.

The last passage is the content of (11). Since . χ is 1-Lipschitz, we know that . |∇h|2 ≤
|∇P |2. Hence, by (10), 

. E|∇h(X)|2 · 1{h(X)>0} ≤ E|∇P(X)|21{X∈U} ≤ ε · Cd · max

{
1,

( | log ε|
d

)d−1
}

.

To summarize, 

.Eh2(X) · | log ε| ≤ ε · Cd
1 · max

{
1,

( | log ε|
d

)d−1
}

, (15) 

for a universal constant .C1 > 0. Recall that .e−(r+1) ≤ ε ≤ e−r . By the definition of 
.ar+1, we know that .h(X) ≥ ar+1 − ar with probability at least .e−(r+1). Therefore, 
from (15), 

. e−(r+1) · (ar+1 − ar)
2 · r

2
≤ e−r · Cd

1 · max

{
1,

(
2r

d

)d−1
}

or 

. ar+1 − ar ≤ Cd
2 · max

{
1√
r
,
( r

d

)d/2−1
}

≤ Cd
3

( r

d
+ 1

) d
2

.


�

3 Remarks 

We remark that Proposition 1 implies the following corollary which holds true 
without the normalization by .‖P(X)‖2.
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Corollary 3 There exists .C > 0 such that the following holds. Let P be a 
polynomial of degree at most d with .EP(X) = 0. Then for .r ≥ Cd, 

.ar+1 ≤ ar

[
1 + Cd

( r

d
+ 1

) d
2 −1

]
. (16) 

Remark 4 We conjecture that (16) also holds with the power . −1 in place of .
d
2 − 1. 

Such an estimate would give the right order of magnitude for the polynomial (8). 

Proof of Corollary 3 Write .σ 2 = E|P(X)|2. We shall prove that .σ ≤ Cd
1 ar . Once 

this inequality is established, we deduce from Proposition 1 that 

. 
ar+1 − ar

σ
≤ Cd

( r

d
+ 1

) d
2 −1

,

whence 

. ar+1 ≤ ar + σ · Cd
( r

d
+ 1

) d
2 −1 ≤ ar

(
1 + (CC1)

d
( r

d
+ 1

) d
2 −1

)
,

as claimed. 
Let .σ± = √

E(P (X)±)2. First, we claim that .σ+ ≥ C−d
2 σ . Indeed, if . σ+ ≥ σ−

then .σ+ ≥ σ/
√
2. If .σ+ < σ−, then, using (4), 

. 

σ+ ≥ EP(X)+ = EP(X)− ≥ (EP(X)2−)3/2

(EP(X)4−)1/2

≥ σ 3−
2 · 3d · (σ 2+ + σ 2−)

≥ 1

4 · 3d
σ− .

Second, another application of (4) yields 

. EP(X)4+ ≤ EP(X)4 ≤ 4 · 3dσ 4 ≤ Cd
3 σ 4+ ,

thus by the Paley–Zygmund inequality 

. e−Cd ≥ e−r ≥ P {P(X) > ar} ≥ (1 − a2r /σ
2+)2+

Cd
3

,

whence .σ+ ≤ 2ar if we ensure that, say, .eC ≥ 2C3. This concludes the proof. 
�
Finally, we remark that both Proposition 1 and Corollary 3 can be generalised in 

several directions. For example, instead of the Hamming cube, one can consider a 
general measure which is invariant under a Markov diffusion satisfying the Bakry– 
Émery CD(.R,∞) condition; in this setting, linear combinations of eigenfunctions
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of the generator play the rôle of polynomials. The proof requires only notational 
modifications. 
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Stable Recovery and the Coordinate 
Small-Ball Behaviour of Random Vectors 

Shahar Mendelson and Grigoris Paouris 

Abstract Recovery procedures in Data Science are often based on stable point 
separation. In its simplest form, stable point separation implies that if f is “far 
away” from 0, and one is given a random sample .(f (Zi))

m
i=1 where a proportional 

number of the sample points may be corrupted by noise—even maliciously, that 
information is still enough to exhibit that f is far from 0. 

Stable point separation is well understood in the context of iid sampling, and to 
explore it for general sampling methods we introduce a new notion—the coordinate 
small-ball of a random vector X. Roughly put, this feature captures the number 
of “relatively large coordinates” of .(| 〈T X, ui〉 |)mi=1, where .T : R

n → R
m is an 

arbitrary linear operator and .(ui)
m
i=1 is any fixed orthonormal basis of . Rm. 

We show that under the bare-minimum assumptions on X, and with high 
probability, many of the values .| 〈T X, ui〉 | are at least of the order .‖T ‖S2/

√
m. 

As a result, the “coordinate structure” of T X  exhibits the typical Euclidean norm of 
T X  and does so in a stable way. 

One outcome of our analysis is that random sub-sampled convolutions satisfy 
stable point separation under minimal assumptions on the generating random 
vector—a fact that was known previously only in a highly restrictive setup, namely, 
for random vectors with iid subgaussian coordinates. As an application we address 
the problem of sparse signal recovery using a circulant matrix when a proportion of 
the given sample is corrupted by malicious noise. 
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1 Introduction 

One of the key questions in Data Science is to identify (or at least approximate) 
an unknown function using partial information. In standard recovery problems the 
data one receives consists of a finite sample of the unknown function and the sample 
points are assumed to be independent. The sample is then used to construct a suitable 
‘guess’ of the function and the hope is that the guess is a good approximation in 
some appropriate sense. 

Off-hand, the significance of having sample points that are selected indepen-
dently is not clear. A closer inspection shows that independence has a strong 
geometric impact: it leads to point separation. 

1.1 Point Separation and Stable Point Separation 

To explain what we mean by point separation, let us first consider it in its simplest 
form, separation of a function from 0. 

Given a function f on a probability space . (�,μ), let Z be distributed according 
to . μ and consider a sample .Z1, . . . , Zm, consisting of independent points distributed 
as Z. The sample .(Z1, . . . , Zm) naturally endows a random vector .X ∈ R

m, whose 
coordinates are the given measurements .f (Zi), 1 ≤ i ≤ m; that is, 

. X = (f (Z1), . . . , f (Zm)) .

Any hope of identifying f from the given data vector X is based on the belief that 
X captures enough features of f ; for example, that f can be distinguished from 0 
with only X as data. Thus, one has to address the following question: 

Question 1.1 If f is reasonably far away from 0, when is that fact exhibited by a 
typical realization of X? 

An obvious way of exhibiting separation between f and 0 is through the 
Euclidean norm of X; specifically, by showing that, with high probability, 

.
‖X‖2

2

m
= 1

m

m∑

i=1

f 2(Zi) ≥ κ‖f ‖2
L2

(1.1) 

for a suitable constant . κ and for any .m ≥ m0. Independence proves to be extremely 
useful in establishing (1.1) . Indeed, under a weak small-ball assumption, that

.P(|f (Z)| ≥ κ‖f ‖L2) ≥ ρ, (1.2)
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it is straightforward to verify that with probability at least .1 − 2 exp(−cρm), 

.|{i : |f (Zi)| ≥ κ‖f ‖L2}| ≥ ρ

2
m. (1.3) 

Thus, with very high probability, a proportion of the coordinates of X are large—of
the order of .‖f ‖L2 . 

While (1.3) clearly implies (1.1) and point separation, it says much more:
under the small-ball assumption (1.2) , independent sampling leads to stable point
separation: not only is .‖X‖2 large, the reason that it is large is because many of 
its coordinates .| 〈X, ei〉 | are nontrivial—making point separation robust to noise. 
In particular, even if a (small) fraction of the measurements .f (Zi) are corrupted 
maliciously, the fact that f is far away from 0 is still exhibited by the corrupted 
vector. 

In a more geometric language, stable point separation is manifested by the fact 
that .(〈X, ei〉)Ni=1 is a well-spread vector, and obviously this significant additional 
information does not come for free: stable point separation is much harder to prove 
than point separation. At the same time, the importance of the notion is clear: 
intuitively, a sampling method can be useful in statistical recovery problems, where 
being robust to noise is of the utmost importance, only if it satisfies a uniform 
version of stable point separation. Indeed, at the heart of numerous statistical 
procedures is the fact that if F is a class of functions, then with high probability, 
for every .f, h ∈ F that are ‘far enough’ 

.|{i : |(f − h)(Xi)| ≥ κ‖f − h‖L2}| ≥ c(ρ)m, (1.4) 

which is a uniform version of stable point separation. It allows one to distinguish
between any two functions in the given class that are sufficiently far apart using a
typical sample, even when a proportional number of the given measurements are
corrupted by noise (see Example 1.3 and Sect. 4.2). 

Uniform stable point separation has played a central role in the recent progress 
on some key questions in learning theory and statistics. For example, it has led to the 
introduction of an optimal learning procedure in [14, 16]; to optimal vector mean 
estimation in [12, 13] and to optimal covariance estimation in [17, 18]—all of which 
in heavy-tailed situations. 

Unfortunately, stable point separation and its uniform counterpart are well 
understood only for iid sampling, and the downside of iid sampling is that it leads 
to various computational difficulties. For example, consider a relatively simple 
recovery problem, where the goal is to identify an unknown .t0 ∈ T ⊂ R

n using 
linear measurements .(〈Zi, t0〉)mi=1 and .Z1, . . . , Zm are independent copies of the 
standard Gaussian random vector in . Rn. Procedures that aim at recovering . t0 are 
based on vector multiplications with the matrix .� =∑m

i=1 〈Zi, ·〉 ei , but because . �
has independent Gaussian rows, vector multiplication is computationally expensive. 

To address these and other computational difficulties of a similar nature, other 
sampling methods are often used in recovery problems. However, once the iid
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framework is abandoned, establishing the required point separation/stable point 
separation becomes a formidable task; in fact, it is often far from obvious that either 
one of the properties is true when the sample points are not independent. 

Motivated by general sampling methods, the question we focus on is as follows: 
are point separation and stable point separation really the outcome of independence? 
Rather informally, the question we study is: 

Question 1.2 Given a centred random vector .X ∈ R
n, 

.(a) What conditions on X are needed to ensure that for an arbitrary linear operator 
.T : Rn → R

m and with high probability .‖T X‖2 is reasonably large? 
.(b) When is the fact that .‖T X‖2 is large exhibited by an arbitrary coordinate 

structure? In other words, given an arbitrary orthonormal basis . (ui)
m
i=1, are  

many of the values .| 〈T X, ui〉 | reasonably large? 

Question 1.2 clearly extends the notions of point separation and stable point 
separation from the iid setup, where .m = n and .X = (f (Zi))

m
i=1: in the general 

framework of Question 1.2 the coordinates of X need not be independent or 
identically distributed, and X is further distorted by a linear operator T . 

Let us illustrate how addressing the two parts of Question 1.2 can become 
unpleasant very quickly once independence is left behind. The example we focus 
on here and in what follows is the very popular random sub-sampled convolutions 
scheme, which is used in numerous applications, such as SAR radar imaging, optical 
imaging, channel estimation, etc. (see [6, 25] for more details on these and other 
applications). 

Example 1.3 Let . ξ be an isotropic random vector in .Rn (that is, . ξ is centred and 
for every .t ∈ R

n, .E 〈ξ, t〉2 = ‖t‖2
2). Fix .a ∈ R

n and let .W = a � ξ be the discrete 
convolution of a and . ξ ; i.e., if .j � i = j − i mod n and . τi is the shift operator 
defined by .(τix) = (xj�i )

n
j=1, then 

. a � ξ = (〈a, τiξ 〉)ni=1.

The measurements of the vector a one receives come from a selection of a 
random subset of the coordinates of . a � ξ : let .δ1, . . . , δn be independent, .{0, 1}-
valued random variables with mean . δ; set .I = {i : δi = 1}; and define . Z =
(a � ξ)i∈I . 

Note that typically .|I | ∼ δn and .E‖Z‖2
2 = δn‖a‖2

2. Therefore, this sampling 
method exhibits point separation of a and 0 if, with high probability, 

.
1

δn

∑

i∈I

Z2
i ≥ c‖a‖2

2 (1.5)
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for a suitable constant c (that should be independent of a and . δ). And, it exhibits 
stable point separation of a and 0 with respect to the standard basis .(ei)

n
i=1 if with 

high probability, 

.
∣∣{i ∈ I : | 〈Z, ei〉 | ≥ c′‖a‖2

}∣∣ ≥ c′′δn (1.6) 

for suitable constants . c′ and . c′′. In particular, (1.6) means that the large Euclidean
norm of Z is exhibited by the fact that many of the coordinates of Z (with respect
to the standard basis) are large.

Stable point separation can be used to address a well-known sparse recovery
problem that has been studied extensively in recent years (see, e.g. [6] and references 
therein and [19] for some recent progress). Assume that .t0 ∈ R

n is an unknown 
vector that is sufficiently sparse relative to the standard basis. One wishes to identify 
. t0 and to that end generates the random sub-sampled convolution of . t0 with . ξ , i.e., 
the points .Zi = 〈t0 � ξ, ei〉 for .i ∈ I . However, the information one is actually 
given is a corrupted sample .(Yi)i∈I , generated by a malicious adversary who has the 
freedom to change up to .( 1

2 − η)|I | of the points .(Zi)i∈I in any way they fit. 
As we explain in what follows, under minimal assumptions of . ξ and thanks to 

the stable point separation property we establish, one can still recover . t0 with the 
optimal number of measurements: if . t0 is supported on at most s coordinates with 
respect to the standard basis one requires .|I | ∼ s log(en/s)—as if . ξ were Gaussian 
and the sample were not contaminated maliciously. The one restriction is that s has 
to be sufficiently small, at most .∼ √

n/ log n (see Theorem 1.11 and Sect. 4.2 for an 
exact formulation and proof). 

Clearly, identifying when, or even if, (1.5) and (1.6) are true is considerably
harder than establishing (1.1) and (1.3) . And if they are, it has nothing to do with
independence.

A wildly optimistic conjecture is that both parts of Question 1.2 are (almost) 
universally true under minimal assumptions on X. And deferring an accurate 
definition of what is meant by “reasonably large”, the main result of this article 
is that this wildly optimistic conjecture is, in fact, true:

• Under the bare-minimum assumptions on X, for an arbitrary linear oper-
ator T , T X  has a large Euclidean norm; moreover, that norm is exhibited 
by many large coordinates with respect to an arbitrary orthonormal basis.

• Both facts hold with high probability and are simply generic properties of 
X that have nothing to do with independence, nor with concentration of 
measure.

• In particular, almost any random vector T X  exhibits both point separation 
and stable point separation with respect to an arbitrary orthonormal basis.
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We show in what follows that the reason why both parts of Question 1.2 are 
universally true is a small-ball assumption which we now describe. 

1.2 The Small-Ball Assumption 

To have some intuition on the sort of quantitative answers to Question 1.2 one can 
hope for, assume for the time being that X is isotropic. Let .F ⊂ R

n be a subspace of 
dimension k, and set . PF to be the orthogonal projection onto F . Thus, . E‖PF X‖2

2 =
k and at least intuitively, saying that .PF X has a “reasonably large Euclidean norm 
can be taken to mean that .‖PF X‖2 ≥ ε

√
k for some .0 < ε < 1. Moreover, a 

“reasonably large coordinate” of such a k-dimensional vector should be at least of 

the order of .(E‖PF X‖2
2)

1
2 /

√
k = 1. 

Following the same path with a general linear operator .T : Rn → R
m instead of 

. PF , the intuitive notion of being relatively large is that .‖T X‖2 is at least . ε‖T ‖S2 =
ε(E‖T X‖2

2)
1
2 , where .‖T ‖S2 denotes the Hilbert-Schmidt norm of T ; and given an 

orthonormal basis .(ui)
m
i=1, a “large coordinate” of T X  satisfies that . | 〈T X, ui〉 | �

‖T ‖S2/
√

m. 
Once the two notions are agreed upon, the answers to the two parts of Ques-

tion 1.2 are given in the form of small-ball estimates, that is, upper bounds on 

. P(‖T X‖2 ≤ y) for 0 < y ≤ ‖T ‖S2

and coordinate small-ball estimates which are upper bounds on 

. P (|{i : | 〈T X, ui〉 | ≤ y}| ≥ �) for 0 < y ≤ ‖T ‖S2/
√

m.

Let us emphasize a fact, which at first glance, may be surprising: 

Small-ball estimates and coordinate small-ball estimates have nothing to do 
with concentration. 

Indeed, although the notions of small-ball estimates and coordinate small-ball 
estimates may seem to be related to concentration of measure, they are actually 
based on a totally different phenomenon that has nothing to do with the way the 
random variable .‖T X‖ concentrates around its mean .E‖T X‖—no matter what 
norm . ‖ ‖ is considered. 

There are several reasons for that: firstly, two-sided concentration estimates of 
the form 

.P (|‖T X‖ − E‖T X‖| ≥ y)
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are a combination of the upper estimate—that with high probability, . ‖T X‖ ≤
E‖T X‖ + y, and the lower one, that .‖T X‖ ≥ E‖T X‖ − y. By now it is well 
understood (see, for example, the discussion in [15]) that the two estimates are 
totally different and are caused by unrelated features of the random vector X. 
Moreover, the upper tail is almost always the bottleneck in the two-sided estimate, 
while our interests lie in the lower one. Secondly, the scale one is interested in 
when studying the small-ball behaviour of T X  corresponds to the lower tail with 
the choice of .y = (1 − s)E‖T X‖, for  s close to 0. That is very different from the 
lower tail at the ‘concentration scale’ of .y = sE‖T X‖ for s close to 0. 

Remark 1.4 As we explain in what follows, the behaviour of .P(‖T X‖2 ≤ y) is 
more subtle than what this intuitive description may lead one to believe. In fact, 
.P(‖T X‖2 ≤ ε‖T ‖S2) exhibits multiple phase transitions at different levels of . ε in 
the small-ball regime. 

The minimal assumption that is required for establishing small-ball and coordi-
nate small-ball estimates is as follows: 

Assumption 1.5 The random vector X satisfies a small ball assumption (denoted 
from here on by SBA) with constant . L if for every .1 ≤ k ≤ n−1, every . k dimensional 
subspace F , every .z ∈ R

n and every .ε > 0, 

.P

(
‖PF X − z‖2 ≤ ε

√
k
)

≤ (Lε)k, (1.7) 

where . PF is the orthogonal projection onto the subspace F . 

It is straightforward to verify (see, e.g., Proposition 2.2 in [26]) that X satisfies 
the SBA with constant . L if and only if for every .1 ≤ k ≤ n, the densities of all 
k-dimensional marginals of X are bounded by . Lk (assuming, of course, that X has 
a density, and in which case . fX denotes that density). 

Since, for most of our results, we will assume nothing about the mean (center) of 
X it is more natural to consider all translations with vectors z in (1.5) .

There are numerous examples of generic random vectors that satisfy the SBA
with an absolute constant; among them are vectors with iid coordinates that have a
bounded density (see [26] and [11] for the optimal constant) as well as various log-
concave random vectors.1 For more details see Appendix A, where we list several 
examples of generic log-concave random vectors that satisfy Assumption 1.5. 

Although Assumption 1.5 requires that X has a density, this is not essential and 
our main results remain true even under the following weaker assumption. 

Assumption 1.6 Let . L and . θ be such that .Lθ < 1. The random vector X satisfies 
the weak small-ball assumption (denoted from here on by wSBA) with constants

1 Recall that X is log-concave if it has a density . fX that satisfies that for every .x, y in the support 
of . fX and every .0 ≤ λ ≤ 1, .fX((1 − λ)x + λy) ≥ f

(1−λ)
X (x)f λ

X(y). 



238 S. Mendelson and G. Paouris

. θ and . L if for every .1 ≤ k ≤ n − 1, every . k dimensional subspace F , and every 

.z ∈ R
n, 

.P

(
‖PF X − z‖2 ≤ θ

√
k
)

≤ (Lθ)k. (1.8) 

Clearly, if X satisfies the SBA with constant . L then it satisfies the wSBA with 
constants . θ and . L for every .θ > 0. Moreover, it follows from [26] that if . X has 
independent coordinates, and if each coordinate satisfies the wSBA with constants 
. θ and . L, then . X satisfies the wSBA with constants .Cθ and . L, where .C > 0 is an 
absolute constant. 

Remark 1.7 Most of the results presented in what follows hold under the wSBA. 
However, to simplify the presentation only one result is proved under that 
assumption—the coordinate small-ball estimate (Theorem 1.20); the other results 
are formulated using the SBA which leads to a proof that is less involved. 

Before we formulate the main results, let us mention one of their outcomes: a 
stable point separation bound for the random sub-sampled convolutions scheme. 

1.2.1 Example 1.3 Revisited 

As it happens, the existing state of the art on point separation/stable point separation 
of the random sub-sampled convolutions scheme can be improved dramatically, 
as existing estimates are based on severe restrictions on the random vector . ξ . 
The reason for those restrictions is a wasteful method of proof, as is explained in 
Sect. 5.1, and that leads to the following: 

Theorem 1.8 ([19]) For every constant .L ≥ 1 there exist constants . c0, c1, c2, c3
and . c4 that depend only on L for which the following holds. Let x be a mean-zero, 
variance one, L-subgaussian random variable,2 and set .ξ = (xi)

n
i=1, i.e., a vector 

whose coordinates are independent copies of x. Let .s ≤ c0n/ log4 n and consider 
.a ∈ Sn−1 that is s-sparse3 with respect to the standard basis .(ei)

n
i=1. Then with 

probability at least .1 − 2 exp(−c1 min{n/s, δn}) with respect to both . ξ and .(δi)
n
i=1, 

.

∑

i∈I

〈a � ξ, ei〉2 ≥ c2δn and |{i ∈ I : | 〈a � ξ, ei〉 | ≥ c3}| ≥ c4δn. (1.9) 

We show that one can replace the wasteful parts of Theorem 1.8, leading to a 
sharp point separation and stable point separation that hold as long as . ξ satisfies the 
SBA, and with a much better probability estimate.

2 A centred random variable x is L-subgaussian if for every .p ≥ 2, .‖x‖Lp ≤ L
√

p‖x‖L2 . 
3 We say that a vector is s-sparse if it is supported on a set of cardinality no more than s. 
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In [19], a standard representation of Av where A is a complete circulant matrix 
via the Discrete Fourier Transform has been used. Following [19], if . F is the discrete 
Fourier matrix, 

. a � ξ = F−1F(a � ξ) = F−1 ((Fa)i · (Fξ)i)
n
i=1 = F−1DFaFξ,

where .DFa is a diagonal matrix whose diagonal entries are .dii = (Fa)i . Setting 

.U = F−1/
√

n, W = F/
√

n, and O = F/
√

n, (1.10) 

it follows that

.a � ξ = √
nUDWaOξ ≡ �aξ, (1.11) 

where .U,W and O are unitary matrices with the property that 

. max
i≤n

‖Wi‖∞ ≤ 1√
n
, (1.12) 

where .Wi, i ≤ n are the rows of W . However, note that . �a is a real valued matrix. 
Set .â := 1√

n
Fa = Wa. With the above notation we have the following 

Theorem 1.9 Let . ξ satisfies the SBA with constant . L and consider .a ∈ Sd−1 that 
is s-sparse for .s ≤ c0n/ log n. Then for any .0 < ε < 1 and .q > 2, with probability 
at least 

. 1 − (c1Lε)

c2

‖â‖2q/(q−2)
q − exp(−c3δn),

. 
∑

i∈I

〈a � ξ, ei〉2 ≥ c4ε
2δn and |{i ∈ I : | 〈a � ξ, ei〉 | ≥ ε}| ≥ c5δn;

here, .c0, c1 and . c2 are constants that depend on q and .c3, c4, c5 are absolute 
constants. 

The differences between Theorems 1.8 and 1.9 are substantial. Firstly, the 
estimate in Theorem 1.9 holds for a random vector that satisfies the SBA rather 
than only for vectors that have iid subgaussian coordinates. Secondly, note that for 
any .a ∈ Sn−1 and any .q > 2, .1/‖â‖2q/(q−2)

q ≥ 1/‖â‖2∞; and for any .a ∈ Sn−1 that 
is s-sparse, .1/‖â‖2∞ ≥ n/s. Thus, the probability estimate in Theorem 1.9 is always 
better than in Theorem 1.8, and often the gap between the two is significant. 

Remark 1.10 It is possible to prove a version of Theorem 1.9 for X that satisfies the 
wSBA, but for the sake of a simpler presentation we shall not do that here.
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Let us turn to the sparse recovery problem that was outlined previously. Consider 
an unknown vector .t0 ∈ R

n and let 

. Zi = 〈t0 � ξ, ei〉 , for i ∈ I

be the random sub-sampled convolution of . t0 with . ξ . 
Before the random sample .(Zi)i∈I is given, an adversary maliciously changes at 

most .( 1
2 −η)|I | of the sample points—knowing in advance the recovery strategy that 

has been chosen; the corrupted sample given as data is denoted by .(Yi)i∈I . Despite 
the malicious changes, optimal recovery is possible as long as . t0 was sufficiently 
sparse: 

Theorem 1.11 Let .q > 1 and assume that .s ≤ c0(q, η,L)
√

n/ log n and that 
.δn = c1(q, η,L)s log(en/s). There is a recovery procedure that, with probability at 
least 

. 1 − 2 exp(−c2(η, q,L)s log(en/s)) − c3(η,L)/nq,

for any unknown . t0 that is s-sparse, and upon receiving as data the corrupted sample 
.(Yi)i∈I , is able to recover . t0. 

Note that the number of measurements needed for recovery is the optimal one 
.∼ s log(en/s), as if . ξ where the standard Gaussian vector; however, the probability 
estimate is somewhat weaker than in the Gaussian case and is caused by the fact 
that linear forms .〈ξ, t〉 need not have any moments beyond the second one. The one 
major restriction is the fact that . t0 has to be very sparse, but even in that range, the 
best estimate (even in the noise-free scenario!) is from [19], where it is assumed that 
. ξ is a subgaussian random vector with iid coordinates. 

Theorem 1.11 is about the existance of a statistical recovery procedure even 
under strong adversarial corruption of the given data. This leaves open the inter-
esting question of finding a computationally feasible procedure for such a problem. 
We are not dealing with the feasibility question in this paper. 

1.3 Small-Ball Estimates 

If one wants to highlight the crucial (and rather remarkable) feature of the small-ball 
estimate presented here, it is the following: 

A Gaussian random vector is not the best case; actually, it is the worst one.
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To explain what we mean by this, let X be a random vector taking values in . Rn

and for now assume that it satisfies the SBA with constant . L. Set .m ≤ n and let 
.T : R

n → R
m be a linear operator of full rank. Without loss of generality one 

may assume that T actually maps . Rn into . Rn and denote by .s1, · · · , sm its nonzero 
singular values. 

Recall that the p-Schatten norm of T is 

. ‖T ‖Sp =
(

m∑

i=1

s
p
i

)1/p

,

and following [21], for .2 < q ≤ ∞, let  

. srankq(T ) =
(

‖T ‖S2

‖T ‖Sq

) 2q
q−2

be the q-stable rank of T . Clearly .srankq(T ) ≤ m = rank(T ) and the case . q = ∞
corresponds to the standard notion of the stable rank, i.e., 

. srank(T ) =
( ‖T ‖S2

‖T ‖S∞

)2

.

The current state of the art as far as small-ball estimates are concerned is due to 
Rudelson and Vershynin: 

Theorem 1.12 ([26]) There are absolute constants . c0 and . c1 for which the follow-
ing holds. If X satisfies the SBA with constant . L then for any .ε > 0, 

.P
(‖T X‖2 ≤ ε‖T ‖S2

) ≤ (c0Lε)c1srank(T ). (1.13) 

Remark 1.13 Although Theorem 1.12 is not stated explicitly in [26], it follows 
from the analysis presented there in a straightforward way. Previous estimates 
of the same flavour have been derived for a centred random vector X that has 
independent subgaussian entries in [10] and for an X that is isotropic, log-concave 
and subgaussian in [23]. 

One instance in which Theorem 1.12 can be applied is when T is an orthogonal 
projection of rank k (and in which case, .srank(T ) = k). On the other hand, it is 
straightforward to verify that if (1.13) holds for any such orthogonal projection then
X satisfies the SBA (though perhaps with a slightly different constant). Despite this
equivalence, Theorem 1.12 is far from optimal—because of the loose probability 
estimate; it does not “see” phase transitions that occur as . ε decreases. 

In contrast to Theorem 1.12, our first main result is a comparison theorem which 
shows that the worst random vector in the context of small-ball estimates is actually 
the standard Gaussian. Then, in Corollary 1.17 and Theorem 1.18 one uses the 
Gaussian case to establish the right probability estimate at every scale.
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Theorem 1.14 Let . X be an n-dimensional random vector that satisfies the SBA 
with constant . L, let  .T : Rn → R

m be a linear map and set G to be the standard 
Gaussian vector in . Rn. Then for every .1 ≤ k < m = rank(T ), 

.E

(
‖T X‖−k

2

)
≤ E

(
‖T G/(

√
2πL)‖−k

2

)
. (1.14) 

The connection between small-ball estimates and negative moments is an 
immediate corollary of Markov’s inequality, which, combined with Theorem 1.14, 
implies that 

. P (‖T X‖2 ≤ ε) = P

(
‖T X‖−k

2 ≥ ε−k
)

≤ εk
E

(
‖T X‖−k

2

)

≤ εk
E

(
‖T G/(

√
2πL)‖−k

2

)
.

Remark 1.15 It is natural to ask whether Theorem 1.14 is sharp, as potentially there 

could be a significant gap between .(E‖T X‖−k
2 )− 1

k and .(E‖T G‖−k
2 )− 1

k . However, 
the two happen to be equivalent for any centred log-concave vector (up to the SBA 
constant . L). Indeed, one can show that there is an absolute constant . c0 such that for 
any centred log-concave random vector X and .1 ≤ k ≤ rank(T ), 

.

(
E‖T X‖−k

2

)− 1
k ≤ c0

(
E‖T G‖−k

2

)− 1
k
. (1.15) 

A sketch of the proof of this fact is presented in Appendix B. 

Theorem 1.14 is a clear indication that the small-ball behaviour of a random 
vector has nothing to do with concentration or with tail estimates: to a certain extent, 
concentration exhibited by Gaussian vectors is the best one can hope for, but when 
it comes to small-ball estimates the situation is the complete opposite. Moreover, 
thanks to the lower bound from Theorem 1.14, the worst case scenario is actually 
very good and can be controlled. Indeed, to complement Theorem 1.14 one may 
estimate the negative moments of .‖T G‖2—which requires the following definition: 

Definition 1.16 Let .T : Rn → R
m and .rank(T ) = m. For .1 ≤ k ≤ m − 1 set, 

.ak(T ) =
(∫

Gm,k

det−
1
2 [(PF T )(PF T )∗]dF

)− 1
k

(1.16) 

where . PF is the orthogonal projection onto the subspace F and the integration takes 
place on the Grassmannian .Gm,k with respect to the Haar measure. Also for . k = m

put 

.am(T ) = det
1

2m (T T ∗).
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It is straightforward to verify that .ak(T ) has strong ties to the negative moments 
of .‖T G‖2. Indeed, as is shown in Sect. 2, for any linear operator T and . 1 ≤ k <

rank(T ) = m, 

.

(
E‖T G‖−k

2

)− 1
k = ak(T )

(
E‖Gm‖−k

2

)− 1
k ∼ ak(T )

√
m, (1.17) 

where .Gm is the standard Gaussian random vector in . Rm. 
That, combined with Theorem 1.14, leads to the accurate small-ball behaviour of 

T X: 

Corollary 1.17 There is an absolute constant c such that the following holds. If X 
satisfies the SBA with constant . L and .T : Rn → R

m then for . 1 ≤ k ≤ m = rank(T )

and every .ε > 0, 

. P
(‖T X‖2 ≤ ε

√
mak(T )

) ≤ (cLε)k.

As it happens, one can control .ak(T ) in terms of .‖T ‖S2 as long as the operator T 
does not have a trivial q-stable rank: 

Theorem 1.18 For every .q > 2 there are constants . cq and . c′
q that depend only 

on q, and absolute constants c and . c′ such that the following holds. Let X be a 
random vector in . Rn that satisfies the SBA with constant . L and .T : Rn → R

m with 
.m = rank(T ). For every .k ≤ cqsrankq(T ), 

. 

(
E‖T G‖−k

2

)− 1
k ≥ c‖T ‖S2;

in particular, for every . ε > 0

.P

(
‖T X‖2 ≤ ε

2eL‖T ‖S2

)
≤ (c′ε)c

′
q srankq (T ). (1.18) 

The proofs of Theorem 1.14 and Theorem 1.18 are presented in Sect. 2. 

1.4 Coordinate Small Ball 

As we noted previously, the fact that the Euclidean norm .‖T X‖2 is likely to be 
large gives limited information on the geometry of the random vector T X. Most  
notably, it says nothing on the crucial feature that leads to stable point separation— 
the number of large coordinates T X  has with respect to a fixed orthonormal basis 
.(ui)

m
i=1. The coordinate small-ball estimate we establish is based on the wSBA, and 

shows that indeed many of the coordinates .(〈T X, ui〉)mi=1 are likely to be large. To 
see what sort of information on the coordinates .(〈T X, ui〉)mi=1 one can hope for, let
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us return to the Gaussian case (which, based on Theorem 1.14, is a likely candidate 
to be the ‘worst’ random vector that satisfies the wSBA). 

Example 1.19 Let . n = m, set .X = G = (gi)
m
i=1 and consider the identity operator 

.T = Id : Rm → R
m. Given any orthonormal basis .(ui)

m
i=1 it follows from rotation 

invariance and independence that 

. P (|{i : | 〈G,ui〉 | ≥ ε}| ≤ c1m) = P (|{i : |gi | ≥ ε}| ≤ c1m) ≤ (c2ε)
c3m

for absolute constants .c1, c2 and . c3. 
Thus, the fact that .‖G‖2 is likely to be .� √

m is exhibited by a proportional 
number of the coordinates .(〈G,ui〉)mi=1 whose absolute values are larger than 
.ε‖Id‖S2/

√
m = ε. However, in general, obtaining a coordinate small-ball estimate 

is a nontrivial task even when X has iid coordinates and T is the identity operator. 
Indeed, let .n = m and set .X = (xi)

m
i=1 where the . xi’s are independent copies of 

a mean-zero random variable x. When .(ui)
m
i=1 is the standard basis, one has that 

.| 〈T X, ui〉 | = |xi |, and estimating 

. P

(
m∑

i=1

1{|xi |≥ε} ≤ �

)

is easy to do thanks to the independence of the .x1, . . . , xm. But when .(ui)
m
i=1 is a 

different orthonormal basis then the coordinates of .(〈X, ui〉)mi=1 are likely to have 
strong dependencies and the wanted estimate is far from obvious. 

We present two coordinate small-ball estimates: Theorem 1.20, when the linear 
operator T satisfies that .‖T ∗ui‖2 = 1 for every .1 ≤ i ≤ m, and Theorem 3.5 for 
more general operators T . 

Theorem 1.20 There exists an absolute constant c such that the following holds. 
Let X satisfy the wSBA with constants . θ and . L, set  .(ui)

m
i=1 to be an orthonormal 

basis of . Rm and consider .T : Rn → R
m such that .‖T ∗ui‖2 = 1 for every . 1 ≤ i ≤

m. Let .q > 2 and set .kq = srankq(T ). Then for . s ∈ (0, 1)

. P (|{i ≤ m : | 〈T X, ui〉 | ≥ θ}| ≤ (1 − s)m) ≤ 2

(
2

s

) q
q−2 m

kq

(
cqLθ

s

) 1
2 (s/2)

q
q−2 kq

,

(1.19) 

where .cq ≤ c(q/(q − 2))1/2. 

To put Theorem 1.20 is some perspective, let us return to Example 1.19. Consider 
the case where .n = m and .T = Id. Thus, .k∞ = m and .‖T ‖S2/

√
m = 1. Recall 

that by Rudelson and Vershynin [26], if x is a random variable that has a density 
that is bounded by . L and .X = (xi)

m
i=1 has iid coordinates distributed according to 

x, then X satisfies the SBA with constant . cL. If .(ui)
m
i=1 is an arbitrary orthonormal
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basis and .s = 0.01, then by Theorem 1.20 one has that with probability at least 
.1 − 2 (c1Lε)c2m, 

. |{i : | 〈X, ui〉 | ≥ ε}| ≥ 0.99m, (1.20) 

which means that X exhibits the same coordinate small-ball behaviour with respect
to an arbitrary basis as it would with respect to the standard basis; moreover, that
behaviour is at least as good as that of the standard Gaussian vector.

Remark 1.21 The one place in which Theorem 1.20 is potentially loose is the factor 
.m/kq . It has an impact only in situations where the operator T is, in some sense, 
trivial—when the q-stable rank of T is smaller than .cq log m. 

The main applications of Theorem 1.20 are Theorems 1.9 and 1.11, showing that 
random sub-sampled convolutions exhibit stable point separation and can used in the 
recovery of sparse signals. In addition to that, a further application of Theorem 1.20 
is an . �p small-ball estimate. 

Theorem 1.22 There exists absolute constants . c1 and . c2 such that the following 
holds. Let X be a random vector in . Rn that satisfies the SBA with constant . L. Set 
.a ∈ R

n and let .k = (c1‖a‖p/‖a‖∞)p. Then for any .0 < ε < 1, 

.P

⎛

⎝
∥∥∥∥∥

m∑

i=1

aixiei

∥∥∥∥∥
p

≤ ε‖a‖p

⎞

⎠ ≤ (c2εL)k. (1.21) 

Remark 1.23 To see that (1.21) is truly a small-ball estimate with respect to the . �p

norm, observe that by the SBA 

. E

∥∥∥∥∥

m∑

i=1

aixiei

∥∥∥∥∥

p

p

=
m∑

i=1

|ai |p · E|xi |p ≥ (cL)p‖a‖p
p;

therefore, under a suitable moment assumption, .‖a‖p ∼ E
∥∥∑m

i=1 aixiei

∥∥
p

. 

There is no obvious way of obtaining an upper bound on (1.21) . If X has iid
coordinates and satisfies the SBA with constant .L = 1, one may invoke [24], where 
it is shown that for any semi-norm . ‖ ‖ and any .u > 0, 

.P(‖X‖ ≤ u) ≤ P(‖Y‖ ≤ u), (1.22) 

and Y is the uniform measure on .[− 1
2 , 1

2 ]m. However, similar comparison results 
of this kind for a general random vector X—whose coordinates need not be 
independent—are not known. 

The proof of Theorem 1.22 is presented in Sect. 4.3. 
We end the introduction with some notation. Throughout, .c, c1, c

′, etc., denote 
absolute constants. Their value may change from line to line. . cq and .c(q) denote
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constants that depend on the parameter q; .a � b means that there is an absolute 
constant c such that .a ≤ cb; and .a �q b implies that c depends on the parameter 
q. The corresponding two-sided estimates are denoted by .a ∼ b and . a ∼q b

respectively. 
For a subspace .F ⊂ R

n let . PF be the orthogonal projection onto F ; .(ei)
n
i=1 is the 

standard basis of . Rn and . Pk is the orthogonal projection onto .span(e1, . . . , ek). The  
standard Gaussian random vector in . Rn is denoted by G, while .Gm is the standard 
Gaussian random vector in . Rm. Finally, if . fX is the density of a random vector X, 
the density of .PF X is denoted by .fPF X. 

2 Proofs: Small Ball Estimates 

The starting point of the proof of Theorem 1.14 is the following equality (see [23], 
Proposition 4.6): 

Proposition 2.1 For every random vector W in . Rm with bounded density and . 1 ≤
k ≤ m − 1, 

.

(
E‖W‖−k

2

)− 1
k

(
E‖Gm‖−k

2

)− 1
k

= 1√
2π

(∫

Gm,k

fPF W (0)dF

)− 1
k

, (2.1) 

with integration taking place with respect to the Haar measure on the Grassmann
manifold .Gm,k . 

Proposition 2.1 indicates the path the proof of Theorem 1.14 follows: one obtains 
suitable lower bounds on the .L∞ norms the densities of typical projections of T X. 
This requires two straightforward volumetric observations that also explain the role 
of the Gaussian parameters .ak(T ). 

Lemma 2.2 Let X be a random vector with a density. Consider .S : Rn → R
k for 

.k ≤ n and with .rank(S) = k, and let .UDPkV be the singular value decomposition 
of S. Then, for any compact subset . K ⊂ R

k

.P (SX ∈ K) = P

(
PEX ∈ V ∗D−1U∗K

)
, (2.2) 

where .E = V ∗(Rk). 
Moreover, 

.P (SX ∈ K) ≤ det(D−1)vol(K)‖fPEX‖L∞ = vol(K)√
det(SS∗)

‖fPEX‖L∞ . (2.3)
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Proof Since .S = UDPkV and .PkV = V PE , it follows that 

. P (SX ∈ K) =P (UDPkV X ∈ K) = P

(
PkV X ∈ D−1U∗K

)

=P

(
V PEX ∈ D−1U∗K

)
= P

(
PEX ∈ V ∗D−1U∗K

)
= (∗);

and by a volumetric estimate, 

. (∗) =
∫

V ∗D−1U∗K
fPEX(x)dx ≤ vol(V ∗D−1U∗K)‖fPEX‖∞

= det(D−1)vol(K)‖fPEX‖∞.

��
The second observation yields an estimate on the .L∞ norm of the density of a 

projection of the random vector T X. 

Lemma 2.3 Let X be a random vector, set .1 ≤ k ≤ m − 1 ≤ n − 1 and assume 
that for every .E ∈ Gn,k , 

.‖fPEX‖L∞ ≤ Lk. (2.4) 

Then, for every .F ∈ Gm,k and .T : Rn → R
m, 

.‖fPF T X‖L∞ ≤ Lk

(det[(PF T )(PF T )∗]) 1
2

. (2.5) 

Proof Fix .F ∈ Gm,k and observe that for every compact set .K ⊂ F , 

. 
1

vol(K)

∫

K

fPF T X(x)dx = 1

vol(K)
P (PF T X ∈ K) .

By (2.3) and the uniform estimate on .‖fPEX‖L∞ it follows that 

. P (PF T X ∈ K) ≤ vol(K) · max
E∈Gn,k

‖fPEX‖L∞

(det[(PF T )(PF T )∗]) 1
2

≤ vol(K) · Lk

(det[(PF T )(PF T )∗]) 1
2

.

Therefore, 

. 
1

vol(K)

∫

K

fPF T X(x)dx ≤ Lk

(det[(PF T )(PF T )∗]) 1
2

,

and since the R.H.S. is independent of K the claim follows. ��
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Proof of Theorem 1.14 Recall that G is the standard Gaussian random vector in 
.R

n and .Gm is the standard Gaussian random vector in . Rm. The proof follows by 
invoking Proposition 2.1 twice: it is used to compare negative moments of T G  and 
. Gm, and then to compare negative moments of .Gm and T X. 

Let .F ∈ Gm,k . Since .PF T G is also a centred Gaussian vector, it standard to 
verify that 

.f
1
k

PF T G(0) = 1√
2π

(
1

det[(PF T )(PF T )∗]
) 1

2k

. (2.6) 

Hence, by (2.1) and the definition of .ak(T ), 

. 

(
E‖T G‖−k

2

)− 1
k

(
E‖Gm‖−k

2

)− 1
k

= 1√
2π

(∫

Gm,k

fPF T G(0)dF

)− 1
k

=
(∫

Gm,k

det−
1
2 [(PF T )(PF T )∗]dF

)− 1
k

= ak(T ). (2.7) 

On the other hand,

. 

(
E‖T X‖−k

2

)− 1
k

(
E‖Gm‖−k

2

)− 1
k

= 1√
2π

(∫

Gm,k

fPF T X(0)dF

)− 1
k

;

by Lemma 2.3, for every .F ∈ Gn,k , 

. fPF T X(0) ≤ ‖fPF T X‖L∞ ≤ Lk

(det[(PF T )(PF T )∗]) 1
2

,

implying that 

.
1√
2π

(∫

Gm,k

fPF T X(0)dF

)− 1
k

≥ 1√
2πL

(∫

Gm,k

det−
1
2 [(PF T )(PF T )∗]dF

)− 1
k

= ak(T )√
2πL

.
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Therefore, 

. 

(
E‖T X‖−k

2

)− 1
k

(
E‖T G/(

√
2πL)‖−k

2

)− 1
k

≥ 1,

as claimed. 

Note that (2.1) and (2.6) imply that .

(
E‖T G‖−k

2

)− 1
k = ak(T )

(
E‖Gm‖−k

2

)− 1
k

as 

claimed in (1.17) . ��

2.1 Proof of Theorem 1.18 

Thanks to Theorem 1.14, it suffices to obtain a suitable lower bound on 
.(E‖T G‖−k

2 )− 1
k for .k � srankq(T ) and .q > 2. 

Lemma 2.4 There exists an absolute constant c for which the following holds. Let 
.0 < θ < 1 and .q > 2, and set 

. m = (cθ)2q/(q−2)srankq(T ).

If .(si)ri=1 are the non-zero singular values of T arranged in a non-increasing order 
and 

. s̃i = min{si, ‖T ‖S2/
√

m}

then 

. 

r∑

i=1

s̃2
i ≥ (1 − θ2)‖T ‖2

S2
.

Proof Let .0 < θ < 1 and observe that for every .1 ≤ i ≤ m, .si ≤ ‖T ‖Sq /i1/q . 
Therefore, 

. 
∑

i≤m

s2
i ≤ ‖T ‖2

Sq

∑

i≤m

1

i2/q
≤ cq

q − 2
‖T ‖2

Sq
m1−2/q ≤ θ2‖T ‖2

S2

provided that 

.m ≤ (cθ)2q/(q−2)srankq(T ).
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At the same time, .sm+1 ≤ ‖T ‖S2/
√

m + 1, implying that 

. |{i : si ≥ ‖T ‖S2/
√

m}| ≤ m.

Thus, 

. 

r∑

i=1

min
{‖T ‖S2/

√
m, si

}2 ≥
r∑

i=m+1

s2
i ≥ (1 − θ2)‖T ‖S2 ,

and the claim follows. ��
The proof of Theorem 1.18 is based on the following outcome of the so-

called “B-Theorem” (see [5] for the proof of the “B-Theorem”) and requires some 
additional notation. 

For .a ∈ R
n let .Ga = 〈G, a〉, and for .A ⊂ R

n set 

. d∗(A) =
(

E supa∈A Ga

supa∈A(EG2
a)

1/2

)2

.

Theorem 2.5 ([8, 9].) There are absolute constants . c1 and . c2 such that for any 
.A ⊂ R

n and any .0 < s < 1, 

. P

(
sup
a∈A

Ga ≤ sE sup
a∈A

Ga

)
≤ (c1s)

c2d∗(A).

Proof of Theorem 1.18 Let .(si)ri=1 be the non-zero singular values of T and set 
.(s̃i )

r
i=1 to be as in the proof of Lemma 2.4. Using the notation of the lemma, let 

.θ2 = 3/4. Note that if D is a diagonal operator that satisfies .dii = si for . i ≤ r

and 0 otherwise, and . D̃ is a diagonal operator whose non-zero diagonal entries are 
.dii = s̃i for .i ≤ r , then 

. D̃Bn
2 ⊂ DBn

2 , ‖D̃‖S∞ ≤ ‖T ‖S2√
m

, and ‖D̃‖S2 ≥ ‖T ‖S2

2
.

By rotation invariance, for every k, .E‖T G‖−k
2 = E‖DG‖−k

2 , and for every . x ∈
R

n, .‖D̃x‖2 ≤ ‖Dx‖2. Hence, 

. (E‖T G‖−k
2 )−

1
k = (E‖DG‖−k

2 )−
1
k ≥ (E‖D̃G‖−k

2 )−
1
k .

Let .A = D̃Bn
2 and observe that for .t ∈ R

n, 

. sup
a∈A

〈a, t〉 = sup
x∈Bn

2

〈
x, D̃t

〉
= ‖D̃t‖2;
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therefore, 

. E sup
a∈A

〈a,G〉 = E‖D̃G‖2 ≥ ‖D̃‖S2 ≥ ‖T ‖S2

2

and 

. sup
a∈A

E 〈a,G〉2 ≤ max
i

dii ≤ ‖T ‖S2√
m

.

Finally, by Theorem 2.5, for every .0 < u < 1, 

. P(‖D̃G‖2 ≤ c1u‖T ‖S2) ≤ (u/2)c2m,

where . c1 and . c2 are suitable absolute constants. A straightforward tail integration 
argument shows that for . k ≤ c3m

. (E‖D̃G‖−k
2 )−

1
k ≥ c4‖T ‖S2 ,

as required. ��

3 Proofs: Coordinate Small-Ball Estimates 

Let us turn to the proof of Theorem 1.20. Recall that X is an n-dimensional random 
vector that satisfies the wSBA with constants . θ and . L, let .(ui)

m
i=1 be an orthonormal 

basis of .Rm and set .T : R
n → R

m to be a linear operator that satisfies that for 
. 1 ≤ i ≤ m

.‖T ∗ui‖2 = 1. (3.1) 

The key component of the proof of Theorem 1.20 is a decomposition lemma. To 
formulate it, let .σ ⊂ {1, . . . , m} and denote by .Pσ : R

m → R
σ the orthogonal 

projection onto .span(ui)i∈σ . Thus, .P ∗
σ : Rσ → R

m is the formal identity operator 
with respect to the basis .(ui)

m
i=1. 

Lemma 3.1 Let .q > 2 and set .cq ∼ (q/(q − 2))1/2. Assume that for every . 1 ≤ i ≤
m, .‖T ∗ui‖2 = 1 and set .kq = srankq(T ). Then for any .λ ∈ (0, 1) there are disjoint 
subsets .σ1, . . . , σ� ⊂ {1, . . . , m} such that
• For .1 ≤ j ≤ �, .|σj | ≥ λ

q
q−2 kq/2 and .

∑�
j=1 |σj | ≥ (1 − λ)m; and

• .‖(T ∗P ∗
σj

)−1‖S∞ ≤ cq . 

The proof of Lemma 3.1 is based on the idea of restricted invertibility. The 
version used here is Theorem 8 from [21]:
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Theorem 3.2 For .q > 2 set .cq ∼ (q/(q − 2))1/2. If  .A : Rm → R
n is a linear 

operator then there exists .σ ⊂ {1, . . . , m} of cardinality at least . |σ | ≥ srankq(A)/2
such that the map .(AP ∗

σ )−1 is well defined and 

.‖(AP ∗
σ )−1‖S∞ ≤ cq

√
m

‖A‖S2

. (3.2) 

Proof of Lemma 3.1 The construction of the subsets .(σj )
�
j=1 is performed induc-

tively. First, let .kq = srankq(T ) and apply Theorem 3.2 to .A = T ∗. Thus, noting 
that .‖T ∗‖S2 = √

m, there is .σ1 ⊂ {1, . . . , m} such that 

.|σ1| ≥ kq

2
and ‖(T ∗P ∗

σ1
)−1‖S∞ �

(
q

q − 2

)1/2

. (3.3) 

If .|σ1| ≥ (1 − λ)m the lemma is proved. Otherwise, let .m1 = m − |σ1| and set 
.T1 = Pσc

1
T : R

n → R
m1 . Since .‖T ∗

1 ui‖2 = 1 for all .i ∈ {1, . . . , m} \ σ1, it is  

evident that .‖T1‖2
S2

≥ λm, and because .Pσc
1

is a contraction one has that . ‖T1‖Sq =
‖Pσc

1
T ‖Sq ≤ ‖T ‖Sq . Set .k(1)

q = srankq(T1); thus, 

. k(1)
q =

(
‖T1‖S2

‖T1‖Sq

) 2q
q−2

≥ λ
q

q−2

(
‖T ‖S2

‖T ‖Sq

) 2q
q−2

= λ
q

q−2 kq.

Invoking Theorem 3.2 again, this time for .A = T ∗
1 , there is .σ2 ⊂ {1, . . . , m} \ σ1, 

such that 

. |σ2| ≥ k
(1)
q

2
≥ 1

2
λ

q
q−2 kq and ‖(T ∗P ∗

σ )−1‖S∞ �
(

q

q − 2

)1/2

.

Again, if .|σ1| + |σ2| ≥ (1 − λ)m the lemma is proved, and if not one may 
continue in the same way, constructing operators . Tj and sets . σj inductively until 
.
∑�

j=1 |σj | ≥ (1 − λ)m. ��
The fact that .‖(T ∗P ∗

σ )−1‖S∞ ≤ γ implies that the ellipsoid .Pσ T (Bn
2 ) contains 

the Euclidean ball .γ −1Bσ
2 , which leads to a small-ball estimate. 

Lemma 3.3 There is an absolute constant c for which the following holds. Let . σ ⊂
{1, . . . , m} such that .‖(T ∗P ∗

σ )−1‖S∞ ≤ γ , and set .γ0 = max{1, γ }. If  X satisfies 
the wSBA with constants . θ and . L, then for any .τ ⊂ σ , 

. P(‖PτT ‖2 ≤ θ
√|τ |) ≤ (cγ0θL)|τ |.

An observation one needs for the proof of Lemma 3.3 is a monotonicity property 
for the wSBA. Its proof can be found in Proposition 2.1 in [26] and is based on a 
simple covering argument.
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Lemma 3.4 Let X satisfy the wSBA with constants . θ and . L. Then for every .M > 1, 
X also satisfies the wSBA with constants .Mθ and . 3L. 
Proof of Lemma 3.3 Let .r = |τ | and note that .B = PτPσ T : Rn → R

r is a linear 
operator of rank r . As noted previously, there are .|σ | non-zero singular values of 
.Pσ T , all of which are at least .γ −1; and since .τ ⊂ σ , it follows that . si(B) ≥ γ −1

for .1 ≤ i ≤ r . By the singular value decomposition theorem there are .U ∈ Or , . V ∈
On and a diagonal matrix .D = diag(s1(B), · · · , sr (B)) such that .B = UDPrV , 
where, as always, . Pr denotes the orthogonal projection onto .{e1, . . . , er }. Setting 
.F = V ∗(Rr ) one has that .PrV = V PF . 

Recall that X satisfies the wSBA with constants . θ and . L. Since all the entries in 
the diagonal of D are at least .γ −1, invoking Lemma 3.4 it is evident that 

. P

(
‖PτT X‖2 ≤ θ

√|τ |
)

=P

(
‖UDV PF X‖2 ≤ θ

√|τ |
)

≤ P

(
‖PF X‖2 ≤ γ θ

√|τ |
)

≤ (cθγ0L)|τ | .

��
Proof of Theorem 1.20 Let .(σj )

�
j=1 be the collection of subsets as in Lemma 3.1 

and set 

. σ =
⋃

j≤�

σj .

In particular, for .1 ≤ j ≤ �, 

. |σj | ≥ λ
q

q−2 kq/2.

Recall that .(ui)
m
i=1 is an orthonormal basis of .Rm and for .τ ⊂ {1, . . . , m} set 

. Qτ = {x ∈ R
m : max

i∈τ
| 〈x, ui〉 | ≤ 1}.

Consider the random variables 

.ηi = 1{z:|〈T z,ui 〉|≥θ}(X) and ζi = 1{z:|〈T z,ui 〉|<θ}(X) (3.4) 

for .1 ≤ i ≤ m. 
It follows that for .0 < α < 1 and .1 ≤ j ≤ �, 

.P

⎛

⎝
∑

i∈σj

ζi ≥ α|σj |
⎞

⎠ ≤
∑

τ⊂σj , |τ |=α|σj |
P

(
⋂

i∈τ

{| 〈T X, ui〉 | < θ}
)

≤
( e

α

)α|σj |
max

τ⊂σj , |τ |=α|σj |P (PτT X ∈ θQτ )

≤
( e

α

)α|σj |
max

τ⊂σj , |τ |=α|σj |P
(
‖PτT X‖2 < θ

√|τ |
)

,
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where the last inequality holds because .Qτ ⊂ √|τ |Bτ
2 = √|τ |Bm

2 ⊂ R
τ . And, by 

Lemma 3.3 one has that 

. max
τ⊂σj , |τ |=α|σj |P

(
‖PτT X‖2 < θ

√|τ |
)

≤ (cqLθ
)α|σj |

where .cq ∼ (q/(q − 2))1/2; therefore, 

.P

⎛

⎝
∑

i∈σj

ηi ≤ (1 − α)|σj |
⎞

⎠ ≤
(

ecqLθ

α

)α|σj |
. (3.5) 

Now set .0 < s < 1, let .λ = s/2 and recall that .|σ | ≥ (1 − λ)m. Let . 1 − α =
(1 − s)/(1 − λ) and observe that .α ≥ s/2. With this choice of . λ, the union bound 
and (3.5) ,

. P

(
m∑

i=1

ηi ≤ (1 − s)m

)
= P

(
∑

i∈σ

ηi ≤ (1 − s) · |σ |
1 − λ

)

≤P

⎛

⎝
∑

j≤�

∑

i∈σ�

ηi ≤ (1 − α)
∑

j≤�

|σj |
⎞

⎠ ≤
∑

j≤�

P

⎛

⎝
∑

i∈σj

ηi ≤ (1 − α)|σj |
⎞

⎠

≤
∑

j≤�

P

⎛

⎝
∑

i∈σj

ηi ≤
(

1 − s

2

)
|σj |
⎞

⎠ ≤
∑

j≤�

(
ecqLθ

s/2

)|σj |/(s/2)

= (∗).

Finally, since 

. |σj | ≥ c1λ
q

q−2 kq ∼ sq/(q−2)kq,

it is evident that .� � s−q/(q/2)m/kq and the claim follows. ��

3.1 Coordinate Small-Ball for General Operators 

The assumption that .‖T ∗ui‖2 = 1 for every .1 ≤ i ≤ m is not essential and can be 
replaced by a considerably weaker condition. If instead one assumes that there are 
constants .δ1 > 0 and .δ2 ≥ 1 such that 

.

(
1

m

m∑

i=1

‖T ∗ui‖2+δ1
2

) 1
2+δ1

≤ δ2
‖T ‖S2√

m
, (3.6)
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then the following version of Theorem 1.20 can be established: 

Theorem 3.5 Let X satisfy the SBA with constant . L. Consider .T : R
n → R

m, 
an orthonormal basis .(ui)

m
i=1 of .Rm such that (3.6) is satisfied, and for .q > 2 set 

.kq = srankq(T ). Then, for any .ε ∈ (0, 1) one has that 

.P

(∣∣∣∣

{
i ≤ m : | 〈T X, ui〉 | ≥ ε

‖T ‖S2√
m

}∣∣∣∣ ≤ c0m

)
≤ c1

m

kq

(c2Lε)c3kq (3.7) 

where .c0 = c0(δ1, δ2), 

. c1 = 5
q

q−2 , c2 ∼
(

q

q − 2

)1/2

and c3 =
(

1

2δ2

) 2+δ1
δ1 ∈ (0, 1).

Because the proof of Theorem 3.5 follows a similar path to that of Theorem 1.20 
we will only outline the necessary modifications. 

Sketch of Proof Note that (3.6) and the Paley-Zygmund inequality imply that

.

∣∣∣∣

{
i ≤ m : ‖T ∗ui‖2 ≥ ‖T ‖S2

2
√

m

}∣∣∣∣ ≥ c0(δ1, δ2)m, (3.8) 

and without loss of generality one may assume that .c0m is an integer. In particular, 
let .σ0 ⊂ {1, . . . , m} to be of cardinality .c0m and for every .i ∈ σ0, 

. ‖T ∗ui‖2 ≥ ‖T ‖S2

2
√

m
.

We may assume that .σ0 = {1, . . . , c0m} and let .T0 = Pσ0T where .Pσ0 is the 
orthogonal projection onto .span(ui)i∈σ0 . Therefore, 

. ‖T ‖S2 ≥ ‖T0‖S2 ≥
√

c0

2
‖T ‖S2 ,

and for any .σ ⊂ σ0, 

. ‖Pσ T0‖S2 ≥ 1

2

√ |σ |
m

‖T ‖S2 ≥
√

c0

2

√
|σ |
|σ0| ‖T0‖S2 .

Let .δ = √
c0/2 and set 

.kq,0 = srankq(T0) ≥
(c0

4

) q
q−2

kq.
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Following the argument used in the proof of Lemma 3.1, it is evident that there are 
disjoint subsets .σ1, . . . , σ� ⊂ {1, . . . , c0m} such that

• For .1 ≤ j ≤ �, .|σj | ≥ (δ2λ)
q

q−2 kq,0/2 and . 
∑�

j=1 |σj | ≥ (1 − λ)|σ0| = (1 −
λ)c0m; and

• .‖(T ∗P ∗
σj

)−1‖S∞ ≤ c0
δ2 . 

From here on the proof is identical to that of Theorem 1.20 with the choice of 
.λ = 1/2; the details are omitted. ��
Remark A version of Theorem 3.5 holds true under the wSBA as well. We leave the 
details of the proof to the reader. 

Theorems 1.20 and 3.5 imply that under mild assumptions on T , the coordinate 
small-ball estimate exhibits the standard small-ball one. Indeed, as an example, set 
.s = 1/2, let . k4 denote the q stable rank for .q = 4 and observe that if . ‖T ∗ei‖2 = 1
for every .1 ≤ i ≤ m then .‖T ‖S2 = √

m. Hence, 

. 

∣∣∣∣

{
i : | 〈T X, ui〉 | ≥ (θ/

√
2)

‖T ‖S2√
m

}∣∣∣∣ ≥
m

2

with probability at least 

. 1 − (m/k4) · (cθL)c
′k4

where c and . c′ are absolute constants. Therefore, if .k4 � log m and .θ � 1/L, 

. P

(
‖T X‖2 ≤ θ

8
‖T ‖S2

)
≤ (c′′θL)c

′k4/2,

which recovers the small-ball estimate (and obviously similar bounds hold for any 
.q > 2 at the price of modified constants). 

At the same time, the difference between the two estimates cannot be overstated: 
Theorem 1.20 implies that for any choice of a coordinate basis .(ui)

m
i=1, a typical 

realization of the vector .(〈T X, ui〉)mi=1 will have .∼ m large coordinates, which is a 
significantly stronger statement than the standard small-ball estimate. Indeed, there 
are many examples in which the coordinate structure dictated by the orthonormal 
basis is a feature of the problem and a small-ball estimate is simply not good enough. 
The case of random sub-sampled convolutions, which we now turn to, is one such 
example. 

4 Proofs: Applications 

Here we present the proofs of the applications that follow from Theorem 1.20, 
starting with point separation and stable point separation for random sub-sampled 
convolutions.
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4.1 Random Sub-Sampled Convolutions and Stable Point 
Separation 

Proof of Theorem 1.9 Recall that ξ is an isotropic random vector in Rn and that 
(δi)

n 
i=1 are independent {0, 1}-valued random variables with mean δ. If  I = {i : 

δi = 1}, the question of point separation is whether with high probability 

.
1

δn

∑

i∈I

(a � ξ)2
i ≥ c0‖a‖2

2 (4.1) 

for a suitable constant c0 that is independent of a and of δ; and, as far as stable point
separation is concerned, whether

. |{i ∈ I : (a � ξ)i ≥ c1‖a‖2}| ≥ c2δn. (4.2) 

Recall that

.a � ξ = √
nUDWaOξ ≡ �aξ, (4.3) 

where U,W and O are unitery matrices defined in (1.10) . Note that ξ satisfies the
SBA with constant L; that â = Wa. Hence, for every q > 2,

. ‖�a‖Sq = √
n‖UDWaO‖Sq = √

n‖DWa‖Sq = √
n‖â‖q .

Therefore, if ‖a‖2 = 1, 

. srankq(�a) =
(‖â‖2

‖â‖q

) 2q
q−2 =

(
1

‖â‖q

) 2q
q−2

.

By Theorem 1.20 for (ui)
n 
i=1 = (ei)

n 
i=1, there is an event A of probability at least 

. 1 − 2 (c1)
q

q−2
n

kq

(c2(q)Lε)c
q

q−2
3 kq = (∗)

with respect to ξ , on which 

. |{i : | 〈�aξ, ei〉 | ≥ ε}| ≥ 0.99n.

If a is s-sparse with respect to the standard basis then, by (1.12) 

.‖â‖q
q =

n∑

i=1

| 〈Wi, a〉 |q ≤ n ·
( s

n

)q/2 = sq/2

n(q−2)/2
,
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implying that 

. (∗) ≥ 1 − (c4(q)εL)c5(q)/‖â‖2q/(q−2)
q

as long as s ≤ c6(q)n/ log n and ε ≤ c7(q). 
Finally, for every realization of ξ in the event A, with probability at least 1 − 

2 exp(−c8δn) with respect to (δi)
n 
i=1 one has that 

. |{i ∈ I : | 〈�aξ, ei〉 | ≥ ε}| ≥ 0.98δn, (4.4) 

and in particular,

.

∑

i∈I

| 〈�aξ, ei〉 |2 ≥ 0.98ε2δn. (4.5) 

A Fubini argument completes the proof. ��
Remark 4.1 Observe that by modifying the constants from absolute ones to con-
stants that depend on 0 < η  <  1, (4.4) and (4.5) hold with 1 − η replacing 0.98.

4.2 Sparse Recovery Under Malicious Noise 

Proof of Theorem 1.11 Recall that for the recovery problem of the unknown (s-
sparse) vector t0 ∈ Rn, the corrupted data (Yi)i∈I is generated by the malicious 
adversary by changing at most (1/2 − η)|I | of the original random sub-sampled 
convolution (〈t0 � ξ,  ei〉)i∈I . The procedure we use selects t that is s-sparse which 
satisfies that the median of the numbers (|Yi − 〈t � ξ,  ei〉 |)i∈I is 0. The key to the 
success of the procedure is showing that with high probability, more than half of the 
values of (|Yi − 〈t0 � ξ,  ei〉 |)i∈I are 0, while if t �= t0, then the more than half of 
the values (|Yi − 〈t � ξ,  ei〉 |)i∈I are strictly positive. 

The first step in the proof of Theorem 1.11 is (4.4) , combined with the fact that
1/‖â‖2q/(q−2)

q ≥ 1/‖â‖2∞; in particular, for 0 < η < 1/10, with probability at least

. 1 − (c1(η)Lε)c2(η)/‖â‖2∞,

one has that 

. |{i : | 〈�aξ, ei〉 | ≥ ε}| ≥ (1 − η)n. (4.6) 

Next, for any a ∈ Sn−1 that is s-sparse one has that 1/‖â‖2
2 ≥ n/s; therefore, (4.6)

holds with probability at least 1 − (c1(η)Lε)c2(η)n/s . Let Ja be the set of indices in
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(4.6) and observe that with probability at least 1 − 2 exp(−c3(η)δn) with respect to
the selectors (δi)

n
i=1, |Ja ∩ I | ≥ (1 − 4η)|I |. In particular, with probability at least

. 1 − (c1(η)Lε)c2(η)n/s − 2 exp(−c3(η)δn)

. |{i ∈ I : | 〈�aξ, ei〉 | ≥ ε}| ≥ (1 − 4η)|I |. (4.7) 

Once this individual estimate has been established, let us turn to the uniform
estimate; to that end we shall make use of three simple observations:

(1) Let Us be the set of s-sparse vectors in the Euclidean unit ball and consider 
γ ≥ 1. For ρ >  0 the number of translates of ρBn 

2 needed to cover U2s satisfies 

. N (U2s , ρBn
2 ) ≤

(
n

2s

)(
5

ρ

)c4s

≤
(

n

ρs

)c5s

,

where c4 and c5 are absolute constants; Therefore, there is a ρ-cover of U2s of 
cardinality exp(c5(γ + 1)s log(n/s)) and for ρ at most (s/n)γ . 

Denote by V2s that ρ-cover, and for u ∈ U2s let πu  ∈ V2s the best 
approximation to u in V2s with respect to the �2 norm. Hence, 

. sup
u∈U2s

max
1≤i≤n

| 〈(u − πu) � ξ, ei〉 | ≤ sup
u∈U2s

‖u − πu‖2‖ξ‖2 ≤ ‖ξ‖2

( s

n

)γ
.

(2) Since ξ is isotropic it follows that for t ≥ 1, 

. P(‖ξ‖2 ≥ t
√

n) ≤ 1/t2.

Hence, on that event, 

. sup
u∈U2s

max
1≤i≤n

| 〈(u − πu) � ξ, ei〉 | ≤ t
√

n
( s

n

)γ ≤ t

n(γ−1)/2
,

provided that s ≤ √
n. 

(3) Set ε to satisfy c1(η)εL = 1/2. If δn �γ,η,L s log(en/s) and s �γ,η  
√

n/ log n, 
then (4.7) holds for all the points in the set V2s uniformly, and the outcome holds
with probability 1 − 2 exp(−c6(γ, η,L)s log(en/s)).

Now fix u ∈ U2s , let πu  be its best approximation in V2s and set Ju ⊂ I for 
which (4.7) holds. Recall that ε ∼η 1/L and observe that for j ∈ Ju,

.| 〈u � ξ, ej

〉 | ≥ | 〈πu � ξ, ej

〉 | − | 〈(u − πu) � ξ, ej

〉 | ≥ ε − t

n(γ−1)/2
≥ ε

2
,
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provided that t ≤ εn(γ−1)/2/2. As a result, with probability at least 

.1 − 2 exp(−c6s log(en/s)) − 2

εn(γ−1)/2
, (4.8) 

for every u ∈ U2s there is Ju ⊂ I of cardinality at least (1 − 4η)|I | such that for
any j ∈ Ju

.| 〈u � ξ, ej

〉 | ≥ ε

2
. (4.9) 

Finally, consider an s-sparse vector t ∈ R
n, t �= t0, and set u = (t − t0)/‖t −

t0‖2 ∈ U2s . By (4.9) ,

.| 〈t − t0 � ξ, ej

〉 | ≥ ε

2
‖t − t0‖2 (4.10) 

for more than (1 − η/4)|I | indices. Therefore, even if one changes no more than
(1/2 − η)|I | values, there are still at least (1/2 + 3η/4)|I | > |I |/2 indices for
which (4.10) holds. As a result, for any t �= t0 the median of (|Yj − 〈t � ξ, ej

〉 |)i∈I

is strictly positive. Moreover, it is straightforward to verify that the median of (|Yi −
〈t0 � ξ, ei〉 |)i∈I is 0, implying that with probability as in (4.8) , t0 is the only point
in R

n for which the median of (|Yj − 〈t � ξ, ei〉 |)i∈I is 0, as claimed. As a result,
the recovery procedure will be able to recover t0 for any t0 that is s-sparse. ��

4.3 Small-Ball Estimates for the �p-Norm 

Proof of Theorem 1.22 Let X = (xi)
n 
i=1 satisfy the SBA with constant L and fix 

a ∈ Rn. The goal here is to use Theorem 1.20 and the information it provides on the 
distribution of the coordinates of a random vector X to control the probability 

. P

⎛

⎝
∥∥∥∥∥

n∑

i=1

aixiei

∥∥∥∥∥
p

≥ ε‖a‖p

⎞

⎠ ;

here, as always, (ei)
n 
i=1 denotes the standard basis in Rn and ‖ ‖p is the �p norm. 

Without loss of generality assume that a1 ≥ a2 . . . .  ≥ 0 and set 

.Ij =
{
i : 1

2j+1
<

ai

a1
≤ 1

2j

}
. (4.11) 

For every integer � let

.�� = {j : |Ij | = �} (4.12)
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and note that it is possible that some of the sets ��’s are empty. For every � define 

.j (�) = min �� (4.13) 

and if �� is empty let j (�) = 0.
The idea behind this decomposition of {1, . . . , n} to the union of the sets Ij is

that if �� �= ∅ then the contribution to ‖a‖p that comes from
⋃

j∈��
Ij is equivalent

to the contribution of Ij (�). Indeed, for any Ij ,

.
1

2p
|Ij | a

p

1

2jp
<
∑

i∈Ij

a
p
i ≤ |Ij | a

p

1

2jp
(4.14) 

and by comparing the sum to an appropriate geometric progression, there are
absolute constants c1 and c2 such that

. c
p

1

∑

i∈Ij (�)

a
p
i ≤

∑

j∈��

∑

i∈Ij

a
p
i ≤ c

p

2

∑

i∈Ij (�)

a
p
i .

As a result, there are disjoint coordinate blocks, each one of different cardinality, 
such that 

. ‖a‖p
p ∼

∑

{�≥1:�� �=∅}

∑

i∈Ij (�)

a
p
i .

Fix an index � such that �� �= ∅  and consider j = j (�). One has that 

. 

{
i ∈ Ij : |xiai | ≤ ε

a1

2j+1

}
⊂ {i ∈ Ij : |xi | ≤ ε

}
,

and by Theorem 1.20 for the orthogonal projection onto span(ei : i ∈ Ij ), denoted 
in what follows by PIj

, there are absolute constants c3 and c4 such that 

. P

(∣∣{i ∈ Ij (�) : |xi | ≤ ε
}∣∣ ≤ �

2

)
≤ (c3Lε)c4�.

Hence, with probability at least 1− (c3Lε)c4�, there are at least �/2 indices i ∈ Ij (�)  
such that 

. |xiai | ≥ ε
a1

2j+1 ,

and in particular, 

.

∑

i∈Ij (�)

|xiai |p ≥ c
p

5 εp�
a

p

1

2jp
≥ c

p

6 εp
∑

i∈Ij (�)

a
p
i .
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Set 

. φp(k) =
∑

{�≥k,�� �=∅}

∑

i∈Ij (�)

a
p
i ,

note that 

. (c7‖a‖p)p ≤ φp(1) ≤ ‖a‖p
p

and that by the union bound, for every integer k, with probability at least 1 − 
(c8Lε)c9k , 

. 

∥∥∥∥∥

n∑

i=1

aixiei

∥∥∥∥∥
p

≥
⎛

⎝
∑

{�≥k,�� �=∅}

∑

i∈Ij (�)

|aixi |p
⎞

⎠
1/p

≥ c6εφ(k).

All that is left to show is that for a well chosen absolute constant c and for k = 
(c‖a‖p/‖a‖∞)p one has that φ(k) � ‖a‖p 

p. To that end, and because φp (1) ≥ 
c p 

7 ‖a‖p 
p, the claim follows if 

. 
∑

�≤k

∑

i∈Ij (�)

a
p
i ≤ c

p

7

2
‖a‖p

p.

By the exponential decay of ‖PIj a‖∞, 

. 
∑

{�<k,�� �=∅}

∑

i∈Ij (�)

a
p
i ≤

∑

{�<k,�� �=∅}
|Ij (�)|‖PIj(�)

a‖p∞

=
∑

{�<k,�� �=∅}
|�|‖PIj(�)

a‖p∞ ≤ c
p

10k‖a‖p∞

from which the wanted estimate follows immediately for our choice of k. ��

5 Concluding Remarks 

Finally, let us describe how coordinate small-ball estimates should not be estab-
lished. Unfortunately, up to this point, the only known way of obtaining such 
estimates was this (suboptimal) way.



Stable Recovery and the Coordinate Small-Ball Behaviour of Random Vectors 263

5.1 The Wrong Way 

The standard way in which coordinate small-ball estimates have been established 
was based on the following simple observation. Consider a vector .x ∈ R

n that 
satisfies .‖x‖2 ≥ α

√
n for some .α > 0 and for the sake of simplicity assume that 

.x1 ≥ x2 ≥ . . . ≥ xn ≥ 0. Clearly, having any estimate on .‖x‖2 says nothing about 
the number of large coordinates that x has; however, if the contribution to . ‖x‖2
made by the .k = βn largest coordinates of x is smaller than .α

√
n/2 then x is “well 

spread”. Indeed, on the one hand 

. 

n∑

i=k+1

x2
i ≥ 3

4
α2n,

and on the other 

. x2
k ≤ α2n

4k
.

Therefore, by a Paley-Zygmund type argument, a proportional number (. ∼α,β n) of  
the . xi’s are at least .c(α, β). 

Obtaining a coordinate small-ball estimate in this way is particularly appealing 
in light of Theorem 1.14: because we know that .‖T X‖2 is likely to be large, it 
seems like half the job is already done. However, there are two crucial reasons why, 
despite the appeal, this is the wrong approach. Firstly, it gives no flexibility: one has 
no control on the proportion of nontrivial coordinates that the vector has, nor on the 
lower bound on the absolute values of these coordinates; in particular, there is no 
hope of proving Theorem 1.20 using this type of argument. Secondly, while lower 
bounds are, in some sense, universal, upper bounds—which play an integral part in 
the argument and are based on tail estimates—are clearly not. In this case, given 
an orthonormal basis .(ui)

m
i=1 the necessary upper bound is on .‖(〈T X, ui〉)mi=1‖[k], 

where we set 

. ‖x‖[k] = max|I |=k

(
∑

i∈I

x2
i

) 1
2

.

Upper estimates of this kind hold with reasonable probability only in very special 
cases. In fact, even when X is a Gaussian vector, the resulting probability estimate 
is weaker than, say, the one in Theorem 1.20; and for more heavy-tailed random 
vectors estimates on .‖(〈T X, ui〉)‖[k] are completely useless.
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As a general principle, 

It is wrong to try to establish coordinate small-ball estimates (which are lower 
bounds) using an argument that is based on “large deviations”. Such a method 
may lead to nontrivial bounds only for very nice random vectors, and the 
bounds will be suboptimal even in those cases. 

A Examples of Vectors That Satisfy The SBA 

Here we give examples of several generic random vectors that satisfy the SBA. This  
is far from being an exhaustive list and should be viewed only as an indication to 
the fact that the SBA is a property shared by many natural random vectors. 

.(1) Let .X = (ξ1, · · · , ξn) where the . ξi’s are independent random variables with 
densities bounded by . L. It was shown in [26] that X satisfies the SBA with 
constant . cL, where .c > 0 is an absolute constant. 

This fact was further extended in [11, 24]; most notably, it was shown in 
[24] that if the coordinates of .X = (ξi)

n
i=1 are independent random variables 

with densities bounded by 1 and the coordinates of .Y = (ηi)
n
i=1 are uniformly 

distributed in .[− 1
2 , 1

2 ], then for every semi-norm .‖ · ‖ and .t > 0, 

.P(‖X‖ ≤ t) ≤ P(‖Y‖ ≤ t). (A.1) 

In particular, among all such vectors the ‘worse’ small-ball behaviour—with
respect to any semi-norm—is exhibited by the uniform measure on the cube
.[− 1

2 , 1
2 ]n. 

Observe that for the Euclidean norm, the small-ball behaviour of Y and of 
the standard Gaussian vector G is the same up to absolute constants. 

.(2) Perturbations: It is standard to verify that if X satisfies the SBA with a constant 
. L and W is an arbitrary random vector that is independent of X, then . W + δX

satisfies SBA with a constant depending on . δ and . L. 
.(3) The question of whether there is a constant . L such that any isotropic log-

concave random vector satisfies the SBA with constant . L is equivalent to 
Bourgain’s celebrated Hyperplane Conjecture (see [2] and the discussion in [7] 
and [4])). 

Thanks to the extensive study of log-concave measures and the connection 
the SBA has with the Hyperplane conjecture for such measures, there are some 
important examples of isotropic, log-concave random vectors that are known to 
satisfy the SBA with an absolute constant:
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• If X is also 1-unconditional (see [20], section 8.2);
• If X is also subgaussian ([2, 3]);
• If X is also supergaussian (this follows from results of [22]). 

B Proof of Remark 1.15 

The proof requires some additional notation. Let X be a random vector in . Rn and 
let . p ≥ 1. The .Zp body of X is defined as the (centrally-symmetric) convex body 
whose support function is 

.hZp(X)(θ) = (E| 〈X, θ〉 |p) 1
p , θ ∈ Sn−1. (B.1) 

It is straightforward to verify that if .T : Rn → R
m is a linear operator then 

.Zp(T X) = T Zp(X). (B.2) 

Lemma B.1 There are absolute constants . c1 and . c2 for which the following holds. 
Let . X be a centred log-concave random vector in . Rn that satisfies the SBA with 
constant . L. For any .T ∈ GLn and .F ∈ Gn,k one has 

.
c1

|det[(PF T )(PF T )∗]| 1
2k

≤ f
1
k

PF T X(0) ≤ c2L
(det[(PF T )(PF T )∗]) 1

2k

, (B.3) 

where the left-hand side holds true under the additional assumption that X is
isotropic.

The proof of Lemma B.1 is based on two facts. The first is a standard observation 
from linear algebra: let .T : Rn → R

k , set .E = ker(T )⊥ = im(T ∗) and denote by 
.T |E the restriction of T to E. Then for any compact set .K ⊂ R

n, 

.vol(T K) = det(T T ∗) · vol(PEK). (B.4) 

The second observation is Proposition 3.7 from [23]: If X is a centred, log-concave 
random vector then 

.f
1
n

X (0) ∼ vol−
1
n (Zn(X)). (B.5)
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Proof of Lemma B.1 By the Prekopá-Leindler inequality, for every linear operator 
S, the random vector SX is also log-concave and centred. Hence, using (B.2) , (B.5) 
and (B.4) , it is evident that

. f
1
k

PF T X(0) ∼ (vol(Zk(PF T X)))−
1
k ∼ (vol(PF T Zk(X)))−

1
k

∼ 1

(det[(PF T )(PF T )∗]) 1
2k

(vol(PEZk(X)))−
1
k

∼ 1

(det[(PF T )(PF T )∗]) 1
2k

(vol(Zk(PEX)))−
1
k

∼ f
1
k

PEX(0)

(det[(PF T )(PF T )∗]) 1
2k

.

Clearly, .f
1
k

PEX(0) ≤ L, which proved the right-hand side inequality in (B.3) .

Moreover if X is an isotropic log-concave random vector in .R
n then .f

1
n

X (0) ≥ c, 
where c is an absolute constant (see, e.g. [1]). And since .PF X is also isotropic 
when X is, the left-hand side inequality in (B.3) follows. ��

Combining (B.3) and (2.1) it is evident that:

Proposition B.2 There are absolute constants . c1 and . c2 for which the following 
holds. Let X be an isotropic log-concave random vector in . Rn that satisfies the SBA 
with constant . L and let .T : Rn → R

m be a linear operator. Then 

.

(
E‖T G/(c2L)‖−k

2

)− 1
k ≤
(
E‖T X‖−k

2

)− 1
k ≤
(
E‖T G/c1‖−k

2

)− 1
k
. (B.6) 
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On the Lipschitz Properties 
of Transportation Along Heat Flows 

Dan Mikulincer and Yair Shenfeld 

Abstract We prove new Lipschitz properties for transport maps along heat flows, 
constructed by Kim and Milman. For (semi)-log-concave measures and Gaussian 
mixtures, our bounds have several applications: eigenvalues comparisons, dimen-
sional functional inequalities, and domination of distribution functions. 

1 Introduction and Main Results 

In recent years, the study of Lipschitz transport maps has emerged as an important 
line of research, with applications in probability and functional analysis. Let us fix 
a measure . μ on . Rd . It is often desirable to write . μ as a push-forward .μ = ϕ∗η, for  a  
well-behaved measure . η and a Lipschitz map .ϕ : Rd → R

d . The main advantage of 
this approach lies in the fact that one can use the regularity of . ϕ to transfer known 
analytic properties from . η to . μ, compensating for the potential complexity of . μ. 

Perhaps the most well-known result in this direction is due to Caffarelli [7], 
which states that if . γd is the standard Gaussian in . Rd , and . μ is more log-concave 
than . γd , then there exists a 1-Lipschitz map .ϕopt such that .ϕopt∗ γd = μ. The  map  
.ϕopt is known as the optimal transport map [6]. Crucially, the Lipschitz constant 
of .ϕopt does not depend on the dimension d and, consequently, .ϕopt transfers 
functional inequalities from . γd to . μ, in a dimension-free fashion. For example, 
the optimal bounds on the Poincaré and log-Sobolev constants are recovered for 
the class of strongly log-concave measures [10]. The main goal of this work is 
to establish quantitative generalizations of this fact, for measures that are not 
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necessarily strongly log-concave. To this end, we shall use a different transport map, 
.ϕflow, along the heat flow, of Kim and Milman [15], which was previously used, in 
the context of functional inequalities, by Otto and Villani [24].1 

In general, there is no reason to expect that an arbitrary measure could be 
represented as a push-forward of . γd by a Lipschitz map. Indeed, in line with the 
above discussion, such measures must satisfy certain functional inequalities with 
constants that are determined by the regularity of the mapping. Thus, we restrict our 
attention to classes of measures that contain, among others, log-concave measures 
with bounded support and Gaussian mixtures. 

We now turn to discuss, in greater detail, the types of measures for which our 
results shall hold. First, we consider log-concave measures with support contained in 
a ball of radius D. It is a classical fact that these measures satisfy Poincaré [25] and 
log-Sobolev [11] inequalities with constants of order D. For this reason, Kolesnikov 
raised the question of whether, in this setting, the optimal transport map .ϕopt is 
.O(D)-Lipschitz [17, Problem 4.3]. Up to now, the best known estimate, in [17, 
Theorem 4.2], gave a Lipschitz constant that is of order .

√
dD. One of our main 

contributions is to close this gap, for the map .ϕflow. In fact, we prove a stronger 
result that captures a trade-off between the convexity of . μ and the size of its support. 

In the sequel, for .κ ∈ R (possibly negative), we say that . μ is .κ-log-concave if its 
support is convex and, for .μ-almost every x, its density satisfies, 

. − ∇2 log

(
dμ

dx
(x)

)
� κId .

Theorem 1 Let . μ be a .κ-log-concave probability measure on . Rd , and set . D :=
diam(supp(μ)). Then, for the map .ϕflow : Rd → R

d , which satisfies .ϕflow∗ γd = μ, 
the following holds: 

1. If .κ > 0 then, 

. ‖∇ϕflow(x)‖op ≤ 1√
κ

,

for .μ-almost every x. 
2. If .κD2 < 1 then, 

. ‖∇ϕflow(x)‖op ≤ e
1−κD2

2 D,

for .μ-almost every x.

1 In general, the maps .ϕflow and .ϕopt are not the same, see [28]. 
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Item 1 of Theorem 1 follows from the result of Kim and Milman [15], and is 
analogous to Caffarelli’s result [7]. Item 2 improves and generalizes the bound in 
Item 1 in two ways: 

• When .κ > 0 and .κD2 < 1, since .e
1−κD2

2 D < 1√
κ
, Item 2 offers a strict 

improvement of the Lipschitz constant in Caffarelli’s result. 
• When .κ ≤ 0, Theorem 1 provides a Lipschitz transport map for measures that 

are not strongly log-concave. In particular, the case .κ = 0 is precisely the setting 
of Kolesnikov’s question [17, Problem 4.3]. 

Theorem 1 may also be compared with [9, Theorem 1.1], which studies Lipschitz 
properties of the optimal transport map when the target measure is a semi-log-
concave perturbation of . γd . We point out that the two results apply in different 
regimes: while our result applies to semi-log-concave measures with bounded 
support, the result of [9] requires that the support of the measure is the entire . Rd . 

The other type of measures we consider are Gaussian mixtures of the form . μ =
γd � ν, where . ν has bounded support. It was recently shown that these measures 
satisfy several dimension-free functional inequalities [3, 8, 30]. As we shall show, 
this phenomenon can be better understood and further strengthened by establishing 
the existence of a Lipschitz transport map. 

Theorem 2 Let . ν be a probability measure on . Rd with .diam(supp(ν)) ≤ R and 
consider .μ = γd � ν. Then, for the map .ϕflow : Rd → R

d , which satisfies . ϕflow∗ γd =
μ, 

. ‖∇ϕflow(x)‖op ≤ e
R2
2 ,

for almost every .x ∈ R
d . 

As mentioned above, the proofs of Theorems 1 and 2 follow from the analysis 
of Kim and Milman [15]. The main result of [15] is a generalization of Caffarelli’s 
result that establishes Lipschitz properties of .ϕflow, under an appropriate symmetry 
assumption. We shall extend the analysis to the classes of measures considered in 
Theorems 1 and 2. A similar, but in some sense orthogonal to this work, extension 
was recently performed by Klartag and Putterman [16, Section 3] where the authors 
considered transportation from . μ to .μ � γd . We also mention the concurrent work 
of Neeman in [22], which, using a similar method to one presented here, studied 
Lipschitz properties of bounded perturbations of the Gaussians, generalizing [9]. In 
the broader context, a similar map was recently used in [1]. 

Both of the results presented above deal with Lipschitz transport maps that push-
forward the standard Gaussian. As discussed, and as we shall demonstrate, the 
existence of such maps is important for applications. However, one could also ask 
the reverse question: for which measures . μ do we have .γd = ϕ∗μ, with . ϕ Lipschitz?



272 D. Mikulincer and Y. Shenfeld

To answer this question we introduce the class of .β-semi-log-convex measures, 
as measures . μ on . Rd , which satisfy, 

. − ∇2 log

(
dμ

dx
(x)

)

 βId ,

for some .β > 0. It follows from the definition that .supp(μ) = R
d (which is why 

.β > 0). In some sense, this is a complementary notion to being .κ-log-concave. Our 
next result makes this intuition precise. 

Theorem 3 Let .β > 0 and let . μ be a .β-semi-log-convex probability measure on 
. Rd . Then, for the inverse map .(ϕflow)−1 : Rd → R

d , which satisfies . (ϕflow)−1∗ μ =
γd , 

. ‖∇(ϕflow)−1(x)‖op ≤ √
β,

for almost every .x ∈ R
d . 

Let us remark that the same question was previously addressed in [17, Theorem 2.2], 
which expanded upon Caffarelli’s original proof, and obtained the same Lipschitz 
bounds, for .(ϕopt)−1. Thus, Theorem 3 gives a more complete picture by proving 
the analogous result for the map .(ϕflow)−1. 

Transport Along Heat Flows and the Brownian Transport Map It is tempting 
to compare Theorems 1 and 2 to the recent construction in [20] of the Brownian 
transport map. The results apply in similar settings, and the asymptotic dependen-
cies on all parameters are essentially the same. However, as we shall explain, the 
results are not strictly comparable. 

The constructions are qualitatively different: the domain of the Brownian 
transport map is the infinite-dimensional Wiener space, in contrast to the finite-
dimensional domain afforded by the above theorems. Since the Gaussian measure, 
also in infinite dimensional Wiener space, satisfies numerous functional inequalities 
with dimension-free constants, realizing a measure on . Rd as a push-forward of the 
Wiener measure turns out to be satisfactory for many applications. However, there 
are some applications that require a map between equal dimensions, which explains 
the need for the present work. We expand on such applications below. 

On the other hand, as demonstrated by Mikulincer and Shenfeld [20, Theorem 
1.5], in several interesting cases, the Brownian transport map is provably ’Lipschitz 
on average’. Bounding the averaged derivative of a transport map is an important 
property (related to the Kannan-Lovász-Simonovits conjecture [14] and to quanti-
tative central limit theorems [20, Theorem 1.7]) that seems to be out of reach for 
current finite-dimensional constructions. 

Having said the above, we do note that for log-concave measures, the Lipschitz 
constants of the Brownian transport map [20, Theorem 1.1] are usually better than 
the ones provided by Theorem 1. For Gaussian mixtures, the roles seem to reverse, 
at least when R is large, as Theorem 2 can be better than [20, Theorem 1.4].
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1.1 Applications 

As mentioned in the previous section, for some applications it is essential that the 
domain and image of the transport map coincide. Here we review such applications 
and state several new implications of Theorems 1 and 2. To keep the statements 
concise, we will not cover applications that could be obtained by previous results, 
as in [10, 20, 21]. 

1.1.1 Eigenvalues Comparisons 

A measure . μ is said to satisfy a Poincaré inequality if, for some constant . Cp(μ) ≥ 0
and every test function g, 

. Varμ(g) ≤ Cp(μ)

∫

Rd

‖∇g‖2dμ.

We implicitly assume that, when it exists, .Cp(μ) denotes the optimal constant. 
According to the Gaussian Poincaré inequality [2], .Cp(γd) = 1. If .μ = ϕ∗γd and . ϕ

is L-Lipschitz, this immediately implies .Cp(μ) ≤ L2. Indeed, 

. Varμ(g) = Varγd
(g ◦ ϕ) ≤

∫

Rd

‖∇(g ◦ ϕ)‖2dγd

≤
∫

Rd

‖∇ϕ‖2op (‖∇g‖ ◦ ϕ)2dγd ≤ L2
∫

Rd

‖∇g‖2dμ. (1) 

Note that the same argument works even if . ϕ is a map between spaces of different 
dimensions. However, for certain generalizations of the Poincaré inequality, as we 
now explain, it turns out that it is beneficial for the domain of . ϕ to be the same 
as the domain of . μ. If  . dμ

dx
= e−V and we define the weighted Laplacian . Lμ =

	−〈∇,∇V 〉, then .Cp(μ) corresponds to the inverse of the first non-zero eigenvalue 
of . Lμ. In [21, Theorem 1.7], E. Milman showed that a similar argument to (1) works
for higher order eigenvalues of . Lμ and . Lγd

. 
Since for .Lγd

the multiplicities of the eigenvalues grow with the dimension d, 
the full power of Milman’s argument requires that . ϕ is a map from . Rd to . Rd . 
Thus, by considering the map .ϕflow from Theorems 1 and 2 and applying Milman’s 
contraction principle, we immediately obtain:
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Corollary 4 Let . μ be a probability measure on . Rd and let .λi(Lμ) (resp. .λi(Lγd
)) 

stand for the . ith eigenvalue of . Lμ (resp. . Lγd
). Then, 

1. If . μ is .κ-log-concave, .D := diam(supp(μ)), and .κD2 < 1, 

. 
1

e1−κD2
D2

λi(Lγd
) ≤ λi(Lμ).

2. If .μ = γd � ν and .diam(supp(ν)) ≤ R, then 

. 
1

eR2 λi(Lγd
) ≤ λi(Lμ).

1.1.2 Dimensional Functional Inequalities 

Another direction for improving and generalizing the Poincaré inequality goes 
through dimensional functional inequalities, as in [4]. 

Let us give a first example, in the form of the dimensional Gaussian log-
Sobolev inequality [2], which is a strict improvement over the logarithmic Sobolev 
inequality. For .g : Rd → R+ we define its entropy relative to . μ as 

. Entμ(g) :=
∫

Rd

log(g)gdμ − log

⎛
⎜⎝

∫

Rd

gdμ

⎞
⎟⎠

∫

Rd

gdμ.

For . γd , the following holds: 

. Entγd
(g) ≤ d

2
log

⎛
⎜⎝1 + 1

d

∫

Rd

‖∇g‖2
g

dγd

⎞
⎟⎠ .

With the same argument as in (1) , and since the logarithm is monotone, we have the
corollary:

Corollary 5 Let . μ be a probability measure on . Rd and let .g : Rd → R+ be a test 
function. Then, 

1. If . μ is .κ-log-concave, .D := diam(supp(μ)), and .κD2 < 1, 

.Entμ(g) ≤ d

2
log

⎛
⎜⎝1 + e1−κD2

D2

d

∫

Rd

‖∇g‖2
g

dμ

⎞
⎟⎠ .
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2. If .μ = γd � ν and .diam(supp(ν)) ≤ R, then 

. Entμ(g) ≤ d

2
log

⎛
⎜⎝1 + eR2

d

∫

Rd

‖∇g‖2
g

dμ

⎞
⎟⎠ .

Another example is the dimensional weighted Poincaré inequality which appears 
in [5, Corrolary 5.6], according to which, 

.Varγd
(g) ≤ d(d + 3)

d − 1

∫

Rd

‖∇g(x)‖2
1 + ‖x‖2 dγd(x). (2) 

For certain test functions, this is a strict improvement of the Gaussian Poincaré
inequality. When the target measure is symmetric, we can adapt the argument in (1) ,
and obtain:

Corollary 6 Let . μ be a symmetric probability measure on . Rd . Then, for any test 
function .g : Rd → R, 

1. If . μ is .κ-log-concave, .D := diam(supp(μ)), and .κD2 < 1, 

. Varμ(g) ≤ d(d + 3)

d − 1
e1−κD2

D2
∫

Rd

‖∇g(x)‖2
1 + eκD2−1

D2 ‖x‖2
dμ(x).

2. If .μ = γd � ν and .diam(supp(ν)) ≤ R, 

. Varμ(g) ≤ d(d + 3)

d − 1
eR2

∫

Rd

‖∇g(x)‖2
1 + e−R2‖x‖2 dμ(x).

Proof Suppose that .μ = ϕ∗γd where .ϕ : Rd → R
d is L-Lipschitz and satisfies 

.ϕ(0) = 0. Then, by (2) ,

. Varμ(g) = Varγd
(g ◦ ϕ) ≤ d(d + 3)

d − 1

∫

Rd

‖∇(g ◦ ϕ(x))‖2
1 + ‖x‖2 dγd

≤ d(d + 3)L2

d − 1

∫

Rd

(‖∇g‖ ◦ ϕ(x))2

1 + ‖x‖2 dγd .

To handle the integral on the right hand side, we invoke the disintegration theorem 
[13, Theorems 1 and 2] to decompose . γd along the fibers of . ϕ in the following



276 D. Mikulincer and Y. Shenfeld

way: there exists a family of probability measures .{γx}x∈Rd , such that . supp(γx) ⊂
ϕ−1({x}), and satisfies 

. 

∫

Rd

h(x)dγd(x) =
∫

Rd

∫

ϕ−1({x})
h(y)dγx(y)dμ(x),

for every test function h. Hence, taking .h(x) = (‖∇g‖◦ϕ(x))2

1+‖x‖2 , 

. 

∫

Rd

(‖∇g‖ ◦ ϕ(x))2

1 + ‖x‖2 dγd(x) =
∫

Rd

∫

ϕ−1({x})

(‖∇g‖ ◦ ϕ(y))2

1 + ‖y‖2 dγx(y)dμ(x)

=
∫

Rd

∫

ϕ−1({x})

‖∇g(x)‖2
1 + ‖y‖2 dγx(y)dμ(x) ≤

∫

Rd

∫

ϕ−1({x})

‖∇g(x)‖2
1 + L−2‖x‖2 dγx(y)dμ(x)

=
∫

Rd

‖∇g(x)‖2
1 + L−2‖x‖2

⎛
⎜⎝

∫

ϕ−1({x})
dγx(y)

⎞
⎟⎠ dμ(x) =

∫

Rd

‖∇g(x)‖2
1 + L−2‖x‖2 dμ(x)

where in the inequality we have used the estimate .‖y‖ ≥ 1
L
‖x‖ for any y such 

that .ϕ(y) = x. Indeed, by assumption, .ϕ(0) = 0 and . ϕ is L-Lipschitz, which 
immediately yields . ‖ϕ(y)‖ ≤ L‖y‖.

Finally, when . μ is symmetric, our transport map, .ϕ := ϕflow, will turn out to 
be odd and, hence, satisfies .ϕflow(0) = 0 (see Remark 8). The result follows by 
combining the above calculations with Theorems 1 and 2. ��

1.1.3 Majorization 

For an absolutely continuous measure . μ, define its distribution function by 

. Fμ(λ) = Vol

({
x : dμ

dx
(x) ≥ λ

})
.

We say that . μ majorizes . η, denoted as .η ≺ μ, if for every .t ∈ R, 

. 

∞∫
t

Fη(λ)dλ ≤
∞∫
t

Fμ(λ)dλ.

In [19, Lemma 1.4], the following assertion is proven: If .μ = ϕ∗η for some . ϕ :
R

d → R
d , and .| det(∇ϕ(x))| ≤ 1 for every .x ∈ R

d , then .η ≺ μ.
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We use the singular value decomposition to deduce the identity . | det(∇ϕ(x))| =
d∏

i=1
σi(∇ϕ(x)), where .σi(∇ϕ(x)) stands for the . ith singular value of .∇ϕ(x). So, we 

have the implication, 

. ‖∇ϕ(x)‖op ≤ 1 �⇒ | det(∇ϕ(x))| ≤ 1.

By using Theorems 1 and 2 we can find regimes of parameters where .ϕflow is 1-
Lipschitz as required by the computation above. For log-concave measures it is 
enough to have a sufficiently bounded support, while for Gaussian mixtures one 
needs to both re-scale the variance and bound the support of the mixing measure. 
With this in mind, we get the following corollary: 

Corollary 7 Let . μ be a probability measure on . Rd . 

1. If . μ is .κ-log-concave, .D := diam(supp(μ)), .κD2 < 1, and .e
1−κD2

2 D ≤ 1, then, 

. γd ≺ μ.

2. If .μ = γ a
d � ν, where . γ a

d stands for the Gaussian measure with covariance . aId , 

and .
√

ae
diam(supp(ν))2

2a ≤ 1 then, 

. γd ≺ μ.

Proof For the first part, the condition .e
1−κD2

2 D ≤ 1, along with Theorem 1, ensures 
that the transport map .ϕflow is 1-Lipschitz. The claim follows from [19, Lemma 1.4]. 

For the second part, let .a > 0 and .X ∼ γ a
d � ν, where .diam(supp(ν)) = R. Then, 

.
1√
a
X ∼ γd � ν̃, and .diam(supp(ν̃)) ≤ R√

a
. Let .ϕflow be the .e

R2
2a -Lipschitz map, from 

Theorem 2, that transports . γd to .γd � ν̃. The above argument shows that . 
√

aϕflow

transports . γd to .γ a
d � ν and the map is .

√
ae

R2
2a -Lipschitz. Thus, if .

√
ae

R2
2a ≤ 1, there 

exists a 1-Lipschitz transport map, which implies the result. ��
The fact that a measure majorizes the standard Gaussian has some interesting 

consequences. We state here one example, which appears in the proof of [19, 
Corollary 2.14]. If .γd ≺ μ, then 

. hq(γd) ≤ hq(μ),

where, for .q > 0, 

.hq(μ) :=
log

(∫
Rd

(
dμ
dx

(x)
)q

dx

)

1 − q
,
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is the q-Rényi entropy. So, Corollary 1 allows us to bound the q-Rényi entropy from 
below for some measures. 

2 Proofs 

2.1 Preliminaries 

Before proving the main results, we briefly recall the construction of the transport 
map from [15, 24]. We take an informal approach and provide a rigorous statement 
at the end of the section. 

Let .(Qt )t≥0 stand for the Orenstein-Uhlenbeck semi-group, acting on functions 
.g : Rd → R by, 

. Qtg(x) =
∫

Rd

g(e−t x +
√
1 − e−2t y)dγd(y).

For sufficiently integrable g, we have, for almost every .x ∈ R
d , 

. Q0g(x) = g(x) and lim
t→∞ Qtg(x) = Eγd

[g].

Now, fix . μ, a measure on . Rd , with .f (x) := dμ
dγd

(x), and consider the measure-
valued path .μt := (Qtf )γd . We have  .μ0 = μ and, for well-behaved measures, 

we also have .μt
t→∞−−−→ γd. Thus, there exists a time-dependent vector field . Vt , for  

which the continuity equation holds (see [29, Chapter 8] and [26, Section 4.1.2]): 

. 
d

dt
μt + ∇ · (Vtμt ) = 0.

In other words, by differentiating under the integral sign, for any test function g, 

. 

∫

Rd

g

(
d

dt
Qtf

)
dγd =

∫

Rd

〈∇g, Vt 〉(Qtf )dγd .

We now turn to computing . Vt . Observe that, by the definition of . Qt , 

.
d

dt
Qtf (x) = 	Qtf (x) − 〈x,∇Qtf (x)〉.
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Hence, integrating by parts with respect to the standard Gaussian shows, 

. 

∫

Rd

g

(
d

dt
Qtf

)
dγd = −

∫

Rd

〈∇g,∇Qtf 〉dγd,

whence it follows that .Vt = −∇Qtf
Qtf

= −∇ logQtf. Now consider the maps 
.{St }t≥0, obtained as the solution to the differential equation 

.
d

dt
St (x) = Vt (St (x)), S0(x) = x. (3) 

The map . St turns out to be a diffeomorphism which transports . μ0 to . μt and we 
denote .Tt := S−1

t , which transports . μt to . μ0. We define the transport maps T and S 
as the limits 

. T := lim
t→∞ Tt , S := lim

t→∞ St ,

in which case, we have .T∗γd = μ and .S∗μ = γd . These are our transport maps 

. ϕflow := T and (ϕflow)−1 := S.

Remark 8 It is clear that if .f (x) = f (−x), then . Vt and, consequently, . St (see 
the discussion following [15, Lemma 3.1]) are odd functions. Hence, if the target 
measure is symmetric, .T (0) = 0. 

The above arguments are heuristic and require a rigorous justification (as in [15, 
Section 3]). For the sake of completeness, below, in Lemma 10, we prove sufficient 
conditions for the existence of the diffeomorphisms .{St }t≥0, .{Tt }t≥0 and for the 
existence of the transport maps S and T . 

We shall require the following approximation lemma, adapted from [22, Lemma 
2.1] (a generalization of [15, Lemma 3.2]), which we shall repeatedly use. 

Lemma 9 Let . η and . η′ be two probability measures on . Rd , and let .{ηk}k≥0, . {η′
k}k≥0

be two sequences of probability measures which converge to . η and . η′ in distribution. 
Suppose that for every k there exists an .Lk-Lipschitz map . ϕk with .(ϕk)∗ηk = η′

k . 
Then, if .L := lim sup

k→∞
Lk < ∞, there exists an L-Lipschitz map . ϕ with .ϕ∗η = η′. 

Moreover, by passing to a sub-sequence, we have that for .η-almost every x, 

. lim
k→∞ ϕk(x) = ϕ(x).

Proof Under the assumptions of the lemma, the existence of the limiting map . ϕ
is assured by the proof of [22, Lemma 2.1]. We are left with showing that . ϕ is 
L-Lipschitz. Let .r > 0, and observe that, since .lim supLk < ∞, there exists a sub-
sequence, still denoted . ϕk , such that, for every .k ≥ 0, . ϕk is .(L + r)-Lipschitz. It
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follows from [22, Lemma 2.1] that . ϕ is .(L + r)-Lipschitz. Since r is arbitrary the 
proof is complete. ��

We are now ready to state our main technical lemma. 

Lemma 10 Assume that . μ has a smooth density. 

• Suppose that, for every .t ≥ 0, there exists .at < ∞ such that, 

. sup
s∈[0,t]

‖∇Vs‖op ≤ at . (4) 

Then, there exists a solution, .{St }t≥0, to  (3) , which is a diffeomorphism, for every
. t ≥ 0.

• As .t → ∞, . μt converges weakly to . γd . 
• Suppose (4) holds, and that, for every .t ≥ 0, . Tt (resp. . St ) is  .Lt -Lipschitz. Then, 

if .L := lim sup
t→∞

Lt < ∞, the  map  T (resp. S) is well-defined and T (resp. S) is  

L-Lipschitz. 

Proof Combining the assumption on the smoothness of . dμ
dx

with (4) gives that, for
every .T < ∞, V is a smooth, spatially Lipschitz, function on .[0, T ] × R

d . Thus, 
by the Picard–Lindelöf theorem, [23, Theorem 3.1], there exists a unique global 
smooth (see [12, Chapter 1, Theorem 3.3] and the subsequent discussion) solution 
. St to (3). By inverting the flow, one may see that the maps . St are invertible. Indeed, 
for fixed .t > 0, consider, for .0 ≤ s ≤ t , 

. 
d

ds
Tt,s(x) = −Vt−s(Tt,s(x)), Tt,0(x) = x.

Then, .S−1
t := Tt := Tt,t , which establishes the first item. 

For the second item, note that the Orenstein-Uhlenbeck process is ergodic (see, 
for example, [15, Lemma 3.2]) and, hence, 

. lim
t→∞ ‖Qtf − Eγd

[f ]‖L1(γd ) = lim
t→∞ ‖Qtf − 1‖L1(γd ) = 0.

Thus, . μt converges to . γd in total variation, implying weak convergence. 
To see the third item, note that the first item establishes the existence of maps 

. St which satisfy, .(St )∗μ = μt , [26, Section 4.1.2]. The second item shows that, 
as .t → ∞, we may approximate . γd by . μt . These conditions allow us to invoke 

Lemma 9, which shows that there exists a sequence .tk
k→∞−−−→ 1, such that, for .μ-

almost every x, 

. S(x) := lim
k→∞ Stk (x),

is well-defined and such that .S∗μ = γd . Since . St is invertible, for every .t ≥ 0, the  
same argument, applied to . Tt , shows the existence of T .
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Finally, let us address the Lipschitz constants of S and T . We shall prove  the  
claim for S; the proof for T is identical. The previous argument shows that there 
exists a null set .E ⊂ supp(μ), such that, for every .z ∈ supp(μ) \ E, . lim

k→∞ Stk (z)

exists. So, for any .x, y ∈ supp(μ) \ E, 

. ‖S(x) − S(y)‖ = lim
k→∞ ‖Stk (x) − Stk (y)‖ ≤ lim sup

k→∞
Ltk‖x − y‖ ≤ L‖x − y‖.

This shows .‖S(x) − S(y)‖ ≤ L‖x − y‖, .μ-almost everywhere, which finishes the 
proof. ��

We shall also require the following lemma, which explains how to deduce global 
Lipschitz bounds from estimates on the derivatives of the vector fields . Vt . 

Lemma 11 Let the above notation prevail and assume that . μ has a smooth density. 
For every .t ≥ 0, let .θmax

t , θmin
t be such that 

. θmax
t ≥ λmax (−∇Vt (x)) ≥ λmin (−∇Vt (x)) ≥ θmin

t ,

for almost every .x ∈ R
d . Then, 

1. The Lipschitz constant of S is at most .exp

(
−

∞∫
0

θmin
t dt

)
. 

2. The Lipschitz constant of T is at most .exp

(∞∫
0

θmax
t dt

)
. 

Proof We begin with the first item. For every .t ≥ 0, we will show that 

.‖St (x) − St (y)‖ ≤ exp

⎛
⎝−

t∫
0

θmin
s ds

⎞
⎠ ‖x − y‖ for every x, y ∈ R

d . (5) 

The desired result will be obtained by taking .t → ∞ and invoking Item 3 of 
Lemma 10. 

Towards (5), it will suffice to show that, for every unit vector .w ∈ R
d , 

.‖∇St (x)w‖ ≤ exp

⎛
⎝−

t∫
0

θmin
s ds

⎞
⎠ .
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Fix .x,w ∈ R
d with .‖w‖ = 1, and define the function .αw(t) := ∇St (x)w. To  

understand the evolution of .‖αw(t)‖, recall that . St satisfies the differential equation 
in (3) . Thus,

. 
d

dt
‖αw(t)‖ = 1

‖αw(t)‖αw(t)T · d

dt
αw(t)

= 1

‖αw(t)‖wT∇St (x)T∇Vt (St (x))∇St (x)w

≤ −θmin
t

1

‖αw(t)‖wT∇St (x)T∇St (x)w = −θmin
t ‖∇St (x)w‖

= −θmin
t ‖αw(t)‖.

Since .‖αw(0)‖ = 1, from Gronwall’s inequality we deduce, 

. ‖∇St (x)w‖ = ‖αw(t)‖ ≤ exp

⎛
⎝−

t∫
0

θmin
s ds

⎞
⎠ .

Thus, (5) is established, as required.
The proof of the second part is similar, but this time we will need to show, for

every unit vector .w ∈ R
d , 

. ‖∇St (x)w‖ ≥ exp

⎛
⎝−

t∫
0

θmax
s ds

⎞
⎠ .

Indeed, this would imply .∇St (x)∇St (x)T � exp

(
−2

t∫
0

θmax
s ds

)
Id . Since . St is 

a diffeomorphism, and .Tt = S−1
t , by the inverse function theorem, the local 

expansiveness of . St implies 

. ∇Tt (x)∇Tt (x)T 
 exp

⎛
⎝2

t∫
0

θmax
s ds

⎞
⎠ Id .

So, for almost every .x ∈ R
d , .‖∇Tt (x)‖op ≤ exp

(
t∫
0

θmax
s ds

)
, and the claim is 

proven by, again, invoking Item 3 in Lemma 10.
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Let .αw(t) be as above. Then, 

. 
d

dt
‖αw(t)‖ = 1

‖αw(t)‖αw(t)T · d

dt
αw(t)

= 1

‖αw(t)‖wT∇St (x)T∇Vt (St (x))∇St (x)w

≥ −θmax
t

1

‖αw(t)‖wT∇St (x)T∇St (x)w = −θmax
t ‖∇St (x)w‖

= −θmax
t ‖αw(t)‖.

As before, Gronwall’s inequality implies 

. ‖∇St (x)w‖ = ‖αw(t)‖ ≥ exp

⎛
⎝−

t∫
0

θmax
s ds

⎞
⎠ ,

which concludes the proof. ��

2.2 Lipschitz Properties of Transportation Along Heat Flows 

2.2.1 Transportation from the Gaussian 

Our proofs of Theorems 1 and 2 go through bounding the derivative, . ∇Vt =
−∇2 logQtf , of the vector field constructed above, and then applying Lemma 11. 
Our main technical tools are uniform estimates on .∇2 logQtf , when the measures 
satisfy some combination of convexity and boundedness assumptions. 

Lemma 12 Let .μ = f γd and let .D := diam(supp(μ)). Then, for .μ-almost every x, 

. − ∇Vt (x) � − e−2t

1 − e−2t Id .

Furthermore, 

1. For every .t ≥ 0, 

. − ∇Vt (x) 
 e−2t
(

D2

(1 − e−2t )2
− 1

1 − e−2t

)
Id .
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2. Let .κ ∈ R and suppose that . μ is .κ-log-concave. Then, 

. − ∇Vt (x) 
 e−2t 1 − κ

κ(1 − e−2t ) + e−2t ,

where the inequality holds for any .t ≥ 0 when .κ ≥ 0, and for . t ∈[
0, 1

2 log
(

κ−1
κ

)]
if .κ < 0. 

3. If .μ := γd � ν, with .diam(supp(ν)) ≤ R, then, for .t ≥ 0, 

. − ∇Vt (x) 
 e−2tR2Id .

Proof Let .(Pt )t∈[0,1] stand for the heat semi-group, related to . Qt by . Qtf (x) =
P1−e−2t f (e−t x). In particular, 

. − ∇Vt (x) = ∇2 logQtf (x) = e−2t∇2 logP1−e−2t f (e−t x).

The desired result is now an immediate consequence of [20, Lemma 3.3 and 
Equation (3.3)], where the paper uses the notation .v(t, x) := ∇ logP1−t f (x). ��
By integrating Lemma 12 and plugging the result into Lemma 11 we can now prove 
Theorems 1 and 2. We begin with the proof of Theorem 2, which is easier. 

Proof of Theorem 2 Recall that .ϕflow is the transport map T , constructed in 
Sect. 2.1. Remark that the conditions of Lemma 10 are satisfied for the measures 
we consider: Lemma 12 ensures that (4) holds and . μ has a smooth density. 

If .μ := γd � ν, and . ν is supported on a ball of radius R, then, by Lemma 12, we  
may take .θmax

t = e−2tR2 in Lemma 11. Compute 

. 

∞∫
0

θmax
t dt = R2

2
.

Thus, .ϕflow is Lipschitz with constant . e
R2
2 . ��

The proof of Theorem 1 is similar, but the calculations involved are more tedious, 
even if elementary. 

Proof of Theorem 1 We begin by assuming that . μ has a smooth density, and handle 
the general case later with an approximation argument. Thus, as in the proof of 
Theorem 2, the conditions of Lemma 10 are satisfied, and we recall that .ϕflow is the 
transport map T . The first item of the Theorem is covered by Kim and Milman [15, 
Theorem 1.1] (the authors actually prove it for .κ = 1; the general case follows by a 

re-scaling argument), so we may assume .κD2 < 1. Set .t0 = 1
2 log

(
D2(κ−1)−1

κD2−1

)
. By
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optimizing over the first and second estimates in Lemma 12 we define, 

. θmax
t =

⎧⎨
⎩

e−2t (1−κ)

κ(1−e−2t )+e−2t if t ∈ [0, t0]
e−2t

(
D2

(1−e−2t )2
− 1

1−e−2t

)
if t > t0

.

Remark that when .κ < 0, .t0 < 1
2 log

(
κ−1
κ

)
, so the second bound of Lemma 12 

remains valid in this case. 
We compute, 

. 

∞∫
0

θmax
t dt =

t0∫
0

θmax
t dt +

∞∫
t0

θmax
t dt

=
t0∫
0

e−2t (1 − κ)

κ(1 − e−2t ) + e−2t
dt +

∞∫
t0

e−2t
(

D2

(1 − e−2t )2
− 1

1 − e−2t

)
dt

= −1

2
log(κ(1 − e−2t ) + e−2t )

∣∣∣∣
t0

0

+ 1

2

(
− D2

1 − e−2t
− log(1 − e−2t )

) ∣∣∣∣
∞

t0

= 1

2
log

(
1 − D2(κ − 1)

)
+ 1 − κD2

2
+ 1

2
log(D2)

− 1

2
log(1 − D2(κ − 1))

= 1 − κD2

2
+ 1

2
log(D2).

By Lemma 11, the Lipschitz constant of .ϕflow is at most 

. exp

⎛
⎝

∞∫
0

θmax
t dt

⎞
⎠ = e

1−κD2
2 D.

If . μ does not have a smooth density, by Lemma 9, it will be enough to show that 
. μ can be approximated in distribution by .{μk}k≥0, where each . μk is log-concave 
with bounded support and 

. lim
k→∞ diam(supp(μk)) = D.

For .ε > 0, let  .hε(x) = e
− 1

1−‖ x
ε ‖2 1{‖x‖≤ε} and define the measure . ξε with density 

proportional to . hε. Then, . ξε is a log-concave measure with smooth density and 
.diam(supp(ξε)) = ε. It is straightforward to verify that, for every .ε > 0, .με := ξε�μ
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is .κ-log-concave with smooth density. Further, as .ε → 0, . με converges to . μ, in  
distribution, and . lim

ε→0
diam(supp(με)) = D. The claim is proven. ��

2.2.2 Transportation to the Gaussian 

To prove Theorem 3 we will need an analogue of Lemma 12 with bounds in 
the other direction. This is done in the following lemma which shows that the 
evolution of log-convex functions along the heat flow is dominated by the evolution 
of Gaussian functions. The proof of the lemma is similar to the proof that strongly 
log-concave measures are preserved under convolution, [27, Theorem 3.7(b)]. The 
only difference between the proofs is that the use of the Prékopa-Leindler inequality 
is replaced by the fact that a mixture of log-convex functions is log-convex. 

Lemma 13 (Semi-Log-Convexity Under the Heat Flow) Let .dμ = f dγ be a 
.β-semi-log-convex probability measure on . Rd . Then, for almost every x, 

. − ∇Vt (x) � e−2t (1 − β)

(1 − e−2t ) (β − 1) + 1
Id .

Proof We let .(Pt )t≥0 stand for the heat semi-group, defined by 

. Ptf (x) =
∫

Rd

f (x + √
ty)dγd(y).

Since .−∇Vt (x) = ∇2 logQtf (x) = e−2t∇2 logP1−e−2t f (e−t x), it will be enough 
to prove, 

.∇2 logPtf (x) � (1 − β)

t (β − 1) + 1
Id . (6) 

We first establish the claim in the special case when . f (x) := ψβ(x) ∝
e− 1

2 (β−1)‖x‖2 , where the symbol . ∝ signifies equality up to a constant which does 
not depend on x, which corresponds to .μ = N (0, 1

β
Id). This case is facilitated 

by the fact that . Pt acts on f by convolving it with a Gaussian kernel. The result 
follows since a convolution of Gaussians is a Gaussian and since .∇2 log applied to 
a Gaussian yields the covariance matrix. To elucidate what comes next, we provide 
below the full calculation.
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For convenience denote .βt = (t (β − 1) + 1), and compute, 

. Ptψβ(x) ∝
∫

Rd

e− 1
2 (β−1)‖x+√

ty‖2e− ‖y‖2
2 dy

=
∫

Rd

exp

(
−1

2

(
(β − 1) ‖x‖2 + 2 (β − 1)

√
t〈x, y〉

+ (t (β − 1) + 1) ‖y‖2
))

dy

=
∫

Rd

exp

(
−βt

2

(
β − 1

βt

‖x‖2 + 2
√

t
β − 1

βt

〈x, y〉 + ‖y‖2
))

dy

= exp

(
−βt

2

(
β − 1

βt

(
1 − t

β − 1

βt

))
‖x‖2

)

×
∫

exp

(
−βt

2

∥∥∥∥√
t
β − 1

βt

x + y

∥∥∥∥
2
)

dy.

The integrand in the last line is proportional to the density of a Gaussian. Hence, the 
value of the integral does not depend on x, and 

. Ptψβ(x) ∝ exp

(
−βt

2

(
β − 1

βt

(
1 − t

β − 1

βt

))
‖x‖2

)

= exp

(
−1

2

(
(β − 1)

(
1 − t

β − 1

βt

))
‖x‖2

)

= exp

(
−1

2

(
β − 1

t (β − 1) + 1
‖x‖2

))
.

So, 

.∇2 logPtψβ(x) = (1 − β)

t (β − 1) + 1
Id , (7) 

which gives equality in (6).
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For the general case, the log-convexity assumption means that we can write 

.
dμ
dx

= eV (x)−β
‖x‖2
2 , for a convex function V . Hence, .f (x) ∝ eV (x)− 1

2 (β−1)‖x‖2 . 
With analogous calculations to the ones made above, we get, 

. Ptf (x) ∝
∫

Rd

eV (x+√
ty)− 1

2 (β−1)‖x+√
ty‖2e− y2

2 dy

= exp

(
−1

2

(
β − 1

t (β − 1) + 1
‖x‖2

))

×
∫

Rd

exp

(
V (x + √

ty) − βt

2

∥∥∥∥√
t
β − 1

βt

x + y

∥∥∥∥
2
)

dy

∝ Ptψβ(x)

∫

Rd

exp

(
V (x + √

ty) − βt

2

∥∥∥∥√
t
β − 1

βt

x + y

∥∥∥∥
2
)

dy.

Write .Ht(x) := ∫
Rd

exp

(
V (x + √

ty) − βt

2

∥∥∥√
t
β−1
βt

x + y

∥∥∥2
)

dy and observe by 

(7) ,

. ∇2 logPtf (x) = ∇2 logPtψβ(x) + ∇2 log(Ht (x)) = (1 − β)

t (β − 1) + 1
Id

+ ∇2 log(Ht (x)). (8) 

To finish the proof we will show that .∇2 log(Ht (x)) � 0, or , equivalently, that . Ht

is log-convex. By applying a linear change of variables, we can re-write . Ht as, 

. Ht(x) =
∫

Rd

exp

(
V

((
1 − t

β − 1

βt

)
x + √

ty

))
e− βt ‖y‖2

2 dy.

As V is convex, for every .t ≥ 0 and .y ∈ R
d , the function . x �→

V
((

1 − t
β−1
βt

)
x + √

ty
)

is convex. So, .Ht(x) is a mixture of log-convex 

functions. Since a mixture of log-convex functions is also log-convex (see [18, 
Chapter 16.B]), the proof is complete. ��

We now prove Theorem 3. 

Proof of Theorem 3 Recall that .(ϕflow)−1 is the transport map S, constructed in 
Sect. 2.1. Again, we begin by assuming that . μ has a smooth density, and one may 
verify that the conditions of Lemma 10 are satisfied, which makes S well-defined.
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Let .θmin
t = e−2t (1−β)

(1−e−2t )(β−1)+1
. Combining Lemma 13 with Lemma 11 shows 

that S is .exp
(∫ ∞

0 −θmin
t dt

)
-Lipschitz. Compute, 

. 

∫ ∞

0
−θmin

t dt =
∫ ∞

0
−e−2t (1 − β)

(1 − e−2t ) (β − 1) + 1
dt

= 1

2
log

(
(1 − e−2t )(β − 1) + 1

) ∣∣∣∞
0

= log(β)

2
.

Hence, S is .exp
(
log(β)

2

)
= √

β-Lipschitz. 

To finish the proof, we shall construct a family .{με}ε>0 of .βε-log-convex 
measures which converge to . μ in distribution as .ε → 0, and such that 

. lim
ε→0

βε = β.

The claim then follows by invoking Lemma 9. 
Let .γd,ε stand for the d-dimensional Gaussian measure with covariance . εId , and 

set .με = μ � γd,ε. It is clear that, as .ε → 0, . με converges to . μ in distribution. 
Moreover, if we replace f by . 

dμ
dx

, in  (8), we see that . με is .βε-log-convex, with, 

. βε := β

εβ + 1
ε→0−−→ β.

��

Acknowledgments We wish to thank Max Fathi, Larry Guth, Emanuel Milman, and Ramon 
van Handel for several enlightening comments and suggestions. We also thank the anonymous 
referee for carefully reading the paper and providing many helpful comments that improved this 
manuscript. This material is based upon work supported by the National Science Foundation under 
Award Number 2002022. 

References 

1. L. Ambrosio, M. Goldman, D. Trevisan, On the quadratic random matching problem in two-
dimensional domains. Electron. J. Probab. 27, (2022) 

2. D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, vol.  
348 (Springer Science & Business Media, New York, 2013) 

3. J.-B. Bardet, N. Gozlan, F. Malrieu, P.-A. Zitt, Functional inequalities for Gaussian convolu-
tions of compactly supported measures: explicit bounds and dimension dependence. Bernoulli 
24(1), 333–353 (2018) 

4. F. Bolley, I. Gentil, A. Guillin, Dimensional improvements of the logarithmic Sobolev, 
Talagrand and Brascamp-Lieb inequalities. Ann. Probab. 46(1), 261–301 (2018) 

5. M. Bonnefont, A. Joulin, Y. Ma, Spectral gap for spherically symmetric log-concave 
probability measures, and beyond. J. Funct. Anal. 270(7), 2456–2482 (2016)



290 D. Mikulincer and Y. Shenfeld

6. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. 
Commun. Pure Appl. Math. 44(4), 375–417 (1991) 

7. L. A. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related 
inequalities. Commun. Math. Phys. 214(3), 547–563 (2000) 

8. H.-B. Chen, S. Chewi, J. Niles-Weed, Dimension-free log-Sobolev inequalities for mixture 
distributions. J. Funct. Anal., 281(11):Paper No. 109236, 17, 2021. 

9. M. Colombo, A. Figalli, Y. Jhaveri. Lipschitz changes of variables between perturbations of 
log-concave measures. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17(4), 1491–1519 (2017) 

10. D. Cordero-Erausquin, Some applications of mass transport to Gaussian-type inequalities. 
Arch. Ration. Mech. Anal. 161(3), 257–269 (2002) 

11. A. Frieze, R. Kannan, Log-Sobolev inequalities and sampling from log-concave distributions. 
Ann. Appl. Probab. 9(1), 14–26 (1999) 

12. J.K. Hale, Ordinary Differential Equations, 2nd edn. (Robert E. Krieger Publishing, Hunting-
ton, 1980) 

13. J. Hoffmann-Jørgensen, Existence of conditional probabilities. Math. Scand. 28(2), 257–264 
(1971) 

14. R. Kannan, L. Lovász, M. Simonovits, Isoperimetric problems for convex bodies and a 
localization lemma. Discrete Comput. Geom. 13(3–4), 541–559 (1995) 

15. Y.-H. Kim, E. Milman, A generalization of Caffarelli’s contraction theorem via (reverse) heat 
flow. Math. Ann. 354(3), 827–862 (2012) 

16. B. Klartag, E. Putterman, Spectral monotonicity under Gaussian convolution, to appear in Ann. 
Fac. Sci. Toulouse Math. (2021) 

17. A.V. Kolesnikov, Mass transportation and contractions. Preprint (2011). arXiv:1103.1479 
18. A.W. Marshall, I. Olkin, B.C. Arnold, Inequalities: Theory of Majorization and Its Applica-

tions, 2nd edn. Springer Series in Statistics (Springer, New York, 2011) 
19. J. Melbourne, C. Roberto, Transport-majorization to analytic and geometric inequalities. J. 

Func. Anal. 284(1): Paper No, 109717, 36, 2023. 
J. Melbourne, C. Roberto, Transport-majorization to analytic and geometric inequalities. 
Preprint (2021). arXiv:2110.03641 

20. D. Mikulincer, Y. Shenfeld, The Brownian transport map. Preprint (2021). arXiv:2111.11521 
21. E. Milman, Spectral estimates, contractions and hypercontractivity. J. Spectr. Theory 8(2), 

669–714 (2018) 
22. J. Neeman, Lipschitz changes of variables via heat flow. Preprint (2022). arXiv:2201.03403 
23. D. O’Regan, Existence Theory for Nonlinear Ordinary Differential Equations. Mathematics 

and Its Applications, vol. 398 (Kluwer Academic Publishers Group, Dordrecht, 1997) 
24. F. Otto, C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic 

Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000) 
25. L.E. Payne, H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. 

Ration. Mech. Anal. 5, 286–292 (1960) 
26. F. Santambrogio, Optimal Transport for Applied Mathematicians. Progress in Nonlinear 

Differential Equations and Their Applications, vol. 87 (Birkhäuser/Springer, Cham, 2015). 
Calculus of variations, PDEs, and modeling 

27. A. Saumard, J. A. Wellner, Log-concavity and strong log-concavity: a review. Stat. Surv. 8, 
45–114 (2014) 

28. A. Tanana, Comparison of transport map generated by heat flow interpolation and the optimal 
transport Brenier map. Commun. Contemp. Math. 23(6), Paper No. 2050025, 7 (2021) 

29. C. Villani, Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58 
(American Mathematical Society, Providence, 2003) 

30. F.-Y. Wang, J. Wang, Functional inequalities for convolution probability measures. Ann. Inst. 
Henri Poincaré Probab. Stat. 52(2), 898–914 (2016)



A Short Direct Proof of the 
Ivanisvili-Volberg Inequality 

Piotr Nayar and Jacek Rutkowski 

Abstract According to the inequality of Ivanisvili and Volberg, for any .n ≥ 1 and 
any function .f : {−1, 1}n → R we have 

. ReE(f + i|∇f |)3/2 ≤ Re(Ef )3/2,

where .z3/2 for a complex number z is taken with principal branch and . Re denotes the 
real part. Here expectation in taken with respect to the uniform measure on .{−1, 1}n. 
We provide a short and direct proof of this inequality. 

Keywords Discrete cube · Poincaré inequality · Beckner inequality 

1 Introduction 

In this note we give a short and direct proof of the Poincaré type inequality 
on the Hamming cube proved by Ivanisvili and Volberg in [2]. For a function 
.f : {−1, 1}n → R and .1 ≤ i ≤ n let us define its directional derivatives . ∇if

via 

. ∇if (x) = 1

2
(f (x) − f (σi(x))),

where σi(x1, . . . , xn) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn).
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We further set .∇f = (∇1f, . . . ,∇nf ) and .|∇f |2 = ∑n
i=1 |∇if |2. The inequality 

states that for any .n ≥ 1 and any .f : {−1, 1}n → R we have 

. ReE(f + i|∇f |)3/2 ≤ Re(Ef )3/2, (1) 

where .z3/2 for a complex number z is taken with principal branch, .Re denotes 
the real part, and . E is the expectation with respect to the uniform measure on the 
Hamming cube. In other words (1) reads as

.EM(f, |∇f |) ≤ M(Ef, 0), (2) 

where M is defined by

. M(x, y) = Re(x + iy)3/2 = 1√
2
(2x −

√

x2 + y2)

√√

x2 + y2 + x.

The main motivation for considering inequality (2) is that it provides a strengthening
of the well known Beckner inequality valid in the Gaussian space, see [1] for this 
and further applications. 

The proof of (2) given in [2] relies on the following four point inequality. 

Lemma 1 (Main Inequality) For any real numbers .x, y, a, b, we have 

.2M(x, y) ≥ M(x + a,

√

a2 + (y + b)2) + M(x − a,

√

a2 + (y − b)2). (3) 

This inequality is then proved using a very technical reasoning involving 
multiple term concrete polynomials with large integer coefficients. In [3] the authors 
provide a short proof of (3) using certain minimax principle (this reasoning is also
reproduced in [2]). This beautiful argument is quite indirect as it involves making 
certain non-trivial guesses. Here we give a short and direct proof of Lemma 1. 

The fact that (3) implies (2) is an abstract principle observed by the authors in
[2]. Let us state it as a lemma for completeness. 

Lemma 2 Suppose .M : R
2 → R satisfies (3) and the function . t → M(x, t)

is non-increasing for .t ≥ 0, for any given x in . R. Then (2) holds true for any
.f : {−1, 1}n → R. 

In our case M verifies the second assumption due to (4) (see the next section).
The rest of this article is organized as follows. In Sect. 2 we give a proof of the 

Main inequality (Lemma 1). The proof of Lemma 2 is given in Sect. 3.
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2 Proof of the Main Inequality 

Without loss of generality we assume that .y �= 0 (the case .y = 0 will follow by 
continuity). We shall fix x and y and consider the right hand side of (3) as a function
. � of .a, b and prove that the only critical point is .a = b = 0. We have  

.Mx = 3

2
√

2

√√

x2 + y2 + x, My = − 3

2
√

2

y
√√

x2 + y2 + x

. (4) 

Note that equivalently .My = − 3
2
√

2
sgn(y)

√√
x2 + y2 − x, which is clearly 

decreasing in y and thus .y �→ M(x, y) is concave. Let 

.P± =
√

x ± a + √
(x ± a)2 + a2 + (y ± b)2. If .P+ = 0 or .P− = 0 then 

necessarily .a = 0 and thus our inequality reduces to 

. 2M(x, y) ≥ M(x, |y + b|) + M(x, |y − b|)

which follows by concavity and monotonicity of .M(x, y) for .y ≥ 0, namely 

. 
1

2
M(x, |y + b|) + 1

2
M(x, |y − b|) ≤ M

(

x,
|y + b| + |y − b|

2

)

≤ M(x, |y|) = M(x, y).

Assume that .P+ and .P− are non-zero. The equations for the critical point of . �
read 

.
2
√

2

3

∂�

∂b
= −y + b

P+
+ y − b

P−
= 0, . (5) 

2
√

2

3

∂�

∂a
= P+ − a

P+
− P− − a

P−
= 0. (6) 

The first equation yields .P+(y −b) = P−(y +b), which is equivalent to . y(P+ −
P−) = b(P+ + P−). Using this we rewrite the second equation (multiplied by y) 

. 0 = y

(

P+ − a

P+
− P− − a

P−

)

= y(P+ − P−) − ay

P+P−
(P+ + P−)

= (P+ + P−)

(

b − ay

P+P−

)

.

This yields .bP+P− = ay. As a consequence 

.ay(y + b) = b(y + b)P+P− = b(y − b)P 2+



294 P. Nayar and J. Rutkowski

and 

. ay(y − b) = b(y − b)P+P− = b(y + b)P 2−.

Plugging in the expressions for .P+ and . P−, moving .x ± a to the left hand side and 
then squaring, we get 

. (ay(y + b) − b(y − b)(x + a))2 = b2(y − b)2((x + a)2 + a2 + (y + b)2)

(ay(y − b) − b(y + b)(x − a))2 = b2(y + b)2((x − a)2 + a2 + (y − b)2).

This is equivalent to 

. a2y2(y + b)2 − 2aby(y2 − b2)(x + a) = b2(y − b)2(a2 + (y + b)2)

a2y2(y − b)2 − 2aby(y2 − b2)(x − a) = b2(y + b)2(a2 + (y − b)2).

Subtracting these equations gives 

. 4a2y3b − 4a2by(y2 − b2) = −4a2b3y.

This gives .a2b3y = 0, which is the same as .ab = 0 since we assume . y �= 0. Now  
if .a = 0 then from (6) we get .P+ = P− and then (5) yields .b = 0. In this case our 
inequality reduces to equality. If .b = 0 then .P+ = P− (since .y �= 0) and thus (6) 
gives .a = 0. 

We are left with checking the validity of our inequality in the limit . a2 + b2 →
∞. Let .r2 = a2 + b2. We shall show .limr→∞ �(a, b) = −∞. By using Taylor 
expansion it is straightforward to observe that 

. 
√

2�(a, b) = (2a −
√

2a2 + b2)

√

a +
√

2a2 + b2

+ (−2a −
√

2a2 + b2)

√

−a +
√

2a2 + b2 + O(
√

r).

Now it suffices to show that 

. (2a −
√

2a2 + b2)

√

a +
√

2a2 + b2 + (−2a −
√

2a2 + b2)

√

−a +
√

2a2 + b2

≤ −C(2a2 + b2)3/4, (7) 

for some absolute constant .C > 0, since this implies .�(a, b) ≤ −Cr3/2 + O(
√

r), 
which tends to .−∞ when .r → ∞. To establish (7) we observe that by homogeneity
one can assume .2a2 + b2 = 1 and .|a| ≤ 1/

√
2. In this case we shall verify the 

inequality 

.(2a − 1)
√

a + 1 + (−2a − 1)
√−a + 1 ≤ −C, |a| ≤ 1/

√
2, (8)
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which is easy (e.g., the only roots of the left hand side are given by . |a| = √
3/2 >

1/
√

2). 

3 Proof of Lemma 2 

Step 1. We first claim that for any a, x ∈ R and B, Y ∈ Rn we have 

.2M(x, |Y |) ≥ M(x+a,

√

a2 + |Y + B|2)+M(x−a,

√

a2 + |Y − B|2). (9) 

Indeed, if we apply (3) with b = 1
2 |Y + B| − 1

2 |Y − B| and y = 1
2 |Y + B| +

1
2 |Y − B|, we get

. M(x + a,

√

a2 + |Y + B|2) + M(x − a,

√

a2 + |Y − B|2)
≤ 2M (x, y) ≤ 2M (x, |Y |) ,

where the last inequality follows from the fact that y ≥ |Y | (triangle inequality) 
and the assumption that t → M(x, t) is non-increasing for t ≥ 0. 

Step 2. We prove Lemma 2 by induction on n. Suppose we want to prove it for 
n + 1 assuming it is true for n. Take  f : {−1, 1}n+1 → R. For  x ∈ {−1, 1}n we 
define h(x) = 1 

2f (x, 1) − 1 
2f (x,−1) and g(x) = 1 

2f (x, 1) + 1 
2f (x,−1). Then 

f (x,  xn+1) = g(x) + xn+1h(x). Moreover, 

. ∇if (x, xn+1) = ∇ig(x) + xn+1∇ih(x), 1 ≤ i ≤ n and

∇n+1f (x, xn+1) = xn+1h(x).

Thus 

. |∇f (x, 1)|2 =
n∑

i=1

|∇ig(x)+∇ih(x)|2 +|h(x)|2 = |∇g(x)+∇h(x)|2 +|h(x)|2

and 

.|∇f (x,−1)|2 =
n∑

i=1

|∇ig(x)−∇ih(x)|2+|h(x)|2 = |∇g(x)−∇h(x)|2+|h(x)|2.
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Denoting by En the expectation with respect to the uniform measure on {−1, 1}n 

and using (9) with a = h, x = g, B = ∇g and Y = ∇h, we get

. En+1M(f, |∇f |) = 1

2
EnM(g − h,

√

|∇g − ∇h|2 + h2)

+ 1

2
EnM(g + h,

√

|∇g + ∇h|2 + h2)

≤ EnM(g, |∇g|) ≤ M(Eng, 0) = M(En+1f, 0),

where the second inequality follows from the induction hypothesis and the last 
step from the fact that En+1f = 1 

2En(g + h) + 1 
2En(g − h) = Eng. The case 

n = 1 is included in the above estimate with g, h being constants. Is this case the 
last inequality becomes equality. 
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The Anisotropic Total Variation 
and Surface Area Measures 

Liran Rotem 

Abstract We prove a formula for the first variation of the integral of a log-concave 
function, which allows us to define the surface area measure of such a function. 
The formula holds in complete generality with no regularity assumptions, and is 
intimately related to the notion of anisotropic total variation and to anisotropic 
coarea formulas. This improves previous partial results by Colesanti and Fragalà, 
by Cordero-Erausquin and Klartag and by the author. 

1 Introduction 

One of the basic constructions in convex geometry is the surface area measure of a 
convex body. To recall the definition, let .K ⊆ R

n be a convex body, i.e. a compact 
convex set with non-empty interior. Then the Gauss map .nK : ∂K → S

n−1 exists 
.Hn−1-almost everywhere, where .Hn−1 denotes the .(n − 1)-dimensional Hausdorff 
measure and .Sn−1 = {x ∈ R

n : |x| = 1} denotes the unit sphere. We then define 
the surface area measure . SK as the push-forward .SK = (nK)�

(
Hn−1

∣∣
∂K

)
. More  

explicitly, for every measurable function .ϕ : Sn−1 → R we have 

. 

∫

Sn−1
ϕdSK =

∫

∂K

(ϕ ◦ nK) dHn−1.

The surface area measure can be equivalently defined using the first variation of 
volume. For convex bodies K and L, let .K + L denotes the usual Minkowski sum, 
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and let .|K| denote the (Lebesgue) volume of K . Then we have 

. lim
t→0+

|K + tL| − |K|
t

=
∫

Sn−1
hLdSK, (1.1) 

where .hL : Sn−1 → R is the support function of L which is defined by . hL(θ) =
maxx∈L 〈x, θ〉. For a proof of this fact the reader may consult a standard reference 
book in convex geometry such as [19] or [11]. 

In this paper we will be interested in functional extensions of the formula (1.1) .
Recall that a function .f : Rn → [0,∞) is called log-concave if 

. f ((1 − λ)x + λy) ≥ f (x)1−λf (y)λ

for all .x, y ∈ R
n and .0 ≤ λ ≤ 1. We denote by .LCn the class of all upper 

semi-continuous log-concave functions. Note that the class of convex bodies in . Rn

embeds naturally into .LCn using the map 

. K ↪→ 1K(x) =
{
1 x ∈ K

0 otherwise.

We would like to consider log-concave functions as “generalized convex bodies”, 
and extend the notion of the surface area measure to this setting. To achieve this 
goal we first need to recall the standard operations on log-concave functions: The 
sum of two log-concave functions is given by the sup-convolution, i.e. 

. (f � g) (x) = sup
y∈Rn

(f (y)g(x − y)) .

The associated dilation operation is given by .(λ · f ) (x) = f
(

x
λ

)λ – note that we 
have for example .f � f = 2 · f . Finally, the “volume” of f will be given by the 
Lebesgue integral . 

∫
f . Using these constructions we may define: 

Definition 1.1 Fix .f, g ∈ LCn. The first variation of the integral of f in the 
direction of g is given by 

.δ(f, g) = lim
t→0+

∫
f � (t · g) − ∫

f

t
. (1.2) 

The study of log-concave functions as geometric objects has become a major 
idea in convex geometry, with useful applications even if eventually one is only 
interested in convex bodies. Due to the very large number of papers in this direction 
we will not survey all of them, but only mention the ones that directly deal with 

the first variation .δ(f, g). In the case when .f = e− |x|2
2 is a Gaussian, .δ(f, g) was 

studied under the name “the mean width of g” by Klartag and Milman [13] in one
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of the papers that began the geometric study of log-concave functions. This mean 
width was further studied in [16]. In particular it was proved there that in this case 
we have 

. δ(f, g) =
∫

Rn

hg(x)e−|x|2/2dx.

Here .hg : Rn → R is the support function of g, defined by .hg = (− log g)∗ where 

. ϕ∗(x) = sup
y∈Rn

(〈x, y〉 − ϕ(y))

is the Legendre transform. 
The case of a general function f was studied by Colesanti and Fragalà in [4]. In 

particular they showed that the limit in (1.2) always exists when .0 <
∫

f < ∞, 
though it may be equal to .+∞. To further explain their results we will need some 
important definitions: 

Definition 1.2 Fix a log-concave function .f : Rn → R with .0 <
∫

f < ∞, and 
write .f = e−ϕ for a convex function .ϕ : Rn → (−∞,∞]. Then: 
(1) The measure .μf is a measure on . Rn defined as the push-forward . μf =

(∇ϕ)� (f dx). 
(2) The measure . νf is a measure on the sphere .Sn−1, defined as the push-forward 

.νf = (
nKf

)
�

(
f dHn−1

∣∣
∂Kf

)
. Here . Kf is a shorthand notation for the support 

of f , i.e. .Kf = {x ∈ R
n : f (x) > 0}, and .nKf

denotes the Gauss map . nKf
:

∂Kf → S
n−1. 

For example, for .f (x) = e−|x|2/2 we have .μf = e−|x|2/2dx and .νf ≡ 0, as  
.∂Kf = ∂Rn = ∅. For a convex body K we have .μ1K

= |K| δ0 and .ν1K
= SK , the  

usual surface area measure. 
It will be important for us to observe that no regularity is required for the 

definitions of .μf and . νf . Indeed, as .ϕ = − log f is a convex function it is 
differentiable Lebesgue-almost-everywhere on the set .{x : ϕ(x) < ∞} = Kf . 
Therefore the push-forward .(∇ϕ)� (f dx) is well-defined. Similarly since .Kf is a 
closed convex set its boundary .∂Kf is a Lipschitz manifold, so in particular the 
Gauss map .nKf

is defined .Hn−1-almost-everywhere and the push-forward is again 
well-defined. 

While regularity is not needed for the definitions of . μf and . νf , it was definitely 
needed for the representation theorem of [4]: 

Theorem 1.3 (Colesanti–Fragalà) Fix .f, g ∈ LCn, and assume that: 

(1) The supports . Kf , . Kg are . C2 smooth convex bodies with everywhere positive 
Gauss curvature.
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(2) The functions .ψ = − log f and .ϕ = − log g are continuous in .Kf and . Kg

respectively, . C2 smooth in the interior of these sets, and have strictly positive-
definite Hessians. 

(3) We have .limx→∂Kf
|∇ψ(x)| = limx→∂Kg

|∇ϕ(x)| = ∞. 
(4) The difference .hf − c · hg is convex for small enough .c > 0. 

Then 

. δ(f, g) =
∫

Rn

hgdμf +
∫

Sn−1
hKgdνf .

Based on Theorem 1.3 we can make the following definition: 

Definition 1.4 Given .f ∈ LCn with .0 <
∫

f < ∞, we call the pair .
(
μf , νf

)
the 

surface area measures of the function f . 

We emphasize that unlike a convex body, a log-concave function has two surface 
area measures: one defined on . Rn, and one defined on .S

n−1. 
While the regularity assumptions of Theorem 1.3 are sufficient, it has always 

been clear that they are not necessary. For example, we already saw that for the 
function .f (x) = e−|x|2/2 no regularity assumptions on g are needed. In fact, it was 
proved in [17] that if .0 <

∫
f < ∞ and .νf = 0 then we have 

. δ(f, g) =
∫

Rn

hgdμf

with no regularity assumptions. Note that since f is log-concave and upper semi-
continuous it is only discontinuous at points .x ∈ ∂Kf such that .f (x) �= 0. 
Therefore the condition .νf = 0 is equivalent to the statement that f is con-
tinuous .Hn−1-almost everywhere. This property was dubbed essential continuity 
by Cordero-Erausquin and Klartag [5]. In their paper, the authors [5] studied the 
moment measure of a convex function . ϕ, which in our terminology is simply the 
surface area measure .μe−ϕ . One of the main results of their paper is a functional 
analogue of Minkowski’s existence theorem: Given a measure . μ on . Rn, they provide 
a necessary and sufficient condition for the existence of a function .f ∈ LCn with 
.μf = μ and .νf = 0. They also prove the uniqueness of such an f . We remark 
that when the functions involved are not necessarily essentially continuous, but are 
sufficiently regular in the sense of Theorem 1.3, a similar uniqueness result was 
previously proved by Colesanti–Fragalà in [4]. We will further discuss this issue of 
uniqueness in Sect. 3 after proving our main theorem, and explain the results of both 
papers. We also remark that another proof of the same existence theorem was given 
by Santambrogio in [18].
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The main goal of this paper is to prove the most general form of Theorem 1.3, 
which requires no regularity assumptions: 

Theorem 1.5 Fix .f, g ∈ LCn such that .0 <
∫

f < ∞. Then 

.δ(f, g) =
∫

Rn

hgdμf +
∫

Sn−1
hKgdνf . (1.3) 

While the improvement over previous results is simply the elimination of the 
various technical assumptions, we do believe Theorem 1.5 is of real value. For 
example, we will see as a corollary that the pair of measures .

(
μf , νf

)
determines 

f uniquely, and for this result it is very useful not to have any technical conditions 
for the validity of formula (1.3) . Moreover, we believe our proof sheds some light
on the reason this formula holds. In particular, we will see an interesting connection
between Theorem 1.5 and the notions of anisotropic total variation and anisotropic 
perimeter. The main point will be that when .g = 1L and .f ∈ LCn is arbitrary, 
Theorem 1.5 can be viewed as an anisotropic version of the coarea formula. 

The rest of this note is dedicated to the proof of the theorem. In Sect. 2 we will 
introduce the anisotropic coarea formula, and explain why it is in fact equivalent 
to Theorem 1.5 in the case when .g = 1L is the indicator of a convex body. Then 
in Sect. 3 we will discuss the case of a general function g, and conclude the proof. 
Some of the ingredients that were used in previous results (mostly in [17]) can be 
used in the proof of Theorem 1.5 with few changes, and in these cases we will either 
give an exact reference or briefly sketch the argument. 

Before we start with the main proof let us prove a finiteness property of the 
measures . μf and . νf : 

Proposition 1.6 Assume .f ∈ LCn and .0 <
∫

f < ∞. Then the measure . μf is 
finite with a finite first moment. The measure . νf is also finite. 

Proof . μf is finite by definition, as .
∫
Rn dμf = ∫

f dx. Moreover, we have 

. 

∫
|x| dμf =

∫
|∇ϕ| f dx =

∫
|∇f | dx < ∞,

where the last inequality is part of Lemma 4 of [5]. 
Next we show that . νf is finite. Note that this is not entirely trivial since . 

∫
dνf =∫

∂Kf
f dHn−1, and while f is clearly bounded we can have .Hn−1

(
∂Kf

) = ∞. We  
therefore adapt a simple argument of Ball [2]. Since f is log-concave and integrable, 
there exists constants .A, c > 0 such that .f (x) ≤ Ae−c|x| (see e.g. Lemma 2.1 of 
[12]). Note that for all .x ∈ R

n we have 

.e−c|x| = c

∫ ∞

0
e−ct1tB(x)dt,
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where .B = {x : |x| ≤ 1} is the unit ball. We may therefore compute 

. 

∫
dνf =

∫

∂Kf

f dHn−1 ≤ A

∫

∂Kf

e−c|x|dHn−1

= Ac

∫ ∞

0

∫

∂Kf

e−ct1tB(x)dHn−1(x)dt

= Ac ·
∫ ∞

0
e−ctHn−1 (

∂Kf ∩ tB
)
dt

≤ Ac ·
∫ ∞

0
e−ctHn−1 (

∂
(
Kf ∩ tB

))
dt

≤ Ac ·
∫ ∞

0
e−ctHn−1 (∂ (tB)) dt

= Ac · Hn−1
(
S

n−1
)

·
∫ ∞

0
tn−1e−ctdt < ∞,

which is what we wanted to prove. Note that the last inequality holds since . Kf ∩
tB ⊆ tB and surface area is monotone for convex bodies. ��
In particular, it follows that the equality in (1.3) is an equality of finite quantities
whenever g is compactly supported, as in this case .hg ≤ A |x| + B and . hKg

is bounded on .Sn−1. When g is not compactly supported it is possible to have 
.δ(f, g) = ∞, as already mentioned. 

2 Anisotropic Total Variations 

In order to start our proof, we need the notion of the anisotropic total variation. First 
recall the classical (isotropic) total variation: An integrable function .f : Rn → R is 
said to have bounded variation if 

. sup

{∫

Rn

f div�dx : � : Rn → R
n is C1-smooth, compactly

supported and |�(x)| ≤ 1 for all x ∈ R
n

}
< ∞.

This supremum is then known as the total variation of f , which we will denote 
by .TV(f ). Moreover, if f is of bounded variation then there exists a vector-valued 
measure Df on . Rn such that 

. 

∫

Rn

f div�dx = −
∫

Rn

〈�, d (Df )〉 ,

and .TV(f ) = |Df | (Rn). Here  .|Df | denotes the total variation (in the sense of 
measures) of Df .
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A set  .A ⊆ R
n is said to have finite perimeter if . 1A has finite variation, and we 

define .Per(A) = TV (1A). Finally, the coarea formula states that if f has bounded 
variation then .Fs = {x : f (x) ≥ s} has finite perimeter for almost every s, and 
.TV(f ) = ∫ ∞

−∞ Per(Fs)ds. All of these facts are standard—see e.g. Chapter 5 of [7] 
for proofs. 

It is less well known that the role of Euclidean norm in the definition of . TV(f )

is not essential. Fix a convex body .L ⊆ R
n and assume that 0 belongs to the interior 

of L. Then the (non-symmetric) norm 

. ‖x‖L = inf
{
λ > 0 : x

λ
∈ L

}

is equivalent to the Euclidean norm. We then define: 

Definition 2.1 

(1) Let .f : Rn → R
n be an integrable function. Then the L-total variation of f is 

given by 

. TVL(f )

= sup

{∫

Rn

f div�dx : � : Rn → R
n is C1-smooth, compactly

supported and ‖�(x)‖L ≤ 1 for all x ∈ R
n

}
.

(2) Let .A ⊆ R
n be a measurable set. The L-perimeter of A is defined by . PerL(A) =

TVL(1A).

Since .‖·‖L and . |·| are equivalent the notion of “bounded variation” does not depend 
on L, and .TVL(f ) < ∞ if and only if .TV(f ) < ∞. Of course, the variation itself 
does depend on L. 

The theory of anisotropic total variations is analogous to the standard theory. We 
now cite two results that we will require. We were only able to find as reference the 
technical report [10], where these results are proven by Grasmair, but the results can 
be proved in the same way as the classical proofs that appear e.g. in [7]: 

Proposition 2.2 Let .f : Rn → R be of bounded variation. Write the vector valued 
measure Df as .Df = σμ where . μ is a positive measure and .σ : Rn → R

n satisfies 
.hL(σ(x)) = 1 for all .x ∈ R

n. Then . TVL(f ) = μ (Rn) .

Note that when L is the Euclidean ball the measure . μ is exactly .|Df |, the usual 
total variation of Df . In the general case . μ can be considered as “total variation of 
Df with respect to L”. Also note that .TVL(f ) was defined using the norm .‖·‖L, 
but in Proposition 2.2 the norm that appears in the dual norm . hL.
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We will also need the anisotropic coarea formula: 

Theorem 2.3 Fix an integrable .f : R
n → R, and denote its level sets by . Fs =

{x : f (x) ≥ s}. Then 

. TVL(f ) =
∫ ∞

−∞
PerL(Fs)ds.

Our goal for this section is to prove Theorem 1.5 when .g = 1L , the indicator of 
a convex body. We will do so by proving that in this case Theorem 1.5 is essentially 
equivalent to Theorem 2.3. We begin with finding an alternative formula for . δ(f, g)

in this case. Recall that if .K,L ⊆ R
n are convex bodies then the volume . |K + tL|

for .t ≥ 0 can be written as a polynomial, 

. |K + tL| =
n∑

k=0

(
n

k

)
Wk(K,L)tk. (2.1) 

The non-negative coefficients .Wk(K,L) are known in our normalization as the 
relative quermassintegrals of K with respect to L. Formula  (2.1) is a special case
of the celebrated Minkowski theorem, and for the proof and basic properties of the
relative quermassintegrals we refer the reader again to [19] or [11]. For now we just 
note that .W0(K,L) = |K|. 

We now prove: 

Proposition 2.4 Fix .f ∈ LCn with .0 <
∫

f < ∞ and fix a compact convex body 
.L ⊆ R

n. For every .s > 0 we write .Fs = {x ∈ R
n : f (x) ≥ s}. Then 

. δ(f, 1L) = n

∫ ∞

0
W1(Fs, L)ds.

This result essentially appears in [3], at least in the case when L is the unit ball. 
Nonetheless we present its short proof: 

Proof For brevity we define .ft = f � (t · 1L) = f � 1tL and . F
(t)
s =

{x ∈ R
n : ft (x) ≥ s}. It is immediate from the definition of . ft that .F

(t)
s = Fs + tL. 

By layer cake decomposition we have 

.δ(f, g) = lim
t→0+

∫
ft − ∫

f

t
= lim

t→0+

∫ ∞
0

∣∣∣F (t)
s

∣∣∣ ds − ∫ ∞
0 |Fs | ds

t

= lim
t→0+

∫ ∞

0

|Fs + tL| − |Fs |
t

ds.
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Using (2.1) we see that for .0 < t < 1 we have 

. 0 ≤ |Fs + tL| − |Fs |
t

=
n∑

k=1

(
n

k

)
Wk(Fs, L)tk−1

≤
n∑

k=1

(
n

k

)
Wk(Fs, L) = |Fs + L| − |Fs | .

Since .
∫ ∞
0 (|Fs + L| − |Fs |) ds = ∫

f1 − ∫
f < ∞, we can use the dominated 

convergence theorem to conclude that 

. δ(f, g) =
∫ ∞

0

(
lim

t→0+
|Fs + tL| − |Fs |

t

)
ds = n

∫ ∞

0
W1(Fs, L)ds.

��
We will also need one more identity, a version of the divergence (or Gauss–Green) 
theorem, which was proved in [17] as part of Theorem 3.2: 

Proposition 2.5 Let .� : R
n → R

n denote a .C1-smooth compactly supported 
vector field. Fix .f ∈ LCn with .0 <

∫
f < ∞. Then 

. 

∫

Rn

f div�dx = −
∫

Rn

〈∇f,�〉 dx +
∫

∂Kf

f
〈
�,nKf

〉
dHn−1.

The divergence theorem was extended beyond the smooth setting by many 
authors, most notably Federer [8, 9]. His result does not formally imply Proposi-
tion 2.5 as log-concave functions are not necessarily Lipschitz, but this is handled 
using an approximation argument. 

Armed with these tools, we can finally prove: 

Proposition 2.6 Fix .f ∈ LCn with .0 <
∫

f < ∞, and set .g = ec1L for a compact 
convex set .L ⊆ R

n and .c ∈ R. Then 

. δ(f, g) = TVL(f ) + c

∫
f =

∫

Rn

hgdμf +
∫

Sn−1
hKgdνf .

Proof First note that if the result holds for a function g, it also holds for . ̃g(x) =
ec · g(x) for all .c ∈ R. Indeed, it is easy to check by the chain rule that . δ(f, g̃) =
δ(f, g) + c

∫
f (see Proposition 3.4 in [17]). Since .hg̃ = hg + c and .hKg = hKg̃ ,
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we have 

. δ(f, g̃) = δ(f, g) + c

∫
f =

∫

Rn

hgdμf +
∫

Sn−1
hKgdνf + c

∫
f

=
∫

Rn

(hg + c)dμf +
∫

Sn−1
hKgdνf =

∫

Rn

hg̃dμf +
∫

Sn−1
hKg̃dνf

as claimed. Therefore from now on we can (and will) assume that .g = 1L. 
Next, assume that 0 belongs to the interior of L so the theory of anisotropic total 

variations applies. Proposition 2.5 immediately implies that 

. d (Df ) = −∇f dx + f n∂Kf
dHn−1

∣∣∣
∂Kf

.

Therefore the measure . μ from Proposition 2.2 is . dμ = hL (−∇f ) dx +
f hL

(
n∂Kf

)
dHn−1

∣∣
∂Kf

. By the same proposition we then have 

.T VL(f ) =
∫

dμ =
∫

Rn

hL(−∇f )dx +
∫

∂Kf

f hL

(
n∂Kf

)
dHn−1 (2.2) 

=
∫

Rn

hL(∇ϕ)f dx +
∫

∂Kf

hL

(
n∂Kf

)
f dHn−1

=
∫

hLdμf +
∫

hLdνf =
∫

hgdμf +
∫

hKgdνf ,

where of course .ϕ = − log f . 
As (2.2) holds for all .f ∈ LCn with .0 <

∫
f < ∞ we can in particular apply 

this formula to the indicator . 1F of a convex body F . We then obtain 

. PerL(F ) = TVL (1F ) =
∫

hLd (|F | δ0) +
∫

hLdSF =
∫

hLdSF = nW1(F,L),

(2.3) 
where the last equality is a standard (and follows immediately from (1.1) and (2.1) ).

Therefore, using in order Proposition 2.4, Eq. (2.3), Theorem 2.3 and Eq. (2.2) 
we have

. δ(f, g) = n

∫ ∞

0
W1(Fs, L)ds =

∫ ∞

0
PerL (Fs) ds

= TVL(f ) =
∫

hgdμf +
∫

hKgdνf ,

where .Fs = {x ∈ R
n : f (x) ≥ s} as before. This concludes the proof in the case 

.0 ∈ int(L). 
For the general case, fix a large Euclidean ball B centered at the origin such 

that .B + L contains the origin in its interior. From Proposition 2.4 and standard



The Anisotropic Total Variation and Surface Area Measures 307

properties of quermassintegrals it follows that .δ(f, 1L) is linear in L with respect to 
the Minkowski addition. Therefore 

. δ(f, 1L) = δ(f, 1L+B) − δ(f, 1B)

=
(∫

hL+Bdμf +
∫

hL+Bdνf

)
−

(∫
hBdμf +

∫
hBdνf

)

=
∫

hLdμf +
∫

hLdνf

and the proof is complete. ��
Note that as a corollary we obtain the following result: 

Corollary 2.7 For .f ∈ LCn with .0 <
∫

f < ∞ the sum .μf + νf is centered, i.e. 
for all .v ∈ R

n we have 

. 

∫

Rn

〈x, v〉 dμf +
∫

Sn−1
〈x, v〉 dνf = 0.

Proof Simply take .g = 1{v} in Proposition 2.6, and note that .δ(f, g) = 0. ��
The fact that . μf is centered when .νf = 0 was observed already in [5]. 

3 Completing the Proof 

In this section we finish the proof of Theorem 1.5. We start with the case of 
compactly supported g. The following lemma from [17] will be crucial: 

Lemma 3.1 Fix .f, g ∈ LCn such that .0 <
∫

f < ∞ and g is compactly supported. 
Then for (Lebesgue) almost every .x ∈ R

n we have 

. lim
t→0+

(f � (t · g)) (x) − f (x)

t
= hg (∇ϕ(x)) f (x).

Here .ϕ = − log f , and the right hand side is interpreted at 0 whenever .f (x) = 0. 

This lemma is proved in [17] as part of the proof of Lemma 3.7 (The condition 
.hg(y) ≤ m |y| + c in the statement of that lemma is exactly equivalent to g being 
compactly supported). If all functions involved are sufficiently regular Lemma 3.1 
follows from the standard formula for the first variation of the Legendre transform 
(see more information in [17]). To prove this result with no regularity assumptions 
does take a bit of work which we will not reproduce here.
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We will now prove: 

Proposition 3.2 Fix .f, g ∈ LCn such that .0 <
∫

f < ∞ and g is compactly 
supported. Then 

. δ(f, g) =
∫

Rn

hgdμf +
∫

Sn−1
hKgdνf .

Proof To simplify our notation let us define .ft = f � (t · g). We also choose . A > 0
such that .0 ≤ g(x) ≤ A for all .x ∈ R

n, and we define .̃g = A · 1Kg and . f̃t =
f � (t · g̃). Note that .g ≤ g̃, so .ft ≤ f̃t for all .t > 0. Also note that 

. lim
t→0+

f̃t − ft

t
= lim

t→0+

(
f̃t − f

t
− ft − f

t

)
= hg̃ (∇ϕ) f − hg (∇ϕ) f

almost everywhere, where we used Lemma 3.1 twice. We may therefore apply 
Fatou’s lemma and deduce that 

. lim inf
t→0+

(∫
f̃t − ∫

f

t
−

∫
ft − ∫

f

t

)

= lim inf
t→0+

∫
f̃t − ft

t
dx ≥

∫ (
hg̃ (∇ϕ) f − hg (∇ϕ) f

)
dx

=
∫ (

hg̃ − hg

)
dμf .

However, by Proposition 2.6 we know that 

. lim
t→0+

∫
f̃t − ∫

f

t
= δ(f, g̃) =

∫
hg̃dμf +

∫
hKgdνf ,

where we used the fact that .Kg̃ = Kg . Combining the last two formulas we see that 

. 

∫
hg̃dμf +

∫
hKgdνf − lim sup

t→0+

(∫
ft − ∫

f

t

)
≥

∫ (
hg̃ − hg

)
dμf ,

so 

. lim sup
t→0+

∫
ft − ∫

f

t
≤

∫
hgdμf +

∫
hKgdνf . (3.1) 

Note that we were allowed to cancel .
∫

hg̃dμf from both sides since this expression 
is finite by Proposition 1.6.



The Anisotropic Total Variation and Surface Area Measures 309

The proof of the opposite inequality is similar. Fix .m ∈ N and consider . Km ={
x ∈ Kg : g(x) ≥ 1

m

}
. This time we define .̃g = 1

m
1Km and .f̃t = f � (t · g̃), and 

we have the opposite inequality .ft ≥ f̃t . Applying Fatou’s lemma in the same way 
we have 

. lim inf
t→0+

(∫
ft − ∫

f

t
−

∫
f̃t − ∫

f

t

)

= lim inf
t→0+

∫
ft − f̃t

t
≥

∫ (
hg (∇ϕ) f − hg̃ (∇ϕ) f

)

=
∫ (

hg − hg̃

)
dμf ,

and this time we have 

. lim
t→0+

∫
f̃t − ∫

f

t
= δ(f, g̃) =

∫
hg̃dμf +

∫
hKmdνf ,

so we obtain 

. lim inf
t→0+

∫
ft − ∫

f

t
≥

∫
hgdμf +

∫
hKmdνf .

Since .Km ⊆ Km+1 for all m and .
⋃∞

m=1 Km = Kg , we have  . hKg = supm hKm =
limm→∞ hKm . We may therefore let .m → ∞ in the last formula and deduce that 

. lim inf
t→0+

∫
ft − ∫

f

t
≥

∫
hgdμf +

∫
hKgdνf ,

which together with (3.1) completes the proof. ��
Nowwe can finally prove Theorem 1.5. The final step is an approximation argument, 
which is essentially the same as the one in [17]. Therefore we repeat the argument 
briefly without repeating some of the computations: 

Proof of Theorem 1.5 Define a sequence .{gm}∞m=1 ⊆ LCn by 

. gm(x) =
{

g(x) |x| ≤ m

0 otherwise.

A computation shows that .hgm ↗ hg as .m → ∞. Moreover, since . Kgm ⊆ Kgm+1

for all m and .
⋃∞

m=1 Kgm = Kg we also have .hKgm
↗ hKg . If we also define 

.ft = f � (t · g) and .ft,m = f � (t · gm) then another computation shows that 

.ft,m(x) ↗ ft (x) for all .t > 0 and .x ∈ R
n. This implies that .

∫
ft,m ↗ ∫

ft (see e.g. 
Lemma 3.2 of [1]).
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Using the chain rule for derivatives we may write 

. δ(f, g) =
(∫

f

)
· lim
t→0+

log
∫

ft − log
∫

f

t
.

This formula has the advantage that by the Prékopa-Leindler inequality [14, 15] the  
function .t �→ log

∫
ft is concave, so we may replace the limit by a supremum. It 

follows that 

. lim
m→∞ δ(f, gm) = sup

m
δ(f, gm) =

(∫
f

)
· sup

m
sup
t>0

log
∫

ft,m − log
∫

f

t

=
(∫

f

)
· sup

t>0
sup
m

log
∫

ft,m − log
∫

f

t

=
(∫

f

)
· sup

t>0

log
∫

ft − log
∫

f

t
= δ(f, g).

Therefore, applying Proposition 3.2 and the monotone convergence theorem we 
conclude that 

. δ(f, g) = lim
m→∞ δ(f, gm) = lim

m→∞

(∫
hgmdμf +

∫
hKgm

dνf

)

=
∫

hgdμf +
∫

hKgdνf ,

and the proof is complete. ��
As a corollary of the theorem we now prove that the measures .μf and . νf

characterize the function f uniquely up to translations: 

Corollary 3.3 Fix .f, g ∈ LCn with .0 <
∫

f,
∫

g < ∞ and assume that . μf = μg

and .νf = νg . Then there exists .x0 ∈ R
n such that .f (x) = g(x − x0) . 

Proof Corollary 5.3 of [4] states that if .f, g ∈ LCn satisfy .0 <
∫

f = ∫
g < ∞, 

.δ(f, g) = δ(g, g) and .δ(g, f ) = δ(f, f ), then there exists .x0 ∈ R
n such that 

.f (x) = g(x − x0). This is proved by showing that we have equality in the Prékopa-
Leindler inequality, and using a characterization of the equality case by Dubuc [6]. 
A similar strategy was used in [5], and indeed in the classical proof that the surface 
area measure . SK determines the body K uniquely. 

In our case we have .
∫

f = μf (Rn) = μg (Rn) = ∫
g, and since 

. δ(f, g) =
∫

Rn

hgdμf +
∫

Sn−1
hKgdνf

we clearly have .δ(f, g) = δ(g, g) and similarly .δ(g, f ) = δ(f, f ). The result 
follows immediately. ��
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In [4] the same argument was used but with Theorem 1.3 replacing Theorem 1.5, 
so uniqueness was only proved under the regularity assumptions of that theorem. In 
[5] there was no explicit representation formula for .δ(f, g), but a weaker statement 
that in the essentially continuous case was also sufficient in order to reduce the 
uniqueness result to the equality case of Prékopa-Leindler inequality (see also [17] 
for an explanation of why the result of [5] is a weak representation theorem for 
.δ(f, g)). We see that in order to get a clean uniqueness result in the general case one 
indeed needs the full strength of Theorem 1.5. 

Of course, Corollary 3.3 raises the question of existence: Given measures . μ and 
. ν, when is there a function .f ∈ LCn with .μf = μ and .νf = ν? We believe this 
question can be answered by essentially the same argument as the argument of [5], 
which handled the case .νf ≡ 0, but the full details are beyond the scope of this 
paper. 

Acknowledgments I would like to thank the anonymous referee for their useful suggestions and 
corrections. 
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Chasing Convex Bodies Optimally 

Mark Sellke 

Abstract In the chasing convex bodies problem, an online player receives a 
request sequence of N convex sets .K1, . . . , KN contained in a normed space X 
of dimension d . The player starts at .x0 = 0 ∈ X, and at time n observes the set . Kn

and then moves to a new point .xn ∈ Kn, paying a cost .||xn − xn−1||. The player 
aims to ensure the total cost exceeds the minimum possible total cost by at most a 
bounded factor . αd independent of N , despite . xn being chosen without knowledge 
of the future sets .Kn+1, . . . , KN . The best possible . αd is called the competitive 
ratio. Finiteness of the competitive ratio for convex body chasing was proved for 
.d = 2 in Friedman and Linial (Discrete Comput. Geom. 9(3):293–321, 1993.) and 
conjectured for all d . Bubeck et al. (Proceedings of the 51st Annual ACM SIGACT 
Symposium on Theory of Computing, pp. 861–868, 2019) recently resolved this 
conjecture, proving an exponential .2O(d) upper bound on the competitive ratio. 

We give an improved algorithm achieving competitive ratio d in any normed 
space, which is exactly tight for . �∞. In Euclidean space, our algorithm also achieves 
competitive ratio .O(

√
d log N), nearly matching a .

√
d lower bound when N is 

subexponential in d. Our approach extends that of Bubeck et al. (Proceedings of 
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1496– 
1508. SIAM, 2020.) for nested convex bodies, which is based on the classical 
Steiner point of a convex body. We define the functional Steiner point of a convex 
function and apply it to the associated work function. 

1 Introduction 

Let X be a d-dimensional normed space and .K1,K2, . . . , KN ⊆ X a finite sequence 
of convex bodies. In the chasing convex bodies problem, a player starting at . x0 =
0 ∈ X learns the sets .Kn one at a time, and after observing .Kn moves to a point 
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.xn ∈ Kn. The player’s cost is the total path length 

. cost(x1, . . . , xN) =
N∑

n=1

||xn − xn−1||.

Denote the smallest cost (in hind-sight) among all such sequences by 

. cost(K1, . . . , KN) = min
(yn∈Kn)n≤N

N∑

n=1

||yn − yn−1||.

The player’s goal is to ensure that 

.cost(x1, . . . , xN) ≤ αd · cost(K1, . . . , KN) (1) 

holds for any sequence .K1, . . . , KN , where .αd is as small as possible and is 
independent of N . The challenge is that the points .xn = xn(K1, . . . , Kn) must 
depend only on the sets revealed so far. To encapsulate this requirement we say 
the player’s path must be online, as opposed to the optimal offline path which can 
depend on future information. An online algorithm achieving (1) for some finite
. αd is said to be .αd -competitive, and the smallest possible . αd among all online 
algorithms is the competitive ratio of chasing convex bodies. 

In the most general sense, the problem of asking a player to choose an online 
path .x1, . . . , xN through a sequence of subsets .S1, . . . , SN in a metric space . X is 
known as metrical service systems. These sets are typically called “requests”. When 
arbitrary subsets .Si ⊆ X can be requested, the competitive ratio possible is . |X | − 1
in any metric space [28]. One also considers the slightly more general metrical task 
systems problem in which requests are non-negative cost functions . fn : X → R

+
rather than sets and the cost takes the form 

. cost(x1, . . . , xN) =
N∑

n=1

dX (xn, xn−1) + fn(xn)

where .
∑N

n=1 dX (xn, xn−1) is called the movement cost while .
∑N

n=1 fn(xn) is the 
service cost. As in (1) , one aims to ensure

.cost(x1, . . . , xN) ≤ α · cost(f1, . . . , fn) = α · inf
(yn∈X )n≤N

cost(y1, . . . , yN). (2) 

The competitive ratio of metrical task systems is always .2|X | − 1 [12]. Actually 
both competitive ratios just stated are for deterministic algorithms; one may also 
allow external randomness, so that one chooses .xn = xn(S1, . . . , Sn, ω) for 
some random variable . ω independent of the sets . Si . One then aims for the same 
guarantee as in (1) , (2) with the expected cost of the player on the left-hand
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side, for any fixed sequence .(S1, . . . , SN). With randomization the competitive 
ratio of metrical task or service systems sharply drops and is known to be in 

the range .
[

c1 log |X |
log log |X | , c2 (log |X |)2

]
, and to be .�(log |X |) in some specific cases 

[9, 10, 13, 18]. However this is not the end of the story as a wide range of problems, 
including chasing convex bodies, result from restricting which subsets are allowed 
as requests. The literature on such problems is vast and includes scheduling [21], 
self-organizing lists [33], efficient covering [1], safely using machine-learned advice 
[11, 24, 27, 35], and the famous k-server problem [6, 22, 23, 28]. 

Chasing convex bodies was proposed in [19] to study the interaction between 
convexity and metrical task systems. Of course the general upper bounds above are 
of no use as .|X| = ∞, while the lower bounds also do not apply due to the convexity 
constraint. Friedman and Linial [19] gave an algorithm with finite competitive ratio 
for the already non-trivial .d = 2 case and conjectured that the competitive ratio 
is finite for any .d ∈ N. The best known asymptotic lower bounds come from 
requesting the faces of a hypercube by taking . Kn = (ε1, ε2, . . . , εn) × [−1, 1]d−n

for .εi ∈ {−1, 1} uniformly random and .n ≤ d. This construction implies that the 
competitive ratio is at least .

√
d in Euclidean space and at least d for .X = �∞—see 

[15, Lemma 5.4] for more on lower bounds. Unlike in many competitive analysis 
problems, randomization is useless for chasing convex bodies and we may freely 
restrict attention to deterministic algorithms. This is because .cost(x1, . . . , xN) is 
convex on . XN , and so randomized paths are no better than their (deterministic) 
pointwise expectations. 

Following a lack of progress on the full conjecture, restricted cases such as 
chasing subspaces were studied, e.g. [2]. A notable restriction is chasing nested 
convex bodies, where the convex sets .K1 ⊇ K2 ⊇ . . . are required to decrease. 
Nested chasing was introduced in [8] and solved rather comprehensively in [3] and 
then [15]. The latter work gave an algorithm with optimal competitive ratio up to 
.O(log d) factors for all . �p spaces based on Gaussian-weighted centroids. Moreover 
it gave a d-competitive memoryless algorithm based on the Steiner point which we 
discuss later. 

Some time after chasing convex bodies was posed, an equivalent problem called 
chasing convex functions emerged. This is a metrical task systems problem in which 
requests are convex functions .fn : X → R

+ instead of convex sets. As described 
above the total cost 

. cost(x1, . . . , xN) =
N∑

n=1

||xn − xn−1|| + fn(xn)

decomposes as a movement cost plus a service cost. Chasing convex functions 
subsumes chasing convex bodies by replacing the body .Kn with the function 
.fn = 2 · d(x,Kn). This is because an arbitrary algorithm for the requests . fn

is improved by projecting . xn onto . Kn—actually the same argument shows more 
generally that metrical task systems subsumes metrical service systems. Conversely 
as observed in [14], convex function chasing in X can be reduced to convex body
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chasing in .X ⊕ R up to a constant factor by alternating requests of the epigraphs 
.{(x, y) ∈ X × R : y ≥ fn(x)} with the hyperplane .X × {0}. As with chasing 
convex bodies, randomized algorithms are no better than deterministic algorithms 
since .cost(x1, . . . , xN) remains convex on . XN . 

Convex function requests allow one to model many practical problems. Indeed 
chasing convex functions was originally considered as a model for efficient power 
management in cooling data centers [26]. In light of this, restricted or modified 
versions of chasing convex function have also been studied. For example, [7] 
determines the exact competitive ratio in 1 dimension, while works such as [16, 20] 
show dimension-independent competitive ratios for similar problems with further 
restrictions on the cost functions. 

Main Result In prior joint work with S. Bubeck, Y.T. Lee, and Y. Li [14] 
we gave the first algorithm achieving a finite competitive ratio for convex body 
chasing. Unfortunately this algorithm used an induction on dimension that led to a 
exponential competitive ratio .2O(d). We give an upper bound of d for the competitive 
ratio of chasing convex bodies in a general normed space, which is tight for . �∞. In  
Euclidean space, our algorithm has competitive ratio .O(

√
d log N), nearly matching 

the lower bound .
√

d when the number of requests N is sub-exponential in d. The  
statement following combines Theorems 4.1 and 5.3. 

Theorem 1.1 In any d-dimensional normed space there is a .d + 1 competitive 
algorithm for chasing convex functions and a d competitive algorithm for chasing 
convex bodies. Moreover in Euclidean space this algorithm is .O(

√
d log N)-

competitive. 

The proof is inspired by our joint work with S. Bubeck, B. Klartag, Y.T. Lee, 
and Y. Li [15] on chasing nested convex bodies. It is shown there that moving to the 
new body’s Steiner point, a stable center point of any convex body defined in [34], 
gives total movement at most d starting from the unit ball in d dimensions. (The 
argument in [15] is restricted to Euclidean space but the proof works in general as 
we will explain.) We extend their argument by defining the functional Steiner point 
of a convex function. Our algorithm follows the functional Steiner point of the so-
called work function which encodes at any time the effective total cost of all requests 
so far. 

We remark that given the form of (1) , chasing convex bodies may be viewed as
an online version of a Lipschitz selection problem. In the broadest generality, for
some family .S ⊆ 2X of subsets of a set X, a selector takes sets .S ∈ S to elements 
.s ∈ S. Of course the relevant comparison for us is when . S consists of all convex 
bodies in X. Continuity and Lipschitz properties of general selectors have received 
significant attention [17, 25, 31, 32]. Taking the Hausdorff metric on convex sets, 
the Steiner point is d-Lipschitz in any normed space. Moreover as explained in [29, 
Section 4], it achieves the exact optimal Lipschitz constant (of order .�(

√
d)) when 

X is Euclidean due to a beautiful symmetrization argument. We find it appealing 
that this in some sense optimal Hausdorff-Lipschitz selector also solves an online 
version of Lipschitz selection.
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Concurrently with this work, C.J. Argue, A. Gupta, G. Guruganesh, and Z. Tang 
obtained similar results for chasing convex bodies in Euclidean space [4]. Their 
algorithm is based on Steiner points of level sets of the work function; these turn 
out to be almost the same as the functional Steiner point as we show in Sect. 6. 

2 Problem Setup 

2.1 Notations and Conventions 

The variables .T , t, s denote real times while .N, n denote integer times. . −
∫
x∈S

f (x)dx

denotes the average value .
∫
x∈S f (x)dx∫

x∈S 1dx
of .f (x) on the set S. Denote by .B1 ⊆ X the 

unit ball and .B∗
1 ⊆ X∗ the dual unit ball. The symbol . ∂ denotes boundary, and . 〈·, ·〉

denotes the natural pairing between .X,X∗. 

2.2 Continuous Time Formulation 

Our proof is more natural in continuous time, so we first solve the problem in 
this setting and then specialize to discrete time. In continuous time chasing convex 
functions, we receive a locally bounded family of non-negative convex functions 
.(ft : X → R

+)t∈[0,T ]. We assume that .ft (x) is piece-wise continuous in t with 
a locally finite set of continuities. The player constructs a bounded variation path 
.(xt ) online, so that . xs depends only on .(ft )t≤s . We will assume . ft and . xt are cadlag 
(right-continuous with left-limits) in the time variable t . The cost is again the sum 
of movement and service costs given by 

. cost((xt )t∈[0,T ]) =
∫ T

0
ft (xt ) + ||x′

t ||dt.

Here and throughout, the integral of .||x′
t || is understood to mean the total variation 

of the path . xt . As before the goal is to achieve a small competitive ratio against 
the optimal offline path. Given a sequence .f1, f2, . . . , fN of convex requests, one 
readily obtains a corresponding continuous-time problem instance by choosing, for 
each .t ∈ [0, N ], the function .ft = fn for .t ∈ (n−1, n]. The next proposition shows 
that solving this continuous problem suffices to solve the discrete problem. 

Proposition 2.1 Any discrete-time instance of chasing convex function has the 
same offline optimal cost as its continuous-time counterpart. Meanwhile for any 
continuous-time online algorithm there exists a discrete-time online algorithm 
achieving both smaller movement and smaller service cost on every sequence of 
functions .f1, . . . , fN .
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Proof It is easy to see that the continuous and discrete time problems have the same 
offline optimum value. Given a solution for continous-time convex function chasing, 
suppose the player sees a discrete time request . fn. The player then computes the 
continuous time path .(xt )t∈(n−1,n] and moves to some . xtn with .tn ∈ (n − 1, n] and 

. fn(xtn) ≤
∫ n

n−1
fn(xt )dt.

The discretized sequence .(xt1 , . . . , xtN ) has a smaller movement cost than the 
continuous path .(xt )t∈[0,T ] because the triangle inequality implies 

. 

N∑

n=1

||xtn − xtn−1 || ≤
N∑

n=1

∫ tn

tn−1

||x′
s ||ds

=
∫ tN

0
||x′

s ||ds

≤
∫ N

0
||x′

s ||ds.

The discretized path also has smaller service cost by construction, hence the result. 
��

3 Functional Steiner Point and Work Function 

We begin by recalling the definition of the Steiner point in a d-dimensional normed 
space X. For a convex body .K ⊆ X and .v ∈ X∗, define 

. fK(v) = arg max
x∈K

〈v, x〉,

hK(v) = max
x∈K

〈v, x〉 = 〈fK(v), x〉.

. hK is commonly known as the support function of K . Let . μ denote the cone measure 
on .∂B∗

1 , which can be sampled from by choosing a uniformly random .z ∈ B∗
1 and 

normalizing to .θ = z
||z|| . For .θ ∈ ∂B∗

1 define .n(θ) ∈ X to be the outward unit 
normal defined (for .μ-almost all . θ ) by .||n(θ)|| = 1 and .〈n(θ), θ〉 = 1. 

Definition 3.1 ([29, Chapter 6]) The Steiner point .s(K) ∈ X is 

.s(K) = −
∫

v∈B∗
1

fK(v)dv.. (3) 

= d −
∫

θ∈∂B∗
1

hK(θ)n(θ)dμ(θ). (4)
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The equivalence of the two definitions follows from the divergence theorem and 
the identity .∇hK = fK . The factor d comes from the discrepancy in total measure 
of the ball and the sphere. See [29, Chapter 6] for a careful derivation. 

Using Definition 3.1, the upper bound d for nested chasing in [15] immediately 
extends to any normed space. We recall the main result here. It is not phrased as a 
competitive ratio because some apriori reductions are possible in nested chasing— 
roughly speaking we stay inside the unit ball . B1 and treat the offline optimum cost 
as being 1. Note that both (3) and (4) are essential in the argument below.

Theorem 3.2 ([15, Theorem 2.1]) Let .B1 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ KN be convex 
bodies in X, with .xn = s(Kn) for each n. Then .xn ∈ Kn for each n and 

. 

N∑

n=1

||xn − xn−1|| ≤ d.

Proof It follows from (3) that .s(K) ∈ K , so it remains to estimate the total 
movement. For convenience take .K0 = B1 the unit ball so that . x0 = (0, 0, . . . , 0) =
s(K0). From .Kn ⊆ Kn−1 it follows that .hKn(θ) ≤ hKn−1(θ) for each .n ≤ N and 
.θ ∈ ∂B∗

1 . Combining with (4) yields:

. 

N∑

n=1

||s(Kn) − s(Kn−1)|| ≤ d −
∫

θ∈∂B∗
1

N∑

n=1

|hKn(θ) − hKn−1(θ)|dμ(θ)

= d −
∫

θ∈∂B∗
1

N∑

n=1

hKn−1(θ) − hKn(θ)dμ(θ)

= d −
∫

θ∈∂B∗
1

1 − hKN
(θ)dμ(θ)

≤ d.

Here the last inequality follows from .hKN
(θ) + hKN

(−θ) ≥ 0. ��
We now extend the definition of Steiner point to convex functions. The idea is to 

replace the support function by the concave conjugate (also known as the Fenchel-
Legendre transform). Recall that for a convex function .W : X → R

+, the concave 
conjugate .W ∗ : X∗ → R ∪ {−∞} is defined by 

.W ∗(v) = inf
w∈X

(W(w) − 〈v,w〉) (5) 

Let us assume W is not only convex but also 1-Lipschitz, and that . W(w) − ||w||
is uniformly bounded. We will refer to such a W as an (abstract) work function. 
Note .W ∗(v) is finite whenever .||v|| < 1 by the last assumption, and moreover the
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infimum in (5) is attained. We denote this point attaining this infimum by

. v∗ = arg min
w∈X

(W(w) − 〈v,w〉) ,

the conjugate point to v with respect to W . It satisfies .∇W(v∗) = v and is well-
defined for almost every .v ∈ B∗

1 by Alexandrov’s theorem. Moreover we have 
.∇W ∗(v) = −v∗. Combining this latter relation with the divergence theorem yields 
another identity, from which the functional Steiner point is defined. 

Definition 3.3 Let X be an arbitrary d-dimensional normed space, and . W : X →
R

+ a work function as defined above. The functional Steiner point .s(W) ∈ X is: 

.s(W) = −
∫

v∈B∗
1

v∗dv.. (6) 

= −d −
∫

θ∈∂B∗
1

W ∗(θ)n(θ)dμ(θ). (7) 

We remark that if a convex body K is identified with the function . f (x) =
d(x,K), then the definitions above agree. We call (3) , (6) the primal definitions
and (4) , (7) the dual definitions.

3.1 The Work Function 

The work function is a central object in online algorithms; in general it records 
the smallest cost required to satisfy an initial sequence of requests while ending 
in a given state. Work function based algorithms are essentially optimal among 
deterministic algorithms for general metrical task systems [12] as well as the  k-
server problem [23]. 

Definition 3.4 Given requests .(fs)s≤t , the work function .Wt(x) is the offline-
optimal cost among paths satisfying .xt = x: 

.Wt(x) = inf
xs :[0,t]→X

xt=x

||x0|| +
∫ t

0
fs(xs) + ||x′

s ||ds. (8) 

= inf
xs :[0,t]→X

xt=x

costt (xs). (9) 

Here we allow .xs : [0, t] → X to be any path of bounded variation, and as before 
interpret .

∫ t

0 ||x′
s ||ds to mean the total variation of the path. Likewise for a discrete-

time request sequence .(f1, . . . , fn), the work function .Wn(x) is defined as above
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with .ft = fn for .t ∈ (n − 1, n] or more simply by 

. Wn(x) = min
x1,...,xn∈X

||x − xn|| +
N∑

n=1

||xn − xn−1|| + fn(xn).

For a sequence .(K1, . . . , Kn) of convex set requests the work function .Wn is defined 
analogously. 

In the case that .fs(x) is piecewise constant in s (which is all we need for the 
original discrete-time problem), the best offline continuous time strategy clearly 
coincides with the best offline discrete time strategy. The infimum is attained in (9) 
in general because the paths .(xs)s≤t of variation at most C satisfying .xt = T are 
compact in the usual topology on cadlag functions for any C, and .costt is lower 
semicontinuous. 

Denote by .W ∗
t (·) the concave conjugate of . Wt , and . v∗

t the point with . ∇Wt(v
∗
t ) =

v. We record the following proposition summarizing the properties of the work 
function and its dual. 

Proposition 3.5 In either discrete or continuous time, . Wt and .W ∗
t satisfy: 

1. . W0(x) = ||x||.
2. .W ∗

0 (v) = 0 whenever .||v|| ≤ 1. 
3. .Wt(x) is increasing in t and is convex for all fixed t . 
4. .W ∗

t (x) is increasing in t and concave in x. 
5. .Wt(x) is an abstract work function. 
6. .W ∗

t (v) is non-negative and finite whenever . ||v|| ≤ 1.

7. .cost((fs)s∈[0,t]) = minx∈X Wt(x). 

Proof It is clear that .W0(x) = ||x||, and that .Wt(x) is increasing in t . The  
computation of .W ∗

0 is clear. Convexity of .Wt(·) holds by convexity of .costt (·)— 
given paths .x0

s : [0, t] → X and .x1
s : [0, t] → X the path .xq

s : [0, t] → X given 
by 

. x
q
s = qx1

s + (1 − q)x0
s

satisfies for any .q ∈ [0, 1], 

. costt (x
q
s ) ≤ q · costt (x

1
s ) + (1 − q) · costt (x

0
s ).

Convexity of . Wt implies that .W ∗
t is concave by general properties of the Fenchel-

Legendre transform. Because .Wt is increasing in t , the definition (5) implies that
.W ∗

t is increasing in t as well. It is easy to see that . Wt is 1-Lipschitz; to show 

.Wt(x) ≤ Wt(y) + ||x − y||
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it suffices to take the lowest cost path to y and then move from y to x. Similarly 
.Wt(x)−||x|| is bounded, making . Wt an abstract work function. It follows from this 
that .W ∗

t (v) is finite when .||v|| ≤ 1. ��
Lemma 3.6 For all t , 

. max||θ ||≤1
W ∗

t (θ) ≤ 2 · min
x

Wt (x),

−
∫

θ∈∂B∗
1

W ∗
t (θ)dμ(θ) ≤ min

x
Wt (x),

−
∫

v∈B1

W ∗
t (v)dv ≤ min

x
Wt (x).

Proof Set 

. OPTt = arg min
x

Wt (x).

The definition (5) of .W ∗
t implies 

. W ∗
t (θ) ≤ WT (OPTt ) − θ · OPTt .

Finally 

. |Wt(OPTt )| = inf
xs :[0,t]→X
xt=OPTt

||x0|| +
∫ t

0
fs(xs) + ||x′

s ||ds

≥ inf
xs :[0,t]→X
xt=OPTt

||x0|| +
∫ t

0
||x′

s ||ds

≥ |OPTt |

holds where the triangle inequality was used in the last line. All assertions now 
follow. ��

We next compute the time derivative of .W ∗
t (v) for fixed v with . |v| < 1. The  

proof, a simple exercise, is left to the appendix. 

Lemma 3.7 For any .ε > 0 suppose .fs(x) is jointly continuous in .(s, x) and convex 
in x for .(s, x) ∈ [t, t + ε) × X. Then for almost all v with .||v|| < 1, 

.
d

dt
W ∗

t (v) = ft (v
∗
t ).
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4 Linear Competitive Ratio 

Our algorithm for continuous-time convex function chasing is defined by setting 
.xt = s(Wt ). In its analysis, the primal definition (6) controls the service cost while
the dual definition (7) controls the movement cost.

Theorem 4.1 .xt = s(Wt ) is .d + 1 competitive for continuous-time convex function 
chasing in any d-dimensional normed space X. In particular: 

1. The movement cost of . xt is d-competitive: 

. 

∫ T

0
||x′

t ||dt ≤ d · min
x

Wt (x).

2. The service cost of . xt is 1-competitive: 

. 

∫ T

0
ft (xt )dt ≤ min

x
Wt (x).

Proposition 2.1 yields an induced algorithm for chasing bodies/functions in 
discrete time which we call the discrete-time functional Steiner point. 

Corollary 4.2 The discrete-time functional Steiner point is .d + 1 competitive for 
chasing convex functions and d competitive for chasing convex bodies. 

Proof of Corollary 4.2 This follows from Proposition 2.1 and the fact that chasing 
convex bodies has 0 service cost. ��
Proof of Theorem 4.1 We begin with part 1. From the dual definition (7) of . s(Wt )

and the fact that .W ∗
t increases with t from .W ∗

0 = 0, 

. 

∫ T

0
||x′

t ||dt = d ·
∫ T

0

∣∣∣∣∣

∣∣∣∣∣
d

dt
−
∫

θ∈∂B∗
1

W ∗
t (θ)θdμ(θ)

∣∣∣∣∣

∣∣∣∣∣

≤ d ·
∫ T

0
−
∫

θ∈∂B∗
1

∣∣∣∣
d

dt
W ∗

t (θ)

∣∣∣∣ dμ(θ)

= d · −
∫

θ∈∂B∗
1

W ∗
T (θ)dμ(θ).

Lemma 3.6 implies 

.d · −
∫

θ∈∂B∗
1

W ∗
T (θ)dμ(θ) ≤ d min

x
WT (x).
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This completes the proof of part 1 and we turn to part 2. From the primal 
definition (6) and convexity of . ft it follows that 

. ft (s(Wt )) ≤ −
∫

v∈B∗
1

ft (v
∗
t )dv.

Integrating in time and using Lemmas 3.7 and 3.6 yields: 

. 

∫ T

0
ft (s(Wt ))dt ≤−

∫

v∈B1

∫ T

0
ft (v

∗
t )dtdμ(θ)

=−
∫

v∈B∗
1

∫ T

0

d

dt
W ∗

t (v)dtdv

=−
∫

v∈B∗
1

W ∗
T (v) − W ∗

0 (v)dv

=−
∫

v∈B∗
1

W ∗
T (v)dv

≤ min
x

WT (x).

��
Remark In the continuous time setting, only .ft (xt ) and .∇ft (xt ) are actually 
necessary to solve convex function chasing. This is because the player can always 
lower bound . ft by 

. ft (x) ≥ f̃t (x) ≡ max (ft (xt ) + 〈∇ft (xt ), x − xt 〉, 0) .

As .f̃t (xt ) = ft (xt ), by simply pretending the requests are . f̃t , any competitive 
algorithm can be transformed into one which only uses the values .ft (xt ) and 
.∇ft (xt ) and which obeys the same guarantees. 

In the discrete time setting, if we are given .fn(xn−1) and .∇fn(xn−1) before 
choosing . xn, there is another source of error because .fn(xn) is totally unknown. 
However this error is easily controlled when the . fn are uniformly Lipschitz. Let 
.(xn)n≤N be the discrete-time functional Steiner point sequence for the functions 
recursively defined by 

.f̃n(x) = max (fn(xn−1) + 〈∇fn(xn−1), x − xn−1〉, 0)
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and let .WN be the discrete-time work function. We obtain: 

. 

N∑

n=1

fn(xn) + ||xn − xn−1|| ≤
N∑

n=1

f̃n(xn) + ||xn − xn−1|| +
(

N∑

n=1

fn(xn) − f̃n(xn)

)

≤ (d + 1) min
x

WN(x) +
(

N∑

n=1

fn(xn) − f̃n(xn)

)
.

Suppose now that each .fn is L-lipschitz. Then the equality . fn(xn−1) =
f̃n(xn−1) implies .|fn(xn) − f̃n(xn)| ≤ 2L||xn − xn−1||. Because Theorem 4.1 and 
Proposition 2.1 imply 

. 

N∑

n=1

||xn − xn−1|| ≤ d min
x

WN(x),

it follows that the resulting competitive ratio is at most .(2L + 1)d + 1. Similar 
remarks apply to the result of Theorem 5.3. 

5 Competitive Ratio O(
√

d log N)  in Euclidean Space 

In this section we prove the discrete-time functional Steiner point has competitive 
ratio .O(

√
d log N) in Euclidean space (whose norm is denoted by .|| · ||2). The 

same technique applies in any normed space given a suitable concentration result, 
however we restrict to the Euclidean case for convenience. The idea is as follows. 
Suppose that the average dual work function increase 

. −
∫

θ∈∂B∗
1

W ∗
n (θ) − W ∗

n−1(θ)dμ(θ)

at time-step n is significant. Then by (7) the movement from . s(Wn−1) → s(Wn)

is an integral of pushes by different vectors . θ . By concentration of measure, these 
pushes decorrelate unless the total amount of pushing is exponentially small. 

Lemma 5.1 ([5, Lemma 2.2]) For any .0 ≤ ε < 1 and .|w| ≤ 1 in Euclidean space, 
the set 

. {θ ∈ ∂B1 : 〈w, θ〉 ≥ ε}

occupies at most .e−dε2/2 fraction of . ∂B1.
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Lemma 5.2 Suppose that .|W ∗
n (θ) − W ∗

n−1(θ)| ≤ C for all .θ ∈ ∂B1, and set 

. λ = −
∫

v∈B1

W ∗
n (v) − W ∗

n−1(v)dv.

Then the functional Steiner point movement is at most 

. ||s(Wn) − s(Wn−1)||2 = O

(
λ

√

d

(
1 + log

(
C

λ

)))
.

Proof Observe that 

. ||s(Wn) − s(Wn−1)||2 = max||w||2=1
〈w, s(Wn) − s(Wn−1)〉.

Fixing a unit vector w, we estimate the inner product on the right-hand side. Set 

. gn(θ) = W ∗
n (θ) − W ∗

n−1(θ) ≥ 0,

Iz = −
∫

θ∈∂B∗
1

gn(θ) · 1〈w,θ〉≥zdμ(θ).

Then .gn(θ) ∈ [0, C] for all . θ and .−
∫
θ∈∂B∗

1
gndμ(θ) = λ. Consequently by 

Lemma 5.1, 

.Iz ≤ min
(
λ,Ce−dz2/2

)
. (10) 

We thus find

. 〈w, s(Wn) − s(Wn−1)〉 = d −
∫

θ∈∂B∗
1

gn(θ)〈w, θ〉dμ(θ)

≤ d −
∫

θ∈∂B∗
1〈w,θ〉≥0

gn(θ)〈w, θ〉dμ(θ)

= d

∫ 1

0
Izdz

≤ d

∫ 1

0
min

(
λ,Ce−dz2/2

)
dz. (11) 

Here the second equality is the tail-sum integral formula. To estimate the resulting
integral, set

.A =
√

2 log(C/λ)

d
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so that .Ce−dA2/2 = λ. We will assume . A ≤ 1; if .A > 1 then the expression (11) is
at most .dλ ≤ dAλ and it suffices to mimic the below without the second term. We 
estimate 

. 

∫ 1

0
min

(
λ,Ce−dz2/2

)
dz = Aλ + C

∫ 1

A

e−dz2/2dz.

and use the simple bounds 

. 

∫ 1

A

e−dz2/2dz ≤
∫ 1

0
e−dz2/2dz ≤ O(d−1/2),

∫ 1

A

e−dz2/2dz ≤ e−dA2/2
∫ ∞

A

e−dA(z−A)dz = e−dA2/2

dA
.

Combining, 

. 〈w, s(Wn) − s(Wn−1)〉 ≤ d

∫ 1

0
min

(
λ,Ce−dz2/2

)
dz

≤ dAλ + min

(
C

√
d,

Ce−dA2/2

A

)

= O

(
λ

√

d log

(
C

λ

))
+ min

(
C

√
d, λ

√
d

2 log(C/λ)

)
.

With .u = λ/C ∈ [0, 1], the last term is 

. C
√

d · min

(
1,

u√
2 log(1/u)

)

For .u ≤ [0, 1/2], we have .
u√

2 log(1/u)
≤ O(u) giving the bound . O(λ

√
d). For  

.u ≥ 1/2 we have .C
√

d ≤ 2λ
√

d. Hence in both cases, 

. 〈w, s(Wn) − s(Wn−1)〉 ≤ O

(
λ

√

d

(
1 + log

(
C

λ

)))

as desired. ��
Theorem 5.3 The discrete time functional Steiner point algorithm is . O(

√
d log N)

competitive for chasing convex functions in Euclidean space. 

Proof Call .(xt )t∈[0,N ] the continuous path and .(xtn)n≤N the discrete path for . tn ∈
(n−1, n] as in Proposition 2.1. Since the service cost for the discrete path is at most
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that of the continuous path, we only need to establish the .O(
√

d log N) competitive 
ratio on the movement of the discrete path. By Lemma 3.6, 

. max|θ |≤1
W ∗

N(θ) ≤ 2 · min
x

WN(x).

Set 

. λn =
∫

θ∈∂B∗
1

W ∗
tn
(θ) − W ∗

tn−1
(θ)dμ(θ).

Applying Lemma 5.2 with .C = 2 · minx WN(x) to the movement .||xtn − xtn−1 ||2 at 
each step yields: 

.

N∑

n=1

||xtn − xtn−1 ||2 ≤ O(Cd1/2) ·
∑

n≤N

λn

C

√

1 + log

(
C

λn

)
. (12) 

Here the values . λn are all non-negative and sum to .−
∫
θ∈∂B∗

1
W ∗

N(θ)dμ(θ) ≤ C. 

Letting .h(u) = u
√

1 + log(1/u), one readily computes that for .u ∈ (0, 1), 

. h′(u) = 2 log(1/u) + 1

2(1 + log(1/u))1/2 ≥ 0, h′′(u) = −2 log(1/u) − 3

4u(1 + log(1/u))3/2 ≤ 0.

Jensen’s inequality therefore implies that setting .λn = C
N

for all .n ≤ N in (12) gives
an upper bound. It follows that the movement cost is at most .O(C

√
d log(N + 1)). 

��

6 Steiner Points of Level Sets 

6.1 A Simplification for Chasing Convex Bodies 

Here we show that for chasing convex bodies in discrete time, it suffices to 
simply set .xn = s(Wn) instead of reducing from a continuous-time problem via 
Proposition 2.1. This simplification does not seem possible for chasing convex 
functions. The movement cost estimates continue to hold with no changes in the 
proof, however establishing .s(Wn) ∈ Kn requires a short additional argument. 
Define the support set .Supp(W) ⊆ Rd of an abstract work function W to be the 
set of points x possessing a subgradient .v ∈ ∇W(x) with .|v| < 1. For a work 
function W and convex body K , set  

.WK(x) = min
y∈K

W(y) + ||y − x||.
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If W is the work function for some sequence of requests, then making an additional 
request of K results in the new work function .WK . 

Proposition 6.1 .Supp(WK) ⊆ K holds for any work function W and convex body 
K . 

Proof Suppose .x /∈ K and set 

. y ∈ arg min
y0∈K

(W(y0) + ||y0 − x||).

For any z on the segment . yx, it follows that .W(x) − W(z) = ||x − z||. This implies 
that no v with .|v| < 1 can be a subgradient in .∇Wn(x). ��
Corollary 6.2 The algorithm .xn = s(Wn) is d competitive for chasing convex 
bodies, and .O(

√
d log N) competitive in Euclidean space. 

Proof Proposition 6.1 and the primal definition (6) together imply .s(Wn) ∈ Kn, 
i.e. the algorithm is valid. The d-competitiveness follows from Theorem 4.1 and the 
argument of Proposition 2.1 while the .O(

√
d log N) competitive ratio in Euclidean 

space follows from the argument of Theorem 5.3. ��

6.2 Steiner Points of Level Sets 

This final subsection has two main objectives. Theorem 6.3 states that the functional 
Steiner point of any work function can be expressed as the Steiner point of large 
level sets. Corollary 6.6 states that the Steiner point of any level set of the work 
function .Wn is inside .Kn for convex body chasing. As we discuss at the end, 
Corollary 6.6 is related to the algorithm for chasing convex bodies given by Argue 
et al. [4]. Denote level sets by 

. 
W,R = {x : W(x) ≤ R}.

It is easy to see that for any work function W and .R ≥ minx W(x), 

. W
W,R (x) =
{

W(x), for x ∈ 
W,R

d(x,
W,R) + R, for x /∈ 
W,R.

Theorem 6.3 For any work function W and .R ≥ minx W(x), it holds that 
.s(
W,R) = s

(
W
W,R

)
and .limR→∞ s(
W,R) = s(W). Moreover if . Supp(W) ⊆


W,R then .s(
W,R) = s(W). 

Proof The dual definitions (4) , (7) imply

.s(
W,R) − s(W) = d −
∫

θ∈∂B∗
1

(
W ∗(θ) + h
W,R

(θ)

)
n(θ)dμ(θ). (13)
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Also for any .θ ∈ ∂B∗
1 , 

. 
(
W
W,R

)∗
(θ) = inf

w∈X

(
W
W,R (w) − 〈w, θ〉

)

= inf
w∈∂
W,R

(
W
W,R (w) − 〈w, θ〉

)

= R − h
W,R
(θ).

It follows from the symmetry .θ ↔ −θ that 

. −
∫

θ∈∂B∗
1

n(θ)dμ(θ) = 0.

Combining the above yields 

. s(
W,R) = s
(
W
W,R

)
.

We proceed similarly for the second claim. For any .θ ∈ ∂B∗
1 , 

. W ∗(θ) = inf
w∈X

(W(w) − 〈θ,w〉)

= lim
R→∞ inf

w∈
W,R

(W(w) − 〈θ,w〉)

= lim
R→∞ inf

w∈∂
W,R

(W(w) − 〈θ,w〉)

= lim
R→∞

(
R − h
W,R

(θ)

)
.

Because .W(x) − ||x|| is uniformly bounded it follows that the expression 

. W ∗(θ) + h
W,R
(θ) − R

is uniformly bounded for .(θ, R) ∈ (∂B∗
1 × R

+). As just shown it tends to 0 as 
.R → ∞. The bounded convergence theorem therefore implies 

. lim
R→∞ −

∫

θ∈∂B∗
1

∣∣W ∗(θ) + h
W,R
(θ) − R

∣∣ dμ(θ) = 0.

Combining with Eq. (13) shows that .limR→∞ ||s(
W,R) − s(W)|| = 0, proving 
the second assertion. The last assertion is proved similarly after observing that



Chasing Convex Bodies Optimally 331

.Supp(W) ⊆ 
W,R implies 

. W ∗(θ) = inf
w∈X

(W(w) − 〈θ,w〉)

= lim
λ↑1

inf
w∈X

(W(w) − 〈λθ,w〉)

= lim
λ↑1

inf
w∈
W,R

(W(w) − 〈λθ,w〉)

= R − h
W,R
(θ).

��
Proposition 6.4 .Supp(W
W,R ) ⊆ Supp(W) holds for any .R ≥ minx W(x). 

Proof Because .
W,R is a level set, 

. W
W,R (x) =
{

W(x), for x ∈ 
W,R

d(x,
W,R) + R, for x /∈ 
W,R

Proposition 6.1 combined with the fact that W and .W
W,R agree inside . 
W,R

imply that the only possible new support points are on the boundary . ∂
W,R . Fix  
a boundary point .y ∈ ∂
W,R\Supp(W). Because .y /∈ Supp(W), there exists a 
sequence .(yi)i∈N → y satisfying 

. W(y) − W(yi) ≥ (1 − o(1))||y − yi ||.

Such a sequence of points . yi must eventually satisfy .W(yi) ≤ W(y) and 
therefore .yi ∈ 
W,R , implying .W(yi) = W
W,R (yi). Hence 

. W
W,R (y) − W
W,R (yi) ≥ (1 − o(1))||y − yi ||.

This implies .y /∈ Supp(W
W,R ), completing the proof. ��
Corollary 6.5 Let .W = ŴK for a work function . Ŵ and convex body K . For any 
.R ≥ minx W(x), 

. s(
W,R) = s
(
W
W,R

) ∈ K.

Proof Propositions 6.1 and 6.4 show that 

. Supp
(
W
W,R

) ⊆ Supp(W) ⊆ K.

The primal definition (6) of the functional Steiner point now implies .s(W
W,R ) ∈ K .
��
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Corollary 6.6 Let . Wn be the work function for convex body requests .(K1, . . . , Kn). 
Then 

. s(W

Wn,R
n ) ∈ Kn

for any .R ≥ minx Wn(x). 

Proof Immediate from Corollary 6.5 with .Ŵ = Wn−1 and .K = Kn. ��
Remark [4] solved chasing convex bodies in Euclidean space by taking . xn =
s
(
W


Wn,Rn
n

)
with .Rn = 2�log2(minx Wn(x))�. This defines a selector by Corollary 6.6. 

Estimating the movement cost is not difficult because the sets .W

Wn,R
n decrease for 

fixed R. Note that .diam(
Wn,R) ≤ 2R because of the inequality . Wt(x) ≥ ||x||
(recall Proposition 3.5). Using Theorem 3.2, the movement from each fixed R value 
is at most .O(min(dR,R

√
d log T )). Summing over the geometric sequence of R 

values yields the same upper bound as in Theorems 4.1 and 5.3 up to a constant 
factor. 

Argue et al. [4] prove that .s
(
W


Wn,Rn
n

)
∈ Kn using reflectional symmetries 

that may not exist in arbitrary normed spaces. Corollary 6.6 thus implies that their 
algorithm works for general norms. 

Appendix: Proof of Lemma 3.7 

Proof We prove the result for all v ∈ B∗
1 where ∇W ∗

t (v) exists. This includes 
almost all v by Alexandrov’s theorem. Moreover it ensures the conjugate point v∗

t = 
arg minw∈X W(w)  − 〈v, w〉 is well-defined and that Wt is strictly convex at v∗

t [30, 
Corollary 25.1.2]. We write: 

. Wt+δ(v) = min
xs :[0,t+δ]→X

(∫ t+δ

0
(fs(xs) + ||x′

s ||ds − 〈v, xt+δ〉
)

= min
xs :[t,t+δ]→X

(
Wt(xt ) +

∫ t+δ

t

fs(xs) + ||x′
s ||ds − 〈v, xt+δ〉

)

For small δ ∈ (0, ε), we show  W ∗
t+δ(v) = W ∗

t (v)+ δft (v
∗
t )+o(δ). For the upper 

bound, 

.Wt+δ(v
∗
t ) ≤ Wt(v

∗
t ) +

∫ t+δ

t

fs(v
∗
t )ds

= Wt(v
∗
t ) + δft (v

∗
t ) + o(δ)
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holds by taking xs = v∗
t constant for s ∈ [t, t + δ) and recalling the assumption that 

fs(x) is continuous on s ∈ [t, t + δ). Since v∗
t = arg minx

(
Wt(x) − 〈x, v〉), the  

upper bound follows from 

. W ∗
t+δ(v) ≤ Wt+δ(v

∗
t ) − 〈v, v∗

t 〉
≤ Wt(v

∗
t ) + δft (v

∗
t ) + o(δ) − 〈v, v∗

t 〉
= W ∗

t (v) + δft (v
∗
t ) + o(δ).

For the lower bound, the strict convexity of Wt at v∗
t implies 

. Wt(x) = Wt(v
∗
t ) + 〈v, x − v∗

t 〉 + γ (||x − v∗
t ||)

where γ : R+ → R+ is continuous and increasing with unique minimum F(0) = 0. 
Therefore any path xs : [0, t  + δ] →  X satisfies: 

. Wt(xt ) +
∫ t+δ

t

fs(xs) + ||x′
s ||ds − 〈v, xt+δ〉 ≥ Wt(v

∗
t ) + 〈v, xt − v∗

t 〉

+ γ (||xt − v∗
t ||) +

∫ t+δ

t

fs(xs) + ||x′
s ||ds − 〈v, xt+δ〉.

The observation
∫ t+δ 
t ||x′

s ||ds ≥ ||xt+δ − xt || ≥ 〈v, xt+δ − xt 〉 implies 

. Wt(xt ) +
∫ t+δ

t

fs(xs) + ||x′
s ||ds − 〈v, xt+δ〉 ≥Wt(xt ) − 〈v, v∗

t 〉 + f (||xt − v∗
t ||)

+
∫ t+δ

t

fs(xs)ds

≥Wt(v
∗
t ) − 〈v, v∗

t 〉 + γ (||xt − v∗
t ||)

+
∫ t+δ

t

fs(xs)ds

≥W ∗
t (v) + γ (||xt − v∗

t ||)

+
∫ t+δ

t

fs(xs)ds.

Because Wt+δ(v) = Wt(v) + O(δ), we see that for δ → 0 small we must have 
||xt − v∗

t || = oδ→0(1) for any optimal trajectory xs witnessing the correct value 
Wt+δ . Additionally, 

.

∫ t+δ

t

||x′
s ||ds+〈v, xt −xt+δ〉 ≥ (1−|v|)

∫ t+δ

t

||x′
s ||ds ≥ (1−|v|) sup

s∈[t,t+δ]
|xt −xs |.
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which similarly implies sups∈[t,t+δ] ||xt − xs || = o(1) for any optimal trajectory 

since ||v|| < 1. It follows that all optimal trajectories satisfy
∫ t+δ 
t fs(xs)ds = 

δft (v
∗
t ) + o(δ). This concludes the proof. ��
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Shephard’s Inequalities, Hodge-Riemann 
Relations, and a Conjecture of Fedotov 

Ramon van Handel 

Abstract A well-known family of determinantal inequalities for mixed volumes of 
convex bodies were derived by Shephard from the Alexandrov-Fenchel inequality. 
The classic monograph Geometric Inequalities by Burago and Zalgaller states a 
conjecture on the validity of higher-order analogues of Shephard’s inequalities, 
which is attributed to Fedotov. In this note we disprove Fedotov’s conjecture 
by showing that it contradicts the Hodge-Riemann relations for simple convex 
polytopes. Along the way, we make some expository remarks on the linear algebraic 
and geometric aspects of these inequalities. 

Keywords Mixed volumes · Alexandrov-Fenchel inequality · Shephard’s 
inequalities · Hodge-Riemann relations for convex polytopes 

1 Introduction 

1.1. Let .K1, . . . , Km be convex bodies in . Rn and .λ1, . . . , λm > 0. One of the most 
basic facts of convex geometry, due to H. Minkowski, is that the volume of convex 
bodies is a homogeneous polynomial in the sense that 

. Vol(λ1K1 + · · · + λmKm) =
m∑

i1,...,in=1

V(Ki1 , . . . , Kin) λi1 · · · λin .

The coefficients .V(K1, . . . , Kn), called mixed volumes, define a large family of 
natural geometric parameters of convex bodies, and play a central role in convex 
geometry [5, 14]. Mixed volumes are always nonnegative, are symmetric in their 
arguments, and are additive and homogeneous in each argument. 
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The fundamental inequality in the theory of mixed volumes is the following. 

Theorem 1.1 (Alexandrov-Fenchel) For convex bodies K, L, C1, . . . , Cn−2 in 
R

n 

. V(K,L,C1, . . . , Cn−2)
2 ≥ V(K,K,C1, . . . , Cn−2)V(L,L,C1, . . . , Cn−2).

Numerous inequalities in convex geometry may be derived from the Alexandrov-
Fenchel inequality, cf. [5, §20] and [14, §7.4]. The starting point for this note is a 
well-known family of determinantal inequalities, due to Shephard [18], that extend 
the Alexandrov-Fenchel inequality to more than n bodies. 

Theorem 1.2 (Shephard) Given convex bodies K1, . . . , Km,C1, . . . , Cn−2 in Rn, 
define the m × m symmetric matrix M by setting 

. Mij := V(Ki,Kj , C1, . . . , Cn−2).

Then 

. (−1)m det M ≤ 0.

The special case m = 2 of Theorem 1.2 is just a reformulation of the 
Alexandrov-Fenchel inequality, and Shephard’s inequalities may thus be viewed 
as a considerable generalization of the Alexandrov-Fenchel inequality. However, 
as is shown by Shephard (and as we will explain later in this note), the general 
inequalities may in fact be deduced from the m = 2 case by a simple linear algebraic 
argument. In the case m = 3, this result dates back already to Minkowski [12, p.  
478]. 

1.2. The classic monograph Geometric Inequalities by Burago and Zalgaller states 
a conjecture on the validity of a higher-order generalization of Theorem 1.2, which 
is attributed to Fedotov [5, §20.6]. Let us recall the statement of this conjecture. In 
the sequel, we will frequently employ the notation 

. V(K1[m1],K2[m2], . . . , Kr [mr ]) := V(K1, . . . , K1︸ ︷︷ ︸
m1

,K2, . . . , K2︸ ︷︷ ︸
m2

, . . . , Kr, . . . , Kr︸ ︷︷ ︸
mr

)

when convex bodies are repeated multiple times in the arguments of a mixed 
volume. 

Conjecture 1.3 (Fedotov) Let k ≤ n/2, and let K1, . . . , Km,C1, . . . , Cn−2k be 
convex bodies in Rn. Define the m × m symmetric matrix M by setting 

.Mij := V(Ki[k],Kj [k], C1, . . . , Cn−2k).
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Then 

. (−1)m det M ≤ 0.

If true, this conjecture would entail a considerable generalization of Shephard’s 
inequalities. The conjecture is rather appealing, as it is easily verified to be true in 
two extreme cases that have a different flavor. 

Lemma 1.4 Conjecture 1.3 is valid in the following two cases: 

a. When k = 1 and m is arbitrary. 
b. When m = 2 and k is arbitrary. 

Proof Case a is nothing other than Theorem 1.2. To prove b, it suffices to note that 
iterating the Alexandrov-Fenchel inequality yields [14, (7.63)] 

. V(K1[k],K2[l], C1, . . . , Cn−k−l )
k+l ≥

V(K1[k + l], C1, . . . , Cn−k−l )
k V(K2[k + l], C1, . . . , Cn−k−l )

l

for any k, l ≥ 1, k + l ≤ n. The case k = l is readily seen to be equivalent to b. ��
The main purpose of this note is to explain that Conjecture 1.3 fails when one 

goes beyond the special cases of Lemma 1.4. More precisely, we will prove: 

Theorem 1.5 For every k >  1, Conjecture 1.3 is false for some m >  2. 

1.3. In order to explain how we will disprove Conjecture 1.3, it is useful to first 
briefly recall some of its history. 

Despite the fundamental nature of the Alexandrov-Fenchel inequality, no really 
elementary proof of it is known. Alexandrov gave two different (but closely related) 
proofs in the 1930s: a combinatorial proof using strongly isomorphic polytopes [2], 
and an analytic proof using elliptic operators [3]. Further remarks on its history and 
on more modern proofs may be found in [14, 15]. 

In the 1970s, unexpected connections were discovered between the theory of 
mixed volumes and algebraic geometry. In particular, a remarkable identity due to 
Bernstein and Kushnirenko [5, Theorem 27.1.2] shows that the number of solutions 
z ∈ (C\{0})n of a generic system of polynomial equations p1(z) = 0, . . . , pn(z) = 
0 with given monomials coincides with the mixed volume of an associated family 
of lattice polytopes in Rn (i.e., polytopes with vertices in Zn). 

Motivated by these developments, Fedotov [7] proposed a simple proof of the 
Alexandrov-Fenchel inequality using only basic properties of polynomials. Fedotov 
further notes that his method even yields the more general Conjecture 1.3, which is 
stated in [7] as a theorem. These results were included in the Russian edition of the 
monograph of Burago and Zalgaller. Unfortunately, Fedotov’s elementary approach 
turns out to contain a serious flaw, which renders his method of proof invalid. A 
correct algebraic proof of the Alexandrov-Fenchel inequality was given by Teissier
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and Khovanskii using nontrivial machinery, namely a reduction to the Hodge index 
theorem of algebraic geometry. The latter proof is included in the English translation 
of Burago-Zalgaller [5, §27], but does not settle the validity of Fedotov’s higher-
order analogue of Shephard’s inequalities [5, §20.6]. 

On the other hand, the algebraic connection yields other higher-order inequali-
ties. The Alexandrov-Fenchel inequality is analogous to a Hodge-Riemann relation 
of degree 1 in the cohomology ring of a smooth projective variety [6, 8]. Hodge-
Riemann relations of higher degree give rise to new inequalities in convex geometry. 
Such inequalities were first stated by McMullen [11] for strongly isomorphic 
simple polytopes as a byproduct of his work on the g-conjecture. Their geometric 
significance was greatly clarified by Timorin [20], whose formulation is readily 
interpreted in terms of explicit inequalities for mixed volumes. Very recently, some 
special cases were extended also to smooth convex bodies in [1, 9, 10]. 

The proof of Theorem 1.5 may now be explained as follows. Using the properties 
of hyperbolic quadratic forms, we will first reformulate Conjecture 1.3 as a higher-
order Alexandrov-Fenchel inequality. In this equivalent formulation, it will be 
evident that this inequality contradicts the Hodge-Riemann relation of degree 2. 
Thus the results of McMullen and Timorin imply that Conjecture 1.3 is false. Beside 
disproving the conjecture, a more expository aim of this note is to draw attention to 
some basic linear algebraic and geometric aspects of the above inequalities (none of 
which are really new here) in the context of classical convexity. 

Remark It should be noted that Fedotov’s conjecture as stated in [5, §20.6] is 
somewhat more general than Conjecture 1.3: the matrix M considered there is 

. Mij := V(Ki[k],Kj [l], C1, . . . , Cn−k−l )

for any k, l ≥ 1 such that k + l ≤ n. Lemma 1.4 extends to this setting: the case 
k = l = 1 and general m reduces to Shephard’s inequalities, while the case m = 2 
and general k, l is obtained by multiplying the inequality [14, (7.63)] used in the 
proof of Lemma 1.4 by the same inequality with the roles of k, l reversed. When 
k �= l, however, the matrix M is not symmetric, and the spectral interpretation of 
the conjecture becomes unclear. Given that we show the conjecture fails for general 
m already in the symmetric case k = l, it seems implausible that the nonsymmetric 
case k �= l has any merit, and we do not consider it further in this note. 

1.4. The remainder of this note is organized as follows. In Sect. 2, we recall some 
basic properties of hyperbolic quadratic forms that will be used in the sequel. 
We also briefly discuss Shephard’s inequalities and clarify their equality cases. In 
Sect. 3 we formulate the Hodge-Riemann relations for strongly isomorphic simple 
polytopes, due to McMullen and Timorin, entirely in the language of classical 
convexity. Finally, Sect. 4 completes the proof of Theorem 1.5. 

While the proof of Theorem 1.5 explains clearly why Fedotov’s conjecture 
must fail, the construction is rather indirect. Once the proof has been understood, 
however, it is not difficult to engineer an explicit counterexample, which will be
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done in Sect. 5. Beside further illustrating the basic construction, this example will 
show that we may in fact choose m = 3 in Theorem 1.5. 

We conclude this note by highlighting a puzzling aspect of the Hodge-Riemann 
relations: even though their statement makes sense in principle for arbitrary convex 
bodies, the Hodge-Riemann relations have only been proved for special classes of 
bodies (e.g., strongly isomorphic simple polytopes). In Sect. 6, we will illustrate by 
means of a simple example that the Hodge-Riemann relations may fail for general 
convex bodies. This highlights the rather unusual nature of the Hodge-Riemann 
relations as compared to other inequalities in convex geometry. 

2 Linear Algebra 

The aim of this section is to explain that the connection between the Alexandrov-
Fenchel and Shephard inequalities has nothing to do with convexity, but is rather a 
simple linear-algebraic fact. The results of this section are known in various forms, 
see, e.g., [4, Theorem 4.4.6], [15, Lemma 2.9], or [16, Lemma 3.1], but we provide 
simple self-contained proofs for the variants needed here. 

2.1 Hyperbolic Matrices 

We begin by giving a spectral interpretation of the Alexandrov-Fenchel inequality. 
In the sequel, a matrix . M will be called positive if .Mij > 0 for all . i, j . For .y ∈ R

m, 
we write .y ≥ 0 (. y > 0) if .yi ≥ 0 (.yi > 0) for all i. The linear span of all 
eigenvectors of a symmetric matrix . M with positive eigenvalues will be called the 
positive eigenspace of . M. 

Lemma 2.1 Let . M be a symmetric positive matrix. The following are equivalent: 

1. The positive eigenspace of . M is one-dimensional. 
2. .〈x, My〉2 ≥ 〈x, Mx〉 〈y, My〉 for all .x ≥ 0 and .y ≥ 0. 
3. .〈x, My〉 = 0 implies .〈x, Mx〉 ≤ 0 for all x and .y ≥ 0, .y �= 0. 

Proof As . M is a positive matrix, the Perron-Frobenius theorem implies that it has 
at least one eigenvector .v > 0 with positive eigenvalue. 

3. ⇒1: Let .x ⊥ v be any other eigenvector of . M. Then .〈x, Mv〉 = 0, so  3 implies 
.〈x, Mx〉 ≤ 0. Thus the eigenvalue associated to x must be nonpositive. 

1. ⇒2: It follows from 1 that . M is negative semidefinite on . v⊥. Fix .x, y ≥ 0; we  
may assume .y �= 0 (else the inequality is trivial), so that .〈y, v〉 > 0 and . 〈y, My〉 >

0. If we define .z = x − ay with .a = 〈x, v〉/〈y, v〉, then . z ∈ v⊥, so  

.0 ≥ 〈z, Mz〉 = 〈x, Mx〉 − 2a〈x, My〉 + a2〈y, My〉 ≥ 〈x, Mx〉 − 〈x, My〉2

〈y, My〉 .
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2. ⇒3: We first show that 2 remains valid for any x (not just .x ≥ 0). Suppose first 
that .y > 0. Then .x + by ≥ 0 when b is chosen sufficiently large, so 2 implies 

. 〈x + by, My〉2 ≥ 〈x + by, M(x + by)〉 〈y, My〉.

Expanding both sides of this inequality shows that all terms involving b cancel, so 
.〈x, My〉2 ≥ 〈x, Mx〉 〈y, My〉 for any x and .y > 0. This conclusion remains valid 
for any .y ≥ 0 by applying the above argument with .y ← y + εv and letting .ε → 0. 
Now 3 follows immediately once we note that .y ≥ 0, .y �= 0 implies .〈y, My〉 > 0. 

��
In the sequel, a symmetric (but not necessarily positive) matrix that has a one-

dimensional positive eigenspace will be called hyperbolic. 

2.2 Shephard’s Inequalities 

An .m × m hyperbolic matrix . M has 1 positive and .m − 1 nonpositive eigenvalues. 
It is therefore immediately obvious that such a matrix satisfies .(−1)m det M ≤ 0 (as 
the determinant is the product of the eigenvalues). Shephard’s inequalities follow 
directly from this observation. 

Proof of Theorem 1.2 We may assume without loss of generality that all the convex 
bodies have nonempty interior, so that . M is a positive matrix (otherwise we may 
replace .Ki ← Ki + εB, .Ci ← Ci + εB for any body B with nonempty interior, 
and take .ε → 0 in the final inequality.) Condition 2 of Lemma 2.1 is immediate 
from the Alexandrov-Fenchel inequality (Theorem 1.1 with .K = ∑

i xiKi and . L =∑
i yiKi). Thus . M is hyperbolic by Lemma 2.1, which implies .(−1)m det M ≤ 0. 

��
While this is only tangentially related to the rest of this note, let us take the 

opportunity to clarify the cases of equality in Shephard’s inequalities. 

Proposition 2.2 In the setting and notations of Theorem 1.2, we have .det M = 0 if 
and only if there are linearly independent vectors .x, y > 0 such that .K = ∑

i xiKi , 
.L = ∑

i yiKi yield equality in the Alexandrov-Fenchel inequality of Theorem 1.1. 

Proof We must show .det M = 0 if and only if .〈x, My〉2 = 〈x, Mx〉 〈y, My〉 for 
some linearly independent .x, y > 0. We may assume .M �= 0 (else the result is 
trivial). 

Suppose first that .det M = 0. Then there exists .z ∈ ker M, .z �= 0. Choose any 
.y > 0 that is linearly independent of z. Evidently .〈z, My〉2 = 〈z, Mz〉 〈y, My〉. But  
as this identity is invariant under the replacement .z ← z + by (as in the proof of 
2. ⇒3 of Lemma 2.1), we may choose .x = z + by > 0 for b sufficiently large.
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Now suppose .〈x, My〉2 = 〈x, Mx〉 〈y, My〉 for linearly independent .x, y > 0. 
Then 

. q(v) := 〈x + v, My〉2 − 〈x + v, M(x + v)〉 〈y, My〉

satisfies .q(0) = 0, and .q(v) ≥ 0 for all v in a neighborhood of 0 by the Alexandrov-
Fenchel inequality. Thus .∇q(0) = 0, which yields . z = 〈y, My〉x − 〈x, My〉y ∈
ker M. Moreover, .z �= 0 as .x, y are linearly independent. Thus .det M = 0. ��

Proposition 2.2 reduces the equality cases of Shephard’s inequalities to those 
of the Alexandrov-Fenchel inequality. The characterization of the latter is a long-
standing open problem [14, §7.6], which was recently settled in several important 
cases in [16, 17]. This problem remains open in full generality. 

2.3 A Sylvester Criterion 

While any hyperbolic .m × m matrix . M trivially satisfies .(−1)m det M ≤ 0, the  
converse implication clearly does not hold: the sign of the determinant does not 
determine the number of positive eigenvalues. However, the implication can be 
reversed if the determinant condition holds for all principal submatrices of . M. This  
hyperbolic analogue of the classical Sylvester criterion may be proved in essentially 
the same manner.1 

In the following, we denote for any .m × m symmetric matrix . M and subset . I ⊆
[m] by .MI := (Mij )i,j∈I the associated principal submatrix. 

Lemma 2.3 For a symmetric positive .m×mmatrix, the following are equivalent: 

1. The positive eigenspace of . M is one-dimensional. 
2. .(−1)|I | det MI ≤ 0 for all .I ⊆ [m]. 
Proof To prove 1. ⇒2, note first that condition 2 of Lemma 2.1 is inherited by 
all its principal submatrices .MI (as one may restrict to .x, y supported on I ). The 
conclusion therefore follows immediately from Lemma 2.1. 

To prove 2. ⇒1, we argue by induction on m. For .m = 2, it suffices to note that as 
. M has at least one positive eigenvalue by the Perron-Frobenius theorem, . det M ≤ 0
implies that its other eigenvalue must be nonpositive. 

Now let .m > 2 and assume the result has been proved in dimensions up to .m−1. 
Then 2 implies that .MI is hyperbolic for all .I � [m]. By the Perron-Frobenius 
theorem, . M has an eigenvector v with positive eigenvalue. Now suppose 1 fails, 
that is, . M is not hyperbolic. Then there must be another eigenvector .w ⊥ v with 
positive eigenvalue. As .(−1)m det M ≤ 0, there must then be a third eigenvector 
.u ⊥ {v,w} with nonnegative eigenvalue. Choose any .i ∈ [m] such that .ui �= 0 and

1 The author learned the elementary approach used here from lecture notes of M. Hladík. 
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let .I = [m]\{i}. Choose .a, b ∈ R so that .x := v − au and .y := w − bu satisfy 
.xi = yi = 0. By construction, .x, y are linearly independent and .〈z, Mz〉 > 0 for all 
.z ∈ span{x, y}, . z �= 0. As .x, y are supported on I , this implies .MI has a positive 
eigenspace of dimension at least two, contradicting the induction hypothesis. ��

It follows immediately from Lemma 2.3 that Conjecture 1.3 is equivalent to the 
statement that the matrix . M is hyperbolic. This observation will form the basis for 
the proof of Theorem 1.5 in Sect. 4: we will show that hyperbolicity of . M contradicts 
the Hodge-Riemann relations for simple convex polytopes. 

3 Hodge-Riemann Relations 

The Hodge-Riemann relations in algebraic geometry give rise to higher order 
analogues of the Alexandrov-Fenchel inequality [11, 20]. While these inequalities 
are not usually stated in this form in the literature, they may be equivalently 
formulated as explicit inequalities between mixed volumes. The aim of this section 
is to draw attention to this elementary formulation of the Hodge-Riemann relations 
in terms of familiar objects from classical convex geometry. 

Recall that a convex polytope in . Rn is called simple if it has nonempty interior 
and each vertex is contained in exactly n facets. In the following, let us fix an 
arbitrary simple polytope . � in . Rn, and denote by .P(�) the collection of polytopes 
that are strongly isomorphic to . �: that is, .P ∈ P(�) if and only if 

. dim F(P, u) = dim F(�, u) for all u ∈ Sn−1,

where .F(P, u) denotes the face of P with normal direction u. For the basic 
properties of simple and strongly isomorphic polytopes, the reader is referred to 
[14, §2.4]. For the purposes of this note, the only significance of these definitions is 
that they are needed for the validity of the following theorem (see Sect. 6). 

Theorem 3.1 (McMullen-Timorin) Fix .n ≥ 2 and a simple polytope .� ∈ R
n, 

and let .m ≥ 1, .k ≤ n/2, .K1, . . . , Km,L,C1, . . . , Cn−2k ∈ P(�), and .x ∈ R
m. If  

.

∑

i

xi V(Ki[k],M[k − 1], L,C1, . . . , Cn−2k) = 0 (3.1) 

holds for every .M ∈ P(�), then 

.(−1)k
∑

i,j

xixj V(Ki[k],Kj [k], C1, . . . , Cn−2k) ≥ 0. (3.2) 

Moreover, the statement is nontrivial in the sense that for any .n ≥ 2 and . k ≤
n/2, there is a simple polytope .� = L = C1 = · · · = Cn−2k in . Rn, .m ≥ 1,
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.K1, . . . , Km ∈ P(�), and .x ∈ R
m so that (3.1) holds and the inequality in (3.2) is

strict.

The case .k = 1 of Theorem 3.1 is nothing other than the Alexandrov-Fenchel 
inequality. To see why this is so, assume without loss of generality that . L =∑

i yiKi for some .y ≥ 0, .y �= 0 (otherwise let .m ← m + 1 and .Km+1 ← L), 
and define 

. Mij = V(Ki,Kj , C1, . . . , Cn−2).

Then the statement of Theorem 3.1 for . k = 1 may be formulated as  

. 〈x, My〉 = 0 implies 〈x, Mx〉 ≤ 0

for any x and .y ≥ 0, .y �= 0. Thus by Lemma 2.1, the inequality of Theorem 3.1 
in the case .k = 1 is equivalent to the Alexandrov-Fenchel inequality for convex 
bodies in .P(�). As any collection of convex bodies can be approximated by 
simple strongly isomorphic polytopes [14, Theorem 2.4.15], the general case of the 
Alexandrov-Fenchel inequality is further equivalent to this special case. 

For .k > 1, the statement of Theorem 3.1 may be viewed as an analogue of 
the Alexandrov-Fenchel inequality for .Mij = V(Ki[k],Kj [k], C1, . . . , Cn−2k). 
Thus the Hodge-Riemann relations are reminiscent of Conjecture 1.3, but their 
formulation is considerably more subtle. In Sect. 4, we will show that the Hodge-
Riemann relations in fact contradict Conjecture 1.3, disproving the latter. 

The aim of the rest of this section is to convince the reader that the statement of 
Theorem 3.1 given here in terms of mixed volumes is equivalent to the statement 
of the Hodge-Riemann relations as given in [20]. The reader who is primarily 
interested in Theorem 1.5 may safely jump ahead to Sect. 4. 

To explain the formulation of [20], we must first introduce some additional 
notation. Let .u1, . . . , uN ∈ Sn−1 be the normal directions of the facets of . �. For  
any .P ∈ P(�), we denote by .hP ∈ R

N its support vector 

. (hP )i := sup
y∈P

〈y, ui〉.

Then there is a homogenous polynomial .V : R
N → R of degree n, called the 

volume polynomial, so that .Vol(P ) = V (hP ) for every .P ∈ P(�) [14, §5.2]. 
Moreover, as .P(�) is closed under addition [14, §2.4], it follows immediately from 
the definition of mixed volumes that we have for any . P1, . . . , Pn ∈ P(�)

.V(P1, . . . , Pn) = 1

n!DhP1
· · ·DhPn

V ,
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where .Dh denotes the directional derivative in direction . h. In this notation, the 
Hodge-Riemann relations are formulated in [20, p. 385] as follows: 

Theorem 3.2 Let .k ≤ n/2, .L,C1, . . . , Cn−2k ∈ P(�), and let . α = ∑
|I |=k αID

I

be a homogeneous differential operator of order k with constant coefficients. If 

.αDhL
DhC1

· · ·DhCn−2k
V = 0, (3.3) 

then

.(−1)kα2DhC1
· · ·DhCn−2k

V ≥ 0. (3.4) 

Moreover, equality is attained if and only if .αV = 0. 

To write Theorem 3.2 in terms of mixed volumes, we need the following. 

Lemma 3.3 For any homogeneous differential operator .α = ∑
|I |=k αID

I , there 

exist .m ≥ 1, .K1, . . . , Km ∈ P(�), and .x ∈ R
m so that .α = ∑

i xi(DhKi
)k . 

Proof We first recall that for any .z ∈ R
N , .h� + εz is the support vector of some 

polytope .K ∈ P(�) for sufficiently small . ε (as . � is simple, cf. [14, Lemma 2.4.13]). 
We may therefore write .z = hL − hL′ where .L = ε−1K and .L′ = ε−1�. 

Now denote by .e1, . . . , eN the standard coordinate basis of . RN . By the above 
observation, we may write .ei = hLi

− hL′
i

for .Li, L
′
i ∈ P(�). We can therefore 

write 

. α =
∑

i1≤···≤ik

αi1,...,ik (DhLi1
− DhL′

i1

) · · · (DhLik
− DhL′

ik

).

By expanding the product, we may evidently express . α as a linear combination of 
differential operators of the form .DhRi1

· · ·DhRik
with .Ri ∈ P(�). But as 

. DhRi1
· · ·DhRik

= 1

k!
∑

δ∈{0,1}k
(−1)k+δ1+···+δk (Dhδ1Ri1

+···+δkRik
)k

by the polarization formula [5, p. 137], the proof is readily concluded. ��
We are now ready to show that the Hodge-Riemann relations expressed by 

Theorems 3.1 and 3.2 are equivalent. First, note that .αDhL
DhC1

· · ·DhCn−2k
V in 

(3.3) is a homogeneous polynomial of degree .k − 1. Thus (3.3) is equivalent to the
statement that .βαDhL

DhC1
· · ·DhCn−2k

V = 0 for every homogeneous differential 
operator . β of order .k − 1. By Lemma 3.3, the statement of Theorem 3.2 (without 
the equality case) may be equivalently formulated as follows: if 

.α(DhM
)k−1DhL

DhC1
· · ·DhCn−2k

V = 0
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for all .M ∈ P(�), then 

. (−1)kα2DhC1
· · ·DhCn−2k

V ≥ 0.

That (3.3) –(3.4) imply (3.1) –(3.2) follows immediately by choosing the differential
operator .α = ∑

i xi(DhKi
)k . Conversely, that (3.1) –(3.2) imply (3.3) –(3.4) follows

as any . α can be expressed as .α = ∑
i xi(DhKi

)k by Lemma 3.3. 
It remains to check that the Hodge-Riemann relations are nontrivial. This is 

certainly not obvious at first sight: the condition (3.1) is a very strong one (as it
must hold for any .M ∈ P(�)), and it is not clear a priori  that it can be satisfied 
in any nontrivial situation. To show this is the case, consider the special case where 
.L = C1 = · · · = Cn−2k = �, and define the spaces 

. Pk := {α : α(Dh�)n−2k+1V = 0}, I := {α : αV = 0}.

The remarkable combinatorial theory underlying the Hodge-Riemann relations 
enables us to compute [20, Corollary 5.3.4] 

. dim(Pk/I) = hk − hk−1,

where .(h1, . . . , hn) is the so-called h-vector of . �. To show the Hodge-Riemann 
relations are nontrivial, it suffices to construct a simple polytope . � in . Rn whose h-
vector satisfies .hk > hk−1 for .k ≤ n/2, as by Theorem 3.2 this ensures the existence 
of . α so that (3.3) holds and the inequality in (3.4) is strict (by Lemma 3.3, this  
implies the corresponding statement of Theorem 3.1 for some .m,K1, . . . , Km, x). 
But such an example is easily identified: e.g., we may choose . � to be the unit cube 
in . Rn, whose h-vector is given by .hk = (

n
k

)
by the computations in [20, p. 387] (note 

that .� = [0, 1] × · · · × [0, 1] and use the product formula for H -polynomials). 

4 Proof of Theorem 1.5 

We first consider the special case that .k = 2. 

Proof of Theorem 1.5 for .k = 2 Fix any .n ≥ 4 and let .k = 2. By the second part 
of Theorem 3.1, we may choose a simple polytope .� = L = C1 = · · · = Cn−4 in 
. Rn, .m ≥ 1, polytopes .K1, . . . , Km ∈ P(�), and .x ∈ R

m so that (3.1) holds and the
inequality in (3.2) is strict. In the following, we will denote .Km+1 := �. 

Now define the .(m + 1) × (m + 1) matrix 

.Mij := V(Ki[2],Kj [2],�[n − 4]),
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and let .y = em+1. Then (3.1) with .M = � implies 

. 〈x, My〉 = 0,

while the strict inequality in (3.2) may be written as

. 〈x, Mx〉 > 0.

Note that . M is a positive matrix, as all bodies in .P(�) are full-dimensional. Thus 
. M is not hyperbolic by Lemma 2.1. In particular, by Lemma 2.3, there exists . I ⊆
[m + 1] so that .(−1)|I | det MI > 0. The latter contradicts Conjecture 1.3. ��

Informally, the above proof works as follows. By Lemma 2.3, Fedotov’s Con-
jecture 1.3 is equivalent to the statement that the matrix . M is hyperbolic. However, 
when .k = 2, the Hodge-Riemann relation (3.2) yields an inequality in the opposite
direction from the one that holds for hyperbolic matrices by Lemma 2.1. Thus the 
Hodge-Riemann relation contradicts Fedotov’s conjecture. 

Precisely the same argument works whenever .k ≥ 2 is even. Curiously, however, 
the argument fails when k is odd, as then (3.2) and hyperbolicity yield inequalities
in the same direction. To prove Theorem 1.5 for arbitrary k, we will use a different 
argument: rather than applying the Hodge-Riemann relation of degree k, we will 
instead reduce the problem for any .k > 2 back to the case .k = 2. 

Proof of Theorem 1.5 for General k Fix any .n ≥ 6 and .2 < k ≤ n/2. Choose . �, 
m, .K1, . . . , Km+1, .x, y, and . M as in the proof of the .k = 2 case. Note first that 

. Mij := V(Ki[2],Kj [2],�[n − 4])
= V(Ki[2],�[k − 2],Kj [2],�[k − 2],�[n − 2k])

= 1

(k!)2

∑

δ,ε∈{0,1}k
(−1)k+δ1+···+δk (−1)k+ε1+···+εkV(Kiδ[k],Kjε[k],�[n − 2k])

by the polarization formula [5, p. 137], where 

. Kiδ := (δ1 + δ2)Ki + (δ3 + · · · + δk)�.

Define the .(m + 1)(2k − 1) × (m + 1)(2k − 1) positive matrix 

. M̃iδ,jε := V(Kiδ[k],Kjε[k],�[n − 2k])

for .i, j ∈ [m + 1], .δ, ε ∈ {0, 1}k\(0, . . . , 0), and define .x̃, ỹ ∈ R
(m+1)(2k−1) as 

.x̃iδ = (−1)k+δ1+···+δk xi

k! , ỹiδ = 1i=m+11δ=(1,0,...,0).
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Then 

. 〈x̃, M̃ỹ〉 = 〈x, My〉 = 0, 〈x̃, M̃x̃〉 = 〈x, Mx〉 > 0,

so . M̃ cannot be hyperbolic. The latter contradicts Conjecture 1.3 for the given value 
of k as in the proof of the case .k = 2. ��

5 An Explicit Example 

The proof of Theorem 1.5 shows that counterexamples to Fedotov’s conjecture 
are prevalent: any simple polytope . � whose Hodge-Riemann relation of degree 
2 is nontrivial (that is, whose h-vector satisfies .h2 > h1, cf. Sect. 3) gives rise 
to a counterexample to Conjecture 1.3 with .C1 = · · · = Cn−2k = � and some 
.K1, . . . , Km strongly isomorphic to . �. However, the construction itself is rather 
indirect. The aim of this section is to illustrate the construction by means of a simple 
explicit example in the case that . � is the unit cube. 

Let .� = [0, e1] + · · · + [0, en] be the unit cube in . Rn. Then any .M ∈ P(�) is 
a parallelepiped of the form .M = Ma + v for some .a1, . . . , an > 0 and .v ∈ R

n, 
where 

. Ma := a1[0, e1] + · · · + an[0, en].

By translation-invariance of mixed volumes, it suffices to consider .v = 0. We can 
compute mixed volumes of parallelepipeds using that 

. n!V([0, ei1 ], . . . , [0, ein ]) = 1i1 �=···�=in

by [14, (5.77)], so that by additivity of mixed volumes 

. n!V(Ma(1) , . . . ,Ma(n) ) =
∑

i1 �=···�=in

a
(1)
i1

· · · a(n)
in

.

Using this simple expression, it is not difficult to generate explicit examples. 
For example, for the case .n = 4, .k = 2, let us define 

. K1 := [0, e1] + [0, e2],
K2 := [0, e3] + [0, e4],
K3 := [0, e1] + · · · + [0, e4] = �.

Then it is readily verified by means of the above formula that 

.3V(K1[2],M,�) + 3V(K2[2],M,�) − V(K3[2],M,�) = 0
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for all .M ∈ P(�), that is, (3.1) holds with .x1 = x2 = 3 and .x3 = −1. (This is most 
easily seen by using .� = K1 + K2 and .V(K1[3],M) = V(K2[3],M) = 0 for all 
M .) On the other hand, we compute 

. 
∑

i,j

xixj V(Ki[2],Kj [2]) = 18V(K1[2],K2[2]) − 6V(K1[2],K3[2])

− 6V(K2[2],K3[2]) + V(K3[2],K3[2]) = 2,

so that (3.2) holds with strict inequality. It therefore follows from the argument in
the proof of Theorem 1.5 that Conjecture 1.3 must fail for .n = 4, .k = 2, . m = 3
when .K1,K2,K3 are chosen as above. The author is indebted to the anonymous 
referee of this note for suggesting this example. 

Remark 5.1 Technically speaking the above example does not verify the assump-
tions of Theorem 3.1, as .K1,K2 have empty interior and are therefore not strongly 
isomorphic to . �. However, the example remains valid if we replace .K1,K2, x3 by 
.K ′

1 = K1 + εK2, .K ′
2 = K2 + εK1, and .x′

3 = −1 − 4ε − ε2 for any .ε > 0. 

Of course, given any explicit example, one can readily verify directly that Con-
jecture 1.3 fails without any reference to the Hodge-Riemann relations. However, 
this obscures the fundamental reason for the failure of Fedotov’s conjecture which 
was essential for the discovery of such counterexamples. On the other hand, the 
above explicit example provides additional information beyond our main result as 
stated in Theorem 1.5: it shows that Fedotov’s conjecture fails already when . k = 2
and .m = 3, that is, in the smallest case that is not covered by Lemma 1.4. The  
example is readily modified to extend this conclusion to any k. 

Lemma 5.2 For every .k ≥ 2 and .n ≥ 2k, Conjecture 1.3 fails for .m = 3. 

Proof Define the following bodies: 

. K1 = [0, e1] + · · · + [0, ek],
K2 = [0, ek+1] + · · · + [0, e2k],
K3 = [0, e1] + · · · + [0, e2k],
C1, . . . , Cn−2k = [0, e2k+1] + · · · + [0, en].

Then we can compute .Mij := V(Ki[k],Kj [k], C1, . . . , Cn−2k) explicitly as 

.M =
⎡

⎣
0 a a

a 0 a

a a b

⎤

⎦ , a = (k!)2(n − 2k)!
n! , b = (2k)!(n − 2k)!

n! .
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Therefore 

. det M = a2(2a − b) = (k!)4((n − 2k)!)3

(n!)3
(2(k!)2 − (2k)!) < 0

whenever .k ≥ 2, contradicting Conjecture 1.3. ��
Remark 5.3 The explicit expression for .n!V(Ma(1) , . . . ,Ma(n) ) given above is 
nothing other than the permanent of the matrix whose columns are .a(1), . . . , a(n). It  
is well known [5, §25.4] that the permanent of a matrix is not only a special case 
of mixed volumes, but also of mixed discriminants (the linear-algebraic analogue of 
mixed volumes). The above example therefore shows that the analogue of Fedotov’s 
conjecture for mixed discriminants is also invalid. This should not come as a 
surprise, as mixed discriminants also satisfy Hodge-Riemann relations [19] and thus 
the arguments behind Theorem 1.5 extend to this situation. 

6 Hodge-Riemann Relations Fail for General Convex Bodies 

Beside the disproof of Fedotov’s conjecture, an expository aim of this note has 
been to highlight that the Hodge-Riemann relations of McMullen and Timorin 
may be interpreted entirely in terms of familiar objects from classical convex 
geometry: they provide inequalities between mixed volumes that generalize the 
Alexandrov-Fenchel inequality. From the viewpoint of classical convexity, however, 
the formulation of Theorem 3.1 exhibits a puzzling aspect. In principle, the 
statements of the relations (3.1) and (3.2) make sense when .Ki,Ci,M,L are 
arbitrary convex bodies, but the statement of Theorem 3.1 requires these bodies 
to be strongly isomorphic simple polytopes. It is not immediately clear why the 
latter is important: most classical inequalities in convex geometry are either valid 
for arbitrary convex bodies, or involve geometric quantities that do not make sense 
in the absence of regularity conditions (such as uniform bounds on the principal 
curvatures). 

We have shown in Sect. 3 that the Hodge-Riemann relation of degree .k = 1 is 
equivalent to the Alexandrov-Fenchel inequality for strongly isomorphic polytopes. 
The inequality then extends readily to arbitrary convex bodies by approximation. 
This is possible because for .k = 1 the relations (3.1) and (3.2) can be combined into
a single inequality by Lemma 2.1, and this inequality is preserved by taking limits. 
However, a natural analogue of Lemma 2.1 does not hold for .k ≥ 2. It is therefore 
unclear how to apply an approximation argument, as the equality (3.1) need not be
stable under approximation (that is, if (3.1) holds for a given collection of convex
bodies, they might not be approximated by simple strongly isomorphic polytopes in
such a way that (3.1) remains valid for the approximations).

We will presently show by means of a simple example that the Hodge-Riemann 
relation of degree .k = 2 can in fact fail for general convex bodies.
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Example 6.1 Let B be the Euclidean unit ball in . R4, and let .L = conv{B, x} for 
some .x �∈ B, that is, L is a cap body of B. It is a classical fact, which dates back 
essentially to Minkowski, that [14, Theorem 7.6.17] 

. V(L,L,B,L) = V(B,L,B,L) = V(B,B,B,L) > V(B,B,B,B).

In particular, this gives rise to a nontrivial equality case of the Alexandrov-Fenchel 
inequality of Theorem 1.1 with .n = 4, .K = C1 = B, .C2 = L. The latter implies 

. V(M,B,B,L) = V(M,L,B,L)

for all convex bodies M , cf. [14, Theorem 7.4.3] or [17, Lemma 3.12]. 
We will now use these observations to construct a counterexample to the Hodge-

Riemann relation of degree .k = 2 for general convex bodies. Define 

. K1 := B, K2 := L, K3 := B + L.

Then 

. 3V(K1[2],M,L) + V(K2[2],M,L) − V(K3[2],M,L) =
2V(M,B,B,L) − 2V(M,L,B,L) = 0

for all convex bodies M; that is, (3.1) is satisfied with .x1 = 3, .x2 = 1, and .x3 = −1. 
On the other hand, we can compute 

. 
∑

i,j

xixj V(Ki[2],Kj [2]) = 4V(B,B,B,B) − 4V(L,B,B,B) < 0,

contradicting the validity of (3.2) .

Remark 6.2 There is nothing special about the particular choice of the Euclidean 
ball in this example: the conclusion remains valid when B is replaced by an arbitrary 
convex body K and L is a cap body of K as defined in [14, p. 87]. For example, 
we may take L to be the unit cube in . R4 and K to be the same cube with one of its 
corners sliced off. The latter variant of the example shows that the Hodge-Riemann 
relations can fail for polytopes that are not strongly isomorphic. 

The above example suggests that the validity of Hodge-Riemann relations of 
degree .k ≥ 2 is related to the study of the equality cases of the Alexandrov-Fenchel 
inequality: indeed, the assumption (3.1) is reminiscent of the equality condition
of the Alexandrov-Fenchel inequality (cf. [14, Theorem 7.4.2]), which is precisely 
what was used to construct the above counterexample. Even though the Alexandrov-
Fenchel inequality is stable under approximation, this cannot be used to study its 
nontrivial equality cases as the latter are destroyed by approximation [13, 16, 17].
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The above example shows that for Hodge-Riemann relations of degree . k ≥ 2, this  
instability is manifested even by the inequality itself. 

On the other hand, it is expected that the validity of Hodge-Riemann relations 
should extend to “ample” families of convex bodies other than simple strongly 
isomorphic polytopes. In particular, one may conjecture that the statement of 
Theorem 3.1 remains valid if the class .P(�) is replaced by the class .C∞+ of convex 
bodies whose boundaries are smooth and have strictly positive curvature. Some 
initial progress in this direction may be found in the recent papers [1, 9, 10]. 
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The Local Logarithmic 
Brunn-Minkowski Inequality for Zonoids 

Ramon van Handel 

Abstract The aim of this note is to show that the local form of the logarithmic 
Brunn-Minkowski conjecture holds for zonoids. The proof uses a variant of the 
Bochner method due to Shenfeld and the author. 

Keywords Logarithmic Brunn-Minkowski inequality · Zonoids · Mixed 
volumes · Bochner method 

1 Introduction 

1.1 The classical Brunn-Minkowski inequality states that 

.Vol((1 − t)K + tL)1/n � (1 − t) Vol(K)1/n + t Vol(L)1/n (1.1) 

for all .t ∈ [0, 1] and convex bodies .K,L in . Rn, where 

. aK + bL := {ax + by : x ∈ K, y ∈ L}

denotes Minkowski addition. Its importance, both to convexity and to other areas of 
mathematics, can hardly be overstated; cf. [10]. As is well known, (1.1) is equivalent
to the apparently weaker inequality

.Vol((1 − t)K + tL) � Vol(K)1−t Vol(L)t (1.2) 

where the arithmetic mean on the right-hand side has been replaced by the geometric
mean. Clearly (1.1) implies (1.2) , as the geometric mean is smaller than the
arithmetic mean; the converse implication follows by rescaling .K,L [10, §4]. 
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As part of their study of the Minkowski problem for cone volume measures, 
Böröczky et al. [4] asked whether one could replace also the “arithmetic mean” 
.(1 − t)K + tL on the left-hand side of the Brunn-Minkowski inequality by a certain 
kind of “geometric mean”: that is, whether 

.Vol(K1−tLt )
?
� Vol(K)1−t Vol(L)t , (1.3) 

where the meaning of .K1−tLt must be carefully defined (see (1.7) below). As
the geometric mean is smaller than the arithmetic mean, this would yield an
improvement of the classical Brunn-Minkowski inequality. While such an improved
inequality turns out to be false for general convex bodies, it was conjectured in [4] 
that such an improved inequality holds whenever .K,L are symmetric convex bodies 
(that is, .K = −K and .L = −L), which they proved to be true in dimension 2. In  
higher dimensions, this logarithmic Brunn-Minkowski conjecture remains open. 

1.2 It is readily seen that the Brunn-Minkowski inequality (1.1) and the logarithmic
Brunn-Minkowski conjecture (1.3) are equivalent to concavity of the functions

. ϕ : t �→ Vol((1 − t)K + tL)1/n and ψ : t �→ log Vol(K1−tLt )

for all convex bodies K, L and symmetric convex bodies K, L in Rn, respectively. 
We can therefore obtain equivalent formulations of (1.1) and (1.3) by considering
the first- and second-order conditions for concavity of ϕ and ψ .

In order to formulate the resulting inequalities, we must first recall some
additional notions (we refer to [21] for a detailed treatment). It was shown by 
Minkowski that the volume of convex bodies is a polynomial in the sense that for 
any convex bodies K1, . . . , Km in Rn and λ1, . . . , λm > 0, we have 

. Vol(λ1K1 + · · · + λmKm) =
m∑

i1,...,in=1

V(Ki1 , . . . , Kin) λi1 · · · λin .

The coefficients V(K1, . . . , Kn), called mixed volumes, are nonnegative, symmet-
ric in their arguments, and homogeneous and additive in each argument under 
Minkowski addition. Moreover, mixed volumes admit the integral representation 

.V(K1, . . . , Kn) = 1

n

∫
hK1dSK2,...,Kn, (1.4) 

where the mixed area measure SK2,...,Kn is a finite measure on Sn−1 and hK(x) :=
supz∈K 〈z, x〉 denotes the support function of a convex body K .

In view of the above definitions, it is now straightforward to obtain equivalent
formulations of the Brunn-Minkowski inequality in terms of mixed volumes; see,
e.g., [21, pp. 381–382 and 406]. In the sequel, we denote by Kn (Kn 

s ) the family of 
all (symmetric) convex bodies in Rn with nonempty interior.
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Lemma 1.1 (Minkowski) The following are equivalent: 

1. For all K, L ∈ Kn and t ∈ [0, 1], the Brunn-Minkowski inequality (1.1) holds.
2. For all K ∈ Kn, we have 

.V(L,K, . . . , K) � Vol(L)1/n Vol(K)1−1/n ∀L ∈ Kn. (1.5) 

3. For all K ∈ Kn, we have 

.V(L,K, . . . , K)2 � V(L,L,K, . . . , K) Vol(K) ∀L ∈ Kn. (1.6) 

Proof If we apply (1.5) –(1.6) with K ← (1 − s)K + sL and L ← (1 − r)K + rL,
then a simple computation shows that Minkowski’s first inequality (1.5) is nothing
other than the first-order concavity condition ϕ(r) � ϕ(s) + ϕ′(s)(r − s), while
Minkowski’s second inequality (1.6) is the second-order condition ϕ′′(s) � 0. 
�

Before we state an analogous reformulation of (1.3) , we must first give a precise
definition of K1−tLt . To motivate this definition, recall that the arithmetic mean of
convex bodies is characterized by its support function h(1−t)K+tL = (1 − t)hK +
thL. We may therefore attempt to define K1−tLt as the convex body whose support
function is the geometric mean h1−t

K ht
L. However, the latter need not be the support

function of any convex body. We therefore define K1−tLt in general as the largest
convex body whose support function is dominated by h1−t

K ht
L, that is,

.K1−tLt := {z ∈ R
n : 〈z, x〉 � hK(x)1−t hL(x)t for all x ∈ R

n}. (1.7) 

We can now formulate the following analogue of Lemma 1.1. 

Theorem 1.2 ([4, 7, 8, 14, 15, 17]) The following are equivalent: 

1. For all K, L ∈ Kn 
s and t ∈ [0, 1], the log-Brunn-Minkowski inequality (1.3) 

holds.
2. For all K ∈ Kn 

s , we have 

.

∫
hK log

(
hL

hK

)
dSK,...,K � Vol(K) log

(
Vol(L)

Vol(K)

)
∀L ∈ Kn

s . (1.8) 

3. For all K ∈ Kn 
s , we have 

. 
V(L,K, . . . , K)2

Vol(K)
� n − 1

n
V(L,L,K, . . . , K)

+ 1

n2

∫
h2

L

hK

dSK,...,K ∀L ∈ Kn
s . (1.9)
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The difficulty in the proof of Theorem 1.2 is that the map t �→ K1−t Lt can be 
nonsmooth: if it were the case that hK1−t Lt = h1−t 

K ht 
L for all t ∈ [0, 1], the result 

would follow easily from the first- and second-order conditions for concavity of ψ . 
That the conclusion remains valid using the correct definition (1.7) is a nontrivial
fact that has been established through the combined efforts of several groups.

Remark 1.3 The notation (1.7) is nonstandard: K1−tLt is often denoted in the
literature as (1 − t)K +0 tL, as it coincides with the q → 0 limit of Lq -Minkowski
addition. As the latter notation is somewhat confusing (the geometric mean is not
defined by the rescaled bodies (1 − t)K and tL), and as only geometric means are
used in this paper, we have chosen a nonstandard but more suggestive notation.

1.3 It was shown in [4] that the logarithmic Brunn-Minkowski conjecture holds in 
dimension n = 2. In dimensions n � 3, however, the conjecture has been proved 
to date only under special symmetry assumptions: when K, L are complex [19] 
or unconditional [20] bodies (see also [3] for a generalization). In both cases the 
conjecture is established by replacing the geometric mean (1.7) by a smaller set
whose construction requires the special symmetries, which yields strictly stronger
inequalities than are conjectured for general bodies.

Even for a fixed reference body K , the validity of the inequalities (1.8) and (1.9) 
for all L ∈ Kn

s (i.e., in the absence of additional symmetries) appears to be unknown
except in one very special family of examples: it follows from [14, 15] that (1.8) and
(1.9) hold when K is the �n

p-ball with 2 � p < ∞ and sufficiently large n, as well as
for affine images and sufficiently small perturbations of these bodies. Note, however,
that the analysis of these examples shows that they satisfy even stronger inequalities
that cannot hold for general bodies (local Lq -Brunn-Minkowski inequalities with
q = − 1

4 [14, Theorem 10.4]), so that they do not approach the extreme cases of the 
logarithmic Brunn-Minkowski conjecture.1 

The aim of this note is to contribute some further evidence toward the validity of 
the logarithmic Brunn-Minkowski conjecture. Recall that a convex body K ∈ Kn 

s 
is called a zonoid if it is the limit of Minkowski sums of segments. The first main 
result of this note is the following theorem. 

Theorem 1.4 Let K ∈ Kn 
s be a zonoid. Then the local logarithmic Brunn-

Minkowski inequality (1.9) holds for all L ∈ Kn
s .

Our second main result settles the equality cases of Theorem 1.4. 

Definition A vector u ∈ Sn−1 is called an r-extreme normal vector of a convex 
body K if there do not exist linearly independent normal vectors u1, . . . , ur+2 at a 
boundary point of K such that u = u1 + · · · + ur+2. 

1 For one extreme case, the �n∞-ball, the validity of (1.9) may be verified by an explicit computation,
see, e.g., [14, Theorem 10.2]. This does not follow as a limiting case of the general result [14, 
Theorem 10.4] on �n 

p-balls, however, as the latter only holds for n � n0(p) → ∞ as p → ∞.
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Theorem 1.5 Let K ∈ Kn 
s be a zonoid. Then equality holds in (1.9) if and only if

1. K = C1 + · · · + Cm for some 1 � m � n and zonoids C1, . . . , Cm such that 
dim(C1) + · · · +  dim(Cm) = n; and 

2. there exist a1, . . . , am � 0 such that L and a1C1 + · · · +  amCm have the same 
supporting hyperplanes in all 1-extreme normal directions of K . 

Theorem 1.4 does not suffice to conclude that the logarithmic Brunn-Minkowski 
inequality (1.3) holds when K,L are zonoids, as K1−tLt is generally not a zonoid.
Nonetheless, by combining Theorems 1.4–1.5 with [15, Theorem 2.1] we can 
deduce validity of the logarithmic Minkowski inequality (1.8) , albeit without its
equality cases. Some further implications will be given in Sect. 5. 

Corollary 1.6 Let K ∈ Kn 
s be a zonoid. Then the logarithmic Minkowski inequality 

(1.8) holds for all L ∈ Kn
s .

It appears somewhat unlikely that our results make major progress in themselves 
toward the full resolution of the logarithmic Brunn-Minkowski conjecture; as is the 
case for other well-known conjectures in convex geometry (see, e.g., [11]), zonoids 
form a very special class of convex bodies that provide only modest insight into the 
behavior of general convex bodies. Nonetheless, let us highlight several interesting 
features of the main results of this note:

• Theorem 1.4 possesses many nontrivial equality cases; therefore, in contrast to 
the setting of previous results in dimensions n � 3 for general L ∈ Kn 

s , the class 
of zonoids includes many extreme cases of the logarithmic Brunn-Minkowski 
conjecture. (Theorem 1.5 supports the conjectured equality cases in [3].)

• Unlike in dimensions n � 3, every planar symmetric convex body is a zonoid. 
The n = 2 case of the logarithmic Brunn-Minkowski conjecture that was settled 
in [4] may therefore be viewed in a new light as a special case of our results 
(modulo the nontrivial Theorem 1.2). In fact, the proof of Theorem 1.4 will work 
in a completely analogous manner for n = 2 and n � 3.

• The �n 
p-ball is a zonoid for every n and 2 � p � ∞ [2, Theorem 6.6]. Our results 

therefore capture as special cases all explicit examples of convex bodies K for 
which (1.8) and (1.9) were previously known to hold.2 

Before we proceed, let us briefly sketch some key ideas behind the proofs. 

1.4 It was a fundamental insight of Hilbert [12, Chapter XIX] that mixed volumes 
of sufficiently smooth convex bodies admit a spectral interpretation. To this end, 
given any sufficiently smooth convex body K ∈ Kn, Hilbert constructs an elliptic

2 However, the methods of [14, 15] provide complementary information that does not follow from 
our results. For example, the estimates of [14] imply that for any 2 < p  <  ∞ and n � n0(p), all  
K ∈ Kn 

s that are sufficiently close to the �n 
p-ball in a quantitative sense satisfy the Lq -Minkowski 

inequality with q = − 1 
4 . More generally, it is shown in [15] that for any K ∈ Kn 

s , there exists 
K ′ ∈ Kn 

s with K ⊆ K ′ ⊆ 8K so that K ′ satisfies the Lq -Minkowski inequality with q = − 1 
4 . 
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differential operator AK (see Sect. 2.2 for a precise definition) and a measure 
dμK := 1 

nhK 
dSK,...,K on Sn−1 with the following properties:

• AK defines a self-adjoint operator on L2(μK) with discrete spectrum.
• AKhK = hK , that is, hK is an eigenfunction with eigenvalue 1.
• V(L,M,K, . . . , K)  = 〈hL,AKhM〉 for all L, M ∈ Kn. 

Using these properties, it is readily verified that (1.6) is equivalent to

.〈f,AKf 〉 � 0 for f = hL − 〈hL, hK 〉
‖hK‖2

hK, (1.10) 

where we denote by 〈·, ·〉 and ‖ · ‖ the inner product and norm of L2(μK). As f in
(1.10) is the projection of hL on {hK}⊥, we obtain:

Lemma 1.7 (Hilbert) Items 1–3 of Lemma 1.1 are equivalent to: 

4. For every sufficiently smooth convex body K ∈ Kn, any eigenfunction AKf = 
λf with 〈f, hK 〉 =  0 has eigenvalue λ � 0. 

The condition of Lemma 1.7 is optimal, as AK always has eigenfunctions with 
eigenvalue 0: any linear function �(x) = h{v}(x) = 〈v, x〉 satisfies AK� = 0. 
If we restrict attention to symmetric convex bodies K, L ∈ Kn 

s , however, only 
even functions f (x)  = f (−x) arise in (1.10) , and it is certainly possible that all
even eigenfunctions of AK have strictly negative eigenvalues. It was observed by
Kolesnikov and Milman [14] that the logarithmic Brunn-Minkowski conjecture may 
be viewed as a quantitative form of this phenomenon: as (1.9) is equivalent to

. 〈f,AKf 〉 � − 1

n − 1
‖f ‖2 for f = hL − 〈hL, hK 〉

‖hK‖2 hK,

the following conclusion follows readily. 

Lemma 1.8 (Kolesnikov-Milman) Items 1–3 of Theorem 1.2 are equivalent to: 

4. For every sufficiently smooth symmetric convex body K ∈ Kn 
s , any even 

eigenfunction AKf = λf with 〈f, hK 〉 =  0 has eigenvalue λ � − 1 
n−1 . 

It is verified in [14, Theorem 10.4] that when K is the �n 
p-ball for 2 � p <  ∞, 

any even eigenfunction of AK orthogonal to hK has eigenvalue λ with nλ → −∞  
as n → ∞. This shows that such K satisfy the condition of Lemma 1.8 for large n, 
but does not explain the significance of the threshold − 1 

n−1 . 
A new approach to the study of the spectral properties of AK was discovered 

by Shenfeld and the author in [22]. This approach, called the Bochner method in 
view of its analogy to the classical Bochner method in differential geometry, has 
found several surprising applications both inside and outside convex geometry. The 
Bochner method was already used in [22] to provide new proofs of the Alexandrov-
Fenchel inequality, a much deeper result of which (1.6) is a special case, and
of the Alexandrov mixed discriminant inequality. Subsequent applications outside
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convexity include the proof of certain properties of Lorentzian polynomials in 
[5, 9] and the striking results of [6], where the method is used to prove numerous 
combinatorial inequalities. The paper [15] contains another application to the study 
of isomorphic variants of the Lq -Minkowski problem. 

The proofs of Theorems 1.4–1.5 provide yet another illustration of the utility 
of the Bochner method. By using a variation on the method of [22], we obtain a 
“Bochner identity” which relates the spectral condition of Lemma 1.8 in dimension 
n to the inequality (1.9) in dimension n − 1. The conclusion then follows by
induction on the dimension. One interesting feature of this proof is that it provides
an explanation for the appearance of the mysterious value − 1

n−1 in Lemma 1.8.3 

While the specific formulas derived in this note rely on the zonoid assumption, our 
approach may provide some hope that other variations on the Bochner method could 
lead to further progress toward the logarithmic Brunn-Minkowski conjecture. 

1.5 The rest of this note is organized as follows. In Sect. 2, we briefly recall some 
background from convex geometry that will be needed in the proofs, and we recall 
the basic idea behind the Bochner method as developed in [22]. Theorem 1.4 is 
proved in Sect. 3, and Theorem 1.5 is proved in Sect. 4. Finally, Sect. 5 spells out 
some implications of Theorem 1.4, including the proof of Corollary 1.6. 

2 Preliminaries 

Throughout this note, we will use without comment the standard properties of 
mixed volumes and mixed area measures: that they are nonnegative, symmetric 
and multilinear in their arguments, and continuous under Hausdorff convergence. 
We refer to the monograph [21] for a detailed treatment, or to [22, §2], [23, §4] 
for a brief review of such basic properties. The aim of this section is to recall 
some further notions that will play a central role in the sequel: the behavior of 
mixed volumes under projections, the construction of the Hilbert operator .AK for 
sufficiently smooth convex bodies, and the Bochner method of [22]. 

The following notation will often be used: if .f = hK − hL is a difference of 
support functions of convex bodies, then we define [21, §5.2] 

.V(f, C1, . . . , Cn−1) := V(K,C1, . . . , Cn−1) − V(L,C1, . . . , Cn−1),

Sf,C1,...,Cn−2 := SK,C1,...,Cn−2 − SL,C1,...,Cn−2 .

3 As was pointed out in [14], the eigenvalue − 1 
n−1 is attained when K is the cube, so that 

Lemma 1.8 may be interpreted as stating that the second eigenvalue of AK is maximized by the 
cube. This interpretation does not explain, however, why this should be the case. In any case, there 
are many maximizers other than cubes, as is already illustrated by Theorem 1.5. 
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We similarly define .V(f, g, C1, . . . , Cn−2) by linearity when .f, g are differences of 
support functions, etc. Mixed volumes and area measures of differences of support 
functions are still symmetric and multilinear, but need not be nonnegative. 

2.1 Projections and Zonoids 

Let .E ⊆ R
n be a linear subspace of dimension k, and let .C1, . . . , Ck be convex 

bodies in E. Then we denote by .V(C1, . . . , Ck) and .SC1,...,Ck−1 the mixed volume 
and mixed area measure computed in .E � R

k . We will often view .SC1,...,Ck−1 as 
a measure on . Rn that is supported in E. The projection of a convex body C in . Rn

onto E will be denoted as .PEC. 
The following basic formulas relate mixed volumes and mixed area measures of 

convex bodies to those of their projections. 

Lemma 2.1 For any .u ∈ Sn−1 and .C1, . . . , Cn−1 ∈ Kn, we have 

. 
n

2
V([−u, u], C1, . . . , Cn−1) = V(Pu⊥C1, . . . ,Pu⊥Cn−1),

n − 1

2
S[−u,u],C1,...,Cn−2 = SP

u⊥C1,...,Pu⊥Cn−2 .

Proof The first identity is [21, (5.77)]. To prove the second identity, note that the 
first identity may be rewritten using (1.4) as

. 
1

2

∫
f dS[−u,u],C1,...,Cn−2 = 1

n − 1

∫
f dSP

u⊥C1,...,Pu⊥Cn−2

for .f = hCn−1 , where we used that .hPEC(u) = hC(u) for .u ∈ E. The identity 
extends by linearity to any difference of support functions .f = hK −hL. But as any 
.f ∈ C2(Sn−1) is of this form (cf. Lemma 2.4 below), the conclusion follows. 
�

A body .K ∈ Kn
s is called a zonoid if it is the limit of Minkowski sums of 

segments .[−u, u]. The following equivalent definition [21, Theorem 3.5.3] is well 
known. 

Definition 2.2 .K ∈ Kn
s is called a zonoid if 

. hK(x) =
∫

h[−u,u](x) η(du)

for some finite even measure . η on .Sn−1, called the generating measure of K . 

The significance of zonoids for our purposes is that mixed volumes of zonoids 
can be expressed in terms of mixed volumes of projections by Lemma 2.1 and 
linearity. One simple illustration of this is the following fact.
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Lemma 2.3 In dimension 2, any symmetric convex body .K ∈ K2
s is a zonoid with 

. hK(x) = 1

4

∫
h[−u†,u†](x) SK(du),

where for .u ∈ S1 we denote by .u† ∈ S1 the clockwise rotation of u by the angle . π2 . 

Proof Note first that .h[−u†,u†](x) = |〈u†, x〉| = |〈u, x†〉| = h[−x†,x†](u). Thus by 
Lemma 2.1, we can write for any . K ∈ K2

. 
1

2

∫
h[−u†,u†](x) SK(du) = V([−x†, x†],K) = Vol(Pspan{x}K) = hK(x)+hK(−x).

As .K ∈ K2
s is symmetric, we have .hK(x) + hK(−x) = 2hK(x). 
�

2.2 Smooth Bodies and the Hilbert Operator 

A support function .hK may be viewed either as a function on . Sn−1, or as a 1-
homogeneous function on . Rn. In particular, if .hK is a .C2 function on .Sn−1, then 
its gradient .∇hK in .Rn is 0-homogeneous, and thus its Hessian .∇2hK(x) in . Rn

is a linear map from .x⊥ to itself. We denote the restriction of .∇2hK(x) to . x⊥
as .D2hK(x). For a general function .f ∈ C2(Sn−1), the restricted Hessian . D2f

is defined analogously by applying the above construction to the 1-homogeneous 
extension of f . 

We now recall the following basic facts [22, §2.1]. Here we write .A � 0 (.A > 0) 
to indicate that a symmetric matrix A is positive semidefinite (positive definite). 

Lemma 2.4 Let .f ∈ C2(Sn−1). Then the following hold: 

a. .f = hK for some convex body K if and only if .D2f � 0. 
b. For any convex body L such that .hL ∈ C2(Sn−1) and .D2hL > 0, there is a 

convex body K and .a > 0 so that .f = a(hK − hL). 

A particularly useful class of bodies is the following. 

Definition 2.5 .K ∈ Kn is of class .Ck+ (. k � 2) if .hK ∈ Ck(Sn−1) and .D2hK > 0. 

For our purposes, the importance of .Ck+ bodies is that they admit certain explicit 
representations of mixed volumes and mixed area measures. To define these, let us 
first recall that the mixed discriminant .D(A1, . . . , An−1) of .(n − 1)-dimensional 
matrices .A1, . . . , An−1 is defined by the formula 

. det(λ1A1 + · · · + λmAm) =
m∑

i1,...,in−1=1

D(Ai1 , . . . , Ain−1) λi1 · · · λin−1
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in analogy with the definition of mixed volumes. Mixed discriminants are symmetric 
and multilinear in their arguments, and .D(A1, . . . , An−1) > 0 for . A1, . . . , An−1 >

0. Moreover, we have the Alexandrov mixed discriminant inequality 

. D(A,B,M1, . . . ,Mn−3)
2 � D(A,A,M1, . . . ,Mn−3)D(B,B,M1, . . . ,Mn−3)

(2.1) 

whenever .B,M1, . . . , Mn−3 � 0 and A is a symmetric matrix. For these and other 
facts about mixed discriminants, see [22, §2.3 and §4]. 

With these definitions in place, we have the following [23, Lemma 4.7]. 

Lemma 2.6 Let .C1, . . . , Cn−1 ∈ Kn be of class . C2+. Then 

. dSC1,...,Cn−1 = D(D2hC1 , . . . , D
2hCn−1) dω,

V(K,C1, . . . , Cn−1) = 1

n

∫
hK D(D2hC1, . . . , D

2hCn−1) dω

for any convex body K , where . ω denotes the surface measure on .Sn−1. 

We now introduce the spectral interpretation of mixed volumes due to Hilbert. 
For simplicity, we will only consider the special case that is needed in this note; the 
same construction applies to general mixed volumes (cf. [22]). 

Fix a body .K ∈ Kn of class .C2+ with the origin in its interior (so that .hK > 0). 
Then we define a measure .μK on .Sn−1 as 

. dμK := 1

nhK

dSK,...,K = 1

nhK

D(D2hK, . . . , D2hK) dω,

and define the second-order differential operator .AK on .Sn−1 as 

. AKf := hK

D(D2f,D2hK, . . . ,D2hK)

D(D2hK, . . . ,D2hK)

for .f ∈ C2(Sn−1). The positivity of mixed discriminants of positive definite 
matrices implies that .AK is elliptic. Standard facts of elliptic regularity theory 
therefore imply the following, cf. [22, §3] or [14, Theorem 5.3]:

• .AK extends to a self-adjoint operator on .L2(μK) with .Dom(AK) = H 2(Sn−1).
• .AK has a discrete spectrum, that is, it has a countable sequence of eigenvalues 

.λ1 > λ2 � λ3 � · · · of tending to .−∞, and its eigenfunctions span .L2(μK).
• .λ1 = 1 is a simple eigenvalue, whose eigenspace is spanned by . hK . 

These facts will be invoked in the sequel without further comment.
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The point of this construction is that, by Lemmas 2.4 and 2.6, we evidently have 

. 〈f,AKg〉 :=
∫

f AKg dμK = V(f, g,K, . . . , K)

for any .f, g ∈ C2(Sn−1). Mixed volumes of this type may therefore be viewed as 
quadratic forms of the operator .AK , which furnishes various geometric inequalities 
with a spectral interpretation as explained in Sect. 1. 

When .K ∈ Kn
s is symmetric, it is readily verified from the definitions that . μK

is an even measure, and that .AK leaves the spaces .L2(μK)even and .L2(μK)odd of 
even and odd functions on .Sn−1 invariant. As .L2(μK) = L2(μK)even ⊕L2(μK)odd, 
it follows that when .K ∈ Kn

s any .f ∈ L2(μK)even can be expressed as a linear 
combination of the even eigenfunctions of . AK ; cf. [14, §5.1]. 

2.3 The Bochner Method 

By Lemma 1.7, Minkowski’s second inequality (1.6) , and thus the Brunn-
Minkowski inequality, is equivalent to the statement that the second largest
eigenvalue of .AK satisfies .λ2 � 0. This idea was exploited by Hilbert to give 
a spectral proof of the Brunn-Minkowski inequality by means of an eigenvalue 
continuity argument. 

A new proof of the above spectral condition was discovered by Shenfeld and the 
author in [22]. This proof is based on the elementary fact that the condition . λ2 � 0
would follow directly from the Lichnerowicz condition 

.〈AKf,AKf 〉 � 〈f,AKf 〉 for all f. (2.2) 

Indeed, if .AKf = λf , then (2.2) yields .λ2 � λ, i.e., .λ � 1 or . λ � 0. As . 1 =
λ1 > λ2 by elliptic regularity theory, the conclusion .λ2 � 0 follows. While this is 
merely a reformulation of the problem, the beauty of (2.2) is that it is an immediate
consequence of the following identity that admits a one-line proof.

Lemma 2.7 (Bochner Identity) Let .K ∈ Kn be of class .C2+ and let .f ∈ C2. Then 

. 

〈AKf,AKf 〉 − 〈f,AKf 〉 =
∫

hK

n

{
D(D2f,D2hK, . . . , D2hK)2

D(D2hK, . . . , D2hK)
− D(D2f,D2f,D2hK, . . . , D2hK)

}
dω.

(2.3)
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Proof The identity is immediate from the definitions of .AK and . μK , and as 

. 〈f,AKf 〉=V(K, f, f,K, . . . , K)= 1

n

∫
hK D(D2f,D2f,D2hK, . . . ,D2hK) dω

by Lemma 2.6 and as mixed volumes are symmetric in their arguments. 
�
To deduce (2.2), it remains to recall that the integrand in (2.3) is nonnegative by

the following special case of the mixed discriminant inequality (2.1) :

.D(A,B, . . . , B)2 � D(A,A,B, . . . , B)D(B, . . . , B). (2.4) 

In other words, the Bochner method reduces Minkowski’s second inequality (1.6) 
to its linear-algebraic counterpart (2.4) . This interpretation of the Bochner method
will form the starting point for the main results of this note.

Remark 2.8 Lemma 2.7 is a trivial reformulation of the proof of [22, Lemma 3.1], 
as is explained in [22, §6.3]. Moreover, it is observed there that in the special case 
that K is the Euclidean ball, (2.3) is precisely the classical (integrated) Bochner
formula on .Sn−1. One may therefore naturally view the above approach as an 
analogue of the Bochner method of differential geometry. 

The identity (2.3) was recently rediscovered by Milman [15]. A new insight of 
[15] is that (2.3) may in fact be viewed as a true Bochner formula in the sense of
differential geometry for any body K of class . C2+, by introducing a special centro-
affine connection on . ∂K . This interpretation does not appear to extend, however, to 
more general situations: for example, neither the more general identity that was used 
in [22] to prove the Alexandrov-Fenchel inequality, nor the “Bochner identities” of 
this note, are true Bochner formulas in the strictly formal sense, but should rather be 
viewed as a loose analogues of such a formula. The merits of taking a more liberal 
view on the Bochner method are illustrated by its diverse applications not only in 
convexity, but also in algebra and combinatorics [5, 6, 9, 22]. 

Remark 2.9 The Bochner method should not be confused with a different method 
to prove Brunn-Minkowski inequalities that was developed by Reilly [18] and 
considerably refined by Kolesnikov and Milman in [13, 14]. The basis for Reilly’s 
method is an integrated form of the classical Bochner formula on .Rn (or on a 
manifold), combined with the solution of a certain Neumann problem. This method 
appears to be unrelated to the Bochner method for the operator .AK . 

3 Proof of Theorem 1.4 

The main step in the proof of Theorem 1.4 is the following analogue of (2.2).
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Theorem 3.1 Let .K ∈ Kn
s be a zonoid of class .C2+ and .f ∈ C2(Sn−1)even. Then 

.〈AKf,AKf 〉 � n − 2

n − 1
〈f,AKf 〉 + 1

n − 1
〈f, f 〉. (3.1) 

Before we proceed, let us complete the proof of Theorem 1.4. 

Proof of Theorem 1.4 Let .K ∈ Kn
s be a zonoid of class . C2+. As .AK is essen-

tially self-adjoint on .C2(Sn−1), (3.1) extends directly to any even function . f ∈
Dom(AK). Thus if f is any even eigenfunction of .AK with eigenvalue . λ, 
Theorem 3.1 yields 

. λ2 � n − 2

n − 1
λ + 1

n − 1
,

i.e., .λ � 1 or .λ � − 1
n−1 . But recall that the largest eigenvalue of .AK is . λ1 = 1

and its eigenspace is spanned by . hK . Thus any even eigenfunction f of .AK that 
is orthogonal to .hK must have eigenvalue .λ � − 1

n−1 . In particular, as any . f ∈
L2(μK)even is in the linear span of the even eigenfunctions of .AK , we obtain 

. 〈f,AKf 〉 � − 1

n − 1
〈f, f 〉 whenever f ∈ C2(Sn−1)even, 〈f, hK 〉 = 0.

For any .L ∈ Kn
s of class . C2+, we may now choose .f = hL − 〈hL,hK 〉

〈hK,hK 〉 hK and use 

. 〈hL,AKhL〉 = V(L,L,K, . . . , K), 〈hL, hL〉 = 1

n

∫
h2

L

hK

dSK,...,K,

〈hL,AKhK 〉 = 〈hL, hK 〉 = V(L,K, . . . , K)

to conclude the validity of (1.9) when .K,L are of class . C2+. 
To conclude the proof, it suffices to show that for any .K,L ∈ Kn

s such that K 
is a zonoid, there exist .Kn,Ln ∈ Kn

s of class .C2+ such that .Kn is a zonoid and 
.Kn → K , .Ln → L in the Hausdorff metric; the validity of (1.9) then follows by
the continuity of mixed volumes and area measures. Both statements are classical;
an approximation of L by .C2+ bodies is given in [21, §3.4], while the approximation 
of K may be performed, for example, by choosing .hKn = ∫

hEn,u η(du) where . η is 
the generating measure of K and .En,u are ellipsoids such that .En,u → [−u, u]. 
�

The remainder of this section is devoted to the proof of Theorem 3.1. In essence, 
the inequality (3.1) will follow from a “Bochner identity” in the spirit of (2.3) .
However, rather than reducing the validity of (1.9) to a linear algebraic analogue
as was done in Sect. 2.3, the Bochner method will be used here to reduce (1.9) in
dimension n to its validity in dimension .n − 1. The conclusion then follows by 
induction. As will be explained below, the structure of the induction also provides 
an explanation for the appearance of the mysterious value .− 1

n−1 in Lemma 1.8.
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3.1 The Induction Step 

We begin with the following observation. 

Lemma 3.2 Let .n � 3, .K ∈ Kn
s be a zonoid, and .f = hM − hM ′ for .M,M ′ ∈ Kn

s . 
Assume that Theorem 1.4 has been proved in dimension .n − 1. Then 

. 
V([−u, u], f,K, . . . , K)2

V([−u, u], K, . . . , K)
�

n − 2

n − 1
V([−u, u], f, f,K, . . . , K) + 1

n(n − 1)

∫
f 2

hK

dS[−u,u],K,...,K

for every .u ∈ Sn−1. 

Proof Assume first that K is a zonoid of class .C2+ and that .f ∈ C2(Sn−1)even. Then 
by Lemma 2.4, there exists a convex body .L ∈ Kn

s of class .C2+ and .a > 0 such that 
.f = a(hL−hK). By expanding the squares, the inequality in the statement is readily 
seen to be equivalent to the inequality 

. 
V([−u, u], L,K, . . . , K)2

V([−u, u],K, . . . , K)
�

n − 2

n − 1
V([−u, u], L,L,K, . . . , K) + 1

n(n − 1)

∫
h2

L

hK

dS[−u,u],K,...,K .

By Lemma 2.1, this is further equivalent to 

. 
V(Pu⊥L,Pu⊥K, . . . ,Pu⊥K)2

V(Pu⊥K, . . . ,Pu⊥K)
�

n − 2

n − 1
V(Pu⊥L,Pu⊥L,Pu⊥K, . . . ,Pu⊥K)+ 1

(n − 1)2

∫ h2
P

u⊥L

hP
u⊥K

dSP
u⊥K,...,P

u⊥K,

where we used that .hP
u⊥L(x) = hL(x) for .x ∈ u⊥. But as .Pu⊥K is a zonoid, 

the latter inequality follows immediately from Theorem 1.4 in dimension . n − 1. It  
remains to extend the conclusion to general K and .f = hM −hM ′ by approximating 
.K,M,M ′ by .C2+ bodies as in the proof of Theorem 1.4. 
�

We are now ready to perform the induction step in the proof of Theorem 3.1. 

Proposition 3.3 Let .n � 3, and assume that Theorem 1.4 has been proved in 
dimension .n − 1. Then the conclusion of Theorem 3.1 holds in dimension n.
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Proof Let .n � 3, .f ∈ C2(Sn−1)even, and .K ∈ Kn
s be a zonoid of class .C2+ with 

generating measure . η. We may write 

. 〈AKf,AKf 〉 = 1

n

∫ ∫
h[−u,u]

D(D2f,D2hK, . . . ,D2hK)2

D(D2hK, . . . ,D2hK)
dω η(du)

by the definitions of .AK,μK and as .hK = ∫
h[−u,u] η(du). Now note that 

. 
1

n

∫
h[−u,u]

D(D2f,D2hK, . . . , D2hK)2

D(D2hK, . . . ,D2hK)
dω �

( 1
n

∫
h[−u,u]D(D2f,D2hK, . . . ,D2hK) dω

)2

1
n

∫
h[−u,u]D(D2hK, . . . ,D2hK) dω

= V([−u, u], f,K, . . . , K)2

V([−u, u],K, . . . , K)

for any u by Cauchy-Schwarz and Lemma 2.6. We therefore obtain 

. 〈AKf,AKf 〉 �
∫

V([−u, u], f,K, . . . , K)2

V([−u, u],K, . . . , K)
η(du)

�
∫ (

n − 2

n − 1
V([−u, u], f, f,K, . . . , K)

+ 1

n(n − 1)

∫
f 2

hK

dS[−u,u],K,...,K

)
η(du)

= n − 2

n − 1
〈f,AKf 〉 + 1

n − 1
〈f, f 〉

using Lemma 3.2 and .hK = ∫
h[−u,u] η(du). 
�

Remark 3.4 While we find it cleaner to formulate the proof of Proposition 3.3 in 
terms of inequalities, one may in principle interpret this proof as arising from a 
Bochner identity in the spirit of (2.3): indeed, combining the proofs of Lemma 3.2 
and Proposition 3.3 yields for . f = a(hL − hK)

.〈AKf,AKf 〉 − n − 2

n − 1
〈f,AKf 〉 − 1

n − 1
〈f, f 〉 =

∫ ∫
h[−u,u]

hK

(
AKf − V([−u, u], f,K, . . . , K)

V([−u, u], K, . . . , K)
hK

)2

dμK η(du) +

2a2

n

∫ (
V(Pu⊥L,Pu⊥K, . . . ,Pu⊥K)2

V(Pu⊥K, . . . ,Pu⊥K)
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− 
n − 2 

n − 1 
V(Pu⊥L,Pu⊥L,Pu⊥K, . . . ,Pu⊥K) 

− 
1 

(n − 1)2

∫ h2 
P

u⊥L 

hP
u⊥K 

dSP
u⊥K,...,P

u⊥K

)
η(du), 

where the two terms on the right-hand side are the deficits of the two inequalities 
used in the proof (the Cauchy-Schwarz inequality and (1.9) in dimension .n − 1, 
respectively). While it would be difficult to recognize this identity as a Bochner 
formula in the sense of differential geometry, it plays precisely the same role in the 
present proof as the Bochner identity (2.3) in Sect. 2.3. 

Let us further note that an even eigenfunction .AKf = λf yields equality in 
(3.1) if and only if .λ = 1 or .λ = − 1

n−1 . When this is the case, the right-hand side 
of the above Bochner identity must vanish. It then follows from the first term on 
the right that f must be proportional to . hK , so that .λ = 1. In other words, when 
the zonoid K is of class . C2+, any even eigenfunction that is orthogonal to .hK has 
eigenvalue strictly less than .− 1

n−1 , and thus no nontrivial equality cases can arise 
in (1.9) . However, nontrivial equality cases can arise when K is nonsmooth, which
will be analyzed in Sect. 4 by a variation on the above argument. 

Remark 3.5 At first sight, the formulation of the spectral condition of Lemma 1.8 is 
rather mysterious: what is the significance of the special value .− 1

n−1 ? The present 
proof provides one explanation for the appearance of this value: the constants in 
(3.1) in dimension n are precisely the same as those that appear in (1.9) in dimension
.n − 1, so that the preservation of the sharp threshold .λ � − 1

n−1 by induction on the 
dimension n is explained by the quadratic relation (3.1) .

3.2 The Induction Base 

By Proposition 3.3 and induction on the dimension, the proof of Theorem 3.1 will be 
complete in any dimension .n � 3 once we establish its validity in dimension .n = 2. 
The latter is already known, however, by the results of [4] and Theorem 1.2. On the  
other hand, as we will presently explain, the .n = 2 case may also be established 
directly by exactly the same method as was used in the proof of Proposition 3.3. 
This shows, in particular, that the Bochner method provides a unified explanation 
for the validity of Theorem 1.4 in every dimension. 

Lemma 3.6 The conclusion of Theorem 3.1 holds in dimension .n = 2. 

Proof Let .f ∈ C2(S1)even, and let .K ∈ K2
s be a zonoid of class . C2+. Applying the 

Cauchy-Schwarz inequality as in the proof of Proposition 3.3 yields 

.〈AKf,AKf 〉 � 1

4

∫
V([−u†, u†], f )2

V([−u†, u†],K)
SK(du),
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where we used Lemma  2.3 to compute the generating measure of a planar zonoid. 
However, as was observed in the proof of Lemma 2.3, we have  

. V([−u†, u†],K) = 2hK(u), V([−u†, u†], f ) = 2f (u)

(the latter follows as .f = a(hL − hK) for some .L ∈ K2
s by Lemma 2.4). Thus 

. 〈AKf,AKf 〉 � 1

2

∫
f 2

hK

dSK = 〈f, f 〉,

concluding the proof. 
�

4 Proof of Theorem 1.5 

As was already noted in Remark 3.4, we may expect in principle that one may 
deduce the equality cases of (1.9) by a careful analysis of the Bochner method. The
immediate problem with this approach is that the most basic object that appears in
the Bochner method—the Hilbert operator .AK—is not even well defined unless K 
is of class . C2+, and no nontrivial equality cases can arise in that setting. We will 
nonetheless pursue this strategy in the present section to settle the equality cases. 
This is possible, in essence, because it suffices for the purposes of characterizing 
equality to replace .AKf by .− 1

n−1f in the Bochner identity, in which case the 
relevant formulas make sense also in nonsmooth situations. 

We begin by making the latter idea precise in Sect. 4.1. We subsequently show in 
Sect. 4.2 what information on the equality cases may be extracted from the Bochner 
method. The proof of Theorem 1.5 will be completed in Sect. 4.3. 

4.1 The Equality Condition 

Before we proceed to the analysis of the equality cases, we state a slight generaliza-
tion of (1.9) that will be needed in the sequel.

Lemma 4.1 Let .K ∈ Kn
s be a zonoid. Then 

. 
V(f,K, . . . , K)2

Vol(K)
� n − 1

n
V(f, f,K, . . . , K) + 1

n2

∫
f 2

hK

dSK,...,K

holds whenever .f = hL − hM for some .L,M ∈ Kn
s . 

Proof This follows from Theorem 1.4 as in the proof of Lemma 3.2. 
�
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We can now obtain a basic reformulation of the equality condition in (1.9) . The
method is due to Alexandrov [1, pp. 80–81]. 

Lemma 4.2 For any .L ∈ Kn
s and any zonoid .K ∈ Kn

s , the following are 
equivalent: 

1. Equality holds in (1.9) , that is,

. 
V(L,K, . . . , K)2

Vol(K)
= n − 1

n
V(L,L,K, . . . , K) + 1

n2

∫
h2

L

hK

dSK,...,K .

2. There exists .a > 0 so that .f = hL − ahK satisfies 

. hK dSf,K,...,K = − 1

n − 1
f dSK,...,K .

Proof We first prove that .2 ⇒ 1. Integrating condition 2 yields . V(f,K, . . . , K) =
0, while multiplying condition 2 by . f

hK
and integrating yields 

. 
n − 1

n
V(f, f,K, . . . , K) = − 1

n2

∫
f 2

hK

dSK,...,K .

We therefore obtain 

. 
V(f,K, . . . , K)2

Vol(K)
= n − 1

n
V(f, f,K, . . . , K) + 1

n2

∫
f 2

hK

dSK,...,K,

and condition 1 follows using .f = hL − ahK and expanding the squares. 
We now prove the converse implication . 1 ⇒ 2. Let .g ∈ C2(Sn−1)even and define 

. β(t) := V(gt ,K, . . . , K)2

Vol(K)
− n − 1

n
V(gt , gt ,K, . . . , K) − 1

n2

∫
g2

t

hK

dSK,...,K

where .gt := hL + tg. Condition 1 implies .β(0) = 0, while Lemma 4.1 implies 
.β(t) � 0 for all t . Thus . β is minimized at zero, so that .β ′(0) = 0 yields 

. 

∫
g dSf,K,...,K = − 1

n − 1

∫
g

f

hK

dSK,...,K

with .f = hL − V(L,K,...,K)
Vol(K)

hK . As .g ∈ C2(Sn−1)even is arbitrary and as . dSf,K,...,K

and . f
hK

dSK,...,K are even measures, condition 2 follows. 
�
It follows from the definition of the Hilbert operator .AK that when .K,L are 

of class . C2+, Lemma 4.2 states precisely that equality holds in (1.9) if and only if
.AKf = − 1

n−1f for .f = hL − ahK . The point of Lemma 4.2 is that the same
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characterization can be formulated for nonsmooth bodies in the sense of measures. 
The latter will suffice to apply the Bochner method to study the equality cases. 

4.2 The Bochner Method Revisited 

Using Lemma 4.2, we can now essentially repeat the proof of Proposition 3.3 in 
the present setting to extract a necessary condition for equality in (1.9) from the
Bochner method.

Lemma 4.3 Let .K ∈ Kn
s be a zonoid with generating measure . η, and let . L ∈ Kn

s

be such that equality holds in (1.9). Then for every .u ∈ supp η, there exists . c(u) � 0
such that .hL(x) = c(u)hK(x) for all .x ∈ supp SK,...,K with .|〈u, x〉| > 0. 

Proof Let .a > 0 be such that .f = hL − ahK satisfies the second condition of 
Lemma 4.2, that is, .f dSK,...,K = −(n − 1) hK dSf,K,...,K . Then we have 

. 

∫
f 2

hK

dSK,...,K =
∫ ∫

f 2

h2
K

h[−u,u] dSK,...,K η(du)

�
∫ ( ∫ f

hK
h[−u,u] dSK,...,K

)2

∫
h[−u,u] dSK,...,K

η(du)

= n(n − 1)2
∫

V([−u, u], f,K, . . . , K)2

V([−u, u],K, . . . , K)
η(du)

� n(n − 1)(n − 2)V(f, f,K, . . . , K) + (n − 1)

∫
f 2

hK

dSK,...,K

=
∫

f 2

hK

dSK,...,K .

Here we used .hK = ∫
h[−u,u] η(du) in the first line; the Cauchy-Schwarz inequality 

in the second line; the condition of Lemma 4.2 in the third line; Lemma 3.2 in the 
fourth line (or by the proof of Lemma 3.6 for .n = 2); and the fifth line follows as 

. V(f, f,K, . . . , K) = 1

n

∫
f dSf,K,...,K = − 1

n(n − 1)

∫
f 2

hK

dSK,...,K

by the condition of Lemma 4.2. 
Consequently, both inequalities used above must hold with equality. In particular, 

we have equality in the Cauchy-Schwarz inequality 

.

∫
f 2

h2
K

h[−u,u] dSK,...,K =
( ∫ f

hK
h[−u,u] dSK,...,K

)2

∫
h[−u,u] dSK,...,K
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for every .u ∈ supp η. By the equality condition of the Cauchy-Schwarz inequality, 
this implies that for every .u ∈ supp η, there is a constant .c′(u) so that . f (x) =
c′(u)hK(x) for every .x ∈ supp SK,...,K with .h[−u,u](x) = |〈u, x〉| > 0. But as 
.f = hL − ahK , the conclusion follows with .c(u) = a + c′(u). (Note that it must be 
the case that .c(u) � 0 as .hK, hL are positive functions.) 
�
Remark 4.4 The proof of Lemma 4.3 actually provides more information than is 
expressed in its statement: not only do we get equality in Cauchy-Schwarz, but 
we also get equality in the application of Lemma 3.2. In particular, this implies 
that if equality holds in (1.9) for given .K,L in dimension n, then the projections 
.Pu⊥K,Pu⊥L must also yield equality in (1.9) in dimension .n − 1 for every . u ∈
supp η. It is a curious feature of the present problem that the latter information will 
not be needed to characterize the equality cases: the equality condition in Cauchy-
Schwarz will already suffice to fully characterize the equality cases of (1.9) .

4.3 Characterization of Equality 

We are now ready to proceed to the proof of Theorem 1.5. The main difficulty is 
to show that the stated conditions are necessary for equality, which will be deduced 
from Lemma 4.3. 

In the proof of the following result, we will encounter graphs that may have an 
uncountable number of vertices and edges. The standard properties of graphs that 
will be used in the proof—chiefly that a graph can be partitioned into its connected 
components—are valid at this level of generality; cf. [16, Chapter 2]. 

Proposition 4.5 Let .K ∈ Kn
s be a zonoid, and let .L ∈ Kn

s be such that equality 
holds in (1.9). Then there exist .1 � m � n, .a1, . . . , am � 0, and zonoids 
.C1, . . . , Cm with .dim(C1) + · · · + dim(Cm) = n so that . K = C1 + · · · + Cm

and 

. hL(x) = ha1C1+···+amCm(x) for all x ∈ supp SK,...,K .

Proof We define a graph .(V ,E) as follows:

• The vertices are .V = supp η, where . η denotes the generating measure of K .
• There is an edge .{u, v} ∈ E between .u, v ∈ V if and only if there exists . x ∈

supp SK,...,K such that .|〈u, x〉| > 0 and .|〈v, x〉| > 0. 

Denote by .V = ⊔
i∈I Vi the partition of V into its connected components . Vi . 

For any edge .{u, v} ∈ E, Lemma 4.3 implies that 

.c(u)hK(x) = hL(x) = c(v)hK(x)
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for some .x ∈ supp SK,...,K . As .hK(x) > 0, it follows that .c(u) = c(v). In particular, 
the value of .c(u) must be constant on each connected component. In the sequel, we 
will denote this value as .c(u) = ai for .u ∈ Vi . 

Next, we make a key observation. 
�
Claim For every .x ∈ supp SK,...,K , there exists .i ∈ I so that .x ⊥ Vj for all .j �= i. 

Proof We can assume that .x ∈ supp SK,...,K satisfies .|〈u, x〉| > 0 for some .i ∈ I , 
.u ∈ Vi , as otherwise the conclusion is trivial. But then we must have . |〈v, x〉| = 0
for all .j �= i, .v ∈ Vj , as distinct connected components have no edge between 
them. 
�

We also need the following. 

Claim For every .u ∈ Sn−1, there exists .x ∈ supp SK,...,K so that .|〈u, x〉| > 0. 

Proof If the conclusion were false, there would exist some .u ∈ Sn−1 such that 
.0 = ∫ |〈u, x〉| SK,...,K(dx) = 2 Vol(Pu⊥K) by Lemma 2.1. The latter is impossible 
as .K ∈ Kn

s is assumed to have nonempty interior. 
�
The above two claims imply that distinct . Vi must lie in linearly independent 

subspaces .Li = span Vi . Indeed, if this is not so, then there exists .z ∈ Sn−1 so that 

. z = t1u1 + · · · + tkuk = s1v1 + · · · slvl

for some .k, l � 1, .i ∈ I , .u1, . . . , uk ∈ Vi , .v1, . . . , vl ∈ ⋃
j �=i Vj , 

.t1, . . . , tk, s1, . . . , sl �= 0. By the second claim there exists .x ∈ supp SK,...,K so 
that .|〈z, x〉| > 0. But by the first claim we must then have .x ⊥ v1, . . . , ul , which 
entails a contradiction. It follows, in particular, that there can be at most n connected 
components, so we can write .I = {1, . . . , m} for some .1 � m � n. 

We now define zonoids .C1, . . . , Cm as 

. hCi
=

∫

Li

h[−u,u] η(du).

As .L1, . . . , Lm are linearly independent and . supp η = V ⊆ Sn−1 ∩ (L1 ∪ · · · ∪ Lm)

. hC1 + · · · + hCm =
∫

h[−u,u] η(du) = hK,

that is, .K = C1 + · · · + Cm. Moreover, as .L1, . . . , Lm are linearly independent and 
K has nonempty interior, we must have .dim(C1) + · · · + dim(Cm) = n. 

Finally, let .x ∈ supp SK,...,K . By the first claim above, there exists .1 � i � m so 
that .hCj

(x) = 0 for all .j �= i. As this implies that .hCi
(x) = hK(x) > 0, there must 

exist .u ∈ Vi so that .|〈u, x〉| > 0. Recalling that .c(u) = ai for .u ∈ Vi , we obtain 

. hL(x) = aihK(x) = aihCi
(x) = a1hC1(x) + · · · + amhCm(x)

by Lemma 4.3. As this holds for any .x ∈ supp SK,...,K , the proof is complete.
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Before we complete the proof, we must verify the basic case of equality. 

Lemma 4.6 Suppose that .K = C1 + · · · + Cm for some convex bodies . C1, . . . , Cm

such that .dim(C1) + · · · + dim(Cm) = n, and that .L = a1C1 + · · · + amCm for 
some .a1, . . . , am � 0. Then equality holds in (1.9) .

Proof By Schneider [21, Theorem 5.1.8], the condition . dim(C1)+· · ·+dim(Cm) =
n implies that we have .V(Ci1 , . . . , Cin) > 0 if and only if each index . 1 � j � m

appears exactly .dim(Cj ) times among .(i1, . . . , in). Thus for any . b1, . . . , bm � 0

. Vol(b1C1 + · · · + bmCm) =
m∑

i1,...,in=1

bi1 · · · binV(Ci1 , . . . , Cin)

= � b
dim(C1)
1 · · · bdim(Cm)

m

for some constant . � that depends only on .C1, . . . , Cm. Therefore 

. 0 = −Vol(K)

n2

d2

dt2
log Vol(eta1C1 + · · · + etamCm)

∣∣∣∣
t=0

= V(L,K, . . . , K)2

Vol(K)
− n − 1

n
V(L,L,K, . . . , K)

− 1

n2

∫
ha2

1C1+···+a2
mCm

dSK,...,K .

Now note that if .
∫

hCi
dSCi1 ,...,Cin−1

> 0, then using [21, Theorem 5.1.8] as above 

shows that .
∫

hCj
dSCi1 ,...,Cin−1

= 0 for all .j �= i. In particular, as we have . SK,...,K =∑
i1,...,in−1

SCi1 ,...,Cin−1
, this implies that for every .x ∈ supp SK,...,K , there exists an 

index i so that .hCj
(x) = 0 for all .j �= i. It follows readily that 

. ha2
1C1+···+a2

mCm
(x) = hL(x)2

hK(x)
for all x ∈ supp SK,...,K,

and the proof is complete. 
�
We can now complete the proof of the necessity part of Theorem 1.5. In the proof, 

we use some nontrivial facts that do not appear elsewhere in this note. 

Proof of Theorem 1.5 We first prove sufficiency. Suppose that . K = C1 + . . .+Cm

for bodies .C1, . . . , Cm with .dim(C1) + · · · + dim(Cm) = n, and that L and . L′ :=
a1C1 + · · · + amCm have the same supporting hyperplanes in all 1-extreme normal 
directions of K . The latter implies by Schneider [21, Theorem 4.5.3 and Lemma 
7.6.15] that 

.hL(x) = hL′(x) for all x ∈ supp SM,K,...,K (4.1)
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for any convex body M . In particular, every term in (1.9) is unchanged if we replace
L by . L′. Thus equality holds in (1.9) by Lemma 4.6. 

We now prove necessity. Suppose equality holds in (1.9). Then Proposition 4.5 
provides .C1, . . . , Cm that satisfy all the required properties by construction except 
the last one: that is, what remains to be shown is that L and . L′ := a1C1+· · ·+amCm

have the same supporting hyperplanes in all 1-extreme normal directions of K . 
Let us write .f := hL −hL′ . By Proposition 4.5, we have .f = 0 on .supp SK,...,K . 

Moreover, as we clearly have .L′ +C = (maxk ak)K for a convex body C, it follows 
that .supp SL′,K,...,K ⊆ supp SK,...,K and thus .f = 0 on .supp SL′,K,...,K as well. 
Substituting .hL = hL′ + f into (1.9) and using that both L and . L′ yield equality in 
(1.9) (by assumption and by Lemma 4.6, respectively), we can readily compute 

. V(f,K, . . . , K) = 0, V(f, f,K, . . . , K) = 0.

Using that .f = hL − hL′ , this implies that we have equality 

. V(L,L′,K, . . . , K)2 = V(L,L,K, . . . , K)V(L′, L′,K, . . . , K)

in Minkowski’s quadratic inequality. By the main result of [23], it follows that L and 
.aL′ + v have the same supporting hyperplanes in all 1-extreme normal directions of 
K for some .a � 0, .v ∈ R

n. But as .L,L′ are symmetric we must have .v = 0, while 
.V(f,K, . . . , K) = 0 and (4.1) imply .a = 1. This concludes the proof. 
�

5 Implications 

As we recalled in Theorem 1.2, the validity of the local logarithmic Brunn-
Minkowski inequality (1.9) for all .K ∈ Kn

s is equivalent to the validity of the 
logarithmic Brunn-Minkowski and the logarithmic Minkowski inequalities. The 
proof of these facts is based on several recent deep results on uniqueness in the 
.Lq -Minkowski problem for .q < 1. While this equivalence does not hold for fixed 
.K ∈ Kn

s , it is explained in [15, §2.4] that the theory behind Theorem 1.2 still yields 
nontrivial implications when (1.9) is known to hold in a sufficiently rich sub-class
of . Kn

s . The aim of the final section of this note is to investigate what conclusions 
may be drawn by combining these results with Theorems 1.4–1.5. 

We begin with the proof of Corollary 1.6. 

Proof of Corollary 1.6 By a routine approximation argument as in the proof of 
Theorem 1.4, it suffices to prove the validity of (1.8) for .K ∈ Kn

s that are zonoids 
of class .C∞+ . Let us fix such a zonoid, and let . F = {(1 − t)K + tB : t ∈ [0, 1]}
where B is the Euclidean unit ball. Then every .K ′ ∈ F is a zonoid of class .C∞+ . 
Moreover, it was observed in Remark 3.4 that every even eigenfunction of .AK ′ that 
is orthogonal to .hK ′ has eigenvalue .λ < − 1

n−1 . By the continuity of the eigenvalues 
of the Hilbert operator (cf. [14, Theorem 5.3]), there exists .ε > 0 so that for every
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.K ′ ∈ F , every even eigenfunction of .AK ′ that is orthogonal to .hK ′ has eigenvalue 

.λ � − 1
n−1 − ε. Thus there exists .p < 0 so that condition (4) of [15, Theorem 2.1] 

holds for all .K ′ ∈ F . The conclusion now follows from the implication (4). ⇒(3b) 
of [15, Theorem 2.1] (as the inequality in (3b) with .q = 0 is precisely (1.8) ). 
�

The logarithmic Brunn-Minkowski conjecture is intimately connected to the 
uniqueness problem for cone volume measures; this was in fact the original 
motivation for the formulation of the conjecture [4]. Let us recall the definition. 

Definition 5.1 The cone volume measure .VK of a convex body K is defined as 

. dVK := 1

n
hK dSK,...,K .

The basic question that arises here is whether the cone volume measure uniquely 
characterizes the convex body K . While this is not always the case, the question 
is closely connected to the equality cases of the logarithmic Minkowski inequality 
(1.8) in the case that .K,L ∈ Kn

s are symmetric. For example, if .K,L ∈ Kn
s satisfy 

.VK = VL (and thus a fortiori .Vol(K) = Vol(L) as .Vol(K) = ∫
dVK ), the validity 

of the logarithmic Brunn-Minkowski conjecture would yield 

. 0 �
∫

hK log

(
hL

hK

)
dSK,...,K =

∫
hL log

(
hL

hK

)
dSL,...,L � 0

using (1.8) in the first inequality, .VK = VL in the equality, and (1.8) with the roles
of .K,L reversed in the second inequality. This would imply that .VK is uniquely 
determined by K whenever (1.8) does not admit nontrivial equality cases.

Unfortunately, even though we obtained a complete characterization of the
equality cases of (1.9) when K is a zonoid, this information is lost in Corollary 1.6. 
The reason is that the proof of Corollary 1.6 required approximation of K by smooth 
bodies, which destroys the nontrivial equality cases. Nonetheless, for sufficiently 
smooth zonoids, uniqueness of cone volume measures follows by [15, Theorem 
2.1]. Note that while the smoothness assumption on K is restrictive, the following 
statement requires neither that L is smooth nor that L is a zonoid. 

Corollary 5.2 Let .K ∈ Kn
s be a zonoid of class . C3+. Then for any .L ∈ Kn

s , we have 
.VK = VL if and only if .K = L. 

Proof This follows from the implication (4). ⇒(1) of [15, Theorem 2.1] by precisely 
the same argument as in the proof of Corollary 1.6. 
�
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Rapid Convergence of the Unadjusted 
Langevin Algorithm: Isoperimetry 
Suffices 

Santosh S. Vempala and Andre Wibisono 

Abstract We study the Unadjusted Langevin Algorithm (ULA) for sampling from 
a probability distribution .ν = e−f on . Rn. We prove a convergence guarantee in 
Kullback-Leibler (KL) divergence assuming . ν satisfies a log-Sobolev inequality 
and the Hessian of f is bounded. Notably, we do not assume convexity or bounds 
on higher derivatives. We prove convergence guarantees in Rényi divergence of 
order .q > 1 assuming the limit of ULA satisfies isoperimetry, namely either 
the log-Sobolev or Poincaré inequality. We also prove a bound on the bias of 
the limiting distribution of ULA assuming third-order smoothness of f , without 
requiring isoperimetry. 

1 Introduction 

Sampling is a fundamental algorithmic task. Many applications require sampling 
from probability distributions in high-dimensional spaces, and in modern applica-
tions the probability distributions are complicated and non-logconcave. While the 
setting of logconcave functions is well-studied, it is important to have efficient 
sampling algorithms with good convergence guarantees beyond the logconcavity 
assumption. There is a close interplay between sampling and optimization, either 
via optimization as a limit of sampling (annealing) [44, 67], or via sampling as opti-
mization in the space of distributions [47, 77]. Motivated by the widespread use of 
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non-convex optimization and sampling, there is resurgent interest in understanding 
non-logconcave sampling. 

In this paper we study a simple algorithm, the Unadjusted Langevin Algorithm 
(ULA), for sampling from a target probability distribution .ν = e−f on . Rn. ULA  
is a discrete-time algorithm that starts from any .x0 ∈ R

n and applies the following 
update at each step: 

. xk+1 = xk − ε∇f (xk) + √
2ε zk

where .ε > 0 is step size and .zk ∼ N (0, I ) is an independent standard Gaussian 
random variable in . Rn. ULA requires oracle access to the gradient .∇f of the log 
density .f = − log ν. In particular, ULA does not require knowledge of f , which 
makes it applicable in practice where we often only know . ν up to a normalizing 
constant. 

As the step size .ε → 0, ULA recovers the Langevin dynamics, which is 
a continuous-time stochastic process in .Rn that converges to . ν. We recall the 
optimization interpretation of the Langevin dynamics for sampling as the gradient 
flow of the Kullback-Leibler (KL) divergence with respect to . ν in the space of 
probability distributions with the Wasserstein metric [47]. When . ν is strongly 
logconcave, the KL divergence is a strongly convex objective function, so the 
Langevin dynamics as gradient flow converges exponentially fast [5, 74]. From the 
classical theory of Markov chains and diffusion processes, there are several known 
conditions milder than logconcavity that are sufficient for rapid convergence in con-
tinuous time. These include isoperimetric inequalities such as Poincaré inequality 
or log-Sobolev inequality (LSI). Along the Langevin dynamics in continuous time, 
Poincaré inequality implies an exponential convergence rate in .L2(ν), while LSI— 
which is stronger—implies an exponential convergence rate in KL divergence (as 
well as in Rényi divergence). 

However, in discrete time, sampling under Poincaré inequality or LSI is a more 
challenging problem. ULA is an inexact discretization of the Langevin dynamics, 
and it converges to a biased limit .νε �= ν. When . ν is strongly logconcave and 
smooth, it is known how to control the bias and prove a convergence guarantee 
on KL divergence along ULA; see for example [19, 25, 26, 29]. When . ν is strongly 
logconcave, there are many other sampling algorithms with provable rapid conver-
gence; these include the ball walk and hit-and-run [48, 54–56] (which give truly 
polynomial algorithms), various discretizations of the overdamped or underdamped 
Langevin dynamics [9, 25, 26, 29, 30] (which have polynomial dependencies on 
smoothness parameters but low dependence on dimension), and more sophisticated 
methods such as the Hamiltonian Monte Carlo [17, 28, 50, 59, 60]. It is of great 
interest to extend these results to non-logconcave densities . ν, where existing results 
require strong assumptions with bounds that grow exponentially with the dimension 
or other parameters [2, 20, 57, 61]. There are also recent works that analyze 
convergence of sampling using various techniques such as reflection coupling [32], 
kernel methods [38], and higher-order integrators [53], albeit still under some strong
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Fig. 1 Illustrations of non-logconcave distributions satisfying LSI or Poincaré inequality: the uni-
form distribution on a nonconvex set (left), and a small perturbation of a logconcave distribution, 
e.g., Gaussian (right) 

conditions such as distant dissipativity, which is similar to strong logconcavity 
outside a bounded domain. 

In this paper we study the convergence along ULA under minimal (and nec-
essary) isoperimetric assumptions, namely, LSI and Poincaré inequality. These 
are sufficient for fast convergence in continuous time; moreover, in the case of 
logconcave distribution, the log-Sobolev and Poincaré constants can be bounded 
and lead to convergence guarantees for efficient sampling in discrete time. However, 
do they suffice on their own without the assumption of logconcavity? 

We note that LSI and Poincaré inequality apply to a wider class of measures than 
logconcave distributions. In particular, LSI and Poincaré inequality are preserved 
under bounded perturbation and Lipschitz mapping (see Lemmas 16 and 19), 
whereas logconcavity would be destroyed. Given these properties, it is easy 
to exhibit examples of non-logconcave distributions satisfying LSI or Poincaré 
inequality. For example, we can take a small perturbation of a convex body to make 
it nonconvex but still satisfies isoperimetry; then the uniform probability distribution 
on the body (or a smooth approximation of it) is not logconcave but satisfies LSI or 
Poincaré inequality. Similarly, we can start with a strongly logconcave distribution 
such as a Gaussian, and subtract some small Gaussians from it; then the resulting 
(normalized) probability distribution is not logconcave, but it still satisfies LSI or 
Poincaré inequality as long as the Gaussians we subtract are small enough. See 
Fig. 1 for an illustration. 

We measure the mode of convergence using KL divergence and Rényi divergence 
of order .q ≥ 1, which is stronger. Our first main result says that the only further 
assumption we need is smoothness, i.e., the gradient of f is Lipschitz (see Sect. 3.1). 
Here .Hν(ρ) is the KL divergence between . ρ and . ν. We say that .ν = e−f is L-
smooth if .∇f is L-Lipschitz, or equivalently, .−LI 	 ∇2f (x) 	 LI for all .x ∈ R

n. 

Theorem 1 Assume .ν = e−f satisfies log-Sobolev inequality with constant . α > 0
and is L-smooth. ULA with step size .0 < ε ≤ α

4L2 satisfies 

. Hν(ρk) ≤ e−αεkHν(ρ0) + 8εnL2

α
.

In particular, for any .0 < δ < 4n, ULA with step size .ε ≤ αδ
16L2n

reaches error 

.Hν(ρk) ≤ δ after .k ≥ 1
αε

log 2Hν(ρ0)
δ

iterations.
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For example, if we start with a Gaussian .ρ0 = N (x∗, 1
L
I) where . x∗ is a 

stationary point of f (which we can find, e.g., via gradient descent), then . Hν(ρ0) =
Õ(n) (see Lemma 1), and Theorem 1 gives an iteration complexity of . k = �̃

(
L2n
α2δ

)

to achieve .Hν(ρk) ≤ δ using ULA with step size .ε = �( αδ
L2n

). 
The result above matches previous known bounds for ULA when . ν is strongly 

logconcave [19, 25, 26, 29]. Our result complements the work of Ma et al. [57] 
who study the underdamped version of the Langevin dynamics under LSI and show 
an iteration complexity for the discrete-time algorithm that has better dependence 

on the dimension (.
√

n
δ

in place of . n
δ

above for ULA), but under an additional 

smoothness assumption (f has bounded third derivatives) and with higher poly-
nomial dependence on other parameters. Our result also complements the work of 
Mangoubi and Vishnoi [61] who study the Metropolis-adjusted version of ULA 
(MALA) for non-logconcave . ν and show a .log( 1

δ
) iteration complexity from a 

warm start, under the additional assumption that f has bounded third and fourth 
derivatives in an appropriate .∞-norm. 

We note that in general some isoperimetry condition is needed for rapid mixing 
of Markov chains (such as the Langevin dynamics and ULA), otherwise there 
are bad regions in the state space from which the chains take arbitrarily long to 
escape. Smoothness or bounded Hessian is a common assumption that seems to 
be needed for the analysis of discrete-time algorithms (such as gradient descent or 
ULA above). 

In the second part of this paper, we study the convergence of Rényi divergence 
of order .q > 1 along ULA. Rényi divergence is a family of generalizations of KL 
divergence [12, 68, 71], which becomes stronger as the order q increases. There 
are physical and operational interpretations of Rényi divergence [3, 40]. Rényi 
divergence has been useful in many applications, including for the exponential 
mechanism in differential privacy [1, 13, 31, 64], lattice-based cryptography [4], 
information-theoretic encryption [45], variational inference [52], machine learn-
ing [41, 62], information theory and statistics [24, 65], and black hole physics [27]. 

Our second main result proves a convergence bound for the Rényi divergence of 
order .q > 1. While this is a stronger measure of convergence than KL divergence, 
the situation here is more complicated. First, we can only hope to converge to the 
target for finite q for any step-size . ε (as we illustrate with an example). Second, 
it is unclear how to bound the Rényi divergence between the biased limit . νε and 
. ν. We first show the convergence of Rényi divergence along Langevin dynamics in 
continuous time under LSI; see Theorem 2 in Sect. 4.2. Here .Rq,ν(ρ) is the Rényi 
divergence of order q between . ρ and . ν. 

Theorem 2 Suppose . ν satisfies LSI with constant .α > 0. Let .q ≥ 1. Along the 
Langevin dynamics, 

.Rq,ν(ρt ) ≤ e
− 2αt

q Rq,ν(ρ0).
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We also have the following convergence of Rényi divergence along Langevin 
dynamics under Poincaré inequality; see Theorem 3 in Sect. 6.1. 

Theorem 3 Suppose . ν satisfies Poincaré inequality with constant .α > 0. Let .q ≥ 2. 
Along the Langevin dynamics, 

. Rq,ν(ρt ) ≤
{

Rq,ν(ρ0) − 2αt
q

if Rq,ν(ρ0) ≥ 1 and as long as Rq,ν(ρt ) ≥ 1,

e
− 2αt

q Rq,ν(ρ0) if Rq,ν(ρ0) ≤ 1.

The reader will notice that under Poincaré inequality, compared to LSI, the 
convergence is slower in the beginning before it becomes exponential. For a 
reasonable starting distribution (such as a Gaussian centered at a stationary point), 
this leads to an extra factor of n compared to the convergence under LSI. 

We then turn to the discrete-time algorithm and show that ULA converges in 
Rényi divergence to the biased limit . νε under the assumption that . νε itself satisfies 
either LSI or Poincaré inequality. We combine this with a decomposition result on 
Rényi divergence to derive a convergence guarantee in Rényi divergence to . ν; see  
Theorem 5 in Sect. 5.3 and Theorem 6 in Sect. 6.3. 

Finally, we show some properties on the biased limit of ULA. Previously, from 
the convergence analysis of ULA in Theorem 1, we could deduce a bound on 
the bias of ULA in KL divergence under LSI and smoothness. Here we provide 
a direct bound on the bias of ULA in relative Fisher information assuming third-
order smoothness, without isoperimetry; see Theorem 7. We also show the biased 
limit satisfies LSI if the original target is smooth and strongly log-concave; see 
Theorem 8. 

In what follows, we review KL divergence and its properties along the Langevin 
dynamics in Sect. 2, and prove a convergence guarantee for KL divergence along 
ULA under LSI in Sect. 3. We provide a review of Rényi divergence and its 
properties along the Langevin dynamics in Sect. 4. We then prove the convergence 
guarantee for Rényi divergence along ULA under LSI in Sect. 5, and under Poincaré 
inequality in Sect. 6. We show properties on the biased limit of ULA in Sect. 7. 
We provide all proofs and details in Sect. 8. We conclude with a discussion in 
Sect. 9, including subsequent work that used some of the analysis techniques from 
this paper. 

2 Review of KL Divergence Along Langevin Dynamics 

In this section we review the definition of Kullback-Leibler (KL) divergence, log-
Sobolev inequality, and the convergence of KL divergence along the Langevin 
dynamics in continuous time under log-Sobolev inequality. See section “Review 
on Notation and Basic Properties” in Appendix for a review on notation.
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2.1 KL Divergence 

Let .ρ, ν be probability distributions on . Rn, represented via their probability density 
functions with respect to the Lebesgue measure on . Rn. We assume .ρ, ν have full 
support and smooth densities. 

Recall the Kullback-Leibler (KL) divergence of . ρ with respect to . ν is 

.Hν(ρ) =
∫

Rn

ρ(x) log
ρ(x)

ν(x)
dx. (1) 

KL divergence is the relative form of Shannon entropy . H(ρ) = − ∫
Rn ρ(x)

log ρ(x) dx. Whereas Shannon entropy can be positive or negative, KL divergence 
is nonnegative and minimized at . ν: .Hν(ρ) ≥ 0 for all . ρ, and .Hν(ρ) = 0 if 
and only if .ρ = ν. Therefore, KL divergence serves as a measure of (albeit 
asymmetric) “distance” of a probability distribution . ρ from a base distribution . ν. 
KL divergence is a relatively strong measure of distance; for example, Pinsker’s 
inequality implies that KL divergence controls total variation distance. Furthermore, 
under log-Sobolev (or Talagrand) inequality, KL divergence also controls the 
quadratic Wasserstein .W2 distance, as we review below. 

We say .ν = e−f is L-smooth if f has bounded Hessian: . −LI 	 ∇2f (x) 	 LI

for all .x ∈ R
n. 

Lemma 1 Suppose .ν = e−f is L-smooth. Let .ρ = N (x∗, 1
L
I) where . x∗ is a 

stationary point of f . Then .Hν(ρ) ≤ f (x∗) + n
2 log L

2π
. 

We provide the proof of Lemma 1 in Sect. 8.1.1. 

2.2 Log-Sobolev Inequality 

Recall we say . ν satisfies the log-Sobolev inequality (LSI) with a constant .α > 0 if 
for all smooth function .g : Rn → R with .Eν[g2] < ∞, 

.Eν[g2 log g2] − Eν[g2] logEν[g2] ≤ 2

α
Eν[‖∇g‖2]. (2) 

Recall the relative Fisher information of . ρ with respect to . ν is 

.Jν(ρ) =
∫

Rn

ρ(x)

∥∥∥∥∇ log
ρ(x)

ν(x)

∥∥∥∥
2

dx. (3)
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LSI is equivalent to the following relation between KL divergence and Fisher 
information for all . ρ: 

.Hν(ρ) ≤ 1

2α
Jν(ρ). (4) 

Indeed, to obtain (4) we choose .g2 = ρ
ν

in (2); conversely, to obtain (2) we choose

.ρ = g2ν

Eν [g2] in (4) .
LSI is a strong isoperimetry statement and implies, among others, concentration 

of measure and sub-Gaussian tail property [49]. LSI was first shown by Gross [39] 
for the case of Gaussian . ν. It was extended by Bakry and Émery [5] to strongly 
log-concave . ν; namely, when .f = − log ν is .α-strongly convex, then . ν satisfies LSI 
with constant . α. However, LSI applies more generally. For example, the classical 
perturbation result by Holley and Stroock [43] states that LSI is stable under 
bounded perturbation. Furthermore, LSI is preserved under a Lipschitz mapping. In 
one dimension, there is an exact characterization of when a probability distribution 
on . R satisfies LSI [10]. Moreover, LSI satisfies a tensorization property [49]: If 
.ν1, ν2 satisfy LSI with constants .α1, α2 > 0, respectively, then .ν1 ⊗ ν2 satisfies LSI 
with constant .min{α1, α2} > 0. Thus, there are many examples of non-logconcave 
distributions . ν on .Rn satisfying LSI (with a constant independent of dimension). 
There are also Lyapunov function criteria and exponential integrability conditions 
that can be used to verify when a probability distribution satisfies LSI; see for 
example [8, 15, 16, 63, 75]. 

2.2.1 Talagrand Inequality 

Recall the Wasserstein distance between . ρ and . ν is 

.W2(ρ, ν) = inf
	

E	[‖X − Y‖2] 1
2 (5) 

where the infimum is over joint distributions . 	 of .(X, Y ) with the correct marginals 
.X ∼ ρ, Y ∼ ν. 

Recall we say . ν satisfies Talagrand inequality with a constant .α > 0 if for all 
. ρ: 

.
α

2
W2(ρ, ν)2 ≤ Hν(ρ). (6) 

Talagrand’s inequality implies concentration of measure of Gaussian type. It was
first studied by Talagrand [70] for Gaussian . ν, and extended by Otto and Villani [66] 
to all . ν satisfying LSI; namely, if . ν satisfies LSI with constant .α > 0, then . ν also 
satisfies Talagrand’s inequality with the same constant [66, Theorem 1]. Therefore,
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under LSI, KL divergence controls the Wasserstein distance. Moreover, when . ν is 
log-concave, LSI and Talagrand’s inequality are equivalent [66, Corollary 3.1]. 

We recall the geometric interpretation of LSI and Talagrand’s inequality 
from [66]. In the space of probability distributions with the Riemannian metric 
defined by the Wasserstein .W2 distance, the relative Fisher information (3) is the
squared norm of the gradient of KL divergence (1). Therefore, LSI (4) is the gradient
dominated condition (also known as the Polyak-Łojaciewicz (PL) inequality) for
KL divergence. On the other hand, Talagrand’s inequality (6) is the quadratic
growth condition for KL divergence. In general, the gradient dominated condition
implies the quadratic growth condition [66, Proposition 1’]; therefore, LSI implies 
Talagrand’s inequality. 

2.3 Langevin Dynamics 

The Langevin dynamics for target distribution .ν = e−f is a continuous-time 
stochastic process .(Xt )t≥0 in .Rn that evolves following the stochastic differential 
equation: 

.dXt = −∇f (Xt ) dt + √
2 dWt (7) 

where .(Wt )t≥0 is the standard Brownian motion in . Rn with .W0 = 0. 
If .(Xt )t≥0 evolves following the Langevin dynamics (7) , then their probability

density function .(ρt )t≥0 evolves following the Fokker-Planck equation: 

.
∂ρt

∂t
= ∇ · (ρt∇f ) + �ρt = ∇ ·

(
ρt∇ log

ρt

ν

)
. (8) 

Here . ∇· is the divergence and . � is the Laplacian operator. We provide a derivation in 
section “Derivation of the Fokker-Planck Equation” in Appendix. From (8) , if . ρt =
ν, then . ∂ρt

∂t
= 0, so . ν is the stationary distribution for the Langevin dynamics (7) .

Moreover, the Langevin dynamics brings any distribution .Xt ∼ ρt closer to the 
target distribution . ν, as the following lemma shows. 

Lemma 2 Along the Langevin dynamics (7) (or equivalently, the Fokker-Planck
equation (8) ),

.
d

dt
Hν(ρt ) = −Jν(ρt ). (9) 

We provide the proof of Lemma 2 in Sect. 8.1.2. Since .Jν(ρ) ≥ 0, the identity (9) 
shows that KL divergence with respect to . ν is decreasing along the Langevin 
dynamics, so indeed the distribution . ρt converges to . ν.
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2.3.1 Exponential Convergence of KL Divergence Along Langevin 
Dynamics Under LSI 

When . ν satisfies LSI, KL divergence converges exponentially fast along the 
Langevin dynamics. 

Theorem 4 Suppose . ν satisfies LSI with constant .α > 0. Along the Langevin 
dynamics (7) ,

.Hν(ρt ) ≤ e−2αtHν(ρ0). (10) 

Furthermore, .W2(ρt , ν) ≤
√

2
α
Hν(ρ0) e−αt . 

We provide the proof of Theorem 4 in Sect. 8.1.3. We also recall the optimization 
interpretation of Langevin dynamics as the gradient flow of KL divergence in 
the space of distributions with the Wasserstein metric [47, 66, 74]. Then the 
exponential convergence rate in Theorem 4 is a manifestation of the general fact 
that gradient flow converges exponentially fast under gradient domination condition. 
This provides a justification for using the Langevin dynamics for sampling from . ν, 
as a natural steepest descent flow that minimizes the KL divergence . Hν . 

3 Unadjusted Langevin Algorithm 

In this section we study the behavior of KL divergence along the Unadjusted 
Langevin Algorithm (ULA) in discrete time under log-Sobolev inequality assump-
tion. 

Suppose we wish to sample from a smooth target probability distribution . ν =
e−f in . Rn. The Unadjusted Langevin Algorithm (ULA) with step size .ε > 0 is 
the discrete-time algorithm 

.xk+1 = xk − ε∇f (xk) + √
2ε zk (11) 

where .zk ∼ N (0, I ) is an independent standard Gaussian random variable in . Rn. 
Let . ρk denote the probability distribution of . xk that evolves following ULA. 

As .ε → 0, ULA recovers the Langevin dynamics (7) in continuous-time.
However, for fixed .ε > 0, ULA converges to a biased limiting distribution .νε �= ν. 
Therefore, KL divergence .Hν(ρk) does not tend to 0 along ULA, as it has an 
asymptotic bias .Hν(νε) > 0. 

Example 1 Let .ν = N (0, 1
α
I ). The ULA iteration is .xk+1 = (1 − εα)xk + √

2εzk , 

.zk ∼ N (0, I ). For .0 < ε < 2
α

, the limit is .νε = N
(

0, 1
α(1− εα

2 )

)
, and the bias
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is .Hν(νε) = n
2

(
εα

2(1− εα
2 )

+ log
(
1 − εα

2

))
. In particular, . Hν(νε) ≤ nε2α2

16(1− εα
2 )

2 =
O(ε2). 

3.1 Convergence of KL Divergence Along ULA Under LSI 

When the true target distribution . ν satisfies LSI and a smoothness condition, we 
can prove a convergence guarantee in KL divergence along ULA. Recall we say 
.ν = e−f is L-smooth, .0 < L < ∞, if .−LI 	 ∇2f (x) 	 LI for all .x ∈ R

n. 
A key part in our analysis is the following lemma which bounds the decrease in 

KL divergence along one iteration of ULA. Here .xk+1 ∼ ρk+1 is the output of one 
step of ULA (11) from .xk ∼ ρk . 

Lemma 3 Suppose . ν satisfies LSI with constant .α > 0 and is L-smooth. If . 0 < ε ≤
α

4L2 , then along each step of ULA (11) ,

.Hν(ρk+1) ≤ e−αεHν(ρk) + 6ε2nL2. (12) 

We provide the proof of Lemma 3 in Sect. 8.2.1. The proof of Lemma 3 compares 
the evolution of KL divergence along one step of ULA with the evolution along the 
Langevin dynamics in continuous time (which converges exponentially fast under 
LSI), and bounds the discretization error; see Fig. 2 for an illustration. This high-
level comparison technique has been used in many papers. Our proof structure is 
similar to that of Cheng and Bartlett [19], whose analysis needs . ν to be strongly 
log-concave. 

With Lemma 3

Fig. 2 An illustration for the proof of Lemma 3. In each iteration, we compare the evolution of 
(a) the continuous-time Langevin dynamics for time . ε, and (b) one step of ULA. If the current KL 
divergence is .H ≡ Hν(ρk), then after the Langevin dynamics (a) the KL divergence is . Hν(ρ̃k+1) ≤
e−αεH , and we show that after ULA (b) the KL divergence is .Hν(ρk+1) ≤ e−αεH + O(ε2nL2)

, we can prove our main result on the convergence rate of ULA 
under LSI. 
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Theorem 1 Suppose . ν satisfies LSI with constant .α > 0 and is L-smooth. For 
any .x0 ∼ ρ0 with .Hν(ρ0) < ∞, the iterates .xk ∼ ρk of ULA (11) with step size
.0 < ε ≤ α

4L2 satisfy 

.Hν(ρk) ≤ e−αεkHν(ρ0) + 8εnL2

α
. (13) 

Thus, for any .δ > 0, to achieve  .Hν(ρk) < δ, it suffices to run ULA with step size 
.ε ≤ α

4L2 min{1, δ
4n

} for .k ≥ 1
αε

log 2Hν(ρ0)
δ

iterations. 

We provide the proof of Theorem 1 in Sect. 8.2.2. 
In particular, suppose .δ < 4n and we choose the largest permissible step 

size .ε = �
(

αδ
L2n

)
. Suppose we start with a Gaussian .ρ0 = N (x∗, 1

L
I), where 

. x∗ is a stationary point of f (which we can find, e.g., via gradient descent), so 

.Hν(ρ0) ≤ f (x∗) + n
2 log L

2π
= Õ(n) by Lemma 1. Therefore, Theorem 1 states 

that to achieve .Hν(ρk) ≤ δ, ULA has iteration complexity .k = �̃
(

L2n
α2δ

)
. Since LSI 

implies Talagrand’s inequality, Theorem 1 also yields a convergence guarantee in 
Wasserstein distance. 

As .k → ∞, Theorem 1 implies the following bound on the bias between . νε and 
. ν under LSI. However, note that the bound in Corollary 1 is .Hν(νε) = O(ε), while 
from Example 1 we see that .Hν(νε) = O(ε2) in the Gaussian case. 

Corollary 1 Suppose . ν satisfies LSI with constant .α > 0 and is L-smooth. For 

.0 < ε ≤ α
4L2 , the biased limit . νε of ULA with step size . ε satisfies . Hν(νε) ≤ 8nL2ε

α

and .W2(ν, νε)
2 ≤ 16nL2ε

α2 . 

Remark 1 If f satisfies a third-order smoothness condition (without isoperimetry), 
then we can show a bound on the bias in relative Fisher information; see Sect. 7.1. 

4 Review of Rényi Divergence Along Langevin Dynamics 

In this section we review the definition of Rényi divergence and the exponential 
convergence of Rényi divergence along the Langevin dynamics under LSI. 

4.1 Rényi Divergence 

Rényi divergence [68] is a family of generalizations of KL divergence. We refer 
to [12, 71] for basic properties of Rényi divergence.
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For .q > 0, . q �= 1, the  Rényi divergence of order q of a probability distribution 
. ρ with respect to . ν is 

.Rq,ν(ρ) = 1

q − 1
log Fq,ν(ρ) (14) 

where

.Fq,ν(ρ) = Eν

[(ρ
ν

)q] =
∫

Rn

ν(x)
ρ(x)q

ν(x)q
dx =
∫

Rn

ρ(x)q

ν(x)q−1 dx. (15) 

Rényi divergence is the relative form of Rényi entropy [68]: . Hq(ρ) =
1

q−1 log
∫

ρ(x)q dx. The case .q = 1 is defined via limit, and recovers the KL 
divergence (1) :

.R1,ν(ρ) = lim
q→1

Rq,ν(ρ) = Eν

[ρ
ν

log
ρ

ν

]
= Eρ

[
log

ρ

ν

]
= Hν(ρ). (16) 

Rényi divergence has the property that .Rq,ν(ρ) ≥ 0 for all . ρ, and .Rq,ν(ρ) = 0 if and 
only if .ρ = ν. Furthermore, the map .q �→ Rq,ν(ρ) is increasing (see Sect. 8.3.1). 
Therefore, Rényi divergence provides an alternative measure of “distance” of . ρ from 
. ν, which becomes stronger as q increases. In particular, . R∞,ν(ρ) = log

∥∥ρ
ν

∥∥∞ =
log supx

ρ(x)
ν(x)

is finite if and only if . ρ is warm relative to . ν. It is possible that 
.Rq,ν(ρ) = ∞ for large enough q, as the following example shows. 

Example 2 Let .ρ = N (0, σ 2I ) and .ν = N (0, λ2I ). If .σ 2 > λ2 and .q ≥ σ 2

σ 2−λ2 , 

then .Rq,ν(ρ) = ∞. Otherwise, .Rq,ν(ρ) = n
2 log λ2

σ 2 − n
2(q−1)

log
(
q − (q − 1) σ 2

λ2

)
. 

Analogous to Lemma 1, we have the following estimate of the Rényi divergence 
of a Gaussian. 

Lemma 4 Suppose .ν = e−f is L-smooth. Let .ρ = N (x∗, 1
L
I) where . x∗ is a 

stationary point of f . Then for all .q ≥ 1, .Rq,ν(ρ) ≤ f (x∗) + n
2 log L

2π
. 

We provide the proof of Lemma 4 in Sect. 8.3.2. 

4.1.1 Log-Sobolev Inequality 

For .q > 0, we define the Rényi information of order q of . ρ with respect to . ν as 

. Gq,ν(ρ) = Eν

[(ρ
ν

)q ∥∥∥∇ log
ρ

ν

∥∥∥
2
]

= Eν

[(ρ
ν

)q−2 ∥∥∥∇ ρ

ν

∥∥∥
2
]

= 4

q2
Eν

[∥∥∥∥∇
(ρ

ν

) q
2

∥∥∥∥
2
]

. (17)
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The case .q = 1 recovers relative Fisher information (3) : . G1,ν(ρ) =
Eν

[
ρ
ν

∥∥∇ log ρ
ν

∥∥2] = Jν(ρ). We have the following relation under log-Sobolev 

inequality. Note that the case .q = 1 recovers LSI in the form (4) involving KL
divergence and relative Fisher information.

Lemma 5 Suppose . ν satisfies LSI with constant .α > 0. Let .q ≥ 1. For all . ρ, 

.
Gq,ν(ρ)

Fq,ν(ρ)
≥ 2α

q2 Rq,ν(ρ). (18) 

We provide the proof of Lemma 5 in Sect. 8.3.3. 

4.2 Langevin Dynamics 

Along the Langevin dynamics (7) for . ν, we can compute the rate of change of the 
Rényi divergence. 

Lemma 6 For all .q > 0, along the Langevin dynamics (7) ,

.
d

dt
Rq,ν(ρt ) = −q

Gq,ν(ρt )

Fq,ν(ρt )
. (19) 

We provide the proof of Lemma 6 in Sect. 8.3.4. In particular, . d
dt

Rq,ν(ρt ) ≤ 0, so  
Rényi divergence is always decreasing along the Langevin dynamics. Furthermore, 
analogous to how the Langevin dynamics is the gradient flow of KL divergence 
under the Wasserstein metric, one can also show that the Langevin dynamics is the 
gradient flow of Rényi divergence with respect to a suitably defined metric (which 
depends on the target distribution . ν) on the space of distributions; see [14]. 

4.2.1 Convergence of Rényi Divergence Along Langevin Dynamics Under 
LSI 

When . ν satisfies LSI, Rényi divergence converges exponentially fast along the 
Langevin dynamics. Note the case .q = 1 recovers the exponential convergence 
rate of KL divergence from Theorem 4. 

Theorem 2 Suppose . ν satisfies LSI with constant .α > 0. Let .q ≥ 1. Along the 
Langevin dynamics (7) ,

.Rq,ν(ρt ) ≤ e
− 2αt

q Rq,ν(ρ0). (20)
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We provide the proof of Theorem 2 in Sect. 8.3.5. Theorem 2 shows that if 
the initial Rényi divergence is finite, then it converges exponentially fast. However, 
even if initially the Rényi divergence of some order is infinite, it will be eventually 
finite along the Langevin dynamics, after which time Theorem 2 applies. This is 
because when . ν satisfies LSI, the Langevin dynamics satisfies a hypercontractivity 
property [11, 39, 74]; see Sect. 8.3.6. Furthermore, as shown in [14], we can combine 
the exponential convergence rate above with the hypercontractivity property to 
improve the exponential rate to be . 2α, independent of q, at the cost of some initial 
waiting time; here we leave the rate as above for simplicity. 

Remark 2 When . ν satisfies Poincaré inequality, we can still prove the convergence 
of Rényi divergence along the Langevin dynamics. However, in this case, Rényi 
divergence initially decreases linearly, then exponentially once it is less than 1. See 
Sect. 6.1. 

5 Rényi Divergence Along ULA 

In this section we prove a convergence guarantee for Rényi divergence along ULA 
under the assumption that the biased limit satisfies LSI. 

As before, let .ν = e−f , and let . νε denote the biased limit of ULA (11) with step
size .ε > 0. We first note that the asymptotic bias .Rq,ν(νε) may be infinite for large 
enough q. 

Example 3 As in Examples 1 and 2, let .ν = N (0, 1
α
I ), so .νε = N

(
0, 1

α(1− εα
2 )

)
. 

The bias is 

. Rq,ν(νε) =
{

n
2(q−1)

(
q log
(
1 − εα

2

)− log
(
1 − qεα

2

))
if 1 < q < 2

εα
,

∞ if q ≥ 2
εα

.

For .1 < q < 2
εα

, we can bound . Rq,ν(νε) ≤ nα2q2ε2

8(q−1)(1− qεα
2 )

.

Thus, for each fixed .q > 1, there is an asymptotic bias .Rq,ν(νε) which is finite 
for small .ε > 0. In Example 3, we have .Rq,ν(νε) = O(ε2). 

5.1 Decomposition of Rényi Divergence 

For order .q > 1, we have the following decomposition of Rényi divergence.
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Lemma 7 Let .q > 1. For all probability distribution . ρ, 

.Rq,ν(ρ) ≤
(

q − 1
2

q − 1

)
R2q,νε (ρ) + R2q−1,ν(νε). (21) 

We provide the proof of Lemma 7 in Sect. 8.4.1. The first term in the bound 
above is the Rényi divergence with respect to the biased limit, which converges 
exponentially fast under LSI assumption (see Lemma 8). The second term in (21) is
the asymptotic bias in Rényi divergence.

5.2 Rapid Convergence of Rényi Divergence to Biased Limit 
Under LSI 

We show that Rényi divergence with respect to the biased limit . νε converges 
exponentially fast along ULA, assuming . νε itself satisfies LSI. 

Assumption 1 The probability distribution . νε satisfies LSI with a constant . β ≡
βε > 0. 

We can verify Assumption 1 in the Gaussian case. We can also verify Assump-
tion 1 when . ν is smooth and strongly log-concave; see Sect. 7.2. However, it is 
unclear how to verify Assumption 1 in general. One might hope to prove that if . ν
satisfies LSI, then Assumption 1 holds. 

Example 4 Let .ν = N (0, 1
α
I ), so .νε = N

(
0, 1

α(1− εα
2 )

I
)

, which is strongly log-

concave (and hence satisfies LSI) with parameter .β = α
(
1 − εα

2

)
. In particular, 

.β ≥ α
2 for .ε ≤ 1

α
. 

Under Assumption 1, we can prove an exponential convergence rate to the biased 
limit . νε . 

Lemma 8 Assume Assumption 1. Suppose .ν = e−f is L-smooth, and let . 0 < ε ≤
min
{

1
3L

, 1
9β

}
. For .q ≥ 1, along ULA (11) ,

.Rq,νε (ρk) ≤ e
− βεk

q Rq,νε (ρ0). (22) 

We provide the proof of Lemma 8 in Sect. 8.4.2. In the proof of Lemma 8, we  
decompose each step of ULA as a sequence of two operations; see Fig. 3 for an 
illustration. In the first part, we take a gradient step; this is a deterministic bijective 
map, so it preserves Rényi divergence. In the second part, we add an independent 
Gaussian; this is the result of evolution along the heat flow, and we can derive a 
formula on the decrease in Rényi divergence (which is similar to the formula (19) 
along the Langevin dynamics; see Sect. 8.4.2 for detail).
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Fig. 3 An illustration for the 
proof of Lemma 8. We  
decompose each step of ULA 
into two operations: (a) a 
deterministic gradient step, 
and (b) an evolution along the 
heat flow. If the current Rényi 
divergence is .R ≡ Rq,νε (ρk), 
then the gradient step (a) does 
not change the Rényi 
divergence: .Rq,ν̃ε

(ρ̃k) = R, 
while the heat flow (b) 
decreases the Rényi 
divergence: 
. Rq,νε (ρk+1) ≤ e−αεR

5.3 Convergence of Rényi Divergence Along ULA Under LSI 

We combine Lemmas 7 and 8 to obtain the following characterization of the 
convergence of Rényi divergence along ULA under LSI. 

Theorem 5 Assume Assumption 1. Suppose .ν = e−f is L-smooth, and let . 0 < ε ≤
min
{

1
3L

, 1
9β

}
. Let .q > 1, and suppose .R2q,νε (ρ0) < ∞. Then along ULA (11) ,

.Rq,ν(ρk) ≤
(

q − 1
2

q − 1

)
R2q,νε (ρ0)e

− βεk
2q + R2q−1,ν(νε). (23) 

We provide the proof of Theorem 5 in Sect. 8.4.3. For . δ > 0, let . γq(δ) = sup{ε >

0 : Rq,ν(νε) ≤ δ}. Theorem 5 states that to achieve .Rq,ν(ρk) ≤ δ, it suffices to run 

ULA with step size .ε = �
(

min
{

1
L
, γ2q−1

(
δ
2

)})
for . k = �

(
1
βε

log
R2q,νε (ρ0)

δ

)

iterations. Suppose . δ is small enough that .γ2q−1
(

δ
2

)
< 1

L
. Note that . νε is .

1
2ε

-smooth, 
so by choosing . ρ0 to be a Gaussian with covariance . 2εI , we have . R2q,νε (ρ0) =
Õ(n) by Lemma 4. Therefore, Theorem 5 yields an iteration complexity of . k =
�̃

(
1

βγ2q−1

(
δ
2

)
)

. 

For example, if .Rq,ν(νε) = O(ε), then .γq(δ) = �(δ), so the iteration complexity 

is .k = �̃
(

1
βδ

)
with step size .ε = �(δ). On the other hand, if .Rq,ν(ε) = O(ε2), 

as in Example 3, then .γq(δ) = �(
√

δ), so the iteration complexity is . k = �̃
(

1
β
√

δ

)

with step size .ε = �(
√

δ). 

Remark 3 Our result for Rényi divergence above involves the asymptotic bias, 
which we do not bound. Another approach to analyze ULA in Rényi divergence was 
proposed in [35] (and improved in [34]), albeit with a bound that does not provide 
an estimate of the Rényi bias. The work of [22] extended our one-step interpolation
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technique to show the convergence of ULA in Rényi divergence under LSI and 
smoothness, and provides an estimate on the Rényi bias. 

6 Poincaré Inequality 

In this section we review the definition of Poincaré inequality and prove convergence 
guarantees for the Rényi divergence along the Langevin dynamics and ULA. As 
before, let .ρ, ν be smooth probability distributions on . Rn. 

Recall we say . ν satisfies Poincaré inequality (PI) with a constant .α > 0 if for 
all smooth function .g : Rn → R, 

.Varν(g) ≤ 1

α
Eν[‖∇g‖2] (24) 

where .Varν(g) = Eν[g2] −Eν[g]2 is the variance of g under . ν. Poincaré inequality 
is an isoperimetric-type statement, but it is weaker than LSI. It is known that LSI 
implies PI with the same constant; in fact, PI is a linearization of LSI (4) , i.e., when
.ρ = (1 + ηg)ν as .η → 0 [69, 74]. Furthermore, it is also known that Talagrand’s 
inequality implies PI with the same constant, and in fact PI is also a linearization of 
Talagrand’s inequality [66]. Poincaré inequality is better behaved than LSI [16], and 
there are various Lyapunov function criteria and integrability conditions that can be 
used to verify when a probability distribution satisfies Poincaré inequality; see for 
example [6, 23, 63]. 

Under Poincaré inequality, we can prove the following bound on Rényi diver-
gence, which is analogous to Lemma 5 under LSI. When .Rq,ν(ρ) is small, the two 
bounds are approximately equivalent. 

Lemma 9 Suppose . ν satisfies Poincaré inequality with constant .α > 0. Let .q ≥ 2. 
For all . ρ, 

. 
Gq,ν(ρ)

Fq,ν(ρ)
≥ 4α

q2

(
1 − e−Rq,ν (ρ)

)
.

We provide the proof of Lemma 9 in Sect. 8.5.1. 

6.1 Convergence of Rényi Divergence Along Langevin 
Dynamics Under Poincaré 

When . ν satisfies Poincaré inequality, Rényi divergence converges along the 
Langevin dynamics. The convergence is initially linear, then becomes exponential 
once the Rényi divergence falls below a constant.
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Theorem 3 Suppose . ν satisfies Poincaré inequality with constant .α > 0. Let .q ≥ 2. 
Along the Langevin dynamics (7) ,

. Rq,ν(ρt ) ≤
{

Rq,ν(ρ0) − 2αt
q

if Rq,ν(ρ0) ≥ 1 and as long as Rq,ν(ρt ) ≥ 1,

e
− 2αt

q Rq,ν(ρ0) if Rq,ν(ρ0) ≤ 1.

We provide the proof of Theorem 3 in Sect. 8.5.2. Theorem 3 states that 
starting from .Rq,ν(ρ0) ≥ 1, the Langevin dynamics reaches .Rq,ν(ρt ) ≤ δ in 

.t ≤ O
(

q
α

(
Rq,ν(ρ0) + log 1

δ

))
time. 

6.2 Convergence of Rényi Divergence to Biased Limit Under 
Poincaré 

We show that Rényi divergence with respect to the biased limit . νε converges 
exponentially fast along ULA, assuming . νε satisfies Poincaré inequality. 

Assumption 2 The distribution . νε satisfies Poincaré inequality with a constant . β ≡
βε > 0. 

We can verify Assumption 2 in the Gaussian case, and when . ν is smooth 
and strongly log-concave; see Sect. 7.2. However, it is unclear how to verify 
Assumption 2 in general. One might hope to prove that if . ν satisfies Poincaré, then 
Assumption 2 holds. 

Analogous to Lemma 8, we have the following convergence to the biased limit 
in discrete time, at a rate which matches the continuous-time convergence in 
Theorem 6. 

Lemma 10 Assume Assumption 2. Suppose .ν = e−f is L-smooth, and let . 0 < ε ≤
min
{

1
3L

, 1
9β

}
. For .q ≥ 2, along ULA (11) ,

. Rq,νε (ρk) ≤
⎧
⎨
⎩

Rq,νε (ρ0) − βεk
q

if Rq,νε (ρ0) ≥ 1 and as long as Rq,νε (ρk) ≥ 1,

e
− βεk

q Rq,νε (ρ0) if Rq,νε (ρ0) ≤ 1.

(25) 

We provide the proof of Lemma 10 in Sect. 8.5.3. Lemma 10 states 
that starting from .Rq,νε (ρ0) ≥ 1, ULA reaches .Rq,νε (ρk) ≤ δ in . k ≤
O
(

q
εβ

(
Rq,νε (ρ0) + log 1

δ

))
iterations.
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6.3 Convergence of Rényi Divergence Along ULA Under 
Poincaré 

We combine Lemmas 7 and 10 to obtain the following characterization of the 
convergence of Rényi divergence along ULA to the true target distribution under 
Poincaré inequality. 

Theorem 6 Assume Assumption 2. Suppose .ν = e−f is L-smooth, and let . 0 < ε ≤
min
{

1
3L

, 1
9β

}
. Let .q > 1, and suppose .1 ≤ R2q,νε (ρ0) < ∞. Then along ULA (11) ,

for .k ≥ k0 := 2q
βε

(R2q,νε (ρ0) − 1), 

.Rq,ν(ρk) ≤
(

q − 1
2

q − 1

)
e
− βε(k−k0)

2q + R2q−1,ν(νε). (26) 

We provide the proof of Theorem 6 in Sect. 8.5.4. 
For .δ > 0, recall .γq(δ) = sup{ε > 0 : Rq,ν(νε) ≤ δ}. Theorem 6 states 

that to achieve .Rq,ν(ρk) ≤ δ, it suffices to run ULA with step size . ε =
�
(

min
{

1
L
, γ2q−1

(
δ
2

)})
for .k = �

(
1
βε

(
R2q,νε (ρ0) + log 1

δ

))
iterations. Suppose 

. δ is small enough that .γ2q−1
(

δ
2

)
< 1

L
. Note that . νε is . 1

2ε
-smooth, so by choosing 

. ρ0 to be a Gaussian with covariance . 2εI , we have .R2q,νε (ρ0) = Õ(n) by Lemma 4. 

Therefore, Theorem 6 yields an iteration complexity of .k = �̃

(
n

βγ2q−1

(
δ
2

)
)

. Note  

the additional dependence on dimension, compared to the LSI case in Sect. 5.3. 
For example, if .Rq,ν(νε) = O(ε), then .γq(δ) = �(δ), so the iteration complexity 

is .k = �̃
(

n
βδ

)
with step size .ε = �(δ). On the other hand, if .Rq,ν(νε) = O(ε2), 

as in Example 3, then .γq(δ) = �(
√

δ), so the iteration complexity is . k = �̃
(

n

β
√

δ

)

with step size .ε = �(
√

δ). 

7 Properties of Biased Limit 

7.1 Bound on Bias Under Third-Order Smoothness 

Let . νε be the biased limit of ULA with step size . ε > 0. Let .με = (I − ε∇f )#νε , so  
. νε satisfies 

.νε = με ∗ N (0, 2εI).
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We will bound the relative Fisher information .Jν(νε) under third-order smooth-
ness. We say f is .(L,M)-smooth if f is L-smooth (.∇f is L-Lipschitz), and .∇2f is 
M-Lipschitz, or .‖∇3f ‖op ≤ M . We provide the proof of Theorem 7 in Sects. 8.6.4 
and 8.6.5. 

Theorem 7 We have the following: 

1. If f is .(L,M)-smooth and .ε ≤ 1
2L

, then: 

. Jν(νε) ≤ 2εn
(
L2 + 2

√
nLM + 3nM2

)
.

2. For any f and .ε > 0 (such that . νε exists and the quantities below are defined): 

. Jν(νε) ≥ ε2

4

(
Eνε [‖∇f ‖2])2

Varνε (X)
.

Note the dependence on . ε in the upper bound above is .O(ε), while the lower 
bound is .�(ε2). 

Example 5 Recall that if .ν = N (0, 1
α
I ), then .νε = N (0, 1

α(1− εα
2 )

I ) for .ε < 2
α

. 

Then1 

.Jν(νε) = ε2

4

nα2

(1 − εα
2 )2

= �(ε2nα2). (27) 

Note the lower bound in Theorem 7 has the correct order of . ε, but the upper bound 
is not tight. 

Remark 4 Recall from Theorem 1 that under LSI and L-smoothness we have 
.Hν(νε) ≤ O(εnL2

α
). Under .α-LSI, the upper bound in Theorem 7 implies . Hν(νε) ≤

O(εn
α

(L2 + √
nLM + nM2)); this has the same first term as in the bound from 

Theorem 1, but has an additional dependence on third-order smoothness. 

We note that in general, convergence in relative Fisher information does not 
necessarily imply convergence of the underlying distributions in total variation; see 
for example [7, Proposition 1]. We also note that by examining the proof of the 
upper bound in Theorem 7, we can conclude that .Jν(νε) ≤ εnL2 assuming f is 
L-smooth and .��f ≥ 0.

1 Recall for .ν = N (0, 1
α
I) and .ρ = N (0, 1

β
I ) on . Rn, the relative Fisher information is . Jν(ρ) =

n
β
(β − α)2. 
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7.2 Isoperimetry of Biased Limit Under Strong Log-Concavity 
and Smoothness 

If . ν is smooth and strongly log-concave, then the biased limit . νε satisfies LSI 
(hence also Poincaré), so Assumptions 1 and 2 are satisfied. We provide the proof 
of Theorem 8 in Sect. 8.6.6. 

Theorem 8 If . ν is .α-strongly log-concave and L-smooth, and .ε ≤ 1
L
, then . νε is 

.β-LSI with .β ≥ α
2 . 

With Theorem 8, we know that for target distributions which are smooth and 
strongly log-concave, we have convergence of ULA in Rényi divergence to the 
biased limit, as in Theorem 5. However, the final bound is in terms of the bias 
in Rényi divergence, which we do not bound. (Under third-order smoothness, we 
can bound it in relative Fisher information as in Theorem 7, but it does not bound 
the Rényi divergence.) The work of [22] extends our interpolation technique to 
show the convergence in Rényi divergence under LSI as well as a general family 
of isoperimetric inequalities, and proves a bound on the Rényi bias under LSI and 
smoothness. 

8 Proofs and Details 

8.1 Proofs for Sect. 2: KL Divergence Along Langevin 
Dynamics 

8.1.1 Proof of Lemma 1 

Proof of Lemma 1 Since f is L-smooth and ∇f (x∗) = 0, we have the bound 

. f (x) ≤ f (x∗) + 〈∇f (x∗), x − x∗〉 + L

2
‖x − x∗‖2 = f (x∗) + L

2
‖x − x∗‖2.

Let X ∼ ρ = N (x∗, 1 
L I ). Then 

. Eρ[f (X)] ≤ f (x∗) + L

2
Varρ(X) = f (x∗) + n

2
.

Recall the entropy of ρ is H(ρ)  = −Eρ[log ρ(X)] =  n 
2 log 2πe  

L . Therefore, the KL 
divergence is 

.Hν(ρ) =
∫

ρ (log ρ + f ) dx = −H(ρ) + Eρ[f ] ≤ f (x∗) + n

2
log

L

2π
.

��
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8.1.2 Proof of Lemma 2 

Proof of Lemma 2 Recall the time derivative of KL divergence along any flow is 
given by 

. 
d

dt
Hν(ρt ) = d

dt

∫

Rn

ρt log
ρt

ν
dx =
∫

Rn

∂ρt

∂t
log

ρt

ν
dx

since the second part of the chain rule is zero:
∫

ρt 
∂ 
∂t log ρt 

ν dx = ∫ ∂ρt 
∂t dx = 

d 
dt

∫
ρt dx = 0. Therefore, along the Fokker-Planck equation (8) for the Langevin

dynamics (7) ,

. 
d

dt
Hν(ρt ) =

∫
∇ ·
(
ρt∇ log

ρt

ν

)
log

ρt

ν
dx

= −
∫

ρt

∥∥∥∇ log
ρt

ν

∥∥∥
2
dx

= −Jν(ρt )

where in the second equality we have applied integration by parts. ��

8.1.3 Proof of Theorem 4 

Proof of Theorem 4 From Lemma 2 and the LSI assumption (4) ,

. 
d

dt
Hν(ρt ) = −Jν(ρt ) ≤ −2αHν(ρt ).

Integrating implies the desired bound Hν(ρt ) ≤ e−2αt Hν(ρ0). 
Furthermore, since ν satisfies LSI with constant α, it also satisfies Tala-

grand’s inequality (6) with constant α [66, Theorem 1]. Therefore, W2(ρt , ν)2 ≤
2 
α Hν(ρt ) ≤ 2 

α e
−2αt Hν(ρ0), as desired. ��

8.2 Proofs for Sect. 3: Unadjusted Langevin Algorithm 

8.2.1 Proof of Lemma 3 

We will use the following auxiliary results. 

Lemma 11 Assume .ν = e−f is L-smooth. Then 

.Eν[‖∇f ‖2] ≤ nL.
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Proof Since .ν = e−f , by integration by parts we can write 

. Eν[‖∇f ‖2] = Eν[�f ].

Since . ν is L-smooth, .∇2f (x) 	 L I , so .�f (x) ≤ nL for all .x ∈ R
n. Therefore, 

.Eν[‖∇f ‖2] = Eν[�f ] ≤ nL, as desired. ��
Lemma 12 Suppose . ν satisfies Talagrand’s inequality with constant .α > 0 and is 
L-smooth. For any . ρ, 

. Eρ[‖∇f ‖2] ≤ 4L2

α
Hν(ρ) + 2nL.

Proof Let .x ∼ ρ and .x∗ ∼ ν with an optimal coupling .(x, x∗) so that . E[‖x −
x∗‖2] = W2(ρ, ν)2. Since .ν = e−f is L-smooth, .∇f is L-Lipschitz. By triangle 
inequality, 

. ‖∇f (x)‖ ≤ ‖∇f (x) − ∇f (x∗)‖ + ‖∇f (x∗)‖
≤ L‖x − x∗‖ + ‖∇f (x∗)‖.

Squaring, using .(a + b)2 ≤ 2a2 + 2b2, and taking expectation, we get 

. Eρ[‖∇f (x)‖2] ≤ 2L2
E[‖x − x∗‖2] + 2Eν[‖∇f (x∗)‖2]

= 2L2 W2(ρ, ν)2 + 2Eν[‖∇f (x∗)‖2].

By Talagrand’s inequality (6) , .W2(ρ, ν)2 ≤ 2
α
Hν(ρ). By Lemma 11 we have 

.Eν[‖∇f (x∗)‖2] ≤ nL. Plugging these to the bound above gives the desired result. 
��

We are now ready to prove Lemma 3. 

Proof of Lemma 3 For simplicity suppose . k = 0, so we start at .x0 ∼ ρ0. We write 
one step of ULA 

. x0 �→ x0 − ε∇f (x0) + √
2εz0

as the output at time . ε of the stochastic differential equation 

.dxt = −∇f (x0) dt + √
2 dWt (28)
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where .Wt is the standard Brownian motion in .Rn starting at .W0 = 0. Indeed, the 
solution to (28) at time .t = ε is 

. xε = x0 − ε∇f (x0) + √
2 Wε

d= x0 − ε∇f (x0) + √
2ε z0 (29) 

where .z0 ∼ N (0, I ), which is identical to the ULA update. 
We derive the continuity equation corresponding to (28) as follows. For each

. t > 0, let .ρ0t (x0, xt ) denote the joint distribution of .(x0, xt ), which we write in 
terms of the conditionals and marginals as 

. ρ0t (x0, xt ) = ρ0(x0)ρt |0(xt | x0) = ρt (xt )ρ0|t (x0 | xt ).

Conditioning on . x0, the drift vector field .−∇f (x0) is a constant, so the Fokker-
Planck formula for the conditional density .ρt |0(xt | x0) is 

.
∂ρt |0(xt | x0)

∂t
= ∇ · (ρt |0(xt | x0)∇f (x0)

)+ �ρt |0(xt | x0). (30) 

To derive the evolution of . ρt , we take expectation over .x0 ∼ ρ0. Multiplying both 
sides of (30) by .ρ0(x0) and integrating over . x0, we obtain 

. 
∂ρt (x)

∂t
=
∫

Rn

∂ρt |0(x | x0)

∂t
ρ0(x0) dx0

=
∫

Rn

(∇ · (ρt |0(x | x0)∇f (x0)
)+ �ρt |0(x | x0)

)
ρ0(x0) dx0

=
∫

Rn

(∇ · (ρt,0(x, x0)∇f (x0)
)+ �ρt,0(x, x0)

)
dx0

= ∇ ·
(

ρt (x)

∫

Rn

ρ0|t (x0 | x)∇f (x0) dx0

)
+ �ρt(x)

= ∇ · (ρt (x)Eρ0|t [∇f (x0) | xt = x])+ �ρt(x). (31) 

Observe that the difference between the Fokker-Planck equations (31) for ULA
and (8) for Langevin dynamics is in the first term, that the drift is now the conditional
expectation .Eρ0|t [∇f (x0) | xt = x], rather than the true gradient .∇f (x). 

Recall the time derivative of relative entropy along any flow is given by 

. 
d

dt
Hν(ρt ) = d

dt

∫

Rn

ρt log
ρt

ν
dx =
∫

Rn

∂ρt

∂t
log

ρt

ν
dx

since the second part of the chain rule is zero: .
∫

ρt
∂
∂t

log ρt

ν
dx = ∫ ∂ρt

∂t
dx =

d
dt

∫
ρt dx = 0.
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Therefore, the time derivative of relative entropy for ULA, using the Fokker-
Planck equation (31) and integrating by parts, is given by:

. 
d

dt
Hν(ρt ) =

∫

Rn

(∇ · (ρt (x)Eρ0|t [∇f (x0) | xt = x])+ �ρt(x)
)

log
ρt (x)

ν(x)
dx

=
∫

Rn

(
∇ ·
(

ρt (x)

(
∇ log

ρt (x)

ν(x)
+ Eρ0|t [∇f (x0) | xt = x]

− ∇f (x)

)))
log

ρt (x)

ν(x)
dx

= −
∫

Rn

ρt (x)

〈
∇ log

ρt (x)

ν(x)
+ Eρ0|t [∇f (x0) | xt = x]

− ∇f (x), ∇ log
ρt (x)

ν(x)

〉
dx

= −
∫

Rn

ρt (x)

∥∥∥∇ log
ρt

ν

∥∥∥
2
dx

+
∫

Rn

ρt (x)

〈
∇f (x) − Eρ0|t [∇f (x0) | xt = x], ∇ log

ρt (x)

ν(x)

〉
dx

= −Jν(ρt ) +
∫

Rn×Rn

ρ0t (x0, x)

〈
∇f (x) − ∇f (x0),∇ log

ρt (x)

ν(x)

〉
dx0 dx

= −Jν(ρt ) + Eρ0t

[〈
∇f (xt ) − ∇f (x0), ∇ log

ρt (xt )

ν(xt )

〉]
(32) 

where in the last step we have renamed x as . xt . The first term in (32) is the same
as in the Langevin dynamics. The second term in (32) is the discretization error,
which we can bound as follows. Using .〈a, b〉 ≤ ‖a‖2 + 1

4‖b‖2 and since .∇f is 
L-Lipschitz, 

. Eρ0t

[〈
∇f (xt ) − ∇f (x0),∇ log

ρt (xt )

ν(xt )

〉]
≤ Eρ0t

[‖∇f (xt ) − ∇f (x0)‖2]

+ 1

4
Eρ0t

[∥∥∥∥∇ log
ρt (xt )

ν(xt )

∥∥∥∥
2
]

= Eρ0t
[‖∇f (xt ) − ∇f (x0)‖2]

+ 1

4
Jν(ρt )

≤ L2
Eρ0t

[‖xt − x0‖2] + 1

4
Jν(ρt )

(33)
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Recall from (29) the solution of ULA is .xt
d= x0 − t∇f (x0) + √

2t z0, where . z0 ∼
N (0, I ) is independent of . x0. Then 

. Eρ0t
[‖xt − x0‖2] = Eρ0t

[‖ − t∇f (x0) + √
2tz0‖2]

= t2
Eρ0 [‖∇f (x0)‖2] + 2tn

≤ 4t2L2

α
Hν(ρ0) + 2t2nL + 2tn

where in the last inequality we have used Lemma 12. This bounds the discretization 
error by 

. Eρ0t

[〈
∇f (xt )− ∇f (x0),∇ log

ρt (xt )

ν(xt )

〉]
≤ 4t2L4

α
Hν(ρ0)+ 2t2nL3

+ 2tnL2 + 1

4
Jν(ρt ).

Therefore, from (32) , the time derivative of KL divergence along ULA is
bounded by

. 
d

dt
Hν(ρt ) ≤ −3

4
Jν(ρt ) + 4t2L4

α
Hν(ρ0) + 2t2nL3 + 2tnL2.

Then by the LSI (4) assumption,

. 
d

dt
Hν(ρt ) ≤ −3α

2
Hν(ρt ) + 4t2L4

α
Hν(ρ0) + 2t2nL3 + 2tnL2.

We wish to integrate the inequality above for .0 ≤ t ≤ ε. Using .t ≤ ε and since 
.ε ≤ 1

2L
, we simplify the above to 

. 
d

dt
Hν(ρt ) ≤ −3α

2
Hν(ρt ) + 4ε2L4

α
Hν(ρ0) + 2ε2nL3 + 2εnL2

≤ −3α

2
Hν(ρt ) + 4ε2L4

α
Hν(ρ0) + 3εnL2.

Multiplying both sides by .e
3α
2 t , we can write the above as 

.
d

dt

(
e

3α
2 tHν(ρt )

)
≤ e

3α
2 t

(
4ε2L4

α
Hν(ρ0) + 3εnL2

)
.
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Integrating from .t = 0 to .t = ε gives 

. e
3
2 αεHν(ρε) − Hν(ρ0) ≤ 2(e

3
2 αε − 1)

3α

(
4ε2L4

α
Hν(ρ0) + 3εnL2

)

≤ 2ε

(
4ε2L4

α
Hν(ρ0) + 3εnL2

)

where in the last step we have used the inequality .ec ≤ 1+2c for .0 < c = 3
2αε ≤ 1, 

which holds because .0 < ε ≤ 2
3α

. Rearranging, the inequality above gives 

. Hν(ρε) ≤ e− 3
2 αε

(
1 + 8ε3L4

α

)
Hν(ρ0) + e− 3

2 αε6ε2nL2.

Since .1 + 8ε3L4

α
≤ 1 + αε

2 ≤ e
1
2 αε for .ε ≤ α

4L2 , and using .e− 3
2 αε ≤ 1, we conclude 

that 

. Hν(ρε) ≤ e−αεHν(ρ0) + 6ε2nL2.

This is the desired inequality, after renaming .ρ0 ≡ ρk and .ρε ≡ ρk+1. Note that the 
conditions .ε ≤ 1

2L
and .ε ≤ 2

3α
above are also implied by the assumption . ε ≤ α

4L2

since .α ≤ L. ��

8.2.2 Proof of Theorem 1 

Proof of Theorem 1 Applying the recursion (12) from Lemma 3, we obtain 

. Hν(ρk) ≤ e−αεkHν(ρ0) + 6ε2nL2

1 − e−αε
≤ e−αεkHν(ρ0) + 8εnL2

α

where in the last step we have used the inequality 1−e−c ≥ 3 
4c for 0 < c  = αε ≤ 1 

4 , 
which holds since ε ≤ α 

4L2 ≤ 1 
4α

. 

Given δ >  0, if we further assume ε ≤ δα 
16nL2 , then the above implies Hν(ρk) ≤ 

e−αεk Hν(ρ0)+ δ 
2 . This means for k ≥ 1 

αε
log 2Hν(ρ0) 

δ , we have Hν(ρk) ≤ δ 
2 + δ 

2 = δ, 
as desired. ��
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8.3 Details for Sect. 4: Rényi Divergence Along Langevin 
Dynamics 

8.3.1 Properties of Rényi Divergence 

We recall that Rényi divergence is increasing in the order. 

Lemma 13 For any probability distributions .ρ, ν, the  map  .q �→ Rq,ν(ρ) is 
increasing for .q > 0. 

Proof Let .0 < q ≤ r . We will show that .Rq,ν(ρ) ≤ Rr,ν(ρ). 
First suppose .q > 1. We write .Fq,ν(ρ) as an expectation over . ρ and use power 

mean inequality: 

. Fq,ν(ρ) = Eν

[(ρ
ν

)q] = Eρ

[(ρ
ν

)q−1
]

≤ Eρ

[(ρ
ν

)r−1
] q−1

r−1

= Eν

[(ρ
ν

)r] q−1
r−1 = Fr,ν(ρ)

q−1
r−1 .

Taking logarithm and dividing by .q − 1 > 0 gives 

. Rq,ν(ρ) = 1

q − 1
log Fq,ν(ρ) ≤ 1

r − 1
log Fr,ν(ρ) = Rr,ν(ρ).

The case .q = 1 follows by taking limit .q → 1. 
Now suppose .q ≤ r < 1, so .1 − q ≥ 1 − r > 0. We again write .Fq,ν(ρ) as an 

expectation over . ρ and use power mean inequality: 

. Fq,ν(ρ) = Eν

[(ρ
ν

)q] = Eρ

[(
ν

ρ

)1−q
]

≥ Eρ

[(
ν

ρ

)1−r
] 1−q

1−r

= Eν

[(ρ
ν

)r] 1−q
1−r = Fr,ν(ρ)

1−q
1−r .

Taking logarithm and dividing by .q − 1 < 0 (which flips the inequality) gives 

. Rq,ν(ρ) = 1

q − 1
log Fq,ν(ρ) ≤ 1

r − 1
log Fr,ν(ρ) = Rr,ν(ρ).

The case .q < 1 ≤ r follows since .Rq,ν(ρ) ≤ R1,ν(ρ) ≤ Rr,ν(ρ). ��
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8.3.2 Proof of Lemma 4 

Proof of Lemma 4 Since f is L-smooth and x∗ is a stationary point of f , for all 
x ∈ R

n we have 

. f (x) ≤ f (x∗) + 〈∇f (x∗), x − x∗〉 + L

2
‖x − x∗‖2 = f (x∗) + L

2
‖x − x∗‖2.

Let q >  1. Then for ρ = N (x∗, σ 2I )  with q 
σ 2 > (q  − 1)L, 

. Fq,ν(ρ) =
∫

Rn

ρ(x)q

ν(x)q−1 dx

= 1

(2πσ 2)
nq
2

∫

Rn

e
− q

2σ2 ‖x−x∗‖2+(q−1)f (x)
dx

≤ 1

(2πσ 2)
nq
2

∫

Rn

e
− q

2σ2 ‖x−x∗‖2+(q−1)f (x∗)+ (q−1)L
2 ‖x−x∗‖2

dx

= e(q−1)f (x∗)

(2πσ 2)
nq
2

∫

Rn

e
− 1

2

(
q

σ2 −(q−1)L
)
‖x−x∗‖2

dx

= e(q−1)f (x∗)

(2πσ 2)
nq
2

(
2π

q

σ 2 − (q − 1)L

) n
2

= e(q−1)f (x∗)

(2π)
n
2 (q−1)(σ 2)

nq
2

1
(

q

σ 2 − (q − 1)L
) n

2
.

Therefore, 

. Rq,ν(ρ) = 1

q − 1
log Fq,ν(ρ) ≤ f (x∗)− n

2
log 2π

− n

2(q − 1)
log σ 2q

( q

σ 2 − (q − 1)L
)

.

In particular, if σ 2 = 1 
L

, then q 
σ 2 −(q−1)L = L >  0, and the bound above becomes 

. Rq,ν(ρ) ≤ f (x∗) + n

2
log

L

2π
.

The case q = 1 follows from Lemma 1. ��
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8.3.3 Proof of Lemma 5 

Proof of Lemma 5 We plug in h2 = (ρ 
ν

)q to the LSI definition (2) to obtain

.
q2

2α
Gq,ν(ρ) ≥ qEν

[(ρ
ν

)q
log

ρ

ν

]
− Fq,ν(ρ) log Fq,ν(ρ) (34) 

= q
∂

∂q
Fq,ν(ρ) − Fq,ν(ρ) log Fq,ν(ρ).

Therefore, 

. 
q2

2α

Gq,ν(ρ)

Fq,ν(ρ)
≥ q

∂

∂q
log Fq,ν(ρ) − log Fq,ν(ρ)

= q
∂

∂q

(
(q − 1)Rq,ν(ρ)

)− (q − 1)Rq,ν(ρ)

= qRq,ν(ρ) + q(q − 1)
∂

∂q
Rq,ν(ρ) − (q − 1)Rq,ν(ρ)

= Rq,ν(ρ) + q(q − 1)
∂

∂q
Rq,ν(ρ)

≥ Rq,ν(ρ)

where in the last inequality we have used q ≥ 1 and ∂ 
∂q Rq,ν(ρ) ≥ 0 since q �→ 

Rq,ν(ρ) is increasing by Lemma 13. ��

8.3.4 Proof of Lemma 6 

Proof of Lemma 6 Let q >  0, q �= 1. By the Fokker-Planck formula (8) and
integration by parts,

.
d

dt
Fq,ν(ρt ) =

∫

Rn

ν

∂
∂t

(ρ
q
t )

νq
dx

= q

∫

Rn

ρ
q−1
t

νq−1

∂ρt

∂t
dx

= q

∫

Rn

(ρt

ν

)q−1 ∇ ·
(
ρt∇ log

ρt

ν

)
dx

= −q

∫

Rn

ρt

〈
∇
(ρt

ν

)q−1
,∇ log

ρt

ν

〉
dx
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= −q(q − 1)

∫

Rn 
ρt

〈(ρt 
ν

)q−2 ∇ 
ρt 
ν 

,
(ρt 

ν

)−1 ∇ ρt 
ν

〉
dx 

= −q(q − 1)Eν

[(ρt 
ν

)q−2 ∥∥∥∇ 
ρt 
ν

∥∥∥
2
]

= −q(q − 1)Gq,ν(ρt ). (35) 

Therefore,

. 
d

dt
Rq,ν(ρt ) = 1

q − 1

d
dt

Fq,ν(ρt )

Fq,ν(ρt )
= −q

Gq,ν(ρt )

Fq,ν(ρt )
.

For q = 1, we have R1,ν(ρt ) = Hν(ρt ), G1,ν(ρt ) = Jν(ρt ), and F1,ν(ρt ) = 1, and 
the claim (19) follows from Lemma 2. ��

8.3.5 Proof of Theorem 2 

Proof of Theorem 2 By Lemmas 5 and 6, 

. 
d

dt
Rq,ν(ρt ) = −q

Gq,ν(ρt )

Fq,ν(ρt )
≤ −2α

q
Rq,ν(ρt ).

Integrating gives 

. Rq,ν(ρt ) ≤ e
− 2α

q
t
Rq,ν(ρ0)

as desired. ��

8.3.6 Hypercontractivity 

Lemma 14 Suppose ν satisfies LSI with constant α >  0. Let q0 > 1, and suppose 
Rq0,ν(ρ0) <  ∞. Define qt = 1 + e2αt (q0 − 1). Along the Langevin dynamics (7) ,
for all t ≥ 0,

.

(
1 − 1

qt

)
Rqt ,ν(ρt ) ≤

(
1 − 1

q0

)
Rq0,ν(ρ0). (36) 

In particular, for any q ≥ q0, we have Rq,ν(ρt ) ≤ Rq0,ν(ρ0) < ∞ for all t ≥
1

2α
log q−1

q0−1 .

Proof We will show d 
dt

{(
1 − 1 

qt

)
Rqt ,ν(ρt )

}
≤ 0, which implies the desired 

relation (36). Since qt = 1 + e2αt (q0 − 1), we have q̇t = d
dt

qt = 2α(qt − 1).
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Note that 

. 
d

dt
Rqt ,ν(ρt ) = d

dt

(
log Fqt ,ν(ρt )

qt − 1

)

(35) = − q̇t log Fqt ,ν(ρt )

(qt − 1)2
+ q̇tEν

[(
ρt

ν

)qt log ρt

ν

]− qt (qt − 1)Gqt ,ν(ρt )

(qt − 1)Fqt ,ν(ρt )

= −2αRqt ,ν(ρt ) + 2α
Eν

[(
ρt

ν

)qt log ρt

ν

]

Fqt ,ν(ρt )
− qt

Gqt ,ν(ρt )

Fqt ,ν(ρt )
.

In the second equality above we have used our earlier calculation (35) which holds
for fixed q. Then by LSI in the form (34) , we have

. 
d

dt
Rqt ,ν(ρt ) ≤ −2αRqt ,ν(ρt ) + 2α

(
qt

2α

Gqt ,ν(ρt )

Fqt ,ν(ρt )
+ 1

qt

log Fqt ,ν(ρt )

)

− qt

Gqt ,ν(ρt )

Fqt ,ν(ρt )

= −2αRqt ,ν(ρt ) + 2α

(
1 − 1

qt

)
Rqt ,ν(ρt )

= −2α

qt

Rqt ,ν(ρt ).

Therefore, 

. 
d

dt

{(
1 − 1

qt

)
Rqt ,ν(ρt )

}
= q̇t

q2
t

Rqt ,ν(ρt ) +
(

1 − 1

qt

)
d

dt
Rqt ,ν(ρt )

≤ 2α(qt − 1)

q2
t

Rqt ,ν(ρt ) −
(

1 − 1

qt

)
2α

qt

Rqt ,ν(ρt )

= 0,

as desired. 
Now given q ≥ q0, let  t0 = 1 

2α log q−1 
q0−1 so qt0 = q. Then Rq,ν(ρt0) ≤ 

q 
(q−1) 

(q0−1) 
q0 

Rq0,ν(ρ0) ≤ Rq0,ν(ρ0) <  ∞. For  t >  t0, by applying Theorem 2 

starting from ρt0 , we obtain Rq,ν(ρt ) ≤ e
− 2α 

q (t−t0) Rq,ν(ρt0) ≤ Rq,ν(ρt0) ≤ 
Rq0,ν(ρ0) <  ∞. ��

By combining Theorem 2 and Lemma 14, we obtain the following characteriza-
tion of the behavior of Renyi divergence along the Langevin dynamics under LSI. 

Corollary 2 Suppose ν satisfies LSI with constant α >  0. Suppose ρ0 satisfies 
Rq0,ν(ρ0) <  ∞ for some q0 > 1. Along the Langevin dynamics (7), for all q ≥ q0
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and t ≥ t0 := 1 
2α log q−1 

q0−1 , 

.Rq,ν(ρt ) ≤ e
− 2α

q
(t−t0)Rq0,ν(ρ0). (37) 

Proof By Lemma 14, at  t = t0 we have Rq,ν(ρt0) ≤ Rq0,ν(ρ0). For  t >  t0, by  

applying Theorem 2 starting from ρt0 , we have  Rq,ν(ρt ) ≤ e− 2α 
q (t−t0) Rq,ν(ρt0) ≤ 

e
− 2α 

q (t−t0) Rq0,ν(ρ0). ��

8.4 Proofs for Sect. 5: Rényi Divergence Along ULA 

8.4.1 Proof of Lemma 7 

Proof of Lemma 7 By Cauchy-Schwarz inequality, 

. Fq,ν(ρ) =
∫

ρq

νq−1
dx

=
∫

νε

(
ρ

νε

)q (νε

ν

)q−1
dx

≤
(∫

νε

(
ρ

νε

)2q

dx

) 1
2 (∫

νε

(νε

ν

)2(q−1)

dx

) 1
2

= F2q,νε (ρ)
1
2 F2q−1,ν(νε)

1
2 .

Taking logarithm gives 

. (q − 1)Rq,ν(ρ) ≤ (2q − 1)

2
R2q,νε (ρ) + (2q − 2)

2
R2q−1,ν(νε).

Dividing both sides by q − 1 > 0 gives the desired inequality (21) . ��

8.4.2 Proof of Lemma 8 

We will use the following auxiliary results. Recall that given a map . T : Rn → R
n

and a probability distribution . ρ, the pushforward .T#ρ is the distribution of . T (x)

when .x ∼ ρ. 

Lemma 15 Let .T : Rn → R
n be a differentiable bijective map. For any probability 

distributions .ρ, ν, and for all .q > 0, 

.Rq,T#ν(T#ρ) = Rq,ν(ρ).
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Proof Let .ρ̃ = T#ρ and .ν̃ = T#ν. By the change of variable formula, 

. ρ(x) = det(∇T (x)) ρ̃(T (x)),

ν(x) = det(∇T (x)) ν̃(T (x)).

Since T is differentiable and bijective, .det(∇T (x)) �= 0. Therefore, 

. 
ρ̃(T (x))

ν̃(T (x))
= ρ(x)

ν(x)
.

Now let . X ∼ ν, so .T (X) ∼ ν̃. Then for all .q > 0. 

. Fq,ν̃(ρ̃) = Eν̃

[(
ρ̃

ν̃

)q]
= EX∼ν

[(
ρ̃(T (X))

ν̃(T (X))

)q]

= EX∼ν

[(
ρ(X)

ν(X)

)q]
= Fq,ν(ρ).

Suppose .q �= 1. Taking logarithm on both sides and dividing by .q − 1 �= 0 yields 
.Rq,ν̃(ρ̃) = Rq,ν(ρ), as desired. The case .q = 1 follows from taking limit .q → 1, 
or by an analogous direct argument: 

. Hν̃(ρ̃) = Eν̃

[
ρ̃

ν̃
log

ρ̃

ν̃

]
= EX∼ν

[
ρ̃(T (X))

ν̃(T (X))
log

ρ̃(T (X))

ν̃(T (X))

]

= EX∼ν

[
ρ(X)

ν(X)
log

ρ(X)

ν(X)

]
= Hν(ρ).

��
We have the following standard result on how the LSI constant changes under a 

Lipschitz mapping. We recall that .T : Rn → R
n is L-Lipschitz if . ‖T (x)−T (y)‖ ≤

L‖x − y‖ for all .x, y ∈ R
n. For completeness, we provide the proof of Lemma 16 

in Appendix. 

Lemma 16 Suppose a probability distribution . ν satisfies LSI with constant .α > 0. 
Let .T : Rn → R

n be a differentiable L-Lipschitz map. Then .ν̃ = T#ν satisfies LSI 
with constant .α/L2. 

We also recall the following result on how the LSI constant changes along 
Gaussian convolution. We provide the proof of Lemma 17 in Appendix. 

Lemma 17 Suppose a probability distribution . ν satisfies LSI with constant .α > 0. 
For .t > 0, the probability distribution .ν̃t = ν∗N (0, 2tI ) satisfies LSI with constant 
.
( 1

α
+ 2t
)−1

. 

We now derive a formula for the decrease of Rényi divergence along simultane-
ous heat flow. We note the resulting formula (38) is similar to the formula (19) for
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the decrease of Rényi divergence along the Langevin dynamics. A generalization of 
the following formula is also useful for analyzing a proximal sampling algorithm 
under isoperimetry [18]. 

Lemma 18 For any probability distributions .ρ0, ν0, and for any .t ≥ 0, let  . ρt =
ρ0 ∗ N (0, 2tI ) and .νt = ν0 ∗ N (0, 2tI ). Then for all .q > 0, 

.
d

dt
Rq,νt (ρt ) = −q

Gq,νt (ρt )

Fq,νt (ρt )
. (38) 

Proof By definition, . ρt and . νt evolve following the simultaneous heat flow: 

.
∂ρt

∂t
= �ρt ,

∂νt

∂t
= �νt . (39) 

We will use the following identity for any smooth function .h : Rn → R, 

. �(hq) = ∇ ·
(
qhq−1∇h

)
= q(q − 1)hq−2‖∇h‖2 + qhq−1�h.

We will also use the integration by parts formula (A.1) . Then along the simultaneous
heat flow (39) ,

.
d

dt
Fq,νt (ρt ) = d

dt

∫
ρ

q
t

ν
q−1
t

dx

=
∫

q

(
ρt

νt

)q−1
∂ρt

∂t
dx −
∫

(q − 1)

(
ρt

νt

)q
∂νt

∂t
dx

= q

∫ (
ρt

νt

)q−1

�ρt dx − (q − 1)

∫ (
ρt

νt

)q

�νt dx

= q

∫
�

((
ρt

νt

)q−1
)

ρt dx − (q − 1)

∫
�

((
ρt

νt

)q)
νt dx

= q

∫ (
(q − 1)(q − 2)

(
ρt

νt

)q−3 ∥∥∥∥∇
ρt

νt

∥∥∥∥
2

+ (q − 1)

(
ρt

νt

)q−2

�
ρt

νt

)
ρt dx

− (q − 1)

∫ (
q(q − 1)

(
ρt

νt

)q−2 ∥∥∥∥∇
ρt

νt

∥∥∥∥
2

+ q

(
ρt

νt

)q−1

�
ρt

νt

)
νt dx
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= −q(q − 1)

∫
νt

(
ρt 
νt

)q−2 ∥∥∥∥∇ 
ρt 
νt

∥∥∥∥
2 

dx 

= −q(q − 1)Gq,νt (ρt ). (40) 

Note that the identity (40) above is analogous to the identity (35) along the Langevin
dynamics. Therefore, for .q �= 1, 

. 
d

dt
Rq,νt (ρt ) = 1

q − 1

d
dt

Fq,νt (ρt )

Fq,νt (ρt )
= −q

Gq,νt (ρt )

Fq,νt (ρt )
,

as desired. 
The case .q = 1 follows from taking limit .q → 1, or by an analogous direct 

calculation. We will use the following identity for .h : Rn → R>0, 

. � log h = ∇ ·
(∇h

h

)
= �h

h
− ‖∇ log h‖2.

Then along the simultaneous heat flow (39) ,

. 
d

dt
Hνt (ρt ) = d

dt

∫
ρt log

ρt

νt

dx

=
∫

∂ρt

∂t
log

ρt

νt

dx +
∫

ρt

νt

ρt

∂

∂t

(
ρt

νt

)
dx

=
∫

�ρt log
ρt

νt

dx +
∫

νt

(
1

νt

∂ρt

∂t
dx − ρt

ν2
t

∂νt

∂t

)
dx

=
∫

ρt � log
ρt

νt

dx −
∫

ρt

νt

�νt dx

=
∫

ρt

(
νt

ρt

�

(
ρt

νt

)
−
∥∥∥∥∇ log

ρt

νt

∥∥∥∥
2
)

dx −
∫

ρt

νt

�νt dx

= −Jνt (ρt ),

as desired. Note that this is also analogous to the identity (9) along the Langevin
dynamics. ��

We are now ready to prove Lemma 8. 

Proof of Lemma 8 We will prove that along each step of ULA (11) from . xk ∼ ρk

to .xk+1 ∼ ρk+1, the Rényi divergence with respect to . νε decreases by a constant
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factor: 

.Rq,νε (ρk+1) ≤ e
− βε

q Rq,νε (ρk). (41) 

Iterating the bound above yields the desired claim (22) .
We decompose each step of ULA (11) into a sequence of two steps:

.ρ̃k = (I − ε∇f )#ρk, . (42a) 

ρk+1 = ρ̃k ∗ N (0, 2εI). (42b) 

In the first step (42a), we apply a smooth deterministic map .T (x) = x−ε∇f (x). 
Since .∇f is L-Lipschitz and .ε < 1

L
, T is a bijection. Then by Lemma 15, 

.Rq,νε (ρk) = Rq,ν̃ε
(ρ̃k) (43) 

where .ν̃ε = (I − ε∇f )#νε . Recall by Assumption 1 that . νε satisfies LSI with 
constant . β. Since the map .T (x) = x −ε∇f (x) is .(1+εL)-Lipschitz, by Lemma 16 
we know that . ̃νε satisfies LSI with constant . β

(1+εL)2 . 
In the second step (42b) , we convolve with a Gaussian distribution, which is

the result of evolving along the heat flow at time . ε. For .0 ≤ t ≤ ε, let . ρ̃k,t =
ρ̃k ∗ N (0, 2tI ) and .ν̃ε,t = ν̃ε ∗ N (0, 2tI ), so .ρ̃k,ε = ρ̃k+1 and .ν̃ε,ε = νε . By  
Lemma 18, 

. 
d

dt
Rq,ν̃ε,t

(ρ̃k,t ) = −q
Gq,ν̃ε,t

(ρ̃k,t )

Fq,ν̃ε,t
(ρ̃k,t )

.

Since . ̃νε satisfies LSI with constant . β

(1+εL)2 , by Lemma 17 we know that . ̃νε,t

satisfies LSI with constant .
(

(1+εL)2

β
+ 2t
)−1 ≥ ( (1+εL)2

β
+ 2ε
)−1 for .0 ≤ t ≤ ε. 

In particular, since .ε ≤ min{ 1
3L

, 1
9β

}, the LSI constant is . 
(

(1+εL)2

β
+ 2ε
)−1 ≥( 16

9β
+ 2

9β

)−1 = β
2 . Then by Lemma 5, 

. 
d

dt
Rq,ν̃ε,t

(ρ̃k,t ) = −q
Gq,ν̃ε,t

(ρ̃k,t )

Fq,ν̃ε,t
(ρ̃k,t )

≤ −β

q
Rq,ν̃ε,t

(ρ̃ε,t ).

Integrating over .0 ≤ t ≤ ε gives 

.Rq,νε (ρk+1) = Rq,ν̃ε,ε
(ρ̃k,ε) ≤ e

− βε
q Rq,ν̃ε

(ρ̃k). (44) 

Combining (43) and (44) gives the desired inequality (41). ��
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8.4.3 Proof of Theorem 5 

Proof of Theorem 5 This follows directly from Lemmas 7 and 8. ��

8.5 Details for Sect. 6: Poincaré Inequality 

8.5.1 Proof of Lemma 9 

Proof of Lemma 9 We plug in g2 = (ρ 
ν

)q to Poincaré inequality (24) and use the
monotonicity condition from Lemma 13 to obtain 

. 
q2

4α
Gq,ν(ρ) ≥ Fq,ν(ρ) − Fq

2 ,ν(ρ)2

= e(q−1)Rq,ν (ρ) − e
(q−2)R q

2 ,ν
(ρ)

≥ e(q−1)Rq,ν (ρ) − e(q−2)Rq,ν (ρ)

= Fq,ν(ρ)
(

1 − e−Rq,ν (ρ)
)

.

Dividing both sides by Fq,ν(ρ) and rearranging yields the desired inequality. ��

8.5.2 Proof of Theorem 3 

Proof of Theorem 3 By Lemmas 6 and 9, 

. 
d

dt
Rq,ν(ρt ) = −q

Gq,ν(ρt )

Fq,ν(ρt )
≤ −4α

q

(
1 − e−Rq,ν (ρt )

)
.

We now consider two possibilities: 

1. If Rq,ν(ρ0) ≥ 1, then as long as Rq,ν(ρt ) ≥ 1, we have 1−e−Rq,ν (ρt ) ≥ 1−e−1 > 
1 
2 , so  d 

dt Rq,ν(ρt ) ≤ − 2α 
q , which implies Rq,ν(ρt ) ≤ Rq,ν(ρ0) − 2αt 

q . 

2. If Rq,ν(ρ0) ≤ 1, then Rq,ν(ρt ) ≤ 1, and thus 1−e−Rq,ν (ρt ) 

Rq,ν(ρt ) ≥ 1 
1+Rq,ν(ρt ) ≥ 1 

2 . 

Thus, in this case d 
dt Rq,ν(ρt ) ≤ − 2α 

q Rq,ν(ρt ), and integrating gives Rq,ν(ρt ) ≤ 

e
− 2αt 

q Rq,ν(ρ0), as desired.
��
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8.5.3 Proof of Lemma 10 

We will use the following auxiliary results, which are analogous to Lemmas 16 
and 17. We provide the proof of Lemma 19 in Appendix, and the proof of Lemma 20 
in Appendix. 

Lemma 19 Suppose a probability distribution . ν satisfies Poincaré inequality with 
constant .α > 0. Let .T : Rn → R

n be a differentiable L-Lipschitz map. Then . ̃ν =
T#ν satisfies Poincaré inequality with constant .α/L2. 

Lemma 20 Suppose a probability distribution . ν satisfies Poincaré inequality with 
constant .α > 0. For .t > 0, the probability distribution .ν̃t = ν ∗ N (0, 2tI ) satisfies 
Poincaré inequality with constant .

( 1
α

+ 2t
)−1

. 

We are now ready to prove Lemma 10. 

Proof of Lemma 10 Following the proof of Lemma 8, we decompose each step of 
ULA (11) into two steps:

.ρ̃k = (I − ε∇f )#ρk, . (45a) 

ρk+1 = ρ̃k ∗ N (0, 2εI). (45b) 

The first step (45a) is a deterministic bijective map, so it preserves Rényi divergence
by Lemma 15: .Rq,νε (ρk) = Rq,ν̃ε

(ρ̃k), where .ν̃ε = (I − ε∇f )#νε . Recall by 
Assumption 2 that . νε satisfies Poincaré inequality with constant . β. Since the map 
.T (x) = x − ε∇f (x) is .(1 + εL)-Lipschitz, by Lemma 19 we know that . ̃νε satisfies 
Poincaré inequality with constant . β

(1+εL)2 . 
The second step (45b) is convolution with a Gaussian distribution, which is the

result of evolving along the heat flow at time . ε. For .0 ≤ t ≤ ε, let . ρ̃k,t = ρ̃k ∗
N (0, 2tI ) and .ν̃ε,t = ν̃ε ∗ N (0, 2tI ), so .ρ̃k,ε = ρ̃k+1 and .ν̃ε,ε = νε . Since . ̃νε

satisfies Poincaré inequality with constant . β

(1+εL)2 , by Lemma 20 we know that . ̃νε,t

satisfies Poincaré inequality with constant . 
(

(1+εL)2

β
+ 2t
)−1 ≥ ( (1+εL)2

β
+ 2ε
)−1

for .0 ≤ t ≤ ε. In particular, since .ε ≤ min{ 1
3L

, 1
9β

}, the Poincaré constant is 

.
(

(1+εL)2

β
+ 2ε
)−1 ≥ ( 16

9β
+ 2

9β

)−1 = β
2 . Then by Lemmas 18 and 9, 

. 
d

dt
Rq,ν̃ε,t

(ρ̃k,t ) = −q
Gq,ν̃ε,t

(ρ̃k,t )

Fq,ν̃ε,t
(ρ̃k,t )

≤ −2β

q

(
1 − e

−Rq,ν̃ε,t (ρ̃k,t )
)

.

We now consider two possibilities, as in Theorem 3: 

1. If .Rq,νε (ρk) = Rq,ν̃ε,0(ρ̃k,0) ≥ 1, then as long as . Rq,νε (ρk+1) = Rq,ν̃ε,ε
(ρ̃k,ε) ≥

1, we have .1 − e
−Rq,ν̃ε,t (ρ̃k,t ) ≥ 1 − e−1 > 1

2 , so .
d
dt

Rq,ν̃ε,t
(ρ̃k,t ) ≤ −β

q
, 

which implies .Rq,νε (ρk+1) ≤ Rq,νε (ρk) − βε
q

. Iterating this step, we have that 

.Rq,νε (ρk) ≤ Rq,νε (ρ0) − βεk
q

if .Rq,νε (ρ0) ≥ 1 and as long as .Rq,νε (ρk) ≥ 1.
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2. If .Rq,νε (ρk) = Rq,ν̃ε,0(ρ̃k,0) ≤ 1, then .Rq,ν̃ε,t
(ρ̃k,t ) ≤ 1, and thus 

.
1−e

−Rq,ν̃ε,t
(ρ̃k,t )

Rq,ν̃ε,t (ρ̃k,t )
≥ 1

1+Rq,ν̃ε,t (ρ̃k,t )
≥ 1

2 . Thus, in this case . d
dt

Rq,ν̃ε,t
(ρ̃k,t ) ≤

−β
q
Rq,ν̃ε,t

(ρ̃k,t ). Integrating over .0 ≤ t ≤ ε gives . Rq,νε (ρk+1) = Rq,ν̃ε,ε
(ρ̃k,ε) ≤

e
− βε

q Rq,ν̃ε,0(ρ̃k,0) = e
− βε

q Rq,νε (ρk). Iterating this step gives . Rq,νε (ρk) ≤
e
− βεk

q Rq,νε (ρ0) if .Rq,νε (ρ0) ≤ 1, as desired. 
��

8.5.4 Proof of Theorem 6 

Proof of Theorem 6 By Lemma 10 (which applies since 2q >  2), after k0 iterations 
we have R2q,νε (ρk0) ≤ 1. Applying the second case of Lemma 10 starting from k0 

gives R2q,νε (ρk) ≤ e
− βε(k−k0) 

2q R2q,νε (ρk0) ≤ e− βε(k−k0) 
2q . Then by Lemma 7, 

. Rq,ν(ρk) ≤
(

q − 1
2

q − 1

)
R2q,νε (ρk) + R2q−1,ν(νε)

≤
(

q − 1
2

q − 1

)
e
− βε(k−k0)

2q + R2q−1,ν(νε)

as desired. ��

8.6 Proofs for Sect. 7: Properties of Biased Limit 

8.6.1 Bounding Relative Fisher Information 

Let .H(ρ) = −Eρ[log ρ] be Shannon entropy, .J (ρ) = Eρ[‖∇ log ρ‖2] be the 
Fisher information, and .K(ρ) = Eρ[‖∇2 log ρ‖2

HS] be the second-order Fisher 
information. We can write relative entropy as 

. Hν(ρ) = Eρ

[
log

ρ

ν

]
= −H(ρ) + Eρ[f ]

and we can write relative Fisher information as 

. Jν(νε) = Eνε

[∥∥∥∇ log
νε

ν

∥∥∥
2
]

= J (νε) + 2Eνε [〈∇ log νε,∇f 〉] + Eνε [‖∇f ‖2]

= J (νε) + Eνε [‖∇f ‖2 − 2�f ] (46)

where the last step follows from integration by parts.
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We first prove the following, which only requires second-order smoothness. 

Lemma 21 Assume f is L-smooth (.−LI 	 ∇2f 	 LI ) and .ε ≤ 1
2L

. Then 

. Jν(νε) ≤ Eνε [‖∇f ‖2 − �f ] + εnL2.

Proof We examine how entropy changes from . νε to . με and back, which will give 
us an estimate on the Fisher information. By the change-of variable formula for 
.με = (I − ε∇f )#νε , we have  

. log νε(x) = log det(I − ε∇2f (x)) + log με(x − ε∇f (x)). (47) 

By taking expectation over .x ∼ νε (equivalently, .x − ε∇f (x) ∼ με), we get 

.H(νε) = H(με) − Eνε [log det(I − ε∇2f )]. (48) 

On the other hand, recall that along the heat flow .ρt = ρ0 ∗ N (0, 2tI ), we have  
the relations 

. 
d

dt
H(ρt ) = J (ρt ),

d

dt
J (ρt ) = −K(ρt ) ≤ 0.

See for example [73]. Thus, .νε = με ∗ N (0, 2εI) satisfies 

.H(νε) = H(με) +
∫ ε

0
J (ρt ) dt ≥ H(με) + εJ (νε) (49) 

where .ρt = ρ0 ∗ N (0, 2tI ) is the heat flow from .ρ0 = με to .ρε = νε , and the last 
inequality holds since .t �→ J (ρt ) is decreasing. Combining (48) and (49) , we get

.εJ (νε) ≤ H(νε) − H(με) = −Eνε [log det(I − ε∇2f )]. (50) 

Let .λ1, . . . , λn be the eigenvalues of .∇2f . Since f is L-smooth, .|λi | ≤ L. Using the  
inequality .log(1 − ελi) ≥ −ελi − ε2λ2

i , which holds since .ε|λi | ≤ 1
2 from .ε ≤ 1

2L
, 

we have 

. − Eνε [log det(I − ε∇2f )] =
n∑

i=1

Eνε [− log(1 − ελi)]

≤
n∑

i=1

Eνε [ελi + ε2λ2
i ]
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= εEνε [�f ] + ε2 
Eνε [‖∇2f ‖2 

HS] 
≤ εEνε [�f ] + ε2nL2. 

Plugging this to (50) gives

.J (νε) ≤ −1

ε
Eνε [log det(I − ε∇2f )] ≤ Eνε [�f ] + εnL2. (51) 

Therefore, we can bound the relative Fisher information (46) :

. Jν(νε) = J (νε) + Eνε [‖∇f ‖2 − 2�f ] ≤ Eνε [‖∇f ‖2 − �f ] + εnL2.

��

8.6.2 Bounding the Expected Value 

Recall that for .ν = e−f , we have .Eν[‖∇f ‖2 − �f ] = 0. Under third-order 
smoothness, we will prove .Eνε [‖∇f ‖2 − �f ] = O(ε). 

Lemma 22 Assume f is .(L,M)-smooth. Then for .ε ≤ 1
2L

, 

.Eνε [‖∇f ‖2 − �f ] ≤ εn
(
L2 + M

√
J (με)
)

. (52) 

Proof We examine how the expected value of f changes from . νε to . με and back, 
which will give us an estimate on the desired quantity. 

Let .x ∼ νε and .y = x − ε∇f (x) ∼ με , so .x′ = y + √
2ε Z ∼ νε where 

.Z ∼ N (0, I ) is independent. Since f is L-smooth, we have the bound: 

. f (y) ≤ f (x) − ε

(
1 − εL

2

)
‖∇f (x)‖2.

Taking expectation over .x ∼ νε (equivalently, .y ∼ με) yields 

. Eμε [f ] ≤ Eνε [f ] − ε

(
1 − εL

2

)
Eνε [‖∇f ‖2].

On the other hand, let .ρt = ρ0 ∗ N (0, 2tI ) be the heat flow from .ρ0 = με to 
.ρε = νε , and recall that along the heat flow, . d

dt
Eρt [f ] = Eρt [�f ]. Then 

.Eνε [f ] = Eμε [f ] +
∫ ε

0
Eρt [�f ] dt.
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Combining the two relations above, 

. ε

(
1 − εL

2

)
Eνε [‖∇f (x)‖2] ≤ Eνε [f ] − Eμε [f ] =

∫ ε

0
Eρt [�f ] dt.

Therefore, 

. ε

(
1 − εL

2

)
Eνε [‖∇f ‖2 − �f ] ≤

∫ ε

0
Eρt [�f ] dt − ε

(
1 − εL

2

)
Eνε [�f ]

=
∫ ε

0
(Eρt [�f ] − Eρε [�f ]) dt + ε2L

2
Eνε [�f ]

≤
∫ ε

0
(Eρt [�f ] − Eρε [�f ]) dt + ε2nL2

2
.

(53) 

Since . ρt evolves following the heat flow, by Lemma 23 we have for any .0 ≤ t ≤ ε: 

. W2(ρt , ρε)
2 ≤ (ε − t)2J (ρt ) ≤ (ε − t)2 J (ρ0) = (ε − t)2 J (με)

where the second inequality above follows from the fact that Fisher information is 
decreasing along heat flow. 

Since we assume .∇2f is M-Lipschitz, the Laplacian .�f = Tr(∇2f ) is .(nM)-
Lipschitz. Then by the dual formulation of .W1 distance,2 

. Eρt [�f ] − Eρε [�f ] ≤ nM W1(ρt , ρε) ≤ nM W2(ρt , ρε) ≤ (ε − t) nM
√

J (με).

Integrating over .0 ≤ t ≤ ε gives 

. 

∫ ε

0
(Eρt [�f ] − Eρε [�f ]) dt ≤ ε2

2
nM
√

J (με).

Plugging this to (53) gives

.ε

(
1 − εL

2

)
Eνε [‖∇f ‖2 − �f ] ≤ ε2

2
nM
√

J (με) + ε2nL2

2
.

2 Recall .W1(ρ, ν) = sup{Eρ [g] − Eν [g] : g is 1-Lipschitz}. 
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Since .1 − εL
2 ≥ 3

4 > 1
2 for .ε ≤ 1

2L
, this also implies 

. 
ε

2
Eνε [‖∇f ‖2 − �f ] ≤ ε2

2
nM
√

J (με) + ε2nL2

2
.

Dividing by . ε2 gives the claim. ��
Remark 5 Observe from (53) that if .��f ≥ 0, then .Eρt [�f ] − Eρε [�f ] ≤ 0, 
so .Eνε [‖∇f ‖2 − �f ] ≤ εnL2. Plugging this to Lemma 21, we obtain the bound 
.Jν(νε) ≤ 2εnL2 assuming f is L-smooth and .��f ≥ 0. 

In the proof above, we use the following lemma on the distance along the heat 
flow. Note that a simple coupling argument gives .W2(ρε, ρ0)

2 ≤ O(ε), rather than 
.O(ε2) below (when .J (ρ0) < ∞). 

Lemma 23 For any probability distribution . ρ0 and for any .ε > 0, let  . ρε = ρ0 ∗
N (0, 2εI). Then 

. W2(ρε, ρ0)
2 ≤ ε2J (ρ0).

Proof By definition, . ρε evolves following the heat flow .
∂ρt

∂t
= �ρt from time . t = 0

to time . t = ε. Fix .ε > 0, and let us rescale time to be from 0 to 1: Let .ρ̃τ = ρτε , so  
.ρ̃0 = ρ0 and .ρ̃1 = ρε . Then . ρ̃τ evolves following a rescaled heat flow: 

.
∂ρ̃τ

∂τ
= ∂ρτε

∂τ
= ε�ρτε = ε�ρ̃τ = ε∇ · (ρ̃τ∇ log ρ̃τ ) (54) 

Since .(ρ̃τ )0≤τ≤1 connects .ρ̃0 = ρ0 to .ρ̃1 = ρε , its length must exceed the . W2
distance: 

. W2(ρε, ρ0)
2 ≤
∫ 1

0
Eρ̃τ

[‖ε ∇ log ρ̃τ‖2] dτ = ε2
∫ 1

0
J (ρ̃τ ) dτ ≤ ε2J (ρ0).

In the last step we have used the fact that Fisher information is decreasing along the 
heat flow: .J (ρ̃τ ) ≤ J (ρ0). ��

8.6.3 Bounding the Fisher Information 

Lemma 24 

1. If f is L-smooth and ε ≤ 1 
2L

, then 

.J (νε) ≤ 3

2
nL.
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2. If f is (L, M)-smooth and ε ≤ 1 
2L

, then 

. J (με) ≤ 12n(L + 3nM2).

Proof First, since f is L-smooth and ε ≤ 1 
2L

, from (51) we can bound

.J (νε) ≤ Eνε [�f ] + ε Eνε [‖∇2f ‖2
HS] ≤ nL + εnL2 ≤ 3

2
nL. (55) 

Second, by taking gradient in the formula (47) for με = (I − ε∇f )#νε , we get

. ∇ log νε(x) = −ε∇3f (x)A(x)−1 + A(x)∇ log με(x − ε∇f (x))

or equivalently, 

.∇ log με(x − ε∇f (x)) = A(x)−1∇ log νε(x) + εA(x)−1∇3f (x)A(x)−1 (56) 

where

. A(x) = I − ε∇2f (x).

satisfies 1 
2I 	 A(x) 	 3 

2I since −LI 	 ∇2f (x) 	 LI and ε ≤ 1 
2L

. In particular, 

. 
2

3
I 	 A(x)−1 	 2I.

Therefore, the first term in (56) we can bound as

. ‖A(x)−1∇ log νε(x)‖2 ≤ 2‖∇ log νε(x)‖2.

For the second term, using the assumption ‖∇3f (x)‖op ≤ M and Lemma 25, we  
have 

. ‖A(x)−1∇3f (x)A(x)−1‖2 ≤ 2‖∇3f (x)A(x)−1‖2 ≤ 4nM.

Therefore, from (56) , we get

. ‖∇ log με(x − ε∇f (x))‖2 ≤ 2‖∇ log νε(x)‖2 + 4nM.

This implies 

.‖∇ log με(x − ε∇f (x))‖2
2 ≤ 8‖∇ log νε(x)‖2

2 + 32n2M2.



426 S. S. Vempala and A. Wibisono

Taking expectation over x ∼ νε (equivalently, x − ε∇f (x)  ∼ με), we conclude that 

. J (με) ≤ 8J (νε) + 32n2M2 ≤ 12nL + 32n2M2 ≤ 12n(L + 3nM2).

��
In the above, we use the following bound from smoothness. 

Lemma 25 Let T ∈ Rn×n×n be a 3-tensor with ‖T ‖op ≤ M . For any symmetric 
matrix B ∈ Rn×n with ‖B‖op ≤ β, the vector T B  ∈ Rn satisfies ‖T B‖2 ≤ nβM . 

Proof Since ‖T ‖op ≤ M , for any u, v, w ∈ Rn with ‖u‖ = ‖v‖ = ‖w‖ =  1, 
|T [u, v, w]| ≤ M . In particular, for any u ∈ Rn with ‖u‖ =  1, p = T [u, u] ∈  
R

n satisfies ‖p‖ ≤  M . We eigendecompose B = ∑n 
i=1 λiuiu

�
i with eigenvectors 

u1, . . . , un ∈ R
n and eigenvalues λ1, . . . , λn ∈ R with ‖ui‖ =  1, |λi | ≤  β. Then 

. ‖T B‖2 =
∥∥∥∥∥T

n∑
i=1

λiuiu
�
i

∥∥∥∥∥
2

≤
n∑

i=1

|λi | · ‖T [ui, ui]‖2 ≤
n∑

i=1

βM = nβM.

��

8.6.4 Proof of Upper Bound in Theorem 7 

Proof of Upper Bound in Theorem 7 By combining Lemmas 21, 22, and 24: 

. Jν(νε) ≤ Eνε [‖∇f ‖2 − �f ] + εnL2

≤ εn
(

2L2 + M
√

J (με)
)

≤ εn
(

2L2 + M
√

12n(L + 3nM2)
)

≤ εn
(

2L2 + M(4
√

nL + 6nM)
)

≤ 2εn
(
L2 + 2

√
nLM + 3nM2

)
.

��

8.6.5 Proof of Lower Bound in Theorem 7 

For the lower bound, we first prove the following properties. Observe that for . ν ∝
e−f , .Eν[∇f ] = 0 and .Eν[〈x,∇f (x)〉] = n. We show similar properties still hold 
for the biased limit.
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Lemma 26 For any f and .ε > 0, the biased limit . νε satisfies: 

1. .Eνε [∇f ] = 0. 
2. .Eνε [〈x,∇f (x)〉] = n + ε

2Eνε [‖∇f ‖2]. 
Proof Let .x ∼ νε , .y = x − ε∇f (x) ∼ με , and .x′ = y + √

2εz ∼ νε where 
.z ∼ N (0, I ) is independent. Then 

. x′ = x − ε∇f (x) + √
2εz.

By taking expectation over .x ∼ νε (so .x′ ∼ νε), we get: 

. Eνε [x′] = Eνε [x] − Eνε [∇f (x)]

which implies .Eνε [∇f ] = 0. 
Next, by taking covariance, we get: 

. Covνε (x
′) = Covνε (x − ε∇f (x)) + 2εI

= Covνε (x) − εCovνε (x,∇f (x)) − εCovνε (∇f (x), x)

+ ε2Covνε (∇f (x)) + 2εI

so 

. Covνε (x,∇f (x)) + Covνε (∇f (x), x) = εCovνε (∇f (x)) + 2I.

Since .Eνε [∇f ] = 0, this means 

. Eνε [x ∇f (x)�] + Eνε [∇f (x) x�] = εEνε [∇f (x)∇f (x)�] + 2I.

Taking trace and dividing by 2 gives 

. Eνε [〈x,∇f (x)〉] = n + ε

2
Eνε [‖∇f (x)‖2].

��
We are now ready to prove the lower bound. 

Proof of Lower Bound in Theorem 7 From Lemma 26, using the identity . n =
Eνε [〈x,−∇ log νε〉] and Cauchy-Schwarz inequality, we can derive the bound: 

.
ε

2
Eνε [‖∇f (x)‖2] = Eνε [〈x,∇f (x)〉] − n

= Eνε

[〈
x,∇ log

νε

ν

〉]
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= Eνε

[〈
x − Eνε [x], ∇ log 

νε

ν

〉]

≤ √Varνε (x) ·√Jν(νε). 

Rearranging gives us the desired result. In the second step above we can subtract 
.Eνε [x] because for any .c ∈ R

n, by Lemma 26, 

. Eνε

[〈
c,∇ log

νε

ν

〉]
= 〈c,Eνε [∇ log νε] + Eνε [∇f ]〉 = 0.

��

8.6.6 Proof of Theorem 8 

Proof of Theorem 8 Suppose we run ULA from x0 ∼ ρ0 to obtain xk ∼ ρk , so  
ρk → νε as k → ∞. Let  αk denote the LSI constant of ρk , i.e. the largest constant 
α̃ >  0 such that (4) holds. Since 0 ≤ ε ≤ 1

L
and f is α-strongly convex, the map

x �→ x − ε∇f (x) is (1 − εα)-Lipschitz. Since xk ∼ ρk is αk-LSI, by Lemma 16, 
the distribution of xk − ε∇f (xk) satisfies LSI with constant αk/(1 − εα)2. Then by 
Lemma 17, xk+1 = xk − ε∇f (xk) + √

2ε zk ∼ ρk+1 satisfies αk+1-LSI with 

. 
1

αk+1
≤ (1 − εα)2

αk

+ 2ε.

Suppose we start α0 ≥ α 
2 . We claim that αk ≥ α 

2 for all k ≥ 0. Indeed, if 1 
αk 

≤ 2 
α

, 

then since ε ≤ 1 
L ≤ 1 

α
, we have  

. 
1

αk+1
≤ (1 − εα)2

α/2
+ 2ε = 2

α
− 2ε(1 − εα) ≤ 2

α
.

Thus by induction, αk ≥ α 
2 for all k ≥ 0. Taking the limit k → ∞, this shows that 

νε = limk→∞ ρk also satisfies LSI with constant β ≥ α 
2 . ��

9 Discussion 

In this paper we proved convergence guarantees on KL divergence and Rényi 
divergence along ULA under isoperimetric assumptions and bounded Hessian, 
without assuming convexity or bounds on higher derivatives. In particular, under 

LSI and bounded Hessian, we prove a complexity guarantee of .O(κ2n
δ

) to achieve 
.Hν(ρk) ≤ δ, where .κ := L/α is the condition number. We note the dependence on . κ

may not be tight. In particular, the asymptotic bias in KL divergence from our result
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scales linearly with step size, while from the Gaussian example we see it should 
scale quadratically with step size. We can achieve a smaller bias using a different 
algorithm, e.g. the underdamped Langevin algorithm [57] or the proximal Langevin 
algorithm [78]. However, it remains open whether we can provide a better analysis 
of ULA under LSI and smoothness that yields the optimal bias. 

Our convergence results for ULA in Rényi divergence hold assuming the 
biased limit satisfies isoperimetry (Assumptions 1 and 2), which we can verify 
assuming strong log-concavity and smoothness of the target distribution. It would 
be interesting to verify when Assumptions 1 and 2 hold more generally, whether 
they can be relaxed, or if they follow from assuming isoperimetry and smoothness 
for the target density. 

Another intriguing question is whether there is an affine-invariant version of 
the Langevin dynamics. This might lead to a sampling algorithm with logarithmic 
dependence on smoothness parameters, rather than the current polynomial depen-
dence. There are some approaches that achieve affine invariance in continuous 
time, for example via interacting Langevin dynamics [36] or the Newton Langevin 
dynamics [21]; however, the discretization analysis remains a challenge. 

Since the publication of the conference version of this paper [72], some of our 
techniques and results have been generalized. The one-step interpolation technique 
that we use in Lemma 3 proves to be useful for analyzing ULA or its variants under 
various assumptions. It has been extended to analyze ULA for sampling on mani-
folds, for example, on a product of spheres with applications to solving semidefinite 
programms [51]; and to sampling on Riemannian manifolds [37, 76]. It has also 
been used to analyze ULA for sampling from distributions with sub-Gaussian 
tail growth and Hölder-continuous gradient [33]; for sampling from heavy-tailed 
distributions [42]; for sampling in Rényi divergence under a family of isoperimetric 
inequalities interpolating between LSI and Poincaré [22]; and for sampling from 
non-log-concave distributions with convergence in Fisher information [7]. The inter-
polation technique has also been useful for analyzing other sampling algorithms, e.g. 
the Proximal Langevin Algorithm (which uses the proximal method for f rather 
than gradient descent), which yields a smaller (and tight) asymptotic bias [78]. It 
has also been used to analyze the Mirror Langevin Algorithm (which uses Hessian 
metric and discretizes in the dual space) for sampling under mirror isoperimetric 
inequalities [46]. Further, the calculation along simultaneous heat flow (Lemma 18) 
is also useful for analyzing the convergence of a new proximal sampler algorithm 
under isoperimetry [18].
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Appendix 

Review on Notation and Basic Properties 

Throughout, we represent a probability distribution . ρ on .Rn via its probability 
density function with respect to the Lebesgue measure, so .ρ : Rn → R with 
.
∫
Rn ρ(x)dx = 1. We typically assume . ρ has full support and smooth density, so 

.ρ(x) > 0 and .x �→ ρ(x) is differentiable. Given a function .f : Rn → R, we denote 
the expected value of f under . ρ by 

. Eρ[f ] =
∫

Rn

f (x)ρ(x) dx.

We use the Euclidean inner product .〈x, y〉 = ∑n
i=1 xiyi for . x = (xi)1≤i≤n, y =

(yi)1≤i≤n ∈ R
n. For symmetric matrices .A,B ∈ R

n×n, let .A 	 B denote that 
.B−A is positive semidefinite. For .μ ∈ R

n, . � � 0, let .N (μ,�) denote the Gaussian 
distribution on . Rn with mean . μ and covariance matrix . �. 

Given a smooth function .f : Rn → R, its gradient .∇f : Rn → R
n is the vector 

of partial derivatives: 

. ∇f (x) =
(

∂f (x)

∂x1
, . . . ,

∂f (x)

∂xn

)
.

The Hessian .∇2f : Rn → R
n×n is the matrix of second partial derivatives: 

. ∇2f (x) =
(

∂2f (x)

∂xixj

)

1≤i,j≤n

.

The Laplacian .�f : Rn → R is the trace of its Hessian: 

. �f (x) = Tr(∇2f (x)) =
n∑

i=1

∂2f (x)

∂x2
i

.

Given a smooth vector field .v = (v1, . . . , vn) : Rn → R
n, its divergence . ∇ ·

v : Rn → R is 

. (∇ · v)(x) =
n∑

i=1

∂vi(x)

∂xi

.

In particular, the divergence of gradient is the Laplacian: 

.(∇ · ∇f )(x) =
n∑

i=1

∂2f (x)

∂x2
i

= �f (x).
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For any function .f : Rn → R and vector field .v : Rn → R
n with sufficiently fast 

decay at infinity, we have the following integration by parts formula: 

. 

∫

Rn

〈v(x),∇f (x)〉dx = −
∫

Rn

f (x)(∇ · v)(x)dx.

Furthermore, for any two functions .f, g : Rn → R, 

. 

∫

Rn

f (x)�g(x)dx = −
∫

Rn

〈∇f (x),∇g(x)〉dx =
∫

Rn

g(x)�f (x)dx.

When the argument is clear, we omit the argument .(x) in the formulae for brevity. 
For example, the last integral above becomes 

.

∫
f �g dx = −

∫
〈∇f,∇g〉 dx =

∫
g �f dx. (A.1) 

Derivation of the Fokker-Planck Equation 

Consider a stochastic differential equation 

.dXt = v(Xt ) dt + √
2 dWt (A.2) 

where .v : Rn → R
n is a smooth vector field and .(Wt )t≥0 is the Brownian motion on 

. Rn with .W0 = 0. 
We will show that if . Xt evolves following (A.2) , then its probability density

function .ρt (x) evolves following the Fokker-Planck equation: 

.
∂ρt

∂t
= −∇ · (ρtv) + �ρt . (A.3) 

We can derive this heuristically as follows; we refer to standard textbooks for
rigorous derivation [58]. 

For any smooth test function .φ : Rn → R, let us compute the time derivative of 
the expectation 

. A(t) = Eρt [φ] = E[φ(Xt)].

On the one hand, we can compute this as 

.Ȧ(t) = d

dt
A(t) = d

dt

∫

Rn

ρt (x)φ(x) dx =
∫

Rn

∂ρt (x)

∂t
φ(x) dx. (A.4)
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On the other hand, by (A.2), for small .ε > 0 we have 

. Xt+ε = Xt +
∫ t+ε

t

v(Xs)ds + √
2(Wt+ε − Wt)

= Xt + εv(Xt ) + √
2(Wt+ε − Wt) + O(ε2)

d= Xt + εv(Xt ) + √
2εZ + O(ε2)

where .Z ∼ N (0, I ) is independent of . Xt , since .Wt+ε − Wt ∼ N (0, εI ). Then by 
Taylor expansion, 

. φ(Xt+ε)
d= φ
(
Xt + εv(Xt ) + √

2εZ + O(ε2)
)

= φ(Xt) + ε〈∇φ(Xt ), v(Xt )〉 + √
2ε〈∇φ(Xt ), Z〉

+ 1

2
2ε〈Z,∇2φ(Xt)Z〉 + O(ε

3
2 ).

Now we take expectation on both sides. Since .Z ∼ N (0, I ) is independent of . Xt , 

. A(t + ε) = E[φ(Xt+ε)]
= E

[
φ(Xt ) + ε〈∇φ(Xt ), v(Xt )〉 + √

2ε〈∇φ(Xt ), Z〉

+ ε〈Z,∇2φ(Xt)Z〉
]

+ O(ε
3
2 )

= A(t) + ε (E[〈∇φ(Xt ), v(Xt )〉] + E[�φ(Xt)]) + O(ε
3
2 ).

Therefore, by integration by parts, this second approach gives 

. Ȧ(t) = lim
ε→0

A(t + ε) − A(t)

ε

= E[〈∇φ(Xt), v(Xt )〉] + E[�φ(Xt)]

=
∫

Rn

〈∇φ(x), ρt (x)v(x)〉dx +
∫

Rn

ρt (x)�φ(x) dx

= −
∫

Rn

φ(x)∇ · (ρtv)(x) dx +
∫

Rn

φ(x)�ρt (x) dx

=
∫

Rn

φ(x) (−∇ · (ρtv)(x) + �ρt(x)) dx. (A.5)
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Comparing (A.4) and (A.5), and since . φ is arbitrary, we conclude that 

. 
∂ρt (x)

∂t
= −∇ · (ρtv)(x) + �ρt(x)

as claimed in (A.3) .
When .v = −∇f , the stochastic differential equation (A.2) becomes the

Langevin dynamics (7) from Sect. 2.3, and the Fokker-Planck equation (A.3) 
becomes (8) .

In the proof of Lemma 3, we also apply the Fokker-Planck equation (A.3) when
.v = −∇f (x0) is a constant vector field to derive the evolution equation (30) for one
step of ULA.

Remaining Proofs 

Proof of Lemma 16 

Proof of Lemma 16 Let g : Rn → R be a smooth function, and let g̃ : Rn → R be 
the function g̃(x) = g(T (x)). Let X ∼ ν, so  T (X)  ∼ ν̃. Note that 

. Eν̃[g2] = EX∼ν[g(T (X))2] = Eν[g̃2],
Eν̃[g2 log g2] = EX∼ν[g(T (X))2 log g(T (X))2] = Eν[g̃2 log g̃2].

Furthermore, we have ∇g̃(x) = ∇T (x)∇g(T (x)). Since T is L-Lipschitz,
‖∇T (x)‖ ≤ L. Then 

. ‖∇g̃(x)‖ ≤ ‖∇T (x)‖ ‖∇g(T (x))‖ ≤ L‖∇g(T (x))‖.

This implies 

. Eν̃[‖∇g‖2] = EX∼ν[‖∇g(T (X))‖2] ≥ Eν[‖∇g̃‖2]
L2 .

Therefore, 

. 
Eν̃[‖∇g‖2]

Eν̃[g2 log g2] −Eν̃[g2] logEν̃[g2] ≥ 1

L2

Eν[‖∇g̃‖2](
Eν[g̃2 log g̃2] −Eν[g̃2] logEν[g̃2])

≥ α

2L2

where the last inequality follows from the assumption that ν satisfies LSI with 
constant α. This shows that ν̃ satisfies LSI with constant α/L2, as desired. ��
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Proof of Lemma 17 

Proof of Lemma 17 We recall the following convolution property of LSI [15]: If 
ν, ̃ν satisfy LSI with constants α, α̃ >  0, respectively, then ν ∗ ν̃ satisfies LSI 

with constant
(

1 
α + 1 

α̃

)−1 
. Since N (0, 2tI )  satisfies LSI with constant 1 

2t , the claim 

follows. ��

Proof of Lemma 19 

Proof of Lemma 19 Let g : Rn → R be a smooth function, and let g̃ : Rn → R be 
the function g̃(x) = g(T (x)). Let X ∼ ν, so  T (X)  ∼ ν̃. Note that 

. Varν̃ (g) = VarX∼ν(g(T (X))) = Varν(g̃).

Furthermore, we have ∇g̃(x) = ∇T (x)∇g(T (x)). Since T is L-Lipschitz,
‖∇T (x)‖ ≤ L. Then 

. ‖∇g̃(x)‖ ≤ ‖∇T (x)‖ ‖∇g(T (x))‖ ≤ L‖∇g(T (x))‖.

This implies 

. Eν̃[‖∇g‖2] = EX∼ν[‖∇g(T (X))‖2] ≥ Eν[‖∇g̃‖2]
L2 .

Therefore, 

. 
Eν̃[‖∇g‖2]

Varν̃ (g)
≥ 1

L2

Eν[‖∇g̃‖2]
Varν(g̃)

≥ α

L2

where the last inequality follows from the assumption that ν satisfies Poincaré 
inequality with constant α. This shows that ν̃ satisfies Poincaré inequality with 
constant α/L2, as desired. ��

Proof of Lemma 20 

Proof of Lemma 20 We recall the following convolution property of Poincaré 
inequality [23]: If ν, ̃ν satisfy Poincaré inequality with constants α, α̃ >  0, 

respectively, then ν∗ν̃ satisfies Poincaré inequality with constant
(

1 
α + 1 

α̃

)−1 
. Since 

N (0, 2tI )  satisfies Poincaré inequality with constant 1 
2t , the claim follows. ��
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