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Abstract. Many important tasks such as forensic signature verifica-
tion, calligraphy synthesis, etc., rely on handwriting trajectory recovery
of which, however, even an appropriate evaluation metric is still missing.
Indeed, existing metrics only focus on the writing orders but overlook
the fidelity of glyphs. Taking both facets into account, we come up with
two new metrics, the adaptive intersection on union (AIoU) which elimi-
nates the influence of various stroke widths, and the length-independent
dynamic time warping (LDTW) which solves the trajectory-point align-
ment problem. After that, we then propose a novel handwriting trajec-
tory recovery model named Parsing-and-tracing ENcoder-decoder Net-
work (PEN-Net), in particular for characters with both complex glyph
and long trajectory, which was believed very challenging. In the PEN-
Net, a carefully designed double-stream parsing encoder parses the glyph
structure, and a global tracing decoder overcomes the memory difficulty
of long trajectory prediction. Our experiments demonstrate that the two
new metrics AIoU and LDTW together can truly assess the quality of
handwriting trajectory recovery and the proposed PEN-Net exhibits sat-
isfactory performance in various complex-glyph languages including Chi-
nese, Japanese and Indic. The source code is available at https://github.
com/ChenZhounan/PEN-Net.
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1 Introduction

Trajectory recovery from static handwriting images reveals the natural writing
order while ensuring the glyph fidelity. There are a lot of applications including
forensic signature verification [17,21], calligraphy synthesis and imitation [33,34],
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Fig. 1. Evaluation scores of distorted trajectories. Three distorted trajectories are
obtained by moving half of the points a fixed distance from the original trajectory.
The first distorted trajectory shows small glyph structure distortion and its evaluation
scores are 2.33, 80.1 and 0.43. The moving angles of points in the other two distorted
trajectories are quite different from the first one, hence they show varied degrees of
glyph distortion, but this obvious visual differences do not affect the RMSE value and
only slightly worsens the DTW value (+4.9 % and +4.9 %, respectively). In contrast,
the AIoU value exhibits a significant difference (–28 % and –35 %, respectively).

handwritten character recognition [22,27], handwriting robot [30,31], etc. This
paper deals with two main challenges the task of complex handwriting trajectory
recovery faces.

On the one hand, surprisingly, a proper task-targeted evaluation metric for
handwriting trajectory recovery is still missing. The existing approaches are in
three classes, but indeed, they are all with non-negligible drawbacks:

1. Human vision is usually used [4,7,13,20,24,25]. This non-quantitative and
human-involved method is expensive, time-consuming and inconsistent.

2. Some work quantified the recovery quality indirectly through the accuracy of
a handwriting recognition model [1,8,14], but the result inevitably depends
on the recognition model and hence brings unfairness to evaluation.

3. Direct quantitative metrics have been borrowed from other fields [10,15,19],
without task-targeted adaption. These metrics overlook the glyph fidelity, and
some of them even ignore either the image-level fidelity (which is insufficient
for our task, compared with glyph fidelity) or the writing order. For example,
Fig. 1 presents the effects of different metrics on glyph fidelity. As it shows,
three distorted trajectories show varied degrees of glyph distortion, however,
metrics on writing order such as the root mean squared error (RMSE) and
the dynamic time warping (DTW) cannot effectively and sensitively reflect
their varied degrees of glyph degradation, since trajectory points jitter in the
same distance.

We propose two evaluation metrics, the adaptive intersection on union
(AIoU) and the length-independent dynamic time warping (LDTW). AIoU
assesses the glyph fidelity and eliminates the influence of various stroke widths.
LDTW is robust to the number of sequence points and overcomes the evaluation
bias of classical DTW [10].

On the other hand, the existing trajectory recovery algorithms are not
good in dealing with characters with both complex glyph and long trajectory,
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such as Chinese and Japanese scripts, thus we propose a novel learning model
named Parsing-and-tracing ENcoder-decoder Network (PEN-Net). In the char-
acter encoding phase, we add a double-stream parsing encoder in the PEN-Net
by creating two branches to analyze stroke context information along two orthog-
onal dimensions. In the decoding phase, we construct a global tracing decoder
to alleviate the drifting problem of long trajectory writing order prediction.

Our contributions are threefold:

– We propose two trajectory recovery evaluation metrics, AIoU to assess glyph
correctness which was overlooked by most, if not all, existing quantitative
metrics, and LDTW to overcome the evaluation bias of the classical DTW.

– We propose a new trajectory recovery model called PEN-Net by constructing
a double-stream parsing encoder and a global tracing decoder to solve the
difficulties in the case of complex glyph and long trajectory.

– Our experiments demonstrate that AIoU and LDTW can truly assess
the quality of handwritten trajectory recovery and the proposed PEN-Net
exhibits satisfactory performance in various complex-glyph datasets includ-
ing Chinese [16], Japanese [18] and Indic [3].

2 Related Work

2.1 Trajectory Recovery Evaluation Metrics

There is not much work on evaluation metrics for trajectory recovery. Many
techniques rely on the human vision to qualitatively assess the recovery qual-
ity [4,7,13,20,24,25]. However, these non-quantitative human evaluations are
expensive, time-consuming and inconsistent.

Trajectory recovery has been proved beneficial to handwriting recognition. As
a byproduct, one may use the final recognition accuracy to compare the recovery
efficacy [1,8,14]. Instead of directly assessing the quality of different recovery
trajectories, they compare the accuracy of the recognition models among which
the only difference is the intermediate recovery trajectory. Though, to some
extent, this method reflects the recovery quality, it is usually disturbed by the
recognition model, and only provides a relative evaluation.

Most of direct quantitative metrics only focus on the evaluation of the writing
order. Lau et al. [15] designed a ranking model to assess the order of stroke
endpoints, and Nel et al. [19] designed a hidden Markov model to assess the
writing order of local trajectories such as stroke loops. However, these methods
are unable to assess the sequence points’ deviation to the groundtruth. Hence,
these two evaluations are seldom adopted in the subsequent studies.

Metrics borrowed from other fields have also been used, such as the RMSE
borrowed from signal processing and the DTW from speech recognition [10].
RMSE directly calculates distances between two sequences and strictly limits
the number of trajectory points, which makes it hard to use in practice. It is too
strict to require the recovered trajectory to recall exactly all the groundtruth
points one-by-one, since trajectory recovery is an ill-posed problem that the
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unique recovery solution cannot be obtained without constraints [26]. DTW
introduces an elastic matching mechanism to obtain the most possible align-
ment between two trajectories. However, DTW is not robust to the number of
trajectory points, and prefers trajectories with fewer points. Actually, the num-
ber of points is irrelevant to the writing order or glyph fidelity, and shouldn’t
affect the judgement of the recovery quality.

Aforementioned quantitative metrics only focus on the evaluation of the writ-
ing order, and neither involves the glyph fidelity. Note that the glyph correctness
is also an essential aspect of trajectory recovery, since glyphs reflect the content
of characters and the writing styles of a specific writer. Only one of the latest
trajectory recovery work [2] borrows the metric LPIPS [32] which compares the
deep features of images. However, LPIPS is not suitable for such a fine task of
trajectory recovery, as we observed that the deep features are not informative
enough to distinguish images with only a few pixel-level glyph differences.

2.2 Trajectory Recovery Algorithms

Early studies in the 1990s s relied on heuristic rules, often including two major
modules: local area analysis and global trajectory recovery [4,12,13,25,26].
These algorithms are difficult to devise, as they rely on delicate hand-engineered
features. Rule-based methods are sophisticated, and not flexible enough to han-
dle most of the practical cases, hence these methods are considered not robust,
in particular for characters with both complex glyph and long trajectory.

Inspired by the remarkable progress in deep-learning-based image analysis
and sequence generation over the last few years, deep neural networks are used for
trajectory recovery. Sumi et al. [29] applied variational autoencoders to mutually
convert online trajectories and offline handwritten character images, and their
method can handle single-stroke English letters with simple glyph structures.
Nevertheless, instead of predicting the entire trajectory from a plain encoding
result, we can consider employing a selection mechanism (e.g., attention mech-
anism) to analyze the glyph structure between the prediction of two successive
points, since the relative position of continuous points can be quite variable.
Zhao et al. [35,36] proposed a CNN model to iteratively generate stroke point
sequence. However, besides CNNs, we also need to consider applying RNNs to
analyze the context in handwriting trajectories, which may contribute to the
recovery of long trajectories.

Bhunia et al. [3] introduced an encoder-decoder model to recover the tra-
jectory of single-stroke Indic scripts. This algorithm employs a one-dimensional
feature map to encode characters, however, it needs more spatial information to
tackle complex handwritings (on a two-dimensional plane). Nguyen et al. [20]
improved the encoder-decoder model by introducing a Gaussian mixture model
(GMM), and tried to recover multi-stroke trajectories, in particular Japanese
scripts. However, since the prediction difficulty of long trajectories remains
unsolved, this method does not perform well in the case of complex characters.
Archibald et al. [2] adapted the encoder-decoder model to English text with
arbitrary width, which attends to text-line-level trajectory recovery, but not
designed specifically for complex glyph and long trajectory sequences, either.
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Fig. 2. Illustration of the adaptively-dilating mechanism of AIoU.

3 Glyph-and-Trajectory Dual-modality Evaluation

Let I represent a handwritten image, typically in the form of grayscale. The
trajectory recovery system takes I as input and predicts the trajectory which
can be mathematically represented as a time series p = (p1, . . . , pN ), where N
is the trajectory length, and pi =

(
xi, yi, s

1
i , s

2
i , s

3
i

)
, xi and yi are coordinates of

pi, s1i , s
2
i and s3i are pen tip states which are described in detail in Sect. 4.3. And

the corresponding groundtruth trajectory is q = (q1, . . . , qM ) of length M .

3.1 Adaptive Intersection on Union

We propose the first glyph fidelity metric, Adaptive Intersection on Union
(AIoU). It firstly performs a binarization process on the input image I using
a thresholding algorithm, e.g., OTSU [23], to obtain the ground-truth binary
mask, denoted G, which indicates whether a pixel belongs to a character stroke.
Meanwhile, the predicted trajectory p is rendered into a bitmap (predicted mask)
of width 1 pixel, by drawing lines between neighboring points if they belong to a
stroke, denoted P . We define the IoU (Intersection over Union) between G and
P as follow, which is similar to the mask IoU [5] IoU(G,P ) = |G ∩ P |/|G ∪ P |.

An input handwritten character usually has various stroke widths while the
predicted stroke widths are fixed, nevertheless, the stroke width shouldn’t influ-
ence the assessment of the glyph similarity. To reduce the impacts of stroke
width, we propose a dynamic dilation algorithm to adjust the stroke width adap-
tively. Concretely, as shown in Fig. 2, we adopt a dilation algorithm [9] with a
kernel of 3 × 3 to widen the stroke along until the IoU score reaches the maxi-
mum, denoted AIoU(G,P ). Since the image I is extracted as the binary mask G,
the ground-truth trajectory of I is not involved in the calculation of the AIoU,
making the criteria still effective even without the ground-truth trajectory.

3.2 Length-Independent Dynamic Time Warping

Variable lengths make it hard to align handwriting trajectories. As shown in
Fig. 3, when comparing two handwriting trajectories with different lengths, the
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Fig. 3. Comparison between the one-to-one and the elastic matching. (a) Original and
upsampling handwriting trajectories of a same character. (b) One-to-one, (c) elastic
matching of two trajectories. Above and Below waveforms are Y coordinate sequences
of the original-sampling and upsampling handwriting trajectory, respectively. Partial
correspondence pairs are illustrated as red connection lines. (Color figure online)

direct one-to-one stroke-point correspondence cannot represent the correct align-
ment of strokes. We modify the well-known DTW [10] to compare two trajec-
tories whose lengths are allowed to be different, which uses an elastic matching
mechanism to obtain the most possible alignment.

The original DTW relies on the concept of alignment paths, DTW (q, p) =
minφ

{∑T
t=1 d (qit , pjt)

}
, where the minimization is taken over all possible align-

ment paths φ (which is solved by a dynamic programming), T ≤ M + N is the
alignment length and d (qit , pjt) refers to the (Euclidean) distance between the
two potentially matched (determined by φ) points qit and pjt .

We observe that the original DTW empirically behaves like a monotonic func-
tion of T that is usually proportional to N , so it in general prefers short strokes
and even gives good score to incomplete strokes, which is what we want to get
rid of. Intuitively, this phenomenon is interpretable: DTW is the minimization
of a sum of T terms, and T depends on N . We suggest a normalized version of
DTW, called the length-independent DTW (LDTW)

LDTW (q, p) =
1
T

DTW (q, p). (1)

It is worth noting that, since the alignment problem also exists during the
training process, we use a soft dynamic time warping loss (SDTW Loss) [6] to
realize a global-alignment optimization, see Sect. 4.3.

3.3 Analysis of AIoU and LDTW

In this part, we firstly investigate how the values of our proposed metrics(AIoU
and LDTW) and other recently used metrics change in response to the errors
in different magnitudes. Secondly, we analyze the impacts of the changes in the
number of trajectory points and stroke width to LDTW and AIoU respectively.
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Error-Sensitivity Analysis. We simulate a series of common trajectory recov-
ery errors across different magnitude by generating pseudo-predictions with
errors such as point or stroke level insertion, deletion, and drift from the ground
truth trajectories. Specific implementations of error simulation (e.g., magnitude
setting method) is shown in Appendix. We conduct the error-sensitivity analy-
sis experiment on the benchmark OLHWDB1.1 (described in Sect. 5.1), since it
contains Chinese characters with complex glyphs and long trajectories.

We calculate the average score in 1000 randomly-selected sample from OLH-
WDB1.1 on the metrics of AIoU, LDTW and LPIPS across different error mag-
nitudes. For better visualization, we normalize the values of the three metrics to
[0, 1]. As Fig. 4 illustrates, firstly, the values of AIoU and LPIPS, two metrics
on the glyph and image level respectively, decrease as the magnitude of the four
error types increases. Secondly, the value of LDTW, the proposed quantitative
metric for sequence similarity comparison, increases along with the magnitude of
the four error types. These two results prove that the three metrics are sensitive
to the four errors. Furthermore, as the changing trend of AIoU is faster than
LPIPS, the former is more sensitive to the errors than the latter.

Invariance Analysis. In terms of metric invariance, stroke width change and
trajectory points number change are two critical factors. The former highlights
different handwriting brush strokes (e.g., brushes, pencils, or water pens), which
only affects stroke widths and keep the original glyph of the characters. The
latter regards to the change of the total number of points in a character to
simulate different handwriting speeds.

This analysis is also based on OLHWDB1.1 and the data preprocessing is the
same with the error sensitivity analysis mentioned above. As shown in Fig. 4(e),
on the overall, the trend of our proposed AIoU is more stable compared with
LPIPS as the stroke width of the character increases, indicating that AIoU is
more robust to the changes of stroke widths so that it can truly reflect the glyph
fidelity of a character. In terms of the trajectory points number change, as shown
in Fig. 4(f), the value of DTW rises with the increase of the number of points in
the character trajectory while our proposed LDTW, on the other hand, shows a
smooth and steady trend. This is because LDTW applies length normalization
techniques but DTW does not. The results proves that our proposed LDTW is
more robust to the changes in the number of points in a character trajectory.

4 Parsing-and-Tracing ENcoder-Decoder Network

As shown in Fig. 5, PEN-Net is composed of a double-stream parsing encoder
and a global tracing decoder. Taking a static handwriting image as input, the
double-stream parsing encoder analyzes the stroke context and parses the glyph
structure, obtaining the features that will be used by the global tracing decoder
to predict trajectory points.
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Fig. 4. Left: Sensitivity curves across error magnitudes: AIoU, LPIPS (Instead of
LPIPS, we show 1 − LPIPS, for a better visual comparison), LDTW results of 4
error types: (a) Stroke insertion error. (b) Stroke deletion error. (c) Trajectory point
drift error. (d) Stroke drift error. X-axes of (a) and (b) are the number of inserted
and deleted strokes, respectively. X-axes of (c) and (d) are the drifted pixel distance of
point and stroke, respectively. Right: Sensitivity curves across change magnitudes: (e)
LPIPS (Instead of LPIPS, we show 1 − LPIPS, for a better visual comparison) and
AIoU results of the change of stroke widths (X-axis). (f) DTW and LDTW results of
the change of sample rates (X-axis). Y-axes refer to the normalized metric value for all
sub-figures.

4.1 Double-Stream Parsing Encoder

Existing methods (e.g., DED-Net [3], Cross-VAE [29]) compress the feature
to only one dimension vector, which are not informative enough to maintain
the complex two-dimensional information of characters. Actually, every two-
dimensional stroke can be projected to horizontal and vertical axes. In the
double-stream parsing encoder, we construct two CRNN [28] branches denoted as
CRNNX and CRNNY to decouple handwriting images to horizontal and verti-
cal features Vx and Vy, which are complementary in two perpendicular directions
for the parsing of glyph structure. Each branch is composed of a CNN to extract
the vertical or horizontal stroke features, and a 3-layer BiLSTM to analyze the
relationship between strokes, e.g., which stroke should be drawn earlier, what is
the relative position between strokes. To extract stroke features of single direc-
tion in the CNN of each stream, we use asymmetric poolings, which is found to
be effective experimentally. Details of proposed CNNs are shown in Fig. 5.

The stroke region is always sparse in a handwriting image, and the blank
background disturbs the stroke feature extraction. To this end, we use an atten-
tion mechanism to attend to the stroke foreground. The attention mechanism
fuses Vx and Vy, and obtains the attention score si of each feature vi to let the
glyph parsing feature Z focus on the stroke foreground:
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Fig. 5. An overview of the Parsing-and-tracing Encoder-decoder Network.

Fig. 6. The architecture of global tracing decoder. Z is the glyph parsing feature, pi
represent the trajectory point at time i, hi is the hidden state of the LSTM at time i.
Z is concatenated with pi. We initialize the hidden state of LSTM decoder with the
hidden state outputs of BiLSTMs encoder, which is similar to the [3].

si = f (vi) = Uvi, (2)

wi =
esi

∑|V |
j=1 esj

, (3)

Z =
|V |∑

i=1

vi ∗ wi, (4)

where V is obtained by concatenating Vx and Vy, vi is the component of V , |V |
the length of V , U is learnable parameters of a fully-connected layer. We apply
a simplified attention strategy to acquire the attention score si of the feature vi.

4.2 Global Tracing Decoder

We adopt a 3-layer LSTM as the decoder to predict the trajectory points sequen-
tially. In particular, the decoder uses the position and the pen tip state at time
step i − 1 to predict those at time step i, similar to [3,20].

During decoding, previous trajectory recovery methods [3,20] only utilize
the initial character coding. As a result, the forgetting phenomenon of RNN
[11] causes the so-called trajectory-point position drifting problem during the
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Fig. 7. Sample visualization of recovered trajectories of our proposed PEN-Net, Cross-
VAE [29], Kanji-Net [20] and DED-Net [3]. Each color represents a stroke, and colors
of strokes from starting to ending is represented from blue to red. (Color figure online)

subsequent decoding steps, especially for characters with long trajectories. To
alleviate this drifting problem, we propose a global tracing mechanism by using
the glyph parsing feature Z at each decoding step. The whole decoding process
is shown in Fig. 6.

4.3 Optimization

Similar to [3,20], we use the L1 regression loss and the cross-entropy loss to
optimize the coordinates and the pen tip states of the trajectory points, respec-
tively. Similar to [33], during the process of optimizing pen tip states, we define
three states “pen-down”, “pen-up” and “end-of-sequence” respectively, which
are denoted as s1i , s

2
i , s

3
i of pi. It is obvious that “pen-down” data points are

much more than the other two classes. To solve the biased dataset issue, we add
weights (“pen-down” is set to 1, “pen-up” 5, and “end-of-sequence” 1, respec-
tively) to the cross-entropy loss.

These hard-losses are insufficient because they require a one-to-one stroke-
point correspondence, which is too strict for handwriting trajectories of variable
lengths. We borrow the soft dynamic time warping loss (SDTW Loss) [6], which
has never been used for trajectory recovery, to supplement the global-alignment
goal of the whole trajectory and to alleviate the alignment learning problem.

The DTW algorithm can solve the alignment issue during optimization using
an elastic matching mechanism. However, since containing the hard minimization
operation which is not differentiable, DTW cannot be used as an loss function
directly. Hence, we place the minimization operation by a soft-minimization
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minγ {a1, . . . , an} = γ log
∑n

i=1 e−ai/γ , γ > 0. We define the SDTW loss

Lsdtw = SDTW(q, p) =
γ

min
φ

{
T∑

t=1

d (qit , pjt)

}

.

The total loss is L = λ1L1 + λ2Lwce + λ3Lsdtw, where λ1, λ2, λ3 are parameters
to balance the effects of the L1 regression loss, the weighted cross-entropy loss
and the SDTW loss, which are set to 0.5, 1 and 1/6000 in our experiments.

5 Experiments

5.1 Datasets

Information of datasets is given as follows, and statistics of them are in Appendix.

Chinese Script. CASIA-OLHWDB(1.0–1.2) [16] is a million-level online hand-
written character dataset. We conduct experiments on all of the Chinese char-
acters from OLHWDB1.1 which covers the most frequently used characters of
GB2312-80. The largest amounts of trajectory points and strokes reach 283 (with
an average of 61) and 29 (average of 6), respectively.

English Script. We collect all of the English samples from the symbol part of
CASIA-OLHWDB (1.0–1.2), covering 52 classes of English letters.

Japanese Script. Referring to [20], we conduct Japanese handwriting recov-
ery experiments on two datasets including Nakayosi t-98-09 for training and
Kuchibue d-96-02 for testing. The largest amount of trajectory points and
strokes reach 3544 (with an average of 111) and 35 (average of 6), respectively.

Indic Script. Tamil dataset [3] contains samples of 156 character classes. The
largest amount of trajectory points reach 1832 (average of 146).

5.2 Experimental Setting

Implementation Details. We normalize the online trajectories to [0, 64) range.
In addition, in terms of the Japanese and Indic datasets, because their points
densities are so high that points may overlap each other after the rescaling
process, we remove the redundant points in the overlapping areas and then
down-sample remaining trajectory points by half. We convert the online data to
its offline equivalent by rendering the image using the online coordinate points.
Although the rendered images are not real offline patterns, they are useful to
evaluate the performance of trajectory recovery [3,20]. In addition, we train our
model 500,000 iterations on the Chinese and Japanese datasets, and 200,000
iterations on the English and Indic dataset, with a RTX3090 GPU. The batch
size is set to 512. The optimizer is Adam with the learning rate of 0.001.
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Table 1. Comparisons with state-of-the-art methods on four different language
datasets. ↓ / ↑ denote the smaller/larger, the better.

Datasets Method Evaluation metric

AIoU ↑ LPIPS ↓ LDTW↓ DTW ↓ RMSE ↓
Chinese Cross-VAE [29] 0.146 0.402 13.64 1037.9 20.32

Kanji-Net [20] 0.326 0.186 5.51 442.7 15.43

DED-Net [3] 0.397 0.136 4.08 302.6 15.01

PEN-Net 0.450 0.113 3.11 233.8 14.39

English Cross-VAE [29] 0.238 0.206 7.43 176.7 20.39

Kanji-Net [20] 0.356 0.121 5.98 149.1 18.66

DED-Net [3] 0.421 0.089 4.70 109.4 16.05

PEN-Net 0.461 0.074 3.21 77.35 15.12

Indic Cross-VAE [29] 0.235 0.228 4.89 347.3 16.01

Kanji-Net [20] 0.340 0.163 3.04 234.0 15.65

DED-Net [3] 0.519 0.084 2.00 130.5 14.52

PEN-Net 0.546 0.074 1.62 104.9 12.92

Japanese Cross-VAE [29] 0.164 0.346 22.7 1652.2 38.79

Kanji-Net [20] 0.290 0.236 6.92 395.0 19.47

DED-Net [3] 0.413 0.150 4.70 214.0 18.88

PEN-Net 0.476 0.125 3.39 144.5 17.08

Chinese (complex) Cross-VAE [29] 0.159 0.445 16.15 1816.4 26.24

Kanji-Net [20] 0.311 0.218 5.56 668.4 15.26

DED-Net [3] 0.363 0.168 4.34 483.4 16.08

PEN-Net 0.411 0.143 3.58 402.9 15.61

Japanese (complex) Cross-VAE [29] 0.154 0.489 41.84 6230.3 60.28

Kanji-Net [20] 0.190 0.435 9.68 1264.5 20.32

DED-Net [3] 0.341 0.250 4.35 536.1 18.31

PEN-Net 0.445 0.186 2.95 344.4 16.00

5.3 Comparison with State-of-the-Art Approaches

In this section, we quantitatively evaluate the quality of trajectory, recovered
by our PEN-Net and existing state-of-the-art methods including DED-Net [3],
Cross-VAE [29] and Kanji-Net [20], on the above-mentioned four datasets via
five different evaluation metrics of which AIoU and LDTW are proposed by us.

As Table 1 shows, our PEN-Net expresses satisfactory and superior perfor-
mance compared to other approaches, with an average of 13% to 20% gap away
from the second-best in all of the five evaluation criteria on the first four datasets.
Moreover, to further validate the models’ effects for complex handwritings, we
build two subsets by extracting 5% of samples with the most strokes from the
Japanese and Chinese testing set independently, where the number of strokes of
each sample is over 15 and 10 corresponding to the two languages. According to
the data(Chinese/Japanese complex in the table), PEN-Net still performs better
than SOTA methods. Particularly, on Japanese complex set, PEN-Net expresses
superior performance compared to other approaches, with an average of 27.3%
gap away from the second-best in all of the five evaluation criteria.
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Fig. 8. Left: Sample visualization of recovered trajectories of models (a) without and
(b) with double-stream mechanism. Right: Sample visualization of models (c) without
and (d) with global tracing mechanism. Stroke errors are circled in red. (Color figure
online)

Table 2. Ablation study on each component of PEN-Net.

DS GLT ATT SDTW AIoU↑ LPIPS ↓ LDTW↓ DTW↓ RMSE↓
√ √ √ √

0.451 0.113 3.11 233.8 14.39√ √ √
0.433 0.118 3.53 261.1 14.06√ √
0.426 0.123 3.62 262.4 15.05√
0.417 0.130 3.89 291.3 14.40

0.406 0.140 4.07 301.6 15.17

As the visualization results in Fig. 7, Cross-VAE [29], Kanji-Net [20] and
DED-Net [3] can recover simple characters’ trajectories (English, Indic, and
part of Japanese characters). However, their methods exhibit error phenom-
ena, such as stroke duplication and trajectory deviation, in complex situations.
Cross-VAE [29] may fail at recovering trajectories of complex characters (Chinese
and Japanese), and Kanji-Net [20] cannot recover the whole trajectory of com-
plex Japanese characters. In contrast, our PEN-Net makes accurate and reliable
recovery prediction on both simple and complex characters, demonstrating an
outstanding performance in terms of both visualization and quantitative metrics
compared with the three prior SOTA works.

5.4 Ablation Study of PEN-Net

In this section, we conduct ablation experiments on the effectiveness of PEN-
Net’s core components, including double-stream (DS) mechanism, global tracing
(GLT) mechanism, attention (ATT) mechanism and SDTW loss. We use Chinese
dataset to evaluate PEN-Net’s performance for complex handwriting trajectory
recovery. The evaluation metrics are the same as in Sect. 5.3. The experiment
results are reported in Table 2 in which the first row relates to the full model
with all components, and we gradually ablate each component one-by-one down
to the plain baseline model at the bottom row.
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Fig. 9. Sample visualization of attention scores maps. The maps are obtained by
extracting and multiplying two attention-weighted vectors corresponding to Vx and
Vy mentioned in Sect. 4.1. (Color figure online)

Double-Stream Mechanism. In this test, we remove CRNNy from the back-
bone of the double-stream encoder and remains the CRNNx. As the 4th and 5th
rows in Table 2 show, CRNNy contributes 2.7% and 7.14% improvement on glyph
fidelity metrics (AIoU and LPIPS), and 4.4%, 3.41%, 5.1% improvement on writ-
ing order metrics (LNDTW, DTW, RMSE). Additionally, as Fig. 8 reveals, the
model without CRNNy cannot make an accurate prediction on vertical strokes
of Chinese characters.

Global Tracing Mechanism. As the 3rd and 4th row in Table 2 show, GLT
further improves the performance based on all the metrics except RMSE. The
value rise in RMSE, from 14.40 to 15.05, is because this generic metric overem-
phasizes the point-by-point absolute deviation, which negatively affects the over-
all quality evaluation of the handwriting trajectory matching. In addition, as
Fig. 8 shows, drifting phenomenon occurs in the recovered trajectories if GLT is
removed, while, in contrast, the phenomenon disappears vise versa.

Attention Mechanism. As the 2nd and 3rd rows showed in Table 2, ATT also
improves the performance of the model. Furthermore, as the attention heat-map
visualization showed in Fig. 9, the stroke region always attracts more attention(in
red color) than the background area(in blue color) in a character image.

SDTW Loss. As the 1st and the 2nd rows showed in Table 2, the SDTW loss
also contributes to the performance enhancement of the model.

Finally, based on these ablation studies, the PEN-Net dramatically boost the
trajectory recovery performance over the baseline by 10.8% on AIoU, 23.6% on
LDTW, 22.5% on DTW, 5.1% on RMSE, 19.3% on LPIPS. Consequently, we
claim that the four components of PEN-Net: double-stream mechanism, global
tracing, attention mechanism and SDTW loss, all play pivotal roles w.r.t. the
final performance of trajectory recovery.

6 Conclusion

We have proposed two evaluation metrics AIoU and LDTW specific for trajec-
tory recovery, and have proposed the PEN-Net for complex character recovery.

There are several possible future directions. First, local details such as loops
play an important role in some writing systems, to which we will pay more
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attention. Second, we have considered recovering the most natural writing order,
but, as far as we know, no one has succeeded in recovering the personal writing
order, which should also be a promising direction. Third, one can try to replace
the decoder part by some trendy methods, e.g., transformer. Besides, we can go
beyond the encoder-decoder framework, and treat this task as, for example, a
decision-making problem and then use the techniques of reinforcement learning.
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