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Abstract. Decision-based black-box attacks can craft adversarial exam-
ples by only querying the target model for hard-label predictions. How-
ever, most existing methods are not efficient when attacking large-size
images due to optimization difficulty in high-dimensional space, thus
consuming lots of queries or obtaining relatively large perturbations. In
this paper, we propose a novel decision-based black-box attack to gen-
erate adversarial examples, which is Specific to Large-size Image Attack
(SLIA). We only perturb on the low-frequency component of discrete
wavelet transform (DWT) of an image, reducing the dimension of the
gradient to be estimated. Besides, when initializing the adversarial exam-
ple of the untargeted attack, we remain the high-frequency components
of the original image unchanged, and only update the low-frequency com-
ponent with the randomly sampled uniform noise, thereby reducing the
distortion at the beginning of the attack. Extensive experimental results
demonstrate that the proposed SLIA outperforms state-of-the-art algo-
rithms when attacking a variety of different threat models. The source
code is publicly available at https://github.com/GZHU-DVL/SLIA.

1 Introduction

At present, deep neural networks (DNNs) have been widely applied in various
fields due to their ability to efficiently solve complex tasks. However, DNN is
highly uninterpretable, making it difficult to control [1]. The safety of its appli-
cations in specific fields deserves attention, such as military, autonomous driving,
and medical treatment. The concept of adversarial example was first proposed
by Szegedy et al. [1] in 2014. That is, adding a small perturbation to an orig-
inal image can generate an adversarial example that makes the DNN model
misclassified with high confidence. According to the accessible knowledge of the
structure and parameters of the target model, adversarial attack can be divided
into white-box attack and black-box attack. Since the black-box attack is more
practicable, thus attracting more attentions than the former [2]. The black-box
attack includes the transfer-based [3] and query-based attack [4].

In the transfer-based black-box attack, Dong et al. [5] make the generated
adversarial examples more transferable by increasing the momentum in the gradi-
ent direction. However, this approach has low attack success rate. In [11], Paper-
not et al. propose a dataset expansion method based on the Jacobian matrix to
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Fig. 1. Pipeline of SLIA. The attack is initialized with an example that has already
been adversarial, and then generating adversarial examples iteratively move along the
decision boundary. Taking targeted attack as an example, we aim to obtain an adver-
sarial image that visually looks like a cat but be misclassified as a black swan.

iteratively expand and improve surrogate model. However, when the dimension of
the sampled image is large, the calculation of the Jacobian matrix will consume
huge resources. Besides, it is difficult to completely imitate the decision boundary
of the attacked model, which causes a low attack success rate.

Since the surrogate model cannot fully imitate the target model, many
researchers tend to directly estimate the structure and parameter information
of the target model. The focus of black-box attacks is gradient estimation by
querying model. Chen et al. [4] utilize the finite difference based Zero-Order
Optimization (ZOO) algorithm to estimate the gradient of the loss function by
accessing predicted probabilities of the target model. This method needs to esti-
mate each pixel one by one, which requires numerous queries to generate accurate
gradient estimation in each iteration, causing the low attack efficiency. Bhagoji
et al. [13] use the finite difference method and the random grouping method to
reduce the amount of calculation. However, the reduced calculation causes the
low attack success rate on the large-size image dataset.

When the model’s prediction probabilities are accessible, attackers will typi-
cally prefer score-based attack. While in more realistic scenarios where only top-
1 class predictions are available, attackers will have to resort to decision-based
attack. The concept of boundary-based black-box attack was first proposed by
Brendel et al. [19]. It only needs to utilize the final classification output of the
model to craft adversarial example. The method works by randomly walking in
the direction of the original example along the decision boundary until it is clos-
est to the original example, while remaining adversarial. This attack requires less
model knowledge but can achieve comparable attack effects to white-box attack.
However, the perturbation sampling strategy in [19] has great randomness, and
the convergence of perturbation cannot be guaranteed. To address this problem,
[6,20] were proposed to carry out decision-based black-box attack. However,
these attacks often require numerous queries to converge or have large pertur-
bations under a given number of query budget, which makes the attack process
consume heavy computation, especially when attacking large-size images.
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To improve the query efficiency, we propose a decision-based boundary adver-
sarial attack, which is specific to large-size images, termed SLIA. SLIA optimizes
both ls-norm and [,-norm distortion. The main contributions of this paper
are as follows: (1) We propose a decision-based black-box attack for large-size
images (named SLIA), wherein adversarial images can be crafted by sending a
few queries to the model; (2) When performing untargeted attack, SLIA replaces
the low-frequency component of the original image with random uniform noise,
and reconstructs it back to the original image space with high-frequency com-
ponents. This can fool the model while retaining as much key information of the
original image as possible; (3) SLIA performs discrete wavelet decomposition on
adversarial example at the boundary, only estimates and updates the gradient of
low-frequency component, greatly reduces the number of dimensions to be esti-
mated with fewer model queries. Experiments show that our algorithm can be
successfully used to attack different ImageNet models with less distortion than
state-of-the-art algorithms under the same number of queries.

2 Related Work

According to the available knowledge of the network model, adversarial attack is
classified into white-box attack and black-box attack. In a white-box setting, the
attacker has all knowledge about the network. Since Szegedy et al. [1] discovered
vulnerability of DNNs; various white-box attacks [8-10,12] have been developed.
In practice, the attacker may not be able to access the structure and parameters
of the model, which is more in line with the actual attack situation. Hence black-
box attacks have received more attention recently. It is often divided into three
families: transfer-based, score-based, and decision-based attacks.

2.1 Transfer-Based Black-Box Attacks

Transfer-based black-box attack algorithms are mainly based on the phenomenon
of transferability: adversarial example against a certain model is often misclassi-
fied by other models. Papernot et al. [10,11] trained a local substitute model by
querying the target model and used backpropagation gradient from the substi-
tute network to craft adversarial examples. These examples can also successfully
fool the target model with high probability. The follow-up work [3] showed that
adversarial example generated on substitute network tends not to have better
transferability for targeted attack, but can be developed on an ensemble of mod-
els. However, query-based algorithms that directly estimate the gradient of the
target network outperform these methods. In addition, it is difficult to find a
suitable surrogate model to learn the decision boundary of the target model.

2.2 Score-Based Black-Box Attacks

In the score-based black-box setting, the attacker utilizes the corresponding pre-
dicted probabilities to make adversarial examples by querying the target model.
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Chen et al. [21] applied zeroth order optimization and coordinate descent to esti-
mate the gradient, but requred a large number of queries on the target model.
The method in [6] performs gradient estimation via Natural Evolutionary Strat-
egy (NES) and then uses Projected Gradient Descent (PGD) [7], further reduces
the query complexity.

2.3 Decision-Based Black-Box Attacks

As an important category of adversarial attacks, an initial attempt named
Boundary Attack [19] is highly relevant to real-world applications. It starts from
an adversarial point and tries to reduce the distortion by walking towards the
original image along the decision boundary while keeping adversarial. The main
issue is the trade-off between the number of queries and the quality of adver-
sarial example. HopSkipJumpAttack [21] significantly improves the former [19]
in terms of query efficiency. This method can balance both the accuracy of gra-
dient estimation and query complexity well. However, when attacking large-size
images, the number of queries required to produce adversarial examples still is
in the tens of thousands.

3 Problem Definition

We consider an image classifier f : € — ¢, where @ € R” is a normalized RGB
image and c is its corresponding true label such as the top-1 classification label.
F(x) is a k-dimensional vector, referring to the probability distribution over
classes. ¢ := arg max.c[y] Fe() represents the label of . Given an original image
x*, ¢* represents its label. Denote the adversarial perturbation as pu € R™, the
goal of untargeted attack is to make the model misclassified wherein c(x*+ p) #
c*, and targeted attack aims to change the original classifier decision ¢* into a
pre-specified class cT.

The process of generating adversarial examples can be formulated as an opti-
mization problem by defining the function L:

n;léa)*( F.(x) — F~ () (Untargeted)

Ly (x) = %‘C+ (x) — g}g%i( F. (x) (Targeted) S

Gradient-based methods can be used to efficiently optimize this problem under
the white-box setting. However, in the decision-based black-box attack, models
only provide attackers with a hard label, even without any output probabilities.
In other words, only the value of sign(L£) is available, while the value of L is
unknown. We denote the indicator function 7 as:

1 if Ly« (x)>0

Lo+ (x) = sign (Ly- () = { —1 otherwise @)

In our decision-based attack, the goal of the adversary is to find an adversarial
perturbation g which satisfies Z(x* 4+ p) = 1 by sending queries to model. That
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Fig. 2. Initialization for untargeted attacks.

is, only when Z(z* + p) = 1 can it be considered as a successful attack. Generat-
ing adversarial examples under decision-based black-box setting can be defined
as the following optimization problem:

min D(x*,z* + ) sit. I(z*+p)=1 (3)

where D(+, ) is la-norm or l-norm distance metric. We strive to find an example
with as little distortion as possible from the original example under the condition
of guaranteed adversarial.

4 Decision-Based Black-Box Attack Specific to Large-Size
Images (SLIA)

In this section, we propose to utilize discrete wavelet transform (DWT) to decom-
pose the low-frequency component of the attacked image, and only adds pertur-
bation to this part, while maintaining a 100% attack success rate. The pipeline
of SLIA is shown in Fig. 1, which includes three steps: gradient estimation by
querying the model, moving along the estimated gradient direction, and project-
ing new example to the decision boundary by binary search towards the original
example. Details of each step are given below.

4.1 Initialization

Our SLIA starts from an adversarial image outside the boundary, and gradually
reduces the distortion by moving towards the original image along the decision
boundary while remaining adversarial.
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Fig. 3. Overview of estimating gradient at decision boundary.

Given a correctly classified original image x*, the first step is to generate an
initial adversarial example: (1) As shown in Fig. 2, for untargeted attacks, we per-
form 1-level discrete wavelet decomposition on the original image. Then the low-
frequency component LL" is reset to a random uniform noise u ~ U (min(LL"),
max(LL")). Next, we combine the low-frequency noise with the original high-
frequency components to reconstruct the image through inverse DWT. We make
queries to the target model, until the new image is misclassified. Different from
the previous attack methods that use a uniform random noise as the initial-
ization image, the advantage of SLIA is that the new image can retain more
original image information without causing large distortion. Finally, we project
it to the boundary through the binary search algorithm and identify it as the
initial adversarial example xg; (2) For targeted attacks, the image is randomly
selected from a pre-specified class which is different from the class of the origi-
nal image. Similarly, we leverage the binary search algorithm to search for the
decision boundary, and take the image as initial adversarial example x.

4.2 Gradient Direction Estimate at the Decision Boundary

In this subsection, we will elaborate the gradient estimation part in the proposed
method in detail. Suppose that at the ¢-th iteration, the adversarial example on
the boundary is x;. As shown in Fig. 3, x; is decomposed into low-frequency and
high-frequency components by DWT. Therefore, the gradient direction of loss
function £ at this point is estimated by sending queries to the target model,

N
1
VL(2)) =+ Y Lo [IDWT(LL; + dm;, HLy, LHy HH)ln;, ()

=1
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where § and t are probe step size which are a small positive parameter and ¢ is the
current number of iteration. ¥, are normalized random noise vectors drawn
from the Gaussian distribution over the 1/4-dimensional sphere as shown in
Fig.4 (x* € R™). dnl¥, is added to the low-frequency component. By combining
with high-frequency components of x;, inverse DW'T is utilized to reconstruct
N samples with unknown labels.

We determine the directions of the noise vectors by accessing the model to
observe whether these samples have the same labels as the original example: (1)
If T, = —1, the noise vector will be updated to its opposite direction; (2) If
T+ = 1, the noise vector will remain unchanged. Finally, we average the above
noises and use the mean as the normal vector of tangent hyperplane, i.e., the
gradient direction VL(x,) at the decision boundary.

Due to the flatness of the boundary, it is theoretically likely that the noise
vectors are symmetrically distributed on both sides of the decision boundary.
Therefore, the updated and unchanged noise vectors can be clustered around
the true gradient as much as possible, the mean vector is also closer to the true
gradient.

The gradient estimation in SLIA is essentially a Monte Carlo estimation
method. When the dimension of the gradient to be estimated is large, using
the Monte Carlo method requires more sampling points to make the estimated
gradient closer to the true gradient. In an RGB color image, each pixel is repre-
sented by three channels. Moreover, as the size of the image becomes larger, the
dimensionality of the image increases dramatically (e.g., the data dimension on
ImageNet is over 150k), resulting in a low accuracy of estimating gradient. To
reduce the dimension of the gradient to be estimated and further minimize the
visual effect of adversarial perturbation, SLIA applies DWT to decompose the
sample into low-frequency components and high-frequency components. Note
that most of the key content-defining information in natural images exists at the
low-frequency end of the spectrum, while high-frequency signals are often associ-
ated with noise. That is, adversarial examples are more likely to be generated by
adding noise to low-frequency component. Therefore, we keep the high-frequency
components unchanged, and only perturb the low-frequency component, which
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reduces the dimension to be perturbed to 1/4 of the original image. Adding
perturbation to the low-frequency information has several advantages: (1) Only
the low-frequency component is perturbed, the dimension of the gradient to be
estimated is reduced to 1/4 of the original image, which means that the same
number of sampling points can obtain higher estimation accuracy; (2) Only
adding perturbation to the low-frequency component, the perturbation is dis-
tributed in multiple pixels, which is not easy to form salt and pepper noise and
has less visual impact.

4.3 Move Along Estimated Gradient Direction

In this part, we will move one step along the gradient direction estimated in Eq.
(4) to obtain an example located in the adversarial area,

Vﬁ(a}t)

VL@’ 5)

5%,’5 =T+ € -
where €; is perturbation magnitude at ¢-th iteration. It is computed from the
distortion result of the last iteration and the geometric progression related to
current iteration number t. We multiply the normalized estimated gradient by
€+, and add it to x; to obtain an adversarial example x}, which is slightly away
from the boundary, shown in Fig. 1. Note that x is at the opposite side of the
boundary to x*.

4.4 Project to Decision Boundary

Since the proposed gradient direction estimation works only at the boundary, we
adopt binary search algorithm to quickly find the decision boundary and project
x; to it. We use the following formula to adjust the value of the parameter
v to control the relative position of the adversarial example from the original
example, until the stopping condition is satisfied. Hence, we move the adversarial
image x; towards the direction of the original image x* via

=2+ (L) -, (6)

where v; is a changing positive parameter between 0 and 1 so that @} projected
back to the decision boundary. We denote the example projected back on the
boundary as x'*!, and let it enter to the next iteration as a new boundary
adversarial example. The pseudo code of the complete process in generating
adversarial images is outlined in Algorithm 1.

5 Experiments

5.1 Experimental Settings

Dataset and Target Models. We experiment on ImageNet [18], a public
large-scale labeled image dataset, to demonstrate the efficiency of our proposed
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Algorithm 1 Boundary attack specific to large-size images (SLIA)

Input: Indicator function Z, the original example x*, the number of
normalized random noises N, iteration number T, constraint [, (p=0 or p=00),
attack objective (untargeted or targeted), stopping threshold of binary search.

Output: Adversarial example.

if objective is untargeted then
LL*, LH* HL*, HH* — DWT(x").
Sample noise u ~ U (min(LL"), max(LL")).
while Z(IDWT(u, LH*, HL*, HH")) = —1 do
| Sample noise u ~ U(min(LL*), max(LL")).
end
Tinitait = IDWT(u, LH*, HL*, HH™).
else
| A randomly sampled image xinitqai1 belonging to the target class.
end
Search starting point €¢ = BinarySearch(;nitqi, ", Z) which lies on the
boundary.
fort=0toT —1do

LL:, LH, HL:, HH, — DWT(x:).

Sample N noise vectors: v, ~ A(0,1).

Estimate gradient direction of LL: VL () with the rule defined in Eq.(?7?).

if constraint is oo then

| VL(x:) = sign(VL(z¢)).

end
Initialize €; = ||z: — «*||,/V/t x 4 for obtaining attack step size.
while Z(x; + € - %) =—-1do
| & =e /2
end
Compute T} = T¢ + € - %.
Update adversarial image x:+1= BinarySearch(z}, *, Z) on the boundary.

end
Return an adversarial example xp_1;

method. For ImageNet, we randomly sample 100 correctly classified test images,
evenly distributed among 10 randomly selected classes. The whole images are
clipped into [0,1] by default for all experiments. We perform both untargeted
attacks and targeted attacks to a random class against three prevailing models:
ResNet-50 [22], VGG16 [23] and DenseNet-201 [24]. All models are pretrained
on ImageNet and provided by Keras online'.

Compared Baseline Methods. To demonstrate the effectiveness of our
method, we compare SLIA with several state-of-the-art decision-based attacks
including Boundary Attack method [19], HopSkipJumpAttack (HSJA [21] and

! https://keras.io/applications/#resnet50.
https://keras.io/applications/#vggl6.
https://keras.io/applications/#densenet201.
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Table 1. Mean Ilz-norm distortions for performing untargeted and targeted attacks
with different query budgets.

Objective | Victim Model | Method 1K 5K 10K |20K
Untargeted | ResNet-50 Boundary Attack [19] 54.67 |27.03 | 14.89 |10.34
HopSkipJumpAttack [21] | 28.60 | 9.12 | 5.46  3.31

LHS-BA [25] 23.84 | 6.39 | 4.92 | 3.20
Ours 14.73| 4.85| 3.59 | 2.98
VGG16 Boundary Attack [19] 60.06 |24.76 | 18.63 |14.83
HopSkipJumpAttack [21]|26.35 |12.22 | 9.78 | 7.97
LHS-BA [25] 22.84 110.20 | 7.51 7.32
Ours 1341 | 5.11| 3.68 | 2.86

DenseNet-201 | Boundary Attack [19] 78.83 [33.29 | 15.90 | 10.64
HopSkipJumpAttack [21]|35.20 | 7.74 | 4.52 | 2.92
LHS-BA [25] 27.09 | 7.36 | 3.74 | 2.28
Ours 17.64| 6.83| 2.84| 0.80
Targeted | ResNet-50 Boundary Attack [19] 83.10 |49.24 |31.85 |22.59
HopSkipJumpAttack [21] | 54.85 |27.54 |17.04 | 9.34

LHS-BA [25] 50.20 | 26.81 |16.70 | 9.25
Ours 49.10  26.21 | 16.16 | 9.06
VGG16 Boundary Attack [19] 97.23 | 58.94 |39.27 |28.25
HopSkipJumpAttack [21] | 67.36 |40.49 |27.47 |18.17
LHS-BA [25] 60.64 |36.72 |25.70 | 16.38
Ours 56.25 | 26.27 | 15.08 | 10.18

DenseNet-201 | Boundary Attack [19] 92.78 |54.86 |26.41 |17.03
HopSkipJumpAttack [21] | 67.92 |30.63 |15.79 | 8.62
LHS-BA [25] 61.85 | 27.49 15.66 | 8.40
Ours 54.32/19.56 |13.13| 7.70

Latin Hypercube Sampling based Boundary Attack (LHS-BA) [25]. We mainly
focus on attack method LHS-BA, which outperforms all of other Boundary
Attack [19], Limited Attack [6], and HSJA [21]. We use the implementation
of the three algorithms with the suggested hyperparameters from the publicly
available source code online. We fixed the number of queries at 1K, 5K, 10K and
20K and magnitude of the average distortion is what we mainly observe when
performing untargeted and targeted attacks respectively.

Evaluation Metrics. Effective querying is the most important indicator to
evaluate the decision-based adversarial attack, which requires the method to
craft adversarial example with smaller model queries at the same distortion.
SLIA’s attack success rate is 100%, so we quantify the performance in terms of
two dimensions: average [,-norm distortion and specified query numbers. It can

be formulated as: )
Iz, = <Z Iwilp> ; (7)
i=1
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Table 2. Mean l.-norm distortions for performing untargeted and targeted attacks
with different query budgets.

Objective | Victim Model | Method 1K 5K 10K 20K
Untargeted | ResNet-50 Boundary Attack [19] 0.553 |0.411 |0.247 |0.193
HopSkipJumpAttack [21] |0.231 |0.129 |0.103 | 0.098

LHS-BA [25] 0.164 |0.082 | 0.070 |0.047
Ours 0.089  0.039 | 0.032 | 0.023
VGG16 Boundary Attack [19] 0.475 1 0.349 | 0.257 | 0.124
HopSkipJumpAttack [21] |0.291 |0.185 |0.121 |0.087
LHS-BA [25] 0.166 |0.095 |0.073 |0.038
Ours 0.067|0.032|0.024 | 0.018

DenseNet-201 | Boundary Attack [19] 0.431 |0.318 |0.234 |0.109
HopSkipJumpAttack [21] | 0.267 | 0.132 | 0.107 | 0.076
LHS-BA [25] 0.204 |0.116 | 0.085 |0.061
Ours 0.152 | 0.074 | 0.058 | 0.035
Targeted ResNet-50 Boundary Attack [19] 0.780 |0.618 |0.372 |0.244
HopSkipJumpAttack [21] |0.370 | 0.267 |0.199 |0.137

LHS-BA [25] 0.310 |0.229 | 0.163 0.125
Ours 0.253/0.146 | 0.120 | 0.091
VGG16 Boundary Attack [19] 0.739 0.584 |0.301 |0.236
HopSkipJumpAttack [21] | 0.441 | 0.238 |0.186 | 0.133
LHS-BA [25] 0.405 | 0.210 |0.169 |0.117
Ours 0.361 1 0.182|0.128 | 0.090

DenseNet-201 | Boundary Attack [19] 0.683 | 0.553 | 0.291 |0.255
HopSkipJumpAttack [21] |0.410 | 0.216 |0.175 |0.117
LHS-BA [25] 0.381 |0.188 | 0.146 | 0.099
Ours 0.315/0.133/0.098 | 0.078

where ly-norm and l,-norm are are two most commonly used metrics in the
adversarial attack field. [o-norm means Euclidean distance between the original
example and the adversarial one, and [,,-norm represents perturbation’s maxi-
mum changeable degree.

Hyperparameters. In our proposed attack, the number of iteration and the
maximum queries are set to 76 and 20,000, respectively. At the ¢-th iteration, we
compute probe step size in each gradient direction estimation by d; = ||@i—1 —
x*||2/nx4 and €; = ||x;_1—x*||2/V/t x4 as perturbation step size in moving along
estimated gradient direction, where n = 224x224x3 is the input dimension.
Random vectors NN is set to 100 first, and we gradually increase it by N =
N x (t+ 1)%. Stopping threshold # when performing binary search is set to n-s.
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5.2 Experimental Results

To evaluate SLIA’s performance, we report mean lo-norm and l.-norm distor-
tion results in Tables 1 and 2 when performing untargeted and targeted attacks.
The distortion descending curves of various algorithms under different query
budgets are given in Fig.5. Two qualitative example processes of attacking the
ResNet-50 by different attack methods are shown in Figs. 6 and 7, respectively.

s
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Fig. 5. [>-norm distortions across various model queries on ImageNet with ResNet-50.
1st column: untargeted attacks. 2nd column: targeted attacks.

Untargeted Attacks. As shown in the untargeted attack section of Tables1
and 2, it is obvious that our method outperforms existing decision-based attacks
by a large margin under all fixed number of model queries. SLIA also converges
in a fewer number of queries, as shown in Fig. 5.

Especially in the early stages of the attack, the advantages of SLIA are more
obvious. When the number of fixed model queries does not exceed 10K: (1)
Under the ly-norm distance metric, SLIA can reduce the distortion to 56% of
HSJA and about 67% of LHS-BA; (2) Under the l,-norm distance metric, the
distortion of adversarial examples constructed via SLIA is about 64% lower than
that of HSJA and about 45% lower than that of LHS-BA. Experimental data
demonstrates that the adversarial examples can be crafted by our method rather
quickly without using too many queries.

This is due to two reasons: (1) In the initialization part, we replace the
low-frequency component of the original example with a uniform noise, and do
not update other high-frequency components. In this way, more details of the
original example can be preserved in the case of making the model misclassify;
(2) When estimating the gradient, we consider DWT to decompose the low-
frequency component of the example, and estimate the gradient of it. This greatly
reduces the dimension of the gradient to be estimated to 1/4 of the original
space. When sampling the same amount of Gaussian noises, the gradient can be
estimated with higher accuracy than that of the original full space.
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Fig. 6. Visualized trajectories of HSJA [21], LHS-BA [25] and SLIA for performing
untargeted attacks on ResNet-50. 1st column: initialization. 2nd-9th columns: images
after blended with original images and at 1 K, 5K, 10K, 20 K model queries. 10th col-
umn: original image. D is l2-norm metric to compute the distortion between adversarial
image and original image.

Targeted Attacks. We randomly select a target label and pick one image
belonging to the target label. Then we use it as initialization image for all tar-
geted attacks. The results for targeted attacks are presented in the lower parts
of Tables1 and 2. We can see that SLIA not only outperforms HSJA [21], but
also surpasses the latest gradient estimation-based boundary attack LHS-BA
[25]. From a qualitative example comparison using different methods shown in
Fig. 7, when model queries is fixed at 5,000 (4-th column), the adversarial exam-
ple crafted by SLIA is visually closer to the original example than the other
two attacks. It can be seen that under a limited number of queries, SLIA is
able to make adversarial examples with significantly smaller distortions from
the corresponding original example. In other words, under the same distortion
condition, SLIA requires fewer number of queries than the state-of-the-art meth-
ods. We can also find that SLIA requires a larger number of model queries to
achieve a comparable distortion when performing targeted attacks than untar-
geted attacks. This phenomenon is evident on the ImageNet dataset which has
many categories. There is often an order-of-magnitude difference in the average
l,-norm distortion between untargeted and targeted attacks for the same number
of queries.
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Original

Fig. 7. Visualized trajectories of HSJA [21], LHS-BA [25] and SLIA for performing
targeted attacks on ResNet-50. 1st column: initialization. 2nd-9th columns: images after
blended with original images and at 1K, 5K, 10K, 20K model queries. 10th column:
original image. D is [2-norm metric to compute the distortion between adversarial image
and original image.

6 Conclusion

In this work, we present a query-efficient adversarial example generation algo-
rithm (SLIA), which is specific to ImageNet with a large image size. SLIA can
be performed to ensure 100% attack success rate for settings where the attacker
only has access to the final decisions of a model. We generate adversarial exam-
ples by estimating the gradient of the low-frequency component, which greatly
reduces the dimension of the gradient to be estimated. When attacking a vari-
ety of different ImageNet models, the distortion can be reduced faster with our
method compared to state-of-the-art attacks with different query budgets.
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