
Gestalt-Guided Image Understanding
for Few-Shot Learning

Kun Song, Yuchen Wu, Jiansheng Chen, Tianyu Hu, and Huimin Ma(B)

University of Science and Technology Beijing, Beijing, China
{songkun,yuchen.wu}@xs.ustb.edu.cn, {jschen,Tianyu,mhmpub}@ustb.edu.cn

Abstract. Due to the scarcity of available data, deep learning does not
perform well on few-shot learning tasks. However, human can quickly learn
the feature of a new category from very few samples. Nevertheless, previ-
ous work has rarely considered how to mimic human cognitive behavior
and apply it to few-shot learning. This paper introduces Gestalt psychol-
ogy to few-shot learning and proposes Gestalt-Guided Image Understand-
ing, a plug-and-play method called GGIU. Referring to the principle of
totality and the law of closure in Gestalt psychology, we design Totality-
Guided Image Understanding and Closure-Guided Image Understanding
to extract image features. After that, a feature estimation module is used
to estimate the accurate features of images. Extensive experiments demon-
strate that our method can improve the performance of existing mod-
els effectively and flexibly without retraining or fine-tuning. Our code is
released on https://github.com/skingorz/GGIU.

1 Introduction

In recent years, deep learning has shown surprising performance in various fields.
Nevertheless, deep learning often relies on large amounts of training data. More
and more pre-trained models are based on large-scale data. For example, CLIP [1]
is trained on 400 million image-text pairs. However, a large amount of data come
with extra costs in deep learning procedures, such as collection, annotation, and
training. In addition, many kinds of data, such as medical image data, requires
specialized knowledge to annotate. Data for some rare scenes are hard to obtain,
such as car accidents. Therefore, there is a growing interest in training a better
model using fewer data. Motivated by this, Few-Shot Learning (FSL) [2,3] is
proposed to solve the problem of learning from small amounts of data.

The most significant obstacle to few-shot learning is the lack of data. In order
to address this obstacle, existing few-shot learning approaches mainly employ
metric learning, such as PN [4], and meta-learning, such as MAML [5]. Regardless
of the technique, the ultimate goal is to extract more robust features for novel
classes. Previous researches mainly focus on two aspects: designing a more robust
feature extractor to represent the image feature better, such as meta-baseline
[6], and using more dense features, such as DeepEMD [7]. However, few people
consider how to mimic human learning patterns to enhance the effectiveness of
few-shot learning.
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Fig. 1. Describe an image using a multivariate Gaussian distribution.

Modern psychology has extensively studied the mechanisms of human cog-
nition. Gestalt psychology is one of them. On the one hand, Gestalt psychology
states that conscious experience must be considered globally, which is the prin-
ciple of totality of gestaltism. For example, as shown in the left of Fig. 1, the
whole picture shows a bird standing on a tree branch. Its feature can represent
the image. Meanwhile, given any patch of the image, human can easily deter-
mine that it is a part of a bird. These can be explained by the law of closure in
Gestalt psychology: When parts of a whole picture are missing, our perception
fills in the visual gap. Therefore, the feature of patches can also represent the
image.

Motivated by Gestalt psychology, we imitate human learning patterns to
redesign the image understanding process and apply it to few-shot learning. In
this paper, we innovatively describe the image as a data distribution to repre-
sent the principle of totality and the law of closure in Gestalt psychology. We
assume that image can be represented by a corresponding multivariate Gaus-
sian distribution. As shown in the right of Fig. 1, the feature of the image can
be considered as a sample of the potential distribution. Likewise, the feature of
the largest patch, the image itself, is also a sample of the distribution. Then we
design a feature estimation module with reference to Kalman filter to estimate
the features of images accurately.

The main contributions of this paper are:

1. We introduce Gestalt psychology into the process of image understanding
and propose a plug-and-play method without retraining or fine-tuning, called
GGIU.

2. We innovatively propose to use multivariate Gaussian distribution to describe
the image and design a feature estimation module with reference to Kalman
filter to estimate image feature accurately.

3. We conduct extensive experiments to demonstrate the applicability of our
method to a variety of different few-shot classification tasks. The experiment
results demonstrate the robustness and scalability of our method.



Gestalt-Guided Image Understanding for Few-Shot Learning 411

2 Related Work

2.1 Few-Shot Learning

Most of the existing methods for few-shot learning is based on the meta-learning
[8] framework. The motivation of meta-learning is learning to learn [9]. The
network is trained on a set of meta-tasks during the training process to gain
the ability to adapt itself to different tasks. The meta-learning methods for few-
shot learning are mainly divided into two categories, optimization-based and
metric-based.

Koch [10] apply metric learning to few-shot learning for the first time. They
proposed to apply Siamese Neural Network to one-shot learning. A pair of con-
volutional neural networks with shared weights is used to extract the embedding
features of each class separately. When inferring the category of unknown data,
the unlabeled data and the training set samples are paired. The Manhattan
Distance between unlabeled data and training data is calculated as the simi-
larity, and the category with the highest similarity is used as the prediction of
the samples. Matching Network [3] first conducts experiments on miniImageNet
for few-shot learning. It proposes an attention module that uses cosine distance
to determine the similarity between the target object and each category and
uses the similarity for the final classification. Prototypical Network [4] proposed
the concept of category prototypes. Prototypical Network takes a class’s proto-
type to be the mean of its support set in the embedding space. The similarity
between the unknown data and each category’s prototypes are measured, and
the most similar category is selected as the final classification result. Sator-
ras [11] uses graphical convolutional networks to transfer information between
support and query sets and extended prototypical networks and matching net-
works to non-euclidean spaces to assist few-shot learning. DeepEmd [7] adopt
the Earth Mover’s Distance (EMD) as a metric to compute a structural distance
between dense image representations to determine image relevance. COSOC [12]
extracts image foregrounds using contrast learning to optimize the category pro-
totypes. Yang [13] takes the perspective of distribution estimation to rectify the
category prototype. SNE [14] encodes the latent distribution transferring from
the already-known classes to the novel classes by label propagation and self-
supervised learning. CSS [15] propose conditional self-supervised learning with a
3-stage training pipeline. CSEI [16] proposed an Erasing-then-Inpainting method
to augment the data while training, which needs to retrain the model. AA [17]
expands the novel data by adding extra “related base” data to few novel ones
and fine-tunes the model.

2.2 Gestalt Psychology

Gestalt psychology is a psychology school that emerged in Austria and Germany
in the early twentieth century. Gestalt principles, proximity, similarity, figure-
ground, continuity, closure, and connection describe how humans perceive visuals
in connection with different objects and environments. In this section, we mainly
introduce the principle of totality and the law of closure.
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Fig. 2. Although we see incomplete figures, our brain can easily complete them and
regard them as rectangles (left) and circles (right).

Principle of Totality. The principle of totality points out that conscious expe-
rience must be considered globally. Wertheimer [18] described holism as funda-
mental to Gestalt psychology. Kohler [19] thinks: “In psychology, instead of being
the sum of parts existing independently, wholes give their parts specific func-
tions or properties that can only be defined in relation to the whole in question.”
Thus, the maxim that the whole is more than the sum of its parts is not a precise
description of the Gestaltist [18].

Law of Closure. Gestalt psychologists held the view that humans often con-
sider objects as complete rather than focusing on the gaps they may have. [20]
For example, a circle has a good Gestalt in terms of completeness. However,
we may also consider an incomplete circle as a complete one. This tendency to
complete shapes and figures is called closure. [21] The law of closure states that
even incomplete objects, such as forms, characters, and pictures, are seen as
complete by people. In particular, when part of the entire picture is missing, our
perception fills in the visual gaps. For example, as shown in Fig. 2, despite the
incomplete shape, we still perceive a rectangle and a circle. If the law of closure
did not exist, the image would depict different lines with different lengths, rota-
tions, and curvatures. However, because of the law of closure, we perceptually
combine the lines into whole shapes [22].

3 Method

3.1 Problem Definition

The dataset for few-shot learning consists of training set DB and testing set
DV with no shared classes. We train a feature extractor fθ(·) on DB containing
lots of labeled data. During the evaluation, many N -way K-shot Q-query tasks
T = {(S,Q)} are constructed from DV . Each task contains a support set S =
{(xi, yi)}K×N

i=1 and a query set Q. Firstly, N classes in DV are randomly sampled
for S and Q. Then we calculate a classifier for N -way classification for each task
based on fθ(·) and S. At last, we calculate the feature of the query image x ∈ Q
and classify it into one of the N class.
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3.2 Metric-Based Few-Shot Learning Pipeline

Calculating a better representation for all classes in metric-based few-shot learn-
ing is critical. Under most circumstances, the features of all images in each cat-
egory of the support set are calculated separately. The mean of features is used
as the category representation, the prototype.

Pn =
1
K

∑

(xi,yi)∈Sn

fθ(xi) (1)

In Eq. 1, Pn represents the prototype of the n-th category and Sn represents
the set of all images of the n-th class. When an image x ∈ Q and a distance
function d(, ) are given, the feature extractor fθ(·) is used to calculate the feature
of x. Then we calculate the distance between fθ(x) and the prototypes in the
embedding space. After that, a softmax function (Eq. 2) is used to calculate a
distribution for classification.

pθ(y = n|x) =
exp(−d(fθ(x),Pn ))

∑N
i=1 exp(−d(fθ(x),Pi))

(2)

Finally, the model is optimized by minimizing the negative log-likelihood
L(θ) = − log pθ(y = n|x), i.e.,

NLL(θ) = d(fθ(x),Pn ) + log
k∑

i=1

exp(−d(fθ(x),Pi)) (3)

3.3 Gestalt Guide Image Understanding

Previous works mainly calculate prototypes with the features of images. Never-
theless, due to the limit of data volume, the image feature does not represent
the information of the class well. In this section, inspired by Gestalt psychology,
we reconceptualize images in terms of the principle of totality and the law of
closure separately.

Given one image I, many patches of different sizes can be cropped from it.
As shown in the right of Fig. 1, we assume that all patches follow a potential
multivariate Gaussian distribution. All the patches can be regarded as samples
of this distribution. Likewise, the largest patch of this image, the image itself, is
also a sample of the distribution. Therefore, this potential Gaussian distribution
can describe the image. The above can be expressed as follows: given a feature
extractor fθ(·), for any patch p cropped from image I, its feature follows a
multivariate Gaussian distribution, i.e., fθ(p) ∈ R

D and fθ(p) ∼ NI(μI ,Σ2
I ).

Next, μI can represent the feature of I. Finally, we estimate the image feature
by the principle of totality and the law of closure.
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Totality-Guided Image Understanding. The existing image understanding
processes in few-shot learning are most from the totality of the image. The
image can be considered as a sample of the potential multivariate Gaussian
distribution, i.e., fθ(I) ∼ NI(μI ,Σ2

I ). Therefore, NI(μI ,Σ2
I ) can be estimated

by fθ(I) (Eq. 4). μt represents the estimate guided by the principle of totality.

μt = μ̂I = fθ(I) (4)

Closure-Guided Image Understanding. Guided by the law of closure, we
randomly crop patches from images as the sample of the potential distribution
of image. For any patch p ∈ I, fθ(p) ∈ R

D, fθ(p) ∼ NI(μI ,Σ2
I ). The joint

probability density function of the feature of the i-th patch is shown as Eq. 5.

pNI
(fθ(pi)) =

1

(2π)
D
2 |Σ|− 1

2
exp

(
−1

2
(fθ(pi) − μI )T

Σ−1 (fθ(pi) − μI )
)

(5)

The log-likelihood function is:

�NI
(μI ,ΣI ; p1, . . . , pM ) = − MD

2
log(2π) − M

2
log(|ΣI |)

− 1
2

M∑

j=1

(pi − μI )T Σ−1
I (pi − μI )

(6)

Solve the following maximization problem

max
μI ,ΣI

�NI
(μI ,ΣI ; p1, . . . , pM ) (7)

Then we have

μc = μ̂I =
1
M

M∑

i=1

fθ(pi) (8)

μc represents the estimation guided by the law of closure.

3.4 Feature Estimation

We regard the process of estimating image feature guided by the totality and
closure as two different observers following multivariate Gaussian distribution:
Ot and Oc. The observations of Ot, Oc are μt ∈ R

D×1, μc ∈ R
D×1 and their ran-

dom errors are et , ec respectively, where et ∈ R
D×1 and ec ∈ R

D×1. et and ec

follow multivariate Gaussian distribution, i.e., et ∼ N(0,Σ2
t ), ec ∼ N(0,Σ2

c ),
where Σt ∈ R

D×D and Σc ∈ R
D×D. In this section, we use Kalman filter to

estimate image features f ∈ R
D×1.
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For Ot and Oc, we have

f = μt + et (9)
μc = f + ec (10)

The prior estimates of f under Ot and Oc are

f̂−
t = μt (11)

f̂−
c = μc (12)

The feature f can be estimate by the prior estimates under Ot and Oc, we
have

f̂ = f̂−
c + λ(f̂−

t − f̂−
c ) (13)

i.e.,
f̂ = μc + λ(μt − μc) (14)

λ = diag(λ1, λ2, . . . , λD), where λi is a diagonal matrix, ranging from 0 to
I. The error between f̂ and f is

e = f − f̂ (15)

The error e follows a multivariate Gaussian distribution, i.e., e ∼ N(0,Σe).
where

Σe = E(eeT ) (16)

= E[(f − f̂)(f − f̂)T ] (17)

= E[(λe− − (I − λec))(λe− − (I − λec))T ] (18)

e− represents the prior estimation of e, Since e− and ec are independent of
each other, we have E(ece

−) = E(e−)E(ec) = 0. Therefore, we have

Σe = λE(e−e−T )λT + (I − λ)E(ece
T
c )(I − λ)T (19)

= λΣ−λT + (I − λ)Σc(I − λ)T (20)

In order to estimate f accurately, we have to minimize e, i.e.,

min
λ

tr(Σe) = min
λ

[tr(λΣ−λT ) − 2tr(λΣc) + tr(λΣcλ
T )] (21)

We need to solve this equation:

∂Σe

∂λ
= 0 (22)

We have
λ = (Σ−Σ−1

c + I)−1 (23)
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where

Σ− = E(e−e−T ) (24)

= E[(f − f̂)(f − f̂)T ] (25)

= E[(μt + et − μt)(μt + et − μt)T ] (26)
= Σt (27)

Therefore
λ = (ΣtΣ

−1
c + I)−1 (28)

Although the error covariance matrix Σt and Σc of the observers Ot and
Oc cannot be calculated, the relationship between λ and the number of patches
can still be estimated, which can assist us in choosing the parameter. When the
number of patches is large enough, the Closure-Guided image understanding can
estimate the image features accurately. At this time, Σc is close to 0. According
to Eq. 28, λ is close to 0. As the number of patches decreases, Σc gradually
increases, and λ is close to I.

3.5 The Overview of Our Approach

support set

share
weight

random
sample

query set

Totality Guided

Closure Guided

Feature Estimation

CNN

CNN

White wolf

Classifier

Fig. 3. There are two branches in our method. Totality-Guided module extracts the
feature of the whole image. Guided by Closure-Guided module, image features are
estimated from incomplete images. After that, we use feature estimation module to fuse
the feature calculated by the Totality-Guided and Closure-Guided module. Finally, we
classify the query image according to the image feature.

Our pipeline on 2-way 1-shot task is illustrated in Fig. 3. Given a few-shot learn-
ing task, firstly, we feed the image x into the feature extractor fθ(·) to extract
the features. The prototype guided by the principle of totality P t

n can be cal-
culated by Eq. 29. Query features estimated by the principle of totality are the
whole image feature extracted by the feature extractor (Eq. 4).
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P t
n =

1
K

∑

(xi,yi)∈Sn

fθ(xi) (29)

Meanwhile, guided by the law of closure, we randomly crop M patches from
each image and feed them into a feature extractor with shared weights to calcu-
late feature fθ(p). For the convenience of calculating the categories prototypes,
as shown in Eq. 30, we use all patches in the same category to calculate the
prototype guided by the law of closure. Query features estimated by the law of
closure can be calculated by Eq. 8.

P c
n =

1
K × M

∑

(xi,yi)∈Sn

∑

pi∈xi

fθ(pi) (30)

After calculating the category prototypes P t
n and P c

n , they are fed into the
feature estimate module to calculate the category prototype Pn (Eq. 31). Query
features can be re-estimated by Eq. 14. Then the distances between the query
feature and the category prototypes are calculated and the query set is classified
according to Eq. 2.

Pn = λP t
n + (I − λ)P c

n (31)

4 Experiment

4.1 Datasets

We test our method on miniImageNet [3] and Caltech-UCSD Birds 200-2011
(CUB200) [23], which are widely used in few-shot learning.

miniImageNet is a subset of ILSVRC-2012 [24]. It contains 60,000 images
in 100 categories, with 600 images in each category. Among them, 64 classes are
used as the training set, 16 classes as the validation set, and 20 as the testing
set.

Table 1. Results of the performance of different methods on miniImageNet before and
after adding GGIU The reported accuracy is 95% confidence interval.

Method 5-way 1-shot (%) 5-way 5-shot (%)

PN 61.59 ± 0.54 76.75 ± 0.46

PN+GGIU 64.34 ± 0.53 (↑ 2.75) 79.49 ± 0.41 (↑ 2.74)

CC 63.11 ± 0.74 80.43 ± 0.31

CC+GGIU 65.72 ± 0.77 (↑ 2.61) 82.55 ± 0.29 (↑ 2.12)

CL 63.74 ± 0.59 79.33 ± 0.31

CL+GGIU 65.50 ± 0.45 (↑ 1.76) 80.76 ± 0.39 (↑ 1.43)

CLIP 88.21 ± 0.33 97.47 ± 0.08

CLIP+GGIU 89.31 ± 0.33 (↑ 1.10) 97.71 ± 0.06 (↑ 0.24)
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CUB200 contains 11788 images of birds in 200 species, which is widely
used for fine-grained classification. Following the previous work [25], we split the
categories into 130, 20, 50 for training, validation and testing.

4.2 Implementation Details

Since we propose a test-time feature estimation approach, we need to reproduce
the performance of existing methods to validate our approach’s effectiveness.
Therefore, following Luo [12], we reproduce PN [4], CC [26], and CL [27]. The
backbone we use in this paper is ResNet-12 [28], which is widely used in few-
shot learning. We implement our method using PyTorch and test on an NVIDIA
3090 GPU. Since the authors do not provide a configuration file for the CUB200
dataset, we use the same configuration file as miniImageNet. In the test phase,
we randomly sampled five groups of test tasks, and each group of tasks contained
2000 episodes. Then five patches from each image are randomly cropped to
rectify for prototypes and features with λ = diag(0.5, 0.5, . . . , 0.5). The size of
the patches is range from 0.08 to 1.0 of that of the original image.

4.3 Experiment Results

Results on In-Domain Data. Table 1 shows our performance on miniImage
Net. Our method can effectively improve the performance based on existing meth-
ods for different tasks. We improve the performance on PN, CC, and CL by 2.75%,
2.61%, and 1.76%, separately.

We also test the performance on CLIP [1] to explore the performance of
our method on the model pre-trained on large-scale data. We use the ViT-B/32
model published by OpenAI as a feature extractor and use PN for classification.
Surprising, on such a high baseline, our method can still improve the 1-shot task
by 1.10% and the 5-shot by 0.23%. The experiment results also illustrate that
even with such large-scale training data, GGIU can still estimate more accurate
image features.

Similarly, to test the effectiveness of our method on fine-grained classification,
we also test the performance of our method on CUB200. As shown in Table 2, our
method also significantly improves the performance based on existing methods
of fine-grained classification.

Table 2. Results of the performance of different methods on CUB200 before and after
adding GGIU. The reported accuracy is 95% confidence interval.

Method 5-way 1-shot (%) 5-way 5-shot (%)

PN 76.13 ± 0.21 88.06 ± 0.09

PN+GGIU 78.79 ± 0.24 (↑ 2.66) 89.69 ± 0.17 (↑ 1.63)

CC 70.57 ± 0.35 86.65 ± 0.16

CC+GGIU 72.60 ± 0.29 (↑ 2.03) 87.90 ± 0.27 (↑ 1.25)

CL 72.34 ± 0.48 85.93 ± 0.25

CL+GGIU 73.64 ± 0.46 (↑ 1.30) 87.17 ± 0.25 (↑ 1.24)
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Table 3. Results of the performance reported by other methods with the performance
of ours on miniImageNet. The reported accuracy is 95% confidence interval. * repre-
sents the results reported by the original paper and † represents the results that we
implement.

Method Backbone 5-way 1-shot (%) 5-way 5-shot (%)

PN* [4] Conv-4 49.42± 0.78 68.20± 0.66

PN† Conv-4 50.15± 0.44 65.19± 0.51

DC* [13] Conv-4 54.62± 0.64 –

Spot and Learn* [29] Conv-4 51.03± 0.78 67.96± 0.71

PN+GGIU† Conv-4 52.55± 0.52 67.36± 0.55

PN† ResNet-12 61.59± 0.54 76.75± 0.46

CC* [26] ResNet-12 55.45± 0.89 70.13± 0.68

CC† ResNet-12 63.11± 0.74 80.43± 0.31

PN+TRAML* [30] ResNet-12 60.31± 0.48 77.94± 0.57

PN+CL* [27] ResNet-12 59.54± 0.47 74.46± 0.52

PN+CL† ResNet-12 63.74± 0.59 79.33± 0.31

DC* ResNet-18 61.50± 0.47 –

AA* [17] ResNet-18 58.84± 0.77 80.35± 0.73

PN+GGIU† ResNet-12 64.34± 0.53 79.49± 0.41

CC+GGIU† ResNet-12 65.72± 0.77 82.55± 0.29

PN+CL+GGIU† ResNet-12 65.50± 0.45 80.76± 0.39

CLIP† ViT-B/32 88.21± 0.33 97.47± 0.08

CLIP+GGIU† ViT-B/32 89.31± 0.33 97.71± 0.06

In addition, we compare the performance of our method with existing meth-
ods in Table 3.

Results on Cross-Domain Data. To validate the effectiveness and robustness
of our approach, we conduct experiments on cross-domain tasks. We test the
cross-domain performance on miniImageNet and CUB200: Table 4 shows the
model trained on miniImageNet and tested on CUB200; Table 5 shows the

Table 4. Results of the performance of different methods trained on miniImageNet
and tested on CUB200 before and after adding GGIU. The reported accuracy is 95%
confidence interval.

Method 5-way 1-shot (%) 5-way 5-shot (%)

PN 40.47 ± 0.21 56.14 ± 0.20

PN+GGIU 42.61 ± 0.49 (↑ 2.14) 58.95 ± 0.49 (↑ 2.81)

CC 43.56 ± 0.47 61.51 ± 0.39

CC+GGIU 45.88 ± 0.48 (↑ 2.32) 64.77 ± 0.27 (↑ 3.26)

CL 38.65 ± 0.44 52.36 ± 0.35

CL+GGIU 39.87 ± 0.31 (↑ 1.22) 53.74 ± 0.21 (↑ 1.38)
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Table 5. Results of the performance of different methods trained on CUB200 and
tested on miniImageNet. The reported accuracy is 95% confidence interval.

Method 5-way 1-shot (%) 5-way 5-shot (%)

PN 40.24 ± 0.35 55.47 ± 0.47

PN+GGIU 43.17 ± 0.57 (↑ 2.93) 58.12 ± 0.49 (↑ 2.65)

CC 43.54 ± 0.52 60.40 ± 0.39

CC+GGIU 44.27 ± 0.42 (↑ 0.73) 60.94 ± 0.42 (↑ 0.54)

CL 44.47 ± 0.56 61.84 ± 0.44

CL+GGIU 46.42 ± 0.68 (↑ 1.95) 63.89 ± 0.45 (↑ 2.05)

results of the model trained on CUB200 and tested on miniImageNet. It can
be seen that our method has adequate performance improvement on the cross-
domain task of few-shot learning.

4.4 Result Analysis

Ablation Study. This section performs ablation experiments on miniImageNet
to explore the performance impact of feature rectification on the support set and
query set.

As shown in Table 6, compared with only using GGIU to estimate query
features, the performance of estimation support features is higher. For the 5-way
5-shot task, when GGIU is used to estimate query features, the performance is
improved more. This can be explained as follows: The more support set samples,
the more accurate the representation of the category prototype is. At this time,
the accuracy of query features is the bottleneck of classification performance.
Similarly, when the support set samples are few, the category prototypes cal-
culated by the support set are inaccurate. At this moment, accurate category
prototypes can significantly improve classification performance.

The Influence of the Fusion Parameters In our method, the fusion param-
eter λ = diag(λ1, λ2, . . . , λD) is essential. This section explores the influence
of λ. We conduct three sets of experiments on PN for the different number of
patches, 1, 5, and 10, respectively. As shown in Fig. 4, when λi = 1, image fea-
tures f̂ are solely estimated by totality-guided image understanding (Eq. 14).
The performance at this point is the baseline performance. As λi decreases, the
influence of closure-guided image understanding increases, and the estimated
image feature f̂ can represent the image better. So the performance gradually
improves until an equilibrium point is reached. After the highest performance,
continuing to decrease λi leads to a gradual decrease in model performance. It
is worth noting that the performance will improve with a large enough number
of patches even if λi = 0. It can be concluded that when the number of patches
is large enough, closure-guided image understanding can well estimate image
features. It can also be seen that the value of λ corresponding to the highest
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Table 6. The results of ablation experiments. support with � means adding GGIU
while calculating prototypes; query with � means adding GGIU while computing the
feature of query images.

Support Query 5-way 1-shot (%) 5-way 5-shot (%)

61.59 76.75

� 62.80 77.01

� 62.50 77.90

� � 64.34 79.49

performance decreases as the number of patches increases. The more patches,
the more accurate the estimation guided by the law of closure. What’s more,
when the number of patches is 1, 5, and 10, the best λ equals 0.7, 0.5, and 0.4,
respectively. The above results are consistent with the deduction in Sect. 3.4.

The Influence of the Number of Patches. The number of patches is a very
important hyper-parameter, and the inference efficiency might be low if this
number is too big. This section explores how the number of patches influences
the performance. As shown in Fig. 5, on miniImageNet, we perform a 5-way
1-shot experiment on PN with λi = 0.5. Suppose only one patch is cropped to
estimate the closure feature, in which case, it can be seen that it will also improve
the performance substantially. However, as the number increases, the rate of
increase in accuracy gradually slows down, which demonstrates that too many
patches might lead to a marginal effect on the correction of the distribution,
especially when the patches almost cover the whole image. Therefore, too many
patches do not significantly improve the model performance.

The Relationship Between Intra-class Variations and λ. In order to
analyse the relationship between the optimal λ and intra-class variations, we
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Fig. 6. The relationship between intra-class variations and λ

conducted experiments on the NICO [31], which contains images labeled with
category and context. We searched for the optimal λ in different contexts and
calculated the intra-class variance in each context before and after using our
method. As shown in Fig. 6, with the decrease of the intra-class variance, the
optimal λ shows an increasing trend. Moreover, our method can significantly
reduce the intra-class variance.

5 Conclusion

In this paper, we reformulate image features from the perspective of multi-
variate Gaussian distributions. We introduce Gestalt psychology into the pro-
cess of image understanding to estimate more accurate image features. The
Gestalt-guided image understanding consists of two modules: Totality-guided
image understanding and Closure-guidied image understanding. Then we fed
the features obtained from the above two modules into the feature estima-
tion module and estimate image features accurately. We conduct many experi-
ments on miniImageNet and CUB200 for coarse-grained, fine-grained, and cross-
domain few-shot image classification. The results demonstrate the effectiveness
of GGIU. Moreover, GGIU even improved the performance based on CLIP.
Finally, we analyze the influence of different hyper-parameters, and the results
accord with our theoretical analysis.
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